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Preface

The 7th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2010) was held in Bologna, Italy, June 16-18, 2010.

The conference is intended primarily as a forum to focus on the integration
and hybridization of the approaches of constraint programming (CP), artificial
intelligence (AI), and operations research (OR) technologies for solving large-
scale and complex real-life combinatorial optimization problems. CPAIOR is
focused on both theoretical and practical, application-oriented contributions.

The interest of the research community in this conference is witnessed by the
high number of high-quality submissions received this year, reaching 39 long and
33 short papers. From these submissions, we chose 18 long and 17 short papers
to be published in full in the proceedings.

This volume includes extended abstracts of the invited talks given at CPAIOR.
Namely, one by Matteo Fischetti (University of Padova) on cutting planes and
their use within search methods; another by Carla Gomes (Cornell University)
on the recently funded NSF “Expedition in Computing” grant on the topic of
computational sustainability and on the potential application of hybrid optimiza-
tion approaches to this area; a third by Peter Stuckey (University of Melbourne)
on the integration of SATisfiability solvers within constraint programming and
integer programming solvers.

Two days before CPAIOR, a Master Class was organized by John Hooker on
“Experimental Study of Algorithms and Benchmarking”. The Master Class was
composed of two parts: in the first, two leading researchers gave overview talks in
the area. Catherine McGeoch (Amherst College) discussed statistical methods,
and Carla Gomes (Cornell University) discussed the scientific use of experimen-
tation. In the second part of the Master Class, software vendors described how
they do benchmarking. The Master Class was intended for PhD students, re-
searchers, and practitioners. We are very grateful to John, who brought this
excellent program together. Finally, a rich program of one-day workshops was
organized on June 15.

We warmly thank Zeynep Kiziltan for her work as Publicity Chair, Fabio
Parisini for managing the conference website, and Enrico Malaguti for the man-
agement of the EasyChair System. We are very grateful to Meinolf Sellmann,
who acted as Workshop Chair and put together an exciting program with five
half-day workshops. Managing submissions and conference proceedings by means
of the EasyChair System made our work a lot easier and we warmly thank Easy-
Chair for this.

Many thanks to the members of the Program Committee, who reviewed all
the submissions in detail and discussed conflicting papers deeply. We warmly
thank the external reviewers as well.
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Special thanks go to Marco Gavanelli and Andrea Roli, the Conference Chairs
who took care of the many details concerning the organization, and to Vanessa
Grotti (Planning Congressi), for her work on budgeting, planning and booking.

Finally, we would like to thank the sponsors who made it possible to orga-
nize this conference: the ARTIST Design, Network of Excellence, the Institute
for Computational Sustainability (ICS), the Cork Constraint Computation Cen-
ter, the Association for Constraint Programming (ACP), the Optimization for
Sustainable Development (OSD) Chair, IBM and FICO.

A special mention should be made of FONDAZIONE DEL MONTE - 1473
for its generous support of the publication of these proceedings and of ALMA
MATER STUDIORUM - Università di Bologna for the continuous help and
support of the organization of CPAIOR 2010.

June 2010 Andrea Lodi
Michela Milano

Paolo Toth
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Towards a MIP-Cut Metascheme

Matteo Fischetti

DEI, University of Padova, Italy
matteo.fischetti@unipd.it

Cutting planes (cuts) are very popular in the OR community, where they are
used to strengthen the Linear Programming (LP) relaxation of Mixed-Integer
Programs (MIPs) in the hope of improving the performance of an exact LP-
based solver. In particular, an intense research effort has been devoted to the
study of families of general cuts, whose validity does not require the presence
of a specific MIP structure—as opposed to problem-specific cuts such as, e.g.,
subtour elimination or comb inequalities for the traveling salesman problem.

Among general cuts, Gomory’s Mixed-Integer Cuts (GMICs) play a central
role both in theory and in practice. These cuts have been introduced by Ralph
Gomory about 50 years ago in his seminal paper [1]. Though elegant and com-
putationally cheap, they were soon abandoned because they were considered of
little practical use [2]. The situation changed radically more than 30 years later,
when Balas, Ceria, Cornuéjols and Natraj [3] found how to take advantage of
exactly the same cuts but in an different framework. In our view, this is a good
example of the importance of a sound framework for MIP cuts.

Even today, MIP solvers are quite conservative in the use of general cuts, and
in particular of GMICs, because of known issues due to the iterative accumu-
lation of the cuts in the optimal LP basis. This leads to numerical instability
because of a typically exponential growth of the determinant of the LP basis.

Following our recent joint work with Balas and Zanette [4, 5], in this talk we
argue that the known issues with cutting plane methods are largely due to the
overall framework where the cuts are used, rather than to the cuts themselves.
This is because the two main cutting plane modules (the LP solver and the cut
generator) form a closed-loop system that is intrinsically prone to instability.
Hence a kind of “decoupling filter” needs to be introduced in the loop if one
wants to exploit the full power of a given family of cuts.

A main goal of the talk is to refocus part of the current research effort from
the definition of new cut families to the way the cuts are actually used. In fact,
cutting planes still miss an overall “meta-scheme” to control cut generation and
to escape local optima by means of diversification phases—very well in the spirit
of Tabu or Variable Neighborhood Search meta-schemes for primal heuristics.
The development of sound meta-schemes on top of a basic separation tool is
therefore an interesting new avenue for future research, with contributions ex-
pected from all the three CP/AI/OR communities. The relax-and-cut framework
for GMICs recently proposed in the joint work with Salvagnin [6] can be viewed
as a first step in this direction.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Challenges for CPAIOR in
Computational Sustainability

Carla P. Gomes

Cornell University
Ithaca, NY, USA

gomes@cs.cornell.edu

The notions of sustainability and sustainable development were first introduced
in the seminal report of the United Nations World Commission on Environment
and Development, known as the Brundtland report or Our Common Future [3].
Sustainable development is “development that meets the needs of the present
without compromising the ability of future generations to meet their needs.”
Sustainability and sustainable development concern balancing environmental,
economic, and societal needs for a sustainable future.

The development of policies for sustainable development often involves de-
cision making and policy making problems concerning the management of our
natural resources involving significant computational challenges that fall into
the realm of computing and information science and related disciplines (e.g.,
operations research, applied mathematics, and statistics).

Computational Sustainability is a new emerging field that aims to apply tech-
niques from computer science and related disciplines to help manage the balance
of environmental, economic, and societal needs for sustainable development[1].
The focus of Computational Sustainability is on developing computational and
mathematical models, methods, and tools for a broad range of sustainability re-
lated applications: from decision making and policy analysis concerning the man-
agement and allocation of resources to the design of new sustainable techniques,
practices and products. The range of problems that fall under Computational
Sustainability is therefore rather wide, encompassing computational challenges
in disciplines as diverse as environmental sciences, economics, sociology, and
biological and environmental engineering.

In this talk I will provide examples of computational sustainability challenge
domains ranging from wildlife preservation and biodiversity, to balancing socio-
economic needs and the environment, to large-scale deployment and manage-
ment of renewable energy sources. I will discuss how computational sustainabil-
ity problems offer challenges but also opportunities for the advancement of the
state of the art of computing and information science and related fields, high-
lighting some overarching computational themes in constraint reasoning and
optimization, machine learning, and dynamical systems. I will also discuss the
need for a new approach to study such challenging problems in which compu-
tational problems are viewed as “natural” phenomena, amenable to a scientific
methodology in which principled experimentation, to explore problem parameter

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 3–4, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 C.P. Gomes

spaces and hidden problem structure, plays as prominent a role as formal analy-
sis [2]. Such an approach differs from the traditional computer science approach,
based on abstract mathematical models, mainly driven by worst-case analyzes.
While formulations of real-world computational tasks lead frequently to worst-
case intractable problems, often such real world tasks contain hidden structure
enabling scalable methods. It is therefore important to develop new approaches
to identify and exploit real-world structure, combining principled experimen-
tation with mathematical modeling, that will lead to scalable and practically
effective solutions.

In summary, the new field of Computational Sustainability brings together
computer scientists, operation researchers, applied mathematicians, biologists,
environmental scientists, and economists, to join forces to study and provide so-
lutions to computational problems concerning sustainable development, offering
challenges but also opportunities for the advancement of the state of the art of
computing and information science and related fields.

Acknowledgments

The author is the lead Principal Investigator of an NSF Expedition in Computing
grant on Computational Sustainability (Award Number: 0832782). The author
thanks the NSF Expeditions in Computing grant team members for their many
contributions towards the development of a vision for Computational Sustain-
ability, in particular, Chris Barrett, Antonio Bento, Jon Conrad, Tom Dietterich,
John Gunckenheimer, John Hopcroft, Ashish Sabharwhal, Bart Selman, David
Shmoys, Steve Strogatz, and Mary Lou Zeeman.

References

[1] Gomes, C.: Computational sustainability: Computational methods for a sustain-
able environment, economy, and society. The Bridge, National Academy of Engi-
neering 39(4) (Winter 2009)

[2] Gomes, C., Selman, B.: The science of constraints. Constraint Programming Let-
ters 1(1) (2007)

[3] UNEP. Our common future. Published as annex to the General Assembly document
A/42/427, Development and International Cooperation: Environment. Technical
report, United Nations Environment Programme (UNEP) (1987)



Lazy Clause Generation: Combining the Power
of SAT and CP (and MIP?) Solving

Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

University of Melbourne, 3010 Australia
pjs@cs.mu.oz.au

Abstract. Finite domain propagation solving, the basis of constraint
programming (CP) solvers, allows building very high-level models of
problems, and using highly specific inference encapsulated in complex
global constraints, as well as programming the search for solutions to
take into account problem structure. Boolean satisfiability (SAT) solving
allows the construction of a graph of inferences made in order to deter-
mine and record effective nogoods which prevent the searching of similar
parts of the problem, as well as the determination of those variables
which form a tightly connected hard part of the problem, thus allow-
ing highly effective automatic search strategies concentrating on these
hard parts. Lazy clause generation is a hybrid of CP and SAT solving
that combines the strengths of the two approaches. It provides state-of-
the-art solutions for a number of hard combinatorial optimization and
satisfaction problems. In this invited talk we explain lazy clause gener-
ation, and explore some of the many design choices in building such a
hybrid system, we also discuss how to further incorporate mixed integer
programming (MIP) solving to see if we can also inherit its advantages
in combinatorial optimization.

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tack-
les hard combinatorial problems by interleaving search and restriction of the pos-
sible values of variables (propagation). The propagators that make up the core
of a finite domain propagation engine represent trade-offs between the speed of
inference of information versus the strength of the information inferred. Good
propagators represent a good trade-off at least for some problem classes. The
success of finite domain propagation in solving hard combinatorial problems
arises from these good trade-offs, and programmable search, and has defined the
success of constraint programming (CP).

Boolean Satisfiability (SAT) solvers have recently become remarkably pow-
erful principally through the combination of: efficient engineering techniques
for implementing inference (unit propagation) using watched literals, effective
methods for generating and recording nogoods which prevent making a set of

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 5–9, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



6 P.J. Stuckey

decisions which has already proven to be unhelpful (in particular 1UIP nogoods),
and efficient search heuristics which concentrate on the hard parts of the prob-
lem combined with restarting to escape from early commitment to choices. These
changes, all effectively captured in Chaff [1], have made SAT solvers able to solve
problems orders of magnitude larger than previously possible.

Can we combine these two techniques in a way that inherits the strengths of
each, and avoids their weaknesses. Lazy clause generation [2,3] is a hybridization
of the two approaches that attempts to do this. The core of lazy clause generation
is simple enough, we examine a propagation based solver and understand its
actions as applying to an underlying set of Boolean variables representing the
integer (and set of integer) variables of the CP model.

In this invited talk we will first introduce the basic theoretical concepts that
underlie lazy clause generation. We discuss the relationship of lazy clause gen-
eration to SAT modulo theories [4]. We then explore the difficulties that arise
in the simple theoretical hybrid, and examine design choices that ameliorate
some of these difficulties. We discuss how complex global constraints interact
with lazy clause generation. We then examine some of the remaining challenges
for lazy clause generation: incorporating the advantages of mixed integer pro-
gramming (MIP) solving, and building hybrid adaptive search strategies. The
remainder of this short paper will simply introduce the basic concepts of lazy
clause generation.

2 Lazy Clause Generation by Example

The core of lazy clause generation is fairly straightforward to explain. An integer
variable x with initial domain [ l .. u ] is represented by two sets of Boolean vari-
ables [[x ≤ d]], l ≤ d < u and [[x = d]], l ≤ d ≤ u. The meaning of each Boolean
variable [[c]] is just the condition c. In order to prevent meaningless assignments
to these Boolean variables we add clauses that define the conditions that relate
them.

[[x ≤ d]] → [[x ≤ d + 1]], l ≤ d ≤ u − 2
[[x = d]] → [[x ≤ d]], l ≤ d ≤ u − 1
[[x = d]] → ¬[[x ≤ d − 1]], l < d ≤ u

[[x ≤ d]] ∧ ¬[[x ≤ d − 1]] → [[x = d]], l < d ≤ u − 1
[[x ≤ l]] → [[x = l]]

¬[[x ≤ u − 1]] → [[x = u]]

Each Boolean variable encodes a domain change on the variable x. Setting
[[x = d]] true sets variable x to d. Setting [[x = d]] false excludes the value d from
the domain of x. Setting [[x ≤ d]] true creates an upper bound d on the variable
x. Setting [[x ≤ d]] false creates a lower bound d + 1 on the variable x. We can
hence mimic all domain changes using the Boolean variables. More importantly
we can record the behaviour of a finite domain propagator using clauses over
these variables.
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Consider the usual bounds propagator for the constraint x = y×z (see e.g. [5]).
Suppose the domain of x is [−10 .. 10 ], y is [ 2 .. 10 ] and z is [ 3 .. 10 ]. The bounds
propagator determines that the lower bound of x should be 6. In doing so it only
made use of the lower bounds of y and z. We can record this as a clause c1

(c1) : ¬[[y ≤ 1]] ∧ ¬[[z ≤ 2]] → ¬[[x ≤ 5]]

It also determines the upper bound of z is 5 using the upper bound of x and the
lower bound of y, and similarly the upper bound of y is 3. These can be recorded
as

(c2) : [[x ≤ 10]] ∧ ¬[[y ≤ 1]] → [[z ≤ 5]]
(c3) : [[x ≤ 10]] ∧ ¬[[z ≤ 2]] → [[y ≤ 3]]

Similarly if the domain of x is [−10 .. 10 ], y is [−2 .. 3 ] and z is [−3 .. 3 ], the
bounds propagator determines that the upper bound of x is 9. In doing so it
made use of both the upper and lower bounds of y and z. We can record this as
a clause

¬[[y ≤ −3]] ∧ [[y ≤ 3]] ∧ ¬[[z ≤ −4]] ∧ [[z ≤ 3]] → [[x ≤ 9]]

In fact we could strengthen this explanation since the upper bound of x will
remain 4 even if the lower bound of z was −4, or if the lower bound of y were
−3. So we could validly record a stronger explanation of the propagation as

¬[[y ≤ −3]] ∧ [[y ≤ 3]] ∧ ¬[[z ≤ −5]] ∧ [[z ≤ 3]] → [[x ≤ 9]]

or
¬[[y ≤ −4]] ∧ [[y ≤ 3]] ∧ ¬[[z ≤ −4]] ∧ [[z ≤ 3]] → [[x ≤ 9]]

In a lazy clause generation system every time a propagator determines a domain
change of a variable it records a clause that explains the domain change. We
can understand this process as lazily creating a clausal representation of the
information encapsulated in the propagator. Recording the clausal reasons for
domain changes creates an implication graph of domain changes. When conflict is
detected (an unsatisfiable constraint) we can construct a reason for the conflict,
just as in a SAT (or SMT solver).

Suppose the domain of x is [ 6 .. 20 ], domain of y is [ 2 .. 20 ], z is [ 3 .. 10 ] and
t is [ 0 .. 20 ] and we have constraints x ≤ t, x = y× z and y ≥ 4∨ z ≥ 7. Suppose
search adds the new constraint t ≤ 10 (represented by [[t ≤ 10]]). The inequality
changes the upper bounds of x to 10 with explanation (c4) : [[t ≤ 10]] → [[x ≤ 10]].
The multiplication changes the upper bounds of z to 5 ([[z ≤ 5]]), and y to 3
([[y ≤ 3]]) with the explanations c2 and c3 above, and the disjunctive constraint
(which is equivalent to (c5) : ¬[[y ≤ 3]] ∨ ¬[[z ≤ 6]]) makes ¬[[z ≤ 6]] true which
by the domain constraints makes (c6) : [[z ≤ 5]] → [[z ≤ 6]] unsatisfiable. The
implication graph is illustrated in Figure 1.

We can explain the conflict by any cut that separates the conflict node from
the earlier parts of the graph. The first unique implication point (1UIP) cut
chooses the closest literal to the conflict where all paths from the last decision
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Fig. 1. Implication graph of propagation

to the conflict flow through that literal, and draws the cut just after this literal.
The 1UIP cut for Figure 1 is shown as the dashed line. The resulting nogood is

¬[[z ≤ 2]] ∧ ¬[[y ≤ 1]] ∧ [[x ≤ 10]] → false

Note that if we ever reach a situation in the future where the lower bound of y
is at least 2, and the lower bound of z is at least 3, then the lower bound of x
will become at least 11 using this clause.

Since we are explaining conflicts completely analogously to a SAT (or SMT)
solver we can attach activities to the Boolean variables representing the inte-
ger original variables. Each Boolean variable examined during the creation of
the explanation (including those appearing in the final nogood) has their activ-
ity bumped. Every once in a while all activities counts are decreased, so that
more recent activity counts for more. This allows us to implement activity based
VSIDS search heuristic for the hybrid solver. We can also attach activity coun-
ters to clauses, which are bumped when they are involved in the explanation
process.

Since all of the clauses generated are redundant information we can at any
stage remove any of the generated clauses. This gives us the opportunity to
control the size of the clausal representation of the problem. Just as in a SAT
solver we can use clausal activities to decide which generated clauses are most
worthwhile retaining.

3 Concluding Remarks

The simple description of lazy clause generation in the previous section does
not lead to an efficient lazy clause generation solver, except for some simple
kinds of examples. In practice we need to also lazily generate the Boolean vari-
ables required to represent the original integer (and set of integer) variables. We
may also choose to either eagerly generate the explanation clauses as we exe-
cute forward propagation, or lazily generate explanations on demand during the
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process of explaining a conflict. For each propagator we have to determine how
to efficiently determine explanations of each propagation, and which form the
explanation should take. In particular for global constraints many choices arise.
Lazy clause generation also seems to reduce the need for global constraints, since
in some cases decomposition of the global constraint, together with conflict learn-
ing, seems to recapture the additional propagation that the global constraint has
over its decomposition. Decompositions of global constraints may also be more
incremental that the global, and learn more reusable nogoods. In short, lazy
clause generation requires us to revisit much of the perceived wisdom for creat-
ing finite domain propagation solvers, and indeed leads to many open questions
on the right design for a lazy clause generation solver. Experiments have shown
that for some classes of problem, such as resource constrained project schedul-
ing problems [6] and set constraint solving [7], lazy clause generation provides
state-of-the-art solutions.
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Abstract. Matrix models are ubiquitous for constraint problems. Many such
problems have a matrix of variables M, with the same constraint defined by a
finite-state automaton A on each row of M and a global cardinality constraint
gcc on each column of M. We give two methods for deriving, by double count-
ing, necessary conditions on the cardinality variables of the gcc constraints from
the automaton A. The first method yields linear necessary conditions and simple
arithmetic constraints. The second method introduces the cardinality automaton,
which abstracts the overall behaviour of all the row automata and can be encoded
by a set of linear constraints. We evaluate the impact of our methods on a large
set of nurse rostering problem instances.

1 Introduction
Several authors have shown that matrix models are ubiquitous for constraint problems.
Despite this fact, only a few constraints that consider a matrix and some of its con-
straints as a whole have been considered: the allperm [8] and lex2 [7] constraints
were introduced for breaking symmetries in a matrix, while the colored matrix con-
straint [13] was introduced for handling a conjunction of gcc constraints on the rows and
columns of a matrix. We focus on another recurring pattern, especially in the context of
personnel rostering, which can be described in the following way.

Given three positive integers R, K , and V , we have an R×K matrix M of decision
variables that take their values within the finite set of values {0, 1, . . . , V − 1}, as well
as a V ×K matrix M# of cardinality variables that take their values within the finite set
of values {0, 1, . . . , R}. Each row r (with 0 ≤ r < R) of M is subject to a constraint
defined by a finite-state automaton A [2,12]. For simplicity, we assume that each row is
subject to the same constraint. Each column k (with 0 ≤ k < K) of M is subject to a
gcc constraint that restricts the number of occurrences of the values according to column
k of M#: let #v

k denote the number of occurrences of value v (with 0 ≤ v < V ) in
column k of M, that is, the cardinality variable in row v and column k of M#. We
call this pattern the matrix-of-automata-and-gcc pattern. In the context of personnel
rostering, a possible interpretation of this pattern is:

– R, K , and V respectively correspond to the number of persons, days, and types of
work (e.g., morning shift, afternoon shift, night shift, or day off ) we consider.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 10–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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– Each row r of M corresponds to the work of person r over K consecutive days.
– Each column k of M corresponds to the work by the R persons on day k.
– The automaton A on the rows of M encodes the rules of a valid schedule for a

person; it can be the product of several automata defining different rules.
– The gcc constraint on column k represents the demand of services for day k. In

this context, the cardinality associated with a given service can either be fixed or be
specified to belong to a given range.

A typical problem with this kind of pattern is the lack of interaction between the row
and column constraints. This is especially problematic when, on the one hand, the row
constraint is a sliding constraint expressing a distribution rule on the work, and, on the
other hand, the demand profile (expressed with the gcc constraints) varies drastically
from one day to the next (e.g., during weekends and holidays in the context of personnel
rostering). This issue is usually addressed by experienced constraint programmers by
manually adding necessary conditions (implied constraints) that are most of the time
based on some simple counting conditions depending on some specificity of the row
constraints. Let us first introduce a toy example to illustrate this phenomenon.

Example 1. Take a 3×7 matrix M of 0/1 variables (i.e., R = 3, K = 7, V = 2), where
on each row we have a global contiguity constraint (all the occurrences of value 1
are contiguous) for which Figure 1 depicts a corresponding automaton (the reader can
ignore the assignments to counters c and d at this moment). In addition, M# defines
the following gcc constraints on the columns of M:

– Columns 0, 2, 4, and 6 of M must each contain two 0s and a single 1.
– Columns 1, 3, and 5 of M must each contain two 1s and a single 0.

A simple double counting argument proves that there is no solution to this problem.
Indeed, consider the sequence of numbers of occurrences of 1s on the seven columns
of M, that is 1, 2, 1, 2, 1, 2, 1. Each time there is an increase of the number of 1s
between two adjacent columns, a new group of consecutive 1s starts on at least one row
of the matrix. From this observation we can deduce that we have at least four groups of
consecutive ones, namely one group starts at the first column (since implicitly before the
first column we have zero occurrences of value 1) and three groups start at the columns

s2s1s0
d← 0c← 0, d← 0

c← c− d + 1, d← 1 d← 0 c← c− d + 1, d← 1

t1 : 1 t3 : 0

t2 : 1t0 : 0 t4 : 0

c← c− d + 1, d← 1

Fig. 1. Automaton associated with the global contiguity constraint, with initial state s0, final
states s0, s1, s2, and transitions t0, t1, t2, t3, t4 labelled by values 0 or 1. The missing transition
for value 1 from state s2 is assumed to go to a dead state. The automaton has been annotated with
counters [2]: the final value of counter c is the number of stretches of value 0, whereas d is an
auxiliary counter.
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containing two 1s. But since we have a global contiguity constraint on each row of the
matrix and since the matrix only has three rows, there is a contradiction.

The contributions of this paper include:

– Methods for deriving necessary conditions on the cardinality variables of the gcc
constraints from string properties that hold for an automatonA (Sections 2.1 to 2.3).

– A method for annotating an automaton A with counter variables extracting string
properties from A (Section 2.4).

– Another method for deriving necessary conditions on the cardinality variables,
called the cardinality automaton, which simulates the overall behaviour of all the
row automata (Section 3).

– An evaluation of the impact of our methods in terms of runtime and search effort
on a large set of nurse rostering problem instances (Section 4).

Since our methods essentially generate linear constraints as necessary conditions, they
may also be relevant in the context of linear programming.

2 Deriving Necessary Conditions from String Properties

We develop a first method for deriving necessary conditions for the matrix-of-automata-
and-gcc pattern. The key idea is to approximate the set of solutions to the row constraint
by string properties such as:

– Bounds on the number of letters, words, prefixes, or suffixes (see Section 2.1).
– Bounds on the number of stretches of a given value (see Section 2.2).
– Bounds on the lengths of stretches of a given value (see Section 2.3).

We first develop a set of formulae expressed in terms of simple arithmetic constraints
for such string properties. Each formula gives a necessary condition for the matrix-
of-automata-and-gcc pattern provided that the set of solutions of the row constraint
satisfies a given string property. We then show how to extract automatically such string
properties from an automaton (see Section 2.4) and outline a heuristic for selecting rel-
evant string properties (see Section 2.5). String properties can also be seen as a commu-
nication channel for enhancing the propagation between row and column constraints.

In Sections 2.1 and 2.2, the derived constraints use the well-known combinatorial
technique of double counting (see for example [9]). Here we use the two-dimensional
structure of the matrix, counting along the rows and the columns. Some feature is con-
sidered, such as the number of appearances of a word or stretch, and the occurrences
of that feature are counted for the rows and columns separately. When the counting is
exact, these two values will coincide. In order to derive useful constraints that will prop-
agate, we derive lower and upper bounds on the given feature occurring when counted
columnwise. These are then combined into inequalities saying that the sum of these
column-based lower bounds is at most the sum of given row-based upper bounds, or
that the sum of these column-based upper bounds is at least the sum of given row-based
lower bounds.
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2.1 Constraining the Number of Occurrences of Words, Prefixes, and Suffixes

A word is a fixed sequence of values, seen as letters. Suppose we have the following
bounds for each row on how many times a given word occurs (possibly in overlapping
fashion) on that row, all numbering starting from zero:

– LW r(w) is the minimum number of times that the word w occurs on row r.
– UW r(w) is the maximum number of times that the word w occurs on row r.

Note that letters are just singleton words. It is not unusual that the LW r(w)
(or UW r(w)) are equal for all rows r for a given word w. From this information, we
now infer by double counting two necessary conditions for each such word.

Necessary Conditions. Let |w| denote the length of word w, and let wj denote the jth

letter of word w. The following bounds

lwk(w) = max

⎛
⎝
⎛
⎝|w|−1∑

j=0

#wj

k+j

⎞
⎠− (|w| − 1) · R, 0

⎞
⎠ (1)

uwk(w) =
|w|−1
min
j=0

#wj

k+j (2)

correspond respectively to the minimum and maximum number of occurrences of word
w that start at column k ∈ [0, K − |w|]. These bounds can be obtained as follows:

– Since the cardinality variables only count the number of times a value occurs in
each column and does not constrain where it occurs, the lower bound (1) is the
worst-case intersection of all column value occurrences.

– A word cannot occur more often than its minimally occurring letter, hence bound (2).

Note that if some cardinality variable is not fixed, then the expressions above should be
interpreted as arithmetic constraints. We get the following necessary conditions:

K−|w|∑
k=0

lwk(w) ≤
R−1∑
r=0

UW r(w) (3a)
K−|w|∑

k=0

uwk(w) ≥
R−1∑
r=0

LW r(w) (3b)

Note that (3b) trivially holds when all LW r(w) are zero.

Generalisation: Replacing Each Letter by a Set of Letters. In the previous para-
graph, all letters of the word w were fixed. We now consider that each letter of a word
can be replaced by a finite non-empty set of possible letters. For this purpose, let wj

now denote the jth set of letters of word w. Hence the bounds lwk(w) and uwk(w) are
now defined by aggregation as follows:

lwk(w) = max

⎛
⎝
⎛
⎝|w|−1∑

j=0

∑
c∈wj

#c
k+j

⎞
⎠− (|w| − 1) · R, 0

⎞
⎠ (4)

uwk(w) =
|w|−1
min
j=0

⎛
⎝∑

c∈wj

#c
k+j

⎞
⎠ (5)
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We get the same necessary conditions as before. Note that (4) and (5) specialise respec-
tively to (1) and (2) when all wj are singleton sets.

Extension: Constraining Prefixes and Suffixes. We now consider constraints on a
word occurring as a prefix (the first letter of the word is at the first position of the row)
or suffix (the last letter of the word is at the last position of the row). Suppose we have
the following bounds:

– LWPr(w) is the minimum number of times (0 or 1) word w is a prefix of row r.
– UWPr(w) is the maximum number of times (0 or 1) word w is a prefix of row r.
– LWS r(w) is the minimum number of times (0 or 1) word w is a suffix of row r.
– UWS r(w) is the maximum number of times (0 or 1) word w is a suffix of row r.

From these bounds, we get the following necessary conditions:

lw0(w) ≤
R−1∑
r=0

UWPr(w) (6a) uw0(w) ≥
R−1∑
r=0

LWPr(w) (6b)

lwK−|w|(w) ≤
R−1∑
r=0

UWS r(w) (7a) uwK−|w|(w) ≥
R−1∑
r=0

LWS r(w) (7b)

Note that (6b) trivially holds when all LWPr(w) are zero, and that (7b) trivially holds
when all LWS r(w) are zero. Note that these necessary conditions also hold when each
letter of a constrained prefix or suffix is replaced by a set of letters.

2.2 Constraining the Number of Occurrences of Stretches

Given a row r of fixed variables and a value v, a stretch of value v is a maximum
sequence of values on row r that only consists of value v. Suppose now that we have
bounds for each row on how many times a stretch of a given value v can occur on
that row:

– LS r(v) is the minimum number of stretches of value v on row r.
– US r(v) is the maximum number of stretches of value v on row r.

It is not unusual that the LS r(v) (or US r(v)) are equal for all rows r for a given value v.

Necessary Conditions. The following bounds (under the convention that #v
−1 = 0 for

each value v)

ls+
k (v) = max(0, #v

k − #v
k−1) (8)

us+
k (v) = #v

k − max(0, #v
k−1 + #v

k − R) (9)

correspond respectively to the minimum and maximum number of stretches of value v
that start at column k. Again, if some cardinality variable is not fixed, then the expres-
sions above should be interpreted as arithmetic constraints. The intuitions behind these
formulae are as follows:
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– If the number of occurrences of value v on column k (i.e., #v
k) is strictly greater

than the number of occurrences of value v on column k − 1 (i.e., #v
k−1), then this

means that at least #v
k − #v

k−1 new stretches of value v can start at column k.
– If the total of the number of occurrences of value v on column k (i.e., #v

k) and
the number of occurrences of value v on column k − 1 (i.e., #v

k−1) is strictly
greater than the number of rows R, then the quantity #v

k−1 +#v
k−R represents the

minimum number of stretches of value v that cover both column k − 1 and column
k. From this minimum intersection we get the maximum number of new stretches
that can start at column k.

By aggregating these bounds for all the columns of the matrix, we get the following
necessary conditions through double counting:

K−1∑
k=0

ls+
k (v) ≤

R−1∑
r=0

US r(v) (10a)
K−1∑
k=0

us+
k (v) ≥

R−1∑
r=0

LS r(v) (10b)

Similarly, the following bounds (under the convention that #v
K = 0 for each value v)

ls−k (v) = max(0, #v
k − #v

k+1) (11)

us−k (v) = #v
k − max(0, #v

k+1 + #v
k − R) (12)

correspond respectively to the minimum and maximum number of stretches of value v
that end at column k. We get similar necessary conditions:

K−1∑
k=0

ls−k (v) ≤
R−1∑
r=0

US r(v) (13a)
K−1∑
k=0

us−k (v) ≥
R−1∑
r=0

LS r(v) (13b)

Note that (10b) and (13b) trivially hold when all LS r(v) are zero.

Generalisation: Replacing the Value by a Set of Values. In the previous paragraph,
the value v of a stretch was fixed. We now consider that a stretch may consist of a finite
non-empty set, denoted by v̂, of possible letters that are all considered equivalent. Let
#v̂

k denote the quantity
∑

v∈v̂(#
v
k), that is the total number of occurrences of the values

of v̂ in column k. The bounds (8), (9), (11), (12) are generalised as follows:

ls+
k (v̂) = max(0, #v̂

k − #v̂
k−1) (14)

us+
k (v̂) = #v̂

k − max(0, #v̂
k−1 + #v̂

k − R) (15)

ls−k (v̂) = max(0, #v̂
k − #v̂

k+1) (16)

us−k (v̂) = #v̂
k − max(0, #v̂

k+1 + #v̂
k − R) (17)

and we get the following necessary conditions:

K−1∑
k=0

ls+
k (v̂) ≤

∑
v∈v̂

R−1∑
r=0

US r(v) (18a)
K−1∑
k=0

us+
k (v̂) ≥

∑
v∈v̂

R−1∑
r=0

LS r(v) (18b)
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K−1∑
k=0

ls−k (v̂) ≤
∑
v∈v̂

R−1∑
r=0

US r(v) (19a)
K−1∑
k=0

us−k (v̂) ≥
∑
v∈v̂

R−1∑
r=0

LS r(v) (19b)

Note that (18a), (18b), (19a), and (19b) specialise respectively to (10a), (10b), (13a),
and (13b) when v̂ = {v}.

2.3 Constraining the Minimum and Maximum Length of a Stretch

Suppose now that we have lower and upper bounds on the length of a stretch of a given
value v for each row:

– LLS (v) is the minimum length of a stretch of value v in every row.
– ULS(v) is the maximum length of a stretch of value v in every row.

Necessary Conditions

∀k ∈ [0, K − 1] : #v
k ≥

k∑
j=max(0,k−LLS(v)+1)

ls+
j (v) (20)

∀k ∈ [0, K − 1] : #v
k ≥

min(K−1,k+LLS(v)−1)∑
j=k

ls−j (v) (21)

The intuition behind (20) resp. (21) is that the stretches starting resp. ending at the
considered columns j must overlap column k.

∀k ∈ [0, K − 1 − ULS (v)] :

ls+
k (v) +

ULS(v)∑
j=LLS(v)

#v
k+j − (ULS (v) − LLS (v) + 1) · R ≤ 0

(22)

∀k ∈ [ULS (v), K − 1] :

ls−k (v) +
ULS(v)∑

j=LLS(v)

#v
k−j − (ULS (v) − LLS (v) + 1) · R ≤ 0

(23)

The intuition behind (22) is as follows. Consider a stretch beginning at column k. Then
there must be an element distinct from v in column j ∈ [k + LLS (v), k + ULS (v)]
of the same row. So at least one of the terms in the summation of (22) will get a zero
contribution from the given row. The reasoning in (23) is similar but considers stretches
ending at column k.

2.4 Extracting Occurrence, Word, and Stretch Constraints from an Automaton,
or How to Annotate an Automaton with String Properties

Toward automatically inferring the constant bounds LW r(w), LWPr(w), LWS r(w),
LS r(w), etc, of the previous sub-sections, we now describe how a given automaton



On Matrices, Automata, and Double Counting 17

Table 1. For each annotation in the first column, the second column gives the number of new
counters, the third column gives their initial values, and the fourth column shows the string prop-
erty variable among the final counter values. In the first three rows, � is the word length.

Annotation Number of counters Initial values Final values
wordocc(v̂+, n) � [0, ..., 0] [ , ..., n]

wordprefix (v̂+, b) � + 1 [1, 0, ..., 0] [ , ..., b]
wordsuffix (v̂+, b) � [0, ..., 0] [ , ..., b]
stretchocc(v̂, n) 2 [0, 0] [n, ]

stretchminlen(v̂, n) 3 [+∞, +∞, 0] [n, , ]
stretchmaxlen(v̂, n) 2 [0, 0] [n, ]

A can be automatically annotated with counter variables constrained to reflect prop-
erties of the strings that the automaton recognises. This is especially useful if A is a
product automaton for several constraints. For this purpose, we use the automaton con-
straint introduced in [2], which (unlike the regular constraint [12]) allows us to associate
counters to a transition. Each string property requires (i) a counter variable whose fi-
nal value reflects the value of that string property, (ii) possibly some auxiliary counter
variables, (iii) initial values of the counter variables, and (iv) update formulae in the
automaton transitions for the counter variables. We now give the details for some string
properties.

In this context, n denotes an integer or decision variable, b denotes a 0/1 integer or
decision variable, v̂ denotes a set of letters, v̂+ denotes a nonempty sequence of letters
in v̂, and si denotes the ith letter of word s. We describe the annotation for the following
string properties for any given string:

– wordocc(v̂+, n): Word v̂+ occurs n times.
– wordprefix (v̂+, b): b = 1 iff word v̂+ is a prefix of the string.
– wordsuffix (v̂+, b): b = 1 iff word v̂+ is a suffix of the string.
– stretchocc(v̂, n): Stretches of letters in set v̂ occur n times.
– stretchminlen(v̂, n): If letters in set v̂ occur, then n is the length of the shortest

such stretch, otherwise n = +∞.
– stretchmaxlen(v̂, n): If letters in set v̂ occur, then n is the length of the longest

such stretch, otherwise n = 0.

For a given annotation, Table 1 shows which counters it introduces, as well as their
initial and final values, while Table 2 shows the formulae for counter updates to be used
in the transitions. Figure 1 shows an automaton annotated for stretchocc({0}, n).

An automaton can be annotated with multiple string properties—annotations do not
interfere with one another—and can be simplified in order to remove multiple occur-
rences of identical counters that come from different string properties.

It is worth noting that propagation is possible from the decision variables to the
counter variables, and vice-versa.
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Table 2. Given an annotation and a transition of the automaton reading letter u, the table gives the
counter update formulae to be used in this transition. For each annotation in the first column, the
second column shows the counter names, and the third column shows the update formulae. The
fourth column shows the condition under which each formula is used. In the first three multirows,
� is the word length.

Annotation Counter values New counter values Condition

wordocc(v̂+, n) [c1, ..., c�]

[1, ...] u ∈ v̂+
1

[..., ci−1, ...] 1 < i < � ∧ u ∈ v̂+
i

[..., c� + c�−1] u ∈ v̂+
�

[..., 0, ...] 0 < i < � ∧ u �∈ v̂+
i

[..., c�] u �∈ v̂+
�

wordprefix (v̂+, b) [c0, c1, ..., c�]

[0, ..., ci−1, ...] 0 < i < � ∧ u ∈ v̂+
i

[0, ..., max(c�, c�−1)] u ∈ v̂+
�

[0, ..., 0, ...] 0 < i < � ∧ u �∈ v̂+
i

[0, ..., c�] u �∈ v̂+
�

wordsuffix (v̂+, b) [c1, ..., c�]

[1, ...] u ∈ v̂+
1

[..., ci−1, ...] 1 < i < � ∧ u ∈ v̂+
i

[..., c�−1] u ∈ v̂+
�

[..., 0, ...] 0 < i < � ∧ u �∈ v̂+
i

[..., c�] u �∈ v̂+
�

stretchocc(v̂, n) [c, d]
[c− d + 1, 1] u ∈ v̂

[c, 0] u �∈ v̂

stretchminlen(v̂, n) [c, d, e]
[min(d, e + 1), d, e + 1] u ∈ v̂

[c, c, 0] u �∈ v̂

stretchmaxlen(v̂, n) [c, d]
[max(c, d + 1), d + 1] u ∈ v̂

[c, 0] u �∈ v̂

2.5 Heuristics for Selecting Relevant String Properties for an Automaton

In our experiments (see Section 4), we chose to look for the following string properties:

– For each letter, lower and upper bounds on the number of its occurrences.
– For each letter, lower and upper bounds on the number or length of its stretches.
– Each word of length at most 3 that cannot occur at all.
– Each word of length at most 3 that cannot occur as a prefix or suffix.

These properties are derived, one at a time, as follows. We annotate the automaton as
described in the previous section by the candidate string property. Then we compute by
labelling the feasible values of the counter variable reflecting the given property, giving
up if the computation does not finish within 5 CPU seconds. Among the collected word,
prefix, suffix, and stretch properties, some properties are subsumed by others and are
thus filtered away. Other properties could certainly have been derived, e.g., not only
forbidden words, but also bounds on the number of occurrences of words. Our choice
was based on (a) which properties we are able to derive necessary conditions for, and
(b) empirical observations of what actually pays off in our benchmarks.
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3 The Cardinality Automaton of an Automaton

The previous section introduced different complementary ways of generating necessary
conditions (expressed in terms of arithmetic constraints) from a given automaton for the
row constraints of the matrix M when its columns are subject to gcc constraints. This
section presents an orthogonal systematic approach, again based on double counting,
that can handle a larger class of column constraints completely mechanically.

Consider an R × K matrix M, where on each row we have the same constraint,
represented by an automaton A of p states s0, . . . , sp−1, and on each column we have
a gcc or linear (in)equality constraint where all the coefficients are the same. We will
first construct an automaton that simulates the parallel running of the R copies of A
and consumes entire columns of M. Since this new automaton has pR states, we then
abstract it by just counting the automata that are in each state of A. As even this ab-
stracted automaton has a size exponential in p, we then use a linear-size encoding with
linear constraints that allows us to consider also the column constraints on M.

3.1 Necessary Row Constraints

The vector automaton AR consumes vectors of size R. Its states are sequences of R
states of A, where entry � is the state of the automaton of row �. There is a transition
from state 〈si0 , . . . , siR−1〉 to state 〈sj0 , . . . , sjR−1〉 if and only if for each � there is a
transition in A from si�

to sj�
. A state 〈si0 , . . . , siR−1〉 is initial (resp. final) if each of

the si�
is the initial (resp. a final) state of A.

The cardinality (vector) automaton #
(
AR

)
is an abstraction of the vector automaton

AR that also consumes vectors of size R. Its states are sequences of p numbers, whose
sum is R, where entry i is the number of automata A in state si. There is a transition
from state 〈ci0 , . . . , cip−1〉 to state 〈cj0 , . . . , cjp−1〉 if and only if there exists a multiset
of R transitions in A such that for each � there are ci�

of these R transitions going out
from s�, and for each m there are cjm of these R transitions arriving into sm. A state
〈ci0 , . . . , cip−1〉 is initial (resp. final) if ci�

= 0 whenever s� is not the initial (resp. a
final) state of A.

The number of states of #
(
AR

)
is the number of ordered partitions of p, and

thus exponential in p. However, it is possible to have a compact encoding via con-
straints. Toward this, we use K + 1 sequences of p decision variables Sk

i in the domain
{0, 1, . . . , R} to encode the states of an arbitrary path of length K (the number of
columns) in #

(
AR

)
. For k ∈ {1, . . . , K}, the sequence 〈Sk

0 , Sk
1 , . . . , Sk

p−1〉 has as
possible values the states of #

(
AR

)
after it has consumed column k − 1; the sequence

〈S0
0 , S0

1 , . . . , S0
p−1〉 is fixed to 〈R, 0, . . . , 0〉 when, without loss of generality, s0 is the

initial state of A. We get the following constraints:

∀k ∈ {0, . . . , K} : Sk
0 + Sk

1 + · · · + Sk
p−1 = R (24)

∀i ∈ {0, . . . , p − 1} : SK
i = 0 ← si is not a final state of A (25)

Assume that A has a set T = {(a0, �0, b0), (a1, �1, b1), . . . , (aq−1, �q−1, bq−1)} of q
transitions, where transition (ai, �i, bi) goes from state ai ∈ {s0, s1, . . . , sp−1} to state
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bi ∈ {s0, s1, . . . , sp−1} upon reading letter �i ∈ {0, 1, . . . , V − 1}. We use K se-
quences of q decision variables T k

i in the domain {0, 1, . . . , R} to encode the transi-
tions of an arbitrary path of length K in #

(
AR

)
. For k ∈ {0, . . . , K−1}, the sequence

〈T k
(a0,�0,b0), T

k
(a1,�1,b1), . . . , T

k
(aq−1,�q−1,bq−1)〉 gives the numbers of automata A with

transition (a0, �0, b0), (a1, �1, b1), . . . , (aq−1, �q−1, bq−1) upon reading the character of
their row in column k. We get the following constraint for column k:

T k
(a0,�0,b0) + T k

(a1,�1,b1) + · · · + T k
(aq−1,�q−1,bq−1) = R (26)

Consider two state encodings 〈Sk
0 , Sk

1 , . . . , Sk
p−1〉 and 〈Sk+1

0 , Sk+1
1 , . . . , Sk+1

p−1 〉, and
consider the transition encoding 〈T k

(a0,�0,b0), T
k
(a1,�1,b1), . . . , T

k
(aq−1,�q−1,bq−1)〉 between

these two state encodings (with 0 ≤ k < K). To encode paths of length K in #
(
AR

)
,

we introduce the following constraints. First, we constrain the number of automata A
at any state sj before reading column k to equal the number of firing transitions going
out from sj when reading column k:

∀j ∈ {0, . . . , p − 1} : Sk
j =

∑
(ai,�i,bi)∈T : ai=sj

T k
(ai,�i,bi) (27)

Second, we constrain the number of automata A at state sj after reading column k to
equal the number of firing transitions coming into sj when reading column k:

∀j ∈ {0, . . . , p − 1} : Sk+1
j =

∑
(ai,�i,bi)∈T : bi=sj

T k
(ai,�i,bi) (28)

A reformulation with linear constraints when R = 1 and there are no column constraints
is described in [6].

3.2 Necessary Column Constraints and Channelling Constraints

The necessary constraints above on the state and transition variables only handle the row
constraints, but they can also be used to handle column constraints of the considered
kinds. These necessary constraints can thus be seen as a communication channel for
enhancing the propagation between row and column constraints.

If column k has a gcc, then we constrain the number of occurrences of value v in
column k to equal the number of transitions on v when reading column k:

∀v ∈ {0, . . . , V − 1} : #v
k =

∑
(ai,�i,bi)∈T : �i=v

T k
(ai,�i,bi) (29)

If column k constrains the sum of the column, then we constrain that sum to equal the
value-weighted number of transitions on v when reading column k:

R−1∑
r=0

M[r, k] =
V −1∑
v=0

v ·

⎛
⎝ ∑

(ai,�i,bi)∈T : �i=v

T k
(ai,�i,bi)

⎞
⎠ (30)
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Furthermore, for more propagation, we can link the variables Sk
i back to the state vari-

ables [2] of the R automata A. For this purpose, let the variables Q0
i , Q

1
i , . . . , Q

K
i (with

0 ≤ i < R) denote the K + 1 states visited by automaton A on row i of length K . We
get the following gcc necessary constraints:

∀k ∈ {0, . . . , K} : gcc(〈Qk
0 , Qk

1 , . . . , Q
k
R−1〉, 〈0 : Sk

0 , 1 : Sk
1 , . . . , p−1 : Sk

p−1〉) (31)

Example 2. In the context of an R = 4 by K = 6 matrix with a global contiguity
constraint on each row and a gcc constraint on each column, we illustrate the set of
linear constraints associated with column k (where 0 ≤ k < 6) of the matrix. An
automaton A associated with the global contiguity constraint was described by Fig-
ure 1 of Example 1. It has p = 3 states s0, s1, s2 and q = 5 transitions (s0, 0, s0),
(s0, 1, s1), (s1, 1, s1), (s1, 0, s2), (s2, 0, s2) labelled by values 0 and 1. The encoding
has p · (K + 1) = 21 variables Sk

i such that Sk
0 + Sk

1 + Sk
2 = 4 for every k. Since s0 is

the initial state of A, we require that S0
0 = 4 since S0

1 = 0 = S0
2 . Since A only has final

states, no SK
j is constrained to be zero. The encoding also has q ·K = 30 variables T k

i

such that T k
(s0,0,s0) +T k

(s0,1,s1) +T k
(s1,1,s1) +T k

(s1,0,s2) +T k
(s2,0,s2) = 4 for every k. The

following three sets of linear necessary constraints link the variables above for every k:

Sk
0 = T k

(s0,0,s0) + T k
(s0,1,s1) (transitions that exit state s0)

Sk
1 = T k

(s1,1,s1) + T k
(s1,0,s2) (transitions that exit state s1)

Sk
2 = T k

(s2,0,s2) (transitions that exit state s2)

Sk+1
0 = T k

(s0,0,s0) (transitions that enter state s0)
Sk+1

1 = T k
(s0,1,s1) + T k

(s1,1,s1) (transitions that enter state s1)
Sk+1

2 = T k
(s1,0,s2) + T k

(s2,0,s2) (transitions that enter state s2)

#0
k = T k

(s0,0,s0) + T k
(s1,0,s2) + T k

(s2,0,s2) (transitions labelled by value 0)
#1

k = T k
(s0,1,s1) + T k

(s1,1,s1) (transitions labelled by value 1)

4 Evaluation and Conclusion

NSPLib [14] is a very large repository of (artificially generated) instances of the nurse
scheduling problem (NSP), which is about constructing a duty roster for nursing staff.
Let N be the number of nurses, D the number of days of the scheduling horizon, and
S the number of shifts. The objective is to construct an N × D matrix of values in the
integer interval [1, S], with value S representing the off-duty “shift”.

In instance files, there are hard coverage constraints and soft preference constraints;
we only use the former here: they give for each day d and shift s the lower bound on the
number of nurses that must be assigned to shift s on day d, and can be modelled by a
global cardinality constraint (gcc) on the columns. We stress that the gcc constraints on
any two columns are in general not the same. There are instance files for N × 7 rosters
with N ∈ {25, 50, 75, 100}, and for N × 28 rosters with N ∈ {30, 60}.

In case files, there are hard constraints on the rows. For each shift s, there are lower
and upper bounds on the number of occurrences of s in any row (the daily assignment
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of some nurse): this can be modelled by gcc constraints on the rows. There are even
lower and upper bounds on the cumulative number of occurrences of the working shifts
1, . . . , S − 1 in any row: this can be modelled by gcc constraints on the off-duty value
S and always gives tighter occurrence bounds on S than in the previous gcc constraints.
For each shift s, there are also lower and upper bounds on the length of any stretch of
value s in any row: this can be modelled by stretch path constraints on the rows. Fi-
nally, there are lower and upper bounds on the length of any stretch of the working shifts
1, . . . , S − 1 in any row: this can be modelled by generalised stretch path partition
constraints [3] on the rows. We stress that the constraints on any two rows are the same.
There are 8 case files for the N × 7 rosters, and another 8 case files for the N × 28
rosters. We automatically generated (see [3] for details) deterministic finite automata
(DFA) for all the row constraints of each case, but used their minimised product DFA
instead (obtained through standard DFA algorithms), thereby getting domain consis-
tency on the conjunction of all row constraints [2]. For each case, string properties were
automatically selected off-line as described in Section 2.5, and cardinality automata
were automatically constructed off-line as described in Section 3.

Under these choices, the NSPLib benchmark corresponds to the pattern studied in
this paper. To reduce the risk of reporting improvements where another search proce-
dure can achieve much of the same impact, we use a two-phase search that exploits the
fact that there is a single domain-consistent constraint on each row and column:

– Phase 1 addresses the column (coverage) constraints only: it seeks to assign enough
nurses to given shifts on given days to satisfy all but one coverage constraint. To
break row symmetries, an equivalence relation is maintained: two rows (nurses) are
in the same equivalence class while they are assigned to the same shifts and days.

– In Phase 2, one column constraint and all row constraints remain to be satisfied.
But these constraints form a Berge-acyclic CSP [1], and so the remaining decision
variables can be trivially labelled without search.

This search procedure is much more efficient than row-wise labelling under decreasing
value ordering (value S always has the highest average number of occurrences per row)
in the presence of a decreasing lexicographic ordering constraint on the rows.

The objective of our experiments is to measure the impact in runtime and backtracks
when using either or both of our methods. The experiments were run under SICStus
Prolog 4.1.1 and Mac OS X 10.6.2 on a 2.8 GHz Intel Core 2 Duo with a 4GB RAM.
All runs were allocated 1 CPU minute. For each case and nurse count N , we used the
first 10 instances for each configuration of the NSPLib coverage complexity indicators,
that is instances 1–270 for the N × 7 rosters and 1–120 for the N × 28 rosters.

Table 3 summarises the running of these 3120 instances using neither, either, and
both of our methods. Each row first indicates the number of known instances of some
satisfiability status (‘sat’ for satisfiable, and ‘unsat’ for unsatisfiable) for a given case
and nurse count N , and then the performance of each method to the first solution,
namely the number of instances decided to be of that status without timing out, as well
as the total runtime (in seconds) and the total number of backtracks on all instances
where none of the four methods timed out (it is very important to note that this means
that these totals are comparable, but also that they do not reveal any performance gains
on instances where at least one of the methods timed out). Numbers in boldface indicate
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Table 3. NSPlib benchmark results

Neither String Properties Cardinality DFA Both
Case N Status Known #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk

7 25 sat 230 230 16.7 32099 230 42.6 13909 230 39.8 13813 230 74.8 13781
unsat 38 37 51.9 113413 38 57.1 19491 38 37.2 21133 38 57.9 12877

7 50 sat 216 213 9.5 12165 216 24.0 11055 214 32.4 11077 216 49.8 11057
unsat 43 40 55.0 79629 42 87.5 22082 43 107.5 61092 43 55.0 10863

7 75 sat 210 208 13.0 12709 209 22.1 628 210 48.8 12421 210 49.1 340
unsat 48 48 78.5 155490 48 36.3 8860 48 45.3 12455 47 42.0 8267

7 100 sat 220 217 9.0 361 219 30.7 361 217 52.2 355 219 74.1 355
unsat 26 22 26.3 8909 24 4.9 452 23 4.9 993 25 2.8 452

8 25 sat 263 263 2.2 282 263 10.3 282 263 14.4 76 263 22.6 76
unsat 7 7 36.2 121367 7 0.0 19 7 0.2 19 7 0.2 19

8 50 sat 259 259 4.5 136 259 17.3 136 259 27.8 136 259 40.8 136
unsat 11 10 28.0 49358 11 3.2 715 10 58.8 29784 11 4.0 592

8 75 sat 246 245 7.2 449 245 23.4 230 246 46.2 449 246 61.4 230
unsat 22 21 54.4 112880 22 0.1 21 22 0.4 53 22 0.4 21

8 100 sat 262 261 10.7 239 262 32.5 239 261 65.5 239 262 87.9 239
unsat 6 4 0.2 73 6 0.0 4 4 0.4 73 6 0.1 4

15 30 sat 87 84 245.3 37 86 257.3 37 86 1205.6 37 87 1219.5 37
unsat 23 9 26.8 2513 23 1.9 9 18 17.9 83 23 6.0 9

15 60 sat 87 87 361.8 131 87 380.4 131 87 2108.2 131 87 2137.1 131
unsat 13 8 32.8 1001 13 2.9 8 11 40.9 390 13 6.3 8

16 30 sat 100 100 567.5 153 100 578.6 153 100 2541.0 153 100 2557.8 153
unsat 10 4 11.0 172 10 1.4 4 6 68.5 165 10 4.9 4

16 60 sat 105 105 706.9 142 105 722.0 142 88 3329.9 142 88 3350.2 142
unsat 3 1 25.7 579 3 0.0 1 2 0.8 1 3 0.8 1

best performance in a row. It turned out that Cases 1–6, 9–10, 12–14 are very simple
(in the absence of preference constraints), so that our methods only decrease backtracks
on one of those 2220 instances, but increase runtime. It also turned out that Case 11 is
very difficult (even in the absence of preference constraints), so that even our methods
systematically time out, because the product automaton of all row constraints is very
big; we could have overcome this obstacle by using the built-in gcc constraint and the
product automaton of the remaining row constraints, but we wanted to compare all the
cases under the same scenario. Hence we do not report any results on Cases 1–6, 9–14.

An analysis of Table 3 reveals that our methods decide more instances without tim-
ing out, and that they often drastically reduce the runtime and number of backtracks
(by up to four orders of magnitude), especially on the shared unsatisfiable instances.
However, runtimes are often increased (by up to one order of magnitude) on the shared
satisfiable instances. String properties are only rarely defeated by the cardinality DFA
on any of the three performance measures, but their combination is often the overall
winner, though rarely by a large margin. A more fine-grained evaluation is necessary
to understand when to use which string properties without increasing runtime on the
satisfiable instances. The good performance of our methods on unsatisfiable instances
is indicative of gains when exploring the whole search space, such as when solving an
optimisation problem or using soft (preference) constraints.

With constraint programming, NSPLib instances (without the soft preference con-
straints) were also used in [4,5], but under row constraints that are different from those
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of the NSPLib case files that we used. NSP instances from a different repository were
used in [11], though with soft global constraints: one of the insights reported there was
the need for more interaction between the global constraints, and our paper shows steps
that can be taken in that direction.

Since both our methods essentially generate linear constraints, they may also be
relevant in the context of linear programming. Future work may also consider the inte-
gration of our techniques with the multicost-regular constraint [10], which allows the
direct handling of a gcc constraint in the presence of automaton constraints (as on the
rows of NSPLib instances) without explicitly computing the product automaton, which
can be very big.
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Abstract. This paper introduces the Increasing Nvalue constraint,
which restricts the number of distinct values assigned to a sequence of
variables so that each variable in the sequence is less than or equal to its
successor. This constraint is a specialization of the Nvalue constraint,
motivated by symmetry breaking. Propagating the Nvalue constraint is
known as an NP-hard problem. However, we show that the chain of non
strict inequalities on the variables makes the problem polynomial. We
propose an algorithm achieving generalized arc-consistency in O(ΣDi)
time, where ΣDi is the sum of domain sizes. This algorithm is an im-
provement of filtering algorithms obtained by the automaton-based or
the Slide-based reformulations. We evaluate our constraint on a resource
allocation problem.

1 Introduction

The Nvalue constraint was introduced by Pachet et al. in [10] to express a re-
striction on the number of distinct values assigned to a set of variables. Even if
finding out whether a Nvalue constraint has a solution or not is NP-hard [6],
a number of filtering algorithms were developed over the last years [4,3]. Moti-
vated by symmetry breaking, this paper considers the conjunction of an Nvalue

constraint with a chain of non strict inequalities constraints, that we call In-

creasing Nvalue. We come up with a filtering algorithm that achieves general
arc-consistency (GAC) for Increasing Nvalue in O(ΣDi) time, where ΣDi is the
sum of domain sizes. This algorithm is more efficient than those obtained by
using generic approaches such as encoding Increasing Nvalue as a finite deter-
ministic automaton [12] or as a Slide constraint [5], which respectively require
O(n(∪Di)3) and O(nd4) time complexities for achieving GAC, where n denotes
the number of variables, ∪Di is the total number of potential values in the do-
mains, and d the maximum size of a domain. Part of its efficiency relies on
a specific data structure, i.e. a matrix of ordered sparse arrays, which allows
multiple ordered queries (i.e., Set and Get) to the columns of a sparse matrix.

Experiments proposed in this paper are based on a real-life resource allocation
problem related to the management of clusters. Entropy is a Virtual Machine
(VM) manager for clusters [8], which provides an autonomous and flexible engine
to manipulate the state and the position of VMs on the different working nodes
composing the cluster. The constraint programming part affects the VMs (the
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tasks) on a reduced number of nodes (the resources) in the cluster. It uses a
Nvalue constraint maintaining the number of nodes required to host all the
VMs. However, in practice, the resources consumed are most often equivalents
from one VM to another. This leads to a limited number of equivalence classes
among the VMs, and Increasing Nvalue is used for breaking such symmetries.

Section 2 recalls some definitions and formally introduces the Increas-

ing Nvalue constraint. Next, Section 3 describes a necessary and sufficient con-
dition for the feasibility of the Increasing Nvalue constraint. Section 4 presents
an algorithm enforcing GAC for Increasing Nvalue(N,X). Section 5 evaluates
the impact of our method on a resource allocation problem. Finally, Section 6
describes generic approaches for reformulating Increasing Nvalue that are less
efficient.

2 Preliminaries

Given a sequence of variables X , the domain D(x) of a variable x ∈ X is the
finite set of integer values that can be assigned to variable x. D is the union of
all domains in X . We use the notations min(x) for the minimum value of D(x)
and max(x) for the maximum value of D(x). The sum of domains sizes over D is
ΣDi =

∑
xi∈X |D(xi)|. A[X ] denotes an assignment of values to variables in X .

Given x ∈ X , A[x] is the value of x in A[X ]. A[X ] is valid iff ∀xi ∈ X , A[xi] ∈
D(xi). An instantiation I[X ] is a valid assignment of X . Given x ∈ X , I[x] is
the value of x in I[X ]. A constraint C(X), specifies the allowed combinations
of values for a set of variables X . It defines a subset RC(D) of the cartesian
product of the domains Πxi∈X D(xi). A feasible instantiation of C(X) is an
instantiation which is in RC(D). If I[X ] is a feasible instantiation of C(X) then
I[X ] satisfies C(X). W.l.o.g., we consider that X contains at least two variables.
Given X = [x0, x1, . . . , xn−1] and i, j two integers such that 0 ≤ i < j ≤ n − 1,
I[xi, . . . , xj ] is the projection of I[X ] on the sequence [xi, . . . , xj ].

Definition 1. The constraint Increasing Nvalue(N, X) is defined by a variable
N and a sequence of n variables X = [x0, x1, . . . , xn−1]. Given an instantiation
of [N, x0, x1, . . . , xn−1], Increasing Nvalue(N, X) is satisfied iff:

1. N is equal to the number of distinct values assigned to the variables in X.
2. ∀i ∈ [0, n − 2], xi ≤ xi+1.

3 Feasibility of the Increasing Nvalue Constraint

This section presents a necessary and sufficient condition for the feasibility of the
Increasing Nvalue constraint. We first show that the number of distinct values
of any instantiation I[X ] such that ∀i ∈ [0, n − 2], I[xi] ≤ I[xi+1], is equal to
the number of stretches in I[X ]. A stretch [11] is defined as a maximum length
sequence of consecutive variables assigned to the same value. For any variable
x ∈ X and any value v ∈ D(x), we compute the minimum and maximum number
of stretches among all possible instantiations I[X ] such that I[x] = v.
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Next, given a variable x ∈ X , we provide the properties linking the natural
ordering of values in D(x) and the minimum and maximum number of stretches
that can be obtained by assigning a value to x. From these properties, we prove
that there exists an instantiation satisfying the constraint for any value of D(N)
between the minimum s(X) and the maximum s(X) of possible numbers of
stretches. This leads to the main result of this section: Increasing Nvalue(N ,
X) is feasible iff D(N) ∩ [s(X), s(X)] �= ∅ (Proposition 3 in Section 3.3).

3.1 Estimating the Number of Stretches

Any feasible instantiation I[X ] of Increasing Nvalue(N, X) satisfies I[xi] ≤
I[xj ] for all i < j. In the following, an instantiation I[x0, x1, . . . , xn−1] is said to
be well-ordered iff for i and j s.t. 0 ≤ i < j ≤ n − 1, we have I[xi] ≤ I[xj ]. A
value v ∈ D(x) is said to be well-ordered with respect to x iff it can be part of
at least one well-ordered instantiation.

Lemma 1. Let I[X ] be an instantiation. If I[X ] satisfies Increas-

ing Nvalue(X, N) then I[X ] is well-ordered.

Proof. From Definition 1, if I[X ] satisfies the constraint then ∀i ∈ [0, n − 2],
I[xi] ≤ I[xi+1]. By transitivity of ≤, the Lemma holds. ��

Definition 2 (stretch). Let I[x0, x1, . . . , xn−1] be an instantiation. Given i
and j such that 0 ≤ i ≤ j ≤ n− 1, a stretch of I[X ] is a sequence of consecutive
variables [xi, . . . , xj ] such that in I[X ]: (1) ∀k ∈ [i, j], ∀� ∈ [i, j], xk = x�. (2)
either i = 0 or xi−1 �= xi. (3) either j = n − 1 or xj �= xj+1.

Lemma 2. Given a well-ordered instantiation I[X ], the number of stretches in
I[X ] is equal to the number of distinct values in I[X ].

Proof. I[X ] is well-ordered then, for any i and j s.t. 0 ≤ i < j ≤ n− 1, we have
I[xi] ≤ I[xj ]. Consequently, if xi and xj belong to two distinct stretches and
i < j then I[xi] < I[xj ]. ��

It is possible to evaluate for each value v in each domain D(xi) the exact min-
imum and maximum number of stretches of well-ordered suffix instantiations
I[xi, . . . , xn] such that I[xi] = v, and similarly for prefix instantiations. This
evaluation is performed w.r.t. the domains of variables xj such that j > i.

Notation 1. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and let v be
a value of D. The exact minimum number of stretches among all well-ordered
instantiations I[xi, . . . , xn−1] such that I[xi] = v is denoted by s(xi, v). By con-
vention, if v /∈ D(xi) then s(xi, v) = +∞. Similarly, the exact minimum number
of stretches among all well-ordered instantiations I[x0, . . . , xi] such that I[xi] = v
is denoted by p(xi, v). By convention, if v /∈ D(xi) then p(xi, v) = +∞.

Lemma 3. Let X = [x0, x1, . . . , xn−1] be a sequence of variables. ∀xi ∈ X,
∀v ∈ D(xi), s(xi, v) can be computed as follows:
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1. If i = n − 1: s(xi, v) = 1,
2. If i < n − 1: s(xi, v) = min( s(xi+1, v), minw>v(s(xi+1, w)) + 1 ).

Proof. By induction. When |X | = 1 there is one stretch. Thus, if i = n−1, for any
v ∈ D(xi), we have s(xi, v) = 1. Consider now, a variable xi, i < n−1, and a value
v ∈ D(xi). Instantiations s.t. I[xi+1] < v cannot be augmented with value v for xi

to form a well-ordered instantiation I[xi, . . . , xn−1]. Thus, let I[xi+1, . . . , xn−1]
be an instantiation s.t. I[xi+1] ≥ v, which minimizes the number of stretches
in [xi+1, . . . , xn−1]. Either I[xi+1] = v and s(xi, v) = s(xi+1, v) since the first
stretch of I[xi+1, . . . , xn−1] is extended when augmenting I[xi+1, . . . , xn−1] with
value v for xi, or I[xi+1] �= v and s(xi, v) = s(xi+1, I[xi+1]) + 1 since value v
creates a new stretch. By construction, instantiations of [xi+1, . . . , xn−1] that do
not minimize the number of stretches cannot lead to a value s(xi, v) strictly less
than min(s(xi+1, w), w > v) + 1, even if I[xi+1] = v. ��

Given a sequence of variables X = [x0, x1, . . . , xn−1], ∀xi ∈ X , ∀v ∈ D(xi),
computing p(xi, v) is symmetrical: If i = 0: p(xi, v) = 1. If i > 0: p(xi, v) =
min( p(xi−1, v), minw<v(p(xi−1, w)) + 1 ).

Moreover, for a given variable xi, we evaluate for each value v the exact maxi-
mum number of stretches that may appear among all well-ordered instantiations
I[xi, . . . , xn−1] with I[xi] = v, and similarly for prefix instantiations.

Notation 2. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and let v be a
value of D. The exact maximum number of stretches among all well-ordered in-
stantiations I[xi, . . . , xn−1] with I[xi] = v is denoted by s(xi, v). By convention,
if v /∈ D(xi) then s(xi, v) = 0. Similarly, the exact maximum number of stretches
among all well-ordered instantiations I[x1, . . . , xi] with I[xi] = v is denoted by
p(xi, v). By convention, if v /∈ D(xi) then p(xi, v) = 0.

Lemma 4. Let X = [x0, x1, . . . , xn−1] be a sequence of variables. ∀xi ∈ X,
∀v ∈ D(xi), s(xi, v) can be computed as follows:

1. If i = n − 1: s(xi, v) = 1,
2. If i < n − 1: s(xi, v) = max( s(xi+1, v), maxw>v(s(xi+1, w)) + 1 ).

Proof. Similar to Lemma 3. ��

Given a sequence of variables X = [x0, x1, . . . , xn−1], ∀xi ∈ X , ∀v ∈ D(xi),
computing p(xi, v) is symmetrical: If i = 0: p(xi, v) = 1, If i > 0: p(xi, v) =
max( p(xi−1, v), maxw<v(s(xi−1, w)) + 1 ).

3.2 Properties on the Number of Stretches

This section enumerates the properties that link the natural ordering of values in
a domain D(xi) with the minimum and maximum number of stretches that can
be obtained in the sub-sequence xi, xi+1, . . . , xn−1. We consider only well-ordered
values, which may be part of a feasible instantiation of Increasing Nvalue.
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Properties on a Single Value. The next three properties are directly deduced,
by construction, from Lemmas 3 and 4.

Property 1. Any value v ∈ D(xi) well-ordered w.r.t. xi is such that s(xi, v) ≤
s(xi, v).

Property 2. Let v ∈ D(xi) (i < n − 1) be a value well-ordered w.r.t. xi. If
v ∈ D(xi+1) and v is well-ordered w.r.t. xi+1 then s(xi, v) = s(xi+1, v).

Property 3. Let v ∈ D(xi) (i < n − 1) be a value well-ordered w.r.t. xi. If
v ∈ D(xi+1) and v is well-ordered w.r.t. xi+1 then s(xi, v) ≥ s(xi+1, v).

Proof. From Lemma 4, if there exists a value w ∈ D(xi+1), w > v, which is
well-ordered w.r.t. xi+1 and s.t. s(xi+1, w) ≥ s(xi+1, v) then s(xi, v) > s(xi+1, v).
Otherwise, s(xi, v) = s(xi+1, v). ��

Ordering on Values. The two following properties establish the links between
the natural ordering of values in D(xi) and the minimum and maximum number
of stretches in the sub-sequence starting from xi.

Property 4. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and let i ∈
[0, n−1] be an integer. ∀v, w ∈ D(xi) two well-ordered values, v ≤ w ⇒ s(xi, v) ≤
s(xi, w) + 1.

Proof. If v = w the property holds. If i = n − 1, by Lemma 3, s(xn−1, v) =
s(xn−1, w) = 1. The property holds. Given i < n − 1, let v′, w′ be two
well-ordered values of D(xi+1) such that v′ ≥ v and w′ ≥ w, which mini-
mize the number of stretches starting at xi+1: ∀α ≥ v, s(xi+1, v

′) ≤ s(xi+1, α)
and ∀β ≥ w, s(xi+1, w

′) ≤ s(xi+1, β). Such values exist because v and w are
well-ordered values. Then, by construction we have s(xi+1, v

′) ≤ s(xi+1, w
′),

and, from Lemma 3, s(xi+1, w
′) ≤ s(xi, w), which leads to s(xi+1, v

′) ≤ s(xi, w).
By Lemma 3, s(xi, v) ≤ s(xi+1, v

′) + 1. Thus, s(xi, v) ≤ s(xi, w) + 1. ��

A symmetrical property holds on the maximum number of stretches.

Property 5. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and i ∈ [0, n−
1] an integer. ∀v, w ∈ D(xi) two well-ordered values, v ≤ w ⇒ s(xi, v) ≥ s(xi, w).

Proof. If v = w the property holds. If i = n − 1, by Lemma 4,
s(xn−1, v)=s(xn−1, w) = 1. The property holds. Given i < n−1, let w′ ∈ D(xi+1)
be well-ordered, s.t. w′ ≥ w, and maximizing the number of stretches starting at
xi+1 (∀β ≥ w, s(xi+1, w

′) ≥ s(xi+1, β)). By Lemma 4, s(xi, w) ≤ s(xi+1, w
′)+1.

Since v < w and thus v < w′, s(xi, v) ≥ s(xi+1, w
′) + 1. The property holds. ��

Ordering on the Maximum Number of Stretches. The intuition of Prop-
erty 6 stands from the fact that, the smaller a well-ordered value v w.r.t. a vari-
able xi is, the more stretches one can build on the sequence [xi, xi+1, . . . , xn−1]
with xi = v.
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Property 6. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and let i be an
integer in interval [0, n − 1]. ∀v, w ∈ D(xi) two well-ordered values, s(xi, w) <
s(xi, v) ⇒ v < w.

Proof. We show that if v ≥ w then, we have a contradiction with s(xi, w) <
s(xi, v). If i = n − 1, Lemma 4 ensures s(xn−1, w) = s(xn−1, v) = 1, a contra-
diction. Now, let us consider the case where i < n − 1. If v = w then s(xi, w) =
s(xi, v), a contradiction. Otherwise (v > w), let v′ be a value of D(xi+1) such
that v′ ≥ v which maximizes s(xi+1, α), α ≥ v. Such a value exists because v is
well-ordered. By construction w < v′. By Lemma 4, s(xi, w) ≥ s(xi+1, v

′)+1 (1).
By construction we have also v ≤ v′, which implies s(xi+1, v

′)+ 1 ≥ s(xi, v) (2).
From (1) and (2) we have s(xi, w) ≥ s(xi, v), a contradiction. ��

Ordering on the Minimum Number of Stretches. There is no implication
from the minimum number of stretches to the ordering of values in domains. Let
X = [x0, x1, x2] with D(x0)=D(x1)={1, 2, 3} and D(x2) = {1, 2, 4}. s(x0, 1) = 1
and s(x0, 3) = 2, thus s(x0, 1) < s(x0, 3) and 1 < 3. Consider now that D(x2) =
{2, 3, 4}. s(x0, 1) = 2 and s(x0, 3) = 1, thus s(x0, 3) < s(x0, 1) and 3 > 1.

Summary. Next table summarizes the relations between well-ordered values
v and w in D(xi) and the estimations of the minimum and maximum num-
ber of stretches among all instantiations starting from these values (that is,
I[xi, . . . , xn−1] such that I[xi] = v or such that I[xi] = w).

Precondition Property Proposition
v ∈ D(xi) is well-ordered s(xi, v) ≤ s(xi, v) Prop. 1

v ∈ D(xi) is well-ordered, i < n− 1 and s(xi, v) = s(xi+1, v) Prop. 2
v ∈ D(xi+1) s(xi, v) ≥ s(xi+1, v) Prop. 3

v ∈ D(xi), w ∈ D(xi) are well-ordered and s(xi, v) ≤ s(xi, w) + 1 Prop. 4
v ≤ w s(xi, v) ≥ s(xi, w) Prop. 5

v ∈ D(xi), w ∈ D(xi) are well-ordered and
v < w Prop. 6

s(xi, w) < s(xi, v)

3.3 Necessary and Sufficient Condition for Feasibility

Notation 3. Given a sequence of variables X = [x0, x1, . . . , xn−1], s(X) is
the minimum value of s(x0, v), v ∈ D(x0), and s(X) is the maximum value
of s(x0, v), v ∈ D(x0).

Proposition 1. Given an Increasing Nvalue(N, X) constraint, if s(X) >
max(D(N)) then the constraint has no solution. Symmetrically, if s(X) <
min(D(N)) then the constraint has no solution.

Proof. By construction from Lemmas 3 and 4. ��

W.l.o.g., D(N) can be restricted to [s(X), s(X)]. However, observe that D(N)
may have holes or may be strictly included in [s(X), s(X)]. We prove that
for any value k in [s(X), s(X)] there exists a value v ∈ D(x0) such that k ∈
[s(x0, v), s(x0, v)]. Thus, any value in D(N) ∩ [s(X), s(X)] is feasible.
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Proposition 2. Let X = [x0, x1, . . . , xn−1] be a sequence of variables. For any
integer k in [s(X), s(X)] there exists v in D(x0) such that k ∈ [s(x0, v), s(x0, v)].

Proof. Let k ∈ [s(X), s(X)]. If ∃v ∈ D(x0) s.t. k = s(x0, v) or k = s(x0, v)
the property holds. Assume ∀v ∈ D(x0), either k > s(x0, v) or k < s(x0, v).
Let v′, w′ be the two values such that v′ is the maximum value of D(x0) such
that s(x0, v

′) < k and w′ is the minimum value such that k < s(x0, w
′). Then,

we have s(x0, v
′) < k < s(x0, w

′) (1). By Property 1, s(x0, w
′) ≤ s(x0, w

′). By
Property 6, s(x0, v

′) < s(x0, w
′) ⇒ w0 < v′. By Properties 4 and 1, w0 < v′ ⇒

s(x0, w
′) ≤ s(x0, v

′) + 1, a contradiction with (1). ��

Algorithm 1. Building a solution for Increasing Nvalue(k, X).

if k /∈ [s(X), s(X)] ∩ D(N) then return “no solution” ;1

v := a value ∈ D(x0) s.t. k ∈ [s(x0, v), s(x0, v)] ;2

for i := 0 to n − 2 do3

I[xi] := v;4

if ∀vi+1 ∈ D(xi+1) s.t. vi+1 = v, k /∈ [s(xi+1, vi+1), s(xi+1, vi+1)] then5

v := vi+1 in D(xi+1) s.t. vi+1 > v ∧ k − 1 ∈ [s(xi+1, vi+1), s(xi+1, vi+1)];6

k := k − 1 ;7

I[xn−1] := v; return I[X];8

Lemma 5. Given an Increasing Nvalue(N, X) constraint and an integer k,
if k ∈ [s(X), s(X)] ∩ D(N) then Algorithm 1 returns a solution of Increas-

ing Nvalue(N, X) with N = k. Otherwise, Algorithm 1 returns “no solution”
since no solution exists with N = k.

Proof. The first line of Algorithm 1 ensures that either [s(X), s(X)]∩D(N) �= ∅
and k belongs to [s(X), s(X)] ∩ D(N), or there is no solution (from Proposi-
tions 1 and 2). At each new iteration of the for loop, by Lemmas 3 and 4
and Proposition 2, either the condition (line 6) is satisfied and a new stretch
begins at i + 1 with a greater value (which guarantees that I[{x1, . . . , xi+1}]
is well-ordered) and k is decreased by 1, or it is possible to keep the current
value v for I[xi+1]. Therefore, at the start of a for loop (line 4), ∃v ∈ D(xi)
s.t. k ∈ [s(xi, v), s(xi, v)]. When i = n − 1, by construction k = 1 and
∀vn−1 ∈ D(xn−1), s(xn−1, vn−1) = s(xn−1, vn−1) = 1; I[X ] is well-ordered and
contains k stretches. From Lemma 2, instantiation I[{N} ∪X ] with I[N ] = k is
a solution of Increasing Nvalue(N, X) with k distinct values in X . ��

Lemma 5 leads to a necessary and sufficient feasibility condition.

Proposition 3. Given an Increasing Nvalue(N, X) constraint, the two follow-
ing propositions are equivalent:

1. Increasing Nvalue(N, X) has a solution.
2. [s(X), s(X)] ∩ D(N) �= ∅.
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Proof. (⇒) Assume Increasing Nvalue(N, X) has a solution. Let I[{N} ∪ X ]
be such a solution. By Lemma 2 the value k assigned to N is the number of
stretches in I[X ]. By construction (Lemmas 3 and 4) k ∈ [s(X), s(X)]. Thus,
[s(X), s(X)]∩D(N) �= ∅. (⇐) Let k ∈ [s(X), s(X)]∩D(N) �= ∅. From Lemma 5
it is possible to build a feasible solution for Increasing Nvalue(N, X). ��

4 GAC Filtering Algorithm for Increasing Nvalue

This section presents an algorithm enforcing GAC for Increas-

ing Nvalue(N, X) in O(ΣDi) time complexity, where ΣDi is the sum of
domain sizes of the variables in X . For a given variable xi ∈ X and a value
v ∈ D(xi), the principle is to estimate the minimum and maximum number of
stretches among all instantiations I[X ] with I[xi] = v, to compare the interval
derived from these two bounds and D(N). In order to do so, w.l.o.g. we estimate
the minimum and maximum number of stretches related to prefix instantiations
I[x0, . . . , xi] and suffix instantiations I[xi, . . . , xn−1].

Definition 3 (GAC). Let C(X) be a constraint. A support on C(X) is an
instantiation I[X ] which satisfies C(X). A domain D(x) is arc-consistent
w.r.t. C(X) iff ∀v ∈ D(x), v belongs to a support on C(X). C(X) is (gen-
eralized) arc-consistent (GAC) iff ∀xi ∈ X, D(xi) is arc-consistent.

4.1 Necessary and Sufficient Condition for Filtering

From Lemma 5, values of D(N) which are not in [s(X), s(X)] can be removed
from D(N). By Proposition 3, all remaining values in D(N) are feasible. We now
give a necessary and sufficient condition to remove a value from D(xi), xi ∈ X .

Proposition 4. Consider an Increasing Nvalue(N, X) constraint. Let i ∈
[0, n − 1] be an integer and v a value in D(xi). The two following propositions
are equivalent:

1. v ∈ D(xi) is arc-consistent w.r.t. Increasing Nvalue

2. v is well-ordered w.r.t. D(xi) and [p(xi, v)+s(xi, v)−1, p(xi, v)+s(xi, v)−1]
∩ D(N) �= ∅.

Proof. If v is not well-ordered then from Lemma 1, v is not arc-consistent
w.r.t. Increasing Nvalue. Otherwise, p(xi, v) is the exact minimum number
of stretches among well-ordered instantiations I[x0, . . . , xi] such that I[xi] = v
and s(xi, v) is the exact minimum number of stretches among well-ordered in-
stantiations I[xi, . . . , xn−1] such that I[xi] = v. Thus, by construction p(xi, v)+
s(xi, v)−1 is the exact minimum number of stretches among well-ordered instan-
tiations I[x0, x1, . . . , xn−1] such that I[xi] = v. Let Dv ⊆ D be the set of domains
such that all domains in Dv are equal to domains in D except D(xi) which is
reduced to {v}. We call Xv the set of variables associated with domains in Dv.
From Definition 3, p(xi, v) + s(xi, v) − 1 = s(Xv). By a symmetrical reasoning,
p(xi, v) + s(xi, v) − 1 = s(Xv). By Proposition 3, the proposition holds. ��
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4.2 Algorithms

From Proposition 4, we derive a filtering algorithm achieving GAC in O(ΣDi).
For a given variable xi (0 ≤ i < n), we need to compute the prefix and suffix
information p(xi, v), p(xi, v), s(xi, v) and s(xi, v), no matter whether value v
belongs or not to the domain of xi. To reach an overall complexity of O(ΣDi),
we take advantage of two facts:

1. Within our algorithm we always iterate over p(xi, v), p(xi, v), s(xi, v) and
s(xi, v) by scanning the value of D(xi) in increasing or decreasing order.

2. For a value v that does not belong to D(xi), 0 (resp. n) is the default value
for p(xi, v) and s(xi, v) (resp. p(xi, v) and s(xi, v)).

For this purpose we create a data structure for handling such sparse matrices
for which write and read accesses are always done by iterating in increasing
or decreasing order through the rows in a given column. The upper part of
next table describes the three primitives on ordered sparse matrices as well as
their time complexity. The lower part gives the primitives used for accessing or
modifying the domain of a variable. Primitives which restrict the domain of a
variable x return true if D(x) �= ∅ after the operation, false otherwise.

Primitives
Description Complexity

(access to matrices)
ScanInit(mats, i, dir) indicates that we will iterate through the ith

column of matrices in mats in increasing or-
der (dir =↑) or decreasing order (dir =↓)

O(1)

Set(mat, i, j, info) performs the assignment mat [i, j] := info O(1)
Get(mat, i, j):int returns the content of entry mat [i, j] or the

default value if such entry does not belong to
the sparse matrix (a set of q consecutive calls
to Get on the same column i and in increas-
ing or decreasing row indexes is in O(q))

amortized

Primitives
Description Complexity

(access to variables)
adjust min(x, v):boolean adjusts the minimum of var. x to value v O(1)
adjust max(x, v):boolean adjusts the maximum of var. x to value v O(1)
remove val(x, v):boolean removes value v from domain D(x) O(1)
instantiate(x, v):boolean fix variable x to value v O(1)
get prev(x, v):int returns the largest value w in D(x) such that

w < v if it exists, returns v otherwise O(1)

get next(x, v):int returns the smallest value w in D(x) such
that w > v if it exists, returns v otherwise O(1)

Algorithm 3 corresponds to the main filtering algorithm that implements
Proposition 4. In a first phase it restricts the minimum and maximum values of
variables [x0, x1, . . . , xn−1] w.r.t. to all the inequalities constraints (i.e. it only
keeps well-ordered values). In a second step, it computes the information related
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Algorithm 2. build suffix([x0, x1, . . . , xn−1], s[][], s[][]).
Allocate mins, maxs;1

ScanInit({s, s}, n − 1, ↓); v := max(xn−1);2

repeat3
Set(s, n − 1, v, 1); Set(s, n − 1, v, 1); w := v; v :=getPrev(xn−1, v);4

until w = v ;5

for i := n − 2 downto 0 do6
ScanInit({s, s, mins, maxs}, i + 1, ↓); v := max(xi+1);7

repeat8

if v < max(xi+1) then9
Set(mins, i + 1, v, min(Get(mins, i + 1, v + 1),Get(s, i + 1, v)));10

Set(maxs, i + 1, v, max(Get(maxs, i + 1, v + 1),Get(s, i + 1, v)));11

else12
Set(mins, i + 1, v,Get(s, i + 1, v));13

Set(maxs, i + 1, v,Get(s, i + 1, v));14

w := v; v :=getPrev(xi+1, v);15

until w = v ;16

ScanInit({s, s}, i, ↓); ScanInit({s, s, mins, maxs}, i + 1, ↓); v := max(xi);17

repeat18

if v = max(xi+1) then19
Set(s, i, v,Get(s, i + 1, v)); Set(s, i, v,Get(s, i + 1, v));20

else21

if v ≥ min(xi+1) then22
Set(s, i, v, min(Get(s, i + 1, v),Get(mins, i + 1, v + 1) + 1));23

Set(s, i, v, max(Get(s, i + 1, v),Get(maxs, i + 1, v + 1) + 1));24

else25
Set(s, i, v,Get(mins, i + 1, min(xi+1)) + 1);26

Set(s, i, v,Get(maxs, i + 1, min(xi+1)) + 1);27

w := v; v :=getPrev(xi, v);28

until w = v ;29

to the minimum and maximum number of stretches on the prefix and suffix ma-
trices p, p, s, s. Finally, based on this information, it adjusts the bounds of N
and does the necessary pruning on each variable x0, x1, . . . , xn−1. Using Lem-
mas 3 and 4, Algorithm 2 builds the suffix matrices s and s used in Algorithm 3
(p and p are constructed in a similar way):

1. In a first step, column n − 1 of matrices s and s are initialised to 1 (i.e. see
the first item of Lemmas 3 and 4).

2. In a second step, columns n − 2 down to 0 are initialised (i.e. see
the second item of Lemmas 3 and 4). In order to avoid recomputing
from scratch the quantities min(s(xi+1, v), minw>v(s(xi+1, w)) + 1) and
max(s(xi+1, v), maxw>v(s(xi+1, w)) + 1) we introduce two sparse ordered
matrices mins [i, j] and maxs[i, j]. When initialising the ith columns of ma-
trices s and s we first compute the i + 1th columns of matrices mins and
maxs (i.e. see the first repeat of the for loop). Then, in the second repeat
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of the for loop we initialise the ith columns of s and s. Observe that we scan
columns i + 1 of matrices mins and maxs in decreasing rows indices.

Consequently, Algorithm 2 takes O(ΣDi) time and Algorithm 3 prunes all the
values that are not arc-consistent in Increasing Nvalue in O(ΣDi).1

Algorithm 3. Increasing Nvalue(N, [x0, x1, . . . , xn−1]) : boolean.

if n = 1 then return instantiate(N, 1);1

for i = 1 to n − 1 do if ¬adjust min(xi, min(xi−1)) then return false;2

for i = n − 2 downto 0 do if ¬adjust max(xi, max(xi+1)) then return false;3

Allocate p, p, s, s;4
build prefix p, p; build suffix s, s;5
ScanInit({s, s}, 0, ↑);6

if ¬adjust min(N,minv∈D(x0)(Get(s, 0, v))) then return false;7

if ¬adjust max(N,maxv∈D(x0)(Get(s, 0, v))) then return false;8

for i := 0 to n − 1 do9
ScanInit({p, p, s, s}, i, ↑); v := min(xi);10
repeat11

Nv :=Get(p, i, v)+Get(s, i, v) − 1; Nv :=Get(p, i, v)+Get(s, i, v) − 1;12

if [Nv, Nv ] ∩ D(N) = ∅ and ¬remove val(xi, v) then return false;13

w := v; v := getNext(xi, v);14

until w = v ;15

return true ;16

5 Using Increasing Nvalue for Symmetry Breaking

This section provides a set of experiments for the Increasing Nvalue constraint.
First, Section 5.1 presents a constraint programming reformulation of a Nvalue

constraint into a Increasing Nvalue constraint to deal with symmetry breaking.
Next, Section 5.2 evaluates the Increasing Nvalue on a real life application
based on constraint programming technology. In the following, all experiments
were performed with the Choco constraint programming system [1], on an Intel
Core 2 Duo 2.4GHz with 4GB of RAM, and 128Mo allocated to the Java Virtual
Machine.

5.1 Improving Nvalue Constraint Propagation

Enforcing GAC for a Nvalue constraint is a NP-Hard problem and existing
filtering algorithms perform little propagation when domains of variables are
sparse [3,4]. In our implementation, we use a representation of Nvalue which is
based on occurrence constraints of Choco. We evaluate the effect of the Increas-

ing Nvalue constraint when it is used as an implied constraint on equivalence

1 The source code of the Increasing Nvalue constraint is available at
http://choco.emn.fr
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Table 1. Evaluation of the Increasing Nvalue constraint according the number of
equivalence classes among the variables

Number of Nvalue model Increasing Nvalue model
equivalences nodes failures time(ms) solved(%) nodes failures time(ms) solved(%)

1 2798 22683 6206 76 28 0 51 100
3 1005 12743 4008 76 716 7143 3905 82
5 1230 14058 8077 72 1194 12067 8653 72
7 850 18127 6228 64 803 16384 6488 66

10 387 3924 2027 58 387 3864 2201 58
15 1236 16033 6518 38 1235 16005 7930 38
20 379 7296 5879 58 379 7296 6130 58

classes, in addition to the Nvalue. Thus, given a set E(X) of equivalence classes
among the variables in X, the pruning of the global constraint Nvalue(X, N)
can be strengthened in the following way:

Nvalue(N, X) (1)
∀E ∈ E(X), Increasing Nvalue(NE , E) (2)

max
E∈E(X)

(NE) ≤ N ≤
∑

E∈E(X)

(NE) (3)

where NE denotes the occurrence variable associated to the set of equivalent
variables E ∈ E(X) and E ⊆ X .

Parameters recorded are the number of nodes in the tree search, the number
of fails detected during the search and the solving time to reach a solution.
Variables of our experiments are the maximum number of values in the variable
domains, the percentage of holes in the variable domains and the number of
equivalence classes among the variables. The behavior of our experiments is not
related to the number of variables: sizes 20, 40 and 100 have been evaluated.

Tables 1 and 2 report the results of experiments for 40 variables and domains
containing at most 80 values (size 20 and 40 are also tested). For Table 1, 50
instances are generated for each size of equivalence classes. For Table 2, 350
instances are generated for each density evaluated. A timeout on the solving
time to a solution is fixed to 60 seconds. A recorded parameter is included in the
average iff both approaches solve the instance. Then, two approaches are strictly
comparable if the percentage of solved instances is equal. Otherwise, the recorded
parameters can be compared for the instances solved by both approaches.

Table 1 illustrates that equivalence classes among the variables impact the
performances of the Increasing Nvalue constraint model. We observe that the
performances (particularly the solving time) are impacted by the number of
equivalence classes. From one equivalence class to 7, the average number of
variables involved in each equivalence class is sufficient to justify the solving
time overhead which is balanced by the propagation efficiency. From 10 to 20,
the size of each equivalence class is not significant (in the mean, from 4 to 2
variables involved in each Increasing Nvalue constraint). Thus, we show that
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Table 2. Evaluation of the Increasing Nvalue constraint according the percentage
of holes in the domains

holes(%)
Nvalue model Increasing Nvalue model

nodes failures time(ms) solved(%) nodes failures time(ms) solved(%)
25 1126.4 13552 5563.3 63.1 677.4 8965.5 5051.1 67.7
50 2867.1 16202.6 4702.1 50.8 1956.4 12345 4897.5 54.9
75 5103.7 16737.3 3559.4 65.7 4698.7 15607.8 4345.5 65.1

the propagation gain (in term of nodes and failures) is not significant while the
solving time overhead could be important.

Unsurprisingly, Table 2 shows that the number of holes in the variable domains
impact the performances of the Increasing Nvalue constraint model. However,
we notice when the number of holes in the domains increases the number of
solved instances decreases. Such a phenomenon are directly related with the fact
that propagation of Nvalue is less efficient when there exist holes in the variable
domains.

5.2 Integration in a Resource Scheduling Problem

Entropy2 [8] provides an autonomous and flexible engine to manipulate the state
and the position of VMs (hosting applications) on the different working nodes
composing the cluster. This engine is based on Constraint Programing. It pro-
vides a core model dedicated to the assignment of VMs to nodes and some ded-
icated constraints to customize the assignment of the VMs regarding to some
users and administrators requirements.

The core model denotes each node (the resources) by its CPU and memory
capacity and each VM (the tasks) by its CPU and memory demands to run at a
peak level. The constraint programming part aims at computing an assignment
of each VM that (i) satisfies the resources demand (CPU and memory) of the
VMs, and (ii) uses a minimum number of nodes. Finally, liberating nodes can
allow more jobs to be accepted into the cluster, or can allow powering down
unused nodes to save energy. In this problem two parts can be distinguished: (i)
VMs assignment on nodes w.r.t. resource capacity: this is a bidimensional bin-
packing problem. It is modeled by a set of knapsack constraints associated with
each node. Propagation algorithm is based on CostRegular propagator [7] to
deal with the two dimensions of the resource; (ii) Restriction on the number of
nodes used to assign all the VMs. VMs are ranked according to their CPU and
memory consumption (this means there is equivalence classes among the VMs).
Nvalue and Increasing Nvalue are used (Section 5.1) to model this part.

In practice, the results obtained by the Increasing Nvalue constraint evalu-
ation, within the constraint programming module of Entropy, point out a short
gain in term of solving time (3%), while the gain in term of nodes and failures
is more significant (in the mean 35%). Such a gap is due to the tradeoff between
the propagation gain (filtered values) and solving time induced by the algorithm.
2 http://entropy.gforge.inria.fr
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6 Related Work

GAC for the Increasing Nvalue constraint can be also obtained by at least two
different generic techniques, namely by using a finite deterministic automaton
with a polynomial number of transitions or by using the Slide constraint.

Given a constraint C of arity k and a sequence X of n variables, the
Slide(C,X) constraint [5] is a special case of the cardpath constraint. The
slide constraint holds iff C(Xi, Xi+1, . . . , Xi + k − 1) holds for all i ∈ [1, n −
k + 1]. The main result is that GAC can be enforced in O(ndk) time where
d is the maximum domain size. An extension called slidej(C,X) holds iff
C(Xij+1, Xij+2, . . . , Xij+k) holds for all i ∈ [0, n−k

j ]. Given X = {xi | i ∈ [1; n]},
the Increasing Nvalue constraint can be encoded as Slide2(C,[xi, ci]i∈[1;n])
where (a) c1, c2, . . . , cn are variables taking their value within [1, n] with c1 = 1
and cn = N , and (b) C(xi, ci, xi+1, ci+1) is the constraint b ⇔ xi �= xi+1∧ci+1 =
ci + b ∧ xi ≤ xi+1. This leads to a time bound of O(nd4) for achieving GAC on
the Increasing Nvalue constraint.

The reformulation based on finite deterministic automaton is detailed in the
global constraint catalog[2]. If we use Pesant’s algorithm [12], this reformulation
leads to a worst-case time complexity of O(n∪Di

3) for achieving GAC, where
∪Di denotes the total number of potential values in the variable domains.

7 Conclusion

Motivated by symmetry breaking, we provide a filtering technique that achieves
GAC for a specialized case of the Nvalue constraint where the decision variables
are constrained by a chain of non strict inequalities. While finding out whether
a Nvalue constraint has a solution or not is NP-hard, our algorithm has a linear
time complexity w.r.t. the sum of the domain sizes. We believe that the data
structure on matrices of ordered sparse arrays may be useful for decreasing the
time worst-case complexity of other filtering algorithms.

Future work may also improve the practical speed of the Increasing Nvalue

constraint by somehow merging consecutive values in the domain of a variable.
More important, this work follows the topic of integrating common symmetry
breaking constraints directly within core global constraints [9,13].
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1 Introduction

Held and Karp have proposed, in the early 1970s, a relaxation for the Travel-
ing Salesman Problem (TSP) as well as a branch-and-bound procedure that can
solve small to modest-size instances to optimality [4, 5]. It has been shown that
the Held-Karp relaxation produces very tight bounds in practice, and this relax-
ation is therefore applied in TSP solvers such as Concorde [1]. In this short paper
we show that the Held-Karp approach can benefit from well-known techniques
in Constraint Programming (CP) such as domain filtering and constraint prop-
agation. Namely, we show that filtering algorithms developed for the weighted
spanning tree constraint [3, 8] can be adapted to the context of the Held and Karp
procedure. In addition to the adaptation of existing algorithms, we introduce a
special-purpose filtering algorithm based on the underlying mechanisms used
in Prim’s algorithm [7]. Finally, we explored two different branching schemes
to close the integrality gap. Our initial experimental results indicate that the
addition of the CP techniques to the Held-Karp method can be very effective.

The paper is organized as follows: section 2 describes the Held-Karp approach
while section 3 gives some insights on the Constraint Programming techniques
and branching scheme used. In section 4 we demonstrate, through preliminary
experiments, the impact of using CP in combination with Held and Karp based
branch-and-bound on small to modest-size instances from the TSPlib.

2 The Held-Karp Approach

Let G = (V, E) be a complete graph with vertex set {1, 2, . . . , n}. We let cij

denote the cost of edge (i, j) ∈ E. The cost function extends to any subset of
edges by summing their costs. The Traveling Salesman Problem (TSP) asks for
a closed tour in G, visiting each vertex exactly once, with minimum cost.

[4, 5] introduced the so-called 1-tree as a relaxation for the TSP. A 1-tree
is defined as a tree on the set of vertices {2, . . . , n}, together with two distinct
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edges incident to vertex 1. The degree of a vertex is the set of edges in the 1-tree
incident to that vertex, and we denote it by deg(i) for i ∈ V . To see that the
1-tree is a relaxation for the TSP, observe that every tour in the graph is a 1-tree,
and if a minimum-weight 1-tree is a tour, it is an (optimal) solution to the TSP.
Note that the 1-tree is a tour if and onlng y if all the degree of vertices is two.

The iterative approach proposed by [4, 5], uses Lagrangian relaxation to
produce a sequence of connected graphs which increasingly resemble tours. We
start by computing an initial minimum-weight 1-tree, by computing a minimum-
spanning tree on G \ {1}, and adding the two edges with lowest cost incident
to vertex 1. If the optimal 1-tree is a tour, we have found an optimal tour.
Otherwise, the degree constraint one some of the vertices must be violated, i.e.,
it is not equal to two. In that case, we proceed by penalizing the degree of such
vertices to be different from two by perturbing the edge costs of the graph, as
follows. For each vertex i ∈ V , a ‘node potential’ πi is introduced, Then, for each
edge (i, j) ∈ E, the edge weight c̃ij is defined as c̃ij = cij +πi +πj . [4] show that
the optimal TSP tour is invariant under these changes, but the optimal 1-tree
is not. Once choice for the node potentials is to define πi = (2 − deg(i)) · C, for
a fixed constant C. The Held-Karp procedure re-iterates by solving the 1-tree
problem and perturbing the edge costs until it reaches a fixed point or meets a
stopping criterion. The best lower bound, i.e., the maximum among all choices
of the node potentials, is known as the Held-Karp bound and will be denoted
by HK.

The overall Held-Karp approach solves the TSP through branch-and-bound,
a technique that has been widely used on this problem (see [2] for a survey).
A good upper bound, UB, can be computed easily with any of the popular
heuristics that have been devised for this problem, e.g., [6].

3 Improving the Approach Using CP

In this section we describe the different refinements introduced to the original
Held-Karp approach [4, 5], which consist of two filtering procedures based on the
weighted minimum spanning tree (or 1-tree), and one based on the underlying
structure of Prim’s algorithm.

In the following procedures let T be a minimum 1-tree of G computed by the
Held and Karp relaxation described above. For a subset of edges S ⊆ E, we let
w(S) denote

∑
e∈S ce and T (e) be the minimum 1-tree where e is forced into T .

We note that the filtering in subsection 3.1 has been applied to the weighted
minimum spanning tree constraint in [3, 8], and the filtering in subsection 3.2
has been applied to the weighted minimum spanning tree constraint in [3].

3.1 Removing Edges Based on Marginal Costs

The marginal cost of an edge e in T is defined as c′e = w(T (e)) − w(T ), that is,
the marginal increase of the weight of the minimum 1-tree if e is forced in the
1-tree.
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The following algorithm can compute, in O(mn), the marginal costs for edges
e �∈ T . Each non-tree edge e = (i, j) links two nodes i, j, and defines a unique i-j
path, say P e, in T . The replacement cost of (i, j) is defined by ce − max(ca|a ∈
P e), that is the cost of (i, j) minus the cost of largest edge on the path from i to
j in the 1-tree T . Finding P e can be achieved through DFS in O(n) for all the
O(m) edges not in T . If HK + c′e > UB, then e can be safely removed from E.

3.2 Forcing Edges Based on Replacement Costs

Conversely, it is possible to compute the replacement cost of an edge e ∈ T as
the increase the Held-Karp bound would incur if e would be removed from E,
which we define by cr

e = w(T \ e) − w(T ).
This computation can be performed for all edges e ∈ T , with the following

algorithm: a) set all cr
e = ∞ ∀e ∈ T b) for all e = (i, j) �∈ T identify the i-j

path P e in T which joins the end-points of e. Update all edges a ∈ P e such
that cr

a = min(cr
a, ce − ca). This computation can be performed in O(mn), or,

at no extra cost if performed together with the computation of marginal costs.
If HK + cr

e − ce > UB, then e is a mandatory edge in T .
We note that such filtering has been applied to the weighted minimum span-

ning tree constraint by [3, 8].

3.3 Forcing Edges Based during MST Computation

Recall that Prim’s algorithm computes the minimum spanning tree in G (which
is easily transformed into a 1-tree) in the following manner. Starting from any
node i, it first partitions the graph into disjoints subsets S = {i} and S̄ = V \ i
and creates an empty tree T . Then it iteratively adds to T the minimum edge
(i, j) ∈ (S, S̄), defined as the set of edges where i ∈ S and j ∈ S̄, and moves j
from S̄ to S.

Since we are using MST computations as part of a Held-Karp relaxation to
the TSP, we know that there should be at least 2 edges in each possible (S, S̄)
of V (this property defines one of well known subtour elimination constraints of
the TSP). Therefore, whenever we encounter a set (S, S̄) that contains only two
edges during the computation of the MST with Prim’s algorithm, we can force
these edges to be mandatory in T .

3.4 Tuning the Propagation Level

The proposed filtering procedures are quite expensive computationally, therefore
it is interesting to investigate the amount of propagation that we wish to impose
during the search. A first implementation consists in calling each filtering algo-
rithm (as defined in sections 3.1, 3.2 and 3.3) only once before choosing a new
branching variable. A second approach would be to repeat these rounds of prop-
agation until none of these procedures is able to delete nor force any edge, that
is reaching a fixed point. Finally, if reaching a fixed point allows to reduce the
overall search effort, a more efficient propagation mechanism could be developed
in order to speed up its computation.
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3.5 Choosing the Branching Criterion

Once the initial Held-Karp bound has been computed and the filtering has been
performed it is necessary to apply a branching procedure in order to identify the
optimal TSP solution. We have investigated two orthogonal branching schemes,
both based on the 1-tree associated to the best Held-Karp bound, say T . These
strategies consist in selecting, at each branch-and-bound node, one edge e and
splitting the search in two subproblems, one where e is forced in the solution and
one where it is forbidden. In the strategy out we pick e ∈ T and first branch on
the subproblem where it is forbidden while in the strategy in we choose e �∈ T
and first try to force it in the solution.

Since there are O(n) edges in T and O(n2) edges not in T , the first strategy will
tend to create search trees which are narrower but also deeper than the second
one. However, since the quality of the HK improves rapidly as we go down the
search tree, it is generally possible to cut uninteresting branches before we get to
deep. Preliminary experiments, not reported here, have confirmed that strategy
out is generally more effective than strategy in.

Table 1. Results on TSPlib instances

original HK 1-round fixpoint

time BnB time BnB time BnB

burma14 0.1 28 0 0 0 0
ulysses16 0.16 32 0 0 0 0
gr17 0.14 34 0 0 0.01 0
gr21 0.16 42 0 0 0.01 0
ulysses22 0.19 0 0 0 0.01 0
gr24 0.23 44 0.01 0 0.03 0
fri26 0.36 48 0.01 2 0.01 2
bayg29 0.35 54 0.04 6 0.07 6
bays29 0.33 88 0.05 10 0.1 10
dantzig42 0.65 92 0.09 4 0.17 4
swiss42 0.79 112 0.09 8 0.09 8
att48 1.7 140 0.21 18 0.23 15
gr48 94 13554 5.18 2481 7.38 3661
hk48 1.37 94 0.17 4 0.16 4
eil51 15.9 2440 0.39 131 0.84 426
berlin52 0.63 80 0.02 0 0.02 0
brazil58 13 878 1.09 319 1.02 296
st70 236 13418 1.21 183 1.1 152
eil76 15 596 1.03 125 0.88 99
rat99 134 2510 5.44 592 4.88 502
kroD100 16500 206416 11 7236 50.83 4842
rd100 67 782 0.76 0 0.73 0
eil101 187 3692 8.17 1039 9.59 1236
lin105 31 204 1.81 4 1.85 4
pr107 41 442 4.65 45 4.49 48
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4 Experimental Results

To evaluate the benefits of using CP within the Held-Karp branch-and-bound
algorithm, we ran experiments on several instances of the TSPlib. We report
both the number of branching nodes and CPU time required solve each instance,
with different propagation levels: no propagation (‘original HK’), calling each
filtering algorithm once (‘1-round’), and propagation until we reach a fixed point
(‘fixpoint’). To eliminate the impact of the upper bound can have on search tree,
we ran these experiments using the optimal value of each instance as its UB.

Table 1 clearly shows the impact of CP filtering techniques on the original
Held-Karp algorithm. In fact the reduction of the graph not only considerably
reduces the search effort (BnB nodes) but also sufficiently accelerates the com-
putation of 1-trees inside the Held-Karp relaxation to completely absorb the
extra computations required by the filtering mechanisms. This can be seen as
the proportional reduction in CPU times largely exceeds the reduction in search
nodes.

Finally, we cannot conclude that the extra effort required to reach the fixed
point is worthwhile, as it is sometimes better and sometimes worse than a single
round of filtering. Results on these preliminary tests seem to show that more
than one round of computation is most often useless, as the first round of filter-
ing was sufficient to reach the fixed point in about 99.5% of the search nodes.
More tests are thus required before investigating more sophisticated propagation
mechanisms.
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Abstract. This paper shows that that some matching based neighborhood can 
be automatically designed by searching for stable sets in a graph. This move 
generation algorithm is illustrated and investigated within the LocalSolver 
framework.  

1   Introduction 

Autonomous search is a challenging trend in optimization solvers. It consists in 
partially or totally automating the solving process. The ultimate goal is to reach a 
model&run paradigm where the user merely models the problem to be solved and 
relies on the solver to find solutions. Automation can apply to various components of 
an optimization solver, as detailed in [8]. In this note we focus on the automatic 
design of Very Large Scale Neighborhoods (VLSN) [1] for local search solvers. 
Neighborhood search is one of the most effective approaches to solve combinatorial 
optimization problems. It basically consists in moving from one solution to another by 
applying local changes, tending to improve the objective function. In this context, 
VLSN are sometimes useful to improve the convergence on difficult instances. In 
particular, neighborhoods of exponential size explored in polynomial time are often 
appreciated by researchers [4, 5, 9, 10]. For instance in the car sequencing problem,  
Estellon et al. noticed in [7] that selecting a set of K positions sufficiently distant one 
from another allowed optimally repositioning these K cars through the resolution of a 
transportation problem.  

We will show that some of these VLSN encountered in different contexts share 
common bases and thus can be implemented in a unified way in an autonomous 
solver. More precisely we prove in section 2 that some matching-based neighborhood 
can be automatically designed by searching for stable sets in a graph; then we propose 
in section 3 a convenient way to implicitly pre-compute billions of stable sets. 
Throughout this paper we will use the Eternity II edge matching puzzle 
(http://us.eternityii.com) for illustrating the introduced ideas and finally for 
experimenting the algorithms, within the LocalSolver1 framework. The goal of this 
                                                           
1 The Author is grateful to the LocalSolver team: Bertrand Estellon, Frédéric Gardi and Karim 

Nouioua. LocalSolver is a free local search solver for combinatorial optimization problems, 
based on a simple 0-1 formalism. The interested reader is referred to e-lab.bouygues.com for a 
description of its functionalities and algorithms. 
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puzzle is to place 256 square tiles on a 16x16 board so as to maximize the number of 
matching edges (namely adjacent tiles have matching colors along their common 
edge).   

2   Large Neighborhoods and Stable Sets 

We consider an optimization problem where all decision variables are Booleans. On 
these binary variables, expressions are stated with various arithmetic and logic 
operators (min, ≤, sum, and, etc.). Some boolean expressions are tagged as constraints 
and one numeric expression is the objective function. The syntax graph associated to 
this classical functional formalism is a Directed Acyclic Graph (DAG) whose roots 
are the decision variables and whose leaves are constraints and objectives, while 
intermediate expressions are nodes. This DAG is also named the invariant network in 
iOpt [12]. Within this formalism, a transformation (or move) consists in flipping a 
certain number of binary decision variables. The impact of this transformation is 
automatically computed by propagating changes up in the DAG, eventually updating 
the satisfaction of constraints and the value of the objective function. Weighted and 
unweighted sums will be named linear nodes. An edge-matching puzzle can be 
modelled with “tile to cell” binary variables  (equal to 1 if tile t is assigned to cell 
i,j with rotation r), subject to two families of linear equalities “one tile per cell” and 
“one cell per tile” representing the underlying assignment structure. Matching edges 
can be detected with simple Boolean expressions for each edge and each color, and 
the sum of these Booleans is the function to be maximized.  

In such a DAG, let C be the set of all non-weighted sums of decision variables, on 
which an equality constraint is set, and V the set of variables involved in C. Now 
assume that C can be partitioned into C1 and C2 such that each variable of V appears 
exactly once in a sum of C1 and once in a sum of C2. The existence of such a bipartite 
structure can be detected with a 2-coloring algorithm on the graph (C,V). In our 
puzzle-matching example, the detected C1 and C2 are naturally the “one tile per cell” 
and “one cell per tile” families. For any valid solution s that is to say a vector of 
values for all decision variables, Ω(s) is the objective function associated to s. A 
function u transforming solution s is characterized by the set û ⊂ V of decision 
variables whose values are flipped by u and its impact is Δu(s) = Ω(u(s)) - Ω(s). The 
set of all such functions is F. When two functions u and v share no variable (

) then   is defined by . 

Property. For any sum c∈C, we denote by T(c) the set of nodes of the DAG reachable 
from a variable of c without crossing a node of C.∀ c,d∈C1, such that T(c)∩T(d) 
contains only linear nodes, ∀ s  a valid solution,∀ u,v∈F such that u (resp. v) only 
involves values of c (resp. d) and u(s) (resp. v(s)) satisfied all constraints of T(c) 
(resp. T(d)). Then, if  preserve the sums in C, the impact of both 
transformations is valid and additive: Δ Δ Δ . We will say that c 
and d are non-adjacent. 

Proof. First  is well defined since c and d share no variable. Then, since  
preserves the sums in C, constraints on these nodes remain satisfied. Other constraints 
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are in T(c) ∪ T(d), whose intersection contains no constraints (only linear nodes), that 
is to say that constraints in T(c) (resp. T(d)) are only impacted by variables of c  (resp. 
d). Our hypothesis ensures their satisfaction in this case, hence  is valid. 
Finally, since T(c) and T(d)  share linear expressions only, we have ΔΔ Δ .                                                                                                                

In terms of the edge-matching puzzle, two “one tile per cell” constraints have the 
above property if and only if they refer to non-adjacent cells. Indeed in this case, no 
edge-matching detection expression involves variables of both constraints. For 
instance, in the DAG below (a simple 2x2 board), the sums “cell1”and “cell3” are 

non-ajacent. Swapping the 
tiles in these cells preserves 
the “assignment sums” (C) 
and thus can be evaluated as 
the sum of the two changes 
composing the swap.  If all 
constraints in a subset S1 of C1 
are pairwise non-adjacent, we 
say that S1 is a stable set with 
respect to this definition of 
adjacency. 

Besides, if all constraints in S1 are equalities to 1, then this additive property allows 
defining the following large neighborhood for S1.We define a bipartite graph based on 
the two sets C1 and C2 such that for each variable v of V involved in c1∈C1 and c2∈C2, 
we define an edge from c1 to c2 if v = 1 and an edge from c2 to c1 if v = 0. For each 
constraint c in C1, we assign weights to incoming edges (those associated to variables 
equal to 0) as follows. For each variable v of c equal to 0, let g be the function setting 
to 0 the variable currently instantiated to 1 in c and setting to 1 variable v. Then the 
weight of the edge representing variable v is Δg(s) = Ω(g(s)) - Ω(s), with s the current 
solution. Outgoing edges receive weight 0. To any cycle in this bipartite graph we 
associate a move flipping the values of all variables corresponding to edges of the 
cycle. Such a move preserves the sums in C because each node involved in the cycle 
has exactly one incoming and one outgoing edge. Besides the cost of this move is the 
sum of the weights of all involved edges, because: 

• for each constraint c in C1 the variable instantiated to 1 is set to 0 and another 
one takes value 1, which is the definition that we took for costs on edges 

• since S1 is a stable set, all these costs can be added to get the global cost of the 
move, thanks to the property established above. 

We conclude that if there is a negative cycle in the above graph, then the objective 
function can be improved by changing the values of variables of this cycle only 
(while all other decision variables of the problem keep their values). We use the 
Bellman-Ford-Moore algorithm to search for such a negative cycle in this graph. 
Worst case complexity is O(nm) with n the number of nodes and m the number of 
edges. At the end of each of the n iterations, we perform a search for cycles in the  
 

XB,1 XD,1XC,1XA,1 XB,2 XD,2XC,2XA,2 XB,3 XD,3XC,3XA,3 XB,4 XD,4XC,4XA,4

edgeOK1,2 edgeOK2,3 edgeOK3,4 edgeOK1,4

cell1:
∑ =1

cell2:
∑ =1

cell3:
∑ =1

cell4:
∑ =1

tileA:
∑ =1

tileB:
∑ =1

tileC:
∑ =1

tileD:
∑ =1

Maximize ∑edgeOK
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parent graph in O(m) (see [6] for other cycle detection strategies). For a given set S1, 
the complexity is bounded by O(|S1|

3). For edge-matching puzzles, this neighborhood 
is the same as the one explored by Schaus & Deville in [11], namely the optimal 
reassignment of a set of non adjacent cells. 

A variant of this algorithm consists in setting small negative costs to edges 
associated to variables equal to 1, so as to favor the detection of different assignment 
with the same cost if any (diversification move). In practice we first look for  
an improving transformation and then for a diversification transformation in the  
same graph. 

3   Stable Sets Generators 

The above neighborhood is based on a stable set S1 in C1 but the worst complexity of 
computing a stable set of size smaller than K with a greedy algorithm (our goal is not 
to find a maximum stable set) is in the worst case O(Kd) where d is the maximum 
degree of the graph. Indeed, each time a node is added to the stable set, its neighbor 
nodes must be removed from the graph. If absence on upper bound on the degree  
this worst case complexity is O(K|C1|). Besides such a greedy algorithm may built 
very small stable set in some cases, for instance if the first selected node is connected 
to all others. For these reasons it is useful to precompute structures allowing 
extracting stable sets of size K in O(K). The structure that we define for this purpose 
is a collection of K disjoint subsets of C1 such that any pair of nodes appearing in two 
different sets of this collection are non adjacent. We call such a collection a stable  
set generator. Building such generators can be achieved with a simple algorithm 
starting with an empty collection and based on two procedures: Grow adds to the 
growing collection a new non-adjacent singleton and Merge adds an adjacent node to 
one of the sets of the collection. In order to maximize the number of different  
stable sets that can be generated from this collection, we need to maximize the 
products of its sizes. Hence our heuristic consists in applying the merge procedure on 
each new singleton, and in favoring the grow procedure otherwise. Once the target 
size K is reached, the merge procedure is applied until no node can be added. 
Applying this randomized algorithm around 10 times at the beginning of the  
search procedure, we implicitly generate a huge number of stable sets when such 
stable sets exist. 

4   Experimental Results and Conclusions 

These algorithms (two-coloring for bipartite detection, adjacency analysis for stable 
set generation, and LNS neighborhood) have been implemented in the LocalSolver 
framework and tested on various problems. For the Eternity II problem taken as 
example in the descriptions of previous sections, we obtain the following results. It 
shall be noted that analyzing the DAG and creating the stable sets takes less than one 
second on this problem with more than 250 000 binary variables.  
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Schaus&Deville Intel Xeon(TM) 2.80GHz  

(kindly provided by Pierre Schaus) 
Automatic LNS, Intel Xeon(TM) 3 GHz 

The above graphs represent local search descents for this edge-matching puzzle 
with a neighborhood ranging from 2 tiles to 32 tiles. The left chart is extracted from 
[11] while the right one was obtained with LocalSolver setting the maximum size of 
the stable sets to 2, 4, 8, etc. The similarity of these curves confirms that without prior 
knowledge on the structure of the problem, we achieve to explore the same 
neighborhood, with the same efficiency. We tested this generic implementation of 
matching-based neighborhoods on various problems [3]. For the largest instance of 
each problem, the table below reports the size of the detected bipartite structure, the 
number of stable sets implicitly generated, the total time of this analysis and the 
number of moves per second during local search. In these experiments the size of 
stable sets was limited to 8. 

Problem Bipartite size # of (implicit) stable sets Moves per 
second 

Car sequencing with colors 1319x284 1024 in 3.2s 590 
Car Sequencing CspLib 500x20 1017 in 0.1s 545 

Eternity II 256x256 1013 in 0.5s 990 
Social Golfer 30x10 (13 times) 1 in 1.6s 285 

These results show that some very-large scale neighborhood can be automatically 
generated thanks to an analysis of the model. Similarly to small neighborhoods 
offered by default in LocalSolver, these moves preserve the feasibility of the solution 
and are similar to what an OR researcher would implement. 
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Abstract. Learning during search allows solvers for discrete optimiza-
tion problems to remember parts of the search that they have already
performed and avoid revisiting redundant parts. Learning approaches
pioneered by the SAT and CP communities have been successfully incor-
porated into the SCIP constraint integer programming platform.

In this paper we show that performing a heuristic constraint program-
ming search during root node processing of a binary program can rapidly
learn useful nogoods, bound changes, primal solutions, and branching
statistics that improve the remaining IP search.

1 Introduction

Constraint programming (CP) and integer programming (IP) are two comple-
mentary ways of tackling discrete optimization problems. Hybrid combinations
of the two approaches have been used for more than a decade. Recently both
technologies have incorporated new nogood learning capabilities that derive ad-
ditional valid constraints from the analysis of infeasible subproblems extending
methods developed by the SAT community.

The idea of nogood learning, deriving additional valid conflict constraints from
the analysis of infeasible subproblems, has had a long history in the CP commu-
nity (see e.g. [1], chapter 6) although until recently it has had limited applicabil-
ity. More recently adding carefully engineered nogood learning to SAT solving [2]
has lead to a massive increase in the size of problems SAT solvers can deal with.
The most successful SAT learning approaches use so called first unique implica-
tion point (1UIP) learning which in some sense capture the nogood closest to
the failure that can infer new information.

Constraint programming systems have adapted the SAT style of nogood learn-
ing [3,4], using 1UIP learning and efficient SAT representation for nogoods, lead-
ing to massive improvements for certain highly combinatorial problems.

Nogood learning has been largely ignored in the IP community until very
recently (although see [5]). Achterberg [6] describes a fast heuristic to derive
� This research was partially funded by the DFG Research Center Matheon in Berlin
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small conflict constraints by constructing a dual ray with minimal nonzero ele-
ments. He shows that nogood learning for general mixed integer problems can
result in an average speedup of 10%. Kılınc Karzan et. al. [7] suggest restarting
the IP solver and using a branching rule that selects variables which appear in
small conflict constraints for the second run. Achterberg and Berthold [8] pro-
pose a hybrid branching scheme for IP that incorporates conflict-based SAT and
impact-based CP style search heuristics as dynamic tie-breakers.

2 Rapid Learning

The power of nogood learning arises because often search algorithms implicitly
repeat the same search in a slightly different context in another part of the
search tree. Nogoods are able to recognize such situations and avoid redundant
work. As a consequence, the more search is performed by a solver and the earlier
nogoods are detected the greater the chance for nogood learning to be beneficial.

Although the nogood learning methods of SAT, CP, and IP approaches are
effectively the same, one should note that because of differences in the amount of
work per node each solver undertakes there are different design tradeoffs in each
implementation. An IP solver will typically spend much more time processing
each node than either a SAT or CP solver. For that reason SAT and CP systems
with nogoods use 1UIP learning and frequent restarts to tackle problems while
this is not the case for IP. IP systems with nogoods typically only restart at the
root, and use learning methods which potentially generate several nogoods for
each infeasibility (see [6]).

The idea of Rapid Learning is based on the fact that a CP solver can typically
perform a partial search on a few hundred or thousand nodes in a fraction of
the time that an IP solver needs for processing the root node of the search tree.
Rapid Learning applies a fast CP branch-and-bound search for a few hundred
or thousand nodes, before we start the IP search, but after IP presolving and
cutting plane separation.

Each piece of information collected in this rapid CP search can be used to
guide the IP search or even deduce further reductions during root node process-
ing. Since the CP solver is solving the same problem as the IP solver

– each generated conflict constraint is valid for the IP search,
– each global bound change can be applied at the IP root node,
– each feasible solution can be added to the IP solver’s solution pool,
– the branching statistics can initialize a hybrid IP branching rule [8], and
– if the CP solver completely solves the problem, the IP solver can abort.

All five types of information may potentially help the IP solver. Rapid Learning
performs a limited CP search at the root node, after most of the IP presolving
is done to collect potential new information for the IP solver.

The basic idea of Rapid Learning is related to the concept of Large Neigh-
borhood Search heuristics in IP. But rather than doing a partial search on a
sub-problem using the same (IP search) algorithm, we perform a partial search
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on the same problem using a much faster algorithm. Rapid Learning also differs
from typical IP heuristics in the sense that it can improve both primal and dual
bounds at the same time.

3 Computational Results

Our computational study is based on the branch-cut-and-price framework SCIP
(Solving Constraint Integer Programs). This system incorporates the idea of
Constraint Integer Programming [9,10] and implements several state-of-the-art
techniques for IP solving, combined with solving techniques from CP and SAT,
including nogood learning. The Rapid Learning heuristic presented in this article
was implemented as a separator plugin.

For our experiments, we used SCIP 1.2.0.5 with Cplex 12.10 as underlying LP
solver, running on a Intel R© CoreTM2 Extreme CPU X9650 with 6 MB cache
and 8 GB RAM. We used default settings and a time limit of one hour for the
main SCIP instance which performs the IP search.

For solving the CP problem, we used a secondary SCIP instance with “empha-
sis cpsolver” (which among other things turns off LP solving) and “presolving
fast” settings (which turns off probing and pairwise comparison of constraints)
and the parameter “conflict/maxvarsfac” set to 0.05 (which only creates no-
goods using at most 5% of the variables of the problem). As node limit we used
max(500, min(niter , 5000)), with niter being the number of simplex iterations
used for solving the root LP in the main instance. We further aborted the CP
search as soon as 1000 conflicts were created, or no useful information was gained
after 20% of the node limit.

As test set we chose all 41 Binary programs (BPs) of the Miplib 3.0 [11],
the Miplib2003 [12] and the IP collection of Hans Mittelmann [13] which have
less then 10 000 variables and constraints after SCIP presolving. BPs are an
important subclass of IPs and finite domain CPs. where all variables take values
0 or 1. Note, that for a BP, all conflict constraints are Boolean clauses, hence
linear constraints.

Table 1 compares the performance of SCIP with and without Rapid Learn-
ing applied at the root node (columns “SCIP” and “SCIP-RL”). Columns “RL”
provide detailed information on the performance of Rapid Learning. “Ngds” and
“Bds” present the number of applied nogoods and global bound changes, respec-
tively, whereas “S” indicates, whether a new incumbent solution was found. For
instances which could not be solved within the time limit, we present the lower
and upper bounds at termination.

Note first that Rapid Learning is indeed rapid, it rarely consumes more than
a small fraction of the overall time (except for mitre). We observe that for
many instances the application of Rapid Learning does not make a difference.
However, there are some, especially the acc problems, for which the performance
improves dramatically. There are also a few instances, such as qap10, for which
Rapid Learning deteriorates the performance. The solution time decreases by
12% in geometric mean, the number of branch-and-bound nodes by 13%. For
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Table 1. Impact of Rapid Learning on the performance of SCIP

SCIP SCIP-RL Rapid Learning
Name Nodes Time Nodes Time Nodes Time Ngds Bds S

10teams 197 7.2 197 7.3 716 0.1 0 0
acc-0 1 0.9 1 0.9 0 0.0 0 0
acc-1 112 32.6 113 34.4 3600 0.4 1332 0
acc-2 54 58.8 1 4.4 2045 0.4 427 0 �
acc-3 462 392.5 64 76.0 2238 0.7 765 0
acc-4 399 420.2 364 115.4 2284 0.7 722 0
acc-5 1477 354.1 353 126.6 2054 0.5 756 0
acc-6 251 71.0 899 138.2 2206 0.5 591 0
air04 159 45.4 159 45.6 1000 0.2 0 0
air05 191 22.6 191 22.8 369 0.1 0 0
cap6000 2755 2.6 2755 2.7 100 0.0 0 17
disctom 1 2.2 1 2.2 0 0.0 0 0
eilD76 3 17.2 3 17.2 100 0.0 0 0
enigma 733 0.5 1422 0.5 500 0.0 9 0
fiber 51 1.1 53 1.1 100 0.0 0 0
harp2 352292 209.2 306066 191.3 1135 0.4 7 0 �
l152lav 56 2.1 56 2.2 423 0.1 0 0
lseu 366 0.5 450 0.5 500 0.0 146 0 �
markshare4 0 1823558 111.7 2140552 234.4 500 0.0 305 0 �
misc03 176 0.8 284 0.8 500 0.0 138 0
misc07 31972 21.4 34416 22.4 100 0.0 0 0
mitre 6 7.5 6 10.0 4177 2.5 284 1610
mod008 366 0.8 366 0.8 100 0.0 0 0 �
mod010 5 0.8 5 1.0 854 0.2 357 52
neos1 1 3.1 1 3.2 727 0.1 325 0 �
neos21 2020 18.7 1538 17.5 141 0.0 0 0 �
nug08 1 56.2 1 10.2 1011 0.2 460 1392
p0033 3 0.5 3 0.5 500 0.0 287 4 �
p0201 76 0.7 76 0.7 100 0.0 0 0
p0282 24 0.5 24 0.5 100 0.0 0 0 �
p0548 53 0.5 38 0.5 100 0.0 0 10
p2756 213 1.7 111 1.6 100 0.0 0 80
prod1 23015 17.1 25725 20.0 500 0.1 0 0 �
prod2 68682 80.3 68635 79.2 500 0.1 17 0 �
qap10 5 146.8 12 542.0 2107 0.5 1666 0
stein27 4041 0.8 4035 1.1 500 0.0 328 0 �
stein45 50597 18.0 51247 18.1 500 0.0 0 0 �

markshare1 [0.0,7.0] [0.0,5.0] 500 0.0 199 0 �
markshare2 [0.0,14.0] [0.0,11.0] 500 0.0 174 0 �
protfold [-36.9135,-21.0] [-37.0898,-22.0] 3078 1.6 510 0
seymour [414.318,425.0] [414.313,426.0] 653 0.0 0 0 �
geom. mean 212 8.3 185 7.3
arithm. mean 63 902 57.5 71 357 47.4
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the four unsolved instances, we see that Rapid Learning leads to a better primal
bound in three cases. The dual bound is worse for the instance protfold. For
the instances acc-2 and nug08, Rapid Learning completely solved the problem.

Additional experiments indicate that the biggest impact of Rapid Learning
comes from nogoods and learning new bounds, but all the other sources of in-
formation are also beneficial to the IP search on average.

4 Conclusion and Outlook

Rapid Learning takes advantage of fast CP search to perform a rapid heuris-
tic learning of nogoods, global bound changes, branching statistics and primal
solutions before the IP search begins. Our computational results demonstrate
that this information can improve the performance of a state-of-the-art non-
commercial IP solver on BPs substantially.

We plan to investigate Rapid Learning for general IP problems, where we need
to use bound disjunction constraints [6] to represent nogoods. We also plan to
investigate the application of rapid learning at other nodes than the root, and
combinations of CP and IP search that continually communicate nogoods, using
a hybrid of SCIP and a native CP system.
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Abstract. The multileaf collimator sequencing problem is an important com-
ponent of the effective delivery of intensity modulated radiotherapy used in the
treatment of cancer. The problem can be formulated as finding a decomposition
of an integer matrix into a weighted sequence of binary matrices whose rows
satisfy a consecutive ones property. In this paper we extend the state-of-the-art
optimisation methods for this problem, which are based on constraint program-
ming and decomposition. Specifically, we propose two alternative hybrid meth-
ods: one based on Lagrangian relaxation and the other on column generation.
Empirical evaluation on both random and clinical problem instances shows that
these approaches can out-perform the state-of-the-art by an order of magnitude in
terms of time. Larger problem instances than those within the capability of other
approaches can also be solved with the methods proposed.

1 Introduction

Radiation therapy represents one of the main treatments against cancer, with an esti-
mated 60% of cancer patients requiring radiation therapy as a component of their treat-
ment. The aim of radiation therapy is to deliver a precisely measured dose of radiation to
a well-defined tumour volume whilst sparing the surrounding normal tissue, achieving
an optimum therapeutic ratio. At the core of advanced radiotherapy treatments are hard
combinatorial optimisation problems. In this paper we focus on the multileaf collimator
sequencing in intensity-modulated radiotherapy (IMRT).

What is Intensity-Modulated Radiotherapy? IMRT is an advanced mode of high-
precision radiotherapy that utilises computer controlled x-ray accelerators to deliver
precise radiation doses to a malignant tumour. The treatment plan is carefully devel-
oped based on 3D computed tomography images of the patient, in conjunction with
computerised dose calculations to determine the dose intensity pattern that will best
conform to the tumour shape. There are three optimisation problems relevant to this
treatment. Firstly, the geometry problem considers the best positions for the beam head
from which to irradiate. Secondly, the intensity problem is concerned with computing
the exact levels of radiation to use in each area of the tumour. Thirdly, the realisation
problem, tackled in this paper, deals with the delivery of the intensities computed in
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(a) A multileaf collimator. (b) A multileaf collimator sequencing problem.

Fig. 1. A simplified view of the optimisation problem associated with sequencing multileaf colli-
mators in IMRT, Figure 1(b) has been adapted from [3]

the intensity problem. Combinatorial optimisation methods in cancer treatment plan-
ning have been reported as early as the 1960s [5] and a recent interesting survey on
the topic can be found in [14]. There is a large literature on the optimisation of IMRT,
which has tended to focus on the realisation problem [18]. Most researchers consider
the sequencing of multileaf collimators (Figure 1(a)). The typical formulation of this
problem considers the dosage plan from a particular position as an integer matrix, in
which each integer corresponds to the amount of radiation that must be delivered to a
particular region of the tumour. The requisite dosage is built up by focusing the radi-
ation beam using a multileaf collimator, which comprises a double set of metal leaves
that close from the outside inwards. Therefore, the collimator constrains the possible set
of shapes that can be treated at a given time. To achieve a desired dosage, a sequence of
settings of the collimator must be used. One such sequence is presented in Figure 1(b).
The desired dosage is presented on the left, and it is delivered through a sequence of
three settings of the multileaf collimator, which are represented by three matrices. Each
matrix is exposed for a specific amount of time, corresponding to the weight associated
with the matrix, thus delivering the requisite dosage.

Contribution of this Paper. In our earlier work in this area we presented a novel ap-
proach to multileaf collimator sequencing using an approach based on shortest paths
[10]. It was shown that such a model significantly out-performed the state-of-the-art
and brought clinical-sized instances of the problem within the reach of constraint pro-
gramming (CP). We now show that the shortest path idea can be exploited to give greater
scalability by coupling the CP model with Lagrangian relaxation and column genera-
tion techniques. Our shortest-path approach to this problem uniquely provides a basis
for benefitting from these techniques. The results presented define the current state-of-
the-art for this challenging problem from the domain of cancer treatment planning.

The CP model presented in [10], is briefly introduced in Section 2. We show how to
strengthen the CP model with a Lagrangian relaxation in Section 3. An alternative for-
mulation in which the paths are represented explicitly, along with a column generation
(CG) model, is presented in Section 4. Section 5 demonstrates that these approaches
significantly out-perform the state-of-the-art for this problem.
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2 Formulation of the Multileaf Collimator Sequencing Problem

Let I represent the dosage intensity matrix to be delivered. I is an m × n (rows ×
columns) matrix of non-negative integers. We assume that the maximum dosage that
is delivered to any region of the tumour is M units of radiation. Therefore, we set
Iij ≤ M, 1 ≤ i ≤ m, 1 ≤ j ≤ n. To ensure that each step in the treatment se-
quence corresponds to a valid setting of the multileaf collimator, we represent each step
using a 0/1 matrix over which a row-wise consecutive ones property (C1) must hold.
Informally, the property requires that if any ones appear in a row, they appear together
in a single block. A C1 matrix is a binary matrix in which every row satisfies the con-
secutive ones property. Formally, X is an m× n C1 matrix if and only if for any line i,
1 ≤ a < b < c ≤ n, Xia = 1 ∧ Xic = 1 → Xib = 1. A solution to the problem is a
sequence of C1 matrices, Ω, in which each Xk is associated with a positive integer bk

such that: I =
∑

k∈Ω(bk ·Xk). Let B and K be the sum of coefficients bk and the num-
ber of matrices Xk used in the decomposition of I , respectively. Then B =

∑
k∈Ω bk

and K = |Ω|. B is referred to as the total beam-on time of the plan and K is its car-
dinality; see Figure 1(b) for an example with K = 3 and B = 6. The overall objective
is to minimise the time needed for the complete treatment and the parameters B and K
both affect that. Typical problems are to minimise B or K independently (known as the
decomposition time and decomposition cardinality problem, respectively) or a linear
combination of both: w1K + w2B. We will tackle this general formulation where w1
accounts for the time needed by the operator to change the settings of the machine and
w2 accounts for the time to deliver one unit of radiation.

The problem of minimising B alone has been widely studied, starting with Bortdeld
et al. [7] and Ahuja et al. [2] until a method in linear time was found by Baatar et al.
and Engel [4, 15]. Minimising K alone was shown to be strongly NP-Hard [4] even for
a single row or column [11] and received a lot of attention [6, 20]. Many heuristics were
designed as the problem proved to be very difficult [1, 4]. The problem of minimising
K while constraining B (lexicographic objective function) to its optimal value B∗ was
tackled by Engel and Kalinowski [15, 20]. Exact algorithms were proposed based on
dynamic programming, Kalinowski [19], mixed integer linear programming, Langer
[21, 26] and Constraint Programming Baatar et al., Ernst et al. and Cambazard et al. [3,
9, 10, 16]. Exact algorithms dealing with a more general objective function as the one
used in this paper are designed by Wake et al, Caner Taskin et al [25, 26].

2.1 The Single Row Problem as a Shortest Path

In this section we study a restriction of the minimum cardinality problem DC to a single
row. This will help to design efficient inference mechanisms for the general multi-row
case. We show a simple construction representing the row problem as a shortest path.

C1 DECOMPOSITION CARDINALITY PROBLEM (DC)
Instance: A row matrix of n integers, I = 〈I1, . . . , In〉, a positive integer K .
Question: Find a decomposition of I into at most K C1 row matrices.

In any solution of the DC problem, there must be a subset of the weights of the de-
composition that sum to every element Ij of the row. In other words, the decomposition
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must contain an integer partition of every intensity. We will represent integer parti-
tions with the following notation: P (a) is the set of partitions of integer a, p ∈ P (a)
is a particular partition of a, and |p| the number of integer summands in p. We de-
note by occ(v, p) the number of occurrences of value v in p. For example, P (5) =
{〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉, 〈2, 2, 1〉, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}, and if p = 〈3, 1, 1〉 then
|p| = 3 and occ(1, p) = 2. Observe that the DC problem can be formulated as a shortest
path problem in a weighted directed acyclic graph, G, which we refer to as a partition
graph. A partition graph G of a row matrix I = 〈I1, . . . , In〉 is a layered graph with
n+2 layers, the nodes of each layer j corresponding to the set of integer partitions of the
row matrix element Ij . The size of this graph is therefore exponential in the maximum
intensity. Source and sink nodes, located on layers 0 and n + 1 respectively, are associ-
ated with the empty partition ∅. Two adjacent layers form a complete bipartite graph and
the cost added to an edge, pu → pv, between two partitions, pu and pv of adjacent lay-
ers, represents the number of additional weights that need to be added to the decompo-
sition to satisfy the C1 property when decomposing the two consecutive elements with
the corresponding partitions. The cost of each edge pu → pv in the partition graph is:
c(pu, pv) =

∑M
b=1 c(b, pu, pv) where c(b, pu, pv) = max(occ(b, pv) − occ(b, pu), 0).

Figure 2 shows the partition graph I = [3, 2, 3, 1].
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Fig. 2. A partition graph showing transition weights for the single row I = [3, 2, 3, 1]

By following the path {{2, 1}, {1, 1}, {2, 1}, {1}}, we build a decomposition:

[3, 2, 3, 1] = 2[1, ?, ?, ?] + 1[1, ?, ?, ?] (choice of {2, 1});
[3, 2, 3, 1] = 2[1, 0, 0, 0] + 1[1, 1, ?, ?] + 1[0, 1, ?, ?] (choice of {1, 1});
[3, 2, 3, 1] = 2[1, 0, 0, 0] + 1[1, 1, 0, 0] + 1[0, 1, 1, ?] + 2[0, 0, 1, 0] (choice of {2, 1});
[3, 2, 3, 1] = 2[1, 0, 0, 0] + 1[1, 1, 0, 0] + 1[0, 1, 1, 1] + 2[0, 0, 1, 0] (choice of {1}).

The length of the path represents the cardinality of the decomposition and a shortest
path therefore provides a decomposition with minimum cardinality. The key idea is that
as one moves along a path in this graph, the partition chosen to decompose the element
at layer j contains the only weights that can be reused to decompose the element at layer
j+1 because of the C1 property. Consider the previous example and the solution given.
A coefficient 2 is used by the first partition but not by the second and thus becomes
forbidden to decompose any other intensity values. The previous partition alone tells
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us the available coefficients to decompose the present intensity value. This is why the
cardinality cost can be defined between consecutive partitions and the whole problem
mapped to a shortest path. We could also restrict the cost to a given weight b to obtain
the cardinality of this particular coefficient. We will use this idea in the CP model.

2.2 Shortest Path Constraint Programming Model

We present a CP model for the general multi-row case that takes advantage of the
property identified for a single row. We index, in lexicographic order, the integer par-
titions of each element Iij of the intensity matrix, and use an integer variable Pij

to denote the index of the partition used to decompose element Iij . For example, if
Iij = 5 the domain of Pij is {1, ..., 7} corresponding to {〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉
,〈2, 2, 1〉, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}. Thus, Pij = 4 means that the coefficients 3, 1 and
1 are used to sum to 5 in the decomposition. We also have a variable Nb giving the
number of occurrences of weight b in the decomposition.

Our CP model uses the constraint SHORTESTPATH(G, {P1, . . . , Pn}, U ) [10]. Once
instantiated {P1, . . . , Pn} defines a path in the original partition graph. This constraint
states that U must be greater than or equal to the length of this path using the cost
information G. We refer to it as SHORTESTPATH because it does not enforce U to be
equal to the length of the path but rather greater than or equal to it, and the support for
the lower bound on U is a shortest path. A layer j of the graph corresponds to variable
Pj and the nodes of each layer to the domain values of Pj . Our CP model posts the
SHORTESTPATH constraint over three different cost definitions G1(i), G2(i, b), G3(i)
(the partition graphs of a line i are topologically identical). Denoting pu the partition
corresponding to value u of Pij and pv the partition corresponding to value v of Pi,j+1,
the transition costs are as follows: c1(pu, pv) =

∑M
b=1 c2(b, pu, pv), c2(b, pu, pv) =

max(occ(b, pv) − occ(b, pu), 0) and c3(pu, pv) =
∑M

b=1 b × c2(b, pu, pv). Therefore,
our CP model is as follows:

minimise w1K + w2B with K ∈ {0, . . . , ub}, B ∈ {B∗, ..., ub}
∀b ≤ M Nb ∈ {0, . . . , ub}
∀i ≤ m, j ≤ n, Pij ∈ {1, . . . , |P (Iij)|}

CP1 :
∑M

b=1 b×Nb = B

CP2 :
∑M

b=1 Nb = K
CP3 : ∀i ≤ m, SHORTESTPATH(G1(i), {Pi1, . . . , Pin}, K)
CP4 : ∀i ≤ m, b ≤ M SHORTESTPATH(G2(i, b), {Pi1, . . . , Pin}, Nb)
CP5 : ∀i ≤ m, SHORTESTPATH(G3(i), {Pi1, . . . , Pin}, B)
CP6 : ∀i ≤ m,∀j < m s.t Iij = Ii,j+1 Pij = Pi,j+1

The C1 property of the decomposition is enforced by constraints CP4. The number of
weights of each kind, b, needed so that a C1 decomposition exists for each line i is
maintained as a shortest path in G2(i, b). CP3 acts as a redundant constraint and pro-
vides a lower bound on the cardinality needed for the decomposition of each line i. CP5
is another useful redundant shortest path constraint that maintains the minimum value
of B associated with each line, which can provide valuable pruning by strengthening
CP1. Finally CP6 breaks some symmetries. We refer the reader to [10] for more details
in particular related to the SHORTESTPATH constraint.
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3 A Hybrid Model Based on Lagrangian Relaxation

Once the partition variables of a given line i are instantiated, they define a path in the
original partition graph of the line. Constraints CP3, CP4, CP5 constrain the length of
this path, each with a different transition cost structure for the edges. The M + 2 path
problems stated by constraints CP3, CP4, CP5 on a given line define together a resource-
constrained path problem. In this section we design a propagator to consider these paths
simultaneously in order to achieve a higher degree of consistency for a single line. The
underlying optimisation problem is the Resource Constrained Shortest Path Problem
(RCSPP). The problem is to find a shortest path between a given source and sink so that
the quantity of resources accumulated on each arc for each resource do not exceed some
limits. Two approaches are often used to solve this problem: dynamic programming and
Lagrangian relaxation. We base our propagator on the RCSPP and the multicost-regular
constraint [23, 24].

We present one possible mapping of the problem stated by constraints CP3, CP4, CP5
for line i to a RCSPP. We state it as a binary linear formulation where xj

uv is a 0/1 vari-
able denoting whether the edge between partition pu and pv of Pij and Pi,j+1 is used.
Layer 0 denotes the layer of the source and n+1 the one of the sink (Pi0 = Pi,n+1 = ∅).
The problem formulation is as follows:

z = min
∑

j≤n

∑
u,v∈Pij×Pi,j+1

c3(pu, pv) × xj
uv

∀ 1 ≤ b ≤ M
∑

j≤n

∑
u,v∈Pij×Pi,j+1

c2(b, pu, pv) × xj
uv ≤ Nb∑

j≤n

∑
u,v∈Pij×Pi,j+1

c1(pu, pv) × xj
uv ≤ K

∀ 1 ≤ j ≤ n, u ∈ Pij

∑
v∈Pi,j−1

xj−1
vu −

∑
v∈Pi,j+1

xj
uv = 0∑

v∈Pi,1
x0

1v = 1∑
u∈Pi,n

xn
u1 = 1

xj
uv ∈ {0, 1}

(1)

If the optimal value of the RCSPP, z∗, is less than or equal to B, then there is a solution
to constraints CP3, CP4, and CP5, otherwise there is an inconsistency. The first two
constraints in the formulation are resource constraints and the last three are the flow
conservation constraints enforcing that the x variables define a path.

Lagrangian relaxation is a technique that moves the “complicating constraints” into
the objective function with a multiplier, λ ≥ 0, to penalise their violation. For a given
value of λ, the resulting problem is the Lagrangian subproblem and, in the context of
minimisation, provides a lower bound on the objective of the original problem. The
typical approach is to relax the resource constraints, so the Lagrangian function is:

f(x, λ) =
∑

j

∑
u,v c3(pu, pv) × xj

uv + λ0(
∑

j

∑
u,v c1(pu, pv) × xj

uv − K)
+
∑

1≤b≤M λb(
∑

j

∑
u,v c2(b, pu, pv) × xj

uv − Nb)
(2)

The Lagrangian subproblem in this setting is, therefore, a shortest path problem w(λ) =
minxf(x, λ) and the Lagrangian dual is to find the set of multipliers that provide the
best possible lower bound by maximising w(λ) over λ. A central result in Lagrangian
relaxation is that w(λ) is a piecewise linear concave function, and various algorithms
can be used to optimise it efficiently.
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Solving the Lagrangian Dual. We followed the approach from [23] and used a sub-
gradient method [8]. The algorithm iteratively solves w(λ) for different values of λ,
initialised to 0 at the first iteration. The values of λ are updated by following the direc-
tion of a supergradient of w at the current value λ for a given step length μ. The step
lengths have to be chosen to guarantee convergence (see [8]). We refer the reader to
[23] for more details. At each iteration t, we solved the shortest path problem with the
penalised costs on the edges:

c(pu, pv) = c3(pu, pv) + λt
0c1(pu, pv) +

∑
1≤b≤M

λt
bc2(b, pu, pv).

This is performed by a traversal of the partition graph; as a byproduct we obtain the
values of all shortest paths SOa from the source to any node a. We can update the
lower bound on B using:

SOsink − λt
0K −

∑
1≤b≤M

λt
bNb.

Then we perform a reversed traversal from the sink to the source to get the values of the
shortest path SDa from all nodes a to the sink. At the end of the iteration we mark all
the nodes (partitions) that are infeasible in the current Lagrangian subproblem, i.e.:

SOa + SDa > B + λt
0K +

∑
1≤b≤M

λt
bNb.

At the end of the process, all nodes marked during the iterations are pruned from the
domains. This is Lagrangian relaxation-based filtering [24]: if a value is proven in-
consistent in at least one Lagrangian subproblem, then it is inconsistent in the original
problem. The Lagrangian relaxation is incorporated into the constraint model as a global
constraint for each line. The independent path constraints are kept and propagated first,
whereas the propagation of the resource constrained path constraint is delayed since it
is an expensive constraint to propagate.

4 A Column Generation Approach

Numerous linear models have been designed for this problem, see e.g. [14], but the
shortest path approach [10] opens the door for a totally new formulation of the prob-
lem to be considered. In [10] we designed a linear model representing every integer
partition. We now consider an alternative formulation that, rather than representing the
partition graph, explicitly encodes the set of possible paths in the partition graph of
each line. The resulting formulation is very large, but such models are typical in many
settings, e.g. vehicle routing problems. The optimisation of these models can be per-
formed using column generation [12]. The key idea is that the Simplex algorithm does
not need to have access to all variables (columns) to find a pivot point towards an im-
proving solution. The Simplex algorithm proceeds by iterating from one basic solution
to another while improving the value of the objective function. At each iteration, the
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algorithm looks for a non-basic variable to enter the basis. This is the pricing problem.
Typically, for a linear minimisation problem written

min
∑

i

cixi | ∀j
∑

i

aijxi ≥ bj , xi ≥ 0,

the pricing problem is to find the i (a variable or column) that minimises ci −
∑

j πjaij

where πj is the dual variable associated with constraint j. The explicit enumeration of
all i is impossible when the number of variables is exponential. Therefore, the column
generation works with a restricted set of variables, which define the restricted master
problem (RMP) and evaluates reduced costs by implicit enumeration e.g., by solving a
combinatorial problem. We now apply these concepts to our shortest path model.

4.1 Column Generation for the Shortest Path Model

We denote by ptki the kth path in the partition graph of line i. A path is a sequence
of partitions 〈p0, . . . , pn+1〉 characterised by three costs: the cardinality cost ck

i1 =∑j=n
j=0 c1(pj , pj+1), the beam-on time cost ck

i3 =
∑j=n

j=0 c3(pj , pj+1) and the beam-on

time cost restricted to a given coefficient b, ck
ib2 =
∑j=n

j=0 c2(b, pj , pj+1). The restricted
master problem where a subset Ω of the columns are present is denoted RMP(Ω), and
can be formulated as follows:

RMP (Ω) : minimise w1K + w2B
C0

∑
b≤M Nb = K

C1
∑

b≤M b × Nb = B

C2 ∀i,
∑

k∈Ωi
ptki = 1

C3 ∀i,
∑

k∈Ωi
ck
i1 × ptki ≤ K

C4 ∀i, ∀b
∑

k∈Ωi
ck
ib2 × ptki ≤ Nb

C5 ∀i,
∑

k∈Ωi
ck
i3 × ptki ≤ B

K ≥ 0, B ≥ 0, ∀b Nb ≥ 0
∀i, k ∈ Ωi ptki ∈ {0, 1}

This master problem optimises over a set of paths Ωi per line i. The task of generating
improving columns or paths is delegated to the sub-problem which is partitioned into
m problems. The reduced cost of a path in a given line does not affect the computation
of the reduced cost on another line. This is a typical structure for Danzig-Wolfe decom-
position, and the constraints of the RMP involving the Nb variables are the coupling, or
complicating, constraints. An improving column for line i is a path of negative reduced
cost where the reduced cost is defined by ci −

∑
j πjaij . This translates as follows in

our context. The M different costs on each edge are modified by a multiplier corre-
sponding to the dual variables of constraints C3 – C5. We denote by δi, πi1, πib2, and
πi3 the dual variables associated with constraints C2 to C5, respectively. The subprob-
lem of line i, PP (i), is a shortest path problem where the cost of an edge c(pu, pv) is:
c(pu, pv) = −πi1 × c1(pu, pv) −

∑
b πib2 × c2(b, pu, pv) − πi3 × c3(pu, pv).

The column generation procedure is summarised in Algorithm 1. Notice that the
bound provided by column generation is no better than the one given by the compact
linear model because the pricing problem has the integrality property. The utility of this
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Algorithm 1. ColumnGeneration
Data: Intensity Matrix – A matrix of positive integers
Result: A lower bound on the optimal decomposition.
Ω = ∅, DB = −∞, UB = +∞, ε = 10−6;1

for i ≤ m do2

add the path made of {1,. . . ,1} partitions for each integer of line i to Ω;3

set πi1 = πi3 = πib2 = −1 for all b, solve PP (i) and add the shortest path to Ω4

repeat5

add the paths in Ω to the restricted master problem, RMP;6

solve RPM, set UB to the corresponding optimal value and record the dual values7

(δi, πi1, πi3, πib2);
Ω = ∅;8

for i ≤ m do9

solve the pricing problem PP (i) and record its optimal value γi;10

if (γi − δi) < −ε then11

add the optimal path to Ω12

DB = max(DB,Σi≤mγi));13

until �DB − ε = �UB or Ω = ∅ ;
return �UB − ε14

formulation is to give better scaling in terms of memory as we can achieve a tradeoff in
the subproblem. We briefly explain the main phases of the algorithm.

Main Process. The algorithm must start with an initial set of columns that contain a
feasible solution to obtain valid dual values. Lines 1 to 4 define the initialisation step
where two paths, the unit path and the shortest path, are computed per line. Lines 6 to 14
specify the main column generation process. First, the new columns are added to the
RMP, which is a continuous linear problem, and solved to optimality. UB denotes the
upper bound provided by the optimal value of the RMP at each iteration. The pricing
problem is then solved for each line using the dual values that are recorded (Line 7).
Line 11 checks if a path of negative reduced cost has been found; γi − δi is the reduced
cost of the path solution of PP (i). Then, a lower bound on the original problem, the dual
bound DB, is computed. The algorithm stops as soon as no path of negative reduced cost
can be found (Ω = ∅), or the lower and upper bounds have met (�DB − ε� = �UB�).

Dual Lower Bound. The dual solution of the RMP, completed by the best reduced cost,
forms a feasible solution of the dual of the original problem and, therefore, provides a
lower bound. This dual bound DB is computed on Line 13 and we have:

DB =
∑
i≤m

δi +
∑
i≤m

(γi − δi) =
∑
i≤m

γi,

i.e., the sum of the dual objective function and the best reduced cost (see [12]). The dual
bound provides a lower bound on the original problem and can be used for termination.
Typically, we can stop as soon as the optimal value is known to be in the interval ]a, a+
1], in which case one can immediately return a + 1 as the integer lower bound on the
original problem (Condition �DB − ε� = �UB�). This last condition is useful to avoid
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a convergence problem and saves many calls to the subproblems. The use of an ε is to
avoid rounding issues arising from the use of continuous values.

Solving the Pricing Problem. The pricing problem involves solving a shortest path in
a graph whose size is exponential in the maximum element, M . Storing the partition
graph explicitly requires O(n×P 2) space, where P is the (exponentially large) number
of partitions of M . Memory remains an issue for the column generation if we solve the
pricing problems by explicitly representing the complete graph. To save memory as M
increases, the column generation procedure can avoid representing the whole graph by
only storing the nodes, thus consuming only O(nP ) space. In this case the costs on
each edge must be computed on demand as they cannot be stored. In practice, the pre-
vious compromise with O(nP ) space consumption is perfectly acceptable as instances
become very hard before the space again becomes an issue. In our implementation we
use a combined approach whereby we store the edges when the two consecutive layers
are small enough and only recompute the cost on the fly if it is not recorded.

Speeding up the Column Generation Procedure. The column generation process is
known to suffer from convergence problems [12]. In our case, an increase in the value
of M implies more time-consuming pricing problems, and the bottleneck lies entirely
in this task in practice. We obtained some improvement with a simple stabilisation tech-
nique [13, 22] to reduce degeneracy. We added surplus variables, y, to each constraint
(except for the convexity constraints) so that constraints C3 to C5 read as:∑
k∈Ωi

ck
i1×ptki −y3i ≤ K;

∑
k∈Ωi

ck
ib2×ptki −y4ib ≤ Nb;

∑
k∈Ωi

ck
i3×ptki −y5i ≤ B.

We also added slack variables, z, to constraints C0 and C1 which now read
∑

b≤M Nb−
y0 + z0 = K and

∑
b≤M b × Nb − y1 + z1 = B. The slack and surplus variables are

constrained in a box : y ≤ ψ, z ≤ ψ and they are penalised in the objective function by
a coefficient ρ. The objective function then reads as:

w1K + w2B +
∑

a

ρya + ρz0 + ρz1.

This tries to avoid the dual solutions jumping from one extreme to another by restrain-
ing the dual variables in a box as long as no relevant dual information is known.
ρ and ψ are updated during the process and must end with ρ = ∞ or ψ = 0 to
ensure the sound termination of the algorithm. We simply fix the value of ψ to a
small constant (10% of the upper bound given by the heuristic [15]) and we update
ρ when the column generation algorithm stalls, using a predefined sequence of values:
[0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1,∞].

4.2 Branch and Price

We went a step further and designed a Branch and Price algorithm by coupling the
CP algorithm with the Column Generation approach. The column generation procedure
provides a valuable lower bound at the root node which can be often optimal in practice.
To benefit from this bound during the search, we will now briefly describe a branch and
price algorithm where column generation is called at each node of the CP search tree.
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Branching on Nb raises an issue from the column generation perspective: the subprob-
lem becomes a shortest path with resource constraints, one resource per b ≤ M limited
by the current upper bound on the Nb variables of the CP model. This also means that
finding a feasible set of columns to initialise the master problem becomes difficult.

Interaction with CP. Solving the shortest path problem with multi-resource constraints
is far too costly. Recall that the original CP model is relaxing the multi-resource path
into a set of independent paths. The propagation obtained from this relaxation removes
partitions in the partition graph. We can therefore take advantage of this information to
prune the graph used by the subproblem of the column generation and solve a short-
est path in a restricted graph. We therefore solve a relaxation of the real subproblem
that we obtained from the CP propagation. The current bounds on the domains of the
Nb variables are also enforced in the master problem RMP. Propagation allows us to
strengthen both the master and the subproblems of the column generation.

Initialisation. The initialisation issue can be easily solved by adding slack variables
for constraints C0, C1, C3, C4, and C5 of the RMP and adding them to the objective
function with a sufficiently large coefficient to ensure they will be set to 0 in an optimal
solution. Then one simply needs to independently find a path in the current filtered
partition graph of each line to obtain a feasible solution.

Column Management. From one node of the search tree to another, we simply keep
the columns that are still feasible based on the domains of the Nb and Pij variables
and remove all the others. In addition to these removals, if the number of columns
increases beyond a threshold (set to 10000 columns in practice), we delete half of the
pool starting with the oldest columns to prevent the linear solver from stalling due to
the accumulation of too many variables.

Reduced cost propagation. The CG provides a lower bound on the objective function
but also the set of optimal reduced costs for the Nb variables. Propagation based on
these reduced costs can be performed in the CP model following [17]. At a given node,
once the RMP has been solved optimally, we denote by ub and lb the currents bounds
on the objective variable. ub + 1 corresponds to the value of the best solution found so
far and lb is the optimal value of the RMP at the corresponding node. We denote by rcb,
the reduced cost of variable Nb at the optimal solution of the RMP. rcb represents the
increase in the objective function for an increase of one unit of Nb. The upper bound on
each Nb in the CP model can be adjusted to lb(Nb) + �ub−lb

rcb
�.

5 Experimental Results

We evaluated our methods using both randomly generated and clinical problem in-
stances.1 We used the randomly generated instances of [3, 9], which comprise 17 cate-
gories of 20 instances ranging in size from 12×12 to 40×40 with an M between 10 and
15, which we denote as m-n-M in our results tables. We added 9 additional categories
with matrix sizes reaching 80 × 80 and a maximum intensity value, M , of 25, giving
520 instances in total. The suite of 25 clinical instances we used are those from [25].

1 All the benchmarks are available from http://www.4c.ucc.ie/datasets/imrt
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Table 1. Comparing quality and time of LP/CG/CG-STAB on the Lex objective function

Inst Gap (%)
LP CG Stabilised CG

Time Time NbPath NbIter Gain Time NbPath NbIter Gain
mean 0.64 109.08 40.28 849.10 147.54 10.83 20.42 579.53 62.47 14.97

median 0.30 14.73 1.44 660.18 123.30 10.58 1.13 434.35 54.48 14.32
min 0.00 0.81 0.12 262.75 65.95 6.45 0.12 198.95 38.85 6.72
max 5.00 1196.51 762.31 1958.10 297.60 21.96 368.90 1404.80 104.60 34.46

Table 2. Comparing the effect of the Lagrangian filtering on the Shortest Path Model CPSP

Inst
CPSP CP + Lagrangian relaxation

Time (seconds) Nodes Time (seconds) Nodes
NS med avg max avg NS med avg max avg

12-12-20 20 35.30 64.38 395.18 816 20 405.22 796.33 4,532.17 481
12-12-25 18 1,460.39 2,242.19 6,705.01 8,966 0 - - - -
15-15-15 20 14.49 28.39 94.74 938 20 80.76 120.57 399.37 389
18-18-15 20 19.79 65.97 586.65 1,366 20 80.36 180.69 807.63 413
20-20-15 20 66.13 192.72 725.90 4,436 20 353.09 559.73 2,328.94 762
20-20-20 18 1,379.72 1,876.12 6,186.78 7,628 6 1,190.96 1,605.77 5,041.88 572
30-30-15 14 115.83 698.37 2,638.54 691,318 12 308.04 839.37 3,942.70 937
40-40-10 20 6.89 495.90 3,848.14 130,309 20 19.21 410.94 2,706.02 1,517
40-40-15 10 512.88 1,555.49 5,687.44 488,133 8 1,003.10 1,645.86 5,029.01 1,189
50-50-10 15 82.04 888.52 5,275.96 4,022,156 16 85.36 784.76 5,216.68 10,534
60-60-10 11 1,100.92 1,967.51 6,079.23 8,020,209 15 426.73 1,378.31 5,084.95 34,552
70-70-10 7 2,374.97 2,503.82 3,980.76 11,102,664 9 2,534.44 2,894.94 5,970.91 131,494
80-80-10 2 464.57 464.57 737.78 14,274,026 5 1,877.76 2,193.92 4,147.88 118,408

The experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz with
12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25 x64.
A time limit of two hours and a memory limit of 3GB was used for each run.

Experiment 1: Evaluation of the LP Model. Firstly, we examine the quality and speed
of the linear models (solved with CPLEX 10.0.0). We use a lexicographic objective
function to perform this comparison, i.e. seek a minimum cardinality decomposition
for the given minimum beam on-time. In the result tables LP refers to the continuous
relaxation of the linear model representing every partition [10], CG to the model based
on paths and CG-STAB to its stabilised version. Table 1 reports the average gap (in
percentage terms) to the optimal value, the average times for the three algorithms as
well as the number of iterations and paths for CG and CG-STAB. The improvement
in time over LP is also given (column Gain). The mean, median, min and max across
all categories are finally reported as well. The linear relaxation leads to excellent lower
bounds but LP becomes quite slow as M grows and could not solve the instances with
M = 25 due to memory errors. CG improves the resolution time significantly and
offers better scalability in terms of memory. Its stabilised version clearly performs fewer
iterations and proves to be approximately twice as fast on average.

Experiment 2: Evaluation of the Lagrangian Model. We consider the Lagrangian
relaxation and its effect on the CP model.2 We use a lexicographic objective function.
Table 2 reports for the hardest categories the number of instances solved (column NS)
within the time limit, along with the median, average and maximum time as well as the

2 All CP models were implemented in Choco 2.1 – http://choco.emn.fr
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Table 3. Comparing the CP and Branch and Price

Inst
CPSP Branch and Price (light) Branch and Price

Time (seconds) Time (seconds) Nodes Time (seconds) Nodes
NS med avg NS med avg max avg NS med avg max avg

12-12-20 20 35.30 64.38 20 33.32 41.01 88.46 90 20 67.99 75.68 176.40 83
12-12-25 18 1,460.39 2,242.19 20 1,353.34 1,684.32 4,826.52 157 20 2,767.06 2,748.22 5,112.66 141
15-15-15 20 14.49 28.39 20 7.86 8.95 24.96 142 20 20.44 21.86 38.18 127
18-18-15 20 19.79 65.97 20 10.34 10.23 16.12 202 20 34.03 33.64 45.31 167
20-20-15 20 66.13 192.72 20 14.76 15.61 27.25 283 20 47.82 52.74 115.09 218
20-20-20 18 1,379.72 1,876.12 20 235.42 230.21 387.14 325 20 823.16 855.54 1,433.07 221
30-30-15 14 115.83 698.37 20 38.13 42.85 108.88 2,420 20 322.95 335.43 683.56 492
40-40-10 20 6.89 495.90 20 5.10 6.04 18.44 5,932 20 97.56 95.28 128.47 753
40-40-15 10 512.88 1,555.49 20 85.49 97.53 224.71 23,755 20 1,101.48 1,172.91 2,354.53 818
50-50-10 15 82.04 888.52 20 14.80 27.12 178.79 48,216 20 280.11 265.71 393.71 1,194
60-60-10 11 1,100.92 1,967.51 20 67.06 252.60 3,337.60 638,157 20 471.39 492.44 705.08 1,724
70-70-10 7 2,374.97 2,503.82 17 686.33 1,443.46 7,118.74 5,778,692 20 1,153.71 1,147.24 2,243.58 2,408
80-80-10 2 464.57 464.57 8 812.35 1,983.79 6,671.28 11,546,885 20 1,854.04 2,069.52 3,830.13 3,059

Table 4. Comparisortng the shortest path CP model, the Branch and Price algorithm against [25]

Inst Caner et al. CPSP Branch and Price light
m n M Time Time Nodes Obj Time Nodes Obj

c1b1 15 14 20 1.10 8.85 1,144 111 5.26 144 111
c1b2 11 15 20 0.80 0.38 222 104 1.36 77 104
c1b3 15 15 20 11.40 5.90 534 108 3.06 70 108
c1b4 15 15 20 37.00 7.87 389 110 7.10 77 110
c1b5 11 15 20 4.30 0.23 46 104 1.11 37 104
c2b1 18 20 20 26.50 29.68 3,304 132 11.08 665 132
c2b2 17 19 20 20.10 75.30 3,822 132 9.31 255 132
c2b3 18 18 20 14.70 1.86 116 140 6.69 101 140
c2b4 18 18 20 87.30 559.16 42,177 149 64.23 373 149
c2b5 17 18 20 395.60 16.74 911 132 23.39 402 132
c3b1 22 17 20 310.00 21.00 888 132 25.16 322 132
c3b2 15 19 20 4,759.80 48.30 1,527 144 25.82 178 144
c3b3 20 17 20 10,373.90 570.25 12,353 140 617.23 1,228 140
c3b4 19 17 20 524.90 2.18 136 127 13.18 96 127
c3b5 15 19 20 3.30 1.05 0 125 3.24 0 125
c4b1 19 22 20 34.90 0.47 367 152 1.43 356 152
c4b2 13 24 20 20,901.00 42.87 1,183 181 50.83 391 181
c4b3 18 23 20 44.70 17.35 4,059 139 4.99 131 139
c4b4 17 23 20 164.30 13.57 1,069 142 13.85 285 142
c4b5 12 24 20 14,511.40 2,003.76 75,284 192 533.36 1,455 192
c5b1 15 16 20 0.50 0.10 83 96 0.33 60 96
c5b2 13 17 20 14.30 13.33 4,420 125 18.82 248 125
c5b3 14 16 20 3.10 0.56 106 104 2.43 52 104
c5b4 14 16 20 2.20 168.18 19,747 124 37.95 636 124
c5b5 12 17 20 51.90 1.77 547 130 2.27 49 130

Mean 2,091.96 144.43 6,977.36 131.00 59.34 307.52 131.00
Median 34.90 13.33 911.00 132.00 9.31 178.00 132.00

Min 0.50 0.10 0.00 96.00 0.33 0.00 96.00
Max 20,901.00 2,003.76 75,284.00 192.00 617.23 1,455.00 192.00

average number of nodes. The Lagrangian relaxation reduces the search space by an
order-of-magnitude but turns out to be very slow when M grows.

Experiment 3: Evaluation of the Branch and Price Model. We evaluate the Branch
and Price algorithm against the previous CP models with the lexicographic objective
function and also using the more general objective function to perform a direct compar-
ison with [25] on clinical instances. Following [25] we set w1 = 7 and w2 = 1. The
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upper bound of the algorithm is initialised using the heuristic given in [15] whose run-
ning time is always well below a second. Table 3 compares the shortest path CP model
(CPSP) with two versions of the Branch and Price using the lex objective function. The
first version referred to as Branch and Price (light) only solves the CG during the first
branching phase on the Nb variables whereas the other version solves the CG at each
node of the search tree, including when the branching is made on the partition variables.
The Branch and Price significantly improves the CP model and is able to optimally solve
the integrality of the benchmark whereas the CPSP solves 455 out of the 520 instances.
The light version is often much faster but does not scale to the last two larger sets of
instances (70×70 and 80×80 matrices). Both branch and price algorithms outperform
CPSP on hard instances by orders of magnitude in search space reduction.

Finally, we evaluate the CPSP and the light Branch and Price on 25 clinical instances
with the general objective function. Table 4 reports the resolution time, the number
of nodes explored (Nodes) and the value of the objective function (Obj). The times
reported in [25] are quoted in the table and were obtained on a Pentium 4, 3 Ghz.3.
The CP model alone already brings significant improvements over the algorithm of
[25]. The Branch and Price algorithm shows even more robustness by decreasing the
average, median and maximum resolution times.

6 Conclusion

We have provided new approaches to solving the Multileaf Collimator Sequencing
Problem. Although the complexity of the resulting algorithms depends on the num-
ber of integer partitions of the maximum intensity, which is exponential, it can be used
to design very efficient approaches in practice as shown on both random and clinical
instances. The hybrid methods proposed in this paper offer performance significantly
beyond the current state-of-the-art and rely on a rich exchange of information between
OR and CP approaches.
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Abstract. Many search problems contain large amounts of redundancy
in the search. In this paper we examine how to automatically exploit re-
maining subproblem equivalence, which arises when two different search
paths lead to identical remaining subproblems, that is the problem left
on the remaining unfixed variables. Subproblem equivalence is exploited
by caching descriptions, or keys, that define the subproblems visited, and
failing the search when the key for the current subproblem already exists
in the cache. In this paper we show how to automatically and efficiently
define keys for arbitrary constraint problems. We show how a constraint
programming solver with this capability can solve search problems where
subproblem equivalence arises orders of magnitude faster. The system is
fully automatic, i.e., the subproblem equivalences are detected and ex-
ploited without any effort from the problem modeller.

1 Introduction

When solving a search problem, it is common for the search to do redundant
work, due to different search paths leading to subproblems that are somehow
“equivalent”. There are a number of different methods to avoid this redundancy,
such as caching solutions (e.g. [19]), symmetry breaking (e.g. [8]), and nogood
learning (e.g. [14]). This paper focuses on caching, which works by storing infor-
mation in a cache regarding every new subproblem explored during the search.
Whenever a new subproblem is about to be explored, the search checks whether
there is an already explored subproblem in the cache whose information (such as
solutions or a bound on the objective function) can be used for the current sub-
problem. If so, it does not explore the subproblem and, instead, uses the stored
information. Otherwise, it continues exploring the subproblem. For caching to
be efficient, the lookup operation must be efficient. A popular way is to store the
information using a key in such a way that problems that can reuse each other’s
information are mapped to the same (or similar) key.

This paper explores how to use caching automatically to avoid redundancy in
constraint programming (CP) search. Caching has been previously used in CP
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search, but either relies on the careful manual construction of the key for each
model and search strategy (e.g [19]), or exploits redundancy when the remain-
ing subproblem can be decomposed into independent components (e.g. [10,12]).
Instead, we describe an approach that can automatically detect and exploit
caching opportunities in arbitrary optimization problems, and does not rely on
decomposition. The principal insight of our work is to define a key that can
be efficiently computed during the search and can uniquely identify a relatively
general notion of reusability (called U -dominance). The key calculation only re-
quires each primitive constraint to be extended to backproject itself on the fixed
variables involved. We experimentally demonstrate the effectiveness of our ap-
proach, which has been implemented in a competitive CP solver, Chuffed. We
also provide interesting insight into the relationships between U -dominance and
dynamic programming, symmetry breaking and nogood learning.

2 Background

Let ≡ denote syntactic identity and vars(O) denote the set of variables of ob-
ject O. A constraint problem P is a tuple (C, D), where D is a set of domain
constraints of the form x ∈ sx (we will use x = d as shorthand for x ∈ {d}),
indicating that variable x can only take values in the fixed set sx, and C is a set
of constraints such that vars(C) ⊆ vars(D). We will assume that for every two
x ∈ sx, y ∈ sy in D : x �≡ y. We will define DV , the restriction of D to variables
V , as {(x ∈ sx) ∈ D|x ∈ V }. Each set D and C is logically interpreted as the
conjunction of its elements.

A literal of P ≡ (C, D) is of the form x �→ d, where ∃(x ∈ sx) ∈ D s.t. d ∈ sx.
A valuation θ of P over set of variables V ⊆ vars(D) is a set of literals of P
with exactly one literal per variable in V . It is a mapping of variables to values.
The projection of valuation θ over a set of variables U ⊆ vars(θ) is the valuation
θU = {x �→ θ(x)|x ∈ U}. We denote by fixed(D) the set of fixed variables in D,
{x|(x = d) ∈ D}, and by fx(D) the associated valuation {x �→ d|(x = d) ∈ D}.
Define fixed(P ) = fixed(D) and fx(P ) = fx(D) when P ≡ (C, D).

A constraint c ∈ C can be considered a set of valuations solns(c) over the
variables vars(c). Valuation θ satisfies constraint c iff vars(c) ⊆ vars(θ) and
θvars(c) ∈ c. A solution of P is a valuation over vars(P ) that satisfies every
constraint in C. We let solns(P ) be the set of all its solutions. Problem P is
satisfiable if it has at least one solution and unsatisfiable otherwise.

Finally, we use ∃V .F to denote ∃v1.∃v2 · · · ∃vn.F where F is a formula and V is
the set of variables {v1, v2, . . . , vn}. Similarly, we use ∃̄V .F to denote the formula
∃vars(F )−V .F . We let ⇔ denote logical equivalence and ⇒ logical entailment of
formulae.

Given a constraint problem P ≡ (C, D), constraint programming solves P
by a search process that first uses a constraint solver to determine whether
P can immediately be classified as satisfiable or unsatisfiable. We assume a
propagation solver, denoted by solv, which when applied to P returns a new set
D′ of domain constraints such that D′ ⇒ D and C ∧ D ⇔ C ∧ D′. The solver
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detects unsatisfiability if any x ∈ ∅ appears in D′. We assume that if the solver
returns a domain D′ where all variables are fixed (fixed(D) = vars(D)), then
the solver has detected satisfiability of the problem and fx(D) is a solution. If the
solver cannot immediately determine whether P is satisfiable or unsatisfiable,
the search splits P into n subproblems (obtained by adding one of c1, . . . , cn

constraints to P , where C ∧D |= (c1 ∨ c2 ∨ . . .∨ cn)) and iteratively searches for
solutions to them.

The idea is for the search to drive towards subproblems that can be immedi-
ately detected by solv as being satisfiable or unsatisfiable. This solving process
implicitly defines a search tree rooted by the original problem P where each node
represents a new (though perhaps logically equivalent) subproblem P ′, which will
be used as the node’s label. For the purposes of this paper we restrict ourselves
to the case where each ci added by the search takes the form x ∈ s. This allows
us to obtain the i-th subproblem from P ≡ (C, D) and ci ≡ x ∈ s as simply
Pi ≡ (C, join(x, s, D)), where join(x, s, D) modifies the domain of x to be a
subset of s: join(x, s, D) = (D − {x ∈ sx}) ∪ {x ∈ s ∩ sx}. While this is not a
strong restriction, it does rule out some kinds of constraint programming search.

3 Problem Dominance and Equivalence

Consider two constraint problems P ≡ (C, D) and P ′ ≡ (C′, D′) and a set of
variables U . Intuitively, we say that P U -dominates P ′ if variables not in U are
fixed, and when P and P ′ are projected over U , the latter entails the former.

Definition 1. (C, D) U -dominates (C′, D′) iff

– (vars(D) − U) ⊆ fixed(D) and (vars(D′) − U) ⊆ fixed(D′), and
– ∃̄U .(C′ ∧ D′) ⇒ ∃̄U .(C ∧ D).

Example 1. Consider P0 ≡ (C, D) where C ≡ {x1 + 2x2 + x3 + x4 + 2x5 ≤ 20},
D ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}, and let
U ≡ {x3, x4, x5}. The subproblem P ≡ (C, {x1 = 3, x2 = 1}∪DU ) U -dominates
P ′ ≡ (C, {x1 = 1, x2 = 3} ∪ DU ). �

If one problem P U -dominates another P ′ we can use the solutions of P to
generate the solutions of P ′, as formalised by the following proposition.

Proposition 1. If P U -dominates P ′ then θ ∈ solns(P ) if (θU ∪
fx(P ′)vars(P ′)−U ) ∈ solns(P ′).

The situation is even simpler if the U -dominance relationship is symmetric.

Definition 2. P and P ′ are U -equivalent iff P U -dominates P ′ and vice versa.

Example 2. Consider problem (C, D) where C ≡ {alldiff ([x1, x2, x3, x4, x5])}
and D ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}, and
let U ≡ {x3, x4, x5}. The subproblems P ≡ (C, {x1 = 1, x2 = 2} ∪ DU ) and
P ′ ≡ (C, {x1 = 2, x2 = 1} ∪ DU ) are U -equivalent. �
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cache search(C, D)
D′ := solv(C, D)
if (D′ ⇔ false) return false
if (∃U.∃P ∈ Cache where P U -dominates (C, D)) return false
if fixed(D′) ≡ vars(D)

[SAT] return D
foreach (x ∈ s) ∈ split(C, D)

S := cache search(C, join(x, s, D))
if (S �≡ false) return S

Cache := Cache ∪ {(C, D′)}
return false

Fig. 1. Computing the first solution under subproblem equivalence

Proposition 2. If P and P ′ are U -equivalent then θ ∈ solns(P ) iff (θU ∪
fx(P ′)vars(P ′)−U ) ∈ solns(P ′).

3.1 Searching with Caching

Detecting subproblem domination allows us to avoid exploring the dominated
subproblem and reuse the solutions of the dominating subproblem (Proposi-
tion 1). This is particularly easy when we are only interested in the first solu-
tion, since we know the dominated subproblem must have no solutions. The
algorithm for first solution satisfaction search using domination is shown in
Figure 1. At each node, it propagates using solv. If it detects unsatisfiability
it immediately fails. Otherwise, it checks whether the current subproblem is
dominated by something already visited (and, thus, in Cache), and if so it fails,
It then checks whether we have reached a solution and if so returns it. Otherwise
it splits the current subproblem into a logically equivalent set of subproblems
and examines each of them separately. When the entire subtree has been ex-
haustively searched, the subproblem is added to the cache.

The above algorithm can be straightforwardly extended to a branch and
bound optimization search. This is because any subproblem cached has failed
under a weaker set of constraints, and will thus also fail with a strictly stronger
set of constraints. As a result, to extend the algorithm in Figure 1 to, for exam-
ple, minimize the objective function

∑n
i=1 aixi, we can simply replace the line

labelled [SAT] by the following lines:1

globally store fx(D) as best solution
globally add

∑n
i=1 aixi ≤ fx(D)(

∑n
i=1 aixi) − 1

return false

Note that in this algorithm, the search always fails with the optimal solution
being the last one stored.
1 We assume there is an upper bound u on the objective function so that we can have

a pseudo-constraint
∑n

i=1 aixi ≤ u in the problem from the beginning, and replace
it with the new one whenever a new solution is found.
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4 Keys for Caching

The principal difficulty in implementing cache search of Figure 1 is implement-
ing the lookup and test for U -dominance. We need an efficient key to repre-
sent remaining subproblems that allows U -dominance to be detected efficiently
(preferably in O(1) time). Naively, one may think D would be a good key for
subproblem P ≡ (C, D). While using D as key is correct, it is also useless since
D is different for each subproblem (i.e., node) in the search tree. We need to find
a more general key; one that can represent equivalent subproblems with different
domain constraints.

4.1 Projection Keys

We can automatically construct such a key by using constraint projection.
Roughly speaking, subproblem U -equivalence arises whenever the value of some
of the fixed variables in C ∧ D and C ∧ D′ is different, but the global effect of
the fixed variables on the unfixed variables of C is the same. Therefore, if we can
construct a key that characterises exactly this effect, the key should be identical
for all U -equivalent subproblems.

To do this, we need to characterize the projected subproblem of each P ≡
(C, D) in terms of its projected variables and constraints. Let F = fixed(D)
and U = vars(C) − F . The projected subproblem can be characterized as:

∃̄U .(C ∧ D)
⇔ ∃̄U .(C ∧ DF ∧ DU )
⇔ ∃̄U .(C ∧ DF ) ∧ DU

⇔ ∃̄U .(∧c∈C(c ∧ DF )) ∧ DU

⇔ ∧c∈C(∃̄U .(c ∧ DF )) ∧ DU

The last step holds because all variables being projected out in every c ∧ DF

were already fixed. Importantly, this allows each constraint c ∈ C to be treated
independently.

We can automatically convert this information into a key by back projecting
the projected constraints of this problem to determine conditions on the fixed
variables F . We define the back projection of constraint c ∈ C for DF as a con-
straint BP (c, DF ) over variables F ∩ vars(c) such that ∃̄U .(c ∧ BP (c, DF )) ⇔
∃̄U .(c ∧ DF ). Clearly, while DF∩vars(c) is always a correct back projection, our
aim is to define the most general possible back projection that ensures the equiva-
lence. Note that if c has no variables in common with F , then BP (c, DF ) ≡ true.
Note also that when c is implied by DF , that is ∃̄U .(c∧DF ) ⇔ true, then c can
be eliminated. We thus define BP (c, DF ) ≡ red(c), where red(c) is simply a
name representing the disjunction of all constraints that force c to be redundant
(we will see later how to remove these artificial constraints). The problem key
for P ≡ (C, D) is then defined as key(C, D) ≡ ∧c∈CBP (c, DF ) ∧ DU .

Example 3. Consider the problem C ≡ {alldiff ([x1, x2, x3, x4, x5, x6]), x1+2x2+
x3 +x4 +2x5 ≤ 20} and domain D ≡ {x1 = 3, x2 = 4, x3 = 5, x4 ∈ {0, 1, 2}, x5 ∈
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{0, 1, 2}, x6 ∈ {1, 2, 6}}. Then F = {x1, x2, x3} and U = {x4, x5, x6}. The pro-
jected subproblem is characterized by alldiff ([x4, x5, x6]) ∧ x4 + 2x5 ≤ 4 ∧ DU .
A correct back projection for alldiff onto {x1, x2, x3} is {x1, x2, x3} = {3, 4, 5}.
A correct back projection of the linear inequality is x1 + 2x2 + x3 = 16. Thus,
key(C, D) ≡ {x1, x2, x3} = {3, 4, 5} ∧ x1 + 2x2 + x3 = 16 ∧ x4 ∈ {0, 1, 2}∧ x5 ∈
{1, 2} ∧ x6 ∈ {1, 2, 6}. �

We now illustrate how to use the keys for checking dominance.

Theorem 1. Let P ≡ (C, D) and P ′ ≡ (C, D′) be subproblems arising during
the search. Let F = fixed(D) and U = vars(C) − F . If fixed(D′) = F , D′

U ⇒
DU and ∀c ∈ C.(∃̄U .c∧BP (c, D′

F )) ⇒ (∃̄U .c∧BP (c, DF )) then P U -dominates
P ′.

Proof. The first condition of U -dominance holds since vars(D′) − U = F . We
show the second condition holds:

∃̄U .(C ∧ D′)
⇔ ∃̄U .(C ∧ D′

F ∧ D′
U )

(�) ⇔ ∧c∈C(∃̄U .c ∧ D′
F ) ∧ D′

U

⇔ ∧c∈C(∃̄U .c ∧ BP (c, D′
F )) ∧ D′

U

⇒ ∧c∈C(∃̄U .c ∧ BP (c, DF )) ∧ DU

⇔ ∧c∈C(∃̄U .c ∧ DF ) ∧ D′
U

(�) ⇔ ∃̄U .(C ∧ DF ∧ D′
U )

⇒ ∃̄U .(C ∧ D)

The second and sixth (marked) equivalences hold because, again, all variables
being projected out in each c ∧ D′

F and c ∧ DF were already fixed. �

Corollary 1. Suppose P ≡ (C, D) and P ′ ≡ (C, D′) are subproblems arising in
the search tree for C. Let F = fixed(D) and U = vars(C) − F . If key(C, D) ≡
key(C, D′) then fixed(D′) = F and P and P ′ are U -equivalent.

Proof. Let F ′ = fixed(D′), U ′ = vars(C) − F ′. Since key(C, D) ≡ key(C, D′)
we have that DU ⇔ D′

U ′ and hence F = F ′ and U = U ′. Also clearly ∀c ∈
C.BP (c, DF ) ≡ BP (c, D′

F ) Hence, P U -dominates P ′ and vice versa. �

While determining a back projection is a form of constraint abduction which can
be a very complex task, we only need to find simple kinds of abducibles for indi-
vidual constraints and fixed variables. Hence, we can define for each constraint
a method to determine a back projection. Figure 2 shows back projections for
some example constraints and variable fixings.

Note that a domain consistent binary constraint c always has either no unfixed
variables (and, hence, its back projection is true), or all its information is cap-
tured by domain constraints (and, hence, it is redundant and its back projection
is red(c)).
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constraint c DF ∃̄U .c BP (c, DF )
alldiff ([x1, . . . , xn]) ∧m

i=1xi = di alldiff ([d1, . . . , dm, xm+1, . . . xn]) {x1, . . . , xm} = {d1, . . . , dm}∑n
i=1 aixi = a0 ∧m

i=1xi = di
∑n

i=m+1 aixi = a0 −
∑m

i=1 aidi
∑m

i=1 aixi =
∑m

i=1 aidi∑n
i=1 aixi ≤ a0 ∧m

i=1xi = di

∑n
i=m+1 aixi ≤ a0 −

∑m
i=1 aidi

∑m
i=1 aixi =

∑m
i=1 aidi

x0 = minn
i=1 xi ∧m

i=1xi = di xo = min(minm
i=1 di, minn

i=m+1 xi) minm
i=1 xi = minm

i=1 di

x0 = d0 ∧n
i=1xi ≥ d0 ∧ ∨n

i=1xi = d0 x0 = d0
∨n

i=1xi x1 = true true red(∨n
i=1xi)

∧m
i=1xi = false ∨n

i=m+1xi ∧m
i=1xi = false

Fig. 2. Example constraints with their fixed variables, projections and resulting back
projection

4.2 Using Projection Keys

By Corollary 1, if we store every explored subproblem P in the cache using
key(P ), and we encounter a subproblem P ′ such that key(P ′) appears in the
cache, then P ′ is equivalent to a previous explored subproblem and does not
need to be explored.

Example 4. Consider the problem P ≡ (C, D) of Example 3 and the new sub-
problem P ′ ≡ (C, D′) where D′ ≡ {x1 = 5, x2 = 4, x3 = 3, x4 ∈ {0, 1, 2}, x5 ∈
{0, 1}, x6 ∈ {1, 2, 6}}. The characterisation of the projected subproblem for P ′ is
identical to that obtained in Example 3 and, hence, key(P ) ≡ key(P ′) indicating
P and P ′ are U -equivalent. �

If we are using projection keys for detecting subproblem equivalence, we are free
to represent the keys in any manner that illustrates identity. This gives use the
freedom to generate space efficient representations, and choose representations
for BP (c, DF ) on a per constraint basis.

Example 5. Consider the problem P ≡ (C, D) of Example 3. We can store its
projection key {x1, x2, x3} = {3, 4, 5} ∧ x1 + 2x2 + x3 = 16 ∧ DU as follows:
We store the fixed variables {x1, x2, x3} for the subproblem since these must
be identical for the equivalence check in any case. We store {3, 4, 5} for the
alldiff constraint, and the fixed value 16 for the linear constraint, which give
us enough information given the fixed variables to define the key. The remain-
ing part of the key are domains. Thus, the projection key can be stored as
({x1, x2, x3}, {3, 4, 5}, 16, {0, 1, 2}, {0, 1, 2}, {1, 2, 6}) �

Theorem 1 shows how we can make use of projection keys to determine sub-
problem dominance. If we store key(P ) in the cache we can determine if new
subproblem P ′ is dominated by a previous subproblem by finding a key where
the fixed variables are the same, each projection of a primitive constraint for P ′

is at least as strong as the projection defined by key(P ), and the domains of the
unfixed variables in P ′ are at least as strong as the unfixed variables in key(P ).

Example 6. Consider P ≡ (C, D) of Example 3 and the new subproblem
P ′ ≡ (C, D′) where D′ ≡ {x1 = 4, x2 = 5, x3 = 3, x4 ∈ {0, 1, 2}, x5 ∈ {0, 1}, x6 ∈
{1, 2, 6}}. We have that fixed(D′) = fixed(D) = {x1, x2, x3} and the back pro-
jections of the alldiff are identical. Also, the projection of the linear inequality is
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x4+2x5 ≤ 3. This is stronger than the projection in key(P ) which is computable
as ∃x1.∃x2.∃x3.x1+2x2+x3 = 16∧x1+2x2+x3+x4+2x5 ≤ 20 ⇔ x4+2x5 ≤ 4.
Similarly, D′

U ⇒ DU . Hence, P {x4, x5, x6}-dominates P ′. �

To use projection keys for dominance detection we need to check D′
U ⇒ DU and

(∃̄U .c ∧ BP ′) ⇒ (∃̄U .c ∧ BP ). Note that if BP ≡ red(c), then the entailment
automatically holds and we do not need to store these artificial projection keys.
Note also that we can make the choice of how to check for entailment differently
for each constraint. We will often resort to identity checks as a weak form of
entailment checking, since we can then use hashing to implement entailment.

Example 7. Consider P ≡ (C, D) of Example 3. Entailment for alldiff is simply
identity on the set of values, while for the linear constraint we just compare fixed
values, since (∃x1.∃x2.∃x3. x1 +2x2 +x3 = k ∧ x1 +2x2 +x3 +x4 +2x5 ≤ 20) ⇔
x4+2x5 ≤ 20−k ⇒ (∃x1.∃x2.∃x3. x1+2x2+x3 = k′ ∧ x1+2x2+x3+x4+2x5 ≤
20) ⇔ x4 + 2x5 ≤ 20 − k′ whenever k ≥ k′. For the problem P ′ of Example 6
we determine the key ({x1, x2, x3}, {3, 4, 5}, 17, {0, 1, 2}, {0, 1}, {1, 2, 6}). We can
hash on the first two arguments of the tuple to retrieve the key for P , and then
compare 17 versus 16 and check that each of the three last arguments is a superset
of that appearing in key(P ′). Hence, we determine the dominance holds. �

Note that, for efficiency, our implementation checks D′
U ⇒ DU by using iden-

tity (D′
U ≡ DU ) so the domains can be part of the hash value. This means

that the problem P ′ of Example 6 will not be detected as dominated in our
implementation, since the domain of x5 is different.

4.3 Caching Optimal Subproblem Values

The presentation so far has concentrated on satisfaction problems; let us examine
what happens with optimization problems. Typically, when solving optimization
problems with caching one wants to store optimal partial objective values with
already explored subproblems. We shall see how our approach effectively man-
ages this automatically using dominance detection with a minor change.

Suppose k is the current best solution found. Then, the problem constraints
must include

∑n
i=1 aixi ≤ k − 1 where

∑n
i=1 aixi is the objective function. Sup-

pose we reach a subproblem P ≡ (C, D) where Dfixed(D) ≡ {x1 = d1, . . . , xm =
dm} are the fixed variables. The remaining part of the objective function con-
straint is

∑n
i=m+1 aixi ≤ k−1−p where p =

∑m
i=1 aidi, and the back projection

is
∑m

i=1 aixi = p. The projection key contains the representation p for this back
projection. If this subproblem fails we have proven that, with D, there is no
solution with a value < k, nor with

∑n
i=m+1 aixi ≤ k − 1 − p.

If we later reach a subproblem P ′ ≡ (C, D′) where D′ ⇒ x1 = d′1 ∧· · ·∧xm =
d′m are the fixed variables, then dominance requires p′ =

∑m
i=1 aid

′
i to satisfy

p′ ≥ p. If this does not hold it may be that a solution for the projected problem
with
∑n

i=m+1 aixi ≥ k − p can lead to a global solution < k. Hence, we do have
to revisit this subproblem.
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Suppose that by the time we reach P ′, a better solution k′ < k has been
discovered. Effectively the constraint

∑n
i=1 aixi ≤ k − 1 has been replaced by∑n

i=1 aixi ≤ k′ − 1. Now we are only interested in finding a solution where∑n
i=m+1 aixi ≤ k′−1−p′. To see if this is dominated by a previous subproblem,

the stored value p is not enough. We also need the optimal value k when the
key was stored. There is a simple fix: rather than storing p in the key for P we
store q = k − 1 − p. We can detect dominance if q ≤ k′ − 1 − p′ and this value
q is usable for all future dominance tests. Note that q implicitly represents the
partial objective bound on the subproblem P .

5 Related Work

Problem specific approaches to dominance detection/subproblem equivalance are
widespread in combinatorial optimization (see e.g. [6,19]) There is also a signif-
icant body of work on caching that rely on problem decomposition by fixing
variables (e.g [10,12]). This work effectively looks for equivalent projected prob-
lems, but since they do not take into account the semantics of the constraints,
they effectively use DF∩vars(c) for every constraint c as the projection key, which
finds strictly fewer equivalent subproblems than back-projection. The success of
these approaches in finding equivalent subproblems relies on decomposing the
projected subproblem into disjoint parts. We could extend our approach to also
split the projected problem into connected components but this typically does
not occur in the problems of interest to us. Interestingly, [10] uses symmetry
detection to make subproblem equivalence detection stronger, but the method
used does not appear to scale.

5.1 Dynamic Programming

Dynamic programming (DP) [2] is a powerful approach for solving optimization
problems whose optimal solutions are derivable from the optimal solutions of its
subproblems. It relies on formulating an optimization as recursive equations re-
lating the answers to optimization problems of the same form. When applicable,
it is often near unbeatable by other optimization approaches.

Constraint programming (CP) with caching is similar to DP, but provides
several additional capabilities. For example, arbitrary side constraints not easily
expressible as recursions in DP can easily be expressed in CP, and dominance
can be expressed and exploited much more naturally in CP.

Consider the 0-1 Knapsack problem, a well known NP-hard problem that is
easy to formulate using recursive equations suitable for DP. We show how our
automatic caching provides a different but similar solution, and how caching
can change the asymptotic complexity of the CP solution. The problem is to
maximise

∑n
i=1 pixi subject to the constraints

∑n
i=1 wixi ≤ W ∧∀n

i=1xi ∈ {0, 1},
where wi is the nonnegative weight of object i and pi is the nonnegative profit.
A normal CP solver will solve this problem in O(2n) steps.
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The DP formulation defines knp(j, w) as the maximum profit achievable using
the first j items with a knapsack of size w. The recursive equation is

knp(j, w) =
{

0 j = 0 ∨ w ≤ 0
max(knp(j − 1, w), knp(j − 1, w − wj) + pj) otherwise

The DP solution is O(nW ) since values for knp(j, w) are cached and only
computed once. Consider a CP solver using a fixed search order x1, . . . , xn.
A subproblem fixing x1, . . . , xm to d1, . . . , dm respectively generates key value∑m

i=1 widi for the constraint
∑n

i=1 wixi ≤ W and key value k+1−
∑m

i=1 pidi for
the optimization constraint

∑n
i=1 pixi ≥ k+1 where k is the best solution found

so far. The remaining variable domains are all unchanged so they do not need to
be explicitly stored (indeed domains of Boolean or 0-1 variables never need to
be stored as they are either fixed or unchanged). The projection key is simply
the set of fixed variables {x1, . . . , xm} and the two constants. The complexity is
hence O(nWu) where u is the initial upper bound on profit.

The solutions are in fact quite different: the DP approach stores the optimal
profit for each set of unfixed variables and remaining weight limit, while the CP
approach stores the fixed variables and uses weight plus the remaining profit
required. The CP approach in fact implements a form of DP with bounding [16].
In particular, the CP approach can detect subproblem dominance, a problem
with used weight w′ and remaining profit required p′ is dominated by a problem
with used weight w ≤ w′ and remaining profit p ≤ p′. The DP solution must
examine both subproblems since the remaining weights are different.

In practice the number of remaining profits arising for the same set of fixed
variables and used weight is O(1) and hence the practical number of subproblems
visited by the CP approach is O(nW ).

Note that while adding a side constraint like x3 ≥ x8 destroys the DP ap-
proach (or at least forces it to be carefully reformulated), the CP approach with
automatic caching works seamlessly.

5.2 Symmetry Breaking

Symmetry breaking aims at speeding up execution by not exploring search nodes
known to be symmetric to nodes already explored. Once the search is finished,
all solutions can be obtained by applying each symmetry to each solution. In
particular, Symmetry Breaking by Dominance Detection (SBDD) [4] works by
performing a “dominance check” at each search node and, if the node is found
to be dominated, not exploring the node.

SBDD is related but different to automatic caching. In SBDD P ≡ (C, D) φ-
dominates P ′ ≡ (C, D′) under symmetry φ iff φ(D′) ⇒ D since, if this happens,
the node associated to symmetric problem (C, φ(D′)) must be a descendant of
the node associated to P and, thus, already explored. Note that, in detecting
dominance, SBDD places conditions on the domains of all variables in D, while
automatic caching only does so on the constraints of the problem once projected
on the unfixed variables. Thus, P ′ can be φ-dominated by P (in the SBDD sense)
but not be U -dominated, and vice versa.
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Our approach is also related to conditional symmetry breaking [7], which
identifies conditions that, when satisfied in a subproblem, ensure new symmetries
occur within that subproblem (and not in the original problem). As before, the
two approaches capture overlapping but distinct sets of redundancies.

5.3 Nogood Learning

Nogood learning approaches in constraint programming attempt to learn from
failures and record these as new constraints in the program. The most successful
of these methods use clauses on atomic constraints v = d and v ≤ d to record the
reasons for failures and use SAT techniques to efficiently manage the nogoods.
Automatic caching is also a form of nogood learning, since it effectively records
keys that lead to failure.

Any nogood learning technique representing nogoods as clauses has the ad-
vantage over caching that it can use the nogoods derived to propagate rather
than to simply fail. Restart learning [11] simply records failed subtrees using the
set of decisions made to arrive there. This does not allow subproblem equivalence
to be detected assuming a fixed search strategy. The usefulness arises because it
is coupled with restarting and dynamic search, so it helps avoid repeated search.
In that sense it has a very different aim to automatic caching. Nogood learning
techniques such as lazy clause generation [14] learn clauses that are derived only
from the constraints that are actually involved in conflicts, which is much more
accurate than using all non-redundant constraints as in projection keys.

On the other hand nogood learning can come at a substantial price: reason
generation and conflict analysis can be costly. Every clause learnt in a nogood
approach adds extra constraints and, hence, slows down the propagation of the
solver. In contrast, projection keys are O(1) to lookup regardless of their number
(at least for the parts that are in the hash).

Because nogood learning use clauses on atomic constraints to define nogoods
they may be less expressive than projection keys. Consider the subproblem x1 +
2x2 + x3 + x4 + 2x5 ≤ 20 ∧ C, with D ≡ {x1 = 1 ∧ x2 = 2 ∧ x3 = 3}. If this
subproblem fails, the projection key stores that x4+2x5 ≤ 12∧other keys leads to
failure. A nogood system will express this as x1 = 1∧x2 = 2∧x3 = 3∧other keys
leads to failure, since there are no literals to representing partial sums. This
weakness is illustrated by the experimental results for 0-1 Knapsack.

6 Experiments

We compare our solver Chuffed, with and without caching, against Gecode
3.2.2 [17] – widely recognized as one of the fastest constraint programming sys-
tems (to illustrate we are not optimizing a slow system) – against the G12 FD
solver [15] and against the G12 lazy clause generation solver [5] (to compare
against nogood learning). We use the MurmurHash 2.0 hash function. We use
models written in the modelling language MiniZinc [13]. This facilitates a fair
comparison between the solvers, as all solvers use the same model and search
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strategy. Note that caching does not interfere with the search strategies used
here, as all it can do is fail subtrees earlier. Thus, Chuffed with caching (de-
noted as ChuffedC) always finds the same solution as the non-caching version
and the other solvers, and any speedup observed comes from a reduced search.

Considerable engineering effort has gone into making caching as efficient as
possible: defining as general as possible back projections for each of the many
primitive constraints defined in the solver, exploiting small representations for
back projections and domains, and eliminating information that never needs
storing, e.g. binary domain consistent constraints and Boolean domains.

The experiments were conducted on Xeon Pro 2.4GHz processors with a 900
second timeout. Table 1 presents the number of variables and constraints as
reported by Chuffed, the times for each solver in seconds, and the speedup and
node reduction obtained from using automatic caching in Chuffed. We discuss
the results for each problem below. All the MiniZinc models and instances are
available at www.cs.mu.oz.au/~pjs/autocache/

Knapsack. 0-1 knapsack is ideal for caching. The non-caching solvers all timeout
as n increases, as their time complexity is O(2n). This is a worst case for lazy
clause generation since the nogoods generated are not reusable. ChuffedC,
on the other hand, is easily able to solve much larger instances (see Table 1).
The node to nW ratio (not shown) stays fairly constant as n increases (varying
between 0.86 and 1.06), showing that it indeed has search (node) complexity
O(nW ). The time to nW ratio grows as O(n) though, since we are using a
general CP solver where the linear constraints take O(n) to propagate at each
node, while DP requires constant work per node. Hence, we are not as efficient
as pure DP.

MOSP. The minimal open stacks problem (MOSP) aims at finding a schedule
for manufacturing all products in a given set that minimizes the maximum num-
ber of active customers, i.e., the number of customers still waiting for at least
one of their products to be manufactured. This problem was the subject of the
2005 constraint modelling challenge [18]. Of the 13 entrants only 3 made use of
the subproblem equivalence illustrating that, in general, it may not be easy to
detect. Our MOSP model uses customer search and some complex conditional
dominance breaking constraints that make the (non-caching) search much faster.
We use random instances from [3]. Automatic caching gives up to two orders of
magnitude speedup. The speedup grows exponentially with problem size. Lazy
clause is also capable of exploiting this subproblem equivalence, but the overhead
is so large that it can actually slow the solver down.

Blackhole. In the Blackhole patience game, the 52 cards are laid out in 17 piles
of 3, with the ace of spades starting in a “blackhole”. Each turn, a card at the
top of one of the piles can be played into the blackhole if it is +/-1 from the card
that was played previously. The aim is to play all 52 cards. This was one of two
examples used to illustrate CP with caching in [19]. The remaining subproblem
only depends on the set of unplayed cards, and the value of the last card played.
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Thus, there is subproblem equivalence. We use a model from [7] which includes
conditional symmetry breaking constraints. We generated random instances and
used only the hard ones for this experiment. The G12 solvers do not use a domain
consistent table constraint for this problem and are several orders of magnitudes
slower. Automatic caching gives a modest speedup of around 2-3. The speedup
is relatively low on this problem because the conditional symmetry breaking
constraints have already removed many equivalent subproblems, and the caching
is only exploiting the ones which are left. Note that the manual caching reported
in [19] achieves speedups in the same range (on hard instances).

BACP. In the Balanced Academic Curriculum Problem (BACP), we form a
curriculum by assigning a set of courses to a set of periods, with certain restric-
tions on how many courses and how much “course load” can be assigned to each
period. We also have prerequisite constraints between courses. The BACP can
be viewed as a bin packing problem with a lot of additional side constraints. The
remaining subproblem only depends on the set of unassigned courses, and not
on how the earlier courses were assigned. We use the model of [9], but with some
additional redundant constraints that make it very powerful. The 3 instances
curriculum 8/10/12 given in CSPLIB can be solved to optimality in just a few
milliseconds. We generate random instances with 50 courses, 10 periods, and
course credit ranging between 1 and 10. Almost all are solvable in milliseconds
so we pick out only the non-trivial ones for the experiment. We also include
the 3 standard instances from CSPLIB. Both automatic caching and lazy clause
generation are capable of exploiting the subproblem equivalence, giving orders
of magnitude speedup. In this case, lazy clause generation is more efficient.

Radiation Therapy. In the Radiation Therapy problem [1], the aim is to decom-
pose an integral intensity matrix describing the radiation dose to be delivered
to each area, into a set of patterns to be delivered by a radiation source, while
minimising the amount of time the source has to be switched on, as well as the
number of patterns used (setup time of machine). The subproblem equivalence
arises because there are equivalent methods to obtain the same cell coverages,
e.g. radiating one cell with two intensity 1 patterns is the same as radiating it
with one intensity 2 pattern, etc. We use random instances generated as in [1].
Both automatic caching and lazy clause generation produce orders of magnitude
speedup, though lazy clause generation times are often slightly better.

Memory Consumption. The memory consumption of our caching scheme is linear
in the number of nodes searched. The size of each key is dependent on the
structure of the problem and can range from a few hundred bytes to tens of
thousands of bytes. On a modern computer, this means we can usually search
several hundreds of thousands of nodes before running out of memory. There are
simple schemes to reduce the memory usage, which we plan to investigate in the
future. For example, much like in SAT learning, we can keep an “activity” score
for each entry to keep track of how often they are used. Inactive entries can then
periodically be pruned to free up memory.
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Table 1. Experimental Results

Instance vars cons. ChuffedC Chuffed Gecode G12 fd G12 lazyfd Speedup Node red.
knapsack-20 21 2 0.01 0.01 0.01 0.01 0.10 1.00 2.9
knapsack-30 31 2 0.02 0.83 0.76 1.168 534.5 41.5 67
knapsack-40 41 2 0.03 38.21 34.54 58.25 >900 1274 1986
knapsack-50 51 2 0.07 >900 >900 >900 >900 >12860 >20419
knapsack-60 61 2 0.10 >900 >900 >900 >900 >9000 >14366
knapsack-100 101 2 0.40 >900 >900 >900 >900 >2250 > 2940
knapsack-200 201 2 2.36 >900 >900 >900 >900 >381 > 430
knapsack-300 301 2 6.59 >900 >900 >900 >900 >137 >140
knapsack-400 401 2 13.96 >900 >900 >900 >900 >65 >65
knapsack-500 501 2 25.65 >900 >900 >900 >900 >35 > 34
mosp-30-30-4-1 1021 1861 1.21 4.80 24.1 50.29 29.70 4.0 4.91
mosp-30-30-2-1 1021 1861 6.24 >900 >900 >900 201.8 >144 >187
mosp-40-40-10-1 1761 3281 0.68 0.66 5.85 15.07 29.80 1.0 1.1
mosp-40-40-8-1 1761 3281 1.03 1.15 9.92 27.00 56.96 1.1 1.3
mosp-40-40-6-1 1761 3281 3.79 11.30 75.36 183.9 165.2 3.0 3.5
mosp-40-40-4-1 1761 3281 19.07 531.68 >900 >900 840.4 28 37
mosp-40-40-2-1 1761 3281 60.18 >900 >900 >900 >900 >15 > 18
mosp-50-50-10-1 2701 5101 2.83 3.17 40.70 92.74 134.1 1.1 1.2
mosp-50-50-8-1 2701 5101 6.00 9.12 113.0 292.0 295.9 1.5 1.8
mosp-50-50-6-1 2701 5101 39.65 404.16 >900 >900 >900 10.2 13.1
blackhole-1 104 407 18.35 39.77 103.6 >900 >900 2.17 2.90
blackhole-2 104 411 14.60 21.52 60.06 >900 >900 1.47 1.94
blackhole-3 104 434 18.31 26.14 31.43 >900 >900 1.43 1.81
blackhole-4 104 393 15.77 30.84 69.13 >900 >900 1.96 2.55
blackhole-5 104 429 24.88 58.77 159.5 >900 >900 2.36 3.45
blackhole-6 104 448 11.31 33.27 85.65 >900 >900 2.94 5.11
blackhole-7 104 407 28.02 47.31 127.6 >900 >900 1.69 2.49
blackhole-8 104 380 24.09 43.60 89.02 >900 >900 1.81 2.45
blackhole-9 104 404 38.74 93.92 215.1 >900 >900 2.42 3.52
blackhole-10 104 364 67.85 159.4 418.0 >900 >900 2.35 3.16
curriculum 8 838 1942 0.01 0.01 0.01 0.02 0.08 1.00 1.00
curriculum 10 942 2214 0.01 0.01 0.01 0.03 0.09 1.00 1.00
curriculum 12 1733 4121 0.01 0.01 0.01 0.10 0.23 1.00 1.00
bacp-medium-1 1121 2654 11.47 34.90 29.31 62.4 6.90 3.04 3.03
bacp-medium-2 1122 2650 9.81 >900 >900 >900 0.22 >92 >115
bacp-medium-3 1121 2648 2.42 380.7 461.62 838.6 0.23 157 190
bacp-medium-4 1119 2644 0.61 4.59 5.74 9.92 1.10 7.52 10.1
bacp-medium-5 1119 2641 2.40 56.46 54.03 126.9 0.76 23.5 26.5
bacp-hard-1 1121 2655 54.66 >900 >900 >900 0.16 >16 >16
bacp-hard-2 1118 2651 181.9 >900 >900 >900 0.22 >5 >7
radiation-6-9-1 877 942 12.67 >900 >900 >900 2.89 >71 >146
radiation-6-9-2 877 942 27.48 >900 >900 >900 5.48 >32 >86
radiation-7-8-1 1076 1168 0.84 >900 >900 >900 1.40 >1071 >5478
radiation-7-8-2 1076 1168 0.65 89.18 191.4 173.6 0.93 137 633
radiation-7-9-1 1210 1301 2.39 143.0 315.6 241.9 2.70 59 266
radiation-7-9-2 1210 1301 7.26 57.44 144.4 101.9 8.83 8 34
radiation-8-9-1 1597 1718 27.09 >900 >900 >900 6.21 >33 >114
radiation-8-9-2 1597 1718 12.21 >900 >900 >900 6.53 >74 >267
radiation-8-10-1 1774 1894 22.40 12.17 15.45 12.90 33.2 0.54 1.10
radiation-8-10-2 1774 1894 59.66 >900 >900 >900 12.05 >15 >78
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7 Conclusion

We have described how to automatically exploit subproblem equivalence in a
general constraint programming system by automatic caching. Our automatic
caching can produce orders of magnitude speedup over our base solver Chuffed,
which (without caching) is competitive with current state of the art constraint
programming systems like Gecode. With caching, it can be much faster on prob-
lems that have subproblem equivalences.

The automatic caching technique is quite robust. It can find and exploit sub-
problem equivalence even in models that are not “pure”, e.g. MOSP with dom-
inance and conditional symmetry breaking constraints, Blackhole with condi-
tional symmetry breaking constraints, and BACP which can be seen as bin pack-
ing with lots of side constraints and some redundant constraints. The speedups
from caching tends to grow exponentially with problem size/difficulty, as sub-
problem equivalences also grow exponentially.

Our automatic caching appears to be competitive with lazy clause genera-
tion in exploiting subproblem equivalence, and is superior on some problems, in
particular those with large linear constraints.

The overhead for caching is quite variable (it can be read from the tables
as the ratio of node reduction to speedup). For large problems with little vari-
able fixing it can be substantial (up to 5 times for radiation), but for problems
that fix variables quickly it can be very low. Automatic caching of course relies
on subproblem equivalence occurring to be of benefit. Note that for dynamic
searches this is much less likely to occur. Since it is trivial to invoke, it seems al-
ways worthwhile to try automatic caching for a particular model, and determine
empirically if it is beneficial.
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Economy and the Australian Research Council.

References

1. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix de-
composition into consecutive-ones matrices: CP and IP approaches. In: Van Hen-
tenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 1–15. Springer,
Heidelberg (2007)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
3. Chu, G., Stuckey, P.J.: Minimizing the maximum number of open stacks by cus-

tomer search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 242–257. Springer,
Heidelberg (2009)

4. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

5. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

6. Fukunaga, A., Korf, R.: Bin completion algorithms for multicontainer packing,
knapsack, and covering problems. J. Artif. Intell. Res. (JAIR) 28, 393–429 (2007)



86 G. Chu, M. Garcia de la Banda, and P.J. Stuckey

7. Gent, I., Kelsey, T., Linton, S., McDonald, I., Miguel, I., Smith, B.: Conditional
symmetry breaking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 256–270.
Springer, Heidelberg (2005)

8. Gent, I., Petrie, K., Puget, J.-F.: Symmetry in Constraint Programming. In: Hand-
book of Constraint Programming, pp. 329–376. Elsevier, Amsterdam (2006)

9. Hnich, B., Kiziltan, Z., Walsh, T.: Modelling a balanced academic curriculum prob-
lem. In: Proceedings of CPAIOR 2002, pp. 121–131 (2002)

10. Kitching, M., Bacchus, F.: Symmetric component caching. In: Proceedings of IJCAI
2007, pp. 118–124 (2007)

11. Lynce, I., Baptista, L., Marques-Silva, J.: Complete search restart strategies for
satisfiability. In: IJCAI Workshop on Stochastic Search Algorithms, pp. 1–5 (2001)

12. Marinescu, R., Dechter, R.: And/or branch-and-bound for graphical models. In:
Proceedings of IJCAI 2005, pp. 224–229 (2005)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

14. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

15. Stuckey, P.J., Garcia de la Banda, M., Maher, M.J., Marriott, K., Slaney, J.K.,
Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent
models to efficient solutions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
13–16. Springer, Heidelberg (2005)

16. Puchinger, J., Stuckey, P.J.: Automating branch-and-bound for dynamic programs.
In: Proceedings of PEPM 2008, pp. 81–89 (2008)

17. Schulte, C., Lagerkvist, M., Tack, G.: Gecode, http://www.gecode.org/
18. Smith, B., Gent, I.: Constraint modelling challenge report 2005 (2005),

http://www.cs.st-andrews.ac.uk/~ipg/challenge/ModelChallenge05.pdf

19. Smith, B.M.: Caching search states in permutation problems. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 637–651. Springer, Heidelberg (2005)

http://www.gecode.org/
http://www.cs.st-andrews.ac.uk/~ipg/challenge/ModelChallenge05.pdf


Single-Facility Scheduling over Long Time Horizons by
Logic-Based Benders Decomposition

Elvin Coban and John N. Hooker

Tepper School of Business, Carnegie Mellon University
ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

Abstract. Logic-based Benders decomposition can combine mixed integer pro-
gramming and constraint programming to solve planning and scheduling prob-
lems much faster than either method alone. We find that a similar technique can
be beneficial for solving pure scheduling problems as the problem size scales up.
We solve single-facility non-preemptive scheduling problems with time windows
and long time horizons that are divided into segments separated by shutdown
times (such as weekends). The objective is to find feasible solutions, minimize
makespan, or minimize total tardiness.

1 Introduction

Logic-based Benders decomposition has been successfully used to solve planning and
scheduling problems that naturally decompose into an assignment and a scheduling
portion. The Benders master problem assigns jobs to facilities using mixed integer pro-
gramming (MILP), and the subproblems use constraint programming (CP) to schedule
jobs on each facility.

In this paper, we use a similar technique to solve pure scheduling problems with
long time horizons. Rather than assign jobs to facilities, the master problem assigns
jobs to segments of the time horizon. The subproblems schedule jobs within each time
segment.

In particular, we solve single-facility scheduling problems with time windows in
which the objective is to find a feasible solution, minimize makespan, or minimize total
tardiness. We assume that each job must be completed within one time segment. The
boundaries between segments might therefore be regarded as weekends or shutdown
times during which jobs cannot be processed. In future research we will address in-
stances in which jobs can overlap two or more segments.

Logic-based Benders decomposition was introduced in [2,8]. Its application to as-
signment and scheduling via CP/MILP was proposed in [3] and implemented in [9].
This and subsequent work shows that the Benders approach can be orders of magnitude
faster than stand-alone MILP or CP methods on problems of this kind [1,7,4,5,6,10,11].
For the pure scheduling problems considered here, we find that the advantage of Ben-
ders over both CP and MILP increases rapidly as the problem scales up.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 87–91, 2010.
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2 The Problem

Each job j has release time, deadline (or due date) dj , and processing time pj . The time
horizon consists of intervals [zi, zi+1] for i = 1, . . . , m. The problem is to assign each
job j a start time sj so that time windows are observed (rj ≤ sj ≤ dj − pj), jobs run
consecutively (sj + pj ≤ sk or sk + pk ≤ sj for all k �= j), and each job is completed
within one segment (zi ≤ sj ≤ zi+1 − pj for some i). We minimize makespan by
minimizing maxj{sj +pj}. To minimize tardiness, we drop the constraint sj ≤ dj −pj

and minimize
∑

j max{0, sj + pj − dj}.

3 Feasibility

When the goal is to find a feasible schedule, the master problem seeks a feasible as-
signment of jobs to segments, subject to the Benders cuts generated so far. Because we
solve the master problem with MILP, we introduce 0-1 variables yij with yij = 1 when
job j is assigned to segment i. The master problem becomes∑

i

yij = 1, all j

Benders cuts, relaxation

yij ∈ {0, 1}, all i, j

(1)

The master problem also contains a relaxation of the subproblem, similar to those de-
scribed in [4,5,6], that helps reduce the number of iterations.

Given a solution ȳij of the master problem, let Ji = {j | ȳij = 1} be the set of jobs
assigned to segment i. The subproblem decomposes into a CP scheduling problem for
each segment i:

rj ≤ sj ≤ dj − pj

zi ≤ sj ≤ zi+1 − pj

}
, all j ∈ Ji

disjunctive ({sj | j ∈ Ji})
(2)

where the disjunctive global constraint ensures that the jobs assigned to segment
i do not overlap.

Each infeasible subproblem generates a Benders cut as described below, and the cuts
are added to the master problem. The master problem and corresponding subproblems
are repeatedly solved until every segment has a feasible schedule, or until the master
problem is infeasible, in which case the original problem is infeasible.

Strengthened nogood cuts. The simplest Benders cut is a nogood cut that excludes
assignments that cause infeasibility in the subproblem. If there is no feasible schedule
for segment i, we generate the cut∑

j∈Ji

yij ≤ |Ji| − 1, all i (3)

The cut can be strengthened by removing jobs one by one from Ji until a feasible
schedule exists for segment i. This requires re-solving the ith subproblem repeatedly,



Single-Facility Scheduling over Long Time Horizons 89

but the effort generally pays off because the subproblems are much easier to solve than
the master problem. We now generate a cut (3) with the reduced Ji.

The cut may be stronger if jobs less likely to cause infeasibility are removed from Ji

first. Let the effective time window [r̃ij , d̃ij ] of job j on segment i be its time window
adjusted to reflect the segment boundaries. Thus

r̃ij = max {min{rj , zi+1}, zi} , d̃ij = min {max{dj, zi}, zi+1}

Let the slack of job j on segment i be d̃ij − r̃ij − pj . We can now remove the jobs in
order of decreasing slack.

4 Minimizing Makespan

Here the master problem minimizes μ subject to (1) and μ ≥ 0 . The subproblems
minimize μ subject to (2) and μ ≥ sj + pj for all j ∈ Ji.

Strengthened nogood cuts. When one or more subproblems are infeasible, we use
strengthened nogood cuts (3). Otherwise, for each segment i we use the nogood cut

μ ≥ μ∗
i

⎛
⎝1 −

∑
j∈Ji

(1 − yij)

⎞
⎠

where μ∗
i is the minimum makespan for subproblem i. These cuts are strengthened by

removing jobs from Ji until the minimum makespan on segment i drops below μ∗
i .

We also strengthen the cuts as follows. Let μi(J) be the minimum makespan that
results when in jobs in J are assigned to segment i, so that in particular μi(Ji) = μ∗

i .
Let Zi be the set of jobs that can be removed, one at a time, without affecting makespan,
so that Zi = {j ∈ Ji | Mi(Ji \ {j}) = M∗

i }. Then for each i we have the cut

μ ≥ μi(Ji \ Zi)

⎛
⎝1 −

∑
j∈Ji\Zi

(1 − yij)

⎞
⎠

This cut is redundant and should be deleted when μi(Ji \ Zi) = μ∗
i .

Analytic Benders Cuts. We can develop additional Benders as follows. Let J ′
i = {j ∈

Ji | rj ≤ zi} be the set of jobs in Ji with release times before segment i, and let
J ′′

i = Ji \ J ′
i . Let μ̂i be the minimum makespan of the problem that remains after

removing the jobs in S ⊂ J ′
i from segment i. It can be shown as in [6] that

μ∗
i − μ̂i ≤ pS + max

j∈J′
i

{d̃j} − min
j∈J′

i

{d̃j} (4)

where pS =
∑

j∈S pj . Thus if jobs in J ′
i are removed from segment i, we have from (4)

a lower bound on the resulting optimal makespan μ̂i. If jobs in J ′′
i are removed, there

is nothing we can say. So we have the following Benders cut for each i:

μ ≥ μ∗
i −

⎛
⎝∑

j∈J′
i

pj(1 − yij) + max
j∈J′

i

{dj} − min
j∈J′

i

{dj}

⎞
⎠−
∑
j∈J′′

i

μ∗
i (1 − yij) (5)
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when one or more jobs are removed from segment i, μ ≥ 0 when all jobs are removed,
and μ ≥ μ∗

i otherwise. This can be linearized:

μ ≥ μ∗
i −
∑
j∈j′i

pj(1 − yij) − wi −
∑
j∈J′′

i

μ∗
i (1 − yij) − μ∗

i qi, qi ≤ 1 − yij , j ∈ Ji

wi ≤
(

max
j∈J′

i

{dj} − min
j∈J′

i

{dj}
)∑

j∈J′
i

(1 − yij), wi ≤ max
j∈J′

i

{dj} − min
j∈J′

i

{dj}

5 Minimizing Tardiness

Here the master problem minimizes τ subject to (1), and each subproblem minimizes∑
j∈Ji

τj subject to τj ≥ sj + pj − dj and τj ≥ 0.

Benders cuts. We use strengthened nogood cuts and relaxations similar to those used
for minimizing makespan. We also develop the analytic Benders cuts

τ ≥
∑

i

τ̂i

τ̂i ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ∗
i −
∑
j∈Ji

(
rmax
i +

∑
�∈Ji

p� − dj

)+

(1 − yij), if rmax
i +

∑
�∈Ji

p� ≤ zi+1

τ∗
i

⎛
⎝1 −

∑
j∈Ji

(1 − yij)

⎞
⎠ , otherwise

where the bound on τ̂i is included for all i for which τ∗
i > 0. Here τ∗

i is the minimum
tardiness in subproblem i, rmax

i = max{max{rj | j ∈ Ji}, zi}, and α+ = max{0, α}.

6 Problem Generation and Computational Results

Random instances are generated as follows. For each job j, rj , dj − rj , and pj are
uniformly distributed on the intervals [0, αR], [γ1αR, γ2αR], and [0, β(dj − rj)], re-
spectively. We set R = 40 m for tardiness problems, and otherwise R = 100 m, where
m is the number of segments. For the feasibility problem we adjusted β to provide a
mix of feasible and infeasible instances. For the remaining problems, we adjusted β to
the largest value for which most of the instances are feasible.

We formulated and solved the instances with IBM’s OPL Studio 6.1, which invokes
the ILOG CP Optimizer for CP models and CPLEX for MILP models. The MILP mod-
els are discrete-time formulations we have found to be most effective for this type of
problem. We used OPL’s script language to implement the Benders method.

Table 1 shows the advantage of logic-based Benders as the problem scales up. Ben-
ders failed to solve only four instances, due to inability to solve the CP subproblems.
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Table 1. Computation times in seconds (computation terminated after 600 seconds). The number
of segments is 10% the number of jobs. Tight time windows have (γ1, γ2, α) = (1/2, 1, 1/2)
and wide time windows have (γ1, γ2, α) = (1/4, 1, 1/2). For feasibility instances, β = 0.028
for tight windows and 0.035 for wide windows. For makespan instances, β = 0.025 for 130 or
fewer jobs and 0.032 otherwise. For tardiness instances, β = 0.05.

Tight time windows Wide time windows
Feasibility Makespan Tardiness Feasibility Makespan Tardiness

Jobs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs
50 0.91 8.0 1.5 0.09 9.0 4.0 0.05 1.3 1.1 0.03 7.7 2.5 0.13 13 3.5 0.13 1.3 1.1
60 1.1 12 2.8 0.09 18 5.5 0.14 1.8 1.5 0.05 12 1.6 0.94 29 5.7 0.11 2.3 1.4
70 0.56 17 3.3 0.11 51 6.7 1.3 3.9 2.1 0.13 17 2.3 0.11 39 6.2 0.16 3.0 1.9
80 600 21 2.8 600 188 7.6 0.86 6.0 4.5 600 24 5.0 600 131 7.3 1.9 6.4 5.0
90 600 29 7.5 600 466 10 21 11 4.6 600 32 9.7 600 600 8.5 5.9 9.5 11

100 600 36 12 600 600 16 600 11 2.0 600 44 9.7 600 600 19 600 24 22
110 600 44 20 600 600 17 600 600 600 600 49 17 600 600 24 600 600 600
120 600 62 18 600 600 21 600 15 3.3 600 80 15 600 600 23 600 12 3.1
130 600 68 20 600 600 29 600 17 3.9 600 81 43 600 600 31 600 18 3.9
140 600 88 21 600 600 30 600 600 600 600 175 27 600 * 35 600 600 14
150 600 128 27 600 600 79 600 386 8.5 600 600 43
160 600 408 82 600 600 34 600 174 5.2 600 600 53
170 600 192 5.9 600 600 37 600 172 5.9 600 600 600
180 600 600 6.6 600 * 8.0 600 251 6.5 600 600 56
190 600 600 7.2 600 * 8.5 600 600 7.3 600 * 78
200 600 600 8.0 600 * 85 600 600 8.2 600 * 434

∗MILP solver ran out of memory.
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1 Introduction

Tools in a manufacturing plant require regular maintenance over their lifes-
pan (e.g. cleaning, calibration, safety checks) in order to keep them running
smoothly. In capital intensive industries, such as semi-conductor manufacturing,
the scheduling of maintenance operations on the tools used in production is a
critical function. Maintenance operations can be expensive to perform, so we
should only perform them when necessary. However if maintenance is delayed
too long, tools may run sub-optimally or break down (thus requiring even more
expensive unplanned, corrective maintenance). Furthermore a tool that is under-
going maintenance may be partly or wholly unavailable for (revenue generating)
production operations.

We have developed a system to generate maintenance schedules for the IBM
East Fishkill, New York 300mm semiconductor manufacturing plant. In the sec-
tions which follow, we give a description of the maintenance scheduling problem
in semi-conductor manufacturing and discuss some of the challenges in solving
it. We present a goal programming approach that incorporates both constraint
programming and mixed-integer programming solution technologies. A system
we have developed based on this approach is now in use within IBM.

2 Problem Description

In the semi-conductor manufacturing there are number of different types of
maintenance:

1. Preventative maintenance: periodic maintenance recommended by manu-
facturer of tool, to be carried out at regular time intervals (e.g. every six
months).

2. Trigger maintenance: required after a tool reaches a certain state. For exam-
ple, a wafer count trigger is reached after a certain number of wafers have
been processed on a tool.

3. Unplanned, corrective maintenance: in response to unforeseen tool break-
downs or sub-optimal functioning.
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The purpose of maintenance scheduling is to generate a detailed schedule for
preventative and trigger maintenance operations. For each maintenance opera-
tion, we are given a release date, a due date, a processing time, a tool or tool
part (on which the maintenance is to be performed) and a demand for some con-
stant number of technicians throughout the entire processing time to perform
the maintenance.

The tools in a semi-conductor fab can be partitioned into a number of toolsets.
A toolset is a set of tools of a certain type (e.g. lithography) manufactured by
a certain vendor. Maintenance operations need to be performed by maintenance
technicians who are certified to work on tools belonging to a particular toolset.
In practice, we have observed that maintenance technicians are mostly certified
to work on tools belonging only to a single toolset. For each toolset, we are
given a timetable specifying the number of maintenance technicians available
during each time period (shift). The availability of technicians is typically the
bottleneck in maintenance scheduling.

2.1 Objectives

In practice feasible schedules satisfying release dates, due dates and capacity con-
straints on the availability of technicians are usually easy to generate. Resource
contention is not the main challenge in generating good maintenance schedules.
Rather, the challenge is in handling multiple, non-convex objectives. We describe
these objectives in the following sections.

Resource leveling. The first objective that we consider relates to the utilization
of the available technicians for a toolset over time. When the use of technicians
is spread out over time, it is more likely that there will be some idle techni-
cians available to carry out any unforeseen, unplanned maintenance. In time
periods when many technicians are busy, there are fewer idle technicians, so any
neccessary unplanned maintenance may disrupt planned maintenance or require
contracting outside technicians. Unplanned maintenance can be very expensive
and disruptive to production operations, so in general it is preferred that we
“levelize” the use of maintenance technicians over time so that some technicians
are always available to handle unplanned maintenance should it become nec-
essary (as illustrated in Figure 1(right)). We formulate this requirement as an
objective that we minimize the number of technicians that we utilize throughout
the entire schedule in order to perform all of the pending maintenance operations
(alternatively we minimize the maximum number of technicians that are active
(performing maintenance) in any one time period)).

Minimizing disruption. The second objective relates to minimizing the disrup-
tion to production that occurs as a result of taking tools out of service in order
to perform maintenance on them. Typically, tools in a semiconductor manufac-
turing fab process lots consisting of a number of silicon wafers. At any one time
when a tool is busy processing a lot, there may be a number of wafers wait-
ing in a queue to be processed by the tool. This number of wafers is referred
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Fig. 1. Bad (left) and good (right) maintenance technician utilization

Fig. 2. Illustration of a maintenance schedule for a single toolset. Each row presents a
Gantt chart representation of a schedule for a single tool. The plotted line represents
the projected work in progress (y-axis) for the tool over each time period (x-axis) in
the schedule.

to as the Work In Process (WIP), which is specified for a tool and a time pe-
riod. When maintenance is performed on a tool, all production is stopped on
that tool. As well as delaying wafers that need to be processed on the tool, this
can lead to starvation of downstream processes for the wafers, resulting in tool
under-utilization. Ideally, we would like to minimize such disruption by perform-
ing maintenance operations on tools during time periods when there is as little
WIP as possible.

The difficulty we face with using this objective is that typically we do not know
what the WIP levels will be in the fab for each tool over the scheduling horizon.
Operations in semiconductor fab are usually very dynamic, as wafers can make
multiple passes through various processes based on the results of tests of the
effectiveness of each production step. Uncertainty also arises due to unplanned
tool breakdowns. Detailed production scheduling is usually done using dispatch
rules applied whenever a tool becomes available for processing. As such, there is
no longer term production schedule we can refer to in order to determine what
the WIP levels will be for each tool that we could use in a formulation of the
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maintenance scheduling problem. Instead we determine the Expected Work In
Process will be for each tool and time period, based on a simulation of the flow
of wafers through the fab. For this we use the IBM WIP Simulator, developed
specifically for semi-conductor manufacturing (described in [1]). From the output
of WIP simulator, we obtain the expected WIP level for each tool during each
one hour time bucket.

Minimizing earliness and tardiness. The third objective relates to minimizing
the long term costs of performing periodic maintenance. There is some flexibility
in determining when a preventative maintenance operation j can be performed
in the schedule. However the interval of time that can elapse between the comple-
tion time ei of one operation i and the start time sj of the following operation j
(where each operation performs the same periodic maintenance) on a tool should
not exceed a given duration Di,j . This gives rise to earliness and tardiness costs.
Tardiness costs result from scheduling an operation j to start at some time sj

such that sj > ei + Di,j . Earliness costs arise from scheduling an operation j to
start at some time sj such that sj < ei + Di,j . Over the long term we want to
avoid scheduling periodic maintenance before it’s due date, since otherwise this
would lead to higher costs as a result of performing more preventative mainte-
nance than is strictly necessary. The due date dj of an operation j is calculated
such dj = ei + Di,j , i.e. scheduling an operation at it’s due date incurs no ear-
liness or tardiness cost. We are given an earliness penalty αj and a tardiness
penalty βj for each operation j. Given an operation j with a completion time
of C, the earliness / tardiness cost et(j, C) of this operation is expressed as
et(j, C) = max(αj(dj − C), βj(C − dj)).

3 Solution Approach

The solution approach we developed is motivated by the following observations,
based on typical problem data: (a) generating a feasible maintenance schedule is
very easy: the main resource bottleneck is the availability of maintenance tech-
nicians, and (b) generating an optimal maintenance schedule is difficult, given
the multiple, irregular objectives. Since we wish to find an optimal solution, we
focus on using exact methods. Constraint programming [2] and mixed integer
programming with time-indexed formulations are often the solution techniques of
choice for modelling scheduling problems with complex objectives and side con-
straints. These techniques have different strengths and weaknesses. Constraint
programming can model scheduling problems compactly using an event-based
formulation, and can be very successful at finding good solutions to problems
which are highly resource-constrained. Constraint programming may not be the
best choice for solving scheduling problems with irregular objectives. Mixed-
integer programming, using time-indexed formulations, can represent scheduling
problems with irregular objectives. However the formulations can be very large,
since the number of decision variables is dependent on the length of the time
horizon. As such, this approach is often limited to small problems.
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We rank the objectives, considering them in the following order of decreas-
ing importance: (a) resource levelling, (b) disruption (minimize the overlap of
maintenance operations with work in progress) and (c) earliness-tardiness costs.
We use a solution approach inspired by lexicographic goal programming. In lex-
icographic goal programming, we first solve the problem with respect to the
most important objective only (we ignore all other objectives). Let f1 denote
the objective value for the first objective in the solution to this problem. We
now add a new constraint to the problem model, stating that the value for the
first objective must be equal to f1. We then solve the problem for the second
objective only, but with the first objective now represented as a constraint in
the model. Subsequently, we add a second constraint to the model based on the
objective value found for the second objective. We continue this process until we
have solved the problem for all objectives.

The objective for resource levelling can be solved very efficiently using con-
straint programming (in a few seconds). We determine the minimum number
of technicians required for a schedule by solving a series of feasibility problems,
where for each problem we set a different constraint on the maximum number
of technicians available in each time period. We use binary search on the value
we set for this constraint to determine the smallest number of technicians for
which we can find a schedule. We solve for the objectives concerning disruption
and earliness-tardiness using mixed-integer programming. We use a time-indexed
formulation with some additional cuts. In practice, the time needed to solve the
mixed integer programming formulation to optimality can be quite long, since
the number of decision variables can be large (a toolset may have 100 operations
to be scheduled over a 2 week horizon). We discretize time into 15 minute time
buckets, giving us solve times on the order of 5-20 minutes (using CPLEX 11).
While this is acceptable for start of the day scheduling, it does not allow us to
use this approach within an interactive system for mixed-initiative scheduling.

4 Summary

We have presented a maintenance scheduling problem for a semi-conductor man-
ufacturing facility. We have developed a goal programming approach combining
both constraint programming and mixed-integer programming, which exploits
the strengths of both solution techniques. The scheduling system we have devel-
oped based on this solution approach has been deployed within IBM.
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Abstract. In this paper, we present a constraint programming approach
for the service consolidation problem that is being currently tackled by
Neptuny, Milan. The problem is defined as: Given a data-center, a set
of servers with a priori fixed costs, a set of services or applications with
hourly resource utilizations, find an allocation of applications to servers
while minimizing the data-center costs and satisfying constraints on the
resource utilizations for each hour of the day profile and on rule-based con-
straints defined between services and servers and amongst different ser-
vices. The service consolidation problem can be modelled as an Integer
Linear Programming problem with 0–1 variables, however it is extremely
difficult to handle large sized instances and the rule-based constraints. So
a constraint programming approach using the Comet programming lan-
guage is developed to assess the impact of the rule-based constraints in re-
ducing the problem search space and to improve the solution quality and
scalability. Computational results for realistic consolidation scenarios are
presented, showing that the proposed approach is indeed promising.

1 Introduction

As the complexity of IT infrastructures increases due to mergers or acquisitions,
new challenging problems arise in the design and management of the resulting
computer systems. Large-scale data-centers are often costly, non-flexible, yielding
under-utilized servers and energy wasting. To reduce conflicts among the offered
services, many enterprise data-centers host most of their services on dedicated
servers without taking into account the possibility of deploying multiple services
into a single server. Therefore, many servers are not used at their maximum
capabilities and, in turn, expensive hardware investments are often required.
Nowadays companies search for IT solutions able to significantly drop data-
centers costs, e.g., energy consumption, space costs, and obtain a flexible system
satisfying customer demands.

In this framework, the consolidation of data-center resources is a current so-
lution adopted by many industries. The objective of a consolidation problem is
to reduce the complexity of a data-center while guaranteeing some performance
and availability requirements. This is usually achieved by searching for the best
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mapping between software applications and servers which minimizes data-center
costs, hence the name service consolidation problem (SCP).

The SCP is an allocation problem which is NP-hard (see [6]) and which has
been extensively tackled using branch-and-bound, simulated annealing, graph
theory techniques, clustering, neural networks etc. Previous work on the SCP
is based on a dynamic approach taking into account the workloads seasonal be-
haviour to estimate the server demands in [8]. A similar approach for virtualized
systems in [3] is solved with a multidimensional bin-packing approximate algo-
rithm. Nonlinear optimization problems are presented in [1] and optimization
models based on queueing networks theory solved with a linear relaxation based
heuristic is given in [2].

However, these works incorporate only constraints based on the computational
capacity of the target systems, but in reality consolidation scenarios require
additional constraints derived from compatibility, availability, performance or
support needs. Compatibility constraints require virtual machines to run only
on specific type of targets hardware systems (e.g., Intel virtual machines can
run only on Intel-based physical systems) and availability constraints require
two (or more) virtual machines to run on two distinct physical systems and
support needs may require to have a set of virtual machines running on the
same pool of physical systems (e.g., in order to simplify support activities). We
call these constraints as rule-based constraints. These rules, along with a large
number of binary variables in the problem make the problem computationally
difficult to handle. Further, quite often this problem turns out to be infeasible
either due to the lack of resources on servers to consolidate all the applications
or due to the rule-based constraints.

To the best of our knowledge, there are no constraint programming (CP)
models for the SCP. A recent work developed for Eventually-Serializable Data
Services in [7] defines a CP model, with some rules similar to our rule-based
constraints however without any capacity constraints.

2 Problem Formulation

The data-center consists of a set of m servers S with costs c, each characterized
by a set R of resources – usually the available cpu, memory, disk and network
bandwidth – denoted by ulj , l ∈ R, j ∈ S, a set C of n candidates which can be
applications or services with known requirements of each resource in l ∈ R, for
each hour t ∈ [1, 24] in the day, denoted by rlit, i ∈ C. Additional, rule-based
constraints are also known between candidates and/or between candidates and
servers. The aim of the service consolidation problem is to find an allocation of
candidates on the servers which minimizes the total cost of the data-center (i.e.,
the cost of all the servers needed for consolidation) while respecting resource
constraints of each candidate placed on a server for each hour of the day and
the rule-based compatibility constraints.

Let yj be a 0–1 variable, with yj = 1 if server j is active; else it is 0. Let xij

be an assignment variable, with xij = 1, if candidate i is assigned to server j;
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else it is 0. The cost is taken to be cj = CPUj + MEMj + 1, where CPUj and
MEMj are the available cpu and memory of server j. The additional one term
in the cost function forces the selection of a costlier server (i.e, a more powerful
one) instead of favouring too many cheap (i.e., low power) servers. The Integer
Linear Programming (ILP) model is given as:

min
∑
j∈S

cjyj (1)

s.t.
∑
i∈C

rlitxij ≤ urjyj , ∀l ∈ R, j ∈ S, t ∈ T, (2)

∑
j∈S

xij = 1, ∀i ∈ C, (3)

xij ≤ yj , ∀i ∈ C, j ∈ S, (4)
+ rule-based constraints
yj ∈ {0, 1}, ∀j ∈ S,

xij ∈ {0, 1}, ∀i ∈ C, j ∈ S.

Constraints (2) ensures satisfaction of the resource constraints for each candidate
for each hour of the day profile to the server that it is assigned to. Constraints (3)
force each application to be assigned to just one server. The activation constraint
(4) forces that a candidate can only be assigned to a server that is activated.

To define the rule-based constraints, let C1, C2 ⊂ C and S1 ⊂ S be the sets
over which these constraints are defined, then we have the following:

– Candidate-candidate REQUIRE (CCR) rule states that candidates in
C1 should be placed on the same server with candidates in C2:

∀j ∈ S, i1 ∈ C1, i2 ∈ C2, xi1j = xi2j . (5)

– Candidates-candidate EXCLUSION (CCE) rule states that the can-
didates in C1 should not be placed on the same server with candidates in
C2:

∀j ∈ S, i1 ∈ C1, i2 ∈ C2, (xi1j = 1) ⇒ xi2j = 0. (6)

– Candidate-candidate REQUIRE AT LEAST ONE (CCRAO) rule
states that candidates in C1 requires at least one candidate in C2 to be
placed on the same server as it:

∀j ∈ S, i1 ∈ C1, xi1j ⇒
∑

i2∈C2

xi2j ≥ 1. (7)

– Candidate-target REQUIRE rule (CTR) states that candidates in C1
should be placed on sever S1:

∀i1 ∈ C1,
∑
j∈S1

xi1j = 1. (8)
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– Candidate-target EXCLUSION (CTE) rule states that candidates in
C1 should not be placed on sever S1:

∀j ∈ S1, r1 ∈ C1, xi1i = 0. (9)

The CTR-rule provides a strict lower bound on the number of servers needed for
consolidation. Numerically, it is seen that running the above model with an ILP
solver that the problem becomes tougher with increase in the size of the system
and in particular depends on the number of servers.

For the lack of space, we just sketch the CP model used in our application.
For each candidate there is an integer variable Xi with domain equal to the set
of available servers S. For each server j there is a 0–1 variable Yj indicating
whether the corresponding server is used or not. By using the same parameters
as in the ILP model, the linear knapsack constraints (2) are translated into a
set of multi-knapsack constraints (using the Comet syntax):

forall(t in T, l in R)

cp.post(multiknapsack(X, all(i in C) r[i,l,t], all(j in S) u[j,l]));

The rule-based constraints (5)–(9) are easily translated into logical and reified
constraints on the integer Xi variables.

3 Computational Experiments

We report experimental results for the ILP and CP approaches that are both
encoded using Comet [4]. As ILP solver we have used the version of SCIP (ver.
1.1) delivered with the Comet (ver. 2.0).

We have considered different scenarios, and we report the results on the most
challenging instances, which have |S|=20 and |S|=30 servers, a number of can-
didates ranging from |C|=100 to |C|=250, and four resources. Each instance is

Table 1. Challenging instances: averaged objective values after 60 sec. and 1000 sec.
(averaged over 5 instances for each row). The symbol ‘-’ means that no solution was
found.

SCIP CP (Comet)
|S| |C| 60 sec. 1000 sec. 60 sec. 1000 sec.
20 100 - 40 100 80

150 - 40 100 100
200 - - 290 280
250 - - 320 300

30 100 - - 110 80
150 - - 245 200
200 - - 310 300
250 - - 525 500
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involved in at least two rule-based constraints,making the whole problem demand-
ing for the ILP solver. Table 1 reports the cost and the computation time with both
the ILP and CP solver averaged over 5 different instances of the same dimension
(for a total of 40 instances). For both methods, we set two time limits, the first at
60 sec. and the second to 1000 sec. Note that the ILP solver is never able to pro-
duce an admissible solution within 60 sec, while CP does. Things are only slightly
different for the results after 1000 sec. In many cases the ILP solver does not even
find a feasible solution, but when it does, the solutions are of very good quality.

4 Conclusion

We presented the Service Consolidation Problem solved at Neptuny, using both
an ILP and a CP approach. The ILP approach is very effective when the number
of rule-based constraints is limited. However, when the rule-based constraints are
many, as it is the case in our real-life applications, the ILP approach fails in find-
ing a feasible solution in a short time (where short is defined in terms of usability
within an application). The CP approach is very effective in finding feasible solu-
tions, and even for the largest instances always finds a solution within 60 seconds.
In addition, for other tests not reported here, it is also very fast in detecting in-
feasibility. As future work, there are two open issues: the first issue concerns the
use of explanation techniques (like QuickXplain [5]) to be able to obtain a set of
conflicting constraints to show to the final user, and the second issue is to improve
the efficiency of the solver in order to tackle even larger instances.
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Abstract. We investigate mathematical formulations and solution tech-
niques for a variant of the Connected Subgraph Problem. Given a con-
nected graph with costs and profits associated with the nodes, the goal
is to find a connected subgraph that contains a subset of distinguished
vertices. In this work we focus on the budget-constrained version, where
we maximize the total profit of the nodes in the subgraph subject to a
budget constraint on the total cost. We propose several mixed-integer
formulations for enforcing the subgraph connectivity requirement, which
plays a key role in the combinatorial structure of the problem. We show
that a new formulation based on subtour elimination constraints is more
effective at capturing the combinatorial structure of the problem, pro-
viding significant advantages over the previously considered encoding
which was based on a single commodity flow. We test our formulations
on synthetic instances as well as on real-world instances of an important
problem in environmental conservation concerning the design of wildlife
corridors. Our encoding results in a much tighter LP relaxation, and
more importantly, it results in finding better integer feasible solutions as
well as much better upper bounds on the objective (often proving opti-
mality or within less than 1% of optimality), both when considering the
synthetic instances as well as the real-world wildlife corridor instances.

1 Introduction

A large class of decision and optimization problems can be captured as finding a
connected subgraph of a larger graph satisfying certain cost and revenue require-
ments. In different realizations of the Connection Subgraph Problem costs and
profits are associated with either edges, nodes or both. Examples of this family
of problems are the Minimum Steiner Tree, Maximum-Weighted Connected Sub-
graph and Point-to-Point Connection Problem. Such problems arise in a large
number of applications – e.g. network design, system biology, social networks
and facility location planning.

Here, we are concerned with a variant of the Connected Subgraph Problem
where we are given a graph with costs and profits associated with nodes and
one or more designated nodes called terminals and we seek to find a connected
subgraph that includes the terminals with maximal profit and total cost within a
specified budget which we refer to as the Budget-Constrained Steiner Connected
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Subgraph Problem with Node Profits and Node Costs. This problem is known
to be NP-hard even for the case of no terminals [2]. Removing the connectivity
constraint, we have a 0-1 knapsack problem. On the other hand, the connectivity
constraint relates it to other important classes of well-studied problems such as
the Traveling Salesman Problem and the Steiner Tree problem. The connectivity
constraint plays a key role in the combinatorics of this problem and we propose
new mathematical formulations to better capture the structure of the problem
w.r.t. the connectivity constraint.

Our work is motivated by an important instance of this problem that arises
in Conservation Planning. The general problem consists of selecting a set of land
parcels for conservation to ensure species viability. This problem is also known
in the literature in its different variants as site selection, reserve network design,
and corridor design. Biologists have highlighted the importance of addressing
the negative ecological impacts of habitat fragmentation when selecting parcels
for conservation. To this effect, ways to increase the spatial coherence among
the set of parcels selected for conservation have been investigated ( see [14] for
a review). We look at the problem of designing so-called wildlife corridors to
connect areas of biological significance (e.g. established reserves). Wildlife cor-
ridors are an important conservation method in that they increase the genetic
diversity and allow for greater mobility (and hence better response to predation
and stochastic events such as fire, as well as long term climate change). Specifi-
cally, in the wildlife corridor design problem, we are given a set of land parcels,
a set of reserves (land parcels that correspond to biologically significant areas),
and the cost (e.g. land value) and utility (e.g. habitat suitability) of each parcel.
The goal is to select a subset of the parcels that forms a connected network
including all reserves. This problem is clearly an instance of the Connected Sub-
graph Problem with node profits and node costs, where the nodes correspond to
parcels, the terminal nodes correspond to the reserves and the edges correspond
to adjacency of parcels. Conservation and land use planners generally operate
with a limited budget while striving to secure the land that results in the corri-
dor with best habitat suitability. This results in the budget-constrained version
of the connected subgraph problem.

The connected subgraph problem in the context of designing wildlife corridors
was recently studied in [2, 7]. Conrad et al. [2] designate one of the terminals as
a root node and encode the connectivity constraints as a single commodity flow
from the root to the selected nodes in the subgraph. This encoding is small and
easy to enforce. They present computational results which show an easy-hard-
easy runtime pattern with respect to the allowed budget on a benchmark of syn-
thetic instances [7]. Further, when solving large scale real world instances of this
optimization problem, the authors report extremely large running time. Here,
we try to improve the state-of-the-art for this problem by proposing alternative
formulations. We show that the easy-hard-easy pattern in runtime solution for
finding optimal solutions observed for synthetic instances aligns with a similar
pattern in the relative integrality gap of the LP relaxation of the model. This
observation suggests that formulations that have tighter LP relaxations might
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also lead to faster solution times for finding optimal solutions. To this effect, we
propose two additional formulations.

One possible alternative which we explore in this paper is to establish the
connectivity of each selected node to the root node by a separate commodity flow.
This results in a multi-commodity flow encoding of the connectivity constraints.
Although the multi-commodity flow encoding is larger than the single commodity
encoding (yet still polynomial size), it can result in a stronger LP relaxation of
the problem.

A completely different avenue is to adapt ideas from the vast literature on the
Steiner Tree Problem. Encodings of the connectivity requirement with respect
to edge decisions successfully applied to the Steiner Tree problem involve ex-
ponential number of constraints. The Steiner Tree variants involve costs and/or
profits on edges and hence such models explicitly model binary decisions of in-
cluding or excluding edges from the selected subgraph. In particular, for the
Steiner Tree Problem with Node Revenues and Budgets, Costa et al. [4] sug-
gest using the directed Dantzig-Fulkerson-Johnson formulation [5] with subtour
elimination constraints enforcing the tree structure of the selected subgraph. For
variants of the Connection Subgraph Problem that involve edge costs or edge
profits one needs to model explicitly decisions about inclusion of edges in the
selected subgraph. Given a graph G = (V, E), in the problem variant we study
we only need to make explicit decisions of which nodes to include (i.e., V ′ ⊆ V )
and connectivity needs to be satisfied on the induced subgraph G(V ′) that only
contains edges of G whose endpoints belong to V ′. Nevertheless, we adapt the
directed Dantzig-Fulkerson-Johnson formulation to our problem, therefore con-
sidering the graph edges as decision variables instead of the nodes, which in
general results in dramatically increasing the search space size from 2|V | to 2|E|.
Although at first glance this change seems counterproductive, the added strength
that results from explicitly enforcing the connectivity of each selected node to
a predefined terminal, in fact, results in a tighter formulation. This formula-
tion involves an exponential number of connectivity constraints that cannot be
represented explicitly for real life sized instances. To address this, we present a
Bender’s decomposition approach that iteratively adds connectivity constraints
to a relaxed master problem [1, 12].

We provide computational results on the three different encodings of the con-
nectivity constraints: 1) the single-commodity flow (SCF) encoding [2]; 2) a
multi-commodity flow (MCF) encoding; 3) a modified directed Dantzig-Fulkerson-
Johnson (DFJ) formulation using node costs. On a benchmark of synthetic in-
stances consisting of grid graphs with random costs and revenues, we show that
indeed the multi-commodity encoding provides better LP relaxation bounds than
the single commodity flow, and that the directed Dantzig-Fulkerson-Johnson for-
mulation provides the best bounds. Most importantly, the advantage of the bounds
provided by the directed Dantzig-Fulkerson-Johnson formulation over the single-
commodity flow encoding are greatest exactly in the hard region. The tighter
bounds turn out to have a critical effect on the solution times for finding opti-
mal integer feasible solutions. Despite the large size of the DFJ encoding, it works
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remarkably well for finding integer feasible solutions. The easy-hard-easy pattern
with respect to the budget exhibited strongly by the SCF encoding is much less
pronounced when using the DFJ encoding – this encoding is considerably more ro-
bust to the budget level. We show that the DFJ encoding finds optimal solutions
two orders of magnitude faster than the SCF encoding in the interval of budget
values that are hardest. This result is particularly relevant when solving real-world
instances because the hard region usually falls over a budget interval close to the
minimum cost solution to find a connected subgraph – i.e. it helps find solutions
for tight budgets.

We test our formulations on real problem instances concerning the design of
a Grizzly Bear Wildlife Corridor connecting three existing reserves [2]. We show
that, for critically constrained budgets, the DFJ encoding proposed here can find
optimal or close to optimal solutions, dramatically speeding up runtime. For the
same problem instances and budget levels, the single flow encoding can only
find considerably worse feasible solutions and has much worse objective upper
bounds. For example, for a budget level which is 10% above the minimum cost
required to connect all reserves, the DFJ encoding finds an optimal soltuion and
proves optimality in 25 mins, while the SCF encoding after 10 hours has found
an inferior solution and has proven an optimality gap of 31%. Similar behavior
is observed for a budget of 20% above the minimum cost. Working budgets close
to the minimum cost solution is a very likely scenario in a resource-constrained
setting such as conservation planning. Hence, with the little money available, it
is important to find the best possible solutions. The new DFJ encoding proposed
here allows us to find optimal solutions to large scale wildlife corridor problems
in exactly the budget levels that are most relevant in practice and that are out of
reach in terms of computational time for the previously proposed formulations.

The DFJ encoding is better at capturing the combinatorial structure of the
connectivity constraints which is reflected in the tightness of the LP relaxation
as well as in the fact that it finds integer feasible solutions much faster and with
very strong guarantees in terms of optimality (often proving optimality or within
less than 1% of optimality), both when considering the synthetic instances as
well as the real-world wildlife corridor instances.

2 Related Work

One of the most studied variant of the Connected Subgraph Problem is perhaps
the Steiner Tree which involves a graph G = (V, E), a set of terminal vertices
T ⊂ V , and costs associated with edges. In the Minimum Steiner Tree Problem
the goal is to select a subgraph G′ = (V ′ ⊆ V, E′ ⊆ E) of the smallest cost
possible that is a tree and contains all terminals (T ⊆ V ′). Although including a
budget constraint has important practical motivation, budget-constrained vari-
ants of the Steiner tree problem are not as nearly widely studied as the minimum
Steiner tree or the prize-collecting variant. The variant that is more relevant here
is the Budget Prize Collecting Tree Problem where in addition to costs associ-
ated with edges, there are also revenues associated with nodes. The goal is to
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select a Steiner tree with total edge cost satisfying a budget constraint while
maximizing the total node revenue of the selected tree. Levin [10] gives a (4+ ε)-
approximation scheme for this problem. Costa et al. [3, 4] study mathematical
formulations and solution techniques for this problem in the presence of addi-
tional so-called hop constraints. They use a directed rooted tree encoding with an
exponential number of connectivity constraints and a Branch-and-Cut solution
technique. One can easily see that the Budget Prize Collecting Tree Problem is a
special case of the Budget-Constrained Steiner Connected Subgraph with Node
Profits and Node Costs by replacing each edge with an artificial node with the
corresponding cost and adding edges to the endpoints of the original edge. We
adapt some of the vast amount of work on tight formulations for the variants
of the Steiner Tree problem with edge costs to the more general node-weighted
problem.

Restricted variants of Budget-Constrained Steiner Connected Subgraph Prob-
lem with Node Profits and Node Costs have been addressed previously in the
literature. Lee and Dooly [9] study the Maximum-weight Connected Subgraph
Problem where profits and unit costs are associated with nodes and the goal is to
find a connected subgraph of maximal weight and at most a specified R number
of nodes. In the constrained variant they consider a designated root node that
needs to be included in the selected subgraph.

Moss and Rabani [13] also study the connected subgraph problem with node
costs and node profits and refer to this problem as the Constrained Node Weighted
Steiner Tree Problem. They also only consider the special case where there is
either no terminals or only one terminal - a specified root node. For all three
optimization variants - the budget, quota and prize-collecting, Moss and Rabani
[13] provide an approximation guarantee of O(log n), where n is the number of
nodes in the graph. However, for the budget variant, the result is a bi-criteria
approximation, i.e. the cost of the selected nodes can exceed the budget by some
fraction. Finding an approximation algorithm for the budget-constrained vari-
ant is still an open question, as well as dealing with multiple terminals. Demaine
et al. [6] have recently shown that one can improve the O(log n) approximation
guarantee to a constant factor guarantee when restricting the class of graphs
to planar but only in the case of the minimum cost Steiner Tree Problem with
costs on nodes (but no profits). It is an open research question whether for
planar graphs one can design a better approximation scheme for the budget-
constrained variant. This is of particular interest because the Wildlife Corridor
Design problem corresponds to finding a connected subgraph in a planar graph.

3 Mathematical Formulations

The Connected Subgraph Problem with Node Profits and Node Costs is specified
by a connected graph G = (V, E) along with a set of terminal nodes T ∈ V , a
cost function on nodes c : V → R, and a profit function on nodes u : V → R.
The goal is to select a subset of the nodes V ′ ⊆ V such that all terminal nodes
T are included (T ⊆ V ′) and the induced subgraph G(V ′) is connected. In
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the Budget-Constrained variant, given a budget C we seek to find a connected
subgraph such that the total cost of the nodes in V ′ do not exceed the budget
C, while maximizing the total profit of the selected nodes.

In the following formulations, for each vertex i ∈ V , we introduce a binary
variable xi, representing whether or not i is included in the connected subgraph.
Then, the objective function, the budget constraint and the terminal inclusion
constraint are stated as:

maximize
∑
i∈V

uixi, (1)

s.t.
∑
i∈V

cixi ≤ C (2)

xt = 1, ∀t ∈ T (3)
xi ∈ {0, 1}, ∀i ∈ V (4)

In the following subsections we outline three different ways of enforcing the con-
nectivity constraints — the selected vertices should induce a connected subgraph
of the original graph G.

3.1 Connectivity as Single Commodity Flow

Conrad et al. [2], Gomes et al. [7] use a single-commodity network flow encoding
where each undirected edge {i, j} ∈ E is replaced by two directed edges (i, j)
and (j, i). Let us call the set of directed edges A. They introduce a source vertex
0, with maximum total outgoing flow n = |V |. One arbitrary terminal vertex is
chosen as root r ∈ T , and a directed edge (0, r) is defined to insert the flow into
the network. Each selected node acts as a “sink” by consuming one unit of flow,
and a node can be selected only if it has positive incoming flow. Connectivity
of the selected nodes is ensured by enforcing flow conservation constraints at all
nodes.

More formally, for each (directed) edge (i, j) ∈ A, there is a non-negative vari-
able yij to indicate the amount of flow from i to j and the following constraints
are enforced:

x0 + y0r = n (5)
yij ≤ nxj , ∀(i, j) ∈ A (6)∑

i:(i,j)∈A

yij = xj +
∑

i:(j,i)∈A

yji, ∀j ∈ V (7)

∑
j∈V

xj = y0r (8)

yij ≥ 0, ∀(i, j) ∈ A ∪ (0, r) (9)
x0 ≥ 0, ∀(i, j) ∈ A (10)

For the source of the flow, they introduce a variable x0 ∈ [0, n], representing
the eventual residual flow. Constraint (5) states that the residual flow plus the
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flow injected into the network corresponds to the total system flow. Each of
the vertices with a positive incoming flow retains one unit of flow, i.e., (yij >
0) ⇒ (xj = 1), ∀(i, j) ∈ A enforced by Constraint (6). The flow conservation is
modeled in Constraint (7). Finally, Constraint (8) enforces that the flow absorbed
by the network corresponds to the flow injected into the system. This encoding
requires 2|E| + 1 additional continuous variables and ensures that all selected
nodes form a connected component.

3.2 Connectivity as Multi-commodity Flow

In the first encoding we enforce the connectivity of all selected nodes though a
single commodity flow. In this model, the key difference is that we enforce the
connectivity of the selected set of nodes by associating a separate commodity
with each node. There will be one unit of flow from the root to each selected
node of its own “commodity” type. We arbitrarily select one of the terminals as
a root node denoted r ∈ T . Each other node i is a potential sink of one unit of
commodity flow of type i that will have to be routed from the root node to i.
Let use denote the set of neighbors of a node i as δ(i) = {j|(i, j) ∈ A}.

Similarly to the original model, we still have binary decision variable for each
vertex and the objective, the budget constraint and the terminal inclusion con-
straint are defined as before.

For each (directed) edge (i, j) ∈ A and each node k different from the root
node r, we introduce a variable ykij ≥ 0 which when it is nonzero indicates that
the edge carries flow of type k. If a node k is selected then in becomes an active
sink for flow of type k.∑

j:r∈δ(j)

ykjr = 0 ∀k ∈ V − r (11)

∑
j∈δ(k)

ykjk = xk ∀k ∈ V − r (12)

∑
j∈δ(k)

ykkj = 0 ∀k ∈ V − r (13)

∑
j∈δ(i)

ykij =
∑

i∈δ(j)

ykji ∀k, ∀i ∈ V − r, i �= k (14)

ykij ≤ xi ∀k, ∀i ∈ V − r, ∀j ∈ δ(i) (15)
ykij ≤ xj ∀k, ∀i ∈ V − r, ∀j ∈ δ(i) (16)
ykij ≥ 0 ∀k ∈ V − r, ∀(i, j) ∈ A (17)

For all nodes k, if node k is selected, then k is a sink for flow of commodity
k (Constraint (12, 13)). Constraint (14) imposes conservation of flow for each
commodity type k at each node different from the sink k and the source r, and
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Constraint (11) imposes that the root does not have any incoming flow. Finally,
the capacity of each edge is zero if either end node is not selected, and 1 otherwise
(Constraint (15, 16)).

This encoding requires (|V | − 1)2|E| additional continuous variables – con-
siderably more than the SCF encoding. However, we will see that enforcing the
connectivity of each node to the root separately results in tighter LP relaxation.

3.3 Connectivity as Directed Steiner Tree

As suggested by the multi-commodity flow encoding, to enforce connectivity one
may enforce that there exists a path from each selected node to the root node. In
this third encoding, we in fact explicitly model the selection of edges as binary
variables and insist that we select a set of nodes and edges such that there is a
single path from each selected node to the root (using the selected nodes). In
other words, we impose stronger constraints than necessary while preserving all
feasible solutions in terms of subset of nodes that induce a connected subgraph.
In effect, we enforce the connectivity constraints by adding constraints that en-
sure that we select edges that form a (Steiner) tree. Several studies on Steiner
Tree problem variants have shown that often directed edge models are better
than undirected ones in solving Steiner Tree problems (e.g. [11, 4]). Following
these results, we adapt the directed Dantzig-Fulkerson-Johnson formulation of
connectivity. We have a binary variable for each directed edge in A (Constraint
(24)). We can avoid explicitly including binary variables x for each node, as
these decisions can be inferred from the values of the edge binary variables.
The set of selected nodes consists of the nodes that have exactly one incoming
edge. Although the vertex variables are not explicitly represented, it will still be
useful to refer to them. To this effect, given a solution vector over the edge vari-
ables y, let us define an associated vertex solution vector x as xk =

∑
k∈δ(i) yik.

Constraints (18) and (19) express the objective and the budget constraint in
terms of edge variables. Constraint (20) enforces that each terminal node should
have one incoming edge (i.e. it should be selected). To enforce the directed tree
property, each non-root node is allowed to have at most one incoming edge (Con-
straint (21)). Connectivity is enforced through generalized subtour elimination
constraints defined over edge variables (Constraints (23)). We also include Con-
straint (22) which strengthens the formulation by enforcing that each edge is
used in at most one direction.

max
∑
i∈V

⎛
⎝ui

∑
j∈δ(i)

yji

⎞
⎠ (18)

s.t.
∑
i∈V

⎛
⎝ci

∑
j∈δ(i)

yji

⎞
⎠ ≤ C (19)
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∑
j∈δ(i)

yji = 1 ∀i ∈ T (20)

∑
j∈δ(i)

yji ≤ 1 ∀i ∈ V − T (21)

yij + yji ≤ 1 ∀i ∈ V − T, ∀j ∈ δ(i) − r (22)∑
(i,j)∈A|j∈S,i∈V \S

yij ≥
∑

j∈δ(k)

yjk, ∀S ⊂ V − r, ∀k ∈ S [cuts] (23)

yij ∈ {0, 1} ∀(i, j) ∈ A (24)

Given the exponential number of connectivity Constraints (23), in the following
section we describe a solution approach in which we relax these constraints in
the context of cutting plane procedure and only add them as cuts when they
become violated.

4 Solution Approaches

Conrad et al. [2], Gomes et al. [7] outline a preprocessing technique for the
Budget-constrained Connected Subgraph problem which effectively reduces the
problem size for tight budgets. The procedure computes all-pairs shortest paths
in the graph and uses these distances to compute for each node the minimal
Steiner Tree cost that covers all three terminals as well as the node under con-
sideration. If this minimum cost exceeds the allowed budget, the node does not
belong to any feasible solution and hence its variable is assigned to 0.

Gomes et al. [7] also outline a greedy method for finding feasible solutions to
the Budget-constrained Connected Subgraph problem by first computing the
minimum cost Steiner tree covering all the terminal nodes and then greed-
ily adding additional nodes until the allowed budget is exhausted. They show
that providing this greedy solution to their encoding of the Connected Sub-
graph Problem (the single commodity flow encoding) significantly improves
performance.

We use both of these techniques. We apply the preprocessing step to all prob-
lem instances. In addition, we provide the greedy solution as a starting point to
the SCF encoding.

Our approach to solving the DFJ encoding is based on a cutting plane or
Bender’s decomposition approach. We solve a relaxed “master” problem which
omits the exponential number of connectivity constraints. In a first pass of this
procedure all edge variables are relaxed from binary variables to continuous
variables ∈ [0, 1]. In this first phase, we solve a sequence of progressively tighter
LP master problems and in effect this corresponds to a cutting plane approach.
Once we find a (fractional) optimal solution to the LP master problem that does
not violate any connectivity constraints, we have obtained the optimal solution
to the LP relaxation of the DFJ formulation. If that solution is integral, then
we have an optimal solution to the original problem. If the LP solution is not
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integral, we enforce the integrality constraints for all edge variables. We continue
the same iteration steps where now the master problem includes the cuts learned
during solving the LP relaxation as well as the integrality constraints. In the
second phase, we need to solve a sequence of MIP master problems which is in
effect a Bender’s decomposition approach. At each iteration, the optimal solution
to the MIP master might not be connected and more connectivity cuts would
need to be added. Once we find an optimal MIP master solution, we have found
an optimal integer solution to the original problem. The detailed algorithm is
outlined below:

Master Algorithm:
0. (Initialize) Define the initial relaxation P0 of the problem by Constraints (18,
19,20, 21, 22) as well as the integrality Constraint (24) relaxed to only enforce
the bounds. Set iteration count t = 0.
1. (Master optimization) Solve Pt and obtain an optimal (edge) solution yt.
Let the associated vertex solution be xt. If the associated vertex solution xt is
integral, go to Step 3, otherwise go to Step 4.
2. (Additional Check) Check the connectivity of the induced graph G(xt). If it is
connected, then xt is optimal, and the algorithm returns solution xt. Otherwise,
continue to Step 4.
3. (Master separation) Check if yt satisfies all the connectivity constraints (23). If
it does, go to Step 4. If a violated constraint is found, then add the corresponding
cut to the master problem and let Pt+1 be the problem obtained. Set t = t + 1
and return to Step 1.
4. (Optimality check) If the associated vertex solution xt is integral, then xt is
optimal, and the algorithm returns solution xt. Otherwise, add the integrality
constraints (24) back in to the problem, and let Pt+1 be the problem obtained.
Set t = t + 1 and go to Step 1.

Checking the exponential number of connectivity constraints (23) given an edge
solution yt in Step 3 is done through a polynomial time separation procedure.
The separation procedure checks the connectivity of each selected vertex to the
root and terminates as soon as it finds a disconnected node and infers a cut
to be added. It first checks the connectivity of the terminals to the root and
then other selected vertices. We solve a max-flow problem in the directed graph
G’=(V,A) between the root and each node k ∈ V − r selected in the proposed
solution, i.e. in the associated vertex solution xt(k) > 1−ε. The capacities of the
edges are the current values of the edge variables yt in the master solution. If the
maximum flow is less than the sum of the incoming arcs from k, we have found
a violated constraint. The dual variables of the max-flow subproblem indicate
the partition of nodes {S, V \S} that define the minimum cut (let r ∈ V \S).

Now, we can add the cut enforcing that at least one edge across the partition
needs to be selected if parcel k is selected:∑

(i,j)∈A|i∈V \S,j∈S

yij ≥ xk (25)
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Step 2 of the algorithm is a special step that applies to the Connected Subgraph
Problems with node costs and node profits. Given a solution yij of the DFJ
formulation and the associated vertex vector xt we can infer a set of selected
nodes V ′ = {k ∈ V |xk(t) = 1}. The original problem only requires that for
the selected subset of vertices V ′ the induced graph G(V ′) is connected, while
the DFJ formulation poses a much stronger requirement to select a subset of
edges forming a tree. Hence, it can be the case that that V ′ induces a connected
subgraph in G, but the selected edges E′ = {(i, j) ∈ A|yij = 1} do not form a
single connected component. To illustrate this, imagine that the selected edges
E′ form two vertex-disjoint cycles C1 and C2 and such that u ∈ C1 and v ∈ C2
and u, v ∈ E. The edge set E′ clearly does form a connected subgraph, however
the subgraph induced by the selected vertices is connected because of the edge
u, v. Without Step 2, our separation procedure in Step 3 will infer a new cut and
will wrongly conclude that the selected master solution is not a feasible solution.
To avoid such cases, we introduce Step 2 to check the weaker connectivity in
terms of the induced subgraph. If this connectivity check fails, then we use the
max-flow separation procedure in Step 3 to infer a new connectivity cut to add
to the master.

The solution procedure described above solves a series of tighter relaxation
of the original problem and therefore the first solution that is feasible w.r.t.
all the constraints in the original problem is in fact the optimal solution. One
problem with this approach is that we need to wait until the very end to get
one integer feasible solution which is also the optimal one. Ideally, one would
like to have integer feasible solutions as soon as possible. We achieve this in
the context of this solution technique by noticing that while solving the MIP
master to optimality we discover a sequence of integer solutions. Some of these
integer solutions might satisfy all connectivity constraints (i.e. they are feasible
solutions to the original problem), but are discarded by the master as sub-
optimal – there might be disconnected solutions to the master of better quality.
To detect the discovery of feasible solutions to the original problem while solving
the master problem, we introduce a connectivity check at each MIP master
incumbent solution (not described in our algorithm outline above). If a MIP
master incumbent is connected and is better than any other connected integer
solution discovered so far, we record this solution as an incumbent to our original
problem.

5 Experimental Results

We evaluate the strength of the LP relaxation of the three alternative encod-
ings on a synthetically generated benchmark of instances [2]. We generate 100
instances of a 10 by 10 grid parcels (100 nodes) and 3 reserves (terminals) with
uniformly sampled costs and utilities. We report median running times across the
100 instances where the budget is varied as percentage slack over the minimum
cost solution for the particular instance. For example, given a minimum cost so-
lution for connecting the terminal nodes of value cmin, 10% slack corresponds to
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budget B = 110% ∗ cmin. All computational experiments were performed using
IBM ILOG CPLEX 11[8].

Figure 1 compares the relative gap between the optimal objective of the LP
relaxation z∗LP and the optimal objective of the problem z∗IP at different budget
levels given by (z∗LP − z∗IP )/z∗IP . One can see that the DFJ encoding indeed
provides a relaxation which is much tighter than the relaxation of the single
flow formulation of the problem. In particular, the smaller the budget is (up to
some point), the bigger advantage the exponential formulation has. This added
strength however is paid in computational time. The LP relaxation of the SCF
model is solved really fast compared to the DFJ encoding. On the other had,
the multi-commodity encoding does not dominate on either measure – it pro-
vides tighter bound on the optimal but not as tight as the DFJ formulation
but at the same time takes a considerable computational time. In the rest of
the experimental analysis, we concentrate on the single commodity flow and the
DFJ encoding. The DFJ-style encodings in the context of Steiner tree problems
are known to produce tight LP relaxations. Our results confirm this trend in
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the variant we are studying here. More importantly, one would like to use the
strength of this encoding to find the optimal integer feasible solution.

Figure 2 compares the running time of the SCF encoding and the DFJ encod-
ing. An easy-hard-easy pattern of the running time with respect to the budget
was already observed by Gomes et al. [7]. Here, we clearly see that the DFJ
encoding is in fact most beneficial in exactly the hard budget region. For large
budgets, the DFJ encoding in fact has worst running time than the single com-
modity flow. However, more importantly it improves the running time in the
hard region by 2 orders of magnitude.

We are interested in the running time performance of the SCF and the DFJ
encoding when looking for integer feasible solutions. We evaluate the perfor-
mance on a real-world Wildlife Corridor design problem attempting to connect
three existing reserves. We tackle this problem at two different spatial scales.
The coarser scale considers parcels grid cells of size 40 by 40 km and has 242
parcels (nodes). The finer spatial scale consider parcels of size 10 by 10 km and
has 3299 parcels (nodes).

Figure 3 clearly demonstrates the advantage of the DFJ encoding on the 40km
problem instance both in terms of the LP relaxation bound (left) and in terms of
finding integer optimal solutions (right). The single flow encoding is fast for very
tight and very large budgets, but for a critically constrained region the running
time is much higher. The DFJ encoding on the other hand shows robust running
times which do not vary much with the budget level.

We compare the running time to find integer solutions for the much larger in-
stance at spatial resolution of 10 km. We set the budget at different (tight) levels
as percent slack above the minimum cost required to connect the reserves. Table
1 presents solution quality, running times and optimality gap results for three dif-
ferent levels. For comparison, we also include the quality of the solution obtained
by the greedy algorithm from [7] (which is usually much worse than the optimal).
The results in Table 1 show that the DFJ encoding is much faster at finding op-
timal or near optimal solutions to the problem than the SCF encoding. Given a
8 hour cutoff time, for all three budget levels DFJ finds equal or better feasible
solutions than SCF and also provides very tight optimality guarantee (< 1% in all
cases). On the other hand, SCF in all three cases can only guarantee that the best
solution it has founf is within at best 28% of optimality.
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Table 1. The performance of the SCF and DFJ encoding on a large real world instance
with an 8 hour cutoff time

budget slack encoding time objective opt. gap
10% greedy < 2 mins 10691163 NA

109475 SCF 8 hrs 10877799 31.15%
DFJ 25 mins 12107793 0.01%

20% greedy < 2 mins 12497251 NA

119427
SCF 8 hrs 12911652 30.35%
DFJ 2 hrs 25 mins 13640629 0.01%

30% greedy < 2 mins 13581815 NA

129379
SCF 8 hrs 13776496 28.64%
DFJ 7 hrs 35 mins 14703920 0.62%

6 Conclusion

The budget-constrained Connection Subgraph Problem is computationally chal-
lenging problem with a lot of real world applications. Capturing well the combina-
torial structure of the connectivity constraint is critical to effectively solving large
scale instances. In this work, we proposed a novel solution approach to this prob-
lem that uses an adapted directed Dantzig-Fulkerson-Johnson formulation with
subtour elimination constraints in the context of a cut-generation approach. This
results in significant speed up in run times when the budget level falls in the inter-
val that results in most computationally challenging instances. We evaluate perfor-
mance on a relatively large instance of the Wildlife Corridor Design Problem and
find optimal solutions for different budget levels. This work is a good example of
identifying and extending relevant Computer Science results for problems arising
in the area of Computation Sustainability.
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1 Introduction

The bin packing problem (BP) consists in finding the minimum number of bins neces-
sary to pack a set of items so that the total size of the items in each bin does not exceed
the bin capacity C. The bin capacity is common for all the bins.

This problem can be solved in Constraint Programming (CP) by introducing one
placement variable xi for each item and one load variable lj for each bin.

The Pack([x1, . . . , xn], [w1, . . . , wn], [l1, . . . , lm]) constraint introduced by Shaw
[1] links the placement variables x1, . . . , xn of n items having weights w1, . . . , wn

with the load variables of m bins l1, . . . , lm with domains {0, . . . , C}. More precisely
the constraint ensures that ∀j ∈ {1, . . . , m} : lj =

∑n
i=1(xi = j) · wi where xi =

j is reified to 1 if the equality holds and to 0 otherwise. The Pack constraint was
successfully used in several applications.

In addition to the decomposition constraints ∀j ∈ {1, . . . , m} : lj =
∑n

i=1(xi =
j) · wi and the redundant constraint

∑n
i=1 wi =

∑n
j=1 lj , Shaw introduced:

1. a filtering algorithm based on a knapsack reasoning inside each bin, and
2. a failure detection algorithm based on a reduction of the partial solution to a bin

packing problem.

This work focuses on improvements of the failure detection algorithm.

2 Reductions to Bin Packing Problems

Shaw describes in [1] a fast failure detection procedure for the Pack constraint using a
bin packing lower bound (BPLB). The idea is to reduce the current partial solution (i.e.
where some items are already assigned to a bin) of the Pack constraint to a bin packing
problem. Then a failure is detected if the BPLB is larger than the number of available
bins m.

We propose two new reductions of a partial solution to a bin packing problem. The
first one can in some cases dominate Shaw’s reduction and the second one theoretically
dominates the other two.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 117–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Paul Shaw’s reduction: R0. Shaw’s reduction consists in creating a bin packing prob-
lem with the following characteristics. The bin capacity is the largest upper bound of
the load variables, i.e. c = maxj∈{1,...,m}(lmax

j ). All items that are not packed in the
constraint are part of the items of the reduced problem. Furthermore, for each bin, a vir-
tual item is added to the reduced problem to reflect (1) the upper bound dissimilarities
of the load variables and (2) the already packed items. More precisely, the size of the
virtual item for a bin j is (c−lmax

j +
∑

{i|xi=j} wi), that is the bin capacity c reduced by
the actual capacity of the bin in the constraint plus the total size of the already packed
items in this bin. An example is shown in Figure 1(b).
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Fig. 1. Example of the three reductions for the bin packing problem

RMin. We introduce RMin that is obtained from R0 by reducing the capacity of the
bins and the size of all the virtual items by the size of the smallest virtual item. The
virtual items have a size of (c−lmax

j +
∑

{i|xi=j} wi−mink(c−lmax
k +
∑

{i|xi=k} wi)).
This reduction is illustrated in Figure 1(c).

RMax. We propose RMax that consists in increasing the capacity and the size of the
virtual items by a common quantity, so that, when distributing the items with a bin
packing algorithm, it is guaranteed that each virtual item will occupy a different bin. In
order to achieve this, each virtual item’s size must be larger than half the bin capacity.

In R0, let p be the size of the smallest virtual item, and c the capacity of the bins.
The size of the virtual items and the capacity must be increased by (c − 2p + 1). The
smallest virtual item will have a size of s = (c−p−1) and the capacity of the bins will
be (2c − 2p + 1) = 2s− 1. As one can observe, the smallest virtual item is larger than
the half of the capacity. If c = 2p − 1, this reduction is equivalent to Shaw’s reduction.
Note that if c < 2p − 1, the capacity and the virtual items will be reduced.

The virtual items have a size of (2c−2p+1− lmax
j +
∑

{i|xi=j} wi). This reduction
is illustrated in Figure 1(d).

Generic reduction: Rδ. All these reductions are particular cases of a generic reduc-
tion (Rδ) which, based on R0, consists in adding a positive or negative delta (δ) to the
capacity and to all the virtual items’ sizes.

For R0, δ = 0. For RMin, δ is the minimum possible value that keeps all sizes
positive. A smaller δ would create an inconsistency, as the smallest virtual item would
have a negative size. δRMin is always negative or equal to zero. For RMax, δ is the
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smallest value guaranteeing that virtual items cannot pile up. Note that in some cases,
δRMin or δRMax can be zero. Also note that δR0 can be larger than the others.

3 Theoretical Comparison of the Three Reductions

Definition 1 (Dominate). Let A and B be two reductions of the Pack constraint to
bin packing. We say that A dominates B if, for any instance of the Pack constraint, the
number of bins required in A is larger than the number of bins required in B.

Theorem 1. Rδ is a relaxation of the problem of testing the consistency of the Pack
constraint.

Proof. If a partial solution of the Pack constraint can be extended to a solution with
every item placed, then Rδ also has a solution: if each virtual item is placed in its initial
bin, then the free space of each bin is equal to its free space in the partial solution, and
so all the unplaced items can be placed in the same bin as in the extended solution from
the partial assignment.

Theorem 2. R0 does not dominate RMin and RMin does not dominate R0.

Proof. Consider the partial packing {4, 2} of two bins of capacity 6, and the unpacked
items {3, 3}. R0 only needs two bins, where RMin needs three bins.

Now consider the partial packing {2, 3, 1} of three bins of capacity 4, and the un-
packed items {3, 3}. In this case, R0 needs four bins, where RMin only needs three
bins.

Theorem 3. RMax is equivalent to testing the consistency of the Pack constraint

Proof. By Theorem 1, RMax is a relaxation of the partial solution of the BP problem.
There remains to show that if there is a solution for RMax, then the partial solution
can be extended to a complete solution of the Pack constraint. Let’s call v the bin
from which the virtual item v is from. It is guaranteed by the size of the virtual items
that they will each be placed in a different bin bv. The remaining space in each bin bv

corresponds to the free space in bin v in the original problem. An extended solution of
the Pack constraint is obtained by packing in v all items packed in bv.

Corollary 1. RMax dominates R0 and RMin.

From a theroretical standpoint, the RMax reduction is always better or equivalent to R0,
RMin, and any other instance of Rδ. In practice, though, this is not always the case, as
it is shown in the next section.

4 Experimental Comparison

The failure test of Shaw [1] uses the bin packing lower bound L2 of Martello and Toth
[2] that can be computed in linear time. Recently the lower bound L3 of Labbé [3] has
been proved [4] to be always larger than or equal to L2 and to benefit from a better
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worst case asymptotic performance ratio (3/4 for L3 [4] and 2/3 for L2 [2]), while still
having a linear computation time. Experiments show us that L3 can help detect about
20% more failures than L2. Throughout the next experiments, we are using L3.

Although in theory, RMax always outperforms R0 and RMin, the practical results
are less systematic. This is because L3 (as well as L2) is not monotonic, which means
that a BP instance requiring a larger number of bins than a second instance can have a
lower bound smaller than the second one. In fact, L3 is more adapted to instances where
most item sizes are larger than the third of the capacity. RMax increases the capacity,
making unpacked items proportionally smaller. For each of R0, RMin and RMax, there
are instances where they contribute to detecting a failure, while the other two do not.

Table 1 presents the performance of the failure detection using each one of the reduc-
tions. It shows the ratio of failures found using each reduction over the total number of
failures found by at least one filter. Additional reductions have been experimented, with
δ being respectively 25%, 50% and 75% on the way between δRMin and δRMax. These
results were obtained by generating more than 1,000 random instances and computing
L3 on each of their reductions. Here is how the instances were produced:

Inst1. Number of bins, number of items and capacity C each randomly chosen between
30 and 50. Bins already filled up to 1..C. Random item sizes in {1, . . . , C}.

Inst2. 50 bins. Capacity = 100. Number of items is 100 or 200. Size with normal distri-
bution (μ = 5000/n, σ ∈ {3n, 2n, n, n/2, n/3} where n is the number of items).
Among these, percentage of items already placed ∈ {10%, 20%, 30%, 40%, 50%}.

Inst3. Idem as 2, but the number of placed items is 90% or 95%.

Table 1. Comparison of the number of failures found with different reductions

Instances Number of failures detected (%)
RMin R25 R50 R75 RMax R0

Inst1 74.16 78.87 86.40 89.53 99.58 74.79
Inst2 99.93 86.75 87.03 87.8 87.15 99.93
Inst3 80.64 86.55 93.37 97.75 99.39 98.52

This reveals that some types of instances are more adapted to R0 or RMin, while
some are more adapted to RMax. The intermediate reductions R25, R50 and R75 were
never better in average than RMin and RMax. Thus, they were not considered in the
following experiments.

Comparison on benchmark instances. For the analysis to be more relevant, we com-
pared the behavior of the three proposed reductions on real instances. CP algorithms
were run over Scholl’s SALBP-1 benchmark [5] and on Scholl’s bin packing instances
[6] (first data set with n=50 and n=100), and at every change in the domains of the vari-
ables, the current partial solution was extracted. We randomly selected 30,000 extracted
instances from each. In the second case, only instances for which at least one reduction
could detect a failure were selected. The three reductions using L3 were applied on
these selected instances. Figure 2 gives a schema of the results.
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Fig. 2. Proportions of failure detections using each reduction on SALBP-1 instances (left) and BP
instances (right)

These results show that R0 detects a larger number of failures. But (almost) all of its
failures are also detected by one of the others. Hence, combining RMin and RMax is
better than using R0 alone. It is also useless to combine R0 with RMin and RMax.

Impact on a CP search. We compared the effect of applying the failure detection strat-
egy in a CP search on Scholl’s bin packing instances N1 and N2 (360 instances), using
R0, RMin, RMax and then RMin and RMax combined, with a time limit of five min-
utes for each instance. For the instances for which all reductions leaded to the same
solution, the mean computation time of the searches was computed. All these results
are presented in Table 2. One can observe that RMin and Rmax combined find more
optimal solutions (though there is no significative difference with R0), and lead faster
to the solution than the others (33% speedup compared to R0).

Table 2. Comparison of the reductions on solving the BPLB problem

No pruning R0 RMin RMax RMin & RMax
Number of optimal solutions 281 317 315 309 319

Mean time (s) 5.39 1.88 1.60 3.50 1.25

5 Conclusion

We presented two new reductions of a partial solution of the Pack constraint to a bin
packing problem. Through a CP search, these reductions are submitted to a bin packing
lower bound algorithm in order to detect failures of the Pack constraint as suggested
by Shaw in [1].

We proved that our second reduction (RMax) theoretically provides a better failure
detection than the others, assuming a perfect lower-bound algorithm. We conclude that
the best strategy is to consider both RMin and RMax filters in a CP search.
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Abstract. Gomory’s Mixed-Integer Cuts (GMICs) are widely used in
modern branch-and-cut codes for the solution of Mixed-Integer Pro-
grams. Typically, GMICs are iteratively generated from the optimal ba-
sis of the current Linear Programming (LP) relaxation, and immediately
added to the LP before the next round of cuts is generated. Unfortu-
nately, this approach prone to instability.

In this paper we analyze a different scheme for the generation of rank-1
GMIC read from a basis of the original LP—the one before the addition of
any cut. We adopt a relax-and-cut approach where the generated GMIC
are not added to the current LP, but immediately relaxed in a Lagrangian
fashion.

Various elaborations of the basic idea are presented, that lead to
very fast—yet accurate—variants of the basic scheme. Very encouraging
computational results are presented, with a comparison with alternative
techniques from the literature also aimed at improving the GMIC qual-
ity, including those proposed very recently by Balas and Bonami and by
Dash and Goycoolea.

Keywords: Mixed-integer programming, Gomory’s cuts, Lagrangian
relaxation, Relax and Cut.

1 Introduction

Gomory’s Mixed-Integer Cuts (GMICs) are of fundamental importance for
branch-and-cut Mixed-Integer Program (MIP) solvers, that however are quite
conservative in their use because of known issues due to the iterative accumu-
lation of GMICs in the optimal Linear Programming (LP) basis, which leads to
numerical instability due a typically exponential growth of the determinant of
the LP basis.

Recent work on the subject suggests however that stability issues are largely
due to the overall framework where GMICs are used, rather than to the GMICs
themselves. Indeed, the two main cutting plane modules (the LP solver and the
cut generator) form a closed-loop system that is intrinsically prone to instability—
unless a “decoupling filter” is introduced in the loop. Breaking the feedback is
therefore a must if one wants to really exploit the power of GMICs.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 123–135, 2010.
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In this paper we propose a new mechanism to break the entanglement between
LP bases and GMICs cuts. More specifically, in our framework the generated
GMICs are not added to the current LP, but immediately relaxed in a Lagrangian
fashion—following an approach known as relax-and-cut. In this way, GMICs are
always generated from a (Lagrangian near-optimal) basis of the original LP,
hence their quality is not likely to deteriorate in the long run as we do not allow
GMIC to accumulate in the LP basis.

The paper is organized as follows. Section 2 briefly reviews some relevant lit-
erature. In Section 3 we introduce our notation and describe the relax-and-cut
framework. Various elaborations of the basic idea are presented in Section 4,
that lead to faster yet accurate variants of the basic relax-and-cut scheme. Very
encouraging computational results are presented in Section 5, with a compari-
son with alternative techniques from the literature also aimed at improving the
GMIC quality, namely those proposed very recently by Balas and Bonami [1]
and by Dash and Goycoolea [2]. Some conclusions and possible directions of work
are finally drawn in Section 6.

We assume the reader has some familiarity with MIP cuts; see, e.g., Cornuéjols
[3] for a recent survey on the subject.

2 Literature

GMICs for general MIPs have been introduced by Ralph Gomory about 50 years
ago in his seminal paper [4]. However, these cuts were not used in practice until
the work of Balas, Ceria, Cornuéjols and Natraj [5], who found for the first time
an effective way to exploit them in a branch-and-cut context [6]. In particular,
the authors stressed the importance of generating GMICs in rounds, i.e., from
all the tableau rows with fractional right hand side.

The explanation of GMIC instability in terms of closed-loop systems was
pointed out by Zanette, Fischetti and Balas [7], who presented computational
experiments showing that reading the LP optimal solution to cut and the Go-
mory cuts from the same LP basis almost invariably creates a dangerous feedback
in the long run.

The same explanation applies to other cutting plane procedures that de-
rive cuts directly from tableau information of the enlarged LP that includes
previously-generated cuts (e.g., those related to Gomory’s corner polyhedron,
including cyclic-group cuts, intersection cuts, multi-row cuts, etc.). This is not
necessarily the case when using methods based on an external cut generation LP
(e.g., disjunctive methods using disjunctions not read from the optimal tableau),
or when the derived cuts are post-processed so as to reduce their correlation with
the optimal tableau (e.g., through lexicographic search [7] or by cut strengthen-
ing methods [2,8]).

A different framework for Gomory’s cuts was recently proposed by Fischetti
and Lodi [9]. The aim of that paper was actually to compute the best possible
bound obtainable with rank-1 fractional Gomory’s cuts. The fact of restricting
to rank-1 cuts forced the authors to get rid of the classical separation scheme,
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and to model the separation problem through an auxiliary MIP to be solved
by an external module. The surprising outcome was a numerically stable cut-
ting plane method where rank-1 fractional Gomory’s cuts alone produced very
tight bounds—though the separation overhead was too large to be practical in
most cases. Note that, in that scheme, the separation procedure did not have
access to the optimal LP basis, but only received on input the point to be
separated—hence loosening the optimization and separation entanglement. As a
consequence, even if the point x∗ to be separated possibly did not change signifi-
cantly at some iterations, it was unlikely that the separated cuts were as heavily
correlated as in the classical scheme—in this context, the well-known erratic
behavior of MIP solvers that often return quite different solutions for almost
identical input, turned out to be beneficial in that it acted as a diversification in
the cut selection policy. These results were later confirmed for GMICs by Balas
and Saxena [10] and by Dash, Günlük, and Lodi [11], who adopted the same
scheme but generalized the MIP separation module so as to deal with GMIC
separation.

The above discussion suggests that an improved performance can be attained
if one does not insist on reading GMICs from the optimal basis of the current
LP, that includes previously generated GMICs. Progresses in this direction have
been obtained recently by using one of the following two approaches. Let x∗ be an
optimal vertex of the large LP (the one defined by the original constraints plus
the GMICs generated in the previous iterations), and let B∗ be an associated
optimal basis.

(i) Balas and Perregaard [8] perform a sequence of pivots on the tableau of the
large LP leading to a (possibly non-optimal or even infeasible) basis of the
same large LP that produces a deeper cut w.r.t. the given x∗.

(ii) Dash and Goycoolea [2] heuristically look for a basis B of the original LP
that is “close enough to B∗”, in the hope of cutting the given x∗ with rank-1
GMICs associated with B; this is done, e.g., by removing from A all the
columns that are nonbasic with respect to x∗, thus restricting B to be a
submatrix of B∗.

The approach of relaxing cuts right after their separation is known in the lit-
erature as the Relax-and-Cut strategy. It was introduced independently by Lu-
cena [12], and by Escudero, Guignard and Malik [13]—who actually proposed
the relax-and-cut name; see Lucena [14] for a survey of the technique and of its
applications. Very recently, Lucena [15] applied a relax-and-cut approach to the
solution of hard single 0-1 knapsack problems, where fractional Gomory’s cuts
were used, for the first time, in a Lagrangian framework.

3 A Relax-and-Cut Framework for GMICs

Consider a generic MIP of the form

min{cx : Ax = b, x ≥ 0, xj integer ∀j ∈ J}
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where A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and J ⊆ {1, · · · , n} is the index set of the
integer variables. As customary, let P := {x ∈ Rn

+ : Ax = b} denote the LP
relaxation polyhedron, that we assume to be bounded.

Given a large (possibly exponential) family of linear cuts

αix ≥ αi
0, i = 1, . . . , M (1)

we aim at computing—possibly in an approximate way—the value

z1 :=

⎧⎪⎨
⎪⎩

min cx

x ∈ P

αix ≥ αi
0, i = 1, . . . , M

(2)

In our basic application, family (1) consists of the GMICs associated with all
possible primal-feasible bases of system Ax = b, i.e., z1 is a (typically very tight)
lower bound on the first GMIC closure addressed by Balas and Saxena [10] and
by Dash, Günlük, and Lodi [11]. However, as discussed in the computational
section, family (1) is in principle allowed to contain any kind of linear inequalities,
including problem-specific cuts and/or GMICs of any rank, or even invalid linear
conditions related, e.g., to branching conditions.

A standard solution approach for (2) consists in dualizing cuts (1) in a La-
grangian fashion, thus obtaining the Lagrangian dual problem

max
u≥0

{
L(u) := min{cx +

M∑
i=1

ui(αi
0 − αix) : x ∈ P}

}
(3)

whose optimal value is known to coincide with z1.
The solution of (3) can be attempted through very simple iterative procedures

known as subgradient methods, or through more sophisticated and accurate
schemes such as the bundle method; see e.g. [16]. All the above solution schemes
generate a sequence of dual points uk ≥ 0 meant to converge to an optimal
dual solution u∗. For each uk in the sequence, an optimal solution xk ∈ P of
the inner-minimization in (3) is computed, along with the associated Lagrangian
value

L(uk) = cxk +
M∑
i=1

uk
i (αi

0 − αixk)

and subgradient sk ∈ RM , whose components are just the cut violations

sk
i := αi

0 − αixk, i = 1, . . . , M

(sk
i > 0 for violated cuts, and sk

i ≤ 0 for slack/tight cuts). In particular, the
ability of computing the subgradient is essential for the convergence of overall
scheme—this is not a trivial task when the cut family is described only implicitly.

In our context, family (1) is by far too large to be computed explicitly, so
we store only some of its members, using a data structure called cut pool. Cut
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duplication in the pool is heuristically avoided by normalizing the cut right-
hand-side and by using a hash function.

The cut pool is initially empty, or it can contain some heuristic collection
of warm-start cuts. The pool is then iteratively extended by means of rank-1
GMICs that are heuristically generated, on the fly, during the process of solving
the Lagrangian dual problem. More specifically, if the Lagrangian subproblem at
a certain uk is solved by the simplex method and an optimal vertex xk of P with
fractional components is found, we can just read a round of rank-1 GMICs from
the optimal LP basis and feed the cut pool. Note that these cuts are always
associated with a primal-feasible basis of the original system P , so they are
globally valid for our MIP problem even if the cut pool contains invalid cuts
(e.g., branching conditions or temporary diversification cuts). Also note that,
although violated by xk, some of these cuts can actually belong already to the
current pool—an indication that their Lagrangian multiplier should be increased
in the next iterations.

A characteristic of relax-and-cut methods is that, differently from traditional
cutting plane schemes, there is no natural “fractional point to cut”, and the dis-
covery of new cuts to be added to the pool is beneficial mainly because new com-
ponents of the “true” subgradient sk are computed, thus improving the chances
of convergence to the “true” optimal dual value z1 of the overall Lagrangian
scheme.

4 Implementations

We next describe three very basic heuristics for the Lagrangian dual problem (3),
that are intended to evaluate the potentials of using GMICs in a relax-and-cut
framework. The investigation of more sophisticated schemes such as the bundle
method is left to future investigation.

4.1 Subgradient Optimization

The basic algorithm underlying our heuristics is the subgradient method. The
subgradient method is an adaptation of the gradient method to the case of
maximization of nondifferentiable concave functions, such as L(u). It starts with
a tentative point u0 ≥ 0 and then iteratively constructs a sequence of points uk

according to the following rule:

uk+1 = (uk + λksk)+

where sk is a subgradient of L(·) in uk, λk > 0 is an appropriate parameter
called step length, and (·)+ denotes the projection onto the nonnegative orthant.

The asymptotic convergence of the method is guaranteed by the properties
of the subgradient and by the choice of appropriate step sizes. A step-size rule
often used in practice, usually known as relaxation step length or Polyak’s step
length, computes

λk =
μk(UB − L(uk))

||sk||2
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where μk is a parameter satisfying 0 < μk ≤ 2, and UB is the unknown optimal
dual value z1, typically replaced by an upper bound on z1. In our code, this upper
bound is computed as the objective value of the best integer solution found by
a MIP solver at the end of root node, or an appropriate multiple of the LP
relaxation if none is found. As to μk, it is adjusted dynamically in order to try
to speed up convergence, using quite an elaborated update strategy inspired by
the computational studies reported in [17,18]. In particular, at the beginning of
each Lagrangian iteration, we compute a “reference” interval Δ = UB−bestLB,
that we use to guide our strategy. If, in the last p = 100 iterations, bestLB has
improved by less than 0.01Δ, then we update μk as follows:

μk =

⎧⎪⎨
⎪⎩

10μk if bestLB − avgLB < 0.001Δ

2μk if 0.001Δ ≤ bestLB − avgLB < 0.01Δ

μk/2 otherwise

where avgLB is the average value of L(u) in the last p iterations. Finally, if
L(u) < bestLB − Δ for 10 consecutive iterations we halve μk and backtrack to
the best uk so far.

In the following, we will denote by subg our implementation of a pure subgra-
dient method for solving (3), with a limit of 10, 000 iterations. The starting step
size parameter is aggressively set to μ0 = 10. This is justified by the fact that in
our scenario the convergence of the method is not guaranteed (and is also un-
likely in practice), because we are dealing explicitly only with a small subset of
cuts. In particular, we always deal with truncated subgradients and, even more
importantly, we have no way of generating violated GMICs apart from reading
them from the LP tableau. According to our computational experience, in this
scenario a small initial value for μ is quite unappropriate because it causes the
method to saturate far from an optimal Lagrangian dual solution u∗, with no
possibility for recovery.

Finally, to avoid overloading the cut pool, we read a round of GMICs at
every K-th subgradient iteration, where K = 10 in our implementation. In
addition, the length of the Lagrangian vector uk is not increased every time
new cuts are added to the pool, but only every 50 subgradient iterations, so as
to let the subgradient method stabilize somehow before adding new Lagragian
components. In this view, our implementation is between the so-called delayed
and non-delayed relax-and-cut methods [14].

4.2 Hybrid LP and Subgradient Optimization

The basic subgradient method presented in the previous subsection has several
drawbacks when applied to (3). In particular, finding the right combination of
parameters to obtain a satisfactory convergence is definitely tricky. In our setting,
we found beneficial to recompute, from time to time, the optimal vector u of for
all the cuts in the current pool, which amounts to solving a large LP by means
of a standard dynamic pricing of the cuts in the pool, akin to the one proposed
in [19]. Note that this policy is usually not attractive in a classical setting where
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the number of dualized constraints is fixed—solving the large LP would be just
as hard as solving (3). This is however not the case in our context, because the
pool is extended dynamically and stores a (large but) manageable subset of cuts.

In what follows, we will denote by hybr our implementation of a hybrid sub-
gradient method for solving (3), where we periodically compute the optimal
multipliers of the pool cuts by solving the large LP (note however that we do
not read GMICs from the optimal basis of the large LP). In our code this is
done every 1, 000 subgradient iterations. All other parameters are the same as
in subg.

4.3 Fast Hybrid Framework

Although the hybrid version hybr is definitely an improvement over subg, both
methods are still quite demanding as far as running time is concerned. The reason
is twofold. First, we may spend a lot of time generating GMICs from useless
bases (contrarily to popular belief, reading cuts from the tableau comes not for
free, although it is very cheap compared to other separation methods). Second,
the LPs change significantly from one iteration to the next one, because of the
zig-zagging nature of the dual multipliers induced by the standard subgradient
algorithm, hence the usual warm-start of the simplex algorithm is less effective—
note that this drawback may be reduced by using more stabilized algorithms like
the bundle method.

We developed some variants of hybr tweaked for speed, trying to sacrifice the
quality of the computed bound on z1 as little as possible. Speed is obtained by
drastically reducing the number of subgradient iterations and by using a very
small step length parameter (μk = 0.01 in our code). The small step size yields
more parametrized LPs where warm-start is more effective, and the reduced
number of iterations speeds up the whole approach. In a sense, we are no longer
relying on the step size for the convergence of the method—which is taken care of
by the large LPs used to get the optimal multipliers—and we use the subgradient
method just to sample near-optimal Lagrangian bases of the original system
generating rank-1 GMICs (this will be called the sampling phase in the sequel).
It is worth noting that the small step length parameter and the reduced number
of iterations essentially turn off the step-length update strategy that we have
described in Section 4.1.

We implemented two variants of the above method, namely fast and faster.
In both variants we solve the large LP to compute the Lagrangian optimal mul-
tipliers only 10 times, and we generate GMICs at every subgradient iteration.
The difference is in the number of subgradient iterations in the sampling phase
between two consecutive large-LP resolutions, which is 100 for fast, and just 50
for faster.

It is worth observing that the methods above can be interpreted à la Dantzig-
Wolfe as a way to decompose the optimal solution x∗ of the large LP into
a suitable convex combination

∑
j λjx

j of vertices xj of P , and to separate
these xj in the attempt of finding valid cuts violated by x∗. This links those
variants to the work of Ralphs, Kopman, Pulleyblank, and Trotter [20], where



130 M. Fischetti and D. Salvagnin

a similar idea was applied to separate capacity cuts for the Capacitated Vehicle
Routing Problem—the fractional CVRP vertex being expressed as the convex
combination of m-TSP integer solutions, each of which is easily evaluated to find
violated capacity cuts.

5 Computational Results

We tested our variants of the relax-and-cut framework for GMICs on the problem
instances in MIPLIB 3.0 [21] and MIPLIB 2003 [22]. Following [2], we omitted all
instances where there is no improvement after one round of GMICs read from the
optimal tableau, or where no integer solution is known. Moreover, we excluded
instances mod011 and rentacar, because of the presence of ranged constraints
in the formulation, that are not handled by our current GMIC code. In the end,
we were left with 52 instances from MIPLIB 3.0, and 20 instances from MIPLIB
2003. For the sake of space, we will only report aggregated statistics; detailed
tables are available, on request, from the authors.

We implemented our code in C++, using IBM ILOG Cplex 11.2 as black
box LP solver (its primal heuristics were also used to compute the subgradient
upper bound UB). All tests have been performed on a PC with an Intel Q6600
CPU running at 2.40GHz, with 4GB of RAM (only one CPU was used by each
process). As far as the GMIC generation is concerned, for a given LP basis we
try to generate a GMIC from every row where the corresponding basic variable
has a fractionality of at least 0.001. The cut is however discarded if its final
dynamism, i.e., the ratio between the greatest and smallest absolute value of the
cut coefficients, is greater than 1010.

5.1 Approximating the First GMI Closure

In our first set of experiments we compared the ability (and speed) of the pro-
posed methods in approximating the first GMI closure for the problems in our
testbed. The first GMI closure has received quite a lot of attention in the last
years, and it was computationally proved that it can provide a tight approxi-
mation of the convex hull of the feasible solutions. In addition, rank-1 GMICs
are read from the original tableau, hence they are generally considered safe from
the numerical point of view. Note that our method can only generate cuts from
primal-feasible bases, hence it can produce a weaker bound than that associated
with the first GMI closure [23].

In Table 1 we report the average gap closed by all methods that generate
rank-1 GMICs only, as well as the corresponding computing times (geometric
means). We recall that for a given istance, the gap closed is defined as 100 · (z −
z0)/(opt − z0), where z0 is the value of the initial LP relaxation, z is the value
of the final LP relaxation, and opt is the best known solution. For comparison,
we report also the average gap closed by one round of GMIC read from the
the first optimal tableau (1gmi), as well as the average gap closed with the
default method proposed by Dash and Goycoolea (dgDef), as reported in [2].
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Table 1. Average gap closed and computing times for rank-1 methods

MIPLIB 3.0 MIPLIB 2003
method cl.gap time (s) cl.gap time (s)

1gmi 26.9% 0.02 18.3% 0.54
faster 57.9% 1.34 43.3% 33.33
fast 59.6% 2.25 45.5% 58.40
hybr 60.8% 15.12 48.6% 315.21
subg 56.0% 25.16 43.5% 291.21
dgDef 61.6% 20.05 39.7% 853.85

All computing times are given in CPU seconds on our Intel machine running
at 2.4 GHz, except for dgDef where we just report the computing times given
in [2], without any speed conversion—the entry for MIPLIB 3.0 refers to a 1.4
GHz PowerPC machine (about 2 times slower than our PC), while the entry
for MIPLIB 2003 refers to a 4.2 GHz PowerPC machine (about twice as fast as
our PC).

According to the table, the relax-and-cut methods performed surprisingly well,
in particular for the hard MIPLIB 2003 instances where all of them outperformed
dgDef in terms of both quality and speed.

As far as the bound quality is concerned, the best method appears to be
hybr, mainly because of its improved convergence with respect to subg, and
of the much larger number of subgradient iterations (and hence of LP bases)
generated with respect to the two fast versions.

The two fast versions also performed very well, in particular faster that
proved to be really fast (more than 10 times faster than dgDef) and quite accu-
rate. It is worth observing that about 75% of the computing time for fast and
faster was spent in the sampling phase: 40% for LP reoptimizations, and 35%
for actually reading the GMICs from the tableau and projecting slack variables
away. Quite surprisingly, the solution of the large LPs through a dynamic pricing
of the pool cuts required just 15% of the total computing time.

5.2 A Look to Higher Rank GMICs

In this subsection we investigate the possibility of generating GMICs of rank
greater than 1. Unfortunately there is no fast way to compute the exact rank of
a cut, hence we use an easy upper bound where the rows of the original system
Ax = b are defined to be of rank 0, and the rank of a GMIC is computed as
the maximum rank of the involved rows, plus one. Having computed the above
upper bound for each GMIC, we avoid storing in the pool any GMICs whose
upper bound exceeds an input rank limit k (k =2 or 5, in our tests).

Our relax-and-cut framework can be extended in many different ways to gen-
erate higher-rank GMICs. In particular, given a maximum allowed rank k, it is
possible to:
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a) Generate k rounds of GMICs in a standard way, use them to intialize the cut
pool, and then apply our method to add rank-1 GMICs on top of them. This
very simple strategy turned out not to work very well in practice, closing
significantly less gap than the rank-1 version.

b) Apply one of the relax-and-cut variants of the previous subsection until a
termination condition is reached. At this point add to the original formula-
tion (some of) the GMICs that are tight at the large-LP optimal solution,
and repeat k times. This approach works quite well as far the final bound
is concerned, but it is computationally expensive because we soon have to
work with bigger (and denser) tableaux.

c) Stick to rank-1 GMICs in the sampling phase, never enlarging the original
system. However, each time a large LP is solved to recompute the dual
multipliers (this can happen at most k times), add to the pool (but not
to the original formulation) all the GMICs read from the large-LP optimal
basis.

d) As before, stick to rank-1 GMICs in the sampling phase. If however no cut
separating the previous large-LP solution x∗ is found in the sampling phase,
then add to the pool all GMICs read from the large LP optimal basis, and
continue. This way, the generation of higher-rank cuts acts as a diversification
step, used to escape a local deadlock, after which standard rank-1 separation
is resumed.

According to our preliminary computational experience, the last two schemes
give the best compromise between bound quality and speed. In particular, c)
takes almost the same computing time as its rank-1 counterpart in Table 1,
and produces slightly improved bounds. Option d) is slower than c) but closes
significantly more gap, hence it seems more attractive for a comparison with
rank-1 cuts.

Table 2. Average gap closed and computing times for higher rank methods

MIPLIB 3.0 MIPLIB 2003
method rank cl.gap time (s) cl.gap time (s)

gmi 1 26.9% 0.02 18.3% 0.54
faster 1 57.9% 1.34 43.3% 33.33
fast 1 59.6% 2.25 45.5% 58.40

gmi 2 36.0% 0.03 24.0% 0.88
faster 2 62.1% 2.75 47.2% 58.37
fast 2 64.1% 5.12 48.5% 106.76

gmi 5 47.8% 0.07 30.3% 2.17
faster 5 65.6% 5.47 49.9% 126.65
fast 5 67.2% 10.09 51.1% 238.33

L&P 10 57.0% 3.50 30.7% 95.23
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In Table 2 we report the average gap closed by our fast versions when higher-
rank GMICs are generated according to scheme d) above. Computing times
(geometric means) are also reported. Rank-1 rows are taken from the previous
table.

In the table, row gmi refers to 1, 2 or 5 rounds of GMICs. For the sake of
comparison, we also report the average gap closed by 10 rounds of Lift&Project
cuts (L&P), as described in [1]. To obtain the Lift&Project bounds and running
times we ran the latest version of separator CglLandP [24] contained in the COIN-
OR [25] package Cgl 0.55, using Clp 1.11 as black box LP solver (the separator
did not work with Cplex because of the lack of some pivoting procedures). This
separation procedure was run with default settings, apart from the minimum
fractionality of the basic variables used to generate cuts, which was set to 0.001
as in the other separators. All computing times are given in seconds on our Intel
machine running at 2.4 GHz.

Our fast procedures proved quite effective also in this setting, providing sig-
nificantly better bounds than L&P in a comparable or shorter amount of time,
even when restricting to rank-1 GMICs. As expected, increasing the cut rank
improves the quality of the bound by a significant amount, though it is not clear
whether this improvement is worth the time overhead—also taking into account
that GMICs of higher rank tend to be numerically less reliable. Similarly, it is
not clear whether the bound improvement achieved by fast w.r.t. faster is
worth the increased computing time.

6 Conclusions and Future Work

We have considered Gomory Mixed-Integer Cuts (GMICs) read from an optimal
LP basis, as it is done customary in branch-and-cut methods, but in a new shell
aimed at overcoming the notoriously bad behavior of these cuts in the long run.
The new shell uses a relax-and-cut approach where the generated GMICs are not
added to the current LP, but are stored in a cut pool and immediately relaxed
in a Lagrangian fashion.

We have presented some variants of our basic method and we have computa-
tionally compared them with other methods from the literature. The results have
shown that even simple implementations of the new idea are quite effective, and
outperform their competitors in terms of both bound quality and speed. We are
confident however that there is still room for improvement of our basic methods.

Future work should investigate the following research topics:

– The use of a more sophisticated Lagrangian dual optimizer to replace the
simple subgradient procedure we implemented.

– Our method is meant to add rank-1 GMICs on top of a collection of other cuts
collected in a cut pool. In our current experiments the cut pool only contains
GMICs collected in the previous iterations. However, it seems reasonable to
allow the pool to contain other classes of (more combinatorial) cuts, e.g., all
those generated at the root node by a modern MIP solver. In this setting,
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the preprocessed model and the generated cuts (stored in the cut pool) can
be provided as input to our relax-and-cut scheme, in the attempt of reducing
even further the integrality gap at the root node.

– During Lagrangian optimization, a large number of (possibly slightly frac-
tional or even integer) vertices of P are generated, that could be used heuris-
tically (e.g., through rounding) to provide good primal MIP solutions.

Finally, in the process of developing our method we realized that cutting plane
schemes miss an overall “meta-scheme” to control cut generation and to escape
“local optima” by means of diversification phases—very well in the spirit of
Tabu or Variable Neighborhood Search meta-schemes for primal heuristics. The
development of sound meta-schemes on top of a basic separation tool is therefore
an interesting topic for future investigations—our relax-and-cut framework for
GMICs can be viewed as a first step in this direction.
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Abstract. Cutting plane methods are widely used for solving convex
optimization problems and are of fundamental importance, e.g., to pro-
vide tight bounds for Mixed-Integer Programs (MIPs). This is obtained
by embedding a cut-separation module within a search scheme. The
importance of a sound search scheme is well known in the Constraint
Programming (CP) community. Unfortunately, the “standard” search
scheme typically used for MIP problems, known as the Kelley method,
is often quite unsatisfactory because of saturation issues.

In this paper we address the so-called Lift-and-Project closure for 0-
1 MIPs associated with all disjunctive cuts generated from a given set
of elementary disjunction. We focus on the search scheme embedding
the generated cuts. In particular, we analyze a general meta-scheme for
cutting plane algorithms, called in-out search, that was recently proposed
by Ben-Ameur and Neto [1]. Computational results on test instances
from the literature are presented, showing that using a more clever meta-
scheme on top of a black-box cut generator may lead to a significant
improvement.

Keywords: Mixed-integer programming, cutting planes, disjunctive
optimization.

1 Introduction

Cutting plane methods are widely used for solving convex optimization problems
and are of fundamental importance, e.g., to provide tight bounds for Mixed-
Integer Programs (MIPs). These methods are made by two equally important
components: (i) the separation procedure (oracle) that produces the cut(s) used
to tighten the current relaxation, and (ii) the overall search framework that
actually uses the generated cuts and determines the next point to cut.

In the last 50 years, a considerable research effort has been devoted to the
study of effective families of MIP cutting planes, as well as to the definition
of sound separation procedures and cut selection criteria [2, 3]. However, the
search component was much less studied, at least in the MIP context where one
typically cuts a vertex of the current LP relaxation, and then reoptimizes the
new LP to get a new vertex to cut—a notable exception is the recent paper [4]
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dealing with Benders’ decomposition. The resulting approach—known as “the
Kelley method” [5]—can however be rather inefficient, the main so if the sepa-
ration procedure is not able to produce strong (e.g., facet defining or, at least,
supporting) cuts. As a matter of fact, alternative search schemes are available
that work with non-extreme (internal) points [6, 7], including the famous ellip-
soid [8, 9] and analytic center [10, 11, 12] methods; we refer the reader to [13]
for an introduction. The convergence behavior of these search methods is less
dependant on the quality of the generated cuts, which is a big advantage when
working with general MIPs where separation procedures tend to saturate and to
produce shallow cuts. A drawback is that, at each iteration, one needs to recom-
pute a certain “core” point, a task that can be significantly more time consuming
than a simple LP reoptimization. An interesting hybrid search method, called
in-out search, was recently proposed by Ben-Ameur and Neto [1].

In this paper we address disjunctive optimization [14] in the MIP context.
It essentially consists of a cutting plane method where cuts are separated by
exploiting a given set of valid disjunctions. In particular, we consider 0-1 MIPs
and the associated Lift-and-Project closure, defined by all the disjunctive cuts
that can be derived from the “elementary” set of disjunctions of the type xj ≤ 0
or xj ≥ 1 for each integer-constrained variable xj . This topic is currently the
subject of intensive investigation by the Mathematical Programming community.
Our current research topic is in fact to move the research focus from the widely
investigated separation module to the search scheme where the generated cuts are
actually embedded. A first step in this direction is reported in the present paper,
where we investigate the use of disjunctive cuts within an in-out search shell.
Computational results show that the resulting scheme outperforms the standard
one, in that it produces tighter bounds within shorter computing times and need
much fewer cuts—though they use exactly the same separation module.

2 In-Out Search

Let us consider a generic MIP of the form

min{cT x : Ax = b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I}

and let P := {x ∈ Rn : Ax = b, l ≤ x ≤ u} denote the associated LP relaxation
polyhedron. In addition, let us assume the oracle structure allows one to define a
“cut closure”, P1, obtained by intersecting P with the half-spaces induced by all
possible inequalities returned by the oracle. Cutting plane methods are meant
to compute z1 := min{cT x : x ∈ P1}, with P1 described implicitly through the
oracle.

In-out search works with two points: an “internal” (possibly non optimal)
point q ∈ P1, and an optimal vertex x∗ of P (possibly not in P1). By construction,
the final (unknown) value z1 belongs to the uncertainty interval [cT x∗, cT q], i.e.,
at each iteration both a lower and an upper bound on z1 are available. If the
two points q and x∗ coincide, the cutting plane method ends. Otherwise, we
apply a bisection step over the line segment [x∗, q], i.e., we invoke the separation
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procedure in the attempt of cutting the middle point y := (x∗ + q)/2. (In the
original proposal, the separation point is more generally defined as y := αx∗ +
(1 − α)q for a given α ∈ (0, 1].) If a violated cut is returned, we add it to the
current LP that is reoptimized to update x∗, hopefully reducing the current lower
bound cT x∗. Otherwise, we update q := y, thus improving the upper bound and
actually halving the current uncertainty interval.

The basic scheme above can perform poorly in its final iterations. Indeed, it
may happen that x∗ already belongs to P1, but the search is not stopped because
the internal point q is still far from x∗. We then propose a simple but quite
effective modification of the original scheme where we just count the number of
consecutive updates to q, say k, and separate directly x∗ in case k > 3. If the
separation is unsuccessful, then we can terminate the search, otherwise we reset
counter k and continue with the usual strategy of cutting the middle point y.

As to the initialization of q ∈ P1, this is a simple task in many practical
settings, including the MIP applications where finding a feasible integer solution
q is not difficult in practice.

3 Disjunctive Cuts

Consider the generic MIP of the previous section. To simplify notation, we con-
centrate on 0-1 MIPs where lj = 0 and uj = 1 for all j ∈ I. Our order of
business is to optimize over the Lift-and-Project closure, say P1, obtained from
P by adding all linear inequalities valid for P j := conv({x ∈ P : xj ≤ 0} ∪ {x ∈
P : xj ≥ 1}) for j ∈ I. To this end, given a point x∗ ∈ P (not necessarily a
vertex), for each j ∈ I with 0 < x∗

j < 1 we construct a certain Cut Generation
Linear Program (CGLP) whose solution allows us to detect a valid inequality
for P j violated by x∗ (if any). Various CGLPs have been proposed in the litera-
ture; the one chosen for our tests has a size comparable with that of the original
LP, whereas other versions require to roughly double this size. Given x∗ and a
disjunction xj ≤ 0 ∨ xj ≥ 1 violated by x∗, our CGLP reads:

maxxj − d∗ (1)
Ax = d∗b (2)

d∗l ≤ x ≤ d∗l + (x∗ − l) (3)
d∗u − (u − x∗) ≤ x ≤ d∗u (4)

where d∗ = x∗
j > 0 (the two sets of bound constraints can of course be merged).

Given the optimal dual multipliers (λ,−σ′′, σ′,−τ ′, τ ′′) associated with the con-
straints of the CGLP, it is possible to derive a most-violated disjunctive cut γx ≥
γ0, where γ = σ′−τ ′−u0ej , γ0 = σ′l−τ ′u, and u0 = 1−λb−(σ′−σ′′)+(τ ′−τ ′′)u.

4 Computational Results (Sketch)

We implemented both the standard (kelley) and in-out (in-out) separation
schemes and we compared them on a collection of 50 0-1 MIP instances from
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MIPLIB 3.0 [15] and 2003 [16], and on 15 set covering instances from ORLIB [17].
We used IBM ILOG Cplex 11.2 as black-box LP solver, and to compute a first
heuristic solution to initialize the in-out internal point q. Both schemes are given
a time limit of 1 hour, and generate only one cut at each iteration–taken from
the disjunction associated to the most fractional variable. Cumulative results are
reported in Table 1, where time denotes the geometric mean of the computing
times (CPU seconds on an Intel Q6600 PC running at 2.4 GHz), itr denotes
the geometric mean of the number of iterations (i.e., cuts), cl.gap denotes the
average gap closed w.r.t the best known integer solution, and L&P cl.gap de-
notes the average gap closed w.r.t. the best known upper bound on z1 (this
upper bound is obtained as the minimum between the best-known integer solu-
tion value and the last upper bound on z1 computed by the in-out algorithm).
The results clearly show the effectiveness of in-out search, in particular for set
covering instances.

Table 1. Cumulative results on Lift-and-Project optimization

testbed method time (s) itr cl.gap L&P cl.gap

MIPLIB
kelley 38.18 1,501 40.8% 63.7%
in-out 28.42 592 41.2% 64.1%

set covering
kelley 2,281.60 16,993 35.2% 71.8%
in-out 757.29 1,575 38.7% 85.8%
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Abstract. The Orthogonal Packing Problem (OPP) consists in determining if a
set of items can be packed into a given container. This decision problem is NP-
complete. Fekete et al. modelled the problem in which the overlaps between the
objects in each dimension are represented by interval graphs. In this paper we pro-
pose a SAT encoding of Fekete et al. characterization. Some results are presented,
and the efficiency of this approach is compared with other SAT encodings.

1 Introduction

The multi-dimensional Orthogonal Packing Problem (OPP) consists in determining if
a set of items of known sizes can be packed in a given container. Although this prob-
lem is NP-complete, efficient algorithms are crucial since they may be used to solve
optimization problems like the strip packing problem, the bin-packing problem or the
optimization problem with a single container.

S. P. Fekete et al. introduced a new characterization for OPP [1]. For each dimen-
sion i, a graph Gi represents the items overlaps in the ith dimension. In these graphs,
the vertices represent the items. The authors proved that solving the d-dimensional or-
thogonal packing problem is equivalent to finding d graphs G1, . . . , Gd such that (P1)
each graph Gi is an interval graph , (P2) in each graph Gi, any stable set is i-feasible,
that is the sum of the sizes of its vertices is not greater than the size of the container
in dimension i, and (P3) there is no edge which occurs in each of the d graphs. They
propose a complete search procedure [1] which consists in enumerating all possible d
interval graphs, choosing for each edge in each graph if it belongs to the graph or not.
The condition (P3) is always satisfied, forbidding the choice for any edge which occurs
in d-1 graphs in the remaining graph. Each time a graph Gi is an interval graph, the
i-feasibility of its stable sets is verified, computing its maximum weight stable set (the
weights are the sizes of the items in the dimension i). As soon as the three conditions
are satisfied the search stops and the d graphs represent then a class of equivalent solu-
tions to the packing problem. Figure 1 shows an example in two dimensions with two
packings among many others corresponding to the same pair of interval graphs.

There are very few SAT approaches for packing. In 2008 T. Soh et al. proposed a
SAT encoding for the strip packing problem in two dimensions (SPP) [2]. This problem

� This work is supported by Region Provence-Alpes-Cote-d’Azur and the ICIA Technologies
company. We also thank P. Jegou and D. Habet for helpfull discussions.
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Fig. 1. Two packings corresponding to the same interval graphs in a two-dimensional space

consists in finding the minimal height of a fixed width container containing all the items.
For that purpose they perform successive searches with different heights (selected with
a dichotomy search strategy). Each time, the decision problem is encoded in a SAT
formula which is solved with an external SAT solver (Minisat). In their formulation the
variables represent the exact positions of the items in the container. Additional variables
represent the relative positions of the items one with the others (on the left, on the right,
above, under). T. Soh et al. also introduce constraints to avoid reconsidering symmetric
equivalent packings. Finally the new clauses that the SAT solver Minisat generates to
represent the conflicts are memorised and re-used in further searches. This is possible
since successive searches are incremental SAT problems. T. Soh et al. SAT encoding
involves O(W × H × n + n2) Boolean variables for a problem with n items and a
container of width W and height H .

2 A New SAT Encoding

We propose a new SAT encoding based on Fekete et al. characterization for the d-
dimensional packing problem. Recall that each graph Gi must be an interval graph, and
that if this is the case, then there exists a linear ordering of the maximal cliques of Gi

such that each vertex occurs in consecutive cliques. This ordering is called a consecutive
linear ordering and its size, the number of maximal cliques, is less then or equal to the
number of items.

Basically, for each dimension i, Boolean variables indicate the presence of the edges
in the graph Gi, that is the overlaps between the objects in dimension i. Furthermore,
Boolean variables represent a linear clique decomposition of the graph Gi, ensuring that
the graph is an interval graph if this decomposition is a consecutive linear ordering. The
cliques are numbered from 1 to n. Then, Boolean variables indicate for each item and
for each clique if the item occurs in the clique. Finally additional variables have been
introduced to simplify the formulation of the constraints. The variables used in our
formulation are defined as follows (note that some of these variables are not necessary
in the basic formalisation of the packing problem):

ei
x,y : true if the edge {x, y} is in Gi,

ci
x,a : true if item x is in clique a,

pi
x,y,a : true if items x and y both occur in clique a,

ui
a : true if clique a is not empty,

The stable set feasability of the graph Gi is verified with clauses that forbid the unfea-
sible stable sets. The set of all the unfeasible stable sets in dimension i is denoted Si.
Then the packing problem is encoded by the following formulas:



A SAT Encoding for Multi-dimensional Packing Problems 143

1. [All objects are packed]
x ∈ O, 1 ≤ i ≤ d,

ci
x,1 ∨ . . . ∨ ci

x,n

2. [Consecutive linear ordering]
x ∈ O, 1 ≤ i ≤ d, 1 ≤ a < b − 1 < n,

(ci
x,a ∧ ci

x,b) ⇒ ci
x,a+1

3. [No-overlap Constraint]
x, y ∈ O,

¬e1
x,y ∨ . . . ∨ ¬ed

x,y

4. [Stable set feasibility]
1 ≤ i ≤ d, N ∈ Si,∨
x, y ∈N

ei
x,y

5. [No empty cliques]
1 ≤ i ≤ d, 1 ≤ a ≤ n,

(¬ci
1,a ∧ . . . ∧ ¬ci

n,a) ⇒ (¬ci
1,a+1 ∧ . . . ∧ ¬ci

n,a+1)

6. [Correlations between the variables]
x, y ∈ O, 1 ≤ a ≤ n, 1 ≤ i ≤ d,

pi
x,y,a ⇔ (ci

x,a ∧ ci
y,a) and (pi

x,y,1 ∨ . . . ∨ pi
x,y,k) ⇔ ei

x,y

The formulas (1) force each item to occur in at least one clique, while the formulas (2)
force each item to occur in consecutive cliques (Fekete et al. property P1: the graphs
are interval graphs). The formulas (3) state that no two objects may intersect in all the
dimensions (Fekete et al. property P3). The stable set feasability is enforced by the
formulas (4): for each unfeasible stable set N ∈ Si in the dimension i, a clause ensures
that at least two items of the stable set intersect each other. In fact only the minimal
unfeasible stable sets are considered. For example, if two items x and y are too large to
be packed side by side in the ith dimension, then {x, y} is a stable set of Si and the unit
clause ei

x,y is generated. Then the SAT solver will immediately assign to the variable
ei

x,y the value true and propagate it. The formulas (5) forbid empty cliques. Finally the
formulas (6) establish the relations between the Boolean variables.

The following constraints are not necessary but they may help during the search:

7. [Consective linear ordering (bis)]
x ∈ O, 1 ≤ a ≤ n, 1 ≤ i ≤ d,

(ci
x,a ∧ ¬ci

x,a+1) ⇒ (¬ci
x,a+2 ∧ . . . ∧ ¬ci

x,n)
(ci

x,a ∧ ¬ci
x,a−1) ⇒ (¬ci

x,a−2 ∧ . . . ∧ ¬ci
x,1)

8. [Maximal cliques]
1 ≤ a ≤ n, 1 ≤ i ≤ d,

ui
a ⇔ (ci

1,a ∨ . . . ∨ ci
n,a)

(ui
a ∧ ui

a+1) ⇒ ((ci
1,a ∧ ¬ci

1,a+1) ∨ . . . ∨ (ci
n,a ∧ ¬ci

n,a+1))
(ui

a ∧ ui
a+1) ⇒ ((¬ci

1,a ∧ ci
1,a+1) ∨ . . . ∨ (¬ci

n,a ∧ ci
n,a+1))



144 S. Grandcolas and C. Pinto

9. [Identical items ordering]
x, y ∈ O, x ≡ y and x ≺ y, 1 ≤ a < n, a < b ≤ n

(cδ
y,a ∧ cδ

x,b) ⇒ cδ
x,a

The formulas (7) propagates the consecutive cliques ordering property, the formulas (8)
forbid cliques which are not maximal, and the formulas (9) force identical objects to
respect a given a priori ordering in only one dimension δ, so as to avoid the generation
of equivalent permutations of these objects. This SAT encoding involves O(n3) and
O(n4+2n) clauses. However, since only the minimal unfeasible stable sets are encoded,
in the general case there are much less than 2n clauses of type (4).

3 Experimental Results

3.1 Orthogonal Packing Problem

The problem consists to determine if a given set of items may be packed into a given
container. We have compared our approach with that Fekete et al. on a selection of two-
dimensional problems, using as reference the results published by Clautiaux et al. [3].
Table 1 shows the characteristics of the instances, the results of Fekete et al. (FS), and
the results of our approach with two modelisations: the modelisation M1 corresponds to
the formulas from (1) to (6) and (9), while the modelisation M2 contains, furthermore,
the facultative formulas (7) and (8). All of our experimentations were run on Pentium
IV 3.2 GHz processors and 1 GB of RAM, using Minisat 2.0.

Table 1. Comparison with Fekete et al

Instance FS M1 M2
Name Space Fais. n Time (s) Time (s) #var. #claus. Time (s) #var. #claus.
E02F17 02 F 17 7 4.95 5474 26167 13.9 6660 37243
E02F20 02 F 20 - 5.46 8720 55707 1.69 10416 73419
E02F22 02 F 22 167 7.62 11594 105910 21.7 13570 129266
E03N16 03 N 16 2 39.9 4592 20955 47.3 5644 30259
E03N17 03 N 17 0 4.44 5474 27401 9.32 6660 38477
E04F17 04 F 17 13 0.64 5474 26779 1.35 6660 37855
E04F19 04 F 19 560 3.17 7562 46257 1.43 9040 61525
E04F20 04 F 20 22 5.72 8780 59857 2.22 10416 77569
E04N18 04 N 18 10 161 6462 32844 87.7 7790 45904
E05F20 05 F 20 491 6.28 8780 59710 0.96 10416 77422

Average > 217 23.9 7291 46159 18.8 8727 60894

Our approach outperforms FS on satisfiable instances, and even the instance E02F20
is not solved by Fekete et al. within the timeout (15 minutes). On unsatisfiable instances
they have better performances, probably because they compute very relevant bounds
(see DFF in [4]) which help them to detect dead ends during the search very early.

3.2 Strip Packing Problem

We have also compared our approach with Soh and al. on two-dimensional strip pack-
ing problems of the OR-Library available at http://www.or.deis.unibo.it/

http://www.or.deis.unibo.it/research.html
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Table 2. Results for OR-Library instances

Instance Soh et
al.

M1 M2
Name n Width LB Height #var. #claus. Time Height #var. #claus. Time
HT01 16 20 20 20 20 4592 22963 13.3 20 5644 32267 19.4
HT02 17 20 20 20 20 5474 28669 744 20 6660 39745 444
HT03 16 20 20 20 20 4592 24222 18.5 20 5644 33526 25.5
HT04 25 40 15 15 16 16850 271500 1206 19 19396 305392 521
HT05 25 40 15 15 16 16850 337395 438 16 19396 372287 536
HT06 25 40 15 15 16 16850 494500 146 16 19396 528392 295
CGCUT01 16 10 23 23 23 4592 26745 5.89 23 5644 36049 9.71
CGCUT02 23 70 63 65 66 13202 115110 1043 70 15360 188222 1802
GCUT01 10 250 1016 1016 1016 1190 4785 0.11 1016 1606 7237 0.04
GCUT02 23 250 1133 1196 1259 8780 105810 37.3 1196 10416 123522 1241
NGCUT01 10 10 23 23 23 1190 5132 0.23 23 1606 7584 0.09
NGCUT02 17 10 30 30 30 5474 29662 1.6 30 6660 40738 2.74
NGCUT03 21 10 28 28 28 10122 108138 273 28 11924 128542 580
NGCUT04 7 10 20 20 20 434 1661 0.01 20 640 2577 0.01
NGCUT05 14 10 36 36 36 3122 15558 6.01 36 3930 21906 4.44
NGCUT06 15 10 31 31 31 3810 18629 1.92 31 4736 26361 2.91
NGCUT07 8 20 20 20 20 632 2535 0 20 900 3855 0
NGCUT08 13 20 33 33 33 2522 11870 2.74 33 3220 17010 9.73
NGCUT09 18 20 49 50 50 6462 33765 391 50 7790 46825 53.3
NGCUT10 13 30 80 80 80 2522 11790 0.75 80 3220 16930 0.39
NGCUT11 15 30 50 52 52 3810 18507 19.7 52 4736 26239 25.9
NGCUT12 22 30 79 87 87 11594 173575 886 87 13570 196931 24.5

research.html. The problem is to determine the minimal height of a fixed width
container which may contain a given set of items. As Soh et al. we perform a sort of
dichotomy search starting with a lower bound given by Martello and Vigo [5] and an
upper bound which is calculated using a greedy algorithm. In table 2 we have reported
the sizes of the encodings (numbers of variables and clauses) and the minimal height
which was found within the timeout of 3600 seconds. Optimal heights are in bold (this
occurs when the minimal height is equal to the lower bound or when the solver proves
that there is no solution with a smaller height). Instances in which the number of items
is large have been discarded, since the number of unfeasible stable sets becomes too
important and so the number of corresponding clauses. Note that Soh and al. used also
the solver Minisat. For 16 instances among 22 our system discovers the optimal height.
Furthermore, among these 16 instances, 14 are solved in less than 30 seconds with one
of our two modelisations. The ability of Soh and al. solver to reuse the conflict clauses
that Minisat generates during the search is a real advantage since many unsuccessfull
searches are then avoided.

4 Conclusions and Future Works

We have proposed a SAT encoding which outperforms significantly Fekete et al. method
on satisfiable instances. Moreover, we have experimented this encoding on strip-packing
problems. In future work we will try to integrate the DFF computation to improve the
search on unsolvable problems. We will also try to characterize the situations in which
the conflicts clauses which are generated by the SAT solver, may be re-used. This oc-
curs in particular when successive calls to the solver are performed, for example when
searching the minimal height in strip-packing problems.

http://www.or.deis.unibo.it/research.html
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Abstract. In previous work we introduced a simple constraint model that com-
bined generic AI strategies and techniques (weighted degree heuristic, geometric
restarts, nogood learning from restarts) with naive propagation for job shop and
open shop scheduling problems. Here, we extend our model to handle two vari-
ants of the job shop scheduling problem: job shop problems with setup times; and
job shop problems with maximal time lags. We also make some important addi-
tions to our original model, including a solution guidance component for search.

We show empirically that our new models often outperform the state of the art
techniques on a number of known benchmarks for these two variants, finding a
number of new best solutions and proving optimality for the first time on some
problems. We provide some insight into the performance of our approach through
analysis of the constraint weighting procedure.

1 Introduction

Scheduling problems have proven fertile research ground for constraint programming
and other combinatorial optimization techniques. There are numerous such problems
occurring in industry, and whilst relatively simple in their formulation - they typically
involve only Sequencing and Resource constraints - they remain extremely challenging
to solve. After such a long period as an active research topic (more than half a century
back to Johnson’s seminal work [18]) it is natural to think that methods specifically
engineered for each class of problems would dominate approaches with a broader spec-
trum. However, it was recently shown [27,15,26] that generic SAT or constraint pro-
gramming models can approach or even outperform state of the art algorithms for open
shop scheduling and job shop scheduling. In particular, in a previous work [15] we intro-
duced a constraint model that advantageously trades inference strength for brute-force
search speed and adaptive learning-based search heuristics combined with randomized
restarts and a form of nogood learning.

Local search algorithms are generally the most efficient approach for solving job
shop scheduling problems. The best algorithms are based on tabu search, e.g. i-TSAB
[21], or use a CP/local search hybrid [29]. Pure CP approaches can also be efficient,
especially when guided by powerful search strategies that can be thought of as meta-
heuristics [4]. The best CP approach uses inference from the Edge-finding algorithm

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 147–161, 2010.
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[8,22] and dedicated variable ordering heuristics such as Texture [3]. On the other hand,
we take a minimalistic approach to modelling the problem. In particular, whilst most
algorithms consider resource constraints as global constraints, devising specific algo-
rithms to filter them, we simply decompose them into primitive disjunctive constraints
ensuring that two tasks sharing a resource do not run concurrently. To this naive propa-
gation framework, we combine slightly more sophisticated, although generic heuristics
and restart policies. In this work, we have also incorporated the idea of solution guided
search [4].

We showed recently that this approach can be very effective with respect to the state
of the art. However, it is even more evident on variants of these archetypal problems
where dedicated algorithms cannot be applied in a straightforward manner. In the first
variant, running a task on a machine requires a setup time, dependent on the task itself,
and also on the previous task that ran on the same machine. In the second variant, max-
imum time lags between the starting times of successive tasks of each job are imposed.
In both cases, most approaches decompose the problem into two subproblems, for the
former the traveling salesman problem with time windows [1,2] is used, while the latter
can be decomposed into sequencing and timetabling subproblems [10]. On the other
hand, our approach can be easily adapted to handle these additional constraints. Indeed,
it found a number of new best solutions and proved optimality for the first time on some
instances from a set of known benchmarks.

It may appear surprising that such a method, not reliant on domain specific knowl-
edge, and whose components are known techniques in discrete optimization, could be
so effective. We therefore devised some experiments to better understand how the key
component of our approach, the constraint weighting, affects search on these problems.
These empirical results reveal that although the use of constraint weighting is generally
extremely important to our approach, it is not always so. In particular on no-wait job
shop scheduling problems (i.e. problems with maximal time-lag of 0 between tasks),
where our approach often outperforms the state of the art, the weight even seems to be
detrimental to the algorithm.

In Section 2, we describe our approach. In Section 3, after outlining the experimental
setup, we provide an experimental comparison of our approach with the state-of-the-art
on standard benchmarks for these two problems. Finally we detail the results of our
analysis of the impact of weight learning in these instances in Section 4.

2 A Simple Constraint Programming Approach

In this section we describe the common ground of constraint models we used to model
the variants of JSP tackled in this paper. We shall consider the minimization of the total
makespan (Cmax) as the objective function in all cases.

2.1 Job Shop Scheduling Problem

An n × m job shop problem (JSP) involves a set of nm tasks T = {ti | 1 ≤ i ≤ nm},
partitioned into n jobs J = {Jx | 1 ≤ x ≤ n}, that need to be scheduled on m
machines M = {My | 1 ≤ y ≤ m}. Each job Jx ∈ J is a set of m tasks Jx =
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{t(x−1)∗m+y | 1 ≤ y ≤ m}. Conversely, each machine My ∈ M denotes a set of n
tasks (to run on this machine) such that: T = (

⋃
1≤x≤n Jx) = (

⋃
1≤y≤m My).

Each task ti has an associated duration, or processing time, pi. A schedule is a map-
ping of tasks to time points consistent with: sequencing constraints which ensure that
the tasks of each job run in a predefined order; and resource constraints which ensure
that no two tasks run simultaneously on any given machine.

In this paper we consider the standard objective function defined as the minimization
of the makespan Cmax, that is, the total duration to run all tasks. If we identify each
task ti with its start time in the schedule, the job shop scheduling problem (JSP) can
thus be written as follow:

(JSP ) minimise Cmax subject to :
Cmax ≥ ti + pi ∀ti ∈ T (2.1)

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (2.2)

ti + pi ≤ tj ∨ tj + pj ≤ ti ∀My ∈ M, ti �= tj ∈ My (2.3)

2.2 Constraint Model

The objective to minimise (total makespan) is represented by a variable Cmax and the
start time of each task ti is represented by a variable ti ∈ [0, . . . , max(Cmax) − pi].
Next, for every pair of tasks ti, tj sharing a machine, we introduce a Boolean variable
bij which represents the relative ordering between ti and tj . A value of 0 for bij means
that task ti precedes task tj , whilst a value of 1 stands for the opposite ordering. The
variables ti, tj and bij are linked by the following constraint:

bij =
{

0 ⇔ ti + pi ≤ tj
1 ⇔ tj + pj ≤ ti

Bounds consistency (BC) is maintained on these constraints. A range support of a con-
straint C(x1, . . . , xk) is an assignment of {x1, . . . , xk} satisfying C, and where the
value assigned to each variable xi is an integer taken in the interval [min(xi)..max(xi)].
A constraint C(x1, . . . , xk) is bounds consistent (BC) iff, for every variable xi in the
scope of C, min(xi) and max(xi) have a range support. Here, the scope of the con-
straint involves three variables, bij , ti and tj , therefore BC can be achieved in constant
time for a single constraint, by applying simple rules. For n jobs and m machines, this
model involves nm(n − 1)/2 Boolean variables and as many ternary disjunctive con-
straints. Using an AC3 type constraint queue, the wort case time complexity for achiev-
ing bounds consistency on the whole network is therefore O(Cmax∗nm(n−1)/2) since
in the worst case bounds can be reduced by one unit at a time. For instance, consider
three tasks ti, tj and tk such that pi = pj = pk = 1 and assume that bij = bjk = 0
(hence ti ≤ tj ≤ tk). Moreover, suppose that the domain of bik is reduced to the value
1, so that the cycle is closed. Since the domains are reduced by a constant amount at
each propagation, the number of iterations necessary to obtain a failure is in O(Cmax).
However, it rarely reaches this bound in practice. Observe, moreover, that artificially
increasing the size of the instance by a fixed amount will not affect the propagation
loop as long as the durations increase proportionally to the horizon.
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2.3 Search Strategy

We use the model described above in two different ways. Initially the lower bound on
Cmax is set to the duration of the longest job/machine, whilst the upper bound ub is
initialised by a greedy algorithm in one case (Section 3.1), or by simply summing the
durations of every task (Section 3.2). Since this starting upper bound is often very poor,
especially in the latter case, we reduce the gap by performing a dichotomic search.
We repeatedly solve the decision problem with a makespan fixed to ub+lb

2 , updating lb
and ub accordingly, until they have collapsed. Each dichotomic step has a fixed time
cutoff, if the problem is unsolved the lb is updated, although not stored as the best
proven lb. Moreover, we observed that in many cases, the initial upper bound is so
overestimated that it helps to slightly bias the dichotomic pivot toward lower values
until a first solution is found.

If the problem has not been solved to optimality during the dichotomic search, we
perform a branch & bound search with the best makespan from the dichotmic search as
our upper bound, and the best proven lb as our lower bound. Branch & bound search is
performed until either optimality is proven or an overall cutoff is reached.

Branching: Instead of searching by assigning a starting time to a single value on the
left branches, and forbidding this value on the right branches, it is common to branch on
precedences. An unresolved pair of tasks ti, tj is selected and the constraint ti+pi ≤ tj
is posted on the left branch whilst tj + pj ≤ ti is posted on the right branch. In our
model, branching on the Boolean variables precisely simulates this branching strategy
and thus significantly reduces the search space. Indeed, the existence of a partial order-
ing of the tasks (compatible with start times and durations, and such that its projection
on any job or machine is a total order) is equivalent to the existence of a solution. In
other words, if we successfully assign all Boolean variables in our model, the existence
of a solution is guaranteed. Assigning each task variable to its lowest domain value
gives the minimum Cmax for this solution.

Variable Selection: We use the domain/weighted-degree heuristic [5], which chooses
the variable minimising the ratio of current domain size to total weight of its neigh-
boring constraints (initialised to 1). A constraint’s weight is incremented by one each
time the constraint causes a failure during search. It is important to stress that the be-
haviour of this heuristic is dependent on the modelling choices. Indeed, two different,
yet logically equivalent, sets of constraints may distribute the weights differently. In
this model, every constraint involves at most one search variable. Moreover, the relative
light weight of the model allows the search engine to explore many more nodes than
would a method relying on stronger inference, thus learning weights quicker.

However, at the start of the search, this heuristic is completely uninformed since
every Boolean variable has the same domain size and the same degree. We there-
fore use an augmented version of the heuristic, where, instead of the domain size
of bij , we use the domain size of the two associated task variables ti, tj . We denote
dom(ti) = (max(ti) − min(ti) + 1) the domain size of task ti, that is, the residual
time windows of its starting time. Moreover, we denote w(i, j) the number of times
the search failed while propagating the constraint between ti, tj and bij . We choose the
variable minimising the sum of the tasks’ domain size divided by the weighted degree:
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dom(ti) + dom(tj)
w(i, j)

(2.4)

Moreover, one can also use the weighted degree associated with the task variables.
Let Γ (tj) denote the set of tasks sharing a resource with tj . We call w(tj) =∑

ti∈Γ (tj) w(i, j) the sum of the weights of every ternary disjunctive constraint in-
volving tj . Now we can define an alternative variable ordering as follows:

dom(ti) + dom(tj)
w(ti) + w(tj)

(2.5)

We refer to these heuristics as tdom/bweight and tdom/tweight, tdom refers to the
sum of the domain sizes of the tasks associated with the Boolean variable, and bweight
(tweight) refers to the weighted degree of the Boolean (tasks). Ties were broken
randomly.

Value Selection: Our value ordering is based on the solution guided approach (SGM-
PCS) proposed by Beck for JSPs [4]. This approach involves using previous solution(s)
as guidance for the current search, intensifying search around a previous solution in a
similar manner to i-TSAB [21]. In SGMPCS, a set of elite solutions is initially gener-
ated. Then, at the start of each search attempt, a solution is randomly chosen from the
set and is used as a value ordering heuristic for search. When an improving solution
is found, it replaces the solution in the elite set that was used for guidance. The logic
behind this approach is its combination of intensification (through solution guidance)
and diversification (through maintaining a set of diverse solutions).

Interestingly Beck found that the intensification aspect was more important than the
diversification. Indeed, for the JSPs studied, there was little difference in performance
between an elite set of size 1 and larger elite sets (although too large a set did result in
a deterioration in performance). We use an elite set of 1 for our approach, i.e. once an
initial solution has been found this solution is used, and updated, throughout our search.

Furthermore, up until the first solution is found during dichotomic search, we use
a value ordering working on the principle of best promise [11]. The value 0 for bij is
visited first iff the domain reduction directly induced by the corresponding precendence
(ti + pi ≤ tj) is less than that of the opposite precedence (tj + pj ≤ ti).

Restart policy: It has previously been shown that randomization and restarts can greatly
improve systematic search performance on combinatorial problems [12]. We use a ge-
ometric restarting strategy [28] with random tie-breaking. The geometric strategy is of
the form s, sr, sr2, sr3, ... where s is the base and r is the multiplicative factor. In our
experiments the base was 64 failures and the multiplicative factor was 1.3. We also
incorporate the nogood recording from restarts strategy of Lecoutre et al. [19], where
nogoods are generated from the final search state when the cutoff has been reached. To
that effect, we use a global constraint which essentially simulates the unit propagation
procedure of a SAT solver. After every restart, for every minimal subset of decisions
leading to a failure, the clause that prevents exploring the same path on subsequent
restarts is added to the base. This constraint is not weighted when a conflict occurs.
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3 Experimental Evaluation

We compare our model with state-of-the-art solvers (both systematic and non-
sysytematic) on 2 variants of the JSP, job shop problems with sequence dependent setup
times and job shop problems with time lags. All our experiments were run on an Intel
Xeon 2.66GHz machine with 12GB of ram on Fedora 9. Due to the random compo-
nent of our algorithm, each instance was solved ten times and we report our results in
terms of both best and average makespan found per problem. Each algorithm run on a
problem had an overall time limit of 3600s.

The number of algorithms we need to compare against makes it extremely difficult
to run all experiments on a common setting.1 We therefore decided to compare with
the results taken from their associated papers. Since they were obtained on different
machines with overall cutoffs based on different criteria, a direct comparison of cpu
time is not possible. However, an improvement on the best known makespan is sufficient
to observe that our approach is competitive. Therefore, we focus our analysis of the
results on the objective value (although we do include average cpu time over the 10
runs for problems where we proved optimality).

3.1 Job Shop Scheduling Problem with Sequence Dependent Setup-Times

A job shop problem with sequence-dependent setup times, involves, as in a regular JSP,
m machines and nm tasks, partitioned into n Jobs of m tasks. As for a JSP, the tasks
have to run in a predefined order for every job and two tasks sharing a machine cannot
run concurrently, that is, the starting times of these tasks should be separated by at
least the duration of the first. However, for each machine and each pair of tasks running
on this machine, the machine needs to be setup to accommodate the new task. During
this setup the machine must stand idle. The duration of this operation depends on the
sequence of tasks, that is, for every pair of tasks (ti, tj) running on the same machine
we are given the setup time s(i, j) for tj following ti and the setup time s(j, i) for ti
following tj . The setup times respect the triangular inequality, that is ∀i, j, k s(i, j) +
s(j, k) ≥ s(i, k). The objective is to minimise the makespan. More formally:

(SDST − JSP ) minimise Cmax subject to :
Cmax ≥ ti + pi ∀ti ∈ T (3.1)

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (3.2)

ti + pi + si,j,y ≤ tj ∨ tj + pj + sj,i,y ≤ ti ∀My ∈ M, ∀ti �= tj ∈ My (3.3)

State of the art: This problem represents a challenge for CP and systematic approaches
in general, since the inference from the Edge-finding algorithm is seriously weakened
as it cannot easily take into account the setup times. Therefore there are two main
approaches to this problem. The first by Artigues et al. [1] (denoted AF08 in Table 1)
tries to adapt the reasoning for simple unary resources to unary resources with setup
times. The approach relies on solving a TSP with time windows to find the shortest
permutation of tasks, and is therefore computationally expensive.

1 The code may be written for different OS, not publicly available, or not open source.
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Table 1. SDST-JSP: Comparison vs state-of-the-art (best & mean Cmax, 10 runs)

Instance
AF08 BSV08 GVV08 GVV09 tdom/bweight
Best Best Best Avg Best Avg Best Avg Time

t2-ps01 798 798 798 798 798 798.0 0.1
t2-ps02 784 784 784 784 784 784.0 0.2
t2-ps03 749 749 749 749 749 749.0 0.2
t2-ps04 730 730 730 730 730 730.0 0.1
t2-ps05 691 693 691 692 691 691.0 0.1
t2-ps06 1009 1018 1026 1026 1009 1009.0 20.3
t2-ps07 970 1003 970 971 970 970.0 46.1
t2-ps08 963 975 963 966 963 963.0 86.1
t2-ps09 1061 1060 1060 1060 1060∗ 1060.0 1025.1
t2-ps10 1018 1018 1018 1018 1018 1018.0 11.0
t2-ps11 1494 1470 1438 1439 1438 1441 1443 1463.6 -
t2-ps12 1381 1305 1269 1291 1269 1277 1269 1322.2 -
t2-ps13 1457 1439 1406 1415 1415 1416 1415 1428.8 -
t2-ps14 1483 1485 1452 1489 1452 1489 1452 1470.5 -
t2-ps15 1661 1527 1485 1502 1485 1496 1486 1495.8 -
t2-pss06 1126 1114∗ 1114.0 600.9
t2-pss07 1075 1070∗ 1070.0 274.1
t2-pss08 1087 1072∗ 1073.0 -
t2-pss09 1181 1161∗ 1161.0 -
t2-pss10 1121 1118∗ 1118.0 47.2
t2-pss11 1442 1412∗ 1425.9 -
t2-pss12 1290 1258 1266 1269 1287.6 -
t2-pss13 1398 1361 1379 1365 1388.0 -
t2-pss14 1453 1452∗ 1453.0 -
t2-pss15 1435 1417∗ 1427.4 -

The second type of approach relies on metaheuristics. Balas et al. [2] proposed com-
bining a shifting bottleneck algorithm with guided local search (denoted BSV08 in Ta-
ble 12), where the problem is also decomposed into a TSP with time windows. Hybrid
genetic algorithms have also been proposed by González et al. for this problem, firstly
a hybrid GA with local search [13] and more recently GA combined with tabu search
[14] (denoted GVV08 and GVV09 resp. in Table 1). For both GA hybrids, the problem
is modeled using the disjunctive graph representation.

Specific Implementation Choices: Our model is basically identical to the generic
scheduling model introduced in Section 2. However, the setup time between two tasks
is added to the duration within the disjunctive constraints. That is, given two tasks ti
and tj sharing a machine, let si,j (resp. sj,i) be the setup time for the transition between
ti and tj (resp. between tj and ti), we replace the usual disjunctive constraint with:

bij =
{

0 ⇔ ti + pi + si,j ≤ tj
1 ⇔ tj + pj + sj,i ≤ ti

Evaluation: Table 1 summarizes the results of the state-of-the-art and our approach on
a set of benchmarks proposed by Brucker and Thiele [7]. The problems are grouped
based on the number of jobs and machines (nxm), *01-05 are of size 10x5, *06-10 are
of size 15x5, while *11-15 are of size 20x5. Each step of the dichotomic search had
a 30 second cutoff, the search heuristic used was tdom/bweight. We use the following

2 Results for t2-pss-*06-11 and 14-15 are from
http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt

http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt
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notation for Table 1 (we shall reuse it for Tables 3 and 4): underlined values denote the
fact that optimality was proven, bold face values denote the best value achieved by any
method and finally, values∗ marked with a star denote instances where our approach
improved on the best known solution or built the first proof of optimality. We also
include the average time over the 10 runs when optimality was proven (a dash means
optimality wasn’t proven before reaching the 1 hour cutoff).

We report the first proof of optimality for four instances (t2-ps09, t2-pss06,
t2-pss07, t2-pss10) and 8 new upper bounds for t2-pss* instances (however it
should be noted that there is no comparison available for GVV09 on these 8 instances).
In general, our approach is competitive with the state-of-the-art (GVV09) and outper-
forms both dedicated systematic and non-systematic solvers.

3.2 Job Shop Scheduling Problem with Time Lags

An n × m job shop problem with time lags (JTL) involves the same variables and
constraints as a JSP of the same order. However, there is an additional upper bound
on the time lag between every pair of successive tasks in every job. Let li denote the
maximum amount of time allowed between the completion of task ti and the start of
task tj . More formally:

(TL − JSP ) minimise Cmax subject to :
Cmax ≥ ti + pi ∀ti ∈ T (3.4)

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (3.5)

ti+1 − (pi + li) ≤ ti ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (3.6)

ti + pi ≤ tj ∨ tj + pj ≤ ti ∀My ∈ M, ∀ti �= tj ∈ My (3.7)

This type of constraint arises in many situations. For instance, in the steel industry,
the time lag between the heating of a piece of steel and its moulding should be small.
Similarly when scheduling chemical reactions, the reactives often cannot be stored for a
long period of time between two stages of a process to avoid interactions with external
elements. This type of problem has been studied in a number of areas including the steel
and chemical industries [24].

State of the art: Caumond et al. introduced in 2008 a genetic algorithm able to deal
with general time lag constraints [9]. However most of the algorithms introduced in the
literature have been designed for a particular case of this problem: the no-wait job shop.
In this case, the maximum time-lag is null, i.e. each task of a job must start directly after
its preceding task has finished.

For the no-wait job shop problem, the best methods are a tabu search method
by Schuster (TS [25]), another metaheuristic introduced by Framinian and Schuster
(CLM [10]) and a hybrid constructive/tabu search algorithm introduced by Bozėjko
and Makuchowski in 2009 (HTS [6]). We report the best results of each paper. It should
be noted that for HTS, the authors reported two sets of results, the ones we report for
the “hard” instances were “without limit of computation time”.
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Table 2. Results summary for JTL- and NW-JSP

(a) JTL-JSP: Cmax & Time

Instance Sets
CLT tdom/bweight

Cmax Time Cmax Time
car[5-8] 0 0,5 7883.25 322.19 7883.25 2.16
car[5-8] 0 1 7731.25 273.75 7731.25 4.16
car[5-8] 0 2 7709.25 297.06 7709.25 6.31
la[06-08] 0 0,5 1173.67 2359.33 980.00 2044.77
la[06-08] 0 1 1055.33 1870.92 905.33 2052.41
la[06-08] 0 2 1064.33 1853.67 904.67 2054.81

(b) NW-JSP: Summary of APRD per problem
set

Instance
TS HTS CLM CLT tdom/ tdom

twdeg
ft -8.75 -10.58 -10.58 -9.79

abz -20.77 -25.58 -25.89 -25.1
orb 2.42 0.77 1.44 0.00 0.00

la01-10 4.43 1.77 3.31 4.53 0.00 0.00
la11-20 9.52 -5.40 5.14 29.14 -6.32 -6.36
la21-30 -33.93 -39.96 -34.62 -39.85 -39.04
la31-40 -36.69 -42.39 -36.87 -41.65 -40.36

swv01-10 -34.41 -37.22 -34.39 -36.88 -35.33
swv11-20 -40.62 -42.25 -39.17 -33.87

yn -34.87 -41.84 -38.78 -39.03

Specific Implementation Choices: The constraint to represent time lags between two
tasks of a job are simple precedences in our model. For instance, a time lag li between
ti and ti+1, will be represented by the following constraint: ti+1 − (pi + li) ≤ ti.

Although our generic model was relatively efficient on these problems, we made a
simple improvement for the no-wait class based on the following observation: if no
delay is allowed between any two consecutive tasks of a job, then the start time of every
task is functionally dependent on the start time of any other task in the job. The tasks
of each job can thus be viewed as one block. In other words we really need only one
task in our model to represent all the tasks of a job. We therefore use only n variables
standing for the jobs: {Jx | 1 ≤ x ≤ n}.

Let hi be the total duration of the tasks coming before task ti in its job. That is, if job
J = {t1, . . . , tm}, we have: hi =

∑
k<i pk. For every pair of tasks ti ∈ Jx, tj ∈ Jy

sharing a machine, we use the same Boolean variables to represent disjuncts as in the
original model, however linked by the following constraints:

bij =
{

0 ⇔ Jx + hi + pi − hj ≤ Jy

1 ⇔ Jy + hj + pj − hi ≤ Jx

Notice that while the variables and constants are different, these are still exactly the
same ternary disjuncts used in the original model.

The no-wait job shop scheduling problem can therefore be reformulated as follows,
where the variables J1, . . . , Jn represent the start time of the jobs, Jx(i) stands for the
job of task ti, and f(i, j) = hi + pi − hj .

(NW − JSP ) minimise Cmax subject to :

Cmax ≥ Jx +
∑

ti∈Jx

pi ∀Jx ∈ J (3.8)

Jx(i) + f(i, j) ≤ Jx(j) ∨ Jx(j) + f(j, i) ≤ Jx(i) ∀My ∈ M, ti, tj ∈ My (3.9)

Evaluation: On general JTL problems, it is difficult to find comparable results in the
literature. To the best of our knowledge, the only one available is the genetic algorithm
by Caumond et al. [9] that we shall denote CLT. In Table 2a, we report the results from
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our model on the instances used in that paper, where instances are grouped based on
type (car (4 instances) / la (3 instances)) and maximum time lag (0.5 / 1 / 2).

For the no-wait job shop problem, we first present our results in terms of each solver’s
average percentage relative deviation (PRD) from the reference values given in [6] per
problem set in Table 2b. The PRD is given by the following formula:

PRD = ((CAlg − CRef )/CRef ) ∗ 100 (3.10)

where CAlg is the best makespan found by the algorithm and CRef is the reference
makespan for the instance given in [6]. There are 82 instances overall.

Interestingly, the search heuristic tdom/tweight performed much better with our no-
wait model than tdom/bweight, thus we report the results for this heuristic. This was
somewhat surprising because this heuristic is less discriminatory as the task weights
for a Boolean are the weights of the two jobs, which will be the same for all Booleans
between these two jobs. Further investigation revealed that ignoring the weight yielded
better results on a number of problems. Thus we also include the heuristic tdom.

Our approach was better than the local search approaches on the smaller problem
sets, and remained competitive on the larger problem sets. In Table 3 we provide results
for the instances regarded as easy in [6], these had been proven optimal by Mascis [20].

Table 3. NW-JSP: Comparison vs state-of-the-art on easy instances (best & mean Cmax, 10
runs).

Instance
Size Ref TS HTS CLM CLT tdom/tweight tdom
nxm Best Best Best Best Best Avg Time Best Avg Time

ft06 6x6 73 73 73 73 73 73 0.01 73 73 0.02
ft10 10x10 1607 1620 1607 1619 1607 1607 4.08 1607 1607 2.49
abz5 2150 2233 2182 2150 2150 9.28 2150 2150 8.87
abz6 1718 1758 1760 1718 1718 1.25 1718 1718 0.71
orb01 1615 1663 1615 1646 1615 1615 1.65 1615 1615 1.45
orb02 1485 1555 1518 1518 1485 1485 1.16 1485 1485 1.12
orb03 1599 1603 1599 1603 1599 1599 4.22 1599 1599 3.10
orb04 1653 1653 1653 1653 1653 1653 1.56 1653 1653 1.11
orb05 1365 1415 1367 1371 1365 1365 3.91 1365 1365 4.43
orb06 1555 1555 1557 1555 1555 1555 0.31 1555 1555 0.26
orb07 689 706 717 706 689 689 6.10 689 689 3.34
orb08 1319 1319 1319 1319 1319 1319 2.22 1319 1319 2.12
orb09 1445 1535 1449 1515 1445 1445 1.02 1445 1445 0.68
orb10 1557 1618 1571 1592 1557 1557 4.55 1557 1557 4.78
la01 10x5 971 1043 975 1031 975 971 971 0.13 971 971 0.11
la02 937 990 975 937 937 937 937 0.24 937 937 0.19
la03 820 832 820 832 820 820 820 0.14 820 820 0.15
la04 887 889 889 889 911 887 887 0.28 887 887 0.17
la05 777 817 777 797 818 777 777 0.30 777 777 0.22
la06 15x5 1248 1299 1248 1256 1305 1248 1248 115.19 1248 1248 81.70
la07 1172 1227 1172 1253 1282 1172 1172 66.96 1172 1172 57.30
la08 1244 1305 1298 1307 1312 1244 1244 50.35 1244 1244 38.63
la09 1358 1450 1415 1451 1547 1358 1358 181.55 1358 1358 102.10
la10 1287 1338 1345 1328 1333 1287 1287 54.14 1287 1287 30.78
la16 10x10 1575 1637 1575 1637 1833 1575 1575 2.09 1575 1575 1.37
la17 1371 1430 1384 1389 1591 1371 1371 2.34 1371 1371 1.70
la18 1417 1555 1417 1555 1790 1417 1417 1.38 1417 1417 1.31
la19 1482 1610 1491 1572 1831 1482 1482 3.14 1482 1482 3.08
la20 1526 1705 1526 1580 1828 1526 1526 0.70 1526 1526 0.66
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Table 4. NW-JSP: Improvement on hard instances (best & mean Cmax, 10 runs)

Instance
Size Ref TS HTS CLM tdom/tweight tdom
nxm Best Best Best Best Avg Time Best Avg Time

swv06 20x15 3291 3502 3290 3291 3278∗ 3378.0 - 3391 3500.4 -
la11 20x5 2821 1737 1621 1714 1619∗ 1646.9 - 1622 1632.2 -
la12 2434 1550 1434 1507 1414 1432.7 - 1414∗ 1414.0 2892.37
la14 2662 1771 1610 1773 1578∗ 1628.5 - 1578∗ 1611.1 -
la15 2765 1808 1686 1771 1679∗ 1693.2 - 1681 1691.9 -
la21 15x10 2092 2242 2030 2149 2030 2030.0 - 2030∗ 2030.0 579.69
la22 1928 2008 1852 1979 1852 1854.3 - 1852 1852.0 1013.45
la23 2038 2093 2021 2038 2021 2033.2 - 2021 2021.0 1160.13
la24 2061 2061 1972 2133 1972 1982.7 - 1972 1972.0 1128.55
la25 20x10 2034 2072 1906 2050 1906 1906.0 1336.92 1906 1906.0 218.60
la27 2933 2968 2675 2933 2671∗ 2750.3 - 2675 2743.0 -
la36 15x15 2810 2993 2685 2810 2685 2715.5 - 2685 2685.0 1530.39
la37 3044 3171 2831 3161 2937 2974.0 - 2831 2930.4 -
la38 2726 2734 2525 2726 2525 2556.9 - 2525 2525.0 2898.77
la39 2752 2804 2687 2784 2660∗ 2686.0 - 2660∗ 2662.7 3564.28
la40 2838 2977 2580 2880 2564∗ 2660.8 - 2564∗ 2591.9 2879.08

We proved optimality on all these instances, in under 10s for most cases. It is of interest
to note that tdom was nearly always quicker than tdom/tweight at proving optimality.
In Table 4, we report results for the “hard” instances where our approach found an
improving solution, and the first proofs of optimality for 10 (la12, la21-25, la36 and
la38-40) of the 53 open problems.

4 Weight Learning Analysis

We have previously shown that the weighted degree is a key element of our approach
[16]. In particular the gap in performance between tdom/bwdeg and tdom was quite
large for open shop scheduling problems. Here we try to give a more precise charac-
terization of the importance of learning weights, by gradually reducing the influence
of these weights in the variable selection heuristic. We observe that the impact of the
weights is very much problem-dependent. It is extremely important for job shop with
setup times model and for the standard model for job shop with time lags. However, for
the specific model for no-wait job shop problems, it can be detrimental in some cases.

4.1 Evaluation of Weighted Degree

In order to evaluate the effect of weight learning on search, we devised the following
variable ordering heuristic, that we denote tdom/(K + bweight), and that selects first
the variable bij minimising the value of:

dom(ti) + dom(tj)
w(i, j) + K

(4.1)

Observe that when K = 0, this heuristic is equivalent to tdom/(bweight), whereas,
when K tends toward infinity, the weights become insignificant in the variable selection.
For K = ∞ the next variable is selected with respect to tdom only.
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We can therefore tune the impact of the weights in the variable choice, by setting the
constant K . As K increases, the role of the weights is increasingly restricted to a tie
breaker. We selected a subset of instances small enough to be solved by tdom/(∞ +
bweight). For the selected subset of small instances, we ran each version of the heuristic
ten times with different random seeds. We report the average cpu time across the ten
runs in Table 5. When the run went over a one hour time cutoff, we report the deviation
to the optimal solution (in percentage) instead.

Table 5. Weight evaluation: cpu-time or deviation to the optimal for increasing values of K

Instance
tdom/(K + bweight)

K = 0 K = 10 K = 100 K = 1000 K = 10000 K = 100000 K = ∞
t2-ps07 26.55 23.33 26.67 41.60 77.27 403.90 +12.9%
t2-ps08 41.08 35.85 93.60 128.96 194.96 665.28 +9.8%
t2-ps09 971.83 956.63 948.28 957.85 1164.94 1649.19 +8.8%
t2-ps10 13.04 13.95 13.63 19.44 100.25 422.24 +15.7%
la07 0 3 +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +5.8%
la08 0 3 15.63 12.45 23.03 30.22 117.50 391.99 3098.87
la09 0 3 1.61 0.51 1.44 10.16 129.62 169.02 2115.98
la10 0 3 3.42 2.25 0.41 0.69 1.39 3.44 39.66
la07 0 0 1751.16 549.58 392.71 151.70 66.18 49.67 57.28
la08 0 0 2231.18 575.44 309.04 113.95 42.04 35.74 38.63
la09 0 0 2402.76 1291.29 691.96 407.68 147.73 89.28 102.03
la10 0 0 3274.86 833.28 214.51 53.75 26.85 26.51 30.82

For job shop with setup times, the best compromise is for K = 10. For very large
values of K , the domain size of the tasks takes complete precedence on the weights, and
the performance degrades. However, as long as the weights are present in the selection
process, even simply as tie breaker, the cpu time stays within one order of magnitude
from the best value for K . On the other hand, when the weights are completely ignored,
the algorithm is not able to solve any of the instances. Indeed the gap to optimality is
quite large, around 9% to 15%.

For job shop with time lags, the situation is a little bit different. As in the previous
case, the best compromise is for K = 10 and the performance degrades slowly when K
increases. However, even when the weights are completely ignored, the gap stays within
a few orders of magnitude from the best case. Finally, for the no-wait job shop, we
observe that the opposite is true. Rather than increasing with K , the cpu time actually
decreases when K grows.

One important feature of a heuristic is its capacity to focus the search on a small
subset of variables that would constitute a backdoor of the problem. It is therefore inter-
esting to find out if there is a correlation between a high level of inequality in the weight
distribution and the capacity to find small backdoors. We used the Gini coefficient to
characterize the weight distribution. The Gini coefficient is a metric of inequality, used
for instance to analyse distribution of wealth in social science.

The Gini coefficient is based on the Lorenz curve, mapping the cumulative pro-
portion of income y of a fraction x of the poorest population. When the distribution
is perfectly fair, the Lorenz curve is y = x. The Gini coefficient is the ratio of the
area lying between the Lorenz curve and x = y, over the total area below x = y.



Job Shop Scheduling with Setup Times and Maximal Time-Lags 159

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1

G
in

i c
oe

ffi
ci

en
t

Searched nodes (normalised)

job shop with setup times
random csp

pigeon holes

Fig. 1. Weight distribution bias: Gini coefficient
over the (normalised) number of searched nodes

We consider only search trees for unsat-
isfiable instances. In an ideal situation,
when the search converges immediately
toward a given set of variables from
which a short proof of unsatisfiability can
be extracted, the Gini coefficient of the
weight distribution typically increases
rapidly and monotonically. In Figure 1
we plot the Gini coefficient of the proofs
for the instance t2-ps07; for an in-
stance of random CSP with 100 vari-
ables, a domain size of 15, 250 binary
constraints of tightness 0.53 uniformly
distributed; and a pigeon holes instance.
After each geometric restart, the Gini coefficient is computed and plotted against the
current number of explored nodes. We observe that the weight distribution is quickly
and significantly biased on the job shop instance. On the other hand, there is much
less discrimination on the random CSP instance, where constraints are uniformly dis-
tributed, and almost no discrimination at all on the pigeon hole problem. We were inter-
ested in checking if one could predict, from the fairness of the weight distribution, how
beneficial the weighted degree heuristic is for the considered problem. However, when
comparing two proofs that required a comparably large amount of search, but for which
we showed that, in one case the weights are beneficial, and in the other case detrimental,
it is in fact extremely difficult to differentiate the evolution of the coefficient. It took 11
million nodes to prove that Cmax = 1357 is unsatisfiable for la09 0 0 and 24 million
nodes to prove that Cmax = 1059 is unsatisfiable for t2-ps09. It is clear from the
results in Table 5 however, that the weights helped in the latter case, whereas they did
not in the former case. We report two statistics collected during search showing some
clear differences: the ratio of (Boolean) variables that are selected at a choice point up
to each depth in the search tree, over the total number of (Boolean) variables; the ratio
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of the number of choice points, that is nodes of the search tree, at each depth, over the
total number of explored nodes.

Clearly for t2-ps09, where the weights are useful, the search is more focused on
lower depth, and on a smaller ratio of variables. Indeed, the cumulative ratio of searched
variables tops at 0.3 (See Figure 2a). On the other hand, for la09 0 0, even very deep
in the tree, new choice points are opened (the ratio of choice points is more spread
out), and they involve a large proportion of new variables (the cumulative number of
searched variables increases almost linearly up to 0.6). The evolution of the Gini coef-
ficient during search is, however, very similar in both cases (See Figure 2b).

One possibility is that the build up of contention is more important for the no wait
problems due to the stronger propagation between tasks of the one job. Preliminary
results suggest that initially both tdom and tdom/bweight repeatedly select Booleans
between the same pair of jobs, once a pair has been selected. The heuristics diverge
when search backs up from deep in search, tdom will still often choose Booleans from
the same pair of jobs as the variable above the choice point, while the weights learnt
deep in search may result in the heuristics that use bweight and tweight choosing
variables associated with a different pair of jobs. Obviously, this effect will be stronger
for bweight as the weights are associated with individual Booelans.

5 Conclusions

We have shown how our constraint model can be easily extended to handle two variants
of the job shop scheduling problem. In both cases we found our approach to be compet-
itive with the state-of-the-art, most notably in proving optimality on some of the open
problems of both problem types.

Whereas it appeared to uniformly improve search efficiency for standard job shop
and open shop scheduling problems, our analysis of constraint weighting revealed that
it can actually be detrimental for some variants of these problems.
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Abstract. We present a class of problems that arise in the design of
the Next Generation Access Networks. The main features of these net-
works are: to be based on fiber links of relatively long length with respect
to traditional copper based networks, users may be reached directly by
fibers, and the presence of few central offices managing a large number of
users. We present an Integer Programming model that captures the tech-
nological constraints and the deployment costs. The model serves as a
basis for a decision support tool in the design of the Next Generation Ac-
cess Networks. Pure Integer Programming cannot handle real-life prob-
lem instances, giving rise to new challenges and opportunities for hybrid
Constraint Programming-Mathematical Programming methods. In this
paper, we compare a LP-based randomized rounding algorithm with a
Constraint-based Local Search formulation. The use of an LP relaxation
is twofold: it gives lower bounds to the optimal solution, and it is easily
embedded into a randomized rounding algorithm. The Constraint-based
Local Search algorithm is then exploited to explore the set of feasible
solutions. With these algorithms we are able to solve real-life instances
for one of the problems presented in this paper.

1 Introduction

In the last decade, network design has been one of the most important applica-
tion domains for Integer Programming methods. Typical application areas are
transportations and telecommunications, where even a small optimization factor
can have an important economical impact.

Even for Constraint Programming, network design has been a source of ap-
plications. See e.g., Simonis [1] for a recent overview.

In this paper, we present challenges that arise optimizing the design of the
Next Generation Access Networks completely based on fiber cable technology
that, in certain cases, may reach single users and for this reason are called Fiber
To The Home networks (FTTH).

The new network characteristics and the upcoming deployment motivate the
investigations on quantitative optimization models and algorithms for the plan-
ning that can help investors to decide which type of fiber network to select and
how to operationally implement it, that is where to install central offices, that is
the centers connected to the backbone network managing customer connections,
and possible intermediate cabinets and how to reach users considering network
link capacity.
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1.1 Technological Aspects

This technology has been proposed many years ago, but due to many factors,
including the telecommunication crisis and the absence of a really band eager
application, is becoming interesting only now.

We present the main issues arising in the design of FTTH networks consid-
ering only the most important technological features affecting the optimization
process. For a review on technical aspects refer to [2].

The main features of these networks are: to be based on fiber links of relatively
long length with respect to traditional copper based networks, users may be
reached directly by fibers, and the presence of few central offices managing a
large number of users. The use of fiber optics technology on the one hand involves
massive investments in the deployment phase, on the other hand it allows to
reduce the yearly maintenance costs and to increase the reliability.

From a mathematical point of view there are two main classes of architectures
of FTTH networks: the single star networks and the double star networks.

In single star networks, each user is reached by a fiber starting directly from a
central office. The fibers can be up to 20 km long without needing any interme-
diate device between the central office and the final destination. The number of
users that are connected to the same central office depends only on the managing
capacity that usually ranges from 1,000 to 100,000. The long haul of cables may
allow to cover large areas. In case of densely populated areas, as metropolitan ar-
eas, instead of reaching each user with a fiber, an alternative solution introduces
so called splicing cabinets in each building where the fiber is terminated. From
each splicing cabinet copper cable drops are used to reach users. The relatively
short length of copper cables allows to provide a broad band even though the
architecture is not entirely based on fiber optic (about 1Gb/s for drops of less
than 150 m). We will refer to single star networks as fiber to the cabinet.

Double star networks exploit the fact that cables from central offices to subsets
of nearby users may often follow the same path for a long distance and eventually
split in the last portion. Therefore an intermediate cabinet is introduced. The
cabinets are usually placed at the intersection of streets and can manage up
to 30,000 users. In the cabinets multiplexing may take place, allowing to better
exploit the cable capacity in the leg from the central office to the cabinet and thus
to reduce the number of cables. We can have different architectures depending on
the level where multiplexing takes place. It may be at electrical level, requiring
a powered cabinet, or at optical level. In the latter case cabinets do not need
to be powered. As in the single star case, also in the double star architectures,
instead of having a cable from the cabinet to each user, we may introduce a
splicing cabinet for each building serving more users with a single fiber cable.
These networks can be seen as two level hierarchical networks, where the first
layer represents the distribution from the central office to the cabinets and the
second layer represents the distribution from the cabinet to the users. We will
refer to double star networks as fiber to the basement or fiber to the home.

Variants of these problems consider additional features as reliability con-
straints for subsets of customers and mixed cable and radio links for the last
mile.
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1.2 Problem Statement and Notation

Planning a FTTH network involves several decisions: where to install central
offices, where to install cabinets, the assignment of cabinets to central offices
and how many fibers are needed for the connection, which multiplexing capacity
to install in each cabinet and, in the case of fiber to the home or fiber to the
basement networks, the assignment of basements or homes to the cabinets.

More specifically, we have two assignment problems: one that maps cabinets
to central offices and the other basements/homes to cabinets. The constraints
are the following:

a) each active cabinet must be connected to at least a central office;
b) the maximum number of fibers reaching each central office cannot exceed its

managing capacity;
c) each cabinet has a demand that must be satisfied, given by the number of

connections that must be established between the cabinet and its central
office; this demand, in the case of double star networks, is given by the
number of users connected to the cabinet;

d) the connections between a cabinet and its central office (or between base-
ment/home and cabinet) cannot exceed a given distance.

Deployment costs are affected by three factors:

1. the number of activated central offices;
2. the type of multiplexing technology installed in each cabinet;
3. the fiber laying cost, proportional to the distance between the cabinet and

the central office it is assigned to, and between the basement or home and
the cabinet it is assigned to.

Let us denote by O the set of candidate sites for central offices, by C be the
set of candidate sites for cabinets and by S the set of basements/homes to be
served. Let s1

i and M1
i be the cost and the capacity (in terms of number of fibers)

of central office i. Let T be the types of technologies that can be installed in
cabinets. Multiplexing technology t in a cabinet allows to send mt channels on a
single fiber towards the central office. Let s2

jt be the installation cost of cabinet
j with technology t, and and M2

j its maximum capacity in terms of number of
fibers coming from the users. With dij we indicate the known distance (computed
on the street graph) between any two sites i and j.

Figure 1 shows a micro example on the Politecnico campus in Milan. The
map shows the street graph along with 2 candidate sites for central offices, 3
candidate sites for cabinets, and 9 building basements where the splitters will
be installed. The problem is formalized using a tripartite graph defined on three
sets of vertices: the set of central offices O, the set of cabinets C, and the set
of basements S. Figure 2 shows the tripartite graph corresponding to the micro
example of Fig. 1. The subgraph induced by the sets O and C is referred to as
the primary network, while the subgraph induced by the sets C and S is the
secondary network. There is an edge in both the primary or in the secondary
network only if the distance constraints are satisfied, that is, there is the edge
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Fig. 1. Micro example on the Politecnico of Milano campus, with two candidate sites
for the central offices Oi (downward trapezia), three canidate sites for the cabinets Cj

(upward trapezia), and nine basements Sl (circles)

(i, j) with i ∈ O and j ∈ C if dij ≤ L1, and there is the edge (j, l) with j ∈ C
and l ∈ S if djl ≤ L2.

The two level nature of the problem is quite evident. Further on we will
use superscript 1 to denote the level between central offices and cabinets, and
superscript 2 to denote that between cabinets and customers.

1.3 Related Work

The problem studied here, to the best of our knowledge, was not considered be-
fore in the optimization literature. A related network design problem is presented
in [3], where, given the positions of central offices and of users, the problem con-
sists in finding the position of the optical splitters in such a way of minimizing
the overall costs. In that model, there is not an actual list of candidate sites,
since a rural (or greenfield) scenario is considered, and the coordinates of the po-
sition of the splitters are part of the decision variables of the problem. A mixed
integer non linear model is presented with the only purpose of formulating the
problem and it is not exploited in the heuristic algorithm.

Our problem is related to the Two-level Uncapacitated Facility Location prob-
lem (TUFL), well studied in the literature (e.g., see [4] for a polyhedral study
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S1 S2 S3 S4 S5 S6 S7 S8 S9

C1 C2 C3

O1 O2

Fig. 2. A tripartite (sub)graph correspoding to the example of Figure 1

and see [5] for recent advances in approximation algorithms). However, there are
two important differences with our problem: first, the capacity constraints that
are not considered in the literature, and, second, the multiplexing technology
constraints that make the problem much more complex. Note that, differently
from TUFL, in our case distinct paths from a central office to customers are not
profitable, since the multiplexing occurring at the cabinets can merge more links
coming from the secondary network into a single link of primary network. Thus
the techniques developed for the TUFL can hardly be exploited in our case.

Hybrid constraint and integer programming methods for the networks prob-
lems are presented in [1]. Recently [6] tackled a problem of routing and wave-
length assignment on optical networks. For each demand the set of frequencies
is given, and the problem consist in deciding which demands to select and how
to route them. To solve this problem a decomposition approach is implemented
using a MIP model to solve the allocation subproblem, i.e., to select and to
route a subset of demands, and the wavelength assignment problem is formal-
ized as a graph coloring and solved with constraint programming. In case the CP
subproblem becomes infeasible, the MIP allocation problem is somehow relaxed.

Another network design problem is presented in [7], where particular attention
is paid to problem of breaking symmetries.

A hybrid local search and constraint propagation method for a network rout-
ing problem is presented in [8], where the problem consists in, given a directed
capacitated network and a set of traffic demands, minimizing the cost of the lost
traffic demands.

2 Fiber to the Basement

Let us introduce a mathematical model for the design of Fiber To The Base-
ment/Home networks, which is the most general problem. The model for the
Fiber to the Cabinet problem can be derived as a special case. The problem can
be seen as a variant of the capacitated facility location problem, where facilities
belong to two levels (i.e. central offices and cabinets). We need to introduce two
sets of binary variables: y1

i , i ∈ O whose value is 1 if a central office is activated
in site i, and y2

jt, j ∈ C, t ∈ T if a cabinet with multiplexing technology t is
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activated in site j. We need another set of binary variables x2
jl whose value is 1

if basement l is assigned to cabinet j. Integer variables x1
ij give the number of

fibers connecting central office i with cabinet j. The last two sets of variables are
defined for all pairs i, j and j, l such that the distance between the corresponding
sites is less than or equal to the maximum allowed distance. In order to consider
only pairs of sites within a feasible distance, we introduce a set E including all
pairs i, j with i ∈ O and j ∈ C such that dij ≤ L1, and a set F of pairs j, l with
j ∈ C and l ∈ S such that djl ≤ L2.

The Integer Programming model is as follows:

min
∑
i∈O

s1
i y

1
i +
∑
j∈C

∑
t∈T

s2
jty

2
jt +
∑
ij∈E

c1
ijx

1
ij +
∑
jl∈F

c2
jlx

2
jl (1)

s.t.
∑
jl∈E

x2
jl = 1, ∀l ∈ S, (2)

∑
ij∈E

x1
ij ≤ M1

i y1
i , ∀i ∈ O, (3)

∑
t∈T

y2
jt ≤ 1, ∀j ∈ C, (4)

∑
jl∈F

x2
jl ≤ M2

j

∑
t∈T

y2
jt, ∀j ∈ C, (5)

∑
t∈T

y2
jt ≤
∑
ij∈E

x1
ij , ∀j ∈ C, (6)

mt

∑
ij∈E

x1
ij ≥
∑
jl∈F

x2
jl − M2

j (1 − y2
jt), ∀j ∈ C, ∀t ∈ T, (7)

y1
i ∈ {0, 1}, ∀i ∈ O, (8)

y2
jt ∈ {0, 1}, ∀j ∈ C, ∀t ∈ T, (9)

x1
ij ∈ Z+, ∀ij ∈ E, (10)

x2
jl ∈ {0, 1}, ∀jl ∈ F. (11)

Constraints (2) state that each user must be connected to a cabinet. Constraints
(3) are twofold: they force the activation of central office i (i.e. it sets variable
yi to 1) if at least one cabinet j is assigned to it, and they limit the number of
cabinets assigned to i according to the capacity. Constraints (4) determine that
either a cabinet is not active (when the left hand side is equal to 0) or at most a
multiplexing technology is assigned to it. Constraints (6) state that if a cabinet is
activated it must be connected to a central office. While constraints (7) relate the
number of incoming fibers in a cabinet from users with the number of outgoing
fibers towards the central office. This number must account for the multiplexing
factor installed in the cabinet. Note that in the group of constraints referring to
a cabinet at most one is significant, while the others are made redundant by big
constants.
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The objective function (1) accounts for the cost s1
i of each activated central

office, the cost s2
jt for installing the technology t in cabinet j and the connection

costs for the fibers between central offices and cabinets and between cabinets
and the users.

Note that for real life instances the ILP model (1)–(11) has more than one
million of variables and constraints, and cannot be solved in a reasonable time
with a pure Integer Programming approach.

3 Computational Approaches

We have developed two approaches to solve the FTTH problem. The first approach
is an LP-based Randomized Rounding algorithm, the second is a Constraint-based
Local Search algorithm. Both approaches are implemented exploiting features of
the Comet constraint language [9].

3.1 LP-Based Randomized Rounding

The FTTH problem recalls a capacitated facility location, but it has two levels
of facilities: at the first level we have the candidate sites for the central offices,
and at the second level there are the candidate sites for the cabinets, in addition
at this level multiplexing technologies must be accounted for. LP-based random-
ized rounding algorithms have proved to be successful for traditional capacitated
facility location problems [10]. This motivated our design of an LP-based Ran-
domized Rounding.

Let us call (P) the problem obtained by substituting integrality constraints
in (1)–(11) with the following linear constraints:

0 ≤ y1
i ≤ 1, 0 ≤ y2

ij ≤ 1, x1
ij ≥ 0, 0 ≤ x2

jl ≤ 1. (12)

Problem (P) can be solved easily with standard linear programming software.
An alternative option could utilize the Volume algorithm, but we leave this to
future investigations.

Our LP-based Randomized Rounding algorithm is based on the observation
that once we have decided which central offices and which cabinets to open, that
is, the variables y1 and y2 have been fixed to either 1 or 0, the remaining problem
is reduced to a generalized minimum cost flow problem on a two level bipartite
graph. Even if the generalized minimum cost flow problem is polynomial (e.g.,
see [11]), we solve it with a linear programming software.

We define three auxiliary subproblems:

1. The Continuous Generalized Minimum Cost Flow Problem (C-GFP) ob-
tained by fixing all of location variables y1

i and y2
jt either to 1 or 0.

2. The Partial Generalized Minimum Cost Flow Problem (P-GFP) obtained by
fixing to 1 some selected y1

i and y2
jt variables, and leave open the remaining

ones (that is we do not fix to 0 any variable);
3. The Integer Generalized Minimum Cost Flow Problem (I-GFP) obtained by

adding the integrality constraint to (C-GFP).
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Algorithm 1 sketches the main steps of our LP-based Randomized Rounding
algorithm. The randomized algorithm first solves the linear problem (P), then it
randomly rounds the variables y1 and y2 to either 1 or 0. In a second step, the
algorithm solves the (C-GFP) so obtained. In the case (C-GFP) is not feasible,
the algorithm solves the corresponding (P-GFP) and tries with a different ran-
domized rounding. Otherwise, if (C-FGP) is feasible, but some variable x1 or x2

are not integer, the algorithms solves the corresponding (I-GFP). The algorithm
cycles over these steps a given number r of times.

Since the LP relaxation is rather weak and most of y1 variables are only
slightly bigger than zero, rather than performing a standard randomized round-
ing, where variable y1

i is set to 1 with probability ȳ1
i , we perform a normalization

of the relaxation as follows. For each variable y1
i we compute the ratio:

Bi =

∑
ij∈E x̄1

ij∑
i′j∈E x̄1

i′j
(13)

This corresponds to normalize for each central office i the sum of the values
assigned in the LP relaxation to the link variables x̄1

ij entering in i by the sum
of all the link variables x1

i′j . On the contrary, for variables y2 we perform a
standard randomized rounding. The randomized rounding is preceded by a pre-
processing phase that fixes to 1 all the facility variables having a value greater
than δ.

3.2 Constraint-Based Local Search

We investigated also the use of Constraint-based Local Search (CBLS) that has
proved to be effective on other very large optimization problems [12].

CBLS Model. The CBLS approach proposed in this paper is based on a model
different from (1)–(11), and it relies on the use of invariants (see [13]) to incre-
mentally maintain the necessary information to guide the search procedure. In
order to use a different notation from the ILP formulation we will use upper case
letters to denote the variables of the CBLS model.

The decision variables are the following:

– For each basement l there is an integer variable X2
l with domain equal to

the subset of cabinets Cl ⊆ C reachable from j, i.e., Cl = {j | ∃(l, j) ∈ F}.
If X2

l = j it means that basement l is linked to cabinet j.
– For each cabinet j there is an integer variable Zj with domain equal to T .

Zj = t means that in cabinet j the t-th multiplexing technology is installed.
– For each possible link (i, j) ∈ E there is an integer variable X1

ij (equivalent
to variable x1

ij), that gives the number of fibers installed between central
office i and cabinet j.

These are the actual decision variables, since once they have been determined
we can derive which are the open central offices and the open cabinets (with the
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Algorithm 1. LP-based Randomized Rounding Algorithm.

1: for i in 1..r do
2: LB, x̄, ȳ ← solve problem (P)
3: Fix to 1 the variables y1 and y2 with value greater than δ
4: for i ∈ O do

5: if Uniform01() <
∑

j∈C x̄1
ij∑

i′j∈E x̄1
i′j

then

6: Set y1
i = 1

7: else
8: Set y1

i = 0
9: end if

10: end for
11: for j ∈ C, t ∈ T do
12: if Uniform01() < ȳ2

jt then
13: Set y2

jt = 1 � and set to zero all other t′ �= t
14: else
15: Set y2

jt = 0
16: end if
17: end for
18: Solve the (C-GFP) obtained by fixing y1 and y2 in steps 6,8,13, and 15
19: if (C-GFP) is not feasible then
20: Solve the (P-GFP) and go to 4 � consider only the fixes in 6 and 13
21: end if
22: if x1 and x2 are not all integer then
23: Solve the so obtained (I-GFP)
24: end if
25: if (I-GFP) is feasible then update UB else go to 4
26: end for

corresponding technology). In order to keep track of the open facilities, we use
the following invariants:

– Y 1
i ∈ {0, 1}: it is equal to 1 if at least a cabinets j linked to i exists:

Y 1
i ⇔ (∃j ∈ C.X1

ij > 0), ∀j ∈ J.

– Y 2
j ∈ {0, 1}: it is equal to 1 if at least a basement l linked to j exists:

Y 2
j ⇔ (∃l ∈ S.X2

l = j), ∀j ∈ C.

Once we have assigned a value to each decision variable, and these values have
propagated to the invariants, the objective function is computed as follows:∑

i∈O

s1
i Y

1
i +

∑
j∈C:Y 2

j =1

s2
jZj

+
∑
ij∈E

c1
ijX

1
ij +
∑
l∈S

c2
X2

l l (14)

Note that in the second and the fourth term, we use variable subscription, as it
were an element constraint, that is, we have a variable appearing in the subscript
of a cost parameters, which it is not possible in Integer Linear Programming.
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Search procedure. Basically, the CBLS performs a search in the space of
possible assignments to the decision variables X1, X2, and Z. The initial solution
is obtained by the following greedy procedure: first, we open a cabinet j, second,
we assign to it the M1

j nearest basements, then we open a second cabinet and
we “fill it” with basements, and we repeat these steps until every basement is
linked to a cabinet. Then, we decide which multiplexing technology to install
on every open cabinet while minimizing the installation costs. Finally, with a
similar greedy procedure, we keep in opening a new central office at the time,
until every open cabinet is assigned to a number of central offices in such a way
that the number of incoming fibers (in a cabinet) is equal to the number of
multiplexed outgoing fibers. Ties are always broken randomly.

The local search is based on a simple move: select the basement l connected to
a cabinet j, and select a different open cabinet j′ �= j that is not saturated (it has
some capacity left) such that moving l from j to j′ gives the best improvement
in the objective function (14). After this move, it may happen that we need to
increase by one the multiplexing technology at the cabinet j′, and possibly to
increase the number of fibers outgoing cabinet j′. We use this move to perform
a best improvement local search, until we get stalled in a local minimum. Once
we get stuck in a local minimum, we use a different neighborhood by trying to
change the multiplexing technology, i.e. variable Zj , and to modify the variable
X1

ij . Again, we perform a best improvement local search by selecting the moves
that decrease the objective function.

After that the local search algorithm get stuck in a local minimum a certain
number of times, we perform a simple diversification by randomly swapping
the assignment of basements to cabinets, and of fibers outgoing the cabinets to
central offices.

4 Computational Results

The two approaches presented in this paper are evaluated on realistic instances.
By realistic we mean that they are randomly generated in such a way to be as
close as possible to the real scenario of the metropolitan area of the city of Rome.
Using the street graph of Rome, with the link lengths in meters, we have gener-
ated 21 different instances using values for the installation and deployment costs
and for the central office and cabinet capacities, as provided by our collaborators
working at Alcatel-Lucent.

The biggest instance has 35 candidate sites for the central offices (consider
that the currently operated traditional network in Milan has 28 central offices,
but they would be more than really necessary in a fiber based network), 150
candidate sites for the cabinets, and 10.000 basements. This is equivalent to
approximately serve 300.000 final users. The smaller instances are generated in
order to compare our heuristics with an exact ILP method.

4.1 Implementation Details

The two approaches have been implemented with the Comet constraint lan-
guages (version 2.0), using Coin-Clp as linear solver and Scip as Integer Linear
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Programming solver. The tests were carried over a computer with linux-ubuntu
32 bits, an Intel Q6600 CPU (Quadcore 2.4GHz, 8Mb L2 cache, 1066 MHz FSB)
and with 4Gb of ram.

4.2 Comparing the Two Algorithms

The first set of experiments was performed to compare the LP-based Randomized
Rounding (LP-RR) algorithm with the Constraint-based Local Search algorithm.

Table 1 shows the results of the comparison for a first set of Rome instances.
Each instance is described in terms of number of central office candidate sites
(|O|) the cabinet candidate sites (|C|) and basements (|S|). Each line reports the
results averaged over 5 runs, and gives the average value (Cost) of the objective
function, the average execution time, and the best result found (Best-Cost).
The LP-RR algorithm is executed with r = 20, that is, it runs 20 rounds for
each execution, with threshold δ = 0.9. The CBLS algorithm has a limit on the
number of restarts (equal to 20).

Both algorithms provide solutions of very good quality, but the CBLS provides
the best results for big instances and it is clearly faster. For the instance with
10.000 basements the CBLS algorithm found better solutions in a time that is
two order of magnitude less in comparison with the randomized rounding. Note
that, for the first instance, the optimal value is 2383, as verified by the ILP solver
SCIP, and both heuristic algorithms have been able to obtain this result.

Table 1. LP-based Randomized Rounding (LP-RR) versus Constraint-based Local
Search (CBLS). Cost and Time (in seconds) are averaged over 5 runs for each instance.

LP-RR CBLS
Inst. |O| |C| |S| Cost Time Best-Cost Cost Time Best-Cost

1 3 10 100 2383 31 2383 2383 0.6 2383

2 10 35 400 6979 716 6966 6864 1.2 6860

3 15 65 841 13630 1735 13599 13349 44.6 13306

4 20 100 1521 25499 2465 25427 24850 316 24752

5 25 120 3025 55073 4768 55052 51752 330 51646

6 30 140 6084 121794 7705 121974 118224 1105 118135

7 35 150 10000 239668 26915 239668 229677 1817 229244

The main limitation of the LP-based Randomized Rounding algorithm is that
it solves several times a large generalized minimum cost flow problem and (fre-
quently) an integer problem as well. By increasing the threshold in line 3 of
Algorithm 1, for instance from δ = 0.9 to δ = 0.95, we get indeed solutions of
better quality, but involving an important increment of the computation time.
Therefore we have focused on the CBLS algorithm.

Table 2 shows the results for a second set of Rome instances. The CBLS
algorithm described in Section 3.2 is run five times on each instance and we
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have computed the average over each run. Each instance is described in terms of
number of central office and cabinet candidate sites and number of basements.
For each instance the table reports the Cost and the running Time averaged
over 5 runs, the corresponding standard deviations (stdev), the Best-Cost, the
optimum solution (IP) found with an ILP solver. The last column gives the
percentage gap with the optimal solution. Note that the CBLS is fast, and it
also provides solutions with a very small percentage gap. In particular, for the
smaller instances it does find the optimum.

Table 2. Solving small Rome instances with the CBLS approach: gaps with respect to
the optimal solution computed with SCIP. Cost and Time (in seconds) are averaged
over 5 runs for each instance.

Inst. |O| |C| |S| Cost (stdev) Time (stdev) Best-Cost IP Gap
8 5 10 109 3244 0.04% 1.5 2.7% 3243 3243 0.0%
9 10 20 204 13888 0.00% 2.3 1.4% 13888 13888 0.0%
10 20 100 1462 419929 0.04% 87.1 0.6% 419823 417554 0.5%
11 25 120 3139 1011821 0.02% 567.7 0.7% 1011457 1009710 0.2%

Finally, Table 3 reports additional results for other bigger Rome instances,
reporting the percentage gap (LP-Gap) computed with the value of the linear
relaxation of the problem. The CBLS is pretty stable both in the quality of the
solution and in the computation time required. For the bigger instances, those
with 10,000 basements, the computation time can be more the one-hour (see
instance 18,20, and 21), but still is always better than the LP-RR algorithm. We
remark that the percentage gap on the lower bound computed by solving the
linear relaxation (P) is in the worse case 2.4%.

Table 3. Solving big Rome instances with the CBLS approach: gaps computed with
respect to the linear relaxation (P).

Inst. |O| |C| |S| Cost (stdev) Time (stdev) Best-Cost LP-Gap
12 30 140 5960 4558323 (0.02%) 1350.1 (0.46%) 4557601 1.1%
13 30 140 5981 3954325 (0.01%) 1008.4 (0.05%) 3953619 1.2%
14 30 140 5982 4561215 (0.01%) 1803.6 (0.14%) 4560780 0.9%
15 30 140 5995 4164941 (0.01%) 2168.7 (0.69%) 4164724 1.1%
16 30 140 6014 3462920 (0.01%) 1426.9 (0.35%) 3462857 1.4%
17 35 150 10020 3126763 (0.02%) 2511.8 (0.44%) 3126385 2.4%
18 35 150 10040 5937585 (0.01%) 3484.7 (0.55%) 5936733 1.1%
19 35 150 10072 6663950 (0.01%) 1183.6 (0.54%) 6663481 0.9%
20 35 150 9978 6261704 (0.01%) 4252.8 (0.49%) 6261046 1.0%
21 35 150 9983 5980627 (0.01%) 3846.9 (0.65%) 5979618 1.1%
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5 Conclusions

We presented a computational approach to the FTTH problem that arises in the
context of designing the Next Generation Access Network. The FTTH has an
ILP formulation, but realistic instances leads to very large size problems, and
therefore we have only focused on heuristic algorithms. First, we discussed a
LP-based Randomized Rounding algorithm that exploits a substructure of the
problem, reducing the problem to a generalized minimum cost flow problem.
Second, we presented a Constraint-based Local Search algorithm that despite
its simplicity is very effective, providing, in short time, solutions with small
percentage gap to lower bounds of the problem.

Currently, we are investigating a new type of network topology for the sec-
ondary network between the cabinets and the basements. Instead of using direct
links between basements and cabinets, we plan to use a tree topology, allowing
more basements to share portion of fibers before of reaching a cabinet. This
network topology leads to new challenges, because the ILP formulation has
an exponential number of constraints. As future work, we plan to extend our
Constraint-based Local Search algorithm to tree-based network topologies.
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1 Introduction

The 1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP)
asks to deliver a single commodity from a set of supply nodes to a set of demand
nodes, which are unpaired. That is, a demand node can be served by any supply
node. In this paper, we further assume that the supply and demand is unsplit-
table, which implies that we can visit each node only once. The 1-PDVRP arises
in several practical contexts, ranging from bike-sharing programs in which bikes
at each station need to be redistributed at various points in time, to food rescue
programs in which excess food is collected from, e.g., restaurants and schools,
and redistributed through agencies to people in need. The latter application is
the main motivation of our study.

Pickup and delivery vehicle routing problems have been studied extensively;
see, e.g., [1] for a recent survey. However, the 1-commodity pickup and delivery
vehicle routing problem (1-PDVRP) has received limited attention. When only
one vehicle is considered, the problem can be regarded as a traveling salesman
problem, or 1-PDTSP. For the 1-PDTSP, different solution methods have been
proposed, including [3, 4]. On the other hand, the only paper that addresses
the 1-PDVRP is by [2], to the best of our knowledge. [2] present different
approaches, including MIP, CP and Local Search, which are applied to instances
involving up to nine locations.

The main goal of this work is to compare off-the-shelf solution methods for
the 1-PDVRP, using state-of-the-art solvers. In particular, how many vehicles,
and how many locations, can still be handled (optimally) by these methods?
The secondary goal of this work is to evaluate the potential (cost) savings in
the context of food rescue programs. We note that the approaches we consider
(MIP, CP, CBLS) are similar in spirit to those of [2]. Our MIP model is quite
different, however. Further, although the CP and CBLS models are based on
the same modeling concepts, the underlying solver technology has been greatly
improved over the years.

2 Different Approaches to the 1-PDVRP

2.1 Input Data and Parameters

Let the set V denote the set of locations, and let O ∈ V denote the origin (or
depot) from which the vehicles depart and return. With each location i in V we

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 176–180, 2010.
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associate a number qi ∈ R representing the quantity to be picked up (qi > 0) or
delivered (qi < 0) at i. The distance between two locations i and j in V will be
denoted by dij . Distance can be represented by length or time units.

Let T denote the set of vehicles (or trucks). For simplicity, we assume that all
vehicles have an equal ‘volume’ capacity Q of the same unit as the quantities q
to be picked up (e.g., pounds). In addition, all vehicles are assumed to have an
equal ‘horizon’ capacity H of the same unit as the distances d.

2.2 Mixed Integer Programming

Our MIP model is based on column generation. The master problem of our
column generation procedure consists of a set of ‘columns’ S representing feasible
routes. The routes are encoded as binary vectors on the index set V of locations;
that is, the actual order of the route is implictly encoded. The columns are
assumed to be grouped together in a matrix A of size V by S. The length of
the routes is represented by a ‘cost’ vector c ∈ R|S|. We let z ∈ {0, 1}|S| be a
vector of binary variables representing the selected routes. The master problem
can then be encoded as the following set covering model:

min cTz
s.t. Az = 1 (1)

For our column generation procedure, we will actually solve the continous re-
laxation of (1), which allows us to use the shadow prices corresponding to the
constraints. We let λj denote the shadow price of constraint j in (1), where
j ∈ V .

The subproblem for generating new feasible routes uses a model that employs
a flow-based representation on a layered graph, where each layer consists of nodes
representing all locations. The new route comprises M steps, where each step
represents the next location to be visited. We can safely assume that M is the
minimum of |V | + 1 and (an estimate on) the maximum number of locations
that ‘fit’ in the horizon H for each vehicle.

We let xijk be a binary variable that represents whether we travel from loca-
tion i to location j in step k. We further let yj be a binary variable representing
whether we visit location j at any time step. The vector of variables y will rep-
resent the column to be generated. Further, variable Ik represents the inventory
of the vehicle, while variable Dk represents the total distance traveled up to step
k, where k = 0, . . . , M . We let D0 = 0, while 0 ≤ I0 ≤ Q. The problem of finding
an improving route can then be modeled as presented in Figure 1.

In this model, the first four sets of constraints ensure that we leave from and
finish at the origin. The fifth set of constraints enforce that we can enter the
origin at any time, but not leave it again. The sixth set of constraints model
the flow conservation at each node, while the seventh set of constraints (the first
set in the right column) prevent the route from visiting a location more than
once. The following four sets of constraints represent the capacity constraints
of the vehicle in terms of quantities picked up and delivered, and in terms of
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min
∑

i∈V

∑
j∈V

M∑
k=1

dijxijk −
∑

j∈V

λjyj

s.t.
∑

j∈V

xO,j,1 = 1

∑
j∈V

xi,j,1 = 0 ∀i ∈ V \ {O}

∑
i∈V

xi,O,M = 1

∑
i∈V

xi,j,M = 0 ∀j ∈ V \ {O}

xO,j,k = 0 ∀j ∈ V \ {O}, ∀k ∈ [1..M]∑
i∈V

xijk =
∑

l∈V

xj,l,k+1 ∀j ∈ V, ∀k ∈ [1..M − 1]

∑
j∈V \{O}

M∑
k=1

xijk ≤ 1 ∀j ∈ V \ {O}

Ik = Ik−1 +
∑

i∈V

∑
j∈V

qixijk ∀k ∈ [1..M]

0 ≤ Ik ≤ Q ∀k ∈ [0..M]

Dk = Dk−1 +
∑

i∈V

∑
j∈V

dijxijk ∀k ∈ [1..M]

0 ≤ Dk ≤ H ∀k ∈ [0..M]

∑
i∈V

M∑
k=1

xijk = yj ∀j ∈ V

Fig. 1. MIP model for finding an improving route

distance. The last set of constraints link together the ‘flow’ variables x with the
new column represented by the variables y.

As noted above, throughout the iterative process, we apply a continuous re-
laxation of the master problem (1). When this process terminates (it reaches a
fixed point, or it meets a stopping criterion), we run the master problem as an
integer program. Therefore, our procedure may not provably find the optimal
solution, but it does provide a guaranteed optimality gap.

As a final remark, when only one vehicle is involved, the MIP model amounts
to solving only the subproblem, to which the constraints are added that we must
visit all locations.

2.3 Constraint Programming

Our CP model is based on a well-known interpretation of the VRP as a multi-
machine job scheduling problem with sequence-dependent setup times. In the CP
literature, this is usually modeled using alternative resources (the machines) and
activities (the jobs). That is, each visit to a location corresponds to an activity,
and each vehicle corresponds to two (linked) resources: one ‘unary resource’
modeling the distance constraint, and one ‘reservoir’ modeling the inventory
of the vehicle. With each activity we associate variables representing its start
time and end time, as well as a fixed duration (this can be 0 if we assume
that the (un-)loading time is negligible). Further, each activity either depletes
or replenishes the inventory reservoir of a vehicle. The distance between two
locations is modeled as the ‘transition time’ between the corresponding activities.
We minimize the sum of the completion times of all vehicles.

All these concepts are readily available in most industrial CP solvers. We have
implemented the model in ILOG Solver 6.6 (which includes ILOG Scheduler).
A snapshot of the ILOG model for a single vehicle is provided in Figure 2. It
shows that the concepts presented above can almost literally be encoded as a
CP model.

2.4 Constraint-Based Local Search

Our final approach uses Constraint-Based Local Search (CBLS). With CBLS
we can express the problem similar to a CP model, which will then be used
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IloReservoir truckReservoir(ReservoirCapacity, 0);

truckReservoir.setLevelMax(0, TimeHorizon, ReservoirCapacity);

IloUnaryResource truckTime();

IloTransitionTime T(truckTime, Distances);

vector<IloActivity> visit;

visit = vector<IloActivity>(N);

for (int i=0; i<N; i++) {

visit[i].requires(truckTime);

if (supply[i] > 0)

visit[i].produces(truckReservoir, supply[i]);

else

visit[i].consumes(truckReservoir, -1*supply[i]);

}

class RoutingModel {

...

IloDimension2 _time;

IloDimension2 _distance;

IloDimension1 _weight;

...

}

IloNode node( <read coordinates from file> );

IloVisit visit(node);

visit.getTransitVar(_weight) == Supply);

minTime <= visit.getCumulVar(_time) <= maxTime;

visit.getCumulVar(_weight) >= 0);

IloVehicle vehicle(firstNode, lastNode);

vehicle.setCapacity(_weight, Capacity);

vehicle.setCost(_distance);

Fig. 2. Snapshots of the ILOG Scheduler model (left) and ILOG Dispatcher model
(right), for a single vehicle

to automatically derive the neighborhoods and penalty function needed to de-
fine a local search procedure. Our CBLS is based on the semantics offered by
ILOG Dispatcher (included in ILOG Solver 6.6). These semantics are specifically
designed to model routing problems.

ILOG Dispatcher uses the concepts nodes, vehicles, and visits. The nodes
are defined by the coordinates of the locations, and contain as an attribute the
amount to be picked up or delivered. The vehicles contain several attributes,
including time, distance, and weight (load). Vehicles also contain, by default, a
‘unary resource’ constraint with respect to time, and a ‘capacity’ constraint with
respect to the load, similar to the resources in ILOG Scheduler. The attributes
of visits include the location, the quantity to be picked up (positive) or delivered
(negative), a time window, and possibly other problem-specific constraints.

In a first phase, we create a feasible solution. ILOG Dispatcher uses various
heuristics for this, including a nearest-neighbour heuristic that we applied in our
experiments. Where applicable, we started from the current schedule that we
extracted from the data.

The second phase improves upon the starting solution using various local
search methods. We applied successively the methods IloTwoOpt, IloOrOpt,
IloRelocate, IloCross and IloExchange. Within each method, we take the first
legal cost-decreasing move encountered.

3 Evaluation

Our experimental results are performed on data provided by the Pittsburgh Food
Bank. Their food rescue program visits 130 locations per week. The provided
data allowed us to extract a fairly accurate estimate on the expected pickup
amount for the donor locations. The precise delivery amounts were unknown, and
we therefore approximate the demand based on the population served by each
location (which is known accurately), scaled by the total supply. We allow the
total demand to be slightly smaller than the total supply, to avoid pathological
behavior of the algorithm. We note however, that although this additional ‘slack’
influences the results, the qualitative behavior of the different techniques remains
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the same. The MIP model is solved using ILOG CPLEX 11.2, while the CP and
CBLS model are solved using ILOG Solver 6.6, all on a 2.33GHz Intel Xeon
machine.

The first set of instances are for individual vehicles, on routes serving 13 to 18
locations (corresponding to a daily schedule). The second set of instances group
together schedules over multiple days, ranging from 30 to 130 locations. The
results are presented in Figure 3. We report for each instance the cost savings (in
terms of total distance traveled) with respect to the current operational schedule.
Here, |V | and |T | denote the number of locations and vehicles, respectively.
The optimal solutions found with MIP and CP took several (2–3) minutes to
compute, while the solutions found with CBLS took several seconds or less. The
time limit was set to 30 minutes.

|V | |T | MIP CP CBLS

13 1 12% 12% 12%
14 1 15% 15% 14%
15 1 - 7% 6%
16 1 - 5% 3%
18 1 - 16% 15%
30 2 - - 4%
60 4 - - 8%

130 9 - - 10%

Fig. 3. Savings obtained
with different approaches

Our experimental results indicate that on this
problem domain, our MIP model is outperformed
by our CP model to find an optimal solution (we
note that a specialized 1-PDTSP MIP approach such
as [4] might perform better than our ‘generic’ MIP
model on the single-vehicle instances). Further, the
CP model is able to find optimal solutions for up
to 18 locations and one vehicle; for a higher num-
ber of locations or vehicles, the CP model is unable
to find even a single solution. Lastly, the CBLS ap-
proach is able to handle large-scale instances, up to
130 locations and 9 vehicles. The expected savings
are substantial, being at least 10% on the largest
instance.
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Abstract. Numberjack is a modelling package written in Python for embedding
constraint programming and combinatorial optimisation into larger applications.
It has been designed to seamlessly and efficiently support a number of underlying
combinatorial solvers. This paper illustrates many of the features of Numberjack
through the use of several combinatorial optimisation problems.

1 Introduction

We present Numberjack1, a Python-based constraint programming system. Number-
jack brings the power of combinatorial optimisation to Python programmers by sup-
porting the specification of complex problem models and specifying how these should
be solved. Numberjack provides a common API for constraint programming, mixed-
integer programming and satisfiability solvers. Currently supported are: the CP solvers
Mistral and Gecode; a native Python CP solver; the MIP solver SCIP; and the satisfi-
ability solver MiniSat2. Users of Numberjack can write their problems once and then
specify which solver should be used. Users can incorporate combinatorial optimisation
capabilities into any Python application they build, with all the benefits that it brings.

2 Modelling in Numberjack

Numberjack is provided as a Python module. To use Numberjack one must import all
Numberjack’s classes, using the command: from Numberjack import *. Simi-
larly, one needs to import the modules corresponding to the solvers that will be invoked
in the program, for instance: import Mistral or import Gecode. The Number-
jack module essentially provides a class Model whereas the solver modules provide a
class Solver, which are built from a Model. The structure of a typical Numberjack
program is presented in Figure 1. Notice that it is possible to use several types of solver
to solve the same model by explicitly invoking the modules. To solve a model, the
various methods implemented in the back-end solvers can be invoked through Python.
� Supported by Science Foundation Ireland Grant Number 05/IN/I886.
1 Available under LGPL from http://numberjack.ucc.ie
2 Mistral: http://4c.ucc.ie/˜ehebrard/Software.html; Gecode:
http://gecode.org; SCIP: http://scip.zib.de/;
MiniSat: http://minisat.se;
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from Numberjack import * # Import all Numberjack classes
import Gecode # Import the Gecode solver interface
import Mistral # Import the Mistral solver interface

model = Model() # Declare a new model
... # Define the constraints and objectives

gsolver = Gecode.Solver(model) # Declare a Gecode solver
msolver = Mistral.Solver(model) # Declare a Mistral solver
gsolver.solve() # Solve the model with Gecode
msolver.solve() # Solve the model with Mistral

Fig. 1. The structure of a typical Numberjack program

Almost every statement in Numberjack is an expression. Variables are expressions,
and constraints are expressions on a set of sub-expressions. Variable objects are created
by specifying its domain by passing a lower and an upper bound, or a set of values. One
can also use floating point values for the bounds, however the result will depend on
the back-end solver. MIP solvers will, by default, treat variables declared with floating
point values as continuous and integer otherwise. A model is a set of expressions.

It is possible to define classes of objects to help write concise models. For instance,
the objects VarArray and Matrix are syntactic sugars for one-dimensional and two-
dimensional arrays of Numberjack expressions, respectively. The Matrix object al-
lows us to reference the rows, the columns, and a flattened version of the matrix using
.row, .col and .flat, respectively. The overloaded bracket ([]) operator tied to
the Python object method getitem. The operator takes one argument representing
the index of the object to be returned. For VarArray and Matrix objects this argu-
ment can either be a Numberjack expression or an integer. The bracket operator of the
Matrix object returns the VarArray object representing the row at the given index.
When the index argument is itself a Numberjack expression, the result is interpreted as
an Element constraint. Objective functions are also expressions.

2.1 Some Example Models

Costas Array. A Costas array3 is an arrangement of N points on a N×N checkerboard,
such that each column or row contains only one point, and that all of the N(N −
1)/2 vectors defined by these points are distinct. We model this problem in Figure 2
as follows: for each row, we introduce a variable whose value represents the column at
which a point is placed in this row. To ensure that no two points share the same column,
we post an AllDiff constraint on the rows (Line 4). To each value y ∈ [1..N − 2],
we can map a set of vectors whose vertical displacements are equal, i.e., the vectors
defined by the points (row[i], i) and (row[i + y], i + y). To ensure that these vectors
are distinct, we use another AllDiff constraint.

Golomb Ruler. In the Golomb ruler problem the goal is to minimise the position of the
last mark on a ruler such that the distance between each pair of marks is different. The
Numberjack model is shown in Figure 3.

3 http://mathworld.wolfram.com/CostasArray.html

http://mathworld.wolfram.com/CostasArray.html
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N = 10
row = [Variable(1,N) for i in range(N)]

model = Model()
model += AllDiff(row)
for y in range(N-2):

model += AllDiff([row[i] - row[i+y+1] for i in range(N-y-1)])

solver = Mistral.Solver(model)
solver.solve()

Fig. 2. A Numberjack model for a 10× 10 instance of the Costas array problem

M = [Variable(1,rulerSize) for i in range(N)]

model = Model()
model += AllDiff([M[i]-M[j] for i in range(1,N) for j in range(i)])

model += Minimise(marks[nbMarks-1]) # The objective function

Fig. 3. A Numberjack model for the Golomb ruler problem

Magic Square. In this problem one wants every number between 1 and N2 to be placed
in an N ×N matrix such that every row, column and diagonal sum to the same number.
A model for that problem making use of the Matrix class is presented in Figure 4.

N = 10
sum_val = N*(N*N+1)/2
square = Matrix(N,N,1,N*N)

model = Model(

# The values in each cell must be distinct
AllDiff(square.flat),

# Each row and column must add to sum_val
[Sum(row) == sum_val for row in square.row],
[Sum(col) == sum_val for col in square.col],

# Each diagonal must add to sum_val
Sum([square[a][a] for a in range(N)]) == sum_val,
Sum([square[a][N-a-1] for a in range(N)]) == sum_val )

Fig. 4. A Numberjack model for the Magic Square problem

Quasigroups. A quasigroup is m×m multiplication defined by a matrix which from a
Latin square, i.e. every element occurs once in every row and column. The result of the
product a ∗ b corresponds to the element at row a and column b of the matrix. Figure 5
presents a model for the problem in which for all a, b we have: ((b ∗ a) ∗ b) ∗ b = a.

2.2 Extending Numberjack

Numberjack provides a facility to add custom constraints. Consider the following opti-
cal network monitoring problem taken from [1]. An optical network consists of nodes
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N = 8
x = Matrix(N,N,N)

model = Model(

# The rows and columns form a Latin square
[AllDiff(row) for row in x.row],
[AllDiff(col) for col in x.col],

# Enforce the QG5 Property
[x[ x[ x[b][a] ][ b ] ][b] == a for a in range(N) for b in range(N)] )

Fig. 5. A Numberjack model for the Quasigroup Existence problem

and fibre channels. When a node fails in the network, all lightpaths passing through that
node are affected. Monitors attached to the nodes present in the affected lightpaths trig-
ger alarms. Hence, a single fault will generate multiple alarms. By placing monitors in
the right way, we can minimize the number of alarms generated for a fault while keep-
ing the fault-detection coverage maximum. In the problem we model below, we add the
additional constraint that for any node failure that might occur, it triggers a unique set
of alarms. This problem requires that each combination of monitor alarms is unique for
each node fault. This requires that every pair of vectors of variables differ on at least one
element. This can be specified in Numberjack by introducing a HammingDistance
constraint. The Numberjack model for this problem is presented as Figure 6.

class HammingDistance(Expression):

def __init__(self, row1, row2):
Expression.__init__(self, "HammingDistance")
self.set_children(row1+row2)
self.rows = [row1, row2]

def decompose(self):
return [Sum([(var1 != var2) for var1, var2 in zip(self.rows[0],self.rows[1])])]

Nodes = 6 # We consider a graph with 6 nodes
Monitors = 10 # Faults on the nodes trigger 10 monitors

alarm_matrix = [ # Each vector specifies the monitors triggered by each node
[1, 2, 3, 10], [ 7 ],
[ 6, 7, ], [ 5, 6, 7, ],
[ 2, 3, 4, 8, 10], [ 3, 4, 8, 9, 10] ]

monitors_on = VarArray(Monitors) # The decision variables
being_monitored = Matrix(Nodes, Monitors)

model = Model() # Specify the model...
model.add( Minimise(Sum(monitors_on)) )
model.add( [ monitor == ( Sum(col) >= 1 ) for col, monitor in

zip(being_monitored.col, monitors_on) ])
model.add( [ Sum(row) > 0 for row in being_monitored] )
model.add([HammingDistance(x1,x2) > 0 for x1, x2 in pair_of(being_monitored)])
for monitored_row, possible_monitor_row in zip(being_monitored, alarm_matrix):

model.add([monitored_row[idx - 1] == 0 for idx in
[x for x in range(Monitors) if x not in possible_monitor_row]])

Fig. 6. A Numberjack model for the optical network monitoring problem [1]
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3 Experiments

Experiments ran on an Intel Xeon 2.66GHz machine with 12GB of ram on Fedora 9.

Experiment 1: Overhead due to Numberjack. We first assess the overhead of using a
solver within Numberjack. We ran three back-end solvers, Mistral, MiniSat and SCIP
on three arythmetic puzzles (Magic Square, Costas Array and Golomb Ruler). For each
run, we used a profiler to separate the time spent executing Python code from the time
spent executing code from the back-end solver. We report the results in Table 1. For
every problem we report results averaged across 7 instances4 of various size and 10
randomized runs each. The time spent executing the Python code is very modest, and
of course independent of the hardness of the instance.

Table 1. Solver Time vs Python Time (Arithmetic puzzles)

Instance
Mistral Time (s) MiniSat Time (s) SCIP Time (s)
Solver Python Solver Python Solver Python

Magic-Square (3 to 9) 0.0205 0.0101 59.7130 0.0116 35.85 0.0107
Costas-Array (6 to 12) 0.0105 0.0098 0.0666 0.0095 78.2492 0.0134
Golomb-Ruler (3 to 9) 0.5272 0.0056 56.0008 0.0055 118.1979 0.0076

Experiment: Comparison of Back-end Solvers. It is well known in the fields of Con-
straint Programming and Mixed Integer Programming that the areas have different
strengths and weaknesses. For example, the CP and SAT solvers were much more effi-
cient than the MIP solver for the arythmetic puzzles used in the first set of experiments
(See Table 1). However, of course, the situation can be completely reversed on prob-
lems more suited to mathematical programming. We ran Numberjack on the Warehouse
allocation problem (P34 of the CSPLib). This problem is easily solved using the Mixed
Integer Solver SCIP as back end (1.86 seconds and 4.8 nodes in average over the 5
instances on the CSPLib) whilst Mistral ran over a time limit of one hour, staying well
over the optimal allocation and exploring several million nodes.

4 Conclusion

Numberjack is a Python-based constraint programming system. It brings the power of
combinatorial optimisation to Python programmers by supporting the specification of
complex models and specifying how these should be solved. We presented the features
of Numberjack through the use of several combinatorial problems.
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Abstract. State-of-the-art solvers for mixed integer programming (MIP) prob-
lems are highly parameterized, and finding parameter settings that achieve high
performance for specific types of MIP instances is challenging. We study the
application of an automated algorithm configuration procedure to different MIP
solvers, instance types and optimization objectives. We show that this fully-
automated process yields substantial improvements to the performance of three
MIP solvers: CPLEX, GUROBI, and LPSOLVE. Although our method can be used
“out of the box” without any domain knowledge specific to MIP, we show that it
outperforms the CPLEX special-purpose automated tuning tool.

1 Introduction

Current state-of-the-art mixed integer programming (MIP) solvers are highly parame-
terized. Their parameters give users control over a wide range of design choices, includ-
ing: which preprocessing techniques to apply; what balance to strike between branching
and cutting; which types of cuts to apply; and the details of the underlying linear (or
quadratic) programming solver. Solver developers typically take great care to identify
default parameter settings that are robust and achieve good performance across a variety
of problem types. However, the best combinations of parameter settings differ across
problem types, which is of course the reason that such design choices are exposed as pa-
rameters in the first place. Thus, when a user is interested only in good performance for
a given family of problem instances—as is the case in many application situations—it
is often possible to substantially outperform the default configuration of the solver.

When the number of parameters is large, finding a solver configuration that leads to
good empirical performance is a challenging optimization problem. (For example, this
is the case for CPLEX: in version 12, its 221-page parameter reference manual describes
135 parameters that affect the search process.) MIP solvers exist precisely because hu-
mans are not good at solving high-dimensional optimization problems. Nevertheless,
parameter optimization is usually performed manually. Doing so is tedious and labori-
ous, requires considerable expertise, and often leads to results far from optimal.

There has been recent interest in automating the process of parameter optimization
for MIP. The idea is to require the user to only specify a set of problem instances of
interest and a performance metric, and then to trade machine time for human time to
automatically identify a parameter configuration that achieves good performance. No-
tably, IBM ILOG CPLEX—the most widely used commercial MIP solver—introduced

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 186–202, 2010.
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an automated tuning tool in version 11. In our own recent work, we proposed several
methods for the automated configuration of various complex algorithms [20, 19, 18, 15].
While we mostly focused on solvers for propositional satisfiability (based on both local
and tree search), we also conducted preliminary experiments that showed the promise of
our methods for MIP. Specifically, we studied the automated configuration of CPLEX
10.1.1, considering 5 types of MIP instances [19].

The main contribution of this paper is a thorough study of the applicability of one
of our black-box techniques to the MIP domain. We go beyond previous work by con-
figuring three different MIP solvers (GUROBI, LPSOLVE, and the most recent CPLEX

version 12.1); by considering a wider range of instance distributions; by considering
multiple configuration objectives (notably, performing the first study on automatically
minimizing the optimality gap); and by comparing our method to CPLEX’s automated
tuning tool. We show that our approach consistently sped up all three MIP solvers and
also clearly outperformed the CPLEX tuning tool. For example, for a set of real-life
instances from computational sustainability, our approach sped up CPLEX by a factor
of 52 while the tuning tool returned the CPLEX defaults. For GUROBI, speedups were
consistent but small (up to a factor of 2.3), and for LPSOLVE we obtained speedups up
to a factor of 153.

The remainder of this paper is organized as follows. In the next section, we describe
automated algorithm configuration, including existing tools and applications. Then, we
describe the MIP solvers we chose to study (Section 3) and discuss the setup of our
experiments (Section 4). Next, we report results for optimizing both the runtime of
the MIP solvers (Section 5) and the optimality gap they achieve within a fixed time
(Section 6). We then compare our approach to the CPLEX tuning tool (Section 7) and
conclude with some general observations and an outlook on future work (Section 8).

2 Automated Algorithm Configuration

Whether manual or automated, effective algorithm configuration is central to the de-
velopment of state-of-the-art algorithms. This is particularly true when dealing with
NP-hard problems, where the runtimes of weak and strong algorithms on the same
problem instances regularly differ by orders of magnitude. Existing theoretical
techniques are typically not powerful enough to determine whether one parameter con-
figuration will outperform another, and therefore algorithm designers have to rely on
empirical approaches.

2.1 The Algorithm Configuration Problem

The algorithm configuration problem we consider in this work involves an algorithm
to be configured (a target algorithm) with a set of parameters that affect its perfor-
mance, a set of problem instances of interest (e.g., 100 vehicle routing problems), and a
performance metric to be optimized (e.g., average runtime; optimality gap). The target
algorithm’s parameters can be numerical (e.g., level of a real-valued threshold); ordinal
(e.g., low, medium, high); categorical (e.g., choice of heuristic), Boolean (e.g., algo-
rithm component active/inactive); and even conditional (e.g., a threshold that affects
the algorithm’s behaviour only when a particular heuristic is chosen). In some cases,
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Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with speci-
fied parameter settings on one or more problem instances, observes algorithm performance, and
uses this information to decide which subsequent target algorithm runs to perform. A configura-
tion scenario includes the target algorithm to be configured and a collection of instances.

a value for one parameter can be incompatible with a value for another parameter; for
example, some types of preprocessing are incompatible with the use of certain data
structures. Thus, some parts of parameter configuration space are forbidden; they can
be described succinctly in the form of forbidden partial instantiations of parameters
(i.e., constraints).

We refer to instances of this algorithm configuration problem as configuration sce-
narios, and we address these using automatic methods that we call configuration pro-
cedures; this is illustrated in Figure 1. Observe that we treat algorithm configuration as
a black-box optimization problem: a configuration procedure executes the target algo-
rithm on a problem instance and receives feedback about the algorithm’s performance
without any access to the algorithm’s internal state. (Because the CPLEX tuning tool is
proprietary, we do not know whether it operates similarly.)

2.2 Configuration Procedures and Existing Applications

A variety of black-box, automated configuration procedures have been proposed in the
CP and AI literatures. There are two major families: model-based approaches that learn
a response surface over the parameter space, and model-free approaches that do not.
Much existing work is restricted to scenarios having only relatively small numbers
of numerical (often continuous) parameters, both in the model-based [7, 13, 17] and
model-free [6, 1] literatures. Some relatively recent model-free approaches permit both
larger numbers of parameters and categorical domains, in particular Composer [12],
F-Race [9, 8], GGA [3], and our own ParamILS [20, 19]. As mentioned above, the
automated tuning tool introduced in CPLEX version 11 can also be seen as a special-
purpose algorithm configuration procedure; we believe it to be model free.

Blackbox configuration procedures have been applied to optimize a variety of para-
metric algorithms. Gratch and Chien [12] successfully applied the Composer system to
optimize the five parameters of LR-26, an algorithm for scheduling communication be-
tween a collection of ground-based antennas and spacecraft in deep space. Adenso-Diaz
and Laguna [1] demonstrated that their Calibra system was able to optimize the param-
eters of six unrelated metaheuristic algorithms, matching or surpassing the performance
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achieved manually by their developers. F-Race and its extensions have been used to op-
timize numerous algorithms, including iterated local search for the quadratic assignment
problem, ant colony optimization for the travelling salesperson problem, and the best-
performing algorithm submitted to the 2003 timetabling competition [8].

Our group successfully used various versions of PARAMILS to configure algorithms
for a wide variety of problem domains. So far, the focus of that work has been on the
configuration of solvers for the propositional satisfiability problem (SAT); we optimized
both tree search [16] and local search solvers [21], in both cases substantially advancing
the state of the art for the types of instances studied. We also successfully configured
algorithms for the most probable explanation problem in Bayesian networks, global
continuous optimization, protein folding, and algorithm configuration itself (for details,
see Ref. 15).

2.3 Configuration Procedure Used: FOCUSEDILS

The configuration procedure used in this work is an instantiation of the PARAMILS
framework [20, 19]. However, we do not mean to argue for the use of PARAMILS in
particular, but rather aim to provide a lower bound on the performance improvements
that can be achieved by applying general-purpose automated configuration tools to MIP
solvers; future tools may achieve even better performance.

PARAMILS performs an iterated local search (ILS) in parameter configuration space;
configurations are evaluated by running the target algorithm with them. The search is
initialized at the best out of ten random parameter configurations and the target al-
gorithm’s default configuration. Next, PARAMILS performs a first-improvement local
search that ends in a local optimum. It then iterates three phases: (1) a random per-
turbation to escape the local optimum; (2) another local search phase resulting in a
new local optimum; and (3) an acceptance criterion that typically accepts the new local
optimum if it is better than the previous one. The PARAMILS instantiation we used
here is FOCUSEDILS version 2.4, which aggressively rejects poor configurations and
focuses its efforts on the evaluation of good configurations. Specifically, it starts with
performing only a single target algorithm run for each configuration considered, and
performs additional runs for good configurations as the search progresses. This process
guarantees that—given enough time and a training set that is perfectly representative of
unseen test instances—FOCUSEDILS will identify the best configuration in the given
design space [20, 19]. (Further details of PARAMILS and FOCUSEDILS can be found
in our previous publications [20, 19].)

In practice, we are typically forced to work with finite sets of benchmark instances,
and performance on a small training set is often not very representative for performance
on other, unseen instances of similar origin. PARAMILS (and any other configuration
tool) can only optimize performance on the training set it is given; it cannot guarantee
that this leads to improved performance on a separate set of test instances. In particular,
with very small training sets, a so-called over-tuning effect can occur: given more time,
automated configuration tools find configurations with better training but worse test
performance [8, 20].

Since target algorithm runs with some parameter configurations may take a very long
(potentially infinite) time, PARAMILS requires the user to specify a so-called captime
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Table 1. Target algorithms and characteristics of their parameter configuration spaces. For details,
see http://www.cs.ubc.ca/labs/beta/Projects/MIP-Config/

Algorithm Parameter type # parameters of this type # values considered Total # configurations
Boolean 6 (7) 2

CPLEX Categorical 45 (43) 3–7 1.90 · 1047

MILP (MIQCP) Integer 18 5–7 (3.40 · 1045)
Continuous 7 5–8

Boolean 4 2

GUROBI
Categorical 16 3–5

3.84 · 1014
Integer 3 5

Continuous 2 5

LPSOLVE
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

κmax, the maximal amount of time after which PARAMILS will terminate a run of
the target algorithm as unsuccessful. FOCUSEDILS version 2.4 also supports adaptive
capping, a speedup technique that sets the captimes κ ≤ κmax for individual target
algorithm runs, thus permitting substantial savings in computation time.

FOCUSEDILS is a randomized algorithm that tends to be quite sensitive to the order-
ing of its training benchmark instances. For challenging configuration tasks some of its
runs often perform much better than others. For this reason, in previous work we adopted
the strategy to perform 10 independent parallel runs of FOCUSEDILS and use the result
of the run with best training performance [16, 19]. This is sound since no knowledge
of the test set is required in order to make the selection; the only drawback is a 10-fold
increase in overall computation time. If none of the 10 FOCUSEDILS runs encounters
any successful algorithm run, then our procedure returns the algorithm default.

3 MIP Solvers

We now discuss the three MIP solvers we chose to study and their respective parameter
configuration spaces. Table 1 gives an overview.

IBM ILOG CPLEX is the most-widely used commercial optimization tool for solv-
ing MIPs. As stated on the CPLEX website (http://www.ilog.com/products/
cplex/), currently over 1 300 corporations and government agencies use CPLEX, along
with researchers at over 1 000 universities. CPLEX is massively parameterized and end
users often have to experiment with these parameters:

“Integer programming problems are more sensitive to specific parameter set-
tings, so you may need to experiment with them.” (ILOG CPLEX 12.1 user
manual, page 235)

Thus, the automated configuration of CPLEX is very promising and has the potential to
directly impact a large user base.

We used CPLEX 12.1 (the most recent version) and defined its parameter configu-
ration space as follows. Using the CPLEX 12 “parameters reference manual”, we iden-
tified 76 parameters that can be modified in order to optimize performance. We were
careful to keep all parameters fixed that change the problem formulation (e.g., param-
eters such as the optimality gap below which a solution is considered optimal). The
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76 parameters we selected affect all aspects of CPLEX. They include 12 preprocessing
parameters (mostly categorical); 17 MIP strategy parameters (mostly categorical); 11
categorical parameters deciding how aggressively to use which types of cuts; 9 numeri-
cal MIP “limits” parameters; 10 simplex parameters (half of them categorical); 6 barrier
optimization parameters (mostly categorical); and 11 further parameters. Most param-
eters have an “automatic” option as one of their values. We allowed this value, but also
included other values (all other values for categorical parameters, and a range of values
for numerical parameters). Exploiting the fact that 4 parameters were conditional on
others taking certain values, these 76 parameters gave rise to 1.90 · 1047 distinct param-
eter configurations. For mixed integer quadratically-constrained problems (MIQCP),
there were some additional parameters (1 binary and 1 categorical parameter with 3
values). However, 3 categorical parameters with 4, 6, and 7 values were no longer ap-
plicable, and for one categorical parameter with 4 values only 2 values remained. This
led to a total of 3.40 · 1045 possible configurations.

GUROBI is a recent commercial MIP solver that is competitive with CPLEX on some
types of MIP instances [23]. We used version 2.0.1 and defined its configuration space
as follows. Using the online description of GUROBI’s parameters,1 we identified 26
parameters for configuration. These consisted of 12 mostly-categorical parameters that
determine how aggressively to use each type of cuts, 7 mostly-categorical simplex pa-
rameters, 3 MIP parameters, and 4 other mostly-Boolean parameters. After disallowing
some problematic parts of configuration space (see Section 4.2), we considered 25 of
these 26 parameters, which led to a configuration space of size 3.84 · 1014.

LPSOLVE is one of the most prominent open-source MIP solvers. We determined 52 pa-
rameters based on the information at http://lpsolve.sourceforge.net/. These
parameters are rather different from those of GUROBI and CPLEX: 7 parameters are
categorical, and the rest are Boolean switches indicating whether various solver mod-
ules should be employed. 17 parameters concern presolving; 9 concern pivoting; 14
concern the branch & bound strategy; and 12 concern other functions. After disallow-
ing problematic parts of configuration space (see Section 4.2), we considered 47 of
these 52 parameters. Taking into account one conditional parameter, these gave rise to
1.22 · 1015 distinct parameter configurations.

4 Experimental Setup

We now describe our experimental setup: benchmark sets, how we identified problem-
atic parts in the configuration spaces of GUROBI and LPSOLVE, and our computational
environment.

4.1 Benchmark Sets

We collected a wide range of MIP benchmarks from public benchmark libraries and
other researchers, and split each of them 50:50 into disjoint training and test sets; we
detail these in the following.

1 http://www.gurobi.com/html/doc/refman/node378.html#sec:
Parameters
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MJA. This set comprises 343 machine-job assignment instances encoded as mixed in-
teger quadratically constrained programming (MIQCP) problems [2]. We obtained it
from the Berkeley Computational Optimization Lab (BCOL).2 On average, these in-
stances contain 2 769 variables and 2 255 constraints (with standard deviations 2 133
and 1 592, respectively).

MIK. This set comprises 120 mixed-integer knapsack instances encoded as mixed in-
teger linear programming (MILP) problems [4]; we also obtained it from BCOL. On
average, these instances contain 384 variables and 151 constraints (with standard devi-
ations 309 and 127, respectively).

CLS. This set of 100 MILP-encoded capacitated lot-sizing instances [5] was also ob-
tained from BCOL. Each instance contains 181 variables and 180 constraints.

REGIONS100. This set comprises 2 000 instances of the combinatorial auction win-
ner determination problem, encoded as MILP instances. We generated them using the
regions generator from the Combinatorial Auction Test Suite [22], with parameters
goods=100 and bids=500. On average, the resulting MILP instances contain 501 vari-
ables and 193 inequalities (with standard deviations 1.7 and 2.5, respectively).

REGIONS200. This set contains 2 000 instances similar to those in REGIONS100 but
larger; we created it with the same generator using goods=200 and bids=1 000. On
average, the resulting MILP instances contain 1 002 variables and 385 inequalities (with
standard deviations 1.7 and 3.4, respectively).

MASS. This set comprises 100 integer programming instances modelling multi-activity
shift scheduling [10]. On average, the resulting MILP instances contain 81 994 variables
and 24 637 inequalities (with standard deviations 9 725 and 5 391, respectively).

CORLAT. This set comprises 2 000 MILP instances based on real data used for the
construction of a wildlife corridor for grizzly bears in the Northern Rockies region
(the instances were described by Gomes et al. [11] and made available to us by Bistra
Dilkina). All instances had 466 variables; on average they had 486 constraints (with
standard deviation 25.2).

4.2 Avoiding Problematic Parts of Parameter Configuration Space

Occasionally, we encountered problems running GUROBI and LPSOLVE with certain
combinations of parameters on particular problem instances. These problems included
segmentation faults as well as several more subtle failure modes, in which incorrect
results could be returned by a solver. (CPLEX did not show these problems on any of
the instances studied here.) To deal with them, we took the following measures in our
experimental protocol. First, we established reference solutions for all MIP instances
using CPLEX 11.2 and GUROBI, both run with their default parameter configurations
for up to one CPU hour per instance.3 (For some instances, neither of the two solvers
could find a solution within this time; for those instances, we skipped the correctness
check described in the following.)

2 http://www.ieor.berkeley.edu/˜atamturk/bcol/, where this set is called
conic.sch.

3 These reference solutions were established before we had access to CPLEX 12.1.
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In order to identify problematic parts of a given configuration space, we ran 10
PARAMILS runs (with a time limit of 5 hours each) until one of them encountered
a target algorithm run that either produced an incorrect result (as compared to our ref-
erence solution for the respective MIP instance), or a segmentation fault. We call the
parameter configuration θ of such a run problematic. Starting from this problematic
configuration θ, we then identified what we call a minimal problematic configuration
θmin. In particular, we iteratively changed the value of one of θ’s parameters to its re-
spective default value, and repeated the algorithm run with the same instance, captime,
and random seed. If the run still had problems with the modified parameter value, we
kept the parameter at its default value, and otherwise changed it back to the value it
took in θ. Iterating this process converges to a problematic configuration θmin that is
minimal in the following sense: setting any single non-default parameter value of θmin

to its default value resolves the problem in the current target algorithm run.
Using PARAMILS’s mechanism of forbidden partial parameter instantiations, we

then forbade any parameter configurations that included the partial configuration de-
fined by θmin’s non-default parameter values. (When all non-default values for a pa-
rameter became problematic, we did not consider that parameter for configuration,
clamping it to its default value.) We repeated this process until no problematic con-
figuration was found in the PARAMILS runs: 4 times for GUROBI and 14 times for
LPSOLVE. Thereby, for GUROBI we removed one problematic parameter and disal-
lowed two further partial configurations, reducing the size of the configuration space
from 1.32 · 1015 to 3.84 · 1014. For LPSOLVE, we removed 5 problematic binary flags
and disallowed 8 further partial configurations, reducing the size of the configuration
space from 8.83 · 1016 to 1.22 · 1015. Details on forbidden parameters and partial con-
figurations, as well as supporting material, can be found at http://www.cs.ubc.ca/
labs/beta/Projects/MIP-Config/

While that first stage resulted in concise bug reports we sent to GUROBI and LP-
SOLVE, it is not essential to algorithm configuration. Even after that stage, in the exper-
iments reported here, target algorithm runs occasionally disagreed with the reference
solution or produced segmentation faults. We considered the empirical cost of those
runs to be ∞, thereby driving the local search process underlying PARAMILS away
from problematic parameter configurations. This allowed PARAMILS to gracefully han-
dle target algorithm failures that we had not observed in our preliminary experiments.
We could have used the same approach without explicitly identifying and forbidding
problematic configurations.

4.3 Computational Environment

We carried out the configuration of LPSOLVE on the 840-node Westgrid Glacier cluster,
each with two 3.06 GHz Intel Xeon 32-bit processors and 2–4GB RAM. All other
configuration experiments, as well as all evaluation, was performed on a cluster of 55
dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE
Linux 10.1; runtimes were measured as CPU time on these reference machines.
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Table 2. Results for minimizing the runtime required to find an optimal solution and prove its
optimality. All results are for test sets disjoint from the training sets used for the automated
configuration. We report the percentage of timeouts after 24 CPU hours as well as the mean
runtime for those instances that were solved by both approaches. Bold-faced entries indicate
better performance of the configurations found by PARAMILS than for the default configuration.
(To reduce the computational burden, results for LPSOLVE on REGIONS200 and CORLAT are
only based on 100 test instances sampled uniformly at random from the 1000 available ones.)

Algorithm Scenario
% test instances unsolved in 24h mean runtime for solved [CPU s] Speedup
default PARAMILS default PARAMILS factor

MJA 0% 0% 3.40 1.72 1.98×
MIK 0% 0% 4.87 1.61 3.03×

REGIONS100 0% 0% 0.74 0.35 2.13×
CPLEX REGIONS200 0% 0% 59.8 11.6 5.16×

CLS 0% 0% 47.7 12.1 3.94×
MASS 0% 0% 524.9 213.7 2.46×

CORLAT 0% 0% 850.9 16.3 52.3×
MIK 0% 0% 2.70 2.26 1.20×

REGIONS100 0% 0% 2.17 1.27 1.71×

GUROBI
REGIONS200 0% 0% 56.6 40.2 1.41×

CLS 0% 0% 58.9 47.2 1.25×
MASS 0% 0% 493 281 1.75×

CORLAT 0.3% 0.2% 103.7 44.5 2.33×
MIK 63% 63% 21 670 21 670 1×

REGIONS100 0% 0% 9.52 1.71 5.56×

LPSOLVE
REGIONS200 12% 0% 19 000 124 153×

CLS 86% 42% 39 300 1 440 27.4×
MASS 83% 83% 8 661 8 661 1×

CORLAT 50% 8% 7 916 229 34.6×

5 Minimization of Runtime Required to Prove Optimality

In our first set of experiments, we studied the extent to which automated configuration
can improve the time performance of CPLEX, GUROBI, and LPSOLVE for solving the
seven types of instances discussed in Section 4.1. This led to 3 · 6 + 1 = 19 configura-
tion scenarios (the quadratically constrained MJA instances could only be solved with
CPLEX).

For each configuration scenario, we allowed a total configuration time budget of 2
CPU days for each of our 10 PARAMILS runs, with a captime of κmax = 300 seconds
for each MIP solver run. In order to penalize timeouts, during configuration we used
the penalized average runtime criterion (dubbed “PAR-10” in our previous work [19]),
counting each timeout as 10 · κmax. For evaluation, we report timeouts separately.

For each configuration scenario, we compared the performance of the parameter con-
figuration identified using PARAMILS against the default configuration, using a test set
of instances disjoint from the training set used during configuration. We note that this
default configuration is typically determined using substantial time and effort; for ex-
ample, the CPLEX 12.1 user manual states (on p. 478):

“A great deal of algorithmic development effort has been devoted to establish-
ing default ILOG CPLEX parameter settings that achieve good performance on
a wide variety of MIP models.”
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Table 2 describes our configuration results. For each of the benchmark sets, our ap-
proach improved CPLEX’s performance. Specifically, we achieved speedups ranging
from 2-fold to 52-fold. For GUROBI, the speedups were also consistent, but less pro-
nounced (1.2-fold to 2.3-fold). For the open-source solver LPSOLVE, the speedups were
most substantial, but there were also 2 cases in which PARAMILS did not improve over
LPSOLVE’s default, namely the MIK and MASS benchmarks. This occurred because,
within the maximum captime of κmax = 300s we used during configuration, none of
the thousands of LPSOLVE runs performed by PARAMILS solved a single benchmark
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Fig. 2. Results for configuration of MIP solvers to reduce the time for finding an optimal solution
and proving its optimality. The dashed blue line indicates the captime (κmax = 300s) used
during configuration.
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instance for either of the two benchmark sets. For the other benchmarks, speedups were
very substantial, reaching up to a factor of 153 (on REGIONS200).

Figure 2 shows the speedups for 4 configuration scenarios. Figures 2(a) to (c) show
the scenario with the largest speedup for each of the solvers. In all cases, PARAM-
ILS’s configurations scaled better to hard instances than the algorithm defaults, which
in some cases timed out on the hardest instances. PARAMILS’s worst performance was
for the 2 LPSOLVE scenarios for which it simply returned the default configuration; in
Figure 2(d), we show results for the more interesting second-worst case, the configura-
tion of GUROBI on MIK. Observe that here, performance was actually rather good for
most instances, and that the poor speedup in test performance was due to a single hard
test instance. Better generalization performance would be achieved if more training in-
stances were available.

6 Minimization of Optimality Gap

Sometimes, we are interested in minimizing a criterion other than mean runtime. Algo-
rithm configuration procedures such as PARAMILS can in principle deal with various
optimization objectives; in our own previous work, for example, we have optimized me-
dian runlength, average speedup over an existing algorithm, and average solution qual-
ity [20, 15]. In the MIP domain, constraints on the time available for solving a given
MIP instance might preclude running the solver to completion, and in such cases, we
may be interested in minimizing the optimality gap (also known as MIP gap) achieved
within a fixed amount of time, T .

To investigate the efficacy of our automated configuration approach in this context,
we applied it to CPLEX, GUROBI and LPSOLVE on the 5 benchmark distributions with

Table 3. Results for configuration of MIP solvers to reduce the relative optimality gap reached
within 10 CPU seconds. We report the percentage of test instances for which no feasible solution
was found within 10 seconds and the mean relative gap for the remaining test instances. Bold
face indicates the better configuration (recall that our lexicographic objective function cares first
about the number of instances with feasible solutions, and then considers the mean gap among
feasible instances only to break ties).

Algorithm Scenario
% test instances for which no feas. sol. was found mean gap when feasible Gap reduction
default PARAMILS default PARAMILS factor

MIK 0% 0% 0.15% 0.02% 8.65×
CLS 0% 0% 0.27% 0.15% 1.77×

CPLEX REGIONS200 0% 0% 1.90% 1.10% 1.73×
CORLAT 28% 1% 4.43% 1.22% 2.81×

MASS 88% 86% 1.91% 1.52% 1.26×
MIK 0% 0% 0.02% 0.01% 2.16×
CLS 0% 0% 0.53% 0.44% 1.20×

GUROBI REGIONS200 0% 0% 3.17% 2.52% 1.26×
CORLAT 14% 5% 3.22% 2.87% 1.12×

MASS 68% 68% 76.4% 52.2% 1.46×
MIK 0% 0% 652% 14.3% 45.7×
CLS 0% 0% 29.6% 7.39% 4.01×

LPSOLVE REGIONS200 0% 0% 10.8% 6.60% 1.64×
CORLAT 68% 13% 4.19% 3.42% 1.20×

MASS 100% 100% - - -
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the longest average runtimes, with the objective of minimizing the average relative op-
timality gap achieved within T = 10 CPU seconds. To deal with runs that did not find
feasible solutions, we used a lexicographic objective function that counts the fraction of
instances for which feasible solutions were found and breaks ties based on the mean rel-
ative gap for those instances. For each of the 15 configuration scenarios, we performed
10 PARAMILS runs, each with a time budget of 5 CPU hours.

Table 3 shows the results of this experiment. For all but one of the 15 configuration sce-
narios, the automatically-found parameter configurations performed substantially better
than the algorithm defaults. In 4 cases, feasible solutions were found for more instances,
and in 14 scenarios the relative gaps were smaller (sometimes substantially so; consider,
e.g., the 45-fold reduction for LPSOLVE, and note that the gap is not bounded by 100%).
For the one configuration scenario where we did not achieve an improvement, LPSOLVE

on MASS, the default configuration of LPSOLVE could not find a feasible solution for
any of the training instances in the available 10 seconds, and the same turned out to be
the case for the thousands of configurations considered by PARAMILS.

7 Comparison to CPLEX Tuning Tool

The CPLEX tuning tool is a built-in CPLEX function available in versions 11 and above.4

It allows the user to minimize CPLEX’s runtime on a given set of instances. As in our
approach, the user specifies a per-run captime, the default for which is κmax = 10 000
seconds, and an overall time budget. The user can further decide whether to minimize
mean or maximal runtime across the set of instances. (We note that the mean is usually
dominated by the runtimes of the hardest instances.) By default, the objective for tuning
is to minimize mean runtime, and the time budget is set to infinity, allowing the CPLEX
tuning tool to perform all the runs it deems necessary.

Since CPLEX is proprietary, we do not know the inner workings of the tuning tool;
however, we can make some inferences from its outputs. In our experiments, it always
started by running the default parameter configuration on each instance in the bench-
mark set. Then, it tested a set of named parameter configurations, such as ‘no cuts’,
‘easy’, and ‘more gomory cuts’. Which configurations it tested depended on the bench-
mark set.

PARAMILS differs from the CPLEX tuning tool in at least three crucial ways. First,
it searches in the vast space of all possible configurations, while the CPLEX tuning tool
focuses on a small set of handpicked candidates. Second, PARAMILS is a randomized
procedure that can be run for any amount of time, and that can find different solutions
when multiple copies are run in parallel; it reports better configurations as it finds them.
The CPLEX tuning tool is deterministic and runs for a fixed amount of time (dependent
on the instance set given) unless the time budget intervenes earlier; it does not return a
configuration until it terminates. Third, because PARAMILS does not rely on domain-
specific knowledge, it can be applied out of the box to the configuration of other MIP

4 Incidentally, our first work on the configuration of CPLEX predates the CPLEX tuning tool.
This work, involving Hutter, Hoos, Leyton-Brown, and Stützle, was presented and published as
a technical report at a doctoral symposium in Sept. 2007 [14]. At that time, no other mechanism
for automatically configuring CPLEX was available; CPLEX 11 was released Nov. 2007.
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Table 4. Comparison of our approach against the CPLEX tuning tool. For each benchmark set,
we report the time t required by the CPLEX tuning tool (it ran out of time after 2 CPU days for
REGIONS200 and CORLAT, marked by ’*’) and the CPLEX name of the configuration it judged
best. We report the mean runtime of the default configuration; the configuration the tuning tool
selected; and the configurations selected using 2 sets of 10 PARAMILS runs, each allowed time
t/10 and 2 days, respectively. For the PARAMILS runs, in parentheses we report the speedup
over the CPLEX tuning tool. Boldface indicates improved performance.

Scenario
CPLEX tuning tool stats CPLEX mean runtime [CPU s] on test set, with respective configuration

Tuning time t Name of result Default CPLEX tuning tool 10× PARAMILS(t/10) 10× PARAMILS(2 days)
CLS 104 673 ’defaults’ 48.4 48.4 15.1(3.21×) 10.1(4.79×)

REGIONS100 3 117 ’easy’ 0.74 0.86 0.48(1.79×) 0.34(2.53×)
REGIONS200 172 800* ’defaults’ 59.8 59.8* 14.2(4.21×) 11.9(5.03×)

MIK 36 307 ’long test1’ 4.87 3.56 1.46(2.44×) 0.98(3.63×)
MJA 2 266 ’easy’ 3.40 3.18 2.71(1.17×) 1.64(1.94×)

MASS 28 844 ’branch dir’ 524.9 425.8 627.4(0.68×) 478.9(0.89×)
CORLAT 172 800* ’defaults’ 850.9 850.9* 161.1(5.28×) 18.2(46.8×)
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Fig. 3. Comparison of the default configuration and the configurations returned by the CPLEX

tuning tool and by our approach. The x-axis gives the total time budget used for configuration
and the y-axis the performance (CPLEX mean CPU time on the test set) achieved within that
budget. For PARAMILS, we perform 10 runs in parallel and count the total time budget as the
sum of their individual time requirements. The plot for REGIONS200 is qualitatively similar to
the one for REGIONS100, except that the gains of PARAMILS are larger.

solvers and, indeed, arbitrary parameterized algorithms. In contrast, the few configura-
tions in the CPLEX tuning tool appear to have been selected based on substantial domain
insights, and the fact that different parameter configurations are tried for different types
of instances leads us to believe that it relies upon MIP-specific instance characteristics.
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While in principle this could be an advantage, in its current form it appears to be rather
restrictive.

We compared the performance of the configurations found by the CPLEX tuning
tool to that of configurations found by PARAMILS. For this comparison, we used the
tuning tool’s default settings to optimize mean runtime on the same training sets used
for PARAMILS, and tested performance on the same test sets (disjoint from the train-
ing sets). We ran both configuration approaches with a time limit of 2 CPU days. In
most cases, the CPLEX tuning tool finished before that time limit was reached and—in
contrast to PARAMILS—could not use the remaining time in order to further improve
performance. As before, we used 10 independent parallel runs of PARAMILS, at each
time step reporting the performance of the one with best training performance.

First, we discuss the performance of the CPLEX tuning tool, summarized in Table 4.
We note that in two cases (REGIONS200 and CORLAT), it reached the time limit of
2 CPU days and returned the algorithm defaults in both cases. Out of the remaining
5 cases, it returned the default configuration in 1 (CLS), yielded a configuration with
slightly worse performance than the default in 1 (REGIONS100), and moderately im-
proved performance in the remaining 3 (up to a factor of 1.37). The 3 non-default con-
figurations it returned only differed in the following few parameters from the default:
‘easy’ (perform only 1 cutting plane pass, apply the periodic heuristic every 50 nodes,
and branch based on pseudo-reduced costs); ‘long test1’ (use aggressive probing and
aggressive settings for 8 types of cuts); and ‘branch dir’ (at each node, select the up
branch first).

PARAMILS outperformed the tuning tool for 6 of the 7 configuration scenarios,
sometimes substantially so. Specifically, PARAMILS found configurations with up to
5.2 times lower mean runtime when its total time budget was set to exactly the amount
of time t the CPLEX tuning tool ran before terminating (i.e., t/10 for each of the 10
PARAMILS runs; t varied widely across the scenarios, see Table 4). For the one remain-
ing scenario, MASS, the configuration it found was slower by a factor of 1/0.68 = 1.47
(which we attribute to an over-tuning effect to be discussed shortly). With a fixed time
budget of two days for each PARAMILS run, PARAMILS’s performance improved for
all seven domains, reaching a speedup factor of up to 46.

Figure 3 visualizes the anytime test performance of PARAMILS compared to the
default and the configuration found by the CPLEX tuning tool. Typically, PARAMILS
found good configurations quickly and improved further when given more time. The
main exception was configuration scenario MASS (see Figure 3(e)), the one scenario
where PARAMILS performed worse than the CPLEX tuning tool in Table 4. Here, test
performance did not improve monotonically: given more time, PARAMILS found con-
figurations with better training performance but worse test performance. This example
of the over-tuning phenomenon mentioned in Section 2.3 clearly illustrates the prob-
lems arising from benchmark sets that are too small (and too heterogeneous): good
results for 50 (rather variable) training instances are simply not enough to confidently
draw conclusions about the performance on additional unseen test instances. On all
other 6 configuration scenarios, training and test sets were similar enough to yield near-
monotonic improvements over time, and large speedups over the CPLEX tuning tool.
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8 Conclusions and Future Work

In this study we have demonstrated that by using automated algorithm configuration,
substantial performance improvements can be obtained for three widely used MIP
solvers on a broad range of benchmark sets, in terms of minimizing runtime for proving
optimality (with speedup factors of up to 52), and of minimizing the optimality gap
given a fixed runtime (with gap reduction factors of up to 45). This is particularly note-
worthy considering the effort that has gone into optimizing the default configurations
for commercial MIP solvers, such as CPLEX and GUROBI. Our approach also clearly
outperformed the CPLEX tuning tool. The success of our fully automated approach
depends on the availability of training benchmark sets that are large enough to allow
generalization to unseen test instances. Not surprisingly, when using relatively small
benchmark sets, performance improvements on training instances sometimes do not
fully translate to test instances; we note that this effect can be avoided by using bigger
benchmark sets (in our experience, about 1000 instances are typically sufficient).

In future work, we plan to develop more robust and more efficient configuration pro-
cedures. In particular, here (and in past work) we ran our configurator PARAMILS 10
times per configuration scenario and selected the configuration with best performance
on the training set in order to handle poorly-performing runs. We hope to develop more
robust approaches that do not suffer from large performance differences between in-
dependent runs. Another issue is the choice of captimes. Here, we chose rather large
captimes during training to avoid the risk of poor scaling to harder instances; the down-
side is a potential increase in the time budget required for finding good configurations.
We therefore plan to investigate strategies for automating the choice of captimes during
configuration. We also plan to study why certain parameter configurations work better
than others. The algorithm configuration approach we have used here, PARAMILS, can
identify very good (possibly optimal) configurations, but it does not yield information
on the importance of each parameter, interactions between parameters, or the interac-
tion between parameters and characteristics of the problem instances at hand. Partly to
address those issues, we are actively developing an alternative algorithm configuration
approach that is based on response surface models [17, 18, 15].
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Abstract. We present a new method to compute upper bounds of the number of
solutions of binary integer programming (BIP) problems. Given a BIP, we create
a dynamic programming (DP) table for a redundant knapsack constraint which is
obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the
original problem to obtain an initial weight bound on the knapsack. This bound
is then refined through subgradient optimization. The latter provides a variety of
Lagrange multipliers which allow us to filter infeasible edges in the DP table. The
number of paths in the final table then provides an upper bound on the number
of solutions. Numerical results show the effectiveness of our counting framework
on automatic recording and market split problems.

Keywords: solution counting, CP-based Lagrangian relaxation, surrogate
relaxation, dynamic programming.

1 Introduction

Solution counting has become a new and exciting topic in combinatorial research.
Counting solutions of combinatorial problem instances is relevant for example for new
branching methods [23,24]. It is also relevant to give user feedback in interactive set-
tings such as configuration systems. Moreover, it plays an ever more important role
in post-optimization analysis to give the user of an optimization system an idea how
many solutions there are within a certain percentage of the optimal objective value. The
famous mathematical programming tool Cplex for example now includes a solution
counting method. Finally, from a research perspective the problem is interesting in its
own right as it constitutes a natural extension of the mere optimization task.

Solution counting is probably best studied in the satisfaction (SAT) community
where a number of approaches have been developed to estimate the number of solu-
tions of under-constrained instances. First attempts to count the number of solutions
often simply consisted in extending the run of a solution finding systematic search after
a first solution has been found [3]. More sophisticated randomized methods estimate
upper and lower bounds with high probability. In [8], e.g., in a trial an increasing num-
ber of random XOR constraints are added to the problem. The upper and lower bounds
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on the number of solutions depends on how many XORs can be added before the in-
stance becomes infeasible, whereby the probability that the bound is correct depends
on the number of trials where (at least or at most) the same number of XORs can be
added before the instance changes its feasibility status.

An interesting trend in constraint programming (CP) is to estimate solution den-
sity via solution counting for individual constraints [23,24]. Since the solution density
information is used for branching, it is important that these methods run very fast. Con-
sequently, they are constraint-based and often give estimates on the number of solutions
rather than hard upper and lower bounds or bounds that hold with high probability.

In mathematical programming, finally, the IBM Cplex IP solution counter [5,10]
enumerates all solutions while aiming at finding diverse set of solutions, and the Scip
solution counter finds the number of all feasible solutions using a technique to collect
several solutions at once [1]. Stopped prematurely at some desired time-limit, these
solvers provide lower bounds on the number of solutions.

Considering the literature, we find that a big emphasis has been laid on the computa-
tion of lower bounds on the number of solutions of a given problem instance. Apart from
the work in [8] and the upper bounding routine for SAT in [11], we are not aware of
any other approaches that provide hard or high probability upper bounds on the number
of solutions. Especially solution counters that are part of the IBM Cplex and the Scip
solver would benefit if an upper bound on the number of solutions could be provided
alongside the lower bound in case that counting needs to be stopped prematurely.

With this study we attempt to make a first step to close this gap. In particular, we con-
sider binary integer programs and propose a general method for computing hard upper
bounds on the number of feasible solutions. Our approach is based on the exploitation
of relaxations, in particular surrogate and Lagrangian relaxations. Experimental results
on automatic recording and market split problems provide a first proof of concept.

2 Upper Bounds on the Number of Solutions for Binary Integer
Programs

We assume that the problem instance is given in the format

(BIP ) pT x ≥ B
Ax ≤ b
xi ∈ {0, 1}.

Wlog, we assume that the profit coefficients are integers. Although we could multiply
the first inequality with minus one, we make it stand out as the original objective of the
binary integer program (BIP) that was to be maximized. Usually, in branch and bound
approaches, we consider relaxations to compute upper bounds on that objective. For
example, we may solve the linear program (LP)

Maximize L = pT x
Ax ≤ b
0 ≤ xi ≤ 1
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and check whether L ≥ B for an incumbent integer solution with value B to prune the
search.

For our task of computing upper bounds on the number of solutions, relaxing the
problem is the first thing that comes to mind. However, standard LP relaxations are
not likely to be all that helpful for this task. Assume that there are two (potentially
fractional) solutions that have an objective value greater or equal B. Then, there exist
infinitely many fractional solutions that have the same property.

Consequently, we need to look for a relaxation which preserves the discrete character
of the original problem. We propose to use the surrogate relaxation for this purpose.
In the surrogate relaxation, we choose multipliers λi ≥ 0 for each linear inequality
constraint i and then aggregate all constraints into one. We obtain:

Maximize S = pT x
λT Ax ≤ λT b
xi ∈ {0, 1}.

This problem is well known, it is a knapsack problem (that may have negative weights
and/or profits). Let us set w ← wλ ← AT λ and C ← Cλ ← λT b. Then, we insert the
profit threshold B back into the formulation. This is sound as S is a relaxation of the
original problem. We obtain a knapsack constraint

(KP ) pT x ≥ B
wT x ≤ C
xi ∈ {0, 1}.

2.1 Filtering Knapsack Constraints

In [12], knapsack constraints were studied in great detail and exact pseudo-polynomial
time filtering algorithms were developed which are based on a dynamic programming
formulation of knapsack. First, the knapsack instance is modified so that all profits pi

are non-negative. This can be achieved by potentially replacing a binary variable xi (in
the context of knapsack we often refer to the index i as an item) with its ’negation’
x′

i = 1 − xi. Then, in a cell Mq,k we store the minimum knapsack weight needed to
achieve exactly profit q when only items {1, . . . , k} can be included in the knapsack
(i.e., when all variables in {xk+1, . . . , n} are set to 0). Then, the following recursion
equation holds:

Mq,k = min{Mq,k−1, Mq−pk,k−1 + wk}. (1)

To filter the constraint we interpret the DP as a weighted directed acyclic graph (DAG)
where the cells are the nodes and nodes that appear in the same recursion are connected
(see left graph in Figure 1). In particular, we define G = (V, E, v) by setting

– VM := {Mq,k | 0 ≤ k ≤ n}.
– V := VM ∪ {t}.
– E0 := {(Mq,k−1, Mq,k) | k ≥ 1, Mq,k ∈ VM}.
– E1 := {(Mq−pk,k−1, Mq,k) | k ≥ 1, q ≥ pk, Mq,k ∈ VM}.
– Et := {(Mq,n, t) | q ≥ B, Mq,n ∈ VM}.
– E := E0 ∪ E1 ∪ Et.
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Fig. 1. The figure shows dynamic programming tables for a knapsack constraint with four vari-
ables, profits pT = (50, 40, 30, 20), and profit constraint threshold B = 82. In the left figure
the weights are wT = (3, 3, 4, 5), and the knapsack’s capacity is C = 10. In the right figure
the weights are wT = (13/5, 5/3, 3, 2), and the capacity is C = 19/3. The node-labels are
defined by their row and column number, the sink node t is marked separately. The value of
non-horizontal arcs that cross a vertical line is given under that line, horizontal arcs have weight
0. Hollow nodes and dashed arcs mark those nodes and arcs that are removed by the filtering
algorithm, because there exists no path from M0,0 to t with weight lower or equal C that visits
them.

– v(e) := 0 for all e ∈ E0 ∪ Et.
– v(Mq−pk,k−1, Mq,k) := wk for all (Mq−pk,k−1, Mq,k) ∈ E1.

We consider the DAG G because there is a one-to-one correspondence between paths
from M0,0 to t and variable instantiations that yield a profit greater than B. More-
over, the length of such a path is exactly the weight of the corresponding instantiation.
Therefore, every path from M0,0 (the source) to t (the sink) with length lower or equal
C defines a feasible, improving solution (we call such paths admissible). Vice versa,
every feasible, improving solution also defines an admissible path from source to sink
with length lower or equal C.

The filtering algorithm in [12] removes edges from G that cannot be part of any
admissible path. This is done using a filtering routine for shorter path constraints on
DAGs from [13]: We first compute the shortest path distances from the source to all
nodes using the topological ordering of the DAG, thus being able to handle shortest
path problems even non-negative edge weights in time linear in the size of the graph.
In an analogous second pass which begins at the sink we compute the shortest path
distances to the sink. Equipped with both distances for each node, we can compute the
shortest path lengths from source to sink through each edge in the graph – and remove
all edges and nodes which cannot lie on any admissible path.

2.2 Upper Bounds on the Number of Solutions

In [12], the resulting DP is analyzed using a technique from [20,21] to identify which
variables cannot take value 0 or value 1. We do not perform this last step. Instead,
we use the resulting DP to count the number of paths from source to sink using the
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technique in [23,24]. Note that any solution to (BIP) fulfills the redundant constraint
(KP) and therefore corresponds to an admissible path in our DP. Moreover, two different
solutions also define two different paths in the DP. Therefore, the number of paths in
the DP gives an upper bound on the number of solutions in (BIP).

Now, the quality of the upper bound will depend on the choice of the initial vector
λ. In ordinary optimization, we aim for a choice of λ for which the surrogate relaxation
gives the tightest relaxation value. However, for the purpose of filtering we know that
sub-optimal multipliers λ can provide better filtering effectiveness [14]. Consider the
following example:

(EX) 50x1 + 40x2 + 30x3 + 20x4 ≥ 82
3x1 + x2 + 3x3 ≤ 5
2x2 + x3 + 5x4 ≤ 5
xi ∈ {0, 1}.

If we use λ = (1, 1)T , e.g., then we get the knapsack constraint as shown in the
left graph of Figure 1 with a relaxation value of 120 (as that is the highest profit
visited by the remaining admissible paths). On the other hand, had we chosen λ =
(13/15, 6/15)T , we would have obtained the knapsack constraint in the right graph of
Figure 1 with an improved upper bound of 110.

Comparing the two DPs, we find that the two choices for λ yield incomparable fil-
tering effectiveness. Although the second set of multipliers gives a strictly better upper
bound, it cannot remove the edge (M90,3, M110,4). On the other hand, the second choice
for λ allows us to remove the edges (M90,2, M120,3) and (M120,3, M120,4). This effect
has been studied before in [14]. The explanation for the different filtering behavior is
that, in principle, each edge has its own vector λ that maximally challenges admissibil-
ity (as measured by the shortest path length through that edge).

In principle, we could employ a probing procedure. For each edge, we remove all
edges on the same level, thus enforcing that each path from source to sink must pass
through this edge. Then, we start with some selection for λ and compute the shortest
path length according to the corresponding weights wλ as well as the corresponding
BIP solution xλ. If wT

λ xλ > Cλ, then we can remove the edge. Otherwise, we modify
λ to minimize Cλ − wT

λ xλ as much as possible. From the theory of Lagrangian relax-
ation (see for example [2]) we know that finding the optimal choice for λ consists in
minimizing a piecewise linear convex function. Consequently, we can use a subgradient
search algorithm to find the vector λ ≥ 0 which will minimize Cλ − wT

λ xλ as much
as possible and thus enable us to decide whether any λ exists that would allow us to
remove the edge under consideration.

The problem with this procedure is of course that it takes way too much time to probe
each individual edge. Instead, we follow the same method as in CP-based Lagrangian
relaxation [15]. That is, we employ a subgradient search to find a vector λ that mini-
mizes Cλ −wT

λ xλ in the DP. Then, for each λ that the subgradient search considers, we
use our edge-filtering algorithms to remove edges from the graph. That way, we hope
to visit a range of different settings for λ that will hopefully remove a large percentage
of edges in the DP that can be discarded.

Consider again our example (EX) from before. If we first prune the graph with re-
spect to the weight vector w from the left graph in Figure 1 and then, in the pruned
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graph, remove edges based on the weight vector w from the right graph in Figure 1,
then we end up with only one path which corresponds to the only solution to (EX)
which is x = (1, 1, 0, 0)T .

2.3 The Algorithm

The complete procedure is sketched in Algorithm 1. Note how we first increase the num-
ber of solutions by considering the cardinality of the set R ← {x ∈ {0, 1}n | pT x ≥
B} instead of P ← {x ∈ {0, 1}n | pT x ≥ B & Ax ≤ b}. Then, to reduce the number
of solutions again, we heuristically remove edges from the DP that has exactly one path
for each x ∈ R by propagating constraints λT Ax ≤ λT b for various choices of λ in the
DP. The resulting number of paths in the DP gives a hard upper bound on the number
of solutions to the original BIP.

Algorithm 1. BIP Counting Algorithm
1: Negate binary variables with profit pi < 0.
2: Set up the graph G for {x ∈ {0, 1}n | pT x ≥ B}.
3: Initialize λ.
4: while subgradient method not converged do
5: Set w ← λT A, C ← λT b.
6: Propagate wT x ≤ C in G removing inadmissible edges.
7: Compute the solution x that corresponds to the shortest path from source to sink in (G, w).
8: Update λ according to the current gap C − wT x and the subgradient Ax− b.
9: end while

10: Count the number of paths from source to sink in G and return that number.

2.4 Strengthening the Bound – Cutting Planes, Tree Search, Compatibility
Labels, and Generate and Check

A nice property of our approach is that we can use all the usual methods for strength-
ening linear continuous relaxations, such as preprocessing and especially adding valid
inequalities, so-called cutting planes, to the BIP which tighten the continuous
relaxation.

To strengthen the upper bound on the solution count further, we can embed our pro-
cedure in a branch-and-bound tree search algorithm which we truncate at some given
depth-limit. The sum of all solutions at all leafs of the truncated tree then gives an upper
bound on the number of solutions.

For very hard combinatorial counting problems we may consider doing even more.
In our outline above, we use the profit constraint to define the graph G. In principle, we
could use any vector μ of natural numbers and consider the constraint (pT − μT A)x ≥
B − μT b to set up the DP. This is needed in particular when there is no designated
objective function. We notice, however, that we do not need to restrict us to using just
one DP. Instead, we can set up multiple DPs for different choices of μ.

The simplest way to strengthen the upper bound on the number of solutions is to take
the minimum count over all DPs. However, we can do much better than that. Following
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an idea presented in [9], we can compute compatibility labels between the different
DPs: Let us denote with GA and GB the graphs that correspond to two different DPs
for our problem. Our filtering algorithm ensures that each edge in the graph is visited
by at least one admissible path. The compatibility labels from [9] aim to ensure that
an edge in GA is also supported by a (not necessarily admissible) path in GB . More
precisely, for each edge in GA we ensure that there is a path from source to sink in GA

that visits the edge and which corresponds to a solution which also defines a path from
source to sink in GB .

Finally, if we have found an upper bound on the solution count that is rather small,
we can generate all potential solutions which is very easy given our DAG G. Then, we
test each assignment for feasibility and thus provide an exact count.

3 Numerical Results

3.1 Automatic Recording

We first consider the automatic recording problem (ARP) that was introduced in [15].

3.2 Problem Formulation

The technology of digital television offers to hide meta-data in the content stream. For
example, an electronic program guide with broadcasting times and program annotation
can be transmitted. An intelligent video recorder like the TIVOtm system [19] can ex-
ploit this information and automatically record TV content that matches the profile of
the system’s user. Given a profit value for each program within a predefined planning
horizon, the system has to make the choice which programs shall be recorded, whereby
two restrictions have to be met:

– The disk capacity of the recorder must not be exceeded.
– Only one program can be recorded at a time.

While the problem originally emerged from automatic video recording, it has other
applications, for example in satellite scheduling. Various algorithms for the ARP have
been studied in [15,14,16,17]. The problem can be stated as a binary integer program:

Maximize pT x
wT x ≤ K
xi + xj ≤ 1 ∀ 0 ≤ i ≤ j ≤ n, Ii ∩ Ij �= ∅
x ∈ {0, 1}n

(ARP 1)

where pi and wi represent the profit and the storage requirement of program i, K is the
storage capacity, and Ii := [startT ime(i), endT ime(i)] corresponds to the broadcast-
ing interval of program i. The objective function maximizes the user satisfaction while
the first constraint enforces the storage restrictions. Constraints of the form xi +xj ≤ 1
ensure that at most one program is recorded at each point in time.

This formulation can be tightened by considering the conflict graph and adding the
corresponding clique constraints to the formulation [15].
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Definition 1. The set C ⊆ V is called a conflict clique iff Ii ∩ Ij �= ∅ ∀ i, j ∈ C. A
conflict clique C is called maximal iff ∀ D ⊆ V, D conflict clique: C ⊆ D ⇒ C = D.
Let M := {C0, . . . , Cm−1} ⊆ 2V the set of maximal conflict cliques.

These clique constraints are obviously valid inequalities since, if xi + xj ≤ 1 for all
overlapping intervals, it is also true that

∑
i∈Cp

xi ≤ 1 ∀ 0 ≤ p ≤ m. We can therefore
add the clique constraints to our original formulation.

Maximize pT x
wT x ≤ K
xi + xj ≤ 1 ∀ 0 ≤ i ≤ j ≤ n, Ii ∩ Ij �= ∅∑

i∈Cp
xi ≤ 1 ∀ 0 ≤ p ≤ m

x ∈ {0, 1}n

(ARP 2)

Though being NP-complete on general graphs, finding maximal cliques on the graph
defined by our application is simple:

Definition 2. A graph G = (V, E) is called an interval graph if there exist intervals
I1, . . . , I|V | ⊂ R such that ∀vi, vj ∈ V : (vi, vj) ∈ E ⇐⇒ Ii ∩ Ij �= ∅.

On interval graphs, the computation of maximal cliques can be performed in O(n log n)
[7]. Hence, ARP 2 can be obtained in polynomial time.

3.3 Solution Counting for the ARP

We will now describe how we apply our counting algorithm to the ARP problem.

Initialization: The graph G for our ARP formulation is set up using the equation
wT x ≤ K , where wi represents the storage requirement of program i and K is the
storage capacity.

Tree Search, and Generate and Test: To strengthen the quality of our bounds on
the number of solutions, we employ a truncated tree search as described earlier. For
branching, we select the variable with the highest knapsack efficiency pi/wi which is
also selected in the shortest path in the DP according to the final multipliers λ. When
we get total solution counts below 100 we generate all solutions and test them for
feasibility.

Subgradient Optimization: At every choice point, we conduct the subgradient search
using the object bundle optimization package from Frangioni [6]. On top of filtering
with respect to the vectors λ that the subgradient optimizer visits, we also propagate
the constraint wT x ≤ K in the DP at every choice point. At leaf nodes, also choose
randomly 3% of the original constraints in ARP 1 or ARP 2 and propagate them to
prune the DPs one last time before counting the number of paths from source to sink.

3.4 Experimental Results

We used a benchmark set described in [15,14] which can downloaded at [18]. This
benchmark set consists of randomly generated instances which are designed to mimic
features of real-world instances for the automatic recording of TV content. For our
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Table 1. Numerical Results for the ARP Problem. We present the upper bound on the number of
solutions and the CPU-time in seconds for the binary constraint model (ARP-1) and the maximal
clique model (ARP-2). The table on the left is for the small sized data set (20-720) with 20
channels and 720 minute time horizon, and the table on the right is for the large sized data set
(50-1440) with 50 channels and 1440 minute time horizon. In this experiment, we do not generate
and check solutions for feasibility.

ARP-1 ARP-2
Inst. Gap Count Time Count Time

0 0% 2 20 2 3.2
1 0% 3 10 1 1.5
2 0% 1 16 1 2.8

0 1% 2.27E+10 90 1.60E+10 38.8
1 1% 3.26E+05 12 2.09E+05 3.2
2 1% 8.36E+07 33 3.69E+07 9.5

0 2% 7.51E+12 133 8.77E+11 73.8
1 2% 9.06E+05 13 4.56E+05 4.3
2 2% 2.87E+09 68 1.33E+09 24

ARP-1 ARP-2
Inst. Gap Count Time Count Time

0 0% 39 1109 39 34
1 0% 203 933 35 20
2 0% 15 1146 15 22

0 1% 6.54E+43 2636 7.95E+35 353
1 1% 7.82E+10 1100 3.75E+10 73
2 1% 5.25E+23 314 1.05+23 294

0 2% 4.75E+59 5169 6.81E+52 992
1 2% 2.57E+13 3639 8.06E+12 221
2 2% 1.33E+26 6873 3.08E+24 893

experiments, we use the class usefulness (CU) instances. We consider a small sized
data set which spans half a day (720 minutes) and consists of 20 channels, and a large
sized data set which spans a full day (1440 minutes) and consists of 50 channels. Profits
for each program are chosen based on the class that a program belongs to. This class
also determines the parameters according to which its length is randomly chosen. On
average, these instances have 300 and 1500 programs, respectively. All experiments
in this paper were performed on a machine with Intel Core 2 Quad Q6600, 2.4GHz
CPUs and 2GByte of RAM operating Linux Debian 5.0.3 32-bit. On all experiments,
we enforced a time limit of 3 hours CPU time.

Our first evaluation compares the effectiveness of the models described by ARP 1
and ARP 2 in terms of the upper bound on the solution count that they provide and the
time they take. Specifically, we are interested in the increase of the number of solutions
as we move away from the optimal value. To this end, we introduce the Gap parameter
which indicates the percentage gap between a threshold and the optimal value. We only
consider solutions that achieve an objective value above the threshold. We experiment
with objective gaps of 0%, 1% and 2% and truncate the search at depth 5. Table 1 shows
that the ARP 2 formulation which includes the clique cuts provides much better upper
bounds than ARP 1 in substantially less time. This indicates that exploiting the common
methods for strengthening LP relaxations can also be exploited effectively to compute
superior upper bounds on the number of solutions of BIPs. The fact that ARP 2 actually
runs faster can be attributed to the fact that the cutting planes allow much better edge-
filtering effectiveness. Therefore, the DP contains much fewer edges higher up in the
tree, which leads to much faster times per choice point.

We next compare our approach (UBound) with the Cplex IP solution counter which
enumerates all solutions [10,5] and the Scip solution counter which collects several
solutions at a time. Note that Cplex and Scip provide only a lower bound in case they
time out or reach the memory limit. We again consider objective gaps 0%, 1% and 2%.
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Table 2. Numerical Results for the ARP Problem with 0% objective gap. We present the upper
bound on the number of solutions and the CPU-time in seconds at depth 5. The table on the left
is for the small sized data set (20-720) with 20 channels and 720 minute time horizon, and the
table on the right is for the large sized data set (50-1440) with 50 channels and 1440 minute time
horizon. ’T’ means that the time limit has been reached. The numbers in bold show exact counts
and the numbers in parenthesis are our upper bounds before we generate and check solutions for
feasibility.

Cplex Scip Ubound

Inst. Count Time Count Time Count Time

0 2 0.17 2 0.3 2 3.16
1 1 0.03 1 0.05 1 1.53
2 1 0.08 1 1 2.75
3 1 0.04 1 0.03 1 1.71
4 1 0.06 1 0.06 1 2.46
5 12 0.62 12 0.16 12 3.83
6 6 0.17 6 6 2.47
7 1 0.07 1 0.03 1 1.60
8 1 0.09 1 0.06 1 2.45
9 3 0.37 3 0.04 3 2.30

Cplex Scip Ubound

Inst. Count Time Count Time Count Time

0 39 182 39 1.91 39 34.3
1 35 T 35 100 35 20.7
2 14 0.98 14 1.54 14 (15) 30.5
3 6 0.64 6 0.25 6 30.2
4 20 2.52 20 0.51 20 30.8
5 1 0.34 1 0.4 1 20.9
6 33 3.95 33 71 33 (39) 27.5
7 1 0.49 1 0.31 1 58.0
8 4 2.16 4 1.95 4 69.6
9 6 27.1 6 1.81 6 43.8

For 0% gap, we run our method with depth 5 which is adequate to achieve the exact
counts. For higher gaps, we present the results for depths 5, 10, and 15.

Our results are presented in Table 2, Table 3, and Table 4. For the optimal objective
threshold, UBound provides exact counts for all test instances. In terms of running time,
UBound does not perform as quickly as the IBM Cplex and the Scip solution counter.
There is only one notable exception to this rule, instance 50-1440-1. On this instance,
Scip takes 100 seconds and Cplex times out after three hours while our method could
have provided the 35 solutions to the problem in 20 seconds.

This discrepancy becomes more evident when we are interested in the number of
solutions that are with 1% or 2% of the optimum. As we can see from Table 3 and
Table 4 the number of solutions increases very rapidly even for those small objective
gaps. Not surprisingly, the counts obtained by Cplex and Scip are limited by the number
of solutions they can enumerate within the memory and the time constraints, yielding
a count of roughly 1E+5 to 1E+7 solutions in most cases. Due to the explosion in
the number of solutions, Cplex and Scip are never able to give exact counts for the
large instances but only give a lower bound. Cplex hits the time cutoff in 17 out of
20 large instances and reaches the memory limit for the remaining 3, and Scip times
out in all large instances. In most cases where Cplex or Scip are able to find the exact
counts, UBound is able to provide tight upper bounds that are not more than an order
of magnitude bigger. In Figure 2, we show how the upper and lower bounds obtained
by UBound, Cplex, and Scip progress as they approach the exact count.

We also compared our approach with the method from [8] which provides very good
bounds on the number of solutions for constraint satisfaction problems. The method
is based on the addition of random XOR-constraints. Unfortunately, we found that, in
combination with an integer programming problem, the method does not perform well.
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Fig. 2. Solution Count for the instance 20-720-2 with 1% objective gap. We present the progress
of the upper bound obtained by UBound and the lower bounds obtained by Cplex and Scip as
time progresses. The time and solution count are given on a logarithmic scale of base 10. We run
UBound until depth 17 which is within the time that Cplex reaches the memory limit.

We tried using the vanilla code1 which was designed for pure CSPs. It did not perform
well for the ARP. So we modified the code, providing better branching variables for the
tree search and using linear bounds to prune the search. That improved the performance.
With this approach we are able to compute lower bounds, but computing these takes
more time and the counts are worse than those provided by Cplex and Scip. Upper
bounds take even more time as the XOR constraints involve more variables. We could
not obtain upper bounds within the time limit of three hours. We conjecture that a tight
integration between the XOR constraints and linear inequalities would be needed to
make this approach, which gives very good results for CSPs, work well for optimization
problems.

3.5 Market Split

We next consider the market split problem (MSP), a benchmark that was suggested for
knapsack constraints in [20,21].

3.6 Problem Formulation

The original definition goes back to [4,22]: A large company has two divisions D1 and
D2. The company supplies retailers with several products. The goal is to allocate each
retailer to either division D1 or D2 so that D1 controls A% of the company’s market
for each product and D2 the remaining (100-A)%. Formulated as an integer program,
the problem reads:

∑
j aijxj = � A

100

∑
j aij� ∀ 0 ≤ i < m

xj ∈ {0, 1} ∀ 0 ≤ j < n,

1 Many thanks to Ashish Sabharwal for providing us the source code!
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Table 3. Numerical Results for the ARP Problem with 1% objective gap. We present the upper
bound on the number of solutions and the CPU-time in seconds. ’T’ means that the time limit
has been reached and ’M’ indicates a solver has reached the memory limit. The numbers in
bold show exact counts and the numbers in square brackets denote the best count UBound could
achieve within the time limit.

Cplex Scip UBound

Depth 5 Depth 10 Depth 15

Instance Count Time Count Time Count Time Count Time Count Time

20-720-0 5.20E+05 M 1.01E+06 2518 1.60E+10 38.8 1.97E+08 137 3.31E+07 1183

20-720-1 3.15E+04 175 3.15E+04 20.3 2.09E+05 3.16 1.48E+05 7.52 1.02E+05 40.9

20-720-2 1.77E+05 M 1.77E+05 414 3.69E+07 9.51 1.36E+07 45.2 2.87E+06 622

20-720-3 2.09E+02 3.39 2.09E+02 0.25 4.05E+02 4.19 2.99E+02 12.5 2.48E+02 40.5

20-720-4 5.20E+03 76 5.20E+03 6.7 1.13E+05 7.24 1.79E+04 23.1 1.02E+04 122

20-720-5 2.00E+04 174 2.00E+04 22.5 1.58E+12 22.2 6.81E+08 58.8 4.50E+04 228

20-720-6 5.45E+04 932 5.45E+04 153 2.00E+07 10.9 3.96E+06 46.5 1.68E+06 431

20-720-7 9.80E+01 1.68 9.80E+01 0.07 1.04E+02 2.82 1.04E+02 6.70 1.03E+02 16.7

20-720-8 1.77E+05 1386 1.77E+05 298 3.41E+09 40.7 3.42E+07 191 9.00E+06 899

20-720-9 1.88E+03 35.5 1.88E+03 1 3.66E+03 4.23 3.48E+03 17 2.99E+03 87.8

50-1440-0 1.95E+04 T 1.15E+07 T 7.95E+35 353 1.21E+34 2572 [1.21E+34] T

50-1440-1 5.59E+04 T 1.11E+07 T 3.75E+10 73.8 2.21E+10 305 1.85E+10 3025

50-1440-2 7.63E+04 T 1.77E+06 T 1.05E+23 293 1.76E+21 2635 [1.76E+21] T

50-1440-3 6.00E+04 T 9.48E+06 T 3.56E+16 149 2.34E+15 452 2.45E+14 3333

50-1440-4 7.13E+04 T 7.29E+05 T 4.15E+21 412 4.31E+19 1852 [4.31E+19] T

50-1440-5 9.33E+04 M 1.04E+06 T 3.28E+10 90.4 7.06E+09 314 6.17E+09 4093

50-1440-6 1.20E+05 M 3.03E+06 T 7.53E+12 101 2.44E+12 350 4.12E+11 3483

50-1440-7 4.92E+04 T 1.96E+06 T 1.04E+20 396 6.03E+18 3037 [6.03E+18] T

50-1440-8 8.90E+04 T 3.75E+05 T 5.56E+27 719 1.44E+25 3776 [1.44E+25] T

50-1440-9 8.35E+04 M 9.55E+05 T 2.89E+14 259 2.01E+13 434 2.09E+06 578

whereby m denotes the number of products, n is the number of retailers, and aij is the
demand of retailer j of product i. MSPs are generally very hard to solve, especially
the randomly generated instances proposed by Cornuejols and Dawande where weight
coefficients are randomly chosen in [1, . . . , 100] and A = 50. Special CP approaches
for the MSP have been studied in [20,21,14,9].

3.7 Solution Counting for the MSP

Initialization: Our MSP formulation does not have an objective function, thus we
construct the graph G using the equation λT Ax ≥ λT b, where λi = 5i−1 as proposed
in [20,21].

Compatibility Labels, and Generate and Test: For the MSP, we strengthen the so-
lution counts by employing the compatibility labels introduced in [9]. We additionally
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Table 4. Numerical Results for the ARP Problem with 2% objective gap. We present the upper
bound on the number of solutions and the CPU-time in seconds. ’T’ means that the time limit
has been reached and ’M’ indicates a solver has reached the memory limit. The numbers in
bold show exact counts and the numbers in square brackets denote the best count UBound could
achieve within the time limit.

Cplex Scip UBound

Depth 5 Depth 10 Depth 15

Instance Count Time Count Time Count Time Count Time Count Time

20-720-0 6.80E+05 M 1.14E+07 T 8.77E+11 73.8 9.23E+09 326 2.30E+09 4002

20-720-1 1.87E+05 969 1.87E+05 49.5 4.56E+05 4.31 4.01E+05 8.76 3.24E+05 46.2

20-720-2 3.00E+05 T 8.77E+06 6528 1.33E+09 24.3 1.65E+08 218 5.07E+07 2276

20-720-3 4.95E+02 5.77 4.95E+02 0.42 6.60E+02 5.80 5.26E+02 24.2 5.21E+02 75.8

20-720-4 8.89E+04 1335 8.89E+04 73.5 3.94E+06 10.3 3.26E+05 53.3 2.36E+05 274

20-720-5 3.30E+05 M 3.32E+05 618 1.27E+15 43.9 1.15E+13 277 1.86E+09 1540

20-720-6 2.80E+05 M 3.12E+06 1966 3.80E+08 19.3 9.20E+07 84.9 6.24E+07 911

20-720-7 1.35E+02 2.09 1.35E+02 0.07 1.38E+02 3.70 1.38E+02 9.94 1.37E+02 27.2

20-720-8 3.00E+05 M 1.39E+07 T 7.16E+11 82.3 4.91E+09 727 [4.91E+09] T

20-720-9 4.17E+03 63.9 4.17E+03 2.33 4.88E+03 7.38 4.71E+03 29.1 4.57E+03 135

50-1440-0 3.03E+04 T 3.11E+06 T 6.81E+52 992 [6.81E+52] T [6.81E+52] T

50-1440-1 5.58E+04 T 3.43E+06 T 8.06E+12 221 1.01E+12 1240 [1.01E+12] T

50-1440-2 1.40E+05 M 8.97E+06 T 3.08E+24 893 [3.08E+24] T [3.08E+24] T

50-1440-3 7.89E+04 T 1.52E+07 T 2.5E+43 460 2.25E+32 1802 [2.25E+32] T

50-1440-4 1.00E+05 M 1.35E+06 T 8.89E+22 996 [8.89E+22] T [8.89E+22] T

50-1440-5 9.28E+04 M 1.62E+06 T 3.03E+12 252 1.82E+11 1679 [1.82E+11] T

50-1440-6 1.50E+05 M 1.68E+06 T 2.1E+34 341 1.53E+29 1607 [1.53E+29] T

50-1440-7 7.66E+04 T 6.18E+06 T 6.9E+37 1281 [6.9E+37] T [6.9E+37] T

50-1440-8 1.10E+05 M 6.73E+05 T 4.87E+30 2264 [4.87E+30] T [4.87E+30] T

50-1440-9 4.65E+04 T 1.12E+07 T 6.91E+46 1075 2.74E+29 3482 [2.74E+29] T

set up the DPs for the original equations in the problem. If there are m > 3 constraints
in the MSP, we set up m − 2 DPs where the kth DP is defined by the sum of the kth
constraint plus five times the k+first constraint plus 25 times the k+second constraint.

Often, the number of solutions to MSP instances is comparably low, and checking
feasibility is very fast. In case that we find an upper bound of less than 50,000 we simply
generate and check those solutions for feasibility. Therefore, each number that is less
than 50,000 is actually an exact count.

3.8 Experimental Results

For the purpose of solution counting, we consider the Cornuejols-Dawande instances
as described before. Many of these instances are actually infeasible. When there are
m constraints, Cornuejols and Dawande introduce 10(m − 1) binary variables. We in-
troduce more variables to create less and less tightly constrained instances which have
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Table 5. Numerical Results for the MSP Problem. We present the upper bound on the number
of solutions found and the CPU-time taken in seconds for the binary constraint model and the
maximal clique model. ’T’ means that the time limit has been reached. The numbers in bold
show exact counts. The numbers in parenthesis are our upper bounds before we generate and
check solutions for feasibility.

Cplex Scip Ubound
Ins Order #Vars Count Time Count Time Count Time

1 3 24 2 1.78 2 5.7 2 3.92
2 3 24 0 0.91 0 3.76 0 0.53
3 3 24 0 1.24 0 2.94 0 0.51
4 3 30 32 39 32 107 32 (36) 13
5 3 30 70 70 70 117 70 (82) 21
6 3 30 54 78 54 174 54 (58) 25
7 3 36 2.3K 1962 2.3K 5118 2.3K (32K) 176
8 3 36 292 T 2.3K 9203 2.3K (23K) 164
9 3 36 569 T 2K 5656 2K (14K) 130

Cplex Scip Ubound
Ins Order #Vars Count Time Count Time Count Time

10 4 34 2 5707 2 1087 2 198
11 4 34 0 396 0 1088 0 189
12 4 34 2 109 2 955 2 190
13 4 36 6 1227 6 4175 6 301
14 4 36 2 753 2 2400 2 266
15 4 36 6 366 6 2470 6 278
16 4 38 12 4422 11 T 12 412
17 4 38 9 T 29 T 36 405
18 4 38 44 3391 43 T 44 401

more solutions. We compare UBound again with the counts provided by IBM Cplex
and Scip. As before, Cplex and Scip provide a lower bound in case they time out. We
consider MSPs of orders 3 and 4 with an increasing number of variables between 24
and 38.

We present our results in Table 5. As we can see, UBound provides high quality
upper bounds very quickly as shown in the counts given in brackets. Using the generate
and test technique, on all instances we are able to provide exact counts in considerably
less time than Cplex and Scip.

Again, we compared our results also with the XOR approach from [8]. After the
vanilla implementation from [8] did not provide competitive results, we devised an
efficient code that can solve pure MSPs efficiently and added XOR constraints to it.
Again, we found that the problems augmented by XORs are much harder to solve which
resulted in the approach timing out on our entire benchmark. We attribute this behavior
to our inability to integrate the XOR constraints tightly with the subset-sum constraints
in the problem.

4 Conclusions

We presented a new method for computing upper bounds on the number of solutions of
BIPs. We demonstrated its efficiency on automatic recording and market split problems.
We showed that standard methods for tightening the LP relaxation by means of cutting
planes can be exploited also to provide better bounds on the number of solutions. More-
over, we showed that a recent new method for integrating graph-based constraints more
tightly via so-called compatibility labels can be exploited effectively to count solutions
for market split problems.

We do not see this method so much as a competitor to the existing solution counting
methods that are parts of IBM Cplex and Scip. Instead, we believe that these solvers
could benefit greatly from providing upper bounds on the number of solutions. This
obviously makes sense when the number of solutions is very large and solution enu-
meration must fail. However, as we saw on the market split problem, considering upper
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bounds can also boost the performance dramatically on problems that have few num-
bers of solutions. In this case, our method can be used to give a super-set of potential
solutions whose feasibility can be checked very quickly.
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Abstract. In the matrix interdiction problem, a real-valued matrix and
an integer k is given. The objective is to remove a set of k matrix columns
that minimizes in the residual matrix the sum of the row values, where
the value of a row is defined to be the largest entry in that row. This
combinatorial problem is closely related to bipartite network interdic-
tion problem that can be applied to minimize the probability that an
adversary can successfully smuggle weapons. After introducing the ma-
trix interdiction problem, we study the computational complexity of this
problem. We show that the matrix interdiction problem is NP-hard and
that there exists a constant γ such that it is even NP-hard to approximate
this problem within an nγ additive factor. We also present an algorithm
for this problem that achieves an (n − k) multiplicative approximation
ratio.

1 Introduction

In this paper, we introduce a combinatorial optimization problem, named matrix
interdiction. The input to a matrix interdiction problem consists of a real valued
matrix of dimension m × n and an integer k ≤ n. The objective is to remove
a set of k columns (from the matrix) that minimizes in the residual matrix the
sum of the row values, where the value of a row is defined to be the largest entry
in that row. This combinatorial problem is closely related to a bipartite network
interdiction problem that can be used to reduce the probability of nuclear ma-
terial trafficking. The matrix interdiction problem turns out to be NP-hard. In
fact, it turns out that it is even NP-hard to approximate this problem within an
nγ additive approximation factor (for a fixed constant γ > 0). On the positive
side, we present a simple greedy algorithm that runs in time linear in the size of
the input matrix and guarantees an (n − k) multiplicative approximation ratio
for the matrix interdiction problem.

The setting of a matrix interdiction problem is closely related to settings
encountered in resource allocation problems [18]. One of those problems is the
network interdiction with which the matrix interdiction shares a common name.
Network interdiction is an active research area in operations research. It is easi-
est to view a network interdiction problem as a Stackelberg game on a network.
There are two competitors, an evader and an interdictor, and the two competitors

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 219–231, 2010.
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compete on an objective with opposing interests. The interdictor interdicts the
network by modifying node and edge attributes on a network, and these modifi-
cations are usually constrained by limited resources. The evader then optimizes
over the residual network. The origins of the network interdiction research can
be traced back to 1970s when minimizing maximum flow models [13, 19] were
developed to disrupt flow of enemy troops and supplies in the Vietnam War. A
discrete version of maximum flow interdiction considers removing edges [27, 28]
and is NP-hard. Another type of network interdiction problem is the shortest
path interdiction where the goal is, given that only a fixed number of edges (or
nodes) can be removed, to decide which set of edges (or nodes) to be removed so
as to produce the largest increase in the shortest path between a source and a
destination [12, 14, 17]. This problem is also known as the most vital edges (also
most vital nodes) problem [7] and is also NP-hard [3].

Network interdiction problems are often inspired by different applications,
e.g., detecting drug smuggling [25], analyzing power grid vulnerability [24], and
fighting infectious disease in hospital [2]. Some recent network interdiction re-
search has been motivated by homeland security applications. Researchers [26, 5]
investigated how to allocate resources at individual ports to stop the illegal traf-
ficking of weapons of mass destruction. For the application of detecting smug-
gled nuclear material, interdiction models that minimize maximum-reliability
paths on a transportation network [22, 20, 21] have been used to select bor-
der crossings for the installation of radiation monitors. Stochastic models were
developed to capture the uncertainties in the source-destination pairs [20], smug-
gling paths [15, 11], and physical characteristics of the detectors [10]. Minimizing
maximum reliability path on general network can be applied to the cases where
there are multiple layers of borders, but again this problem is NP-hard [21, 22].
For a single layer of border, the problem can be formulated as interdiction on
bipartite network, which as we show in Section 2 is closely related to the matrix
interdiction problem.

In network interdiction applications, the underlying networks are often large
scale, e.g., U.S. power grids and global transportation networks. Efficient algo-
rithms are required for these real world applications. Currently, network interdic-
tion problems are usually formulated as stochastic integer programs, and solution
methods mainly involve the techniques from mixed integer programming. Ben-
ders decomposition is an efficient method to decompose the interdiction problem
to smaller subproblems [9, 17], and valid inequalities are derived to strengthen
the formulation [17, 23]. Fast approximation algorithms have been developed for
some special types of the network interdiction problem like the maximum flow
interdiction problem [6] and the graph matching interdiction problem [29].

In this paper, we introduce a concisely defined combinatorial optimization
problem that we refer to as the matrix interdiction problem. Our main contri-
butions are the following: (a) we provide a theoretical analysis of the complexity
of this problem, and (b) we design a fast approximation algorithm for it. The
outline for the remaining paper is a follows. In Section 2, we will formally de-
fine the matrix interdiction problem and show that the matrix interdiction is an
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abstraction from a class of stochastic resource allocation problem. To illustrate
this relation, we will show explicitly a transformation from the bipartite network
interdiction to the matrix interdiction problem. A proof of NP-hardness is given
in Section 3. In Section 4, we show the inapproximability result for the ma-
trix interdiction problem, and in Section 5, we describe a greedy approximation
algorithm for the matrix interdiction problem.

2 Matrix Interdiction

Let [n] denote the set {1, . . . , n}. For a matrix M of dimension m × n, let Mi,j

denote the (i, j)th (ith row and jth column) entry of M . For a set J ⊆ [n], let
M |J denote the submatrix of M obtained by picking only the columns of M
indexed by J . Define,

val(M |J) =
m∑

i=1

max
j∈J

{Mi,j}.

Definition 1 (Matrix Interdiction Problem). Let M be an m × n matrix
with entries from R. Let Ms be the set of all submatrices of M with dimension
m × n − k. The matrix interdiction problem is to select a submatrix M∗ ∈ Ms

such that

M∗ = M |J∗ , and J∗ = argminJ⊆[n],|J|=n−k

{
m∑

i=1

max
j∈J

{Mi,j}
}

.

In other words, the matrix interdiction problem is to find an element M∗ from
Ms with the property that

val(M∗) = min
Mz∈Ms

{val(Mz)}.
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Fig. 1. Bipartite network interdiction for border control with 3 sources, 2 destinations,
and 3 border crossings. The figure to the right is the corresponding bipartite network.
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Next, we show a connection between the matrix interdiction problem and a
special class of stochastic resource allocation problem (which we refer to as
the Min-Expected-Max SRA problem). A stochastic resource allocation problem
can be formulated as a two-stage stochastic program [4]. In the first stage, the
resources have to be allocated without knowing which future scenarios will be
realized in the second stage. In the Min-Expected-Max SRA problem, there
is a process with n components. The processing time of the component j is
denoted as aj . We refer to a = (a1, . . . , an) as the performance vector. The n
components can be processed in parallel. The overall performance (the makespan
of the process) is the maximum aj over all components. In reality, the processing
times of the components are probabilistic. There is a set Ω of scenarios, and
for a scenario ω ∈ Ω the performance vector is aω with probability pω. Now,
assume that we have resources to improve the performance of any k (k ≤ n)
components. Improving the performance of component j results in the processing
time aω

j decreasing by bω
j for all ω ∈ Ω. The resource allocation problem is decide

which k components to improve so as to minimize the expected makespan. The
Min-Expected-Max SRA problem can be formulated as a two-stage stochastic
program,

min
x

∑
ω∈Ω

pωh(x, ω),
∑

i

xi = k, x ∈ {0, 1}n, (1)

where

h(x, ω) = max
i∈[n]

{[aω
i − bω

i xi]+}. (2)

Here, [·]+ = max{·, 0}. This is a stochastic resource allocation problem with a
simple structure. The assumption is that the changing a component performance
does not effect the performance of any other component. It is this simple struc-
ture that allows the conversion from a min-expected-max two-stage stochastic
program to a matrix interdiction problem. At each scenario, by subtracting a
constant cω = maxi{[aω

i − bω
i ]+} from each constraint in (2), we are able to

simplify the second-stage optimization to

h(x, ω) = max
i∈[n]

{[âω
i − âω

i xi]+}, (3)

where âω
i = aω

i − cω.
The optimization problems (2) and (3) are equivalent in the sense that they

have the same optimal solutions and they are different by a constant at their
optimal value. The full process of this simplification step involves elaborate al-
gebraic manipulations, and we refer the reader to [21, 20] which discusses this
in the context of interdiction. After the simplification, the two-stage stochastic
program

minx

∑
ω∈Ω pωh(x, ω),

∑
i xi = k, x ∈ {0, 1}n, where

h(x, ω) = maxi∈[n]{[âω
i − âω

i xi]+}.
(4)
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can be converted to a matrix interdiction problem whose input is a matrix M of
dimension |Ω| × n. Each row of M represents a scenario ω. Let ωi ∈ Ω be the
scenario corresponding to the ith row, then Mi,j = âωi

j .
Next, we define the bipartite interdiction problem that has a similar formu-

lation as that of the optimization problem (4) defined above.

Bipartite Network Interdiction Problem. In the bipartite network interdiction
problem, there is a set of border crossings (B) that separate the sources (S)
from the destinations (T ). An evader attempts to travel from a source to a
destination, and any source-destination route will go through one and only one
border crossing. Evasion may happen between any source-destination (s-t) pair,
and every s-t pair has a probabilistic weight pst on it. At each edge, there is the
edge reliability defined as the probability of traversing the edge without being
captured, and the evader will use a route with the maximum reliability. These
edge reliabilities can be derived from travel time and distance (see [20, 10] for
more details). For a triplet (s, b, t), where s ∈ S, b ∈ B and t ∈ T , we can
calculate the maximum reliability of a path from s through b to t and denote it
as rsbt. Interdiction of a border crossing b means to strengthen the security at
that location, and as the result, rsbt = 0 for all s ∈ S and t ∈ T . The bipartite
network structure is formed by representing source-destination pairs as one set
of nodes and border crossings as the other set of nodes. An edge in the bipartite
network implies that there exists a path connecting the triplet. For example, in
Figure 1, there are three sources, three border crossings (forming a single layer of
border crossings), and two destinations. To go from source 1 to destination 1 the
evader has to go through crossing 1, therefore, there is an edge between source-
destination pair (1,1) and crossing 1. While, between source 1 and destination
2 the evader has the option of using either crossing 1 or 3, therefore, there are
edges between source-destination pair (1,2) and crossings 1 and 3. Figure 1(b)
shows the bipartite network. The maximum reliability for the triplet (1,1,2) is
calculated by multiplying the maximum reliability between source 1 and crossing
1 and between crossing 1 and destination 2. A budgetary constraint limits the
interdiction to k crossings, and the objective of the interdiction is to select k
crossings that minimizes the expected maximum probability of successful evasion
between any pair of source and destination. This problem can be formulated as
a bi-level integer program:

min
|X|=k,X∈{0,1}|B|

∑
(s,t)∈S×T

pst · max
b∈B

{rsbt · (1 − xb)}. (5)

For more details on the bipartite network interdiction, see [21, 20].
We can construct a matrix M from bipartite network interdiction problem as

follows. The dimension of M is set as n = |B| and m = |S| × |T |, and the entry
Mij = rsjtpst, where i is the node index in the bipartite network for source-
destination pair (s, t). With this construction, the entries of M are positive real
values between 0 and 1, and the optimal solution of the matrix interdiction
problem for input M is exactly the k optimal border crossings to be interdicted
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in Equation (5). Also, the two problems will also have the same optimal objective
values. This leads to the following theorem.

Theorem 1. Bipartite network interdiction problem is a special case of the ma-
trix interdiction problem.

The above theorem can be summarized as saying that every instance of the bipar-
tite interdiction problem is also an instance of the matrix interdiction problem.
The NP-hardness (Section 3) and the hardness of approximation (Section 4)
results that we obtain for the matrix interdiction problem also hold for the
bipartite network interdiction problem. Also, since the approximation guaran-
tee of the greedy algorithm (Section 5) holds for every instance of the matrix
interdiction problem, it also holds for every instance of the bipartite network in-
terdiction problem. In the following sections, we concentrate only on the matrix
interdiction problem.

3 NP-Hardness Result

In this section, we show that the matrix interdiction problem is NP-hard. Thus,
assuming P �= NP there exists no polynomial time algorithm that can exactly
solve the matrix interdiction problem. For establishing the NP-hardness we re-
duce the clique problem to the matrix interdiction problem. The clique problem
is defined as follows.

Definition 2 (Clique Problem [8]). Let G = (V, E) be an undirected graph,
where V is the set of vertices and E is the set of edges of G. For a subset S ⊆ V ,
we let G(S) denote the subgraph of G induced by S. A clique C is a subset of
V such that the induced graph G(C) is complete (i.e., ∀u, v ∈ C an edge exists
between u and v). The clique problem is the optimization problem of finding a
clique of maximum size in the graph. As a decision problem, it requires us to
decide whether there exists a clique of a given size k in the graph.

Reduction from Clique to Matrix Interdiction. Consider a graph G = (V, E)
with |E| = m and |V | = n. We construct a matrix M = M(G) of dimension
m × n as follows: The rows of M correspond to the edges of G and columns of
M correspond to the vertices of G. Let e1, . . . , em be the edges of G. Now for
every l ∈ [m] consider the edge el, and let u and v be the end points of el. In the
lth row of M add 1 in the columns corresponding to u and v, all other entries
of the lth row are 0.

Notice that M has exactly two 1’s in each row, and all the remaining entries
of M are 0. Now,

val(M) =
m∑

i=1

max
j∈[n]

{Mi,j} =
m∑

i=1

1 = m.

That is each edge in G contributes 1 to val(M). Now if there exists a clique C
of size k in G, then we can delete the columns of M corresponding to vertices in
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C and we obtain a submatrix M∗ with val(M∗) = m−
(
k
2

)
(because by deleting

the columns corresponding to C, contribution to val(M∗) will be 0 for the
(
k
2

)
rows of M corresponding to the

(
k
2

)
edges in C). Similarly, if the output to the

matrix interdiction problem is a matrix M∗ and if val(M∗) > m−
(
k
2

)
then there

exists no clique of size k in G and if val(M∗) = m−
(
k
2

)
then there exists a clique

of size k in G. The following two lemmas formalize the observations explained
above.

Lemma 1. Consider a graph G, and let M = M(G) be the matrix as defined
above. If there exists a clique C of size k in G, then there exists a submatrix
M∗ of M such that val(M∗) = val(M) −

(
k
2

)
and M∗ is a (optimum) solution

to the matrix interdiction problem. Otherwise, if there exists no clique of size k
in G then any (optimum) solution to the matrix interdiction problem will have
a value strictly greater than val(M) −

(
k
2

)
.

Proof. To show the first part of the lemma notice that each row of M contributes
1 to val(M), or in other words each edge in G contributes 1 to val(M). Consider a
row of M , let us assume it corresponds to some edge (u, v) in G. Now notice that
to obtain M∗ if one only deletes the column corresponding to u or the column
corresponding to v then the contribution of this row to val(M∗) still remains 1
(because the row has two 1’s and only one of these gets removed). So to reduce
the contribution of this row to 0 one needs to delete columns corresponding to
both u and v.

A clique C of size k has exactly
(
k
2

)
edges between the vertices in C. Therefore,

by deleting the columns corresponding to vertices in C, one can create a subma-
trix M∗ of dimension m × n − k with val(M∗) = val(M) −

(
k
2

)
. We now argue

that M∗ is a (optimum) solution to the matrix interdiction problem. Consider
a set J ⊆ [n], |J | = n − k and let J̄ = [n] − J . Deleting the columns of M in
J̄ creates M |J in which the number of rows with all zero entries is the same as
the number of edges present between the vertices corresponding to entries in J̄ .
In other words, val(M |J) = val(M) − e(J̄), where e(J̄) is the number of edges
in G that are present between the vertices corresponding to entries in J̄ . Since,
for any J̄ , e(J̄) ≤

(
k
2

)
, therefore for all J ,

val(M |J) ≥ val(M) −
(

k

2

)
.

Therefore, M∗ whose value equals val(M) −
(
k
2

)
is a (optimum) solution to the

matrix interdiction problem.
To show the second part of the lemma, notice that if there exists no clique of

size k in G, then for all J̄ ,

val(M |J) = val(M) − e(J̄) > val(M) −
(

k

2

)
,

as in the absence of a clique of size k, e(J̄) is always less than
(
k
2

)
.
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Lemma 2. Consider a graph G, and let M = M(G) be the matrix as defined
above. Let M∗ be a (optimum) solution to the matrix interdiction problem with
input M . Then if val(M∗) = val(M)−

(
k
2

)
then there exists a clique of size k in

G, and otherwise there exists no clique of size k in G.

Proof. From Lemma 1, we know that val(M∗) ≥ val(M) −
(
k
2

)
. Let J̄ be the

set of columns deleted from M to obtain M∗. If val(M∗) = val(M) − e(J̄) =
val(M) −

(
k
2

)
, then the vertices corresponding to entries in J̄ form a clique of

size k (as e(J̄) =
(
k
2

)
). If val(M∗) > val(M)−

(
k
2

)
, then there exists no clique of

size k in G because if there did exist a clique of size k in G then one can delete
the columns corresponding to the vertices in the clique to obtain a matrix Mz

with

val(Mz) = val(M) −
(

k

2

)
< val(M∗),

a contradiction to the optimality of M∗.

Theorem 2. The matrix interdiction problem is NP-hard.

Proof. The clique problem is NP-complete [8]. Lemmas 1 and 2 show a polyno-
mial time reduction from the clique problem to the matrix interdiction problem.
Therefore, the matrix interdiction problem is NP-hard.

4 Inapproximability Result

In this section, we show that there exists a fixed constant γ such that the matrix
interdiction problem is NP-hard to approximate to within an nγ additive factor.
More precisely, we show that assuming P �= NP there exists no polynomial time
approximation algorithm for the matrix interdiction problem that can achieve
better than an nγ additive approximation. Note that this statement is stronger
than Theorem 2. Whereas, Theorem 2 shows that assuming P �= NP there exists
no polynomial time algorithm that can solve the matrix interdiction problem
exactly, this inapproximability statement shows that unless P = NP it is not
even possible to design a polynomial time algorithm which gives close to an
optimum solution for the matrix interdiction problem.

To show the inapproximability bound we reduce a problem with known inap-
proximability bound to the matrix interdiction problem. We will use a reduction
that is similar to that in the previous section. It will be convenient to use a
variant of the clique problem known as the k-clique.

Definition 3 (k-clique Problem). In the k-clique problem the input consists
of a positive integer k and a k-partite graph G (that is a graph that can be
partitioned into k disjoint independent sets) along with its k-partition. The goal
is to find the largest clique in G. Define a function k-clique(G) as �(G)/k, where
�(G) is the size of the largest clique in G.

Since in a k-partite graph G a clique can have at most one vertex in common with
an independent set, the size of the largest clique in G is at most k. Therefore,
k-clique(G) ≤ 1.
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Theorem 3 (Arora et al. [1]). There exists a fixed 0 < δ < 1 such that
approximating the k-clique problem to within an nδ multiplicative factor is NP-
hard.

Proof Sketch. The proof presented in [1] (see also Chapter 10 in [16]) proceeds
by showing a polynomial time reduction τ from the SAT problem (the problem
of determining whether the variables of a Boolean formula can be assigned in a
way that makes the formula satisfiable) to the k-clique problem. The reduction
τ ensures for all instances I of SAT:

If I is satisfiable ⇒ k-clique(τ(I)) = 1,

If I is not satisfiable ⇒ k-clique(τ(I)) ≤ 1
nδ .

Since, SAT is a NP-complete problem, therefore, approximating the k-clique
problem to within an nδ multiplicative factor is NP-hard (because if one can
approximate the k-clique problem to within an nδ multiplicative factor, then
one can use τ to solve the SAT problem in polynomial time). ��
The following lemma relates the problem of approximating the k-clique to ap-
proximating the matrix interdiction problem.

Lemma 3. Let G be a k-partite graph and 0 < δ < 1 be the constant from
Theorem 3. Let M = M(G) be a matrix created from G as defined in Section 3.
Let M∗ be a (optimum) solution to the matrix interdiction problem with input
M . Then

If k-clique(G) = 1 ⇒ val(M∗) = val(M) −
(
k
2

)
,

If k-clique(G) ≤ 1
nδ ⇒ val(M∗) ≤ val(M) − nδ

(
k/nδ

2

)
−
(
nδ

2

)((
k
nδ

)2 − 1
)
.

Proof. If k-clique(G) = 1, then the size of the largest clique in G is k, and
by deleting the columns corresponding to the vertices in this clique we get a
submatrix M∗ with val(M∗) = val(M) −

(
k
2

)
.

If the k-clique(G) ≤ 1/nδ, then the size of the largest clique in G is at most
k/nδ. The maximum reduction to val(M) occurs when there are nδ cliques
each of size k/nδ and one deletes the k columns corresponding to the vertices
appearing in all these cliques. Each clique has

(
k/nδ

2

)
edges within itself. Since

there are nδ such cliques, this gives a total of nδ
(
k/nδ

2

)
edges within the cliques.

There are also edges across these nδ cliques. Now across any two cliques there are
at most (k/nδ)2−1 edges, and since there are at most

(
nδ

2

)
such pairs of cliques,

this gives a total of
(
nδ

2

)
((k/nδ)2 − 1) edges across the cliques. Accounting for

all edges within and across cliques, we get

val(M∗) ≤ val(M) − nδ

(
k/nδ

2

)
−
(

nδ

2

)((
k

nδ

)2

− 1

)
.

Theorem 4. There exists a fixed constant γ > 0, such that the matrix interdic-
tion problem is NP-hard to approximate within an additive factor of nγ.
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Proof. From Theorem 3, we know there exists a constant δ such that it is NP-
hard to approximate the k-clique problem to within an nδ multiplicative factor.
From Lemma 3, we know that for a k-partite graph G, there exists a matrix
M = M(G) such that

If k-clique(G) = 1 ⇒ val(M∗) = val(M)−
(

k2

2
− k

2

)
,

If k-clique(G) ≤ 1
nδ ⇒ val(M∗) ≤ val(M)−

(
k2

2nδ − k
2

)
−
(

k2

2
− k2

2nδ − n2δ

2
+ nδ

2

)
.

By comparing the above two equations, we see that if we can approximate the
matrix interdiction problem within an n2δ/2−nδ/2 additive factor, then we can
approximate the k-clique problem to within an nδ multiplicative factor. Since,
the latter is NP-hard, it implies that an n2δ/2 − nδ/2 additive approximation
of the matrix interdiction problem is also NP-hard. Setting γ such that, nγ =
n2δ/2 − nδ/2 proves the theorem.

5 Greedy Approximation Algorithm

In this section, we present a greedy algorithm for the matrix interdiction problem
that achieves an (n − k) multiplicative approximation ratio. The input to the
greedy algorithm is a matrix M of dimension m × n with real entries. The
output of the algorithm is a matrix Mg. The running time of the algorithm is
O(nm + n log n).

Algorithm Greedy(M)

1. For every j ∈ [n], compute cj =
∑m

i=1 Mi,j , i.e., cj is the sum of the entries
in the jth column.
2. Pick the top k columns ranked according to the column sums.
3. Delete the k columns picked in Step 2 to create a submatrix Mg of M .
4. Output Mg.

Theorem 5. Algorithm Greedy is an (n − k) multiplicative approximation al-
gorithm for the matrix interdiction problem. More precisely, the output Mg of
Greedy(M) satisfies the following

val(Mg) ≤ (n − k)val(M∗),

where M∗ is a (optimum) solution to the matrix interdiction problem with in-
put M .

Proof. Let Soln ⊆ [n], |Soln| = n− k be the set of n− k columns present in Mg.
Let Opt ⊆ [n], |Opt| = n − k be the set of n − k columns present in M∗. Now,
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val(Mg) =
m∑

i=1

max
j∈Soln

{Mi,j} ≤
m∑

i=1

∑
j∈Soln

Mi,j

=
∑

j∈Soln

m∑
i=1

Mi,j ≤
∑

j∈Opt

m∑
i=1

Mi,j

=
m∑

i=1

∑
j∈Opt

Mi,j ≤
m∑

i=1

(n − k) max
j∈Opt

{Mi,j}

= (n − k)
m∑

i=1

max
j∈Opt

{Mi,j}

= (n − k)val(M∗).

The second inequality follows because the Greedy algorithm deletes the k columns
with the largest column sums. The third inequality follows because for any real
vector v = (v1, . . . , vn−k),

∑n−k
p=1 vp ≤ (n − k)max{v}.

The above argument shows that the Greedy algorithm achieves an (n − k)
multiplicative approximation ratio for the matrix interdiction problem.

6 Conclusion

Motivated by security applications, we introduced the matrix interdiction prob-
lem. Our main contribution is in providing a complexity analysis and an ap-
proximation algorithm for this problem. We proved that the matrix interdiction
problem is NP-hard, and furthermore, unless P = NP there exists no nγ additive
approximation algorithm for this problem. We then presented a simple greedy
algorithm for the matrix interdiction problem and showed that this algorithm
has an (n − k) multiplicative approximation ratio. It is also possible to design
a dynamic programming based algorithm that achieves the same approximation
ratio. An interesting open question would be to either design a better approxi-
mation algorithm or to show a better hardness of approximation result.
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Abstract. We introduce an approach which combines ACO (Ant
Colony Optimization) and IBM ILOG CP Optimizer for solving COPs
(Combinatorial Optimization Problems). The problem is modeled using
the CP Optimizer modeling API. Then, it is solved in a generic way by a
two-phase algorithm. The first phase aims at creating a hot start for the
second: it samples the solution space and applies reinforcement learning
techniques as implemented in ACO to create pheromone trails. During
the second phase, CP Optimizer performs a complete tree search guided
by the pheromone trails previously accumulated. The first experimental
results on knapsack, quadratic assignment and maximum independent
set problems show that this new algorithm enhances the performance of
CP Optimizer alone.

1 Introduction

Combinatorial Optimization Problems (COPs) are of high importance for the
scientific world as well as for the industrial world. Most of these problems
are NP-hard so that they cannot be solved exactly in polynomial time (unless
P = NP ). Examples of NP-hard COPs include timetabling, telecommunication
network design, traveling salesman problems, Multi-dimensional Knapsack Prob-
lems (MKPs), and Quadratic Assignment Problems (QAPs). To solve COPs, two
main dual approaches may be considered, i.e., Branch and Propagate and Bound
(B&P&B) approaches, and metaheuristic approaches.

B&P&B approaches combine an exhaustive tree-based exploration of the
search space with constraint propagation and bounding techniques which re-
duce the search space. These approaches ensure to find an optimal solution in
bounded time. As a counterpart, they might need exponential computation time
in the worst case [1,2]. Constraint Programming (CP) is one of the most popular
generic B&P&B approaches for solving COPs modeled by means of constraints:
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it offers high-level languages for modeling COPs and it integrates constraint
propagation and search algorithms for solving them in a generic way. Hence,
solving COPs with CP does not require a lot of programming work. CP is usu-
ally very effective when constraints are tight enough to eliminate large infeasible
regions by propagating constraints. However, as it is generally based on B&P&B
approach, it fail to found a high solution quality with an acceptable computa-
tional time limit.

Metaheuristics have shown to be very effective for solving many COPs. They
explore the search space in an incomplete way and sacrifice optimality guaran-
tees, but gets good solutions in reasonable computational times. However, solving
a new problem with a metaheuristic usually requires a lot of programming work.
In particular, handling constraints is not an easy task and requires designing ap-
propriate incremental data structures for quickly evaluating constraint violations
before making a decision.

Many metaheuristics are based on a local search framework such that the
search space is explored by iteratively perturbing combinations. Among others,
local search-based metaheuristics include simulated annealing [3], tabu search
[4], iterated local search [5], and variable neighborhood search [6]. To ease the
implementation of local search-based algorithms for solving COPs, Van Henten-
ryck and Michel have designed a high level constraint-based language, named
Comet [7]. In particular, Comet introduces incremental variables, thus allow-
ing the programmer to declaratively design data structures which are able to
efficiently evaluate neighborhoods.

In this paper, we propose a generic approach for solving COPs which combines
CP Optimizer —a B&P&B-based solver developed by IBM ILOG— with the Ant
Colony Optimization (ACO) metaheuristic [8]. ACO is a constructive approach
(and not a local search-based one): it explores the search space by iteratively
constructing new combinations in a greedy randomized way. ACO has shown to
be very effective to quickly find good solutions to COPs, but it suffers from the
same drawbacks as other metaheuristics, i.e., there are no optimality guarantees
and quite a lot of programming is required to solve new COPs with ACO.

By combining ACO with CP Optimizer, we take the best of both approaches.
In particular, we use the CP Optimizer modeling API to describe the problem to
solve. Hence, to solve a new COP with our approach, one only has to model the
problem to solve by means of a set of constraints and an objective function to
optimize, and then ask the solver to search for the optimal solution. This search
is decomposed in two phases. In a first phase, ACO is used to sample the space
of feasible solutions and gather useful information about the problem by means
of pheromone trails. During this first phase, CP Optimizer is used to propagate
constraints and provide feasible solutions to ACO, while in a second phase, it
performs a complete B&P&B to search for the optimal solution. During this
second phase, pheromone trails collected during the first phase are used by CP
Optimizer as value ordering heuristics, allowing it to quickly focus on the most
promising areas of the space of feasible solutions. In both phases, we also use
impacts [9] as an ordering heuristic.
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Let us point out that our main objective is not to compete with state-of-the-
art algorithms which are dedicated to solving specific problems, but to show
that sampling the search space with ACO can significantly improve the solution
process of a generic B&P&B approach for solving COPs. For this, we chose CP
Optimizer as our reference.

The rest of this paper is organized as follows. In Section 2, we recall some
definitions about COP, CP, and ACO. Section 3 describes the CPO-ACO algo-
rithm. In section 4, we give some experimental results on the multidimensional
knapsack problem, the quadratic assignment problem and the maximum inde-
pendent set problem. We conclude with a discussion on some other related work
and further work.

2 Background

2.1 COP

A COP is defined by a tuple P = (X, D, C, F ) such that X = {x1, . . . , xn}
is a set of n decision variables; for every variable xi ∈ X , D(xi) is a finite
set of integer values defining the domain of xi; C is a set of constraints; and
F : D(x1) × . . . × D(xn) −→ R is an objective function to optimize.

An assignment A is a set of variable-value couples denoted < xi, vi > which
correspond to the assignment of a value vi ∈ D(xi) to a variable xi. An assign-
ment A is complete if all variables of X are assigned in A; it is partial otherwise.
An assignment is inconsistent if it violates a constraint and it is consistent other-
wise. A feasible solution is a complete consistent assignment. A feasible solution
A of P is optimal if for every other feasible solution A′

of P , F (A) ≤ F (A′
) if

P is a minimization problem or F (A) ≥ F (A′
) if P is a maximization problem.

2.2 Complete B&P&B Approaches

B&P&B approaches solve COPs by building search trees: at each node, one
chooses a non-assigned variable xi and, for each value vi ∈ D(xi), one creates
a new node corresponding to the assignment of xi to vi. This tree search is
usually combined with constraint propagation and bounding techniques. Con-
straint propagation filters variable domains by removing inconsistent values with
respect to some local consistency such as, for example, arc consistency. Bound-
ing techniques compute bounds on the objective function and prune the nodes
for which this approximation is worse than the best feasible solution found so
far. When constraint propagation or bounding techniques detect a failure, one
backtracks to the last choice point to explore another branch. This method is
effective and generic, although it fails to solve some COPs for which constraint
propagation and bounding techniques are not able to reduce the search space to
a reasonable size.

2.3 Impact-Based Search Strategies

In constraint programming, as soon as a value vi is assigned to a variable xi,
constraint propagation removes part of the infeasible space by reducing the
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Algorithm 1. Generic ACO framework for solving a COP (X, D, C, F )
Initialize pheromone trails1

while Stopping criteria not reached do2

for Each ant do Construct a complete assignment3

Update pheromone trails4

domains of some variables. Refalo [9] has defined the impact of the assignment
xi = vi as the proportion of search space removed. He has defined the impact
of a value as the average of its observed impacts and the impact of a variable
as the average of the impact of its remaining values. He has shown that these
impacts may be used to define valuable ordering heuristics.

2.4 Ant Colony Optimization (ACO)

There exist two main kinds of heuristic approaches, i.e., perturbative and con-
structive approaches. Perturbative heuristic approaches (such as local search)
explore the search space by iteratively perturbating combinations. Constructive
heuristic approaches sample the search space by iteratively constructing com-
binations in a greedy randomized way: starting from an empty combination,
combination components are iteratively added until the combination is com-
plete. At each step of these constructions, the combination component to be
added is randomly chosen with respect to some probability.

Ant Colony Optimization (ACO) [8] is a constructive heuristic approach which
borrows features from the collective behavior of ants to define the probability of
adding a component to a combination: this probability depends on a quantity
of pheromone which represents the past experience with respect to the choice of
this component.

Algorithm 1 describes the generic ACO framework: at each cycle, each ant
builds an assignment in a greedy randomized way using pheromone trails to
progressively bias probabilities with respect to previous constructions; then phe-
romone trails are updated. We describe the main steps of this algorithm in the
next paragraph, with a focus on COPs described by means of a tuple (X, D, C, F )
so that the goal is to find the best feasible assignment.

Pheromone trails: Pheromone is used to guide the search and a key point lies in
the choice of the components on which pheromone is laid. When the COP is de-
fined by a tuple (X, D, C, F ), one may associate a pheromone trail τ(xi, vi) with
every variable xi ∈ X and every value vi ∈ D(xi). Intuitively, this pheromone
trail represents the desirability of assigning xi to vi. Such a pheromone structure
has shown to be effective to solve, for example, QAPs [10], CSPs [11], and car
sequencing problems [12].

Pheromone trails are used to intensify the search around the best assignments
built so far. In order to balance intensification and diversification, Stützle and
Hoos have proposed in [10] to bound pheromone trails between two parameters
τmin and τmax so that the relative difference between pheromone trails is limited.
Also, pheromone trails are initialized to τmax at the beginning of an ACO search.
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Construction of assignments by ants (line 3): Each assignment is built in a
greedy randomized way: starting from an empty assignment, one iteratively
chooses a non assigned variable and a value to assign to this variable, until
all variables have been assigned. The next variable to assign is usually chosen
with respect to some given ordering heuristic (e.g., in increasing order for the
QAP or the car sequencing problem, or with respect to the min-domain heuristic
for CSPs). Once a non assigned variable xi has been chosen, the value vi ∈ D(xi)
to assign to xi is chosen with respect to probability:

p(xi, vi) =
[τ(xi, vi)]α · [η(xi, vi)]β∑

vj∈D(xi)[τ(xi, vj)]α · [η(xi, vj)]β
(1)

where η(xi, vi) is the heuristic factor associated with the assignment of xi to vi.
The definition of this factor depends on the considered application, and usually
evaluates the impact of this assignment on the objective function. α and β are
two parameters that allow the user to balance the influence of pheromone and
heuristic factors in the transition probability.

The way constraints are handled may be different from a COP to another. For
loosely constrained COPs, such as QAPs [10], maximum clique problems [13], or
MKPs [14], constraints are propagated after each variable assignment in order to
remove inconsistent values from the domains of non assigned variables, so that
ants always build feasible solutions. However, when constraints are tighter so
that it is actually difficult to build feasible solutions, constraint violations may
be integrated in the heuristic factor and in the objective function so that ants
may build inconsistent assignments [11].

Pheromone updating step (line 4): Once each ant has constructed an assignment,
pheromone trails are updated. In a first step, all pheromone trails are decreased
by multiplying them by a factor (1− ρ), where ρ ∈ [0; 1] is the evaporation rate.
This evaporation process allows ants to progressively forget older constructions
and to emphasize more recent ones. In a second step, some assignments are
rewarded by laying pheromone trails. These assignments may be the best of the
cycle and/or the best since the beginning of the search. The goal is to increase
the probability of selecting the components of these assignments during the next
constructions. The pheromone is laid on the trails associated with the rewarded
assignments. When pheromone trails are associated with variable/value couples,
pheromone is laid on the variable/value couples of the assignment to reward. The
quantity of pheromone laid usually is proportional to the quality of the rewarded
assignment. This quantity is often normalized between 0 and 1 by defining it as
a ratio between the value of the assignment to reward and the optimal value (if
it is known) or the best value found since the beginning of the search.

3 Description of CPO − ACO

ACO has shown to be very effective for quickly finding good solutions to many
COPs. However, designing ACO algorithms for new COPs implies a lot of pro-
gramming: if procedures for managing and exploiting pheromone are very similar
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from a COP to another so that one can easily reuse them, solving a new COP
implies to write procedures for propagating and checking problem dependent
constraints. Hence, a first motivation for combining ACO with CP is to reuse
the numerous available procedures for managing constraints. Moreover, combin-
ing ACO with CP optimizer allows us to take the best of these two approaches:

– During a first phase, CP Optimizer is used to sample the space of feasible
solutions, and pheromone trails are used to progressively intensify the search
around the best feasible solutions.

– During a second phase, CP Optimizer is used to search for an optimal solu-
tion, and the pheromone trails collected during the first phase are used to
guide CP Optimizer in this search.

3.1 First Phase of CPO − ACO

Algorithm 2 describes the first phase of CPO − ACO, the main steps of which
are described in the next paragraphs.

Pheromone structure: The pheromone structure is used in order to pro-
gressively intensify the search around the most promising areas, i.e., those that

Algorithm 2. Phase 1 of CPO − ACO

Input: a COP P = (X, D, C, F ) and a set of parameters
{tmax1 , dmin , itmax , α, β, ρ, τmin , τmax ,nbAnts}

Output: A feasible solution Abest and a pheromone matrix
τ : X ×D → [τmin ; τmax ]

foreach xi ∈ X and foreach vi ∈ D(xi) do τ (xi, vi)← τmax1

repeat2

/* Step 1: Construction of nbAnts feasible solutions */

foreach k ∈ {1, . . . , nbAnts} do3

Construct a feasible solution Ak using CP Optimizer4

/* Step 2: Evaporation of all pheromone trails */

foreach xi ∈ X and foreach vi ∈ D(xi) do5

τ (xi, vi)← max(τmin , (1− ρ) · τ (xi, vi))6

/* Step 3: Pheromone laying on good feasible solutions */

Let Abest be the best assignment built so far (including the current cycle)7

foreach k ∈ {1, . . . , nbAnts} do8

if ∀l ∈ {1, . . . ,nbAnts},Ak is at least as good as Al then9

foreach < xi, vi >∈ Ak do10

τ (xi, vi)← min(τmax , τ (xi, vi) + 1
1+|F (Ak)−F (Abest)| )11

if Abest is strictly better than all feasible solutions of {A1, ...,AnbAnts} then12

foreach < xi, vi >∈ Abest do τ (xi, vi)← min(τmax , τ (xi, vi) + 1)13

until time spent ≥ tmax1 or number of cycles without improvement of14

Abest ≥ itmax or average distance of {A1, ...,AnbAnts} ≤ dmin ;
return Abest and τ15
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contain the best feasible solutions with respect to the objective function. This
pheromone structure associates a pheromone trail τ(xi, vi) with each variable
xi ∈ X and each value vi ∈ D(xi). Each pheromone trail is bounded between
two given bounds τmin and τmax , and is initialized to τmax (line 1) as proposed
in [10]. At the end of the first phase, the pheromone structure τ is returned so
that it can be used in the second phase as a value ordering heuristic.

Construction of assignments: At each cycle (lines 2-14), each ant calls CP
Optimizer in order to construct a feasible solution (line 4). Note that during this
first phase, we do not ask CP Optimizer to optimize the objective function, but
simply to find feasible solutions that satisfy all the constraints.

CP Optimizer is used as a black-box with its default search parameters and
each new call corresponds to a restart. In particular, the variable ordering heuris-
tic is based on the variable impact heuristic of [9], i.e., at each step of the search
tree, CP Optimizer chooses the variable with the highest impact. CP Optimizer
propagates constraints using predefined procedures, and when an inconsistency
is detected, it backtracks until finding a feasible solution that satisfies all con-
straints. Also, if the given cutoff in the number of backtracks is met without
having found a solution, CP Optimizer automatically restarts the search, as
described in [9].

However, the value ordering heuristic procedure is given to CP Optimizer and
it is defined according to ACO: let xi be the next variable to be assigned; vi is
randomly chosen in D(xi) w.r.t. probability

p(vi) =
[τ(xi, vi)]α · [1/impact(vi)]β∑

vj∈D(xi)[τ(xi, vj)]α · [1/impact(vj)]β

where impact(vi) is the observed impact of value vi as defined in [9], and α and β
are two parameters that weight the pheromone and impact factors respectively.
Hence, during the first cycle, values are randomly chosen with respect to impacts
only as all pheromone trails are initialized to the same value (i.e., τmax ). However,
at the end of each cycle, pheromone trails are updated so that these probabilities
are progressively biased with respect to past constructions.

It is worth mentioning here that our CPO-ACO framework is designed to
solve underconstrained COPs that have a rather large number of feasible solu-
tions (such as, for example, MKPs or QAPs): when solving these problems, the
difficulty is not to build a feasible solution, but to find the feasible solution that
optimizes the objective function. Hence, on these problems CP Optimizer is able
to build feasible solutions very quickly, with very few backtracks. Our CPO-ACO
framework may be used to solve more tightly constrained COPs. However, for
these problems, CP Optimizer may backtrack a lot (and therefore need more
CPU time) to compute each feasible solution. In this case, pheromone learning
will be based on a very small set of feasible solutions so that it may not be very
useful and CPO-ACO will simply behave like CP Optimizer.
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Pheromone evaporation: Once every ant has constructed an assignment,
pheromone trails are evaporated by multiplying them by (1− ρ) where ρ ∈ [0; 1]
is the pheromone evaporation rate (lines 5-6).

Pheromone laying step: At the end of each cycle, good feasible solutions (with
respect to the objective function) are rewarded in order to intensify the search
around them. Lines 8-11, the best feasible solutions of the cycle are rewarded.
Lines 12-13, the best feasible solution built so far is rewarded if it is better than
the best feasible solutions of the cycle (otherwise it is not rewarded as it belongs
to the best feasible solutions of the cycle that have already been rewarded).
In both cases, a feasible solution A is rewarded by increasing the quantity of
pheromone laying on every couple < xi, vi > of A, thus increasing the probability
of assigning xi to vi. The quantity of pheromone added is inversely proportional
to the gap between F (A) and F (Abest).

Termination conditions: The first phase is stopped either if the CPU time
limit of the first phase tmax1 has been reached, or if Abest has not been improved
since itmax iterations, or if the average distance between the assignments com-
puted during the last cycle is smaller than dmin , thus indicating that pheromone
trails have allowed the search to converge. We define the distance between two
assignments with respect to the number of variable/value couples they share,
i.e., the distance between A1 and A2 is |X|−|A1∩A2|

|X|

3.2 Second Phase of CPO − ACO

At the end of the first phase, the best constructed feasible solution Abest and
the pheromone structure τ are forwarded to the second phase. Abest is used to
bound the objective function with its cost. Then, we ask CP Optimizer to find
a feasible solution that optimizes the objective function F : in this second phase,
each time CP Optimizer finds a better feasible solution, it adds a constraint to
bound the objective function with respect to its cost, and it backtracks to find
better feasible solutions, or prove the optimality of the last computed bound.

Like in the first phase, CP Optimizer is used as a black-box with its de-
fault search parameters: the restart of [9] is used as the search type parameter,
and impacts are used as variable ordering heuristic. However, the value order-
ing heuristic is defined by the pheromone structure τ : given a variable xi to
be assigned, CP Optimizer chooses the value vi ∈ D(xi) which maximizes the
formula: [τ(xi, vi)]α · [1/impact(vi)]β .

Note that we have experimentally compared different other frameworks which
are listed below:

– We have considered a framework where, at the end of the first phase, we only
return Abest (which is used to bound the objective function at the beginning
of the second phase) and we do not return the pheromone structure (so
that the value ordering heuristic used in the second phase is only defined
with respect to impacts). This framework obtains significantly worse results,
showing us that the pheromone structure is a valuable ordering heuristic.
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– We have considered a framework where, during the first phase, the sampling
is done randomly, without using pheromone for biasing probabilities (i.e., α
is set to 0). This framework also obtains significantly worse results, showing
us that it is worth using an ACO learning mechanism.

– We have considered a framework where, during the second phase, the value
ordering heuristic is defined by the probabilistic rule used in the first phase,
instead of selecting the value that maximizes the formula. This framework
obtains results that are not significantly different on most instances.

4 Experimental Evaluation of CPO-ACO

4.1 Considered Problems

We evaluate our CPO-ACO approach on three well known COPs, i.e., Multi-
dimensional Knapsack problem (MKP), Quadratic Assignment Problem (QAP)
and the Maximum Independent Set (MIS).

The Multidimensional Knapsack problem (MKP) involves selecting a subset of
objects in a knapsack so that the capacity of the knapsack is not exceeded and
the profit of the selected objects is maximized. The associated CP model is such
that
– X = {x1, . . . , xn} associates a decision variable xi with every object i;
– ∀xi ∈ X , D(xi) = {0, 1} so that xi = 0 if i is not selected, and 1 otherwise;
– C = {C1, . . . , Cm} is a set of m capacity constraints such that each constraint

Cj ∈ C is of the form
∑n

i=1 cij · xi ≤ rj where cij is the amount of resource
j required by object i and rj is the available amount of resource j;

– the objective function to maximize is F =
∑n

i=1 ui · xi where ui is the profit
associated with object i.

We have considered academic instances with 100 objects which are available
at http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/mknapinfo.html. We have
considered the first 20 instances with 5 resource constraints (5-100-00 to 5-100-
19); the first 20 instances with 10 resource constraints (10-100-00 to 10-100-19)
and the first 20 instances with 30 resource constraints (30-100-00 to 30-100-19).

The Quadratic Assignment Problem (QAP) involves assigning facilities to loca-
tions so that a sum of products between facility flows and location distances is
minimized. The associated CP model is such that
– X = {x1, . . . , xn} associates a decision variable xi with every facility i;
– ∀xi ∈ X , D(xi) = {1, . . . , n} so that xi = j if facility i is assigned to location

j;
– C only contains a global all different constraint among the whole set of

variables, thus ensuring that every facility is assigned to a different location;
– the objective function to minimize is F =

∑n
i=1
∑n

j=1 axixj bij where axixj is
the distance between locations xi and xj , and bij is the flow between facilities
i and j.

We have considered instances of the QAPLIB which are available at
http://www.opt.math.tu-graz.ac.at/qaplib/inst.html.
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The Maximum Independent Set (MIS) involves selecting the largest subset of
vertices of a graph such that no two selected vertices are connected by an edge
(this problem is equivalent to searching for a maximum clique in the inverse
graph). The associated CP model is such that

– X = {x1, . . . , xn} associates a decision variable xi with every vertex i;
– ∀xi ∈ X , D(xi) = {0, 1} so that xi = 0 if vertex i is not selected, and 1

otherwise;
– C associates a binary constraint cij with every edge (i, j) of the graph.

This constraint ensures that i and j have not been both selected, i.e., cij =
(xi + xj < 2).

– the objective function to maximize is F =
∑n

i=1 xi.

We have considered instances of the MIS problem which are available at
http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm.

4.2 Experimental Settings

For each problem, the CP model has been written in C++ using the CP Opti-
mizer modeling API. It is worth mentionning here that this CP model is straight-
forwardly derived from the definition of the problem as given in the previous
section: it basically declares the variables together with their domains, the con-
straints, and the objective function.

We compare CPO-ACO with CP Optimizer (denoted CPO). In both cases,
we used the version V2.3 of CP Optimizer with its default settings. However,
for CPO-ACO, the value ordering heuristic is given to CPO (see Section 3). For
CPO, the default value ordering heuristic is defined with respect to impacts as
proposed in [9].

For all experiments, the total CPU time has been limited to 300 seconds on
a 2.2 Gz Pentium 4. For CPO-ACO, this total time is shared between the two
phases as follows: tmax1 = 25% of the total time (so that phases 1 cannot spend
more than 75s); dmin = 0.05 (so that phase 1 is stopped as soon as the average
distance is smaller than 5%); and itmax = 500 (so that phase 1 is stopped if Abest

has not been improved since 500 cycles). The number of ants is nbAnts = 20;
pheromone and impact factors are respectively weighted by α = 1 and β = 2;
and pheromone trails are bounded between τmin = 0.01 and τmax = 1.

However, we have not considered the same pheromone evaporation rate for
all experiments. Indeed, both MKP and MIS have 0 − 1 variables so that, at
each cycle, one value over the two possible ones is rewarded, and ACO converges
rather quickly. For the QAP, all domains contain n values (where n is equal to
the number of variables) so that, at each cycle, one value over the n possible ones
is rewarded. In this case, we speed-up the convergence of ACO by increasing the
evaporation rate. Hence, ρ = 0.01 for MKP and MIS whereas ρ = 0.1 for QAP.

Note that we have not yet extensively studied the influence of parameters on
the solution process so that the parameter setting considered here is probably
not optimal. Further work will include the use of a racing algorithm based on
statistical tests in order to automatically tune parameters [15].
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For both CPO and CPO-ACO, we performed 30 runs per problem instance
with a different random-seed for each run.

4.3 Experimental Results

Table 1 gives experimental results obtained by CPO and CPO-ACO on the
MKP, the QAP and the MIS. For each class of instances and each approach,
this table gives the percentage of deviation from the best known solution. Let

Table 1. Comparison of CPO and CPO-ACO on the MKP, the QAP and the MIS.
Each line successively gives: the name of the class, the number of instances in the class
(#I), the average number of variables in these instances (#X), the results obtained by
CPO (resp. CPO-ACO), i.e., the percentage of deviation from the best known solution
(average (avg) and standard deviation (sd)), the percentage of instances for which
CPO (resp. CPO-ACO) has obtained strictly better average results (>avg), and the
percentage of instances for which CPO (resp. CPO-ACO) is significantly better w.r.t.
the statistical test.

Results for the MKP
CPO CPO − ACO

Name # I # X avg (sd) >avg >t−test avg (sd) >avg >t−test

5.100-* 20 100 1.20 (0.30) 0% 0% 0.46 (0.23) 100% 100%

10.100-* 20 100 1.53 (0.31) 0% 0% 0.83 (0.34) 100% 100%

30.100-* 20 100 1.24 (0.06) 5% 0% 0.86 (0.08) 95% 85%

Results for the QAP
CPO CPO − ACO

Name # I # X avg (sd) >avg >t−test avg (sd) >avg >t−test

bur* 7 26 1.17 (0.43) 0% 0% 0.88 (0.43) 100% 57 %

chr* 11 19 12.11 (6.81) 45% 9% 10.99 (6.01) 55 % 45 %

had* 5 16 1.07 (0.89) 0% 0% 0.54 (1.14) 100% 60 %

kra* 2 30 17.46 (3.00) 0% 0% 14.99 (2.79) 100% 100%

lipa* 6 37 22.11 (0.82) 0% 0% 20.87 (0.75) 100% 100%

nug* 15 20 8.03 (1.59) 7% 0% 5.95 (1.44) 93 % 80 %

rou* 3 16 5.33 (1.15) 33% 0% 3.98 (1.00) 67 % 67 %

scr* 3 16 4.60 (2.4) 33% 0% 5.12 (2.60) 67 % 0 %
tai* 4 16 6.06 (1.35) 25% 25% 4.84 (1.25) 75 % 50 %

Results for the MIS
CPO CPO − ACO

Name # I # X avg (sd) >avg >t−test avg (sd) >avg >t−test

frb-30-15-* 5 450 9.83 (1.86) 0% 0% 9.46 (2.00) 80% 20%

frb-35-17-* 5 595 11.62 (2.05) 60% 0% 11.82 (2.31) 40% 0%
frb-40-19-* 5 760 13.47 (1.92) 20% 0% 12.85 (2.22) 80% 20%

frb-45-21-* 5 945 15.40 (2.43) 0% 0% 14.35 (1.82) 100% 80%

frb-50-23-* 5 1150 16.24 (2.32) 20% 0% 15.84 (2.00) 80% 20%

frb-53-24-* 5 1272 18.15 (2.55) 0% 0% 16.86 (1.84) 100% 80%

frb-56-25-* 5 1400 17.85 (2.37) 20% 0% 16.89 (1.08) 80% 40%

frb-59-26-* 5 1534 18.40 (2.44) 40% 0% 18.37 (2.16) 60% 20%
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us first note that CPO and CPO-ACO (nearly) never reach the best known
solution: indeed, best known solutions have usually been computed with state-of-
the-art dedicated approaches. Both CPO and CPO-ACO are completely generic
approaches that do not aim at competing with these dedicated approaches which
have often required a lot of programming and tuning work. Also, we have chosen
a reasonable CPU time limit (300 seconds) in order to allow us to perform a
significant number of runs per instance, thus allowing us to use statistical tests.
Within this rather short time limit, CPO-ACO obtains competitive results with
dedicated approaches on the MKP (less than 1% of deviation from best known
solutions); however, it is rather far from best known solutions on many instances
of the QAP and the MIS.

Let us now compare CPO with CPO-ACO. Table 1 shows us that using ACO
to guide CPO search improves the search process on all classes except two. How-
ever, this improvement is more important for the MKP than for the two other
problems. As the two approaches have obtained rather close results on some in-
stances, we have used statistical tests to determine if the results are significantly
different or not: we have performed the Student’s t-test with significance level
of 0.05, using the R Stats Package available at http://sekhon.berkeley.edu/doc-
/html/index.html. For each class, we report the percentage of instances for which
an approach has obtained significantly better results than the other one (column
>t−test of table 1). For the MKP, CPO-ACO is significantly better than CPO
for 57 instances, whereas it is not significantly different for 3 instances. For
the QAP, CPO-ACO is significantly better than CPO on a large number of in-
stances. However, CPO is better than CPO-ACO on one instance of the class
tai* of the QAP. For the MIS, CPO-ACO is significantly better than CPO on
35% of instances, but it is not significantly different on all other instances.

5 Conclusion

We have proposed CPO-ACO, a generic approach for solving COPs defined by
means of a set of constraints and an objective function. This generic approach
combines a complete B&P&B approach with ACO. One of the main ideas behind
this combination is the utilization of the effectiveness of (i) ACO to explore the
search space and quickly identify promising areas (ii) CP Optimizer to strongly
exploit the neighborhood of the best solutions found by ACO. This combination
allows us to reach a good balance between diversification and intensification
of the search: diversification is mainly ensured during the first phase by ACO;
intensification is ensured by CP optimizer during the second phase.

It is worth noting that thanks to the modular nature of IBM ILOG CP Opti-
mizer that clearly separates the modeling part of the problem from its resolution
part, the proposed combination of ACO and CP was made in natural way. Hence,
the CPO-ACO program used was exactly the same for the experiments on the
different problems used in this work.

We have shown through experiments on three different COPs that CPO-ACO
is significantly better than CP Optimizer.
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5.1 Related Works

Recent research has focused on the integration of ACO in classical branch and
bound algorithms, but most of them were applied on specific problems and/or
proposed a combination based on an incomplete search.

In particular, B.Meyer has proposed in [16] two hybrid algorithms where the
metaheuristic Ant Colony Optimization (ACO) was coupled with CP. In his
work, Meyer has proposed a loose coupling where both components run in par-
allel, exchanging only (partial) solutions and bounds. Then, he has proposed a
tight coupling where both components collaborate in an interleaved fashion so
that, the constraint propagation was embedded in ACO in order to allow an ant
to backtrack when an association of a value v with a given variable fails. How-
ever, the backtrack procedure was limited at the level of the last chosen variable.
This means that, if all the possible values of the last chosen variable have been
tried without success, the search of an ant ends with failure. The results of this
work show on the machine scheduling problem with sequence-dependent setup
time that the tight coupling is better. But unfortunately, the proposed tight
coupling is not based on a complete search and in the both proposed algorithms;
the author has assumed that the variable ordering is fixed.

Also, we have proposed in [12] an hybrid approach, denoted Ant-CP, which
combines ACO with a CP solver in order to solve constraint satisfaction prob-
lems (without objective function to optimize). Like CPO-ACO, Ant-CP uses the
CP modeling language to define the problem, and ants use predefined CP proce-
dures to check and propagate constraints. However, unlike CPO-ACO, Ant-CP
performs an incomplete search which never backtracks.

5.2 Further Work

There are several points which are worth mentioning as further improvements
to CPO-ACO. At the moment, CPO-ACO works well (if we compare it with CP
Optimizer) on the problems for which finding a feasible solution is relatively easy.
In this paper, we have applied CPO-ACO on three different problems without
using problem-dependent heuristics. We plan to study the interest of adding
problem-dependent heuristics, that may improve the efficiency of CPO-ACO
and allow it to become competitve with state-of-the-art approches.

Parameter tuning is another interesting topic. For the moment the parameters
of CPO-ACO are roughly tuned using our experience, but we believe that an
adaptive version which dynamically tunes the parameters during the execution
should significantly increase the algorithm’s efficiency and robustness.
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1 Introduction

Recent years have witnessed growing interest in parallelising constraint solving
based on tree search (see [1] for a brief overview). One approach is search-space
splitting in which different parts of the tree are explored in parallel (e.g. [2]).
Another approach is the use of algorithm portfolios. This technique exploits
the significant variety in performance observed between different algorithms and
combines them in a portfolio [3]. In constraint solving, an algorithm can be a
solver or a tuning of a solver. Portfolios have often been run in an interleaving
fashion (e.g. [4]). Their use in a parallel context is more recent ([5], [1]).

Considering the complexity of the constraint problems and thus the compu-
tational power needed to tackle them, it is appealing to benefit from large-scale
parallelism and push for a massive number of CPUs. Bordeaux et. al have inves-
tigated this in [1] . By using the portfolio and search-space splitting strategies,
they have conducted experiments on constraint problems using a parallel com-
puter with the number of processors up to 128. They reported that the parallel
portfolio approach scales very well in SAT, in the sense that utilizing more pro-
cessors consistently helps solving more instances in a fixed amount of time.

As done also in [1], most of the prior work in parallel constraint solving as-
sumes a parallel computer with multiple CPUs. This architecture is fairly reliable
and has low communication overhead. However, such a computer is costly and
is not always at our disposal, especially if we want to push for massive paral-
lelism. Jaffar et al addressed this problem in [2] by using a bunch of computers
in a network (called “volunteer computing” in what follows). They employed 61
computers in a search-space splitting approach and showed that such a method
is effectively scalable in ILP.

In this paper, we combine the benefits of [1] and [2] when solving constraint
satisfaction problems (CSPs). We present an architecture in which massive num-
ber of volunteer computers can run several (tunings of) constraint solvers in par-
allel in a portfolio approach so as to solve many CSPs in a fixed amount of time.
The architecture is implemented using the service-oriented computing paradigm
and is thus modular, flexible for useful extensions and allows to utilise even the
computers behind a firewall. We report experiments up until 100 computers. As
the results confirm, the architecture is effectively scalable.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 246–251, 2010.
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2 Service-Oriented Volunteer Computing

Volunteer computing is a type of distributed computing which brings together
the computational resources that are often idle and available in a network (e.g.
distributed.net). As it offers a cost effective and large computing capability,
volunteer computing seems to be a good candidate for the basis of a massive
parallel constraint solving architecture using portfolios.

Service-oriented computing (SoC) is an emerging paradigm in which services
are autonomous computational entities that can be composed to obtain more
complex services for developing massively distributed applications (see e.g. the
Sensoria Project http://www.sensoria-ist.eu/). In the context of volunteer
computing, a service can be for instance the functionality which distributes
jobs to the computers. Our architecture is designed and implemented in Jolie
(http://www.jolie-lang.org/) which is the first full-fledged programming lan-
guage based on SoC paradigm. The reasons behind the choice of SoC and thus
Jolie can be summarised as follows. First, it is scalable; massive number of com-
munications with different computers can easily be handled. Second, it is mod-
ular; new services can easily be integrated and organised in a hierarcy. This is
particulary important in an architecture like ours which has several sub services.
Third, it allows us to deploy the framework in a number of different ways. Jolie
provides interaction between heterogenous services, like in the case of web ser-
vices (e.g integrating a google map application in a hotel-search application).
We can therefore easily interact with other services (even graphical ones) in the
future and make our architecture be part of a more complex system.

3 Our Architecture

Fig. 1 depicts our architecture using a notation similar to UML communication
diagrams. When services are used, we can have two kinds of messages: one way
message denoted by the string 〈 message name 〉(〈 data sent 〉) and a request
response message denoted by 〈 message name 〉 (〈 data sent 〉)(〈 data received 〉).
The figure is read as follows. The user utilises the redirecting service to get the
location of the preprocessing service and then sends to the preprocessing service
a problem instance ik to be solved. Once ik is sent, the preprocessing service
contacts the CBR service which runs a case-based reasoning system to provide
the expected solving time tk of ik. The preprocessing server then sends tk and ik
to the instance distributor service. This service is responsible for scheduling the
instances for different (tunings of) solvers and assigning the related jobs to the
volunteer computers. This can be done in a more intelligent way thanks to tk
provided by the CBR service. This value can be used for instance to minimize the
average solving time. Finally, the volunteer service asks the redirecting service
the location of the instance distributor service and then requests a job from
it using a request response message. This is the only way a job can be sent
to the volunteer service. Note that the use of the redirecting service makes it
possible to have multiple preprocessing and instance distributor services in the
future.

http://www.sensoria-ist.eu/
http://www.jolie-lang.org/
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Fig. 1. Architecture

An input instance of the architecture is specified in XCSP which is a relatively
new format to represent constraint networks using XML (http://www.cril.
univ-artois.fr/CPAI08/XCSP2_1.pdf). The reason of this choice is that (i)
XCSP format has been used in the last constraint solver competitions and thus
many solvers have started to support it; (ii) such a low level representation is
useful to extract the feature vectors needed by a CBR algorithm.

4 Preliminary Experimental Results

In these preliminary experiments, our concern is the scalability. We thus cur-
rently exclude the CBR service and observe how the architecture scales as the
number of computers increases. In the experiments, Dell Optiplex computers of
our labs running Linux with Intel core 2 duo and Pentium 4 processors are used.
Up to 100 of them are employed for the volunteer service and only one for the re-
maining services. We consider the instances of the 2009 CSP Solver Competition
(http://www.cril.univ-artois.fr/CPAI09/), six of its participating solvers
(Abscon 112v4 AC, Abscon 112v4 ESAC, Choco2.1.1 2009-06-10, Choco2.1.1b
2009-07-16, Mistral 1.545, SAT4J CSP 2.1.1) and one solver (bpsolver 2008-06-
27) from the 2008 competition (http://www.cril.univ-artois.fr/CPAI08/).
These solvers are provided as black-box, their tunings is not possible. Hence, an
instance is solved by 7 solvers on 7 different computers. The experiments focus
on the following instances: (i) Easy SAT: 1607 satisfiable instances solved in less
than 1 minute; (ii) Easy UNSAT: 1048 unsatisfiable instances solved in less than
1 minute; (iii) Hard SAT: 207 satisfiable instances solved in between 1 and 30
minutes; (iv) Hard UNSAT: 106 unsatisfiable instances solved in between 1 and
30 minutes. Such times refer to the best solving times of the competition.

In Table 1, we present the number of instances solved in 30 minutes for the
easy instances and in 1 hour for the hard instances. As an experiment is af-
fected by the current work load of the computers, we perform and report three

 http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf
 http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf
http://www.cril.univ-artois.fr/CPAI09/
http://www.cril.univ-artois.fr/CPAI08/
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Table 1. Experimental results

n◦ Easy SAT (30 min) Easy UNSAT (30 min) Hard SAT (1h) Hard UNSAT (1h)
20 15 14 15 17 18 18 3 3 6 7 7 9
40 132 128 135 150 150 150 8 8 7 16 17 13
60 141 140 140 320 318 322 19 15 14 23 23 22
80 144 145 151 335 323 328 25 21 25 29 30 30
100 179 179 192 336 345 334 25 25 25 44 33 36

runs. The results are promising. Even without the CBR service and the differ-
ent tunings of solvers, the number of the instances solved in a fixed amount of
time increases as the number of computers increases, no matter how busy the
volunteer computers are. Note that only one computer is used to run the prepro-
cessing and the instance distributor services, and yet the system can handle 100
computers without any problems. The main reason for not always obtaining a
linear speed up is that some solvers cannot solve even the easy instances in less
then 30 minutes. Hence, many computers are spending more than 30 minutes
for solving an already solved instance. This has happened 104 times in the tests
of easy SAT instances with 100 volunteer computers. In the same tests, we as
well encountered 35 solver failures. These observations suggest we shall allow the
interruption of a computation if the related instance is already solved.

5 Related Work

There is considerable amount of prior work on parallel constraint solving. We
here discuss only those that use massive parallelism. Our work is similar to the
one described in [1] in the sense that we too use the portfolio approach. However,
there are a number of differences. First, we consider CSP instances and several
different constraint solvers (including SAT and CP solvers), as opposed to SAT
instances and one SAT solver. Second, we create portfolios by running each
instance on several computers and several (tunings of) solvers at the same time.
The solver-independent approach of [1] instead uses only different tunings of the
same solver. Third, whilst we assume a group of independent computers available
in a network, [1] assumes a dedicated cluster of computers.

Jaffar et al [2] as well propose an architecture based on volunteer comput-
ing. Unlike ours, this architecture uses the search-space splitting strategy and
the experiments confirm scalability on ILP instances using 61 computers. There
are however other substantial differences. In many environments like laborato-
ries and home networks, computers stay behind a firewall or network address
translation (NAT) which limit their access from outside. We are able to access
such computers by using only the request response messages instead of using
direct messages as done in [2]. This choice brings further advantages over [2] like
smaller number of messages sent, the applicability to the majority of networks,
and having only the server as a possible bottleneck. The price to pay is the
impossibility of using certain protocols to create a tree of volunteer computers.
This is however not needed in our architecture. Our volunteer computers never
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communicate with each other so as to avoid potential scalability problems. This
is not the case in [2]. As the number of computers increases, the overhead of
distribution becomes too high which can lead to significant slowdown.

Our architecture owes a lot to CPHydra [4] , the winner of 2008 CSP Solver
Competition . It combines many CP solvers in a portfolio. CPHydra determines
via CBR the subset of the solvers to use in an interleaved fashion and the time to
allocate for each solver, given a CSP instance. Our work can thus be seen as the
parallel version of CPHydra which eliminates the need of interleaving, giving
the possibility of running several (tunings of) solvers at the same time. This
brings the chance of minimising the expected solving time as there is no order
among the solvers. Moreover, parallelism gives the opportunity of updating the
base case of CBR even in a competition environment.

6 Conclusions and Future Work

We have presented an architecture in which massive number of volunteer com-
puters can run several (tunings of) constraint solvers in parallel in a portfolio
approach. The architecture is implemented in SoC which is becoming the choice
of paradigm for the development of scalable and massively distributed systems.
The initial experimental results confirm the scalibility. Our plans for future are
to make the architecture more efficient, useful and realiable. As for efficiency, we
are currently working on the CBR service and investigating how to best bene-
fit from similar cases in a parallel context. As for usability, we aim at tackling
two limitations. First, our architecture gets XCSP instance format which is too
low level for a CP user. The good news is that the architecture can easily be
integrated to a high level modelling & solving platform such as Numberjack
(http://4c110.ucc.ie/numberjack) which will soon output to XCSP. In this
way, we can obtain a system in which the user states her problem easily at a
high-level of abstraction, then the problem gets converted to XCSP and then
(CBR-based) parallel solver is invoked. Second, our architecture is focused on
the portfolio approach. We intend to investigate how to exploit massive num-
ber of computers in search-space splitting when solving optimisation problems
in CP. Finally, should the computers go off or malfunction, we might want to
replicate the jobs assigned to the computers or redirect them to other comput-
ers. We will study methods to make the architecture more reliable from this
perspective.
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Abstract. In the standard Constraint Programming (CP) framework, an integer 
variable represents a signed integer and its domain is bounded by some minimal 
and maximal integer type values. In existing CP tools, the integer type is used 
to represent domain values, and hence domain bounds are inherently limited by 
the minimal and maximal signed integer values representable on a given plat-
form. However, this implementation of integer variable fails to satisfy use cases 
where modeled integers can be arbitrarily large. An example of such CP appli-
cation is the functional test generation where integer variables are used to 
model large architectural fields like memory addresses or operand data. In addi-
tion, in such applications, the set of standard arithmetic operations on an integer 
variable provided by the traditional CP framework does not represent the whole 
range of operations required for modeling. In this paper, we define a new type 
of integer variables with arbitrarily large domain size and a modified operation 
set. We show how this variable type can be realized on top of a traditional CP 
framework by means of global constraints over standard integer variables. The 
ideas presented in this paper can also be used to implement a native variable of 
the introduced type in a CP tool. The paper provides experimental results to 
demonstrate the effectiveness of the proposed approach.  

1   Introduction 

One of the basic components in constraint modeling is the integer constraint variable, 
which is used to represent signed integers with a finite domain. The existing CP tools 
use some programming language integer types, e.g. signed 32 or 64 bit integers, to 
represent domain values of an integer variable. In this approach, upper and lower 
bounds on integer variable domains are inherently limited by the maximal and mini-
mal values that can be represented by the corresponding integer type. This limitation 
becomes in fact an implicit constraint on integer variables, reducing the expressive 
capabilities of integer modeling. 

The limitation above does not impair the modeling in most combinatorial problems 
that constitute the conventional application domain of CP technology, since the inte-
ger types typically suffice to represent values in this kind of problems. However, in 
recent years the application domain of CP technology has expanded to additional 
areas. In particular, new CP applications emerged where integers modeled by integer 
variables can be arbitrarily large. An example of such application is the functional test 
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generation [1], [2], [3], [4]. Functional tests are required in the task of simulation 
based approach to hardware design verification. In this approach, the design under 
test (DUT) is examined against a large amount of functional tests, which exercise 
numerous execution scenarios in order to expose potential bugs. The work of valida-
tion engineers on developing test suites is facilitated by the use of automated test 
generation tools. CP technology provides powerful means in performing automated 
functional test generation. In particular, constraint modeling provides the capability to 
declaratively describe the DUT specification that defines a valid test as well as to 
describe a specific test scenario. Moreover, advanced CP algorithms can be used by 
automated test generation tools to produce tests that answer the architecture and sce-
nario requirements. 

In the application described above, integer variables are used to model hardware 
architectural components of large bit width, e.g. memory addresses or operand data. 
The domain size of corresponding variables cannot be accommodated by common 
integer types. Moreover, as hardware designs become more complex, the sizes of  
such architectural components keep growing. This poses a requirement for integer 
variables of arbitrarily large domain size. 

The CP application to functional test generation also poses additional requirements 
on operations supported by integer variables in CP modeling. In the examples above, 
integers are viewed as unsigned machine words of a fixed bit width. The common 
operations performed on this kind of integers are not confined to the set of standard 
arithmetic operations provided in the traditional CP framework. They include, for 
example, addition/subtraction modulo the bit width, left/right shift, and other opera-
tions that can be performed on machine words by a processor.  

To the best of our knowledge, very little attempts have been made to extend the 
traditional CP framework to accommodate integer variables of arbitrarily large size. 
The only example we are aware of comes from the domain of Constraint Logic Pro-
gramming (CLP) [5]. This work reports the implementation of a Prolog based solver 
supporting integer variables of arbitrarily large size. However, neither theoretical 
results describing the implemented algorithms nor experimental results demonstrating 
the performance have been published. Aside from the example above, the problem of 
domain size limitation for integer variables has never been addressed in the CP litera-
ture and none of the existing CP tools supports integer variables with arbitrarily large 
domain size. Such limitation impairs the applicability of the CP technology to a range 
of problems where modeling of large integers is required. For example, in tools for 
automated test generation, the problem of large integer variables and extended arith-
metic operation set is typically addressed by developing specialized solvers, e.g. [6]. 
Such approach is not generic, incurs a large development cost and makes it hard to 
take advantage of the cutting edge CP technology. This paper comes to address this 
problem and extends the traditional CP framework by introducing a new CP modeling 
means, namely, an integer variable supporting arbitrarily large domain size as well as 
an extended operation set. We refer to this new version of integer variable as LiVar 
(standing for Large Integer VARiable). We show how LiVar abstraction can be real-
ized within a traditional CP framework by means of global constraints over standard 
integer variables. The same ideas can be applied to implement a native variable of 
LiVar type in a CP tool. 
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To demonstrate the robustness of our approach, we implemented the proposed Li-
Var realization method. The paper presents experimental results demonstrating the 
effectiveness of global constraint propagation over LiVars.  

The rest of the paper is organized as follows. In section 2 we provide the back-
ground required for presentation of our results. Section 3 presents the definition of 
LiVar including the set of supported operations. In Section 4 we propose LiVar repre-
sentation in the standard CP framework and present implementations of comparison 
constraints on LiVars as well as a method for handling arithmetic expressions on 
LiVars by means of global constraints over integer variables. In order to provide the 
basis for comparison and quality evaluation of the latter method, we also describe a 
naïve method for handling arithmetic expression through formulating standard integer 
expressions. Section 5 demonstrates experimental results. We conclude in Section 6 
with the summary of the presented results. 

2   Background 

For the sake of completeness, in this section we provide CP background required to 
facilitate the presentation of the rest of this paper. An in-depth survey of the tradi-
tional CP can be found in [7]. 

The CP paradigm comprises the modeling of a problem as a CSP, constraint propa-
gation, search algorithms, and heuristics. A CSP is defined by: 

• a set of constrained variables. Each variable is associated with a (finite) domain 
defined as a collection of values that the variable is allowed to take; 

• a set of constraints. A constraint is a relation defined on a subset of variables which 
restricts the combinations of values that the variables can take simultaneously. 

A solution to a CSP is an assignment of values to variables so that each variable is 
assigned a value from its domain and all the constraints are satisfied.  

A CSP formulation of a problem is processed by a constraint solver, which at-
tempts to find a solution using a search algorithm combined with reductions of vari-
able domains based on constraint information. The latter mechanism is known as 
constraint propagation. During the constraint propagation, domains of the variables 
involved in the constraint are reduced until some type of consistency is achieved. For 
example, one of the possible types of consistency is the generalized arc consistency 
(GAC), also known as domain consistency [8], which implies that for each value in 
the domain of a variable, there exists a value in the domain of each of the other vari-
ables participating in the constraint so that the assignment of these values to the vari-
ables satisfies the constraint. Another commonly used consistency type is the bounds 
consistency, also known as interval consistency [8], which implies that for the mini-
mal and maximal domain values of a variable there exists a value within the domain 
bounds of each of the other variables participating in the constraint so that the as-
signment of these values to the variables satisfies the constraint. To ensure the re-
quired type of consistency, a solver associates each constraint type with its specific 
propagation algorithm. There can be a number of propagation algorithms tied to one 
constraint type, where each algorithm is responsible for propagating a specific domain 
change to domains of other variables involved in the constraint. Such algorithms are 
known as propagation demons.  
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A constraint solver may implement a number of special constraints known as 
global constraints. These constraints are characterized by semantic efficiency in the 
sense that they would require a large number of simpler constraints or would be at all 
impossible to formulate using simple relations. Moreover, these constraints are typi-
cally associated with efficient propagation algorithms that achieve better filtering with 
respect to some consistency level than any alternative combination of simpler rela-
tions. See [9] for formal definitions related to this concept.  

The search space is the Cartesian product of all the variable domains. Let Z be a 
search space. A solution space S⊆Z is a set of all possible assignments to variables 
that are solutions to the CSP.  

3   LiVar Definition 

In this section we formally introduce the notion of LiVar.  
We define LiVar as a variable type used to represent unsigned integers of a fixed 

bit width in a CSP model. LiVar is specified by a single natural number n indicating 
the bit width of the corresponding object. Let A(n) be a LiVar, then the domain of A is 
the integer range [0…2n−1]. An arithmetic operation on LiVars results in an expres-
sion also associated with a bit width. We refer to an arithmetic expression involving 
LiVars as LiExpr. LiVar can be viewed as a special case of LiExpr. 

The following arithmetic operations are defined on a LiExpr A(n): 

• addition/subtraction modulo n of a constant c 
• addition/subtraction of  another LiExpr B(m) modulo max(n,m) 
• shift left by k bits 
• shift right by k bits 
• multiplication by a constant 2c 
• division by a constant 2c 
• sub-range extraction; given the range start bit index bstart and the range 

end bit index bend, this operation returns the expression equal to the value 
of the sub-range of A within the specified range bounds, A[bstart:bend] 

In addition, a LiExpr A(n) supports the arithmetic comparison constraints (=, ≠, >, ≥, 
<, ≤) defined on the standard integer variables, where the comparison can be per-
formed with either a constant value or another LiExpr. 

We observe that the domain size of a LiVar is 2n for any specified bit width n and 
it is not limited by the size of an integer type. 

We also note that the definition of LiVar presented above is motivated by applica-
tions where integer variables are used to model unsigned machine words. However, 
the ideas presented in this paper can be also applied to implement arbitrarily large 
signed integer variables.  

4   LiVar Realization in the Standard CP Framework 

In this section we propose LiVar representation in the standard CP framework. We 
show how the arithmetic comparison constraints on LiVar can be implemented for  
the proposed LiVar representation. Finally, we define a set of global constraints to 
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support the operations on LiVars specified in Section 3, and propose propagation 
algorithms for these global constraints. 

4.1   LiVar Representation 

We represent a LiVar (or a LiExpr) A(n) as an array of standard integer CSP variables 
A1,A2,…,Am so that each variable Ai, 1≤i≤m, represents the corresponding sub-range of 
A(n). Specifically, we choose a granularity parameter k so that the value 2k−1 is small 
enough to be representable by a standard integer type. Then the number of integer 
variables required for representation of A(n) is m=⎡n/k⎤. Assuming the bits of A(n) are 
numbered from 0 (the least significant bit) to n−1 (the most significant bit), each vari-
able Ai, with the possible exception of Am, represents a sub-range of A(n) of size k 
between the bits k·(i−1) and  k·i−1, for 1≤i≤m−1. The last variable Am represents a 
possibly smaller sub-range of the most significant bits of A(n), namely,  the range 
between the bits k·(m−1) and n−1.  Consequently, the variables Ai, 1≤i≤m−1, have the 
domain [0…2k−1], and Am has the domain [0…2n+ k−k·m−1].  

To facilitate the understanding, the proposed representation can be thought of as a 
“byte” representation of A(n), with the “byte” size of k bits. We will refer to the inte-
ger variables in the representation of LiVar A as the byte variables of A.  

To illustrate the proposed LiVar representation, we consider an example of a LiVar 
A(20) for k=8. For this value of k, A(20) is represented by three standard integer vari-
ables A1[0…FFh], A2[0…FFh] and A3[0…Fh]. The state in which there remain two 
possible values in the domain of A, namely 91BE2h and A1B3Ch (hexadecimal 
representation of values is used for the ease of transformation), corresponds to the 
state of domains of A1, A2, A3 as shown in Fig. 1.  

 

Fig. 1. LiVar representation as an array of integer variables 

Observe that in the representation of LiVar described above there is no limitation 
on the domain size 2n of LiVar A(n) other than the computer memory size limitation 
in storing m=⎡n/k⎤ integer variables. 

We note that the proposed LiVar representation is associated with an inherent pre-
cision loss. For example, in Fig. 1 the true variable A has two values in its domain 
whereas the proposed representation allows four possible values. However, since the 
propagation algorithms described in the sequel of this paper for constraints defined on 
LiVars do not maintain GAC, the impact of this precision loss is decreased.  

A[91BE2h, A1B3Ch] 

 19               16  15                                   8   7                                     0 

  A1[E2h, 3Ch] A3[9h,Ah]        A2[1Bh] 
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4.2   Arithmetic Comparison Constraints on LiVars 

In this subsection we show how the arithmetic comparison constraints (=, ≠, >, ≥, <, 
≤) can be implemented for LiVar representation defined in Section 4.1. The proposed 
implementation for all of these constraints is by means of standard comparison con-
straints on integer variables.  

We start with constraint formulations for comparisons between two LiVars. The 
equality and inequality constraint implementation is straightforward. Let A(n1) and 
B(n2) be two LiVars, and let Ai, 1≤i≤m1 and Bj, 1≤j≤m2 be the byte variables in the 
representations of these LiVars as defined in Section 4.1. We assume without the loss 
of generality that m1≥m2. Then the equality constraint A=B is equivalent to:  
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Similarly, the inequality constraint A≠B corresponds to: 
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We proceed with presenting the implementation of greater than constraint between 
two LiVars. First, assume for the simplicity of presentation that A(n) and B(n) are two 
LiVars of the same bit width n (we will drop this assumption later), and let Ai, 1≤i≤m 
and Bj, 1≤j≤m be the byte variables of A and B, respectively. The mathematical  
formulation of the corresponding relation is not difficult, but the challenge in imple-
menting this constraint is to create an efficient formulation in terms of constraint 
propagation. For example, the following formulation 
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is weak due to poor propagation of the disjunction constraint. For instance, a combi-
nation of greater/less than relations that uniquely determines the values for some of 
the byte variables of A or B, would not be propagated to those variables, leaving their 
domains unchanged.  

Instead we propose the following formulation that achieves efficient propagation 
between integer variables in LiVar representation. We define for each 2≤i≤m the 
following constraint denoted as EqualPrefix(i): ∧m≥j≥i(Aj=Bj). Then the constraint A>B 
is formulated as follows: 
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The formulation above is conjunction based and propagates any relevant change in 
domains of byte variables. If A and B have different representation lengths mA and mB, 
then the constraint above should be augmented as follows. If mA>mB, then the result-
ing constraint is the disjunction of the constraint (4.1) with )0( >∨ ≤< imim A

AB
.  Other-

wise, the resulting constraint is the conjunction of the constraint (4.1) with 
)0( =∨ ≤< imim B

BA
.  
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The implementation of greater than or equal constraint A≥B is similar to that of 
A>B. Here, the constraint (4.1) should be replaced by: 

( ))()(Pr)( 11
2

−−≥≥
≥⇒∧∧≥ ii

im
mm BAiefixEqualBA                        (4.2) 

The implementations of less than and less than or equal constraints are analogous to 
those of greater than and greater than or equal constraints presented above. 

We observe that when LiVar representations of A and B have the same length, the 
comparison constraints between A and B are equivalent to the lexicographic ordering 
constraints on vectors of variables presented in [10]. The constraint formulations 
above are similar to one of the alternative formulations for the lexicographic ordering 
constraint given in [10]. The latter work also presents a GAC propagation algorithm 
for lexicographic ordering and demonstrates experimentally that for selected combi-
natorial problems this algorithm outperforms the alternative formulation. However, in 
the context of this paper where vectors of variables represent LiVars and allowed 
constraint types are confined to the set defined in Section 3, the consistency level 
achieved by the formulation shown above is typically sufficient to eliminate back-
tracking and GAC enforcement is not required.  

Finally, the comparison constraints of LiVar A with a constant c are implemented 
similarly to comparisons of LiVar A with LiVar B. In this case, the values of c in the 
corresponding sub-ranges of size k participate in the constraint formulations in place 
of the variables Bj. 

4.3   Arithmetic Expressions on LiVars 

As mentioned earlier, we represent an expression involving LiVars, or LiExpr, in the 
same way as LiVar, i.e. as an array of integer variables.  Let LiExpr E be a result of 
an operation on LiVars, e.g. op(A) in case of an unary operation (such as left/right 
shift) or (A op B) in case of a binary operation (such as addition).  In this section we 
describe a method of expressing the relation between LiVars involved in the operation 
and the resulting expression E by means of global constraints on the byte variables of 
A, B, and E. In order to provide a comparison basis for the evaluation of the proposed 
method, we start by presenting a naïve approach to handling arithmetic expressions on 
LiVars. The latter approach is to express byte variables of E as standard integer ex-
pressions involving byte variables of A and B. The comparison of the methods based 
on experimental results is done in Section 5. 

4.3.1   Naïve Implementation by Means of Standard Integer Expressions 
In this subsection we show how the byte variables of LiExpr E resulting from an 
arithmetic operation on LiVars can be expressed through standard integer expressions 
on byte variables of LiVars involved in the operation. 

We start with the addition between two LiVars, E=A+B (mod 2n). In the expres-
sions below we will use the operation div to denote the integer division operation. We 
define an auxiliary array Carry of m standard integer expressions, m=⎡n/k⎤ , repre-
senting the carry bits participating in addition of each pair of sub-ranges of size k. The 
carry bit expressions are defined as follows: 

Carry[1] = 0, Carry[i+1] = div(Ai + Bi+ Carry[i], 2k), for 1≤i≤m−1 
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Then the byte variables of E can be expressed as follows: 

Ei = Ai+Bi+Carry[i]−div(Ai+Bi+Carry[i],2k)·2k 

A special treatment is required when the number of byte variables in the representa-
tion of A or B is less than m. In this case, the zero constant should be used in the ex-
pression above in place of the “missing” byte variables. 

We proceed with the subtraction operation, E=A−B (mod 2n). In this case, the 
Carry expression array is defined as follows: 

Carry[1] = 0, Carry[i+1] = 1− div(Ai − Bi− Carry[i]+2k, 2k), for 1≤i≤m−1 

The expressions for the byte variables of E are defined as shown below: 

Ei = Ai−Bi−Carry[i]+2k − div(Ai−Bi−Carry[i]+2k,2k)·2k 

Similarly to the addition operation, a special treatment is required when the represen-
tation of A or B has less than m byte variables. 

The addition and subtraction of a constant to a LiVar can be expressed in the simi-
lar way as the operations described above. Here, the corresponding sub-range values 
of the constant should be used in place of the byte variables Bi. 

Next consider the operation of shift left by t bits of a LiVar A(n). Let δ=t (mod k), 
and let p=t/k. Then a byte variable of the resulting expression E can be defined by 

Ei = (Ai−p− div(Ai−p,2
k−δ)·2k−δ) ·2δ + div(Ai−p−1,2

k−δ) 

We proceed with the operation of shift right by t bits of a LiVar A(n). Using the 
same notation as above, the expression for a byte variable of E can be defined as 

Ei = (Ai+p+1− div(Ai+p+1,2
δ)·2δ) ·2k−δ+ div(Ai+p,2

δ) 

In the shift operations above, Ei equals 0 when the indexes of both corresponding 
byte variables of A are out of the range of A representation, and special treatment is 
required for border cases where only one of these indexes is out of the range. 

The multiplication/division by a constant c=2t can be expressed similarly to the 
shift left/right operations. Multiplication expressions are defined in the same way as 
for the shift left operation, but in case of multiplication there are more byte variables 
in the representation of E as the bits of A are not shifted out. The expressions for the 
division operation are defined in the same way as for the shift right operation, but in 
case of division E has fewer byte variables as there are no leading zeros. 

Finally, consider the sub-range extraction operation E=A[bstart:bend]. This operation 
can be expressed as a combination of shift left and division by a power-of-two con-
stant. Indeed, let n be the bit width of A and let p=bend− bstart+1 denote the sub-range 
width. We can apply the shift left by (n− bend−1) bits to shift out the most significant 
bits of A starting from bend+1, and then to divide the result by 2n−p to truncate the least 
significant zeros and bits of A up to bstart−1.  

4.3.2   Implementation by Means of Global Constraints 
In this subsection we define global constraints to express the relations corresponding 
to arithmetic expressions on LiVars and present their propagation algorithms. 
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We start with a global constraint SumConstraint(A,B,C) describing the relation 
A+B=C (mod 2n) for three LiExprs A, B, and C, where n is the maximal bit width 
between those of A and B. Similarly to the representation with integer expressions 
described in the previous subsection, the constraint defines an auxiliary array Carry of 
m standard integer expressions representing the carry bits participating in addition of 
each pair of sub-ranges of size k, where m=⎡n/k⎤. Here, we propose an alternative 
definition of carry expressions. The carry bit expressions are defined as follows: 

Carry[1] = 0 

Carry[i+1] = (Ai+Bi+Carry[i] ≥ 2k), for 1≤i≤m−1 

Observe that the definition of Carry above applies reification. 
The propagation algorithm that we propose for SumConstraint(A,B,C) achieves the 

bounds consistency on each of the byte variables of A, B, and C. Actually, the per-
formed filtering is stronger than required to achieve the bounds consistency, removing 
internal domain sub ranges in certain cases. The proposed algorithm has four propaga-
tion demons associated with domain changes in A, B, C, and Carry. Each of the 
propagation demons is activated when domain bounds of one of the corresponding 
byte variables change. When the domain bound of a byte variable i changes, the algo-
rithm of the corresponding demon performs filtering required to achieve the bounds 
consistency on the relation Ai+Bi+Carry[i] = Ci (mod 2k). The filtering works in the 
following way. Let op1∈ {Ai, Bi, Carry[i]} denote the term whose domain is being 
reduced, and let op2 and op3 denote the other two terms in this set. Then the domain 
reduction for op1i is described in the following procedure: 

ReduceOperandDomain(op1,op2,op3,i): 

op1Min ← DomainMin(Ci)−(DomainMax(op2i)+DomainMax(op3i)) 
op1Max ← DomainMax(Ci)−(DomainMin(op2i)+DomainMin(op3i)) 

 if (op1Max−op1Min <2k−1)  
    op1MinMod ← op1Min mod 2k 
        op1MaxMod ← op1Max mod 2k 
    if (op1MinMod ≤ op1MaxMod) 
  setDomainMin(op1i, op1MinMod) 
  setDomainMax(op1i, op1MaxMod) 
    else 
  removeDomainRange(op1i,op1MaxMod+1,op1MinMod−1) 

The domain reduction for the byte variables Ci is similar and is performed as follows: 

ReduceSumDomain(i): 
CMin ← DomainMin(Ai)+DomainMin(Bi)+DomainMin(Carry[i]) 
CMax ← DomainMax(Ai)+DomainMax(Bi)+DomainMax(Carry[i]) 

 if (CMax−CMin < 2k−1)  
    CMinMod ← CMin mod 2k 
        CMaxMod ← CMax mod 2k 
    if (CMinMod ≤ CMaxMod) 
  setDomainMin(Ci, CMinMod) 
  setDomainMax(Ci, CMaxMod) 
    else 

  removeDomainRange(Ci,CMaxMod+1,CMinMod−1) 
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In the case when the procedures ReduceOperandDomain and ReduceSumDomain 
are performed for the most significant byte variables with the index i=m=⎡n/k⎤, k in 
the procedures should be replaced by the actual width of the most significant byte 
variable, namely, n+k−k·m. 

Each of the propagation demons for A, B, and Carry performs the ReduceOper-
andDomain procedure for the other two sum terms, and ReduceSumDomain proce-
dure for the corresponding Ci. The propagation demon for C performs the Reduce 
OperandDomain procedure for each of the sum terms A, B, and Carry. 

Next we observe that the implementation of the global constraint DiffCon-
straint(A,B,C) expressing the arithmetic difference relation A−B=C (mod 2n)  can be 
obtained straightforwardly from the implementation of SumConstraint. Indeed, ob-
serve that DiffConstraint(A,B,C) is equivalent to SumConstraint(C,B,A). 

Now consider the global constraint SumConstraint(A,Const,C) describing the rela-
tion A+Const=C (mod 2n) for LiVars A and C, and a constant value Const. We ob-
serve that the propagation algorithm for this constraint works along the same lines as 
that of SumConstraint(A,B,C), where values of the constant Const in the sub-ranges of 
size k are used in calculating new domain bounds in place of the minimal and maxi-
mal values of the byte variables Bi. Again, similarly to the observation above, the 
constraint DiffConstraint(A,Const,C) is equivalent to SumConstraint(C,Const,A). 

We proceed with defining a global constraint required to express the remaining 
arithmetic operations on LiVars as defined in Section 3, namely, shift left/right, multi-
plication/division by a power-of-two constant and sub-range extraction. We imple-
ment all of these operations by means of a single generic global constraint 
SubRangeConstraint(A,C,bstart,bend). Here bstart ≤bend indicate the start and the end bit 
indices of a sub-range of A and can be any integer values. The bits of the sub-range 
[bstart: bend] that fall outside the boundaries of A, that is, have indices less than 0 or 
greater than n−1 are considered to be 0. This constraint expresses the relation between 
LiExprs A(n) and C(bend− bstart+1) implying that the value of C is equal to the value of 
A in the sub-range [bstart: bend].  

Next we show how the constraint SubRangeConstraint(A,C,bstart,bend) defined 
above can be applied to express the required operations on LiVars. The shift left by t 
bits operation on LiExpr A(n) results in LiExpr C(n) so that the bits of C are the bits 
of A shifted left by t positions (and thus the t most significant bits of A are shifted out) 
and the t least significant bits of C are zeros. This relation can be expressed as 
SubRangeConstraint(A,C,−t,−t+n−1). Similarly, the shift right by t bits can be ex-
pressed as SubRangeConstraint(A,C,t,t+n−1). We proceed with the multiplication of 
LiExpr A(n) by a constant 2t. This operation results in LiExpr C(n+t) such that the n 
most significant bits of C equal to the bits of A and the t least significant bits are ze-
ros. This relation can be represented as SubRangeConstraint(A,C,−t,n−1). Similarly, 
the integer division of A by a constant 2t results in LiExpr C(n−t) such that the bits of 
C equal to the n−t most significant bits of A. This operation can be expressed by 
SubRangeConstraint(A,C,t,n−1). Finally, the implementation of sub-range extraction 
of A(n) for a sub-range [bstart: bend] is straightforward; the latter relation can be ex-
pressed as SubRangeConstraint(A,C,bstart,bend). 

We proceed by presenting the propagation algorithm for the global constraint 
SubRangeConstraint(A,C,bstart,bend). Like the algorithm presented for SumConstraint, 
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the algorithm for SubRangeConstraint maintains bounds consistency, however, it 
performs more filtering than required for maintaining this consistency level. The 
constraint has two propagation demons associated with domain changes in A and in C, 
respectively. Like in SumConstraint, these demons are parameterized by i, the index 
of the byte variable the domain of which has been changed. Each of the demons is 
called on domain boundary changes of one of the corresponding byte variables. 

Suppose a domain boundary change occurred in a byte variable Ai. Let Cj and Cj+1 
be the byte variables of C such that their sub-ranges overlap with the sub-range of Ai. 
For convenience, denote Cj by Chigh(i) to indicate that Cj has the overlapping with Ai 
in its most significant bits. Similarly, denote Cj+1 by Clow(i). Furthermore, let δ= bstart 
(mod 2k) denote the relative shift of Clow(i) with respect to Ai. Fig. 2 illustrates the 
proposed notation. 

Chigh(i) 

bstart 
bend 

δδδδ          

Ai 

Clow(i) 
 

Fig. 2. Range overlapping in the sub-range constraint 

The following filtering procedures for Chigh(i) and Clow(i) are performed when the 
domain boundaries of Ai change. The filtering procedure for Chigh(i) bases upon the 
equality between the least significant bits (the suffix) of Ai and the most significant 
bits (the prefix) of Chigh(i) to reduce the allowed range of the latter. Due to the modulo 
operation, this reduction can lead to removing an internal sub range of Chigh(i). 

UpdateHigh(i): 

 d ← δ 
if (d=0)  

d ← k  
if (DomainMax(Ai)−DomainMin(Ai)<2d-1) 

SuffixMax ← DomainMax(Ai) (mod 2d) 
SuffixMin ← DomainMin(Ai) (mod 2d) 

  if (SuffixMax < SuffixMin) 
   removeDomainRange(Chigh(i),(SuffixMax+1)·2k−d, 

(SuffixMin-1)·2k−d + 2k−d-1) 
  else 
   setDomainMin(Chigh(i),SuffixMin·2k−d) 
   setDomainMax(Chigh(i),SuffixMax·2k−d + 2k−d-1) 
 
The filtering procedure for Clow(i) bases upon the equality between the prefix of Ai 
and the suffix of Clow(i) to remove the sub ranges corresponding to forbidden suffixes 
from the domain of the latter. 
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UpdateLow(i): 
 if (δ>0) 

PrefixMax ← DomainMax(Ai)/2k−δ  
PrefixMin ← DomainMin(Ai)/2k−δ 

  forbiddenMin1 ← 0; 
  forbiddenMax1 ← PrefixMin−1 
  forbiddenMin2 ← PrefixMax+1 
  forbiddenMax2 ← 2k−δ−1 
  for each prefix: PrefixMin≤prefix≤PrefixMax  

removeDomainRange(Clow(i), 
prefix·2k−δ+forbiddenMin1, 
prefix·2k−δ+forbiddenMax1) 

removeDomainRange(Clow(i),  
prefix·2k−δ+forbiddenMin1, 
prefix·2k−δ+forbiddenMax1) 

We observe that the procedures presented above refer to the mainstream case when all 
the byte variables involved in the filtering algorithm are of size k and fall inside the 
range of A. There is a substantial number of corner cases to be considered where the 
most significant byte variables of shorter size or the byte variables of C that are not 
fully contained in the range of A are involved in the filtering procedure. The filtering 
algorithms for these cases are performed according to the similar principles as those 
presented above and are not presented here for the sake of conciseness.  

The same filtering procedures are performed in the opposite direction when the 
domain boundary change occurs in a byte variable Ci of C. In this case, the filtering is 
done for the byte variables Aj=Ahigh(i) and Aj+1=Alow(i) that overlap with Ci. 

To summarize the propagation algorithm for SubRangeConstraint(A,C,bstart,bend), 
the propagation demon for Ai performs the filtering procedures UpdateHigh(i) and 
UpdateLow(i) for the corresponding byte variables of C, and the propagation demon 
for Ci performs the symmetric filtering procedures for the corresponding byte vari-
ables of A. 

5   Experimental Results 

To demonstrate the effectiveness of the proposed LiVar realization, we implemented 
the approach described in this paper within a preset traditional CP environment and 
compared the performance and constraint propagation quality of the two methods for 
arithmetic expression implementation presented in Section 4.3. 

We observe that, commonly for CP, there is a tradeoff between the time spent  
on domain filtering and the time spent on variable assignment enumeration. We ex-
perimented with different levels of consistency for the global constraint presented in 
Section 4.3.2. In our experiments, we found out that while increasing the consistency 
levels to GAC achieves less search fails, it incurs too much time cost leading in most 
cases to the performance slowdown. Based on our experiments, we believe that the 
consistency level of algorithms presented in this paper achieves a good tradeoff be-
tween the search phases, optimizing the overall search time. 
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We organized our experiments as follows. In all the experiments, we applied  
random search, specifically, the value selection for each variable was performed uni-
formly at random from the values remaining in the domain of the variable. The moti-
vation for applying random search has been to cover a representative sample of search 
invocations as filtering quality depends on specific value selection and may differ 
significantly for different value choices. We observe that since the total number of 
possible assignments to LiVars in our test cases is huge, and our algorithms do not 
achieve GAC on all of the involved integer variables, there can be particular random 
search runs that take impractically high time to complete. For this reason, we per-
formed our experiments imposing limits on the search. For each test case, we per-
formed as many as needed searches to obtain 1000 random solutions, and counted the 
number of discards due to the search reaching the specified limit. We performed ex-
periments with different kinds of search limits, specifically, the limit of 100, 500, and 
5000, respectively, on the number of fails, and the time limit of 1 second. 

We compared the proposed methods on three test cases, two involving operations 
of addition/subtraction only, and the third one involving a combination of addi-
tion/subtraction and sub-range operations. All of the three test cases involve 128 bit 
width LiVars, which cannot be accommodated by standard CP engines. In Test Case 
1, we considered an expression E=A+B−C where A, B, and C are LiVars, and con-
strained this expression to fall within a “loose” range containing 3·253 values out of 
2128 in the domain of E. Test Case 2 is identical to Test Case 1 but for the size of the 
value range for E. Here, we required E to fall within a “tight” range of  4·216 values. 
In Test Case 3, we considered an expression (A+B)[11:0] (the 12 least significant bits 
of A+B) and constrained it to equal zero.  

The tables below present the results of our experiments. Each table entry indicates 
the running time until 1000 solutions are obtained (the first line), the average number 
of search fails in each run (the second line) and the number of discards due to search 
limits (the third line). The empty entries indicate that the specific method was not able 
to obtain solutions for the specific test case within a practical running time. Tables 1, 
2, and 3 present the results for Test Case 1, 2, and 3, respectively. We performed the 
evaluation on Pentium M 2.5 GHz processor with 2.96 GB of RAM. 

Table 1. Experimental results for Test Case 1 

 
Fail Limit 

100 
Fail Limit 

500 
Fail Limit 

5000 
Time limit 

1sec 

Integer  
Expressions 

Method 

83.6 sec 
2.98 fails 

451 discards 

62.5 sec 
14.7 fails 

 325 discards 

82.9 sec 
24.0 fails 

331 discards 

368 sec 
869 fails 

313 discards 

Global  
Constraints 

Method 

1.98 sec 
0.48 fails 
1 discard 

2.89 sec 
0.65 fails 
5 discards 

3.59 sec 
0.49 fails 
2 discards 

4.80 sec 
1.08 fails 
3 discards 
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Table 2. Experimental results for test case 2 

 
Fail Limit 

100 
Fail Limit 

500 
Fail Limit 

5000 
Time limit 

1sec 

Integer 
Expressions 

Method 
− − − − 

Global  
Constraints 

Method 

2.67 sec 
0.28 fails 
2 discard 

2.20 sec 
0.45 fails 
1 discard 

3.11 sec 
0.21 fails 
1 discard 

4.38 sec 
0.99 fails 
2 discards 

Table 3. Experimental results for test case 3 

 
Fail Limit 

100 
Fail Limit 

500 
Fail Limit 

5000 
Time limit 

1sec 

Integer 
Expressions 

Method 

4.03 sec 
40.6 fails 

4232 discards 

5.63 sec 
102 fails 

2200 discards 

35.6 sec 
141 fails 

2147 discards 

2061 sec 
4644 fails 

2042 discards 

Global 
Constraints 

Method 

1.39 sec 
7.60 fails 
0 discards 

1.31 sec 
7.70 fails 
0 discards 

1.27 sec 
7.48 fails 
0 discards 

1.38 sec 
7.77 fails 
0 discards 

 
The presented experimental results show that the expression implementation based 

on global constraints has a clear advantage, sometimes in several orders of magnitude, 
over the naïve method based on integer expressions. This result can be explained by 
the fact that the global constraints method with custom domain filtering algorithms 
achieves better propagation and therefore fewer search fails than the standard integer 
expression propagation algorithms which are not tuned for this specific problem. 

6   Conclusion 

The main contribution of this paper is the extension of the traditional CP framework 
to accommodate integer constraint variables of arbitrarily large domain size. Such 
extension makes it possible to apply CP to a range of problems where such applica-
tion has not been possible due to integer variable size limitations of the existing CP 
tools. 

We proposed a method to represent such variables on top of the traditional CP 
framework. The paper shows how constraints and expressions on integer variables 
can be implemented through standard CP means for the proposed representation. The 
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set of arithmetic operations on integer variables considered in this paper was defined 
to accommodate common requirements on large integers. We proposed a method to 
implement expressions on large integer variables by means of customized global 
constraints.  

We presented experimental results to demonstrate the effectiveness of the proposed 
method. The results show that the proposed extension can be efficiently integrated 
into the standard CP framework by means of global constraints.  

Finally, we observe that the ideas presented in this paper can be used to implement 
a native large integer variable within a CP tool. For this purpose, one can represent 
domains of such variables as a vector of bytes (or a partition with any sufficiently 
small granularity) and perform domain reductions based on the algorithms presented 
in the paper. 
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Abstract. Constrained Optimum Path (COP) problems arise in many
real-life applications and are ubiquitous in communication networks.
They have been traditionally approached by dedicated algorithms, which
are often hard to extend with side constraints and to apply widely. This
paper proposes a constraint-based local search (CBLS) framework for
COP applications, bringing the compositionality, reuse, and extensibil-
ity at the core of CBLS and CP systems. The modeling contribution is
the ability to express compositional models for various COP applications
at a high level of abstraction, while cleanly separating the model and the
search procedure. The main technical contribution is a connected neigh-
borhood based on rooted spanning trees to find high-quality solutions to
COP problems. The framework, implemented in COMET, is applied to Re-
source Constrained Shortest Path (RCSP) problems (with and without
side constraints) and to the edge-disjoint paths problem (EDP). Com-
putational results show the potential significance of the approach.

1 Introduction

Constrained Optimum Path (COP) problems appear in many real-life applica-
tions, especially in communication and transportation networks (e.g., [5]). They
aim at finding one or more paths from some origins to some destinations sat-
isfying some constraints and optimizing an objective function. For instance, in
telecommunication networks, routing problems supporting multiple services in-
volve the computation of paths minimizing transmission costs while satisfying
bandwidth and delay constraints [3,6]. Similarly, the problem of establishing
routes for connection requests between network nodes is one of the basic op-
erations in communication networks and it is typically required that no two
routes interfere with each other due to quality-of-service and survivability re-
quirements. This problem can be modeled as edge-disjoint paths problem [4].
Most of COP problems are NP-hard. They are often approached by dedicated
algorithms, such as the Lagrangian-based branch and bound in [3] and the vertex
labeling algorithm from [7]. These techniques exploit the structure of constraints
and objective functions but are often difficult to extend and reuse.

This paper proposes a constraint-based local search (CBLS) [10] framework
for COP applications to support the compositionality, reuse, and extensibility

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 267–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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at the core of CBLS and CP systems. It follows the trend of defining domain-
specific CBLS frameworks, capturing modeling abstractions and neighborhoods
for classes of applications exhibiting significant structures. The COP framework
can also be viewed as an extension of the LS(Graph & Tree) framework [8] for
those applications where the output of the optimization model is one or more
elementary paths (i.e., paths with no repeated nodes). As is traditional for CBLS,
the resulting COP framework allows the model to be compositional and easy to
extend, and provides a clean separation of concerns between the model and
the search procedure. Moreover, the framework captures structural moves that
are fundamental in obtaining high-quality solutions for COP applications. The
key technical contribution underlying the COP framework is a novel connected
neighborhood for COP problems based on rooted spanning trees. More precisely,
the COP framework incrementally maintains, for each desired elementary path,
a rooted spanning tree that specifies the current path and provides an efficient
data structure to obtain its neighboring paths and their evaluations.

The availability of high-level abstractions (the “what”) and the underlying
connected neighborhood for elementary paths (the “how”) make the COP frame-
work particularly appealing for modeling and solving complex COP applications.
The COP framework, implemented in COMET, was evaluated experimentally on
two classes of applications: Resource-Constrained Shortest Path (RCSP) prob-
lems with and without side constraints and Edge-Disjoint Path (EDP) problems.
The experimental results show the potential of the approach.

The rest of this paper is organized as follows. Section 2 gives the basic def-
initions and notations. Section 3 specifies our novel neighborhoods for COP
applications and Section 4 presents the modeling framework. Section 5 applies
the framework to two various COP applications and Section 6 concludes the
paper.

2 Definitions and Notations

Graphs Given an undirected graph g, we denote the set of nodes and the set
of edges of g by V (g), E(g) respectively. A path on g is a sequence of nodes <
v1, v2, ..., vk > (k > 1) in which vi ∈ V (g) and (vi, vi+1) ∈ E(g), (i = 1, . . . , k−1.
The nodes v1 and vk are the origin and the destination of the path. A path is
called simple if there is no repeated edge and elementary if there is no repeated
node. A cycle is a path in which the origin and the destination are the same. This
paper only considers elementary paths and hence we use “path” and “elementary
path” interchangeably if there is no ambiguity. A graph is connected if and only
if there exists a path from u to v for all u, v ∈ V (g).

Trees. A tree is an undirected connected graph containing no cycles. A spanning
tree tr of an undirected connected graph g is a tree spanning all the nodes of g:
V (tr) = V (g) and E(tr) ⊆ E(g). A tree tr is called a rooted tree at r if the node
r has been designated the root. Each edge of tr is implicitly oriented towards
the root. If the edge (u, v) is oriented from u to v, we call v the father of u in
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tr, which is denoted by fatr(u). Given a rooted tree tr and a node s ∈ V (tr),
we use the following notations:

– root(tr) for the root of tr,
– pathtr(v) for the path from v to root(tr) on tr. For each node u of pathtr(v),

we say that u dominates v in tr (u is a dominator of v, v is a descendant of
u) which we denote by u Domtr v.

– pathtr(u, v) for the path from u to v in t (u, v ∈ V (tr)).
– ncatr(u, v) for the nearest common ancestor of two nodes u and v. In other

words, ncatr(u, v) is the common dominator of u and v such that there is no
other common dominator of u and v that is a descendant of ncatr(u, v).

3 The COP Neighborhoods

A neighborhood for COP problems defines the set of paths that can be reached
from the current solution. To obtain a reasonable efficiency, a local-search algo-
rithm must maintain incremental data structures that allow a fast exploration
of this neighborhood and a fast evaluation of the impact of the moves (differen-
tiation). The key novel contribution of our COP framework is to use a rooted
spanning tree to represent the current solution and its neighborhood. It is based
on the observation that, given a spanning tree tr whose root is t, the path from
a given node s to t in tr is unique. Moreover, the spanning tree implicitly spec-
ifies a set of paths that can be reached from the induced path and provides the
data structure to evaluate their desirability. The rest of this section describes
the neighborhood in detail. Our COP framework considers both directed and
undirected graphs but, for space reasons, only undirected graphs are considered.

Rooted Spanning Trees. Given an undirected graph g and a target node t ∈ V (g),
our COP neighborhood maintains a spanning tree of g rooted at t. Moreover,
since we are interested in elementary paths between a source s and a target
t, the data structure also maintains the source node s and is called a rooted
spanning tree (RST) over (g, s, t). An RST tr over (g, s, t) specifies a unique
path from s to t in g: pathtr(s) =< v1, v2, ..., vk > in which s = v1, t = vk and
vi+1 = fatr(vi), ∀i = 1, . . . , k− 1. By maintaining RSTs for COP problems, our
framework avoids an explicit representation of paths and enables the definition
of an connected neighborhood that can be explored efficiently. Indeed, the tree
structure directly captures the path structure from a node s to the root and
simple updates to the RST (e.g., an edge replacement) will induce a new path
from s to the root.

The Basic Neighborhood. We now consider the definition of our COP neighbor-
hood. We first show how to update an RST tr over (g, s, t) to generate a new
rooted spanning tree tr′ over (g, s, t) which induces a new path from s to t in g:
pathtr′(s) �= pathtr(s).

Given an RST over (g, s, t), an edge e = (u, v) such that e ∈ E(g) \ E(tr)
is called a replacing edge of tr and we denote by rpl(tr) the set of replacing
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edges of tr. An edge e′ belonging to pathtr(u, v) is called a replacable edge of
e and we denote by rpl(tr, e) the set of replacable edges of e. Intuitionally, a
replacing edge e is an edge that is not in the tree tr but that can be added to tr.
This edge insertion creates a cycle C and all the edges of this cycle except e are
replacable edges of e. Let tr be an RST over (g, s, t), e a replacing edge of tr and
e′ a replacable edge of e. We consider the following traditional edge replacement
action [1]:

1. Insert the edge e = (u, v) to tr. This creates an undirected graph g′ with a
cycle C containing the edge e′.

2. Remove e′ from g′.

The application of these two actions yields a new rooted spanning tree tr′ of g,
denoted tr′ = rep(tr, e′, e). The neighborhood of tr could then be defined as

N(tr) = {tr′ = rep(tr, e′, e) | e ∈ rpl(tr), e′ ∈ rpl(tr, e)}.

It is easy to observe that two RSTs tr1 and tr2 over (g, s, t) may induce the
same path from s to t. For this reason, we now show how to compute a subset
Nk(tr) ⊆ N(tr) such that pathtr′(s) �= pathtr(s), ∀tr′ ∈ Nk(tr).

We first give some notations to be used in the following presentation. Given
an RST tr over (g, s, t) and a replacing edge e = (u, v), the nearest common
ancestors of s and the two endpoints u, v of e are both located on the path from s
to t. We denote by lowncatr(e, s) and upncatr(e, s) the nearest common ancestors
of s on the one hand and one of the two endpoints of e on the other hand, with the
condition that upncatr(e, s) dominates lowncatr(e, s). We denote by lowtr(e, s),
uptr(e, s) the endpoints of e such that ncatr(s, lowtr(e, s)) = lowncatr(e, s) and
ncatr(s, uptr(e, s)) = upncatr(e, s). Figure 1 illustrates these concepts. The left
part of the figure depicts the graph g and the right side depicts an RST tr over
(g, s, r). Edge (8,10) is a replacing edge of tr; ncatr(s, 10) = 12 since 12 is the
common ancestor of s and 10. ncatr(s, 8) = 7 since 7 is the common ancestor of
s and 8. lowncatr((8, 10)) = 7 and upncatr((8, 10)) = 12 because 12 Domtr 7;
lowtr((8, 10)) = 8; uptr((8, 10)) = 10.

We now specify the replacements that induce new path from s to t.

Proposition 1. Let tr be an RST over (g, s, t), e = (u, v) be a replacing edge
of tr, let e′ be a replacable edge of e, and let tr1 = rep(tr, e′, e). We have that
pathtr1(s) �= pathtr(s) if and only if (1) su �= sv and (2) e′ ∈ pathtr(sv, su),
where su = upncatr(e, s) and sv = lowncatr(e, s).

A replacing edge e of tr satisfying condition 1 is called a preferred replacing
edge and a replacable edge e′ of e in tr satisfying condition 2 is called preferred
replacable edge of e. We denote by prefRpl(tr) the set of preferred replacing edges
of tr and by prefRpl(tr, e) the set of preferred replacable edges of the preferred
replacing edge e on tr. The basic COP neighborhood of an RST tr is defined as

N1(tr) = {tr′ = rep(tr, e′, e) | e ∈ prefRpl(tr), e′ ∈ prefRpl(tr, e)}.
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Fig. 1. An Example of Rooted Spanning Tree
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b. tr′ = rep(tr, (7, 11), (8, 10))

Fig. 2. Ilustrating a Basic Move

The action rep(tr, e′, e) is called a basic move and is illustrated in Figure 2. In
the current tree tr (see Figure 2a), the edge (8,10) is a preferred replacing edge,
ncatr(s, 8) = 7, ncatr(s, 10) = 12, lowncatr((8, 10), s) = 7, upncatr((8, 10), s) =
12, lowtr((8, 10), s) = 8 and uptr((8, 10), s) = 10. The edges (7,11) and (11,12)
are preferred replacable edges of (8,10) because these edges belong to pathtr

(7, 12). The path induced by tr is: < s, 3, 4, 6, 7, 11, 12, t >. The path induced
by tr′ is: < s, 3, 4, 6, 7, 8, 10, 12, t > (see Figure 2b).

Basic moves ensure that the neighborhood is connected.
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Proposition 2. Let tr0 be an RST over (g, t, s) and P be a path from s to t.
An RST trk inducing P can be reached from tr0 in k ≤ l basic moves, where l
is the length of P.

Proof. The proposition is proved by showing how to generate that instance trk.
This can be done by Algorithm 1. The idea is to travel the sequence of nodes of
P on the current tree tr. Whenever we get stuck (we cannot go from the current
node x to the next node y of P by an edge (x, y) on tr because (x, y) is not in
tr), we change tr by replacing (x, y) by a replacable edge of (x, y) that is not
traversed. The edge (x, y) in line 7 is a replacing edge of tr because this edge is
not in tr but it is an edge of g. Line 8 chooses a replacable edge eo of ei that is
not in S. This choice is always done because the set of replacable edges of ei that
are not in S is not null (at least an edge (y, fatr(y)) belongs to this set). Line 9
performs the move that replaces the edge eo by the edge ei on tr. So Algorithm
1 always terminates and returns a rooted spanning tree tr inducing P . Variable
S (line 1) stores the set of traversed edges.

Algorithm 1. Moves
Input: An instance tr0 of RST on (g, s, t) and a path P on g, s =

firstNode(P), t = lastNode(P)
Output: A tree inducing P computed by taking k ≤ l basic moves (l is the

length of P)
S ← �;1

tr ← tr0;2

x ← firstNode(P);3

while x �= lastNode(P) do4

y ← nextNode(x,P);5

if (x, y) /∈ E(tr) then6

ei← (x, y);7

eo← replacable edge of ei that is not in S;8

tr ← rep(tr, eo, ei);9

S ← S ∪ {(x, y)};10

x ← y ;11

return tr;12

Neighborhood of Independent Moves. It is possible to consider more complex
moves by applying a set of independent basic moves. Two basic moves are in-
dependent if the execution of the first one does not affect the second one and
vice versa. The sequence of basic moves rep(tr, e′1, e1), . . . , rep(tr, e′k, ek), de-
noted by rep(tr, e′1, e1, e

′
2, e2, ..., e

′
k, ek), is defined as the application of the ac-

tions rep(trj , e
′
j , ej), j = 1, 2, ..., k, where tr1 = tr and trj+1 = rep(trj , e

′
j , ej),

j = 1, 2, ..., k − 1. It is feasible if the basic moves are feasible, i.e., ej ∈ pre-
fRpl(trj) and e′j ∈ prefRpl(trj , ej), ∀j = 1, 2, ..., k.
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b. tr′ = rep(tr, (7, 11), (8, 10), (3, 4), (1, 5))

Fig. 3. Illustrating a Complex Move

Proposition 3. Consider k basic moves rep(tr, e′1, e1), . . . , rep(tr, e′k, ek). If all
possible execution sequences of these basic moves are feasible and the edges
e′1, e1, e

′
2, e2, ..., e

′
k, ek are all different, then these k basic moves are independent.

We denote by Nk(tr) the set of neighbors of tr obtained by applying k indepen-
dent basic moves. The action of taking a neighbor in Nk(tr) is called k-move.

It remains to find some criterion to determine whether two basic moves
are independent. Given an RST tr over (g, s, t) and two preferred replacing
edges e1, e2, we say that e1 dominates e2 in tr, denoted by e1 Domtr e2, if
lowncatr(e1, s) dominates upncatr(e2, s). Then, two preferred replacing edges e1
and e2 are independent w.r.t. tr if e1 dominates e2 in tr or e2 dominates e1 in tr.

Proposition 4. Let tr be an RST over (g, s, t), e1 and e2 be two preferred replac-
ing edges such that e2 Domtr e1, e′1 ∈ prefRpl(tr, e1), and e′2 ∈ prefRpl(tr, e2).
Then, rep(tr, e′1, e1) and rep(tr, e′2, e2) are independent and the path induced by
rep(tr,e′1,e1,e′2,e2) is pathtr(s, v1) + pathtr(u1, v2) + pathtr(u2, t), where + de-
notes path concatenation and v1 = lowtr(e1, s), u1 = uptr(e1, s), v2 = lowtr(e2, s),
and u2 = uptr(e2, s).

Figure 3 illustrates a complex move. In tr, two preferred replacing edges (1,5)
and (8,10) are independent because lowncatr((8, 10), s) = 7 which dominates
upncatr((1, 5), s) = 6 in tr. The new path induced by tr′ is: < s, 3 ,1, 5, 6, 7, 8,
10, 12, t > which is actually the path: pathtr(s, 1) + pathtr(5, 8) + pathtr(10, t).

4 The COP Modeling Framework

Our COP modeling framework is implemented in COMET as an extension of the
LS(Graph & Tree) framework which provides graph invariants, graph
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1. LSGraphSolver ls();

2. VarPath path(ls,g,s,t);

3. PreferredReplacingEdges prefReplacing(path);

4. PreferredReplacableEdges prefReplacable(path);

...

9. int d = MAXINT;

10. forall(ei in prefReplacing.getSet())

11. forall(eo in prefReplacable.getSet(ei))

12. d = min(d,C.getReplaceEdgeDelta(path,eo,ei));

Fig. 4. Exploring the Basic Neighborhood

constraints, and graph objectives [8]. Graph invariants maintain properties of
dynamic graphs, such as the sum of weights of all the edges and the diameter
of a tree, etc. Graph constraints and graph objectives are differentiable objects
which maintain some properties of a dynamic graphs (for instance, the number
of violations of a constraint or the value of an objective function) but also allow
to determine the impact of local moves on these properties, a feature known as
differentiation.

Our COP modeling framework introduces a new type of variable VarPath
to model elementary paths. A path variable path(g,s,t) encapsulates an RST
over (g, s, t) and may appear in a variety of constraints and objectives. For
instance, PathCostOnEdges(path,k), where k is the index of a considered weight
on the edges of a graph, maintains the total weight accumulated along the path
path from s to t, PathEdgeDisjoint(Paths) is a graph constraint defined over
an array of paths that specifies that these paths are mutually edge-disjoint,
while MinEdgeCost(path,k), MaxEdgeCost(path,k) maintain the minimal and
maximal weight of edges on the same path. NodesVisited(path,S) maintains
the number of nodes of S visited by path. These abstractions are examples of
graph objectives which are fundamental when modeling COP problems. For
example, in QoS, we consider shortest path from an origin to a destination with
constraints over bandwidth which is defined to be the minimum weight of edges
on the specified path. As usual in CBLS, the objectives can be combined with
traditional arithmetic operators (with +,-,* operators) and used in constraints
expressed with relational operators.

Figure 4 illustrates the COP framework with a simple snippet to explore the
basic neighborhood. Line 1 initializes a LSGraphSolver object ls which manages
all the VarGraph, VarPath, graph invariants, graph constraints and graph objec-
tives objects. Line 2 declares and initializes randomly a VarPath variable. This
variable encapsulates an RST over (g, s, t) which evolves during the local search.
prefReplacing and prefReplacable are graph invariants which maintain the
set of preferred replacing edges and preferred replacable edges (lines 3-4). Lines
9–12 explore the basic neighborhood to find the best basic moves with respect to
a graph constraint C. The getReplaceEdgeDelta (line 12) method returns the
variation of the number of violations of C when the preferred replacable edge eo
is replaced by the preferred replacing edge ei on the RST representing path.
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5 Applications

5.1 The Resource Constrained Shortest Path (RCSP) Problem

The Resource constrained shortest path problem (RCSP) [3] is the problem
of finding the shortest path between two vertices on a network satisfying the
constraints over resources consumed along the path. There are some variations of
this problem, but we first consider a simplified version introduced and evaluated
in [3] over instances from the OR-Library [2]. Given a directed graph G =
(V, E), each arc e is associated with a length c(e) and a vector r(e) of resources
consumed in traversing the arc e. Given a source node s, a destination node t
and two vectors L, U of resources corresponding to the minimum and maximum
amount that can be used on the chosen path (i.e., a lower and an upper limit
on the resources consumed on the path). The length of a path P is defined
as f(P) =

∑
e∈P c(e). The resources consumed in traversing P is defined as

r(P) =
∑

e∈P r(e) The formulation of RCSP is then given by:

min f(P)
s.t. L ≤ r(P) ≤ U
P is elementary path from s to t on G.

The RCSP problem with only constraints on the maximum resources consumed
is also considered in [5,7]. The algorithm based on Lagrangian relaxation and
enumeration from [5] and the vertex-labeling algorithm combining with several
preprocessing techniques in [7] are known to be state-of-the-art for this problem.
We give a Tabu search model (RCSP TABU) for solving the RCSP problem
considering both constraints of minimum and maximum resources consumed.
This problem is rather pure and does not highlight the benefits of our framework
but it is interesting as a starting point and a basis for comparison.

The RCSP Modeling. The model using the COP framework is as follows:

void stateModel{
1. LSGraphSolver ls();
2. VarPath path(ls,g,s,t);
3. range Resources = 1..K;
4. GraphObjective go[Resources];
5. forall(k in Resources)
6. go[k] = PathCostOnEdges(path,k);
7. PathCostOnEdges len(path,0);
8. GraphConstraintSystem gcs(ls);
9. forall(k in Resources){
10. gcs.post(L[k] <= go[k]);
11. gcs.post(go[k] <= U[k]);
12 }
13. gcs.close();
14. GraphObjectiveCombinator goc(ls);
15. goc.add(len,1);
16. goc.add(gcs,1000);
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17. goc.close();
18. PreferredReplacingEdges prefReplacing(path);
19. PreferredReplacableEdges prefReplacable(path);
20. ls.close();
21.}

Line 1 declares a LSGraphSolver ls. A VarPath variable representing an RST
over (g, s, t) is declared and initialized in line 2. Lines 3–6 create K graph objec-
tives representing resources consumed in traversing the path from s to t where
PathCostOnEdges(ls,path,k) (line 6) is a modeling abstraction representing
the total weights of type k accumulated along the path from s to t1. Variable
len represents the length of the path from s to t (line 7). Lines 9–12 initial-
ize and post to the GraphConstraintSystem gcs (line 8) the constraints over
resources consumed in traversing the path from s to t.

In this model, we combine the graph constraint gcswith coefficient 1000 and the
graph objective lenwith coefficient 1 in a global GraphObjectiveCombinatorgoc
to be minimized (lines 14–17). We introduce two graph invariants prefReplacing
and prefReplacable to represent the set of preferred replacing edges of path and
the sets preferred replacable edges of all preferred replacing edges of path (lines
18–19).

The search procedure not described here is based on tabu search on the neigh-
borhood N2 because the exploration on basic neighborhood N1 gave poor results.
At each local move, we consider the best neighbor which minimizes goc. We take
this neighbor if it improves the current solution. Otherwise, a random neighbor
which is not tabu will be taken. Solutions are made tabu by putting the edges
appearing in the replacements into two tabu lists: one list for storing the edges
to be added and another one for storing the edges to be removed. The length of
these lists are set to be the number of vertices divided by 5.

Experimental Results. We compare the model with the algorithm described in
[3] over the benchmarks from OR-Library [2] and over a modification of these
benchmarks. The original benchmarks contains 24 instances whose orders vary
from 100 to 500 and the number of resources are 1 or 10. Instance 14 does not
have any feasible solution. On instances from the original benchmarks, the upper
limit values of the resources consumed is small such that the pruning techniques
used in [3] reduce substantially the problem sizes. The Algorithm in [3] is thus
particularly efficient on these instances. The second benchmark is generated by
modifying some upper limit values as follows. We chose the large instances of
order 500 (instances numbered from 17 to 24). For instances numbered 17–20
(number of resources is equal to 1), we slightly decrease the upper limit values.
For instances numbered 21–24 (number of resources is equal to 10), we multiply
some upper limit values by 10. In order to compare the model with the algorithm
from [3], we implemented that algorithm in COMET (denoted by RCSP BEA)
following the description in the paper.
1 Each arc has multiple properties, the property indexed by 0 is the length and prop-

erties indexed from 1 to k are resources consumed in traversing this arc.



Constraint-Based Local Search for COPs Problems 277

Table 1. First Experimental Results of RCSP TABU: Original Instances

instances opt t* min max % avr t min t max t std dev min’ max’ %
rcsp1 131 0.62 131 131 100 0.26 0.25 0.28 0.01 131 131 100
rcsp2 131 0.05 131 131 100 0.26 0.24 0.26 0.01 131 131 100
rcsp3 2 0.60 2 2 100 2.11 0.48 5.82 1.29 2 2 100
rcsp4 2 0.09 2 2 100 3.82 0.82 10.19 2.96 2 7 100
rcsp5 100 0.84 100 100 100 0.83 0.6 0.97 0.1 100 100 100
rcsp6 100 0.84 100 100 100 0.75 0.6 0.95 0.1 100 119 100
rcsp7 6 1.40 6 6 100 21.44 3.48 55.08 15.17 6 9 100
rcsp8 14 1.58 14 14 100 51.28 1.22 183.94 47.03 14 ∞ 80
rcsp9 420 0.04 420 420 100 122.5 2.14 483.43 115.26 420 ∞ 60
rcsp10 420 0.03 420 420 100 71.04 4.14 416.6 92.89 420 ∞ 90
rcsp11 6 0.11 6 6 100 7.75 1.84 18.44 3.81 6 7 100
rcsp12 6 0.09 6 6 100 9.12 2.34 25.12 6.52 6 6 100
rcsp13 448 0.44 448 448 100 90.06 7.94 276.02 66.81 448 ∞ 70
rcsp14 - - - - - - - - - - - -
rcsp15 9 9.28 9 9 100 93.43 31.89 284.25 60.53 9 ∞ 70
rcsp16 17 8.84 17 17 100 279.89 33.43 1049.57 253.27 17 ∞ 30
rcsp17 652 55.91 652 652 100 56.64 19.9 106.07 23.65 652 652 100
rcsp18 652 56.45 652 652 100 57.27 25.61 116.98 22.56 652 652 100
rcsp19 6 0.59 6 6 100 28.15 7.92 66.72 13.32 6 6 100
rcsp20 6 1.07 6 6 100 46.85 12.79 118.63 31.08 6 15 100
rcsp21 858 3.20 858 858 100 242.3 61.68 679.96 190.7 858 ∞ 50
rcsp22 858 1.86 858 858 100 294.94 108.41 827.04 186.13 858 ∞ 50
rcsp23 4 50.74 4 4 100 280.36 11.92 1053.61 279.03 4 ∞ 90
rcsp24 5 54.05 5 ∞ 80 719.92 24.13 1737.43 574.94 5 ∞ 20

The RCSP TABU model is executed 20 times with a time window of 30
minutes for each instance. The first experimental results are shown in Table 1
(columns 1–10). The structure of the table is described as follows. Column 2 is
the optimal value of the objective function and column 3 is the execution time
(in seconds) of the RCSP BEA model. Columns 4 and 5 present the minimal and
maximal value of the objective function in 20 runs of RCSP TABU. Column 6
is the rate of finding the optimal solution. Columns 7–10 show the average, the
minimal, maximal, and the standard deviation of the execution time necessary to
find the optimal solution. The results show that the RCSP TABU model found
the optimal solutions in all 20 runs over all instances except the instance rcsp24
(only 15 runs found the optimal solution) and the instance rcsp14 (a feasible so-
lution does not exist). The table also shows that on the original benchmark, the
RCSP BEA model found optimal solutions faster than our RCSP TABU model
except for some instances (see lines 1, 3, 5, 6, 17, 18, 23, 24).

The experimental results for the second set of benchmarks are shown on
Table 2 (Columns 11–13 should be ignored for now). Column 2 presents the execu-
tion times of the RCSP BEA model for finding optimal solutions. The remaining
columns report results of the RCSP TABU model. Columns 3–6 show the aver-
age, minimal, maximal, and standard deviation of execution times to find optimal
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Table 2. Second Experimental Results of RCSP TABU: More Difficult Instances

instance t* avr t min t max t std dev %solved avr it
rcsp17 01 57.58 54.16 26.18 159.76 30.63 100 12.95
rcsp17 02 58.88 56.26 30.1 138.43 26.95 100 18.25
rcsp18 01 56.57 57.4 27.35 120.06 23.19 100 17.55
rcsp18 02 56.64 60.32 16.98 266.61 52.56 100 16.95
rcsp19 01 75.56 40.65 11.78 108.21 25.02 100 41.05
rcsp19 02 59.36 56.9 8.74 134.95 35.54 100 56.95
rcsp20 01 74.98 49.32 6.66 136.49 38.17 100 57.4
rcsp20 02 58.34 51.6 8.72 177.01 36.72 100 55.9
rcsp21 01 164.5 72.91 31.74 108.89 22.07 100 11.15
rcsp21 02 154.67 63.88 34.02 128.04 21.13 100 12.15
rcsp22 01 157.6 73.85 28.28 118.14 24.48 100 11.1
rcsp22 02 150.95 72.42 33.07 180.05 30.97 100 11.7
rcsp23 01 130.08 76.99 21.58 216.21 51.99 100 38.9
rcsp23 02 129.34 70.3 21.64 250.5 54.97 100 30.65
rcsp24 01 129.09 153.04 34.35 418.23 113.86 100 75.7
rcsp24 02 129.44 94.54 24.13 402.08 80.31 100 49.25

solutions. Column 7 present the percentage for finding optimal solutions. The fi-
nal column reports the average of the number of moves. Experimental results show
that our RCSP TABU model found optimal solutions faster than the RCSP BEA
model in most cases. The reason is that, on these instances, the constraints over
resources consumed are easy to satisfy but the search space is much larger. The
reduction techniques in [3] do not reduce the search space much and the search
procedure of the RCSP BEA model is thus much slower.

5.2 The RCSP Problem with Multiple Choice Side Constraints

In order to illustrate the flexibility of our modeling approach, we consider the
RCSP problem with the following side constraint over nodes on the path: The set
of nodes V is partitioned into Q subsets S1, S2, ..., SQ and the path is required
to visit at most one node from each subset. This constraint arises when solving a
subproblem in a branch-and-price method for a variation of the vehicle routing
problem, known as Multi-Resource Routing Problem (MRRP) [9]. This problem
cannot be solved with RCSP BEA without a substantial programming effort.

The Modeling The MC RCSP problem is modeled by extending the RCSP
model: the Multiple Choice constraints are stated and posted into the
GraphConstraintSystem gcs. This can be done by simply adding the following
snippet to the RCSP model:

1. GraphObjective nv[1..Q];
2. forall(q in 1..Q){
3. nv[q] = NodesVisited(path,S[q]);
4. gcs.post(nv[q] <= 1);
5. }
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where NodesVisited(ls,path,S[q]) is an abstraction representing the number
of nodes in S[q] visited by the path. Notice that such a side constraint cannot
be handled by the algorithm of [3].

Experimental Results. We experiment the model over the benchmark from the
OR-library where the set of subsets S1, S2, ..., SQ is generated as follows. We take
a random feasible solution to the RCSP problem which is an elementary path
v1, v2, ..., vq satisfying the resource constraints. Then, we partition V into Q = 3∗
q sets S1, S2, ..., SQ where vj ∈ Sj , ∀j ∈ {1, 2, ..., q} and the size differences are at
most one. This ensures that there exists at least one feasible solution v1, v2, ..., vq

to the MC RCSP problem. The model is executed 10 times with 10 minutes
of time window for each instance. Experimental results are shown in Table 1
(columns 11–13) where column 13 presents the rate of finding feasible solutions.
Columns 11–12 present the minimal and maximal value of the best solution in
different executions. In most cases, the rate for finding feasible solutions is high
except instances 16 and 24. In some cases, the model finds optimal solutions.

5.3 The EDP Problem

We are given an undirected graph G = (V, E) and a set T = {< si, ti >| si �= ti ∈
V } representing a list of commodities (�T = k). The EDP problem consists of
finding a maximal cardinality set of mutually edge-disjoint paths from si to ti on
G (< si, ti >∈ T ). In [4], a Multi-start Simple Greedy and an ACO algorithms
are presented. The ACO is known to be state-of-the-art for this problem. We
propose a local search algorithm using the following model:

void stateModel{
1. LSGraphSolver ls();
2. VarPath path[j in 1..k](ls,g,s[j],t[j]);
3. PathEdgeDisjoint ed(path);
4. ls.close();
5.}

where line 2 initializes an array of k VarPaths representing k paths between
commodities. The edge-disjoint constraint ed is defined over paths from s[i] to
t[i] and is stated in line 3.

In [4], the following criterion is introduced which quantifies the degree of
non-disjointness of a solution S = {P1, P2, ...Pk} (Pj is a path from sj to tj):

C(S) =
∑
e∈E

(max{0,
∑

Pj∈S

ρj(S, e) − 1})

where ρj(S, e) = 1, if e ∈ Pj and ρj(S, e) = 0 otherwise. The number of vio-
lations of the PathEdgeDisjoint(P1, P2, ..., Pk) constraint in the framework is
defined to be C({P1, P2, ..., Pk}) and the proposed local search algorithm tries
to minimize this criterion.

From a solution which is normally a set of k non-disjoint path, a feasible
solution to the EDP problem can be extracted by iteratively removing the path
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Table 3. Experimental results for the EDP problem

instance com. MSGA ACO Local search
q t q t q t

mesh25x25.bb
62 36.95 546.854 31.1 880.551 38.85 1165.47
156 44.65 863.007 47.5 965.921 55.5 1082.78
250 50.5 672.962 60.5 972.396 67.95 967.087

mesh15x15.bb
22 20.55 517.601 18.6 500.812 21 384.828
56 27.15 651.27 28.35 988.782 30.3 485.693
90 31 797.534 34.55 746.96 36.05 435.308

bl-wr2-wht2.10-50.rand.bb
50 18.7 688.651 19.6 201.235 20.05 228.382
125 27.2 643.51 31.15 338.446 31.2 241.047
200 36.6 625.138 41.55 164.783 41.7 202.186

bl-wr2-wht2.10-50.sdeg.bb
50 18.65 470.26 19.75 223.396 20.1 311.887
125 28.1 662.916 31.55 163.151 31.85 357.25
200 33.3 487.999 38.05 217.362 38.25 178.417

which has most edges in common with other paths until all remaining paths
are mutually edge-disjoint as suggested in [4]. In our local search model, we
extend this idea by taking a simple greedy algorithm over the remaining paths
after that extraction procedure in hope of improving the number of edge-disjoint
paths.

Experimental Results. For the experimentation, we re-implemented in COMET the
Multi-start Greedy Algorithm (MSGA) and the ACO (the extended version)
algorithm described in [4] and compare them with our local search model. The
instances in the original paper [4] are not available (except some graphs). As a
result, we use the instance generator described in [4] and generate new instances
as follows. We take 4 graphs from [4]. For each graph, we generate randomly
different sets of commodities with different sizes depending on the size of the
graph: for each graph of size n, we generate randomly 20 instances with 0.10*n,
0.25*n and 0.40*n commodities. In total, we have 240 problems instances. Due
to the high complexity of the problem, we execute each problem instance once
with a time limit of 30 minutes for each execution. Experimental results are
shown in Table 3. The time window for the MSGA and the ACO algorithms are
also 30 minutes. The Table reports the average values of the objective function
and the average execution times for obtaining the best solutions of 20 instances
(a graph G = (V, E) and a set of r ∗ |V | commodities, r = 0.10, 0.25, 0.40).
Table 3 shows that our local search model gives very competitive results. It
finds better solutions than MGSA in 217/240 instances, while MSGA find better
solutions in 4/240 instances. On the other hand, in comparison with the ACO
model, our model finds better solutions in 144/240 instances, while the ACO
model find better solutions in 11/240 instances. This clearly demonstrates the
potential benefits of our COP framework, from a modeling and computational
standpoint.
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6 Conclusion

This paper considered Constrained Optimum Path (COP) problems which arise
in many real-life applications. It proposes a domain-specific constraint-based lo-
cal search (CBLS) framework for COP applications, enabling models to be high
level, compositional, and extensible and allowing for a clear separation between
model and search. The key technical contribution to support the COP frame-
work is a novel neighborhood based on a rooted spanning tree that implicitly
defines a path between the source and the target and its neighbors, and pro-
vides an efficient data structure for differentiation. The paper proved that the
neighborhood obtained by swapping edges in this tree is connected and pre-
sented a larger neighborhood involving multiple independent moves. The COP
framework, implemented in COMET, was applied to Resource Constrained Short-
est Path problems (with and without side constraints) and to the edge-disjoint
paths problem. Computational results showed the potential significance of the
approach, both from a modeling and computational standpoint.
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Abstract. Stochastic Constraint Programming is an extension of Constraint
Programming for modelling and solving combinatorial problems involving un-
certainty. A solution to such a problem is a policy tree that specifies decision vari-
able assignments in each scenario. Several complete solution methods have been
proposed, but the authors recently showed that an incomplete approach based on
neuroevolution is more scalable. In this paper we hybridise neuroevolution with
constraint filtering on hard constraints, and show both theoretically and empiri-
cally that the hybrid can learn more complex policies more quickly.

1 Introduction

Stochastic Constraint Programming (SCP) is an extension of Constraint Programming
(CP) designed to model and solve complex problems involving uncertainty and prob-
ability [7]. An m-stage SCSP is defined as a tuple (V, S, D, P, C, θ, L) where V is a
set of decision variables, S a set of stochastic variables, D a function mapping each
element of V ∪ S to a domain of values, P a function mapping each variable in S to
a probability distribution, C a set of constraints on V ∪ S, θ a function mapping each
constraint in C to a threshold value θ ∈ (0, 1], and L = [〈V1, S1〉, . . . , 〈Vm, Sm〉] a list
of decision stages such that the Vi partition V and the Si partition S. Each constraint
must contain at least one V variable, a constraint h ∈ C containing only V variables is
a hard constraint with threshold θ(h) = 1, and one containing at least one S variable is
a chance constraint.

To solve an SCSP we must find a policy tree of decisions, in which each node rep-
resents a value chosen for a decision variable, and each arc from a node represents the
value assigned to a stochastic variable. Each path in the tree represents a different possi-
ble scenario and the values assigned to decision variables in that scenario. A satisfying
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policy tree is a policy tree in which each chance constraint is satisfied with respect to the
tree. A chance constraint h ∈ C is satisfied with respect to a policy tree if it is satisfied
under some fraction φ ≥ θ(h) of all possible paths in the tree.

Most current SCP approaches are complete and do not seem practicable for large
multi-stage problems, but the authors recently proposed a more scalable method called
Evolved Parameterised Policies (EPP) [3]. In this paper we hybridise EPP with con-
straint filtering, and show theoretically and empirically that this improves learning. An
upcoming technical report will contain details omitted from this short paper.

2 Filtered Evolved Parameterised Policies

EPP [3] uses an evolutionary algorithm to find an artificial neural network (ANN) whose
input is a representation of a policy tree node, and whose output is a domain value for
the decision variable to be assigned at that node. The ANN describes a policy func-
tion: it is applied whenever a decision variable is to be assigned, and can be used to
represent or recreate a policy tree. The evolutionary fitness function penalises chance
constraint violations, and is designed to be optimal for ANNs representing satisfying
policy trees. In experiments on random SCSPs, EPP was orders of magnitude faster
than state-of-the-art complete algorithms [3]. Because it evolves an ANN it is classed
as a neuroevolutionary method (see for example [6]).

A drawback with EPP is that it treats hard constraints in the same way as chance
constraints. This is not incorrect, but a problem containing many hard constraints may
require a complex ANN with more parameters to tune, leading to longer run times. We
now describe a constraint-based technique for the special case of finite domain SCSPs
that allows more complex policies to be learned by simpler ANNs.

We modify EPP so that the ANN output is not used to compute a decision variable
value directly, but instead to compute a recommended value. As we assign values to the
decision and stochastic variables under some scenario ω, we apply constraint filtering
algorithms using only the hard constraints, which may remove values from both de-
cision and stochastic variable domains. If domain wipe-out occurs on any decision or
stochastic variable then we stop assigning variables under ω and every constraint is arti-
ficially considered to be violated in ω; otherwise we continue. On assigning a stochastic
variable s we choose ω(s), but if ω(s) has been removed from dom(s) then we stop as-
signing variables under ω and every constraint h is artificially considered to be violated
in ω; otherwise we continue. On assigning a decision variable x we compute the rec-
ommended value then choose the first remaining domain value after it in cyclic order.
For example suppose that initially dom(x) = {1, 2, 3, 4, 5} but this has been reduced
to {2, 4}, and the recommended value is 5. This value is no longer in dom(x) so we
choose the cyclically next remaining value 2. If all variables are successfully assigned
in ω then we check by inspection whether each constraint is violated or satisfied.

Some points should be clarified here. Firstly, it might be suspected that filtering
a stochastic variable domain violates the principle that these variables are randomly
assigned. But stochastic variables are assigned values from their unfiltered domains.
Secondly, the value assigned to a decision variable must depend only upon the values
assigned to stochastic variables occurring earlier in the stage structure. Does filtering
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Constraints:
c1 : Pr {x = s⊕ t} = 1

Decision variables:
x ∈ {0, 1}

Stochastic variables:
s, t ∈ {0, 1}

Stage structure:
V1 = ∅ S1 = {s, t}
V2 = {x} S2 = ∅
L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 1. SCSP used in Proposition 1

the domains of stochastic variables that occur later violate this principle? No: constraint
filtering makes no assumptions on the values of unassigned variables, it only tells us
that assigning a value to a decision variable will inevitably lead to a hard constraint
violation. Thirdly, we consider all constraints to be violated if either domain wipe-out
occurs, or if the selected value for a stochastic variable has been removed earlier by fil-
tering. This might appear to make the evolutionary fitness function incorrect. But both
these cases correspond to hard constraint violations, and considering constraints to be
violated in this way is similar to using a penalty function in a genetic or local search
algorithm: it only affects the objective function value for non-solutions.

We call the modified method Filtered Evolved Parameterised Policies (FEPP) and
now state two useful properties.

Proposition 1. FEPP can learn more policies than EPP with a given ANN.

Proof sketch. We can show that any policy that can be learned by EPP can also be
learned by FEPP. Conversely, we show by example that there exists an SCSP that can
be solved by FEPP but not by EPP using a given ANN. Suppose that the ANN is a
single perceptron [2] whose inputs are the s and t values and whose output is used to
select a domain value for x, the SCSP is as shown in Figure 1, and FEPP enforces arc
consistency. A single perceptron cannot learn the ⊕ (exclusive-OR) function [2] so EPP
cannot solve the SCSP. But arc consistency removes the incorrect value from dom(x)
so FEPP makes the correct assignment irrespective of the ANN. �

Proposition 2. Increasing the level of consistency increases the set of policies that can
be learned by FEPP with a given ANN.

Proof sketch. We can show that any policy that can be learned by FEPP with a given
ANN and filtering algorithm A can also be learned with a stronger filtering algorithm
B. Conversely, we show by example that there exists an SCSP, an ANN, and filtering
algorithms A and B, such that the SCSP can be solved by FEPP with B but not A. Let
the SCSP be as shown in Figure 2, A enforce pairwise arc consistency on the disequality
constraints comprising c2, B enforce hyper-arc consistency on c2 using the algorithm of
[5], and both A and B enforce arc consistency on c1. In any satisfying policy x = s⊕ t.
The proof rests on the fact that B reduces dom(x) to {0, 1} before search begins so ⊕
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Constraints:
c1 : Pr {x < 2 → x = s⊕ t} = 1
c2 : Pr {alldifferent(x, y, u)} = 1

Decision variables:
x ∈ {0, 1, 2, 3}
y ∈ {2, 3}

Stochastic variables:
s, t ∈ {0, 1}
u ∈ {2, 3}

Stage structure:
V1 = ∅ S1 = {s, t}
V2 = {x} S2 = {u}
V3 = {y} S3 = ∅
L = [〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉]

Fig. 2. SCSP used in Proposition 2

can immediately be enforced. FEPP under A cannot do this so it is forced to learn ⊕,
which is impossible for a perceptron. �

Thus FEPP can potentially exploit advanced CP techniques such as global constraints.
We state without proof two further propositions.

Proposition 3. The optimisation problem representing an SCSP has more solutions un-
der FEPP than under EPP, with a given ANN.

A solution here is a set of parameter values for the ANN that represents a satisfying
policy tree for the SCSP.

Proposition 4. The optimisation problem representing an SCSP has more solutions un-
der FEPP if the level of consistency is increased, with a given ANN.

So even where FEPP has the same learning ability as EPP, it may be more efficient
because it solves an optimisation problem with more solutions. Increasing the number
of solutions is not guaranteed to make the problem easier to solve, especially as filtering
incurs a runtime overhead, but it may do so.

3 Experiments

We now test two hypotheses: does filtering enable an ANN to learn more complex poli-
cies in practice as well as in theory (proposition 1)? And where a policy can be learned
without filtering, does filtering speed up learning (as we hope is implied by proposition
3)? For our experiments we use Quantified Boolean Formula (QBF) instances. QBF and
SCSP are closely related as there is a simple mapping from QBF to Stochastic Boolean
Satisfiability, which is a special case of SCSP [1]. QBF-as-SCSP is an interesting test
for FEPP because all its constraints are hard.

We have implemented a prototype FEPP using a weak form of constraint filtering
called backchecking. We use the same ANN as in [3]: a periodic perceptron [4], which
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Table 1. Results on QBF instances transformed to SCSPs

instance EPP FEPP
cnt01 0.9 0.03

impl02 2.9 0.02
impl04 — 8.8

TOILET2.1.iv.4 — 31
toilet a 02 01.4 — 9.5

tree-exa10-10 — 4.0

has been shown to learn faster and require fewer weights than a standard perceptron.
Results for EPP and FEPP are shown in Table 1, both tuned roughly optimally to each
instance. All times were obtained on a 2.8 GHz Pentium (R) 4 with 512 MB RAM
and are medians of 30 runs. “—” indicates that the problem was never solved despite
multiple runs with different EPP parameter settings. These preliminary results support
both our hypotheses: there are problems that can be solved by FEPP but not (as far as
we can tell) by EPP; and where both can solve a problem FEPP is faster. So far we have
found no QBF instance on which EPP beats FEPP.

4 Conclusion

FEPP is a true hybrid of neuroevolution and constraint programming, able to benefit
from improvements to its evolutionary algorithm, its neural network and its filtering
algorithms. In future work we will work on all three of these aspects and test FEPP on
real-world optimisation problems involving uncertainty.
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5. Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: 12th National
Conference on Artificial Intelligence, pp. 362–367. AAAI Press, Menlo Park (1994)

6. Stanley, K.O., Miikkulainen, R.: A Taxonomy for Artificial Embryogeny. Artificial Life 9(2),
93–130 (2003)

7. Walsh, T.: Stochastic Constraint Programming. In: 15th European Conference on Artificial
Intelligence (2002)



The Weighted Spanning Tree Constraint
Revisited�
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1 Introduction

The weighted spanning tree constraint, or wst-constraint, is defined on an edge-
weighted graph G and a value K. It states that G admits a spanning tree with
weight at most K [3, 4]. It can be applied to network design problems as well
as routing problems, in which it serves as a relaxation. In this work, we assume
that we can represent the mandatory and possible edges that can belong to a
solution to the wst-constraint, e.g., using a subset-bound set variable as in [3].

Dooms and Katriel [3] consider a version of the wst-constraint in which the
weights of the edges are also variable. They propose several filtering algorithms,
including one for the version of the wst-constraint that we consider in this pa-
per. Subsequently, a more practical and incremental filtering algorithm for this
constraint was proposed by Régin [4].

In this work, we extend the algorithm of Régin [4] in several ways. First, we
revisit the computation of the ‘replacement cost’ of tree edges, and present an
algorithm with an almost linear time complexity. Second, we take mandatory
edges into account; that is, edges that belong to every spanning tree having
a weight at most K or that are imposed by the user. Third, we discuss the
incremental behavior of the algorithms when mandatory edges are introduced.

2 Existing Approaches

The task of propagating the wst-constraint consists of a check for consistency,
the removal (filtering) of inconsistent edges from the domain of possible edges,
and potentially fixing edges that must belong to every solution. An important
practical aspect is the incrementality of the algorithms, i.e., efficiently re-using
data structures and solutions from one propagation event to the next. The consis-
tency of the wst-constraint can easily by verified by finding a minimum-spanning
tree in the graph, using a classical method such as Prim’s algorithm or Kruskal’s
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algorithm. Assuming that the edges are sorted by non-decreasing weight, this
can be done in almost linear time [1]. Identifying inconsistent edges (that cannot
participate in a spanning tree of weight at most K) is more involved, however.
Dooms and Katriel [3] observed that inconsistent edges can be detected as fol-
lows [5]. Let T be a minimum spanning tree, and let (i, j) be a non-tree edge
that we wish to evaluate. We now find the maximum-weight edge on the unique
i-j path in T . If replacing that maximum-weight edge with (i, j) yields a tree of
weight more than K, (i, j) is inconsistent. Similar reasoning can be applied to
determine whether a tree edge is mandatory, i.e., when replacing it would yield
always a tree of weight more than K [3]. Therefore, the detection of inconsis-
tent and mandatory edges amounts to computing the ‘replacement cost’ of the
edges. Régin [4] also applies the replacement cost for non-tree edges to detect
inconsistent edges, but tree edges (and mandatory edges) were not considered.

Several algorithms have been proposed to compute the replacement cost of
the edges, for example by Tarjan [5] and Dixon, Rauch, and Tarjan [2]. These
algorithms allow to compute all replacement costs in time O(mα(m, n)) on a
graph with n nodes and m edges, where α(m, n) is the inverse Ackermann func-
tion stemming from the complexity of the ‘union-find’ algorithm [6]. Other ap-
proaches, such as those referenced by [3] are based on (or resemble) the algo-
rithms of [5] or [2]. Even though these algorithms allow to find the replacement
costs in almost linear time theoretically, the added complexity may not offset
the potential savings in practice, as argued by Tarjan [5]. Moreover, it is not
obvious how to apply the algorithms incrementally. Therefore, Régin proposed
a different algorithm running in O(n + m + n log n) time [4]. We next briefly
describe the main components of this algorithm for later use.

Régin [4] applies Kruskal’s algorithm to find a minimum spanning tree. That
is, we start from a forest consisting of all nodes in the graph. We then successively
add edges, whereby each added edge joins two separate trees. We ensure that
the next selected edge has minimum weight among all edges whose extremities
are not in the same tree. We use a so-called ccTree (‘connected component tree’)
to represent these merges. The leaves of the ccTree are the original graph nodes,
while the internal nodes of the ccTree represent the merging of two trees (or
connected components), defined in the order in which the edges were added to
the tree. An internal node thus represents the edge with which two components
have been merged; see Figure 1a and 1b for an example. Therefore, the ccTree
contains n− 1 internal nodes, where n is the number of nodes in the graph. The
computation of the replacement cost of a non-tree edge (i, j) can now be done
by finding the lowest common ancestor (LCA) of nodes i and j in the ccTree:
the weight of (i, j) minus the weight of the edge corresponding to the LCA is
exactly the replacement cost of (i, j). We refer to [4] for further details.

3 Computing the Replacement Cost of Tree Edges

We next present an algorithm that computes the replacement costs of tree edges
in time O(mα(m, n)). This is the same time complexity as the algorithm pro-
posed by Tarjan [5]. We note that the latter algorithm follows as a corollary
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from a generic (and relatively complex) algorithm presented in [5]. Our contri-
bution is a description of a more practical algorithm, specific to the problem of
computing replacement costs, having the same time complexity. We will apply
the algorithm to detect mandatory edges.

Let G = (V, E) be the graph under consideration, with a ‘weight’ function w :
E → R, and let T be a minimum spanning tree of G. For a subset of edges S ⊆ E,
we let w(S) denote

∑
e∈S w(e). The replacement cost of an edge e in T is defined

as w(T �e) − w(T ), where T �e is a minimum spanning tree of G \ e. It represents the
marginal increase of the weight of the minimum spanning tree if e is not used. It can
be shown that the new minimum spanning tree can be obtained by replacing e with
exactlyoneother edge,which is calledthe replacement edge. In fact, the replacement
cost of e is the weight of its replacement edge minus the weight of e itself.

Let us first describe a basic algorithm for computing the replacement costs
for tree edges. We start by computing a minimum spanning tree T , and we
label all tree edges as ‘unmarked’. We then consider the edges of the graph,
ordered by non-decreasing weight. If we encounter a non-tree edge (i, j), we do
the following. First, observe that there is a unique i-j path in T , and (i, j) serves
as replacement edge for all unmarked edges on this path. Therefore, we will mark
a tree edge as soon as we have identified its first replacement edge. For example,
in Figure 1, the first non-tree edge that we consider is (3, 4). We thus label the
tree edges (1, 3) and (1, 4) as marked, with associated replacement cost 1 and 2,
respectively. The next non-tree edge is (1, 2), which is used to mark tree edge
(2, 4) with associated replacement cost 2 (edge (1, 4) is already marked).

It can be shown that this basic algorithm computes the replacement costs of
all tree edges. Unfortunately, its time complexity is rather high: we may need up
to n steps to identify the unmarked edges, which gives an overall time complexity
of O(mn). Fortunately, we can efficiently reduce this complexity by contracting
the marked edges of the tree, i.e., we merge the extremities of marked tree edges.
This contraction will be performed by using a ‘union-find’ data structure [6, 1].

First, we root the minimum spanning tree, i.e., we designate an arbitrary root
node, and we organize the nodes in a directed tree with parent information. In
addition, each node is associated with a pointer p to its parent in the union-find
data structure. Initially the pointer p of every node points to the node itself.
When an unmarked edge is discovered, we ‘contract’ the edge by letting the
pointer p now point to its father. We then apply the classical ‘find’ function,
associated with its classical updates. That is, the pointers of the union-find data
structure are used to traverse the path between the two extremities of a non-
tree edge. Note that we move up in parallel in the tree from the two extremities.
We stop when the same node is reached by the two traversals (one from each
extremity). For example in Figure 1, suppose we let node 1 be the root of the
tree. After processing the first non-tree edge (3, 4), the updated pointers are
p(3) = 1 and p(4) = 1. For the next non-tree edge (1, 2), the algorithm directly
proceeds from the parent of 2 (node 4) to p(4), which is node 1.

The advantage of this method is that it is easy to implement. Moreover, we
will have at most n − 1 contractions because the tree contains n − 1 edges. In
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addition we will have at most m requests, thus we obtain the classical union-find
complexity of O(mα(m, n)). We note that the replacement cost for tree edges
can be used to identify mandatory edges: an edge is mandatory if its replacement
cost is higher than K − w(T ), see also [3].

4 Mandatory Edges and Incrementality

We next consider the implications of introducing mandatory edges on the main-
tenance of the minimum spanning tree, in the context of the propagation algo-
rithms of Régin [4]. First, observe that we need to update our minimum span-
ning tree, and other necessary data structures when both tree edges and non-tree
edges become mandatory. If a non-tree edge becomes mandatory (for example
as a result from inference by other constraints), we clearly need to find a new
minimum spanning tree that includes this edge. If a tree edge becomes neces-
sary, it can remain in the tree, but we do need to update the data structures to
forbid this edge from being used as a replacement edge. Recall that the main
data structure used in [4] is the ccTree. We propose two different methods to
update the minimum spanning tree and the ccTree upon the addition of manda-
tory edges. The first method is based on recomputation. The second method is
based on ‘repairing’ the current minimum spanning tree and ccTree.

The first method can be implemented in a straightforward manner by using
the existing algorithms. Namely, we can associate an appropriate low weight
value to the mandatory edges, which will then be added first to the minimum
spanning tree (assuming that we use Kruskal’s algorithm, that adds the edges
ordered by non-decreasing weight). After all mandatory edges have been added,
the algorithm will proceed with the other edges. Then we can rebuild the ccTree
by considering the tree edges in the order of addition, which takes O(n) steps.
The advantage of this approach is that the mandatory edges will never appear
as an LCA to compute the replacement cost of a non-tree edge, except for the
special case when the edge under consideration forms a cycle with mandatory
edges only. In fact, we can avoid such special cases by removing all non-tree
edges between the nodes in each component formed by the mandatory edges.
This first method works well when several edges have become mandatory during
one propagation event. When only a few edges become mandatory, our second
method will be more efficient.

The second method rebuilds a new ccTree from the existing one. Consider a
mandatory (non-tree) edge (i, j). When this edge enters the minimum spanning
tree, it will replace the LCA of i and j in the ccTree, i.e., the LCA disappears.
As a result, we need to re-build the ccTree up to the point of the previous LCA.
That is, we need to revisit the order of the nodes along the paths from i and
j to the LCA. Without loss of generality, we assume that i has been added to
the ccTree before j. We start by merging i and j (this is the mandatory edge).
Then, we proceed by going up the i-LCA path and j-LCA path, starting from
i and j, respectively. Let ci and cj be the current node on the i-LCA path and
j-LCA path, respectively. As long as the weight of the parent of ci is at least the
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a. MST b. The ccTree c. Updated ccTree

Fig. 1. The minimum spanning tree (MST, in bold) for a small example (a.), its ccTree
(b.), and the updated ccTree after the addition of the mandatory edge (4, 5) (c.)

weight of the parent of cj , we let ci be its parent and continue. If the weight of
the parent of cj is less than the weight of the parent of ci, we insert cj between
ci and its parent. In other words, cj has as ‘left’ child ci, and as ‘right’ child
its subtree in the path from j to the LCA (which is always a single node). We
then update cj to be its original parent in the j-LCA path, and repeat the
process until the two paths are fully combined (i.e., we reach the position of
the previous LCA). Figure 1 provides an example of our second method. To the
example presented in Figure 1.a, we introduce the mandatory edge (4, 5). From
the ccTree in Figure 1.b, we determine that the LCA for nodes 4 and 5 is the
internal node marked with edge (3, 5) with weight 5, which will disappear from
the ccTree. Execution of our second method yields the repaired ccTree, depicted
in Figure 1.c. The main benefit of this second method is that it needs to update
the minimum spanning tree (and the ccTree) only locally. In the worst case, its
time complexity may be O(n), but the expected time complexity is much lower.
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Abstract. Interval coefficients have been introduced in OR and CP to specify
uncertain data in order to provide reliable solutions to convex models. The output
is generally a solution set, guaranteed to contain all solutions possible under any
realization of the data. This set can be too large to be meaningful. Furthermore,
each solution has equal uncertainty weight, thus does not reflect any possible
degree of knowledge about the data. To overcome these problems we propose to
extend the notion of interval coefficient by introducing a second dimension to
each interval bound. Each bound is now specified by its data value and its degree
of knowledge. This is formalized using the cumulative distribution function of
the data set. We define the formal framework of constraint reasoning over this
cdf-intervals. The main contribution of this paper concerns the formal definition
of a new interval arithmetic and its implementation. Promising results on problem
instances demonstrate the approach.

1 Introduction

Interval coefficients have been introduced in Operations Research and Constraint Pro-
gramming to specify uncertain data in order to provide reliable solutions to convex
models. They are at the heart of paradigms such as robust optimization [3, 12] in Op-
erations Research as well as mixed CSP [8], reliable constraint reasoning [15, 16], and
quantified CSP [17] in Constraint Programming. These paradigms specify erroneous
and incomplete data using uncertainty sets that denote a deterministic and bounded for-
mulation of an ill-defined data. To remain computationally tractable, the uncertainty
sets are approximated by convex structures such as intervals (extreme values within the
uncertainty set) and interval reasoning can be applied ensuring effective computations.

The concept of convex modeling was coined to formalize the idea of enclosing uncer-
tainty sets and yield reliable solutions; i.e guaranteed to contain any solution produced
by any possible realization of the data [5, 2, 16]. As a result, the outcome of such sys-
tems is a solution set that can be refined when more knowledge is acquired about the
data, and does not exclude any potential solution. The benefits of these approaches are
that they deal with real data measurements, produce robust/reliable solutions, and do
so in a computationally tractable manner. However, the solution set can sometimes be
too large to be meaningful since it encloses all solutions that can be constructed us-
ing the data intervals. Furthermore each solution derived has equal uncertainty weight,
thus does not reflect any possible degree of knowledge about the data. For instance,
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consider a collected set of data measurements in traffic flow analysis [9], or in image
recognition [7], the data is generally ill-defined but some data values can occur more
than others or have a darker shade of grey (hence greater degree of knowledge or cer-
tainty). This quantitative information is available during data collection, but lost during
the reasoning because not accounted for in the representation of the uncertain data. As
a consequence it is not available in the solution set produced. Mainly reliable models
offer reliability and robustness, tractable models, but do not account for quantitative
information about the data.

This paper addresses this problem. Basically we extend the interval data models
with a second dimension: a quantitative dimension added to the measured input data.
The main idea introduced in this paper is to show that we can preserve the tractabil-
ity of convex modeling while enriching the uncertain data sets with a representation of
the degree of knowledge available. Our methodology consists of building data intervals
employing two dimensional points as extreme values. We assume that with each uncer-
tain data value comes its frequency of occurrence or density function. We then compute
the cumulative distribution function (cdf) over this function. The cdf is an aggregated
quantitative measurement indicating for a given uncertain value, the probability that the
actual data value lies before it. It has been used in different models under uncertainty
to analyze the distribution of data sets (e.g. [14] and [10]). It enjoys three main prop-
erties that fit an interval representation of data uncertainty: i) the cdf is a monotone,
non decreasing function like arithmetic ordering, suitable for interval computations and
pruning, ii) it directly represents the aggregated probability that a quantity lies within
bounds, thus showing the confidence interval of this uncertain data, iii) it brings flex-
ibility to the problem modeling assumptions (e.g. by choosing the data value bounds
based on the cdf values, or its sought confidence interval). We introduce the concept
of cdf-intervals to represent such convex sets, following the concept of interval coeffi-
cients. This requires the decision variables to range over cdf-intervals as well. Basically,
in our framework, the elements of a variable’s domain are points in a 2D-space, the first
dimension for its data value, the second for its aggregated cdf value. It is defined as a
cdf-interval specified by its lower and upper bounds. A new domain ordering is defined
within the 2D space. This raises the question of performing arithmetic computations
over such variables to infer bound consistency. We define the constraint domain over
which the calculus in this new domain structure can be performed, including the infer-
ence rules.

This paper contains the following contributions: (1) a new representation of uncertain
data, (2) a formal framework for solving systems of arithmetic constraints over cdf-
intervals, (3) a practical framework including the inference rules within the usual fixed
point semantics, (4) an application to interval linear systems. The paper is structured
along the contributions listed hereabove.

2 Basic Concepts

This section recalls basic concepts we use to characterize the degree of knowledge, and
introduces our notations. These definitions can be found in [10].
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2.1 Cumulative Distribution Function

Throughout this paper we assume independence of data.

Definition 1 (density function). Given a data set {N1, ...,Nn}, with available informa-
tion regarding the occurrence of each data item. The density function f (x) of a data
item x, is defined over the population size, m, by:

f (x) =
number of occurrences of valueNx

m
(1)

The cumulative distribution function cdf of a given value, defines its accumulated den-
sity so far. It does not assume any specific distribution function, but follows that of the
density function.

Definition 2 (cumulative distribution function). Given an item value x, with density
function f (x), and an unknown variable (commonly referred to as the real-valued ran-
dom variable) X, the cdf of x is the function:

FX(x) = P(X ≤ x) =
∑

X≤x

f (x) (2)

The cdf ranges over the interval [0,1].

Property 1. Every cdf is monotone, and right continuous.

In other words, the cdf value of a point is the density value of that point in addition to
the sum of frequencies of all preceding points, with smaller item value. As illustrated in
fig. 1 the cdf associated with a density function is always increasing until it reaches the
point of stability ’1’ where the curve remains constant. All the data population resides
between two points having cdf values ’0’ and ’1’ with an average step height equivalent
to (m/n), where n is the number of distinct values in the data set and m is the size of its
population. The cdf expresses the distribution of the data in an aggregated manner.

2.2 Joint Cumulative Distribution Function

Operations can be performed on cdfs but carry a different interpretation than operations
over standard arithmetic calculus since they relate to probabilities. The joint operation
is essential to our solver and is recalled below. The joint cdf is the cdf that results from
superimposing two variables with a relation, each exerting a cdf on its own.

Definition 3 (Joint CDF). Given two random variables X and Y1

FXY(x, y) = P(X ≤ x, Y ≤ y) (3)

For independent variables P(X ≤ x, Y ≤ y) = FX(x) × FY (y).

Definition 4 (Joint CDF over bounded intervals). When X and Y are bounded inter-
vals; i.e. X ∈ [a, b] and Y ∈ [c, d], the joint CDF is defined by:

P(a ≤ X ≤ b, c ≤ Y ≤ d) = FXY(b, d) − FXY (a, d) − FXY(b, c) + FXY(a, c) (4)

The joint cdf FXY of two variables X and Y is used extensively in the computation of
the cdf resulting from any operation between the variables.

1 Recall that a random variable maps an event to values, e.g. event that X ≤ x.
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(a) (b)

Fig. 1. Constructing the data interval bounds

2.3 Notations

We assume that a data takes its value in the set of real numbers R, denoted by a,b,c. A
cdf value FX(x) is associated to the uncertainty curve of a given point p. For simplicity,
FX(x) is noted F p

x , i.e. the cdf value of an uncertain data p at value x. We have px ∈ R×
[0, 1] with coordinates (x, F p

x ). Data points are denoted by p, q, r possibly subscripted
by a data value. Variables are denoted by X, Y, Z and take their value inU = R× [0, 1].
Intervals of elements fromU are denoted I, J,K. We denote FI the approximated linear
curve relative to the cdf curve inbetween the bounds of I, and FI

a the cdf value of the
data value a plotted on the 2D-interval I.

3 Uncertain Data Representation

Given a measured (also possibly randomly generated) data set denoting the population
of an uncertain data, we construct our cdf-intervals as detailed in algorithm 1.

The algorithm runs in O(n) where n is the number of distinct values in the data set.
It receives three parameters: the size of the data population, m, a sorted list (ascending
order) of the distinct measured data, and a list of their corresponding frequencies. Both
lists are of the same size n. The algorithm first computes the cdf in a cumulative manner.

procedure ConstructIntervalBounds(m, Arr[n],Freq[n])

1. cdf[1]← Freq[1]/m
2. for i = 2 to n do
3. cdf[i]← (Freq[i]/m) + cdf[i − 1]
4. i = 1,
5. while (Freq[i] ≤ m/n) do { m/n is the average step value}
6. i← i + 1
7. lowerbound ← (Arr[i], cdf[i])
8. upperbound ← (cdf−1[0.98], 0.98)

Algorithm 1. data interval bounds construction
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The turning points are then extracted by recording the data value having a density less
than the average step value (m/n) and the value with cdf equal to 98%.

Fig.1 illustrates an example of an interval data construction. For a data set size n =
11, and a population size m = 30, Arr[n] = [12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42],
and its corresponding frequencies Freq[n] = [1, 3, 6, 5, 3, 4, 2, 2, 2, 1, 1], the computed
cdf-interval has the following bounds [(15, 0.13), (39.6, 0.98)].

3.1 Interpretation of the Confidence Interval [pa, pb]

Consider the practical meaning of the interval [pa, pb] that we have sought to obtain.
This interval is built according to two main sources of information: 1) the monotony
and non-decreasing properties of the cdf curve to account for degree of knowledge, 2)
the extreme turning points over such a curve. Recall that the cdf curve indicates the
aggregated distribution function of a data set. Plotting a point on this curve tells us
what are the chances that the actual data value lies on or before this point. The extreme
turning points we have considered are such that the lower bound indicates when the
slope (thus frequency of occurrence over the population) increases more than the aver-
age; and the upper bound that of the cdf reaching a plateau. The measure of this upper
bound has been associated with the cdf value of 98%. This corresponds to the distance
of avr + 3σ when the distribution follows a normal distribution. Such interpretation is
a conservative view that can be revised by the decision maker.

It is also important to note the effectiveness of using the cdf as an indicator of degree
of knowledge. Given a measurement of the data p such that (x, F p

x ) is any point, we
have the following due to F p monotone non-decreasing property:

a ≤ x ≤ b, F p
a ≤ F p

x ≤ F p
b

This implies that we can order (partially) points in this 2D-space U = R × [0, 1].
Thus we can construct an algebra over variables taking their value in this space. In
particular, we can approximate the cdf curve associated with a data population by the
linear (increasing or constant) slope between the two turning points.

3.2 Linear Approximation within I = [pa, pb]

Definition 5. For a given interval I = [pa, pb], FI
x is the projected approximated cdf

value of px onto FI (the cdf associated to the interval), we will denote px ∈ I as px =

(x, FI
x) for any point lying within the I interval bounds such that:

a < x < b, FI
x =

FI
b − FI

a

b − a
.(x − a) + FI

a (5)

Property 2. F p
a = FI

a and Fq
b = FI

b

Example 1. Fig. 2 illustrates the computation of FI
x. We have I = [(18.6, 0.44), (27.8,

0.78)]. Given a data value x = 24 we compute its cdf FI
x = 0.64, and obtain the point

px = (24, 0.64).
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Fig. 2. FI
x linear projection

4 cdf-Intervals

Our approach follows real interval arithmetic. It adds a second dimension to each un-
certain value, requiring us to define a new ordering among points in a two dimensional
space, together with new inference rules.

Consider a data population with its cdf curve. Create the set of points such that each
points px is specified by (x, Fx) ∈ R × [0, 1]. The set U = R × [0, 1] is a set of tu-
ples partially ordered, and constitutes a poset with a unique greatest lower bound and
least upper bound. Similarly to reliable computing methods the constraint system will
produce a solution set as opposed to a solution point. The variables thus denote inter-
vals within the cdf-interval structure and constraint processing needs to be extended to
perform arithmetic operations within this algebraic structure.

4.1 cdf-IntervalOrdering �

Definition 6 (Ordering over U,�). Let px = (x, F p
x ), qy = (y, Fq

y ) ∈ U, the ordering
� is a partial order defined by:

px � qy ⇔ x ≤ y and F p
x ≤ Fq

y

Example 2. Consider the three points px = (1, 0.3), qy = (2, 0.5) and rz = (2, 0.1). We
have px � qy as well as rz � qy, but px and rz are not comparable.

A cdf-interval delimited by two points px and qy is specified by the syntax [px, qy] such
that px � qy. One important task in interval reasoning is the computation of a new inter-
val from arbitrary points or previous intervals, such that it describes the smallest interval
containing a collection of elements. This is based on the meet and joint operators.

Definition 7 (meet and join). Given the arithmetic ordering and meet and join oper-
ations over the reals (R,≤,min,max) and the ordering of cdf values within ([0, 1],≤,
min,max), the meet lub and join glb operators of two points px and qy inU are defined
by:
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glb(px, qy) = (min(x, y), min(F p
lb, F

q
lb))

lub(px, qy) = (max(x, y), max(F p
ub, F

q
ub)) (6)

where lb = min(x, y) and ub = max(x, y)

The following property establishes the link between the partial ordering � and the pair
(glb, lub) as actual meet and join.

Property 3 (Consistency property).

px � qy ⇔ px = glb(px, qy)

px � qy ⇔ qy = lub(px, qy) (7)

Fig. 3. glb and lub computation

Fig. 3 illustrates an example which computes glb and lub of two points px = (1, 0.3)
and qy = (2, 0.1). glb(px, qy) = (1, 0.05) and lub(px, qy) = (2, 0.6).

4.2 cdf Domains

The key element to a cdf-Interval domain is the approximated cdf curve it lies on.
However, to remain computationally tractable we do not maintain a full domain repre-
sentation of the points defining the curve. Instead, we approximate the curve by a linear
curve whose extreme points are the bounds of the interval. Elements of the interval do-
main lie on the linear curve. This leads to the following concept of cdf-Interval domain.

Definition 8 (cdf-Domain). A cdf-Domain is a pair [pa, pb] satisfying pa � pb and
denoting the set:

{px = (x, F p
x ) | pa � px � pb, and F p

x =
F p

b − F p
a

b − a
.(x − a) + F p

a } (8)

Example 3. Consider a cdf-variable X with domain I = [(18.6, 0.44), (27.8, 0.78)] as
illustrated in fig. 2. X can take any point value (x, FI

x) such that 18.6 ≤ x ≤ 27.8 and
FI

x =
0.78−0.44
27.8−18.6 .(x − 18.6) + 0.44.



Constraint Reasoning with Uncertain Data Using CDF-Intervals 299

5 Core Operations on cdf-Intervals

Clearly this work follows the real interval arithmetic introduced in [4]. In particular
when the degree of knowledge provides equal weight to each data value the computed
intervals are identical. Thus the novelty here lies in the calculus presented with respect
to the second dimension, i.e. the degree of knowledge based on the cdf values. We
consider the standard arithmetic operations interpreted over the set of cdf-intervals. For
� ∈ {+U,−U ,×U,÷U} a binary interval arithmetic over two dimensions we seek:

[pa, pb] � [qc, qd] = {pX � qY | pX ∈ [pa, pb], qY ∈ [qc, qd]} (9)

(a) (b) (c)

Fig. 4. cdf distribution resulting from superimposing two intervals for x and y with a relation: (a)
addition (b) multiplication (c) subtraction. x ∈ [a, b] with a cdf FI and y ∈ [c, d] with a cdf FJ .

Any two intervals, each shaping a different distribution cdf, can be involved in a
relation given by a function. This relation in turn shapes a cdf that is based on a double
integration of their joint cdf over the set of values per interval under the curve of the
function [10]. From this generic methodology we derive cdf lower and upper bound
equations for each binary arithmetic operation. Derived equations are shown by the
dark shaded area under the curve of the relation depicted in fig. 4. Proofs are omitted
for space reason.

5.1 Addition ’+U’

Consider two arbitrary intervals I = [pa, pb] and J = [qc, qd], their arithmetic addition is
a result of adding every two points px and qy from both intervals. The resulting cdf, FI+J

is obtained by superimposing both cdf distributions FI
x and FJ

y as depicted by the dark
shaded regions in fig.4(a): it represents the area under the line that describes the relation
between x and y, first arguments of points px and qy respectively. The computation of
FI+J is based on the joint cdf previously discussed in section 2.2; we assume in our
calculations that probabilities outside the interval are negligible ’= 0’ since we are
working on the majority of the population inside an interval. The resulting interval is
specified by

[(lb+, F
I+J
lb+

), (ub+, F
I+J
ub+

)]

such that the real interval arithmetic addition is applied to compute the 1st-dimension
lower and upper bounds respectively denoted lb+ and ub+:

lb+ = min(a + c, a + d, b + c, c + d) and ub+ = max(a + c, a + d, b + c, c + d)
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FI+J
lb+
= 0.5[FJ

lb+
FJ

c + FI
aFI

lb+
]

FI+J
ub+
= 0.5[FI

b + FJ
d ]

with the cdf value of lb+on J and I respectively defined as:

FJ
lb+
=

⎧⎪⎪⎨⎪⎪⎩
FJ

c + a
[

FJ
d−FJ

c )
d−c

]
i f d < a + c

1 otherwise

⎫⎪⎪⎬⎪⎪⎭

FI
lb+
=

⎧⎪⎪⎨⎪⎪⎩
FI

a + c
[

FI
b−FI

a

b−a

]
i f b < a + c

1 otherwise

⎫⎪⎪⎬⎪⎪⎭ (10)

Example 4. Given two data populations with associated cdf curves, approximated by
the cdf-intervals I = [(1, 0.3), (7, 0.65)] and J = [(2, 0.46), (9, 0.6)]; the addition of two
uncertain data from I and J respectively is specified by the cdf-interval [ra+c, rb+d] =
(3, 0.38), (16, 0.625)] as shown in fig.5. Note that in the absence of second dimension
we obtain a regular interval arithmetic addition.

Fig. 5. Example: cdf-Interval addition

5.2 Multiplication ’∗U’

Multiplying each pair of points lying in two intervals results in computing the cdf
FI×J distribution illustrated by the shaded dark region under the curve in fig.4(b).
I = [pa, pb] × J = [qc, qd] produces the cdf-interval

[(lb×, FI×J
lb× ), (ub×, FI×J

ub× )]

such that the first dimensions, follows the conventional real interval arithmetic multipli-
cation. The lower and upper bounds are defined by lb× and ub×. Recall that data values
can be negative:

lb× = min(a × c, a × d, b × c, c × d) and ub× = max(a × c, a × d, b × c, c × d)
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The 2nd-dimension cdf for the resulting interval bounds, are computed as follows:

FI×J
lb× = 0.5(FI

bFJ
c + FI

aFJ
d )

FI×J
ub× = max(FJ

d , F
I
b) (11)

Example 5. Given two variables ranging over the respective cdf-intervals: I = [(1, 0.3),
(4, 0.65)] and J = [(.5, 0.46), (5, 0.6)] as illustrated in fig.6. The result of the multipli-
cation is a cdf-interval specified by [ra×c, rb×d] = (1.5, 0.24), (20, 0.65)].

Fig. 6. Example: cdf-Interval multiplication

5.3 Subtraction ’−U’

Given two cdf-intervals I = [pa, pb] and J = [qc, qd], the subtraction derives the cdf-
interval

[(lb−, FJ−I
lb− ), (ub−, FJ−I

ub− )]

such that

lb− = min(c − a, d − a, c − b, d − b) and ub− = max(c − a, d − a, c − b, d − b)

and FJ−I lower and upper bounds are:

FJ−I
lb− = 0.5(FI

bFJ
c + FI

aFJ
d )

FJ−I
ub− = 0.5FI

b[1 + FJ
ub− ] (12)

5.4 Division ’%U’

Given two cdf-intervals I = [pa, pb] and J = [qc, qd], the division operation derives the
resulting cdf-interval

[(lb÷, FJ÷I
lb÷ ), (ub÷, FJ÷I

ub÷ )]

such that:

lb÷ = min(c ÷ a, d ÷ a, c ÷ b, d ÷ b) and ub÷ = max(c ÷ a, d ÷ a, c ÷ b, d ÷ b)
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FJ÷I lower and upper bounds are:

FJ÷I
lb÷ = 0.5(FI

bFJ
c )

FJ÷I
ub÷ = FJ

d [FI
b − 0.5FI

a] (13)

6 Implementation

The constraint system behaves like a solver over real intervals, based on the relational
arithmetic of real intervals where arithmetic expressions as interpreted as relations [6].
The relations are handled using the following transformation rules that extend the ones
over real intervals with inferences over the cdf values. The handling of these rules is
done by a relaxation algorithm which resembles the arc consistency algorithm AC-3
[13]. The solver converges to a fixed point or infers failure. we ensure termination of the
generic constraint propagation algorithm because the cdf-domain ordering is reflexive,
antisymmetric and transitive. Hereafter we present the main transformation rules for
the basic arithmetic operations. For space reasons, when a domain remains unchanged
we will use the following notation: I = [pa, pb], J = [qc, qd] and K = [re, r f ]. The
cdf-variables are denoted by X, Y and Z. Failure is detected if some domain bounds do
not preserve the ordering �.

Ordering constraint X � Y

pb
′ = glb(pb, qd), qc

′ = lub(pa, qc)
{X ∈ I, Y ∈ J, X � Y} �−→ {X ∈ [pa, pb

′], Y ∈ [qc
′, qd], X � Y}

Equality constraint X = Y

pb
′ = glb(pb, qd), pa

′ = lub(pa, qc)
{X ∈ I, Y ∈ J, X = Y} �−→ {X ∈ [pa

′, pb
′], Y ∈ [pa

′, pb
′], X = Y}

Ternary addition constraints X +U Y = Z

r f
′ = (ub+, FI+J

ub+
), re

′ = (lb+, FI+J
lb+

)

{X ∈ I, Y ∈ J, Z ∈ K, Z = X +U Y} �−→ {X ∈ I, Y ∈ J, Z ∈ [re
′, r f

′], Z = X +U Y}
The projection onto Y’s domain is symmetrical.

pb
′ = (ub−, FK−J

ub− ), pa
′ = (lb−, FK−J

lb− )

{X ∈ I, Y ∈ J, Z ∈ K, X = Z −U Y} �−→ {X ∈ [pa
′, pb

′], Y ∈ J, Z ∈ K, X = Z −U Y}
Ternary multiplication constraint X ×U Y = Z

r f
′ = (ub×, FI×J

ub× ), re
′ = (lb×, FI×J

lb× )

{X ∈ I, Y ∈ J, Z ∈ K, Z = X ×U Y} �−→ {X ∈ I, Y ∈ J, Z ∈ [re
′, r f

′], Z = X ×U Y}
The projection onto Y’s domain is symmetrical.

pb
′ = (ub÷, FK÷J

ub÷ ), pa
′ = (lb÷, FK÷J

lb÷ )

{X ∈ I, Y ∈ J, Z ∈ K, X = K ÷U J} �−→ {X ∈ [pa
′, pb

′], Y ∈ J, Z ∈ K, X = K ÷U J}
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6.1 Empirical Evaluation

A prototype implementation of the constraint system was done as a module on top of
the CHR library in Sicstus Prolog. To evaluate the added value of the new constraint
domain, we consider an example provided in [16] , and attached a degree of knowl-
edge: the cdf values to the interval bounds. Example 6 aims at solving a system of
linear equations which has cdf-interval coefficients and unknown variables having no
certainty degree defined, i.e. the lower bound points are ’(0, 0)’ whereas upper-bound
of the variable interval is ’(∞, 1)’ with a cdf value ’1’. Shown below are pruned do-
mains of the variables at fixed point using our inferences. The cdf-intervals attached to
the data (here coefficients) were propagated onto the cdf-variables, X1 and X2. We can
see that inferences on the 1st-dimension yield similar pruning on the resulting variable
domains and the additional information coming from the cdf component demonstrate
the information gained on the density of occurrence for the resulting points within the
cdf-domains.

Example 6. Consider the system of linear equations (A,�, b) shown below:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
[(−2, 0.32), (2, 0.83)] [(1, 0.41), (2, 0.95)]

[(−2, 0.35), (−1, 0.87)] [(−1.001, 0.31), (−1, 0.75)]
[(5.999, 0.28), (6, 0.86)] [(1.5, 0.34), (3, 0.96)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

� =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
≤
=

=

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
[(3, 0.4), (4, 0.88)]

[(−5, 0.3), (5, 0.78)]
[(4, 0.29), (15, 0.85)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output domains for the variables X1 and X2 after applying the propagation cdf-
interval techniques are [(0.00, 0.05), (2.50, 0.69)] and [(0.00, 0.06), (5.00, 0.59)]
respectively.

Remark. If we remove any density value for the uncertain coefficients by assigning
values ’0’ and ’1’ to the lower and upper bounds of the cdf dimension, this amounts to
considering that the uncertain data is equally distributed along the given interval. The
output in this case is X1 ∈ [(0.00, 0.00), (2.50, 1.00)] and X2 ∈ [(0.00, 0.00), (5.00,
1.00)]. In this sense the cdf-interval constraint model generalizes the real interval arith-
metic constraint reasoning.

6.2 cdf-Interval Linear Programming

In this section we also show how the cdf-interval constraint model does also generalize
Interval Linear Systems [11]. Thus linear systems with cdf-interval coefficients and
variables can also be solved by a polynomial transformation into a linear model that
can then be sent to the Simplex method. The approach is very similar to the one used
for ILS with positive coefficients (also called POLI systems) [1].

Definition 9. Let V be a set of n cdf-variables, and C a set of m linear constraints
over V with cdf-interval coefficients. An cdf-interval Linear System UILS induced by
C over V is a tuple 〈A,�, b〉, where A ∈ (R × [0..1])m×n is the matrix of the LHS
intervals [glbA, lubA], b ∈ (R × [0..1])m is the vector of the RHS intervals [glbb, lubb]
and�i ∈ {≺,�,=,�,�} ∀i = 1, ..,m is a list of m relations.
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Generated Linear Inequalities. For space reasons we demonstrate the approach of
transformation of a positive cfd-interval linear system with positive values into a linear
system and omit the formal proof of equivalence of models.

Consider the following minimization problem over cdf-coefficients and variables:

Minimize Z =
n∑

j=1

[pej , p fj]pxj

subject to
n∑

j=1

[pai j , pbi j]pxj ≥ [pci , pdi] ∀i = 1, 2, ..,m

∀ j, pxj ∈ R+ × [0..1] (14)

The transformation of the above model yields (m×2n+1) inequalities per dimension. The
produced solution set is S di = {S k

di|k = 1, 2, ..., 2n+1} where the upper-bound value

range is S di = lub2n+1

k=1 S k
di and the lower-bound value range is S di = glb2n+1

k=1 S k
di; d is the

dimension order: 1 or 2.
The transformation is performed in two steps: first, each equality constraint is trans-

formed into two cdf-interval inequalities; then the cdf-constraints are transformed into
linear constraints. The output of the transformation applied to example 6 will be:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−2, 0.32) (1, 0.41)
(−2, 0.35) (−1.001, 0.31)
(1, 0.13) (1, 0.25)

(5.999, 0.28) (1.5, 0.34)
(−6, 0.14) (−3, 0.04)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

≤
≤
≤
≤
≤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(4, 0.88)
(5, 0.78)
(5, 0.7)

(15, 0.85)
(−4, 0.71)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Accordingly, the 1st constraint row is the inequality constraint: (−2, 0.32)px1+U(1, 0.41)
px2 � (4, 0.88). This constraint in turn will be transformed into two components:
−2x1 + x2 ≤ 4 and 0.25[0.41F2

ub + 0.95F2
lb + 0.32F1

ub + 0.83F1
lb] ≤ 0.88. The lin-

ear equations resulting from the transformation of the above ouput are presented here,
where equations 15 and 16 are in the 1st and 2nd dimensions respectively:

− 2x1 + 2x2 ≤ 4

−2x1 − 1.001x2 ≤ 5

x1 + x2 ≤ 5

5.999x1 + 1.5x2 ≤ 15

−6x1 − 3x2 ≤ −4 (15)

0.25[0.41F2
ub + 0.95F2

lb + 0.32F1
ub + 0.83F1

lb] ≤ 0.88

0.25[0.31F2
ub + 0.75F2

lb + 0.35F1
ub + 0.87F1

lb] ≤ 0.78

0.5[F1
ub + F2

ub] ≤ 0.7

0.25[0.34F2
ub + 0.96F2

lb + 0.28F1
ub + 0.86F1

lb] ≤ 0.85

0.5[F1
ub + F2

ub] ≤ 0.71

F1
lb ≤ F1

ub

F2
lb ≤ F2

ub (16)
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for a point pxi :xi is the point value in the 1st-dimension and both Fi
lb and Fi

ub are the
2nd-dimension lower bound and upper bound values that the point can take.

An additional constraint has been added to the linear equations in the 2nd-dimension;
this ensures that the lower bound value is less that its upper bound value. It is clear
that resulting equations in both dimensions are linear and can be solved using linear
programming techniques.

7 Conclusion

The framework of reliable computing offers robust and tractable approaches to reason
with uncertain data by means of convex models of uncertainty sets (e.g using interval
coefficients). It does not account however for any degree of knowledge about the data
such as the density function. Thus all solutions in the solution set have equal uncertainty
weight. This paper addressed this issue and showed how to embed a degree of knowl-
edge in the form of the cumulative distribution function. The paper proposed the novel
concept of cdf-interval, whereby an uncertainty set is specified by an interval of points
with first coordinate the data uncertainty value, and second coordinate its cdf value.
Since the uncertain data and consequently the decision variables are specified by their
confidence interval, so is the solution set. We also presented the constraint system over
this new domain by extending the real interval arithmetic to cdf-interval arithmetic us-
ing the monotone non-increasing property of the cdf function. Finally the application of
cdf-intervals to extend the approach over Interval Linear Systems was showcased. We
are currently applying this new approach to larger systems of constraints with applica-
tion to vehicle routing, networking but also finance and image recognition, where the
uncertain data is enriched with a degree of knowledge (i.e..the density function drawn
from historic data trends or randomly generated).
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Abstract. The Soft Global Cardinality Constraint (softggc) relaxes
the Global Cardinality Constraint (gcc) by introducing a violation vari-
able representing unmet requirements on the number of value occur-
rences. A first domain consistent filtering algorithm was introduced by
Van Hoeve et al. in 2004 using a minimum cost flow algorithm. A simpler
and more efficient filtering algorithm was introduced in 2006 by Zanarini
et al. using matchings in bipartite graphs. While the consistency check
introduced in the second algorithm is correct, we show that the algorithm
may not achieve domain consistency when cardinality requirements con-
tain zeroes. We give new domain consistent conditions and show how to
achieve domain consistency within the same time bounds. The softggc

constraint was implemented in Comet.

1 Introduction

Régin et al. [3] suggested to soften global constraints by introducing a cost vari-
able measuring the violation of the constraints. This has the advantage that
over-constrained satisfaction problems can be turned into a constrained opti-
mization problem solvable by traditional CP solvers; furthermore specialized
filtering algorithms can be employed to filter the variables involved in soft con-
straints. One of the most used global constraints to solve practical problems is
the Global Cardinality Constraint (gcc) introduced in [2]:

Definition 1

gcc(X, l, u) = {(d1, . . . , dn) | di ∈ Di, ld ≤ |{di | di = d}| ≤ ud , ∀d ∈ DX}

A soft version of this constraint (softggc) was introduced in [4]:

softggc(X, l, u, Z) = {(d1, . . . , dn) | di ∈ Di, dz ∈ DZ , viol(d1, . . . , dn) ≤ dz}

where

viol(d1, . . . , dn) =
∑

d∈DX

max(0, |{di | di = d}| − ud, ld − |{di | di = d}|).

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 307–312, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The violation represents the sum of excess or shortage for each value. For space
reasons, we only consider the value-based violation version of the constraint in
this paper as the extension to variable violation follows directly (as in [5]).

The domain filtering algorithm for softggc introduced in [5] exploits match-
ing theory and we use the same notation for consistency and clarity. The consis-
tency check and the filtering of the violation variable Z are briefly summarized
in Section 2. The main contribution of the paper is in Section 3 where the cor-
rected filtering algorithm for the X variables is presented. Please refer to [5] for
some basic notions about matching theory.

2 Consistency Checking and Filtering of Zmin [5]

Let G(X ∪ D, E) be an undirected bipartite graph (also known as the value
graph) such that one partition represents the variable set and the other one the
value set. There is an edge {xi, d} ∈ E if and only if d ∈ Di. Two specialized
versions of G were introduced in [5]: They differ only by the capacity of value
vertices, where vertex capacity is the maximum number of edges belonging to
the matching that share the vertex.

Definition 2. Let Go (the overflow graph) be a value graph such that the ca-
pacities of value-vertices are set to c(d) = ud. Analogously let Gu (the under-
flow graph) be a value graph such that the capacities of value vertices are set to
c(d) = ld. In both Go and Gu, variable vertices have unit capacities.

The violation is expressed in terms of overflows and underflows. They are are
characterized by Theorem 1 which specifies how to find

– a valid assignment (d1, . . . , dn) that minimizes the total overflow :∑
d∈DX

max(0, |{di | di = d}| − ud),

– a valid assignment (d1, . . . , dn) that minimizes the total underflow :∑
d∈DX

max(0, ld − |{di | di = d}|).

Theorem 1 ([5]). Given a maximum matching Mo in the graph Go, it is not
possible to find an assignment with a total overflow less than BOF = |X |− |Mo|
(best overflow). Given a maximum matching Mu in the graph Gu, it is not
possible to find an assignment with a total underflow less than BUF =

∑
d∈D ld−

|Mu| (best underflow).

Theorem 2 ([5]). Given a softggc constraint and two maximum matchings
Mo and Mu , respectively in Go and Gu , it is possible to build a class of
assignments with overflow equal to BOF = |X | − |Mo| (best overflow) and
BUF =

∑
d∈D ld − |Mu| (best underflow).
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In other words, Theorem 2 tells us that it is possible to find an assignment
with a violation equal to BOF + BUF . The violation variable can be filtered as
Zmin ← max(Zmin, BOF + BUF ). If BOF + BUF > Zmax, then the constraint
is inconsistent. The algorithm to find an assignment with a violation equal to
BOF +BUF starts from a matching Mu in Gu (having by definition a underflow
of BUF and an overflow of 0 but not representing a complete assignment). This
matching is then increased in Go using a classical augmenting-path algorithm.
Since the augmenting-path algorithm never decreases the degree of a vertex,
the underflow cannot increase (it remains constant). At the end, the overflow is
equal to BOF . The final assignment has a violation equal to BOF + BUF . See
[5] for further details.

3 Filtering of X

While the consistency check is correct, the original paper [5] overlooked the case
in which the lower or upper bounds of the value occurrences are zeroes and it
does not characterize the conditions to achieve domain consistency in such cases
(see Example 1 below). In this section, we review and correct the theorems on
which the filtering algorithm is built upon. Theorem 3 shows the properties for
which a vertex x is matched in every maximum matching.

Theorem 3. A variable vertex x is matched in every maximum matching of Gu

(Go) iff it is matched in a maximum matching Mu (Mo) and there does not exist
an M -alternating path starting from a free variable vertex and finishing in x.

Proof
⇒ Suppose there exists an even M -alternating path P starting from a free
variable vertex x′ such that P = {x′, . . . , x}; the alternating path is even as x
and x′ belong to the same vertex partition furthermore x must be matched as
P is an alternating path and x′ is free. Then M ′ = M ⊕ P ′ is still a maximum
matching in which x is free.
⇐ Suppose there exists a maximum matching M ′ in which x is free. Any of
the adjacent vertices of x are matched otherwise M ′ is not maximum. We can
build an even alternating path starting from x by choosing one of the adjacent
vertices of x and then by following the edge belonging to M ′. By using such
an even alternating path, it is possible to build a new maximum matching in
which x is matched and there exists an M -alternating path starting from a free
variable-vertex.

Theorem 4 gives the conditions under which forcing an assignment x ← v leads
to a unit increase in the best underflow.

Theorem 4. Forcing the assignment x ← v leads to decrease the size of the
maximum matching in Gu by one and thus increasing the underflow by one if
and only if lv > 0 and e = {x, v} does not belong to a maximum matching in
Gu, or lv = 0 and the vertex x is matched in every maximum matching in Gu.
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Proof. If lv > 0, then there exists a matching (maybe not maximum) using
the edge x ← v. Consequently, if e = {x, v} does not belong to any maximum
matching of Gu, the size of a maximum matching would decrease by one forcing
the assignment x ← v. Now if lv = 0, then the edge x ← v belongs to no
matching of Gu so the size of the maximum matching decreases only if the
vertex x is matched in every maximum matching. ��

Example 1. Assume D1 = {1, 2}, D2 = {1, 3}, D3 = {1, 3} with l1 = 0, l2 =
1, l3 = 1 (upper bounds are all equal to |X |). A maximum underflow matching
is M = {{X1, 2}, {X2, 3}} that does not incur in any violation. The wrong
assumption made in [5] was to consider that values with capacity equal to zero
would not cause any sort of underflow increase. However, in some cases, this
assumption is incorrect as we now show.

Forcing the assignment X2 = 1 (or equivalently X3 = 1) does not cause
an increment of violation; X2 belongs to an M -alternating path starting from
a free variable vertex, i.e., P = (X3, 3, X2) therefore there exists a maximum
matching M ′ in which X2 is free (M ′ = {{X1, 2}, {X3, 3}}). Then, X2 can take
the value 1 without increasing the underflow. The assignment X = (2, 1, 3) has
total violation equal to zero. However, forcing the assignment X1 = 1 causes
an increment of violation; there is no M -alternating path starting from a free
variable vertex and ending in X1 thus X1 is matched in every maximum matching
and it is not free to take the value 1 without increasing the underflow. The best
assignment would then have a unit underflow (e.g., X = (1, 3, 3)) as only X1 can
take the value 2.

Similarly, Theorem 5 gives the conditions under which forcing an assignment
x ← v leads to a unit increase to the best overflow.

Theorem 5. Forcing the assignment x ← v leads to decrease the size of the
maximum matching in Go by one and thus increasing the overflow by one if and
only if uv > 0 and e = {x, v} does not belong to a maximum matching in Go, or
uv = 0 and the vertex x is matched in every maximum matching in Go.

Proof. Similar to proof of theorem 4

Example 2. Assume D1 = {1, 4}, D2 = {1, 2, 3}, D3 = {1, 3}, D4 = {3}, D5 =
{1, 2, 4} with u1 = 1, u2 = 2, u3 = 1, u4 = 0 (all lower bounds are null). A
maximum overflow assignment is X = (1, 2,−, 3, 2) (unit violation). Variable
X1 belongs to an M -alternating path starting from a free variable-vertex P =
(X3, 1, X1), therefore there exists a maximum matching in which X1 is free to
take any value without increasing the best overflow (e.g., the full assignment X =
(4, 2, 1, 3, 2) has still an overflow equal to 1). For the arc (X5, 4), the situation is
different: in fact X5 is matched in every maximum matching. Therefore, forcing
this assignment would increase the overflow to 2; the best assignment we could
get is for instance X = (1, 2, 1, 3, 4).

Theorem 6 gives the conditions to reach domain consistency.
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Theorem 6. Let Go and Gu be the value graphs with respectively upper and
lower bound capacities and let Mo and Mu be maximum matching respectively
in Go and Gu ; let BOF and BUF be respectively BOF = |X | − |Mo| and
BUF =

∑
d∈D ld−|Mu|. The constraint softggc(X, l, u, Z) is domain consistent

on X if and only if min DZ ≤ BOF + BUF and either:

1. BOF + BUF < (maxDZ − 1) or
2. if BOF + BUF = (max DZ − 1) and for each edge e = {x, v} either

– it belongs to a maximum matching in Gu, or lv = 0 and the vertex x is
not matched in every maximum matching in Gu or

– it belongs to a maximum matching in Go, or uv = 0 and the vertex x is
not matched in every maximum matching in Go or

3. if BOF + BUF = max DZ and for each edge e = {x, v} we have that
– it belongs to a maximum matching in Gu, or lv = 0 and the vertex x is

not matched in every maximum matching in Gu and
– it belongs to a maximum matching in Go, or uv = 0 and the vertex x is

not matched in every maximum matching in Go .

Proof. Common to the proof of all the cases is the fact that there exists an
assignment with violation BOF + BUF . If BOF + BUF > maxDZ then the
constraint is inconsistent since BOF + BUF is a lower bound on the violation.

1. Forcing the assignment of one variable cannot increase BUF by more than
one and cannot increase BOF by more than one. So in the worst case the
assignment of a variable to a value results in BUF ′ = BUF +1 and BOF ′ =
BOF + 1. By Theorem 2 it is possible to build an assignment for all the
variables with violation BUF ′+BOF ′ = BUF +BOF +2 ≤ maxDZ which
is thus consistent.

2. Since BOF + BUF = (maxDZ − 1) and because of Theorem 2, at most
one of BUF or BOF can increase by one by forcing the assignment x ← v.
Theorems 4 and 5 tell us the conditions say Cu and Co under which the
assignment leads to increase respectively BUF and BOF by one. At most
one of these conditions can be satisfied. Hence the condition expressed is
nothing else than ¬(Cu ∧ Co) ≡ ¬Cu ∨ ¬Co.

3. This is similar to previous point except that neither BUF nor BOF can
increase by one. Hence the condition expressed is ¬Cu ∧ ¬Co. ��

Note that once we compute the alternating paths to detect edges belonging to a
maximum matching, we get for free also the variable vertices that are matched in
every maximum matching (Theorem 3). Therefore the complexity of the filtering
algorithm remains unchanged w.r.t. [5].

The algorithm described in this paper is implemented in the constraints
softAtLeast, softAtMost and softCardinality of Comet [1].
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Abstract. We propose a hybrid approach for solving the resource-con-
strained project scheduling problem which is an extremely hard to solve
combinatorial optimization problem of practical relevance. Jobs have to
be scheduled on (renewable) resources subject to precedence constraints
such that the resource capacities are never exceeded and the latest com-
pletion time of all jobs is minimized.

The problem has challenged researchers from different communities,
such as integer programming (IP), constraint programming (CP), and
satisfiability testing (SAT). Still, there are instances with 60 jobs which
have not been solved for many years. The currently best known approach,
lazyFD, is a hybrid between CP and SAT techniques.

In this paper we propose an even stronger hybridization by integrat-
ing all the three areas, IP, CP, and SAT, into a single branch-and-bound
scheme. We show that lower bounds from the linear relaxation of the
IP formulation and conflict analysis are key ingredients for pruning the
search tree. First computational experiments show very promising re-
sults. For five instances of the well-known PSPLib we report an im-
provement of lower bounds. Our implementation is generic, thus it can
be potentially applied to similar problems as well.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is not only theo-
retically hard [5] but consistently resists computational attempts to obtain solu-
tions of proven high quality even for instances of moderate size. As the problem
is of high practical relevance, it is an ideal playground for different optimization
communities, such as integer programming (IP), constraint programming (CP),
and satisfiability testing (SAT), which lead to a variety of publications, see [6].
� Supported by the DFG Research Center Matheon Mathematics for key technologies

in Berlin.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 313–317, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



314 T. Berthold et al.

The three areas each come with their own strengths to reduce the size of
the search space. Integer programming solvers build on lower bounds obtained
from linear relaxations. Relaxation can often be considerably strengthened by
additional valid inequalities (cuts), which spawned the rich theory of polyhedral
combinatorics. Constraint programming techniques cleverly learn about logical
implications (between variable settings) which are used to strengthen the bounds
on variables (domain propagation). Moreover, the constraints in a CP model are
usually much more expressive than in the IP world. Satisfiability testing, or
SAT for short, actually draws from unsatisfiable or conflicting structures which
helps to quickly finding reasons for and excluding infeasible parts of the search
space. The RCPSP offers footholds to attacks from all three fields but no single
one alone has been able to crack the problem. So it is not surprising that the
currently best known approach [11] is a hybrid between two areas, CP and SAT.
Conceptually, it is the logical next step to integrate the IP world as well. It is
the purpose of this study to evaluate the potential of such a hybrid and to give
a proof-of-concept.

Our Contribution. Following the constraint integer programming (CIP)
paradigm as realized in scip [1,12], we integrate the three techniques into a
single branch-and-bound tree. We present a CP approach, enhanced by lower
bounds from the linear programming (LP) relaxation, supported by the scip in-
tern conflict analysis and a problem specific heuristic. We evaluate the usefulness
of LP relaxation and conflict analysis in order to solve scheduling problems from
the well known PSPLib [10]. CP’s global cumulative constraint is an essential
part of our model, and one contribution of our work is to make this constraint
generically available within the CIP solver scip.

In our preliminary computational experiments it turns out that already a
basic implementation is competitive with the state-of-the-art. It is remarkable
that this holds for both, upper and lower bounds, the respective best known of
which were not obtained with a single approach. In fact, besides meeting upper
bounds which were found only very recently [11], independently of our work, we
improve on several best known lower bounds of instances of the PSPLib.

Related Work. For an overview on models and techniques for solving the
RCPSP we refer to the recent survey of [6]. Several works on scheduling problems
already combine solving techniques in hybrid approaches. For the best current
results on instances of PSPLib, we refer to [11], where a constraint programming
approach is supported by lazily creating a SAT model during the branch-and-
bound process by which new constraints, so called no-goods, are generated.

2 Problem Description

In the RCPSP we are given a set J of non-preemptable jobs and a set R
of renewable resources. Each resource k ∈ R has bounded capacity Rk ∈ N.
Every job j has a processing time pj ∈ N and resource demands rjk ∈ N of each
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resource k ∈ R. The starting time Sj of a job is constrained by its predecessors
that are given by a precedence graph D = (V, A) with V ⊆ J . An arc (i, j) ∈ A
represents a precedence relationship, i.e., job i must be finished before job j
starts. The goal is to schedule all jobs with respect to resource and precedence
constraints, such that the latest completion time of all jobs is minimized.

The RCPSP can be modeled easily as a constraint program using the global
cumulative constraint [3] which enforces that at each point in time, the cumu-
lated demand of the set of jobs running at that point, does not exceed the given
capacities. Given a vector S of start time variables Sj for each job j, the RCPSP
can be modeled as follows:

min max
j∈J

Sj + pj

subject to Si + pi ≤ Sj ∀ (i, j) ∈ A (1)
cumulative(S, p, r.k, Rk) ∀ k ∈ R

3 Linear Programming Relaxation and Conflict Analysis

For the implementation we use the CIP solver scip which performs a complete
search in a branch-and-bound manner. The question to answer is how strongly
conflict analysis and LP techniques are involved in the solving process by prun-
ing the search tree. Therefore a first version of separation and conflict analysis
methods are implemented for the cumulative constraint.

As IP model we use the formulation of [9] with binary start time variables.
In the cumulative constraint we generate knapsack constraints [1] from the
capacity cuts. Propagation of variable bounds and repropagations of bound
changes are left to the solver scip. For the cumulative constraint bounds are
updated according to the concept of core-times [7]. The core-time of a job is de-
fined by the interval [ubj, �bj + pj]. A jobs lower bound can be updated from �bj

to �b�
j if its demand plus the demands of the cores exceed the resource capacity

in certain time intervals. An explanation of this bound change is given by the
set of jobs that have a core during this interval. More formally, let C ⊂ J be
the set of jobs whose core is non-empty, i.e., ubj < �bj + pj holds for j ∈ C. The
delivered explanation is the local lower bound of job j itself and the local lower
and upper bounds of all jobs k ∈

{
i ∈ C : ubi < �b�

j and �bi + pi > �bj

}
.

This poses the interesting still open question whether it is NP-hard to find a
minimum set of jobs from which the bound change can be derived.

To speed up the propagationprocess, we filter from the cumulativeconstraints,
all pairs of jobs that cannot be executed in parallel and propagate them in a
global disjunctive bounds constraint. This one propagates and checks the con-
straints in a more efficient manner and can separate further cuts based on forbid-
den sets. To get tight primal bounds, we apply a primal heuristic that is based on
a fast list scheduling algorithm [8]. If an LP solution is available the list of jobs is
sorted according to the start times of the jobs, otherwise by weighted local bounds,
and α-points [8]. Furthermore, we apply a justification improvement heuristic as
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Table 1. Summary of the computational results. Detailed results are given in [4].

480 instances with 30 jobs 480 instances with 60 jobs

Nodes Time in [s] Nodes Time in [s]
Setting opt best wor. total(k) geom total(k) geom opt best wor. total(k) geom total(k) geom

default 460 476 4 3 513 173.2 93.0 7.8 385 395 85 34 104 364.3 350.9 27.3
noconflict 436 467 13 8 665 246.6 175.0 11.6 381 390 90 38 099 381.8 362.9 28.3
norelax 454 467 13 7 444 194.0 106.8 6.5 384 390 90 127 684 591.2 355.8 26.1
none 446 465 15 9 356 217.5 135.5 7.7 382 389 91 126 714 599.3 364.8 26.9

bestset 460 476 4 – – – – 391 401 79 – – – –
lazyFD 480 480 0 – – – – 429 429 51 – – – –

described in [13] whenever a better solution was found. We use hybrid branching [2]
only on integer variables.

4 Computational Results

In this section, we analyze the impact of the two features LP relaxation and
conflict analysis for the RCPSP using the test sets of the PSPLib [10]. Due
to the lack of space we restrict ourselves mainly to the test sets containing 30
and 60 jobs. For instances with 120 jobs we report improved lower bounds.

All computations were obtained on Intel Xeon Core 2.66GHz computers (in
64 bit mode) with 4MB cache, running Linux, and 8 GB of main memory. We
used scip [12] version 1.2.0.6 and integrated cplex release version 12.10 as
underlying LP solver. A time limit of one hour was enforced for each instance.

Table 1 presents the results for different settings which differ by disabled
features. The setting “norelax” does not take advantage of the LP relaxation,
“noconflict” avoids conflict analysis, “none” stands for disabling both these fea-
tures whereas “default” enables both. The settings “bestset” is the best of the
previous four settings for each instance and the last line reports the results for
the solver lazyFD. We compare for how many instances optimality (“opt”) was
proven, the best known primal solution (“best”) was found, and the primal so-
lution was worse (“wor.”) than the best known. Besides that we state total time
and number of branch-and-bound nodes over all instances in the test set and the
shifted geometric means1 (“geom”) over these two performance measures.

First of all the results show that our approach is competitive to the current
best known method [11]. We observe further, that using both features leads to
a tremendous reduction of the search space. This does not directly transfer to
the running time. From that point of view the relaxation seems to be more
expensive as the conflict analysis. On the other hand, the relaxation prunes a
greater portion of the search space compared to the reduction achieved by the
conflict analysis. Using both features, however, leads to the best performance
and indicates the potential of this highly integrated approach.

1 The shifted geometric mean of values t1, . . . , tn is defined as
(∏

(ti + s)
)1/n− s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.
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Already with this basic implementation we can improve the lower bounds of
five large instances with 120 jobs. These are j12018 3 (and j12018 9) where the
new lower bound is 100 (and 88). For j12019 6 (and j12019 9) we obtain lower
bounds of 89 (and 87). Finally, we prove a lower bound of 75 for j12020 3.

5 Conclusions

We have shown the power of integrating CP, IP, and SAT techniques into a
single approach to solve the RCPSP. Already with our basic implementation we
are competitive with both, the best known upper and lower bounds, and even
improve on a few. There is ample room for improvement, like strengthening the
LP relaxation by cutting planes or a dynamic edge-finding which can be exploited
using scip’s re-propagation capabilities. This is subject to current research.
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Abstract. This paper considers the single commodity allocation prob-
lem (SCAP) for disaster recovery, a fundamental problem faced by all
populated areas. SCAPs are complex stochastic optimization problems
that combine resource allocation, warehouse routing, and parallel fleet
routing. Moreover, these problems must be solved under tight runtime
constraints to be practical in real-world disaster situations. This paper
formalizes the specification of SCAPs and introduces a novel multi-stage
hybrid-optimization algorithm that utilizes the strengths of mixed in-
teger programming, constraint programming, and large neighborhood
search. The algorithm was validated on hurricane disaster scenarios gen-
erated by Los Alamos National Laboratory using state-of-the-art disaster
simulation tools and is deployed to aid federal organizations in the US.

1 Background and Motivation

Every year seasonal hurricanes threaten coastal areas. The severity of hurricane
damage varies from year to year, but considerable human and monetary resources
are always spent to prepare for and recover from these disasters. It is policy
makers who make the critical decisions relating to how money and resources are
allocated for preparation and recovery. At this time, preparation and recovery
plans developed by policy makers are often ad hoc and rely on available subject
matter expertise. Furthermore, the National Hurricane Center (NHC) of the
National Weather Service in the United States (among others) is highly skilled
at generating ensembles of possible hurricane tracks but current preparation
methods often ignore this information.

This paper aims at solving this problem more rigorously by combining opti-
mization techniques and disaster-specific information given by NHC predictions.
The problem is not only hard from a combinatorial optimization standpoint,
but it is also inherently stochastic because the exact outcome of the disaster
is unknown. Although humans have difficulty reasoning over uncertain data,
recent work in the optimization community [13,5] has shown that stochastic op-
timization techniques can find robust solutions in problems with uncertainty to
overcome this difficulty.

The paper considers the following abstract disaster recovery problem: How to
store a single commodity throughout a populated area to minimize its delivery
time after a disaster has occurred. It makes the following technical contributions:
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1. It formalizes the single commodity allocation problem (SCAP).
2. It proposes a multi-stage hybrid-optimization decomposition for SCAPs,

combining a MIP model for stochastic commodity storage, a hybrid CP/MIP
model for multi-trip vehicle routing, and a large neighborhood search model
for minimizing the latest delivery time in multiple vehicle routing.

3. It validates the approach on the delivery of potable water for hurricane
recovery.

Section 2 of this paper reviews similar work on disaster preparation and recovery
problems. Section 3 presents a mathematical formulation of the disaster recovery
problem and sets up the notations for the rest of paper. Section 4 presents the
overall approach using (hopefully) intuitive models. Section 5 presents a number
of modeling and algorithmic improvements that refines each of the initial models;
it also presents the final version of the optimization algorithm for SCAPs. Section
6 reports experimental results of our complete algorithm on some benchmark
instances to validate the approach and Section 7 concludes the paper.

2 Previous Work

The operations research community has been investigating the field of human-
itarian logistics since the 1990s but recent disasters have brought increased at-
tention to these kinds of logistical problems [18,4,10,9]. Humanitarian logistics
is filled with a wide variety of optimization problems that combine aspects from
classic problems in inventory routing, supply chain management, warehouse lo-
cation, and vehicle routing. The problems posed by humanitarian logistics add
significant complexity to their classical variants. The operations research com-
munity recognizes that novel research in this area is required to solve these kinds
of problems [18,4]. Some of the key features that characterize these problems are
as follows:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objective goals (e.g. operational costs, speed of service,
and unserved customers) [3,8,2,12].

2. Non-Standard Objective Functions - A makespan time objective in
VRPs [3,6] or equitability objectives [2].

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [2],
fixed latest delivery time [3,2], or a insufficient preparation budget [8,11].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [8,12].

Humanitarian logistics also studies these problems at a variety of scales in both
space and time. Some problems consider a global scale with time measured in
days and weeks [8], while others focus on the minute-by-minute details of deliv-
ering supplies from local warehouses directly to the survivors [3,2]. This paper
considers a scale which is often called the “last mile” of distribution. This in-
volves warehouse selection and customer delivery at the city and state scale.
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The operations research community has mainly formulated these problems
using MIP models. Many of the humanitarian logistics problems are complex
and MIP formulations do not always scale to real world instances [2,3]. Addi-
tionally, it was shown that MIP solvers can have difficulty with some of the
unique features of these kinds of problems even when problem sizes are small
(e.g., with minimizing the latest delivery time in VRPs [6]). Local search tech-
niques are often used to scale the problems to real world instances [3,6]. This
paper demonstrates how hybrid optimization methods and recent advances in
the optimization community can yield high-quality solutions to such challenges.
To the best of our knowledge, SCAPs are the first humanitarian logistic prob-
lem to investigate the “last mile” vehicle routing problem and stochastic disaster
information simultaneously.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = 〈V, E〉
where V represents those sites of interest to the allocation problem, i.e., sites
requiring the commodity after the disaster (e.g., hospitals, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored at
any node of the graph subject to some side constraints. For simplicity, we assume
the graph is complete and the edges have weights representing travel times. The
weights on the edges form a metric space but it is not Euclidean due to the
transportation infrastructure. Moreover, the travel times can vary in different
disaster scenarios due to road damage. The primary outputs of a SCAP are (1)
the amount of commodity to be stored at each node; (2) for each scenario and
each vehicle, the best plan to deliver the commodities. Figure 1 summarizes the
entire problem, which we now describe in detail.

Objectives. The objective function aims at minimizing three factors: (1) The
amount of unsatisfied demands; (2) the time it takes to meet those demands; (3)
the cost of storing the commodity. Since these values are not expressed in the
same units, it is not always clear how to combine them into a single objective
function. Furthermore, their relative importance is typically decided by policy
makers on a case-by-case basis. For these reasons, this paper uses weights Wx,
Wy, and Wz to balance the objectives and to give control to policy makers.

Side Constraints. The first set of side constraints concerns the nodes of the
graph which represent the repositories in the populated area. Each repository
Ri∈1..n has a maximum capacity RCi to store the commodity. It also has a one-
time initial cost RIi (the investment cost) and an incremental cost RMi for each
unit of commodity to be stored. As policy makers often work within budget
constraints, the sum of all costs in the system must be less than a budget B.

The second set of side constraints concerns the deliveries. We are given a
fleet of m vehicles Vi∈1..m which are homogeneous in terms of their capacity
V C. Each vehicle has a unique starting depot D+

i and ending depot D−
i . Unlike
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Given:
Repositories: Ri∈1..n

Capacity: RCi

Investment Cost: RIi

Maintenance Cost: RMi

Vehicles: Vi∈1..m

Capacity: V C
Start Depot: D+

i

End Depot: D−i
Scenario Data: Si∈1..a

Scenario Probability: Pi

Available Sites: ARi ⊂ {1..n}
Site Demand: Ci,1..n

Travel Time Matrix: Ti,1..l,1..l

Weights: Wx, Wy, Wz

Budget: B

Output:
The amount stored at each warehouse
Delivery schedules for each vehicle

Minimize:
Wx ∗Unserved Demands +
Wy ∗MAXi

1..mTour Timei+
Wz ∗ Investment Cost +
Wz ∗Maintenance Cost

Subject To:
Vehicle and site capacities
Vehicles start and end locations
Costs ≤ B

Notes:
Every warehouse that stores a unit
must be visited at least once

Fig. 1. Single Commodity Allocation Problem Specification

classic vehicle routing problems [17], customer demands in SCAPs often exceed
the vehicle capacity and hence multiple deliveries are often required to serve a
single customer.

Stochasticity. SCAPs are specified by a set of a different disaster scenarios
Si∈1..a, each with an associated probability Pi. After a disaster, some sites are
damaged and each scenario has a set ARi of available sites where the stored
commodities remain intact. Moreover, each scenario specifies, for each site Ri,
the demand Ci. Note that a site may have a demand even if a site is not avail-
able. Finally, site-to-site travel times Ti,1..l,1..l (where l = |V |) are given for each
scenario and capture infrastructure damages.

Unique Features. Although different aspects of this problem were studied before
in the context of vehicle routing, location routing, inventory management, and
humanitarian logistics, SCAPs present unique features. Earlier work in location-
routing problems (LRP) assumes that (1) customers and warehouses (storage
locations) are disjoint sets; (2) the number of warehouses is ≈ 3..10; (3) customer
demands are less than the vehicle capacity; (4) customer demands are atomic.

None of these assumptions hold in the SCAP context. In a SCAP, it may not
only be necessary to serve a customer with multiple trips but, due to the storage
capacity constraints, those trips may need to come from different warehouses.
The key features of SCAP are: (1) each site can be a warehouse and/or customer;
(2) one warehouse may have to make many trips to a single customer; (3) one
customer may be served by many warehouses; (4) the number of available vehicles
is fixed; (5) vehicles may start and end in different depots; (6) the objective is to
minimize the time of the last delivery. Minimizing the time of the last delivery
is one of the most difficult aspects of this problem as in demonstrated in [6].
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4 The Basic Approach

This section presents the basic approach to the SCAP problem for simplifying
the reading of the paper. Modeling and algorithmic improvements are presented
in Section 5. Previous work on location routing [7,1,15] has shown that reason-
ing over both the storage problem and the routing problem simultaneously is
extremely hard computationally. To address this difficulty, we present a three-
stage algorithm that decomposes the storage, customer allocation, and routing
decisions. The three stages and the key decisions of each stage are as follows:

1. Storage & Customer Allocation: Which repositories store the commod-
ity and how is the commodity allocated to each customer?

2. Repository Routing: For each repository, what is the best customer dis-
tribution plan?

3. Fleet Routing: How to visit the repositories to minimize the time of the
last delivery?

The decisions of each stage are independent and can use the optimization tech-
nique most appropriate to their nature. The first stage is formulated as a MIP,
the second stage is solved optimally using constraint programming, and the third
stage uses large neighborhood search (LNS).

Storage & Customer Allocation. The first stage captures the cost and demand
objectives precisely but approximates the routing aspects. In particular, the
model only considers the time to move the commodity from the repository to
a customer, not the maximum delivery times. Let D be a set of delivery triples
of the form 〈source, destination, quantity〉. The delivery-time component of the
objective is replaced by

Wy ∗
∑

〈s,d,q〉∈D

Ts,d ∗ q/V C

Figure 2 presents the stochastic MIP model, which scales well with the number
of disaster scenarios because the number of integer variables only depends on
the number of sites n. The meaning of the decision variables is explained in the
figure. Once the storage and customer allocation are computed, the uncertainty
is revealed and the second stage reduces to a deterministic multi-depot, multiple-
vehicle capacitated routing problem whose objective consists in minimizing the
latest delivery. To our knowledge, this problem has not been studied before.
One of its difficulties in this setting is that the customer demand is typically
much larger than the vehicle capacity. As a result, we tackle it in two steps. We
first consider each repository independently and determine a number of vehicle
trips to serve the repository customers (Repository Routing). A trip is a tour
that starts at the depot, visits customers, returns to the depot, and satisfies the
vehicle capacity constraints. We then determine how to route the vehicles to
perform all the trips and minimize the latest delivery time (Fleet Routing).
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Variables:
Storedi∈1..n ∈ [0, RCi] - Units stored
Openi∈1..n ∈ {0, 1} - More than zero units stored flag

StoredSaveds∈1..a,i∈1..n ∈ [0, Cs,i] - Units used at the storage location
StoredSents∈1..a,i∈1..n ∈ [0, RCi] - Total units shipped to other locations
Incomings∈1..a,i∈1..n ∈ [0, Cs,i] - Total units coming from other locations
Unsatisfied s∈1..a,i∈1..n ∈ [0, Cs,i] - Demand not satisfied
Sents∈1..a,i∈1..n,j∈1..n ∈ [0, RCi/V C] - Trips needed from i to j

Minimize:

Wx ∗
∑

s∈1..a

Ps ∗
∑

i∈1..n

Unsatisfied s,i+

Wy ∗
∑

s∈1..a

Ps ∗
∑

i∈1..n

∑
j∈1..n

Ts,i,j ∗ Sents,i,j+

Wz ∗
∑

i∈1..n

(RIi ∗Openi + RMi ∗ Storedi)

Subject To:∑
i∈1..n

(RIi ∗ Openi + RMi ∗ Storedi) ≤ B

RCi ∗ Openi ≥ Storedi ∀i
StoredSaveds,i + Incomings,i + Unsatisfied s,i = Cs,i ∀s, i
StoredSaveds,i + StoredSents,i ≤ Storedi ∀s, i∑
j∈1..n

V C ∗ Sents,i,j = StoredSents,i ∀s, i∑
j∈1..n

V C ∗ Sents,j,i = Incomings,i ∀s, i

StoredSaveds,i + StoredSents,i = 0 ∀s, i where i not in ARs

Fig. 2. Storage & Customer Selection: The MIP Model

Repository Routing. Figure 3 shows how to create the inputs for repository
routing from the outputs of the MIP model. For a given scenario s, the idea is
to compute the customers of each repository w, the number of full-capacity trips
FullT ripss,w,c and the remaining demand Demands,w,c needed to serve each
such customer c. The full trips are only considered in the fleet routing since they
must be performed by a round-trip. The minimum number of trips required to
serve the remaining customers is also computed using a bin-packing algorithm.
The repository routing then finds a set of trips serving these customers with
minimal travel time. The repository routing is solved using a simple CP model
depicted in Figure 4. The model uses two depots for each possible trip (a starting
and an ending depot localized at the repository) and considers nodes consisting of
the depots and the customers. Its decision variables are the successor variables
specifying which node to visit next and the trip variables associating a trip
with each customer. The circuit constraint expresses that the successor variables
constitute a circuit, the vehicle capacity constraint is enforced with a multi-
knapsack constraint, and the remaining constraints associate a trip number with
every node. This model is then solved to optimality.
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Given scenario s and for each repository w ∈ 1..n
Customerss,w = {i ∈ 1..n : Sents,w,i > 0}
For c ∈ Customerss,w

FullT ripss,w,c = �Sents,w,c�
Demands,w,c = V C ∗ (Sents,w,c − �Sents,w,c�)

MinTripss,w = MinBinPacking({Demands,w,c : c ∈ Customerss,w}, V C)

Fig. 3. The Inputs for the Repository Routing

Let:
Depots+

s,w = {d+
1 , d+

2 , ..., d+
MinTripss,w

}
Depots−s,w = {d−1 , d−2 , ..., d−MinTripss,w

}
Nodess,w = Depots+

s,w ∪Depots−s,w ∪ Customerss,w

Tripss,w = {1, 2, ..., MinTripss,w}

Variables:
Successor[Nodess,w] ∈ Nodess,w - Node traversal order
Trip[Nodess,w] ∈ Tripss,w - Node trip assignment

Minimize:∑
n∈Nodess,w

Ts,n,Successor[n]

Subject To:
circuit(Successor)
multiknapsack(Trip, {Demands,w,c : c ∈ Customerss,w}, V C)
for w+

i ∈ Depots+
s,w: Trip[w+

i ] = i
for w−i ∈ Depots−s,w: Trip[w−i ] = i
for n ∈ Customerss,w ∪Depots+

s,w: Trip[n] = Trip[Successor[n]]

Fig. 4. The CP Model for Repository Routing

Given scenario s and for each repository w ∈ 1..n
RoundTripss,w = {FullT ripss,w,c : c ∈ Customerss,w}
Taskss,w = {t1, t2, ..., tTripss,w} ∪RoundTripss,w

For each t ∈ RoundTripss,w

TripT imet = 2 Ts,w,c

For t ∈ Taskss,w \ RoundTripss,w

TaskNodest = {n ∈ Nodess,w \Depots−s,w : Trip[n] = t}
TripT imet =

∑
n∈TaskNodest

Ts,n,Successor[n]

Fig. 5. The Inputs for the Fleet Routing

Fleet Routing. It then remains to decide how to schedule the trips for the fleet
to perform and to minimize the latest delivery time. The capacity constraints
can be ignored now since each trip satisfies them. Each trip is abstracted into a
task at the warehouse location and a service time capturing the time to perform
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Let:
V ehicless = {1, 2, ..., m}
StartNodess = {D+

1 , . . . , D+
m}

EndNodess = {D−1 , . . . , D−m}
Nodess = StartNodess ∪EndNodess ∪

⋃
w∈1..n

Taskss,w

Variables:
Successor[Nodess] ∈ Nodess - Node traversal order
V ehicle[Nodess] ∈ V ehicless - Node vehicle assignment
DelT ime[Nodess] ∈ {0, . . . ,∞} - Delivery time

Minimize:
MAX n∈NodessDelT ime(n)

Subject To:
circuit(Successor)
for n ∈ StartNodess such that n = D+

i

V ehicle[n] = i
DelT ime[n] = T imes,n

DelT ime[Successor[n]] = DelT ime[n] + TripT imen + Ts,n,Successor[n]

for each n ∈ EndNodess such that n = D−i
V ehicle[n] = i

for n ∈ Nodess \ StartNodess \EndNodes

V ehicle[n] = V ehicle[Successor[n]]
DelT ime[Successor[n]] = DelT ime[n] + TripT imen + Ts,n,Successor[n]

Fig. 6. The CP Model for Fleet Routing

the trip. The fleet routing problem then consists of using the vehicles to perform
all these tasks while minimizing the latest delivery.

Figure 5 depicts how to compute the inputs for fleet routing given the results of
the earlier steps, which consists of computing the proper service times TripT imet

for each trip t. The model for the fleet routing is depicted in Figure 6 and is a
standard CP formulation for multiple vehicle routing adapted to minimize the
latest delivery time. For each node, the decision variables are its successor, its
vehicle, and its delivery time. The objective minimizes the maximum delivery
time and the rest of the model expresses the subtour elimination constraints, the
vehicle constraints, and the delivery time computation.

The fleet routing problem is solved using LNS [16] to obtain high-quality so-
lutions quickly given the significant number of nodes arising in large instances.
At each optimization step, the LNS algorithm selects 15% of the trips to re-
lax, keeping the rest of the routing fixed. The neighborhood is explored using
constraint programming allowing up to (0.15|Nodess|)3 backtracks.

5 Modeling and Algorithmic Enhancements

We now turn to some modeling and algorithmic improvements to the basic ap-
proach which bring significant benefits on real-life applications.
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Customer Allocation. The assignment of customers to repositories is a very
important step in this algorithm because it directly determines the quality of
the trips computed by the repository routing and there is no opportunity for
correction. Recall that Section 4 uses

i=(s,d,q)∑
i∈D

Ts,d ∗ q/V C

as an approximation of travel distance. Our experimental results indicate that
this approximation yields poor customer-to-warehouse allocation when there is
an abundance of commodities. To resolve this limitation, we try to solve a slightly
stronger relaxation, i.e.,

i=(s,d,q)∑
i∈D

Ts,d ∗ �q/V C�

but this ceiling function is too difficult for the stochastic MIP model. Instead, we
decompose the problem further and separate the storage and allocation decisions.
The stochastic MIP now decides which repository to open and how much of the
commodity to store at each of them. Once these decisions are taken and once
the uncertainty is revealed (i.e., the scenario s becomes known), we solve a
customer allocation problem, modeled as a MIP (see Figure 7). This problem
must be solved quickly since it is now considered after the uncertainty is revealed.
Unfortunately, even this simplified problem can be time consuming to solve
optimally. However, a time limit of between 30 and 90 seconds results in solutions
within 1% (on average) of the best solution found in one hour. Our results
indicate that even suboptimal solutions to this problem yield better customer
allocation than those produced by the stochastic MIP.

Path-Based Routing. The delivery plans produced by the basic approach exhibit
an obvious limitation. By definition of a trip, the vehicle returns to the repository
at the end of trip. In the case where the vehicle moves to another repository next, it
is more efficient to go directly from its last delivery to the next repository (assum-
ing a metric space which is the case in practice). To illustrate this point, consider
Figure 8 which depicts a situation where a customer (white node) receives deliver-
ies from multiple repositories (shaded nodes). The figure shows the savings when
moving from a tour-based (middle picture) to a path-based solution (right pic-
ture). It is not difficult to adapt the algorithm from a tour-based to a path-based
routing. In the repository routing, it suffices to ignore the last edge of a trip and
to remember where the path ends. In the fleet routing, only the time matrix needs
to be modified to account for the location of the last delivery.

Set-Based Repository Routing. The SCAP problems generated by hurricane sim-
ulators have some unique properties that are not common in traditional VRPs.
One of these features appears during repository routing: The first stage solution
generates customer demands that are distributed roughly uniformly through
the range 0..V C. This property allows for a repository-routing formulation that
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Variables:
Senti∈1..n,j∈1..n ∈ [0, Storedi] - Units moved from i to j
V ehicleT ripsi∈1..n,j∈1..n ∈ [0..�Storedi/V C] - Trips needed from i to j

Minimize:

Wx ∗
∑

i∈1..n

(Cs,i −
∑

j∈1..n

Sentj,i)+

Wy ∗
∑

i∈1..n

∑
j∈1..n

Ts,i,j ∗ V ehicleT ripsi,j

Subject To:∑
j∈1..n

Senti,j ≤ Storedi ∀i∑
j∈1..n

Sentj,i ≤ Cs,i ∀i

Senti,j = 0 ∀i, j where i not in ARs

V ehicleT ripsi,j ≥ Senti,j/V C ∀i, j

Fig. 7. The MIP Model for Customer Allocation

Fig. 8. Illustrating the Improvement of Path-Based Routing

scales much better than the pure CP formulation described earlier. Indeed, if
the customer demands d1, . . . , dc, are uniformly distributed in the range 0..V C,
the number of sets satisfying the vehicle capacity is smaller than c3 when c is
not too large (e.g., c ≤ 50). This observation inspires the following formulation:

1. Use CP to enumerate all customer sets satisfying the capacity constraint.
2. Use CP to compute an optimal trip for those customer sets.
3. Use MIP to find a partition of customers with minimal delivery time.

This hybrid model is more complex but each subproblem is small and it scales
much better than the pure CP model.

Aggregate Fleet Routing. The most computationally intense phase is the fleet
routing and we now investigate how to initialize the LNS search with a high-
quality solution. Recall that the fleet routing problem associates a node with
every trip. Given a scenario s, a lower bound for the number of trips is,∑

i∈1..n

StoredSents,i/V C
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Multi-Stage-SCAP(G)
1 D ← StochasticStorageMIP (G)
2 for s ∈ 1..a
3 do C ← CustomerAllocationProblem(Gs,Ds)
4 for w ∈ 1..n
5 do T ← RepositoryPathRoutingProblem(Gs, Cw)
6 I ← AggregateF leetRouting(Gs, T )
7 Ss ← TripBasedFeetRouting(Gs, T , I)
8 return S

Fig. 9. The Final Hybrid Stochastic Optimization Algorithms for SCAPs

Clearly, the size and complexity of this problem grows with the amount of com-
modities moved. To find high-quality solutions to the fleet routing subtask, the
idea is to aggregate the trips to remove this dependence on the amount of com-
modities delivered. More precisely, we define an aggregate fleet routing model in
which all trips at a repository are replaced by an aggregate trip whose service
time is the sum of all the trip service times. The number of nodes in the aggre-
gate problem is now proportional to the number of repositories. Finding a good
initial solution is not important for smaller problems (e.g., n ≈ 25, m ≈ 4), but it
becomes critical for larger instances (e.g., n ≈ 100, m ≈ 20). Since the aggregate
problem is much simpler, it often reaches high-quality solution quickly.

The Final Algorithm. The final algorithm for solving a SCAP instance G is
presented in Figure 9.

6 Benchmarks and Results

Benchmarks. The benchmarks were produced by Los Alamos National Labo-
ratory and are based on the infrastructure of the United States. The disaster
scenarios were generated by state-of-the-art hurricane simulation tools similar
to those used by the National Hurricane Center. Their sizes are presented in
Table 1 (The table also depicts the time limit used for fleet routing). Benchmark
3 features one scenario where the hurricane misses the region; this results in
the minimum demand being zero. This is important since any algorithm must
be robust with respect to empty disaster scenarios which arise in practice when
hurricanes turn away from shore or weaken prior to landfall. All of the experi-
mental results have fixed values of Wx, Wy, and Wz satisfying the field constraint
Wx > Wy > Wz and we vary the value of the budget B to evaluate the algorithm.
The results are consistent across multiple weight configurations, although there
are variations in the problem difficulties. It is also important to emphasize that,
on these benchmarks, the number of trips is in average between 2 and 5 times the
number of repositories and thus produces routing problems of significant sizes.

The Algorithm Implementation and the Baseline Algorithm. The final algorithm
was implemented in the Comet system [14] and the experiments were run on
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Table 1. SCAP Benchmark Statistics

Benchmark n m a Min Demand Max Demand Timeout
BM1 25 4 3 550 2700 30
BM2 25 5 3 6000 8384 60
BM3 25 5 3 0 11000 60
BM4 30 5 3 3500 11000 90
BM5 100 20 3 8200 22000 600

Table 2. SCAP Benchmark Runtime Statistics (Seconds)

Benchmark μ(T1) σ(T1) μ(T∞) σ(T∞) μ(STO) σ(STO) μ(CA) μ(RR) μ(AFR) μ(FR)
BM1 196.3 18.40 78.82 9.829 0.9895 0.5023 11.78 0.2328 23.07 30.00
BM2 316.9 59.00 120.2 20.97 0.5780 0.2725 16.83 0.2343 28.33 60.00
BM3 178.4 15.89 102.1 15.02 0.3419 0.1714 7.192 0.1317 11.98 40.00
BM4 439.8 48.16 169.0 22.60 0.9093 0.4262 22.71 0.2480 33.28 90.00
BM5 3179 234.8 1271 114.5 46.71 25.05 91.06 1.0328 351.7 600.0

Intel Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate
our results, we compare our delivery schedules with those of an agent-based al-
gorithm. The agent-based algorithm uses the storage model but builds a routing
solution without any optimization. Each vehicle works independently to deliver
as much commodity as possible using the following heuristic:

Greedy-Truck-Agent()
1 while ∃ commodity to be picked up ∧ demands to be met
2 do if I have some commodity
3 then drop it off at the nearest demand location
4 else pick up some water from the nearest warehouse
5 goto final destination

This agent-based algorithm roughly approximates current relief delivery proce-
dures and is thus a good baseline for comparison.

Efficiency Results. Table 2 depicts the runtime results. In particular, the table
reports, on average, the total time in seconds for all scenarios (T1), the total
time when the scenarios are run in parallel (T∞), the time for the storage model
(STO), the client-allocation model (CA), the repository routing (RR), the ag-
gregate fleet routing (AFR), and fleet routing (FR). The first three fields(T1,
T∞, STO) are averaged over ten identical runs on each of the budget param-
eters. The last four fields (CA, RR, AFR, FR) are averaged over ten identical
runs on each of the budget parameters and each scenario. Since these are aver-
ages, the times of the individual components do not sum to the total time. The
results show that the approach scales well with the size of the problems and is
a practical approach for solving SCAPs.
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Table 3. Improvements over the Baseline Algorithm

Benchmark BM1 BM2 BM3 BM4 BM5
Improvement(%) 57.7 40.6 68.8 51.7 50.6

Table 4. Correlations for the Distances in Customer Allocation and Fleet Routing

Benchmark BM1 BM2 BM3 BM4 BM5
Correlation 0.9410 0.9996 0.9968 0.9977 0.9499

Table 5. The Difference in Delivery Times Between Vehicles

Benchmark BM1 BM2 BM3 BM4 BM5
Absolute Difference 6.7 59.4 39.5 49.1 749

Relative Difference(%) 10.7 12.8 6.7 8.7 46.2

Quality of the Results. Table 3 depicts the improvement of our SCAP algorithm
over the baseline algorithm. Observe the significant and uniform benefits of our
approach which systematically delivers about a 50% reduction in delivery time.

Table 4 describes the correlations between the distances in the customer allo-
cation and fleet routing models. The results show strong correlations, indicating
that the distances in the customer allocation model are a good approximation
of the actual distances in the fleet routing model. Table 5 also reports results
on the absolute and relative differences between vehicles in the solutions. They
indicate that the load is nicely balanced between the vehicles. More precisely,
the maximum delivery times are often within 10% of each other on average, giv-
ing strong evidence of the quality of our solutions. Benchmark 5 is an exception
because it models emergency response at a state level, not at a city level. In that
benchmark, some vehicles have a significantly reduced load because they would
have to travel to the other side of the state to acquire more load, which would
take too much time to reduce the maximum delivery objective.

Behavioral Analysis. Figure 10 presents the experimental results on benchmark
5 (other benchmarks are consistent, but omitted for space reasons). The graph
on the left shows how the satisfied demand increases with the budget while the
graph on the right shows how the last delivery time changes. Given the weight
selection, it is expected that the demand and routing time will increase steadily
as the budget increases until the total demand is met. At that point, the demand
should stay constant and the routing time should decrease. The results confirm
this expectation. The experimental results also indicate the significant benefits
provided by our approach compared to the baseline algorithm.

Fleet Routing. Figure 11 presents experimental results comparing aggregate
(AFR), tour-based (TFR), and path-based (PFR) fleet routing (Only BM1 is
presented but other results are consistent). The key insight from these results
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Fig. 10. Varying the Budget on Benchmark 5
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Fig. 11. Comparing Various Algorithms for Fleet Routing

is to show the benefits of allowing the trips of a repository to be performed by
multiple vehicles. Note also the significant improvements obtained by considering
paths instead of tours.

Customer Allocation. As mentioned earlier, the benefits of separating customer
allocation from storage decisions are negligible when the budget is small. How-
ever, they become significant when the budget increases and can produce a
reduction by up to 16% of the expected maximum delivery time.
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7 Conclusion

This paper studied a novel problem in the field of humanitarian logistics, the
Single Commodity Allocation Problem (SCAP). The SCAP models the strate-
gic planning process for disaster recovery with stochastic last mile distribution.
The paper proposed a multi-stage stochastic hybrid optimization algorithm that
yields high quality solutions to real-world benchmarks provided by Los Alamos
National Laboratory. The algorithm uses a variety of technologies, including
MIP, constraint programming, and large neighborhood search, to exploit the
structure of each individual optimization subproblem. The experimental results
on water allocation benchmarks indicate that the algorithm is practical from a
computational standpoint and produce significant improvements over existing
relief delivery procedures. This work is currently deployed at LANL as part of
its mission to aid federal organizations in planning and responding to disasters.
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1 Introduction

In this paper we present initial results for implementing a constraint program-
ming solver on a massively parallel supercomputer where coordination between
processing elements is achieved through message passing. Previous work on mes-
sage passing based constraint programming has been targeted towards clusters
of computers (see [1,2] for some examples). Our target hardware platform is the
IBM Blue Gene supercomputer. Blue Gene is designed to use a large number
of relatively slow (800MHz) processors in order to achieve lower power con-
sumption, compared to other supercomputing platforms. Blue Gene/P, the sec-
ond generation of Blue Gene, can run continuously at 1 PFLOPS and can be
scaled to 884,736-processors to achieve 3 PFLOPS performance. We present a
dynamic scheme for allocating sub-problems to processors in a parallel, limited
discrepancy tree search [3]. We evaluate this parallelization scheme on resource
constrained project scheduling problems from PSPLIB [4].

2 A Dynamic Parallelization Scheme

Parallelization of search algorithms over a small number of processors or cores
can often be achieved by statically decomposing the problem into a number of
disjoint sub-problems as a preprocessing step, prior to search. This might be
achieved by fixing some variables to different values in each sub-problem (as is
explored in [5]). The advantage of such a static decomposition scheme is that
each processor can work independently on its assigned part of the search space
and communication is only needed to terminate the solve. When scaling this
static decomposition scheme to large numbers of processors, this approach may
sometimes lead to poor load-balancing and processor idle time.

Dynamic work allocation schemes partition the search space among processors
in response to the evolving search tree, for example by reassigning work among
processors during problem solving. Work-stealing is an example of a dynamic de-
composition scheme that has been used in programming languages such as CILK
[6], and in constraint programming [7] on shared memory architectures. We have
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developed a simple dynamic load balancing scheme for distributed hardware en-
vironments based on message passing. The basic idea behind the approach is that
(a) the processors are divided into master and worker processes; (b) each worker
processor is assigned sub-trees to explore by a master; and (c) the master proces-
sors are responsible for coordinating the sub-trees assigned to worker processors.
A master process has a global view of the full search tree. It keeps track of which
sub-trees have been explored and which are to be explored. Typically a single mas-
ter processor is coordinating many worker processors. Each worker processor im-
plements a tree-based search. The master processor assigns sub-problems to each
worker, where each sub-problem is specified by a set of constraints. These con-
straints are communicated in a serialized form using message-passing. A worker
may receive a new sub-problem from its assigned master processor either at the be-
ginning of problem solving, or during problem solving after exhausting tree search
on its previously assigned sub-problem. On receiving a message from its master
specifying a sub-problem as a set of constraints, a worker processor will establish
an initial state to start tree search by creating and posting constraints to its con-
straint store based on this message.

2.1 Problem Pool Representation

A problem pool is used by the master to keep track of which parts of the search
space have been explored by the worker processors, which parts are being ex-
plored and which parts are remaining to be explored. Each master processor
maintains a job tree to keep track of this information. A job tree is a represen-
tation of the tree explored by the tree search algorithm generated by the worker
processors. A node in the job tree represents the state of exploration of the node,
with respect to the master’s worker processors. Each node can be in one of three
states: explored, where the sub tree has been exhausted; exploring, where the
subtree itself is assigned to a worker, and no result is received; or unexplored,
where the subtree has not been assigned to any worker. An edge in a job tree is
labelled with a representation of a constraint posted at the corresponding branch
in the search tree generated by the tree search algorithm executed by the worker
processors. A job tree is dynamic structure that indicates how the whole search
tree is partitioned among the workers at a certain time point in problem solving.
In order to minimize the memory use and shorten the search time for new jobs,
a job tree is expanded and shrunk dynamically in response to communications
with the worker processors. When a worker processor become idle (or at their
initialization) they request work from their master processor. In response to such
a request, a master processor will look up a node in its job tree which is in an
unexplored state, and send a message to the worker processor consisting of the
sub-problem composed of the serialized set of constraints on the edges from the
root node of the job tree to the node.

2.2 Work Generation

Work generation occurs firstly during an initialization phase of the solve, and
then dynamically during the solve itself. The initial phase of work generation
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involves creating the initial job tree for each of the master processors. The master
processor creates its initial job tree by exploring some part of the search space
of the problem, up to some (small) bound on the number of nodes to explore.
If during this initial search a solution is found, the master can terminate. Oth-
erwise, the master initializes its job tree from the search tree explored during
this phase. The master processor then enters into a job dispatching loop where
it responds to requests for job assignments from the worker processors.

The second phase of work generation occurs as workers themselves explore the
search space of their assigned sub-problems and detect that they are exploring
a large search tree which requires further parallelization. Job expansion is a
mechanism for a worker to release free jobs if it detects that it is working on a
large subtree. We use a simple scheme based on a threshold of searched nodes as
a rough indicator of the “largeness” of the job subtree. If the number of nodes
searched by a worker exceeds this threshold without exhausting the subtree or
finding a solution, the worker will send a job expansion request to its master and
pick a smaller part of the job to keep working on. Meanwhile, the master updates
the job tree using the information offered by the worker, eventually dispatching
the remaining parts of the original search tree to other worker processors.

Job expansion has two side effects. First, it introduces communication over-
head because the job expansion information needs to be sent from the worker
processor to the master processor. Secondly, the size of the job tree may become
large, slowing down the search for unexplored nodes in response to worker job
requests. The job tree can be pruned when all siblings of some explored node n
are explored. In this case, the parent of node n can be rendered as explored and
the siblings can be removed from the job tree.

2.3 Job Dispatching

A master process employs a tree search algorithm to look for unexplored nodes
in its job tree in response to job requests from the workers. The search algorithm
used by the master to dispatch unexplored nodes in the job tree is customizable.
It partially determines how the search tree is traversed as a whole. If a worker
makes a job request and no unexplored nodes are available, the state of the
worker is changed to idle. Once new jobs become available, the idle workers are
woken up and dispatched these jobs.

2.4 Multiple Master Processes

The results presented in this section are from execution runs on BlueGene/L on
instances of resource constrained project scheduling problems from PSPLIB [4].
The constraint programming solver executed by the worker processes uses the
SetTimes branching heuristic and timetable and edge-finding resource constraint
propagation [8]. The job expansion threshold is set at 200 nodes. Due to space
limitations, we only present limited results in this section. However they are
representative of what we see for other problems in PSPLIB.

Figure 1 (left) shows the scaling performance of the parallelization scheme
with a single master process, as we vary the number of processors from 64 to
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1024 (on the 120 activity RCPSP instance 1-2 from PSPLIB). We manage to
achieve good linear scaling up to 256 processors. However the single master
process becomes a bottleneck when we have more than 256 worker processors,
where we see overall execution time actually slow down as we increase the number
of processors beyond 256.

Fig. 1. Scaling with one master process (left) and multiple (right) master processes

The master processor can be a bottleneck as the number of workers assigned
to it increases. In this case, multiple masters can be used to improve scalability.
In the multi-master mode, the full search tree is divided among the masters
at the beginning of problem solving. This is a static decomposition scheme, in
that sub-trees are not reallocated between masters dynamically during search.
We implemented a simple static decomposition scheme based on measuring the
reduction in search space size as we evaluate possible branches from the root
node. We then distribute the sub-trees resulting from following these branches
among the masters, so that as much as possible each master has a similar sized
search space to explore. Figure 1 (right) plots the scaling performance of the
scheduler (on the 120 activity RCPSP instance 1-2 from PSPLIB) with multiple
master processes, as we vary the number of processors from 64 to 1024. We see
here that with multiple master processors, we can achieve good scaling up to 1024
processors. We also present results showing execution time scaling for solving
feasible makespan satisfaction problems from PSPLIB in Table 1, for varying
numbers of processors p. A single master is used for all the test cases except for
256 and 512 processes, where we used two and four masters respectively.

To summarize, with a single master processor, we are able to achieve good
scaling up to 256 processors. With multiple masters, we achieve good scaling
up to 512 and sometimes 1024 processors. However the decomposition scheme
used to distribute sub-problems over multiple masters can impact scaling. In
our experiments we have not managed to achieve good scaling with greater
than 1024 processors and multiple masters. We believe that to scale well beyond
1024 processors requires developing techniques to dynamically allocate job trees
between multiple masters.
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Table 1. Execution time (in seconds) for solving fixed makespan satisfaction PSPLIB
resource-constrained project scheduling problems with 60 and 90 activities

Problem (makespan) Size
CPU time

p=16 p=32 p=64 p=128 p=256 p=512
14-4 (65) 60 30 14 7.0 3.1 2.1 2.0
26-3 (76) 60 >600 >600 90 75 24 10
26-6 (74) 60 63 18 8.1 5.0 2.0 1.0
30-10 (86) 60 >600 >600 >600 >600 216 88
42-3 (78) 60 >600 >600 >600 >600 256 81
46-3 (79) 60 148 27 13 6.0 3.1 2.0
46-4 (74) 60 >600 >600 >600 >600 104 77
46-6 (90) 60 >600 >600 477 419 275 122
14-6 (76) 90 >600 371 218 142 48 25
26-2 (85) 90 294 142 86 35 16 9.0
22-3 (83) 90 50 24 12 5 3.0 0.07
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Abstract. This paper reconsiders the deployment of synchronous op-
tical networks (SONET), an optimization problem naturally expressed
in terms of set variables. Earlier approaches, using either MIP or CP
technologies, focused on symmetry breaking, including the use of SBDS,
and the design of effective branching strategies. This paper advocates
an orthogonal approach and argues that the thrashing behavior experi-
enced in earlier attempts is primarily due to a lack of pruning. It studies
how to improve domain filtering by taking a more global view of the
application and imposing redundant global constraints. The technical
results include novel hardness results, propagation algorithms for global
constraints, and inference rules. The paper also evaluates the contribu-
tions experimentally by presenting a novel model with static symmetric-
breaking constraints and a static variable ordering which is many orders
of magnitude faster than existing approaches.

1 Introduction

This paper reconsiders the deployment of synchronous optical networks
(SONET), an optimization problem originally studied in the operation research
community[1]. The SONET problem is defined in terms of a set of clients and
a set of communication demands between pairs of clients who communicate
through optical rings. The task is to allocate clients on (possibly multiple) rings,
satisfying the bandwidth constraints on the rings and minimizing the equipment
cost. This problem has been tackled previously using mixed integer programming
(MIP)[1] and constraint programming (CP)[2,3]. Much attention was devoted to
variable branching heuristics and breaking ring symmetries (since all rings are
identical). It was shown that sophisticated symmetry-breaking techniques dra-
matically reduce the computational times, both for MIP and CP formulations.
The difficulty of finding good branching heuristics, which do not clash with sym-
metry breaking, was also mentioned.

This paper takes another look at the problem and studies the possibility that
the thrashing behavior experienced in earlier attempts is primarily due to lack
of pruning. The key observation is that existing models mainly consist of bi-
nary constraints and lack a global perspective. Instead of focusing on symmetry
breaking and branching heuristics, we study how to strengthen constraint prop-
agation by adding redundant global set-constraints. We propose two classes of
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Table 1. Overview of Hardness of Complete Filtering Algorithms

sb-domain sbc-domain
NonEmptyIntersection |X ∩ Y | ≥ 1 Polynomial Polynomial (Thm. 2)
AllNonEmptyIntersection ∀i, |X ∩ Yi| ≥ 1 Polynomial (Thm. 3) NP-hard (Thm. 5)
SubsetOfUnion

⋃
i Yi ⊇ X Polynomial (Thm. 6) ?

SubsetOfOpenUnion
⋃

i∈Y Xi ⊇ s Polynomial (Thm. 8) NP-hard (Thm. 9)

redundant constraints and we investigate the complexity of these set constraints
and the design of filtering algorithms. Like many other global constraints for set
variables [4,5], complete filtering algorithms are often intractable but we propose
inference rules that can reduce the search space effectively. The considered set
constraints, their complexity results, and some of the open questions, are sum-
marized in Table 1. The technical results were evaluated experimentally on the
standard SONET benchmarks. They indicate that the enhanced model, with
static symmetry-breaking constraints and a static variable ordering, is many
orders of magnitude faster than existing approaches.

This paper is organized as follows. Section 2 gives a formal description of the
SONET problem and its CP model. Section 3 recalls basic definitions about set
domains and fixes the notation used in the paper. Sections 4–8 constitute the
core of the paper and study the various constraints used in the model. Section
9 presents the experimental results and Section 10 concludes the paper.

2 The SONET Problem

Problem Description. The SONET problem [1] is a network topology design
problem for optical fiber network, the goal is to find a topology that minimizes
the cost such that all clients’ traffic demands are met. An input instance is
a weighted undirected demand graph G = 〈N, E; d〉, where each node u ∈ N
represents a client and weighted edges (u, v) ∈ E correspond to traffic demands of
a pair of clients. Demand d(u, v) is always integral. Two clients can communicate
only if both of them are installed on the same ring, which requires an expensive
equipment called an add-drop multiplexer (ADM). A demand can be split into
multiple rings. The input also specifies the maximum number of rings r, the
maximum number of ADMs allowed on the same ring a, and the bandwidth
capacity of each ring c. A solution of the SONET problem is an assignment of
rings to nodes and of capacity to demands such that 1) all demands of each client
pairs are satisfied; 2) the ring traffic does not exceed the bandwidth capacity;
3) at most r rings are used; 4) at most a ADMs on each ring; and 5) the total
number of ADMs used is minimized.

The Basic CP Model. The core CP model [6,2] include three types of variables:
Set variable Xi represents the set of nodes assigned to ring i, set variable Yu

represents the set of rings assigned to node u, and integer variable Zi,e represents
the amount of bandwidth assigned to demand pair e on ring i. The model is
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minimize
∑
i∈R

|Xi| s.t.

|Yu ∩ Yv| ≥ 1 ∀(u, v) ∈ E (1)
Zi,(u,v) > 0 ⇒ i ∈ (Yu ∩ Yv) ∀i ∈ R, (u, v) ∈ E (2)∑

i∈R

Zi,e = d(e) ∀e ∈ E (3)

u ∈ Xi ⇔ i ∈ Yu ∀i ∈ R, u ∈ N (4)
|Xi| ≤ a ∀i ∈ R (5)∑

e∈E

Zi,e ≤ c ∀i ∈ R (6)

Xi % Xj ∀i, j ∈ R : i < j (7)

(1) ensures nodes of every demand pair lie on at least one common ring. (2)
ensures that there is a flow for a demand pair on a particular ring i only if both
client are on that ring. (3) guarantees that every demand is satisfied. (4) channels
between the first two types of variables. (5) makes sure that there are at most a
ADMs on each ring. (6) makes sure that the total traffic flow on each ring does
not exceed the bandwidth capacity. (7) is a symmetry-breaking constraint that
removes symmetric solutions caused by interchangeability of rings.

Extended Model. Smith [2][Section 5] proposed a few implied constraints to
detect infeasible assignments early in the search. For space reasons, we only show
some of them which will be generalized by our redundant global constraints:

|Xi| �= 1 ∀i ∈ R (8)

|Yu| ≥ � |δu|
a − 1

� ∀u ∈ N (9)

Yu = {i} ⇒ δu ∪ {u} ⊆ Xi ∀u ∈ N, i ∈ R (10)
Yu = {i, j} ⇒ δu ∪ {u} ⊆ Xi ∪ Xj ∀u ∈ N, i, j ∈ R (11)

In those constraints, δu denotes the neighbors of node u.

Our Extended Model. We propose two constraints to boost propagation:

⋃
i∈δu

Yi ⊇ Yu ∀u ∈ N (12)

⋃
i∈Yu

Xi ⊇ δu ∀u ∈ N (13)

subsetOfUnion (12) generalizes (8), it forces a node not to lie on rings with
no contribution. subsetOfOpenUnion (13) generalizes (9), (10), and (11) and
ensures that the rings of a node accommodate all its neighbors.
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3 The Set Domains

Our algorithms consider both the traditional subset-bound domain and subset-
bound with cardinality domain.

Definition 1. A subset-bound domain (sb-domain) sb〈R, P 〉 consists of a re-
quired set R and a possible set P , and represents the set of sets

sb〈R, P 〉 ≡
{
s | R ⊆ s ⊆ P

}
(14)

Definition 2. A subset-bound + cardinality domain (sbc-domain) sbc〈R, P, č, ĉ〉
consists of a required set R and a possible set P , a minimum and maximum
cardinalities č and ĉ, and represents the set of sets

sbc〈R, P, č, ĉ〉 ≡
{
s | R ⊆ s ⊆ P ∧ č ≤ |s| ≤ ĉ

}
(15)

We now give the definition of bound consistency for these set domains.

Definition 3 (sbc-bound consistency). A set constraint C(X1, ..., Xm) (Xi

are set variables using the sbc-domain) is said to be sbc-bound consistent if and
only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, ..., xm) (16)

∧ RXi =
⋂

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi (17)

∧ PXi =
⋃

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi (18)

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. |xi| = ˇcXi ∧ C(x1, ..., xm) (19)
∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. |xi| = ˆcXi ∧ C(x1, ..., xm) (20)

where d(Xi) = sbc〈RXi , PXi , ˇcXi , ˆcXi〉 denotes the domain of Xi.

The definition is similar for the subset-bound domain but it omits the cardinality
rules. In the following, we use bcθ〈C〉 to denote a bound consistency propagator
(or complete filtering algorithm) for constraint C on a θ-domain. We call free
elements the elements in the possible set that are not in required set and empty
spots the maximum number of free elements that the set can include.

Example 1. Consider domain sbc〈{1, 2}, {1, .., 6}, 3, 5〉. {3, 4, 5, 6} are free ele-
ments, and the domain has 3 empty spots since it can take at most 5 elements
while 2 of them are already fixed by required set.

4 Non-empty Intersection Constraint

Reference [2] does not specify how the constraint propagator for the non-empty
intersection constraint(|X ∩ Y | ≥ 1) is implemented. This section presents a
sound and complete propagator for the sbc-domain. First note that the sbc-
domain gives stronger propagation than the sb-domain.
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Theorem 1. Enforcing bound consistency on the conjunction of constraints

|X ∩ Y | ≥ 1 ∧ čX ≤ |X | ≤ ĉX ∧ čY ≤ |Y | ≤ ĉY

is strictly stronger for the sbc-domain than for the sb-domain.

Proof. Consider X ∈ sb〈{1}, {1..5}〉, Y ∈ sb〈{6}, {2, .., 6}〉, čX = ĉX = čY =
ĉY = 2. For the sbc-domain, after enforcing bound consistency on each con-
straint, X ∈ sbc〈{1}, {1, .., 4}, 2, 2〉 and Y ∈ sbc〈{6}, {3, .., 6}, 2, 2〉. X and Y
can each take two elements, one of which is fixed, and elements 2 in X and 5 in
Y are removed. All 3 constraints are bound-consistent for the sb-domain. ��
Algorithm 1 presents the filtering algorithm for the sbc-domain which relies on
insights from the length-lex domain [7] and the atmost algorithm studied in [8].
For simplicity, it assumes the cardinality of both input variables are bounded,
but it can easily be generalized to unbounded case. It divides all elements in the
universe into 9 different regions, according to how they belong in the domains.
The algorithm mostly performs a case analysis of the number of empty spots
in both domains. It essentially detects if the overlap region is too small (that
contains only one element), in which case that element is inserted into the re-
quired set of both variables. On the other hand, if there are too few empty spots
left and the variables have no fixed overlapping element, the variables cannot
include elements not in the overlapping area.

Example 2. Let X ∈ sbc〈{1}, {1, 2, 3, 4}, 2, 2〉 and Y ∈ sbc〈{3, 5}, {3, 4, 5, 6},
3, 3〉. There is a solution since PXPY = {4} and PXRY = {3} are both non-
empty (lines 6–9). The only empty spot of X has to be used to accommodate the
common element since the required element {1} is not in the common region.
As a consequence, it must require either 3 or 4 and element 2 which is not in
the common region can be removed (lines 11–13).

Example 3. Let X = {1, 2} and Y ∈ sbc〈{3}, {2, 3, 4}, 2, 2〉. There is a solution
since the overlapping is non-empty. Since there are only one choice in the common
region, Ysbc must take element 2 (lines 8–9).

Theorem 2. Algorithm 1 is sound and complete, and takes O(n) time.

The correctness proof is based on a case analysis with four different cases and is
omitted for space reasons.

5 All Non-empty Intersection Constraint

In SONET, a node u must share rings with all its neighbors. It naturally raises a
question whether or not there exists a global constraint achieving more pruning.
We define a new global constraint

allNonEmptyIntersect(X, {Y1, .., Yn}) ≡ (∀1 ≤ i ≤ n, |X ∩ Yi| ≥ 1) (21)

which allows us to rewrite (1) into

allNonEmptyIntersect(Yu, {Yv|v ∈ δu}) ∀u ∈ N. (22)
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Algorithm 1. bcsbc〈nonEmptyIntersection〉(Xsbc = sbc〈RX , PX , cX , cX〉, Ysbc)
Require: Xsbc, Ysbc are both bound consistent
1: PXEY , EXPY ← PX \ (RX ∪ PY ), PY \ (RY ∪ PX)
2: PXPY , RXRY ← (PX ∩ PY ) \ (RX ∪ RY ), RX ∩RY

3: RXPY , PXRY ← RX ∩ (PY \ RY ), (PX \RX) ∩RY

4: if |RXRY | > 0 then
5: return true
6: if |PXPY |+ |RXPY |+ |PXRY | = 0 then
7: return ⊥
8: else if |PXPY |+ |RXPY |+ |PXRY | = 1 then
9: insert e into Xsbc, Ysbc (where {e} = PX ∪ PY )

10: else
11: c′X , c′Y ← cX − |RX |, cY − |RY |
12: if c′X = 1 ∧RXPY = ∅ then
13: exclude PXEY from Xsbc

14: if c′Y = 1 ∧ PXRY = ∅ then
15: exclude EXPY from Ysbc

16: return true

Theorem 3. bcsb〈allNonEmptyIntersect(X, {Y1, .., Yn})〉 is decomposable.

Proof. (sketch) From reference [5], bcsb(∀i < j, |Yi ∩ Yj | ≥ 1) is decomposable.
Our constraint is a special case of it which can be transformed to the general
case by amending a dummy element to the possible set of each Yi. ��
Unfortunately, the result does not hold for the sbc-domain.

Theorem 4. bcsbc〈allNonEmptyIntersect(X, {Y1, .., Yn})〉 is strictly stronger
than enforcing BC on its decomposition (i.e. ∀1 ≤ i ≤ n, bcsbc〈|X ∩ Yi| ≥ 1〉).
Proof. Consider allNonEmptyIntersect(X, {Y1, Y2, Y3}). X ∈
sbc〈∅, {1..6}, 2, 2〉, Y1 ∈ sbc〈∅, {1, 2}, 1, 1〉, Y2 ∈ sbc〈∅, {3, 4}, 1, 1〉, and
Y3 ∈ sbc〈∅, {5, 6}, 1, 1〉. It is bound consistency on each constraint in the
decomposition. However, there is no solution since X can only takes two
elements and the possible sets of Y1, Y2 and Y3 are disjoint. ��
Theorem 5. bcsbc〈allNonEmptyIntersect(X, {Y1, .., Yn})〉 is NP-hard.

Proof. Reduction from 3-SAT. Instance: Set of n literals and m clauses over the
literals such that each clause contains exactly 3 literals. Question: Is there a
satisfying truth assignment for all clauses?

We construct a set-CSP with three types of variables. The first type corre-
sponds to literals: for each literal, we construct a set variable Xi with domain
sbc〈∅, {i,¬i}, 1, 1〉, values in the possible set corresponds to true and false. The
second type corresponds to clauses: for every clause j (xp ∨ ¬xq ∨ xr), we in-
troduce one set variable Yj with domain sbc〈∅, {p,−q, r}, 1, 3〉. The third type
contains just one set variable Z correspond to the assignment, its domain is
sbc〈∅, {1,−1, .., n,−n}, n, n〉. The constraint is in the form,

allNonEmptyIntersect(Z, {X1, .., Xn, Y1, .., Ym})
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Set variables Xi guarantees that Z is valid assignment (i.e., for every i, it can
only pick either i or −i, but not both). Yj and Z overlap if and only if at least one
of the literals is satisfied. The constraint has a solution if and only if the 3-SAT
instance is satisfiable. Therefore, enforcing bound consistency is NP-hard. ��

6 Subset of Union

This section considers constraint (12) which is an instance of

subsetOfUnion(X, {Y1, .., Ym}) ≡
⋃

1≤i≤m

Yi ⊇ X (23)

Constraint (12) is justified by the following reasoning for a node u and a ring i it
belongs to: If i is not used by any of u’s neighbors, u does not need to use i. As
a result, the rings of node u must be a subset of the rings of its neighbors. We
first propose two simple inference rules to perform deductions on this constraint.

Rule 1 (SubsetOfUnion : Element Not in Union)

i ∈ PX ∧ ∀1 ≤ j ≤ m, i �∈ PYj

subsetOfUnion(X, {Y1, .., Ym}) �−→ i �∈ X ∧ subsetOfUnion(X, {Y1, .., Ym})

Rule 2 (SubsetOfUnion : Element Must Be in Union)

i ∈ RX ∧ i ∈ PYk
∧ |{i ∈ PYj | 1 ≤ j ≤ m}| = 1

subsetOfUnion(X, {Y1, .., Ym}) �−→ i ∈ Yk ∧ subsetOfUnion(X, {Y1, .., Ym})

Two above rules are sufficient to enforce bound consistency on the sb-domain
but not on the sbc-domain. It is an open issue to determine if bound consistency
can be enforced in polynomial time on the sbc-domain.

Theorem 6. bcsb〈subsetOfUnion(X, {Y1, .., Ym})〉 is equivalent to enforcing
rule 1 and rule 2 until they reach the fix-point.

Proof. Consider an element e ∈ PX . It has a support or otherwise it would be
removed by rule 1. It does not belong to all solutions since, given any feasible
assignment to the constraint that contains e, removing e from X still leaves us
with a feasible solution. Hence e does not belong to the required set. An element
e ∈ PYi always has a support since adding e to any feasible assignment would
not make it invalid. An element e ∈ PYi belongs to all solutions if it must be in
the union and Yi is the only variable that contains e (rule 2). ��

Theorem 7. bcsbc〈subsetOfUnion(X, {Y1, .., Ym})〉 is strictly stronger than
enforcing rule 1 and rule 2 until they reach the fix-point.

Proof. Consider the domains X ∈ sbc〈∅, {1, .., 6}, 0, 2〉, Y1 ∈ sbc〈∅, {1, 2}, 1, 1〉,
Y2 ∈ sbc〈∅, {3, 4}, 1, 1〉 and Y3 ∈ sbc〈∅, {1, .., 5}, 2, 2〉. Applying the domain re-
duction rules, the domain of X becomes sbc〈∅, {1, .., 5}, 2, 2〉. 5 ∈ PY3 has no
solution since X has only two empty spots, one for {1, 2} and the other for
{3, 4} as Y1 and Y2 are disjoint. The constraint is thus not bound consistent. ��
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7 Subset of Open Union

The SONET model contains a dual set of variables. Variable Yu represents the
set of rings node u lies on and ring variable Xi represents the set of nodes
that ring i contains. Variable Yu indirectly specifies the set of nodes that u can
communicate with. Such set should be a superset of δu. We propose a global
constraint that enforce this relation:

subsetOfOpenUnion(s, Y, {X1, .., Xm}) ≡
⋃
i∈Y

Xi ⊇ s (24)

which is used in constraint (13) of the model.

Example 4. Suppose node 1 has 5 neighbors (i.e., δ1 = {2, .., 6}), each pair has
a demand of one unit. There are 2 rings, each ring can accommodate at most 2
ADMs. There is no solution since 2 rings can at most accommodate 4 neighbors.
Using 5 nonEmptyIntersection constraints cannot detect such failure.

subsetOfOpenUnion is sometimes called an open constraint[9], since the scope
of the constraint is defined by Y . Complete filtering is polynomial for the sb-
domain but intractable for the sbc-domain.

Rule 3 (SubsetOfOpenUnion : Failure)⋃
i∈PY

PXi �⊇ s

subsetOfOpenUnion(s, X, {Y1, .., Ym}) �−→ ⊥

Rule 4 (SubsetOfOpenUnion: Required Elements)

i ∈ PY ∧ e ∈ PXi ∧ e ∈ s ∧ |{e ∈ PXj | j ∈ PY }| = 1
subsetOfOpenUnion(s, X, {Y1, .., Ym})
�−→ i ∈ Y ∧ e ∈ Xi ∧ subsetOfOpenUnion(s, X, {Y1, .., Ym})

Theorem 8. bcsb〈subsetOfOpenUnion(s, Y, {X1, .., Xm})〉 is equivalent to en-
forcing rule 3 and rule 4 until they reach a fix-point.

Proof. There is no feasible assignment if the union of all possible Xi is not a
superset of s (rule 3). Suppose there is a feasible solution. Consider an element
e ∈ PY or e ∈ PXi : It must have a support since any feasible assignment would
remain feasible after adding e to it. An element e ∈ PXi which is also in s belongs
to all solutions if it belongs to exactly one variable Xi. In such case, we include
e in Xi and i in Y since Xi must be in the scope (rule 4). ��

Theorem 9. bcsbc〈subsetOfOpenUnion(s, Y, {X1, .., Xm})〉 is NP-hard.

Proof. Reduction from Dominating Set. The problem of dominating set is defined
as follows. Input instance: A graph G = 〈V, E〉 and an integer k ≤ |V |. Question:
Does there exist a subset V ′ of V such that |V ′| ≤ k and every node in V \ V ′

is a neighbor of some nodes in V ′?
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Given an instance with a graph G and a constant k, we construct an instance
of CSP that s = V , Y ∈ 〈∅, V, 0, k〉 and, for every i ∈ V , Xi = δG

i ∪ {i} (where
δG
i denotes the neighborhood of node i in graph G). Intuitively, Y corresponds

to a dominating set with size at most k, Xi is a vertex that can “dominate”
at most all elements in its domain (which is also the neighbors in the originally
graph). The constraint is consistent if and only if there exists a dominating set
of size not more than k.

⇒ Given a dominating set V ′ in the original graph G, the constraint is con-
sistent since we can construct a solution by setting Y = V ′, every element in Y
actually corresponds to a node in the dominating set. Since every node in V \V ′

is the neighbor or at least on node in V ′, every element in δu also belongs to the
domain of some Xi (i ∈ Y ).

⇐ Given a consistent assignment of Y and Xi for all i ∈ Y , all elements in
δu are covered by some Xi and hence Y is the dominating set. ��

Since the constraint is intractable, we present a number of inference rules par-
ticularly useful in practice. The first inference rule reasons about the cardinality
of Y . The union of Xi must be a superset of s. Since Y determines the number
of Xi in the union, we can get an upper bound on the union cardinality by rea-
soning on the maximal cardinalities of the Xi. If the upper bound is less than
|s|, there is no solution. Otherwise, we obtain a lower bound of cardinality of Y .

Example 5. Suppose X1 = X2 = X3 ∈ sbc〈∅, {1, .., 8}, 0, 3〉, Y ∈
sbc〈∅, {1, 2, 3}, 2, 3〉 and s = {1, .., 8}. Each of Xi has 3 empty spots. We need at
least �8/3� = 3 Xi to accommodate every element in s. It implies |Y | > 2.

Rule 5 (SubsetOfOpenUnion : Lower Bound of |Y |)

maxt∈d(Y ):|t|=čY

∑
i∈t( ˆcXi − |RXi \ s|) < |s|

subsetOfOpenUnion(s, Y, {X1, .., Xm})
�−→ |Y | > čY ∧ subsetOfOpenUnion(s, Y, {X1, .., Xm})

Theorem 10. Rule 5 is sound.

Proof. Any feasible assignment to the constraint satisfies
⋃

i∈y(xi ∩ s) ⊇ s.
Consider the set xi ∩ s. xi is in d(Xi) = sbc〈RXi , PXi , ˇcXi , ˆcXi〉. We divide
it into two parts: First, the elements in RXi ∩ s are fixed. Second, xi can choose
ˆcXi − |RXi | elements freely from the set PXi \ RXi . The cardinality of the set

xi ∩ s is the sum of two parts and can be bounded from above

( ˆcXi − |RXi |) + |RXi ∩ s| = ˆcXi − |RXi \ s| ≥ |xi ∩ s|

Therefore we obtain the following inequality,∑
i∈y

( ˆcXi − |RXi \ s|) ≥
∑
i∈y

|xi ∩ s| ≥ |
⋃
i∈y

(xi ∩ s)| ≥ |s| (25)

Cardinalities of y that do not meet this condition belong to no solution. ��
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A similar reasoning on the cardinalities of Y can remove elements of Y that
corresponds to small Xi.

Example 6. Suppose X1 = X2 ∈ sbc〈∅, {1, .., 6}, 0, 3〉, X3 ∈ sbc〈∅, {1, .., 6}, 0, 2〉,
Y ∈ sbc〈∅, {1, 2, 3}, 2, 2〉 and s = {1, .., 6}. We need to choose two sets among
X1, X2 and X3. If X3 is chosen, it provides 2 empty spots and we need 4 more
spots. However, neither X1 nor X2 is big enough to provide 4 empty spots. It
implies that Y cannot take X3.

Rule 6 (SubsetOfOpenUnion : Pruning Elements of Y )

maxt∈d(Y ):i∈t

∑
j∈t( ˆcXj − |RXj \ s|) < |s| ∧ i ∈ PY

subsetOfOpenUnion(s, Y, {X1, .., Xm})
�−→ i �∈ Y ∧ subsetOfOpenUnion(s, Y, {X1, .., Xm})

Theorem 11. Rule 6 is sound.

Proof. Expression (25) gives a upper bound of empty spots that Xi can provide.
If all possible values of Y containing element i do not provide enough empty
spots to accommodate all elements in s, Xi is too small and i /∈ Y . ��

8 Combination of subsetOfOpenUnion and
Channeling

This section explores the combination of the subsetOfOpenUnion and channel-
ing constraints. Indeed, in the SONET model, the Xi and Yu are primal and
dual variables channeled using the constraint: i ∈ Yu ⇔ u ∈ Xi. In other words,
when Yu takes element i, one spot in Xi is used to accommodate u. Exploiting
this information enables us to derive stronger inference rules.

The first inference rule assumes that Y is bound and reduces the open con-
straints to a global cardinality constraint. It generalizes the last two constraints
(10) and (11) in Smith’s extended model which apply when 1 ≤ |Yu| ≤ 2.

Definition 4 (Global lower-bounded cardinality constraint). We define
a specialized global cardinality constraint, where only the lower bound is specified.
GCClb({X1, .., Xm}, [l1, .., ln]) ≡ ∀1 ≤ j ≤ n, |{Xi ( j|1 ≤ i ≤ m}| ≥ lj

Example 7. Suppose node 1 has 3 neighbors, Y1 = {1, 2}. X1 and X2 must
contain {1} and each element in {2,3,4} has to be taken at least once. It is
equivalent to GCClb({X1, X2}, [2, 1, 1, 1]). By a simple counting argument, there
is no solution.

Rule 7 (SubsetOfOpenUnion and Channeling : Global Cardinality)

Yu = y (Yu is bounded)
subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧

∧
i u ∈ Xi ⇔ i ∈ Yu

�−→ GCClb({Xi|i ∈ Yu}, [l1, .., ln]) ∧
∧

i u ∈ Xi ⇔ i ∈ Yu

where lu = |Yu|, li = 1 if i ∈ s and otherwise li = 0
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Theorem 12. Rule 7 is sound.

Proof. When Yu is bounded, the scope for the union is fixed. The union con-
straint requires that the union of set has to be a superset of s and hence each
element of s has to be taken at least once. The channeling constraint requires
each variable Xi contains element u and, as Yu defines the scope, element u has
to be taken exactly |Yu| times. It reduces to a GCClb. ��

Moreover, it is possible to strengthen the earlier cardinality-based inference rules
to include the channeling information. We omit the proofs which are essentially
similar to the earlier ones.

Rule 8 (SubsetOfOpenUnion and Channeling : Lower Bound of |Y |)

u �∈ s ∧ maxt∈d(Y ):|t|=čY

∑
i∈t( ˆcXi − |RXi \ s| − (RXi �( u)) < |s|

subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧

i u ∈ Xi ⇔ i ∈ Yu

�−→ |Y | > čY ∧ subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧

i u ∈ Xi ⇔ i ∈ Yu

Rule 9 (SubsetOfOpenUnion and Channeling : Pruning Y )

maxt∈d(Yu):i∈t

∑
j∈t( ˆcXj − |RXj \ s| − (RXj �( u) < |s| ∧ i ∈ PYu

subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧

i u ∈ Xi ⇔ i ∈ Yu

�−→ i �∈ Yu ∧ subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧

i u ∈ Xi ⇔ i ∈ Yu

9 Experimental Evaluation

We now describe the experimental evaluation of our approach. We start by de-
scribing earlier results on MIP and CP models. We then present our search
procedure and presents the computational results. We then describe the impact
of various factors, including the branching heuristics, symmetry-breaking con-
straints, and the proposed global constraints.

The MIP Formulation. The problem was first solved using an MIP formulation[1].
The input was preprocessed before the search and some variables were pre-
assigned. Valid inequalities were added during the search in order to tighten the
model representation. Several variable-ordering heuristics, mainly based on the
neighborhood and demand of nodes, were devised and tested. Several symmetry-
breaking constraints were evaluated too, Table 1 in [10] indicates minuscule dif-
ferences in performance among different symmetry-breaking constraints.

CP Formulations. Smith [2] introduced a four-stage search procedure in her CP
program: First decide the objective value, then decide how many rings each node
lies on (label the cardinality of Yu), then decide which rings each node lies on
(label the element of Yu), and finally decide how much bandwidth assigned to
demand pairs on each ring. A few variable-branching heuristics were examined
with a dynamic ordering giving the best results. Symmetry-breaking techniques
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were also investigated. To avoid clashing with variable ordering, SBDS (symme-
try breaking during search) was used. SBDS was very effective on the SONET
problems, although it generated a huge number of no-good constraints, inducing
a significant overhead to the system. Recall also that Smith’s model included a
few simple redundant constraints reasoning on the cardinality of node variables
(Yu). Please refer to Section 5 in [2] for a detailed discussion.

Another CP model was proposed in [3] and it broke symmetries by adding a
lexicographic bound to set variable domain. With the additional lexicographic
component, the solver obtained a tighter approximation of the set-variable do-
main. The lexicographical information was used not only for breaking symme-
tries, but also for cardinality reasoning. This method provided a much simpler
mechanism to remove symmetries. However, as mentioned by the authors, differ-
ent components of the set domain (the membership component, the cardinality
restriction, and the lexicographical bound) did not interact effectively.

Our Search Procedure. Our CP algorithm Boosting implements all the con-
straints presented in this paper and uses a static four-stage search inspired by
Smith’s heuristics [2]. The algorithm first branches on the objective value, start-
ing from the minimum value and increasing the value by one at a time from the
infeasible region. The first feasible solution is thus optimal. Then it decides the
cardinality of Yu. Third, it decides the value of Yu. Last, the algorithm decides
the flow assigned to each pair of nodes on a ring. Proposition 2 in [1] shows
that there is an integral solution as long as all the demands are integral and the
algorithm only needs to branch on integers. In each stage, variables are labeled
in the order given by the instance.

Benchmarks and Implementations. The benchmarks include all the large ca-
pacitated instances from [1]. Small and medium instances take negligible time
and are omitted. Our algorithm was evaluated on an Intel Core 2 Duo 2.4GHz
laptop with 4Gb of memory. The MIP model [1] used CPLEX on a Sun Ultra
10 Workstation. Smith’s algorithm [2] used ILOG Solver on one 1.7GHz proces-
sor. Hybrid[3] was run using the Eclipse constraint solver on a Pentium 4 2GHz
processor, with a timeout of 3000 seconds.

Comparison of the Approaches. Table 2 reports the CPU time and number of
backtracks (bt) required for each approach to prove the optimality of each in-
stance. Our Boosting algorithm is, on average, more than 3700 times faster than
the MIP and Hybrid approaches and visits several orders on magnitude less nodes
than them. Boosting is more than 16 times faster than the SBDS approach when
the machines are scaled and produces significantly higher speedups on the most
difficult instances (e.g., instance 9). The SBDS method performs fewer back-
tracks in 6 out of 15 instances, because it eliminates symmetric subtrees earlier
than our static symmetry-breaking constraint. However, even when the CPU
speed is scaled, none of 15 instances are solved by SBDS faster than Boosting.
This is explained by the huge number of symmetry-breaking constraints added
during search. The empirical results confirm the strength of the light-weight
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Table 2. Experimental Results on Large Capacitated Instances

MIP Hybrid SBDS Boosting

Sun Ultra 10 P4, 2GHz P(M), 1.7GHz C2D 2.4GHz
# opt nodes time bt time bt time bt time
1 22 5844 209.54 532065 2248.68 990 0.95 444 0.09

2 20 1654 89.23 - - 451 0.65 41 0.01

3 22 4696 151.54 65039 227.71 417 0.62 573 0.12

4 23 50167 1814 476205 1767.82 1419 1.52 1727 0.32

5 22 36487 1358.83 - - 922 0.7 982 0.18

6 22 9001 343.54 - - 306 0.29 291 0.06

7 22 13966 568.96 270310 1163.94 982 1.15 2504 0.53

8 20 441 23.38 11688 54.73 34 0.09 25 0.01

9 23 25504 701.71 - - 35359 45.13 2769 0.56

10 24 8501 375.48 - - 4620 6.75 4066 0.83

11 22 5015 316.77 - - 352 0.54 263 0.06

12 22 6025 213.4 - - 1038 1.09 1572 0.31

13 21 2052 65.06 255590 1300.91 105 0.14 397 0.08

14 23 61115 2337.29 - - 1487 1.66 613 0.11

15 23 100629 4324.19 - - 13662 19.59 1240 0.25

avg 22073.13 859.53 268482.83 1127.30 4142.93 5.39 1167.13 0.23

and effective propagation algorithms proposed in this paper. While earlier at-
tempts focused on branching heuristics and sophisticated symmetry-breaking
techniques, the results demonstrate that effective filtering algorithms are key
to obtaining strong performance on this problem. The remaining experimental
results give empirical evidence justifying this observation.

The Impact of Branching Heuristics. We now study the impact of the branch-
ing heuristics and evaluate various variable orderings for the static labeling
procedure of Boosting. Various variable orderings were studied in [1,2]. Most
of them are based on the node demands and degrees. Our experiments con-
sidered four different heuristics: minimum-degree-first, maximum-degree-first,
minimum-demand-first, and maximum-demand-first. To avoid a clash between
the variable heuristics and the symmetry-breaking constraint, the lexicographic
constraint uses the same static order as the branching heuristic. Table 3 (Left)
reports the average number of backtracks and time to solve all 15 instances,
where row Given is the node ordering from the instance data. The results show
that, with the exception of the max-demand heuristic, all variable orderings pro-
duce very similar number of backtracks and runtime performance. Moreover, the
max-demand heuristic is still orders of magnitude faster than earlier attempts.
This indicates that the variable ordering is not particularly significant when
stronger filtering algorithms are available.

The Impact of Symmetry-Breaking Constraints. We compare different symmetry-
breaking constraints. In particular, we compare breaking symmetries using the
01-lex and the length-lex ordering[11]. The length-lex ordering first ranks set by
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Table 3. The Impact of Branching Heuristics (Left), Symmetry Breaking (Right)

avg bt avg time
Given 1167.13 0.23

Min-Degree 1158.40 0.23
Max-Degree 1172.93 0.24
Min-Demand 1144.60 0.23
Max-Demand 1683.53 0.36

avg bt avg time
01-Lex 1167.13 0.23

Length-Lex 1411.53 0.38

Table 4. The Impact of Redundant Constraints

NonEmptyIntersection SubsetOfUnion SubsetOfOpenUnion
|X ∩ Y | ≥ 1

⋃
i Yi ⊇ X

⋃
i∈Y Xi ⊇ s avg bt avg time

� � � 1167.13 0.23
� � 2018.67 0.33
� � 1190.13 0.23

� � 1556.67 0.36
� 2177.93 0.33

� 13073.73 2.19
� 1670.47 0.37

17770.93 2.82

cardinalities, while the 01-lex orders sets based on their characteristic vectors.
Table 3 (Right) reports the results of the Boosting algorithm with both types of
symmetry-breaking constraints. The difference is still negligible when compared
with the benefits of global constraints, although the 01-lexicographic order seems
more effective on these benchmarks in average.

The Impact of Redundant Constraints. We conclude the experimental section by
analyzing the impact of each redundant constraint. Our study simply enumer-
ated and evaluated all combinations. The results are presented in Table 4, where
� indicates that the corresponding constraint was used in the model. For cases
where the sbc-domain complete propagator nonEmptyIntersection is absent, a
sb-domain implementation is used instead. The table reports the average num-
ber of backtracks and the CPU time. Using all three redundant constraints (first
row) gives the best results both in the number of backtracks and in CPU time. The
model in which subsetOfUnion constraint is absent (third row) achieves the same
solving time as the complete model, with some more backtrackings. It suggests
that constraint subsetOfUnion brings the least contribution to the efficiency. Re-
moving subsetOfOpenUnion dampens the search the most, doubling the number
of backtracks. Thrashing is caused when both binary intersection constraints and
subsetOfOpenUnion are removed (sixth row), the resulting algorithm being al-
most 10 times slower and visiting 11 times more nodes than the complete model.
The worst performance is the last row, which essentially corresponds to Smith’s
model with a static symmetry-breaking constraint and a static labeling heuristic.
Overall, these results suggest that, on the SONET application, the performance
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of the algorithm is strongly correlated to the strength of constraint propagation.
The variable heuristics and the symmetry-breaking technique have marginal im-
pact on the performance.

10 Conclusion

This paper reconsiders the SONET problem. While earlier attempts focused on
symmetry breaking and the design of effective search strategies, this paper took
an orthogonal view and aimed at boosting constraint propagation by studying a
variety of global constraints arising in the SONET application. From a modeling
standpoint, the main contribution was to isolate two classes of redundant con-
straints that provide a global view to the solver. From a technical standpoint, the
scientific contributions included novel hardness proofs, propagation algorithms,
and filtering rules. The technical contributions were also evaluated on a simple
and static model that performs a few orders of magnitude faster than earlier
attempts. Experimental results also demonstrated the minor impact of variable
orderings and symmetry-breaking techniques, once advanced constraint propa-
gation is used. More generally, these results indicate the significant benefits of
constraint programming for this application and the value of developing effective
constraint propagation over sets.
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9. van Hoeve, W.J., Régin, J.C.: Open constraints in a closed world. In: Beck, J.C.,
Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer, Hei-
delberg (2006)

10. Sherali, H.D., Smith, J.C.: Improving discrete model representations via symmetry
considerations. Manage. Sci. 47(10), 1396–1407 (2001)

11. Gervet, C., Hentenryck, P.V.: Length-lex ordering for set csps. In: AAAI 2006
(2006)



More Robust Counting-Based Search Heuristics
with Alldifferent Constraints

Alessandro Zanarini1,2,3 and Gilles Pesant1,2
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Abstract. Exploiting solution counting information from individual
constraints has led to some of the most efficient search heuristics in con-
straint programming. However, evaluating the number of solutions for
the alldifferent constraint still presents a challenge: even though pre-
vious approaches based on sampling were extremely effective on hard in-
stances, they are not competitive on easy to medium difficulty instances
due to their significant computational overhead. In this paper we ex-
plore a new approach based on upper bounds, trading counting accuracy
for a significant speedup of the procedure. Experimental results show a
marked improvement on easy instances and even some improvement on
hard instances. We believe that the proposed method is a crucial step to
broaden the applicability of solution counting-based search heuristics.

1 Introduction

AI problem solving relies on effective inference and search. This is true in partic-
ular for Constraint Programming where, after many years of advances on infer-
ence, there has been a more recent focus on search heuristics. The kind of search
heuristics considered in this paper rely on counting the solutions to individ-
ual substructures of the problem [13]. Given a constraint γ defined on the set of
variables {x1, . . . , xk} and respective finite domains Di 1≤i≤k, let #γ(x1, . . . , xk)
denote the number of solutions of constraint γ. Given a variable xi in the scope
of γ, and a value d ∈ Di, we call

σ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xk)

#γ(x1, . . . , xk)

the solution density1 of pair (xi, d) in γ. It measures how often a certain assign-
ment is part of a solution of the constraint γ. One simple — yet very effective —
solution counting-based heuristic is maxSD which, after collecting the solution
densities from the problem constraints, branches on the variable-value pair with
the highest solution density [13].

1 Also referred to as marginal in some of the literature.
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For some constraints, computing solution densities can be done efficiently and
even, in some cases, at (asymptotically) no extra cost given the filtering algo-
rithm already implemented in the constraint. For the alldifferent constraint,
computing the number of solutions is equivalent to the problem of computing
the permanent of the related (0-1) adjacency matrix A that is built such that aij

is equal to 1 iff j ∈ Di. The permanent of a n × n matrix A is formally defined
as2

per(A) =
∑

σ∈Sn

∏
i

ai,σ(i) (1)

where Sn denotes the symmetric group, i.e. the set of n! permutations of [n].
Given a specific permutation, the product is equal to 1 if and only if all the ele-
ments are equal to 1 i.e. the permutation is a valid assignment for the
alldifferent constraint. Hence, the sum over all the permutations gives us
the total number of alldifferent solutions.

The problem of computing the permanent has been studied for the last two
centuries and it is still a challenging problem to address. Even though the an-
alytic formulation of the permanent resembles that of the determinant, there
have been few advances on its exact computation. In 1979, Valiant [12] proved
that the problem is #P -complete, even for 0-1 matrices, that is, under reason-
able assumptions, it cannot be computed in polynomial time in the general case.
The focus then moved to approximating the permanent. A sampling approach
proposed by Rasmussen was improved in [13] by adding propagation. Although
providing a very good approximation, it is time consuming and suitable mainly
for hard instances where the accuracy of the heuristic can balance the time spent
in computing the solution densities.

In this paper we explore a different approach, trading some of the accuracy for
a significant speedup in the counting procedure, in order to provide an algorithm
that performs well on easy instances while keeping the lead in solving hard
ones. A portfolio of heuristics could have been an alternative, first trying a
computationally cheap heuristic to take care of easy instances and switching to
our counting-based heuristic after a certain time limit. But as we shall see, our
proposal not only improves the performance on easy instances but also on hard
ones.

In the rest of this paper, Section 2 presents some known upper bounds for
the permanent and their integration in solution counting-based heuristics for
the alldifferent constraint. Section 3 evaluates our proposal on benchmark
problems. Final comments are given in Section 4.

2 Bounds for alldifferent Solution Counting

2.1 Upper Bounds for the Permanent

In the following, we denote by A the n × n (0-1) adjacency matrix as defined
in the previous section, with ri the sum of the elements in the ith row (i.e.
2 We address the fact that the adjacency matrix may not be square in Section 2.1.
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ri =
∑n

j=1 aij). Note that the permanent is defined on square matrices i.e. the
related bipartite graph needs to have |V1| = |V2|. In order to overcome this
limitation, we can augment the graph by adding |V2| − |V1| fake vertices to V1
(without loss of generality |V1| ≤ |V2|) each one connected to all vertices in
V2. The effect on the number of maximum matchings is stated in the following
theorem.

Theorem 1. Let G(V1 ∪ V2, E) be a bipartite graph with |V1| ≤ |V2| and the
related augmented graph G′(V ′

1 ∪ V2, E
′) a graph such that V ′

1 = V1 ∪ Vfake with
|Vfake| = |V2|−|V1| and the edge set E′ = E∪Efake with Efake = {(vi, vj) | vi ∈
Vfake, vj ∈ V2}. Let |MG| and |MG′ | be the number of maximum matchings
respectively in G and G′. Then |MG| = |MG′ |/|Vfake|!.
Proof. Given a maximum matching m ∈ MG of size |V1|, since m covers all the
vertices in V1 then there exists exactly |V2| − |V1| vertices in V2 not matched. In
the corresponding matching (possibly not maximum) m′ = m in G′, the vertices
in V2 that are not matched can be matched with any of the vertices in Vfake.
Since each vertex in Vfake is connected to any vertex in V2 then there exists
exactly |Vfake|! permutations to obtain a perfect matching in G′ starting from a
maximum matching m in G. If there is no maximum matching of size |V1| for
G then clearly there isn’t any of size |V2| for G′ either.

For simplicity in the rest of the paper we assume |X | = |DX |.
In 1963, Minc [6] conjectured that the permanent can be bounded from above

by the following formula:

perm(A) ≤
n∏

i=1

(ri!)1/ri . (2)

Proved only in 1973 by Brégman [1], it was considered for decades the best upper
bound for the permanent. Recently, Liang and Bai [4], inspired by Rasmussen’s
work, proposed a new upper bound (with qi = min{� ri+1

2 �, � i
2�}):

perm(A)2 ≤
n∏

i=1

qi(ri − qi + 1). (3)

None of the two upper bounds strictly dominates the other. In the following
we denote by UBBM (A) the Brégman-Minc upper bound and by UBLB(A) the
Liang-Bai upper bound. Jurkat and Ryser proposed in [3] another bound:

perm(A) ≤
n∏

i=1

min(ri, i).

However it is considered generally weaker than UBBM (A) (see [11] for a com-
prehensive literature review). Soules proposed in [10] some general sharpening
techniques that can be employed on any existent permanent upper bound in
order to improve them. The basic idea is to apply an appropriate combination
of functions (such as row or column permutation, matrix transposition, row or
column scaling) and to recompute the upper bound on the modified matrix.



More Robust Counting-Based Search Heuristics with Alldifferent Constraints 357

2.2 Solution Counting Algorithm for alldifferent

Aiming for very fast computations, we opted for a direct exploitation of UBBM

and UBLB in order to compute an approximation of solution densities for the
alldifferent constraint. An initial upper bound on the number of solutions
of the alldifferent(x1, . . . , xn) constraint with related adjacency matrix A is
simply

#alldifferent(x1, . . . , xn) ≤ min{UBBM (A), UBLB(A)}

Note that in Formula 2 and 3, the ri are equal to |Di|; since the |Di| range from
0 to n, the factors can be precomputed and stored: in a vector BMfactors[r] =
(r!)1/r , r = 0, . . . , n for the first bound and similarly for the second one (with
factors depending on both |Di| and i). Assuming that |Di| is returned in O(1),
computing the formulas takes O(n) time.

Recall that matrix element aij = 1 iff j ∈ Di. Assigning j to variable xi

translates to replacing the ith row by the unit vector e(j) (i.e. setting the ith
row of the matrix to 0 except for the element in column j). We write Axi=j to
denote matrix A except that xi is fixed to j. We call local probe the assignment
xi = j performed to compute Axi=j i.e. a temporary assignment that does
not propagate to any other constraint except the one being processed. Solution
densities are then approximated as

σ(xi, j, alldifferent) ≈
min{UBBM(Axi=j), UBLB(Axi=j)}

η

where η is a normalizing constant.
The local probe xi = j may trigger some local propagation according to the

level of consistency we want to achieve; therefore Axi=j is subject to the filtering
performed on the constraint being processed. Since the two bounds in Formula
2 and 3 depend on |Di|, a stronger form of consistency would likely lead to more
changes in the domains and on the bounds, and presumably to more accurate
solution densities. We come back to this in Section 2.3.

Once the upper bounds for all variable-value pairs have been computed, it is
possible to further refine the solution count as follows:

#alldifferent(x1, . . . , xn) ≤ min
xi∈X

∑
j∈Di

min{UBBM (Axi=j), UBLB(Axi=j)}

This bound on the solution count depends on the consistency level enforced
in the alldifferent constraint during the local probes. It is the one we will
evaluate in Section 2.3.

If we want to compute σ(xi, j, alldifferent) for all i = 1, . . . , n and for all
j ∈ Di then a trivial implementation would compute Axi=j for each variable-
value pair; the total time complexity would be O(mP + mn) (where m is the
sum of the cardinalities of the variable domains and P the time complexity of
the filtering).
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Although unable to improve over the worst case complexity, in the following
we propose an algorithm that performs definitely better in practice. We first
introduce some additional notation: we write as D′

i the variable domains after
enforcing θ-consistency3 on that constraint alone and as Ĩ the set of indices of
the variables that were subject to a domain change due to a local probe and the
ensuing filtering, that is, i ∈ Ĩ iff |D′

i| �= |Di|. We describe the algorithm for the
Brégman-Minc bound — it can be easily adapted for the Liang-Bai bound.

The basic idea is to compute the bound for the matrix A and reuse it to speed
up the computation of the bounds for Axi=j for all i = 1, . . . , n and j ∈ Di. Let

γk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

BMfactors[1]
BMfactors[|Dk|] if k = i

BMfactors[|D′
k|]

BMfactors[|Dk|] if k ∈ Ĩ \ {i}

1 otherwise

UBBM (Axi=j) =
n∏

k=1

BMfactors[|D′
k|] =

n∏
k=1

γk BMfactors[|Dk|]

= UBBM (A)
n∏

k=1

γk

Note that γk with k = i (i.e. we are computing UBBM (Axi=j)) does not depend
on j; however Ĩ does depend on j because of the domain filtering.

Algorithm 1. Solution Densities
UB = BMbound(A) ;1

for i = 1, . . . , n do2

varUB = UB * BMfactors[1] / BMfactors[|Di |] ;3

total = 0;4

forall j ∈ Di do5

set xi = j;6

enforce θ-consistency;7

VarValUB[i][j] = varUB;8

forall k ∈ Ĩ \ {i} do9

VarValUB[i][j] = VarValUB[i][j] * BMfactors[|D′k |] / BMfactors[|Dk |];10

total = total + VarValUB[i][j];11

rollback xi = j;12

forall j ∈ Di do13

SD[i][j] = VarValUB[i][j]/total;14

return SD;15

3 Any form of consistency.
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Algorithm 1 shows the pseudo code for computing UBBM (Axi=j) for all i =
1, . . . , n and j ∈ Di. Initially, it computes the bound for matrix A (line 1);
then, for a given i, it computes γi and the upper bound is modified accordingly
(line 3). Afterwards, for each j ∈ Di, θ-consistency is enforced (line 7) and it
iterates over the set of modified variables (line 9-10) to compute all the γk that
are different from 1. We store the upper bound for variable i and value j in the
structure V arV alUB[i][j]. Before computing the bound for the other variables-
values the assignment xi = j needs to be undone (line 12). Finally, we normalize
the upper bounds in order to correctly return solution densities (line 13-14). The
time complexity is O(mP + mĨ).

If the matrix A is dense we expect |Ĩ| ) n, therefore most of the γk are
different from 1 and need to be computed. As soon as the matrix becomes sparse
enough then |Ĩ| * n and only a small fraction of γk needs to be computed, and
that is where Algorithm 1 has an edge. In preliminary tests conducted over the
benchmark problems presented in the Section 3, Algorithm 1 with arc consistency
performed on average 25% better than the trivial implementation.

2.3 Counting Accuracy Analysis

But how accurate is the counting information we compute from these bounds?
We compared the algorithm based on upper bounds with the previous ap-
proaches: Rasmussen’s algorithm, Furer’s algorithm and the sampling algorithm
proposed in [13]. We generated alldifferent instances of size n ranging from
10 to 20 variables; variable domains were partially shrunk with a percentage of
removal of values p varying from 20% to 80% in steps of 10%. We computed
the exact number of solutions and removed those instances that were infeasible
or for which enumeration took more than 2 days (leaving about one thousand
instances). As a reference, the average solution count for the alldifferent in-
stances with 20% to 60% of values removed is close to one billion solutions (and
up to 10 billions), with 70% of removals it decreases to a few millions and with
80% of removals to a few thousands.

Randomized algorithms were run 10 times and we report the average of the
results. In order to verify the performance with varying sampling time, we set
a timeout of respectively 1, 0.1, 0.01, and 0.001 second. The running time of
the counting algorithm based on upper bounds is bounded by the completion of
Algorithm 1. The measures used for the analysis are the following:

counting error: relative error on the solution count of the constraint (com-
puted as the absolute difference between the exact solution count and the
estimated one and then divided by the exact solution count)

maximum solution density error: maximum absolute error on the solution
densities (computed as the maximum of the absolute differences between the
exact solution densities and the approximated ones)

average solution density error: average absolute error on the solution den-
sities (computed as the average of the absolute differences between the exact
solution densities and the approximated ones)
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Fig. 1. Counting Error for one thousand alldifferent instances with varying variable
domain sizes

Note that we computed absolute errors for the solution densities because
counting-based heuristics usually compare the absolute value of the solution
densities.

Plot 1 shows the counting error for the sampling algorithm, Rasmussen’s and
Furer’s with varying timeout. Different shades of gray indicate different per-
centages of removals; series represent different algorithms and they are grouped
based on the varying timeouts.

The relative counting error is maintained reasonably low for 1 and 0.1 second
of sampling, however it increases considerably if we further decrease the timeout.
Note that at 0.001 the sampling algorithm reaches its limit being able to sample
only a few dozens solutions (both Rasmussen’s and Furer’s are in the order of the
hundreds of samples). We left out the results of the algorithm based on upper
bounds to avoid a scaling problem: the counting error varies from about 40%
up to 2300% when enforcing domain consistency in Algorithm 1 (UB-DC) and
up to 3600% with arc consistency (UB-AC) or 4800% with forward checking
(UB-FC). Despite being tight upper bounds, they are obviously not suitable
to approximate the solution count. Note nonetheless their remarkable running
times: UB-DC takes about one millisecond whereas UB-AC and UB-FC about
a tenth of a millisecond (with UB-FC being slightly faster).

Despite the poor performance in approximating the solution count, they pro-
vide a very good tradeoff in approximation accuracy and computation time when
deriving solution densities.

Figure 2 and 3 show respectively the maximum and average solution density
errors (note that the maximum value in the y-axis is different in the two plots).
Again the sampling algorithm shows a better accuracy w.r.t. Rasmussen’s and
Furer’s. Solution density errors are very well contained when using the upper
bound approach: they are the best one when compared to the algorithms with
an equivalent timeout and on average comparable to the results obtained by the
sampling algorithm with a timeout of 0.01 seconds. Therefore, upper bounds
offer a good accuracy despite employing just a tenth (UB-DC) or a hundredth
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Fig. 2. Maximum Solution Density Error for one thousand alldifferent instances with
varying variable domain sizes
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Fig. 3. Average Solution Density Error for one thousand alldifferent instances with
varying variable domain sizes

(UB-AC, UB-FC) of the time of the sampling algorithm with comparable ac-
curacy. Furthermore, errors for the upper bound algorithm are quite low when
the domains are dense (low removal percentage) and on par with the sampling
algorithm with a timeout of 0.1 or even 1 second. Note that in the context of
search heuristics dense domains are more likely to happen closer to the root of
the search tree hence when it is important to have a good heuristic guidance.
Finally, as expected, enforcing a higher level of consistency during the local
probes brings more accuracy, however the difference between UB-DC, UB-AC
and UB-FC is not striking.

3 Experimental Results

In addition to counting accuracy, we measured the performance of search heuris-
tics using such information to solve combinatorial problems by running
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experiments on two benchmark problems. We compared the maxSD heuristic [13]
to Impact Based Search (IBS) and to the dom/ddeg variable selection heuristic
coupled with the minconflicts or the lexicographic value selection heuristic. IBS
selects the variable whose instantiation triggers the largest search space reduc-
tion (highest impact) that is approximated as the reduction of the Cartesian
product of the variables’ domains (see [8]). For the maxSD heuristic, we used
the counting algorithm proposed in [13] and alternatively the approach based on
UBBM and UBLB; for Algorithm 1 we tested three consistency levels (forward
checking – UB-FC, arc consistency – UB-AC, and domain consistency – UB-DC).
In order to get the best out of the heuristic presented in [13] throughout the
instance sets, we decided to modify slightly the counting algorithm. The original
counting algorithm first tries with an exact enumeration of the solutions for 0.2
second and in case of timeout proceeds with the sampling for the same amount
of time. Here, we decided to do the same (exact+sampl) except that the sampling
phase does not have a timeout but is instead bounded by the sample size, that
is set dynamically. We got good results by setting the number of samples for
each constraint to ten times the maximum domain size of the variables in the
scope of the constraint. We also report on sampling used alone (sampl) and on
maintaining either arc or domain consistency during sampling. Again for heuris-
tics that have some sort of randomization, we took the average over 10 runs. We
used Ilog Solver 6.6 on a AMD Opteron 2.4 GHz with 1GB of RAM. For each
instance the timeout was set to 20 minutes.

3.1 Quasigroup with Holes Problem

We first tested our algorithm on the Quasigroup with Holes Problem (QWH). It
is defined on a n×n grid whose squares each contain an integer from 1 to n such
that each integer appears exactly once per row and column. The most common
model uses a matrix of integer variables and an alldifferent constraint for
each row and each column. We tested on the 40 hard instances used in [13] that
have n = 30 and 42% of holes and we generated 60 additional instances outside
the phase transition respectively with 45%, 47% and 50% of holes, using [2].

Results are shown in Table 1 (timeout instances are included in the averages).
Figures 4 and 5 show the percentage of solved instances within a given time for
the instance sets with respectively 42% and 45% of holes (time is not cumula-
tive). Every heuristic solved at least 95% of instances in each set except for the
instances with 42% of holes, where dom/ddeg solved 73% of them, IBS solved
85%, maxSD sampl-DC solved 80%, and maxSD sampl-AC solved 85% (see Fig-
ure 4). Note that all the heuristics based on maxSD solved every instance with
45% of holes or more. maxSD sampl brings an impressive reduction of the num-
ber of backtracks compared to the first two heuristics but without a significant
computational advantage. In order to speed it up, we can add exact counting to
produce more accurate information. maxSD exact+sampl is the heuristic with the
lowest number of backtracks on the hard instances together with a significantly
lower runtime; however, as expected, it runs longer on the easy instances: this
can be explained by the fact that the easy instances have more loose constraints
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Table 1. Average solving time (in seconds), median solving time and average number
of backtracks for 100 QWH instances of order 30

heuristic time median bckts time median bckts
42% holes 45% holes

dom/ddeg; minconflicts 497.0 243.8 752883 6.6 1.0 11035
IBS 344.9 72.3 914849 94.1 19.9 247556
maxSD sampl-DC 398.8 358.3 15497 20.0 16.2 619
maxSD sampl-AC 339.7 285.4 15139 29.0 14.3 1349
maxSD exact+sampl-DC 132.0 72.2 4289 115.2 110.0 517
maxSD exact+sampl-AC 142.9 67.9 5013 125.7 110.8 1092
maxSD UB-DC 110.5 13.6 31999 1.3 1.0 164
maxSD UB-AC 82.4 3.7 68597 0.7 0.2 582
maxSD UB-FC 105.5 7.8 104496 0.5 0.3 447
heuristic time median bckts time median bckts

47% holes 50% holes
dom/ddeg; minconflicts 60.3 0.1 118089 0.1 0.1 36
IBS 5.1 2.2 16126 2.8 2.2 10012
maxSD sampl-DC 22.8 10.0 657 19.4 13.3 355
maxSD sampl-AC 6.3 6.1 34 7.7 7.7 8
maxSD exact+sampl-DC 187.3 187.8 8 269.0 270.0 29
maxSD exact+sampl-AC 191.0 187.0 450 262.0 263.5 2
maxSD UB-DC 1.5 1.5 20 2.4 2.3 3
maxSD UB-AC 0.3 0.3 30 0.3 0.3 2
maxSD UB-FC 0.3 0.3 56 0.3 0.3 6

therefore the initial exact enumeration is more likely to time out. In Figure 4 we
can see that the sampling algorithm alone is able to solve some instances within
few seconds whereas maxSD exact+sampl-DC does not solve any instance within
40 seconds because of the high overhead due to exact enumeration. Sampling
alone struggles more with the hard instances and it ends up solving just 85% of
the instances whereas maxSD exact+sampl-DC solves 97% of the instances.

The previous heuristics were significantly outperformed in all the instance sets
by the heuristics based on upper bounds. As shown in Figure 6, maxSD UB-DC,
maxSD UB-AC, maxSD UB-FC are very quick in solving easy instances and yet
they are capable of solving the same number of instances as maxSD exact+sampl-
DC. The latter heuristic shows its limit already in the set of instances with 45%
of holes where no instance is solved within a hundred seconds, whilst maxSD
based on upper bounds almost instantaneously solves all the instances. maxSD
UB-AC was overall the best of the set on all the instances with up to a two
orders of magnitude advantage over IBS in terms of solving time and up to
four orders of magnitude for the number of backtracks. Enforcing a higher level
of consistency leads to better approximated solution densities and to a lower
number of backtracks, but it is more time consuming than simple arc consistency.
A weaker level of consistency like forward checking can pay off on easy instances
but it falls short compared to UB-AC on the hard ones. Note also that maxSD
UB-DC increases the solving time, despite lowering the backtracks, when the
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Fig. 4. Percentage of solved instances vs time for QWH instances with 42% of holes
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Fig. 5. Percentage of solved instances vs time for QWH instances with 45% of holes

instances have more holes (apart from the 42% holes instances): in those cases m
increases and the overhead of propagation becomes important (see Section 2.2).
However we could not reuse the maximum matching and the strongly connected
components (see [9]) computed for the propagation (there is no access to the
underlying propagation code) — a more coupled integration of the counting
algorithm with the propagation algorithm could lead to a performance gain. We
did not consider attempting exact counting before computing the upper bound
(exact+UB) because this would have caused timeouts on the easier instances,
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Fig. 6. Total average time vs % holes

as observed for exact+sampl, and unnecessarily increased the runtimes on such
instances.

We end this section by mentioning a few unsuccessful trials. We tried comput-
ing the permanent bound of Algorithm 1 (line 1) incrementally during search.
We also tried to apply one technique inspired by [10]. Soules observed that
per(A) = per(AT ) however UBBM (A) is not necessarily equal to UBBM (AT )
(the same for the Liang-Bai bound). We implemented the code to compute the
bounds on both the matrix and its transposed and we kept the minimum of such
upper bounds. Neither of these two attempts led to any significant improvement.

Adding Randomized Restarts. The QWH problem exhibits heavy-tail behavior
in runtime distributions when the instances are generated close to the phase
transition. Nonetheless, heavy-tails can be largely avoided by adding random-
ized restarts to the search procedure. We tried a subset of the heuristics tested
above with randomized restart techniques. All the heuristics have been random-
ized such that one variable-value pair is chosen at random with equal probability
between the best two provided by the heuristic. We implemented Walsh’s uni-
versal strategy to generate the restart cutoff sequence (that is αr0, αr1, αr2, . . .
with r = 2 and α equal to 5% the number of variables). The heuristics were not
able to gain from the randomized restarts on the easier instances but only on
the ones with 42% of holes. maxSD UB-FC improved by 35% the average run-
ning time whereas IBS and dom/ddeg; minconflicts degraded their performance
by respectively about 45% and 32%.

3.2 Travelling Tournament Problem with Predefined Venues

The Travelling Tournament Problem with Predefined Venues (TTPPV) was in-
troduced in [5] and consists of finding an optimal single round robin schedule
for a sport event. Given a set of n teams, each team has to play against each
other team. In each game, a team is supposed to play either at home or away,
however no team can play more than three consecutive times at home or away.
The particularity of this problem resides on the venues of each game, that are
predefined, i.e. if team a plays against b we already know whether the game is
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going to be held at a’s home or at b’s home. A TTPPV instance is said to be
balanced if the number of home and away games differ by at most one for each
team; otherwise it is referred to as unbalanced or random.

The TTPPV was originally introduced as an optimization problem where
the sum of the travelling distance of each team has to be minimized, however
[5] shows that it is particularly difficult to find even a feasible solution using
traditional integer linear programming methods (ILP). Balanced instances of
size 18 and 20 (the size is the number of teams) were taking from roughly 20 to
60 seconds to find a first feasible solution with ILP; unbalanced instances could
take up to 5 minutes (or even time out after 2 hours of computation). Hence,
the feasibility version of this problem already represents a challenge. Therefore
we attempted to tackle it with Constraint Programming and solution counting
heuristics.

We modelled the problem in the following way:

alldifferent((xij)1≤j≤n−1) 1 ≤ i ≤ n (4)
regular((xij)1≤j≤n−1, PVi) 1 ≤ i ≤ n (5)
alldifferent((xij)1≤i≤n) 1 ≤ j ≤ n − 1 (6)

xij = k ⇐⇒ xkj = i 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1 (7)
xij ∈ {1, . . . , n} 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1 (8)

A variable xij = k means that team i plays against team k at round j. Constraint
(7) enforces that if team a plays against b then b plays against a in the same
round; constraint (4) enforces that each team plays against every other team;
the home-away pattern associated to the predefined venues of team i (PVi) is
defined through a regular constraint (5). Finally constraint (6) is redundant and
used to achieve additional filtering.

We tested 40 balanced and 40 unbalanced instances borrowed from [5] with
sizes ranging from 14 to 20. For the regular constraint we used the counting
algorithm proposed in [13]. Results are reported in Table 2 for balanced and
unbalanced instances (timeout instances are included in the averages). Figure 7
shows the percentage of unbalanced instances solved within a given time limit
(time is not cumulative).

Table 2. Average solving time (in seconds), number of backtracks, and percentage of
instances solved for 80 TTPPV instances

balanced unbalanced
heuristic time bckts %solved time bckts % solved
dom/ddeg; lexico 0.1 27 100% 901.2 2829721 25%
IBS 10.7 8250 100% 631.7 1081565 50%
maxSD sampl-DC 25.9 2 100% 140.7 3577 91%
maxSD exact+sampl-DC 120.4 1 100% 216.9 1210 91%
maxSD UB-DC 6.7 1 100% 36.8 245 98%
maxSD UB-AC 0.6 1 100% 30.6 2733 98%
maxSD UB-FC 0.5 1 100% 30.5 2906 98%
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Fig. 7. Percentage of solved instances vs time for non balanced instances of the TTPPV

Balanced instances do not present a challenge for any of the heuristics tested:
the lightweight heuristic dom/ddeg; lexico is the one performing better together
with maxSD based on upper bounds. The sampling algorithm here shows its
main drawbacks i.e. it is not competitive in solving easy instances: the number
of backtracks is low indeed but the time spent in sampling is simply a waste of
time on easy instances though crucial on difficult ones. Exact enumeration adds
another constant overhead to the counting procedure with the results of being
three orders of magnitude slower than upper bounds based on arc consistency
or forward checking.

Unbalanced instances are harder to solve and none of the heuristics were
able to solve all 40 instances within the time limit — note that in this set
of instances six out of forty are infeasible. maxSD is significantly faster than
any other heuristic: counting based on upper bounds also allowed to cut com-
puting time by almost 80% w.r.t. the sampling algorithm and by 85% w.r.t.
exact enumeration and sampling. 90% of the instances are solved in 100 sec-
onds by maxSD sampl-DC whereas maxSD UB-AC and maxSD UB-FC take less
than 2 seconds to solve 97.5% of the instances (maxSD UB-FC takes slightly
more).

Remarkably, maxSD with upper bounds proved the infeasibility of five of the
six instances, and with small search trees. None of the other heuristics tested were
able to prove the infeasibility of any of the six instances. Gains are remarkable
also in the number of backtracks (three orders of magnitude better than the
other heuristics). maxSD with upper bound-based counting turned out to be the
most consistent heuristic, performing very well both on hard and easy instances
with an average solving time up to 20 times better than IBS.
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4 Conclusion and Future Work

Solution counting heuristics are to date among the best generic heuristics to
solve CSPs. We believe that the basic idea and some of the algorithms are
relevant to general AI, not just within the CSP framework, and to OR as well.
As an indication, this line of work recently inspired new branching direction
heuristics for mixed integer programs [7].

In this paper, we propose an algorithm to compute solution densities for
alldifferent constraints that actually broaden the applicability of such heuris-
tics. The new approach is suitable both for easy and hard problems and it proves
the competitiveness of solution counting based heuristics w.r.t. other state-of-
the-art heuristics. In the future, we would like to try the more sophisticated
upper bounds proposed in [10] and [11] to see whether they can bring an actual
benefit to our heuristics. An interesting combination is to use upper bounds to
identify a small subset of promising variable-value pairs and then apply an algo-
rithm with a better approximation accuracy (such as sampling) on the selected
subset.
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9. Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: AAAI
1994: Proceedings of the Twelfth National Conference on Artificial Intelligence,
vol. 1, pp. 362–367. American Association for Artificial Intelligence, Menlo Park
(1994)

10. Soules, G.W.: New Permanental Upper Bounds for Nonnegative Matrices. Linear
and Multilinear Algebra 51(4), 319–337 (2003)

11. Soules, G.W.: Permanental Bounds for Nonnegative Matrices via Decomposition.
Linear Algebra and its Applications 394, 73–89 (2005)

12. Valiant, L.: The Complexity of Computing the Permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

13. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)



Author Index

Abdennadher, Slim 292
Albert, Patrick 232

Beldiceanu, Nicolas 10, 25
Benchimol, Pascal 40
Benoist, Thierry 45
Bent, Russell 318
Berthold, Timo 51, 313

Cambazard, Hadrien 56
Carlsson, Mats 10
Chu, Geoffrey 71
Coban, Elvin 87
Coffrin, Carleton 318
Cremonesi, Paolo 97

Davenport, Andrew 92, 334
Deville, Yves 117, 267
Dhyani, Kanika 97
Dilkina, Bistra 102
Dupuis, Julien 117

Feydy, Thibaut 51
Fischetti, Matteo 1, 123, 136
Flener, Pierre 10

Garcia de la Banda, Maria 71
Gervet, Carmen 292, 339
Gomes, Carla P. 3, 102
Grandcolas, Stéphane 141
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