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Preface

The 7th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2010) was held in Bologna, Italy, June 16-18, 2010.

The conference is intended primarily as a forum to focus on the integration
and hybridization of the approaches of constraint programming (CP), artificial
intelligence (AI), and operations research (OR) technologies for solving large-
scale and complex real-life combinatorial optimization problems. CPAIOR is
focused on both theoretical and practical, application-oriented contributions.

The interest of the research community in this conference is witnessed by the
high number of high-quality submissions received this year, reaching 39 long and
33 short papers. From these submissions, we chose 18 long and 17 short papers
to be published in full in the proceedings.

This volume includes extended abstracts of the invited talks given at CPAIOR.
Namely, one by Matteo Fischetti (University of Padova) on cutting planes and
their use within search methods; another by Carla Gomes (Cornell University)
on the recently funded NSF “Expedition in Computing” grant on the topic of
computational sustainability and on the potential application of hybrid optimiza-
tion approaches to this area; a third by Peter Stuckey (University of Melbourne)
on the integration of SATisfiability solvers within constraint programming and
integer programming solvers.

Two days before CPAIOR, a Master Class was organized by John Hooker on
“Experimental Study of Algorithms and Benchmarking”. The Master Class was
composed of two parts: in the first, two leading researchers gave overview talks in
the area. Catherine McGeoch (Amherst College) discussed statistical methods,
and Carla Gomes (Cornell University) discussed the scientific use of experimen-
tation. In the second part of the Master Class, software vendors described how
they do benchmarking. The Master Class was intended for PhD students, re-
searchers, and practitioners. We are very grateful to John, who brought this
excellent program together. Finally, a rich program of one-day workshops was
organized on June 15.

We warmly thank Zeynep Kiziltan for her work as Publicity Chair, Fabio
Parisini for managing the conference website, and Enrico Malaguti for the man-
agement of the EasyChair System. We are very grateful to Meinolf Sellmann,
who acted as Workshop Chair and put together an exciting program with five
half-day workshops. Managing submissions and conference proceedings by means
of the EasyChair System made our work a lot easier and we warmly thank Easy-
Chair for this.

Many thanks to the members of the Program Committee, who reviewed all
the submissions in detail and discussed conflicting papers deeply. We warmly
thank the external reviewers as well.



VI Preface

Special thanks go to Marco Gavanelli and Andrea Roli, the Conference Chairs
who took care of the many details concerning the organization, and to Vanessa
Grotti (Planning Congressi), for her work on budgeting, planning and booking.

Finally, we would like to thank the sponsors who made it possible to orga-
nize this conference: the ARTIST Design, Network of Excellence, the Institute
for Computational Sustainability (ICS), the Cork Constraint Computation Cen-
ter, the Association for Constraint Programming (ACP), the Optimization for
Sustainable Development (OSD) Chair, IBM and FICO.

A special mention should be made of FONDAZIONE DEL MONTE - 1473
for its generous support of the publication of these proceedings and of ALMA
MATER STUDIORUM - Universita di Bologna for the continuous help and
support of the organization of CPAIOR, 2010.
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Towards a MIP-Cut Metascheme

Matteo Fischetti

DEI, University of Padova, Italy
matteo.fischetti@unipd.it

Cutting planes (cuts) are very popular in the OR community, where they are
used to strengthen the Linear Programming (LP) relaxation of Mixed-Integer
Programs (MIPs) in the hope of improving the performance of an exact LP-
based solver. In particular, an intense research effort has been devoted to the
study of families of general cuts, whose validity does not require the presence
of a specific MIP structure—as opposed to problem-specific cuts such as, e.g.,
subtour elimination or comb inequalities for the traveling salesman problem.

Among general cuts, Gomory’s Mixed-Integer Cuts (GMICs) play a central
role both in theory and in practice. These cuts have been introduced by Ralph
Gomory about 50 years ago in his seminal paper [I]. Though elegant and com-
putationally cheap, they were soon abandoned because they were considered of
little practical use [2]. The situation changed radically more than 30 years later,
when Balas, Ceria, Cornuéjols and Natraj [3] found how to take advantage of
exactly the same cuts but in an different framework. In our view, this is a good
example of the importance of a sound framework for MIP cuts.

Even today, MIP solvers are quite conservative in the use of general cuts, and
in particular of GMICs, because of known issues due to the iterative accumu-
lation of the cuts in the optimal LP basis. This leads to numerical instability
because of a typically exponential growth of the determinant of the LP basis.

Following our recent joint work with Balas and Zanette [45], in this talk we
argue that the known issues with cutting plane methods are largely due to the
overall framework where the cuts are used, rather than to the cuts themselves.
This is because the two main cutting plane modules (the LP solver and the cut
generator) form a closed-loop system that is intrinsically prone to instability.
Hence a kind of “decoupling filter” needs to be introduced in the loop if one
wants to exploit the full power of a given family of cuts.

A main goal of the talk is to refocus part of the current research effort from
the definition of new cut families to the way the cuts are actually used. In fact,
cutting planes still miss an overall “meta-scheme” to control cut generation and
to escape local optima by means of diversification phases—very well in the spirit
of Tabu or Variable Neighborhood Search meta-schemes for primal heuristics.
The development of sound meta-schemes on top of a basic separation tool is
therefore an interesting new avenue for future research, with contributions ex-
pected from all the three CP/AI/OR communities. The relax-and-cut framework
for GMICs recently proposed in the joint work with Salvagnin [6] can be viewed
as a first step in this direction.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 1 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Challenges for CPAIOR in
Computational Sustainability

Carla P. Gomes

Cornell University
Ithaca, NY, USA
gomes@cs.cornell.edu

The notions of sustainability and sustainable development were first introduced
in the seminal report of the United Nations World Commission on Environment
and Development, known as the Brundtland report or Our Common Future [3].
Sustainable development is “development that meets the needs of the present
without compromising the ability of future generations to meet their needs.”
Sustainability and sustainable development concern balancing environmental,
economic, and societal needs for a sustainable future.

The development of policies for sustainable development often involves de-
cision making and policy making problems concerning the management of our
natural resources involving significant computational challenges that fall into
the realm of computing and information science and related disciplines (e.g.,
operations research, applied mathematics, and statistics).

Computational Sustainability is a new emerging field that aims to apply tech-
niques from computer science and related disciplines to help manage the balance
of environmental, economic, and societal needs for sustainable development|1].
The focus of Computational Sustainability is on developing computational and
mathematical models, methods, and tools for a broad range of sustainability re-
lated applications: from decision making and policy analysis concerning the man-
agement and allocation of resources to the design of new sustainable techniques,
practices and products. The range of problems that fall under Computational
Sustainability is therefore rather wide, encompassing computational challenges
in disciplines as diverse as environmental sciences, economics, sociology, and
biological and environmental engineering.

In this talk I will provide examples of computational sustainability challenge
domains ranging from wildlife preservation and biodiversity, to balancing socio-
economic needs and the environment, to large-scale deployment and manage-
ment of renewable energy sources. I will discuss how computational sustainabil-
ity problems offer challenges but also opportunities for the advancement of the
state of the art of computing and information science and related fields, high-
lighting some overarching computational themes in constraint reasoning and
optimization, machine learning, and dynamical systems. I will also discuss the
need for a new approach to study such challenging problems in which compu-
tational problems are viewed as “natural” phenomena, amenable to a scientific
methodology in which principled experimentation, to explore problem parameter

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 32010.
© Springer-Verlag Berlin Heidelberg 2010



4 C.P. Gomes

spaces and hidden problem structure, plays as prominent a role as formal analy-
sis [2]. Such an approach differs from the traditional computer science approach,
based on abstract mathematical models, mainly driven by worst-case analyzes.
While formulations of real-world computational tasks lead frequently to worst-
case intractable problems, often such real world tasks contain hidden structure
enabling scalable methods. It is therefore important to develop new approaches
to identify and exploit real-world structure, combining principled experimen-
tation with mathematical modeling, that will lead to scalable and practically
effective solutions.

In summary, the new field of Computational Sustainability brings together
computer scientists, operation researchers, applied mathematicians, biologists,
environmental scientists, and economists, to join forces to study and provide so-
lutions to computational problems concerning sustainable development, offering
challenges but also opportunities for the advancement of the state of the art of
computing and information science and related fields.
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Lazy Clause Generation: Combining the Power
of SAT and CP (and MIP?) Solving

Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering
University of Melbourne, 3010 Australia
pjs@cs.mu.oz.au

Abstract. Finite domain propagation solving, the basis of constraint
programming (CP) solvers, allows building very high-level models of
problems, and using highly specific inference encapsulated in complex
global constraints, as well as programming the search for solutions to
take into account problem structure. Boolean satisfiability (SAT) solving
allows the construction of a graph of inferences made in order to deter-
mine and record effective nogoods which prevent the searching of similar
parts of the problem, as well as the determination of those variables
which form a tightly connected hard part of the problem, thus allow-
ing highly effective automatic search strategies concentrating on these
hard parts. Lazy clause generation is a hybrid of CP and SAT solving
that combines the strengths of the two approaches. It provides state-of-
the-art solutions for a number of hard combinatorial optimization and
satisfaction problems. In this invited talk we explain lazy clause gener-
ation, and explore some of the many design choices in building such a
hybrid system, we also discuss how to further incorporate mixed integer
programming (MIP) solving to see if we can also inherit its advantages
in combinatorial optimization.

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tack-
les hard combinatorial problems by interleaving search and restriction of the pos-
sible values of variables (propagation). The propagators that make up the core
of a finite domain propagation engine represent trade-offs between the speed of
inference of information versus the strength of the information inferred. Good
propagators represent a good trade-off at least for some problem classes. The
success of finite domain propagation in solving hard combinatorial problems
arises from these good trade-offs, and programmable search, and has defined the
success of constraint programming (CP).

Boolean Satisfiability (SAT) solvers have recently become remarkably pow-
erful principally through the combination of: efficient engineering techniques
for implementing inference (unit propagation) using watched literals, effective
methods for generating and recording nogoods which prevent making a set of

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 5«@ 2010.
© Springer-Verlag Berlin Heidelberg 2010



6 P.J. Stuckey

decisions which has already proven to be unhelpful (in particular 1UIP nogoods),
and efficient search heuristics which concentrate on the hard parts of the prob-
lem combined with restarting to escape from early commitment to choices. These
changes, all effectively captured in Chaff [I], have made SAT solvers able to solve
problems orders of magnitude larger than previously possible.

Can we combine these two techniques in a way that inherits the strengths of
each, and avoids their weaknesses. Lazy clause generation [2I3] is a hybridization
of the two approaches that attempts to do this. The core of lazy clause generation
is simple enough, we examine a propagation based solver and understand its
actions as applying to an underlying set of Boolean variables representing the
integer (and set of integer) variables of the CP model.

In this invited talk we will first introduce the basic theoretical concepts that
underlie lazy clause generation. We discuss the relationship of lazy clause gen-
eration to SAT modulo theories [4]. We then explore the difficulties that arise
in the simple theoretical hybrid, and examine design choices that ameliorate
some of these difficulties. We discuss how complex global constraints interact
with lazy clause generation. We then examine some of the remaining challenges
for lazy clause generation: incorporating the advantages of mixed integer pro-
gramming (MIP) solving, and building hybrid adaptive search strategies. The
remainder of this short paper will simply introduce the basic concepts of lazy
clause generation.

2 Lazy Clause Generation by Example

The core of lazy clause generation is fairly straightforward to explain. An integer
variable z with initial domain [{..u] is represented by two sets of Boolean vari-
ables [x < d],l < d < u and [z =d],l < d < u. The meaning of each Boolean
variable [c] is just the condition c. In order to prevent meaningless assignments
to these Boolean variables we add clauses that define the conditions that relate
them.

[t <d] =[x <d+1],l<d<u—2
[r=d] = [z <d],l<d<u-1
[r=d] — -z <d—-1],l<d<wu
[r<d]A-[z<d-1] - [zr=d,l<d<u-1
[x <] = [z =1]
Sz <u—1] = [z = u]

Each Boolean variable encodes a domain change on the variable z. Setting
[x = d] true sets variable z to d. Setting [z = d] false excludes the value d from
the domain of x. Setting [ < d] true creates an upper bound d on the variable
x. Setting [z < d] false creates a lower bound d + 1 on the variable z. We can
hence mimic all domain changes using the Boolean variables. More importantly
we can record the behaviour of a finite domain propagator using clauses over
these variables.
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Consider the usual bounds propagator for the constraint z = yx z (see e.g. [5]).
Suppose the domain of z is [-10..10], y is [2..10] and z is [3.. 10]. The bounds
propagator determines that the lower bound of « should be 6. In doing so it only
made use of the lower bounds of y and z. We can record this as a clause ¢;

(er) 1 =ly <1 A[z <2] = =z < 5]

It also determines the upper bound of z is 5 using the upper bound of x and the
lower bound of y, and similarly the upper bound of y is 3. These can be recorded
as

(c2) : [z <10] A=[y <1] — [z < 5]

(c3) : [z <10]A=[z < 2] — [y < 3]

Similarly if the domain of z is [—10..10], y is [—2..3] and z is [—3..3], the
bounds propagator determines that the upper bound of z is 9. In doing so it
made use of both the upper and lower bounds of y and z. We can record this as
a clause

Ty< -3 ALy <3IA-[e <~ ALz < 3] - [o < 9]

In fact we could strengthen this explanation since the upper bound of z will
remain 4 even if the lower bound of z was —4, or if the lower bound of y were
—3. So we could validly record a stronger explanation of the propagation as

Ty < -3 ATy <3N ALz < 5] Az < 8] - [z < 9]

Ty <4 Aly <31 A-[< ALz <3] - [o <]

In a lazy clause generation system every time a propagator determines a domain
change of a variable it records a clause that ezplains the domain change. We
can understand this process as lazily creating a clausal representation of the
information encapsulated in the propagator. Recording the clausal reasons for
domain changes creates an implication graph of domain changes. When conflict is
detected (an unsatisfiable constraint) we can construct a reason for the conflict,
just as in a SAT (or SMT solver).

Suppose the domain of z is [6..20], domain of y is [2..20], z is [3..10] and
tis [0..20] and we have constraints x < ¢,z =y x z and y > 4V z > 7. Suppose
search adds the new constraint ¢ < 10 (represented by [t < 10]). The inequality
changes the upper bounds of z to 10 with explanation (c4) : [t < 10] — [z < 10].
The multiplication changes the upper bounds of z to 5 ([z < 5]), and y to 3
([y < 3]) with the explanations c; and c3 above, and the disjunctive constraint
(which is equivalent to (c5) : =y < 3] V =]z < 6]) makes -]z < 6] true which
by the domain constraints makes (cg) : [z < 5] — [z < 6] unsatisfiable. The
implication graph is illustrated in Figure [

We can explain the conflict by any cut that separates the conflict node from
the earlier parts of the graph. The first unique implication point (1UIP) cut
chooses the closest literal to the conflict where all paths from the last decision
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Fig. 1. Implication graph of propagation

to the conflict flow through that literal, and draws the cut just after this literal.
The 1UIP cut for Figure [l is shown as the dashed line. The resulting nogood is

Sz <2] Ay < 1] Az <10] — false

Note that if we ever reach a situation in the future where the lower bound of y
is at least 2, and the lower bound of z is at least 3, then the lower bound of =
will become at least 11 using this clause.

Since we are explaining conflicts completely analogously to a SAT (or SMT)
solver we can attach activities to the Boolean variables representing the inte-
ger original variables. Each Boolean variable examined during the creation of
the explanation (including those appearing in the final nogood) has their activ-
ity bumped. Every once in a while all activities counts are decreased, so that
more recent activity counts for more. This allows us to implement activity based
VSIDS search heuristic for the hybrid solver. We can also attach activity coun-
ters to clauses, which are bumped when they are involved in the explanation
process.

Since all of the clauses generated are redundant information we can at any
stage remove any of the generated clauses. This gives us the opportunity to
control the size of the clausal representation of the problem. Just as in a SAT
solver we can use clausal activities to decide which generated clauses are most
worthwhile retaining.

3 Concluding Remarks

The simple description of lazy clause generation in the previous section does
not lead to an efficient lazy clause generation solver, except for some simple
kinds of examples. In practice we need to also lazily generate the Boolean vari-
ables required to represent the original integer (and set of integer) variables. We
may also choose to either eagerly generate the explanation clauses as we exe-
cute forward propagation, or lazily generate explanations on demand during the
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process of explaining a conflict. For each propagator we have to determine how
to efficiently determine explanations of each propagation, and which form the
explanation should take. In particular for global constraints many choices arise.
Lazy clause generation also seems to reduce the need for global constraints, since
in some cases decomposition of the global constraint, together with conflict learn-
ing, seems to recapture the additional propagation that the global constraint has
over its decomposition. Decompositions of global constraints may also be more
incremental that the global, and learn more reusable nogoods. In short, lazy
clause generation requires us to revisit much of the perceived wisdom for creat-
ing finite domain propagation solvers, and indeed leads to many open questions
on the right design for a lazy clause generation solver. Experiments have shown
that for some classes of problem, such as resource constrained project schedul-
ing problems [6] and set constraint solving [7], lazy clause generation provides
state-of-the-art solutions.
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Abstract. Matrix models are ubiquitous for constraint problems. Many such
problems have a matrix of variables M, with the same constraint defined by a
finite-state automaton .4 on each row of M and a global cardinality constraint
gcc on each column of M. We give two methods for deriving, by double count-
ing, necessary conditions on the cardinality variables of the gcc constraints from
the automaton .A. The first method yields linear necessary conditions and simple
arithmetic constraints. The second method introduces the cardinality automaton,
which abstracts the overall behaviour of all the row automata and can be encoded
by a set of linear constraints. We evaluate the impact of our methods on a large
set of nurse rostering problem instances.

1 Introduction

Several authors have shown that matrix models are ubiquitous for constraint problems.
Despite this fact, only a few constraints that consider a matrix and some of its con-
straints as a whole have been considered: the allperm [8] and lex2 [7] constraints
were introduced for breaking symmetries in a matrix, while the colored matriz con-
straint [[13]] was introduced for handling a conjunction of gcc constraints on the rows and
columns of a matrix. We focus on another recurring pattern, especially in the context of
personnel rostering, which can be described in the following way.

Given three positive integers R, K, and V', we have an R x K matrix M of decision
variables that take their values within the finite set of values {0,1,...,V — 1}, as well
asa V' x K matrix M# of cardinality variables that take their values within the finite set
of values {0, 1, ..., R}. Each row r (with 0 < r < R) of M is subject to a constraint
defined by a finite-state automaton .A [212]. For simplicity, we assume that each row is
subject to the same constraint. Each column k (with 0 < k < K) of M is subject to a
gcc constraint that restricts the number of occurrences of the values according to column
k of M#: let #7 denote the number of occurrences of value v (with 0 < v < V) in
column k of M, that is, the cardinality variable in row v and column k of M#. We
call this pattern the matrix-of-automata-and-gcc pattern. In the context of personnel
rostering, a possible interpretation of this pattern is:

- R, K, and V respectively correspond to the number of persons, days, and types of
work (e.g., morning shift, afternoon shift, night shift, or day off) we consider.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 10-24,]2010.
(© Springer-Verlag Berlin Heidelberg 2010
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Each row r of M corresponds to the work of person r over K consecutive days.
Each column k of M corresponds to the work by the R persons on day k.

The automaton .4 on the rows of M encodes the rules of a valid schedule for a
person; it can be the product of several automata defining different rules.

The gcc constraint on column k represents the demand of services for day k. In
this context, the cardinality associated with a given service can either be fixed or be
specified to belong to a given range.

A typical problem with this kind of pattern is the lack of interaction between the row
and column constraints. This is especially problematic when, on the one hand, the row
constraint is a sliding constraint expressing a distribution rule on the work, and, on the
other hand, the demand profile (expressed with the gcc constraints) varies drastically
from one day to the next (e.g., during weekends and holidays in the context of personnel
rostering). This issue is usually addressed by experienced constraint programmers by
manually adding necessary conditions (implied constraints) that are most of the time
based on some simple counting conditions depending on some specificity of the row
constraints. Let us first introduce a toy example to illustrate this phenomenon.

Example 1. Take a 3 x 7 matrix M of 0/1 variables (i.e., R = 3, K = 7,V = 2), where
on each row we have a global contiguity constraint (all the occurrences of value 1
are contiguous) for which Figure [l depicts a corresponding automaton (the reader can
ignore the assignments to counters c and d at this moment). In addition, M# defines
the following gcc constraints on the columns of M:

— Columns 0, 2, 4, and 6 of M must each contain two Os and a single 1.
— Columns 1, 3, and 5 of M must each contain two 1s and a single 0.

A simple double counting argument proves that there is no solution to this problem.
Indeed, consider the sequence of numbers of occurrences of 1s on the seven columns
of M, thatis 1, 2, 1, 2, 1, 2, 1. Each time there is an increase of the number of 1s
between two adjacent columns, a new group of consecutive 1s starts on at least one row
of the matrix. From this observation we can deduce that we have at least four groups of
consecutive ones, namely one group starts at the first column (since implicitly before the
first column we have zero occurrences of value 1) and three groups start at the columns

ce—c—d+1,d—1 d—0 ce—c—d+1,d—1

tg : O tg 1 1 tg : O

m t1:1 m t3: 0
S0 s1 S92
ceO,dHOU d«— 0 U c—c—d+1,d—1

Fig. 1. Automaton associated with the global contiguity constraint, with initial state so, final
states so, S1, S2, and transitions %o, t1, t2, t3, t4 labelled by values O or 1. The missing transition
for value 1 from state sz is assumed to go to a dead state. The automaton has been annotated with
counters [2]]: the final value of counter c is the number of stretches of value 0, whereas d is an
auxiliary counter.




12 N. Beldiceanu et al.

containing two 1s. But since we have a global contiguity constraint on each row of the
matrix and since the matrix only has three rows, there is a contradiction.

The contributions of this paper include:

Methods for deriving necessary conditions on the cardinality variables of the gcc

constraints from string properties that hold for an automaton A (Sections2.T]to2.3)).

— A method for annotating an automaton .A with counter variables extracting string
properties from A (Section 2.4).

— Another method for deriving necessary conditions on the cardinality variables,
called the cardinality automaton, which simulates the overall behaviour of all the
row automata (Section[3)).

— An evaluation of the impact of our methods in terms of runtime and search effort

on a large set of nurse rostering problem instances (Section [4)).

Since our methods essentially generate linear constraints as necessary conditions, they
may also be relevant in the context of linear programming.

2 Deriving Necessary Conditions from String Properties

We develop a first method for deriving necessary conditions for the matrix-of-automata-
and-gcc pattern. The key idea is to approximate the set of solutions to the row constraint
by string properties such as:

— Bounds on the number of letters, words, prefixes, or suffixes (see Section 2.
— Bounds on the number of stretches of a given value (see Section2.2).
— Bounds on the lengths of stretches of a given value (see Section2.3)).

We first develop a set of formulae expressed in terms of simple arithmetic constraints
for such string properties. Each formula gives a necessary condition for the matrix-
of-automata-and-gcc pattern provided that the set of solutions of the row constraint
satisfies a given string property. We then show how to extract automatically such string
properties from an automaton (see Section[2.4) and outline a heuristic for selecting rel-
evant string properties (see Section[2.3). String properties can also be seen as a commu-
nication channel for enhancing the propagation between row and column constraints.

In Sections 2.1l and the derived constraints use the well-known combinatorial
technique of double counting (see for example [9]). Here we use the two-dimensional
structure of the matrix, counting along the rows and the columns. Some feature is con-
sidered, such as the number of appearances of a word or stretch, and the occurrences
of that feature are counted for the rows and columns separately. When the counting is
exact, these two values will coincide. In order to derive useful constraints that will prop-
agate, we derive lower and upper bounds on the given feature occurring when counted
columnwise. These are then combined into inequalities saying that the sum of these
column-based lower bounds is at most the sum of given row-based upper bounds, or
that the sum of these column-based upper bounds is at least the sum of given row-based
lower bounds.
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2.1 Constraining the Number of Occurrences of Words, Prefixes, and Suffixes

A word is a fixed sequence of values, seen as letters. Suppose we have the following
bounds for each row on how many times a given word occurs (possibly in overlapping
fashion) on that row, all numbering starting from zero:

- LW ,.(w) is the minimum number of times that the word w occurs on row 7.
— UW,(w) is the maximum number of times that the word w occurs on row 7.

Note that letters are just singleton words. It is not unusual that the LW ,(w)
(or UW ,.(w)) are equal for all rows r for a given word w. From this information, we
now infer by double counting two necessary conditions for each such word.

Necessary Conditions. Let |w| denote the length of word w, and let w; denote the ;™
letter of word w. The following bounds

Jw]—1
lw,,(w) = max Z #ot | = (lw = 1)- R0 (1)
|w|—1 w;
uwy(w) = min H#ri (2)

correspond respectively to the minimum and maximum number of occurrences of word
w that start at column k € [0, K — |w|]. These bounds can be obtained as follows:

— Since the cardinality variables only count the number of times a value occurs in
each column and does not constrain where it occurs, the lower bound () is the
worst-case intersection of all column value occurrences.

— A word cannot occur more often than its minimally occurring letter, hence bound (@).

Note that if some cardinality variable is not fixed, then the expressions above should be
interpreted as arithmetic constraints. We get the following necessary conditions:

K—|w| R-1 K—|w| R—1
> hwg(w) <Y UW,(w)  (3a) > uwg(w) =Y LW (w)  (3b)
k=0 r=0 k=0 r=0

Note that (3D} trivially holds when all LW ,.(w) are zero.

Generalisation: Replacing Each Letter by a Set of Letters. In the previous para-
graph, all letters of the word w were fixed. We now consider that each letter of a word
can be replaced by a finite non-empty set of possible letters. For this purpose, let w;
now denote the j™ set of letters of word w. Hence the bounds lw (w) and uw, (w) are
now defined by aggregation as follows:

Jw]—1
lw,, (w) = max Z Z #irj | — (vl —=1)-R,0 4)
j=0 cew;
|w| 1
wwp(w) = min | Y #iy )

cew;j
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We get the same necessary conditions as before. Note that (@) and (@) specialise respec-
tively to (I) and @) when all w; are singleton sets.

Extension: Constraining Prefixes and Suffixes. We now consider constraints on a
word occurring as a prefix (the first letter of the word is at the first position of the row)
or suffix (the last letter of the word is at the last position of the row). Suppose we have
the following bounds:

— LWP,.(w) is the minimum number of times (0 or 1) word w is a prefix of row r.
— UWP,(w) is the maximum number of times (0 or 1) word w is a prefix of row r.
LWS(w) is the minimum number of times (0 or 1) word w is a suffix of row r.
- UWS,(w) is the maximum number of times (0 or 1) word w is a suffix of row 7.

From these bounds, we get the following necessary conditions:

lwy(w Z UWP,.( (6a) wwg(w Z LWP,.( (6b)

lw g |w| Z UWS,( (7a) UW g _ |w| ZLWS (7b)

Note that (6B) trivially holds when all LWP,.(w) are zero, and that (Zb) trivially holds
when all LWS,.(w) are zero. Note that these necessary conditions also hold when each
letter of a constrained prefix or suffix is replaced by a set of letters.

2.2 Constraining the Number of Occurrences of Stretches

Given a row r of fixed variables and a value v, a stretch of value v is a maximum
sequence of values on row 7 that only consists of value v. Suppose now that we have
bounds for each row on how many times a stretch of a given value v can occur on
that row:

- LS, (v) is the minimum number of stretches of value v on row 7.
— US,(v) is the maximum number of stretches of value v on row r.

It is not unusual that the LS -(v) (or US,(v)) are equal for all rows r for a given value v.

Necessary Conditions. The following bounds (under the convention that #* ; = 0 for
each value v)

Isi (v) = max(0, #} — #1_1) (8)
usz(v) = #} —max(0,#},_, + #1 — R) 9)

correspond respectively to the minimum and maximum number of stretches of value v
that start at column k. Again, if some cardinality variable is not fixed, then the expres-
sions above should be interpreted as arithmetic constraints. The intuitions behind these
formulae are as follows:
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— If the number of occurrences of value v on column k (i.e., #}) is strictly greater
than the number of occurrences of value v on column k£ — 1 (i.e., #]_,), then this
means that at least #; — #; _; new stretches of value v can start at column k.

— If the total of the number of occurrences of value v on column % (i.e., #}) and
the number of occurrences of value v on column k — 1 (i.e., #}_,) is strictly
greater than the number of rows R, then the quantity #; _, +#/ — R represents the
minimum number of stretches of value v that cover both column k£ — 1 and column
k. From this minimum intersection we get the maximum number of new stretches
that can start at column k.

By aggregating these bounds for all the columns of the matrix, we get the following
necessary conditions through double counting:

K-1 R—1 K-1 R—1
> lsf(v) <) US.(v)  (10a) > usf(v) > LS. (v)  (10b)
k=0 r=0 k=0 r=0

Similarly, the following bounds (under the convention that #%, = 0 for each value v)
Isy, (v) = max(0, #} — #141) (11
usy, (v) = #5, — max(0, #;,1 + # — R) (12)

correspond respectively to the minimum and maximum number of stretches of value v
that end at column k. We get similar necessary conditions:

K-1 R—-1 K-1 R—-1
> sy (v) <) US(v)  (13a) > usp(v) > Y LS.(v)  (13b)
k=0 r=0 k=0 r=0

Note that (T0B) and (I3D) trivially hold when all LS,.(v) are zero.

Generalisation: Replacing the Value by a Set of Values. In the previous paragraph,
the value v of a stretch was fixed. We now consider that a stretch may consist of a finite
non-empty set, denoted by 0, of possible letters that are all considered equivalent. Let
#? denote the quantity > c(#7), that is the total number of occurrences of the values
of 9 in column &. The bounds (@), @), (I1)), (I2) are generalised as follows:

sy (0) = max(0, #7 — #4_1) (14)
usit (0) = #4 —max(0,#7_, + #; — R) (15)
Isi, (0) = max(0, #7 — #441) (16)
usy, (0) = #j, — max(0, #441 + #; — R) (17)

and we get the following necessary conditions:

K-1

R—-1 K-1
S lsf) <N US(v) (18a) Y usy (D) > LS,.(v) (18b)
k=0 v

k=0 ved r=0 e r

T

I
o
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K-1 R—-1 K-1 R—-1
D lsp(0) <N US(v) (192) Y usi(d) =Y LS(v) (19b)
k=0

veED 7=0 k=0 veED T=0

Note that (I8d), (I8D), (194), and (I9D) specialise respectively to (10a), (I0B), (134),
and (I3B) when ¢ = {v}.

2.3 Constraining the Minimum and Maximum Length of a Stretch

Suppose now that we have lower and upper bounds on the length of a stretch of a given
value v for each row:

— LLS(v) is the minimum length of a stretch of value v in every row.
— ULS(v) is the maximum length of a stretch of value v in every row.

Necessary Conditions

k
Vke[0,K —1]: #) > > st (v) (20)
j=max(0,k—LLS(v)+1)
min(K—1,k+LLS(v)—1)
VEe[0,K —1]: #3 > > Is; (v) (21)
j=k
The intuition behind 20) resp. 1) is that the stretches starting resp. ending at the
considered columns j must overlap column k.

Vkel[0,K—1-— ULS( )] :
ULS (v

Isi (v) + Z #i4; — (ULS(v) = LLS(v) +1)- R <0 22)
j=LLS(v)
Vk € [ULS(v), K — 1] :
ULS(v) (23)
sy (0)+ > #p;— (ULS(v) — LLS(v) +1)- R<0
j=LLS(v)

The intuition behind [@22)) is as follows. Consider a stretch beginning at column k. Then
there must be an element distinct from v in column j € [k + LLS(v), k + ULS(v)]
of the same row. So at least one of the terms in the summation of @2) will get a zero
contribution from the given row. The reasoning in (23) is similar but considers stretches
ending at column k.

2.4 Extracting Occurrence, Word, and Stretch Constraints from an Automaton,
or How to Annotate an Automaton with String Properties

Toward automatically inferring the constant bounds LW ,.(w), LWP,(w), LWS, (w),
LS, (w), etc, of the previous sub-sections, we now describe how a given automaton
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Table 1. For each annotation in the first column, the second column gives the number of new
counters, the third column gives their initial values, and the fourth column shows the string prop-
erty variable among the final counter values. In the first three rows, £ is the word length.

Annotation Number of counters Initial values Final values
wordocc(dF, n) £ [0, ..., 0] [,...,n]
wordprefiz (07, b) 41 [1,0,...,0] [,..., 0]
wordsuffiz (67, b) £ [0, ..., 0] [ .., ]
stretchoce (D, n) 2 [0, 0] [n, ]
stretchminlen (v, n) 3 [+00,400,0] [n, , ]
stretchmazlen (0, n) 2 [0, 0] [n, |

A can be automatically annotated with counter variables constrained to reflect prop-
erties of the strings that the automaton recognises. This is especially useful if A is a
product automaton for several constraints. For this purpose, we use the automaton con-
straint introduced in [2]], which (unlike the regular constraint [[12]]) allows us to associate
counters to a transition. Each string property requires (i) a counter variable whose fi-
nal value reflects the value of that string property, (ii) possibly some auxiliary counter
variables, (iii) initial values of the counter variables, and (iv) update formulae in the
automaton transitions for the counter variables. We now give the details for some string
properties.

In this context, n denotes an integer or decision variable, b denotes a 0/1 integer or
decision variable, © denotes a set of letters, ¢ denotes a nonempty sequence of letters
in 9, and s; denotes the i™ letter of word s. We describe the annotation for the following
string properties for any given string:

— wordocc(9F,n): Word o+ occurs n times.

— wordprefiz (9, b): b = 1iff word ©7 is a prefix of the string.

— wordsuffiz (97, b): b = 1iff word 9™ is a suffix of the string.

— stretchocc(0,n): Stretches of letters in set ¥ occur n times.

— stretchminlen (v, n): If letters in set © occur, then n is the length of the shortest
such stretch, otherwise n = +o0.

— stretchmazlen(0,n): If letters in set ¥ occur, then n is the length of the longest
such stretch, otherwise n = 0.

For a given annotation, Table [Tl shows which counters it introduces, as well as their
initial and final values, while Table[2lshows the formulae for counter updates to be used
in the transitions. Figure [[l shows an automaton annotated for stretchocc({0},n).

An automaton can be annotated with multiple string properties—annotations do not
interfere with one another—and can be simplified in order to remove multiple occur-
rences of identical counters that come from different string properties.

It is worth noting that propagation is possible from the decision variables to the
counter variables, and vice-versa.
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Table 2. Given an annotation and a transition of the automaton reading letter u, the table gives the
counter update formulae to be used in this transition. For each annotation in the first column, the
second column shows the counter names, and the third column shows the update formulae. The
fourth column shows the condition under which each formula is used. In the first three multirows,
¢ is the word length.

Annotation Counter values New counter values Condition
[1,..] u € of
[y ciz1,..] 1<i<lAu€df
wordoce(dF,n) [e1, ...y ¢ [ ce + co—1] u € v}
[, 0,..] 0<i<lAugdf
[..., c] u g o)
[0, ...y ci1,...] 0<i<lAucdt
o [0, ..., max(ce, co—1)] u € o)
wordprefiz(97,b) - [eo, e1, - ] 0,...,0,..] 0<i<(lAugdf
[0, ..., c/] u g ’(A}ZF
[1,...] u € oy
[y cic1,..] 1<i<lAu€df
wordsuffiz (07, b) [e1, ..., ¢ [..;co—1] u € v}
[...,0,..] 0<i<(lAugdf
[...; ] u o)
) lc—d+1,1] weD
stretchoce (0, n) [c, d] e, 0] we
) . [min(d,e 4+ 1),d, e + 1] u€ED
stretchminlen (0, n) [c,d, €] e, ¢, 0] wd o
. [max(c,d +1),d + 1] u€ED
stretchmazlen (0, n) [c, d] e, 0] we o

2.5 Heuristics for Selecting Relevant String Properties for an Automaton

In our experiments (see Section[d)), we chose to look for the following string properties:

For each letter, lower and upper bounds on the number of its occurrences.

For each letter, lower and upper bounds on the number or length of its stretches.
Each word of length at most 3 that cannot occur at all.

Each word of length at most 3 that cannot occur as a prefix or suffix.

These properties are derived, one at a time, as follows. We annotate the automaton as
described in the previous section by the candidate string property. Then we compute by
labelling the feasible values of the counter variable reflecting the given property, giving
up if the computation does not finish within 5 CPU seconds. Among the collected word,
prefix, suffix, and stretch properties, some properties are subsumed by others and are
thus filtered away. Other properties could certainly have been derived, e.g., not only
forbidden words, but also bounds on the number of occurrences of words. Our choice
was based on (a) which properties we are able to derive necessary conditions for, and
(b) empirical observations of what actually pays off in our benchmarks.
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3 The Cardinality Automaton of an Automaton

The previous section introduced different complementary ways of generating necessary
conditions (expressed in terms of arithmetic constraints) from a given automaton for the
row constraints of the matrix M when its columns are subject to gcc constraints. This
section presents an orthogonal systematic approach, again based on double counting,
that can handle a larger class of column constraints completely mechanically.

Consider an R x K matrix M, where on each row we have the same constraint,
represented by an automaton 4 of p states s, ..., sp—_1, and on each column we have
a gcc or linear (in)equality constraint where all the coefficients are the same. We will
first construct an automaton that simulates the parallel running of the R copies of A
and consumes entire columns of M. Since this new automaton has pR states, we then
abstract it by just counting the automata that are in each state of 4. As even this ab-
stracted automaton has a size exponential in p, we then use a linear-size encoding with
linear constraints that allows us to consider also the column constraints on M.

3.1 Necessary Row Constraints

The vector automaton Ag consumes vectors of size R. Its states are sequences of R
states of A, where entry ¢ is the state of the automaton of row ¢. There is a transition
from state (s;;,...,Si5_,) to state (S;,,...,S;,_,) if and only if for each £ there is a
transition in A from s;, to s;,. A state (s;,, ..., Si_,) is initial (resp. final) if each of
the s;, is the initial (resp. a final) state of A.

The cardinality (vector) automaton # (.A R) is an abstraction of the vector automaton
Apg that also consumes vectors of size R. Its states are sequences of p numbers, whose
sum is R, where entry ¢ is the number of automata A in state s;. There is a transition
from state (c;,,...,c,_,) to state (cj,,...,c;,_,) if and only if there exists a multiset
of R transitions in A such that for each /¢ there are c;, of these R transitions going out
from sy, and for each m there are c;,, of these R transitions arriving into s,,. A state
(Cigy- - Ci,_,) is initial (resp. final) if ¢;, = 0 whenever s, is not the initial (resp. a
final) state of A.

The number of states of # (.AR) is the number of ordered partitions of p, and
thus exponential in p. However, it is possible to have a compact encoding via con-
straints. Toward this, we use K + 1 sequences of p decision variables Sf in the domain
{0,1,..., R} to encode the states of an arbitrary path of length K (the number of
columns) in # (Ag). For k € {1,..., K}, the sequence (S, S¥,..., Sk ) has as
possible values the states of # (.A R) after it has consumed column k — 1; the sequence
(59,5%,...,50_1) is fixed to (R,0,...,0) when, without loss of generality, s is the
initial state of .A. We get the following constraints:

Vke{0,....K}: S5+ Sf+--+Si_ =R (24)

Vi € {0,...,p—1}:SiK = 0 < s; is not a final state of A (25)

Assume that A has a set 7 = {(ao, %o, bo), (a1, 01,b1), ..., (ag—1,€4—1,bq-1)} of ¢
transitions, where transition (a;, £;, b;) goes from state a; € {sg, $1,. .., Sp—1} to state
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b; € {s0,51,...,8p—1} upon reading letter ¢; € {0,1,...,V — 1}. We use K se-
quences of ¢ decision variables T in the domain {0, 1,..., R} to encode the transi-
tions of an arbitrary path of length Kin# (Ag).Fork € {O , K —1}, the sequence
<T(a07[07h0),T(’fh7€17b1) . T(aq a1 bae )> gives the numbers of automata A with
transition (ag, 4o, bo), (al, l1,b1),...,(ag—1,%¢4—1,bg—1) upon reading the character of
their row in column k. We get the following constraint for column k:

k k
T(ao/mbo) + T(ahfhhl) -t T(aq 1g—1,bg-1) =R (26)
Consider two state encodings (S§,S¥,...,S% ) and (Sg*', SF™, ..., S¥}), and
consider the transition encoding <T(’f1O lo,b0)? T(’fh P IEREE T(]Zq,l loor bq71)> between

these two state encodings (with 0 < k < K). To encode paths of length K in # (.AR) ,
we introduce the following constraints. First, we constrain the number of automata A
at any state s; before reading column % to equal the number of firing transitions going
out from s; when reading column &:

el op-13iSi= Y T o3
(ai,l;,bi)ET : a;=s;

Second, we constrain the number of automata .4 at state s; after reading column £ to
equal the number of firing transitions coming into s; when reading column &:

Vi €{0,...p—1}: SJ"CH = Z T(Ifzi,ei,bi) (28)
(ai,li,b;)ET : b;=s;

A reformulation with linear constraints when R = 1 and there are no column constraints
is described in [6].

3.2 Necessary Column Constraints and Channelling Constraints

The necessary constraints above on the state and transition variables only handle the row
constraints, but they can also be used to handle column constraints of the considered
kinds. These necessary constraints can thus be seen as a communication channel for
enhancing the propagation between row and column constraints.

If column £ has a gcc, then we constrain the number of occurrences of value v in
column k to equal the number of transitions on v when reading column k:

Vo e {0,...,V—1}: #L = Z TE, 0000 (29)

(ai,libi)€T @ Li=v

If column k constrains the sum of the column, then we constrain that sum to equal the
value-weighted number of transitions on v when reading column k:

=

-1

V-1
M[T, k} = Z (VN Z T(]fli,fi,hq‘,) (30)

v=0 (ail;,b)ET = L;=v

\3
I
o
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Furthermore, for more propagation, we can link the variables S¥ back to the state vari-
ables [2]] of the R automata .A. For this purpose, let the variables Q¥, Q}, ..., QK (with
0 < i < R) denote the K + 1 states visited by automaton .4 on row 4 of length K. We
get the following gcc necessary constraints:

Vk € {O,...,K}:gcc((Qg,QIf,...,Q%_ﬁ,(O:Sg,l:Sf,...,p 1:57 1)) 31

Example 2. In the context of an R = 4 by K = 6 matrix with a global contiguity
constraint on each row and a gcc constraint on each column, we illustrate the set of
linear constraints associated with column k£ (where 0 < k < 6) of the matrix. An
automaton A associated with the global contiguity constraint was described by Fig-
ure [T of Example [Il It has p = 3 states sq, $1, s2 and ¢ = 5 transitions (sg, 0, sg),
(so,1,s1), (51,1,81), (81,0, 82), (s2,0, s2) labelled by values 0 and 1. The encoding
has p- (K + 1) = 21 variables S¥ such that S§ + S¥ + S& = 4 for every k. Since s is
the initial state of .4, we require that SJ = 4 since SY = 0 = SY. Since .4 only has final
states, no .S K is constrained to be zero. The encoding also has ¢ - K = 30 variables T}
such that T(q 0,50) —|—T(50 1s1) T(q1 1s1) —|—T(5170 52) —|—T( 0.52) = = 4 for every k. The
following three sets of linear necessary constraints link the vanables above for every k:

Sk = TSI}O,O,SD) + Té}o,l,sﬂ (transitions that exit state sq)
Sk = Gots) T 16 0,59 (transitions that exit state s1)
Sk (’22,0,.92) (transitions that exit state $3)
S(I)’:Jrl — (Iio,o,so) (transitions that enter state sg)
Skt = T(io,l,m) + T(ksl,le) (transitions that enter state s1)
Skt = T(ksl,o,sz) + T(’Z%O o) (transitions that enter state s3)
0 _ Tk ..
#1 TSSO’O s0) T Tsjl 0,5 T T(52 0,5) (transitions labelled by value 0)
k=Tl T Tiains) (transitions labelled by value 1)

4 Evaluation and Conclusion

NSPLib [14] is a very large repository of (artificially generated) instances of the nurse
scheduling problem (NSP), which is about constructing a duty roster for nursing staff.
Let N be the number of nurses, D the number of days of the scheduling horizon, and
S the number of shifts. The objective is to construct an N x D matrix of values in the
integer interval [1, S], with value .S representing the off-duty “shift”.

In instance files, there are hard coverage constraints and soft preference constraints;
we only use the former here: they give for each day d and shift s the lower bound on the
number of nurses that must be assigned to shift s on day d, and can be modelled by a
global cardinality constraint (gcc) on the columns. We stress that the gcc constraints on
any two columns are in general not the same. There are instance files for [V x 7 rosters
with N € {25,50, 75,100}, and for N x 28 rosters with N € {30, 60}.

In case files, there are hard constraints on the rows. For each shift s, there are lower
and upper bounds on the number of occurrences of s in any row (the daily assignment
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of some nurse): this can be modelled by gcc constraints on the rows. There are even
lower and upper bounds on the cumulative number of occurrences of the working shifts
1,...,5 — 1 in any row: this can be modelled by gcc constraints on the off-duty value
S and always gives tighter occurrence bounds on S than in the previous gcc constraints.
For each shift s, there are also lower and upper bounds on the length of any stretch of
value s in any row: this can be modelled by stretch path constraints on the rows. Fi-
nally, there are lower and upper bounds on the length of any stretch of the working shifts
1,...,5 — 1 in any row: this can be modelled by generalised stretch path partition
constraints [3] on the rows. We stress that the constraints on any two rows are the same.
There are 8 case files for the N x 7 rosters, and another 8 case files for the N x 28
rosters. We automatically generated (see [3|] for details) deterministic finite automata
(DFA) for all the row constraints of each case, but used their minimised product DFA
instead (obtained through standard DFA algorithms), thereby getting domain consis-
tency on the conjunction of all row constraints [2]]. For each case, string properties were
automatically selected off-line as described in Section and cardinality automata
were automatically constructed off-line as described in Section

Under these choices, the NSPLib benchmark corresponds to the pattern studied in
this paper. To reduce the risk of reporting improvements where another search proce-
dure can achieve much of the same impact, we use a two-phase search that exploits the
fact that there is a single domain-consistent constraint on each row and column:

— Phase 1 addresses the column (coverage) constraints only: it seeks to assign enough
nurses to given shifts on given days to satisfy all but one coverage constraint. To
break row symmetries, an equivalence relation is maintained: two rows (nurses) are
in the same equivalence class while they are assigned to the same shifts and days.

— In Phase 2, one column constraint and all row constraints remain to be satisfied.
But these constraints form a Berge-acyclic CSP [[1], and so the remaining decision
variables can be trivially labelled without search.

This search procedure is much more efficient than row-wise labelling under decreasing
value ordering (value S always has the highest average number of occurrences per row)
in the presence of a decreasing lexicographic ordering constraint on the rows.

The objective of our experiments is to measure the impact in runtime and backtracks
when using either or both of our methods. The experiments were run under SICStus
Prolog 4.1.1 and Mac OS X 10.6.2 on a 2.8 GHz Intel Core 2 Duo with a 4GB RAM.
All runs were allocated 1 CPU minute. For each case and nurse count /N, we used the
first 10 instances for each configuration of the NSPLib coverage complexity indicators,
that is instances 1-270 for the N x 7 rosters and 1-120 for the N x 28 rosters.

Table 3] summarises the running of these 3120 instances using neither, either, and
both of our methods. Each row first indicates the number of known instances of some
satisfiability status (‘sat’ for satisfiable, and ‘unsat’ for unsatisfiable) for a given case
and nurse count N, and then the performance of each method to the first solution,
namely the number of instances decided to be of that status without timing out, as well
as the total runtime (in seconds) and the total number of backtracks on all instances
where none of the four methods timed out (it is very important to note that this means
that these totals are comparable, but also that they do not reveal any performance gains
on instances where at least one of the methods timed out). Numbers in boldface indicate
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Table 3. NSPIib benchmark results

Neither String Properties ~ Cardinality DFA Both

Case N Status Known #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk
7 25 sat 230 230 16.7 32099 230 42.6 13909 230 39.8 13813 230 74.8 13781
unsat 38 37 519113413 38 57.1 19491 38 37.221133 38 57.9 12877

7 50 sat 216 213 9.5 12165 216 24.011055 214 32411077 216 49.8 11057
unsat 43 40 55.0 79629 42 87.522082 43 107.561092 43 55.0 10863

7 75 sat 210 208 13.0 12709 209 22.1 628 210 48.8 12421 210 49.1 340
unsat 48 48 78.5 155490 48 36.3 8860 48 45312455 47 42.0 8267

7100 sat 220 217 9.0 361 219 30.7 361 217 522 355 219 741 355
unsat 26 22 263 8909 24 49 452 23 49 993 25 28 452

8 25 sat 263 263 2.2 282 263 103 282 263 144 76 263 226 76
unsat 7 7 362121367 7 0.0 19 7 02 19 7 02 19

8 50 sat 259 259 4.5 136 259 173 136 259 278 136 259 408 136
unsat 11 10 28.0 49358 11 3.2 715 10 58.829784 11 40 592

8 75 sat 246 245 7.2 449 245 234 230 246 462 449 246 614 230
unsat 22 21 544112880 22 01 21 22 04 53 22 04 21

8100 sat 262 261 10.7 239 262 325 239 261 655 239 262 879 239
unsat 6 4 02 73 6 0.0 4 4 04 73 6 0.1 4

15 30  sat 87 842453 37 862573 37 86 1205.6 37 87 12195 37
unsat 23 9 268 2513 23 19 9 18 179 83 23 6.0 9

15 60  sat 87 87 361.8 131 873804 131 8721082 131 872137.1 131
unsat 13 8 328 1001 13 29 8 11 409 390 13 6.3 8

16 30 sat 100 100 567.5 153 100 578.6 153 100 2541.0 153 100 2557.8 153
unsat 10 4 110 172 10 14 4 6 685 165 10 49 4

16 60 sat 105 105 706.9 142 1057220 142 8833299 142 8833502 142
unsat 3 1 257 579 3 00 1 2 08 1 3 08 1

best performance in a row. It turned out that Cases 1-6, 9-10, 12—14 are very simple
(in the absence of preference constraints), so that our methods only decrease backtracks
on one of those 2220 instances, but increase runtime. It also turned out that Case 11 is
very difficult (even in the absence of preference constraints), so that even our methods
systematically time out, because the product automaton of all row constraints is very
big; we could have overcome this obstacle by using the built-in gcc constraint and the
product automaton of the remaining row constraints, but we wanted to compare all the
cases under the same scenario. Hence we do not report any results on Cases 1-6, 9-14.

An analysis of Table 3| reveals that our methods decide more instances without tim-
ing out, and that they often drastically reduce the runtime and number of backtracks
(by up to four orders of magnitude), especially on the shared unsatisfiable instances.
However, runtimes are often increased (by up to one order of magnitude) on the shared
satisfiable instances. String properties are only rarely defeated by the cardinality DFA
on any of the three performance measures, but their combination is often the overall
winner, though rarely by a large margin. A more fine-grained evaluation is necessary
to understand when to use which string properties without increasing runtime on the
satisfiable instances. The good performance of our methods on unsatisfiable instances
is indicative of gains when exploring the whole search space, such as when solving an
optimisation problem or using soft (preference) constraints.

With constraint programming, NSPLib instances (without the soft preference con-
straints) were also used in [4.5], but under row constraints that are different from those
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of the NSPLib case files that we used. NSP instances from a different repository were
used in [11]], though with soft global constraints: one of the insights reported there was
the need for more interaction between the global constraints, and our paper shows steps
that can be taken in that direction.

Since both our methods essentially generate linear constraints, they may also be
relevant in the context of linear programming. Future work may also consider the inte-
gration of our techniques with the multicost-regular constraint [10], which allows the
direct handling of a gcc constraint in the presence of automaton constraints (as on the
rows of NSPLib instances) without explicitly computing the product automaton, which
can be very big.
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Abstract. This paper introduces the INCREASING NVALUE constraint,
which restricts the number of distinct values assigned to a sequence of
variables so that each variable in the sequence is less than or equal to its
successor. This constraint is a specialization of the NVALUE constraint,
motivated by symmetry breaking. Propagating the NVALUE constraint is
known as an NP-hard problem. However, we show that the chain of non
strict inequalities on the variables makes the problem polynomial. We
propose an algorithm achieving generalized arc-consistency in O(Xpi)
time, where Yp; is the sum of domain sizes. This algorithm is an im-
provement of filtering algorithms obtained by the automaton-based or
the SLIDE-based reformulations. We evaluate our constraint on a resource
allocation problem.

1 Introduction

The NVALUE constraint was introduced by Pachet et al. in [I0] to express a re-
striction on the number of distinct values assigned to a set of variables. Even if
finding out whether a NVALUE constraint has a solution or not is NP-hard [6],
a number of filtering algorithms were developed over the last years [d3]. Moti-
vated by symmetry breaking, this paper considers the conjunction of an NVALUE
constraint with a chain of non strict inequalities constraints, that we call In-
CREASING NVALUE. We come up with a filtering algorithm that achieves general
arc-consistency (GAC) for INCREASING NVALUE in O(Xp;) time, where Yp; is the
sum of domain sizes. This algorithm is more efficient than those obtained by
using generic approaches such as encoding INCREASING NVALUE as a finite deter-
ministic automaton [I2] or as a SLIDE constraint [5], which respectively require
O(n(Up;)?) and O(nd*) time complexities for achieving GAC, where n denotes
the number of variables, Up; is the total number of potential values in the do-
mains, and d the maximum size of a domain. Part of its efficiency relies on
a specific data structure, i.e. a matriz of ordered sparse arrays, which allows
multiple ordered queries (i.e., SET and GET) to the columns of a sparse matrix.

Experiments proposed in this paper are based on a real-life resource allocation
problem related to the management of clusters. Entropy is a Virtual Machine
(VM) manager for clusters [8], which provides an autonomous and flexible engine
to manipulate the state and the position of VMs on the different working nodes
composing the cluster. The constraint programming part affects the VMs (the

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 2539, [2010.
© Springer-Verlag Berlin Heidelberg 2010
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tasks) on a reduced number of nodes (the resources) in the cluster. It uses a
NVALUE constraint maintaining the number of nodes required to host all the
VMs. However, in practice, the resources consumed are most often equivalents
from one VM to another. This leads to a limited number of equivalence classes
among the VMs, and INCREASING NVALUE is used for breaking such symmetries.

Section [2] recalls some definitions and formally introduces the INCREAs-
ING NVALUE constraint. Next, Section [3] describes a necessary and sufficient con-
dition for the feasibility of the INCREASING NVALUE constraint. Section F presents
an algorithm enforcing GAC for INCREASING NVALUE(N, X ). Section [l evaluates
the impact of our method on a resource allocation problem. Finally, Section
describes generic approaches for reformulating INCREASING NVALUE that are less
efficient.

2 Preliminaries

Given a sequence of variables X, the domain D(z) of a variable x € X is the
finite set of integer values that can be assigned to variable x. D is the union of
all domains in X. We use the notations min(x) for the minimum value of D(x)
and max(z) for the maximum value of D(z). The sum of domains sizes over D is
¥pi = D . ex |D(wi)]. A[X] denotes an assignment of values to variables in X.
Given x € X, Alx] is the value of z in A[X]. A[X] is valid iff Va; € X, A[x;] €
D(x;). An instantiation I[X] is a valid assignment of X. Given x € X, I[z] is
the value of x in I[X]. A constraint C(X), specifies the allowed combinations
of values for a set of variables X. It defines a subset R (D) of the cartesian
product of the domains IT,,cx D(x;). A feasible instantiation of C(X) is an
instantiation which is in Re (D). If I[X] is a feasible instantiation of C'(X) then
I[X] satisfies C(X). W.l.o.g., we consider that X contains at least two variables.
Given X = [zg,21,...,2Z,—1] and ¢, j two integers such that 0 <i < j <mn —1,
I[z;, ..., x;] is the projection of I[X] on the sequence [z;, ..., z;].

Definition 1. The constraint INCREASING NVALUE(N, X) is defined by a variable
N and a sequence of n variables X = [xo,x1,...,Tn_1]. Given an instantiation
of [N, zo,Z1,...,Zn-1], INCREASING NVALUE(N, X)) is satisfied iff:

1. N is equal to the number of distinct values assigned to the variables in X .
2. Vie [0,77, — 2], T < Tjy1.

3 Feasibility of the Increasing Nvalue Constraint

This section presents a necessary and sufficient condition for the feasibility of the
INCREASING NVALUE constraint. We first show that the number of distinct values
of any instantiation I[X] such that Vi € [0,n — 2], I[x;] < I[x;41], is equal to
the number of stretches in I[X]. A stretch [11] is defined as a maximum length
sequence of consecutive variables assigned to the same value. For any variable
z € X and any value v € D(x), we compute the minimum and maximum number
of stretches among all possible instantiations I[X] such that I[z] = v.
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Next, given a variable x € X, we provide the properties linking the natural
ordering of values in D(z) and the minimum and maximum number of stretches
that can be obtained by assigning a value to x. From these properties, we prove
that there exists an instantiation satisfying the constraint for any value of D(NV)
between the minimum s(X) and the maximum s(X) of possible numbers of
stretches. This leads to the main result of this section: INCREASING NVALUE(N,
X) is feasible iff D(NV) N [s(X), s(X)] # 0@ (Proposition 3 in Section [B.3]).

3.1 Estimating the Number of Stretches

Any feasible instantiation I[X] of INCREASING NvaLUE(N, X) satisfies [[z;] <
I[z;] for all ¢ < j. In the following, an instantiation I[xg, z1,...,%n—1] is said to
be well-ordered iff for i and j s.t. 0 < i < j <n —1, we have I[z;] < I[z;]. A
value v € D(z) is said to be well-ordered with respect to x iff it can be part of
at least one well-ordered instantiation.

Lemma 1. Let I[X] be an instantiation. If I[X] satisfies INCREAS-
ING NVALUE(X, N) then I[X] is well-ordered.

Proof. From Definition [ if 7[X] satisfies the constraint then Vi € [0,n — 2],
I[z;] < I[z;41]. By transitivity of <, the Lemma holds. a

Definition 2 (stretch). Let I[xo,21,...,2n—1] be an instantiation. Given i
and j such that 0 < i < j <n—1, a stretch of I[X] is a sequence of consecutive
variables [x;, ..., x;] such that in I[X]: (1) Vk € [i, 4], V0 € [, 5], zx = xe. (2)
either i =0 or x;—1 # x;. (3) either j =n—1 or x; # xj+1.

Lemma 2. Given a well-ordered instantiation 1[X], the number of stretches in
I[X] is equal to the number of distinct values in I[X].

Proof. I[X] is well-ordered then, for any ¢ and j s.t. 0 <14 < j <n —1, we have
I[z;] < I[z;]. Consequently, if z; and z; belong to two distinct stretches and
i < j then Ifx;] < I[zj]. a

It is possible to evaluate for each value v in each domain D(z;) the exact min-
imum and maximum number of stretches of well-ordered suffix instantiations
I[z;,...,x,) such that I[z;] = v, and similarly for prefix instantiations. This
evaluation is performed w.r.t. the domains of variables z; such that j > 7.

Notation 1. Let X = [xg,21,...,2n—1] be a sequence of variables and let v be
a value of D. The exact minimum number of stretches among all well-ordered
instantiations I[x;, ..., Tn_1] such that I[x;] = v is denoted by s(z;,v). By con-
vention, if v ¢ D(z;) then s(x;,v) = +oo. Similarly, the exact minimum number
of stretches among all well-ordered instantiations I[xg, . . ., x;] such that I[z;] = v
is denoted by p(x;,v). By convention, if v ¢ D(x;) then p(z;,v) = +oo.

Lemma 3. Let X = [zg,21,...,2n_1] be a sequence of variables. Yx; € X,
Vv € D(z;), s(x;,v) can be computed as follows:
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1. Ifi=n—1: s(x;,v) =1,
2. Ifi<n—1: s(z;,v) = min( s(ziy1,v), Mings,(s(zir1,w)) +1).

Proof. By induction. When | X | = 1 there is one stretch. Thus, if i = n—1, for any
v € D(x;), we have s(x;,v) = 1. Consider now, a variable z;, i < n—1, and a value
v € D(x;). Instantiations s.t. I[z;1+1] < v cannot be augmented with value v for z;
to form a well-ordered instantiation I[x;,...,Zn—1]. Thus, let I[zit1,. .., Tn_1]
be an instantiation s.t. I[xz;4+1] > v, which minimizes the number of stretches
in [@iy1,...,Tn-1]. Either I[z;11] = v and s(x;,v) = s(zi41,v) since the first
stretch of I[x;41,...,2n—1] is extended when augmenting I[x;y1,...,Ty—1] with
value v for x;, or Iz, 1] # v and s(z;,v) = s(xiy1, I[zit1]) + 1 since value v
creates a new stretch. By construction, instantiations of [z;41,...,2,—1] that do
not minimize the number of stretches cannot lead to a value s(x;,v) strictly less
than min(s(z;41,w),w > v) + 1, even if I[z;41] = v. a

Given a sequence of variables X = [xg,21,...,2n-1], Vz; € X, Yv € D(x;),
computing p(z;,v) is symmetrical: If ¢ = 0: p(z;,v) = 1. If i > 0: p(z;,v) =
min( p(z;-1,v), Miny<,(P(zi—1,w)) +1).

Moreover, for a given variable x;, we evaluate for each value v the exact maxi-
mum number of stretches that may appear among all well-ordered instantiations
I[z;,...,2xn_1] with I[x;] = v, and similarly for prefix instantiations.

Notation 2. Let X = [zg,21,...,Tn_1] be a sequence of variables and let v be a
value of D. The exact mazimum number of stretches among all well-ordered in-
stantiations I[x;, ..., xp_1] with I[x;] = v is denoted by s(x;,v). By convention,
if v & D(x;) then s(x;,v) = 0. Similarly, the exact mazimum number of stretches
among all well-ordered instantiations I[x1,...,x;] with I[z;] = v is denoted by
p(zi,v). By convention, if v ¢ D(x;) then p(z;,v) = 0.

Lemma 4. Let X = [zg,21,...,2n—1] be a sequence of variables. Yx; € X,
Vv € D(z;), s(x;,v) can be computed as follows:

1. Ifi=n—1: s(x;,v) =1,
2. Ifi<n—1: s(xz;,v) = max( s(xip1,v), MaxXysy(s(Tir,w)) +1).

Proof. Similar to Lemma [l O
Given a sequence of variables X = [xg,21,...,2n-1], Vz; € X, Yv € D(x;),
computing p(x;,v) is symmetrical: If i = 0: p(x;,v) = 1, If i > 0: p(a;,v) =

max( p(zi—1,v), maxy<y(s(xi—1,w)) +1).

3.2 Properties on the Number of Stretches

This section enumerates the properties that link the natural ordering of values in
a domain D(z;) with the minimum and maximum number of stretches that can
be obtained in the sub-sequence z;, z;11, . .., z,—1. We consider only well-ordered
values, which may be part of a feasible instantiation of INCREASING NVALUE.
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Properties on a Single Value. The next three properties are directly deduced,
by construction, from Lemmas [B] and @l

Property 1. Any value v € D(z;) well-ordered w.r.t. z; is such that s(z;,v) <
s(xi,v).

Property 2. Let v € D(x;) (i < n — 1) be a value well-ordered w.r.t. x;. If
v € D(x;41) and v is well-ordered w.r.t. ;41 then s(z;,v) = s(xiy1,v).

Property 3. Let v € D(z;) (i < n — 1) be a value well-ordered w.r.t. z;. If
v € D(zi41) and v is well-ordered w.r.t. ;11 then s(z;,v) > s(xiy1,v).

Proof. From Lemma Ml if there exists a value w € D(x;41), w > v, which is
well-ordered w.r.t. ;11 and s.t. s(z;41,w) > s(zi+1,v) then s(z;,v) > s(x;r1,v).
Otherwise, s(x;,v) = s(i41,v). O

Ordering on Values. The two following properties establish the links between
the natural ordering of values in D(z;) and the minimum and maximum number
of stretches in the sub-sequence starting from x;.

Property 4. Let X = [xo,21,...,2n—1] be a sequence of variables and let i €
[0,n—1] be an integer. Vv, w € D(z;) two well-ordered values, v < w = s(z;,v) <
s(xi,w) + 1.

Proof. If v = w the property holds. If i = n — 1, by Lemma Bl s(z,—1,v) =
$(p—1,w) = 1. The property holds. Given i < n — 1, let v',w’ be two
well-ordered values of D(z;y1) such that v/ > v and w’ > w, which mini-
mize the number of stretches starting at z;11: Va > v, s(zi41,v") < s(xiy1, @)
and V8 > w, s(ziy1,w") < s(xiy1,3). Such values exist because v and w are
well-ordered values. Then, by construction we have s(x;11,v") < s(xipr1,w’),
and, from Lemma ] s(z;y1,w") < s(x;, w), which leads to s(z;41,v") < s(z;, w).
By Lemma [l s(z;,v) < s(z;41,v") + 1. Thus, s(z;,v) < s(z;, w) + 1. 0

A symmetrical property holds on the maximum number of stretches.

Property 5. Let X = [xg,21,...,%,—1] be a sequence of variables and i € [0,n —
1] an integer. Vv, w € D(x;) two well-ordered values, v < w = s(x;,v) > s(2;, w).

Proof. If v = w the property holds. If ¢ = mn — 1, by Lemma [Hl
$(xp—1,v)=8(xp—1,w) = 1. The property holds. Giveni < n—1, let w’ € D(x;41)
be well-ordered, s.t. w’ > w, and maximizing the number of stretches starting at
i1 (VB > w, s(xiy1,w’) > s(xiy1,8)). By Lemmall s(z;, w) < s(xiy1,w’)+1.
Since v < w and thus v < w’, s(z;,v) > s(x;41,w’) + 1. The property holds. O

Ordering on the Maximum Number of Stretches. The intuition of Prop-
erty [0 stands from the fact that, the smaller a well-ordered value v w.r.t. a vari-
able x; is, the more stretches one can build on the sequence [z;, Z;11,...,Tn_1]
with xz; = v.
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Property 6. Let X = [xg,21,...,Tn_1] be a sequence of variables and let i be an
integer in interval [0,n — 1]. Yo, w € D(z;) two well-ordered values, s(z;,w) <
s(xi,0) = v < w.

Proof. We show that if v > w then, we have a contradiction with s(z;,w) <
s(zi,v). If i = n — 1, Lemma [ ensures s(z,_1,w) = s(x,—1,v) = 1, a contra-
diction. Now, let us consider the case where i < n — 1. If v = w then s(z;, w) =
s(x;,v), a contradiction. Otherwise (v > w), let v' be a value of D(z;41) such
that v" > v which maximizes s(x;y1, ), a > v. Such a value exists because v is
well-ordered. By construction w < v’. By Lemmall s(z;, w) > s(x;11,v")+1 (1).
By construction we have also v < v’, which implies s(z;11,v") +1 > s(z;,v) (2).
From (1) and (2) we have s(z;,w) > s(x;,v), a contradiction. O

Ordering on the Minimum Number of Stretches. There is no implication
from the minimum number of stretches to the ordering of values in domains. Let
X = [xo, 21, x2] with D(x¢)=D(x1)={1,2,3} and D(z2) = {1,2,4}. s(x0,1) =1
and s(xg,3) = 2, thus s(zg, 1) < s(xp,3) and 1 < 3. Consider now that D(xz2) =
{2,3,4}. s(xo,1) =2 and s(xo,3) = 1, thus s(zo,3) < s(zo,1) and 3 > 1.

Summary. Next table summarizes the relations between well-ordered values
v and w in D(z;) and the estimations of the minimum and maximum num-
ber of stretches among all instantiations starting from these values (that is,

I[z;,...,xn_1] such that I[z;] = v or such that I[z;] = w).
Precondition Property Proposition
v € D(z;) is well-ordered s(xs,v) < s(zi,v) Prop. [
v € D(x;) is well-ordered, : <n —1and  s(x;,v) = s(wit+1,v)  Prop.
v € D(xit1) s(xi,v) > s(wit1,v)  Prop.Bl
v € D(x;), w € D(z;) are well-ordered and s(zi,v) < s(x;,w)+1 Prop.H
v<w s(wi,v) > s(xi, w) Prop.

v € D(z;), w € D(x;) are well-ordered and

s(wi, w) < s(wi,v) w Prop.

S
A

3.3 Necessary and Sufficient Condition for Feasibility

Notation 3. Given a sequence of variables X = [xo,21,...,2n_1], s(X) is
the minimum value of s(xo,v), v € D(xo), and s(X) is the mazimum value
of s(xo,v), v € D(xp).

Proposition 1. Given an INCREASING NVALUE(N, X) constraint, if s(X) >
max(D(N)) then the constraint has no solution. Symmetrically, if s(X) <
min(D(N)) then the constraint has no solution.

Proof. By construction from Lemmas [3] and @l O

W.lo.g., D(N) can be restricted to [s(X), s(X)]. However, observe that D(N)
may have holes or may be strictly included in [s(X),s(X)]. We prove that
for any value k in [s(X), s(X)] there exists a value v € D(zg) such that k €
[s(z0,v), s(x0,v)]. Thus, any value in D(N) N [s(X), s(X)] is feasible.
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Proposition 2. Let X = [zg,21,...,Zn—1] be a sequence of variables. For any
integer k in [s(X), s(X)] there exists v in D(xo) such that k € [s(xo,v), $(xg,v)].

Proof. Let k € [s(X),s(X)]. If Jv € D(xg) s.t. k = s(xo,v) or k = s(xg,v)
the property holds. Assume Vv € D(xg), either k& > s(zg,v) or k < s(zo,v).
Let v',w" be the two values such that v’ is the maximum value of D(zg) such
that s(zg,v’) < k and w’ is the minimum value such that k < s(zg,w’). Then,
we have s(x,v") < k < s(zo,w’) (1). By Property 0l s(zo,w") < s(zg,w’). By
Property [B s(zg,v") < s(zg,w’) = wy < v'. By Propertiesdl and [, wy < v’ =
s(zo,w’) < s(xg,v") + 1, a contradiction with (1). a

Algorithm 1. Building a solution for INCREASING NVALUE(k, X).

1 if k ¢ [s(X),s(X)]ND(N) then return “no solution” ;
2 v := a value € D(=z¢) s.t. k € [s(z0,v), s(z0,v)] ;
8 for i:=0ton—2do

4 I[z;] := v;

5 if VU71+1 S D(ac71+1) s.t. viy1 =, k ¢ [s(acH_l,vi+1),s(wi+1,v7¢+1)] then

6 V= Vil in D(Ii+1) s.t. Vi1 > v A k—1¢ [s(zprl,'u1-+1),s(:ci+1,'ui+1)];
7 k:=k—1;

8 I[z,_1] := v; return I[X];

Lemma 5. Given an INCREASING NVALUE(N, X)) constraint and an integer k,
if k € [s(X),s(X)] N D(N) then Algorithm 1 returns a solution of INCREAs-
ING NVALUE(N, X)) with N = k. Otherwise, Algorithm 1 returns “no solution”
since no solution exists with N = k.

Proof. The first line of Algorithm [l ensures that either [s(X), s(X)]ND(N) # 0
and k belongs to [s(X),s(X)] N D(N), or there is no solution (from Proposi-
tions [ and (). At each new iteration of the for loop, by Lemmas Bl and M
and Proposition [ either the condition (line 6) is satisfied and a new stretch
begins at i + 1 with a greater value (which guarantees that I[{z1,...,2;y1}]
is well-ordered) and k& is decreased by 1, or it is possible to keep the current
value v for I[z;11]. Therefore, at the start of a for loop (line 4), Jv € D(x;)
st. k € [s(z;,v),s(x;,v)]. When ¢ = n — 1, by construction & = 1 and
Yup—1 € D(@n-1), $(Tn—-1,0n-1) = $(Tp_1,0p—1) = 1; I[X] is well-ordered and
contains k stretches. From Lemma [ instantiation I[{ N} U X] with I[N] = k is
a solution of INCREASING NVALUE(N, X) with k distinct values in X. O

Lemma [5] leads to a necessary and sufficient feasibility condition.

Proposition 3. Given an INCREASING NVALUE(N, X) constraint, the two follow-
g propositions are equivalent:

1. INCREASING NVALUE(N, X)) has a solution.
2. [s(X),s(X)]ND(N) # 0.
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Proof. (=) Assume INCREASING NVALUE(N, X) has a solution. Let I[{N} U X]
be such a solution. By Lemma [2 the value k assigned to N is the number of
stretches in I[X]. By construction (Lemmas [Bl and @) k£ € [s(X), s(X)]. Thus,
[$(X),s(X)]ND(N) # 0. (<) Let k € [s(X),s(X)]ND(N) # 0. From Lemma[H
it is possible to build a feasible solution for INCREASING NVALUE(N, X). O

4 GAC Filtering Algorithm for Increasing Nvalue

This section presents an algorithm enforcing GAC for INCREAS-
ING NVALUE(N, X) in O(Xp;) time complexity, where Xp; is the sum of
domain sizes of the variables in X. For a given variable x; € X and a value
v € D(x;), the principle is to estimate the minimum and maximum number of
stretches among all instantiations I[X] with I[z;] = v, to compare the interval
derived from these two bounds and D(N). In order to do so, w.l.o.g. we estimate
the minimum and maximum number of stretches related to prefix instantiations
I[zg,...,x;] and suffix instantiations I[z;, ..., Tp—1].

Definition 3 (GAC). Let C(X) be a constraint. A support on C(X) is an
instantiation I|X] which satisfies C(X). A domain D(x) is arc-consistent
w.r.t. C(X) iff Yo € D(x), v belongs to a support on C(X). C(X) is (gen-
eralized) arc-consistent (GAC) iff Vo, € X, D(z;) is arc-consistent.

4.1 Necessary and Sufficient Condition for Filtering

From Lemma [B] values of D(N) which are not in [s(X), s(X)] can be removed
from D(N). By Proposition[3] all remaining values in D(N) are feasible. We now
give a necessary and sufficient condition to remove a value from D(z;), z; € X.

Proposition 4. Consider an INCREASING NVALUE(N, X) constraint. Let i €
[0,n — 1] be an integer and v a value in D(x;). The two following propositions
are equivalent:

1. v € D(x;) is arc-consistent w.r.t. INCREASING NVALUE
2. v is well-ordered w.r.t. D(x;) and [p(x;,v)+s(z;,v) =1, p(a;, v)+s(z;, v) —1]
N D(N) # 0.

Proof. If v is not well-ordered then from Lemma [0 v is not arc-consistent
w.r.t. INCREASING NVALUE. Otherwise, p(z;,v) is the exact minimum number
of stretches among well-ordered instantiations I[zg,...,x;] such that I[z;] = v
and s(z;,v) is the exact minimum number of stretches among well-ordered in-
stantiations I[z;, ..., zn—_1] such that I[x;] = v. Thus, by construction p(z;,v) +
s(x;,v)—1 is the exact minimum number of stretches among well-ordered instan-
tiations I[xg, x1, ..., Zn—1] such that I[x;] = v. Let D,, C D be the set of domains
such that all domains in D, are equal to domains in D except D(x;) which is
reduced to {v}. We call X, the set of variables associated with domains in D,,.
From Definition Bl p(z;,v) + s(x;,v) — 1 = s(X,). By a symmetrical reasoning,
p(xi,v) + s(x;,v) — 1 = s(X,). By Proposition Bl the proposition holds. O
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4.2 Algorithms

From Proposition @l we derive a filtering algorithm achieving GAC in O(Xp;).
For a given variable z; (0 < i < n), we need to compute the prefix and suffix
information p(x;,v), p(z;,v), s(z;,v) and s(z;,v), no matter whether value v
belongs or not to the domain of z;. To reach an overall complexity of O(Xp;),
we take advantage of two facts:

1. Within our algorithm we always iterate over p(z;,v), p(z;,v), s(z;,v) and
s(zi,v) by scanning the value of D(x;) in increasing or decreasing order.

2. For a value v that does not belong to D(z;), 0 (resp. n) is the default value
for p(z;,v) and s(z;,v) (resp. p(x;,v) and s(x;,v)).

For this purpose we create a data structure for handling such sparse matrices
for which write and read accesses are always done by iterating in increasing
or decreasing order through the rows in a given column. The upper part of
next table describes the three primitives on ordered sparse matrices as well as
their time complexity. The lower part gives the primitives used for accessing or
modifying the domain of a variable. Primitives which restrict the domain of a
variable z return true if D(z) # () after the operation, false otherwise.

Primitives

(access to matrices) Description Complexity
ScANINIT(mats, 1, dir) indicates that we will iterate through the ™

column of matrices in mats in increasing or- o(1)

der (dir =1) or decreasing order (dir =])
SET(mat, 1, j, info) performs the assignment matli, j] := info o(1)
GET(mat, i, j):int returns the content of entry matli, j] or the

default value if such entry does not belong to

the sparse matrix (a set of g consecutive calls amortized

to GET on the same column 7 and in increas-

ing or decreasing row indexes is in O(q))
i;lcl;;t;:)’e;ariables) Description Complexity
ADJUST MIN(z,v):boolean adjusts the minimum of var. x to value v 0(1)
ADJUST MAX(z,v):boolean adjusts the maximum of var. = to value v O(1)
REMOVE VAL(z, v):boolean removes value v from domain D(z) O(1)
INSTANTIATE(z, v):boolean fix variable = to value v O(1)
GET PREV(z,v):int returns the largest value w in D(z) such that

e, . o(1)

w < v if it exists, returns v otherwise

GET NEXT(z,v):int returns the smallest value w in D(z) such o(1)

that w > v if it exists, returns v otherwise

Algorithm [B] corresponds to the main filtering algorithm that implements
Propositiondl In a first phase it restricts the minimum and maximum values of
variables [zg, 21, ...,Zy—1] W.r.t. to all the inequalities constraints (i.e. it only
keeps well-ordered values). In a second step, it computes the information related



34

N. Beldiceanu et al.

Algorithm 2. BUILD SUFFIX ([0, Z1, - . -, Zn-1], s[][], s[[])-
1 ALLOCATE mins, mazs;
2 ScoaNINIT({s,s},n —1,]); v := max(z,—1);
3 repeat
4 SET(s,n — 1,v,1); SET(s,n — 1,v,1); w := v; v :=GETPREV(Z,,—1,v);
5 until w =v ;
6 for i :=n — 2 downto 0 do
7 SCANINIT({s, s, mins, mazs}, i+ 1, l); v = max(zit1);
8 repeat
9 if v < max(z;+1) then
10 SET(mins, ¢ + 1, v, min(GET(mins, i + 1,v + 1),GET(s, i + 1, v)));
11 SET(mams, i+ 1,v, max(GET(mazs,i + 1,v + 1),GET(s, i + 1, v)));
12 else
13 SET(mins, i + 1,v,GET(s,i + 1,v));
14 SET(maws, i + 1,v,GET(s, i+ 1,v));
15 w = v; v ::GETPREV(zi+1,v);
16 until w = v ;
17 ScANINIT({s, s}, %, |); SCANINIT({s, s, mins, mazs},i+ 1, ]); v := max(z;);
18 repeat
19 if v = max(z;4+1) then
20 SET(s, ¢, v,GET(s, ¢ + 1,v)); SET(s, ¢, v,GET(s, i + 1,v));
21 else
22 if v > min(z;4+1) then
23 SET(s, ¢, v, min(GET(s, ¢ + 1,v),GET(mins, i + 1,v + 1) + 1));
24 SET(s, i, v, max(GET(s, i + 1,v),GET(mazs, i + 1,v + 1) + 1));
25 else
26 SET(s,i,v,GET(mins,i+1,min(zi+1)) +1);
27 SET(s, 1, U,GET(maxs, i+ 1, min(z;41)) + 1);
28 w = v v ::GETPREV(wi,U);
29 until w = v ;

to the minimum and maximum number of stretches on the prefix and suffix ma-
trices p, p, s, s. Finally, based on this information, it adjusts the bounds of NV
and does the necessary pruning on each variable xg, x1,..
mas Bland @ Algorithm 2l builds the suffix matrices s and s used in Algorithm Bl

(p and p are constructed in a similar way):

1. In a first step, column n — 1 of matrices s and s are initialised to 1 (i.e. see
the first item of Lemmas Bl and M.
In a second step, columns n — 2 down to O are initialised (i.e. see
the second item of Lemmas B and H). In order to avoid recomputing
from scratch the quantities min(s(zit1,v), mingsy(s(zi+1,w)) + 1) and
max(s(x;y1,v), MaXy>y($(zip1, w)) + 1) we introduce two sparse ordered
matrices mins[i, j] and mazs[i, j]. When initialising the i*” columns of ma-
trices s and s we first compute the 7 +
mazs (i.e. see the first repeat of the for loop). Then, in the second repeat

2.

1th

.y Zp—1. Using Lem-

columns of matrices mins and
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of the for loop we initialise the i*" columns of s and s. Observe that we scan
columns ¢ + 1 of matrices mins and maxs in decreasing rows indices.

Consequently, Algorithm [2] takes O(Xp;) time and Algorithm [3] prunes all the
values that are not arc-consistent in INCREASING NVALUE in O(EDi)

Algorithm 3. INCREASING NVALUE(N, [z, %1, ..,Zn—1]) : boolean.

if n =1 then return INSTANTIATE(N, 1);

for i=1to n—1do if —ADJUST MIN(z;, min(z;—1)) then return false;

for i = n — 2 downto 0 do if —ADJUST MAX(z;, max(z;+1)) then return false;
ALLOCATE p, p, s, §;

1
2
3
4
5 BUILD PREFIX p,p; BUILD SUFFIX §, 8}
6 SCANL\HT({S7 s},0, T);

7 if —ADJUST MIN(N, min, ¢ p(s) (GET(s,0,v))) then return false;
8 if —ADJUST MAX(N, max,¢ p(xq) (GET(s,0,v))) then return false;
9

for i:=0ton—1do

10 SCANINIT({p,p,s,s},i,T); v 1= min(z;);

11 repeat

12 N, :=GET(p, i,v)+GET(s,%,v) — 1; N, :=GET(p, i, v)+GET(s,%,v) — 1;
13 if [N,,N,]N D(N) =0 and =REMOVE VAL(w;,v) then return false;
14 w = v v = GETNEXT(xi,v);

15 until w =v ;

16 return true ;

5 Using Increasing Nvalue for Symmetry Breaking

This section provides a set of experiments for the INCREASING NVALUE constraint.
First, Section [5.] presents a constraint programming reformulation of a NVALUE
constraint into a INCREASING NVALUE constraint to deal with symmetry breaking.
Next, Section evaluates the INCREASING NVALUE on a real life application
based on constraint programming technology. In the following, all experiments
were performed with the Choco constraint programming system [I], on an Intel
Core 2 Duo 2.4GHz with 4GB of RAM, and 128Mo allocated to the Java Virtual
Machine.

5.1 Improving NvaLueE Constraint Propagation

Enforcing GAC for a NvaLUE constraint is a NP-Hard problem and existing
filtering algorithms perform little propagation when domains of variables are
sparse [34]. In our implementation, we use a representation of NVALUE which is
based on occurrence constraints of Choco. We evaluate the effect of the INCREAS-
ING NVALUE constraint when it is used as an implied constraint on equivalence

! The source code of the INCREASING NVALUE constraint is available at
http://choco.emn.fr
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Table 1. Evaluation of the INCREASING NVALUE constraint according the number of
equivalence classes among the variables

Number of NVALUE model INCREASING NVALUE model

equivalences nodes failures time(ms) solved(%) nodes failures time(ms) solved (%)
1 2798 22683 6206 76 28 0 51 100

3 1005 12743 4008 76 716 7143 3905 82

5 1230 14058 8077 72 1194 12067 8653 72

7 850 18127 6228 64 803 16384 6488 66

10 387 3924 2027 58 387 3864 2201 58

15 1236 16033 6518 38 1235 16005 7930 38

20 379 7296 5879 58 379 7296 6130 58

classes, in addition to the NvarLug. Thus, given a set £(X) of equivalence classes
among the variables in X, the pruning of the global constraint NvaLue(X, N)
can be strengthened in the following way:

Nuvalue(N, X) (1)
VE € £(X), Increasing Nvalue(Ng, E) (2)
Ng)< N <
Eglg})({)( B)<N< > (Np) (3)
Ee&(X)

where Ng denotes the occurrence variable associated to the set of equivalent
variables E € £(X) and E C X.

Parameters recorded are the number of nodes in the tree search, the number
of fails detected during the search and the solving time to reach a solution.
Variables of our experiments are the maximum number of values in the variable
domains, the percentage of holes in the variable domains and the number of
equivalence classes among the variables. The behavior of our experiments is not
related to the number of variables: sizes 20, 40 and 100 have been evaluated.

Tables [I] and Pl report the results of experiments for 40 variables and domains
containing at most 80 values (size 20 and 40 are also tested). For Table [I 50
instances are generated for each size of equivalence classes. For Table [2 350
instances are generated for each density evaluated. A timeout on the solving
time to a solution is fixed to 60 seconds. A recorded parameter is included in the
average iff both approaches solve the instance. Then, two approaches are strictly
comparable if the percentage of solved instances is equal. Otherwise, the recorded
parameters can be compared for the instances solved by both approaches.

Table [0 illustrates that equivalence classes among the variables impact the
performances of the INCREASING NVALUE constraint model. We observe that the
performances (particularly the solving time) are impacted by the number of
equivalence classes. From one equivalence class to 7, the average number of
variables involved in each equivalence class is sufficient to justify the solving
time overhead which is balanced by the propagation efficiency. From 10 to 20,
the size of each equivalence class is not significant (in the mean, from 4 to 2
variables involved in each INCREASING NVALUE constraint). Thus, we show that
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Table 2. Evaluation of the INCREASING NVALUE constraint according the percentage
of holes in the domains

holes(%) NVALUE model INCREASING NVALUE model
nodes failures time(ms) solved(%) nodes failures time(ms) solved (%)
251126.4 13552  5563.3 63.1 677.4 8965.5 5051.1 67.7
50 2867.1 16202.6 4702.1 50.8 1956.4 12345  4897.5 54.9
75 5103.7 16737.3 3559.4 65.7 4698.7 15607.8  4345.5 65.1

the propagation gain (in term of nodes and failures) is not significant while the
solving time overhead could be important.

Unsurprisingly, TablePlshows that the number of holes in the variable domains
impact the performances of the INCREASING NVALUE constraint model. However,
we notice when the number of holes in the domains increases the number of
solved instances decreases. Such a phenomenon are directly related with the fact
that propagation of NVALUE is less efficient when there exist holes in the variable
domains.

5.2 Integration in a Resource Scheduling Problem

Em‘rop;E [8] provides an autonomous and flexible engine to manipulate the state
and the position of VMs (hosting applications) on the different working nodes
composing the cluster. This engine is based on Constraint Programing. It pro-
vides a core model dedicated to the assignment of VMs to nodes and some ded-
icated constraints to customize the assignment of the VMs regarding to some
users and administrators requirements.

The core model denotes each node (the resources) by its CPU and memory
capacity and each VM (the tasks) by its CPU and memory demands to run at a
peak level. The constraint programming part aims at computing an assignment
of each VM that (i) satisfies the resources demand (CPU and memory) of the
VMs, and (ii) uses a minimum number of nodes. Finally, liberating nodes can
allow more jobs to be accepted into the cluster, or can allow powering down
unused nodes to save energy. In this problem two parts can be distinguished: (i)
VMs assignment on nodes w.r.t. resource capacity: this is a bidimensional bin-
packing problem. It is modeled by a set of knapsack constraints associated with
each node. Propagation algorithm is based on COSTREGULAR propagator [7] to
deal with the two dimensions of the resource; (ii) Restriction on the number of
nodes used to assign all the VMs. VMs are ranked according to their CPU and
memory consumption (this means there is equivalence classes among the VMs).
NvALUE and INCREASING NVALUE are used (Section [B.1]) to model this part.

In practice, the results obtained by the INCREASING NVALUE constraint evalu-
ation, within the constraint programming module of Entropy, point out a short
gain in term of solving time (3%), while the gain in term of nodes and failures
is more significant (in the mean 35%). Such a gap is due to the tradeoff between
the propagation gain (filtered values) and solving time induced by the algorithm.

2 http://entropy.gforge.inria.fr
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6 Related Work

GAC for the INCREASING NVALUE constraint can be also obtained by at least two
different generic techniques, namely by using a finite deterministic automaton
with a polynomial number of transitions or by using the SLIDE constraint.

Given a constraint C' of arity & and a sequence X of n variables, the
SLpE(C,X) constraint [5] is a special case of the cardpath constraint. The
slide constraint holds iff C(X;, X;41,...,X; + k — 1) holds for all i € [1,n —
k + 1]. The main result is that GAC can be enforced in O(nd*) time where
d is the maximum domain size. An extension called slide;(C,X) holds iff
C(Xij41, Xijt2, .., Xijyr) holds for all i € [0, ";k} Given X = {x; | i € [1;n]},
the INCREASING NVALUE constraint can be encoded as SLDE(C, |4, ¢ilic1:n])
where (a) ¢y, ¢a, ..., ¢, are variables taking their value within [1,n] with ¢; =1
and ¢, = N, and (b) C(z;, ¢;, Tit1, cir1) is the constraint b < x; # 01 Aciy1 =
¢; +bAx; < xipq. This leads to a time bound of O(nd?*) for achieving GAC on
the INCREASING NVALUE constraint.

The reformulation based on finite deterministic automaton is detailed in the
global constraint catalog[2]. If we use Pesant’s algorithm [12], this reformulation
leads to a worst-case time complexity of O(nUp;?) for achieving GAC, where
Up; denotes the total number of potential values in the variable domains.

7 Conclusion

Motivated by symmetry breaking, we provide a filtering technique that achieves
GAC for a specialized case of the NVALUE constraint where the decision variables
are constrained by a chain of non strict inequalities. While finding out whether
a NVALUE constraint has a solution or not is NP-hard, our algorithm has a linear
time complexity w.r.t. the sum of the domain sizes. We believe that the data
structure on matrices of ordered sparse arrays may be useful for decreasing the
time worst-case complexity of other filtering algorithms.

Future work may also improve the practical speed of the INCREASING NVALUE
constraint by somehow merging consecutive values in the domain of a variable.
More important, this work follows the topic of integrating common symmetry
breaking constraints directly within core global constraints [9IT3].
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1 Introduction

Held and Karp have proposed, in the early 1970s, a relaxation for the Travel-
ing Salesman Problem (TSP) as well as a branch-and-bound procedure that can
solve small to modest-size instances to optimality [4, 5]. It has been shown that
the Held-Karp relaxation produces very tight bounds in practice, and this relax-
ation is therefore applied in TSP solvers such as Concorde [1]. In this short paper
we show that the Held-Karp approach can benefit from well-known techniques
in Constraint Programming (CP) such as domain filtering and constraint prop-
agation. Namely, we show that filtering algorithms developed for the weighted
spanning tree constraint |3, 8] can be adapted to the context of the Held and Karp
procedure. In addition to the adaptation of existing algorithms, we introduce a
special-purpose filtering algorithm based on the underlying mechanisms used
in Prim’s algorithm [7]. Finally, we explored two different branching schemes
to close the integrality gap. Our initial experimental results indicate that the
addition of the CP techniques to the Held-Karp method can be very effective.
The paper is organized as follows: section 2 describes the Held-Karp approach
while section 3 gives some insights on the Constraint Programming techniques
and branching scheme used. In section 4 we demonstrate, through preliminary
experiments, the impact of using CP in combination with Held and Karp based
branch-and-bound on small to modest-size instances from the TSPlib.

2 The Held-Karp Approach

Let G = (V,E) be a complete graph with vertex set {1,2,...,n}. We let ¢;;
denote the cost of edge (i,7) € E. The cost function extends to any subset of
edges by summing their costs. The Traveling Salesman Problem (TSP) asks for
a closed tour in G, visiting each vertex exactly once, with minimum cost.

[4, 5] introduced the so-called I-tree as a relaxation for the TSP. A 1-tree
is defined as a tree on the set of vertices {2,...,n}, together with two distinct

* This work was partially supported by the European Community’s 7th Framework
Programme (FP7/2007-2013). It was started when L.-M. Rousseau and W.-J. van
Hoeve were visiting the University of Nice-Sophia Antipolis (June/July 2009).

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 40 2010.
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edges incident to vertex 1. The degree of a vertex is the set of edges in the 1-tree
incident to that vertex, and we denote it by deg(i) for i« € V. To see that the
1-tree is a relaxation for the TSP, observe that every tour in the graph is a 1-tree,
and if a minimum-weight 1-tree is a tour, it is an (optimal) solution to the TSP.
Note that the 1-tree is a tour if and onlng y if all the degree of vertices is two.

The iterative approach proposed by [4, |5], uses Lagrangian relaxation to
produce a sequence of connected graphs which increasingly resemble tours. We
start by computing an initial minimum-weight 1-tree, by computing a minimum-
spanning tree on G \ {1}, and adding the two edges with lowest cost incident
to vertex 1. If the optimal 1-tree is a tour, we have found an optimal tour.
Otherwise, the degree constraint one some of the vertices must be violated, i.e.,
it is not equal to two. In that case, we proceed by penalizing the degree of such
vertices to be different from two by perturbing the edge costs of the graph, as
follows. For each vertex ¢ € V, a ‘node potential’ 7; is introduced, Then, for each
edge (i,j) € E, the edge weight &;; is defined as é&; = ¢;j +m; +m;. [4] show that
the optimal TSP tour is invariant under these changes, but the optimal 1-tree
is not. Once choice for the node potentials is to define m; = (2 — deg(i)) - C, for
a fixed constant C. The Held-Karp procedure re-iterates by solving the 1-tree
problem and perturbing the edge costs until it reaches a fixed point or meets a
stopping criterion. The best lower bound, i.e., the maximum among all choices
of the node potentials, is known as the Held-Karp bound and will be denoted
by HK.

The overall Held-Karp approach solves the TSP through branch-and-bound,
a technique that has been widely used on this problem (see 2] for a survey).
A good upper bound, UB, can be computed easily with any of the popular
heuristics that have been devised for this problem, e.g., [6].

3 Improving the Approach Using CP

In this section we describe the different refinements introduced to the original
Held-Karp approach [4, 5], which consist of two filtering procedures based on the
weighted minimum spanning tree (or 1-tree), and one based on the underlying
structure of Prim’s algorithm.

In the following procedures let 7' be a minimum 1-tree of G computed by the
Held and Karp relaxation described above. For a subset of edges S C E, we let
w(S) denote ) g c. and T'(e) be the minimum 1-tree where e is forced into 7T'.

We note that the filtering in subsection 311 has been applied to the weighted
minimum spanning tree constraint in [3, 8], and the filtering in subsection
has been applied to the weighted minimum spanning tree constraint in [3].

3.1 Removing Edges Based on Marginal Costs

The marginal cost of an edge e in T is defined as ¢, = w(T'(e)) — w(T), that is,
the marginal increase of the weight of the minimum 1-tree if e is forced in the
1-tree.
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The following algorithm can compute, in O(mn), the marginal costs for edges
e & T. Each non-tree edge e = (4, j) links two nodes 4, j, and defines a unique i-j
path, say P¢, in T. The replacement cost of (4, 5) is defined by ¢, — maz(c,|a €
Pe¢), that is the cost of (7, ) minus the cost of largest edge on the path from ¢ to
j in the 1-tree T. Finding P¢ can be achieved through DFS in O(n) for all the
O(m) edges not in 7. If HK + ¢, > UB, then e can be safely removed from FE.

3.2 Forcing Edges Based on Replacement Costs

Conversely, it is possible to compute the replacement cost of an edge e € T as
the increase the Held-Karp bound would incur if e would be removed from FE,
which we define by ¢, = w(T' \ e) — w(T).

This computation can be performed for all edges e € T, with the following
algorithm: a) set all ¢ = oo Ve € T b) for all e = (4,j) ¢ T identify the i-j
path P¢ in T which joins the end-points of e. Update all edges a € P¢ such
that ¢, = min(cl, ce — ¢q). This computation can be performed in O(mn), or,
at no extra cost if performed together with the computation of marginal costs.
If HK + ¢, — ¢ > UB, then e is a mandatory edge in 7.

We note that such filtering has been applied to the weighted minimum span-
ning tree constraint by |3, 1§].

3.3 Forcing Edges Based during MST Computation

Recall that Prim’s algorithm computes the minimum spanning tree in G (which
is easily transformed into a 1-tree) in the following manner. Starting from any
node i, it first partitions the graph into disjoints subsets S = {i} and S =V \ i
and creates an empty tree T. Then it iteratively adds to 7" the minimum edge
(i,5) € (S,8), defined as the set of edges where i € S and j € S, and moves j
from S to S.

Since we are using MST computations as part of a Held-Karp relaxation to
the TSP, we know that there should be at least 2 edges in each possible (S, S)
of V' (this property defines one of well known subtour elimination constraints of
the TSP). Therefore, whenever we encounter a set (S, .S) that contains only two
edges during the computation of the MST with Prim’s algorithm, we can force
these edges to be mandatory in T'.

3.4 Tuning the Propagation Level

The proposed filtering procedures are quite expensive computationally, therefore
it is interesting to investigate the amount of propagation that we wish to impose
during the search. A first implementation consists in calling each filtering algo-
rithm (as defined in sections B} and B3) only once before choosing a new
branching variable. A second approach would be to repeat these rounds of prop-
agation until none of these procedures is able to delete nor force any edge, that
is reaching a fixed point. Finally, if reaching a fixed point allows to reduce the
overall search effort, a more efficient propagation mechanism could be developed
in order to speed up its computation.
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3.5 Choosing the Branching Criterion

Once the initial Held-Karp bound has been computed and the filtering has been
performed it is necessary to apply a branching procedure in order to identify the
optimal TSP solution. We have investigated two orthogonal branching schemes,
both based on the 1-tree associated to the best Held-Karp bound, say T. These
strategies consist in selecting, at each branch-and-bound node, one edge e and
splitting the search in two subproblems, one where e is forced in the solution and
one where it is forbidden. In the strategy out we pick e € T and first branch on
the subproblem where it is forbidden while in the strategy in we choose e & T
and first try to force it in the solution.

Since there are O(n) edges in T' and O(n?) edges not in T', the first strategy will
tend to create search trees which are narrower but also deeper than the second
one. However, since the quality of the HK improves rapidly as we go down the
search tree, it is generally possible to cut uninteresting branches before we get to
deep. Preliminary experiments, not reported here, have confirmed that strategy
out is generally more effective than strategy in.

Table 1. Results on TSPIib instances

original HK  1-round  fixpoint
time BnB time BnB time BnB

burmal4 0.1 28 0 0 0 0
ulysses16  0.16 32 0 0 0 0
grl? 0.14 34 0 0 0.01 0
gr2l 0.16 42 0 0 0.01 0
ulysses22  0.19 0 0 0 0.01 0
gr24 0.23 44 0.01 0 0.03 0
fri26 0.36 48 0.01 2 0.01 2
bayg29 0.35 54 0.04 6 0.07 6
bays29 0.33 88 0.05 10 0.1 10
dantzigd2  0.65 92 0.09 4 0.17 4
swiss42 0.79 112 0.09 8 0.09 8
att48 1.7 140 0.21 18 0.23 15
grd8 94 13554 5.18 2481 7.38 3661
hk48 1.37 94 0.17 4 0.16 4
eil51 159 2440 0.39 131 0.84 426
berlin52 0.63 80 0.02 0 0.02 0
brazil58 13 878 1.09 319 1.02 296
st70 236 13418 1.21 183 1.1 152
€il76 15 596 1.03 125 0.88 99
rat99 134 2510 5.44 592 4.88 502
kroD100 16500 206416 11 7236 50.83 4842
rd100 67 782 0.76 0 0.73 0
eill01 187 3692 8.17 1039 9.59 1236
lin105 31 204 1.81 4 1.85 4

prl07 41 442 4.65 45 4.49 48
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4 Experimental Results

To evaluate the benefits of using CP within the Held-Karp branch-and-bound
algorithm, we ran experiments on several instances of the TSPlib. We report
both the number of branching nodes and CPU time required solve each instance,
with different propagation levels: no propagation (‘original HK’), calling each
filtering algorithm once (‘1-round’), and propagation until we reach a fixed point
(‘fixpoint’). To eliminate the impact of the upper bound can have on search tree,
we ran these experiments using the optimal value of each instance as its UB.

Table [ clearly shows the impact of CP filtering techniques on the original
Held-Karp algorithm. In fact the reduction of the graph not only considerably
reduces the search effort (BnB nodes) but also sufficiently accelerates the com-
putation of 1-trees inside the Held-Karp relaxation to completely absorb the
extra computations required by the filtering mechanisms. This can be seen as
the proportional reduction in CPU times largely exceeds the reduction in search
nodes.

Finally, we cannot conclude that the extra effort required to reach the fixed
point is worthwhile, as it is sometimes better and sometimes worse than a single
round of filtering. Results on these preliminary tests seem to show that more
than one round of computation is most often useless, as the first round of filter-
ing was sufficient to reach the fixed point in about 99.5% of the search nodes.
More tests are thus required before investigating more sophisticated propagation
mechanisms.

References

[1] Applegate, D.L., Bixby, R.E., Chvétal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

[2] Balas, E., Toth, P.: Branch and Bound Methods. In: Lawler, E.L., Lenstra, J.K.,
Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization, ch. 10. Wiley, Chichester (1985)

[3] Dooms, G., Katriel, I.: The “not-too-heavy spanning tree” constraint. In: Van
Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59-70.
Springer, Heidelberg (2007)

[4] Held, M., Karp, R.M.: The Traveling-Salesman Problem and Minimum Spanning
Trees. Operations Research 18, 1138-1162 (1970)

[5] Held, M., Karp, R.M.: The Traveling-Salesman Problem and Minimum Spanning
Trees: Part II. Mathematical Programming 1, 6-25 (1971)

[6] Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Sales-
man Heuristic. European Journal of Operational Research 126(1), 106-130 (2000)

[7] Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Tech. J. 36, 1389-1401 (1957)

[8] Régin, J.-C.: Simpler and Incremental Consistency Checking and Arc Consistency
Filtering Algorithms for the Weighted Spanning Tree Constraint. In: Perron, L.,
Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 233-247. Springer, Heidel-
berg (2008)



Characterization and Automation
of Matching-Based Neighborhoods

Thierry Benoist

Bouygues e-lab, 40 rue de Washington - 75008 Paris, France
tbenoist@bouygues.com

Abstract. This paper shows that that some matching based neighborhood can
be automatically designed by searching for stable sets in a graph. This move
generation algorithm is illustrated and investigated within the LocalSolver
framework.

1 Introduction

Autonomous search is a challenging trend in optimization solvers. It consists in
partially or totally automating the solving process. The ultimate goal is to reach a
model&run paradigm where the user merely models the problem to be solved and
relies on the solver to find solutions. Automation can apply to various components of
an optimization solver, as detailed in [8]. In this note we focus on the automatic
design of Very Large Scale Neighborhoods (VLSN) [1] for local search solvers.
Neighborhood search is one of the most effective approaches to solve combinatorial
optimization problems. It basically consists in moving from one solution to another by
applying local changes, tending to improve the objective function. In this context,
VLSN are sometimes useful to improve the convergence on difficult instances. In
particular, neighborhoods of exponential size explored in polynomial time are often
appreciated by researchers [4, 5, 9, 10]. For instance in the car sequencing problem,
Estellon et al. noticed in [7] that selecting a set of K positions sufficiently distant one
from another allowed optimally repositioning these K cars through the resolution of a
transportation problem.

We will show that some of these VLSN encountered in different contexts share
common bases and thus can be implemented in a unified way in an autonomous
solver. More precisely we prove in section 2 that some matching-based neighborhood
can be automatically designed by searching for stable sets in a graph; then we propose
in section 3 a convenient way to implicitly pre-compute billions of stable sets.
Throughout this paper we will use the Eternity II edge matching puzzle
(http:/fus.eternityii.com) for illustrating the introduced ideas and finally for
experimenting the algorithms, within the LocalSolver' framework. The goal of this

! The Author is grateful to the LocalSolver team: Bertrand Estellon, Frédéric Gardi and Karim
Nouioua. LocalSolver is a free local search solver for combinatorial optimization problems,
based on a simple 0-1 formalism. The interested reader is referred to e-lab.bouygues.com for a
description of its functionalities and algorithms.
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puzzle is to place 256 square tiles on a 16x16 board so as to maximize the number of
matching edges (namely adjacent tiles have matching colors along their common
edge).

2 Large Neighborhoods and Stable Sets

We consider an optimization problem where all decision variables are Booleans. On
these binary variables, expressions are stated with various arithmetic and logic
operators (min, < sum, and, etc.). Some boolean expressions are tagged as constraints
and one numeric expression is the objective function. The syntax graph associated to
this classical functional formalism is a Directed Acyclic Graph (DAG) whose roots
are the decision variables and whose leaves are constraints and objectives, while
intermediate expressions are nodes. This DAG is also named the invariant network in
iOpt [12]. Within this formalism, a transformation (or move) consists in flipping a
certain number of binary decision variables. The impact of this transformation is
automatically computed by propagating changes up in the DAG, eventually updating
the satisfaction of constraints and the value of the objective function. Weighted and
unweighted sums will be named linear nodes. An edge-matching puzzle can be
modelled with “tile to cell” binary variables X;;;, (equal to 1 if tile 7 is assigned to cell
i,j with rotation r), subject to two families of linear equalities “one tile per cell” and
“one cell per tile” representing the underlying assignment structure. Matching edges
can be detected with simple Boolean expressions for each edge and each color, and
the sum of these Booleans is the function to be maximized.

In such a DAG, let C be the set of all non-weighted sums of decision variables, on
which an equality constraint is set, and V the set of variables involved in C. Now
assume that C can be partitioned into C; and C, such that each variable of V appears
exactly once in a sum of C; and once in a sum of C,. The existence of such a bipartite
structure can be detected with a 2-coloring algorithm on the graph (C,V). In our
puzzle-matching example, the detected C; and C, are naturally the “one tile per cell”
and “one cell per tile” families. For any valid solution s that is to say a vector of
values for all decision variables, £Xs) is the objective function associated to s. A
function u transforming solution s is characterized by the set # < V of decision
variables whose values are flipped by u and its impact is A,(s) = Q(u(s)) - Q(s). The
set of all such functions is F. When two functions u and v share no variable (i N ¥ =
@) then u @ v is defined by u@v=14uUd.

Property. For any sum ceC, we denote by T(c) the set of nodes of the DAG reachable
from a variable of ¢ without crossing a node of C.V ¢,deC;, such that T(c)NT(d)
contains only linear nodes, V's a valid solution,V u,veF such that u (resp. v) only
involves values of c¢ (resp. d) and u(s) (resp. v(s)) satisfied all constraints of T(c)
(resp. T(d)). Then, if u@ v preserve the sums in C, the impact of both
transformations is valid and additive: Ay g, (s) = A, (s) + A, (s). We will say that c
and d are non-adjacent.

Proof. First u @ v is well defined since ¢ and d share no variable. Then, since u @ v
preserves the sums in C, constraints on these nodes remain satisfied. Other constraints
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are in T(c) U T(d), whose intersection contains no constraints (only linear nodes), that
is to say that constraints in 7(c) (resp. T(d)) are only impacted by variables of ¢ (resp.
d). Our hypothesis ensures their satisfaction in this case, hence u @ v(s) is valid.
Finally, since T(c) and T(d) share linear expressions only, we have A,g,(s) =
A, (s) + A, (s).

In terms of the edge-matching puzzle, two “one tile per cell” constraints have the
above property if and only if they refer to non-adjacent cells. Indeed in this case, no
edge-matching detection expression involves variables of both constraints. For
instance, in the DAG below (a simple 2x2 board), the sums “celll”and “cell3” are
non-ajacent. Swapping the
tiles in these cells preserves
the “assignment sums” (C)
and thus can be evaluated as
the sum of the two changes
composing the swap. If all
constraints in a subset S; of C,
are pairwise non-adjacent, we
say that S is a stable set with
respect to this definition of
adjacency.

Besides, if all constraints in S are equalities to 1, then this additive property allows
defining the following large neighborhood for S;.We define a bipartite graph based on
the two sets C; and C, such that for each variable v of V involved in ¢,€ C and ¢, Cs,
we define an edge from c; to ¢, if v=1 and an edge from ¢, to ¢; if v=0. For each
constraint ¢ in Cj, we assign weights to incoming edges (those associated to variables
equal to 0) as follows. For each variable v of ¢ equal to 0, let g be the function setting
to O the variable currently instantiated to 1 in ¢ and setting to 1 variable v. Then the
weight of the edge representing variable v is A,(s) = €2(g(s)) - C(s), with s the current
solution. Outgoing edges receive weight 0. To any cycle in this bipartite graph we
associate a move flipping the values of all variables corresponding to edges of the
cycle. Such a move preserves the sums in C because each node involved in the cycle
has exactly one incoming and one outgoing edge. Besides the cost of this move is the
sum of the weights of all involved edges, because:

e for each constraint ¢ in C, the variable instantiated to 1 is set to 0 and another
one takes value 1, which is the definition that we took for costs on edges

e since S;is a stable set, all these costs can be added to get the global cost of the
move, thanks to the property established above.

We conclude that if there is a negative cycle in the above graph, then the objective
function can be improved by changing the values of variables of this cycle only
(while all other decision variables of the problem keep their values). We use the
Bellman-Ford-Moore algorithm to search for such a negative cycle in this graph.
Worst case complexity is O(nm) with n the number of nodes and m the number of
edges. At the end of each of the n iterations, we perform a search for cycles in the
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parent graph in O(m) (see [6] for other cycle detection strategies). For a given set S,
the complexity is bounded by O(1S;I°). For edge-matching puzzles, this neighborhood
is the same as the one explored by Schaus & Deville in [11], namely the optimal
reassignment of a set of non adjacent cells.

A variant of this algorithm consists in setting small negative costs to edges
associated to variables equal to 1, so as to favor the detection of different assignment
with the same cost if any (diversification move). In practice we first look for
an improving transformation and then for a diversification transformation in the
same graph.

3 Stable Sets Generators

The above neighborhood is based on a stable set S; in C; but the worst complexity of
computing a stable set of size smaller than K with a greedy algorithm (our goal is not
to find a maximum stable set) is in the worst case O(Kd) where d is the maximum
degree of the graph. Indeed, each time a node is added to the stable set, its neighbor
nodes must be removed from the graph. If absence on upper bound on the degree
this worst case complexity is O(KIC;l). Besides such a greedy algorithm may built
very small stable set in some cases, for instance if the first selected node is connected
to all others. For these reasons it is useful to precompute structures allowing
extracting stable sets of size K in O(K). The structure that we define for this purpose
is a collection of K disjoint subsets of C; such that any pair of nodes appearing in two
different sets of this collection are non adjacent. We call such a collection a stable
set generator. Building such generators can be achieved with a simple algorithm
starting with an empty collection and based on two procedures: Grow adds to the
growing collection a new non-adjacent singleton and Merge adds an adjacent node to
one of the sets of the collection. In order to maximize the number of different
stable sets that can be generated from this collection, we need to maximize the
products of its sizes. Hence our heuristic consists in applying the merge procedure on
each new singleton, and in favoring the grow procedure otherwise. Once the target
size K is reached, the merge procedure is applied until no node can be added.
Applying this randomized algorithm around 10 times at the beginning of the
search procedure, we implicitly generate a huge number of stable sets when such
stable sets exist.

4 Experimental Results and Conclusions

These algorithms (two-coloring for bipartite detection, adjacency analysis for stable
set generation, and LNS neighborhood) have been implemented in the LocalSolver
framework and tested on various problems. For the Eternity II problem taken as
example in the descriptions of previous sections, we obtain the following results. It
shall be noted that analyzing the DAG and creating the stable sets takes less than one
second on this problem with more than 250 000 binary variables.
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The above graphs represent local search descents for this edge-matching puzzle
with a neighborhood ranging from 2 tiles to 32 tiles. The left chart is extracted from
[11] while the right one was obtained with LocalSolver setting the maximum size of
the stable sets to 2, 4, 8, etc. The similarity of these curves confirms that without prior
knowledge on the structure of the problem, we achieve to explore the same
neighborhood, with the same efficiency. We tested this generic implementation of
matching-based neighborhoods on various problems [3]. For the largest instance of
each problem, the table below reports the size of the detected bipartite structure, the
number of stable sets implicitly generated, the total time of this analysis and the
number of moves per second during local search. In these experiments the size of
stable sets was limited to 8.

Problem Bipartite size # of (implicit) stable sets Moves per
second
Car sequencing with colors 1319x284 10* in 3.2s 590
Car Sequencing CspLib 500x20 107 in 0.1s 545
Eternity II 256x256 10" in 0.5s 990
Social Golfer 30x10 (13 times) 1in 1.6s 285

These results show that some very-large scale neighborhood can be automatically
generated thanks to an analysis of the model. Similarly to small neighborhoods
offered by default in LocalSolver, these moves preserve the feasibility of the solution
and are similar to what an OR researcher would implement.
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Abstract. Learning during search allows solvers for discrete optimiza-
tion problems to remember parts of the search that they have already
performed and avoid revisiting redundant parts. Learning approaches
pioneered by the SAT and CP communities have been successfully incor-
porated into the SCIP constraint integer programming platform.

In this paper we show that performing a heuristic constraint program-
ming search during root node processing of a binary program can rapidly
learn useful nogoods, bound changes, primal solutions, and branching
statistics that improve the remaining IP search.

1 Introduction

Constraint programming (CP) and integer programming (IP) are two comple-
mentary ways of tackling discrete optimization problems. Hybrid combinations
of the two approaches have been used for more than a decade. Recently both
technologies have incorporated new nogood learning capabilities that derive ad-
ditional valid constraints from the analysis of infeasible subproblems extending
methods developed by the SAT community.

The idea of nogood learning, deriving additional valid conflict constraints from
the analysis of infeasible subproblems, has had a long history in the CP commu-
nity (see e.g. [I], chapter 6) although until recently it has had limited applicabil-
ity. More recently adding carefully engineered nogood learning to SAT solving [2]
has lead to a massive increase in the size of problems SAT solvers can deal with.
The most successful SAT learning approaches use so called first unique implica-
tion point (1UIP) learning which in some sense capture the nogood closest to
the failure that can infer new information.

Constraint programming systems have adapted the SAT style of nogood learn-
ing [3l4], using 1UIP learning and efficient SAT representation for nogoods, lead-
ing to massive improvements for certain highly combinatorial problems.

Nogood learning has been largely ignored in the IP community until very
recently (although see [5]). Achterberg [6] describes a fast heuristic to derive
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small conflict constraints by constructing a dual ray with minimal nonzero ele-
ments. He shows that nogood learning for general mixed integer problems can
result in an average speedup of 10%. Kilinc Karzan et. al. [7] suggest restarting
the IP solver and using a branching rule that selects variables which appear in
small conflict constraints for the second run. Achterberg and Berthold [§] pro-
pose a hybrid branching scheme for IP that incorporates conflict-based SAT and
impact-based CP style search heuristics as dynamic tie-breakers.

2 Rapid Learning

The power of nogood learning arises because often search algorithms implicitly
repeat the same search in a slightly different context in another part of the
search tree. Nogoods are able to recognize such situations and avoid redundant
work. As a consequence, the more search is performed by a solver and the earlier
nogoods are detected the greater the chance for nogood learning to be beneficial.

Although the nogood learning methods of SAT, CP, and IP approaches are
effectively the same, one should note that because of differences in the amount of
work per node each solver undertakes there are different design tradeoffs in each
implementation. An IP solver will typically spend much more time processing
each node than either a SAT or CP solver. For that reason SAT and CP systems
with nogoods use 1UIP learning and frequent restarts to tackle problems while
this is not the case for IP. IP systems with nogoods typically only restart at the
root, and use learning methods which potentially generate several nogoods for
each infeasibility (see [6]).

The idea of Rapid Learning is based on the fact that a CP solver can typically
perform a partial search on a few hundred or thousand nodes in a fraction of
the time that an IP solver needs for processing the root node of the search tree.
Rapid Learning applies a fast CP branch-and-bound search for a few hundred
or thousand nodes, before we start the IP search, but after IP presolving and
cutting plane separation.

Each piece of information collected in this rapid CP search can be used to
guide the IP search or even deduce further reductions during root node process-
ing. Since the CP solver is solving the same problem as the IP solver

— each generated conflict constraint is valid for the IP search,

— each global bound change can be applied at the IP root node,

— each feasible solution can be added to the IP solver’s solution pool,

— the branching statistics can initialize a hybrid IP branching rule [§], and
— if the CP solver completely solves the problem, the IP solver can abort.

All five types of information may potentially help the IP solver. Rapid Learning
performs a limited CP search at the root node, after most of the IP presolving
is done to collect potential new information for the IP solver.

The basic idea of Rapid Learning is related to the concept of Large Neigh-
borhood Search heuristics in IP. But rather than doing a partial search on a
sub-problem using the same (IP search) algorithm, we perform a partial search
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on the same problem using a much faster algorithm. Rapid Learning also differs
from typical IP heuristics in the sense that it can improve both primal and dual
bounds at the same time.

3 Computational Results

Our computational study is based on the branch-cut-and-price framework SCIP
(Solving Constraint Integer Programs). This system incorporates the idea of
Constraint Integer Programming [10] and implements several state-of-the-art
techniques for IP solving, combined with solving techniques from CP and SAT,
including nogood learning. The Rapid Learning heuristic presented in this article
was implemented as a separator plugin.

For our experiments, we used SCIP 1.2.0.5 with Cplex 12.10 as underlying LP
solver, running on a Intel® Core™2 Extreme CPU X9650 with 6 MB cache
and 8 GB RAM. We used default settings and a time limit of one hour for the
main SCIP instance which performs the IP search.

For solving the CP problem, we used a secondary SCIP instance with “empha-
sis cpsolver” (which among other things turns off LP solving) and “presolving
fast” settings (which turns off probing and pairwise comparison of constraints)
and the parameter “conflict/maxvarsfac” set to 0.05 (which only creates no-
goods using at most 5% of the variables of the problem). As node limit we used
max(500, min(niter, 5000)), with niter being the number of simplex iterations
used for solving the root LP in the main instance. We further aborted the CP
search as soon as 1000 conflicts were created, or no useful information was gained
after 20% of the node limit.

As test set we chose all 41 Binary programs (BPs) of the MrpLiB 3.0 [I1],
the M1pL1B2003 [I2] and the IP collection of Hans Mittelmann [I3] which have
less then 10000 variables and constraints after SCIP presolving. BPs are an
important subclass of IPs and finite domain CPs. where all variables take values
0 or 1. Note, that for a BP, all conflict constraints are Boolean clauses, hence
linear constraints.

Table [l compares the performance of SCIP with and without Rapid Learn-
ing applied at the root node (columns “SCIP” and “SCIP-RL”). Columns “RL”
provide detailed information on the performance of Rapid Learning. “Ngds” and
“Bds” present the number of applied nogoods and global bound changes, respec-
tively, whereas “S” indicates, whether a new incumbent solution was found. For
instances which could not be solved within the time limit, we present the lower
and upper bounds at termination.

Note first that Rapid Learning is indeed rapid, it rarely consumes more than
a small fraction of the overall time (except for mitre). We observe that for
many instances the application of Rapid Learning does not make a difference.
However, there are some, especially the acc problems, for which the performance
improves dramatically. There are also a few instances, such as qap10, for which
Rapid Learning deteriorates the performance. The solution time decreases by
12% in geometric mean, the number of branch-and-bound nodes by 13%. For
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Table 1. Impact of Rapid Learning on the performance of SCIP

SCIP SCIP-RL Rapid Learning

Name Nodes Time Nodes Time Nodes Time Ngds Bds
10teams 197 7.2 197 7.3 716 0.1 0 0
acc-0 1 09 1 09 0 0.0 0 0
acc-1 112 32.6 113 344 3600 0.4 1332 0
acc-2 54 58.8 1 44 2045 04 427 0
acc-3 462 392.5 64 76.0 2238 0.7 765 0
acc-4 399 420.2 364 115.4 2284 0.7 722 0
acc-b 1477 354.1 353 126.6 2054 0.5 756 0
acc-6 251 71.0 899 138.2 2206 0.5 591 0
air04 159 454 159 45.6 1000 0.2 0 0
air05 191 22.6 191 22.8 369 0.1 0 0
cap6000 2755 2.6 2755 2.7 100 0.0 0 17
disctom 1 22 1 22 0 0.0 0 0
eilD76 3 172 3 172 100 0.0 0 0
enigma 733 0.5 1422 0.5 500 0.0 9 0
fiber 51 1.1 53 1.1 100 0.0 0 0
harp2 352292 209.2 306066 191.3 1135 04 7 0
1152]av 56 2.1 56 2.2 423 0.1 0 0
lseu 366 0.5 450 0.5 500 0.0 146 0
markshare4 0 1823558 111.7 2140552 234.4 500 0.0 305 0
misc03 176 0.8 284 0.8 500 0.0 138 0
misc07 31972 21.4 34416 224 100 0.0 0 0
mitre 6 175 6 10.0 4177 2.5 284 1610
mod008 366 0.8 366 0.8 100 0.0 0 0
mod010 5 08 5 1.0 854 0.2 357 52
neosl 1 31 1 32 727 0.1 325 0
neos21 2020 18.7 1538 17.5 141 0.0 0 0
nug08 1 56.2 1 10.2 1011 0.2 460 1392
p0033 3 05 3 05 500 0.0 287 4
p0201 76 0.7 76 0.7 100 0.0 0 0
p0282 24 0.5 24 05 100 0.0 0 0
p0548 53 0.5 38 0.5 100 0.0 0 10
p2756 213 1.7 111 1.6 100 0.0 0 80
prodl 23015 17.1 25725 20.0 500 0.1 0 0
prod2 68682 80.3 68635 79.2 500 0.1 17 0
qapl0 5 146.8 12 542.0 2107 0.5 1666 0
stein27 4041 0.8 4035 1.1 500 0.0 328 0
stein4b 50597 18.0 51247 18.1 500 0.0 0 0
marksharel [0.0,7.0] [0.0,5.0] 500 0.0 199 0
markshare2 [0.0,14.0] [0.0,11.0] 500 0.0 174 0
protfold [-36.9135,-21.0] [-37.0898,-22.0] 3078 1.6 510 0
seymour [414.318,425.0] [414.313,426.0] 653 0.0 0 0
geom. mean 212 8.3 185 7.3

arithm. mean 63902 57.5 71357 474
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the four unsolved instances, we see that Rapid Learning leads to a better primal
bound in three cases. The dual bound is worse for the instance protfold. For
the instances acc-2 and nug08, Rapid Learning completely solved the problem.

Additional experiments indicate that the biggest impact of Rapid Learning
comes from nogoods and learning new bounds, but all the other sources of in-
formation are also beneficial to the IP search on average.

4 Conclusion and Outlook

Rapid Learning takes advantage of fast CP search to perform a rapid heuris-
tic learning of nogoods, global bound changes, branching statistics and primal
solutions before the IP search begins. Our computational results demonstrate
that this information can improve the performance of a state-of-the-art non-
commercial IP solver on BPs substantially.

We plan to investigate Rapid Learning for general IP problems, where we need
to use bound disjunction constraints [6] to represent nogoods. We also plan to
investigate the application of rapid learning at other nodes than the root, and
combinations of CP and IP search that continually communicate nogoods, using
a hybrid of SCIP and a native CP system.
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Abstract. The multileaf collimator sequencing problem is an important com-
ponent of the effective delivery of intensity modulated radiotherapy used in the
treatment of cancer. The problem can be formulated as finding a decomposition
of an integer matrix into a weighted sequence of binary matrices whose rows
satisfy a consecutive ones property. In this paper we extend the state-of-the-art
optimisation methods for this problem, which are based on constraint program-
ming and decomposition. Specifically, we propose two alternative hybrid meth-
ods: one based on Lagrangian relaxation and the other on column generation.
Empirical evaluation on both random and clinical problem instances shows that
these approaches can out-perform the state-of-the-art by an order of magnitude in
terms of time. Larger problem instances than those within the capability of other
approaches can also be solved with the methods proposed.

1 Introduction

Radiation therapy represents one of the main treatments against cancer, with an esti-
mated 60% of cancer patients requiring radiation therapy as a component of their treat-
ment. The aim of radiation therapy is to deliver a precisely measured dose of radiation to
a well-defined tumour volume whilst sparing the surrounding normal tissue, achieving
an optimum therapeutic ratio. At the core of advanced radiotherapy treatments are hard
combinatorial optimisation problems. In this paper we focus on the multileaf collimator
sequencing in intensity-modulated radiotherapy (IMRT).

What is Intensity-Modulated Radiotherapy? IMRT is an advanced mode of high-
precision radiotherapy that utilises computer controlled x-ray accelerators to deliver
precise radiation doses to a malignant tumour. The treatment plan is carefully devel-
oped based on 3D computed tomography images of the patient, in conjunction with
computerised dose calculations to determine the dose intensity pattern that will best
conform to the tumour shape. There are three optimisation problems relevant to this
treatment. Firstly, the geometry problem considers the best positions for the beam head
from which to irradiate. Secondly, the intensity problem is concerned with computing
the exact levels of radiation to use in each area of the tumour. Thirdly, the realisation
problem, tackled in this paper, deals with the delivery of the intensities computed in

* This work was supported by Science Foundation Ireland under Grant Number 05/IN/1886.
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(a) A multileaf collimator. (b) A multileaf collimator sequencing problem.

Fig. 1. A simplified view of the optimisation problem associated with sequencing multileaf colli-
mators in IMRT, Figure 1(b) has been adapted from [3]

the intensity problem. Combinatorial optimisation methods in cancer treatment plan-
ning have been reported as early as the 1960s [5] and a recent interesting survey on
the topic can be found in [14]. There is a large literature on the optimisation of IMRT,
which has tended to focus on the realisation problem [18]. Most researchers consider
the sequencing of multileaf collimators (Figure 1(a)). The typical formulation of this
problem considers the dosage plan from a particular position as an integer matrix, in
which each integer corresponds to the amount of radiation that must be delivered to a
particular region of the tumour. The requisite dosage is built up by focusing the radi-
ation beam using a multileaf collimator, which comprises a double set of metal leaves
that close from the outside inwards. Therefore, the collimator constrains the possible set
of shapes that can be treated at a given time. To achieve a desired dosage, a sequence of
settings of the collimator must be used. One such sequence is presented in Figure 1(b).
The desired dosage is presented on the left, and it is delivered through a sequence of
three settings of the multileaf collimator, which are represented by three matrices. Each
matrix is exposed for a specific amount of time, corresponding to the weight associated
with the matrix, thus delivering the requisite dosage.

Contribution of this Paper. In our earlier work in this area we presented a novel ap-
proach to multileaf collimator sequencing using an approach based on shortest paths
[10]. It was shown that such a model significantly out-performed the state-of-the-art
and brought clinical-sized instances of the problem within the reach of constraint pro-
gramming (CP). We now show that the shortest path idea can be exploited to give greater
scalability by coupling the CP model with Lagrangian relaxation and column genera-
tion techniques. Our shortest-path approach to this problem uniquely provides a basis
for benefitting from these techniques. The results presented define the current state-of-
the-art for this challenging problem from the domain of cancer treatment planning.

The CP model presented in [10], is briefly introduced in Section 2. We show how to
strengthen the CP model with a Lagrangian relaxation in Section 3. An alternative for-
mulation in which the paths are represented explicitly, along with a column generation
(CG) model, is presented in Section 4. Section 5 demonstrates that these approaches
significantly out-perform the state-of-the-art for this problem.
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2 Formulation of the Multileaf Collimator Sequencing Problem

Let I represent the dosage intensity matrix to be delivered. I is an m X n (rows x
columns) matrix of non-negative integers. We assume that the maximum dosage that
is delivered to any region of the tumour is M units of radiation. Therefore, we set
Ii; < M,1 <1< m,1 <j < n. To ensure that each step in the treatment se-
quence corresponds to a valid setting of the multileaf collimator, we represent each step
using a 0/1 matrix over which a row-wise consecutive ones property (C1) must hold.
Informally, the property requires that if any ones appear in a row, they appear together
in a single block. A C1 matrix is a binary matrix in which every row satisfies the con-
secutive ones property. Formally, X is an m x n C1 matrix if and only if for any line i,
1<a<b<c<n, Xy =1ANX;, =1— X;;, = 1. A solution to the problem is a
sequence of C1 matrices, {2, in which each X}, is associated with a positive integer by,
suchthat: I =), _(bx-Xy). Let B and K be the sum of coefficients by, and the num-
ber of matrices X}, used in the decomposition of I, respectively. Then B = >, -, bx
and K = |{2|. B is referred to as the total beam-on time of the plan and K is its car-
dinality; see Figure 1(b) for an example with K = 3 and B = 6. The overall objective
is to minimise the time needed for the complete treatment and the parameters B and K
both affect that. Typical problems are to minimise B or K independently (known as the
decomposition time and decomposition cardinality problem, respectively) or a linear
combination of both: w1 K + wsB. We will tackle this general formulation where w;
accounts for the time needed by the operator to change the settings of the machine and
ws accounts for the time to deliver one unit of radiation.

The problem of minimising B alone has been widely studied, starting with Bortdeld
et al. [7] and Ahuja et al. [2] until a method in linear time was found by Baatar et al.
and Engel [4, 15]. Minimising K alone was shown to be strongly NP-Hard [4] even for
a single row or column [11] and received a lot of attention [6, 20]. Many heuristics were
designed as the problem proved to be very difficult [1,4]. The problem of minimising
K while constraining B (lexicographic objective function) to its optimal value B* was
tackled by Engel and Kalinowski [15,20]. Exact algorithms were proposed based on
dynamic programming, Kalinowski [19], mixed integer linear programming, Langer
[21,26] and Constraint Programming Baatar et al., Ernst et al. and Cambazard et al. [3,
9,10, 16]. Exact algorithms dealing with a more general objective function as the one
used in this paper are designed by Wake et al, Caner Taskin et al [25, 26].

2.1 The Single Row Problem as a Shortest Path

In this section we study a restriction of the minimum cardinality problem DC to a single
row. This will help to design efficient inference mechanisms for the general multi-row
case. We show a simple construction representing the row problem as a shortest path.

C1 DECOMPOSITION CARDINALITY PROBLEM (DC)
Instance: A row matrix of n integers, I = (I3, ..., I,), a positive integer K.
Question: Find a decomposition of [ into at most K C1 row matrices.

In any solution of the DC problem, there must be a subset of the weights of the de-
composition that sum to every element I; of the row. In other words, the decomposition
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must contain an integer partition of every intensity. We will represent integer parti-
tions with the following notation: P(a) is the set of partitions of integer a, p € P(a)
is a particular partition of a, and |p| the number of integer summands in p. We de-
note by occ(v,p) the number of occurrences of value v in p. For example, P(5) =
{(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1) },and if p = (3,1, 1) then
|p| = 3 and oce(1, p) = 2. Observe that the DC problem can be formulated as a shortest
path problem in a weighted directed acyclic graph, G, which we refer to as a partition
graph. A partition graph G of a row matrix I = (I1,...,I,) is a layered graph with
n+2 layers, the nodes of each layer j corresponding to the set of integer partitions of the
row matrix element I;. The size of this graph is therefore exponential in the maximum
intensity. Source and sink nodes, located on layers 0 and n + 1 respectively, are associ-
ated with the empty partition (). Two adjacent layers form a complete bipartite graph and
the cost added to an edge, p,, — p,,, between two partitions, p,, and p, of adjacent lay-
ers, represents the number of additional weights that need to be added to the decompo-
sition to satisfy the C1 property when decomposing the two consecutive elements with
the correspondinjg partitions. The cost of each edge p,, — p, in the partition graph is:
c(pu, pv) = ,])Vzl ¢(b, pu, pv) where ¢(b, pu, py) = max(oce(b, p,) — oce(b, py),0).
Figure 2 shows the partition graph I = [3,2, 3, 1].

3
0 3

{L,L,1} 1
3 1 2 /
! 2

Fig. 2. A partition graph showing transition weights for the single row I = [3,2,3,1]

By following the path {{2,1},{1,1},{2,1}, {1}}, we build a decomposition:

[3,2,3,1] = 2[1,7,7,7] + 1[1, 7,7, 7] (choice of {2,1});

[3,2,3,1] = 2[1,0,0,0] + 1[1,1,7,7] + 1[0, 1, 7, 7] (choice of {1,1});

[3,2,3,1] = 2[1,0,0,0] + 1[1,1,0,0] + 1[0,1,1,7] + 20,0, 1, 0] (choice of {2, 1});
[3,2,3,1] = 2[1,0,0,0] + 1[1,1,0,0] + 1[0, 1,1, 1] + 2[0, 0, 1, 0] (choice of {1}).

The length of the path represents the cardinality of the decomposition and a shortest
path therefore provides a decomposition with minimum cardinality. The key idea is that
as one moves along a path in this graph, the partition chosen to decompose the element
at layer j contains the only weights that can be reused to decompose the element at layer
J + 1 because of the C1 property. Consider the previous example and the solution given.
A coefficient 2 is used by the first partition but not by the second and thus becomes
forbidden to decompose any other intensity values. The previous partition alone tells
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us the available coefficients to decompose the present intensity value. This is why the
cardinality cost can be defined between consecutive partitions and the whole problem
mapped to a shortest path. We could also restrict the cost to a given weight b to obtain
the cardinality of this particular coefficient. We will use this idea in the CP model.

2.2 Shortest Path Constraint Programming Model

We present a CP model for the general multi-row case that takes advantage of the
property identified for a single row. We index, in lexicographic order, the integer par-
titions of each element I;; of the intensity matrix, and use an integer variable F;;
to denote the index of the partition used to decompose element I;;. For example, if
I;; = 5 the domain of P;; is {1,...,7} corresponding to {(5), (4,1),(3,2),(3,1,1)
42,2,1),(2,1,1,1),(1,1,1,1,1) }. Thus, P;; = 4 means that the coefficients 3, 1 and
1 are used to sum to 5 in the decomposition. We also have a variable N, giving the
number of occurrences of weight b in the decomposition.

Our CP model uses the constraint SHORTESTPATH(G, { P4, ..., P,,},U) [10]. Once
instantiated { P, ..., P,,} defines a path in the original partition graph. This constraint
states that U must be greater than or equal to the length of this path using the cost
information G. We refer to it as SHORTESTPATH because it does not enforce U to be
equal to the length of the path but rather greater than or equal to it, and the support for
the lower bound on U is a shortest path. A layer j of the graph corresponds to variable
P; and the nodes of each layer to the domain values of P;. Our CP model posts the
SHORTESTPATH constraint over three different cost definitions G1(¢), G2(4,b), G3(i)
(the partition graphs of a line ¢ are topologically identical). Denoting p,, the partition
corresponding to value u of F;; and p, the partition corresponding to value v of P; 11,
the transition costs are as follows: ¢1(py,py) = Zévil c2 (b, PusDv)s C2(b, Dyy Dy) =

mazx(occ(b, p,) — oce(b, py,),0) and c5(py, py) = Zé\il b x ca(b, pu, pv). Therefore,
our CP model is as follows:

minimise w1 K + waB with K €{0,...,ub}, B €{B*,...,ub}

Vb < M N, € {0,...,ub}

Vi<m,j<n, P e{1,....|P(Ly)|}
CP; - M bx N, =B
CP; : TNy =K
CP; - Vi < m, SHORTESTPATH(G1(7), {Pi1, . .., Pin}, K)
CPy : Vi<m,b< M SHORTESTPATH(G2(%,b), {Pi1, - .., Pin}, Nb)
CPs : Vi < m, SHORTESTPATH(G3(3), {P;1, ..., Pin}, B)
CPs : Vi<m,Vj<mstly;=1I;+1 Pyj=DP

The C1 property of the decomposition is enforced by constraints CP,. The number of
weights of each kind, b, needed so that a C1 decomposition exists for each line ¢ is
maintained as a shortest path in G3(%, b). CPs acts as a redundant constraint and pro-
vides a lower bound on the cardinality needed for the decomposition of each line i. CPs
is another useful redundant shortest path constraint that maintains the minimum value
of B associated with each line, which can provide valuable pruning by strengthening
CP, . Finally CP; breaks some symmetries. We refer the reader to [10] for more details
in particular related to the SHORTESTPATH constraint.
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3 A Hybrid Model Based on Lagrangian Relaxation

Once the partition variables of a given line ¢ are instantiated, they define a path in the
original partition graph of the line. Constraints CP5, CPy, CP;5 constrain the length of
this path, each with a different transition cost structure for the edges. The M + 2 path
problems stated by constraints CPs, CPy, CPs5 on a given line define together a resource-
constrained path problem. In this section we design a propagator to consider these paths
simultaneously in order to achieve a higher degree of consistency for a single line. The
underlying optimisation problem is the Resource Constrained Shortest Path Problem
(RCSPP). The problem is to find a shortest path between a given source and sink so that
the quantity of resources accumulated on each arc for each resource do not exceed some
limits. Two approaches are often used to solve this problem: dynamic programming and
Lagrangian relaxation. We base our propagator on the RCSPP and the multicost-regular
constraint [23,24].

We present one possible mapping of the problem stated by constraints CPs, CP4, CPs
for line 7 to a RCSPP. We state it as a binary linear formulation where x7,, is a 0/1 vari-
able denoting whether the edge between partition p,, and p,, of P;; and P; ;1 is used.
Layer 0 denotes the layer of the source and n+1 the one of the sink (Pg = P; 41 = 0).
The problem formulation is as follows:

z =min > i<n Zu,vepijxp,-,jﬂ €3(Pu; Pv) X az{w
v 1 S b S M ngn Zu,vePiijL_Hl CQ(b,puypu) X Ax%'v S Nb
ngn ZU,TJGPi_jXPL_j+1 [&] (puapv) X ZL’{“) < K

. - J—1 _ J —
V1<j<nué€P; ZvePi,j,l Tou vEP; 11 Tuv =0 M
O j—
Z'I}EP{,J L1y =1
n _
ZuEPi,n Tul =1

, € {0,1}

If the optimal value of the RCSPP, z*, is less than or equal to B, then there is a solution
to constraints CPs, CPy, and CPs, otherwise there is an inconsistency. The first two
constraints in the formulation are resource constraints and the last three are the flow
conservation constraints enforcing that the x variables define a path.

Lagrangian relaxation is a technique that moves the “complicating constraints” into
the objective function with a multiplier, A > 0, to penalise their violation. For a given
value of )\, the resulting problem is the Lagrangian subproblem and, in the context of
minimisation, provides a lower bound on the objective of the original problem. The
typical approach is to relax the resource constraints, so the Lagrangian function is:

Fl@,A) =32, 00 sPupo) Xy + Xo(3; 30, c1(pus o) X 7, — K)
+ ZlngM /\h(Zj Zu,v c2(b, pu, po) X 23, — No)

The Lagrangian subproblem in this setting is, therefore, a shortest path problem w(\) =
ming f(x,\) and the Lagrangian dual is to find the set of multipliers that provide the
best possible lower bound by maximising w(\) over A. A central result in Lagrangian
relaxation is that w(A\) is a piecewise linear concave function, and various algorithms
can be used to optimise it efficiently.

2
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Solving the Lagrangian Dual. We followed the approach from [23] and used a sub-
gradient method [8]. The algorithm iteratively solves w(A) for different values of A,
initialised to O at the first iteration. The values of A are updated by following the direc-
tion of a supergradient of w at the current value A for a given step length u. The step
lengths have to be chosen to guarantee convergence (see [8]). We refer the reader to
[23] for more details. At each iteration ¢, we solved the shortest path problem with the
penalised costs on the edges:

C(puvpv) = C3(pu’pu) + /\601 (puvpv) + Z /\202(b7pu7pv)-
1<b<M

This is performed by a traversal of the partition graph; as a byproduct we obtain the
values of all shortest paths SO, from the source to any node a. We can update the
lower bound on B using:

SOuink = MK = > AjNo.
1<b<M

Then we perform a reversed traversal from the sink to the source to get the values of the
shortest path SD, from all nodes «a to the sink. At the end of the iteration we mark all
the nodes (partitions) that are infeasible in the current Lagrangian subproblem, i.e.:

S04+ SDy>B+MNE+ Y AN,
1<b<M

At the end of the process, all nodes marked during the iterations are pruned from the
domains. This is Lagrangian relaxation-based filtering [24]: if a value is proven in-
consistent in at least one Lagrangian subproblem, then it is inconsistent in the original
problem. The Lagrangian relaxation is incorporated into the constraint model as a global
constraint for each line. The independent path constraints are kept and propagated first,
whereas the propagation of the resource constrained path constraint is delayed since it
is an expensive constraint to propagate.

4 A Column Generation Approach

Numerous linear models have been designed for this problem, see e.g. [14], but the
shortest path approach [10] opens the door for a totally new formulation of the prob-
lem to be considered. In [10] we designed a linear model representing every integer
partition. We now consider an alternative formulation that, rather than representing the
partition graph, explicitly encodes the set of possible paths in the partition graph of
each line. The resulting formulation is very large, but such models are typical in many
settings, e.g. vehicle routing problems. The optimisation of these models can be per-
formed using column generation [12]. The key idea is that the Simplex algorithm does
not need to have access to all variables (columns) to find a pivot point towards an im-
proving solution. The Simplex algorithm proceeds by iterating from one basic solution
to another while improving the value of the objective function. At each iteration, the
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algorithm looks for a non-basic variable to enter the basis. This is the pricing problem.
Typically, for a linear minimisation problem written

min 2671‘7 ‘Vj Zai]‘l‘i Z bj,l‘i Z O,

the pricing problem is to find the 4 (a variable or column) that minimises ¢; — » ;T Qij
where 7; is the dual variable associated with constraint j. The explicit enumeration of
all 7 is impossible when the number of variables is exponential. Therefore, the column
generation works with a restricted set of variables, which define the restricted master
problem (RMP) and evaluates reduced costs by implicit enumeration e.g., by solving a
combinatorial problem. We now apply these concepts to our shortest path model.

4.1 Column Generation for the Shortest Path Model

We denote by pt? the kth path in the partition graph of line i. A path is a sequence
of partitions (po,...,pn+1) characterised by three costs: the cardinality cost c¥, =

726 ¢1(Pj, pj+1), the beam-on time cost cjy = Zgzg ¢3(pj, pj+1) and the beam-on

time cost restricted to a given coefficient b, cf,, = ﬁig c2(b, pj, pj+1)- The restricted
master problem where a subset {2 of the columns are present is denoted RMP({2), and
can be formulated as follows:

RMP(2) : minimise w1 K +wy B

Co Spent Ny = K

Cl ZbSM b x Nb =B

Co Vi, D ke pty =1

Cs Vi, Zkenf cfl X pti-€ <K

Cy Vi, Vb Zke(l; Chg X pti < Ny

Cs Vi, Zkem ck xpth < B

K>0B>0, VbN, >0

Vi, k € () ptF € {0,1}

This master problem optimises over a set of paths (2; per line 7. The task of generating
improving columns or paths is delegated to the sub-problem which is partitioned into
m problems. The reduced cost of a path in a given line does not affect the computation
of the reduced cost on another line. This is a typical structure for Danzig-Wolfe decom-
position, and the constraints of the RMP involving the IV, variables are the coupling, or
complicating, constraints. An improving column for line ¢ is a path of negative reduced
cost where the reduced cost is defined by ¢; — Y ;T @i This translates as follows in
our context. The M different costs on each edge are modified by a multiplier corre-
sponding to the dual variables of constraints C's — Cs. We denote by §;, m;1, mip2, and
m;3 the dual variables associated with constraints C5 to C's, respectively. The subprob-
lem of line 4, PP(3), is a shortest path problem where the cost of an edge ¢(py, py) is:
c(Pus Pv) = — i1 X €1(Pus Do) — Dy Tiv2 X €2(b, pus Do) — Tiz X €3(Pu, Po)-

The column generation procedure is summarised in Algorithm 1. Notice that the
bound provided by column generation is no better than the one given by the compact
linear model because the pricing problem has the integrality property. The utility of this
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Algorithm 1. ColumnGeneration
Data: Intensity Matrix — A matrix of positive integers
Result: A lower bound on the optimal decomposition.
1 2=10,DB = —00,UB = +o00,e=10"%;
2 for: < mdo
3 add the path made of {1,...,1} partitions for each integer of line i to £2;

4 set i1 = mis = T2 = —1 for all b, solve PP(4) and add the shortest path to 2

5 repeat

6 add the paths in {2 to the restricted master problem, RMP;

7 solve RPM, set UB to the corresponding optimal value and record the dual values
(04, i1, Ti3, Tin2 )3

8 =10

9 for i < mdo

10 solve the pricing problem PP (%) and record its optimal value ~;;

1 if (i — 8:) < —e then

12 add the optimal path to {2

13 DB = maz(DB, Xi<mY:));
until [DB — €] = [UB] or 2 =10
14 return [UB — €|

formulation is to give better scaling in terms of memory as we can achieve a tradeoff in
the subproblem. We briefly explain the main phases of the algorithm.

Main Process. The algorithm must start with an initial set of columns that contain a
feasible solution to obtain valid dual values. Lines 1 to 4 define the initialisation step
where two paths, the unit path and the shortest path, are computed per line. Lines 6 to 14
specify the main column generation process. First, the new columns are added to the
RMP, which is a continuous linear problem, and solved to optimality. UB denotes the
upper bound provided by the optimal value of the RMP at each iteration. The pricing
problem is then solved for each line using the dual values that are recorded (Line 7).
Line 11 checks if a path of negative reduced cost has been found; ~y; — §; is the reduced
cost of the path solution of PP (7). Then, a lower bound on the original problem, the dual
bound DB, is computed. The algorithm stops as soon as no path of negative reduced cost
can be found (2 = (), or the lower and upper bounds have met ([ DB — €] = [UB]).

Dual Lower Bound. The dual solution of the RMP, completed by the best reduced cost,
forms a feasible solution of the dual of the original problem and, therefore, provides a
lower bound. This dual bound DB is computed on Line 13 and we have:

DB=Y 6i+Y (vi—0)=> 7

i<m i<m i<m

i.e., the sum of the dual objective function and the best reduced cost (see [12]). The dual
bound provides a lower bound on the original problem and can be used for termination.
Typically, we can stop as soon as the optimal value is known to be in the interval |a, a +
1], in which case one can immediately return ¢ + 1 as the integer lower bound on the
original problem (Condition [ DB — €| = [UB]). This last condition is useful to avoid
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a convergence problem and saves many calls to the subproblems. The use of an ¢ is to
avoid rounding issues arising from the use of continuous values.

Solving the Pricing Problem. The pricing problem involves solving a shortest path in
a graph whose size is exponential in the maximum element, M. Storing the partition
graph explicitly requires O(n x P?) space, where P is the (exponentially large) number
of partitions of M. Memory remains an issue for the column generation if we solve the
pricing problems by explicitly representing the complete graph. To save memory as M
increases, the column generation procedure can avoid representing the whole graph by
only storing the nodes, thus consuming only O(nP) space. In this case the costs on
each edge must be computed on demand as they cannot be stored. In practice, the pre-
vious compromise with O(nP) space consumption is perfectly acceptable as instances
become very hard before the space again becomes an issue. In our implementation we
use a combined approach whereby we store the edges when the two consecutive layers
are small enough and only recompute the cost on the fly if it is not recorded.

Speeding up the Column Generation Procedure. The column generation process is
known to suffer from convergence problems [12]. In our case, an increase in the value
of M implies more time-consuming pricing problems, and the bottleneck lies entirely
in this task in practice. We obtained some improvement with a simple stabilisation tech-
nique [13,22] to reduce degeneracy. We added surplus variables, y, to each constraint
(except for the convexity constraints) so that constraints C to C5 read as:

k k k k k k
Z ci Xpti —ysi < K; Z Cipa XDty —Yaip < Nyp; Z CisXpt; —ys; < B.
kes2; kef2; kef2;

We also added slack variables, z, to constraints Cy and C; which now read Zb< am No—
Yo+ 20 =Kand >, ,,bx Ny —y1 + 21 = B. The slack and surplus variables are
constrained in a box : iy < 1, z < 1 and they are penalised in the objective function by
a coefficient p. The objective function then reads as:

w1K+lUQB+Z,0ya + pzo + pz1.

a

This tries to avoid the dual solutions jumping from one extreme to another by restrain-
ing the dual variables in a box as long as no relevant dual information is known.
p and v are updated during the process and must end with p = oo or ¢p = 0 to
ensure the sound termination of the algorithm. We simply fix the value of % to a
small constant (10% of the upper bound given by the heuristic [15]) and we update
p when the column generation algorithm stalls, using a predefined sequence of values:
[0.01,0.025,0.05,0.1,0.25,0.5, 1, 0c].

4.2 Branch and Price

We went a step further and designed a Branch and Price algorithm by coupling the
CP algorithm with the Column Generation approach. The column generation procedure
provides a valuable lower bound at the root node which can be often optimal in practice.
To benefit from this bound during the search, we will now briefly describe a branch and
price algorithm where column generation is called at each node of the CP search tree.
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Branching on N, raises an issue from the column generation perspective: the subprob-
lem becomes a shortest path with resource constraints, one resource per b < M limited
by the current upper bound on the N, variables of the CP model. This also means that
finding a feasible set of columns to initialise the master problem becomes difficult.

Interaction with CP. Solving the shortest path problem with multi-resource constraints
is far too costly. Recall that the original CP model is relaxing the multi-resource path
into a set of independent paths. The propagation obtained from this relaxation removes
partitions in the partition graph. We can therefore take advantage of this information to
prune the graph used by the subproblem of the column generation and solve a short-
est path in a restricted graph. We therefore solve a relaxation of the real subproblem
that we obtained from the CP propagation. The current bounds on the domains of the
Ny, variables are also enforced in the master problem RMP. Propagation allows us to
strengthen both the master and the subproblems of the column generation.

Initialisation. The initialisation issue can be easily solved by adding slack variables
for constraints Cy, Cq,Cs, Cy, and C5 of the RMP and adding them to the objective
function with a sufficiently large coefficient to ensure they will be set to 0 in an optimal
solution. Then one simply needs to independently find a path in the current filtered
partition graph of each line to obtain a feasible solution.

Column Management. From one node of the search tree to another, we simply keep
the columns that are still feasible based on the domains of the IV, and FP;; variables
and remove all the others. In addition to these removals, if the number of columns
increases beyond a threshold (set to 10000 columns in practice), we delete half of the
pool starting with the oldest columns to prevent the linear solver from stalling due to
the accumulation of too many variables.

Reduced cost propagation. The CG provides a lower bound on the objective function
but also the set of optimal reduced costs for the N, variables. Propagation based on
these reduced costs can be performed in the CP model following [17]. At a given node,
once the RMP has been solved optimally, we denote by ub and [b the currents bounds
on the objective variable. ub + 1 corresponds to the value of the best solution found so
far and [0 is the optimal value of the RMP at the corresponding node. We denote by rcp,
the reduced cost of variable IV, at the optimal solution of the RMP. r¢;, represents the
increase in the objective function for an increase of one unit of V. The upper bound on
each NNy in the CP model can be adjusted to 1b(Ny,) + [ “2-%|.

TCp

5 Experimental Results

We evaluated our methods using both randomly generated and clinical problem in-
stances.! We used the randomly generated instances of [3,9], which comprise 17 cate-
gories of 20 instances ranging in size from 12 x 12 to 40 x 40 with an M between 10 and
15, which we denote as m-n-M in our results tables. We added 9 additional categories
with matrix sizes reaching 80 x 80 and a maximum intensity value, M, of 25, giving
520 instances in total. The suite of 25 clinical instances we used are those from [25].

! All the benchmarks are available from http: //www.4c.ucc.ie/datasets/imrt
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Table 1. Comparing quality and time of LP/CG/CG-STAB on the Lex objective function

Inst  Gap (%) .LP ] CG ) . Stabilised CG )

Time Time NbPath Nblter Gain Time NbPath Nblter Gain

mean 0.64 109.08 40.28 849.10 147.54 10.83 20.42 579.53 62.47 14.97
median 0.30 14.73 1.44 660.18 123.30 10.58 1.13 43435 54.48 14.32
min 0.00 0.81 0.12 262.75 6595 6.45 0.12 19895 38.85 6.72

max 5.00 1196.51 762.31 1958.10 297.60 21.96 368.90 1404.80 104.60 34.46

Table 2. Comparing the effect of the Lagrangian filtering on the Shortest Path Model CPSP

CPSP CP + Lagrangian relaxation
Inst Time (seconds) Nodes Time (seconds) Nodes
NS med avg max avg NS med avg max avg
12-12-20 20 3530 64.38 395.18 816 20 405.22 796.33 4,532.17 481
12-12-25 18 1,460.39 2,242.19 6,705.01 8,966 0 - - - -
15-15-15 20 1449 2839 94.74 938 20 80.76 120.57 399.37 389
18-18-15 20  19.79 6597 586.65 1,366 20  80.36 180.69 807.63 413

20-20-15 20  66.13 192.72 725.90 4,436 20 353.09 559.73 2,328.94 762
20-20-20 18 1,379.72 1,876.12 6,186.78 7,628 6 1,190.96 1,605.77 5,041.88 572
30-30-15 14 115.83 698.37 2,638.54 691,318 12 308.04 839.37 3,942.70 937
40-40-10 20 6.89 49590 3,848.14 130,309 20 19.21 41094 2,706.02 1,517
40-40-15 10 512.88 1,555.49 5,687.44 488,133 8 1,003.10 1,645.86 5,029.01 1,189
50-50-10 15  82.04 888.52 5,275.96 4,022,156 16  85.36 784.76 5,216.68 10,534
60-60-10 11 1,100.92 1,967.51 6,079.23 8,020,209 15 426.73 1,378.31 5,084.95 34,552
70-70-10 7 2,374.97 2,503.82 3,980.76 11,102,664 9 2,534.44 2,894.94 5,970.91 131,494
80-80-10 2 464.57 464.57 737.78 14,274,026 5 1,877.76 2,193.92 4,147.88 118,408

The experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz with
12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25 x64.
A time limit of two hours and a memory limit of 3GB was used for each run.

Experiment 1: Evaluation of the LP Model. Firstly, we examine the quality and speed
of the linear models (solved with CPLEX 10.0.0). We use a lexicographic objective
function to perform this comparison, i.e. seek a minimum cardinality decomposition
for the given minimum beam on-time. In the result tables LP refers to the continuous
relaxation of the linear model representing every partition [10], CG to the model based
on paths and CG-STAB to its stabilised version. Table 1 reports the average gap (in
percentage terms) to the optimal value, the average times for the three algorithms as
well as the number of iterations and paths for CG and CG-STAB. The improvement
in time over LP is also given (column Gain). The mean, median, min and max across
all categories are finally reported as well. The linear relaxation leads to excellent lower
bounds but LP becomes quite slow as M grows and could not solve the instances with
M = 25 due to memory errors. CG improves the resolution time significantly and
offers better scalability in terms of memory. Its stabilised version clearly performs fewer
iterations and proves to be approximately twice as fast on average.

Experiment 2: Evaluation of the Lagrangian Model. We consider the Lagrangian
relaxation and its effect on the CP model.> We use a lexicographic objective function.
Table 2 reports for the hardest categories the number of instances solved (column NS)
within the time limit, along with the median, average and maximum time as well as the

2 All CP models were implemented in Choco 2.1 —http://choco.emn. fr
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Table 3. Comparing the CP and Branch and Price

CPSP Branch and Price (light) Branch and Price

Inst Time (seconds) Time (seconds) Nodes Time (seconds) Nodes
NS med avg NS med avg max avg NS med avg max  avg

12-12-20 20 3530 6438 20 3332 41.01 88.46 90 20 6799 75.68 176.40 83
12-12-25 18 1,460.39 2,242.19 20 1,353.34 1,684.32 4,826.52 157 20 2,767.06 2,748.22 5,112.66 141
15-15-15 20 1449 2839 20 7.86 8.95  24.96 142 20 2044 2186 38.18 127
18-18-15 20 19.79 6597 20 10.34 10.23  16.12 202 20 34.03 33.64 4531 167
20-20-15 20  66.13 192.72 20 1476  15.61 27.25 283 20 47.82 5274 115.09 218
20-20-20 18 1,379.72 1,876.12 20 235.42 230.21 387.14 325 20 823.16 855.54 1,433.07 221

30-30-15 14 115.83 698.37 20 3813 42.85 108.88 2,420 20 32295 33543 683.56 492
40-40-10 20 6.89 49590 20 5.10 6.04 18.44 5932 20 9756 9528 12847 753
40-40-15 10 512.88 1,555.49 20 8549 97.53 224.71 23,755 20 1,101.48 1,172.91 2,354.53 818
50-50-10 15  82.04 88852 20 14.80 27.12 178.79 48,216 20 280.11 265.71 393.71 1,194
60-60-10 11 1,100.92 1,967.51 20  67.06 252.60 3,337.60 638,157 20 471.39 49244 705.08 1,724
70-70-10 7 2,374.97 2,503.82 17 686.33 1,443.46 7,118.74 5,778,692 20 1,153.71 1,147.24 2,243.58 2,408
80-80-10 2 464.57 46457 8 812.35 1,983.79 6,671.28 11,546,885 20 1,854.04 2,069.52 3,830.13 3,059

Table 4. Comparisortng the shortest path CP model, the Branch and Price algorithm against [25]

Inst Caner et al. CPSP Branch and Price light

m n M Time Time  Nodes Obj Time Nodes Obj
clbl 15 14 20 1.10 8.85 1,144 111 5.26 144 111
clb2 11 15 20 0.80 0.38 222 104 1.36 71 104
clb3 15 15 20 11.40 5.90 534 108  3.06 70 108
clb4 15 15 20 37.00 7.87 3890 110 7.10 77 110
clb5 11 15 20 4.30 0.23 46 104 1.11 37 104
c2bl 18 20 20 26.50 29.68 3,304 132 11.08 665 132
c2b2 17 19 20 20.10 75.30 3,822 132 931 255 132
c2b3 18 18 20 14.70 1.86 116 140  6.69 101 140
c2b4 18 18 20 87.30  559.16 42,177 149 64.23 373 149
c2b5 17 18 20 395.60 16.74 911 132 23.39 402 132
c3bl 22 17 20 310.00 21.00 888 132 25.16 322 132

c3b2 15 19 20 4,759.80 48.30 1,527 144 25.82 178 144
c3b3 20 17 20 10,373.90  570.25 12,353 140 617.23 1,228 140

c3b4 19 17 20 524.90 2.18 136 127 13.18 9 127
c3b5 15 19 20 3.30 1.05 0 125 3.24 0 125
c4bl 19 22 20 34.90 0.47 367 152 1.43 356 152
c4b2 13 24 20 20,901.00 42.87 1,183 181  50.83 391 181
c4b3 18 23 20 44.70 17.35 4,059 139 499 131 139
cd4b4 17 23 20 164.30 13.57 1,069 142 13.85 285 142
cd4b5 12 24 20 14,511.40 2,003.76 75,284 192 533.36 1,455 192
c5b1 15 16 20 0.50 0.10 83 9  0.33 60 96
c5b2 13 17 20 14.30 13.33 4,420 125 18.82 248 125
c5b3 14 16 20 3.10 0.56 106 104 243 52 104
c5b4 14 16 20 220 168.18 19,747 124 3795 636 124
c5b5 12 17 20 51.90 .77 547 130 227 49 130
Mean 2,091.96  144.43 6,977.36 131.00 59.34 307.52 131.00
Median 34.90 13.33  911.00 132.00  9.31 178.00 132.00
Min 0.50 0.10 0.00 96.00 033 0.00 96.00
Max 20,901.00 2,003.76 75,284.00 192.00 617.23 1,455.00 192.00

average number of nodes. The Lagrangian relaxation reduces the search space by an
order-of-magnitude but turns out to be very slow when M grows.

Experiment 3: Evaluation of the Branch and Price Model. We evaluate the Branch
and Price algorithm against the previous CP models with the lexicographic objective
function and also using the more general objective function to perform a direct compar-
ison with [25] on clinical instances. Following [25] we set w; = 7 and wo = 1. The
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upper bound of the algorithm is initialised using the heuristic given in [15] whose run-
ning time is always well below a second. Table 3 compares the shortest path CP model
(CPSP) with two versions of the Branch and Price using the lex objective function. The
first version referred to as Branch and Price (light) only solves the CG during the first
branching phase on the IV, variables whereas the other version solves the CG at each
node of the search tree, including when the branching is made on the partition variables.
The Branch and Price significantly improves the CP model and is able to optimally solve
the integrality of the benchmark whereas the CPSP solves 455 out of the 520 instances.
The light version is often much faster but does not scale to the last two larger sets of
instances (70 x 70 and 80 x 80 matrices). Both branch and price algorithms outperform
CPSP on hard instances by orders of magnitude in search space reduction.

Finally, we evaluate the CPSP and the light Branch and Price on 25 clinical instances
with the general objective function. Table 4 reports the resolution time, the number
of nodes explored (Nodes) and the value of the objective function (Obj). The times
reported in [25] are quoted in the table and were obtained on a Pentium 4, 3 Ghz.>.
The CP model alone already brings significant improvements over the algorithm of
[25]. The Branch and Price algorithm shows even more robustness by decreasing the
average, median and maximum resolution times.

6 Conclusion

We have provided new approaches to solving the Multileaf Collimator Sequencing
Problem. Although the complexity of the resulting algorithms depends on the num-
ber of integer partitions of the maximum intensity, which is exponential, it can be used
to design very efficient approaches in practice as shown on both random and clinical
instances. The hybrid methods proposed in this paper offer performance significantly
beyond the current state-of-the-art and rely on a rich exchange of information between
OR and CP approaches.
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Abstract. Many search problems contain large amounts of redundancy
in the search. In this paper we examine how to automatically exploit re-
maining subproblem equivalence, which arises when two different search
paths lead to identical remaining subproblems, that is the problem left
on the remaining unfixed variables. Subproblem equivalence is exploited
by caching descriptions, or keys, that define the subproblems visited, and
failing the search when the key for the current subproblem already exists
in the cache. In this paper we show how to automatically and efficiently
define keys for arbitrary constraint problems. We show how a constraint
programming solver with this capability can solve search problems where
subproblem equivalence arises orders of magnitude faster. The system is
fully automatic, i.e., the subproblem equivalences are detected and ex-
ploited without any effort from the problem modeller.

1 Introduction

When solving a search problem, it is common for the search to do redundant
work, due to different search paths leading to subproblems that are somehow
“equivalent”. There are a number of different methods to avoid this redundancy,
such as caching solutions (e.g. [19]), symmetry breaking (e.g. []]), and nogood
learning (e.g. [14]). This paper focuses on caching, which works by storing infor-
mation in a cache regarding every new subproblem explored during the search.
Whenever a new subproblem is about to be explored, the search checks whether
there is an already explored subproblem in the cache whose information (such as
solutions or a bound on the objective function) can be used for the current sub-
problem. If so, it does not explore the subproblem and, instead, uses the stored
information. Otherwise, it continues exploring the subproblem. For caching to
be efficient, the lookup operation must be efficient. A popular way is to store the
information using a key in such a way that problems that can reuse each other’s
information are mapped to the same (or similar) key.

This paper explores how to use caching automatically to avoid redundancy in
constraint programming (CP) search. Caching has been previously used in CP
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search, but either relies on the careful manual construction of the key for each
model and search strategy (e.g [19]), or exploits redundancy when the remain-
ing subproblem can be decomposed into independent components (e.g. [T0J12]).
Instead, we describe an approach that can automatically detect and exploit
caching opportunities in arbitrary optimization problems, and does not rely on
decomposition. The principal insight of our work is to define a key that can
be efficiently computed during the search and can uniquely identify a relatively
general notion of reusability (called U-dominance). The key calculation only re-
quires each primitive constraint to be extended to backproject itself on the fixed
variables involved. We experimentally demonstrate the effectiveness of our ap-
proach, which has been implemented in a competitive CP solver, CHUFFED. We
also provide interesting insight into the relationships between U-dominance and
dynamic programming, symmetry breaking and nogood learning.

2 Background

Let = denote syntactic identity and vars(O) denote the set of variables of ob-
ject O. A constraint problem P is a tuple (C, D), where D is a set of domain
constraints of the form x € s, (we will use z = d as shorthand for x € {d}),
indicating that variable x can only take values in the fixed set s,, and C'is a set
of constraints such that vars(C) C vars(D). We will assume that for every two
T € Sy, Y € 5y in D : x #y. We will define Dy, the restriction of D to variables
V,as {(z € sy) € D]z € V}. Each set D and C is logically interpreted as the
conjunction of its elements.

A literal of P = (C, D) is of the form z — d, where I(x € s,) € D s.t. d € s,.
A waluation 0 of P over set of variables V' C wvars(D) is a set of literals of P
with exactly one literal per variable in V. It is a mapping of variables to values.
The projection of valuation 6 over a set of variables U C vars(6) is the valuation
Oy = {z — 0(z)|x € U}. We denote by fized(D) the set of fixed variables in D,
{z|(x = d) € D}, and by fz(D) the associated valuation {x +— d|(x = d) € D}.
Define fized(P) = fixzed(D) and fz(P) = fx(D) when P = (C, D).

A constraint ¢ € C can be considered a set of valuations solns(c) over the
variables vars(c). Valuation 6 satisfies constraint c¢ iff vars(c) C vars(d) and
Ovarsc)y € ¢. A solution of P is a valuation over vars(P) that satisfies every
constraint in C. We let solns(P) be the set of all its solutions. Problem P is
satisfiable if it has at least one solution and unsatisfiable otherwise.

Finally, we use 3y .F to denote Jv1.3vs - - - Ju, . F where F' is a formula and V' is
the set of variables {v1, va, ..., v,}. Similarly, we use Jy,.F to denote the formula
Jvars(r)—v-F. We let < denote logical equivalence and = logical entailment of
formulae.

Given a constraint problem P = (C, D), constraint programming solves P
by a search process that first uses a constraint solver to determine whether
P can immediately be classified as satisfiable or unsatisfiable. We assume a
propagation solver, denoted by solv, which when applied to P returns a new set
D’ of domain constraints such that D’ = D and C A D < C A D’. The solver



Automatic Caching in Constraint Programming 73

detects unsatisfiability if any = € () appears in D’. We assume that if the solver
returns a domain D’ where all variables are fixed (fized(D) = vars(D)), then
the solver has detected satisfiability of the problem and fx(D) is a solution. If the
solver cannot immediately determine whether P is satisfiable or unsatisfiable,
the search splits P into n subproblems (obtained by adding one of ¢1,...,¢,
constraints to P, where C A D = (¢1 Ve V...V ¢,)) and iteratively searches for
solutions to them.

The idea is for the search to drive towards subproblems that can be immedi-
ately detected by solv as being satisfiable or unsatisfiable. This solving process
implicitly defines a search tree rooted by the original problem P where each node
represents a new (though perhaps logically equivalent) subproblem P’, which will
be used as the node’s label. For the purposes of this paper we restrict ourselves
to the case where each ¢; added by the search takes the form x € s. This allows
us to obtain the i-th subproblem from P = (C,D) and ¢; = x € s as simply
P, = (C,join(x,s, D)), where join(x,s, D) modifies the domain of z to be a
subset of s: join(z,s,D) = (D —{z € s;}) U {z € sN sy }. While this is not a
strong restriction, it does rule out some kinds of constraint programming search.

3 Problem Dominance and Equivalence

Consider two constraint problems P = (C,D) and P’ = (C’,D’) and a set of
variables U. Intuitively, we say that P U-dominates P’ if variables not in U are
fixed, and when P and P’ are projected over U, the latter entails the former.

Definition 1. (C, D) U-dominates (C',D’) iff
— (vars(D) = U) C fized(D) and (vars(D") —U) C fized(D'), and
- HU.(C/ A D/) = HU(C A D)

Ezample 1. Consider Py = (C, D) where C = {1 + 2x2 + x3 + x4 + 225 < 20},
D = {z € {1.3}, 25 € {1.4}, 23 € {2.4},24 € {3..5},25 € {3..5}}, and let
U = {z3,24,25}. The subproblem P = (C,{z1 = 3,22 = 1} U Dy) U-dominates
P = (C,{z1 =1,20 =3} U Dy). O

If one problem P U-dominates another P’ we can use the solutions of P to
generate the solutions of P/, as formalised by the following proposition.

Proposition 1. If P U-dominates P’ then 6 € solns(P) i (6y U
fx(P/)vars(P’)—U) S solns(P’),

The situation is even simpler if the U-dominance relationship is symmetric.
Definition 2. P and P’ are U-equivalent iff P U-dominates P’ and vice versa.

Ezample 2. Consider problem (C, D) where C = {alldiff ([x1, %2, 3,24, 5])}
and D = {x; € {1..3},22 € {1.4},23 € {2.4},24 € {3..5}, 25 € {3..5}}, and
let U = {x3,x4,25}. The subproblems P = (C,{z1 = 1,20 = 2} U Dy) and
P’ = (C,{z1 = 2,22 = 1} U Dy) are U-equivalent. O
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cache search(C, D)

D’ :=solv(C, D)

if (D' & false) return false

if (3U.3P € Cache where P U-dominates (C, D)) return false

if fized(D') = vars(D)
[SAT] return D

foreach (z € s) € split(C, D)
S := cache search(C, join(zx, s, D))
if (S # false) return S

Cache := Cache U{(C,D")}

return false

Fig. 1. Computing the first solution under subproblem equivalence

Proposition 2. If P and P’ are U-equivalent then 6 € solns(P) iff (6y U
J2(P")yars(pry—u) € solns(P’).

3.1 Searching with Caching

Detecting subproblem domination allows us to avoid exploring the dominated
subproblem and reuse the solutions of the dominating subproblem (Proposi-
tion [I). This is particularly easy when we are only interested in the first solu-
tion, since we know the dominated subproblem must have no solutions. The
algorithm for first solution satisfaction search using domination is shown in
Figure [[l At each node, it propagates using solv. If it detects unsatisfiability
it immediately fails. Otherwise, it checks whether the current subproblem is
dominated by something already visited (and, thus, in Cache), and if so it fails,
It then checks whether we have reached a solution and if so returns it. Otherwise
it splits the current subproblem into a logically equivalent set of subproblems
and examines each of them separately. When the entire subtree has been ex-
haustively searched, the subproblem is added to the cache.

The above algorithm can be straightforwardly extended to a branch and
bound optimization search. This is because any subproblem cached has failed
under a weaker set of constraints, and will thus also fail with a strictly stronger
set of constraints. As a result, to extend the algorithm in Figure [Tl to, for exam-
ple, minimize the objective function'Z?:1 a;x;, we can simply replace the line
labelled [SAT] by the following lines{!

globally store fxz(D) as best solution
globally add "7 | a;2; < fa(D)(>or, aiz;) — 1
return false

Note that in this algorithm, the search always fails with the optimal solution
being the last one stored.

! We assume there is an upper bound u on the objective function so that we can have
a pseudo-constraint Y ., a;z; < u in the problem from the beginning, and replace
it with the new one whenever a new solution is found.
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4 Keys for Caching

The principal difficulty in implementing cache search of Figure [Ilis implement-
ing the lookup and test for U-dominance. We need an efficient key to repre-
sent remaining subproblems that allows U-dominance to be detected efficiently
(preferably in O(1) time). Naively, one may think D would be a good key for
subproblem P = (C, D). While using D as key is correct, it is also useless since
D is different for each subproblem (i.e., node) in the search tree. We need to find
a more general key; one that can represent equivalent subproblems with different
domain constraints.

4.1 Projection Keys

We can automatically construct such a key by using constraint projection.
Roughly speaking, subproblem U-equivalence arises whenever the value of some
of the fixed variables in C A D and C A D’ is different, but the global effect of
the fixed variables on the unfixed variables of C' is the same. Therefore, if we can
construct a key that characterises exactly this effect, the key should be identical
for all U-equivalent subproblems.

To do this, we need to characterize the projected subproblem of each P =
(C,D) in terms of its projected variables and constraints. Let F' = fized(D)
and U = vars(C) — F. The projected subproblem can be characterized as:

§|U(C/\D)
= §|U(C ADp A DU)
=4 QU(C AN DF) A Dy
= HU.(AC_ec(C/\DF)) A Dy
=4 /\CEC(EIU.(C A DF)) A Dy

The last step holds because all variables being projected out in every ¢ A D
were already fixed. Importantly, this allows each constraint ¢ € C' to be treated
independently.

We can automatically convert this information into a key by back projecting
the projected constraints of this problem to determine conditions on the fixed
variables F'. We define the back projection of constraint ¢ € C' for D as a con-
straint BP(c, D) over variables F' Nwvars(c) such that 3y.(c A BP(c, D)) <
Ju.(c A Dp). Clearly, while D prwars(e) 1s always a correct back projection, our
aim is to define the most general possible back projection that ensures the equiva-
lence. Note that if ¢ has no variables in common with F', then BP(¢c, D) = true.
Note also that when c is implied by Dp, that is J3y.(c A Dp) < true, then ¢ can
be eliminated. We thus define BP(c¢, Dp) = red(c), where red(c) is simply a
name representing the disjunction of all constraints that force ¢ to be redundant
(we will see later how to remove these artificial constraints). The problem key
for P = (C, D) is then defined as key(C, D) = Acec BP(c, Dr) A Dy.

Ezample 3. Consider the problem C = {alldiff ([x1, 2, T3, 24, x5, T6]), T1+ 222+
z3+x4+2x5 < 20} and domain D = {z1 = 3,20 = 4,23 = 5,24 € {0,1,2},25 €
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{0,1,2}, 26 € {1,2,6}}. Then F = {z1,22,23} and U = {4, z5,26}. The pro-
jected subproblem is characterized by alldiff ([x4, x5, 26]) A x4 + 225 < 4 A Dy.
A correct back projection for alldiff onto {x1,xe,x3} is {21, 22,23} = {3,4,5}.
A correct back projection of the linear inequality is z1 + 229 + x5 = 16. Thus,
key(C,D) = {z1, 22,23} = {3,4,5} Ax1+2x2+23 =16 A xg € {0,1,2} A5 €
{1,2} Awg € {1,2,6}. O

We now illustrate how to use the keys for checking dominance.

Theorem 1. Let P = (C, D) and P’ = (C,D’) be subproblems arising during
the search. Let F = fized(D) and U = vars(C) — F. If fized(D') = F', Dy, =
Dy and Ve € C.(3y.cANBP(c, D)) = (u.cANBP(c, D)) then P U-dominates
P

Proof. The first condition of U-dominance holds since vars(D') — U = F. We
show the second condition holds:

?U(C A D"
& Ju.(C A Dy A Dy)
(*) & /\ceC@U-C A D%‘) N D;]
& /\ceC@U-C A BP(C, D/F‘)) A D;]
= /\ceC@U-C A BP(C, DF)) A Dy
= /_\cec(aU.C/\ DF) AN Db
() & Ju.(C A Dy A D}y)
= HU.(C A D)

The second and sixth (marked) equivalences hold because, again, all variables
being projected out in each ¢ A D% and ¢ A Dy were already fixed. O

Corollary 1. Suppose P = (C, D) and P’ = (C,D’) are subproblems arising in
the search tree for C. Let F = fized(D) and U = vars(C) — F. If key(C, D) =
key(C,D’) then fized(D') = F and P and P" are U-equivalent.

Proof. Let F' = fized(D"), U = vars(C) — F’. Since key(C, D) = key(C,D’)
we have that Dy < Dy, and hence F = F’ and U = U’. Also clearly Ve €
C.BP(c¢,Dp) = BP(c, D) Hence, P U-dominates P’ and vice versa. O

While determining a back projection is a form of constraint abduction which can
be a very complex task, we only need to find simple kinds of abducibles for indi-
vidual constraints and fixed variables. Hence, we can define for each constraint
a method to determine a back projection. Figure [2] shows back projections for
some example constraints and variable fixings.

Note that a domain consistent binary constraint ¢ always has either no unfixed
variables (and, hence, its back projection is true), or all its information is cap-
tured by domain constraints (and, hence, it is redundant and its back projection

is red(c)).
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constraint ¢ Dp Jy.c BP(c,Dr)
allgiﬁ([mlxw-vwn]) /\7, 1Z4 =d; alldiﬁl([dlvu d771,793rrt+$7{~ C57:]) {931n7'~~;1'7n} :{d17<<-7d7n}
%’:1 a;x; = ag /\m 1 =di 37,11 0% = a0 — YL aids e =y aid;
Yiciaiws < ao Nitqas =di i, Gt <ao—Z’” aid; Z"lam: Zn1‘l1d1
zo = min]_; z; /\m Txp =d4 T, = min(min]~, d;, min]_ ma1 ;) min]>, z; = min]>, d;
oc():dg Njqxi > do ANV 1(171—d0 acg_do
Vil x; x1 = true true red(Vi_,x;)
Ntz = false VI_, 2 AL x; = false

Fig. 2. Example constraints with their fixed variables, projections and resulting back
projection

4.2 Using Projection Keys

By Corollary [, if we store every explored subproblem P in the cache using
key(P), and we encounter a subproblem P’ such that key(P’) appears in the
cache, then P’ is equivalent to a previous explored subproblem and does not
need to be explored.

Ezample J. Consider the problem P = (C, D) of Example [} and the new sub-
problem P’ = (C,D’) where D' = {x; = 5,29 = 4,23 = 3,24 € {0,1,2},25 €
{0,1}, 26 € {1,2,6}}. The characterisation of the projected subproblem for P’ is
identical to that obtained in ExampleBland, hence, key(P) = key(P’) indicating
P and P’ are U-equivalent. O

If we are using projection keys for detecting subproblem equivalence, we are free
to represent the keys in any manner that illustrates identity. This gives use the
freedom to generate space efficient representations, and choose representations
for BP(c, Dr) on a per constraint basis.

Ezample 5. Consider the problem P = (C, D) of Example Bl We can store its
projection key {z1,x2,23} = {3,4,5} A x1 + 222 + 23 = 16 A Dy as follows:
We store the fixed variables {x1,22,23} for the subproblem since these must
be identical for the equivalence check in any case. We store {3,4,5} for the
alldiff constraint, and the fixed value 16 for the linear constraint, which give
us enough information given the fixed variables to define the key. The remain-
ing part of the key are domains. Thus, the projection key can be stored as

({z1,z2,23},{3,4,5},16, {0,1,2},{0,1,2},{1,2,6}) (]

Theorem [I] shows how we can make use of projection keys to determine sub-
problem dominance. If we store key(P) in the cache we can determine if new
subproblem P’ is dominated by a previous subproblem by finding a key where
the fixed variables are the same, each projection of a primitive constraint for P’
is at least as strong as the projection defined by key(P), and the domains of the
unfixed variables in P’ are at least as strong as the unfixed variables in key(P).

E;z:ample 6. Consider P = (C,D) of Example Bl and the new subproblem

= (C,D’) where D' ={z1 =4,29 =5,23 = 3,24 € {0,1,2}, 25 € {0,1}, 26 €
{1 2,6}}. We have that fized(D') = fized(D) = {x1, 22,23} and the back pro-
jections of the alldiff are identical. Also, the projection of the linear inequality is
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24+ 225 < 3. This is stronger than the projection in key(P) which is computable
as dry.dxe.dxs. w1+ 209+ 1x3 = 16Ax1 + 200+ 23+ T4+ 225 < 20 & x4+ 225 < 4.
Similarly, Di; = Dy. Hence, P {x4, x5, z¢ }-dominates P’. O

To use projection keys for dominance detection we need to check D}, = Dy and
(3v.c A BP') = (Juy.c A BP). Note that if BP = red(c), then the entailment
automatically holds and we do not need to store these artificial projection keys.
Note also that we can make the choice of how to check for entailment differently
for each constraint. We will often resort to identity checks as a weak form of
entailment checking, since we can then use hashing to implement entailment.

Ezample 7. Consider P = (C, D) of Example Bl Entailment for alldiff is simply
identity on the set of values, while for the linear constraint we just compare fixed
values, since (Jx1.3we. 33, 1 + 202+ 23 = k A 21+ 222+ 23+ 24 + 225 < 20) &
r442x5 < 20—k = (3%1.3%2.3%3. T1+2T0+x3 = k' AN 21+ 200+ 23+ 24+ 225 <
20) & x4 + 225 < 20 — k' whenever k > k’. For the problem P’ of Example
we determine the key ({1, 22,23}, {3,4,5},17,{0,1,2},{0,1},{1,2,6}). We can
hash on the first two arguments of the tuple to retrieve the key for P, and then
compare 17 versus 16 and check that each of the three last arguments is a superset
of that appearing in key(P’). Hence, we determine the dominance holds. O

Note that, for efficiency, our implementation checks Dj; = Dy by using iden-
tity (D;; = Dy) so the domains can be part of the hash value. This means
that the problem P’ of Example [B] will not be detected as dominated in our
implementation, since the domain of zj5 is different.

4.3 Caching Optimal Subproblem Values

The presentation so far has concentrated on satisfaction problems; let us examine
what happens with optimization problems. Typically, when solving optimization
problems with caching one wants to store optimal partial objective values with
already explored subproblems. We shall see how our approach effectively man-
ages this automatically using dominance detection with a minor change.

Suppose k is the current best solution found. Then, the problem constraints
must include 2?21 a;x; < k—1 where Z?:l a;x; is the objective function. Sup-
pose we reach a subproblem P = (C, D) where Dyizeqpy = {21 = d1,..., 2m =
dpm} are the fixed variables. The remaining part of the objective function con-
straint is Z?:m_H a;x; < k—1—pwherep = Zznzl a;d;, and the back projection
is Z:’;l a;x; = p. The projection key contains the representation p for this back
projection. If this subproblem fails we have proven that, with D, there is no
solution with a value < k, nor with Z?:mﬂ a;x; <k—1-—p.

If we later reach a subproblem P’ = (C, D’) where D' = a1 = d{ A+ - Axp, =
d;,, are the fixed variables, then dominance requires p’ = Y. a;d; to satisfy
p’ > p. If this does not hold it may be that a solution for the projected problem
with Z?:m_H a;x; > k — p can lead to a global solution < k. Hence, we do have
to revisit this subproblem.
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Suppose that by the time we reach P’, a better solution k' < k has been
discovered. Effectively the constraint 2"_1 a;x; < k — 1 has been replaced by
St aiz; < k' — 1. Now we are only interested in finding a solution where
Zz ma1 @i%i < k' —1—p'. To see if this is dominated by a previous subproblem,
the stored value p is not enough. We also need the optimal value & when the
key was stored. There is a simple fix: rather than storing p in the key for P we
store ¢ = k — 1 — p. We can detect dominance if ¢ < k¥’ — 1 — p’ and this value
q is usable for all future dominance tests. Note that g implicitly represents the
partial objective bound on the subproblem P.

5 Related Work

Problem specific approaches to dominance detection/subproblem equivalance are
widespread in combinatorial optimization (see e.g. [6/I9]) There is also a signif-
icant body of work on caching that rely on problem decomposition by fixing
variables (e.g [I0/12]). This work effectively looks for equivalent projected prob-
lems, but since they do not take into account the semantics of the constraints,
they effectively use Dpnyars(c) for every constraint ¢ as the projection key, which
finds strictly fewer equivalent subproblems than back-projection. The success of
these approaches in finding equivalent subproblems relies on decomposing the
projected subproblem into disjoint parts. We could extend our approach to also
split the projected problem into connected components but this typically does
not occur in the problems of interest to us. Interestingly, [10] uses symmetry
detection to make subproblem equivalence detection stronger, but the method
used does not appear to scale.

5.1 Dynamic Programming

Dynamic programming (DP) [2] is a powerful approach for solving optimization
problems whose optimal solutions are derivable from the optimal solutions of its
subproblems. It relies on formulating an optimization as recursive equations re-
lating the answers to optimization problems of the same form. When applicable,
it is often near unbeatable by other optimization approaches.

Constraint programming (CP) with caching is similar to DP, but provides
several additional capabilities. For example, arbitrary side constraints not easily
expressible as recursions in DP can easily be expressed in CP, and dominance
can be expressed and exploited much more naturally in CP.

Consider the 0-1 Knapsack problem, a well known NP-hard problem that is
easy to formulate using recursive equations suitable for DP. We show how our
automatic caching provides a different but similar solution, and how caching
can change the asymptotic complexity of the CP solution. The problem is to
maximise Y., p;x; subject to the constraints Y, w;z; < WAV z; € {0,1},
where w; is the nonnegative weight of object ¢ and p; is the nonnegative profit.
A normal CP solver will solve this problem in O(2") steps.
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The DP formulation defines knp(j, w) as the maximum profit achievable using
the first j items with a knapsack of size w. The recursive equation is

knp(j, w) = 0 j=0vw<o0
PRI, W) = max(knp(j — 1,w), knp(j — 1,w — w;) + p;) otherwise

The DP solution is O(nW) since values for knp(j,w) are cached and only
computed once. Consider a CP solver using a fixed search order zi,...,x,.
A subproblem fixing z1,..., 2z, to di,...,d,, respectively generates key value
>, w;d; for the constraint . w;z; < W and key value k+1—>"" | p;d; for
the optimization constraint Z?:l pix; > k—+1 where k is the best solution found
so far. The remaining variable domains are all unchanged so they do not need to
be explicitly stored (indeed domains of Boolean or 0-1 variables never need to
be stored as they are either fixed or unchanged). The projection key is simply
the set of fixed variables {z1,. ..,z } and the two constants. The complexity is
hence O(nWwu) where w is the initial upper bound on profit.

The solutions are in fact quite different: the DP approach stores the optimal
profit for each set of unfixed variables and remaining weight limit, while the CP
approach stores the fixed variables and uses weight plus the remaining profit
required. The CP approach in fact implements a form of DP with bounding [16].
In particular, the CP approach can detect subproblem dominance, a problem
with used weight w’ and remaining profit required p’ is dominated by a problem
with used weight w < w’ and remaining profit p < p’. The DP solution must
examine both subproblems since the remaining weights are different.

In practice the number of remaining profits arising for the same set of fixed
variables and used weight is O(1) and hence the practical number of subproblems
visited by the CP approach is O(nW).

Note that while adding a side constraint like x3 > xg destroys the DP ap-
proach (or at least forces it to be carefully reformulated), the CP approach with
automatic caching works seamlessly.

5.2 Symmetry Breaking

Symmetry breaking aims at speeding up execution by not exploring search nodes
known to be symmetric to nodes already explored. Once the search is finished,
all solutions can be obtained by applying each symmetry to each solution. In
particular, Symmetry Breaking by Dominance Detection (SBDD) [4] works by
performing a “dominance check” at each search node and, if the node is found
to be dominated, not exploring the node.

SBDD is related but different to automatic caching. In SBDD P = (C, D) ¢-
dominates P’ = (C, D) under symmetry ¢ iff ¢(D’) = D since, if this happens,
the node associated to symmetric problem (C,¢(D’)) must be a descendant of
the node associated to P and, thus, already explored. Note that, in detecting
dominance, SBDD places conditions on the domains of all variables in D, while
automatic caching only does so on the constraints of the problem once projected
on the unfized variables. Thus, P’ can be ¢-dominated by P (in the SBDD sense)
but not be U-dominated, and vice versa.
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Our approach is also related to conditional symmetry breaking [7], which
identifies conditions that, when satisfied in a subproblem, ensure new symmetries
occur within that subproblem (and not in the original problem). As before, the
two approaches capture overlapping but distinct sets of redundancies.

5.3 Nogood Learning

Nogood learning approaches in constraint programming attempt to learn from
failures and record these as new constraints in the program. The most successful
of these methods use clauses on atomic constraints v = d and v < d to record the
reasons for failures and use SAT techniques to efficiently manage the nogoods.
Automatic caching is also a form of nogood learning, since it effectively records
keys that lead to failure.

Any nogood learning technique representing nogoods as clauses has the ad-
vantage over caching that it can use the nogoods derived to propagate rather
than to simply fail. Restart learning [T1] simply records failed subtrees using the
set of decisions made to arrive there. This does not allow subproblem equivalence
to be detected assuming a fixed search strategy. The usefulness arises because it
is coupled with restarting and dynamic search, so it helps avoid repeated search.
In that sense it has a very different aim to automatic caching. Nogood learning
techniques such as lazy clause generation [14] learn clauses that are derived only
from the constraints that are actually involved in conflicts, which is much more
accurate than using all non-redundant constraints as in projection keys.

On the other hand nogood learning can come at a substantial price: reason
generation and conflict analysis can be costly. Every clause learnt in a nogood
approach adds extra constraints and, hence, slows down the propagation of the
solver. In contrast, projection keys are O(1) to lookup regardless of their number
(at least for the parts that are in the hash).

Because nogood learning use clauses on atomic constraints to define nogoods
they may be less expressive than projection keys. Consider the subproblem x; +
209 + 23 + x4 + 225 < 20AC, with D = {1 = 1 Axgs = 2 Axz = 3}. If this
subproblem fails, the projection key stores that z4+2z5 < 12Aother keys leads to
failure. A nogood system will express this as 1 = 1Aze = 2Ax3 = 3Aother keys
leads to failure, since there are no literals to representing partial sums. This
weakness is illustrated by the experimental results for 0-1 Knapsack.

6 Experiments

We compare our solver CHUFFED, with and without caching, against Gecode
3.2.2 [I7] — widely recognized as one of the fastest constraint programming sys-
tems (to illustrate we are not optimizing a slow system) — against the G12 FD
solver [15] and against the G12 lazy clause generation solver [5] (to compare
against nogood learning). We use the MurmurHash 2.0 hash function. We use
models written in the modelling language MiniZinc [I3]. This facilitates a fair
comparison between the solvers, as all solvers use the same model and search
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strategy. Note that caching does not interfere with the search strategies used
here, as all it can do is fail subtrees earlier. Thus, CHUFFED with caching (de-
noted as CHUFFEDC) always finds the same solution as the non-caching version
and the other solvers, and any speedup observed comes from a reduced search.

Considerable engineering effort has gone into making caching as efficient as
possible: defining as general as possible back projections for each of the many
primitive constraints defined in the solver, exploiting small representations for
back projections and domains, and eliminating information that never needs
storing, e.g. binary domain consistent constraints and Boolean domains.

The experiments were conducted on Xeon Pro 2.4GHz processors with a 900
second timeout. Table [I] presents the number of variables and constraints as
reported by CHUFFED, the times for each solver in seconds, and the speedup and
node reduction obtained from using automatic caching in CHUFFED. We discuss
the results for each problem below. All the MiniZinc models and instances are
available at www.cs.mu.o0z.au/"pjs/autocache/

Knapsack. 0-1 knapsack is ideal for caching. The non-caching solvers all timeout
as n increases, as their time complexity is O(2™). This is a worst case for lazy
clause generation since the nogoods generated are not reusable. CHUFFEDC,
on the other hand, is easily able to solve much larger instances (see Table [I]).
The node to nW ratio (not shown) stays fairly constant as n increases (varying
between 0.86 and 1.06), showing that it indeed has search (node) complexity
O(nW). The time to nW ratio grows as O(n) though, since we are using a
general CP solver where the linear constraints take O(n) to propagate at each
node, while DP requires constant work per node. Hence, we are not as efficient
as pure DP.

MOSP. The minimal open stacks problem (MOSP) aims at finding a schedule
for manufacturing all products in a given set that minimizes the maximum num-
ber of active customers, i.e., the number of customers still waiting for at least
one of their products to be manufactured. This problem was the subject of the
2005 constraint modelling challenge [I8]. Of the 13 entrants only 3 made use of
the subproblem equivalence illustrating that, in general, it may not be easy to
detect. Our MOSP model uses customer search and some complex conditional
dominance breaking constraints that make the (non-caching) search much faster.
We use random instances from [3]. Automatic caching gives up to two orders of
magnitude speedup. The speedup grows exponentially with problem size. Lazy
clause is also capable of exploiting this subproblem equivalence, but the overhead
is so large that it can actually slow the solver down.

Blackhole. In the Blackhole patience game, the 52 cards are laid out in 17 piles
of 3, with the ace of spades starting in a “blackhole”. Each turn, a card at the
top of one of the piles can be played into the blackhole if it is 4 /-1 from the card
that was played previously. The aim is to play all 52 cards. This was one of two
examples used to illustrate CP with caching in [19]. The remaining subproblem
only depends on the set of unplayed cards, and the value of the last card played.
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Thus, there is subproblem equivalence. We use a model from [7] which includes
conditional symmetry breaking constraints. We generated random instances and
used only the hard ones for this experiment. The G12 solvers do not use a domain
consistent table constraint for this problem and are several orders of magnitudes
slower. Automatic caching gives a modest speedup of around 2-3. The speedup
is relatively low on this problem because the conditional symmetry breaking
constraints have already removed many equivalent subproblems, and the caching
is only exploiting the ones which are left. Note that the manual caching reported
in [I9] achieves speedups in the same range (on hard instances).

BACP. In the Balanced Academic Curriculum Problem (BACP), we form a
curriculum by assigning a set of courses to a set of periods, with certain restric-
tions on how many courses and how much “course load” can be assigned to each
period. We also have prerequisite constraints between courses. The BACP can
be viewed as a bin packing problem with a lot of additional side constraints. The
remaining subproblem only depends on the set of unassigned courses, and not
on how the earlier courses were assigned. We use the model of [9], but with some
additional redundant constraints that make it very powerful. The 3 instances
curriculum 8/10/12 given in CSPLIB can be solved to optimality in just a few
milliseconds. We generate random instances with 50 courses, 10 periods, and
course credit ranging between 1 and 10. Almost all are solvable in milliseconds
so we pick out only the non-trivial ones for the experiment. We also include
the 3 standard instances from CSPLIB. Both automatic caching and lazy clause
generation are capable of exploiting the subproblem equivalence, giving orders
of magnitude speedup. In this case, lazy clause generation is more efficient.

Radiation Therapy. In the Radiation Therapy problem [I], the aim is to decom-
pose an integral intensity matrix describing the radiation dose to be delivered
to each area, into a set of patterns to be delivered by a radiation source, while
minimising the amount of time the source has to be switched on, as well as the
number of patterns used (setup time of machine). The subproblem equivalence
arises because there are equivalent methods to obtain the same cell coverages,
e.g. radiating one cell with two intensity 1 patterns is the same as radiating it
with one intensity 2 pattern, etc. We use random instances generated as in [IJ.
Both automatic caching and lazy clause generation produce orders of magnitude
speedup, though lazy clause generation times are often slightly better.

Memory Consumption. The memory consumption of our caching scheme is linear
in the number of nodes searched. The size of each key is dependent on the
structure of the problem and can range from a few hundred bytes to tens of
thousands of bytes. On a modern computer, this means we can usually search
several hundreds of thousands of nodes before running out of memory. There are
simple schemes to reduce the memory usage, which we plan to investigate in the
future. For example, much like in SAT learning, we can keep an “activity” score
for each entry to keep track of how often they are used. Inactive entries can then
periodically be pruned to free up memory.
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Instance

knapsack-20 21
knapsack-30 31
knapsack-40 41
knapsack-50 51
knapsack-60 61

knapsack-100 101
knapsack-200 201
knapsack-300 301
knapsack-400 401
knapsack-500 501
mosp-30-30-4-1 1021
mosp-30-30-2-1 1021
mosp-40-40-10-1 1761
mosp-40-40-8-1 1761
mosp-40-40-6-1 1761
mosp-40-40-4-1 1761
mosp-40-40-2-1 1761
mosp-50-50-10-1 2701

mosp-50-50-8-1 2701
mosp-50-50-6-1 2701
blackhole-1 104
blackhole-2 104
blackhole-3 104
blackhole-4 104
blackhole-5 104
blackhole-6 104
blackhole-7 104
blackhole-8 104
blackhole-9 104
blackhole-10 104
curriculum 8 838
curriculum 10 942

curriculum 12 1733
bacp-medium-1 1121
bacp-medium-2 1122
bacp-medium-3 1121
bacp-medium-4 1119
bacp-medium-5 1119
bacp-hard-1 1121
bacp-hard-2 1118
radiation-6-9-1 877
radiation-6-9-2 877
radiation-7-8-1 1076
radiation-7-8-2 1076
radiation-7-9-1 1210
radiation-7-9-2 1210
radiation-8-9-1 1597
radiation-8-9-2 1597
radiation-8-10-1 1774
radiation-8-10-2 1774

NN NNDNNDNDNDN

[\

1861
1861
3281
3281
3281
3281
3281
5101
5101
5101

407

411

434

393

429

448

407

380

404

364
1942
2214
4121
2654
2650
2648
2644
2641
2655
2651

942

942
1168
1168
1301
1301
1718
1718
1894
1894

Table 1. Experimental Results

0.01
0.02
0.03
0.07
0.10
0.40
2.36
6.59
13.96
25.65
1.21
6.24
0.68
1.03
3.79
19.07
60.18
2.83
6.00
39.65
18.35
14.60
18.31
15.77
24.88
11.31
28.02
24.09
38.74
67.85
0.01
0.01
0.01
11.47
9.81
2.42
0.61
2.40
54.66
181.9
12.67
27.48
0.84
0.65
2.39
7.26
27.09
12.21
22.40
59.66

0.01
0.83
38.21
>900
>900
>900
>900
>900
>900
>900
4.80
>900
0.66
1.15
11.30
531.68
>900
3.17
9.12
404.16
39.77
21.52
26.14
30.84
58.77
33.27
47.31
43.60
93.92
159.4
0.01
0.01
0.01
34.90
>900
380.7
4.59
56.46
>900
>900
>900
>900
>900
89.18
143.0
57.44
>900
>900
12.17
>900

0.01
0.76
34.54
>900
>900
>900
>900
>900
>900
>900
24.1
>900
5.85
9.92
75.36
>900
>900
40.70
113.0
>900
103.6
60.06
31.43
69.13
159.5
85.65
127.6
89.02
215.1
418.0
0.01
0.01
0.01
29.31
>900
461.62
5.74
54.03
>900
>900
>900
>900
>900
191.4
315.6
144.4
>900
>900
15.45
>900

0.01
1.168
58.25
>900
>900
>900
>900
>900
>900
>900
50.29
>900
15.07
27.00
183.9
>900
>900
92.74
292.0
>900
>900
>900
>900
>900
>900
>900
>900
>900
>900
>900

0.02

0.03

0.10

62.4
>900
838.6

9.92
126.9
>900
>900
>900
>900
>900
173.6
241.9
101.9
>900
>900
12.90
>900

0.10
534.5
>900
>900
>900
>900
>900
>900
>900
>900
29.70
201.8
29.80
56.96
165.2
840.4
>900
134.1
295.9
>900
>900
>900
>900
>900
>900
>900
>900
>900
>900
>900

0.08

0.09

0.23

6.90

0.22

0.23

1.10

0.76

0.16

0.22

2.89

5.48

1.40

0.93

2.70

8.83

6.21

6.53

33.2
12.05

1.00
41.5
1274
>12860
>9000
>2250
>381
>137
>65
>35
4.0
>144
1.0
1.1
3.0
28
>15
1.1
1.5
10.2
2.17
1.47
1.43
1.96
2.36
2.94
1.69
1.81
2.42
2.35
1.00
1.00
1.00
3.04
>92
157
7.52
23.5
>16
>5
>T71
>32
>1071
137
59

>33
>T4
0.54
>15

vars cons. CHUFFEDC CHUFFED Gecode G12 fd G12 lazyfd Speedup Node red.

2.9
67
1986
>20419
>14366
> 2940
> 430
>140
>65
> 34
4.91
>187
1.1
1.3
3.5
37

> 18
1.2
1.8
13.1
2.90
1.94
1.81
2.55
3.45
5.11
2.49
2.45
3.52
3.16
1.00
1.00
1.00
3.03
>115
190
10.1
26.5
>16
>7
>146
>86
>5478
633
266
34
>114
>267
1.10
>T78
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7 Conclusion

We have described how to automatically exploit subproblem equivalence in a
general constraint programming system by automatic caching. Our automatic
caching can produce orders of magnitude speedup over our base solver CHUFFED,
which (without caching) is competitive with current state of the art constraint
programming systems like Gecode. With caching, it can be much faster on prob-
lems that have subproblem equivalences.

The automatic caching technique is quite robust. It can find and exploit sub-
problem equivalence even in models that are not “pure”, e.g. MOSP with dom-
inance and conditional symmetry breaking constraints, Blackhole with condi-
tional symmetry breaking constraints, and BACP which can be seen as bin pack-
ing with lots of side constraints and some redundant constraints. The speedups
from caching tends to grow exponentially with problem size/difficulty, as sub-
problem equivalences also grow exponentially.

Our automatic caching appears to be competitive with lazy clause genera-
tion in exploiting subproblem equivalence, and is superior on some problems, in
particular those with large linear constraints.

The overhead for caching is quite variable (it can be read from the tables
as the ratio of node reduction to speedup). For large problems with little vari-
able fixing it can be substantial (up to 5 times for radiation), but for problems
that fix variables quickly it can be very low. Automatic caching of course relies
on subproblem equivalence occurring to be of benefit. Note that for dynamic
searches this is much less likely to occur. Since it is trivial to invoke, it seems al-
ways worthwhile to try automatic caching for a particular model, and determine
empirically if it is beneficial.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.
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Abstract. Logic-based Benders decomposition can combine mixed integer pro-
gramming and constraint programming to solve planning and scheduling prob-
lems much faster than either method alone. We find that a similar technique can
be beneficial for solving pure scheduling problems as the problem size scales up.
We solve single-facility non-preemptive scheduling problems with time windows
and long time horizons that are divided into segments separated by shutdown
times (such as weekends). The objective is to find feasible solutions, minimize
makespan, or minimize total tardiness.

1 Introduction

Logic-based Benders decomposition has been successfully used to solve planning and
scheduling problems that naturally decompose into an assignment and a scheduling
portion. The Benders master problem assigns jobs to facilities using mixed integer pro-
gramming (MILP), and the subproblems use constraint programming (CP) to schedule
jobs on each facility.

In this paper, we use a similar technique to solve pure scheduling problems with
long time horizons. Rather than assign jobs to facilities, the master problem assigns
jobs to segments of the time horizon. The subproblems schedule jobs within each time
segment.

In particular, we solve single-facility scheduling problems with time windows in
which the objective is to find a feasible solution, minimize makespan, or minimize total
tardiness. We assume that each job must be completed within one time segment. The
boundaries between segments might therefore be regarded as weekends or shutdown
times during which jobs cannot be processed. In future research we will address in-
stances in which jobs can overlap two or more segments.

Logic-based Benders decomposition was introduced in [2}8]]. Its application to as-
signment and scheduling via CP/MILP was proposed in [3] and implemented in [9].
This and subsequent work shows that the Benders approach can be orders of magnitude
faster than stand-alone MILP or CP methods on problems of this kind [1i7/45l6410011].
For the pure scheduling problems considered here, we find that the advantage of Ben-
ders over both CP and MILP increases rapidly as the problem scales up.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 87 2010.
(© Springer-Verlag Berlin Heidelberg 2010
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2 The Problem

Each job j has release time, deadline (or due date) d;, and processing time p;. The time
horizon consists of intervals [z;, z;+1] for i = 1,...,m. The problem is to assign each
job 7 a start time s; so that time windows are observed (r; < s; < d; — p;), jobs run
consecutively (s; + p;j < s or s + pi < s; forall k£ # j), and each job is completed
within one segment (z; < s; < 2,41 — p; for some 4). We minimize makespan by
minimizing max; {s i+ pj}. To minimize tardiness, we drop the constraint s; < d; — p;
and minimize } ; max{0, s; +p; — d; }.

3 Feasibility

When the goal is to find a feasible schedule, the master problem seeks a feasible as-
signment of jobs to segments, subject to the Benders cuts generated so far. Because we
solve the master problem with MILP, we introduce 0-1 variables y;; with y;; = 1 when
job j is assigned to segment 7. The master problem becomes

Z y’] = 1, 3.11]

i
Benders cuts, relaxation
Yij € {0, 1}, all i,j

ey

The master problem also contains a relaxation of the subproblem, similar to those de-
scribed in [4456]], that helps reduce the number of iterations.

Given a solution 7;; of the master problem, let J; = {j | ;; = 1} be the set of jobs
assigned to segment ¢. The subproblem decomposes into a CP scheduling problem for
each segment ¢:

TjSSdej—pj } all j € J;

disjunctive ({s; | j € Ji})

2

zi <85 < Zig1 — Dy

where the disjunctive global constraint ensures that the jobs assigned to segment
¢ do not overlap.

Each infeasible subproblem generates a Benders cut as described below, and the cuts
are added to the master problem. The master problem and corresponding subproblems
are repeatedly solved until every segment has a feasible schedule, or until the master
problem is infeasible, in which case the original problem is infeasible.

Strengthened nogood cuts. The simplest Benders cut is a nogood cut that excludes
assignments that cause infeasibility in the subproblem. If there is no feasible schedule
for segment 7, we generate the cut

> i < |l -1, alli 3)

JjeJi

The cut can be strengthened by removing jobs one by one from J; until a feasible
schedule exists for segment ¢. This requires re-solving the ¢th subproblem repeatedly,
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but the effort generally pays off because the subproblems are much easier to solve than
the master problem. We now generate a cut (3) with the reduced J;.

The cut may be stronger if jobs less likely to cause infeasibility are removed from J;
first. Let the effective time window (7, JZJ] of job j on segment ¢ be its time window
adjusted to reflect the segment boundaries. Thus

7i; = max {min{r;, zi11}, 2}, Jij = min {max{d;, 2z}, zi+1}

Let the slack of job j on segment ¢ be dzy — — pj. We can now remove the jobs in
order of decreasing slack.

4 Minimizing Makespan

Here the master problem minimizes p subject to (1) and ;1 > 0 . The subproblems
minimize p subject to @) and @ > s; + p; forall j € J;.

Strengthened nogood cuts. When one or more subproblems are infeasible, we use
strengthened nogood cuts (B). Otherwise, for each segment 7 we use the nogood cut

p> [ 1= (1= yi))

JEJ;

where 1] is the minimum makespan for subproblem ¢. These cuts are strengthened by
removing jobs from J; until the minimum makespan on segment 7 drops below 1.

We also strengthen the cuts as follows. Let u;(J) be the minimum makespan that
results when in jobs in J are assigned to segment ¢, so that in particular p;(J;) = p?.
Let Z; be the set of jobs that can be removed, one at a time, without affecting makespan,
sothat Z; = {j € J; | M;(J; \ {j}) = M;}. Then for each i we have the cut

> pi(Ji\ Zi) [ 1— Z (1 —yi;)

JETNZs
This cut is redundant and should be deleted when p;(J; \ Z;) = u.

Analytic Benders Cuts. We can develop additional Benders as follows. Let J, = {j €
Ji | 7; < z} be the set of jobs in J; with release times before segment ¢, and let
J!' = J; \ J[. Let fi; be the minimum makespan of the problem that remains after
removing the jobs in S C J/ from segment 4. It can be shown as in [6] that

pi = i < ps +max{d;} — min{d;} )
JjeJ] JjeJ]
where ps = 3, s p;. Thusif jobs in J; are removed from segment 7, we have from @)

a lower bound on the resulting optimal makespan ;. If jobs in .J!” are removed, there
is nothing we can say. So we have the following Benders cut for each ¢:

pzpi = | 0w b max(d) - minfd} | - 3 pi-w) )

jEJ{ jEJ{/
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when one or more jobs are removed from segment ¢, ¢+ > 0 when all jobs are removed,
and ;o > p otherwise. This can be linearized:

_ij( = Yij) Z wi (L= yij) = idi, @ <1—yi jE€J;
jed! jety
w; < (Ijgf{d } —min{d, }> ;(1 ~%)  wi S max{d;} — min{d;}
Jedi

S Minimizing Tardiness

Here the master problem minimizes 7 subject to (I}), and each subproblem minimizes
Zjle, 7j subjectto 7; > s; +p; — dj and 7; > 0.

Benders cuts. We use strengthened nogood cuts and relaxations similar to those used
for minimizing makespan. We also develop the analytic Benders cuts

l +
Ti*_z (Tzr-naX—FZpe—dj) (1— vy ), if mlx+2p(<z7+1

JjeJ; leld; led;

no{1- Z (I —wiz) | » otherwise
JjeJi

where the bound on 7; is included for all ¢ for which 7 > 0. Here 7 is the minimum
tardiness in subproblem i, 7*** = max{max{r; | j € J;},z}, and a™ = max{0, a}.

6 Problem Generation and Computational Results

Random instances are generated as follows. For each job j, r;, d; — r;, and p; are
uniformly distributed on the intervals [0, aR], [yiaR, v2aR], and [0, 3(d; —r;)], re-
spectively. We set R = 40 m for tardiness problems, and otherwise R = 100 m, where
m is the number of segments. For the feasibility problem we adjusted 3 to provide a
mix of feasible and infeasible instances. For the remaining problems, we adjusted /3 to
the largest value for which most of the instances are feasible.

We formulated and solved the instances with IBM’s OPL Studio 6.1, which invokes
the ILOG CP Optimizer for CP models and CPLEX for MILP models. The MILP mod-
els are discrete-time formulations we have found to be most effective for this type of
problem. We used OPL’s script language to implement the Benders method.

Table [[]shows the advantage of logic-based Benders as the problem scales up. Ben-
ders failed to solve only four instances, due to inability to solve the CP subproblems.
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Table 1. Computation times in seconds (computation terminated after 600 seconds). The number
of segments is 10% the number of jobs. Tight time windows have (y1,7v2,) = (1/2,1,1/2)

and

wide time windows have (1,72, @) = (1/4,1, 1/2). For feasibility instances, 3 = 0.028

for tight windows and 0.035 for wide windows. For makespan instances, 8 = 0.025 for 130 or
fewer jobs and 0.032 otherwise. For tardiness instances, § = 0.05.

Jobs

120
130
140
150
160
170
180
190
200

Tight time windows Wide time windows
Feasibility Makespan Tardiness Feasibility Makespan Tardiness
CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs
091 80 15 009 90 40 005 13 1.1 003 77 25 013 13 35 013 13 1.1

1.1 12 28 009 18 55 014 18 15 005 12 1.6 094 29 57 011 23 14
056 17 33 011 51 67 13 39 21 013 17 23 011 39 62 016 3.0 19
600 21 2.8 600 188 7.6 086 6.0 45 600 24 50 600 131 73 19 64 50
600 29 75 600 466 10 21 11 46 600 32 97 600 600 85 59 95 11
600 36 12 600 600 16 600 11 20 600 44 97 600 600 19 600 24 22

600 44 20 600 600 17 600 600 600 600 49 17 600 600 24 600 600 600
600 62 18 600 600 21 600 15 33 600 80 15 600 600 23 600 12 3.1
600 68 20 600 600 29 600 17 39 600 81 43 600 600 31 600 18 3.9
600 88 21 600 600 30 600 600 600 600 175 27 600 * 35 600 600 14
600 128 27 600 600 79 600 386 85 600 600 43
600 408 82 600 600 34 600 174 52 600 600 53
600 192 59 600 600 37 600 172 59 600 600 600
600 600 6.6 600 * 8.0 600 251 6.5 600 600 56
600 600 7.2 600 * 8.5 600 600 7.3 600 * 78
600 600 8.0 600 * 85 600 600 82 600 * 434

*MILP solver ran out of memory.
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1 Introduction

Tools in a manufacturing plant require regular maintenance over their lifes-
pan (e.g. cleaning, calibration, safety checks) in order to keep them running
smoothly. In capital intensive industries, such as semi-conductor manufacturing,
the scheduling of maintenance operations on the tools used in production is a
critical function. Maintenance operations can be expensive to perform, so we
should only perform them when necessary. However if maintenance is delayed
too long, tools may run sub-optimally or break down (thus requiring even more
expensive unplanned, corrective maintenance). Furthermore a tool that is under-
going maintenance may be partly or wholly unavailable for (revenue generating)
production operations.

We have developed a system to generate maintenance schedules for the IBM
East Fishkill, New York 300mm semiconductor manufacturing plant. In the sec-
tions which follow, we give a description of the maintenance scheduling problem
in semi-conductor manufacturing and discuss some of the challenges in solving
it. We present a goal programming approach that incorporates both constraint
programming and mixed-integer programming solution technologies. A system
we have developed based on this approach is now in use within IBM.

2 Problem Description

In the semi-conductor manufacturing there are number of different types of
maintenance:

1. Preventative maintenance: periodic maintenance recommended by manu-
facturer of tool, to be carried out at regular time intervals (e.g. every six
months).

2. Trigger maintenance: required after a tool reaches a certain state. For exam-
ple, a wafer count trigger is reached after a certain number of wafers have
been processed on a tool.

3. Unplanned, corrective maintenance: in response to unforeseen tool break-
downs or sub-optimal functioning.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 92 2010.
© Springer-Verlag Berlin Heidelberg 2010
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The purpose of maintenance scheduling is to generate a detailed schedule for
preventative and trigger maintenance operations. For each maintenance opera-
tion, we are given a release date, a due date, a processing time, a tool or tool
part (on which the maintenance is to be performed) and a demand for some con-
stant number of technicians throughout the entire processing time to perform
the maintenance.

The tools in a semi-conductor fab can be partitioned into a number of toolsets.
A toolset is a set of tools of a certain type (e.g. lithography) manufactured by
a certain vendor. Maintenance operations need to be performed by maintenance
technicians who are certified to work on tools belonging to a particular toolset.
In practice, we have observed that maintenance technicians are mostly certified
to work on tools belonging only to a single toolset. For each toolset, we are
given a timetable specifying the number of maintenance technicians available
during each time period (shift). The availability of technicians is typically the
bottleneck in maintenance scheduling.

2.1 Objectives

In practice feasible schedules satisfying release dates, due dates and capacity con-
straints on the availability of technicians are usually easy to generate. Resource
contention is not the main challenge in generating good maintenance schedules.
Rather, the challenge is in handling multiple, non-convex objectives. We describe
these objectives in the following sections.

Resource leveling. The first objective that we consider relates to the utilization
of the available technicians for a toolset over time. When the use of technicians
is spread out over time, it is more likely that there will be some idle techni-
cians available to carry out any unforeseen, unplanned maintenance. In time
periods when many technicians are busy, there are fewer idle technicians, so any
neccessary unplanned maintenance may disrupt planned maintenance or require
contracting outside technicians. Unplanned maintenance can be very expensive
and disruptive to production operations, so in general it is preferred that we
“levelize” the use of maintenance technicians over time so that some technicians
are always available to handle unplanned maintenance should it become nec-
essary (as illustrated in Figure [(right)). We formulate this requirement as an
objective that we minimize the number of technicians that we utilize throughout
the entire schedule in order to perform all of the pending maintenance operations
(alternatively we minimize the mazimum number of technicians that are active
(performing maintenance) in any one time period)).

Minimizing disruption. The second objective relates to minimizing the disrup-
tion to production that occurs as a result of taking tools out of service in order
to perform maintenance on them. Typically, tools in a semiconductor manufac-
turing fab process lots consisting of a number of silicon wafers. At any one time
when a tool is busy processing a lot, there may be a number of wafers wait-
ing in a queue to be processed by the tool. This number of wafers is referred
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Maximum number of lschnicians

Mumber of technicians

Time

Fig. 1. Bad (left) and good (right) maintenance technician utilization

Time (days) from Mon Dec 1 06:00:00 2008

Fig. 2. Illustration of a maintenance schedule for a single toolset. Each row presents a
Gantt chart representation of a schedule for a single tool. The plotted line represents
the projected work in progress (y-axis) for the tool over each time period (x-axis) in
the schedule.

to as the Work In Process (WIP), which is specified for a tool and a time pe-
riod. When maintenance is performed on a tool, all production is stopped on
that tool. As well as delaying wafers that need to be processed on the tool, this
can lead to starvation of downstream processes for the wafers, resulting in tool
under-utilization. Ideally, we would like to minimize such disruption by perform-
ing maintenance operations on tools during time periods when there is as little
WIP as possible.

The difficulty we face with using this objective is that typically we do not know
what the WIP levels will be in the fab for each tool over the scheduling horizon.
Operations in semiconductor fab are usually very dynamic, as wafers can make
multiple passes through various processes based on the results of tests of the
effectiveness of each production step. Uncertainty also arises due to unplanned
tool breakdowns. Detailed production scheduling is usually done using dispatch
rules applied whenever a tool becomes available for processing. As such, there is
no longer term production schedule we can refer to in order to determine what
the WIP levels will be for each tool that we could use in a formulation of the
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maintenance scheduling problem. Instead we determine the Expected Work In
Process will be for each tool and time period, based on a simulation of the flow
of wafers through the fab. For this we use the IBM WIP Simulator, developed
specifically for semi-conductor manufacturing (described in [1]). From the output
of WIP simulator, we obtain the expected WIP level for each tool during each
one hour time bucket.

Minimizing earliness and tardiness. The third objective relates to minimizing
the long term costs of performing periodic maintenance. There is some flexibility
in determining when a preventative maintenance operation j can be performed
in the schedule. However the interval of time that can elapse between the comple-
tion time e; of one operation ¢ and the start time s; of the following operation j
(where each operation performs the same periodic maintenance) on a tool should
not exceed a given duration D; ;. This gives rise to earliness and tardiness costs.
Tardiness costs result from scheduling an operation j to start at some time s;
such that s; > e; + D; ;. Earliness costs arise from scheduling an operation j to
start at some time s; such that s; < e; + D; ;. Over the long term we want to
avoid scheduling periodic maintenance before it’s due date, since otherwise this
would lead to higher costs as a result of performing more preventative mainte-
nance than is strictly necessary. The due date d; of an operation j is calculated
such d; = e; + D, j, i.e. scheduling an operation at it’s due date incurs no ear-
liness or tardiness cost. We are given an earliness penalty a; and a tardiness
penalty 3; for each operation j. Given an operation j with a completion time
of C, the earliness / tardiness cost et(j, C') of this operation is expressed as
et(j, C) = max(a;(d; — C), 5;(C — dj)).

3 Solution Approach

The solution approach we developed is motivated by the following observations,
based on typical problem data: (a) generating a feasible maintenance schedule is
very easy: the main resource bottleneck is the availability of maintenance tech-
nicians, and (b) generating an optimal maintenance schedule is difficult, given
the multiple, irregular objectives. Since we wish to find an optimal solution, we
focus on using exact methods. Constraint programming [2] and mixed integer
programming with time-indexed formulations are often the solution techniques of
choice for modelling scheduling problems with complex objectives and side con-
straints. These techniques have different strengths and weaknesses. Constraint
programming can model scheduling problems compactly using an event-based
formulation, and can be very successful at finding good solutions to problems
which are highly resource-constrained. Constraint programming may not be the
best choice for solving scheduling problems with irregular objectives. Mixed-
integer programming, using time-indexed formulations, can represent scheduling
problems with irregular objectives. However the formulations can be very large,
since the number of decision variables is dependent on the length of the time
horizon. As such, this approach is often limited to small problems.



96 A. Davenport

We rank the objectives, considering them in the following order of decreas-
ing importance: (a) resource levelling, (b) disruption (minimize the overlap of
maintenance operations with work in progress) and (c¢) earliness-tardiness costs.
We use a solution approach inspired by lexicographic goal programming. In lex-
icographic goal programming, we first solve the problem with respect to the
most important objective only (we ignore all other objectives). Let fi denote
the objective value for the first objective in the solution to this problem. We
now add a new constraint to the problem model, stating that the value for the
first objective must be equal to f;. We then solve the problem for the second
objective only, but with the first objective now represented as a constraint in
the model. Subsequently, we add a second constraint to the model based on the
objective value found for the second objective. We continue this process until we
have solved the problem for all objectives.

The objective for resource levelling can be solved very efficiently using con-
straint programming (in a few seconds). We determine the minimum number
of technicians required for a schedule by solving a series of feasibility problems,
where for each problem we set a different constraint on the maximum number
of technicians available in each time period. We use binary search on the value
we set for this constraint to determine the smallest number of technicians for
which we can find a schedule. We solve for the objectives concerning disruption
and earliness-tardiness using mixed-integer programming. We use a time-indexed
formulation with some additional cuts. In practice, the time needed to solve the
mixed integer programming formulation to optimality can be quite long, since
the number of decision variables can be large (a toolset may have 100 operations
to be scheduled over a 2 week horizon). We discretize time into 15 minute time
buckets, giving us solve times on the order of 5-20 minutes (using CPLEX 11).
While this is acceptable for start of the day scheduling, it does not allow us to
use this approach within an interactive system for mixed-initiative scheduling.

4 Summary

We have presented a maintenance scheduling problem for a semi-conductor man-
ufacturing facility. We have developed a goal programming approach combining
both constraint programming and mixed-integer programming, which exploits
the strengths of both solution techniques. The scheduling system we have devel-
oped based on this solution approach has been deployed within IBM.
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Abstract. In this paper, we present a constraint programming approach
for the service consolidation problem that is being currently tackled by
Neptuny, Milan. The problem is defined as: Given a data-center, a set
of servers with a priori fixed costs, a set of services or applications with
hourly resource utilizations, find an allocation of applications to servers
while minimizing the data-center costs and satisfying constraints on the
resource utilizations for each hour of the day profile and on rule-based con-
straints defined between services and servers and amongst different ser-
vices. The service consolidation problem can be modelled as an Integer
Linear Programming problem with 0-1 variables, however it is extremely
difficult to handle large sized instances and the rule-based constraints. So
a constraint programming approach using the COMET programming lan-
guage is developed to assess the impact of the rule-based constraints in re-
ducing the problem search space and to improve the solution quality and
scalability. Computational results for realistic consolidation scenarios are
presented, showing that the proposed approach is indeed promising.

1 Introduction

As the complexity of IT infrastructures increases due to mergers or acquisitions,
new challenging problems arise in the design and management of the resulting
computer systems. Large-scale data-centers are often costly, non-flexible, yielding
under-utilized servers and energy wasting. To reduce conflicts among the offered
services, many enterprise data-centers host most of their services on dedicated
servers without taking into account the possibility of deploying multiple services
into a single server. Therefore, many servers are not used at their maximum
capabilities and, in turn, expensive hardware investments are often required.
Nowadays companies search for IT solutions able to significantly drop data-
centers costs, e.g., energy consumption, space costs, and obtain a flexible system
satisfying customer demands.

In this framework, the consolidation of data-center resources is a current so-
lution adopted by many industries. The objective of a consolidation problem is
to reduce the complexity of a data-center while guaranteeing some performance
and availability requirements. This is usually achieved by searching for the best
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mapping between software applications and servers which minimizes data-center
costs, hence the name service consolidation problem (SCP).

The SCP is an allocation problem which is NP-hard (see [6]) and which has
been extensively tackled using branch-and-bound, simulated annealing, graph
theory techniques, clustering, neural networks etc. Previous work on the SCP
is based on a dynamic approach taking into account the workloads seasonal be-
haviour to estimate the server demands in [§]. A similar approach for virtualized
systems in [3] is solved with a multidimensional bin-packing approximate algo-
rithm. Nonlinear optimization problems are presented in [I] and optimization
models based on queueing networks theory solved with a linear relaxation based
heuristic is given in [2].

However, these works incorporate only constraints based on the computational
capacity of the target systems, but in reality consolidation scenarios require
additional constraints derived from compatibility, availability, performance or
support needs. Compatibility constraints require virtual machines to run only
on specific type of targets hardware systems (e.g., Intel virtual machines can
run only on Intel-based physical systems) and availability constraints require
two (or more) virtual machines to run on two distinct physical systems and
support needs may require to have a set of virtual machines running on the
same pool of physical systems (e.g., in order to simplify support activities). We
call these constraints as rule-based constraints. These rules, along with a large
number of binary variables in the problem make the problem computationally
difficult to handle. Further, quite often this problem turns out to be infeasible
either due to the lack of resources on servers to consolidate all the applications
or due to the rule-based constraints.

To the best of our knowledge, there are no constraint programming (CP)
models for the SCP. A recent work developed for Eventually-Serializable Data
Services in [7] defines a CP model, with some rules similar to our rule-based
constraints however without any capacity constraints.

2 Problem Formulation

The data-center consists of a set of m servers S with costs ¢, each characterized
by a set R of resources — usually the available cpu, memory, disk and network
bandwidth — denoted by u;, | € R,j € S, a set C' of n candidates which can be
applications or services with known requirements of each resource in [ € R, for
each hour ¢ € [1,24] in the day, denoted by 7y, i € C. Additional, rule-based
constraints are also known between candidates and/or between candidates and
servers. The aim of the service consolidation problem is to find an allocation of
candidates on the servers which minimizes the total cost of the data-center (i.e.,
the cost of all the servers needed for consolidation) while respecting resource
constraints of each candidate placed on a server for each hour of the day and
the rule-based compatibility constraints.

Let y; be a 0-1 variable, with y; = 1 if server j is active; else it is 0. Let x;;
be an assignment variable, with x;; = 1, if candidate 4 is assigned to server j;
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else it is 0. The cost is taken to be ¢; = CPU; + MEM; + 1, where CPU; and
MEM; are the available cpu and memory of server j. The additional one term
in the cost function forces the selection of a costlier server (i.e, a more powerful
one) instead of favouring too many cheap (i.e., low power) servers. The Integer
Linear Programming (ILP) model is given as:

min chyj (1)

JES

st > Tt < unjy, VieR,jeS teT, (2)
icC
> ay =1, Vi e C, (3)
jes
Tij < Yjs Vie(C,j €S, (4)
+ rule-based constraints
Yj € {O, 1}, Vj €S,
Tij € {O, 1}, VieC,j€8.

Constraints (2)) ensures satisfaction of the resource constraints for each candidate
for each hour of the day profile to the server that it is assigned to. Constraints (B3]
force each application to be assigned to just one server. The activation constraint
(@) forces that a candidate can only be assigned to a server that is activated.

To define the rule-based constraints, let C7,Cy C C and S; C S be the sets
over which these constraints are defined, then we have the following:

— Candidate-candidate REQUIRE (CCR) rule states that candidates in
C1 should be placed on the same server with candidates in Cs:

Vj c S,i1 S Cl,’iz c Cz, Tiyj = Tigj- (5)

— Candidates-candidate EXCLUSION (CCE) rule states that the can-
didates in C; should not be placed on the same server with candidates in
CQZ

VjES,il ECl,iQECQ, (xiljzl):>xi2j20. (6)

— Candidate-candidate REQUIRE AT LEAST ONE (CCRAO) rule
states that candidates in C} requires at least one candidate in C5 to be
placed on the same server as it:

Vj € S, € Ch, Tiyj = Z Tiyj > 1. (7)
i2€C2
— Candidate-target REQUIRE rule (CTR) states that candidates in C

should be placed on sever Si:

Vi, € Cl, Z Tiy 5 = 1. (8)

JjE€S1
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— Candidate-target EXCLUSION (CTE) rule states that candidates in
C; should not be placed on sever Si:

Vj e 51,’1“1 e (4, Tiq = 0. (9)

The CTR-rule provides a strict lower bound on the number of servers needed for
consolidation. Numerically, it is seen that running the above model with an ILP
solver that the problem becomes tougher with increase in the size of the system
and in particular depends on the number of servers.

For the lack of space, we just sketch the CP model used in our application.
For each candidate there is an integer variable X; with domain equal to the set
of available servers S. For each server j there is a 0-1 variable Y} indicating
whether the corresponding server is used or not. By using the same parameters
as in the ILP model, the linear knapsack constraints (2 are translated into a
set of multi-knapsack constraints (using the COMET syntax):

forall(t in T, 1 in R)
cp.post (multiknapsack(X, all(i in C) r[i,1,t], all(j in S) ul[j,11));

The rule-based constraints ([B)—(@) are easily translated into logical and reified
constraints on the integer X; variables.

3 Computational Experiments

We report experimental results for the ILP and CP approaches that are both
encoded using COMET [4]. As ILP solver we have used the version of SCIP (ver.
1.1) delivered with the COMET (ver. 2.0).

We have considered different scenarios, and we report the results on the most
challenging instances, which have |S|=20 and |S|=30 servers, a number of can-
didates ranging from |C|=100 to |C|=250, and four resources. Each instance is

Table 1. Challenging instances: averaged objective values after 60 sec. and 1000 sec.
(averaged over 5 instances for each row). The symbol ‘-’ means that no solution was
found.

SCIP CP (COMET)
|S| |C] 60 sec. 1000 sec. 60 sec. 1000 sec.
20 100 - 40 100 80

150 - 40 100 100
200 - - 290 280
250 - - 320 300
30 100 - - 110 80
150 - - 245 200
200 - - 310 300

250 - - 525 500
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involved in at least two rule-based constraints, making the whole problem demand-
ing for the ILP solver. Table[llreports the cost and the computation time with both
the ILP and CP solver averaged over 5 different instances of the same dimension
(for a total of 40 instances). For both methods, we set two time limits, the first at
60 sec. and the second to 1000 sec. Note that the ILP solver is never able to pro-
duce an admissible solution within 60 sec, while CP does. Things are only slightly
different for the results after 1000 sec. In many cases the ILP solver does not even
find a feasible solution, but when it does, the solutions are of very good quality.

4 Conclusion

We presented the Service Consolidation Problem solved at Neptuny, using both
an ILP and a CP approach. The ILP approach is very effective when the number
of rule-based constraints is limited. However, when the rule-based constraints are
many, as it is the case in our real-life applications, the ILP approach fails in find-
ing a feasible solution in a short time (where short is defined in terms of usability
within an application). The CP approach is very effective in finding feasible solu-
tions, and even for the largest instances always finds a solution within 60 seconds.
In addition, for other tests not reported here, it is also very fast in detecting in-
feasibility. As future work, there are two open issues: the first issue concerns the
use of explanation techniques (like QuickXplain [5]) to be able to obtain a set of
conflicting constraints to show to the final user, and the second issue is to improve
the efficiency of the solver in order to tackle even larger instances.
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Abstract. We investigate mathematical formulations and solution tech-
niques for a variant of the Connected Subgraph Problem. Given a con-
nected graph with costs and profits associated with the nodes, the goal
is to find a connected subgraph that contains a subset of distinguished
vertices. In this work we focus on the budget-constrained version, where
we maximize the total profit of the nodes in the subgraph subject to a
budget constraint on the total cost. We propose several mixed-integer
formulations for enforcing the subgraph connectivity requirement, which
plays a key role in the combinatorial structure of the problem. We show
that a new formulation based on subtour elimination constraints is more
effective at capturing the combinatorial structure of the problem, pro-
viding significant advantages over the previously considered encoding
which was based on a single commodity flow. We test our formulations
on synthetic instances as well as on real-world instances of an important
problem in environmental conservation concerning the design of wildlife
corridors. Our encoding results in a much tighter LP relaxation, and
more importantly, it results in finding better integer feasible solutions as
well as much better upper bounds on the objective (often proving opti-
mality or within less than 1% of optimality), both when considering the
synthetic instances as well as the real-world wildlife corridor instances.

1 Introduction

A large class of decision and optimization problems can be captured as finding a
connected subgraph of a larger graph satisfying certain cost and revenue require-
ments. In different realizations of the Connection Subgraph Problem costs and
profits are associated with either edges, nodes or both. Examples of this family
of problems are the Minimum Steiner Tree, Maximum-Weighted Connected Sub-
graph and Point-to-Point Connection Problem. Such problems arise in a large
number of applications — e.g. network design, system biology, social networks
and facility location planning.

Here, we are concerned with a variant of the Connected Subgraph Problem
where we are given a graph with costs and profits associated with nodes and
one or more designated nodes called terminals and we seek to find a connected
subgraph that includes the terminals with maximal profit and total cost within a
specified budget which we refer to as the Budget-Constrained Steiner Connected
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Subgraph Problem with Node Profits and Node Costs. This problem is known
to be NP-hard even for the case of no terminals |2]. Removing the connectivity
constraint, we have a 0-1 knapsack problem. On the other hand, the connectivity
constraint relates it to other important classes of well-studied problems such as
the Traveling Salesman Problem and the Steiner Tree problem. The connectivity
constraint plays a key role in the combinatorics of this problem and we propose
new mathematical formulations to better capture the structure of the problem
w.r.t. the connectivity constraint.

Our work is motivated by an important instance of this problem that arises
in Conservation Planning. The general problem consists of selecting a set of land
parcels for conservation to ensure species viability. This problem is also known
in the literature in its different variants as site selection, reserve network design,
and corridor design. Biologists have highlighted the importance of addressing
the negative ecological impacts of habitat fragmentation when selecting parcels
for conservation. To this effect, ways to increase the spatial coherence among
the set of parcels selected for conservation have been investigated ( see [14] for
a review). We look at the problem of designing so-called wildlife corridors to
connect areas of biological significance (e.g. established reserves). Wildlife cor-
ridors are an important conservation method in that they increase the genetic
diversity and allow for greater mobility (and hence better response to predation
and stochastic events such as fire, as well as long term climate change). Specifi-
cally, in the wildlife corridor design problem, we are given a set of land parcels,
a set of reserves (land parcels that correspond to biologically significant areas),
and the cost (e.g. land value) and utility (e.g. habitat suitability) of each parcel.
The goal is to select a subset of the parcels that forms a connected network
including all reserves. This problem is clearly an instance of the Connected Sub-
graph Problem with node profits and node costs, where the nodes correspond to
parcels, the terminal nodes correspond to the reserves and the edges correspond
to adjacency of parcels. Conservation and land use planners generally operate
with a limited budget while striving to secure the land that results in the corri-
dor with best habitat suitability. This results in the budget-constrained version
of the connected subgraph problem.

The connected subgraph problem in the context of designing wildlife corridors
was recently studied in [2, [7]. Conrad et al. [2] designate one of the terminals as
a root node and encode the connectivity constraints as a single commodity flow
from the root to the selected nodes in the subgraph. This encoding is small and
easy to enforce. They present computational results which show an easy-hard-
easy runtime pattern with respect to the allowed budget on a benchmark of syn-
thetic instances [7]. Further, when solving large scale real world instances of this
optimization problem, the authors report extremely large running time. Here,
we try to improve the state-of-the-art for this problem by proposing alternative
formulations. We show that the easy-hard-easy pattern in runtime solution for
finding optimal solutions observed for synthetic instances aligns with a similar
pattern in the relative integrality gap of the LP relaxation of the model. This
observation suggests that formulations that have tighter LP relaxations might
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also lead to faster solution times for finding optimal solutions. To this effect, we
propose two additional formulations.

One possible alternative which we explore in this paper is to establish the
connectivity of each selected node to the root node by a separate commodity flow.
This results in a multi-commodity flow encoding of the connectivity constraints.
Although the multi-commodity flow encoding is larger than the single commodity
encoding (yet still polynomial size), it can result in a stronger LP relaxation of
the problem.

A completely different avenue is to adapt ideas from the vast literature on the
Steiner Tree Problem. Encodings of the connectivity requirement with respect
to edge decisions successfully applied to the Steiner Tree problem involve ex-
ponential number of constraints. The Steiner Tree variants involve costs and/or
profits on edges and hence such models explicitly model binary decisions of in-
cluding or excluding edges from the selected subgraph. In particular, for the
Steiner Tree Problem with Node Revenues and Budgets, Costa et al. [4] sug-
gest using the directed Dantzig-Fulkerson-Johnson formulation |5] with subtour
elimination constraints enforcing the tree structure of the selected subgraph. For
variants of the Connection Subgraph Problem that involve edge costs or edge
profits one needs to model explicitly decisions about inclusion of edges in the
selected subgraph. Given a graph G = (V, E), in the problem variant we study
we only need to make explicit decisions of which nodes to include (i.e., V! C V)
and connectivity needs to be satisfied on the induced subgraph G(V”) that only
contains edges of G whose endpoints belong to V’. Nevertheless, we adapt the
directed Dantzig-Fulkerson-Johnson formulation to our problem, therefore con-
sidering the graph edges as decision variables instead of the nodes, which in
general results in dramatically increasing the search space size from 2!V to 21!,
Although at first glance this change seems counterproductive, the added strength
that results from explicitly enforcing the connectivity of each selected node to
a predefined terminal, in fact, results in a tighter formulation. This formula-
tion involves an exponential number of connectivity constraints that cannot be
represented explicitly for real life sized instances. To address this, we present a
Bender’s decomposition approach that iteratively adds connectivity constraints
to a relaxed master problem [1, [12].

We provide computational results on the three different encodings of the con-
nectivity constraints: 1) the single-commodity flow (SCF) encoding [2]; 2) a
multi-commodity flow (MCF) encoding; 3) a modified directed Dantzig-Fulkerson-
Johnson (DFJ) formulation using node costs. On a benchmark of synthetic in-
stances consisting of grid graphs with random costs and revenues, we show that
indeed the multi-commodity encoding provides better LP relaxation bounds than
the single commodity flow, and that the directed Dantzig-Fulkerson-Johnson for-
mulation provides the best bounds. Most importantly, the advantage of the bounds
provided by the directed Dantzig-Fulkerson-Johnson formulation over the single-
commodity flow encoding are greatest exactly in the hard region. The tighter
bounds turn out to have a critical effect on the solution times for finding opti-
mal integer feasible solutions. Despite the large size of the DFJ encoding, it works
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remarkably well for finding integer feasible solutions. The easy-hard-easy pattern
with respect to the budget exhibited strongly by the SCF encoding is much less
pronounced when using the DFJ encoding — this encoding is considerably more ro-
bust to the budget level. We show that the DFJ encoding finds optimal solutions
two orders of magnitude faster than the SCF encoding in the interval of budget
values that are hardest. This result is particularly relevant when solving real-world
instances because the hard region usually falls over a budget interval close to the
minimum cost solution to find a connected subgraph — i.e. it helps find solutions
for tight budgets.

We test our formulations on real problem instances concerning the design of
a Grizzly Bear Wildlife Corridor connecting three existing reserves [2]. We show
that, for critically constrained budgets, the DFJ encoding proposed here can find
optimal or close to optimal solutions, dramatically speeding up runtime. For the
same problem instances and budget levels, the single flow encoding can only
find considerably worse feasible solutions and has much worse objective upper
bounds. For example, for a budget level which is 10% above the minimum cost
required to connect all reserves, the DFJ encoding finds an optimal soltuion and
proves optimality in 25 mins, while the SCF encoding after 10 hours has found
an inferior solution and has proven an optimality gap of 31%. Similar behavior
is observed for a budget of 20% above the minimum cost. Working budgets close
to the minimum cost solution is a very likely scenario in a resource-constrained
setting such as conservation planning. Hence, with the little money available, it
is important to find the best possible solutions. The new DFJ encoding proposed
here allows us to find optimal solutions to large scale wildlife corridor problems
in exactly the budget levels that are most relevant in practice and that are out of
reach in terms of computational time for the previously proposed formulations.

The DFJ encoding is better at capturing the combinatorial structure of the
connectivity constraints which is reflected in the tightness of the LP relaxation
as well as in the fact that it finds integer feasible solutions much faster and with
very strong guarantees in terms of optimality (often proving optimality or within
less than 1% of optimality), both when considering the synthetic instances as
well as the real-world wildlife corridor instances.

2 Related Work

One of the most studied variant of the Connected Subgraph Problem is perhaps
the Steiner Tree which involves a graph G = (V, E), a set of terminal vertices
T C V, and costs associated with edges. In the Minimum Steiner Tree Problem
the goal is to select a subgraph G’ = (V' C V. E’ C E) of the smallest cost
possible that is a tree and contains all terminals (7' C V’). Although including a
budget constraint has important practical motivation, budget-constrained vari-
ants of the Steiner tree problem are not as nearly widely studied as the minimum
Steiner tree or the prize-collecting variant. The variant that is more relevant here
is the Budget Prize Collecting Tree Problem where in addition to costs associ-
ated with edges, there are also revenues associated with nodes. The goal is to
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select a Steiner tree with total edge cost satisfying a budget constraint while
maximizing the total node revenue of the selected tree. Levin [10] gives a (4 +¢)-
approximation scheme for this problem. Costa et al. [3, 4] study mathematical
formulations and solution techniques for this problem in the presence of addi-
tional so-called hop constraints. They use a directed rooted tree encoding with an
exponential number of connectivity constraints and a Branch-and-Cut solution
technique. One can easily see that the Budget Prize Collecting Tree Problem is a
special case of the Budget-Constrained Steiner Connected Subgraph with Node
Profits and Node Costs by replacing each edge with an artificial node with the
corresponding cost and adding edges to the endpoints of the original edge. We
adapt some of the vast amount of work on tight formulations for the variants
of the Steiner Tree problem with edge costs to the more general node-weighted
problem.

Restricted variants of Budget-Constrained Steiner Connected Subgraph Prob-
lem with Node Profits and Node Costs have been addressed previously in the
literature. Lee and Dooly [9] study the Maximum-weight Connected Subgraph
Problem where profits and unit costs are associated with nodes and the goal is to
find a connected subgraph of maximal weight and at most a specified R number
of nodes. In the constrained variant they consider a designated root node that
needs to be included in the selected subgraph.

Moss and Rabani [13] also study the connected subgraph problem with node
costs and node profits and refer to this problem as the Constrained Node Weighted
Steiner Tree Problem. They also only consider the special case where there is
either no terminals or only one terminal - a specified root node. For all three
optimization variants - the budget, quota and prize-collecting, Moss and Rabani
[13] provide an approximation guarantee of O(logn), where n is the number of
nodes in the graph. However, for the budget variant, the result is a bi-criteria
approximation, i.e. the cost of the selected nodes can exceed the budget by some
fraction. Finding an approximation algorithm for the budget-constrained vari-
ant is still an open question, as well as dealing with multiple terminals. Demaine
et al. |6] have recently shown that one can improve the O(logn) approximation
guarantee to a constant factor guarantee when restricting the class of graphs
to planar but only in the case of the minimum cost Steiner Tree Problem with
costs on nodes (but no profits). It is an open research question whether for
planar graphs one can design a better approximation scheme for the budget-
constrained variant. This is of particular interest because the Wildlife Corridor
Design problem corresponds to finding a connected subgraph in a planar graph.

3 Mathematical Formulations

The Connected Subgraph Problem with Node Profits and Node Costs is specified
by a connected graph G = (V, E) along with a set of terminal nodes T € V | a
cost function on nodes ¢ : V' — R, and a profit function on nodes u : V.— R.
The goal is to select a subset of the nodes ¥V’ C V such that all terminal nodes
T are included (T' C V') and the induced subgraph G(V’) is connected. In
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the Budget-Constrained variant, given a budget C' we seek to find a connected
subgraph such that the total cost of the nodes in ¥V’ do not exceed the budget
C, while maximizing the total profit of the selected nodes.

In the following formulations, for each vertex i € V, we introduce a binary
variable z;, representing whether or not ¢ is included in the connected subgraph.
Then, the objective function, the budget constraint and the terminal inclusion
constraint are stated as:

maximize Z Ui T4, (1)
eV
s.t. Z cixy <C (2)
eV
T =1, VteT (3)
x; € {0,1}, VieV (4)

In the following subsections we outline three different ways of enforcing the con-
nectivity constraints — the selected vertices should induce a connected subgraph
of the original graph G.

3.1 Connectivity as Single Commodity Flow

Conrad et al. [2], Gomes et al. [7] use a single-commodity network flow encoding
where each undirected edge {i,j} € E is replaced by two directed edges (3, j)
and (j,1). Let us call the set of directed edges A. They introduce a source vertex
0, with maximum total outgoing flow n = |V|. One arbitrary terminal vertex is
chosen as root r € T, and a directed edge (0, ) is defined to insert the flow into
the network. Each selected node acts as a “sink” by consuming one unit of flow,
and a node can be selected only if it has positive incoming flow. Connectivity
of the selected nodes is ensured by enforcing flow conservation constraints at all
nodes.

More formally, for each (directed) edge (¢, ) € A, there is a non-negative vari-
able y;; to indicate the amount of flow from 4 to j and the following constraints
are enforced:

To + Yor =N (5)
Yij < Ny, V(i,j) e A (6)
Z Yij = Tj + Z Yijis VjieV (7)
i:(3,j)EA i:(Ji)EA
Z Tj = Yor (8)
JeEV

For the source of the flow, they introduce a variable zo € [0,n], representing
the eventual residual flow. Constraint (Bl states that the residual flow plus the
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flow injected into the network corresponds to the total system flow. Each of
the vertices with a positive incoming flow retains one unit of flow, i.e., (y;; >
0) = (z; =1),Y(4,5) € A enforced by Constraint (@). The flow conservation is
modeled in Constraint (7). Finally, Constraint () enforces that the flow absorbed
by the network corresponds to the flow injected into the system. This encoding
requires 2|E| + 1 additional continuous variables and ensures that all selected
nodes form a connected component.

3.2 Connectivity as Multi-commodity Flow

In the first encoding we enforce the connectivity of all selected nodes though a
single commodity flow. In this model, the key difference is that we enforce the
connectivity of the selected set of nodes by associating a separate commodity
with each node. There will be one unit of flow from the root to each selected
node of its own “commodity” type. We arbitrarily select one of the terminals as
a root node denoted r € T'. Each other node i is a potential sink of one unit of
commodity flow of type i that will have to be routed from the root node to 1.
Let use denote the set of neighbors of a node i as §(i) = {j|(4, j) € A}.

Similarly to the original model, we still have binary decision variable for each
vertex and the objective, the budget constraint and the terminal inclusion con-
straint are defined as before.

For each (directed) edge (i,j) € A and each node k different from the root
node r, we introduce a variable y;; > 0 which when it is nonzero indicates that
the edge carries flow of type k. If a node k is selected then in becomes an active
sink for flow of type k.

Sy =0 VEeV —r (11)
J:red(j)

S ek = 3 VEeV —r (12)
jes(k)

S s =0 VEeV —r (13)
jes(k)

S k= Y v VkYieV —ri#k (14)

NI0) i€4(j)

Yrij < @i Vk,Vie V —rVj € §(i) (15)

Ykij < T Vk,Vi €V —rVj € 8(i) (16)

Yrkij = 0 VkeV —rV(i,j)eA (17)

For all nodes k, if node k is selected, then k is a sink for flow of commodity
k (Constraint (T2 [3))). Constraint (I4]) imposes conservation of flow for each
commodity type k at each node different from the sink & and the source r, and
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Constraint (1) imposes that the root does not have any incoming flow. Finally,
the capacity of each edge is zero if either end node is not selected, and 1 otherwise
(Constraint (I8 [I0])).

This encoding requires (|V| — 1)2|E| additional continuous variables — con-
siderably more than the SCF encoding. However, we will see that enforcing the
connectivity of each node to the root separately results in tighter LP relaxation.

3.3 Connectivity as Directed Steiner Tree

As suggested by the multi-commodity flow encoding, to enforce connectivity one
may enforce that there exists a path from each selected node to the root node. In
this third encoding, we in fact explicitly model the selection of edges as binary
variables and insist that we select a set of nodes and edges such that there is a
single path from each selected node to the root (using the selected nodes). In
other words, we impose stronger constraints than necessary while preserving all
feasible solutions in terms of subset of nodes that induce a connected subgraph.
In effect, we enforce the connectivity constraints by adding constraints that en-
sure that we select edges that form a (Steiner) tree. Several studies on Steiner
Tree problem variants have shown that often directed edge models are better
than undirected ones in solving Steiner Tree problems (e.g. [11, |4]). Following
these results, we adapt the directed Dantzig-Fulkerson-Johnson formulation of
connectivity. We have a binary variable for each directed edge in A (Constraint
@4)). We can avoid explicitly including binary variables x for each node, as
these decisions can be inferred from the values of the edge binary variables.
The set of selected nodes consists of the nodes that have exactly one incoming
edge. Although the vertex variables are not explicitly represented, it will still be
useful to refer to them. To this effect, given a solution vector over the edge vari-
ables y, let us define an associated vertex solution vector x as xp = Zk€5(i) Yik-
Constraints ([I8) and (3] express the objective and the budget constraint in
terms of edge variables. Constraint (20) enforces that each terminal node should
have one incoming edge (i.e. it should be selected). To enforce the directed tree
property, each non-root node is allowed to have at most one incoming edge (Con-
straint (ZI0)). Connectivity is enforced through generalized subtour elimination
constraints defined over edge variables (Constraints (23))). We also include Con-
straint (22]) which strengthens the formulation by enforcing that each edge is
used in at most one direction.

max S (e 3 s (18)

eV JEO(%)

s.t. Z C; Z yii | <C (19)

eV JES(3
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> y=1 VieT (20)

JE8(3)
Zyjz‘él VieV -T (21)

JE8()
Yij +yj <1 YieV —-T\Njedli)—r (22)
Z Yij = Z Yik> VS CV —rVk €S [cuts] (23)

(i,7)€EA|jES,i€V\S j€8(k)

yi; € {0,1} V(i,j) e A (24)

Given the exponential number of connectivity Constraints ([23), in the following
section we describe a solution approach in which we relax these constraints in
the context of cutting plane procedure and only add them as cuts when they
become violated.

4 Solution Approaches

Conrad et al. [2], Gomes et al. [7] outline a preprocessing technique for the
Budget-constrained Connected Subgraph problem which effectively reduces the
problem size for tight budgets. The procedure computes all-pairs shortest paths
in the graph and uses these distances to compute for each node the minimal
Steiner Tree cost that covers all three terminals as well as the node under con-
sideration. If this minimum cost exceeds the allowed budget, the node does not
belong to any feasible solution and hence its variable is assigned to 0.

Gomes et al. [7] also outline a greedy method for finding feasible solutions to
the Budget-constrained Connected Subgraph problem by first computing the
minimum cost Steiner tree covering all the terminal nodes and then greed-
ily adding additional nodes until the allowed budget is exhausted. They show
that providing this greedy solution to their encoding of the Connected Sub-
graph Problem (the single commodity flow encoding) significantly improves
performance.

We use both of these techniques. We apply the preprocessing step to all prob-
lem instances. In addition, we provide the greedy solution as a starting point to
the SCF encoding.

Our approach to solving the DFJ encoding is based on a cutting plane or
Bender’s decomposition approach. We solve a relaxed “master” problem which
omits the exponential number of connectivity constraints. In a first pass of this
procedure all edge variables are relaxed from binary variables to continuous
variables € [0, 1]. In this first phase, we solve a sequence of progressively tighter
LP master problems and in effect this corresponds to a cutting plane approach.
Once we find a (fractional) optimal solution to the LP master problem that does
not violate any connectivity constraints, we have obtained the optimal solution
to the LP relaxation of the DFJ formulation. If that solution is integral, then
we have an optimal solution to the original problem. If the LP solution is not
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integral, we enforce the integrality constraints for all edge variables. We continue
the same iteration steps where now the master problem includes the cuts learned
during solving the LP relaxation as well as the integrality constraints. In the
second phase, we need to solve a sequence of MIP master problems which is in
effect a Bender’s decomposition approach. At each iteration, the optimal solution
to the MIP master might not be connected and more connectivity cuts would
need to be added. Once we find an optimal MIP master solution, we have found
an optimal integer solution to the original problem. The detailed algorithm is
outlined below:

Master Algorithm:

0. (Initialize) Define the initial relaxation Py of the problem by Constraints (18]
920 211 22) as well as the integrality Constraint (24 relaxed to only enforce
the bounds. Set iteration count ¢ = 0.

1. (Master optimization) Solve P; and obtain an optimal (edge) solution y,.
Let the associated vertex solution be x;. If the associated vertex solution x; is
integral, go to Step 3, otherwise go to Step 4.

2. (Additional Check) Check the connectivity of the induced graph G(xy). If it is
connected, then x; is optimal, and the algorithm returns solution x;. Otherwise,
continue to Step 4.

3. (Master separation) Check if y, satisfies all the connectivity constraints (23)). If
it does, go to Step 4. If a violated constraint is found, then add the corresponding
cut to the master problem and let P.y; be the problem obtained. Set ¢t =t + 1
and return to Step 1.

4. (Optimality check) If the associated vertex solution x; is integral, then x; is
optimal, and the algorithm returns solution x;. Otherwise, add the integrality
constraints (24]) back in to the problem, and let P,y; be the problem obtained.
Set t =t + 1 and go to Step 1.

Checking the exponential number of connectivity constraints (23] given an edge
solution y, in Step 3 is done through a polynomial time separation procedure.
The separation procedure checks the connectivity of each selected vertex to the
root and terminates as soon as it finds a disconnected node and infers a cut
to be added. It first checks the connectivity of the terminals to the root and
then other selected vertices. We solve a max-flow problem in the directed graph
G’=(V,A) between the root and each node k € V — r selected in the proposed
solution, i.e. in the associated vertex solution z;(k) > 1—e€. The capacities of the
edges are the current values of the edge variables y, in the master solution. If the
maximum flow is less than the sum of the incoming arcs from k, we have found
a violated constraint. The dual variables of the max-flow subproblem indicate
the partition of nodes {S, V\S} that define the minimum cut (let r € V'\S).

Now, we can add the cut enforcing that at least one edge across the partition
needs to be selected if parcel k is selected:

Z Yij = Tk (25)

(i,j)EAi€EV\S,j€S
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Step 2 of the algorithm is a special step that applies to the Connected Subgraph
Problems with node costs and node profits. Given a solution y;; of the DFJ
formulation and the associated vertex vector x; we can infer a set of selected
nodes V' = {k € V]zi(¢t) = 1}. The original problem only requires that for
the selected subset of vertices V' the induced graph G(V’) is connected, while
the DFJ formulation poses a much stronger requirement to select a subset of
edges forming a tree. Hence, it can be the case that that ¥V’ induces a connected
subgraph in G, but the selected edges E' = {(7,7) € Aly;; = 1} do not form a
single connected component. To illustrate this, imagine that the selected edges
E’ form two vertex-disjoint cycles C; and Cs and such that v € C; and v € Cs
and u,v € E. The edge set E’ clearly does form a connected subgraph, however
the subgraph induced by the selected vertices is connected because of the edge
u, v. Without Step 2, our separation procedure in Step 3 will infer a new cut and
will wrongly conclude that the selected master solution is not a feasible solution.
To avoid such cases, we introduce Step 2 to check the weaker connectivity in
terms of the induced subgraph. If this connectivity check fails, then we use the
max-flow separation procedure in Step 3 to infer a new connectivity cut to add
to the master.

The solution procedure described above solves a series of tighter relaxation
of the original problem and therefore the first solution that is feasible w.r.t.
all the constraints in the original problem is in fact the optimal solution. One
problem with this approach is that we need to wait until the very end to get
one integer feasible solution which is also the optimal one. Ideally, one would
like to have integer feasible solutions as soon as possible. We achieve this in
the context of this solution technique by noticing that while solving the MIP
master to optimality we discover a sequence of integer solutions. Some of these
integer solutions might satisfy all connectivity constraints (i.e. they are feasible
solutions to the original problem), but are discarded by the master as sub-
optimal — there might be disconnected solutions to the master of better quality.
To detect the discovery of feasible solutions to the original problem while solving
the master problem, we introduce a connectivity check at each MIP master
incumbent solution (not described in our algorithm outline above). If a MIP
master incumbent is connected and is better than any other connected integer
solution discovered so far, we record this solution as an incumbent to our original
problem.

5 Experimental Results

We evaluate the strength of the LP relaxation of the three alternative encod-
ings on a synthetically generated benchmark of instances [2]. We generate 100
instances of a 10 by 10 grid parcels (100 nodes) and 3 reserves (terminals) with
uniformly sampled costs and utilities. We report median running times across the
100 instances where the budget is varied as percentage slack over the minimum
cost solution for the particular instance. For example, given a minimum cost so-
lution for connecting the terminal nodes of value ¢, 10% slack corresponds to
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budget B = 110% * 4. All computational experiments were performed using
IBM ILOG CPLEX 11]8].

Figure [l compares the relative gap between the optimal objective of the LP
relaxation 27 , and the optimal objective of the problem 2}, at different budget
levels given by (27 p — 27p)/2jp. One can see that the DFJ encoding indeed
provides a relaxation which is much tighter than the relaxation of the single
flow formulation of the problem. In particular, the smaller the budget is (up to
some point), the bigger advantage the exponential formulation has. This added
strength however is paid in computational time. The LP relaxation of the SCF
model is solved really fast compared to the DFJ encoding. On the other had,
the multi-commodity encoding does not dominate on either measure — it pro-
vides tighter bound on the optimal but not as tight as the DFJ formulation
but at the same time takes a considerable computational time. In the rest of
the experimental analysis, we concentrate on the single commodity flow and the
DFJ encoding. The DFJ-style encodings in the context of Steiner tree problems
are known to produce tight LP relaxations. Our results confirm this trend in
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the variant we are studying here. More importantly, one would like to use the
strength of this encoding to find the optimal integer feasible solution.

Figure[2] compares the running time of the SCF encoding and the DF.J encod-
ing. An easy-hard-easy pattern of the running time with respect to the budget
was already observed by Gomes et al. [7]. Here, we clearly see that the DFJ
encoding is in fact most beneficial in exactly the hard budget region. For large
budgets, the DFJ encoding in fact has worst running time than the single com-
modity flow. However, more importantly it improves the running time in the
hard region by 2 orders of magnitude.

We are interested in the running time performance of the SCF and the DFJ
encoding when looking for integer feasible solutions. We evaluate the perfor-
mance on a real-world Wildlife Corridor design problem attempting to connect
three existing reserves. We tackle this problem at two different spatial scales.
The coarser scale considers parcels grid cells of size 40 by 40 km and has 242
parcels (nodes). The finer spatial scale consider parcels of size 10 by 10 km and
has 3299 parcels (nodes).

Figure Bl clearly demonstrates the advantage of the DFJ encoding on the 40km
problem instance both in terms of the LP relaxation bound (left) and in terms of
finding integer optimal solutions (right). The single flow encoding is fast for very
tight and very large budgets, but for a critically constrained region the running
time is much higher. The DFJ encoding on the other hand shows robust running
times which do not vary much with the budget level.

We compare the running time to find integer solutions for the much larger in-
stance at spatial resolution of 10 km. We set the budget at different (tight) levels
as percent slack above the minimum cost required to connect the reserves. Table
[[ presents solution quality, running times and optimality gap results for three dif-
ferent levels. For comparison, we also include the quality of the solution obtained
by the greedy algorithm from [7] (which is usually much worse than the optimal).
The results in Table Il show that the DFJ encoding is much faster at finding op-
timal or near optimal solutions to the problem than the SCF encoding. Given a
8 hour cutoff time, for all three budget levels DFJ finds equal or better feasible
solutions than SCF and also provides very tight optimality guarantee (< 1% in all
cases). On the other hand, SCF in all three cases can only guarantee that the best
solution it has founf is within at best 28% of optimality.
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Fig. 3. Results on a Wildlife Corridor Problem at 40 km resolution
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Table 1. The performance of the SCF and DFJ encoding on a large real world instance
with an 8 hour cutoff time

budget slack encoding time objective opt. gap
10% greedy < 2 mins 10691163 NA
109475 SCF 8 I.H"S 10877799 31.15%

DFJ 25 mins 12107793  0.01%
20% greedy < 2 mins 12497251 NA
119427 SCF 8 hrs 12911652 30.35%

DFJ 2 hrs 25 mins 13640629 0.01%
30% greedy < 2 mins 13581815 NA
129379 SCF 8 hrs 13776496 28.64%

DFJ 7 hrs 35 mins 14703920  0.62%

6 Conclusion

The budget-constrained Connection Subgraph Problem is computationally chal-
lenging problem with a lot of real world applications. Capturing well the combina-
torial structure of the connectivity constraint is critical to effectively solving large
scale instances. In this work, we proposed a novel solution approach to this prob-
lem that uses an adapted directed Dantzig-Fulkerson-Johnson formulation with
subtour elimination constraints in the context of a cut-generation approach. This
results in significant speed up in run times when the budget level falls in the inter-
val that results in most computationally challenging instances. We evaluate perfor-
mance on a relatively large instance of the Wildlife Corridor Design Problem and
find optimal solutions for different budget levels. This work is a good example of
identifying and extending relevant Computer Science results for problems arising
in the area of Computation Sustainability.
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1 Introduction

The bin packing problem (BP) consists in finding the minimum number of bins neces-
sary to pack a set of items so that the total size of the items in each bin does not exceed
the bin capacity C'. The bin capacity is common for all the bins.

This problem can be solved in Constraint Programming (CP) by introducing one
placement variable z; for each item and one load variable [; for each bin.

The Pack([x1,...,Zn], [W1,. .., wy],[l1,...,mn]) constraint introduced by Shaw
[[L] links the placement variables x1,...,x, of n items having weights wy,...,w,
with the load variables of m bins l1, ..., l,;, with domains {0, ..., C}. More precisely
the constraint ensures that Vj € {1,...,m} : l[; = > (x; = j) - w; where z; =

j is reified to 1 if the equality holds and to O otherwise. The Pack constraint was
successfully used in several applications.
In addition to the decomposition constraints Vj € {1,...,m} : l; = > | (z; =
j) - w; and the redundant constraint y -, w; = Z;L:1 lj, Shaw introduced:
1. afiltering algorithm based on a knapsack reasoning inside each bin, and
2. a failure detection algorithm based on a reduction of the partial solution to a bin
packing problem.

This work focuses on improvements of the failure detection algorithm.

2 Reductions to Bin Packing Problems

Shaw describes in [1]] a fast failure detection procedure for the Pack constraint using a
bin packing lower bound (BPLB). The idea is to reduce the current partial solution (i.e.
where some items are already assigned to a bin) of the Pack constraint to a bin packing
problem. Then a failure is detected if the BPLB is larger than the number of available
bins m.

We propose two new reductions of a partial solution to a bin packing problem. The
first one can in some cases dominate Shaw’s reduction and the second one theoretically
dominates the other two.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 1174122, P010.
(© Springer-Verlag Berlin Heidelberg 2010
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Paul Shaw’s reduction: R0. Shaw’s reduction consists in creating a bin packing prob-
lem with the following characteristics. The bin capacity is the largest upper bound of
the load variables, i.e. ¢ = maxje (1, .. m} (1j**). All items that are not packed in the
constraint are part of the items of the reduced problem. Furthermore, for each bin, a vir-
tual item is added to the reduced problem to reflect (1) the upper bound dissimilarities
of the load variables and (2) the already packed items. More precisely, the size of the
virtual item for a bin j is (c— "™+ (ilwims} wy ), that is the bin capacity ¢ reduced by
the actual capacity of the bin in the constraint plus the total size of the already packed
items in this bin. An example is shown in Figure [[(b)}

bins
—
partial packing bins virtual
unpacked unpacked unpacked o unpacked
—A— . —A— . —A R —A—
> virtual bins 3
> £ — > g
3 4 g 4 =y . 4 g 45 4
2, 5] 3 g virtual
8 Q 2 a A~
1 1 8 11 1
(a) Initial problem (b) RO (c) RMin (d) RMax

Fig. 1. Example of the three reductions for the bin packing problem

RMin. We introduce RMin that is obtained from RO by reducing the capacity of the
bins and the size of all the virtual items by the size of the smallest virtual item. The
VirFual item§ ha.ve.a size of (c.—l;:“ax—i—z feimj) Wi —mMAnE(C— G430y wi)).
This reduction is illustrated in Figure[l(c)|

RMax. We propose RMax that consists in increasing the capacity and the size of the
virtual items by a common quantity, so that, when distributing the items with a bin
packing algorithm, it is guaranteed that each virtual item will occupy a different bin. In
order to achieve this, each virtual item’s size must be larger than half the bin capacity.

In RO, let p be the size of the smallest virtual item, and c the capacity of the bins.
The size of the virtual items and the capacity must be increased by (¢ — 2p + 1). The
smallest virtual item will have a size of s = (¢ —p — 1) and the capacity of the bins will
be (2¢ — 2p + 1) = 2s — 1. As one can observe, the smallest virtual item is larger than
the half of the capacity. If ¢ = 2p — 1, this reduction is equivalent to Shaw’s reduction.
Note that if ¢ < 2p — 1, the capacity and the virtual items will be reduced.

The virtual items have a size of (2c —2p+1— 1"+ 3", _ ., w;). This reduction
is illustrated in Figure[T(d)]

Generic reduction: Réd. All these reductions are particular cases of a generic reduc-
tion (RJ) which, based on RO, consists in adding a positive or negative delta (J) to the
capacity and to all the virtual items’ sizes.

For RO, 4 = 0. For RMin, § is the minimum possible value that keeps all sizes
positive. A smaller § would create an inconsistency, as the smallest virtual item would
have a negative size. dgpzn 1S always negative or equal to zero. For RMax, § is the
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smallest value guaranteeing that virtual items cannot pile up. Note that in some cases,
ORMin OF ORMar Can be zero. Also note that g can be larger than the others.

3 Theoretical Comparison of the Three Reductions

Definition 1 (Dominate). Let A and B be two reductions of the Pack constraint to
bin packing. We say that A dominates B if, for any instance of the Pack constraint, the
number of bins required in A is larger than the number of bins required in B.

Theorem 1. R0 is a relaxation of the problem of testing the consistency of the Pack
constraint.

Proof. 1f a partial solution of the Pack constraint can be extended to a solution with
every item placed, then R¢ also has a solution: if each virtual item is placed in its initial
bin, then the free space of each bin is equal to its free space in the partial solution, and
so all the unplaced items can be placed in the same bin as in the extended solution from
the partial assignment.

Theorem 2. RO does not dominate RMin and RMin does not dominate RO.

Proof. Consider the partial packing {4, 2} of two bins of capacity 6, and the unpacked
items {3, 3}. RO only needs two bins, where RMin needs three bins.

Now consider the partial packing {2, 3, 1} of three bins of capacity 4, and the un-
packed items {3, 3}. In this case, RO needs four bins, where RMin only needs three
bins.

Theorem 3. RMax is equivalent to testing the consistency of the Pack constraint

Proof. By Theorem[Il RMax is a relaxation of the partial solution of the BP problem.
There remains to show that if there is a solution for RMax, then the partial solution
can be extended to a complete solution of the Pack constraint. Let’s call v the bin
from which the virtual item v is from. It is guaranteed by the size of the virtual items
that they will each be placed in a different bin b,,. The remaining space in each bin b,
corresponds to the free space in bin v in the original problem. An extended solution of
the Pack constraint is obtained by packing in v all items packed in b,,.

Corollary 1. RMax dominates RO and RMin.

From a theroretical standpoint, the RMax reduction is always better or equivalent to RO,
RMin, and any other instance of RJ. In practice, though, this is not always the case, as
it is shown in the next section.

4 Experimental Comparison

The failure test of Shaw [[1] uses the bin packing lower bound L2 of Martello and Toth
[2] that can be computed in linear time. Recently the lower bound L3 of Labbé [3] has
been proved [4] to be always larger than or equal to Lo and to benefit from a better
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worst case asymptotic performance ratio (3/4 for L3 [4] and 2/3 for L [2]), while still
having a linear computation time. Experiments show us that £3 can help detect about
20% more failures than Lo. Throughout the next experiments, we are using L.

Although in theory, RMax always outperforms RO and RMin, the practical results
are less systematic. This is because L3 (as well as L£2) is not monotonic, which means
that a BP instance requiring a larger number of bins than a second instance can have a
lower bound smaller than the second one. In fact, L3 is more adapted to instances where
most item sizes are larger than the third of the capacity. RMax increases the capacity,
making unpacked items proportionally smaller. For each of RO, RMin and RMax, there
are instances where they contribute to detecting a failure, while the other two do not.

Table [l presents the performance of the failure detection using each one of the reduc-
tions. It shows the ratio of failures found using each reduction over the total number of
failures found by at least one filter. Additional reductions have been experimented, with
¢ being respectively 25%, 50% and 75% on the way between dg s and dgasq.. These
results were obtained by generating more than 1,000 random instances and computing
L3 on each of their reductions. Here is how the instances were produced:

Instl. Number of bins, number of items and capacity C each randomly chosen between
30 and 50. Bins already filled up to 1..C. Random item sizes in {1,...,C}.

Inst2. 50 bins. Capacity = 100. Number of items is 100 or 200. Size with normal distri-
bution (1 = 5000/n, o € {3n,2n,n,n/2,n/3} where n is the number of items).
Among these, percentage of items already placed € {10%, 20%, 30%, 40%, 50%}.

Inst3. Idem as 2, but the number of placed items is 90% or 95%.

Table 1. Comparison of the number of failures found with different reductions

Instances  Number of failures detected (%)
RMin R25 R50 R75 RMax RO
Instl  74.16 78.87 86.40 89.53 99.58 74.79
Inst2  99.93 86.75 87.03 87.8 87.15 99.93
Inst3  80.64 86.55 93.37 97.75 99.39 98.52

This reveals that some types of instances are more adapted to RO or RMin, while
some are more adapted to RMax. The intermediate reductions R25, R50 and R75 were
never better in average than RMin and RMax. Thus, they were not considered in the
following experiments.

Comparison on benchmark instances. For the analysis to be more relevant, we com-
pared the behavior of the three proposed reductions on real instances. CP algorithms
were run over Scholl’s SALBP-1 benchmark [5] and on Scholl’s bin packing instances
[6] (first data set with n=50 and n=100), and at every change in the domains of the vari-
ables, the current partial solution was extracted. We randomly selected 30,000 extracted
instances from each. In the second case, only instances for which at least one reduction
could detect a failure were selected. The three reductions using L3 were applied on
these selected instances. Figure 2] gives a schema of the results.
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RO (94%) RMin (88.5%) RO (94%) RMin (60%)

—(m-

I RMax (94%)

Fig. 2. Proportions of failure detections using each reduction on SALBP-1 instances (left) and BP
instances (right)

These results show that RO detects a larger number of failures. But (almost) all of its
failures are also detected by one of the others. Hence, combining RMin and RMax is
better than using RO alone. It is also useless to combine RO with RMin and RMax.

Impact on a CP search. We compared the effect of applying the failure detection strat-
egy in a CP search on Scholl’s bin packing instances N1 and N2 (360 instances), using
RO, RMin, RMax and then RMin and RMax combined, with a time limit of five min-
utes for each instance. For the instances for which all reductions leaded to the same
solution, the mean computation time of the searches was computed. All these results
are presented in Table 2l One can observe that RMin and Rmax combined find more
optimal solutions (though there is no significative difference with R0), and lead faster
to the solution than the others (33% speedup compared to RO).

Table 2. Comparison of the reductions on solving the BPLB problem

No pruning RO RMin RMax RMin & RMax
Number of optimal solutions 281 317 315 309 319
Mean time (s) 5.39 1.88 1.60 3.50 1.25

5 Conclusion

We presented two new reductions of a partial solution of the Pack constraint to a bin
packing problem. Through a CP search, these reductions are submitted to a bin packing
lower bound algorithm in order to detect failures of the Pack constraint as suggested
by Shaw in [[1]].

We proved that our second reduction (RMax) theoretically provides a better failure
detection than the others, assuming a perfect lower-bound algorithm. We conclude that
the best strategy is to consider both RMin and RMax filters in a CP search.
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Abstract. Gomory’s Mixed-Integer Cuts (GMICs) are widely used in
modern branch-and-cut codes for the solution of Mixed-Integer Pro-
grams. Typically, GMICs are iteratively generated from the optimal ba-
sis of the current Linear Programming (LP) relaxation, and immediately
added to the LP before the next round of cuts is generated. Unfortu-
nately, this approach prone to instability.

In this paper we analyze a different scheme for the generation of rank-1
GMIC read from a basis of the original LP—the one before the addition of
any cut. We adopt a relax-and-cut approach where the generated GMIC
are not added to the current LP, but immediately relaxed in a Lagrangian
fashion.

Various elaborations of the basic idea are presented, that lead to
very fast—yet accurate—variants of the basic scheme. Very encouraging
computational results are presented, with a comparison with alternative
techniques from the literature also aimed at improving the GMIC qual-
ity, including those proposed very recently by Balas and Bonami and by
Dash and Goycoolea.

Keywords: Mixed-integer programming, Gomory’s cuts, Lagrangian
relaxation, Relax and Cut.

1 Introduction

Gomory’s Mixed-Integer Cuts (GMICs) are of fundamental importance for
branch-and-cut Mixed-Integer Program (MIP) solvers, that however are quite
conservative in their use because of known issues due to the iterative accumu-
lation of GMICs in the optimal Linear Programming (LP) basis, which leads to
numerical instability due a typically exponential growth of the determinant of
the LP basis.

Recent work on the subject suggests however that stability issues are largely
due to the overall framework where GMICs are used, rather than to the GMICs
themselves. Indeed, the two main cutting plane modules (the LP solver and the
cut generator) form a closed-loop system that is intrinsically prone to instability—
unless a “decoupling filter” is introduced in the loop. Breaking the feedback is
therefore a must if one wants to really exploit the power of GMICs.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 1234135| 2010.
© Springer-Verlag Berlin Heidelberg 2010



124 M. Fischetti and D. Salvagnin

In this paper we propose a new mechanism to break the entanglement between
LP bases and GMICs cuts. More specifically, in our framework the generated
GMICs are not added to the current LP, but immediately relaxed in a Lagrangian
fashion—following an approach known as relaz-and-cut. In this way, GMICs are
always generated from a (Lagrangian near-optimal) basis of the original LP,
hence their quality is not likely to deteriorate in the long run as we do not allow
GMIC to accumulate in the LP basis.

The paper is organized as follows. Section 2 briefly reviews some relevant lit-
erature. In Section [B we introduce our notation and describe the relax-and-cut
framework. Various elaborations of the basic idea are presented in Section [4]
that lead to faster yet accurate variants of the basic relax-and-cut scheme. Very
encouraging computational results are presented in Section Bl with a compari-
son with alternative techniques from the literature also aimed at improving the
GMIC quality, namely those proposed very recently by Balas and Bonami [I]
and by Dash and Goycoolea [2]. Some conclusions and possible directions of work
are finally drawn in Section

We assume the reader has some familiarity with MIP cuts; see, e.g., Cornuéjols
[3] for a recent survey on the subject.

2 Literature

GMICs for general MIPs have been introduced by Ralph Gomory about 50 years
ago in his seminal paper [4]. However, these cuts were not used in practice until
the work of Balas, Ceria, Cornuéjols and Natraj [5], who found for the first time
an effective way to exploit them in a branch-and-cut context [6]. In particular,
the authors stressed the importance of generating GMICs in rounds, i.e., from
all the tableau rows with fractional right hand side.

The explanation of GMIC instability in terms of closed-loop systems was
pointed out by Zanette, Fischetti and Balas [7], who presented computational
experiments showing that reading the LP optimal solution to cut and the Go-
mory cuts from the same LP basis almost invariably creates a dangerous feedback
in the long run.

The same explanation applies to other cutting plane procedures that de-
rive cuts directly from tableau information of the enlarged LP that includes
previously-generated cuts (e.g., those related to Gomory’s corner polyhedron,
including cyclic-group cuts, intersection cuts, multi-row cuts, etc.). This is not
necessarily the case when using methods based on an external cut generation LP
(e.g., disjunctive methods using disjunctions not read from the optimal tableau),
or when the derived cuts are post-processed so as to reduce their correlation with
the optimal tableau (e.g., through lexicographic search [7] or by cut strengthen-
ing methods [2,[]]).

A different framework for Gomory’s cuts was recently proposed by Fischetti
and Lodi [9]. The aim of that paper was actually to compute the best possible
bound obtainable with rank-1 fractional Gomory’s cuts. The fact of restricting
to rank-1 cuts forced the authors to get rid of the classical separation scheme,
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and to model the separation problem through an auxiliary MIP to be solved
by an external module. The surprising outcome was a numerically stable cut-
ting plane method where rank-1 fractional Gomory’s cuts alone produced very
tight bounds—though the separation overhead was too large to be practical in
most cases. Note that, in that scheme, the separation procedure did not have
access to the optimal LP basis, but only received on input the point to be
separated—hence loosening the optimization and separation entanglement. As a
consequence, even if the point z* to be separated possibly did not change signifi-
cantly at some iterations, it was unlikely that the separated cuts were as heavily
correlated as in the classical scheme—in this context, the well-known erratic
behavior of MIP solvers that often return quite different solutions for almost
identical input, turned out to be beneficial in that it acted as a diversification in
the cut selection policy. These results were later confirmed for GMICs by Balas
and Saxena [I0] and by Dash, Gunliik, and Lodi [I1I], who adopted the same
scheme but generalized the MIP separation module so as to deal with GMIC
separation.

The above discussion suggests that an improved performance can be attained
if one does not insist on reading GMICs from the optimal basis of the current
LP, that includes previously generated GMICs. Progresses in this direction have
been obtained recently by using one of the following two approaches. Let * be an
optimal vertex of the large LP (the one defined by the original constraints plus
the GMICs generated in the previous iterations), and let B* be an associated
optimal basis.

(i) Balas and Perregaard [§] perform a sequence of pivots on the tableau of the
large LP leading to a (possibly non-optimal or even infeasible) basis of the
same large LP that produces a deeper cut w.r.t. the given x*.

(if) Dash and Goycoolea [2] heuristically look for a basis B of the original LP
that is “close enough to B*”, in the hope of cutting the given x* with rank-1
GMICs associated with Bj; this is done, e.g., by removing from A all the
columns that are nonbasic with respect to x*, thus restricting B to be a
submatrix of B*.

The approach of relaxing cuts right after their separation is known in the lit-
erature as the Relax-and-Cut strategy. It was introduced independently by Lu-
cena [12], and by Escudero, Guignard and Malik [I3]—who actually proposed
the relax-and-cut name; see Lucena [I4] for a survey of the technique and of its
applications. Very recently, Lucena [I5] applied a relax-and-cut approach to the
solution of hard single 0-1 knapsack problems, where fractional Gomory’s cuts
were used, for the first time, in a Lagrangian framework.

3 A Relax-and-Cut Framework for GMICs

Consider a generic MIP of the form

min{cz : Ar =b, x > 0, z; integer Vj € J}
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where A € Q™*™, b€ Q™, c € Q", and J C {1,---,n} is the index set of the
integer variables. As customary, let P := {x € R} : Az = b} denote the LP
relaxation polyhedron, that we assume to be bounded.

Given a large (possibly exponential) family of linear cuts

adlz>ah, i=1,...,.M (1)

we aim at computing—possibly in an approximate way—the value

min cx
z1:=Rx€P (2)
alx>al, i=1,....M

In our basic application, family () consists of the GMICs associated with all
possible primal-feasible bases of system Az = b, i.e., 21 is a (typically very tight)
lower bound on the first GMIC closure addressed by Balas and Saxena [10] and
by Dash, Giinliik, and Lodi [I1]. However, as discussed in the computational
section, family () is in principle allowed to contain any kind of linear inequalities,
including problem-specific cuts and/or GMICs of any rank, or even invalid linear
conditions related, e.g., to branching conditions.

A standard solution approach for (2)) consists in dualizing cuts (I}) in a La-
grangian fashion, thus obtaining the Lagrangian dual problem

u>0

M
max {L(u) := min{cz + Z ui(of —a'z): x € P}} (3)

whose optimal value is known to coincide with z;.

The solution of ([B]) can be attempted through very simple iterative procedures
known as subgradient methods, or through more sophisticated and accurate
schemes such as the bundle method; see e.g. [16]. All the above solution schemes
generate a sequence of dual points ©* > 0 meant to converge to an optimal
dual solution u*. For each u* in the sequence, an optimal solution z* € P of
the inner-minimization in (3)) is computed, along with the associated Lagrangian
value

L(u*) = cx +Zu i —alzh)

and subgradient s* € RM™, whose components are just the cut violations

shi=af —alak, i=1,....M
(sk > 0 for violated cuts, and s¥ < 0 for slack/tight cuts). In particular, the
ability of computing the subgradient is essential for the convergence of overall
scheme—this is not a trivial task when the cut family is described only implicitly.

In our context, family () is by far too large to be computed explicitly, so
we store only some of its members, using a data structure called cut pool. Cut
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duplication in the pool is heuristically avoided by normalizing the cut right-
hand-side and by using a hash function.

The cut pool is initially empty, or it can contain some heuristic collection
of warm-start cuts. The pool is then iteratively extended by means of rank-1
GMICs that are heuristically generated, on the fly, during the process of solving
the Lagrangian dual problem. More specifically, if the Lagrangian subproblem at
a certain u* is solved by the simplex method and an optimal vertex 2* of P with
fractional components is found, we can just read a round of rank-1 GMICs from
the optimal LP basis and feed the cut pool. Note that these cuts are always
associated with a primal-feasible basis of the original system P, so they are
globally valid for our MIP problem even if the cut pool contains invalid cuts
(e.g., branching conditions or temporary diversification cuts). Also note that,
although violated by 2*, some of these cuts can actually belong already to the
current pool—an indication that their Lagrangian multiplier should be increased
in the next iterations.

A characteristic of relax-and-cut methods is that, differently from traditional
cutting plane schemes, there is no natural “fractional point to cut”, and the dis-
covery of new cuts to be added to the pool is beneficial mainly because new com-
ponents of the “true” subgradient s* are computed, thus improving the chances
of convergence to the “true” optimal dual value z; of the overall Lagrangian
scheme.

4 Implementations

We next describe three very basic heuristics for the Lagrangian dual problem (3]),
that are intended to evaluate the potentials of using GMICs in a relax-and-cut
framework. The investigation of more sophisticated schemes such as the bundle
method is left to future investigation.

4.1 Subgradient Optimization

The basic algorithm underlying our heuristics is the subgradient method. The
subgradient method is an adaptation of the gradient method to the case of
maximization of nondifferentiable concave functions, such as L(u). It starts with
a tentative point ug > 0 and then iteratively constructs a sequence of points u*
according to the following rule:

uk+1 _ (uk + Aksk)Jr

where s* is a subgradient of L(-) in u*, A, > 0 is an appropriate parameter

called step length, and (-)1 denotes the projection onto the nonnegative orthant.
The asymptotic convergence of the method is guaranteed by the properties
of the subgradient and by the choice of appropriate step sizes. A step-size rule
often used in practice, usually known as relazation step length or Polyak’s step
length, computes
\, _ (UB ~ L)
[Is*1[?
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where py, is a parameter satisfying 0 < pg < 2, and UB is the unknown optimal
dual value z1, typically replaced by an upper bound on z;. In our code, this upper
bound is computed as the objective value of the best integer solution found by
a MIP solver at the end of root node, or an appropriate multiple of the LP
relaxation if none is found. As to uy, it is adjusted dynamically in order to try
to speed up convergence, using quite an elaborated update strategy inspired by
the computational studies reported in [I7,[18]. In particular, at the beginning of
each Lagrangian iteration, we compute a “reference” interval A = UB —bestL B,
that we use to guide our strategy. If, in the last p = 100 iterations, bestL B has
improved by less than 0.014, then we update pj, as follows:

10py  if bestLB — avgLB < 0.001A
pr =< 2u,  if 0.001A < bestLB — avgLB < 0.01A
1ur/2  otherwise

where avgLB is the average value of L(u) in the last p iterations. Finally, if
L(u) < bestLB — A for 10 consecutive iterations we halve p;, and backtrack to
the best u* so far.

In the following, we will denote by subg our implementation of a pure subgra-
dient method for solving (@), with a limit of 10, 000 iterations. The starting step
size parameter is aggressively set to uo = 10. This is justified by the fact that in
our scenario the convergence of the method is not guaranteed (and is also un-
likely in practice), because we are dealing explicitly only with a small subset of
cuts. In particular, we always deal with truncated subgradients and, even more
importantly, we have no way of generating violated GMICs apart from reading
them from the LP tableau. According to our computational experience, in this
scenario a small initial value for u is quite unappropriate because it causes the
method to saturate far from an optimal Lagrangian dual solution u*, with no
possibility for recovery.

Finally, to avoid overloading the cut pool, we read a round of GMICs at
every K-th subgradient iteration, where K = 10 in our implementation. In
addition, the length of the Lagrangian vector u* is not increased every time
new cuts are added to the pool, but only every 50 subgradient iterations, so as
to let the subgradient method stabilize somehow before adding new Lagragian
components. In this view, our implementation is between the so-called delayed
and non-delayed relax-and-cut methods [I4].

4.2 Hybrid LP and Subgradient Optimization

The basic subgradient method presented in the previous subsection has several
drawbacks when applied to ([B]). In particular, finding the right combination of
parameters to obtain a satisfactory convergence is definitely tricky. In our setting,
we found beneficial to recompute, from time to time, the optimal vector u of for
all the cuts in the current pool, which amounts to solving a large LP by means
of a standard dynamic pricing of the cuts in the pool, akin to the one proposed
in [T19]. Note that this policy is usually not attractive in a classical setting where
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the number of dualized constraints is fixed—solving the large LP would be just
as hard as solving (). This is however not the case in our context, because the
pool is extended dynamically and stores a (large but) manageable subset of cuts.

In what follows, we will denote by hybr our implementation of a hybrid sub-
gradient method for solving (@), where we periodically compute the optimal
multipliers of the pool cuts by solving the large LP (note however that we do
not read GMICs from the optimal basis of the large LP). In our code this is
done every 1,000 subgradient iterations. All other parameters are the same as
in subg.

4.3 Fast Hybrid Framework

Although the hybrid version hybr is definitely an improvement over subg, both
methods are still quite demanding as far as running time is concerned. The reason
is twofold. First, we may spend a lot of time generating GMICs from useless
bases (contrarily to popular belief, reading cuts from the tableau comes not for
free, although it is very cheap compared to other separation methods). Second,
the LPs change significantly from one iteration to the next one, because of the
zig-zagging nature of the dual multipliers induced by the standard subgradient
algorithm, hence the usual warm-start of the simplex algorithm is less effective—
note that this drawback may be reduced by using more stabilized algorithms like
the bundle method.

We developed some variants of hybr tweaked for speed, trying to sacrifice the
quality of the computed bound on z; as little as possible. Speed is obtained by
drastically reducing the number of subgradient iterations and by using a very
small step length parameter (ur = 0.01 in our code). The small step size yields
more parametrized LPs where warm-start is more effective, and the reduced
number of iterations speeds up the whole approach. In a sense, we are no longer
relying on the step size for the convergence of the method—which is taken care of
by the large LPs used to get the optimal multipliers—and we use the subgradient
method just to sample near-optimal Lagrangian bases of the original system
generating rank-1 GMICs (this will be called the sampling phase in the sequel).
It is worth noting that the small step length parameter and the reduced number
of iterations essentially turn off the step-length update strategy that we have
described in Section E11

We implemented two variants of the above method, namely fast and faster.
In both variants we solve the large LP to compute the Lagrangian optimal mul-
tipliers only 10 times, and we generate GMICs at every subgradient iteration.
The difference is in the number of subgradient iterations in the sampling phase
between two consecutive large-LP resolutions, which is 100 for fast, and just 50
for faster.

It is worth observing that the methods above can be interpreted a la Dantzig-
Wolfe as a way to decompose the optimal solution x* of the large LP into
a suitable convex combination j A\;jx? of vertices 2/ of P, and to separate

these 27 in the attempt of finding valid cuts violated by z*. This links those
variants to the work of Ralphs, Kopman, Pulleyblank, and Trotter [20], where
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a similar idea was applied to separate capacity cuts for the Capacitated Vehicle
Routing Problem—the fractional CVRP vertex being expressed as the convex
combination of m-TSP integer solutions, each of which is easily evaluated to find
violated capacity cuts.

5 Computational Results

We tested our variants of the relax-and-cut framework for GMICs on the problem
instances in MIPLIB 3.0 [2I] and MIPLIB 2003 [22]. Following [2], we omitted all
instances where there is no improvement after one round of GMICs read from the
optimal tableau, or where no integer solution is known. Moreover, we excluded
instances mod011 and rentacar, because of the presence of ranged constraints
in the formulation, that are not handled by our current GMIC code. In the end,
we were left with 52 instances from MIPLIB 3.0, and 20 instances from MIPLIB
2003. For the sake of space, we will only report aggregated statistics; detailed
tables are available, on request, from the authors.

We implemented our code in C++, using IBM ILOG Cplex 11.2 as black
box LP solver (its primal heuristics were also used to compute the subgradient
upper bound UB). All tests have been performed on a PC with an Intel Q6600
CPU running at 2.40GHz, with 4GB of RAM (only one CPU was used by each
process). As far as the GMIC generation is concerned, for a given LP basis we
try to generate a GMIC from every row where the corresponding basic variable
has a fractionality of at least 0.001. The cut is however discarded if its final
dynamism, i.e., the ratio between the greatest and smallest absolute value of the
cut coefficients, is greater than 10'C.

5.1 Approximating the First GMI Closure

In our first set of experiments we compared the ability (and speed) of the pro-
posed methods in approximating the first GMI closure for the problems in our
testbed. The first GMI closure has received quite a lot of attention in the last
years, and it was computationally proved that it can provide a tight approxi-
mation of the convex hull of the feasible solutions. In addition, rank-1 GMICs
are read from the original tableau, hence they are generally considered safe from
the numerical point of view. Note that our method can only generate cuts from
primal-feasible bases, hence it can produce a weaker bound than that associated
with the first GMI closure [23].

In Table [[l we report the average gap closed by all methods that generate
rank-1 GMICs only, as well as the corresponding computing times (geometric
means). We recall that for a given istance, the gap closed is defined as 100 (2 —
z0)/(opt — zg), where zj is the value of the initial LP relaxation, z is the value
of the final LP relaxation, and opt is the best known solution. For comparison,
we report also the average gap closed by one round of GMIC read from the
the first optimal tableau (1gmi), as well as the average gap closed with the
default method proposed by Dash and Goycoolea (dgDef), as reported in [2].
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Table 1. Average gap closed and computing times for rank-1 methods

MIPLIB 3.0 MIPLIB 2003
method cl.gap time (s) cl.gap time (s)
1gmi 26.9% 0.02 18.3% 0.54
faster 57.9% 1.34 43.3% 33.33
fast 59.6% 2.25 45.5% 58.40
hybr 60.8% 15.12 48.6% 315.21
subg 56.0% 25.16 43.5% 291.21
dgDef 61.6% 20.05 39.7% 853.85

All computing times are given in CPU seconds on our Intel machine running
at 2.4 GHz, except for dgDef where we just report the computing times given
in [2], without any speed conversion—the entry for MIPLIB 3.0 refers to a 1.4
GHz PowerPC machine (about 2 times slower than our PC), while the entry
for MIPLIB 2003 refers to a 4.2 GHz PowerPC machine (about twice as fast as
our PC).

According to the table, the relax-and-cut methods performed surprisingly well,
in particular for the hard MIPLIB 2003 instances where all of them outperformed
dgDef in terms of both quality and speed.

As far as the bound quality is concerned, the best method appears to be
hybr, mainly because of its improved convergence with respect to subg, and
of the much larger number of subgradient iterations (and hence of LP bases)
generated with respect to the two fast versions.

The two fast versions also performed very well, in particular faster that
proved to be really fast (more than 10 times faster than dgDef) and quite accu-
rate. It is worth observing that about 75% of the computing time for fast and
faster was spent in the sampling phase: 40% for LP reoptimizations, and 35%
for actually reading the GMICs from the tableau and projecting slack variables
away. Quite surprisingly, the solution of the large LPs through a dynamic pricing
of the pool cuts required just 15% of the total computing time.

5.2 A Look to Higher Rank GMICs

In this subsection we investigate the possibility of generating GMICs of rank
greater than 1. Unfortunately there is no fast way to compute the exact rank of
a cut, hence we use an easy upper bound where the rows of the original system
Ax = b are defined to be of rank 0, and the rank of a GMIC is computed as
the maximum rank of the involved rows, plus one. Having computed the above
upper bound for each GMIC, we avoid storing in the pool any GMICs whose
upper bound exceeds an input rank limit & (kK =2 or 5, in our tests).

Our relax-and-cut framework can be extended in many different ways to gen-
erate higher-rank GMICs. In particular, given a maximum allowed rank k, it is
possible to:
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a) Generate k rounds of GMICs in a standard way, use them to intialize the cut
pool, and then apply our method to add rank-1 GMICs on top of them. This
very simple strategy turned out not to work very well in practice, closing
significantly less gap than the rank-1 version.

b) Apply one of the relax-and-cut variants of the previous subsection until a
termination condition is reached. At this point add to the original formula-
tion (some of) the GMICs that are tight at the large-LP optimal solution,
and repeat k times. This approach works quite well as far the final bound
is concerned, but it is computationally expensive because we soon have to
work with bigger (and denser) tableaux.

c¢) Stick to rank-1 GMICs in the sampling phase, never enlarging the original
system. However, each time a large LP is solved to recompute the dual
multipliers (this can happen at most k times), add to the pool (but not
to the original formulation) all the GMICs read from the large-LP optimal
basis.

d) As before, stick to rank-1 GMICs in the sampling phase. If however no cut
separating the previous large-LP solution z* is found in the sampling phase,
then add to the pool all GMICs read from the large LP optimal basis, and
continue. This way, the generation of higher-rank cuts acts as a diversification
step, used to escape a local deadlock, after which standard rank-1 separation
is resumed.

According to our preliminary computational experience, the last two schemes
give the best compromise between bound quality and speed. In particular, c)
takes almost the same computing time as its rank-1 counterpart in Table [T
and produces slightly improved bounds. Option d) is slower than ¢) but closes
significantly more gap, hence it seems more attractive for a comparison with
rank-1 cuts.

Table 2. Average gap closed and computing times for higher rank methods

MIPLIB 3.0 MIPLIB 2003
method rank cl.gap time (s) cl.gap time (s)
gmi 1 26.9% 0.02 18.3% 0.54
faster 1 57.9% 1.34 43.3% 33.33
fast 1 59.6% 2.25 45.5% 58.40
gmi 2 36.0% 0.03 24.0% 0.88
faster 2 62.1% 2.75 47.2% 58.37
fast 2 64.1% 5.12 48.5% 106.76
gui 5 47.8% 0.07  30.3% 2.17
faster 5 65.6% 5.47 49.9% 126.65
fast 5 67.2% 10.09 51.1% 238.33
L&P 10 57.0% 3.50 30.7% 95.23
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In Table 2] we report the average gap closed by our fast versions when higher-
rank GMICs are generated according to scheme d) above. Computing times
(geometric means) are also reported. Rank-1 rows are taken from the previous
table.

In the table, row gmi refers to 1, 2 or 5 rounds of GMICs. For the sake of
comparison, we also report the average gap closed by 10 rounds of Lift&Project
cuts (L&P), as described in [I]. To obtain the Lift&Project bounds and running
times we ran the latest version of separator CglLandP [24] contained in the COIN-
OR [25] package Cgl 0.55, using Clp 1.11 as black box LP solver (the separator
did not work with Cplex because of the lack of some pivoting procedures). This
separation procedure was run with default settings, apart from the minimum
fractionality of the basic variables used to generate cuts, which was set to 0.001
as in the other separators. All computing times are given in seconds on our Intel
machine running at 2.4 GHz.

Our fast procedures proved quite effective also in this setting, providing sig-
nificantly better bounds than L&P in a comparable or shorter amount of time,
even when restricting to rank-1 GMICs. As expected, increasing the cut rank
improves the quality of the bound by a significant amount, though it is not clear
whether this improvement is worth the time overhead—also taking into account
that GMICs of higher rank tend to be numerically less reliable. Similarly, it is
not clear whether the bound improvement achieved by fast w.r.t. faster is
worth the increased computing time.

6 Conclusions and Future Work

We have considered Gomory Mixed-Integer Cuts (GMICs) read from an optimal
LP basis, as it is done customary in branch-and-cut methods, but in a new shell
aimed at overcoming the notoriously bad behavior of these cuts in the long run.
The new shell uses a relax-and-cut approach where the generated GMICs are not
added to the current LP, but are stored in a cut pool and immediately relaxed
in a Lagrangian fashion.

We have presented some variants of our basic method and we have computa-
tionally compared them with other methods from the literature. The results have
shown that even simple implementations of the new idea are quite effective, and
outperform their competitors in terms of both bound quality and speed. We are
confident however that there is still room for improvement of our basic methods.

Future work should investigate the following research topics:

— The use of a more sophisticated Lagrangian dual optimizer to replace the
simple subgradient procedure we implemented.

— Our method is meant to add rank-1 GMICs on top of a collection of other cuts
collected in a cut pool. In our current experiments the cut pool only contains
GMICs collected in the previous iterations. However, it seems reasonable to
allow the pool to contain other classes of (more combinatorial) cuts, e.g., all
those generated at the root node by a modern MIP solver. In this setting,
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the preprocessed model and the generated cuts (stored in the cut pool) can
be provided as input to our relax-and-cut scheme, in the attempt of reducing
even further the integrality gap at the root node.

During Lagrangian optimization, a large number of (possibly slightly frac-
tional or even integer) vertices of P are generated, that could be used heuris-
tically (e.g., through rounding) to provide good primal MIP solutions.

Finally, in the process of developing our method we realized that cutting plane
schemes miss an overall “meta-scheme” to control cut generation and to escape
“local optima” by means of diversification phases—very well in the spirit of
Tabu or Variable Neighborhood Search meta-schemes for primal heuristics. The
development of sound meta-schemes on top of a basic separation tool is therefore
an interesting topic for future investigations—our relax-and-cut framework for
GMICs can be viewed as a first step in this direction.
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Abstract. Cutting plane methods are widely used for solving convex
optimization problems and are of fundamental importance, e.g., to pro-
vide tight bounds for Mixed-Integer Programs (MIPs). This is obtained
by embedding a cut-separation module within a search scheme. The
importance of a sound search scheme is well known in the Constraint
Programming (CP) community. Unfortunately, the “standard” search
scheme typically used for MIP problems, known as the Kelley method,
is often quite unsatisfactory because of saturation issues.

In this paper we address the so-called Lift-and-Project closure for 0-
1 MIPs associated with all disjunctive cuts generated from a given set
of elementary disjunction. We focus on the search scheme embedding
the generated cuts. In particular, we analyze a general meta-scheme for
cutting plane algorithms, called in-out search, that was recently proposed
by Ben-Ameur and Neto [I]. Computational results on test instances
from the literature are presented, showing that using a more clever meta-
scheme on top of a black-box cut generator may lead to a significant
improvement.

Keywords: Mixed-integer programming, cutting planes, disjunctive
optimization.

1 Introduction

Cutting plane methods are widely used for solving convex optimization problems
and are of fundamental importance, e.g., to provide tight bounds for Mixed-
Integer Programs (MIPs). These methods are made by two equally important
components: (i) the separation procedure (oracle) that produces the cut(s) used
to tighten the current relaxation, and (ii) the overall search framework that
actually uses the generated cuts and determines the next point to cut.

In the last 50 years, a considerable research effort has been devoted to the
study of effective families of MIP cutting planes, as well as to the definition
of sound separation procedures and cut selection criteria [2,[3]. However, the
search component was much less studied, at least in the MIP context where one
typically cuts a vertex of the current LP relaxation, and then reoptimizes the
new LP to get a new vertex to cut—a notable exception is the recent paper [4]

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 136{-140} 2010.
© Springer-Verlag Berlin Heidelberg 2010
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dealing with Benders’ decomposition. The resulting approach—known as “the
Kelley method” [5]—can however be rather inefficient, the main so if the sepa-
ration procedure is not able to produce strong (e.g., facet defining or, at least,
supporting) cuts. As a matter of fact, alternative search schemes are available
that work with non-extreme (internal) points [6L[7], including the famous ellip-
soid [8/9] and analytic center [I0,11,12] methods; we refer the reader to [13]
for an introduction. The convergence behavior of these search methods is less
dependant on the quality of the generated cuts, which is a big advantage when
working with general MIPs where separation procedures tend to saturate and to
produce shallow cuts. A drawback is that, at each iteration, one needs to recom-
pute a certain “core” point, a task that can be significantly more time consuming
than a simple LP reoptimization. An interesting hybrid search method, called
in-out search, was recently proposed by Ben-Ameur and Neto [IJ.

In this paper we address disjunctive optimization [I4] in the MIP context.
It essentially consists of a cutting plane method where cuts are separated by
exploiting a given set of valid disjunctions. In particular, we consider 0-1 MIPs
and the associated Lift-and-Project closure, defined by all the disjunctive cuts
that can be derived from the “elementary” set of disjunctions of the type z; <0
or x; > 1 for each integer-constrained variable x;. This topic is currently the
subject of intensive investigation by the Mathematical Programming community.
Our current research topic is in fact to move the research focus from the widely
investigated separation module to the search scheme where the generated cuts are
actually embedded. A first step in this direction is reported in the present paper,
where we investigate the use of disjunctive cuts within an in-out search shell.
Computational results show that the resulting scheme outperforms the standard
one, in that it produces tighter bounds within shorter computing times and need
much fewer cuts—though they use exactly the same separation module.

2 In-Out Search

Let us consider a generic MIP of the form
min{ch:Ax:b, I<z<wu, z; €ZVjel}

and let P:={z € R": Az = b, | <z < u} denote the associated LP relaxation
polyhedron. In addition, let us assume the oracle structure allows one to define a
“cut closure”, P;, obtained by intersecting P with the half-spaces induced by all
possible inequalities returned by the oracle. Cutting plane methods are meant
to compute z; := min{c’x : x € P}, with P; described implicitly through the
oracle.

In-out search works with two points: an “internal” (possibly non optimal)
point ¢ € Py, and an optimal vertex x* of P (possibly not in Py). By construction,
the final (unknown) value z; belongs to the uncertainty interval [cTx*,cTq), i.e.,
at each iteration both a lower and an upper bound on z; are available. If the
two points ¢ and z* coincide, the cutting plane method ends. Otherwise, we
apply a bisection step over the line segment [2*, ], i.e., we invoke the separation
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procedure in the attempt of cutting the middle point y := (z* + ¢)/2. (In the
original proposal, the separation point is more generally defined as y := ax™ +
(1 — a)q for a given a € (0,1].) If a violated cut is returned, we add it to the
current LP that is reoptimized to update x*, hopefully reducing the current lower
bound ¢’ z*. Otherwise, we update g := y, thus improving the upper bound and
actually halving the current uncertainty interval.

The basic scheme above can perform poorly in its final iterations. Indeed, it
may happen that x* already belongs to Py, but the search is not stopped because
the internal point ¢ is still far from x*. We then propose a simple but quite
effective modification of the original scheme where we just count the number of
consecutive updates to ¢, say k, and separate directly «* in case k > 3. If the
separation is unsuccessful, then we can terminate the search, otherwise we reset
counter k£ and continue with the usual strategy of cutting the middle point .

As to the initialization of ¢ € P;, this is a simple task in many practical
settings, including the MIP applications where finding a feasible integer solution
q is not difficult in practice.

3 Disjunctive Cuts

Consider the generic MIP of the previous section. To simplify notation, we con-
centrate on 0-1 MIPs where [; = 0 and uw; = 1 for all § € I. Our order of
business is to optimize over the Lift-and-Project closure, say P;, obtained from
P by adding all linear inequalities valid for P7 := conv({x € P:z; <0}U{z €
P :x; > 1}) for j € I. To this end, given a point z* € P (not necessarily a
vertex), for each j € I with 0 < z; <1 we construct a certain Cut Generation
Linear Program (CGLP) whose solution allows us to detect a valid inequality
for PJ violated by x* (if any). Various CGLPs have been proposed in the litera-
ture; the one chosen for our tests has a size comparable with that of the original
LP, whereas other versions require to roughly double this size. Given x* and a
disjunction z; < 0V z; > 1 violated by z*, our CGLP reads:

maxz; —d* (1)

Ax =d*b (2)

'l <z <dl+(x" -1 (3)
d'u—(u—2z") <z <d'u (4)

where d* = 2% > 0 (the two sets of bound constraints can of course be merged).
Given the optimal dual multipliers (A, —¢”, o', —7’, 7"") associated with the con-
straints of the CGLP, it is possible to derive a most-violated disjunctive cut yz >
Yo, where v = o' =7’ —ugej, vo = o'l—7'u, and ug = 1=\bo— (o' =" )+ (7' —7")u.

4 Computational Results (Sketch)

We implemented both the standard (kelley) and in-out (in-out) separation
schemes and we compared them on a collection of 50 0-1 MIP instances from
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MIPLIB 3.0 [I5] and 2003 [16], and on 15 set covering instances from ORLIB [17].
We used IBM ILOG Cplex 11.2 as black-box LP solver, and to compute a first
heuristic solution to initialize the in-out internal point g. Both schemes are given
a time limit of 1 hour, and generate only one cut at each iteration—taken from
the disjunction associated to the most fractional variable. Cumulative results are
reported in Table [Il, where time denotes the geometric mean of the computing
times (CPU seconds on an Intel Q6600 PC running at 2.4 GHz), itr denotes
the geometric mean of the number of iterations (i.e., cuts), cl.gap denotes the
average gap closed w.r.t the best known integer solution, and L&P cl.gap de-
notes the average gap closed w.r.t. the best known upper bound on z; (this
upper bound is obtained as the minimum between the best-known integer solu-
tion value and the last upper bound on z; computed by the in-out algorithm).
The results clearly show the effectiveness of in-out search, in particular for set
covering instances.

Table 1. Cumulative results on Lift-and-Project optimization

testbed method time (s) itr cl.gap L&P cl.gap
kelley 38.18 1,501 40.8% 63.7%
MIPLIB in-out 28.42 592 41.2% 64.1%
kelley 2,281.60 16,993 35.2% 71.8%

set covering in-out 75799 1,575 38.7% 85.8%
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Abstract. The Orthogonal Packing Problem (OPP) consists in determining if a
set of items can be packed into a given container. This decision problem is NP-
complete. Fekete et al. modelled the problem in which the overlaps between the
objects in each dimension are represented by interval graphs. In this paper we pro-
pose a SAT encoding of Fekete et al. characterization. Some results are presented,
and the efficiency of this approach is compared with other SAT encodings.

1 Introduction

The multi-dimensional Orthogonal Packing Problem (OPP) consists in determining if
a set of items of known sizes can be packed in a given container. Although this prob-
lem is NP-complete, efficient algorithms are crucial since they may be used to solve
optimization problems like the strip packing problem, the bin-packing problem or the
optimization problem with a single container.

S. P. Fekete et al. introduced a new characterization for OPP [1]]. For each dimen-
sion 4, a graph G; represents the items overlaps in the i dimension. In these graphs,
the vertices represent the items. The authors proved that solving the d-dimensional or-
thogonal packing problem is equivalent to finding d graphs G, . .., G4 such that (P1)
each graph G; is an interval graph , (P2) in each graph G;, any stable set is i-feasible,
that is the sum of the sizes of its vertices is not greater than the size of the container
in dimension ¢, and (P3) there is no edge which occurs in each of the d graphs. They
propose a complete search procedure [[1]] which consists in enumerating all possible d
interval graphs, choosing for each edge in each graph if it belongs to the graph or not.
The condition (P3) is always satisfied, forbidding the choice for any edge which occurs
in d-1 graphs in the remaining graph. Each time a graph G is an interval graph, the
i-feasibility of its stable sets is verified, computing its maximum weight stable set (the
weights are the sizes of the items in the dimension 7). As soon as the three conditions
are satisfied the search stops and the d graphs represent then a class of equivalent solu-
tions to the packing problem. Figure [[l shows an example in two dimensions with two
packings among many others corresponding to the same pair of interval graphs.

There are very few SAT approaches for packing. In 2008 T. Soh et al. proposed a
SAT encoding for the strip packing problem in two dimensions (SPP) [2]]. This problem

* This work is supported by Region Provence-Alpes-Cote-d’ Azur and the ICIA Technologies
company. We also thank P. Jegou and D. Habet for helpfull discussions.
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Fig. 1. Two packings corresponding to the same interval graphs in a two-dimensional space

consists in finding the minimal height of a fixed width container containing all the items.
For that purpose they perform successive searches with different heights (selected with
a dichotomy search strategy). Each time, the decision problem is encoded in a SAT
formula which is solved with an external SAT solver (Minisat). In their formulation the
variables represent the exact positions of the items in the container. Additional variables
represent the relative positions of the items one with the others (on the left, on the right,
above, under). T. Soh et al. also introduce constraints to avoid reconsidering symmetric
equivalent packings. Finally the new clauses that the SAT solver Minisat generates to
represent the conflicts are memorised and re-used in further searches. This is possible
since successive searches are incremental SAT problems. T. Soh et al. SAT encoding
involves O(W x H x n + n?) Boolean variables for a problem with n items and a
container of width W and height H.

2 A New SAT Encoding

We propose a new SAT encoding based on Fekete et al. characterization for the d-
dimensional packing problem. Recall that each graph GG; must be an interval graph, and
that if this is the case, then there exists a linear ordering of the maximal cliques of G;
such that each vertex occurs in consecutive cliques. This ordering is called a consecutive
linear ordering and its size, the number of maximal cliques, is less then or equal to the
number of items.

Basically, for each dimension ¢, Boolean variables indicate the presence of the edges
in the graph G,, that is the overlaps between the objects in dimension 4. Furthermore,
Boolean variables represent a linear clique decomposition of the graph G, ensuring that
the graph is an interval graph if this decomposition is a consecutive linear ordering. The
cliques are numbered from 1 to n. Then, Boolean variables indicate for each item and
for each clique if the item occurs in the clique. Finally additional variables have been
introduced to simplify the formulation of the constraints. The variables used in our
formulation are defined as follows (note that some of these variables are not necessary
in the basic formalisation of the packing problem):

e;,y : true if the edge {z,y} is in G;,

Cy.q - trueif item x is in clique a,

pi’y’a : true if items x and y both occur in clique a,
u!, : true if clique a is not empty,

The stable set feasability of the graph G; is verified with clauses that forbid the unfea-
sible stable sets. The set of all the unfeasible stable sets in dimension i is denoted S°.
Then the packing problem is encoded by the following formulas:
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1. [All objects are packed]
re0,1<i<d,
cé,l V...V cﬁm
2. [Consecutive linear ordering]
re0,1<i<d,1<a<b-1<n,
(Cé,a A C;,b) = Ci:,aJrl
3. [No-overlap Constraint]
z,y € O,
—\e;,y V...V ﬁeg’
4. [Stable set feasibility]
1<i<d,NeS,
\/ ei,y
z,y EN
5. [No empty cliques]
1<i<d,1<a<n,
(A oA Ak ) = (2 g n A A 1)

Y

6. [Correlations between the variables]
z,y€0,1<a<n,1<i<d,

Doya & (ChaNCyo)and (Pl 1 V... \/pfv’y’k) ey

The formulas (1) force each item to occur in at least one clique, while the formulas (2)
force each item to occur in consecutive cliques (Fekete et al. property P1: the graphs
are interval graphs). The formulas (3) state that no two objects may intersect in all the
dimensions (Fekete et al. property P3). The stable set feasability is enforced by the
formulas (4): for each unfeasible stable set N € S* in the dimension i, a clause ensures
that at least two items of the stable set intersect each other. In fact only the minimal
unfeasible stable sets are considered. For example, if two items x and y are too large to
be packed side by side in the 7™ dimension, then {x, y} is a stable set of S? and the unit
clause e;,y is generated. Then the SAT solver will immediately assign to the variable
ei’y the value true and propagate it. The formulas (5) forbid empty cliques. Finally the
formulas (6) establish the relations between the Boolean variables.
The following constraints are not necessary but they may help during the search:

7. [Consective linear ordering (bis)]
zre0,1<a<n,1<:<d,
(C;,a A _'szp,aJrl) = (
(C;,a A _'C.Zt,a—l) = (
8. [Maximal cliques]
1<a<n,1<i<d,
ul & (¢, V...V,
(u; A uf;H) = ((cﬁa A _‘Ci,aﬂ) V...V (c;,q A —\C%,aﬂ))
(ug Nigyq) = (0o A€t aqa) VooV (2C 0 Ay aya))

Z{E’a+2 /\ P /\ _‘C;,n)

—c
) )
Cpan N A1)
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9. [Identical items ordering]
z,yeO,r=yandz <y,1 <a<n,a<b<n

(Céy,a A Céx,b) = Céz,a

The formulas (7) propagates the consecutive cliques ordering property, the formulas (8)
forbid cliques which are not maximal, and the formulas (9) force identical objects to
respect a given a priori ordering in only one dimension 4, so as to avoid the generation
of equivalent permutations of these objects. This SAT encoding involves O(n?) and
(’)(n4+2”) clauses. However, since only the minimal unfeasible stable sets are encoded,
in the general case there are much less than 2" clauses of type (4).

3 Experimental Results

3.1 Orthogonal Packing Problem

The problem consists to determine if a given set of items may be packed into a given
container. We have compared our approach with that Fekete et al. on a selection of two-
dimensional problems, using as reference the results published by Clautiaux et al. [3].
Table [Tl shows the characteristics of the instances, the results of Fekete et al. (FS), and
the results of our approach with two modelisations: the modelisation M1 corresponds to
the formulas from (1) to (6) and (9), while the modelisation M2 contains, furthermore,
the facultative formulas (7) and (8). All of our experimentations were run on Pentium
IV 3.2 GHz processors and 1 GB of RAM, using Minisat 2.0.

Table 1. Comparison with Fekete et al

Instance FS Ml M2
Name Space Fais. n Time (s) Time (s) #var.  #claus. Time (s) #var.  #claus.
E02F17 02 F 17 7 4.95 5474 26167 13.9 6660 37243
E02F20 02 F 20 - 5.46 8720 55707 1.69 10416 73419
E02F22 02 F 22 167 7.62 11594 105910 21.7 13570 129266
EO03N16 03 N 16 2 39.9 4592 20955 473 5644 30259
EO3N17 03 N 17 0 4.44 5474 27401 9.32 6660 38477
E04F17 04 F 17 13 0.64 5474 26779 1.35 6660 37855
E04F19 04 F 19 560 3.17 7562 46257 1.43 9040 61525
E04F20 04 F 20 22 5.72 8780 59857 2.22 10416 77569
E04N18 04 N 18 10 161 6462 32844 87.7 7790 45904
EO05F20 05 F 20 491 6.28 8780 59710 0.96 10416 77422

Average > 217 239 7291 46159 18.8 8727 60894

Our approach outperforms FS on satisfiable instances, and even the instance E02F20
is not solved by Fekete et al. within the timeout (15 minutes). On unsatisfiable instances
they have better performances, probably because they compute very relevant bounds
(see DFF in [4]) which help them to detect dead ends during the search very early.

3.2 Strip Packing Problem

We have also compared our approach with Soh and al. on two-dimensional strip pack-
ing problems of the OR-Library available at http: //www.or.deis.unibo.it/
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Table 2. Results for OR-Library instances

Instance Soh et Ml M2
Name n Width LB al. Height #var.  #claus. Time Height #var.  #claus.  Time
HTO1 16 20 20 20 20 4592 22963 133 20 5644 32267 19.4
HT02 17 20 20 20 20 5474 28669 744 20 6660 39745 444
HTO03 16 20 20 20 20 4592 24222 18.5 20 5644 33526 25.5
HTO04 25 40 15 15 16 16850 271500 1206 19 19396 305392 521
HTO5 25 40 15 15 16 16850 337395 438 16 19396 372287 536
HT06 25 40 15 15 16 16850 494500 146 16 19396 528392 295
CGCUTO1 16 10 23 23 23 4592 26745 5.89 23 5644 36049 9.71
CGCUTO02 23 70 63 65 66 13202 115110 1043 70 15360 188222 1802

GCUTO1 10 250 1016 1016 1016 1190 4785 0.11 1016 1606 7237 0.04
GCUTO02 23 250 1133 1196 1259 8780 105810 37.3 1196 10416 123522 1241

NGCUTO1 10 10 23 23 23 1190 5132 0.23 23 1606 7584 0.09
NGCUTO02 17 10 30 30 30 5474 29662 1.6 30 6660 40738 2.74
NGCUTO3 21 10 28 28 28 10122 108138 273 28 11924 128542 580
NGCUT04 7 10 20 20 20 434 1661 0.01 20 640 2577 0.01
NGCUTO5 14 10 36 36 36 3122 15558 6.01 36 3930 21906 4.44
NGCUTO06 15 10 31 31 31 3810 18629 1.92 31 4736 26361 291
NGCUTO07 8 20 20 20 20 632 2535 0 20 900 3855 0
NGCUTO08 13 20 33 33 33 2522 11870 2.74 33 3220 17010 9.73
NGCUTO09 18 20 49 50 50 6462 33765 391 50 7790 46825 533
NGCUTI10 13 30 80 80 80 2522 11790 0.75 80 3220 16930 0.39
NGCUTI1 15 30 50 52 52 3810 18507 19.7 52 4736 26239 25.9
NGCUTI12 22 30 79 87 87 11594 173575 886 87 13570 196931 24.5

research.html. The problem is to determine the minimal height of a fixed width
container which may contain a given set of items. As Soh et al. we perform a sort of
dichotomy search starting with a lower bound given by Martello and Vigo [5] and an
upper bound which is calculated using a greedy algorithm. In table [2] we have reported
the sizes of the encodings (numbers of variables and clauses) and the minimal height
which was found within the timeout of 3600 seconds. Optimal heights are in bold (this
occurs when the minimal height is equal to the lower bound or when the solver proves
that there is no solution with a smaller height). Instances in which the number of items
is large have been discarded, since the number of unfeasible stable sets becomes too
important and so the number of corresponding clauses. Note that Soh and al. used also
the solver Minisat. For 16 instances among 22 our system discovers the optimal height.
Furthermore, among these 16 instances, 14 are solved in less than 30 seconds with one
of our two modelisations. The ability of Soh and al. solver to reuse the conflict clauses
that Minisat generates during the search is a real advantage since many unsuccessfull
searches are then avoided.

4 Conclusions and Future Works

We have proposed a SAT encoding which outperforms significantly Fekete et al. method
on satisfiable instances. Moreover, we have experimented this encoding on strip-packing
problems. In future work we will try to integrate the DFF computation to improve the
search on unsolvable problems. We will also try to characterize the situations in which
the conflicts clauses which are generated by the SAT solver, may be re-used. This oc-
curs in particular when successive calls to the solver are performed, for example when
searching the minimal height in strip-packing problems.
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Abstract. In previous work we introduced a simple constraint model that com-
bined generic Al strategies and techniques (weighted degree heuristic, geometric
restarts, nogood learning from restarts) with naive propagation for job shop and
open shop scheduling problems. Here, we extend our model to handle two vari-
ants of the job shop scheduling problem: job shop problems with setup times; and
job shop problems with maximal time lags. We also make some important addi-
tions to our original model, including a solution guidance component for search.

We show empirically that our new models often outperform the state of the art
techniques on a number of known benchmarks for these two variants, finding a
number of new best solutions and proving optimality for the first time on some
problems. We provide some insight into the performance of our approach through
analysis of the constraint weighting procedure.

1 Introduction

Scheduling problems have proven fertile research ground for constraint programming
and other combinatorial optimization techniques. There are numerous such problems
occurring in industry, and whilst relatively simple in their formulation - they typically
involve only Sequencing and Resource constraints - they remain extremely challenging
to solve. After such a long period as an active research topic (more than half a century
back to Johnson’s seminal work [[18]) it is natural to think that methods specifically
engineered for each class of problems would dominate approaches with a broader spec-
trum. However, it was recently shown [27U15126]] that generic SAT or constraint pro-
gramming models can approach or even outperform state of the art algorithms for open
shop scheduling and job shop scheduling. In particular, in a previous work [[15] we intro-
duced a constraint model that advantageously trades inference strength for brute-force
search speed and adaptive learning-based search heuristics combined with randomized
restarts and a form of nogood learning.

Local search algorithms are generally the most efficient approach for solving job
shop scheduling problems. The best algorithms are based on tabu search, e.g. i-TSAB
[21], or use a CP/local search hybrid [29]. Pure CP approaches can also be efficient,
especially when guided by powerful search strategies that can be thought of as meta-
heuristics [4]. The best CP approach uses inference from the Edge-finding algorithm

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 14 010.
(© Springer-Verlag Berlin Heidelberg 2010
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[8l22]] and dedicated variable ordering heuristics such as Texture [3]]. On the other hand,
we take a minimalistic approach to modelling the problem. In particular, whilst most
algorithms consider resource constraints as global constraints, devising specific algo-
rithms to filter them, we simply decompose them into primitive disjunctive constraints
ensuring that two tasks sharing a resource do not run concurrently. To this naive propa-
gation framework, we combine slightly more sophisticated, although generic heuristics
and restart policies. In this work, we have also incorporated the idea of solution guided
search [4]].

We showed recently that this approach can be very effective with respect to the state
of the art. However, it is even more evident on variants of these archetypal problems
where dedicated algorithms cannot be applied in a straightforward manner. In the first
variant, running a task on a machine requires a setup time, dependent on the task itself,
and also on the previous task that ran on the same machine. In the second variant, max-
imum time lags between the starting times of successive tasks of each job are imposed.
In both cases, most approaches decompose the problem into two subproblems, for the
former the traveling salesman problem with time windows [112] is used, while the latter
can be decomposed into sequencing and timetabling subproblems [10]. On the other
hand, our approach can be easily adapted to handle these additional constraints. Indeed,
it found a number of new best solutions and proved optimality for the first time on some
instances from a set of known benchmarks.

It may appear surprising that such a method, not reliant on domain specific knowl-
edge, and whose components are known techniques in discrete optimization, could be
so effective. We therefore devised some experiments to better understand how the key
component of our approach, the constraint weighting, affects search on these problems.
These empirical results reveal that although the use of constraint weighting is generally
extremely important to our approach, it is not always so. In particular on no-wait job
shop scheduling problems (i.e. problems with maximal time-lag of 0 between tasks),
where our approach often outperforms the state of the art, the weight even seems to be
detrimental to the algorithm.

In SectionP] we describe our approach. In Section[3] after outlining the experimental
setup, we provide an experimental comparison of our approach with the state-of-the-art
on standard benchmarks for these two problems. Finally we detail the results of our
analysis of the impact of weight learning in these instances in Section 4]

2 A Simple Constraint Programming Approach

In this section we describe the common ground of constraint models we used to model
the variants of JSP tackled in this paper. We shall consider the minimization of the total
makespan (C),,,.) as the objective function in all cases.

2.1 Job Shop Scheduling Problem

An n x m job shop problem (JSP) involves a set of nm tasks T = {t;, | 1 < i < nm},
partitioned into n jobs J = {J, | 1 < & < n}, that need to be scheduled on m
machines M = {M, | 1 < y < m}. Eachjob J, € J is a set of m tasks J, =
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{t@@=1)xm+y | 1 <y < m}. Conversely, each machine M, € M denotes a set of n
tasks (to run on this machine) such that: 7 = (U, <, <,, Jo) = (U1 << My)-

Each task ¢; has an associated duration, or processing time, p;. A schedule is a map-
ping of tasks to time points consistent with: sequencing constraints which ensure that
the tasks of each job run in a predefined order; and resource constraints which ensure
that no two tasks run simultaneously on any given machine.

In this paper we consider the standard objective function defined as the minimization
of the makespan C,,;, that is, the total duration to run all tasks. If we identify each
task ¢; with its start time in the schedule, the job shop scheduling problem (JSP) can
thus be written as follow:

(JSP) minimise Cpqr subject to :

ti +pi <tita VI, €T, Vti, tiy1 € Iy 2.2)
ti+pi <t; Vij+p <t VM, € M, ti#tjGMy 2.3)

2.2 Constraint Model

The objective to minimise (total makespan) is represented by a variable C, . and the
start time of each task ¢; is represented by a variable ¢; € [0,...,max(Cpaz) — pil-
Next, for every pair of tasks ¢;,t; sharing a machine, we introduce a Boolean variable
b;; which represents the relative ordering between ¢; and ;. A value of 0 for b;; means
that task ?; precedes task t;, whilst a value of 1 stands for the opposite ordering. The
variables ?;,t; and b;; are linked by the following constraint:

b — 0<:>ti+pi§tj
U\ 1etj+p <t

Bounds consistency (BC) is maintained on these constraints. A range support of a con-
straint C(x1,...,2) is an assignment of {z1,...,z;} satisfying C, and where the
value assigned to each variable x; is an integer taken in the interval [min(z;)..max(x;)].
A constraint C(x1,...,xy) is bounds consistent (BC) iff, for every variable x; in the
scope of C, min(x;) and maz(x;) have a range support. Here, the scope of the con-
straint involves three variables, b;;, t; and t;, therefore BC can be achieved in constant
time for a single constraint, by applying simple rules. For n jobs and m machines, this
model involves nm(n — 1)/2 Boolean variables and as many ternary disjunctive con-
straints. Using an AC3 type constraint queue, the wort case time complexity for achiev-
ing bounds consistency on the whole network is therefore O(Cl, 4 *nm(n—1)/2) since
in the worst case bounds can be reduced by one unit at a time. For instance, consider
three tasks ?;,¢; and t;, such that p; = p; = pr = 1 and assume that b;; = bj; = 0
(hence t; < t; < ti). Moreover, suppose that the domain of b, is reduced to the value
1, so that the cycle is closed. Since the domains are reduced by a constant amount at
each propagation, the number of iterations necessary to obtain a failure is in O(Cyaz)-
However, it rarely reaches this bound in practice. Observe, moreover, that artificially
increasing the size of the instance by a fixed amount will not affect the propagation
loop as long as the durations increase proportionally to the horizon.
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2.3 Search Strategy

We use the model described above in two different ways. Initially the lower bound on
Chnaz 1s set to the duration of the longest job/machine, whilst the upper bound ub is
initialised by a greedy algorithm in one case (Section[3.1)), or by simply summing the
durations of every task (Section[3.2)). Since this starting upper bound is often very poor,
especially in the latter case, we reduce the gap by performing a dichotomic search.
We repeatedly solve the decision problem with a makespan fixed to “b;r”’, updating [b
and ub accordingly, until they have collapsed. Each dichotomic step has a fixed time
cutoff, if the problem is unsolved the [b is updated, although not stored as the best
proven [b. Moreover, we observed that in many cases, the initial upper bound is so
overestimated that it helps to slightly bias the dichotomic pivot toward lower values
until a first solution is found.

If the problem has not been solved to optimality during the dichotomic search, we
perform a branch & bound search with the best makespan from the dichotmic search as
our upper bound, and the best proven [b as our lower bound. Branch & bound search is
performed until either optimality is proven or an overall cutoff is reached.

Branching: Instead of searching by assigning a starting time to a single value on the
left branches, and forbidding this value on the right branches, it is common to branch on
precedences. An unresolved pair of tasks ¢;, ¢ is selected and the constraint ¢; +p; < t;
is posted on the left branch whilst ¢; 4+ p; < ¢; is posted on the right branch. In our
model, branching on the Boolean variables precisely simulates this branching strategy
and thus significantly reduces the search space. Indeed, the existence of a partial order-
ing of the tasks (compatible with start times and durations, and such that its projection
on any job or machine is a total order) is equivalent to the existence of a solution. In
other words, if we successfully assign all Boolean variables in our model, the existence
of a solution is guaranteed. Assigning each task variable to its lowest domain value
gives the minimum C,,, for this solution.

Variable Selection: We use the domain/weighted-degree heuristic S]], which chooses
the variable minimising the ratio of current domain size to total weight of its neigh-
boring constraints (initialised to 1). A constraint’s weight is incremented by one each
time the constraint causes a failure during search. It is important to stress that the be-
haviour of this heuristic is dependent on the modelling choices. Indeed, two different,
yet logically equivalent, sets of constraints may distribute the weights differently. In
this model, every constraint involves at most one search variable. Moreover, the relative
light weight of the model allows the search engine to explore many more nodes than
would a method relying on stronger inference, thus learning weights quicker.
However, at the start of the search, this heuristic is completely uninformed since
every Boolean variable has the same domain size and the same degree. We there-
fore use an augmented version of the heuristic, where, instead of the domain size
of b;j, we use the domain size of the two associated task variables t;,¢;. We denote
dom(t;) = (max(t;) — min(t;) + 1) the domain size of task ¢;, that is, the residual
time windows of its starting time. Moreover, we denote w(i, j) the number of times
the search failed while propagating the constraint between ¢;,t; and b;;. We choose the
variable minimising the sum of the tasks’ domain size divided by the weighted degree:
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dom(t;) + c?om(tj) (2.4)

w(i, §)
Moreover, one can also use the weighted degree associated with the task variables.
Let I'(t;) denote the set of tasks sharing a resource with ¢;. We call w(t;) =
doiie ry) w(i, j) the sum of the weights of every ternary disjunctive constraint in-
volving ¢;. Now we can define an alternative variable ordering as follows:

dom(t;) + dom(t;) 2.5)
We refer to these heuristics as tdom/bweight and tdom/tweight, tdom refers to the
sum of the domain sizes of the tasks associated with the Boolean variable, and bweight
(tweight) refers to the weighted degree of the Boolean (tasks). Ties were broken
randomly.

Value Selection: Our value ordering is based on the solution guided approach (SGM-
PCS) proposed by Beck for JSPs [4]. This approach involves using previous solution(s)
as guidance for the current search, intensifying search around a previous solution in a
similar manner to i-TSAB [21]]. In SGMPCS, a set of elite solutions is initially gener-
ated. Then, at the start of each search attempt, a solution is randomly chosen from the
set and is used as a value ordering heuristic for search. When an improving solution
is found, it replaces the solution in the elite set that was used for guidance. The logic
behind this approach is its combination of intensification (through solution guidance)
and diversification (through maintaining a set of diverse solutions).

Interestingly Beck found that the intensification aspect was more important than the
diversification. Indeed, for the JSPs studied, there was little difference in performance
between an elite set of size 1 and larger elite sets (although too large a set did result in
a deterioration in performance). We use an elite set of 1 for our approach, i.e. once an
initial solution has been found this solution is used, and updated, throughout our search.

Furthermore, up until the first solution is found during dichotomic search, we use
a value ordering working on the principle of best promise [[L1]]. The value 0 for b;; is
visited first iff the domain reduction directly induced by the corresponding precendence
(t; + p; < t;)is less than that of the opposite precedence (¢; + p; < t;).

Restart policy: It has previously been shown that randomization and restarts can greatly
improve systematic search performance on combinatorial problems [12]. We use a ge-
ometric restarting strategy [28] with random tie-breaking. The geometric strategy is of
the form s, sr, sr2, sr3, ... where s is the base and r is the multiplicative factor. In our
experiments the base was 64 failures and the multiplicative factor was 1.3. We also
incorporate the nogood recording from restarts strategy of Lecoutre et al. [19], where
nogoods are generated from the final search state when the cutoff has been reached. To
that effect, we use a global constraint which essentially simulates the unit propagation
procedure of a SAT solver. After every restart, for every minimal subset of decisions
leading to a failure, the clause that prevents exploring the same path on subsequent
restarts is added to the base. This constraint is not weighted when a conflict occurs.
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3 Experimental Evaluation

We compare our model with state-of-the-art solvers (both systematic and non-
sysytematic) on 2 variants of the JSP, job shop problems with sequence dependent setup
times and job shop problems with time lags. All our experiments were run on an Intel
Xeon 2.66GHz machine with 12GB of ram on Fedora 9. Due to the random compo-
nent of our algorithm, each instance was solved ten times and we report our results in
terms of both best and average makespan found per problem. Each algorithm run on a
problem had an overall time limit of 3600s.

The number of algorithms we need to compare against makes it extremely difficult
to run all experiments on a common setting We therefore decided to compare with
the results taken from their associated papers. Since they were obtained on different
machines with overall cutoffs based on different criteria, a direct comparison of cpu
time is not possible. However, an improvement on the best known makespan is sufficient
to observe that our approach is competitive. Therefore, we focus our analysis of the
results on the objective value (although we do include average cpu time over the 10
runs for problems where we proved optimality).

3.1 Job Shop Scheduling Problem with Sequence Dependent Setup-Times

A job shop problem with sequence-dependent setup times, involves, as in a regular JSP,
m machines and nm tasks, partitioned into n Jobs of m tasks. As for a JSP, the tasks
have to run in a predefined order for every job and two tasks sharing a machine cannot
run concurrently, that is, the starting times of these tasks should be separated by at
least the duration of the first. However, for each machine and each pair of tasks running
on this machine, the machine needs to be setup to accommodate the new task. During
this setup the machine must stand idle. The duration of this operation depends on the
sequence of tasks, that is, for every pair of tasks (¢;,¢;) running on the same machine
we are given the setup time s(¢, j) for ¢; following ¢; and the setup time s(j, 7) for ¢;
following ¢;. The setup times respect the triangular inequality, that is Vi, j, k s(¢, j) +
s(j, k) > s(i, k). The objective is to minimise the makespan. More formally:

(SDST — JSP) minimise Cppqs subject to :
Craz = ti + i Vt, €T (3.1
ti +pi <tip1 VI, €T, Vti, tiy1 € Iy 3.2)
Li+pi+sijy <t Vij+pj+sjiy <t VM, € M, Vt; #t; € My, (3.3)

State of the art: This problem represents a challenge for CP and systematic approaches
in general, since the inference from the Edge-finding algorithm is seriously weakened
as it cannot easily take into account the setup times. Therefore there are two main
approaches to this problem. The first by Artigues ef al. [1]] (denoted AFO08 in Table [T))
tries to adapt the reasoning for simple unary resources to unary resources with setup
times. The approach relies on solving a TSP with time windows to find the shortest
permutation of tasks, and is therefore computationally expensive.

! The code may be written for different OS, not publicly available, or not open source.
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Table 1. SDST-JSP: Comparison vs state-of-the-art (best & mean Ciyqq, 10 runs)

Instance AF08 BSV0O8 GVV08 GVV09 tdom/bweight
Best Best Best Avg Best Avg Best Avg  Time
2-ps01 798 798 798 798 798  798.0 0.1
t2-ps02 784 784 784 784 784  784.0 0.2
t2-ps03 749 749 749 749 749  749.0 0.2
©2-ps04 730 730 730 730 730  730.0 0.1
2-ps05 691 693 691 692 691  691.0 0.1
2-ps06 1009 1018 1026 1026 1009 1009.0  20.3
2-ps07 970 1003 970 971 970  970.0 46.1
t2-ps08 963 975 963 966 963 963.0 86.1
t2-ps09 1061 1060 1060 1060 1060™ 1060.0 1025.1
t2-ps10 1018 1018 1018 1018 1018 1018.0 11.0

t2-ps11 1494 1470 1438 1439 1438 1441 1443 1463.6 -
©2-ps12 1381 1305 1269 1291 1269 1277 1269 1322.2 -
2-ps13 1457 1439 1406 1415 1415 1416 1415 14288 -
2-ps14 1483 1485 1452 1489 1452 1489 1452 1470.5 -
t2-ps15 1661 1527 1485 1502 1485 1496 1486 1495.8 -
t2-pss06 1126 1114* 11140 600.9

t2-pss07 1075 1070 1070.0 274.1
t2-pss08 1087 1072* 1073.0 -
2-pss09 1181 1161* 1161.0 -
2-pss10 1121 1118* 1118.0 47.2
t2-pssl1 1442 1412* 14259 -
t2-pss12 1290 1258 1266 1269 1287.6 -
t2-pss13 1398 1361 1379 1365 1388.0 -
2-pss14 1453 1452* 1453.0 -
2-pss15 1435 1417* 14274 -

The second type of approach relies on metaheuristics. Balas et al. [2] proposed com-
bining a shifting bottleneck algorithm with guided local search (denoted BSV0S8 in Ta-
ble [l), where the problem is also decomposed into a TSP with time windows. Hybrid
genetic algorithms have also been proposed by Gonzdlez et al. for this problem, firstly
a hybrid GA with local search [13] and more recently GA combined with tabu search
[14] (denoted GVV08 and GVVQ9 resp. in Table[T)). For both GA hybrids, the problem
is modeled using the disjunctive graph representation.

Specific Implementation Choices: Our model is basically identical to the generic
scheduling model introduced in Section 2l However, the setup time between two tasks
is added to the duration within the disjunctive constraints. That is, given two tasks ¢;
and ¢; sharing a machine, let s; ; (resp. s; ;) be the setup time for the transition between
t; and t; (resp. between t; and ¢;), we replace the usual disjunctive constraint with:

b — O0&ti+pi+si; <t
N let;+p;+s5: <1

Evaluation: Table[I] summarizes the results of the state-of-the-art and our approach on
a set of benchmarks proposed by Brucker and Thiele [7]. The problems are grouped
based on the number of jobs and machines (nxm), *01-05 are of size 10x5, *06-10 are
of size 15x5, while *11-15 are of size 20x5. Each step of the dichotomic search had
a 30 second cutoff, the search heuristic used was tdom/bweight. We use the following

2 Results for t2-pss-*06-11 and 14-15 are from
http://www.andrew.cmu.edu/user/neils/tsp/outt2. txt
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notation for Table [Tl (we shall reuse it for Tables[3and M)): underlined values denote the
fact that optimality was proven, bold face values denote the best value achieved by any
method and finally, values* marked with a star denote instances where our approach
improved on the best known solution or built the first proof of optimality. We also
include the average time over the 10 runs when optimality was proven (a dash means
optimality wasn’t proven before reaching the 1 hour cutoff).

We report the first proof of optimality for four instances (t2-ps09, t2-pss06,
t2-pss07, t2-pssl0)and 8 new upper bounds for t2-pss* instances (however it
should be noted that there is no comparison available for GVV09 on these 8 instances).
In general, our approach is competitive with the state-of-the-art (GVV(9) and outper-
forms both dedicated systematic and non-systematic solvers.

3.2 Job Shop Scheduling Problem with Time Lags

An n X m job shop problem with time lags (JTL) involves the same variables and
constraints as a JSP of the same order. However, there is an additional upper bound
on the time lag between every pair of successive tasks in every job. Let I; denote the
maximum amount of time allowed between the completion of task ¢; and the start of
task ¢;. More formally:

(TL — JSP) minimise Cpq, subject to :

Craz > ti + pi Vt; e T (3.4)

ti +pi <t VJe € T, Vi tiy1 € Jo (3.5)

tiv1 — (pi + 1) <t VJe €T, Vi tiv1 € Jo (3.6)
tidbps <tV ti4p <t YM,eM, V£t € M, 3.7)

This type of constraint arises in many situations. For instance, in the steel industry,
the time lag between the heating of a piece of steel and its moulding should be small.
Similarly when scheduling chemical reactions, the reactives often cannot be stored for a
long period of time between two stages of a process to avoid interactions with external
elements. This type of problem has been studied in a number of areas including the steel
and chemical industries [24].

State of the art: Caumond et al. introduced in 2008 a genetic algorithm able to deal
with general time lag constraints [9]. However most of the algorithms introduced in the
literature have been designed for a particular case of this problem: the no-wait job shop.
In this case, the maximum time-lag is null, i.e. each task of a job must start directly after
its preceding task has finished.

For the no-wait job shop problem, the best methods are a tabu search method
by Schuster (TS [25]), another metaheuristic introduced by Framinian and Schuster
(CLM [10]) and a hybrid constructive/tabu search algorithm introduced by Bozéjko
and Makuchowski in 2009 (HTS [6]). We report the best results of each paper. It should
be noted that for HTS, the authors reported two sets of results, the ones we report for
the “hard” instances were “without limit of computation time”.
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Table 2. Results summary for JTL- and NW-JSP
(b) NW-JSP: Summary of APRD per problem

(a) JTL-JSP: Cyaz & Time set
CLT tdom/bweight TS HTS CLM CLT tdom/ tdom
Inst
Instance Sets Cmaz  Time  Cigz  Time ns 'fmcc twdeg
car[5-8] 0 0,5  7883.25 322.19 7883.25 2.16 ft 875 -10.58 -10.58  -9.79
carf5-8] 0 1 773125 27375 7731.25 4.16 abz 2077 -25.58 -25.89  -25.1
car[5-8] 0 2 7709.25  297.06 7709.25 6.31 orb 242077 144 0.00 0.00

1a01-10 4.43 1.77 331 453  0.00 0.00

1a[06-08] 0 0,5 1173.67 2359.33  980.00 2044.77 11120 052 540 514 2014 -632  -6.36

1a[06-08] 0 1 1055.33 1870.92  905.33 2052.41

1a21-30  -33.93 -39.96 -34.62 -39.85 -39.04

1a[06-08] 02 1064.33 1853.67 904.67 2054.81 3140 3660 4239 3687 s 1036
swv0I-10 3441 -37.22 -3439 36.88 -35.33

swvll-20 4062 -42.25 39.17 -33.87

yn 3487 -41.84 3878 -39.03

Specific Implementation Choices: The constraint to represent time lags between two
tasks of a job are simple precedences in our model. For instance, a time lag [; between
t; and t; 1, will be represented by the following constraint: t;,11 — (p; + ;) < t;.

Although our generic model was relatively efficient on these problems, we made a
simple improvement for the no-wait class based on the following observation: if no
delay is allowed between any two consecutive tasks of a job, then the start time of every
task is functionally dependent on the start time of any other task in the job. The tasks
of each job can thus be viewed as one block. In other words we really need only one
task in our model to represent all the tasks of a job. We therefore use only n variables
standing for the jobs: {J, | 1 < x < n}.

Let h; be the total duration of the tasks coming before task ¢; in its job. That is, if job
J = {t1,...,tm}, we have: h; = >, _, py. For every pair of tasks t; € J,,t; € J,
sharing a machine, we use the same Boolean variables to represent disjuncts as in the
original model, however linked by the following constraints:

bij:{0<:>Jz+hi+pi_hj<Jy
1o Jy+hj+pi—hi < Jy

Notice that while the variables and constants are different, these are still exactly the
same ternary disjuncts used in the original model.

The no-wait job shop scheduling problem can therefore be reformulated as follows,
where the variables J1, ..., J, represent the start time of the jobs, .J; ;) stands for the
job of task ¢;, and f (4, j) = h; + p; — h;.

(NW — JSP) minimise Cpq. subject to :
Conaw > Jot+ D pi V€T (3.8)
ti€Jy

Evaluation: On general JTL problems, it is difficult to find comparable results in the
literature. To the best of our knowledge, the only one available is the genetic algorithm
by Caumond et al. [9]] that we shall denote CLT. In Table2a we report the results from
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our model on the instances used in that paper, where instances are grouped based on
type (car (4 instances) / la (3 instances)) and maximum time lag (0.5/1/2).

For the no-wait job shop problem, we first present our results in terms of each solver’s
average percentage relative deviation (PRD) from the reference values given in [6] per
problem set in Table 2Bl The PRD is given by the following formula:

PRD = ((Caig — Cref)/Chres) * 100 (3.10)

where C 44 is the best makespan found by the algorithm and Cg.y is the reference
makespan for the instance given in [6]. There are 82 instances overall.

Interestingly, the search heuristic tdom/tweight performed much better with our no-
wait model than tdom/bweight, thus we report the results for this heuristic. This was
somewhat surprising because this heuristic is less discriminatory as the task weights
for a Boolean are the weights of the two jobs, which will be the same for all Booleans
between these two jobs. Further investigation revealed that ignoring the weight yielded
better results on a number of problems. Thus we also include the heuristic tdom.

Our approach was better than the local search approaches on the smaller problem
sets, and remained competitive on the larger problem sets. In Table 3 we provide results
for the instances regarded as easy in [6], these had been proven optimal by Mascis [20].

Table 3. NW-JSP: Comparison vs state-of-the-art on easy instances (best & mean Cryqq, 10
runs).

Instance Size Ref TS HTS CLM CLT tdoml/tweight tdom

i nxm Best Best Best Best Best Avg Time Best Avg Time
ft06 6x6 73 73 73 73 73 73 001 73 73 0.02
ft10 10x10 1607 1620 1607 1619 1607 1607  4.08 1607 1607  2.49
abz5 2150 2233 2182 2150 2150  9.28 2150 2150  8.87
abz6 1718 1758 1760 1718 1718  1.25 1718 1718 0.71
orb01 1615 1663 1615 1646 1615 1615  1.65 1615 1615  1.45
orb02 1485 1555 1518 1518 1485 1485 1.16 1485 1485 1.12
orb03 1599 1603 1599 1603 1599 1599  4.22 1599 1599  3.10
orb04 1653 1653 1653 1653 1653 1653  1.56 1653 1653  1.11
orb05 1365 1415 1367 1371 1365 1365  3.91 1365 1365 4.43
orb06 1555 1555 1557 1555 1555 1555  0.31 1555 1555 0.26
orb07 689 706 717 706 689 689 610 689 689 334
orb08 1319 1319 1319 1319 1319 1319  2.22 1319 1319 2.12
orb09 1445 1535 1449 1515 1445 1445  1.02 1445 1445  0.68
orbl0 1557 1618 1571 1592 1557 1557  4.55 1557 1557 4.8
1a01 10x5 971 1043 975 1031 975 971 971 0.13 971 971 0.11
1a02 937 990 975 937 937 937 937 024 937 937 0.19
1a03 820 832 820 832 820 820 820 0.14 820 820 0.15
1a04 887 889 889 889 911 887 887 028 887 887 0.17
1a05 777 817 777 797 818 777 777 030 777 777 022
1a06 15x5 1248 1299 1248 1256 1305 1248 1248 115.19 1248 1248 81.70
1a07 1172 1227 1172 1253 1282 1172 1172 66.96 1172 1172 57.30
1a08 1244 1305 1298 1307 1312 1244 1244 50.35 1244 1244 38.63
1a09 1358 1450 1415 1451 1547 1358 1358 181.55 1358 1358 102.10
lal0 1287 1338 1345 1328 1333 1287 1287 54.14 1287 1287 30.78
lal6 10x10 1575 1637 1575 1637 1833 1575 1575  2.09 1575 1575 1.37
lal7 1371 1430 1384 1389 1591 1371 1371  2.34 1371 1371 1.70
lal8 1417 1555 1417 1555 1790 1417 1417  1.38 1417 1417 1.31
la19 1482 1610 1491 1572 1831 1482 1482  3.14 1482 1482  3.08

1a20 1526 1705 1526 1580 1828 1526 1526  0.70 1526 1526  0.66
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Table 4. NW-JSP: Improvement on hard instances (best & mean Ciy,qz, 10 runs)

Instance Size Ref TS HTS CLM tdom/tweigh,f tdom )
nxm Best Best Best Best Avg Time  Best Avg Time
swv06  20x15 3291 3502 3290 3291 3278 3378.0 - 3391  3500.4 -
lall 20x5 2821 1737 1621 1714 1619* 1646.9 - 1622 16322 -
lal2 2434 1550 1434 1507 1414 14327 - 1414 1414.0 2892.37
lal4 2662 1771 1610 1773 1578 1628.5 - 1578 1611.1 -
lal5 2765 1808 1686 1771 1679* 1693.2 - 1681 1691.9 -
la21 15x10 2092 2242 2030 2149 2030 2030.0 - 2030" 2030.0 579.69
la22 1928 2008 1852 1979 1852 1854.3 - 1852 1852.0 1013.45
la23 2038 2093 2021 2038 2021 2033.2 - 2021 2021.0 1160.13
la24 2061 2061 1972 2133 1972 1982.7 - 1972 1972.0 1128.55
la25 20x10 2034 2072 1906 2050 1906 1906.0 1336.92 1906 1906.0 218.60
la27 2933 2968 2675 2933 2671* 2750.3 - 2675 2743.0 -
1a36 15x15 2810 2993 2685 2810 2685 2715.5 - 2685 2685.0 1530.39
la37 3044 3171 2831 3161 2937 2974.0 - 2831 29304 -
la38 2726 2734 2525 2726 2525 2556.9 - 2525 2525.0 2898.77
1a39 2752 2804 2687 2784 2660 2686.0 - 2660 2662.7 3564.28
1a40 2838 2977 2580 2880 2564 2660.8 - 2564 2591.9 2879.08

We proved optimality on all these instances, in under 10s for most cases. It is of interest
to note that tdom was nearly always quicker than tdom/tweight at proving optimality.
In Table 4, we report results for the “hard” instances where our approach found an
improving solution, and the first proofs of optimality for 10 (lal2, 1a21-25, 1a36 and
1a38-40) of the 53 open problems.

4 Weight Learning Analysis

We have previously shown that the weighted degree is a key element of our approach
[L6]. In particular the gap in performance between tdom/bwdeg and tdom was quite
large for open shop scheduling problems. Here we try to give a more precise charac-
terization of the importance of learning weights, by gradually reducing the influence
of these weights in the variable selection heuristic. We observe that the impact of the
weights is very much problem-dependent. It is extremely important for job shop with
setup times model and for the standard model for job shop with time lags. However, for
the specific model for no-wait job shop problems, it can be detrimental in some cases.

4.1 Evaluation of Weighted Degree

In order to evaluate the effect of weight learning on search, we devised the following
variable ordering heuristic, that we denote tdom/(K + bweight), and that selects first
the variable b;; minimising the value of:

dom(t;) + dom(t;)

wli )+ K v

Observe that when K = 0, this heuristic is equivalent to tdom/(bweight), whereas,
when K tends toward infinity, the weights become insignificant in the variable selection.
For K = oo the next variable is selected with respect to tdom only.
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We can therefore tune the impact of the weights in the variable choice, by setting the
constant . As K increases, the role of the weights is increasingly restricted to a tie
breaker. We selected a subset of instances small enough to be solved by tdom/(co +
bweight). For the selected subset of small instances, we ran each version of the heuristic
ten times with different random seeds. We report the average cpu time across the ten
runs in Table[5] When the run went over a one hour time cutoff, we report the deviation
to the optimal solution (in percentage) instead.

Table 5. Weight evaluation: cpu-time or deviation to the optimal for increasing values of K

tdom/(K + bweight)

Instance . _ o g — 10 K = 100 K = 1000 K = 10000 K = 100000 K = oo

t2-ps07 26.55 23.33 26.67 41.60 77.27 403.90 +12.9%
t2-ps08 41.08 35.85 93.60 128.96 194.96 665.28 +9.8%
t2-ps09 971.83  956.63 948.28 957.85 1164.94 1649.19  +8.8%
t2-psl0 13.04 13.95 13.63 19.44 100.25 42224 +15.7%
1a07 03 +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +5.8%
1a08 0 3 15.63 12.45 23.03 30.22 117.50 391.99 3098.87
1a09 03 1.61 0.51 1.44 10.16 129.62 169.02 2115.98
1al0 03 3.42 2.25 0.41 0.69 1.39 3.44 39.66
1a07 0 0 1751.16  549.58 392.71 151.70 66.18 49.67 57.28
1a08 0 0 2231.18 575.44 309.04 113.95 42.04 35.74 38.63
1a09 0 0 2402.76 1291.29 691.96 407.68 147.73 89.28 102.03
1al0 0 0 3274.86 833.28 214.51 53.75 26.85 26.51 30.82

For job shop with setup times, the best compromise is for K = 10. For very large
values of K, the domain size of the tasks takes complete precedence on the weights, and
the performance degrades. However, as long as the weights are present in the selection
process, even simply as tie breaker, the cpu time stays within one order of magnitude
from the best value for K. On the other hand, when the weights are completely ignored,
the algorithm is not able to solve any of the instances. Indeed the gap to optimality is
quite large, around 9% to 15%.

For job shop with time lags, the situation is a little bit different. As in the previous
case, the best compromise is for K = 10 and the performance degrades slowly when K
increases. However, even when the weights are completely ignored, the gap stays within
a few orders of magnitude from the best case. Finally, for the no-wait job shop, we
observe that the opposite is true. Rather than increasing with K, the cpu time actually
decreases when K grows.

One important feature of a heuristic is its capacity to focus the search on a small
subset of variables that would constitute a backdoor of the problem. It is therefore inter-
esting to find out if there is a correlation between a high level of inequality in the weight
distribution and the capacity to find small backdoors. We used the Gini coefficient to
characterize the weight distribution. The Gini coefficient is a metric of inequality, used
for instance to analyse distribution of wealth in social science.

The Gini coefficient is based on the Lorenz curve, mapping the cumulative pro-
portion of income y of a fraction x of the poorest population. When the distribution
is perfectly fair, the Lorenz curve is y = x. The Gini coefficient is the ratio of the
area lying between the Lorenz curve and x = y, over the total area below x = y.
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We consider only search trees for unsat-

job shop with setup times —+—

isfiable instances. In an ideal situation, 1 random csp -

pigeon holes -

when the search converges immediately 08
toward a given set of variables from
which a short proof of unsatisfiability can
be extracted, the Gini coefficient of the

0.6

Gini coefficient

0.4 BEBBB‘E*E'BEEBEBDBBEEBBB
o

weight distribution typically increases o2pE ;
rapidly and monotonically. In Figure [l T e
0.001 0.01 0.1 1

we plot the Gini coefficient of the proofs
for the instance t2-ps07; for an in-
stance of random CSP with 100 vari- Fig. 1. Weight distribution bias: Gini coefficient
ables, a domain size of 15, 250 binary over the (normalised) number of searched nodes
constraints of tightness 0.53 uniformly

distributed; and a pigeon holes instance.

After each geometric restart, the Gini coefficient is computed and plotted against the
current number of explored nodes. We observe that the weight distribution is quickly
and significantly biased on the job shop instance. On the other hand, there is much
less discrimination on the random CSP instance, where constraints are uniformly dis-
tributed, and almost no discrimination at all on the pigeon hole problem. We were inter-
ested in checking if one could predict, from the fairness of the weight distribution, how
beneficial the weighted degree heuristic is for the considered problem. However, when
comparing two proofs that required a comparably large amount of search, but for which
we showed that, in one case the weights are beneficial, and in the other case detrimental,
it is in fact extremely difficult to differentiate the evolution of the coefficient. It took 11
million nodes to prove that C,,,, = 1357 is unsatisfiable for 1a09 0 0 and 24 million
nodes to prove that Cy,4, = 1059 is unsatisfiable for t2-ps09. It is clear from the
results in Table [5] however, that the weights helped in the latter case, whereas they did
not in the former case. We report two statistics collected during search showing some
clear differences: the ratio of (Boolean) variables that are selected at a choice point up
to each depth in the search tree, over the total number of (Boolean) variables; the ratio

Searched nodes (normalised)

0.9
searched vars t2-ps09 —=— 12-ps09 —e—
choice pts t2-ps09 -—&-— 1a09_0_0 ——

0ee®®

Ratios
Gini coefficient

0.2
0 10 20 30 40 50 60 1000 10000 100000 1e+06 1e+07 1e+08
Search depth Searched nodes

(a) Search statistics (b) Evolution of the Gini coef

Fig. 2. Search tree and weight distribution for t2-ps09 and 1a09 0 0
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of the number of choice points, that is nodes of the search tree, at each depth, over the
total number of explored nodes.

Clearly for t2-ps09, where the weights are useful, the search is more focused on
lower depth, and on a smaller ratio of variables. Indeed, the cumulative ratio of searched
variables tops at 0.3 (See Figure[2a)). On the other hand, for 1a09 0 0, even very deep
in the tree, new choice points are opened (the ratio of choice points is more spread
out), and they involve a large proportion of new variables (the cumulative number of
searched variables increases almost linearly up to 0.6). The evolution of the Gini coef-
ficient during search is, however, very similar in both cases (See Figure 2b).

One possibility is that the build up of contention is more important for the no wait
problems due to the stronger propagation between tasks of the one job. Preliminary
results suggest that initially both tdom and tdom/bweight repeatedly select Booleans
between the same pair of jobs, once a pair has been selected. The heuristics diverge
when search backs up from deep in search, tdom will still often choose Booleans from
the same pair of jobs as the variable above the choice point, while the weights learnt
deep in search may result in the heuristics that use bwetght and tweight choosing
variables associated with a different pair of jobs. Obviously, this effect will be stronger
for bweight as the weights are associated with individual Booelans.

5 Conclusions

We have shown how our constraint model can be easily extended to handle two variants
of the job shop scheduling problem. In both cases we found our approach to be compet-
itive with the state-of-the-art, most notably in proving optimality on some of the open
problems of both problem types.

Whereas it appeared to uniformly improve search efficiency for standard job shop
and open shop scheduling problems, our analysis of constraint weighting revealed that
it can actually be detrimental for some variants of these problems.
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Abstract. We present a class of problems that arise in the design of
the Next Generation Access Networks. The main features of these net-
works are: to be based on fiber links of relatively long length with respect
to traditional copper based networks, users may be reached directly by
fibers, and the presence of few central offices managing a large number of
users. We present an Integer Programming model that captures the tech-
nological constraints and the deployment costs. The model serves as a
basis for a decision support tool in the design of the Next Generation Ac-
cess Networks. Pure Integer Programming cannot handle real-life prob-
lem instances, giving rise to new challenges and opportunities for hybrid
Constraint Programming-Mathematical Programming methods. In this
paper, we compare a LP-based randomized rounding algorithm with a
Constraint-based Local Search formulation. The use of an LP relaxation
is twofold: it gives lower bounds to the optimal solution, and it is easily
embedded into a randomized rounding algorithm. The Constraint-based
Local Search algorithm is then exploited to explore the set of feasible
solutions. With these algorithms we are able to solve real-life instances
for one of the problems presented in this paper.

1 Introduction

In the last decade, network design has been one of the most important applica-
tion domains for Integer Programming methods. Typical application areas are
transportations and telecommunications, where even a small optimization factor
can have an important economical impact.

Even for Constraint Programming, network design has been a source of ap-
plications. See e.g., Simonis [I] for a recent overview.

In this paper, we present challenges that arise optimizing the design of the
Next Generation Access Networks completely based on fiber cable technology
that, in certain cases, may reach single users and for this reason are called Fiber
To The Home networks (FTTH).

The new network characteristics and the upcoming deployment motivate the
investigations on quantitative optimization models and algorithms for the plan-
ning that can help investors to decide which type of fiber network to select and
how to operationally implement it, that is where to install central offices, that is
the centers connected to the backbone network managing customer connections,
and possible intermediate cabinets and how to reach users considering network
link capacity.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 162 2010.
© Springer-Verlag Berlin Heidelberg 2010
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1.1 Technological Aspects

This technology has been proposed many years ago, but due to many factors,
including the telecommunication crisis and the absence of a really band eager
application, is becoming interesting only now.

We present the main issues arising in the design of FTTH networks consid-
ering only the most important technological features affecting the optimization
process. For a review on technical aspects refer to [2].

The main features of these networks are: to be based on fiber links of relatively
long length with respect to traditional copper based networks, users may be
reached directly by fibers, and the presence of few central offices managing a
large number of users. The use of fiber optics technology on the one hand involves
massive investments in the deployment phase, on the other hand it allows to
reduce the yearly maintenance costs and to increase the reliability.

From a mathematical point of view there are two main classes of architectures
of FTTH networks: the single star networks and the double star networks.

In single star networks, each user is reached by a fiber starting directly from a
central office. The fibers can be up to 20 km long without needing any interme-
diate device between the central office and the final destination. The number of
users that are connected to the same central office depends only on the managing
capacity that usually ranges from 1,000 to 100,000. The long haul of cables may
allow to cover large areas. In case of densely populated areas, as metropolitan ar-
eas, instead of reaching each user with a fiber, an alternative solution introduces
so called splicing cabinets in each building where the fiber is terminated. From
each splicing cabinet copper cable drops are used to reach users. The relatively
short length of copper cables allows to provide a broad band even though the
architecture is not entirely based on fiber optic (about 1Gb/s for drops of less
than 150 m). We will refer to single star networks as fiber to the cabinet.

Double star networks exploit the fact that cables from central offices to subsets
of nearby users may often follow the same path for a long distance and eventually
split in the last portion. Therefore an intermediate cabinet is introduced. The
cabinets are usually placed at the intersection of streets and can manage up
to 30,000 users. In the cabinets multiplexing may take place, allowing to better
exploit the cable capacity in the leg from the central office to the cabinet and thus
to reduce the number of cables. We can have different architectures depending on
the level where multiplexing takes place. It may be at electrical level, requiring
a powered cabinet, or at optical level. In the latter case cabinets do not need
to be powered. As in the single star case, also in the double star architectures,
instead of having a cable from the cabinet to each user, we may introduce a
splicing cabinet for each building serving more users with a single fiber cable.
These networks can be seen as two level hierarchical networks, where the first
layer represents the distribution from the central office to the cabinets and the
second layer represents the distribution from the cabinet to the users. We will
refer to double star networks as fiber to the basement or fiber to the home.

Variants of these problems consider additional features as reliability con-
straints for subsets of customers and mixed cable and radio links for the last
mile.
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1.2 Problem Statement and Notation

Planning a FTTH network involves several decisions: where to install central
offices, where to install cabinets, the assignment of cabinets to central offices
and how many fibers are needed for the connection, which multiplexing capacity
to install in each cabinet and, in the case of fiber to the home or fiber to the
basement networks, the assignment of basements or homes to the cabinets.

More specifically, we have two assignment problems: one that maps cabinets
to central offices and the other basements/homes to cabinets. The constraints
are the following:

a) each active cabinet must be connected to at least a central office;

b) the maximum number of fibers reaching each central office cannot exceed its
managing capacity;

c) each cabinet has a demand that must be satisfied, given by the number of
connections that must be established between the cabinet and its central
office; this demand, in the case of double star networks, is given by the
number of users connected to the cabinet;

d) the connections between a cabinet and its central office (or between base-
ment/home and cabinet) cannot exceed a given distance.

Deployment costs are affected by three factors:

1. the number of activated central offices;

2. the type of multiplexing technology installed in each cabinet;

3. the fiber laying cost, proportional to the distance between the cabinet and
the central office it is assigned to, and between the basement or home and
the cabinet it is assigned to.

Let us denote by O the set of candidate sites for central offices, by C' be the
set of candidate sites for cabinets and by S the set of basements/homes to be
served. Let s} and M} be the cost and the capacity (in terms of number of fibers)
of central office i. Let T" be the types of technologies that can be installed in
cabinets. Multiplexing technology t in a cabinet allows to send m; channels on a
single fiber towards the central office. Let s?t be the installation cost of cabinet
7 with technology t, and and M 3‘2 its maximum capacity in terms of number of
fibers coming from the users. With d;; we indicate the known distance (computed
on the street graph) between any two sites 7 and j.

Figure [I shows a micro example on the Politecnico campus in Milan. The
map shows the street graph along with 2 candidate sites for central offices, 3
candidate sites for cabinets, and 9 building basements where the splitters will
be installed. The problem is formalized using a tripartite graph defined on three
sets of vertices: the set of central offices O, the set of cabinets C, and the set
of basements S. Figure 2l shows the tripartite graph corresponding to the micro
example of Fig. [[l The subgraph induced by the sets O and C is referred to as
the primary network, while the subgraph induced by the sets C and S is the
secondary network. There is an edge in both the primary or in the secondary
network only if the distance constraints are satisfied, that is, there is the edge
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Fig. 1. Micro example on the Politecnico of Milano campus, with two candidate sites
for the central offices O; (downward trapezia), three canidate sites for the cabinets C}
(upward trapezia), and nine basements S; (circles)

(i,7) with i € O and j € C if d;; < L', and there is the edge (j,1) with j € C
and [ € S if dj < L?.

The two level nature of the problem is quite evident. Further on we will
use superscript 1 to denote the level between central offices and cabinets, and
superscript 2 to denote that between cabinets and customers.

1.3 Related Work

The problem studied here, to the best of our knowledge, was not considered be-
fore in the optimization literature. A related network design problem is presented
in [3], where, given the positions of central offices and of users, the problem con-
sists in finding the position of the optical splitters in such a way of minimizing
the overall costs. In that model, there is not an actual list of candidate sites,
since a rural (or greenfield) scenario is considered, and the coordinates of the po-
sition of the splitters are part of the decision variables of the problem. A mixed
integer non linear model is presented with the only purpose of formulating the
problem and it is not exploited in the heuristic algorithm.

Our problem is related to the Two-level Uncapacitated Facility Location prob-
lem (TUFL), well studied in the literature (e.g., see [4] for a polyhedral study
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Fig. 2. A tripartite (sub)graph correspoding to the example of Figure[I]

and see [B] for recent advances in approximation algorithms). However, there are
two important differences with our problem: first, the capacity constraints that
are not considered in the literature, and, second, the multiplexing technology
constraints that make the problem much more complex. Note that, differently
from TUFL, in our case distinct paths from a central office to customers are not
profitable, since the multiplexing occurring at the cabinets can merge more links
coming from the secondary network into a single link of primary network. Thus
the techniques developed for the TUFL can hardly be exploited in our case.

Hybrid constraint and integer programming methods for the networks prob-
lems are presented in [I]. Recently [6] tackled a problem of routing and wave-
length assignment on optical networks. For each demand the set of frequencies
is given, and the problem consist in deciding which demands to select and how
to route them. To solve this problem a decomposition approach is implemented
using a MIP model to solve the allocation subproblem, i.e., to select and to
route a subset of demands, and the wavelength assignment problem is formal-
ized as a graph coloring and solved with constraint programming. In case the CP
subproblem becomes infeasible, the MIP allocation problem is somehow relaxed.

Another network design problem is presented in [7], where particular attention
is paid to problem of breaking symmetries.

A hybrid local search and constraint propagation method for a network rout-
ing problem is presented in [8], where the problem consists in, given a directed
capacitated network and a set of traffic demands, minimizing the cost of the lost
traffic demands.

2 Fiber to the Basement

Let us introduce a mathematical model for the design of Fiber To The Base-
ment/Home networks, which is the most general problem. The model for the
Fiber to the Cabinet problem can be derived as a special case. The problem can
be seen as a variant of the capacitated facility location problem, where facilities
belong to two levels (i.e. central offices and cabinets). We need to introduce two
sets of binary variables: y},i € O whose value is 1 if a central office is activated
in site ¢, and y]zt,j € C,t € T if a cabinet with multiplexing technology t is
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activated in site j. We need another set of binary variables .T?l whose value is 1
if basement [ is assigned to cabinet j. Integer variables x}j give the number of
fibers connecting central office 4 with cabinet j. The last two sets of variables are
defined for all pairs 4, j and j, [ such that the distance between the corresponding
sites is less than or equal to the maximum allowed distance. In order to consider
only pairs of sites within a feasible distance, we introduce a set F including all
pairs i, j with ¢ € O and j € C such that d;; < L', and a set F of pairs j,! with
j € C and [ € S such that dj; < L2,
The Integer Programming model is as follows:

min Zs}y} + Z Zs?tyft + Z C}szlj + Z C?ﬂ?z (1)

i€O jeC teT ijeE jleF

s.t. Z x?l =1, vies, (2)
JIEE
> al < Myl Vi€ O, (3)
ijeE
Yoy <1, vj € C, (4)
teT
Yoah <MY o7, vjec, (5)
jleFr teT
teT ijeE
me Yy w2y why—MI(1-yh),  VieCVteT, (7)

ijEE jleF

yi €{0,1}, Vie O, (8)
v € {0, 1}, VjieCVteT, (9)
x}; € Ly, Vij € E, (10)
x5, €4{0,1}, Vjl € F. (11)

Constraints (2)) state that each user must be connected to a cabinet. Constraints
@) are twofold: they force the activation of central office 7 (i.e. it sets variable
y; to 1) if at least one cabinet j is assigned to it, and they limit the number of
cabinets assigned to i according to the capacity. Constraints @) determine that
either a cabinet is not active (when the left hand side is equal to 0) or at most a
multiplexing technology is assigned to it. Constraints (@) state that if a cabinet is
activated it must be connected to a central office. While constraints ([7]) relate the
number of incoming fibers in a cabinet from users with the number of outgoing
fibers towards the central office. This number must account for the multiplexing
factor installed in the cabinet. Note that in the group of constraints referring to
a cabinet at most one is significant, while the others are made redundant by big
constants.
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The objective function (l) accounts for the cost s} of each activated central
office, the cost s?t for installing the technology ¢ in cabinet j and the connection
costs for the fibers between central offices and cabinets and between cabinets
and the users.

Note that for real life instances the ILP model ([{l)-(I]) has more than one
million of variables and constraints, and cannot be solved in a reasonable time

with a pure Integer Programming approach.

3 Computational Approaches

We have developed two approaches to solve the FTTH problem. The first approach
is an LP-based Randomized Rounding algorithm, the second is a Constraint-based
Local Search algorithm. Both approaches are implemented exploiting features of
the COMET constraint language [9].

3.1 LP-Based Randomized Rounding

The FTTH problem recalls a capacitated facility location, but it has two levels
of facilities: at the first level we have the candidate sites for the central offices,
and at the second level there are the candidate sites for the cabinets, in addition
at this level multiplexing technologies must be accounted for. LP-based random-
ized rounding algorithms have proved to be successful for traditional capacitated
facility location problems [10]. This motivated our design of an LP-based Ran-
domized Rounding.

Let us call (P) the problem obtained by substituting integrality constraints
in (I)~(II) with the following linear constraints:

0<y <1, 0<yj<1, x>0, 0<af <1 (12)

Problem (P) can be solved easily with standard linear programming software.
An alternative option could utilize the Volume algorithm, but we leave this to
future investigations.

Our LP-based Randomized Rounding algorithm is based on the observation
that once we have decided which central offices and which cabinets to open, that
is, the variables ¢! and y? have been fixed to either 1 or 0, the remaining problem
is reduced to a generalized minimum cost flow problem on a two level bipartite
graph. Even if the generalized minimum cost flow problem is polynomial (e.g.,
see [I1]), we solve it with a linear programming software.

We define three auxiliary subproblems:

1. The Continuous Generalized Minimum Cost Flow Problem (C-GFP) ob-
tained by fixing all of location variables y} and yjzt either to 1 or 0.

2. The Partial Generalized Minimum Cost Flow Problem (P-GFP) obtained by
fixing to 1 some selected y; and yjzt variables, and leave open the remaining
ones (that is we do not fix to 0 any variable);

3. The Integer Generalized Minimum Cost Flow Problem (I-GFP) obtained by
adding the integrality constraint to (C-GFP).
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Algorithm [I] sketches the main steps of our LP-based Randomized Rounding
algorithm. The randomized algorithm first solves the linear problem (P), then it
randomly rounds the variables y' and y? to either 1 or 0. In a second step, the
algorithm solves the (C-GFP) so obtained. In the case (C-GFP) is not feasible,
the algorithm solves the corresponding (P-GFP) and tries with a different ran-
domized rounding. Otherwise, if (C-FGP) is feasible, but some variable z! or z?
are not integer, the algorithms solves the corresponding (I-GFP). The algorithm
cycles over these steps a given number 7 of times.

Since the LP relaxation is rather weak and most of y' variables are only
slightly bigger than zero, rather than performing a standard randomized round-
ing, where variable y} is set to 1 with probability ;, we perform a normalization
of the relaxation as follows. For each variable y} we compute the ratio:

Yijer f}j

B, = -
Zz‘/jeE Ly

(13)

This corresponds to normalize for each central office i the sum of the values
assigned in the LP relaxation to the link variables aﬁ}j entering in ¢ by the sum
of all the link variables x}/j. On the contrary, for variables y? we perform a
standard randomized rounding. The randomized rounding is preceded by a pre-
processing phase that fixes to 1 all the facility variables having a value greater

than 4.

3.2 Constraint-Based Local Search

We investigated also the use of Constraint-based Local Search (CBLS) that has
proved to be effective on other very large optimization problems [12].

CBLS Model. The CBLS approach proposed in this paper is based on a model
different from ([)—(II), and it relies on the use of invariants (see [13]) to incre-
mentally maintain the necessary information to guide the search procedure. In
order to use a different notation from the ILP formulation we will use upper case
letters to denote the variables of the CBLS model.

The decision variables are the following:

— For each basement [ there is an integer variable X? with domain equal to
the subset of cabinets C; C C reachable from j, i.e., C; = {j | 3({,j) € F}.
If X? = j it means that basement [ is linked to cabinet j.

— For each cabinet j there is an integer variable Z; with domain equal to T
Z; =t means that in cabinet j the ¢-th multiplexing technology is installed.

— For each possible link (4,j) € E there is an integer variable Xilj (equivalent
to variable z;), that gives the number of fibers installed between central
office ¢ and cabinet j.

These are the actual decision variables, since once they have been determined
we can derive which are the open central offices and the open cabinets (with the
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Algorithm 1. LP-based Randomized Rounding Algorithm.

1: for iin 1..r do

2 LB, z,y < solve problem (P)

3 Fix to 1 the variables y! and 3? with value greater than §
4: for i € O do )

5: if Uniform01() < szecgi"'f then

i'jEE Tt

6 Set y} =1

7 else

8: Set y; =0

9: end if
10: end for
11: for jeC,t €T do
12: if Uniform01() < 73, then
13: Set y?t =1 > and set to zero all other ¢’ # ¢
14: else
15: Set yft =0
16: end if
17: end for

18: Solve the (C-GFP) obtained by fixing y' and y? in steps BIRII3] and
19: if (C-GFP) is not feasible then

20: Solve the (P-GFP) and go to[] > consider only the fixes in [6] and [I3]
21: end if

22: if 2! and 2? are not all integer then

23: Solve the so obtained (I-GFP)

24: end if

25: if (I-GFP) is feasible then update UB else go to[

26: end for

corresponding technology). In order to keep track of the open facilities, we use
the following invariants:

— V' €{0,1}: it is equal to 1 if at least a cabinets j linked to i exists:
V' e (3jeC.X); >0), Vj e J.

- sz € {0,1}: it is equal to 1 if at least a basement [ linked to j exists:
Y} & (Al e S.X7 =), vj e C.

Once we have assigned a value to each decision variable, and these values have
propagated to the invariants, the objective function is computed as follows:

Zs}Y}l + Z s?zj + Z c}inlj + ZC?Xl?l (14)

€O jecij?:1 ijeE les

Note that in the second and the fourth term, we use variable subscription, as it
were an element constraint, that is, we have a variable appearing in the subscript
of a cost parameters, which it is not possible in Integer Linear Programming.
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Search procedure. Basically, the CBLS performs a search in the space of
possible assignments to the decision variables X!, X2, and Z. The initial solution
is obtained by the following greedy procedure: first, we open a cabinet j, second,
we assign to it the M jl nearest basements, then we open a second cabinet and
we “fill it” with basements, and we repeat these steps until every basement is
linked to a cabinet. Then, we decide which multiplexing technology to install
on every open cabinet while minimizing the installation costs. Finally, with a
similar greedy procedure, we keep in opening a new central office at the time,
until every open cabinet is assigned to a number of central offices in such a way
that the number of incoming fibers (in a cabinet) is equal to the number of
multiplexed outgoing fibers. Ties are always broken randomly.

The local search is based on a simple move: select the basement [ connected to
a cabinet j, and select a different open cabinet j' # j that is not saturated (it has
some capacity left) such that moving [ from j to 7 gives the best improvement
in the objective function (I4]). After this move, it may happen that we need to
increase by one the multiplexing technology at the cabinet j’, and possibly to
increase the number of fibers outgoing cabinet j'. We use this move to perform
a best improvement local search, until we get stalled in a local minimum. Once
we get stuck in a local minimum, we use a different neighborhood by trying to
change the multiplexing technology, i.e. variable Z;, and to modify the variable
X le Again, we perform a best improvement local search by selecting the moves
that decrease the objective function.

After that the local search algorithm get stuck in a local minimum a certain
number of times, we perform a simple diversification by randomly swapping
the assignment of basements to cabinets, and of fibers outgoing the cabinets to
central offices.

4 Computational Results

The two approaches presented in this paper are evaluated on realistic instances.
By realistic we mean that they are randomly generated in such a way to be as
close as possible to the real scenario of the metropolitan area of the city of Rome.
Using the street graph of Rome, with the link lengths in meters, we have gener-
ated 21 different instances using values for the installation and deployment costs
and for the central office and cabinet capacities, as provided by our collaborators
working at Alcatel-Lucent.

The biggest instance has 35 candidate sites for the central offices (consider
that the currently operated traditional network in Milan has 28 central offices,
but they would be more than really necessary in a fiber based network), 150
candidate sites for the cabinets, and 10.000 basements. This is equivalent to
approximately serve 300.000 final users. The smaller instances are generated in
order to compare our heuristics with an exact ILP method.

4.1 Implementation Details

The two approaches have been implemented with the COMET constraint lan-
guages (version 2.0), using COIN-CLP as linear solver and SCIP as Integer Linear
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Programming solver. The tests were carried over a computer with linux-ubuntu
32 bits, an Intel Q6600 CPU (Quadcore 2.4GHz, 8Mb L2 cache, 1066 MHz FSB)
and with 4Gb of ram.

4.2 Comparing the Two Algorithms

The first set of experiments was performed to compare the LP-based Randomized
Rounding (LP-RR) algorithm with the Constraint-based Local Search algorithm.

Table [l shows the results of the comparison for a first set of Rome instances.
Each instance is described in terms of number of central office candidate sites
(|O]) the cabinet candidate sites (|C|) and basements (|S|). Each line reports the
results averaged over 5 runs, and gives the average value (Cost) of the objective
function, the average execution time, and the best result found (Best-Cost).
The LP-RR algorithm is executed with r = 20, that is, it runs 20 rounds for
each execution, with threshold 6 = 0.9. The CBLS algorithm has a limit on the
number of restarts (equal to 20).

Both algorithms provide solutions of very good quality, but the CBLS provides
the best results for big instances and it is clearly faster. For the instance with
10.000 basements the CBLS algorithm found better solutions in a time that is
two order of magnitude less in comparison with the randomized rounding. Note
that, for the first instance, the optimal value is 2383, as verified by the ILP solver
SCIP, and both heuristic algorithms have been able to obtain this result.

Table 1. LP-based Randomized Rounding (LP-RR) versus Constraint-based Local
Search (CBLS). Cost and Time (in seconds) are averaged over 5 runs for each instance.

LP-RR CBLS
Inst. |O] |C] |S|  Cost Time Best-Cost Cost Time Best-Cost
1 3 10 100 2383 31 2383 2383 06 2383
10 35 400 6979 716 6966 6864 1.2 6860

15 65 841 13630 1735 13599 13349 44.6 13306
20 100 1521 25499 2465 25427 24850 316 24752
25 120 3025 55073 4768 55052 51752 330 51646
30 140 6084 121794 7705 121974 118224 1105 118135
35 150 10000 239668 26915 239668 229677 1817 229244

N O O W

The main limitation of the LP-based Randomized Rounding algorithm is that
it solves several times a large generalized minimum cost flow problem and (fre-
quently) an integer problem as well. By increasing the threshold in line 3 of
Algorithm 1, for instance from § = 0.9 to § = 0.95, we get indeed solutions of
better quality, but involving an important increment of the computation time.
Therefore we have focused on the CBLS algorithm.

Table [2] shows the results for a second set of Rome instances. The CBLS
algorithm described in Section is run five times on each instance and we



On the Design of the Next Generation Access Networks 173

have computed the average over each run. Each instance is described in terms of
number of central office and cabinet candidate sites and number of basements.
For each instance the table reports the Cost and the running Time averaged
over 5 runs, the corresponding standard deviations (stdev), the Best-Cost, the
optimum solution (IP) found with an ILP solver. The last column gives the
percentage gap with the optimal solution. Note that the CBLS is fast, and it
also provides solutions with a very small percentage gap. In particular, for the
smaller instances it does find the optimum.

Table 2. Solving small Rome instances with the CBLS approach: gaps with respect to
the optimal solution computed with SCIP. Cost and Time (in seconds) are averaged
over 5 runs for each instance.

Inst. [O] |C| |S| Cost (stdev) Time (stdev) Best-Cost IP Gap
8 5 10 109 3244 0.04% 1.5 2.7% 3243 3243 0.0%
9 10 20 204 13888 0.00% 2.3 1.4% 13888 13888 0.0%
10 20 100 1462 419929 0.04% 87.1 0.6% 419823 417554 0.5%
11 25 120 3139 1011821 0.02% 567.7 0.7% 1011457 1009710 0.2%

Finally, Table Bl reports additional results for other bigger Rome instances,
reporting the percentage gap (LP-Gap) computed with the value of the linear
relaxation of the problem. The CBLS is pretty stable both in the quality of the
solution and in the computation time required. For the bigger instances, those
with 10,000 basements, the computation time can be more the one-hour (see
instance 18,20, and 21), but still is always better than the LP-RR algorithm. We
remark that the percentage gap on the lower bound computed by solving the
linear relaxation (P) is in the worse case 2.4%.

Table 3. Solving big Rome instances with the CBLS approach: gaps computed with
respect to the linear relaxation (P).

Inst. |O] |C| |S] Cost (stdev) Time (stdev) Best-Cost LP-Gap
12 30 140 5960 4558323 (0.02%) 1350.1 (0.46%) 4557601 1.1%
13 30 140 5981 3954325 (0.01%) 1008.4 (0.05%) 3953619 1.2%
14 30 140 5982 4561215 (0.01%) 1803.6 (0.14%) 4560780  0.9%
15 30 140 5995 4164941 (0.01%) 2168.7 (0.69%) 4164724 1.1%
16 30 140 6014 3462920 (0.01%) 1426.9 (0.35%) 3462857 1.4%
17 35 150 10020 3126763 (0.02%) 2511.8 (0.44%) 3126385 2.4%
18 35 150 10040 5937585 (0.01%) 3484.7 (0.55%) 5936733 1.1%
19 35 150 10072 6663950 (0.01%) 1183.6 (0.54%) 6663481 0.9%
20 35 150 9978 6261704 (0.01%) 4252.8 (0.49%) 6261046 1.0%
21 35 150 9983 5980627 (0.01%) 3846.9 (0.65%) 5979618 1.1%
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5 Conclusions

We presented a computational approach to the FTTH problem that arises in the
context of designing the Next Generation Access Network. The FTTH has an
ILP formulation, but realistic instances leads to very large size problems, and
therefore we have only focused on heuristic algorithms. First, we discussed a
LP-based Randomized Rounding algorithm that exploits a substructure of the
problem, reducing the problem to a generalized minimum cost flow problem.
Second, we presented a Constraint-based Local Search algorithm that despite
its simplicity is very effective, providing, in short time, solutions with small
percentage gap to lower bounds of the problem.

Currently, we are investigating a new type of network topology for the sec-
ondary network between the cabinets and the basements. Instead of using direct
links between basements and cabinets, we plan to use a tree topology, allowing
more basements to share portion of fibers before of reaching a cabinet. This
network topology leads to new challenges, because the ILP formulation has
an exponential number of constraints. As future work, we plan to extend our
Constraint-based Local Search algorithm to tree-based network topologies.
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Vehicle Routing for Food Rescue Programs:
A Comparison of Different Approaches

Canan Gunes, Willem-Jan van Hoeve, and Sridhar Tayur
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1 Introduction

The 1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP)
asks to deliver a single commodity from a set of supply nodes to a set of demand
nodes, which are unpaired. That is, a demand node can be served by any supply
node. In this paper, we further assume that the supply and demand is unsplit-
table, which implies that we can visit each node only once. The 1-PDVRP arises
in several practical contexts, ranging from bike-sharing programs in which bikes
at each station need to be redistributed at various points in time, to food rescue
programs in which excess food is collected from, e.g., restaurants and schools,
and redistributed through agencies to people in need. The latter application is
the main motivation of our study.

Pickup and delivery vehicle routing problems have been studied extensively;
see, e.g., [1] for a recent survey. However, the 1-commodity pickup and delivery
vehicle routing problem (1-PDVRP) has received limited attention. When only
one vehicle is considered, the problem can be regarded as a traveling salesman
problem, or 1-PDTSP. For the 1-PDTSP, different solution methods have been
proposed, including [3, 4]. On the other hand, the only paper that addresses
the 1-PDVRP is by [2], to the best of our knowledge. |2] present different
approaches, including MIP, CP and Local Search, which are applied to instances
involving up to nine locations.

The main goal of this work is to compare off-the-shelf solution methods for
the 1-PDVRP, using state-of-the-art solvers. In particular, how many vehicles,
and how many locations, can still be handled (optimally) by these methods?
The secondary goal of this work is to evaluate the potential (cost) savings in
the context of food rescue programs. We note that the approaches we consider
(MIP, CP, CBLS) are similar in spirit to those of [2]. Our MIP model is quite
different, however. Further, although the CP and CBLS models are based on
the same modeling concepts, the underlying solver technology has been greatly
improved over the years.

2 Different Approaches to the 1-PDVRP

2.1 Input Data and Parameters

Let the set V' denote the set of locations, and let O € V' denote the origin (or
depot) from which the vehicles depart and return. With each location i in V' we

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 176 2010.
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associate a number ¢; € R representing the quantity to be picked up (¢; > 0) or
delivered (g; < 0) at 7. The distance between two locations 7 and j in V will be
denoted by d;;. Distance can be represented by length or time units.

Let T denote the set of vehicles (or trucks). For simplicity, we assume that all
vehicles have an equal ‘volume’ capacity ) of the same unit as the quantities ¢
to be picked up (e.g., pounds). In addition, all vehicles are assumed to have an
equal ‘horizon’ capacity H of the same unit as the distances d.

2.2 Mixed Integer Programming

Our MIP model is based on column generation. The master problem of our
column generation procedure consists of a set of ‘columns’ S representing feasible
routes. The routes are encoded as binary vectors on the index set V' of locations;
that is, the actual order of the route is implictly encoded. The columns are
assumed to be grouped together in a matrix A of size V' by S. The length of
the routes is represented by a ‘cost’ vector ¢ € RISl We let z € {0,1}15! be a
vector of binary variables representing the selected routes. The master problem
can then be encoded as the following set covering model:

min ¢'z

st. Az =1 (1)

For our column generation procedure, we will actually solve the continous re-
laxation of (), which allows us to use the shadow prices corresponding to the
constraints. We let A; denote the shadow price of constraint j in (IJ), where
jevVv.

The subproblem for generating new feasible routes uses a model that employs
a flow-based representation on a layered graph, where each layer consists of nodes
representing all locations. The new route comprises M steps, where each step
represents the next location to be visited. We can safely assume that M is the
minimum of |V|+ 1 and (an estimate on) the maximum number of locations
that ‘fit’ in the horizon H for each vehicle.

We let x5, be a binary variable that represents whether we travel from loca-
tion ¢ to location j in step k. We further let y; be a binary variable representing
whether we visit location j at any time step. The vector of variables y will rep-
resent the column to be generated. Further, variable I} represents the inventory
of the vehicle, while variable Dj, represents the total distance traveled up to step
k, where k =0,..., M. We let Dy =0, while 0 < Iy < @. The problem of finding
an improving route can then be modeled as presented in Figure [Il

In this model, the first four sets of constraints ensure that we leave from and
finish at the origin. The fifth set of constraints enforce that we can enter the
origin at any time, but not leave it again. The sixth set of constraints model
the flow conservation at each node, while the seventh set of constraints (the first
set in the right column) prevent the route from visiting a location more than
once. The following four sets of constraints represent the capacity constraints
of the vehicle in terms of quantities picked up and delivered, and in terms of
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M
min 3003 X digTigh = 2 Ajvj
JEV

i€V jEV k=1

M
s.t. ‘Z o1 =1 ) > oy <1 vj € v\ {0}
jev JEV\{O} k=1
> wij1 =0 Vi € V\ {0} =Ty 1+ Y Y ey, Ve € [1.M]
JjeV iEV jEV
> wiom =1 0<I, <Q vk € [0..M]
iev
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M
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Fig. 1. MIP model for finding an improving route

distance. The last set of constraints link together the ‘low’ variables x with the
new column represented by the variables y.

As noted above, throughout the iterative process, we apply a continuous re-
laxation of the master problem (IJ). When this process terminates (it reaches a
fixed point, or it meets a stopping criterion), we run the master problem as an
integer program. Therefore, our procedure may not provably find the optimal
solution, but it does provide a guaranteed optimality gap.

As a final remark, when only one vehicle is involved, the MIP model amounts
to solving only the subproblem, to which the constraints are added that we must
visit all locations.

2.3 Constraint Programming

Our CP model is based on a well-known interpretation of the VRP as a multi-
machine job scheduling problem with sequence-dependent setup times. In the CP
literature, this is usually modeled using alternative resources (the machines) and
activities (the jobs). That is, each visit to a location corresponds to an activity,
and each vehicle corresponds to two (linked) resources: one ‘unary resource’
modeling the distance constraint, and one ‘reservoir’ modeling the inventory
of the vehicle. With each activity we associate variables representing its start
time and end time, as well as a fixed duration (this can be 0 if we assume
that the (un-)loading time is negligible). Further, each activity either depletes
or replenishes the inventory reservoir of a vehicle. The distance between two
locations is modeled as the ‘transition time’ between the corresponding activities.
We minimize the sum of the completion times of all vehicles.

All these concepts are readily available in most industrial CP solvers. We have
implemented the model in ILOG Solver 6.6 (which includes ILOG Scheduler).
A snapshot of the ILOG model for a single vehicle is provided in Figure Bl It
shows that the concepts presented above can almost literally be encoded as a
CP model.

2.4 Constraint-Based Local Search

Our final approach uses Constraint-Based Local Search (CBLS). With CBLS
we can express the problem similar to a CP model, which will then be used
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IloReservoir truckReservoir(ReservoirCapacity, 0); class RoutingModel {
truckReservoir.setLevelMax (0, TimeHorizon, ReservoirCapacity); .

IloDimension2 _time;
TloUnaryResource truckTime(); IloDimension2 _distance;
TloTransitionTime T(truckTime, Distances); IloDimensionl _weight;

vector<IloActivity> visit; ¥
visit = vector<IloActivity>(N);
TloNode node( <read coordinates from file> );
for (int i=0; i<N; i++) {
visit[i].requires(truckTime); TloVisit visit(node);

if (supply[il > 0) visit.getTransitVar (_weight) == Supply);
visit[i].produces(truckReservoir, supply[il); minTime <= visit.getCumulVar(_time) <= maxTime;
else visit.getCumulVar (_weight) >= 0);
visit[i].consumes (truckReservoir, -1xsupply[il);
b TloVehicle vehicle(firstNode, lastNode);

vehicle.setCapacity(_weight, Capacity);
vehicle.setCost(_distance);

Fig. 2. Snapshots of the ILOG Scheduler model (left) and ILOG Dispatcher model
(right), for a single vehicle

to automatically derive the neighborhoods and penalty function needed to de-
fine a local search procedure. Our CBLS is based on the semantics offered by
ILOG Dispatcher (included in ILOG Solver 6.6). These semantics are specifically
designed to model routing problems.

ILOG Dispatcher uses the concepts nodes, vehicles, and wisits. The nodes
are defined by the coordinates of the locations, and contain as an attribute the
amount to be picked up or delivered. The vehicles contain several attributes,
including time, distance, and weight (load). Vehicles also contain, by default, a
‘“unary resource’ constraint with respect to time, and a ‘capacity’ constraint with
respect to the load, similar to the resources in ILOG Scheduler. The attributes
of visits include the location, the quantity to be picked up (positive) or delivered
(negative), a time window, and possibly other problem-specific constraints.

In a first phase, we create a feasible solution. ILOG Dispatcher uses various
heuristics for this, including a nearest-neighbour heuristic that we applied in our
experiments. Where applicable, we started from the current schedule that we
extracted from the data.

The second phase improves upon the starting solution using various local
search methods. We applied successively the methods IlloTwoOpt, [loOrOpt,
TloRelocate, IloCross and IloExchange. Within each method, we take the first
legal cost-decreasing move encountered.

3 Ewvaluation

Our experimental results are performed on data provided by the Pittsburgh Food
Bank. Their food rescue program visits 130 locations per week. The provided
data allowed us to extract a fairly accurate estimate on the expected pickup
amount for the donor locations. The precise delivery amounts were unknown, and
we therefore approximate the demand based on the population served by each
location (which is known accurately), scaled by the total supply. We allow the
total demand to be slightly smaller than the total supply, to avoid pathological
behavior of the algorithm. We note however, that although this additional ‘slack’
influences the results, the qualitative behavior of the different techniques remains
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the same. The MIP model is solved using ILOG CPLEX 11.2, while the CP and
CBLS model are solved using ILOG Solver 6.6, all on a 2.33GHz Intel Xeon
machine.

The first set of instances are for individual vehicles, on routes serving 13 to 18
locations (corresponding to a daily schedule). The second set of instances group
together schedules over multiple days, ranging from 30 to 130 locations. The
results are presented in Figure[Bl We report for each instance the cost savings (in
terms of total distance traveled) with respect to the current operational schedule.
Here, |V| and |T'| denote the number of locations and vehicles, respectively.
The optimal solutions found with MIP and CP took several (2-3) minutes to
compute, while the solutions found with CBLS took several seconds or less. The
time limit was set to 30 minutes.

Our experimental results indicate that on this
problem domain, our MIP model is outperformed |V| |T| MIP CP CBLS

by our CP model to find an optimal solution (we 13 | 129 12% 12%
note that a specialized 1-PDTSP MIP approachsuch 14 1 15% 15% 14%
as 4] might perform better than our ‘generic’ MIP 15 1 - % 6%
model on the single-vehicle instances). Further, the 16 1 - % 3%
CP model is able to find optimal solutions for up 18 1 - 16%  15%
to 18 locations and one vehicle; for a higher num- 30 2 - - 4%
ber of locations or vehicles, the CP model is unable 60 4 - } 8%

130 9 - - 10%

to find even a single solution. Lastly, the CBLS ap-
proach is able to handle large-scale instances, up to
130 locations and 9 vehicles. The expected savings Fig.3. Savings obtained
are substantial, being at least 10% on the largest with different approaches
instance.
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Abstract. Numberjack is a modelling package written in Python for embedding
constraint programming and combinatorial optimisation into larger applications.
It has been designed to seamlessly and efficiently support a number of underlying
combinatorial solvers. This paper illustrates many of the features of Numberjack
through the use of several combinatorial optimisation problems.

1 Introduction

We present Numberjackﬂ, a Python-based constraint programming system. Number-
jack brings the power of combinatorial optimisation to Python programmers by sup-
porting the specification of complex problem models and specifying how these should
be solved. Numberjack provides a common API for constraint programming, mixed-
integer programming and satisfiability solvers. Currently supported are: the CP solvers
Mistral and Gecode; a native Python CP solver; the MIP solver SCIP; and the satisfi-
ability solver MiniSaf]. Users of Numberjack can write their problems once and then
specify which solver should be used. Users can incorporate combinatorial optimisation
capabilities into any Python application they build, with all the benefits that it brings.

2 Modelling in Numberjack

Numberjack is provided as a Python module. To use Numberjack one must import all
Numberjack’s classes, using the command: from Numberjack import =*. Simi-
larly, one needs to import the modules corresponding to the solvers that will be invoked
in the program, for instance: import Mistral or import Gecode. The Number-
jack module essentially provides a class Model whereas the solver modules provide a
class Solver, which are built from a Model. The structure of a typical Numberjack
program is presented in Figure[]l Notice that it is possible to use several types of solver
to solve the same model by explicitly invoking the modules. To solve a model, the
various methods implemented in the back-end solvers can be invoked through Python.

* Supported by Science Foundation Ireland Grant Number 05/IN/1886.

! Available under LGPL fromhttp: //numberjack.ucc.ie

2 Mistral: http: //4c.ucc.ie/~ehebrard/Software . html; Gecode:
http://gecode.org; SCIP: http://scip.zib.de/;
MiniSat: http://minisat.se;
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from Numberjack import » # Import all Numberjack classes

import Gecode # Import the Gecode solver interface
import Mistral # Import the Mistral solver interface
model = Model () # Declare a new model

# Define the constraints and objectives

gsolver = Gecode.Solver (model) # Declare a Gecode solver
msolver = Mistral.Solver (model) # Declare a Mistral solver
gsolver.solve() # Solve the model with Gecode
msolver.solve () # Solve the model with Mistral

Fig. 1. The structure of a typical Numberjack program

Almost every statement in Numberjack is an expression. Variables are expressions,
and constraints are expressions on a set of sub-expressions. Variable objects are created
by specifying its domain by passing a lower and an upper bound, or a set of values. One
can also use floating point values for the bounds, however the result will depend on
the back-end solver. MIP solvers will, by default, treat variables declared with floating
point values as continuous and integer otherwise. A model is a set of expressions.

It is possible to define classes of objects to help write concise models. For instance,
the objects VarArray and Matrix are syntactic sugars for one-dimensional and two-
dimensional arrays of Numberjack expressions, respectively. The Matrix object al-
lows us to reference the rows, the columns, and a flattened version of the matrix using
.row, .col and . flat, respectively. The overloaded bracket ([ ]) operator tied to
the Python object method getitem. The operator takes one argument representing
the index of the object to be returned. For VarArray and Matrix objects this argu-
ment can either be a Numberjack expression or an integer. The bracket operator of the
Matrix object returns the VarArray object representing the row at the given index.
When the index argument is itself a Numberjack expression, the result is interpreted as
an Element constraint. Objective functions are also expressions.

2.1 Some Example Models

Costas Array. A Costas arrayﬁ is an arrangement of [V points on a /N x N checkerboard,
such that each column or row contains only one point, and that all of the N(N —
1)/2 vectors defined by these points are distinct. We model this problem in Figure 2
as follows: for each row, we introduce a variable whose value represents the column at
which a point is placed in this row. To ensure that no two points share the same column,
we post an AL1Diff constraint on the rows (Line 4). To each value y € [1.N — 2],
we can map a set of vectors whose vertical displacements are equal, i.e., the vectors
defined by the points (rowli],) and (row[i + y],% + y). To ensure that these vectors
are distinct, we use another A11D1 £ £ constraint.

Golomb Ruler. In the Golomb ruler problem the goal is to minimise the position of the
last mark on a ruler such that the distance between each pair of marks is different. The
Numberjack model is shown in Figure

3 http://mathworld.wolfram.com/CostasArray.html
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10
[Variable(1,N) for i in range(N)]

= Model ()
+= Al1Diff (row)
in range(N-2):

model += AllDiff([row[i] - row[i+y+1l] for i in range(N-y-1)])

solver = Mistral.Solver (model)
solver.solve()

Fig. 2. A Numberjack model for a 10 x 10 instance of the Costas array problem

M = [Variable(l,rulerSize) for i in range(N)]

model =

Model ()

model += Al1Diff([M[1i]-M[j] for i in range(l,N) for j in range(i)])

model += Minimise (marks[nbMarks-1]) # The objective function

Fig. 3. A Numberjack model for the Golomb ruler problem

Magic Square. In this problem one wants every number between 1 and N2 to be placed
in an N x N matrix such that every row, column and diagonal sum to the same number.
A model for that problem making use of the Matrix class is presented in Figure 4l

N = 10
sum_val = Nx (Nx*N+1) /2
square = Matrix(N,N,1,N=N)

model = Model (

# The values in each cell must be distinct
Al1Diff (square.flat)

# Each row and column must add to sum_val
[Sum(row) == sum_val for row in square.row],
[Sum(col) == sum_val for col in square.col]

# Each diagonal must add to sum_val

Sum( [squarela] [a] for a in range(N)]) == sum_val,

Sum( [square[a] [N-a-1] for a in range(N)]) == sum_val

Fig. 4. A Numberjack model for the Magic Square problem

Quasigroups. A quasigroup is m x m multiplication defined by a matrix which from a
Latin square, i.e. every element occurs once in every row and column. The result of the
product a * b corresponds to the element at row a and column b of the matrix. Figure
presents a model for the problem in which for all a, b we have: ((b* a) * b) x b = a.

2.2 Extending Numberjack

Numberjack provides a facility to add custom constraints. Consider the following opti-
cal network monitoring problem taken from [1]]. An optical network consists of nodes
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N =38
X Matrix (N,N,N)

model = Model (

# The rows and columns form a Latin square
[AllDiff (row) for row in x.row],
[AllDiff (col) for col in x.col],

# Enforce the QG5 Property
[x[ x[ x[bllal 1[ b1 1[b] == a for a in range(N) for b in range(N)] )

Fig. 5. A Numberjack model for the Quasigroup Existence problem

and fibre channels. When a node fails in the network, all lightpaths passing through that
node are affected. Monitors attached to the nodes present in the affected lightpaths trig-
ger alarms. Hence, a single fault will generate multiple alarms. By placing monitors in
the right way, we can minimize the number of alarms generated for a fault while keep-
ing the fault-detection coverage maximum. In the problem we model below, we add the
additional constraint that for any node failure that might occur, it triggers a unique set
of alarms. This problem requires that each combination of monitor alarms is unique for
each node fault. This requires that every pair of vectors of variables differ on at least one
element. This can be specified in Numberjack by introducing a HammingDistance
constraint. The Numberjack model for this problem is presented as Figure 6l

class HammingDistance (Expression) :

def __init__ (self, rowl, row2):

Expression.__init__ (self, "HammingDistance")
self.set_children (rowl+row2)
self.rows = [rowl, row2]

def decompose (self):

return [Sum ([ (varl != var2) for varl, var2 in zip(self.rows[0],self.rows[1])])]
Nodes = 6 # We consider a graph with 6 nodes
Monitors = 10 # Faults on the nodes trigger 10 monitors
alarm_matrix = [ # Each vector specifies the monitors triggered by each node
(L, 2, 3, 101, [ 7 1,
[ 6, 7, I 5, 6, 7, 1,
[ 2, 3, 4, 8, 101, [ 3, 4, 8, 9, 10]
monitors_on = VarArray (Monitors) # The decision variables

being_monitored = Matrix (Nodes, Monitors

model = Model () # Specify the model...
model.add( Minimise (Sum(monitors_on)) )
model.add( [ monitor == ( Sum(col) >= 1 ) for col, monitor in

zip (being_monitored.col, monitors_on) 1)
model.add( [ Sum(row) > 0 for row in being_monitored] )

model.add ([HammingDistance (x1,x2) > 0 for x1, x2 in pair_of (being_monitored)])
for monitored_row, possible_monitor_row in zip(being_monitored, alarm _matrix):
model.add([monitored_row[idx - 1] == 0 for idx in
[x for x in range (Monitors) if x not in possible_monitor_row]])

Fig. 6. A Numberjack model for the optical network monitoring problem [1]
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3 Experiments

Experiments ran on an Intel Xeon 2.66GHz machine with 12GB of ram on Fedora 9.

Experiment 1: Overhead due to Numberjack. We first assess the overhead of using a
solver within Numberjack. We ran three back-end solvers, Mistral, MiniSat and SCIP
on three arythmetic puzzles (Magic Square, Costas Array and Golomb Ruler). For each
run, we used a profiler to separate the time spent executing Python code from the time
spent executing code from the back-end solver. We report the results in Table [l For
every problem we report results averaged across 7 instanced] of various size and 10
randomized runs each. The time spent executing the Python code is very modest, and
of course independent of the hardness of the instance.

Table 1. Solver Time vs Python Time (Arithmetic puzzles)

Mistral Time (s) MiniSat Time (s) SCIP Time (s)

Solver Python  Solver Python Solver Python
Magic-Square (3t09)  0.0205 0.0101 59.7130 0.0116 35.85 0.0107
Costas-Array (6to12) 0.0105 0.0098 0.0666 0.0095 78.2492 0.0134
Golomb-Ruler (3to9)  0.5272 0.0056 56.0008 0.0055 118.1979 0.0076

Instance

Experiment: Comparison of Back-end Solvers. It is well known in the fields of Con-
straint Programming and Mixed Integer Programming that the areas have different
strengths and weaknesses. For example, the CP and SAT solvers were much more effi-
cient than the MIP solver for the arythmetic puzzles used in the first set of experiments
(See Table [I)). However, of course, the situation can be completely reversed on prob-
lems more suited to mathematical programming. We ran Numberjack on the Warehouse
allocation problem (P34 of the CSPLib). This problem is easily solved using the Mixed
Integer Solver SCIP as back end (1.86 seconds and 4.8 nodes in average over the 5
instances on the CSPLib) whilst Mistral ran over a time limit of one hour, staying well
over the optimal allocation and exploring several million nodes.

4 Conclusion

Numberjack is a Python-based constraint programming system. It brings the power of
combinatorial optimisation to Python programmers by supporting the specification of
complex models and specifying how these should be solved. We presented the features
of Numberjack through the use of several combinatorial problems.

Reference

1. Nayek, P, Pal, S., Choudhury, B., Mukherjee, A., Saha, D., Nasipuri, M.: Optimal monitor
placement scheme for single fault detection in optical network. In: Proceedings of 2005 7th
International Conference, vol. 1, pp. 433-436 (2005)

* The results of SCIP on the 3 hardest Magic Square instances are not taken into account since
the cutoff of 1000 seconds was reached.



Automated Configuration of
Mixed Integer Programming Solvers

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 174, Canada
{hutter, hoos, kevinlb}@cs.ubc.ca

Abstract. State-of-the-art solvers for mixed integer programming (MIP) prob-
lems are highly parameterized, and finding parameter settings that achieve high
performance for specific types of MIP instances is challenging. We study the
application of an automated algorithm configuration procedure to different MIP
solvers, instance types and optimization objectives. We show that this fully-
automated process yields substantial improvements to the performance of three
MIP solvers: CPLEX, GUROBI, and LPSOLVE. Although our method can be used
“out of the box” without any domain knowledge specific to MIP, we show that it
outperforms the CPLEX special-purpose automated tuning tool.

1 Introduction

Current state-of-the-art mixed integer programming (MIP) solvers are highly parame-
terized. Their parameters give users control over a wide range of design choices, includ-
ing: which preprocessing techniques to apply; what balance to strike between branching
and cutting; which types of cuts to apply; and the details of the underlying linear (or
quadratic) programming solver. Solver developers typically take great care to identify
default parameter settings that are robust and achieve good performance across a variety
of problem types. However, the best combinations of parameter settings differ across
problem types, which is of course the reason that such design choices are exposed as pa-
rameters in the first place. Thus, when a user is interested only in good performance for
a given family of problem instances—as is the case in many application situations—it
is often possible to substantially outperform the default configuration of the solver.

When the number of parameters is large, finding a solver configuration that leads to
good empirical performance is a challenging optimization problem. (For example, this
is the case for CPLEX: in version 12, its 221-page parameter reference manual describes
135 parameters that affect the search process.) MIP solvers exist precisely because hu-
mans are not good at solving high-dimensional optimization problems. Nevertheless,
parameter optimization is usually performed manually. Doing so is tedious and labori-
ous, requires considerable expertise, and often leads to results far from optimal.

There has been recent interest in automating the process of parameter optimization
for MIP. The idea is to require the user to only specify a set of problem instances of
interest and a performance metric, and then to trade machine time for human time to
automatically identify a parameter configuration that achieves good performance. No-
tably, IBM ILOG CPLEX—the most widely used commercial MIP solver—introduced

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 186\-202./2010.
(© Springer-Verlag Berlin Heidelberg 2010
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an automated tuning tool in version 11. In our own recent work, we proposed several
methods for the automated configuration of various complex algorithms [20, 19, 18, 15].
While we mostly focused on solvers for propositional satisfiability (based on both local
and tree search), we also conducted preliminary experiments that showed the promise of
our methods for MIP. Specifically, we studied the automated configuration of CPLEX
10.1.1, considering 5 types of MIP instances [19].

The main contribution of this paper is a thorough study of the applicability of one
of our black-box techniques to the MIP domain. We go beyond previous work by con-
figuring three different MIP solvers (GUROBI, LPSOLVE, and the most recent CPLEX
version 12.1); by considering a wider range of instance distributions; by considering
multiple configuration objectives (notably, performing the first study on automatically
minimizing the optimality gap); and by comparing our method to CPLEX’s automated
tuning tool. We show that our approach consistently sped up all three MIP solvers and
also clearly outperformed the CPLEX tuning tool. For example, for a set of real-life
instances from computational sustainability, our approach sped up CPLEX by a factor
of 52 while the tuning tool returned the CPLEX defaults. For GUROBI, speedups were
consistent but small (up to a factor of 2.3), and for LPSOLVE we obtained speedups up
to a factor of 153.

The remainder of this paper is organized as follows. In the next section, we describe
automated algorithm configuration, including existing tools and applications. Then, we
describe the MIP solvers we chose to study (Section 3) and discuss the setup of our
experiments (Section 4). Next, we report results for optimizing both the runtime of
the MIP solvers (Section 5) and the optimality gap they achieve within a fixed time
(Section 6). We then compare our approach to the CPLEX tuning tool (Section 7) and
conclude with some general observations and an outlook on future work (Section 8).

2 Automated Algorithm Configuration

Whether manual or automated, effective algorithm configuration is central to the de-
velopment of state-of-the-art algorithms. This is particularly true when dealing with
N'P-hard problems, where the runtimes of weak and strong algorithms on the same
problem instances regularly differ by orders of magnitude. Existing theoretical
techniques are typically not powerful enough to determine whether one parameter con-
figuration will outperform another, and therefore algorithm designers have to rely on
empirical approaches.

2.1 The Algorithm Configuration Problem

The algorithm configuration problem we consider in this work involves an algorithm
to be configured (a target algorithm) with a set of parameters that affect its perfor-
mance, a set of problem instances of interest (e.g., 100 vehicle routing problems), and a
performance metric to be optimized (e.g., average runtime; optimality gap). The target
algorithm’s parameters can be numerical (e.g., level of a real-valued threshold); ordinal
(e.g., low, medium, high); categorical (e.g., choice of heuristic), Boolean (e.g., algo-
rithm component active/inactive); and even conditional (e.g., a threshold that affects
the algorithm’s behaviour only when a particular heuristic is chosen). In some cases,
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Parameter domains
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. Configuration scenario
Calls with g Problem
different instances
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parameter g Solves
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Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with speci-
fied parameter settings on one or more problem instances, observes algorithm performance, and
uses this information to decide which subsequent target algorithm runs to perform. A configura-
tion scenario includes the target algorithm to be configured and a collection of instances.

a value for one parameter can be incompatible with a value for another parameter; for
example, some types of preprocessing are incompatible with the use of certain data
structures. Thus, some parts of parameter configuration space are forbidden; they can
be described succinctly in the form of forbidden partial instantiations of parameters
(i.e., constraints).

We refer to instances of this algorithm configuration problem as configuration sce-
narios, and we address these using automatic methods that we call configuration pro-
cedures; this is illustrated in Figure 1. Observe that we treat algorithm configuration as
a black-box optimization problem: a configuration procedure executes the target algo-
rithm on a problem instance and receives feedback about the algorithm’s performance
without any access to the algorithm’s internal state. (Because the CPLEX tuning tool is
proprietary, we do not know whether it operates similarly.)

2.2 Configuration Procedures and Existing Applications

A variety of black-box, automated configuration procedures have been proposed in the
CP and Al literatures. There are two major families: model-based approaches that learn
a response surface over the parameter space, and model-free approaches that do not.
Much existing work is restricted to scenarios having only relatively small numbers
of numerical (often continuous) parameters, both in the model-based [7, 13, 17] and
model-free [6, 1] literatures. Some relatively recent model-free approaches permit both
larger numbers of parameters and categorical domains, in particular Composer [12],
F-Race [9, 8], GGA [3], and our own ParamILS [20, 19]. As mentioned above, the
automated tuning tool introduced in CPLEX version 11 can also be seen as a special-
purpose algorithm configuration procedure; we believe it to be model free.

Blackbox configuration procedures have been applied to optimize a variety of para-
metric algorithms. Gratch and Chien [12] successfully applied the Composer system to
optimize the five parameters of LR-26, an algorithm for scheduling communication be-
tween a collection of ground-based antennas and spacecraft in deep space. Adenso-Diaz
and Laguna [1] demonstrated that their Calibra system was able to optimize the param-
eters of six unrelated metaheuristic algorithms, matching or surpassing the performance
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achieved manually by their developers. F-Race and its extensions have been used to op-
timize numerous algorithms, including iterated local search for the quadratic assignment
problem, ant colony optimization for the travelling salesperson problem, and the best-
performing algorithm submitted to the 2003 timetabling competition [8].

Our group successfully used various versions of PARAMILS to configure algorithms
for a wide variety of problem domains. So far, the focus of that work has been on the
configuration of solvers for the propositional satisfiability problem (SAT); we optimized
both tree search [16] and local search solvers [21], in both cases substantially advancing
the state of the art for the types of instances studied. We also successfully configured
algorithms for the most probable explanation problem in Bayesian networks, global
continuous optimization, protein folding, and algorithm configuration itself (for details,
see Ref. 15).

2.3 Configuration Procedure Used: FOCUSEDILS

The configuration procedure used in this work is an instantiation of the PARAMILS
framework [20, 19]. However, we do not mean to argue for the use of PARAMILS in
particular, but rather aim to provide a lower bound on the performance improvements
that can be achieved by applying general-purpose automated configuration tools to MIP
solvers; future tools may achieve even better performance.

PARAMILS performs an iterated local search (ILS) in parameter configuration space;
configurations are evaluated by running the target algorithm with them. The search is
initialized at the best out of ten random parameter configurations and the target al-
gorithm’s default configuration. Next, PARAMILS performs a first-improvement local
search that ends in a local optimum. It then iterates three phases: (1) a random per-
turbation to escape the local optimum; (2) another local search phase resulting in a
new local optimum; and (3) an acceptance criterion that typically accepts the new local
optimum if it is better than the previous one. The PARAMILS instantiation we used
here is FOCUSEDILS version 2.4, which aggressively rejects poor configurations and
focuses its efforts on the evaluation of good configurations. Specifically, it starts with
performing only a single target algorithm run for each configuration considered, and
performs additional runs for good configurations as the search progresses. This process
guarantees that—given enough time and a training set that is perfectly representative of
unseen test instances—FOCUSEDILS will identify the best configuration in the given
design space [20, 19]. (Further details of PARAMILS and FOCUSEDILS can be found
in our previous publications [20, 19].)

In practice, we are typically forced to work with finite sets of benchmark instances,
and performance on a small training set is often not very representative for performance
on other, unseen instances of similar origin. PARAMILS (and any other configuration
tool) can only optimize performance on the training set it is given; it cannot guarantee
that this leads to improved performance on a separate set of test instances. In particular,
with very small training sets, a so-called over-tuning effect can occur: given more time,
automated configuration tools find configurations with better training but worse test
performance [8, 20].

Since target algorithm runs with some parameter configurations may take a very long
(potentially infinite) time, PARAMILS requires the user to specify a so-called captime
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Table 1. Target algorithms and characteristics of their parameter configuration spaces. For details,
see http://www.cs.ubc.ca/labs/beta/Projects/MIP-Config/

Algorithm ~ Parameter type # parameters of this type # values considered Total # configurations

Boolean 6 (7) 2
CPLEX Categorical 45 (43) 3-7 1.90 - 1047
MILP (MIQCP) Integer 18 5-7 (3.40 - 10*%)
Continuous 7 5-8
Boolean 4 2
Categorical 16 3-5 14
GUROBI Integer 3 5 3.84 - 10
Continuous 2 5
Boolean 40 2 15
LPSOLVE Categorical 7 3-8 1.22-10

Kmaz, the maximal amount of time after which PARAMILS will terminate a run of
the target algorithm as unsuccessful. FOCUSEDILS version 2.4 also supports adaptive
capping, a speedup technique that sets the captimes Kk < Kq, for individual target
algorithm runs, thus permitting substantial savings in computation time.

FoCcUSEDILS is a randomized algorithm that tends to be quite sensitive to the order-
ing of its training benchmark instances. For challenging configuration tasks some of its
runs often perform much better than others. For this reason, in previous work we adopted
the strategy to perform 10 independent parallel runs of FOCUSEDILS and use the result
of the run with best training performance [16, 19]. This is sound since no knowledge
of the test set is required in order to make the selection; the only drawback is a 10-fold
increase in overall computation time. If none of the 10 FOCUSEDILS runs encounters
any successful algorithm run, then our procedure returns the algorithm default.

3 MIP Solvers

We now discuss the three MIP solvers we chose to study and their respective parameter
configuration spaces. Table 1 gives an overview.

IBM ILOG CPLEX is the most-widely used commercial optimization tool for solv-
ing MIPs. As stated on the CPLEX website (http://www.ilog.com/products/
cplex/), currently over 1 300 corporations and government agencies use CPLEX, along
with researchers at over 1 000 universities. CPLEX is massively parameterized and end
users often have to experiment with these parameters:

“Integer programming problems are more sensitive to specific parameter set-
tings, so you may need to experiment with them.” (ILOG CPLEX 12.1 user
manual, page 235)

Thus, the automated configuration of CPLEX is very promising and has the potential to
directly impact a large user base.

We used CPLEX 12.1 (the most recent version) and defined its parameter configu-
ration space as follows. Using the CPLEX 12 “parameters reference manual”, we iden-
tified 76 parameters that can be modified in order to optimize performance. We were
careful to keep all parameters fixed that change the problem formulation (e.g., param-
eters such as the optimality gap below which a solution is considered optimal). The
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76 parameters we selected affect all aspects of CPLEX. They include 12 preprocessing
parameters (mostly categorical); 17 MIP strategy parameters (mostly categorical); 11
categorical parameters deciding how aggressively to use which types of cuts; 9 numeri-
cal MIP “limits” parameters; 10 simplex parameters (half of them categorical); 6 barrier
optimization parameters (mostly categorical); and 11 further parameters. Most param-
eters have an “automatic” option as one of their values. We allowed this value, but also
included other values (all other values for categorical parameters, and a range of values
for numerical parameters). Exploiting the fact that 4 parameters were conditional on
others taking certain values, these 76 parameters gave rise to 1.90 - 10%” distinct param-
eter configurations. For mixed integer quadratically-constrained problems (MIQCP),
there were some additional parameters (1 binary and 1 categorical parameter with 3
values). However, 3 categorical parameters with 4, 6, and 7 values were no longer ap-
plicable, and for one categorical parameter with 4 values only 2 values remained. This
led to a total of 3.40 - 10%° possible configurations.

GUROBI is a recent commercial MIP solver that is competitive with CPLEX on some
types of MIP instances [23]. We used version 2.0.1 and defined its configuration space
as follows. Using the online description of GUROBI’s parameters,! we identified 26
parameters for configuration. These consisted of 12 mostly-categorical parameters that
determine how aggressively to use each type of cuts, 7 mostly-categorical simplex pa-
rameters, 3 MIP parameters, and 4 other mostly-Boolean parameters. After disallowing
some problematic parts of configuration space (see Section 4.2), we considered 25 of
these 26 parameters, which led to a configuration space of size 3.84 - 104,

LPSOLVE is one of the most prominent open-source MIP solvers. We determined 52 pa-
rameters based on the information at http://lpsolve.sourceforge.net/. These
parameters are rather different from those of GUROBI and CPLEX: 7 parameters are
categorical, and the rest are Boolean switches indicating whether various solver mod-
ules should be employed. 17 parameters concern presolving; 9 concern pivoting; 14
concern the branch & bound strategy; and 12 concern other functions. After disallow-
ing problematic parts of configuration space (see Section 4.2), we considered 47 of
these 52 parameters. Taking into account one conditional parameter, these gave rise to
1.22 - 10*° distinct parameter configurations.

4 Experimental Setup

We now describe our experimental setup: benchmark sets, how we identified problem-
atic parts in the configuration spaces of GUROBI and LPSOLVE, and our computational
environment.

4.1 Benchmark Sets

We collected a wide range of MIP benchmarks from public benchmark libraries and
other researchers, and split each of them 50:50 into disjoint training and test sets; we
detail these in the following.

"http://www.gurobi.com/html/doc/refman/node378.html#sec:
Parameters
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MJA. This set comprises 343 machine-job assignment instances encoded as mixed in-
teger quadratically constrained programming (MIQCP) problems [2]. We obtained it
from the Berkeley Computational Optimization Lab (BCOL).? On average, these in-
stances contain 2 769 variables and 2 255 constraints (with standard deviations 2 133
and 1 592, respectively).

MIK. This set comprises 120 mixed-integer knapsack instances encoded as mixed in-
teger linear programming (MILP) problems [4]; we also obtained it from BCOL. On
average, these instances contain 384 variables and 151 constraints (with standard devi-
ations 309 and 127, respectively).

CLS. This set of 100 MILP-encoded capacitated lot-sizing instances [5] was also ob-
tained from BCOL. Each instance contains 181 variables and 180 constraints.

REGIONS100. This set comprises 2 000 instances of the combinatorial auction win-
ner determination problem, encoded as MILP instances. We generated them using the
regions generator from the Combinatorial Auction Test Suite [22], with parameters
goods=100 and bids=500. On average, the resulting MILP instances contain 501 vari-
ables and 193 inequalities (with standard deviations 1.7 and 2.5, respectively).

REGIONS200. This set contains 2 000 instances similar to those in REGIONS100 but
larger; we created it with the same generator using goods=200 and bids=1000. On
average, the resulting MILP instances contain 1 002 variables and 385 inequalities (with
standard deviations 1.7 and 3.4, respectively).

MASS. This set comprises 100 integer programming instances modelling multi-activity
shift scheduling [10]. On average, the resulting MILP instances contain 81 994 variables
and 24 637 inequalities (with standard deviations 9 725 and 5 391, respectively).

CORLAT. This set comprises 2000 MILP instances based on real data used for the
construction of a wildlife corridor for grizzly bears in the Northern Rockies region
(the instances were described by Gomes et al. [11] and made available to us by Bistra
Dilkina). All instances had 466 variables; on average they had 486 constraints (with
standard deviation 25.2).

4.2 Avoiding Problematic Parts of Parameter Configuration Space

Occasionally, we encountered problems running GUROBI and LPSOLVE with certain
combinations of parameters on particular problem instances. These problems included
segmentation faults as well as several more subtle failure modes, in which incorrect
results could be returned by a solver. (CPLEX did not show these problems on any of
the instances studied here.) To deal with them, we took the following measures in our
experimental protocol. First, we established reference solutions for all MIP instances
using CPLEX 11.2 and GUROBI, both run with their default parameter configurations
for up to one CPU hour per instance.? (For some instances, neither of the two solvers
could find a solution within this time; for those instances, we skipped the correctness
check described in the following.)

2http://www.ieor.berkeley.edu/~atamturk/bcol/, where this set is called
conic.sch.
3 These reference solutions were established before we had access to CPLEX 12.1.
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In order to identify problematic parts of a given configuration space, we ran 10
PARAMILS runs (with a time limit of 5 hours each) until one of them encountered
a target algorithm run that either produced an incorrect result (as compared to our ref-
erence solution for the respective MIP instance), or a segmentation fault. We call the
parameter configuration @ of such a run problematic. Starting from this problematic
configuration 8, we then identified what we call a minimal problematic configuration
0,,in- In particular, we iteratively changed the value of one of 8’s parameters to its re-
spective default value, and repeated the algorithm run with the same instance, captime,
and random seed. If the run still had problems with the modified parameter value, we
kept the parameter at its default value, and otherwise changed it back to the value it
took in 6. Iterating this process converges to a problematic configuration 8,,,;,, that is
minimal in the following sense: setting any single non-default parameter value of 0,,,;,,
to its default value resolves the problem in the current target algorithm run.

Using PARAMILS’s mechanism of forbidden partial parameter instantiations, we
then forbade any parameter configurations that included the partial configuration de-
fined by 0,,;,’s non-default parameter values. (When all non-default values for a pa-
rameter became problematic, we did not consider that parameter for configuration,
clamping it to its default value.) We repeated this process until no problematic con-
figuration was found in the PARAMILS runs: 4 times for GUROBI and 14 times for
LPSOLVE. Thereby, for GUROBI we removed one problematic parameter and disal-
lowed two further partial configurations, reducing the size of the configuration space
from 1.32 - 10! to 3.84 - 10'4. For LPSOLVE, we removed 5 problematic binary flags
and disallowed 8 further partial configurations, reducing the size of the configuration
space from 8.83 - 1016 to 1.22 - 105, Details on forbidden parameters and partial con-
figurations, as well as supporting material, can be found at http: / /www.cs.ubc.ca/
labs/beta/Projects/MIP-Config/

While that first stage resulted in concise bug reports we sent to GUROBI and LP-
SOLVE, it is not essential to algorithm configuration. Even after that stage, in the exper-
iments reported here, target algorithm runs occasionally disagreed with the reference
solution or produced segmentation faults. We considered the empirical cost of those
runs to be oo, thereby driving the local search process underlying PARAMILS away
from problematic parameter configurations. This allowed PARAMILS to gracefully han-
dle target algorithm failures that we had not observed in our preliminary experiments.
We could have used the same approach without explicitly identifying and forbidding
problematic configurations.

4.3 Computational Environment

We carried out the configuration of LPSOLVE on the 840-node Westgrid Glacier cluster,
each with two 3.06 GHz Intel Xeon 32-bit processors and 2—4GB RAM. All other
configuration experiments, as well as all evaluation, was performed on a cluster of 55
dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE
Linux 10.1; runtimes were measured as CPU time on these reference machines.
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Table 2. Results for minimizing the runtime required to find an optimal solution and prove its
optimality. All results are for test sets disjoint from the training sets used for the automated
configuration. We report the percentage of timeouts after 24 CPU hours as well as the mean
runtime for those instances that were solved by both approaches. Bold-faced entries indicate
better performance of the configurations found by PARAMILS than for the default configuration.
(To reduce the computational burden, results for LPSOLVE on REGIONS200 and CORLAT are
only based on 100 test instances sampled uniformly at random from the 1000 available ones.)

. . % test instances unsolved in 24h mean runtime for solved [CPU s] Speedup
Algorithm  Scenario

default PARAMILS default PARAMILS factor
MIJA 0% 0% 3.40 1.72 1.98x
MIK 0% 0% 4.87 1.61 3.03x
REGIONS100 0% 0% 0.74 0.35 2.13x
CPLEX REGIONS200 0% 0% 59.8 11.6 5.16 X
CLS 0% 0% 47.7 12.1 3.94x
MASS 0% 0% 524.9 213.7 2.46 %
CORLAT 0% 0% 850.9 16.3 52.3 x
MIK 0% 0% 2.70 2.26 1.20%
REGIONS100 0% 0% 2.17 1.27 1.71x
REGIONS200 0% 0% 56.6 40.2 1.41x
GUROBI CLS 0% 0% 58.9 47.2 1.25x
MASS 0% 0% 493 281 1.75%
CORLAT 0.3% 0.2% 103.7 445 2.33x
MIK 63% 63% 21670 21670 1%
REGIONS100 0% 0% 9.52 1.71 5.56 %
REGIONS200 12% 0% 19000 124 153 %
LPSOLVE CLS 86% 42% 39300 1440 27.4%
MASS 83% 83% 8661 8661 1%
CORLAT  50% 8% 7916 229 34.6x

5 Minimization of Runtime Required to Prove Optimality

In our first set of experiments, we studied the extent to which automated configuration
can improve the time performance of CPLEX, GUROBI, and LPSOLVE for solving the
seven types of instances discussed in Section 4.1. Thisled to 3 - 6 + 1 = 19 configura-
tion scenarios (the quadratically constrained MJA instances could only be solved with
CPLEX).

For each configuration scenario, we allowed a total configuration time budget of 2
CPU days for each of our 10 PARAMILS runs, with a captime of K4, = 300 seconds
for each MIP solver run. In order to penalize timeouts, during configuration we used
the penalized average runtime criterion (dubbed “PAR-10" in our previous work [19]),
counting each timeout as 10 - k4. For evaluation, we report timeouts separately.

For each configuration scenario, we compared the performance of the parameter con-
figuration identified using PARAMILS against the default configuration, using a test set
of instances disjoint from the training set used during configuration. We note that this
default configuration is typically determined using substantial time and effort; for ex-
ample, the CPLEX 12.1 user manual states (on p. 478):

“A great deal of algorithmic development effort has been devoted to establish-
ing default ILOG CPLEX parameter settings that achieve good performance on
a wide variety of MIP models.”
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Table 2 describes our configuration results. For each of the benchmark sets, our ap-
proach improved CPLEX’s performance. Specifically, we achieved speedups ranging
from 2-fold to 52-fold. For GUROBI, the speedups were also consistent, but less pro-
nounced (1.2-fold to 2.3-fold). For the open-source solver LPSOLVE, the speedups were
most substantial, but there were also 2 cases in which PARAMILS did not improve over
LPSOLVE’s default, namely the MIK and MASS benchmarks. This occurred because,
within the maximum captime of Ky,q> = 300s we used during configuration, none of
the thousands of LPSOLVE runs performed by PARAMILS solved a single benchmark
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Fig. 2. Results for configuration of MIP solvers to reduce the time for finding an optimal solution
and proving its optimality. The dashed blue line indicates the captime (Kmaz = 300s) used

during configuration.
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instance for either of the two benchmark sets. For the other benchmarks, speedups were
very substantial, reaching up to a factor of 153 (on REGIONS200).

Figure 2 shows the speedups for 4 configuration scenarios. Figures 2(a) to (c) show
the scenario with the largest speedup for each of the solvers. In all cases, PARAM-
ILS’s configurations scaled better to hard instances than the algorithm defaults, which
in some cases timed out on the hardest instances. PARAMILS’s worst performance was
for the 2 LPSOLVE scenarios for which it simply returned the default configuration; in
Figure 2(d), we show results for the more interesting second-worst case, the configura-
tion of GUROBI on MIK. Observe that here, performance was actually rather good for
most instances, and that the poor speedup in test performance was due to a single hard
test instance. Better generalization performance would be achieved if more training in-
stances were available.

6 Minimization of Optimality Gap

Sometimes, we are interested in minimizing a criterion other than mean runtime. Algo-
rithm configuration procedures such as PARAMILS can in principle deal with various
optimization objectives; in our own previous work, for example, we have optimized me-
dian runlength, average speedup over an existing algorithm, and average solution qual-
ity [20, 15]. In the MIP domain, constraints on the time available for solving a given
MIP instance might preclude running the solver to completion, and in such cases, we
may be interested in minimizing the optimality gap (also known as MIP gap) achieved
within a fixed amount of time, 7.

To investigate the efficacy of our automated configuration approach in this context,
we applied it to CPLEX, GUROBI and LPSOLVE on the 5 benchmark distributions with

Table 3. Results for configuration of MIP solvers to reduce the relative optimality gap reached
within 10 CPU seconds. We report the percentage of test instances for which no feasible solution
was found within 10 seconds and the mean relative gap for the remaining test instances. Bold
face indicates the better configuration (recall that our lexicographic objective function cares first
about the number of instances with feasible solutions, and then considers the mean gap among
feasible instances only to break ties).

% test instances for which no feas. sol. was found mean gap when feasible Gap reduction

Algorithm  Scenario  jop,1¢ PARAMILS default PARAMILS factor
MIK 0% 0% 0.15%  0.02% 8.65 X

CLS 0% 0% 0.27%  0.15% 1.77%

CPLEX REGIONS200 0% 0% 1.90% 1.10% 1.73X%
CORLAT  28% 1% 4.43%  1.22% 2.81%

MASS 88% 86% 1.91% 1.52% 1.26 X

MIK 0% 0% 0.02% 0.01% 2.16 X

CLS 0% 0% 0.53%  0.44% 1.20%

GUROBI REGIONS200 0% 0% 3.17% 2.52% 1.26 X
CORLAT  14% 5% 3.22%  2.87% 1.12%

MASS 68% 68% 76.4% 52.2% 1.46 X

MIK 0% 0% 652% 14.3% 45.7X

CLS 0% 0% 29.6% 7.39% 4.01X

LPSOLVE REGIONS200 0% 0% 10.8% 6.60% 1.64X%
CORLAT  68% 13% 4.19%  3.42% 1.20%

MASS 100% 100% - - -
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the longest average runtimes, with the objective of minimizing the average relative op-
timality gap achieved within 7" = 10 CPU seconds. To deal with runs that did not find
feasible solutions, we used a lexicographic objective function that counts the fraction of
instances for which feasible solutions were found and breaks ties based on the mean rel-
ative gap for those instances. For each of the 15 configuration scenarios, we performed
10 PARAMILS runs, each with a time budget of 5 CPU hours.

Table 3 shows the results of this experiment. For all but one of the 15 configuration sce-
narios, the automatically-found parameter configurations performed substantially better
than the algorithm defaults. In 4 cases, feasible solutions were found for more instances,
and in 14 scenarios the relative gaps were smaller (sometimes substantially so; consider,
e.g., the 45-fold reduction for LPSOLVE, and note that the gap is not bounded by 100%).
For the one configuration scenario where we did not achieve an improvement, LPSOLVE
on MASS, the default configuration of LPSOLVE could not find a feasible solution for
any of the training instances in the available 10 seconds, and the same turned out to be
the case for the thousands of configurations considered by PARAMILS.

7 Comparison to CPLEX Tuning Tool

The CPLEX tuning tool is a built-in CPLEX function available in versions 11 and above.*
It allows the user to minimize CPLEX’s runtime on a given set of instances. As in our
approach, the user specifies a per-run captime, the default for which is K4, = 10000
seconds, and an overall time budget. The user can further decide whether to minimize
mean or maximal runtime across the set of instances. (We note that the mean is usually
dominated by the runtimes of the hardest instances.) By default, the objective for tuning
is to minimize mean runtime, and the time budget is set to infinity, allowing the CPLEX
tuning tool to perform all the runs it deems necessary.

Since CPLEX is proprietary, we do not know the inner workings of the tuning tool;
however, we can make some inferences from its outputs. In our experiments, it always
started by running the default parameter configuration on each instance in the bench-
mark set. Then, it tested a set of named parameter configurations, such as ‘no cuts’,
‘easy’, and ‘more gomory cuts’. Which configurations it tested depended on the bench-
mark set.

PARAMILS differs from the CPLEX tuning tool in at least three crucial ways. First,
it searches in the vast space of all possible configurations, while the CPLEX tuning tool
focuses on a small set of handpicked candidates. Second, PARAMILS is a randomized
procedure that can be run for any amount of time, and that can find different solutions
when multiple copies are run in parallel; it reports better configurations as it finds them.
The CPLEX tuning tool is deterministic and runs for a fixed amount of time (dependent
on the instance set given) unless the time budget intervenes earlier; it does not return a
configuration until it terminates. Third, because PARAMILS does not rely on domain-
specific knowledge, it can be applied out of the box to the configuration of other MIP

* Incidentally, our first work on the configuration of CPLEX predates the CPLEX tuning tool.
This work, involving Hutter, Hoos, Leyton-Brown, and Stiitzle, was presented and published as
a technical report at a doctoral symposium in Sept. 2007 [14]. At that time, no other mechanism
for automatically configuring CPLEX was available; CPLEX 11 was released Nov. 2007.
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Table 4. Comparison of our approach against the CPLEX tuning tool. For each benchmark set,
we report the time ¢ required by the CPLEX tuning tool (it ran out of time after 2 CPU days for
REGIONS200 and CORLAT, marked by **’) and the CPLEX name of the configuration it judged
best. We report the mean runtime of the default configuration; the configuration the tuning tool
selected; and the configurations selected using 2 sets of 10 PARAMILS runs, each allowed time
t/10 and 2 days, respectively. For the PARAMILS runs, in parentheses we report the speedup
over the CPLEX tuning tool. Boldface indicates improved performance.

. CPLEX tuning tool stats CPLEX mean runtime [CPU s] on test set, with respective configuration
Scenario Tuning time t Name of result Default CPLEX tuning tool 10x PARAMILS(t/10) 10x PARAMILS(2 days)
CLS 104673 ‘defaults’  48.4 48.4 15.1(3.21X) 10.1(4.79%)
REGIONS100 3117 “easy’ 0.74 0.86 0.48(1.79%) 0.34(2.53%)
REGIONS200 172 800% “defaults’  59.8 59.8% 14.2(4.21X) 11.9(5.03X)
MIK 36307 long testl’  4.87 3.56 1.46(2.44X) 0.98(3.63X)
MIJA 2266 “easy’ 3.40 3.18 2.71(1.17X) 1.64(1.94%)
MASS 28844  branch dir'  524.9 425.8 627.4(0.68 %) 478.9(0.89x)
CORLAT  172800%* “defaults’  850.9 850.9% 161.1(5.28X) 18.2(46.8X)
Q 10° o — Default ‘@ |[—Default ]
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Fig. 3. Comparison of the default configuration and the configurations returned by the CPLEX
tuning tool and by our approach. The x-axis gives the total time budget used for configuration
and the y-axis the performance (CPLEX mean CPU time on the test set) achieved within that
budget. For PARAMILS, we perform 10 runs in parallel and count the total time budget as the
sum of their individual time requirements. The plot for REGIONS200 is qualitatively similar to
the one for REGIONS 100, except that the gains of PARAMILS are larger.

solvers and, indeed, arbitrary parameterized algorithms. In contrast, the few configura-
tions in the CPLEX tuning tool appear to have been selected based on substantial domain
insights, and the fact that different parameter configurations are tried for different types
of instances leads us to believe that it relies upon MIP-specific instance characteristics.
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While in principle this could be an advantage, in its current form it appears to be rather
restrictive.

We compared the performance of the configurations found by the CPLEX tuning
tool to that of configurations found by PARAMILS. For this comparison, we used the
tuning tool’s default settings to optimize mean runtime on the same training sets used
for PARAMILS, and tested performance on the same test sets (disjoint from the train-
ing sets). We ran both configuration approaches with a time limit of 2 CPU days. In
most cases, the CPLEX tuning tool finished before that time limit was reached and—in
contrast to PARAMILS—could not use the remaining time in order to further improve
performance. As before, we used 10 independent parallel runs of PARAMILS, at each
time step reporting the performance of the one with best training performance.

First, we discuss the performance of the CPLEX tuning tool, summarized in Table 4.
We note that in two cases (REGIONS200 and CORLAT), it reached the time limit of
2 CPU days and returned the algorithm defaults in both cases. Out of the remaining
5 cases, it returned the default configuration in 1 (CLS), yielded a configuration with
slightly worse performance than the default in 1 (REGIONS100), and moderately im-
proved performance in the remaining 3 (up to a factor of 1.37). The 3 non-default con-
figurations it returned only differed in the following few parameters from the default:
‘easy’ (perform only 1 cutting plane pass, apply the periodic heuristic every 50 nodes,
and branch based on pseudo-reduced costs); ‘long testl’ (use aggressive probing and
aggressive settings for 8 types of cuts); and ‘branch dir’ (at each node, select the up
branch first).

PARAMILS outperformed the tuning tool for 6 of the 7 configuration scenarios,
sometimes substantially so. Specifically, PARAMILS found configurations with up to
5.2 times lower mean runtime when its total time budget was set to exactly the amount
of time ¢ the CPLEX tuning tool ran before terminating (i.e., /10 for each of the 10
PARAMILS runs; ¢ varied widely across the scenarios, see Table 4). For the one remain-
ing scenario, MASS, the configuration it found was slower by a factor of 1/0.68 = 1.47
(which we attribute to an over-tuning effect to be discussed shortly). With a fixed time
budget of two days for each PARAMILS run, PARAMILS’s performance improved for
all seven domains, reaching a speedup factor of up to 46.

Figure 3 visualizes the anytime test performance of PARAMILS compared to the
default and the configuration found by the CPLEX tuning tool. Typically, PARAMILS
found good configurations quickly and improved further when given more time. The
main exception was configuration scenario MASS (see Figure 3(e)), the one scenario
where PARAMILS performed worse than the CPLEX tuning tool in Table 4. Here, test
performance did not improve monotonically: given more time, PARAMILS found con-
figurations with better training performance but worse test performance. This example
of the over-tuning phenomenon mentioned in Section 2.3 clearly illustrates the prob-
lems arising from benchmark sets that are too small (and too heterogeneous): good
results for 50 (rather variable) training instances are simply not enough to confidently
draw conclusions about the performance on additional unseen test instances. On all
other 6 configuration scenarios, training and test sets were similar enough to yield near-
monotonic improvements over time, and large speedups over the CPLEX tuning tool.
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8 Conclusions and Future Work

In this study we have demonstrated that by using automated algorithm configuration,
substantial performance improvements can be obtained for three widely used MIP
solvers on a broad range of benchmark sets, in terms of minimizing runtime for proving
optimality (with speedup factors of up to 52), and of minimizing the optimality gap
given a fixed runtime (with gap reduction factors of up to 45). This is particularly note-
worthy considering the effort that has gone into optimizing the default configurations
for commercial MIP solvers, such as CPLEX and GUROBI. Our approach also clearly
outperformed the CPLEX tuning tool. The success of our fully automated approach
depends on the availability of training benchmark sets that are large enough to allow
generalization to unseen test instances. Not surprisingly, when using relatively small
benchmark sets, performance improvements on training instances sometimes do not
fully translate to test instances; we note that this effect can be avoided by using bigger
benchmark sets (in our experience, about 1000 instances are typically sufficient).

In future work, we plan to develop more robust and more efficient configuration pro-
cedures. In particular, here (and in past work) we ran our configurator PARAMILS 10
times per configuration scenario and selected the configuration with best performance
on the training set in order to handle poorly-performing runs. We hope to develop more
robust approaches that do not suffer from large performance differences between in-
dependent runs. Another issue is the choice of captimes. Here, we chose rather large
captimes during training to avoid the risk of poor scaling to harder instances; the down-
side is a potential increase in the time budget required for finding good configurations.
We therefore plan to investigate strategies for automating the choice of captimes during
configuration. We also plan to study why certain parameter configurations work better
than others. The algorithm configuration approach we have used here, PARAMILS, can
identify very good (possibly optimal) configurations, but it does not yield information
on the importance of each parameter, interactions between parameters, or the interac-
tion between parameters and characteristics of the problem instances at hand. Partly to
address those issues, we are actively developing an alternative algorithm configuration
approach that is based on response surface models [17, 18, 15].
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Abstract. We present a new method to compute upper bounds of the number of
solutions of binary integer programming (BIP) problems. Given a BIP, we create
a dynamic programming (DP) table for a redundant knapsack constraint which is
obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the
original problem to obtain an initial weight bound on the knapsack. This bound
is then refined through subgradient optimization. The latter provides a variety of
Lagrange multipliers which allow us to filter infeasible edges in the DP table. The
number of paths in the final table then provides an upper bound on the number
of solutions. Numerical results show the effectiveness of our counting framework
on automatic recording and market split problems.

Keywords: solution counting, CP-based Lagrangian relaxation, surrogate
relaxation, dynamic programming.

1 Introduction

Solution counting has become a new and exciting topic in combinatorial research.
Counting solutions of combinatorial problem instances is relevant for example for new
branching methods [2324]). It is also relevant to give user feedback in interactive set-
tings such as configuration systems. Moreover, it plays an ever more important role
in post-optimization analysis to give the user of an optimization system an idea how
many solutions there are within a certain percentage of the optimal objective value. The
famous mathematical programming tool Cplex for example now includ