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Preface

Experimental flow measurements, as the indispensable measure to investigate and
improve engineering flows and flow processes, have been greatly advanced, as the
laser methods have found applications in this area. Contrary to the traditional meth-
ods of using mechanical probes, the laser method obviously provides the most
effective and accurate tools for non-intrusive flow measurements. Nowadays, the
laser method for flow measurements has become very fashionable, mainly because
of a lot of fashionable applications of laser techniques everywhere. The most widely
applied laser methods for flow measurements are doubtlessly the laser Doppler
anemometry (LDA), also known as the laser Doppler velocimetry (LDV), and par-
ticle image velocimetry (PIV). While the PIV method is suitable to quantitatively
image the flow distribution, the LDA method is mostly applied to accurately diag-
nose and quantify all types of flows. The subject of treatment in the current book is
the LDA method.

Since the first successful test of LDA principles, especially during the last 20
years, the LDA technique has been developed to be a high-level standard method
for flow measurements. It has been acknowledged as being the most successful
and widely applied measurement technique in both the scientific and engineering
flow investigations. The advanced laser and computer technologies have greatly
contributed to the development of advanced LDA technology. As a very effective
and reliable measurement technique, the LDA method demonstrates its established
significance not only in the field of mechanical engineering but also extensively in
the fields of chemical and biological engineering, as well as in many other fields.

With regard to the uninterrupted developments of LDA technology up until now,
it is worth noting that the majority of developments are mainly restricted to LDA
principles under application of optics on one hand, and to improved soft- and hard-
ware on the other hand. These developments lead to establishment of standard LDA
instruments that have been commercial products and are easily obtainable for appli-
cations. Corresponding professional publications mostly concern the basic principle
of the LDA method and the related developments named above. Only few inves-
tigations and developments have been conducted with regard to the integration of
LDA optical facilities into flow mechanics. As has been perceived for a long time,
it clearly lacks a supportive reference for LDA users in the practical applications.
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vi Preface

The integration of LDA optical facilities into flow mechanics is designated as
the LDA application methods. It stands for the methods to improve the optical con-
ditions and to enhance the measurement accuracies. It also provides the guidelines
for simplifying the measurements and correcting measurement errors as well as for
clarifying the application limits and extending the application areas of LDA tech-
niques. Based on corresponding developments in the last 15 years, the author of this
book tries to summarize all important methods related to the aspects listed above
and to make a useful reference for LDA users. As a practical reference, the book
also contains all other basic knowledge of LDA technology. It is therefore suitable
for all LDA users in universities, research institutes and industries. It also supports
the further developments of both the hard- and software of LDA instrumentations.

The author highly esteems and thanks his lovely wife Nan for her great spiritual
support and the great patient she has shown for many years. He also thanks Sulzer
Markets & Technology Ltd for supporting the research works of applying LDA for
flow measurements during the years 1990–2003.

Innertkirchen, Switzerland Dr.-Ing. Zhengji Zhang
March 2010
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Chapter 1
Introduction

1.1 Flows and Flow Measurements

In industrial applications as well as in scientific research, fluid flows are often uti-
lized to serve diverse functions. The associated physical processes such as those in
thermal and fluid engineering, as well as in chemical and biological process controls,
constantly require accurate quantifications and optimizations, especially as concerns
flow dynamics. The complex flows encountered in diverse industrial applications
usually comprise various varieties of turbulent flows, three-dimensional and non-
stationary flows, flows with separation and relative eddies, multiphase flows and
so forth. To some extent it even deals with non-Newtonian fluid flows. Depending
on the application areas and process specifications, most flows are further speci-
fied by flow rate, Reynolds number, velocity distribution, turbulence intensity and
other relevant flow dynamical parameters. For the flows in heat exchangers, for
instance, both the Reynolds number and the related flow state are crucial for the
thermal efficiency of the apparatus. In treating flows in aerodynamics the most rele-
vant flow dynamical parameters are directly related to the turbulent boundary layers.
Obviously each engineering flow has individual specifications with corresponding
flow dynamical parameters. Amongst all of these flows, the flow turbulence acts as
the most important and complex phenomenon.

Because of the complexities of most industrial and natural flows, theoretical flow
analysis that relies on fluid mechanics mostly appears to be inefficient and unable
to quantify the respective flows. This is the case even if simplifications are used.
Although nowadays the method of computational fluid dynamics (CFD) has been
found to be of wide application in evaluating complex flows and improving the flow
processes, its general reliability and applicability still need to be enhanced, espe-
cially through experimental validations. Moreover, the CFD method is unable to
provide the online analysis of the flow process of interest. For these reasons, experi-
mental flow measurements have often been taken into account, aiming to investigate
the flows and thus to optimise the related flow processes.

1Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_1, C© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

1.2 Traditional Methods of Flow Measurements

Traditional flow measurements in the field of flow dynamics basically include the
measurements of velocity and pressure distributions in the flow. The most famil-
iar methods for local flow measurements are using the Pitot tubes to measure total
pressure and the Prandtl tubes to gauge dynamical pressure. Because such pressure
probes all require insertion into the flow, the flow is disturbed. Both the Pitot and
Prandtl tubes are usually restricted to stable or quasi stable flow measurements. They
are generally not used for measuring flow turbulence or any high frequency flow
fluctuations, mainly because of the delay of pressure signals in the pressure probes.
This can happen due to the compressibility of the gaseous flow or other causes.
Also, the associated velocity fluctuations cannot be calculated from the measured
pressure fluctuations in a straightforward way. In addition, it should be kept in mind
that the pressure probes are not applicable to the boundary layers nor to flows with
streamline curvatures.

A much more appropriate method for turbulent flow measurements are the hot
wire anemometers (HWA). This method makes use of the relationship between the
heat transfer on the thin hot wire surface and the flow velocity. The hot wire is only
a few micrometers in diameter and is usually made of platinum or tungsten. Such
a thin hot wire ensures the rapid response of the hot wire temperature and hence of
the electrical signals to the fluctuations in the local flow velocity. Thus the method
can be well applied to measurements of most turbulent flows, including those in the
turbulent boundary layers. The downside of the method is that the hot wire has to
be calibrated prior to each application. The thin hot wire also demands that the flow
does not contain any hard particles, which could damage the wire. Because of the
considerable flow resistance exerted on the hot wire the method is not applicable to
water flows of high velocity. In practice, the hot wire anemometer has found wide
application in air flow measurement.

There are many other methods that are used in the practical flow measurements.
Most of them require that the flow has to be arranged so that it is mechanically acces-
sible for probe insertion. Another well-known method without flow disturbance is
using ultrasonic waves. It has found wide application in pipe flows, where neither
mechanical nor optical access to the flow is possible.

1.3 Laser Methods and Laser Doppler Anemometry (LDA)

Modern measurement techniques for flow investigations are doubtless marked by
use of laser techniques. The laser method obviously provides the far and wide
perspective of measuring flows both more accurately and informatively. On one
side, traditional measurement methods (Sect. 1.2) will be replaced where high
measurement accuracies are demanded and special flow parameters should be quan-
tified. On the other side, the significant progress of making the laser method to
be standard and hence to be easily handled has largely extended the application
area of flow measurements. The well-known laser methods being extended in the
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practical applications are Particle Image Velocimetry (PIV) for flow field measure-
ments and the Laser Doppler Anemometry (LDA), also known as Laser Doppler
Velocimetry (LDV), for measurements of local flow velocities. In principle, both
methods complement each other.

The Particle Image Velocimetry (PIV) is a method of using a laser light sheet
to illuminate particles that are seeded and suspended in the flow. Based on mea-
surements of particle displacements in the image of the visualized flow, the flow
distribution in the illuminated flow area can be quantitatively evaluated. This can
be conducted by means of efficient evaluation software and high-speed computers,
which have all reached a very high standard. The PIV method helps to identify the
flow pattern which could comprise flow separation and relative eddies. In compar-
ison with conventional methods of flow visualization for instance using smokes,
the PIV method additionally provides quantitative flow information. Also to be
mentioned is that this advanced property of PIV measurements has often been
insufficiently put to use. As known, the flow measurement merely provides data
for further analyses and hence behaves as the prerequisite of flow investigation. In
many application examples, quantitative velocities measured by the PIV method are
barely exploited to show the flow pattern. For the most part, no further intensive
and extensive analyses have been or could be completed. Hence, the flow pattern
that is outlined through PIV measurements does not provide any more useful flow
information than that provided through the simple flow visualization, for instance
by using smoke or color. This comparison implies that the flow investigation is not
simply restricted to the stage of flow measurements. More about this aspect will be
explained in Sect. 1.4.

The Laser Doppler Anemometry (LDA), of which the functionality and applica-
tion methods constitute the subject of this book, is probably the most effective and
widest applied non-intrusive method in experimental investigations of flows and
flow dynamics. It represents an optical, state of the art method commonly with high
measurement accuracy. Since the first application of the LDA method by Yeh and
Cummins (1964), the method has been continuously developed and extended, so that
it nowadays becomes a standard instrument for flow measurements in both indus-
trial applications and model flow investigations. The fundamental development in
LDA technology includes the progressive hard- and software developments, which
are achieved mainly based on the progressive developments of laser and computer
technologies. In general, the LDA technology can be categorized into two areas:

LDA fundamentals
LDA applications

In the aspect of LDA applications, significant achievements have been made since
the nineties of the last century, as the LDA method had then found its wide applica-
tion. In accordance with more and more LDA applications at that time and for the
purpose of exchanging the application experiences, many local and global associa-
tions have been grounded like EALA (European Association for Laser Anemometry,
no longer active) and GALA (German Association for Laser Anemometry).
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1.3.1 Developments of LDA Fundamentals and Instrumentations

Since the first LDA measurement was successfully tested by Yeh and Cummins
(1964), the method is undergoing continuous development. These developments are
mainly restricted to the enhancement of opto-electronic performance of LDA system
and the hard- and software improvements. Such developments have enabled the
LDA nowadays to be a mature and important measurement instrument which is also
commercially available. Within the framework of this book, it is not the purpose to
make a historic review of LDA developments. For informative LDA developments,
the readers are referred to the earlier work of Durst et al. (1981) as well as to the
recent work of Albrecht et al. (2003).

Developments on LDA fundamentals also include investigations of diverse opti-
cal and flow-specific aspects that are tightly related to LDA applications and could
considerably influence the measurement accuracies. Corresponding influencing fac-
tors are known, for instance, as the effect of fringe distortion in LDA measurement
volumes, the velocity and angular bias effects, the effect of the time and spatial
velocity gradients and so on. Because of their importance in LDA measurements,
correspondingly extended investigations have been carried out at an earlier time.
They are mentioned here, as follows:

(A) Velocity bias effect: The velocity bias arises from the effect that the veloc-
ity sampling rate in LDA measurements is not time-equidistant but depends
on the velocity itself. In concrete terms, high velocities are proportionally
more frequently sampled than low velocities. This effect generally exists both
in non-stationary flow and turbulent flow with velocity fluctuations. Because
of its dependence on flow velocity, the velocity bias effect is indeed a flow
phenomenon. It was firstly recognized by McLaughlin and Tiederman (1973)
and later had been broadly investigated by a great number of researchers (for
instance Buchhave 1975, Erdmann and Tropea 1981). Corresponding inves-
tigations are mainly restricted to the correction of the related measurement
error. Based on numerical calculations the velocity bias errors were extensively
characterized by Nobach (1998) for three-dimensional flow turbulence. Fully
analytical specifications of velocity bias and their dependence on the turbu-
lence intensity have been completely accomplished by Zhang (2000, 2002),
for three-dimensional flow turbulence and the turbulence intensity covering the
range from zero to infinity. It should be here remarked that the velocity bias
does not always represent the measurement error. This viewpoint is completely
described in Chap. 17 of this book.

(B) Fringe distortion: As an optical phenomenon, the fringe distortion in the LDA
measurement volume is mainly caused by improper optical layout or by irregu-
lar i.e. asymmetrical laser beam refractions on the medium interface. The fringe
distortion in the measurement volume due to improper optical layout was care-
fully dimensioned by Hanson (1973, 1975). By use of a magnified image the
distorted fringe pattern in the measurement volume was visualized for instance
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by Miles and Witze (1994, 1996). The fringe distortion in the LDA measure-
ment volume as a result of laser beam refractions was confirmed to be the effect
of astigmatism by Zhang (1995) and Zhang and Eisele (1995a, b). It represents
a particularly crucial phenomenon when the laser beam refraction takes place
on the inclined plane surface or the surface of a circular pipe (Zhang 2004a,
2004b). The outcome of all types of fringe distortion in the LDA measure-
ment volume is the deterioration of the measurement accuracy. Measurement
errors, for instance, are mainly interpreted in the overestimation of all rele-
vant turbulence quantities. For this reason the associated effect is also called
the broadening effect in turbulence measurements (Hanson 1973). Quantitative
evaluations of the fringe distortion effect on the flow measurement accuracy
were performed by Zhang and Eisele (1997, 1998c) for the case of linear fringe
distortion in the measurement volume. For other types of fringe distortion in the
measurement volume, the respective effect cannot yet be well-estimated.

(C) Spatial velocity gradient effect: For flows with spatial velocity gradient, such
as the flows in the turbulent boundary layers, LDA measurements suffer from
measurement errors in both mean and fluctuation velocities. The reason for
these errors is the non-uniform velocity distribution within the length of the
LDA measurement volume. Because the standard LDA optics is unable to
resolve the velocity distribution within the measurement volume, both the
mean velocity and especially turbulence quantities suffer from measurement
errors. Corresponding investigations have been carried out by Durst et al.
(1996, 1998). As a matter of fact, the existence of the spatial velocity gradient
within the LDA measurement volume also leads to ambiguity in representing
the measurement result because of the effect of the involved velocity bias.

(D) Non-stationary flow measurements: In the enforced non-stationary turbulent
flows, flow fluctuations comprise both the enforced velocity variation because
of the flow periodicity, for instance, and the stochastic velocity fluctuations
because of the flow turbulence. To evaluate such flows based on LDA mea-
surements, the appropriate data processing has to be worked out. Usually it
refers to the method of resolving the stochastic from composite fluctuations.
Corresponding investigations on the evaluation method have been carried out
by Zhang et al. (1996, 1997) as well as by Jakoby et al. (1996).

1.3.2 Developments of LDA Application Methods

As a result of fundamental developments and the developments of hard- and soft-
ware, the LDA method has been established to be a very efficient optical technique
for flow measurements, especially for investigations of complex turbulent flows.
Correspondingly the LDA instrument has become a mature commercial prod-
uct and found the widest applications. Because of this, the LDA technique has
been commonly considered as an available tool, although complicated, for direct
application in the flow measurements.
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In reality and as experienced from applications, the knowledge of LDA fun-
damentals and the instrument functionalities does not ensure any fully-correct
measurement of flows that are practically of countless varieties with respect to the
flow itself, the flow arrangement and the related optical specifications. This view-
point is objective and true, as it has been well-known for instance that the particle
size, the velocity bias and the fringe distortions could largely influence the measure-
ment accuracies. Although there have been countless LDA applications in almost
all possible flows, only few attempts have been made to improve the optical condi-
tions and enhance the measurement accuracies, to simplify the measurements and
correct measurement errors as well as to clarify the application limits and extend
the application areas of LDA techniques. Aside from the concerned velocity bias
and fringe distortion, practical applications of LDA method in effect suffer from
much more undesirable, partly unknown optical phenomena. The most significant
disturbing factor in LDA applications is related with refractions of laser beams for
internal flow measurements. In facing this situation and to suppress the occurrence
of any optical aberration, the refractive index matching method has been occasion-
ally applied. This method, however, acts only as a passive method and is actually
not always applicable. The problem arising from the laser beam refractions will be
enlarged, if the beam refractions take place on a curved surface like that of a circular
pipe. Obviously the LDA technique with respect to its applications and application
optimizations still needs to be developed.

(A) Optical aberration and astigmatism: In LDA applications, the optical aberra-
tions generally exist in each measurement of internal flows, where the laser
beams must transmit through at least one optical window and hence undergo
refractions. The most remarkable optical aberration was confirmed to be astig-
matism which in worst cases would lead to total interruption of measurements
(Zhang 1995, Zhang and Eisele 1995a, b). The phenomenon and the associ-
ated disturbances on both the signal quality and the signal rate become crucial,
if the LDA optical axis is aligned off-axis i.e. not coincident with the nor-
mal of the optical window. Some LDA users might have experienced that at
the mentioned optical configuration either no signal or very bad signals will
be received. The reason for signal disappearance is the non-intersection of
laser beams after refractions on the air-glass and glass-flow interfaces. The
reason for bad signals is mostly the bad intersection between laser beams and
the deterioration of receiving aperture of the receiving optics. Another issue
of astigmatism is the fringe distortion in the measurement volume that could
lead to measurement errors (Zhang and Eisele 1996b). Detailed descriptions of
influences of astigmatism on LDA measurements and the guideline for correct
measurements with correction method can be found in the mentioned refer-
ences. To minimize the effect of astigmatism the method of configuring the
receiving optics is described in Zhang and Eisele (1996a, 1998b).

(B) Three-component flow measurements in circular pipes: Another most common
case of LDA measurements is referred to flow measurements in circular pipes.
In this case, the optical aberration associated with the laser beam refractions is
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much more complex and serious than that at a plane surface. In reality, mea-
surements could not run without any aid, either of matching the refractive index
of the flow, or by the exact calculation of the laser beam intersection in the flow.
Because the refractive index matching method is not available each time, direct
measurements of pipe flows must often be carried out. Accordingly great dif-
ficulties in obtaining signals of high quality in such measurements would have
been encountered by lots of LDA users. Some users tried a great deal to track
the laser beams in both the pipe wall and the flow (Boadway and Karahan
1981). As a matter of fact, the optical aberrations in the receiving optics and
the corresponding most serious influence on both the signal strength and qual-
ity have often been overlooked. As shown by Zhang (2004a, b) the optical
performance of direct flow measurement can be greatly enhanced by making
the outside surface of the circular pipe to be plane (Fig. 1.1). This contributes
not only to the reduction of optical aberrations in both the transmitting and
receiving optics, but also to the simplification of calculating the laser beam
intersection in the flow for measurements of all three velocity components.

(C) Dual Measurement Method (DMM): As is known, LDA measurements are
measurements of velocity components. Because of this property, there are
sometimes difficulties in accurately resolving a component, say that one in the
secondary flow, which is much smaller against the other components. Usually
the direct measurement of such a small velocity component requires exact opti-
cal alignment, which is, however, often impossible or very complicated and
time-consuming. A method which enables the lowest secondary flow to be
exactly measured has been developed by Zhang (2005) and is denoted as the
Dual Measurement Method (DMM). The method has been successfully applied
to resolve the secondary flow structure in a high speed jet flow, see also Zhang
and Parkinson (2001, 2002).

(D) Zero Correlation Method (ZCM): In measuring the turbulent flows, it is often
required to measure both the mean velocity and the turbulence quantities such
as the turbulence intensity and turbulent stresses in the Reynolds stress matrix.
For measurements of turbulent shear stresses, usually two-component LDA
system should be applied to enable the fluctuations in two velocity components

Fig. 1.1 Effective method
for measurements of all three
velocity components of the
flow in a circular pipe (Zhang
2004a)



8 1 Introduction

to be measured simultaneously. The corresponding technique is known as the
two-component coincident measurement technique. Although most LDA sys-
tems are designed and equipped for doing such measurements, turbulence
measurements can be simplified by accounting for the common randomness
of velocity fluctuations. For stationary flows, this fluctuation randomness indi-
cates that velocity fluctuations occur symmetrically around the mean flow
direction. Based on such an assumption a special method that is called the Zero
Correlation Method (ZCM) has been developed by Zhang (1999). The method
enables the complete turbulence quantities to be simply measured without
requiring the two-component coincident measurement technique.

As outlined above, LDA application methods represent an important category of
LDA techniques and play a crucial role in correctly and efficiently carrying out the
flow measurements. They form the main subject of this technical book.

1.4 Purposeful Flow Measurements and Rational
Measurement Evaluations

Each flow encountered in the engineering applications is arranged to execute the
given functions and thus specified by corresponding relevant parameters. It appears
to be always important to LDA users to be aware of such parameters prior to start-
ing each measurement. Although the LDA technique nowadays is greatly progressed
and the LDA system becomes highly efficient and most convenient for use, it only
serves as a useful application tool for flow measurements. In reality, flow inves-
tigations will just begin after the measurements have been carried out. For this
reason, preliminary studies to specify and clarify the most relevant flow param-
eters should be made. Such preliminary studies also include how the interested
flow quantities can be measured either directly or indirectly, and how accurate the
measurement should be. They therefore provide the prerequisite for choosing the
available measurement technique and the appropriate measurement method.

On the other hand, it is often a hard task for engineers and researchers to prop-
erly evaluate the measurement data. As indicated in Sect. 1.3 referring to the PIV
method, the simple graphical mapping of the flow field directly from the PIV mea-
surements, even quantitative, is often no more informative than the qualitative flow
visualization. With the graphical mapping of the interested flow field, investiga-
tions should indeed just begin rather than just be finished. On one side, more deep
studies and evaluations of measurement data require the knowledge of both the flow
mechanics and the associated physical (thermal or chemical) processes. On the other
side, the poor time-resolution of the achieved measurement data is obviously the
significant shortage of the PIV method that prevents the user from further study-
ing the flow. Against this shortage, the LDA method provides highly time-resolved
measurements. It is therefore highly suitable for diagnosing the flow for instance
by detecting the flow instability, turbulence intensity and exact flow profiles in the
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region of boundary layers and so on. For this reason, the LDA method is sometimes
considered to be comparable with the method of blood test in a clinical laboratory,
while the PIV method is comparable with the x-ray method. That is why the LDA
method as a diagnostic tool, which provides a lot of useful flow information, is
widely applied in practice.

1.5 Purposes of this Book

Since the first LDA application and for a long time thereafter, developments in
LDA technology are mainly restricted to LDA fundamentals and instrumentations,
as stated in Sect. 1.3. Great advancements in this category of LDA technology
enabled the LDA method to become the most favorite technique for flow measure-
ments. The LDA method has thus found its widest applications in experimental flow
investigations. As also stated in Sect. 1.3, unique intimate knowledge of LDA fun-
damentals and instrumentations does not fully ensure correct flow measurements.
For LDA users in practical applications, the application methods appear to be as
much important and helpful as LDA fundamentals.

The current book therefore tries to completely summarize knowledge that is
available in the aspect of LDA application methods. For completeness, the basic
fundamentals of LDA measurement techniques and many other relevant aspects like
the particle dynamics and velocity transformation algorithm will also be shown. To
certain optical aspects, like those in specifying the LDA measurement volume in the
circular pipe flows, the mathematical calculations seem to be rather complex. They
are nevertheless all crucial for clarifying the background of each optical aspect and
for estimating the extent of corresponding influences in measurements. Moreover,
they also serve as the basis for further investigations of related optical aspects.

Finally some special applications of LDA methods will be presented. It will also
show that the LDA method is just as suitably applicable for solid mechanics as for
flow mechanics.

This book with its main subject thus serves as an extended reference for guid-
ance on the LDA applications to users who are attempting to optimize the optical
conditions and to gain the maximum results from measurements. Because it is the
first book dealing with LDA application methods, it would contribute to the further
build-up of LDA technology. Although the book has its weight in the application
methods which mainly addresses LDA users, it can also be referred to by developers
and manufactures of LDA systems.



Chapter 2
Specifications of Engineering Turbulent Flows

Most flows encountered in the practical applications are turbulent viscous flows.
Because of the randomness of flow fluctuations, the flow turbulence probably
belongs to the most complex phenomenon in our natural world. It is almost only
the flow turbulence that decisively influences the physical (e.g. thermal or chem-
ical) processes in respective fluid flows. On one side, basic research works have
been continuously and highly concentrated on the general properties of flow tur-
bulence (Bradshaw 1978, Hinze 1975, Lumley et al. 1996). Efforts have also been
made to establish the appropriate turbulence models, especially in the computational
fluid dynamics (CFD). On the other side, countless experimental investigations
of turbulent flows and their influences on respective flow processes in engineer-
ing applications have been carried out. Here the most often used parameter for
quantitative characterization of the flow turbulence is simply the turbulence inten-
sity as the outcome directly from statistical evaluation of flow fluctuations. It also
represents the most easily obtainable turbulence quantity in experimental flow
measurements.

In the aspect of flow dynamics, the significant features of flow turbulence are
the time-dependent velocity fluctuations and their statistics regarding the time and
spatial extent of fluctuations. With respect to these features of flow turbulence, the
most appropriate measurement method is obviously the LDA method that enables
the velocity fluctuations in a turbulent flow to be highly resolved and has already
been widely applied in experimental flow investigations. For this reason only tur-
bulence quantities will be considered here that are tightly and directly related with
LDA measurements in engineering flows.

2.1 Turbulent Flow Properties

2.1.1 Statistical Views of Flow Turbulences

Turbulent flows are known as the flows with irregular fluctuations of fluid particles
in motion. To describe the turbulent flow with velocity fluctuations, the flow velocity
is usually split into a time-averaged mean and a fluctuation velocity. In regarding

11Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_2, C© Springer-Verlag Berlin Heidelberg 2010
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the velocity component u for instance, the flow velocity with fluctuations is then
expressed as

u(t) = ū + u′(t) (2.1)

In accordance with this treatment of a turbulent flow, there is u′(t) = 0 which means
that the time-average of velocity fluctuations vanishes. In order to statistically quan-
tify the extent of flow fluctuations, the standard deviation of the mean velocity of a
stationary turbulent flow has always been applied, as it is calculated for the given
velocity component by

σu =

√
√
√
√
√

1

T

T∫

0

u′ 2dt (2.2)

Velocity fluctuations around the mean velocity are of different magnitudes and take
place to different magnitudes by different probabilities. While velocity events in
velocity classes close to the mean velocity happen at high probabilities, velocity
events far from the mean appear rather few. Mostly the probability distribution of
fluctuation velocities is of a symmetrical bell form as shown in Fig. 2.1 for example
from measurements of a stationary turbulent flow. In most cases dealing with sta-
tionary turbulent flows, flow fluctuations are stochastic and can be approximated by
the Gaussian probability density function as given by

pdfu = 1√
2πσu

e
− (u−ū)2

2σ2
u (2.3)

In this expression, σu in m/s is the standard deviation of the mean velocity ū and
has been specified in Eq. (2.2). It represents the statistical variability of velocity and
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Fig. 2.1 Fluctuation velocity and its probability distribution in a high speed jet flow measured by
LDA method
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pdf 

68.3% 

Fig. 2.2 Gaussian
probability density function

specifies the most available range of flow fluctuations around the time-average of
respective velocity components. In Fig. 2.2 the corresponding probability density
function has been shown to approximate the distribution of fluctuation veloci-
ties. The probability of random velocities occurring in the range u = ū ± σu is
calculated as

P (σu) =
ū+σu∫

ū−σu

pdfudu = 2√
π

1
/√

2
∫

0

e−z2
dz = erf

(
1√
2

)

≈ 68.3% (2.4)

Here the substitution of z = u−ū√
2σu

was applied. The term erf(x) is the error function.

It vanishes when x = 0 and approaches unity as x tends to infinity.
Furthermore, the probability of random velocities occurring in the range u =

ū ± 2σu is given by

P (2σu) =
ū+2σu∫

ū−2σu

pdfudu = 2√
π

√
2∫

0

e−z2
dz = erf

(√
2
)

≈ 95.4% (2.5)

The standard deviation σu generally represents a statistical parameter that depicts the
extent of non-uniformity in a data series as in the process fluctuations. In relating
to LDA measurements of a stationary turbulent flow, the method of calculating the
standard deviation σu will be shown in Chap. 5.

2.1.2 Isotropic and Anisotropic Turbulences

Since velocity fluctuations in each turbulent flow are always three-dimensional, it
distinguishes between isotropic and anisotropic turbulences, as illustrated in Fig. 2.3
in the general field coordinate system. Local isotropy of turbulence is given at large
Reynolds numbers and conditions without remarkable influences of any boundaries.
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(a) isotropic turbulence (b) anisotropic turbulence
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Fig. 2.3 Isotropic and anisotropic turbulences (two-dimensional), shown in the form of scatter
diagrams of the fluctuation velocity measured by LDA method

In such a turbulent flow, velocity fluctuations in all spatial directions are of the
same statistical level i.e. σx = σy = σz = σ in terms of standard deviations.
The standard deviation of the mean velocity can then be directly applied to calculate
the turbulence intensity of the related turbulent flow:

Tu = σ

ū
(2.6)

with ū as the mean velocity in the main flow direction.
As a matter of fact, turbulence encountered in most practical flows is anisotropic,

mainly because of reactions of existing boundaries on flow fluctuations. The tur-
bulent flow with anisotropic turbulence as shown in Fig. 2.3b represents the most
common case. It is characterised by two distinct aspects: the first aspect is that veloc-
ity fluctuations are confirmed to more or less symmetrical distribution on both sides
of the mean velocity vector. This property of the flow turbulence simply arises from
the randomness of velocity fluctuations. It can be made of use in order to simplify
both the specification of the flow turbulence and the measurement of corresponding
turbulence quantities, see Chap. 8. The second aspect is that the velocity fluctuation
along the mean velocity vector is of maximum magnitude while it is of minimum
magnitude perpendicular to the mean velocity vector. The turbulence with minimum
fluctuation magnitude along the mean velocity vector is practically uncommon. Its
mathematical treatment is equal to that of the common case. For this reason, as well
as for simplicities of representing the measurement techniques, only the common
case of anisotropic turbulences according to Fig. 2.3b will be further considered.

The asymmetrical distribution of velocity fluctuations around the mean velocity
vector has usually been found in the flows where large velocity gradients are present.
This type of velocity fluctuations can be confirmed for instance in the shear flow of
turbulent boundary layers, as shown by Zhang and Zhang (2002). To some extent,
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the approximation of symmetrical velocity fluctuations can be made in order to sim-
plify both the measurements and data processing. In principle, it merely depends on
the requirement of the measurement accuracy.

2.2 Reynolds Turbulent Stresses

The basic equations of describing the stationary turbulent viscous flows are momen-
tum equations which are also called the Reynolds-averaged Navier–Stokes (RANS)
or simply Reynolds equations. In the Cartesian coordinate system with u, v and w
as three orthogonal velocity components at a local point in the flow, the Reynolds
equations are given as

ρ

(

ū
∂ ū

∂x
+ v̄

∂ ū

∂y
+ w̄

∂ ū

∂z

)

= −∂ p̄

∂x
+μ∇2ū+

(

∂ρu′u′
∂x

+ ∂ρu′v′
∂y

+ ∂ρu′w′
∂z

)

(2.7)

ρ

(

ū
∂ v̄

∂x
+ v̄

∂ v̄

∂y
+ w̄

∂ v̄

∂z

)

= −∂ p̄

∂y
+ μ∇2v̄ +

(

∂ρv′u′
∂x

+ ∂ρv′v′
∂y

+ ∂ρv′w′
∂z

)

(2.8)

ρ

(

ū
∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z

)

= −∂ p̄

∂z
+ μ∇2w̄ +

(

∂ρw′u′
∂x

+ ∂ρw′v′
∂y

+ ∂ρw′w′
∂z

)

(2.9)

In these equations ∇2 is the Laplace operator which operates for instance

∇2u = ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
(2.10)

Flow fluctuations in the turbulent flows represent the momentum exchange between
fluid particles. Their statistical properties are given by local gradients of Reynolds
turbulent stresses which are involved in above equations in terms of ∂ρu′u′ /∂x
and other similar terms. For simplicity and later convenience, constant density of
fluid is assumed and the Reynolds stresses are represented by the variance and the
covariance of respective velocity components. The Reynolds turbulent stresses are
commonly expressed in the following matrix form

σmn =
∣
∣
∣
∣
∣
∣

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

u′2 u′v′ u′w′
v′u′ v′2 v′w′
w′u′ w′v′ w′2

∣
∣
∣
∣
∣
∣
∣

(2.11)

The turbulent stresses σxx, σyy and σzz in m2/ s2 are called the Reynolds normal
stresses. For flow fluctuations that approximately fulfill the Gaussian probability
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distribution, each normal stress is equal to the square of the respective standard
deviation that has been defined in Eq. (2.2) and shown for application in Eq. (2.3).
Correspondingly, turbulent stresses τmn with m �= n are called the Reynolds shear
stresses. Both turbulent normal and shear stresses are time-averages of velocity
fluctuations in corresponding velocity components. According to the definition of
Reynolds shear stresses in Eq. (2.11) there are simply

τxy = τyx, τxz = τzx, τyz = τzy (2.12)

In addition, each turbulent shear stress can be positive and negative, depending on
the flow fluctuations themselves and the used coordinate system. This is, however,
only of mathematical relevance. It does not represent any difference in flow prop-
erties. As can also be recognized from Reynolds equations given above, it is not
the Reynolds stresses themselves but their gradients which determine the flow states
and the related flow dynamics. For this reason, only the absolute maximum value
of the turbulent shear stress behaves as a flow parameter. Other relevant turbulent
parameters are the principal normal stresses, as described below.

Turbulences with equal normal stresses i.e. σxx = σyy = σzz are called isotropic
turbulence, as already concerned in Fig. 2.3a. It also indicates that all turbulent
shear stresses at the considered local point in the flow vanish automatically. This
circumstance indeed represents a special case of the general anisotropic turbulence
with σxx �= σyy �= σzz which has been found in most practical turbulent flows.

The Reynolds stress matrix given in Eq. (2.11) is related to the Cartesian coor-
dinate system x − y − z. According to the matrix algebra there exists an orthogonal
coordinate system in which all related turbulent shear stresses vanish. The Reynolds
stress matrix then takes the form

σmn =
∣
∣
∣
∣
∣
∣

σ11 0 0
0 σ22 0
0 0 σ33

∣
∣
∣
∣
∣
∣

(2.13)

The remaining normal stresses are known as the principal normal stresses at the
considered local point in the turbulent flow. They are ordered with respect to their
values to σI, σII and σIII, conventionally with σI > σII > σIII.

The turbulence state in a turbulent flow can thus be described by all three normal
stresses, which also determine the maximum of the absolute shear stress (Chap. 6).
Another intrinsic property of the turbulence state at a local point in the flow is that
the sum of all three normal stresses remains constant as given by σI + σII + σI I I =
σxx +σyy +σzz, independent of the applied coordinate system. This constant sum is
known as the first invariant of the matrix given by Eq. (2.11). It actually represents
the mean value of the turbulent kinetic energy that is involved in the flow fluctuations
and usually written as

k = 1

2
ρ
(

u′2 + v′2 + w′2
)

(2.14)
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In using the first invariant of the Reynolds stress matrix, the local turbulence
intensity of a turbulent flow is calculated by

Tu = 1√
ū2 + v̄2 + w̄2

√

1

3

(

u′2 + v′2 + w′2
)

(2.15)

For isotropic turbulence with u′2 = v′2 = w′2 Eq. (2.15) reduces to Eq. (2.6).
It should be mentioned that the turbulence intensity actually behaves as a sta-

tistical parameter and does not signify any mechanical significance of the flow
turbulence. The physical property of the flow turbulence is indeed always related
to the turbulent kinetic energy i.e. in the proportional form of Tu2.



Chapter 3
LDA Principles and Laser Optics

The technique of Laser Doppler Anemometry (LDA), as the name stands for, is a
technique of using the laser light and the Doppler effect for velocity measurements.
It is an optical method and hence tightly related to both the physical and geomet-
rical optics. In order to depict the functionality of the LDA method, some physical
properties of the light and the light wave propagation in medium will firstly be
considered.

3.1 Light Wave and Its Propagation

The light is the electromagnetic wave which is specified by its amplitude, the polar-
ization and the wavelength λ. In the LDA technology regarding special laser light
properties, the polarization of the laser light is less interesting, at least for LDA
users. It will only be considered by splitting the laser beam into parts and trans-
mitting them through single-mode fibers to the LDA head. In addition, it will also
be taken into account if the change in the light intensity due to refraction has to
be concerned based on Fresnel equations. For laser light refractions at not too large
refraction angles, the effect of laser light polarization on the change in the laser light
intensity has usually been neglected. By disregarding the light polarization the spa-
tial propagation of a plane light wave of the amplitude E0 in the positive x-direction
can be expressed by

E = E0 cos (ωt − kx) (3.1)

The parameters ω = 2π/T and k = 2π/λ, respectively, represent the angular
frequency and the angular wavenumber, or simply wavenumber of the light wave.
They are coupled by the wave propagation speed i.e. the light speed in the medium
in which the light propagates. As known, the wave propagation speed is expressed
by the phase velocity that is determined by

d (ωt − kx)

dt
= 0 (3.2)

19Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_3, C© Springer-Verlag Berlin Heidelberg 2010
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The light speed is then obtained as

c = dx

dt
= ω

k
(3.3)

Because of the constant light speed in the homogeneous medium, this equation
signifies that the light wave can be represented either by the angular frequency ω
in the time domain or equivalently by the wavenumber k in the space. The light
speed in Eq. (3.3) can also be expressed as c = νλ with ν = 1/T as the oscil-
lation frequency of the light wave. In the vacuum, the light speed is measured as
c = 2.99792458 × 108 m/s. In the dielectric or non-conducting medium, like water
for instance, the light speed is less than that in the vacuum. The ratio between them
is denoted by n and called the refractive index of the respective dielectric medium.
For the case that the light propagates from one medium (n1) into another (n2), the
light speed then changes from c1 to c2 according to the following relation

c2

c1
= n1

n2
(3.4)

Since the light frequency does not change while the light is refracted at the interface
between two mediums, Eq. (3.4) can further be written with respect to c = νλ as

c2

c1
= n1

n2
= λ2

λ1
(3.5)

This means that the wavelength of the light in a medium is reciprocally proportional
to the medium refractive index n.

The refractive index n is an optical and physical parameter of a dielectric
medium. It is not only a function of the medium and the medium temperature, but
also a function of the light wavelength (color). The latter phenomenon is known as
the dispersion or the chromatic aberration. In LDA measurements, the optical dis-
persion is generally neglected without causing any significant measurement errors
(Chap. 13).

The transmission of light from one medium into another is also related to
the change in the direction of light propagation. This is described by the law of
refraction (also known as Snell’s law) according to Fig. 3.1:

n1 sin ε1 = n2 sin ε2 (3.6)
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Fig. 3.1 Light ray refraction and the plane of incidence
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In this equation, ε1 and ε2 represent the angles of incidence and refraction (or trans-
mission), respectively. They are measured from the normal of the medium interface.
Corresponding mediums are denoted as the incident and the refractive mediums.

The law of refraction given above can be generalized. According to Fig. 3.1 the
x-axis agrees to the normal of the medium interface. The incident ray and the normal
of the medium interface determine a plane that is known as the plane of incidence.
The law of refraction also specifies that the refracted ray must also lie in the plane
of incidence. For the purpose of performing extended calculations, the propagation
directions of both the incident and the refracted rays are denoted by unit vectors �r1
and �r2, respectively. Their projections onto the medium interface (y – z plane) are
also shown in Fig. 3.1. Corresponding vector components are given by r1yz and r2yz
in the y − z plane. Clearly, these two vector components are calculated by sin ε1 and
sin ε2, respectively. Equation (3.6) is then expressed as

r2yz = n1

n2
r1yz (3.7)

Because two sub-vectors �r1yz and �r2yz are parallel vectors in the y − z plane,
following expressions can be immediately obtained

r2y = n1

n2
r1y (3.8)

r2z = n1

n2
r1z (3.9)

These expressions represent the law of refraction in the form of using vectors i.e.
vector components. For later convenience of completing some special calculations,
Eq. (3.6) is further considered in the form

1 − n2
1

n2
2

= sin2 ε1 − sin2 ε2

sin2 ε1
= cos2 ε2 − cos2 ε1

sin2 ε1
(3.10)

With respect to r1x = cos ε1 and r2x = cos ε2 it follows

1 − n2
1

n2
2

= r2
2x − r2

1x

sin2 ε1
= r2

1x

sin2 ε1

(

r2
2x

r2
1x

− 1

)

= 1

tan2 ε1

(

r2
2x

r2
1x

− 1

)

(3.11)

from which one obtains

r2
2x

r2
1x

− 1 =
(

1 − n2
1

n2
2

)

tan2 ε1 (3.12)

The law of refraction is thus interpreted in the form of unit vector components r1x
and r2x. This equation will be applied in Chap. 14 to simplify the characterization of
astigmatism which, as an optical aberration, is related to the refraction of a focused
laser beam.
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3.2 The Doppler Effect

The Doppler effect in optics is associated with the light propagation and accounts
for the frequency shift when the light source is moving or light is reflected off a
moving surface. Because there is no absolute motion according to the special the-
ory of relativity, the Doppler effect must be described by the same mathematical
formula, whether it is arising from the moving light source or the moving observer.
This statement also relies on the physical reality that the light emitted from a moving
light source is independent of the light source motion.

In Fig. 3.2, an optical interaction system with a moving light source and a fixed
receiver has been shown. The initial distance between the light source and the
receiver is given by s. The time used to transform the light through this distance
is t, so that there is s = ct. For simplicity it is assumed that the light source emits
the monochromatic light of wavelength λ0. In the first instance, the light source is
assumed to be seated in the space. The number of waves on the path s is then given
by s/λ0 = ct/λ0. In the second instance, the light source is assumed to move at a
velocity equal to �us. Because the light velocity is independent of the motion of the
light source, the time used for wave transmission through the path s is still equal
to t. Within this time, the light source itself moves from the plane a to the plane b.
The waves which were initially distributed on the path s are now squeezed into the
path ct − (�us · �l)t. Because it deals with the same number of waves there is

ct

λ0
=

ct −
(

�us · �l
)

t

λ1
(3.13)

The wavelength of the light wave perceived at the receiver is then obtained as

λ1 =
(

1 − �us · �l
c

)

λ0 (3.14)
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Fig. 3.2 Doppler effect in an optical system with moving light source
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With respect to the constant light speed given by λ1ν1 = λ0ν0 = c, the frequency
of the light wave is calculated as

ν1 = ν0

1 − �us · �l/c (3.15)

This frequency of the light wave perceived at the receiver is shifted against the
frequency ν0 of the light wave that is emitted by the light source. The associated
phenomenon is called the Doppler effect. It depends on the relative motion between
the light source and the receiver.

Because of �us · �l/c << 1 the above equation is simplified to

ν1 = ν0

(

1 + �us · �l
c

)

(3.16)

Equation (3.15) i.e. (3.16) is derived by assuming the moving light source and the
fixed receiver. According to the special theory of relativity, such a system is totally
equivalent to the system with a fixed light source and a moving receiver, when the
moving velocity of the receiver is set by �ur = −�us. Because of this total equivalence
the frequency of the light wave received by the moving receiver is obtained directly
from Eq. (3.16) as

ν1 = ν0

(

1 − �ur · �l
c

)

(3.17)

In relying on LDA principles, a scattering system is considered to consist of a fixed
light source, a moving object (i.e. a small particle) and a fixed observer to receive
the light scattered by the moving particle. The corresponding optical arrangement
has been illustrated in Fig. 3.3. The particle moves at a velocity equal to �up. The
light frequency from the light source is ν0. The frequency which is observed by the
moving particle is ν1 and can be calculated by Eq. (3.17) using substitutions �up = �ur

and �l1 = �l. The particle in its moving system scatters the incident light at the same
frequency ν1. In a certain spatial direction (�l2), the scattered light is then received as
the light of another frequency ν2 by the fixed receiver because of the Doppler effect.
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Fig. 3.3 Optical interaction
system with a light source, a
moving object and a receiver
to explain the Doppler effect
in LDA measurements
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The relationship between the frequencies ν1 and ν2 is obtained from Eq. (3.16) by
simply changing the indices

ν2 = ν1

(

1 + �up · �l2
c

)

(3.18)

Combining Eqs. (3.17) and (3.18) yields

ν2 = ν0

(

1 − �up · �l1
c

)(

1 + �up · �l2
c

)

(3.19)

This equation is found as the basic theory of the laser Doppler anemometry. The
shifted frequency according to Eq. (3.19) is then a function of the particle velocity
which is considered to be equal to the flow velocity. Because the flow velocity is
always negligible against the light speed as given by �up · �l1/c<<1 and �up · �l2/c<<1,
Eq. (3.19) is further simplified to

ν2 ≈ ν0

(

1 − �up · �l1
c

+ �up · �l2
c

)

(3.20)

The shifted frequency ν2 is in the order of ν0 and therefore still too high to be mea-
sured by conventional devices that are found in usual laboratories. In order to make
use of the Doppler effect for flow measurements, the dual beam configuration has
been confirmed to be highly effective. In fact, the configuration of using two laser
beams has been widest applied and comes to be the standard in LDA measurements.
The physical background of this configuration is given in Sect. 3.4. The key tech-
nique in it is the superposition of two light waves with different frequencies, as
described in the next section.

3.3 Superposition of Two Plane Light Waves

The dual beam configuration of LDA optics (see Sect. 3.4) relies upon the superpo-
sition of two light waves that are differently shifted by the Doppler effect. As known
in general, light is the electromagnetic oscillation in the form of waves. The super-
position of two light waves of different frequencies leads to the so-called optical
interference. For simplicity only the plane waves are considered, which propagate
in the x-direction. According to Fig. 3.4a and b two harmonic waves are assumed to
have different amplitudes and frequencies, as given by

Ea = Ea0 cos (ωat − kax) (3.21)

Eb = Eb0 cos (ωbt − kbx) (3.22)
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Fig. 3.4 Superposition of two light waves

Different amplitudes of two waves have been assumed, because in LDA measure-
ments with the dual beam configuration the intensities of two chains of laser lights
scattered by the particle are always different. This is true even if two laser beams
are initially of equal light intensity.

The superposition of these two waves is simply given as

E = Ea0 cos (ωat − kax)+ Eb0 cos (ωbt − kbx) (3.23)

The spatial distribution of this superimposed wave can be obtained at a given
time, as shown in Fig. 3.4c for the case Eb0 = 1.5Ea0 and ωb = 1.1ωa i.e.
kb = 1.1ka. Obviously the superimposed wave possesses both a high frequency
and a low modulation frequency. For calculating these two frequencies Eq. (3.23) is
rearranged as

E = Ea0 [cos (ωat − kax)+ cos (ωbt − kbx)] + (Eb0 − Ea0) cos (ωbt − kbx) (3.24)

By applying the trigonometric identity

cosα + cosβ = 2 cos
1

2
(α + β) cos

1

2
(α − β) (3.25)

to the first term on the r.h.s. of Eq. (3.24), then the following equation is obtained:
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E = 2Ea0 cos

(
ωa + ωb

2
t − ka + kb

2
x

)

cos

(
ωa − ωb

2
t − ka − kb

2
x

)

+ (Eb0 − Ea0) cos (ωbt − kbx)

(3.26)

For further calculations the following abbreviations are applied

ω = 1

2
(ωa + ωb) , ωm = 1

2
(ωa − ωb) (3.27)

and

k = 1

2
(ka + kb) , km = 1

2
(ka − kb) (3.28)

Herein ωm and km represent the modulation frequency and the modulation
wavenumber, respectively.

To the cosine function cos (ωbt − kbx) in Eq. (3.26), ωb = ω − ωm and kb =
k − km are substituted so that

cos (ωbt − kbx) = cos
(

ωt − kx
)

cos (ωmt − kmx)+ sin
(

ωt − kx
)

sin (ωmt − kmx)
(3.29)

Eq. (3.26) is then converted to

E = (Ea0 + Eb0) cos
(

ωt − kx
) · cos (ωmt − kmx)

+ (Eb0 − Ea0) sin
(

ωt − kx
) · sin (ωmt − kmx)

(3.30)

At the time t = 0, the superimposed wave represents a spatial wave distribution
given by

E = (Ea0 + Eb0) cos
(

kx
)

cos (kmx)+ (Eb0 − Ea0) sin
(

kx
)

sin (kmx) (3.31)

In accordance with Fig. 3.4c, the first term on the r.h.s. of this equation represents
the main form of the superimposed wave, whose maximum amplitude is given by
Ea0 + Eb0. Correspondingly the second term depicts an auxiliary wave with a maxi-
mum amplitude equal to Eb0 − Ea0. It usually represents a negligible value and only
disappears, if two plane waves of equal amplitude are superimposed.

The main form of the superimposed wave comprises the high angular frequency
equal to ω (i.e. k in the spatial wave distribution) and the low modulation frequency
equal to ωm (km). The amplitude of the high frequency oscillation is given by the
modulated wave

Em = (Ea0 + Eb0) cos (ωmt − kmx) (3.32)

It indeed represents the envelope of the high frequency wave, as shown in Fig. 3.4c
for t = 0. Such a modulated wave form can be imagined to be obtainable by
transmitting the wave given in Eq. (3.30) through a low pass filter.
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The intensity of a light wave that is sensed by the human eyes or the photonic
detectors such as photomultiplier tubes is given by the flux density that is propor-
tional to the wave amplitude squared. From the superposition of two waves, as given
by Eq. (3.30) and illustrated in Fig. 3.4c, the amplitude of the main wave oscillation
has been confirmed to be the modulated wave and given in Eq. (3.32). Because of
this the time and spatial distribution of intensities of the superimposed wave can
thus be expressed by

E2
m = (Ea0 + Eb0)

2 cos2 (ωmt − kmx) (3.33)

or equivalently as

E2
m = 1

2
(Ea0 + Eb0)

2 [1 + cos 2 (ωmt − kmx)] (3.34)

The flux density that is proportional to E2
m oscillates with an angular frequency of

2ωm = ωa − ωb which is known as the beat frequency. The corresponding spatial
distribution of such an oscillation is shown in Fig. 3.4d for the considered exam-
ple. It is evident that even in the applied example with large amplitude difference
(Eb0 = 1.5Ea0) the superimposed wave can be well approximated by its main part
which is specified by Eq. (3.32) for the amplitude and by Eq. (3.34) for the light
intensity.

At this moment it should be mentioned that in LDA measurement techniques the
comparable beat frequency of the flux density oscillation is considered and mea-
sured to calculate the flow velocities. Because this frequency is many orders smaller
than the light frequency (of about 6 · 1014 Hz), it can be accurately measured by
means of usual measurement devices.

3.4 LDA Principle

After the Doppler effect and the superposition of two light waves have been treated
in foregoing sections, the optical configuration of an LDA-system and its function-
ality will be demonstrated. A standard one-component LDA system consists of two
laser beams. For simplicity two laser beams (A and B) of equal frequencies (ν0) are
considered to intersect at an angle 2α (Fig. 3.5). The cross area of these two laser
beams in the flow is called the measurement volume. A particle that is suspended
in the flow is assumed to pass through the measurement volume and so scatters the
lights of two laser beams simultaneously. Because of the different spatial layout
of two laser beams, the moving particle of velocity �up perceives the different light
frequencies resulted from different Doppler effects. A detector is spatially located
along �l2 for receiving the light that is scattered from the measurement volume. The
considered system including the laser light source, a moving particle and a detec-
tor is completely comparable with the optical interaction system that has already
been presented in Fig. 3.3 for explaining the Doppler effect. Hence according to
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Eq. (3.20) the frequencies of two light waves received by the detector along �l2 are
given by

ν2a ≈ ν0

(

1 − �up · �l1a

c
+ �up · �l2

c

)

(3.35)

and

ν2b ≈ ν0

(

1 − �up · �l1b

c
+ �up · �l2

c

)

(3.36)

respectively.
While being received by the photodetector, the two light waves of frequencies ν2a

and ν2b get to be superimposed. In accordance with Eq. (3.34), the flux density of
the resultant light wave exhibits a low frequency that is known as the beat frequency
and equal to twice the modulation frequency (2ωm = ωa −ωb). It indeed deals with
a low frequency that can be easily measured by means of conventional measurement
devices. In the terminology of LDA measurement techniques, this low frequency is
called the Doppler frequency. It is calculated from Eqs. (3.35) and (3.36) by

νD = |ν2a − ν2b| = ν0

c

∣
∣
∣�up ·
(�l1b −�l1a

)∣
∣
∣ (3.37)

Because of c/ν0 = λ0 and
∣
∣
∣�up ·
(�l1b −�l1a

)∣
∣
∣ = 2up⊥ sinα with up⊥ as the compo-

nent of the particle velocity perpendicular to the bisector of the two laser beams, the
above equation becomes

νD = 2
up⊥
λ0

sinα (3.38)
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The Doppler frequency is directly proportional to the velocity component up⊥ of the
particle motion, however, independent of the particle motion direction. In assuming
the particle velocity to be equal to the velocity of the fluid flow, the corresponding
flow velocity component can be obtained by measuring the Doppler frequency. It
yields then from Eq. (3.38)

u⊥ = λ0

2 sinα
νD (3.39)

The factor that is multiplied to the Doppler frequency is a physical and geometrical
constant. This circumstance implies that the LDA method for flow measurements
is a method without system calibration. In addition, as seen from Eq. (3.38), the
Doppler frequency detected in the scattered light is independent of the spatial
position of the detector. This property enables the detector to be freely posi-
tioned for measurements. By using the separate detector, however, it is always
time-consuming to align the detector optics to be focused onto the measurement
volume. For this reason, most LDA systems are configured as the backscatter-
ing system in which the detector unit is integrated into the transmitting unit,
see Chap. 4.

Because the Doppler frequency is always positive, independent of the particle
flow direction, the velocity component u⊥ that is calculated from Eq. (3.39) only
corresponds to its absolute value. It is yet impossible to determine the sign of this
velocity component i.e. the flow direction. A method to remove the ambiguity of the
flow direction is the use of a Bragg cell to shift the frequency in one of two laser
beams. This method has come to be a standard in most LDA optics.

Detailed descriptions of an LDA system including photodetectors (photomulti-
plier) and the use of Bragg cells will be given in Sect. 3.6.

3.5 Fringe Model on the Light Interference

The Doppler frequency in the light scattered by the particle while passing through
the measurement volume, as given in Eq. (3.38), can also be calculated by
accounting for the interference of laser lights in the measurement volume. The
associated calculation method is known as the fringe model. As a matter of
fact, the fringe model has most often been applied to explain the principle of
LDA method in flow measurements because of its illustrative capability for easy
understanding.

Two plane light waves of equal amplitudes (E0) and frequencies (ω) are pos-
tulated to propagate in the directions of �ka and �kb, respectively, and intersect at
an angle 2α, as shown in Fig. 3.6. Because of equal angular frequencies and
thus equal wavelengths of two plane waves, equal wavenumbers are given as

k =
∣
∣
∣�ka

∣
∣
∣ =
∣
∣
∣�kb

∣
∣
∣ = 2π/λ0. For the convenience of analysis, the two-dimensional

z − x coordinate system is applied with z as the optical axis which coincides with
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the bisector of two wave vectors �ka and �kb. In the field of the plane wave Ea for
instance, the electromagnetic wave at �r = (z, x) is given by

Ea = E0 cos
(

ωt − �ka · �r
)

(3.40)

Let us remember, the case of the vector �r coinciding with the wave vector �k has
already been treated and given in Eq. (3.21).

With respect to the wavenumber �ka = (k cosα, −k sinα) in the z − x plane
Eq. (3.40) becomes

Ea = E0 cos [ωt − k (z cosα − x sinα)] (3.41)

Similarly, the electromagnetic wave at the same point, however, in the field of the
plane wave Eb can be obtained. The wavenumber in this case is given as �kb =
(k cosα, k sinα), so that

Eb = E0 cos [ωt − k (z cosα + x sinα)] (3.42)

The superposition of these two plane waves at the point �r = (z, x) in the z − x plane
is obtained by again applying the trigonometric identity according to Eq. (3.25)

E = Ea + Eb = 2E0 cos (kx sinα) · cos (ωt − kz cosα) (3.43)

Obviously the resultant wave at the given point �r = (z, x) shows the high angular
frequency equal to ω. The amplitude of this wave oscillation is 2E0 cos (kx sinα)
that is a constant and geometrically only a function of the coordinate x. The light
intensity that is proportional to the square of the wave amplitude is calculated by

E2
m = 4E2

0 cos2 (kx sinα) = 2E2
0 [1 + cos 2 (kx sinα)] (3.44)
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With respect to k = 2π/λ0 this equation is again written as

E2
m = 2E2

0

[

1 + cos 2π

(
2 sinα

λ0
x

)]

= 2E2
0

[

1 + cos
(

2π
x

�x

)]

(3.45)

In the direction perpendicular to the optical axis i.e. parallel to the x-axis, the light
intensity alternates with a distance equal to

�x = λ0

2 sinα
(3.46)

This distance is known as the fringe spacing in the measurement volume. It is
resulting from the interference of two light waves that takes place by overlapping
them. To show the dimension of the fringe spacing in the measurement volume,
two laser beams of equal wavelength λ0 = 514.5 nm are considered to intersect
at an half intersection angle α = 3◦. From the above equation the fringe spac-
ing is calculated as �x = 5μm. Obviously it deals with a quite small value. By
use of a magnified image, the fringe pattern i.e. the light intensity distribution
in the measurement volume could be visualized for instance by Miles and Witze
(1994, 1996).

In comparing with Eq. (3.39), the velocity component of a particle passing
through the measurement volume is calculated by

u⊥ = �x · νD (3.47)

This equation points out that the Doppler frequency can be considered to be the
alternating frequency in the intensity of light that is scattered out by a particle
passing through the measurement volume. The corresponding light signal has also
been shown in Fig. 3.6. In the terminology of LDA measurements, such a signal
is called the Doppler burst. Because the laser beams used in LDA measurements
have a Gaussian distribution in the intensity (see Sect. 3.7), the Doppler burst shows
its maximum amplitude, as the particle is found in the centre of the measurement
volume.

The fringe model presented above is a very useful tool to understand the LDA
measurement principle. It also represents a very convenient means to make further
studies of diverse optical phenomena influencing the measurement accuracy. To be
mentioned here are for instance the change in the fringe spacing at flow measure-
ments in the circular pipes, the fringe distortion caused by either improper optical
layout or astigmatism arising from laser beam refractions, and the signal properties
in measurements of particle size using Phase Doppler Anemometry (PDA). All of
these points excluding that in PDA measurements can be found in the corresponding
chapters of this book.
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3.6 Frequency Shift Method to Resolve the Flow Direction

The LDA method is based on the evaluation of the burst signals that are generated by
particles passing through the measurement volume. An ambiguity to the flow direc-
tion of the particle, however, exists because a positive and a negative velocity of the
same magnitude will cause the same Doppler frequency. The burst signals thus only
involve the magnitude but not the signs of respective velocities. In order to resolve
the flow direction from each Doppler burst, the technique of using Bragg cells to
slightly shift the frequency in one or both of two laser beams in each laser beam
pair has become a standard. The physical principle of the Bragg cell can be found
for instance in Albrecht et al. (2003). The purpose of shifting the light frequency is
to create the moving fringes in the measurement volume in a predefined direction.
The principle of using the frequency shift method to resolve the flow direction is
explained here.

According to Fig. 3.7 the light wave frequency of the laser beam A is assumed
to be shifted up by νsh, so that νa0 = ν0 + νsh. Two laser beams thus show different
frequencies. Correspondingly, the light frequencies perceived at the detector in the
direction �l2 can be directly obtained from Eqs. (3.35) and (3.36) as

ν2a = (ν0 + νsh)

(

1 − �u · �l1a

c
+ �u · �l2

c

)

(3.48)

and

ν2b = ν0

(

1 − �u · �l1b

c
+ �u · �l2

c

)

(3.49)

respectively. Herein both �l1 and �l2 are unit vectors.

ux u

A

B

l1b

l1a

l2

fringe motion at a speed ush

νb0 = ν0

νa0 = ν0 
+ νsh

α

r

r

r

r

Fig. 3.7 Frequency shift at the laser beam A and the resultant fringe motion in the measurement
volume with a shift speed ush
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In the practical application, the shift frequency νsh is selected in the order of
megahertz. It is much lower against the light frequency, however, sufficiently high
in comparison to the Doppler frequency caused by the maximum flow velocity.
Indeed, the value of the shift frequency should ensure that the difference ν2a − ν2b
is constantly positive. Under this condition the effective frequency of light signals
measured by the receiving unit like the photomultiplier (PM) is simply

νPM = ν2a − ν2b = νsh + ν0

c
�u ·
(�l1b −�l1a

)

+ νsh

c
�u ·
(�l2 −�l1a

)

(3.50)

The third term on the r.h.s. of above equation is negligible against the second term
because of νsh << ν0.

With respect to the definition of the positive sign of the velocity component ux
according to Fig. 3.7, the vector difference �l1b − �l1a coincides with the positive

x-axis. Because of �u ·
(�l1b −�l1a

)

= 2ux sinα Eq. (3.50) is then simplified to

νPM = νsh + 2ν0
ux

c
sinα (3.51)

The second term on the r.h.s. of this equation represents the Doppler frequency
caused by the flow velocity. With respect to c = λ0ν0 and in using the fringe model
according to Eq. (3.46), Eq. (3.51) is then rewritten as

νPM = νsh + νD = νsh + ux

�x
(3.52)

The velocity component ux is then resolved as

ux = �x (νPM − νsh) (3.53)

Thus from direct comparison between the frequency νPM which is detected at the
photomultiplier and the preset shift frequency νsh both the value and the sign of the
velocity component ux can be exactly determined. According to Eq. (3.53) there is
ux > 0 from νPM > νsh. In particular, the zero velocity of the flow i.e. a particle
seated in the measurement volume can also be measured. In this case, there is νPM −
νsh = 0.

The technique of using the shift frequency to detect the flow direction is to gen-
erate the moving fringe pattern in the measurement volume. According to Eq. (3.52)
the detected frequency is simply given as the superposition of the Doppler frequency
and the shift frequency. By rewriting Eq. (3.52) to be νPM = (νsh�x + ux)/�x it is
evident that the detected frequency results from the superposition of the particle
velocity and a velocity equal to νsh�x. This implies that fringes in the mea-
surement volume move in the negative x-direction at the constant speed equal to
ush = −νsh�x which is called fringe shift speed. The postulated fringe motion in
the measurement volume can be demonstrated in the following way.
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3.6.1 Fringe Shift Speed

According to Fig. 3.7 the angular frequency of two laser beams are assumed to be
ωa = 2πνa and ωb = 2πνb, respectively. The corresponding wave equations can
be obtained from Eqs. (3.41) and (3.42). For simplicity, the fringe distribution along
the x-axis will be considered. This means that z = 0 has to be applied, so that

Ea = E0 cos (ωat + kax sinα) (3.54)

Eb = E0 cos (ωbt − kbx sinα) (3.55)

The superposition of these two plane waves is obtained by again applying the
trigonometric identity according to Eq. (3.25)

E = Ea + Eb = 2E0 cos
(

ωmt + kx sinα
) · cos (ωt + kmx sinα) (3.56)

with ω = 1
2 (ωa + ωb), ωm = 1

2 (ωa − ωb), k = 1
2 (ka + kb) and km = 1

2 (ka − kb).
The resultant light wave at the given x shows the high angular frequency

equal to ω. The amplitude of this wave oscillation is again the modulated wave
2E0 cos

(

ωmt + kx sinα
)

with the low frequency ωm. The light intensity that is
proportional to the square of the wave amplitude is calculated by

E2
m = 4E2

0 cos2 (kx sinα) = 2E2
0

[

1 + cos 2
(

ωmt + kx sinα
)]

(3.57)

In the current calculation with respect to the shift frequency, there are ωa = ω0 +
ωsh and ωb = ω0, so that ωm = ωsh/2 = πνsh. Correspondingly there is k =
1
2 (ka + kb) ≈ 2π/λ0 because of νsh << ν0. With such simplifications as well as
with respect to �x = λ0/(2 sinα) from Eq. (3.46) one obtains from Eq. (3.57)

E2
m = 2E2

0

[

1 + cos 2π
(

νsht + x

�x

)]

(3.58)

It represents an apparent harmonic wave that would move in the negative x-direction.
In reality, it only signifies the unsteadiness of the fringe pattern as if this is rolling at
a constant speed. It does not indicate any energy transport. For νsh = 0 one obtains
Eq. (3.45).

The speed with which the fringe pattern rolls is determined from the condition

νsht + x

�x
= const (3.59)

to

ush = dx

dt
= −νsh�x (3.60)
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This speed is denoted as the fringe shift speed and has been postulated before based
on Eq. (3.52).
The shift frequency, created by means of Bragg cells, is for instance 40 MHz in some
LDA applications. With respect to a fringe spacing �x = 5μm, see Sect. 3.5, the
shift speed of fringes in the measurement volume is calculated to ush = −200 m/s.
Because this speed is sufficiently higher than all possible fluctuation velocities in
most flows, the sign of each measured velocity component ux in a turbulent flow
can be determined without ambiguity.

Some LDA users would sometimes like to check the accuracy of the shift fre-
quency preset in the LDA system. A simple and accurate method for performing
this task is presented in Chap. 18.

3.7 Gaussian Beam Properties

3.7.1 Geometrical Specifications of the Gaussian Beam

The laser beams that are applied in LDA techniques are generally single-mode laser
beams. The intensity distribution in the cross section of such a laser beam can be
approximated by the Gaussian distribution as given by

I(r) = I0e−2(r/w)2
(3.61)

The light intensity on the beam axis is denoted by I0. The thickness of a Gaussian
beam is confirmed to be equal to 2w. At r = w the light intensity falls down to a
level of about e−2 = 13.5% of the light intensity on the beam axis (r = 0), as shown
in Fig. 3.8.

The light intensity represents the time rate of flow of radiant energy i.e. the radi-
ant flux density. The total power involved in a light beam is obtained by integrating
the light intensity distribution across the light beam section, yielding

P = 2π I0

∞∫

0

e−2(r/w )2 rdr = 1

2
πw2I0 (3.62)

z

r

2w
 

2w
0

2θ

R

Fig. 3.8 Geometrical and optical specifications of the Gaussian beam
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Light beams with the Gaussian distribution always comprise a well-defined beam
waist. This property indicates that the Gaussian beam is a focused beam. In fact,
such a light beam is geometrically completely describable by merely using the beam
waist diameter. According to Fig. 3.8 the geometrical feature of a Gaussian beam
mainly includes the curvature radius R of the wave front and the beam thickness
2w representing the beam divergence. The wave front is considered as a surface on
which the phase is constant. From the wave optics the curvature radius of the front
surface of a Gaussian beam and the beam thickness at the distance z from the beam
waist are given by

R = z

⎡

⎣1 +
(

πw2
0

λz

)2
⎤

⎦ (3.63)

and

w = w0

√
√
√
√1 +

(

λz

πw2
0

)2

(3.64)

respectively.
For large values of the distance z the thickness of the light beam linearly increases

with the distance.
Obviously the beam thickness at the beam waist, given by 2w0, is the most

essential parameter that determines all geometrical features of a Gaussian beam.
According to Eq. (3.63) the curvature radii of the beam front, both at the beam waist
(z = 0) and at the large distance (z = ∞), are infinite. The beam can thus be con-
sidered as the plane wave beam. The position that the Gaussian beam possesses the
smallest curvature radius (Rmin) is obtained from Eq. (3.63) under the condition

dR

dz
= 0 (3.65)

to

zR = π · w2
0

λ
(3.66)

This distance from the beam waist is called the Rayleigh length. It is again a function
of the beam waist thickness. The smallest curvature radius in a Gaussian beam is
then obtained from Eq. (3.63)

Rmin = 2zR = 2π · w2
0

λ
(3.67)

This smallest curvature radius in the wave front is relevant when evaluating the
uniformity of the fringe pattern in the LDA measurement volume. In the case that
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the measurement volume does not coincide with the waists of two laser beams,
non-uniform fringe in the measurement volume will be created. The largest fringe
distortion occurs when the measurement volume is formed by laser beam cross-
ing on the Rayleigh length of both laser beams. More about this property and the
influence of the fringe distortion on the measurement accuracy will be described in
Chap. 16.

In using the Rayleigh length as a characteristic parameter, both the curvature
radius of the front surface and the thickness of a Gaussian beam at a distance z from
the beam waist are expressed by

R = z

[

1 +
(

zR

z

)2
]

(3.68)

and

w = w0

√

1 +
(

z

zR

)2

(3.69)

respectively.
Especially at the Rayleigh length there is

wR = √
2w0 (3.70)

At great distance it yields from Eq. (3.68) with z >> zR

R = z (3.71)

This last equation signifies that the front surface of a Gaussian beam is a circular
surface which has its centre at the beam waist.

The light intensity in the Gaussian beam at the Rayleigh length can be calculated
from Eq. (3.62). Because the total power in the beam remains constant, the light
intensity in the center of the beam, if compared to the center light intensity at the
beam waist, is given by

I0R

I0w
= w2

0

w2
R

= 1

2
(3.72)

The divergence of a Gaussian beam can be expressed by the corresponding diver-
gence angle 2θ under the condition z → ∞. This can be obtained by accounting
for tan θ = dw/dz and carrying out the corresponding calculation from Eq. (3.69).
Because it usually deals with a very small angle, the approximation tan θ ≈ θ can
be applied. The half divergence angle of a Gaussian beam is then obtained as

θ = w0

zR
(3.73)
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With regard to the Rayleigh length given in Eq. (3.66) this divergence angle of a
Gaussian beam is again expressed as

θ = λ

πw0
(3.74)

Obviously laser beams that have large diameters at the beam waist show the negli-
gible divergence angle. For instance for a laser beam of λ = 500 nm and w0 = 1
mm, the divergence angle is only about 0.009◦.

3.7.2 Transmission Performance of the Gaussian Beam

The transmission performance of a Gaussian beam through a lens of the focal length
f is considered here according to Fig. 3.9. The Gaussian beam considered is assumed
to have a beam waist thickness 2w′

0. The corresponding Rayleigh length is given
by z′

R. Based on lens optics the following geometrical relationships concerning the
Gaussian beam prior to and after the lens are available

w0 = f
√

(s′ − f )2 + z′2
R

w′
0 (3.75)

s = f + f 2
(

s′ − f
)

(s′ − f )2 + z′2
R

(3.76)

In most cases and for simplicity, a Gaussian beam after passing through a lens can
be still considered as a Gaussian beam. All geometrical specifications of a Gaussian
beam, as presented in Sect. 3.7.1, remain unchanged.

f

s

2w
 ′ 0

f

2w
0

s ′

Fig. 3.9 Transmission performance of the Gaussian beam



3.8 Measurement Volume Size 39

3.8 Measurement Volume Size

On the optical side of LDA techniques, the measurement volume behaves as the key
element in system operations. Both the measurement volume size and the specified
optical performance determine the quality of flow measurements. In general, the
measurement volume should always be created by arranging the intersection of two
laser beams on their waists respectively. On one side, this requirement facilitates
the high light intensity in the measurement volume, as this is necessary for detect-
ing small particles passing through the measurement volume. On the other side, the
plane wave front at the laser beam waist enables one to create uniform fringes in the
measurement volume and hence to enhance the reliability and accuracy of measure-
ments. Otherwise fringe distortion in the measurement volume will occur and lead
to measurement errors (see Chap. 16).

For this reason and in general, the measurement volume is created at the waists
of two laser beams. The form of the measurement volume can be approximated to
be an ellipsoid, as illustrated in Fig. 3.10. The thickness i.e. the diameter of the
measurement volume is given by the laser beam thickness at the beam waist

dmv = 2w0

cosα
(3.77)

with α as the half intersection angle between two laser beams.
The thickness of the measurement volume is proportional to the laser beam thick-

ness. It depends therefore on the optical arrangement of laser beams regarding the
focal length of the used optical lens because of Eq. (3.75). More about this depen-
dence will be presented in Chap. 4 on the optical configuration of a concrete LDA
system. In general, the thickness of the measurement volume is in the order of about
0.05–0.1 mm.

With regard to the fringe spacing in the measurement volume, as given in Eq.
(3.46), the number of fringes in the measurement volume is then calculated as

N = dmv

�x
= 4

w0

λ0
tanα (3.78)

2a

d m
v α 

Fig. 3.10 Specification of the
measurement volume size
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The length of the measurement volume depends, for the same reason, both on
the laser beam waist thickness and the crossing angle between two laser beams.
According to Fig. 3.10 it is calculated as

2a = dmv

tanα
= 2w0

sinα
(3.79)

In comparison with the thickness of the measurement volume, the measurement
volume has usually a finite length of about 0.5–3 mm, again depending on the optical
arrangement of laser beams.

The geometrical dimension of the measurement volume is defined here inde-
pendent of the particle size. In reality, the calculated measurement volume size is
applicable to small particles of diameters that are comparable to or smaller than the
fringe spacing. For large particles that could still scatter the laser light and hence
be detected even if the particle center is outside of the measurement volume, the
effective detection volume is larger than the independent geometrical measurement
volume. Such a dependence of the detection volume size on the particle size is espe-
cially crucial in the particle size and mass flux measurements (Zhang et al. 1998,
Zhang and Ziada 2000) by means of the Phase Doppler Anemometry (PDA), which
is an extended method of LDA, see Albrecht et al. (2003).



Chapter 4
LDA Systems

4.1 Hardware and Optical Components

Based on advanced development of laser and computer technologies as well as
on extended requirements in high quality flow measurements, LDA systems have
become commercially well available and state of the art products. The hardware
of an LDA system consists of transmitting and receiving units. The optical compo-
nent in the transmitting unit commonly counts the laser, the laser beam transmitter
including the Bragg cells and splitters, the fiber and the LDA-head, as shown in
Fig. 4.1a for a system of Dantec Dynamics. The laser that is mostly used in LDA
measurements is the argon-ion laser that basically provides three selectable wave-
lengths of 514.5, 488 and 476.5 nm. An LDA system is usually configured to use the
laser light of the wavelength 514.5 (green) and 488 (blue) nanometers. After getting
into the transmitter, the laser is separated and split into a pair of green and a pair of
blue beams. For the purpose of resolving velocity directions, the light frequencies
respectively in one green and one blue beams are shifted by Bragg cells, typically
for 40 MHz. In some optical configurations, the Bragg cell also serves as the beam
splitter. Four laser beams are then conducted into four fibers that are bundled and
connected to the LDA head. A two-component LDA head is usually configured such
that the plane of two green beams is perpendicular to the plane of two blue beams.
This arrangement ensures the measurements of two perpendicular velocity compo-
nents. The front lens on the LDA head enables all four laser beams to be focused at
a unique point for forming the LDA measurement volume. By changing this front
lens for different focal lengths the distance of the measurement volume to the LDA
head can be changed. Corresponding geometrical and optical properties of the mea-
surement volume in using the lens of different focal lengths will be described in
Sect. 4.2.

Because of the use of fiber techniques, LDA optics is sometimes also called the
fiber-optic LDA.

The receiving unit of a LDA system commonly includes the components such as
the receiving optics, photodetectors like photomultipliers (PM), the signal proces-
sor and a computer for both controlling measurements and evaluating measurement
data. In the act of using two pair of laser beams, the backward scattered laser light

41Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_4, C© Springer-Verlag Berlin Heidelberg 2010
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(a)

(b)
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514.5
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Fig. 4.1 Transmitting optics of an LDA system (Dantec Dynamics)

contains two sequences of light signals and hence is informative of two-component
flow velocities. As shown in Fig. 4.2 for the most common case, the LDA head
with the corresponding front lens also serves as the receiving unit. The scattered
laser light is collected and focused onto the plane end of a supplementary fiber. At
another end of the fiber which is usually integrated into the transmitter, the light is
firstly separated into two parts of wavelengths 514.5 and 488 nm. These are then
guided to respective photomultipliers which convert the light signals into electronic
signals. The signal processor and the computer finally work out signals involving
the flow velocities and the velocity-time relations.

The LDA system, as shown in Fig. 4.2, is called the backward scattering system.
The most relevant advantage of such a system is the consistency of the optical align-
ment between the transmitting and the receiving units. The LDA head can thus be
placed mobile for flow measurements, without realignment each time. In contrast,
the forward scattering system necessitates a separate optical receiver for receiving
the forward scattered laser light. The background of sometimes configuring such

photodetectors           signal processor  computer

51
4.

5 
nm

48
8 

nm

scattered light 

PM

Fig. 4.2 Receiving optics of a backward scattering LDA system
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a system is the utilization of high intensity of the forward scattered laser light.
Because of the separation between the transmitting and the receiving units an opti-
cal realignment is usually always indispensable when the measurement point i.e.
the measurement volume in the flow is changed. The realignment of the measure-
ment volume will be very time-consuming, if it deals with measurements of internal
flows. All refractions of both the transmitting light beams and the scattering light on
diverse medium interfaces (as air-glass and glass-flow) have to be concerned.

LDA systems that use other laser lights (e.g. diode laser) rather than the argon-ion
lasers have also been found in the practical applications.

In some few other applications with special optical configurations, coinci-
dent measurements of three particular velocity components have been carried out
(Hüttmann et al. 2007, Richter and Leder 2006). In these applications, the additional
laser light of the wavelength of 476.5 nm has usually been used. As demonstrated
in Fig. 4.3 for instance, usually it deals with the measurements of non-orthogonal
velocity components. The complete flow information including all three velocity
components and the turbulence quantities in the Cartesian coordinate system can
be obtained through the appropriate coordinate transformation. More about this
technique will be presented in Chap. 6.

60
1.

5 
m

m

1170 mm

80 mm

2D LDA (λ=488, 476 nm) 1D LDA (λ=514.5 nm)

Receiving optics

Fig. 4.3 Integrated three-component LDA head, applied for in-water measurements (Richter and
Leder 2006)
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4.2 Specification of LDA Measurement Volumes

It has been indicated in Sect. 3.8 that the measurement volume size depends on
the optical configuration and the used optical lens which determines both the beam
crossing angle and the waist thickness of each laser beam. In all LDA configurations,
the laser beam crossing is achieved by the lens on the LDA head. Usually each laser
beam prior to the lens is configured to be a nearly parallel light bundle. The diameter
of such a light bundle is of about 2w′

0 = 1 ∼ 2 mm. By considering this thickness
as the waist diameter of a light bundle and according to Eq. (3.74) for the laser
light with a wavelength λ = 500 nm, the divergence angle of the light bundle of a
diameter 2w′

0 = 2 mm is only about 0.009◦. Correspondingly the Rayleigh length is
calculated from Eq. (3.66) to be z′

R = 6283 mm. In all commercial LDA systems, the
laser beam thickness 2w′

0 prior to the lens is configured to be a fixed value. Another
fixed value is the distance 2d between two laser beams of a beam pair (Fig. 4.4).
By changing the lens on the LDA head, both the geometrical dimensions and the
optical properties (brightness, fringe spacing etc.) of the measurement volume will
get updated. Applying Eq. (3.76) with respect to f <<z′

R i.e. f / z′
R<<1 yields

s = f (4.1)

The waist of the laser beam thus coincides with the focal point of the lens on the
LDA head. The crossing of two laser beams in a beam pair at the beam waists has
been thus ensured.

The waist thickness of each laser beam at the beam crossing point (measurement
volume) can be calculated from Eq. (3.75) with respect to

(

s′ − f
)

/ z′
R<<1 as

w0 = f

z′
R

w′
0 (4.2)

It is thus directly proportional to the focal length of the lens used on the LDA
head. The corresponding thickness of the measurement volume is then given from
Eq. (3.77) as

dmv = 2f

z′
R cosα

w′
0 (4.3)

α

f

2d

2w
 ′ 0

Fig. 4.4 Creation of LDA
measurement volume and
basic parameters determining
the measurement volume size
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In using the lens with a small focal length, for instance, small thickness and thus
high brightness of the measurement volume can be achieved. This could be very
meaningful for LDA measurements at which small natural particles in the flow
should be used.

Furthermore, the focal length of the lens simply determines the crossing angle
between two laser beams and thus the fringe spacing in the measurement volume.
This determination relation is given from Eq. (3.46) as

�x = λ0

2 sinα
= λ0

2

√

1 + f 2

d2
(4.4)

The number of fringes in the measurement volume can be calculated by Eq. (3.78).
As it can be confirmed with respect to tanα = d / f and Eq. (4.2), the number of
fringes remains unchanged while changing the lens for another focal length:

N = 4
w0

λ0

d

f
= 4

d

λ0

w′
0

z′
R

(4.5)

The length of the measurement volume, according to Eq. (3.79) with respect to
Eq. (4.2), is calculated as

2a = 2f

sinα

w′
0

z′
R

= 2f
w′

0

z′
R

√

1 + f 2

d2
(4.6)

It largely depends on the focal length of used front lens on the LDA head.
In Table 4.1 considering the optical configuration of a standard LDA head man-

ufactured by Dantec Dynamics, calculation examples of geometrical properties of
the measurement volume have been shown. While the thickness of the measurement
volume is usually in the order of about 0.1 mm, the measurement volume length
varies between 0.5 and 5 mm. It should be mentioned that the use of the lens with
a long focal length will reduce both the brightness of the measurement volume and
the spatial resolution in velocity measurements. In addition, the effective aperture of
the receiving optics to the measurement volume decreases too, leading to weakening
of signals to be detected.

Table 4.1 Optical configurations and geometrical properties of the measurement volume, example
of a standard LDA head φ60 of Dantec Dynamics

λ0 = 514.5 nm, 2w′
0 = 2.2 mm, 2d = 38 mm

Focal length of the lens f mm 160 400 600
Beam intersection angle 2α0 deg 13.54 5.44 3.63
Beam waist radius w0 mm 0.024 0.060 0.089
Measurement volume diameter dmv mm 0.05 0.12 0.18
Measurement volume length 2a mm 0.40 2.51 5.65
Fringe spacing �x μm 2.18 5.42 8.13
Number of fringes N – 22 22 22



Chapter 5
Basic Data Processing Methods
in LDA Measurements

Most flows encountered in nature and in practical applications are turbulent flows
which are specified by high rate velocity fluctuations. In stationary flows, flow fluc-
tuations are merely originated from flow turbulence and hence are completely of
randomness. Depending upon the environmental flow conditions, the fluctuation
frequency may reach the level of thousands of hertz. For measurements of turbulent
flows with such a high velocity fluctuation rate, the LDA method probably provides
a most efficient tool. It is non-intrusive, highly accurate and able to highly resolve
the flow both in the time and spatial extensions.

LDA measurements basically provide the time series of velocities, to be accurate,
the velocity components (see Fig. 2.1). The data processing from LDA measure-
ments finally depends on the specification parameters of respective flow processes
and thus on the purpose of conducting flow measurements. The simplest case is
probably the measurement of the velocity profile in a channel flow, from which the
volumetric flow rate can be calculated. In many other cases, the flow turbulence and
its effect on the associated flow processes could be much more relevant. Especially
in dealing with non-stationary or periodic flows, corresponding data processing
methods have to be worked out, with which all process-relevant flow parameters and
dimensionless numbers can be obtained from the time series of measured velocities.
In addition, even in the case of dealing with the mean flow velocity and because
of the effect of velocity bias, the arithmetic mean from LDA measurements could
be insufficient for the required measurement accuracy. Special data processing will
then be needed, see Chaps. 11, 12 and 17.

In this chapter, only the general methods of data processing will be described.

5.1 Direct Data Processing for Mean Velocities
and Velocity Fluctuations

The stationary turbulent flow is described by the mean velocity and the flow fluc-
tuations, as expressed by Eq. (2.1) with respect to the velocity component u. Based
on LDA measurements, the arithmetic mean i.e. the sample mean of the velocity
component u, for instance, is calculated as

47Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_5, C© Springer-Verlag Berlin Heidelberg 2010
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ū = 1

N

N
∑

i=1

ui (5.1)

with N as the total number of velocity samples.
In assuming the known distribution of measurement data like that in Eq. (2.3) or

in Fig. 2.1, the sample mean in the above equation can also be expressed by

ū =
∞∫

−∞
puudu (5.2)

Herein pu simply represents the probability density function of velocity distribu-
tion from the measurement. It is related to the velocity component u and is not
necessarily of the symmetrical form.

Velocity fluctuations involved in the corresponding velocity component can be
described, in the statistical specification, by the standard deviation of the mean
velocity, as presented in Eq. (2.2). As a statistical measure the so-called root mean
square (rms) is calculated by

rmsu =
√

u′2 =
√
√
√
√

1

N

N
∑

i=1

(ui − ū)2 (5.3)

Basically, the standard deviation differs from the root mean square in the above
equation in that it is calculated from the same statistics as in Eq. (5.3), however, with
1/(N−1) in place of 1/N. Because of large sample size (N) in all LDA measurements,
the difference between two statistical quantities is negligibly small, so that there is
usually no need to make any distinction between them. The standard deviation σu in
the mean velocity of a velocity component can thus be represented by the root mean
square. In using σu = rmsu it is further calculated from above equation

σ 2
u = 1

N

N
∑

i=1

(ui − ū)2 = 1

N

N
∑

i=1

u2
i − 2

N

N
∑

i=1

uiū + 1

N

N
∑

i=1

ū2 (5.4)

Because of 1
N

∑

uiū = ū2 and 1
N

∑

ū2 = ū2 one obtains

σ 2
u = u2 − ū2 (5.5)

This relationship will be used in Chap. 17 for estimating the effect of velocity bias
on the measurement accuracy.

The square of the standard deviation, as given in Eq. (5.5), is also called the
variance. It represents the normal turbulent stress related to the respective velocity
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Fig. 5.1 Normalized histogram of velocities and the related Gaussian distribution

component. Both the mean velocity and the standard deviation can be graphically
represented by the so-called histogram, as shown in Fig. 5.1 for example of an LDA
measurement. This histogram is calculated in such a way that the number of velocity
events in each bin is normalized by the total number N of velocity samples. Because
of the randomness of velocity fluctuations around the mean velocity, the histogram is
generally of symmetrical form and can be well approximated by the Gaussian prob-
ability density function as given by Eq. (2.3). In Fig. 5.1 with calculated Gaussian
distribution, the mean velocity is confirmed to have the maximum probability in the
histogram. The standard deviation measures the variability of velocities. In detail,
in the velocity spread of 2σu, the fluctuation velocity occurs with a probability of
68.3%, see Fig. 2.2.

It should be mentioned that because of the effect of velocity bias (Chap. 17) the
symmetry of the histogram constructed from LDA measurements is always more or
less disturbed.

In relying on LDA measurements, from which the root mean square is calculated
by Eq. (5.3), the turbulence intensity of the considered turbulent flow with three-
dimensional velocity fluctuations is represented by

Tu = 1√
ū2 + ν̄2 + w̄2

√

1

3
(rms2

u + rms2
v + rms2

w) (5.6)

Another statistical parameter that can be obtained from measurements is the covari-
ance that is related to two orthogonal velocity components. Like Eq. (5.4) and in
considering the velocity components u and ν, this is calculated as

u′ν′ = 1

N

N
∑

i=1

(ui − ū)(νi − ν̄) (5.7)
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In the similar way of calculating Eq. (5.5), one obtains

u′ν′ = uν − uν (5.8)

This parameter from the statistical evaluation of the flow turbulence actually rep-
resents one shear stress in the Reynolds stress matrix that has been shown in Eq.
(2.11). It also represents the anisotropy of flow turbulence because it usually does
not vanish. According to the calculation algorithm that is shown in Eq. (5.8), the
value of the turbulent shear stress may be positive and negative, depending on both
the velocity of fluctuations themselves and the choice of the coordinate system. For
this reason, an anisotropic turbulence could only be completely described by consid-
ering all components of the turbulent shear stress in the respective Reynolds stress
matrix.

As can be confirmed from above calculations, determinations of basic turbulence
quantities such as u′ν′ clearly require synchronized i.e. coincident measurements of
two velocity components. More about the related measurement technique is outlined
in Chaps. 6 and 8.

Based on the graphical presentation of turbulent flows in the form of histogram
i.e. the probability distribution of flow velocities according to Fig. 5.1, the form
of the distribution is sometimes representative for comparing different turbulence
properties in internal flows (Durst et al. 1992, 1996). There are two parameters
that are often used to describe the form of velocity distributions: the skewness and
flatness. The skewness of the probability distribution of the velocity component u is
defined by

S = u′3 = 1

N

N
∑

i=1

(ui − ū)3 (5.9)

It depicts the scale of the asymmetry of the probability distribution of the velocity
component u around its mean value. In most stationary turbulent flows, ran-
dom velocity fluctuations occur symmetrically around the respective means. The
skewness is then close to zero.

The flatness of the probability distribution of a velocity component is defined by

F = u′4 = 1

N

N
∑

i=1

(ui − ū)4 (5.10)

In reality and like the standard deviation, the flatness as a statistical parameter
represents the variability of the velocity that is considered. In order to show that
this flatness is equivalent to, as well as related with the standard deviation, the
Gaussian probability distribution given at Eq. (2.3) is considered as a reference.
Corresponding flatness is calculated as

FGauss =
∫ ∞

−∞
pdfu(u − ū)4du = 3σ 4

u (5.11)
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It is simply proportional to the fourth power of the standard deviation. Because
of this, the flatness generally does not provide any more about the extent of flow
fluctuations than the standard deviation. In addition, it has hardly any physical and
mechanical significance, while the standard deviation squared (σ 2

u ) represents the
turbulent kinetic energy.

From the derived equation for the flatness of a Gaussian probability distribution,
the so-called flatness factor, also known as the kurtosis factor, is given as

KGauss = F

σ 4
u

= 3 (5.12)

5.2 Weighting Facilities of Mean Velocity and Fluctuations

Statistical calculations given in Eqs. (5.1), (5.2), (5.3), (5.4), (5.5), (5.6), and (5.7)
are simply calculations of respective arithmetical means. Because data acquisitions
in all LDA measurements are not time-equidistant, results from above calculations
do not exactly represent the corresponding time-averages of respective flow param-
eters. The apparent deviations of the sample means from those of time-averages
are called the bias. Among many sources leading to bias in velocity measurements,
velocity fluctuations have been concerned to play a primary role. This type of bias
is known as velocity bias. It arises from the mechanism that the high velocities
will be more frequently sampled than the low velocities, provided tracer particles
in the flow are distributed homogeneously and uniformly. Consequently, the sam-
ple mean of velocities from the measurement shifts towards the upper value. This
phenomenon was firstly confirmed by McLaughlin and Tiederman (1973) and has
been ever since widely investigated with respect to its estimations and corrections.
In all traditional considerations, the velocity bias has been uniquely categorized
to be an error that is involved in LDA measurements. Because the appearance of
velocity bias is directly related to the non-uniformity of flow velocities, the veloc-
ity bias is indeed a flow rather than an optical phenomenon. In addition, the biased
mean velocity exactly represents a characteristic mean, which should be applied to
calculate the momentum flux in the flow. For more details about this concept, see
Chap. 17.

With respect to the background of velocity bias, different correction methods
have been developed and implemented. The most common method is to use a
weighting factor fw in calculating arithmetical means of respective flow param-
eters. The mean velocity, its standard deviation and the covariance will then be
calculated as

ū =
N
∑

i=1

fw,iui (5.13)
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rmsu =
√
√
√
√

N
∑

i=1

fw,i(ui − ū)2 (5.14)

u′ν′ =
N
∑

i=1

fw,i(ui − ū)(νi − ν̄) (5.15)

The weighting factor in dimensionless form is used here for instance to com-
pensate for the effect of irregularity in sampling velocities. For this purpose,
McLaughlin and Tiederman (1973) suggested the use of the reciprocal of each indi-
vidual velocity, related to a total sum, as the weighing factor in the above equations.
Theoretically it should be the reciprocal of the magnitude of each velocity vec-
tor, which is usually not available because of the lack of three-component LDA
measurements.

Another more available weighting factor used to correct the effect of velocity
bias is the transit time of each particle while passing through the LDA measure-
ment volume. This correction method is indeed comparable to that of using inverted
magnitude of velocity vectors simply because of the proportionality between them
by assuming the constant measurement volume thickness. The measurement of the
transit time of each particle, however, is in principle much more convenient than
that of each velocity vector. Also to be mentioned are measurement uncertainties
that might result from both the non-uniformity of fringe spacing in the measure-
ment volume (Chap. 16) and the use of non-monodisperse particles. Large particles,
for instance, lead to the existence of long transit time while passing through the
measurement volume (i.e. the detection volume in the present aspect).

Besides the use of waiting factors, another method to suppress the effect of
velocity bias is to sample flow velocities by controlling LDA detection unit for time-
equidistant signals. This method, however, has nowadays not found any practical
applications.

Actually, the most important thing concerning the effect of velocity bias is the
estimation of the maximal possible extent of influences rather than the correction of
it by means of complex data processing or expensive measurement techniques with
hard- and software modifications. In the case where the resultant inaccuracy does
not exceed the limit that is specified by measurements, no correction of velocity
bias is necessary. In addition, velocity bias that is involved in the sample mean of
velocities, for instance, does not imply any error, if the momentum flux (instead of
the volumetric flux) in the area of measurement volume should be calculated. Based
on these viewpoints it appears to be indispensable to quantify the effect of velocity
bias first. Because the velocity bias is actually a flow phenomenon and thus can be
considered to be related with a turbulence parameter like the turbulence intensity, its
accurate quantification can be conducted anyway. Based on this conception, com-
plete calculations for quantifying the effect of velocity bias in turbulent flows with
three-dimensional velocity fluctuations have been carried out by Zhang (2002), as
this will be shown in Chap. 17 for details.



Chapter 6
Linear Transformation of Velocities
and Turbulent Stresses

LDA measurements are known as measurements of velocity components, as has
been demonstrated by Eq. (3.39). Because these velocity components are found in
the LDA coordinate system, it is always necessary to transform them into the flow
field system. This transformation applies not only to the mean velocities, but also
to the turbulence quantities. Very often it deals with the two-dimensional orthogo-
nal transformation because usually two orthogonal velocity components are directly
obtainable from LDA measurements. Exceptions will be encountered if for instance
the third velocity component does not agree to the perpendicular of the other two.
In this chapter, both the orthogonal and the non-orthogonal velocity transforma-
tions between the LDA and the flow field systems will be presented. It mainly
takes account of the two-dimensional coordinate transformation, as this is of great
practical relevance. For three-dimensional coordinate transformation concerning the
turbulence quantities the readers are referred to Appendix C.

6.1 Orthogonal Linear Transformation

6.1.1 Velocity Transformation

Velocity components in the LDA optical system are denoted by u1, u2 and u3 that
are assumed to be perpendicular to each other. The flow field is usually given in
the Cartesian coordinate system (x, y, z) that may not agree with the LDA optical
system. The velocity transformation between these two coordinate systems is the
simplest orthogonal transformation. It is assumed that LDA components ui (i = 1,
2, 3) lie at angles αi, βi and γi respectively to the flow field coordinates x, y and z,
as shown in Fig. 6.1. Then the following velocity transformation is available

⎡

⎣

u1
u2
u3

⎤

⎦ =
⎡

⎣

cos α1 cosβ1 cos γ1
cosα2 cosβ2 cos γ2
cosα3 cosβ3 cos γ3

⎤

⎦

⎡

⎣

ux
uy
uz

⎤

⎦ = R

⎡

⎣

ux
uy
uz

⎤

⎦ (6.1)
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ux

uy

uz

ui

βi
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γi

Fig. 6.1 Relationship
between velocity components
in both the LDA system with
orthogonal coordinates and
the Cartesian field coordinate
system (x, y, z)

In this equation, R represents the orthogonal transformation matrix. Its inverse is
simply equal to its transpose, as given by

R−1 = R′ (6.2)

Eq. (6.1) is given to generally transform velocities between two coordinate sys-
tems. In a two-dimensional x − y plane, as shown in Fig. 6.2 with redefined angles
(α1 = ϕ, α2 = 90 + ϕ, β1 = 90 − ϕ and β2 = ϕ in degree), the transformation
matrix is simplified to

R =
[

cosϕ sinϕ
− sinϕ cosϕ

]

(6.3)

With substitutions of u1=u and u2=v, corresponding velocity transformations are
given by

u = ux cosϕ + uy sinϕ (6.4)

v = −ux sinϕ + uy cosϕ (6.5)

as well as in the reverse form

ux = u cosϕ − v sinϕ (6.6)

uy = u sinϕ + v cosϕ (6.7)

ux

uy

v u

ux

uy

u2
u1

β2
β1

α1

spatial system plane system

α2

ϕ

Fig. 6.2 Simplification of expressing velocity components in the plane coordinate system
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These transformations of velocity components can be directly applied to both the
mean and fluctuation velocities. For the transformation of turbulent stresses which
are components of a Reynolds stress matrix, corresponding calculations will be
shown in the following section.

6.1.2 Turbulent Stress Transformation

In Chap. 2 with respect to Fig. 2.3, it has been distinguished between isotropic and
anisotropic turbulences. Because isotropic turbulence is characterised by turbulent
normal stresses that are independent of the coordinate system, it will not be further
considered.

The transformation of anisotropic turbulence quantities that are generally rep-
resented by the Reynolds stress matrix according to Eq. (2.11) again follows the
matrix algebra. It is assumed that in the LDA coordinate system the stress tensor
is given by σij. The turbulent stresses in the flow system (x − y − z) can then be
obtained from the following linear transformation

σmn =
⎡

⎣

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

⎤

⎦ = R ′σijR (6.8)

In again considering the turbulent stress distribution in the x − y plane (Fig. 6.2), the
Reynolds turbulent stresses related to the velocity components ux and uy are then
derived from Eq. (6.8) as

σxx = σuu cos2 ϕ + σvv sin2 ϕ − τuv sin 2ϕ (6.9)

σyy = σuu sin2 ϕ + σvv cos2 ϕ + τuv sin 2ϕ (6.10)

τxy = 1

2
(σuu − σvv) sin 2ϕ + τuv cos 2ϕ (6.11)

These equations describe the orthogonal transformation of two-dimensional tur-
bulent stresses between two coordinate systems, which are in the same two-
dimensional plane and of a difference ϕ in the rotation angle. In reality, such a
coordinate transformation also represents a way to calculate the plane distribution
of respective turbulence quantities, as shown below.

6.1.3 Directional Distribution of Turbulent Stresses

6.1.3.1 On the Basic Parameters σxx, σyy and τxy

The anisotropic turbulence is characterized by the directional dependence of inten-
sities of velocity fluctuations (Fig. 2.3b). In many cases, this directional dependence
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i.e. the directional distribution of flow fluctuations is interesting because from it the
maximum of both the turbulent normal and shear stresses can be determined. In
general, the calculation of directional distribution of turbulent stresses is simply the
transformation of respective turbulent stresses from given values in a basic coordi-
nate system. This can be demonstrated by again considering Eq. (6.8) for velocity
components in the x − y plane (Fig. 6.2). The inverse calculation of Eq. (6.8) is
given as follows

σij =
∣
∣
∣
∣

σuu τuv
τvu σvv

∣
∣
∣
∣
= RσmnR′ (6.12)

The component σuu, which is found by ϕ in the x − y coordinate system (mea-
sured from the x-axis counter clockwise, Fig. 6.3) will be denoted by σϕϕ. Thus one
obtains from the above equation with substitutions of σϕϕ = σuu and in like manner
τϕ,ϕ+90◦ = τuv

σϕϕ = σxx cos2 ϕ + σyy sin2 ϕ + τxy sin 2ϕ (6.13)

τϕ,ϕ+90◦ = −1

2
(σxx − σyy) sin 2ϕ + τxy cos 2ϕ (6.14)

Eq. (6.13) for instance shows the directional distribution of the turbulent normal
stress in the x − y plane based on given quantities σxx, σyy and τxy. As will be shown
in Sect. 6.3, the square root of this normal stress and its directional distribution is
precisely described by an ellipse function.

From the directional distribution of Reynolds turbulent stresses and according
to Eq. (2.13) there exist in the two-dimensional x − y plane two principal normal
stresses with corresponding vanishing shear stresses. The orientation of two orthog-
onal principal normal stresses (σ 11 and σ 22) are found from Eq. (6.13) by setting
dσϕϕ/dϕ = 0 which leads to

tan 2ϕm = 2τxy

σxx − σyy
(6.15)

Obviously two angles ϕm1 = ϕm and ϕm2 = ϕm + 90◦ satisfy this condition. For the
common reason 0 ≤ ϕm < 90 is agreed on in further calculations. For the anisotropic
turbulence as shown in Fig. 2.3b, where the main orientation of velocity fluctuations
is given by ϕm ≈ ϕ as in most cases (see Chap. 8), there is τxy > 0.

σ22

σyy

σϕ

σ11

σxx

ϕm

ϕFig. 6.3 Plane distribution of
the turbulent normal stress
with the first principal normal
stress at ϕm
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The principal normal stress that is found at ϕm is denoted by σ 11. It is calculated
from Eq. (6.13) firstly as

σ11 = σxx
1 + cos 2ϕm

2
+ σyy

1 − cos 2ϕm

2
+ τxy sin 2ϕm (6.16)

and further to

σ11 = 1

2
(σxx + σyy) + 1

2
(σxx − σyy) cos 2ϕm + τxy sin 2ϕm (6.17)

With respect to τxy > 0 the principal normal stress σ 11 in Eq. (6.16) represents the
first principal of normal stress as σ I = σ 11. Correspondingly, there is σ II = σ 22 for
the second principal of normal stress. As in the common case, it is σ I > σ II.

Inserting τxy from Eq. (6.15) into Eq. (6.17) yields

σ11 = 1

2
(σxx + σyy) + 1

2 cos 2ϕm
(σxx − σyy) (6.18)

To make further calculations, Eq. (6.15) is written, with respect to τxy > 0, as

cos 2ϕm = σxx − σyy
√

(σxx − σyy)2 + 4τ 2
xy

(6.19)

Eq. (6.18) then becomes

σ11 = 1

2

(

σxx + σyy
)+
√

1

4
(σxx − σyy)2 + τ 2

xy (6.20)

The second principal of normal stress is found at ϕm2 = ϕm + 90◦, as shown in
Fig. 6.3. With the substitution of angle ϕm2 in Eq. (6.18) one obtains immediately

σ22 = 1

2
(σxx + σyy) −

√

1

4
(σxx − σyy)2 + τ 2

xy (6.21)

The corresponding Reynolds stress matrix is then given by

σI,II =
[

σ11 0
0 σ22

]

(6.22)

One of the most important properties of the stress matrix is that the sum of all
three normal stresses is independent of the coordinate system used to represent the
turbulent stresses, see Eq. (2.14). In a two-dimensional plane, the so-called first
invariant of the matrix is thus expressed by

I1 = σ11 + σ22 = σxx + σyy (6.23)
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As pointed out in Sect. 2.2 in the context of Eq. (2.12), only the absolute maximum
value of the turbulent shear stress is representative for the flow state and can be
considered as a parameter of the turbulent flow. In the similar way of getting ϕm for
the maximum normal stress in the x − y plane, the maximum value of the absolute
turbulent shear stress is obtained from Eq. (6.14) to be given at the angle ϕτ which
satisfies the condition

tan 2ϕτ = −σxx − σyy

2τxy
= − 1

tan 2ϕm
(6.24)

The relationship between ϕτ and ϕm in this equation also means ϕτ = ϕm ± 45◦.
Because each turbulent shear stress is always related to the flow fluctuations in
two orthogonal velocity components, the two velocity components are commonly
assumed to be found counter clockwise at ϕτ,1 = ϕm − 45 and ϕτ,2 = ϕm + 45,
respectively. For simplicity ϕτ = ϕτ,1 is applied in further calculations, in which
ϕτ < 45 and thus 2ϕτ < 90 are available because of ϕm < 90◦.

With respect to Eq. (6.24) the maximum shear stress is then derived from
Eq. (6.14) to

τmax =
[

1 + (σxx − σyy)2

4τ 2
xy

]

τxy cos 2ϕτ (6.25)

With respect to cos 2ϕτ = √1/(1 + tan2 2ϕτ) one obtains

τmax =
√
(
σxx − σyy

2

)2

+ τ 2
xy (6.26)

The maximum turbulent shear stress has been shown to be a function of parameters
σxx, σyy and τxy. As seen in Eq. (6.14), these parameters are also used to represent
the directional distribution of the turbulent shear stress. In actual fact, the inter-
ested distribution can also be shown to be a function of the maximum shear stress
τmax only. For this reason the maximum shear stress is calculated from Eq. (6.14)
firstly as

τmax = −1

2
(σxx − σyy) sin 2ϕτ + τxy cos 2ϕτ (6.27)

and then with respect to ϕτ = ϕm − 45◦ as

τmax = 1

2
(σxx − σyy) cos 2ϕm + τxy sin 2ϕm (6.28)

Combining this equation with Eq. (6.14) yields
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τϕ,ϕ+90◦

τmax
=

sin 2ϕ − 2τxy
σxx− σyy

cos 2ϕ

− cos 2ϕm − 2τxy
σxx− σyy

sin 2ϕm

(6.29)

The expression 2τxy/(σxx − σyy) in this equation will be replaced by Eq. (6.15).
After a short rearrangement one obtains

τϕ,ϕ+90◦ = τmax sin 2(ϕm − ϕ) (6.30)

The directional distribution of the turbulent shear stress has been shown to be a sine
function that has an amplitude equal to τmax. At the angle ϕ = ϕm, at which the
maximum normal stress is found, the shear stress vanishes as τ (ϕm) = 0.

The turbulent shear stress according to Eq. (6.30) may be positive and negative.
This is only of mathematical significance, which must be considered while carrying
out the coordinate transformation of the Reynolds stress matrix. By only considering
the absolute value of the turbulent shear stress and its spatial distribution, Eq. (6.30)
represents a polar rose curve in polar coordinates, as shown in Fig. 6.4 for ϕm = 30
and ϕm = 0◦, respectively.

Another special case is given for ϕ = 0. From Eq. (6.30) one obtains then

τxy = τmax sin 2ϕm (6.31)

The maximum shear stress clearly behaves as a key parameter with which other
dependent turbulence quantities can be shown in the simple form. Combining
Eq. (6.31) with Eq. (6.15) for instance yields

σxx − σyy = 2τmax cos 2ϕm (6.32)

With respect to Eq. (6.26) for τmax > 0 Eq. (6.20) is written as

σ11 = 1

2

(

σxx + σyy
)+ τmax (6.33)

xx

ϕϕ
ϕm

τ
τ

Fig. 6.4 Directional dependence of the turbulent shear stress in the polar coordinate system
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This relationship can be well confirmed in the graphical Mohr’s stress circle, see
Sect. 6.3.2.

There are also some other relations which, however, appear not to be of much
relevance and therefore are not shown here.

6.1.3.2 On the Basic Parameters σ11 and σ22

In Eqs. (6.13) and (6.14), the directional distributions of both the normal and shear
stresses have been shown in the function of given parameters σxx, σyy and τxy. On
the other side, these distributions can also be shown as the function of two principal
normal stresses σ11 and σ22. According to Fig. 6.3 and in accounting for σ11 and
σ22 as independent parameters, the normal stress in Eq. (6.13) is directly written, by
changing indices and with respect to τ12 = 0 at ϕm, as

σϕϕ = σ11 cos2 (ϕ − ϕm)+ σ22 sin2 (ϕ − ϕm) (6.34)

Similarly there is from Eq. (6.14)

τϕ,ϕ+90◦ = −1

2
(σ11 − σ22) sin 2 (ϕ − ϕm) (6.35)

From these two general expressions of directional distributions of turbulent stresses
some basic relationships can be obtained. For ϕ = 0 and ϕ = 90◦ for instance, one
obtains

σxx = σ11 cos2 ϕm + σ22 sin2 ϕm (6.36)

and

σyy = σ11 sin2 ϕm + σ22 cos2 ϕm (6.37)

respectively.
In addition, it results from Eq. (6.35) for ϕ = 0

τxy = −1

2
(σ11 − σ22) sin (−2ϕm) = 1

2
(σ11 − σ22) sin 2ϕm (6.38)

In comparing with Eq. (6.31), one obtains

τmax = σ11 − σ22

2
(6.39)

This relationship can also be obtained when comparing Eq. (6.35) with Eq. (6.30).
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6.1.3.3 Approximation ϕm ≈ ϕ and Simplifications

In above calculations, the angle ϕm for principal normal stress has often been applied
to represent the directional distribution of the turbulent normal and shear stresses.
An approximation to this angle should be noted. In a great deal of turbulent flows,
the principal normal stress σ11 which is found at ϕm approximately coincides with
the main flow direction ϕ, as already illustrated in Fig. 2.3b. This approximation
enables the angle ϕm to be determined merely from two velocity components in the
form tanϕm = ūy/ūx. If compared with Eq. (6.15) it is evident that the approxima-
tion ϕm ≈ ϕ much contributes to the simplification of treating turbulence quantities.
In particular, experimental estimations of all related turbulence quantities can be
considerably simplified, as will be fully described in Chap. 8.

6.2 Non-orthogonal Transformation

In most LDA applications, the LDA optics is designed for coincident measure-
ments of two orthogonal velocity components in a two-dimensional plane. Based on
these measurements, velocity components including the flow fluctuations and turbu-
lence quantities in the flow field coordinate system can be obtained by orthogonal
coordinate transformations, as treated in Sect. 6.1. The very different case will be
encountered for instance at measurements of all three velocity components accord-
ing to Fig. 4.3, in which the third velocity component is usually not perpendicular
to the other two. Also in more frequent cases dealing with indirect measurements of
the third velocity component through an additional one-component measurement, as
illustrated in Fig. 6.5, non-orthogonal velocity components are again encountered.

uz

ux

uϕ

uy

ϕ

Fig. 6.5 Indirect
measurement of the third
velocity component uz
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In such situations and with regard to the coordinates given in Fig. 6.5, the third
velocity component uz is obtained from measurements of ux and uϕ by

uz = 1

sin ϕ

(

uϕ − ux cosϕ
)

(6.40)

This velocity transformation is usually applicable only to the mean velocity. It could,
however, not be supposed to be able to transform each flow fluctuation. That is to say
that the fluctuation velocity u′

z could not be determined from the fluctuation veloci-
ties u′

x and u′
ϕ, if these are not in coincidence. This circumstance of non-coincident

measurements, however, does not restrict the determination of interested turbu-
lence quantities based on statistical evaluations of flow fluctuations. Corresponding
methods will be shown in Sect. 6.2.2.

6.2.1 Velocity Transformation

The case that is shown in Fig. 6.5 can be generalized to that of in Fig. 6.6 where
velocity transformation between LDA and flow field system should be conducted.
Obviously both velocity components u and v can be written as

u = ux cosϕu + uy sinϕu (6.41)

and

v = ux cosϕv + uy sinϕv (6.42)

respectively.
For mathematical convenience such a velocity transformation is again described

by the matrix form as

[

u
v

]

=
[

cosϕu sinϕu
cosϕv sinϕv

] [

ux
uy

]

= R

[

ux
uy

]

(6.43)

It is yet the purpose of the current section to calculate velocity components ux and
uy in the flow system from velocity components u and v as measured by LDA.

ux

uy

u

v

ϕv

ϕu

Fig. 6.6 Method of
transforming velocity
components u and v from
LDA measurements into the
field velocities ux and uy
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Thus Eq. (6.43) is written in its inverse form as

[

ux
uy

]

= R−1
[

u
v

]

(6.44)

with

R−1 = 1

sin (ϕv − ϕu)

[

sinϕv − sinϕu

− cosϕv cosϕu

]

(6.45)

Both the transformation matrix R and R−1 are no longer orthogonal matrixes as that
in Eq. (6.3) and therefore there is R−1 �= R ′. Only for ϕv – ϕu= 90◦ the orthogonal
transformation is again in effect.

For the special case of ϕu = 0 and in concerning the mean velocity components,
one obtains from Eq. (6.44) besides ūx = ū also

ūy = 1

sinϕv
(v̄ − ū cosϕv) (6.46)

It completely agrees with Eq. (6.40) for the third velocity component.

6.2.2 Turbulent Stress Transformation

The measurement arrangement shown in Fig. 6.6 does not directly provide turbu-
lent stresses as given in Reynolds stress matrix. In order to establish relationships
between turbulent stresses in LDA and flow field coordinate systems, it will firstly
be assumed that coincident measurements of velocity components u and v enables
the covariance u′v′ to be calculated. This means that the related turbulent shear stress
τuv is assumed to be known. This assumption is only of mathematical reasoning. As
soon as all relationships have been established, it will be clear how the parameter
τuv can be eliminated. Based on the rule of matrix calculations, the Reynolds stress
matrix in the flow field system with Cartesian coordinates is calculated by

σmn =
[

σxx τxy
τyx σyy

]

= R−1σij

(

R−1
)′

(6.47)

Herein the Reynolds stresses relating to velocity components u and v are given by
σuu, σvv and τuv with τuv = τvu. The transformation matrix (R−1)′ is the transpose
of the matrix R−1 which is given by Eq. (6.45).

From Eq. (6.47) one obtains1

1Another possibility to transform the turbulent stresses from the non-orthogonal into the orthogo-
nal coordinate system will be presented here based on Fig. 6.6. In applying Eq. (6.41) and (6.42)
to velocity fluctuations in respective velocity components, one obtains

u′ = u′
x cosϕu + u′

y sinϕu

v′ = u′
x cosϕv + u′

y sinϕv
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σxx = σuu sin2 ϕv + σvv sin2 ϕu − 2τuv sinϕu sinϕv

sin2 (ϕv − ϕu)
(6.48)

σyy = σuu cos2 ϕv + σvv cos2 ϕu − 2τuv cosϕu cosϕv

sin2 (ϕv − ϕu)
(6.49)

τxy = −σuu sin 2ϕv + σvv sin 2ϕu − 2τuv sin (ϕu + ϕv)

2 sin2 (ϕv − ϕu)
(6.50)

Like for Eq. (6.46), simplifications for special case of ϕu = 0 can be made.
Corresponding results are then applicable to the case that has been shown in Fig. 6.5.
Especially for ϕv – ϕu= 90◦ the above equations are simplified to Eqs. (6.9), (6.10),
and (6.11).

The above calculations that lead to Eqs. (6.48), (6.49), and (6.50) assumed the
known turbulent stresses σuu, σvv and τuv. In effect, the turbulent shear stress τuv
is usually not available because of restrictions in the respective measurement tech-
nique and the environmental conditions. To eliminate the parameter τuv, there are
two ways for it to be applied. Firstly, an additional measurement is required, for
instance the measurement of velocity component ux. Together with measurements
of velocity components u and v (Fig. 6.6) all turbulence quantities can be obtained
theoretically. For the special case of ϕu + ϕv = 0 this can be well realized, as
demonstrated below. Secondly, the approximation of ϕm ≈ ϕ, whose meaning has
been explained at the end of Sect. 6.1, can be applied. This leads to the launch of the
so-called Zero-Correlation Method (ZCM) that will be outlined in detail in Chap. 8.

Special case with ϕu + ϕv = 0:
A special arrangement of measurements with ϕu + ϕv = 0 i.e. ϕv = −ϕu = −ϕ

is considered here. It corresponds to two measurements which lie symmetrically to
the x-axis, as shown in Fig. 6.7. For this special case Eqs. (6.48), (6.49), and (6.50)
are then simplified as

σxx = σuu + σvv + 2τuv

4 cos2 ϕ
(6.51)

Consequently there is

u′v′ = u′ 2
x cosϕu cosϕv + u′ 2

y sinϕu sinϕv + u′
xu′

y sin (ϕu + ϕv)

The sample means of corresponding fluctuations are calculated as

σuu = u′2 = σxx cos2 ϕu + σyy sin2 ϕu + τxy sin 2ϕu

σvv = v′2 = σxx cos2 ϕv + σyy sin2 ϕv + τxy sin 2ϕv

τuv = σxx cosϕu cosϕv + σyy sinϕu sinϕv + τxy sin (ϕu + ϕv)

From these three equations with σuu, σvv and τuv as given quantities, the turbulent stresses σxx, σyy
and τxy can be resolved. The same results as given in Eqs. (6.48), (6.49), and (6.50) are obtained.
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ux
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v
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ϕ

Fig. 6.7 Special arrangement
of LDA measurements to
resolve the turbulent stress
u′2

y through the measurements
of velocity components u, v
and ux

σyy = σuu + σvv − 2τuv

4 sin2 ϕ
(6.52)

τxy = σuu − σvv

2 sin 2ϕ
(6.53)

From Eq. (6.51) and (6.52) one obtains, by eliminating the term τuv

σyy = σuu + σvv − 2σxx cos2 ϕ

2 sin2 ϕ
(6.54)

This equation signifies that, from the additional measurement of velocity compo-
nent ux with the available normal stress σxx, the normal stress σyy can be obtained.
Together with the shear stress from Eq. (6.53) the complete two-dimensional state of
flow turbulence becomes available. Corresponding applications of Eqs. (6.53) and
(6.54) can be found in Tropea (1983).

The measurement technique presented here supposes three independent mea-
surements of σuu, σvv and σxx. It is simply based on statistical evaluation of flow
fluctuations without any simplification. Therefore it generally applies not only to
LDA but also to other measurement methods. The method, however, appears some-
times too expensive, because for obtaining the mean velocity distribution in the
x − y plane basically two single measurements are sufficient, see Eq. (6.46) for
instance. An approximation method to simplify the turbulence measurements will
be presented in Chap. 8.

6.3 Graphical Presentation of Turbulent Stresses

6.3.1 Ellipse Form of the Turbulence Distribution

It has been confirmed in Sect. 6.1.3 that at ϕm the turbulent shear stress vanishes
and the corresponding stress matrix is given by Eq. (6.22). In the function of two
principal normal stresses σ11 and σ22, the normal stress distribution in the x−y plane
has been shown by Eq. (6.34). In order to graphically show the related turbulence



66 6 Linear Transformation of Velocities and Turbulent Stresses

quantities in the velocity diagram, substitutions of ϕ̂ = ϕ−ϕm, r2
ϕ̂

= σϕ̂ϕ̂, a2 = σ11

and b2 = σ22 will be applied. Based on the definition of respective turbulent stresses
given in Eq. (2.11), the new parameters rϕ̂, a and b all have the unit m/s. They
represent the standard deviations of respective mean velocities i.e. the root mean
square (rms) of flow fluctuations in relying on Eq. (5.3). Equation (6.34) is then
rewritten as

r2
ϕ̂ = a2 cos2 ϕ̂ + b2 sin2 ϕ̂ (6.55)

This equation can be considered to be originated from following two equations:

rϕ̂,x = a cos ϕ̂ (6.56)

rϕ̂,y = b sin ϕ̂ (6.57)

with rϕ̂,x and rϕ̂,y as two components of rϕ̂. Clearly rϕ̂ precisely represents the radial
coordinate (radius) of an ellipse in the polar coordinate system. Both axes of the
ellipse are given by a and b, respectively, see Fig. 6.8. The case shown in Fig. 6.8a
with corresponding ellipse orientation is often encountered in the practical flows.

xy>0

uy

uxϕ

ϕ ϕ
ϕ ϕa

u

m

xy<0

uy

uxϕ

a

u

m

(a) σ11 > σ22 (b) σ11 < σ22

τ τ

Fig. 6.8 Ellipse form of the turbulence distribution in a two-dimensional plane

6.3.2 Expressions of Turbulent Stresses in Mohr’s Stress Circle

Flow turbulences in a two-dimensional x − y plane are again considered here. In
using the trigonometric identity cos 2ϕ = 2 cos2 ϕ − 1 = 1 − 2 sin2 ϕ, Eq. (6.13) is
rewritten as

σϕϕ − 1

2

(

σxx + σyy
) = 1

2

(

σxx − σyy
)

cos 2ϕ + τxy sin 2ϕ (6.58)
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Fig. 6.9 Two-dimensional turbulent stresses expressed in the Mohr’s stress circle

Squaring this equation and adding it to the square of Eq. (6.14) yields

(

σϕϕ − σxx + σyy

2

)2

+ τ 2
ϕ,ϕ+90◦ =

(
σxx − σyy

2

)2

+ τ 2
xy (6.59)

This equation precisely represents a circle in the coordinate system with normal
and shear stresses as two orthogonal coordinates, as shown in Fig. 6.9. The cen-
tre of the circle is given by σ = (σxx + σyy

)/

2 and τ = 0 and the radius by

R =
√
(
σxx− σyy

2

)2 + τ 2
xy.

To show the angle ϕm at which the normal stress σ11 is present, Fig. 6.9 con-
cerned two cases respectively for σ11 > σ22 and σ11 < σ22. Correspondingly there
are τxy > 0 in Fig. 6.9a and τxy < 0 in Fig. 6.9b. In both cases, there is σϕϕ = σ11
at 2ϕ = 2ϕm.

The graphical presentation of the turbulent stresses is similar to the graphical
presentation of the mechanical stresses in the technical mechanics, where the stress
circle is called Mohr’s stress circle. The difference has to be mentioned: in the
flow dynamics, all turbulent normal stresses are always positive, while mechani-
cal stresses in the technical mechanics may be negative, depending on the external
loads.



Chapter 7
Tracer Particles and Particle Motion Equations

Flow measurements by means of LDA technique always require particles being sus-
pended in the flow to scatter the laser light. Because the measured particle velocity
is used to represent the flow velocity, particles have to be able to follow the flow,
especially flow fluctuations. Such a capability of particles is determined by both
the particle size and the particle density. In general, a particle in the flow does not
behave as a fluid particle because of the difference in their densities. In measur-
ing non-stationary flows or the flows with large velocity fluctuations for instance,
particles may have different velocities as the flow. This velocity difference is again
the source of diverse forces exerted on the particle. The capability of particles of
tracking the flow fluctuations should thus be accounted for with respect to both the
particle size and the density of the particle substance.

The motion of a particle in the flow is governed by the dynamical equilibrium
between effective forces acting on the particle and the inertial force of the particle.
Amongst diverse effective forces, the drag force arising from the viscosity of the
flow is usually decisive. Because this force is generally proportional to the particle
surface while the particle inertial force is a function of the particle volume and the
density of the particle substance, small particles always possess higher capabilities
of tracking the flows than large particles. In details, it concerns the particle capabili-
ties of tracking the flow fluctuations and the velocity changes along the streamlines,
which may also be curved as a result of the flow arrangement. Since most practical
flows are turbulent flows that are specified by the pressure fluctuation and the fluctu-
ation of flow velocities, the particle in the flow also suffers from the pressure force
and other force effects. In the straight flow with velocity fluctuations for instance,
all force effects on the particle motion are finally found in the amplitude and phase
difference of the particle motion in response to the flow fluctuations. This can be
well demonstrated, for instance by calculating the particle motion in an oscillation
flow.

The capability of particles of tracking the curved streamlines represents a further
aspect of greater complexity. As we know, the streamline curvature in the flow is
always related to a pressure gradient perpendicular to the streamlines. Such a trans-
verse pressure gradient leads to deviation of the particle motion from streamlines

69Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_7, C© Springer-Verlag Berlin Heidelberg 2010
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of the flow. The possibility of making sure whether a particle is able to follow the
streamline curvature depends on how the deviation of the particle motion from the
curved streamline can be specified. This is unfortunately not straightforward as that
for particles in the flow with straight streamlines.

The effective forces exerted on a moving particle in the practical flows are of
different mechanisms and therefore different extent and importance. The most sig-
nificant forces are the viscous drag force, the pressure force and the forces associated
with the particle acceleration.

Although in many cases the natural particles in the flow (e.g. water flow)
are sufficiently able to scatter the laser light and thus can be made use of
for LDA measurements, as the author of this book has often experienced, it is
nevertheless indispensable to make the quantitative reference regarding the capa-
bility of seeded particles of tracking the flows. For this reason, diverse flow
forces and the respective significances in diverse flows will be considered in this
chapter.

7.1 Effective Forces Exerted on the Particle in the Flow

7.1.1 Viscous Drag Force

The drag force exerted on a particle arises from the fluid viscosity and the velocity
difference between the particle and the viscous fluid. Since the velocity difference
is a vector quantity, the drag force as a vector quantity has its direction coinciding
with the difference of two velocity vectors. In assuming the spherical particle of the
diameter dp, the viscous drag force exerted on the particle is calculated by

�FD = cD
1

4
πd2

p · 1

2
ρf|�uf − �up|

(�uf − �up
)

(7.1)

In this determination equation, the drag coefficient cD is a function of the Reynolds
number and can be given, for quasi-stationary flow around the particle, as

cD = 24

Re
(Re < 1) (7.2)

cD = 24

Re

(

1 + 0.15Re0.687
)

(1 < Re < 1000) (7.3)

Equation (7.2) is known as the Stokes law. In concerning the particle motion in
the fluid flow, the Reynolds number in above equations is calculated with the rel-
ative velocity between the particle and the flow. Because for LDA measurements
always small particles are available, the Reynolds number applied to such small
particles is usually small. For a particle of diameter dp = 0.02 mm in the water flow
(ν = 1.0 · 10−6m2/s) with a relative velocity of uf − up = 0.1m/s, for instance,
the Reynolds number is calculated as Re = 2. The drag coefficient, if calculated by
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Eq. (7.3), is 15, which is about 25% larger than that calculated by Eq. (7.2). Because
of its simplicity the Stokes law given by Eq. (7.2) is often applied to theoretically
investigate the dynamical feature of a small particle in the flow. The flow for instance
can be assumed to be a sinusoidal function of the time. By choosing high oscilla-
tion frequency in the assumed flow, the flow turbulence could be simulated. The fact
that the drag coefficient for Re > 1 according to Eq. (7.3) is greater than that from
Eq. (7.2) clearly indicates that the real capability of a particle of tracking the flow is
higher than that calculated by regarding Eq. (7.2). More about the particle dynamics
in diverse types of flows will be shown in Sects. 7.2, 7.3, 7.4, and 7.5.

For particle motion in the same direction as the flow and in using the Stokes
flow resistance law, the viscous drag force exerted on the particle is calculated from
Eq. (7.1) as

FD = 3πμdp · (uf − up) (7.4)

Herein μ = ρfν denotes the dynamical viscosity of the fluid. The drag force is
directly proportional to the particle size and the velocity difference. It obviously
represents the most significant force exerted on a particle. The drag force is effective,
as long as the velocity difference between the particle and the flow exists.

In the general flows with velocity fluctuations or instability, there are also other
forces which are proportional to the third power of the particle diameter (such
as the pressure force and the force due to added mass, see following sections).
The drag force with its linear dependence on the particle diameter clearly domi-
nates in influencing the particle motion in the flow when the particle is sufficiently
small.

7.1.2 Gravitational and Lift Forces

The motion of tracer particles in the flow undergoes the influence of the gravity. The
associated gravitational force is given by Fgravity = mpg with mp as the particle mass
and g the gravitational acceleration. On the other side, there exists a lift force exerted
on the particle in the counter direction of the gravitational force. The difference
between them is given by

Fgravity − Flift = 1

6
πd3

pρpg − 1

6
πd3

pρfg = 1

6
πd3

pg(ρp − ρf) (7.5)

For particles of density that does not much differ from the density of the fluid, the
total effect of the gravitational and lift forces can be neglected. Usually the choice of
appropriate particles for water flow measurements is not difficult. On the contrary,
in dealing with the measurements of air flows that has a density of about 1.2 kg/m3,
there is much restricted possibility in selecting the appropriate particles. Available
particles may be the hollow solid particles or liquid particles generated by atomizers.
In common cases, the large density difference between the flow and particles can be
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neglected as long as the particles are sufficiently small. This can be demonstrated by
comparing the gravitational force with the drag force arising from the fluid viscosity.
The ratio of the gravitational force to the drag force is given by

gravitational force

drag force
∼ d3

p

dp
= d2

p (7.6)

Because for small particles the volumetric force including gravitational and lift
forces are negligible against the drag force, the corresponding influence on the par-
ticle motion can be neglected. For this reason very fine particles such as aerosols of
1 μm in diameter should always be applied for air flow measurements.

7.1.3 Pressure Force

The pressure force exerted on the particle arises from the local pressure gradient in
the flow, that may be caused for instance by flow fluctuations in association with
both the flow turbulence and the flow periodicity, by the change of velocities along
the streamlines as well as by the gravity. For simplicity, only the velocity variation
along the straight streamlines i.e. one-dimensional flows and the turbulent flow fluc-
tuations are considered. According to the Euler equation for incompressible flows
along the x-direction, the pressure gradient along the streamline is given by

− 1

ρf

∂p

∂x
= duf

dt
= ∂uf

∂t
+ uf

∂uf

∂x
(7.7)

The first term on the r.h.s. of this equation represents the effect of the temporal
flow fluctuations, while the second term accounts for the flow acceleration along the
streamlines. For flows without velocity fluctuations (∂uf/∂t = 0) the above equa-
tion can also be derived from the Bernoulli equation when applied to a stationary
flow.

Within the longitudinal region around a small particle, a linear pressure distri-
bution can be assumed. By integrating all infinitesimal pressure forces exerted nor-
mally on the spherical particle surface, the resultant pressure force is calculated as

Fp = −π
6

d3
p
∂p

∂x
= π

6
d3

pρf

(
∂uf

∂t
+ uf

∂uf

∂x

)

(7.8)

The calculation of this force is just comparable to that of the lift force of a particle
in a flow, see Eq. (7.5). Such a similarity is obvious because the lift force indeed
arises in the same way from the pressure gradient dp/dz = ρfg, which is caused by
the gravitation.

In general, the pressure gradient that is related with the velocity acceleration
uf duf/dx along the streamlines can be of the same order as or much greater than
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the pressure gradient caused by the gravity. For the flow through a nozzle of cir-
cular section for instance, the pressure gradient can be calculated by applying the
Bernoulli equation with respect to the volumetric flow rate Q̇ = Auf = const to

dp

dx
= −1

2
ρfu

2
f

8

d
tanϕ (7.9)

Herein d and ϕ denote the local diameter and the half contraction angle of the nozzle,
respectively. For a large flow velocity uf through a nozzle of small diameter, the
pressure gradient dp/dx may be many times larger than the pressure gradient ρfg
that is caused by the gravity. On the other hand, the resultant pressure force exerted
on the particle impels the particle to be accelerated. According to the Newton’s
second law of motion, the corresponding acceleration of the particle is related with
the pressure force by Fp = mp dup/dt with mp as the particle mass. Combining this
force with the corresponding term in Eq. (7.8) for stationary flow and with respect
to dup/dt = up dup/dx yields

dup

dx
= ρf

ρp

uf

up

duf

dx
(7.10)

The particle acceleration, because of the pressure force, is independent of the par-
ticle size, but depends on the density of used particles. This result can be well
demonstrated by observing air bubbles rising in water. Air bubbles of different sizes
(although not spherical) show nearly equal rising velocity. It has to be mentioned
that in the real flow the particle undergoes the combined effect of pressure force,
viscous drag force, the force arising from the added mass, etc. This will be shown
in Sects. 7.4 and 7.5.

7.1.4 Force from Added Mass

When dealing with the motion of a spherical particle at a constant velocity in a
fluid at rest, the resistance received by the particle is described by the Stokes flow
resistance which accounts for the regular change of the fluid around the particle
and thus the constant momentum exchange between the particle and the fluid. In
the special case as in the non-viscous potential flow, a spherical particle at the con-
stant velocity does not undergo any resistance from the fluid, which is known as the
d’Alembert’s paradox. The regular and stationary flow structure around the particle,
however, could not be maintained when the free particle in the fluid undergoes the
acceleration, for instance, because of the force of gravity or as a result of the Stokes
resistance. In association with the acceleration of the particle, more fluid around
the particle will be set in motion. This precisely implies that additional momentum
exchange between the particle and the fluid takes place. The particle motion thus
suffers from an additional resistance, even in the non-viscous fluid. On the other
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hand, the particle receives an additional force which approves the particle motion,
when it is decelerated in the fluid.

The mass that is additionally displaced by the particle because of the particle
acceleration is called added mass or the virtual mass. From the theory for potential
flow and as concerns the added mass being equally accelerated as the particle, the
added mass is equal to the half mass of the fluid that the particle displaces. For the
general case of the particle motion in the flow of a velocity uf and on the same
streamline as the flow, the associated force exerted on the particle is given as

Fadd = −1

2

π

6
d3

pρf
d(up − uf)

dt
(7.11)

Because of the added mass the associated force acts as a negative force and
counteracts the change of the velocity difference.

7.2 Particle Motion Equation

The motion of a particle in the flow is determined by the equilibrium of diverse
forces exerted on the particle. Because this force equilibrium is usually concerned
with the flow direction, the vertical gravitational and lift forces will be neglected for
simplicity. In fact, the force of gravity and the lift force counteract each other and
the remaining effect is negligible if the particle density does not much differ from
the fluid density. Some other forces that are associated with the unsteady motion of
the particle and are only of less significance will not be considered here.

As effective forces exerted on the particle, the frictional Stokes drag force for
Re < 1, the pressure force and the force associated with the added mass will be
taken into account. From the Newton’s second law of motion the equation of the
particle motion in the straight flow is given by

π

6
d3

pρp
dup

dt
= 3πμdp(uf − up) + π

6
d3

pρf
duf

dt
− 1

2

π

6
d3

pρf
d(up − uf)

dt
(7.12)

In this equation, the Stokes drag force according to Eq. (7.2) for small Reynolds
number i.e. Re < 1 has been applied. The condition of Re < 1 is indeed only
satisfied when particles in the flow are sufficiently undersized or the relative velocity
between the particle and the flow is sufficiently small. For the particle flow with
Re > 1, Eq. (7.3) should be applied in which an additional term regarding the
viscous drag force is of concern. Because of this feature Eq. (7.12) in assuming
Re < 1 indeed represent the worst case with respect to the applicability of tracer
particles in the flow.

Equation (7.12) will be applied to some special flows to reveal the capability of
particles of following the flow variations.
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7.3 Particle Motion in the Straight Flow of Constant Velocity

A very common case encountered in the practical flows with particles is the one-
dimensional stationary carrying flow. Particles that are seeded into the flow have
their initial velocities which are usually not equal to the flow velocity. Under the
effect of diverse forces a particle of given diameter and initial velocity will be
accelerated or decelerated, until the constant velocity equal to the flow velocity is
reached.

For simplicity the particle motion is assumed to be merely influenced by the drag
force and the force from the added mass. This means that it deals with a flow field
of constant pressure. The particle will be accelerated or slowed down because of the
velocity difference between the particle and the flow. From Eq. (7.12) one obtains
the particle motion equation rearranged as

(

1 + 1

2

ρf

ρp

)
dup

dt
= 18μ

ρpd2
p

(uf − up) = 1

τ
(uf − up) (7.13)

In this equation, the time scale is defined by

τ = ρpd2
p

18μ
(7.14)

It is called the relaxation time and is a constant representing the particle and flow
properties. For a particle of diameter dp = 0.01mm and density ρp = 1.5 gr/cm3 in
the water flow (μ = 1.0 · 10−3Pas) for instance, the relaxation time is calculated to
τ = 8.3 · 10−6s.

To the carrying flow of constant velocity uf = const, the initial velocity dif-
ference between the particle and the flow is assumed to be uf − up0

. Integrating
Eq. (7.13) yields

up − up0

uf − up0

= 1 − e−t/Aτ (7.15)

Herein A = 1 + 1
2ρf/ρp is a constant that regards the density ratio between the

particle substance and the carrying flow.
Figure 7.1, as a calculation example for a particle (dp = 0.02mm) of different

density ratios, represents the development of the particle velocity relative to the
constant flow velocity. Regarding the particle with ρp/ρf = 2 (i.e. A = 1.25) for
instance, the particle will reach a velocity of at least 86.5% (1−e−2 = 0.865) of the
stationary flow velocity after a period of t = 2Aτ = 1.1 ·10−4s. Because it generally
deals with a very short time, the particle of the given diameter could be considered
to be able to well follow the flow, despite initially large velocity difference.

From Eq. (7.15) the relaxation time τ can be used as a useful parameter to evalu-
ate the capability of a particle following the flow. It is only a function of the particle
and fluid properties but not of the flow properties (e.g. Reynolds number). Whether
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Fig. 7.1 Development of the particle motion velocity relative to the constant flow velocity for
dp = 0.02 mm, ρf = 1000kg/m3 and μ = 0.001 Pas

a particle of a certain relaxation time can be applied as the tracer particle for LDA
measurements depends on each individual flow and the requirement of the measure-
ment accuracy. In any case, the relaxation time has been widely used to evaluate
the applicability of particles for measurements, also in other types of flows. To be
mentioned is that the result shown in Eq. (7.15) is derived for Re < 1. This is in
any case reasonable, when the particle velocity reaches a value which is close to the
velocity of the carrying flow.

7.4 Particle Motion in Nozzle and Diffuser Flows

The particle motion in the flow depends on the state of the fluid flow. Basically the
particle motion can be considered to be along the streamlines, when the flow does
not rapidly change its direction. Because the velocity of fluid along a streamline is
usually not constant, the particle motion will generally differ from the fluid flow.
As a result of the difference in the density, the particle will respond to the veloc-
ity change along the streamline always with a time delay. The simplest flow with
changeable velocity along the streamlines is probably the flow in the nozzle or the
diffuser, where the flow along the streamlines is either accelerated or decelerated,
with resultant pressure gradients. As already indicated in Sect. 7.1.3, the contri-
bution of the pressure force exerted on the particle to the particle acceleration is
independent of the particle size. Additional forces are obviously the viscous drag
force and the force because of the added mass. It is interesting to determine the
particle motion in such practical flows. For simplicity, the fluid flow is assumed to
linearly change along the axis of the nozzle or diffuser, as given by

uf = ax + uf0 (7.16)
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For the flow in the nozzle there is a > 0, while in the diffuser flow it is a < 0.
At the entrance of the nozzle and the diffuser, both the particle and the flow have
equal velocities up0 = uf0 = u0. With respect to duf/dt = upduf/dx ≈ ufduf/dx and
dup/dt ≈ ufdup/dx as well as the relaxation time according to Eq. (7.14), one obtains
from Eq. (7.12)

dup

dx
= 1

τ

(

1 − up

uf

)

+ ρf

ρp

duf

dx
− 1

2

ρf

ρp

d(up − uf)

dx
(7.17)

In accounting for duf/dx = a and thus dx = duf/a, the above equation becomes

(

1 + 1

2

ρf

ρp

)
dup

duf
= − 1

aτ

up

uf
+
(

3

2

ρf

ρp
+ 1

aτ

)

(7.18)

The combined influence of the particle size and the density, the dynamical viscosity
and the flow acceleration in the nozzle on the particle motion is confirmed to be
given only by the product aτ , which is dimensionless.

For further calculations the following abbreviations are applied:

A = 1 + 1

2

ρf

ρp
, B = 1

aτ
, C = 3

2

ρf

ρp
+ 1

aτ
(7.19)

In using the parameter substitution of
up
uf

= up from which
dup
duf

= uf
dup
duf

+ up is
obtained, Eq. (7.18) is further written as

dup

duf
= C − (A + B)up

Auf
(7.20)

This equation with A, B and C as constants represents the particle motion in
responding to the velocity change in the straight nozzle or diffuser flows. Because
the parameters up and uf have been separated, Eq. (7.20) can be integrated, firstly
leading to

ln
C − (A + B) up

C − (A + B) up0
= A + B

A
ln

uf0

uf
(7.21)

With respect to up0 = 1 at t = 0 i.e. x = 0 the particle velocity can then be
resolved as

up =
(

1 − C

A + B

)(
uf0

uf

) 1+B/A
+ C

A + B
(7.22)

Of concern is that Eq. (7.22) is applicable to both the straight nozzle and diffuser
flows. For nozzle flows there is a > 0 according to Eq. (7.16), while for diffuser
flows it is a < 0. It should be mentioned that the purpose of current calculations is to
evaluate the particle capability of responding to the change in the flow velocity. The
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assumption of linear dependence of flow velocity on the flow path in both the nozzle
and the diffuser contributes to the simplification of calculations. In the practice, this
linearity in the flow velocity requires the non-linear design of nozzle or diffuser with
respect to the constant volumetric flow rate Q̇ = ufAf, with Af as the flow section
area.

7.4.1 Nozzle Flow

The linear change of the flow velocity in the straight nozzle is given by Eq. (7.16)
with a > 0. Based on the assumption that at the nozzle entrance the particle and
the fluid flow have equal velocities, the particle velocity along the particle stream-
line has been derived and shown in Eq. (7.22). To a certain nozzle flow with a =
20 (m/s)/m for example, Fig. 7.2 shows the ratio of the particle velocity to the flow
velocity along the flow path for different particle densities. At the inlet of the nozzle,
every particle suffers from a delay in the acceleration against the flow acceleration,
so that there is up < 1. The particle acceleration relative to the flow acceleration
just at the nozzle inlet, at which uf0 = u0 and up0 = 1 are available, can be directly
obtained from Eq. (7.20) as

(
dup

duf

)

x=0
= 1

uf0

C − (A + B)

A
(7.23)

Further, because of up = up/uf the above equation is rewritten as

(
dup

duf

)

x=0
− up0

uf0
= C − (A + B)

A
(7.24)
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Fig. 7.2 Capability of tracer particles of diameter dp = 0.1 mm of following the water flow
(μ = 0.001 Pas) in a nozzle with the flow acceleration equal to a = 20 (m/s)/m
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With respect to up0/uf0 = 1 at the nozzle inlet one obtains

(
dup

duf

)

x=0
= C − B

A
= 3

1 + 2ρp/ρf
(7.25)

It is a function of the relative density of the particle only and is independent of the
particle size and the viscosity of the flow. Such a result indeed can also be expected
from Eq. (7.17). Because at the nozzle entrance the velocity difference between the
particle and the flow is zero, the viscous drag force vanishes. Thus with the reject of
the first term on the r.h.s. of Eq. (7.17), the particle motion is determined merely by
the density ratio ρp/ρf.

For tracer particles with the density ratio ρp/ρf<2 in the considered example as
shown in Fig. 7.2, the final particle velocity is merely about 1% less than the flow
velocity. This difference seems to be really negligible for most applications.

As it can also be further confirmed from Fig. 7.2 for the given example, the ratio
of particle to flow velocities tends to be constant after a short time at which the flow
velocity reaches a value of about uf/uf0 ≈ 1.1 ∼ 1.2. The related constant velocity
ratio can be obtained from Eq. (7.22) by setting uf,∞ = ∞ to be given as

up,∞ = C

A + B
(7.26)

This final particle velocity can be considered as a measure of the applicabil-
ity of tracer particles used in LDA measurements. Because of Eq. (7.19), the final
particle velocity is obviously a function of the density ratio ρp/ρf and the prod-
uct aτ . Corresponding relationships have been show in Fig. 7.3. The almost linear
dependence of the final particle velocity on the parameter aτ can be made use of to
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Fig. 7.3 Final reachable ratio of particle to flow velocities in the nozzle flow, in the function of
the particle density and the combined parameter aτ
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explicitly simplify Eq. (7.26). Because for aτ = 0 there is up,∞ = 1, the lineariza-
tion of Eq. (7.26) will be performed at aτ = 0. With respect to Eq. (7.19) it yields
from Eq. (7.26)

dup,∞
d (aτ)

∣
∣
∣
∣
aτ=0

= −
(

1 − ρf

ρp

)

(7.27)

The linearization of Eq. (7.26) is then obtained as

up,∞ = 1 −
(

1 − ρf

ρp

)

aτ (7.28)

This relationship serves for rapidly evaluating the applicability of interested
tracer particles to be used in LDA measurements of nozzle flows. The relaxation
time τ of the particle is calculated by Eq. (7.14). The flow acceleration a in the
nozzle flow depends not only on the nozzle geometry but also on the flow velocity
itself. From the constant volumetric flow rate Q̇ = ufAf through the nozzle the flow
acceleration in the nozzle is calculated as

a = duf

dx
= − uf

Af

dAf

dx
(7.29)

In general, the flow in a nozzle of small dimension undergoes the greater
acceleration than the flow in a large geometrically analogous nozzle.

7.4.2 Diffuser Flow

The diffuser flow in the present context is given by Eq. (7.16) with a < 0. Under the
assumption of equal particle and flow velocities at the diffuser entrance, the particle
motion in such a diffuser flow is described by Eq. (7.22). To a certain diffuser flow
with a = −20(m /s ) /m for example, Fig. 7.4 shows the ratio of the particle velocity
to the flow velocity along the flow path for different particle density ratios. Because
the particle velocity is less slowed down than the flow velocity, there is up > 1.
At the diffuser inlet, the ratio of the particle deceleration to the flow deceleration is
again given by Eq. (7.25).

For the considered example and for tracer particles with the density ratio ρp/ρf <

2 the final particle velocity is merely about 1% more than the flow velocity. This
difference seems to be really negligible in most applications.

According to Fig. 7.4 the state of the particle flow i.e. the ratio of the particle
velocity to the flow velocity tends to be constant after a short time. The related
constant velocity ratio can be obtained from Eq. (7.22) with respect to 1 + B/A < 0
and uf,∞ = 0

up,∞ = C

A + B
(7.30)
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Fig. 7.4 Capability of tracer particles of diameter dp = 0.1 mm of following the water flow
(μ = 0.001 Pas) in a diffuser with the flow deceleration equal to a = −20 (m/s)/m

It is formally equal to Eq. (7.26). The constant A, B and C are again calculated from
Eq. (7.19), however, with aτ < 0 for diffuser flows. Figure 7.5 shows correspond-
ing relationships calculated from the above equation. The almost linear dependence
of the final particle velocity on the parameter aτ can be again utilized to simplify
Eq. (7.30). Like calculations leading to Eq. (7.28) for aτ << 1, corresponding
calculations are summarized as follows

dup,∞
d (−aτ)

∣
∣
∣
∣
aτ=0

= 1 − ρf

ρp
(7.31)

up,∞ = 1 −
(

1 − ρf

ρp

)

aτ (7.32)
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This last relationship has the same form as Eq. (7.28). Because of aτ < 0 for dif-
fuser flows there is up,∞ > 1. Thus a rapid and direct method of evaluating the
applicability of interested tracer particles in diffuser flow measurements by means
of LDA method is available.

7.5 Particle Motion in the Oscillation Flow

One of the most important aspects dealing with tracer particles for LDA measure-
ments is the particle capability of following velocity fluctuations in a turbulent flow.
Because of the high frequency of velocity fluctuations commonly up to thousands
hertz it is reasonable to make sure what type of tracer particles should be applied, in
order to resolve the true velocity fluctuations in each interested flow. The reaction
behavior of a particle to the flow fluctuations can be estimated basically by account-
ing for a spatially uniform fluctuation flow. The most simple case is to assume the
flow fluctuation to be a sinusoidal function with the mean velocity u0, the angular
frequency ω and the amplitude Af as follows

uf = u0 + Af sinωt (7.33)

The assumption of spatially uniform flow is for the present consideration neces-
sary, because then the spatial pressure distribution in function of ∂uf/∂x in Eq. (7.8)
disappears. The introduction of the sinusoidal flow model aims to simulate the non-
steadiness of the flow in function of ∂uf/∂t �= 0, to which the pressure force exerted
on the particle is directly related. It should be mentioned that around the particle the
local pressure gradient ∂p/∂x arising from the fluctuation velocity ∂uf/∂t according
to Eq. (7.8) can be assumed to be constant, as long as the particle size is sufficiently
small against the turbulent structures.

By inserting Eq. (7.33) into Eq. (7.12) one obtains the rearranged particle motion
equation as

d
(

up − u0
)

dt
+ a
(

up − u0
) = b sinωt + c cosωt (7.34)

with corresponding particle and fluid constants

a = 36μ

d2
p

(

2ρp + ρf
) , b = 36μAf

d2
p

(

2ρp + ρf
) and c = 3ρfωAf

2ρp + ρf
(7.35)

Integrating Eq. (7.34) then yields

up − u0 = (ab + cω) sinωt + (ac − bω) cosωt

a2 + ω2
+ C · e−at (7.36)

Herein C is the integration constant.



7.5 Particle Motion in the Oscillation Flow 83

It is again especially interesting to know the final state of the particle oscilla-
tion in the assumed oscillation flow according to Eq. (7.33). This is obtained from
Eq. (7.36) by setting t → ∞, so that the last term on the r.h.s. of the equation disap-
pears. The particle oscillation in the flow is then independent of the initial velocity
difference between the flow and the particle and is described by

up − u0 = (ab + cω) sinωt + (ac − bω) cosωt

a2 + ω2
(7.37)

Obviously the particle motion has been shown to be a pure oscillation. To
further simplify this equation, the relationship (ab + cω)2 + (ac − bω)2 =
(

a2 + ω2
) (

b2 + c2
)

is applied, so that the following substitutions can be applied

ab + cω
√
(

a2 + ω2
) (

b2 + c2
)

= cosϕp,
bω − ac

√
(

a2 + ω2
) (

b2 + c2
)

= sinϕp (7.38)

Eq. (7.37) then becomes

up − u0 =
√

b2 + c2

a2 + ω2

(

sinωt cosϕp − cosωt sinϕp
) = Ap sin

(

ωt − ϕp
)

(7.39)

As can be seen, it deals with an oscillation of the particle at the same oscillation
frequency as the fluid flow, however with an amplitude modification and a phase
difference. The amplitude Ap of the particle oscillation is calculated, with respect to
Eq. (7.35), as

Ap =
√

b2 + c2

a2 + ω2
=

√
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√
√
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or
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)2
N4

S

(7.41)

Herein the Stokes number is applied which is defined by

NS =
√

ωd2
p

ν
(7.42)

with ν as the kinematic viscosity of the flow.
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Correspondingly, the phase difference in Eq. (7.39) is calculated as

tanϕp = bω − ac

ab + cω
= 24

(

ρp/ρf − 1
)

N2
S

432 + (2ρp/ρf + 1
)

N4
S

(7.43)

The Stokes number combines the influences of the flow fluctuation frequency,
the particle size and the kinematic viscosity of the fluid on the particle motion in
the flow. Its values in usual flows with tracer particles can be estimated. The flow
fluctuation rate is assumed for instance to be 1000 hertz. For a particle of diameter
dp = 0.1 mm and the flow of kinematic viscosity ν = 1.0 · 10−6 m2/s (water at
p = 1 bar and T = 20◦C), the Stokes number is calculated to NS ≈ 8. This value
can be considered to be the upper value of tracer particles usually applied in LDA
flow measurements. Table 7.1 shows the variation range of the Stokes numbers in
diverse situations in the water flow (ν = 1.0 · 10−6).

In using the Stokes number, as defined in Eq. (7.42), the influences of the par-
ticle size and the particle density on the oscillation amplitude of the particle in the
flow has been separated. This clearly shows the great advantage against the use of
the relaxation time, which is defined in Eq. (7.14) and is basically available for
stationary rather than the oscillation carrying flows.

The amplitude ratio given in Eq. (7.41) as a function of the density ratio ρp/ρf
and the Stokes number is shown in Fig. 7.6 for a wide range of the Stokes number.
In general, particles with the density ratio ρp/ρf<1.2 could well follow the flow
oscillation, even at high oscillation frequency and for large particles. The maximum
diminishment of the oscillation amplitude is about 10%. For ρp = ρf there are both
Ap = Af and ϕp = 0. The particle will follow the flow exactly regardless of size. It
indeed deals with a fluid particle.

As the Stokes number increases, the amplitude ratio Ap/Af tends to be a constant
that is only a function of the density ratio. This can be easily confirmed, as for very
large Stokes numbers it results from Eq. (7.41)

Ap

Af
= 3

1 + 2ρp/ρf
(7.44)

For particles with ρp/ρf = 1.2 for instance there is Ap/Af = 0.88.

Table 7.1 Stokes number in the water flow in function of the particle size and the fluctuation rate
(frequency) of the flow

Particle diameters (mm)

Frequency (Hz) dp = 0.02 dp = 0.04 dp = 0.06 dp = 0.08 dp = 0.1

100 0.5 1.0 1.5 2.0 2.5
200 0.7 1.4 2.1 2.8 3.5
500 1.1 2.2 3.4 4.5 5.6

1000 1.6 3.2 4.8 6.3 7.9
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In Fig. 7.7, the phase difference between the particle and the flow oscillations has
been shown. For particles with a density ratio ρp/ρf < 1.2 the phase difference could
be kept within 3.5◦. It should be mentioned that for measurements of turbulent flows
the phase difference is actually irrelevant. Also the existence of a maximum phase
difference for each given particle density ratio ρp/ρf appears to be less interesting.

From above considerations with an oscillation flow model both the capability of
particles of following the flow fluctuations and its limitation could be well demon-
strated. The calculation results can be applied to simulate the particle behaviors in
turbulent flows by considering Eq. (7.33). On one hand, the turbulence intensity of a
flow, that is given by

∣
∣u′∣∣/u, can be simulated in terms of the amplitude ratio Af/u0

of a sinusoidal fluctuation. On the other hand, the frequency of the turbulent flows
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that commonly takes hundreds to thousands of hertz, can be simulated by the angu-
lar frequency ω. For each particle of a given size, the related Stokes number can
be calculated according to Eq. (7.42). From Eq. (7.41) then the amplitude ratio of
the particle to the flow fluctuations can be further determined. Fig. 7.8 represents
such a calculation example for different particles in a turbulent water flow, in which
the frequency of velocity fluctuations is assumed to be 500 Hz. For particles with a
density ratio below 2.0 (for glass sphere it is about 2.4) and diameters of less than
30 μm, the amplitude ratio of the particle oscillation to the flow fluctuations is cal-
culated to be greater than 95%. For most engineering flows and the flow evaluation,
such a level of measurement accuracy is well acceptable.

With respect to the calculated particle motion in the oscillation flow there are
two special aspects that should be accounted for. Firstly, for very small particles the
particle motion in the flow is governed by the viscous drag force, as this has already
been indicated in Sect. 7.1. Secondly, for large particles i.e. at large Stokes numbers
the volumetric forces dominate in the particle dynamics. These two special cases
will be treated below.

7.5.1 Particle Flows of Small Stokes Numbers

For LDA measurements, small particles are in favor to be used because of their
high capabilities of following the flows and the flow fluctuations. In general, small
particles are specified by small Stokes numbers. For NS < 1 Eq. (7.41) is simplified
by neglecting the high order term as N8

S in the Taylor series expansion to

Ap

Af
= 1 − 1
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[
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− 1

]

N4
S (7.45)
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On the other side, as mentioned before, the viscous drag force dominates in
influencing the particle motion when particles are sufficiently small. In order to
quantify this circumstance, only the viscous drag force in Eq. (7.12) is considered.
By again assuming the same sinusoidal flow oscillation as Eq. (7.33), the corre-
sponding amplitude ratio can be calculated from the same calculation procedure,
leading to

Ap

Af
= 1
√

1 + 1
182

ρ2
p

ρ2
f

N4
S

≈ 1 − 1

648

ρ2
p

ρ2
f

N4
S (7.46)

Also to be mentioned is that in using the relaxation time according to Eq. (7.14),
the expression at square root in above equation can also be written as

√
1 + ω2τ 2.

The corresponding expression for Ap/Af can be found in some earlier publications
as cited in Carter et al. (2001).

The comparison between Eqs. (7.45) and (7.46) has been shown in Fig. 7.9. It
clearly demonstrates that for small particles the viscous drag force dominates. Since
in deriving Eq. (7.46) both the pressure force arising from the flow fluctuation ∂uf/∂t
according to Eq. (7.7) and the force owing to the added mass were neglected, the
amplitude ratio Ap/Af will not be in unity, even for the density ratio ρp/ρf = 1. For
this reason Eq. (7.45) is more precise than Eq. (7.46) and could be considered to be
resulted only from the viscous drag force.

Correspondingly the phase difference that is given in Eq. (7.43) is simplified for
NS < 1 as

tanϕp ≈ 1

18

(
ρp

ρf
− 1

)

N2
S (7.47)

For NS << 1 there are Ap = Af and ϕp = 0, as expected.
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7.5.2 Particle Flows of Large Stokes Numbers

In addition to the viscous drag force, the other effective forces exerted on the particle
in the spatially uniform flow are the pressure force arising from the local flow fluc-
tuation rate ∂uf/∂t and the force because of the added mass. As it has been shown
in Sect. 7.1, these last two forces are proportional to the third power of the parti-
cle diameter. Such a particle dynamical property implies that at large particles both
volume forces dominate in influencing the particle motion against the viscous drag
force which becomes negligible. This circumstance has already been confirmed in
Fig. 7.6, as for large Stokes numbers (NS > 10) the particle oscillation amplitude is
independent of the Stokes number i.e., according to Eq. (7.42), independent of the
fluid viscosity. The corresponding calculation result has been given in Eq. (7.44). In
effect, the same result can also be obtained from Eq. (7.34) by directly neglecting
the viscous drag force, that means to set a = 0 and b = 0. Because the particle
motion is independent of the particle size, Eq. (7.44) can also be used to explain
why the rising velocity of air bubbles in water is independent of the bubble size, as
mentioned in Sect. 7.1.3.



Chapter 8
Zero Correlation Method (ZCM)

8.1 Shear Stress Measurements with Non-coincident LDA

The most significant turbulence parameters of a turbulent flow are specified by cor-
responding Reynolds stresses that are given in the matrix form at Eq. (2.11). The
knowledge about the turbulent shear stresses for instance τuv basically demands,
according to Eq. (5.7), coincident measurements of two velocity components u
and v. For such measurements a two-component LDA-system has usually to be
applied and optically arranged for direct measurements of u and v (Chap. 4). This
is well available because most LDA systems are designed so. The different case,
however, will be encountered in measurements of all three velocity components.
In such a case, the third i.e. on-axis velocity component has usually to be sepa-
rately measured by off-axis alignment of the LDA head. This can be achieved either
directly by the method according to Fig. 8.1a, or indirectly according to Fig. 8.1b.
In the case of indirect measurements, the on-axis velocity component is calculated
by transforming the velocity components ux and uϕ

uy = uϕ − ux cosϕ

sinϕ
(8.1)

This equation has already been given by Eq. (6.40).
Because it deals here with non-coincident measurements of velocity compo-

nents ux and uy, the turbulent shear stress u′
xu′

y could not be directly obtained
by regarding Eq. (5.7). For indirectly obtaining any turbulent shear stress, the
Reynolds stress matrix shown in Eq. (2.11) is considered again. Because of equali-
ties τxy = τyx, τxz = τzx and τyz = τzy there are indeed altogether six independent
Reynolds turbulent stresses. According to the statement given by Durst et al. (1981)
and for the most general case of non-coincident LDA measurements, six single mea-
surements are needed for resolving all six Reynolds stresses in a three-dimensional
space. In the case of considering the flow in a two-dimensional plane, then three
single measurements are necessary. The corresponding measurement method has
already been shown in Sect. 6.2 with respect to Fig. 6.7.

Measurements of complete turbulent stresses in a two-dimensional plane within
a flow field, however, can be simplified by making use of a highly reasonable
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(a)
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uy

2D-LDA for ux and uz

1D-LDA for uy

ux uz

(uy)

2D-LDA for ux and uz
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(b)

uϕ

ϕ

1D-LDA for uϕ

Fig. 8.1 Separate
measurement of the on-axis
velocity component uy by
relocating the LDA head;
The velocity component uz is
perpendicular to the drawing
plane (a) direct measurement
of the velocity component uy;
(b) indirect measurement of
the velocity component uy

assumption to the turbulent flow. The so-called Zero Correlation Method (ZCM)
(Zhang and Eisele 1998a, Zhang 1999) enables the complete stress components
in a two-dimensional plane to be determined by just carrying out two single mea-
surements. The method thus does not provide any more expenses, because two
measurements are necessary anyway for obtaining both the magnitude and the
direction of the mean velocity. This method will be presented in below.

8.2 Basics of ZCM

The significant attribute of a turbulent flow is the stochastic velocity fluctuations.
In dealing with a stationary turbulent flow, flow fluctuations basically comprise the
fluctuations of both the magnitude and the direction of the velocity vector, as illus-
trated in Fig. 8.2 for a turbulent flow which was measured by the LDA method.
Because of the stochastic feature of flow fluctuations, the fluctuation of the veloc-
ity direction in the x − y plane can be considered to symmetrically lie on both
sides of the mean velocity vector that has its direction at ϕ. For further consid-
eration, the velocity component along the mean velocity vector is denoted by u1.

ux

uy

u1

ϕ

u2
uϕ

ϕ
Fig. 8.2 Turbulent flow and
velocity fluctuations
measured by LDA
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In its perpendicular, the velocity component is u2. Clearly there is u2 = 0. The
symmetrical distribution of velocity fluctuations around the mean velocity vector
is mathematically expressed by the zero correlation between flow fluctuations in
velocity components u1 and, u2 as given by

C = u′
1u′

2 = 0 (8.2)

From velocity components u1 and u2 the velocity components ux and uy can be
obtained from the orthogonal coordinate transformation that has already been out-
lined in Sect. 6.1. The same transformation is also applicable to the flow fluctuations.
In effect, Eqs. (6.6) and (6.7) can be directly applied to represent the fluctuation
velocities in the present case as

u′
x = u′

1cosϕ − u′
2 sinϕ (8.3)

u′
y = u′

1sinϕ + u′
2 cosϕ (8.4)

In these equations, the mean flow direction is denoted by angle ϕ that is calculated
by

tanϕ = uy

ux
(8.5)

For later convenience this equation is also represented as

tan 2ϕ = 2 tanϕ

1 − tan2 ϕ
= 2uxuy

u2
x − u2

y

(8.6)

The statistical turbulence properties including the Reynolds normal and shear
stresses can be calculated from the velocity fluctuations u′

x and u′
y given above.

With respect to the zero correlation condition given by Eq. (8.2), the following
relationships are obtained

u′2
x = u′2

1 cos2 ϕ + u′2
2 sin2 ϕ (8.7)

u′2
y = u′2

1 sin2 ϕ + u′2
2 cos2 ϕ (8.8)

u′
xu′

y = 1

2

(

u′2
1 − u′2

2

)

sin 2ϕ (8.9)

Also to be mentioned is that these three equations can also be directly obtained from
Eqs. (6.9), (6.10), and (6.11). The velocity components u and v there need to be
considered to be the components on the main flow direction ϕ and its perpendicular,
respectively. Because of predefined zero correlation condition by Eq. (8.2) τuv = 0
should be applied.
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Based on similar calculations, the turbulence properties related to any other
components uϕ, according to Fig. 8.2, are given by

u′2
ϕ = u′2

1 cos2(ϕ − ϕ) + u′2
2 sin2(ϕ − ϕ) (8.10)

u′
ϕu′

ϕ+90◦ = −1

2

(

u′2
1 − u′2

2

)

sin 2(ϕ − ϕ) (8.11)

Because both normal stresses u′2
1 and u′2

2 are positive, the normal stress u′2
ϕ is positive

in all directions. In fact, u′2
1 and u′2

2 represent two principal normal stresses and u′2
ϕ

lies between them. From Eqs. (8.7) and (8.8) two principal normal stresses can be
resolved as

u′2
1 = 1

2

(

u′2
x + u′2

y

)

+ 1

2 cos 2ϕ

(

u′2
x − u′2

y

)

(8.12)

u′2
2 = 1

2

(

u′2
x + u′2

y

)

− 1

2 cos 2ϕ

(

u′2
x − u′2

y

)

(8.13)

Eq. (8.12) is indeed equal to Eq. (6.18) that represents the principal normal stress
at the angle ϕm in the x − y plane, see also Fig. 6.3. Obviously the zero correlation
condition given by Eq. (8.2) assumes the angle ϕm for the principal normal stress to
be equal to the main flow direction.

The above two equations are subsequently inserted into Eqs. (8.10) and (8.11),
respectively. The following expressions are then obtained

u′2
ϕ = 1

2

(

u′2
x + u′2

y

)

+ cos 2(ϕ − ϕ)

2 cos 2ϕ
(u′2

x − u′2
y ) (8.14)

u′
ϕu′

ϕ+90◦ = − sin 2(ϕ − ϕ)

2 cos 2ϕ

(

u′2
x − u′2

y

)

(8.15)

These last two equations indicate that the complete Reynolds stresses in the x − y
plane can be well resolved from two independent i.e. non-coincident measurements
(u′2

x and u′2
y ). In comparison with the method of three measurements, as presented in

Sect. 6.2 with respect to Fig. 6.7, the method presented here clearly shows advan-
tages in the simplification of turbulence measurements. This accessibility is simply
based on the assumption of zero correlation condition u′

1u′
2 = 0 as specified in

Eq. (8.2). For this reason the method shown above is called Zero Correlation Method
(ZCM).

The turbulent shear stress u′
xu′

y is obtained by setting ϕ = 0 in Eq. (8.15), which
results in

u′
xu′

y = 1

2
tan 2ϕ

(

u′2
x − u′2

y

)

(8.16)

and because of Eq. (8.6)
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u′
xu′

y = uxuy

u2
x − u2

y

(

u′2
x − u′2

y

)

(8.17)

Eq. (8.16) is comparable to Eq. (6.15). It can be directly applied to Fig. 8.1a.

8.3 Extension of ZCM

8.3.1 Non-orthogonal Velocity Components

The Zero Correlation Method (ZCM) introduced in the last section applies to the
orthogonal velocity components like ux and uy in a two-dimensional plane, as shown
in Fig. 8.1a. Because LDA arrangement like that in Fig. 8.1b is also often available,
the ZCM must be modified to extend its applications.

From Eq. (8.14) the turbulent normal stress u′2
y is resolved as

u′2
y = cosϕ cos(2ϕ − ϕ)u′2

x − cos 2ϕu′2
ϕ

sinϕ sin(2ϕ − ϕ)
(8.18)

This equation signifies that from measurements of two non-orthogonal turbulence
components u′2

x and u′2
ϕ in a two-dimensional plane the turbulence component u′2

y
in the same plane can be determined as well. One has again the case of orthogo-
nal normal stresses. All results achieved in Sect. 8.2, especially Eq. (8.16), can be
applied. The mean flow angle ϕ is calculated by Eq. (8.5), where the mean velocity
component uy is obtained from Eq. (8.1).

8.3.2 Three-Dimensional Flow Turbulence

Calculations presented above are performed for turbulence properties in a two-
dimensional plane. For purposes of applying the ZCM to three-dimensional tur-
bulent flows in the Cartesian coordinate system, Eq. (8.17) is taken into account as
the reference for other components. The completeness of turbulent stresses can be
expressed in a matrix as given by

u′
iu

′
j =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u′2
x

ūxūy

ū2
x − ū2

y

(

u′2
x − u′2

y

) ūxūz

ū2
x − ū2

z

(

u′2
x − u′2

z

)

ūxūy

ū2
x − ū2

y

(

u′2
x − u′2

y

)

u′2
y

ūyūz

ū2
y − ū2

z

(

u′2
y − u′2

z

)

ūxūz

ū2
x − ū2

z

(

u′2
x − u′2

z

) ūyūz

ū2
y − ū2

z

(

u′2
y − u′2

z

)

u′2
z

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(8.19)
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Obviously three non-coincident measurements, from which both the mean velocities
(ux, uy and uz) and the turbulence components (u′2

x , u′2
y and u′2

z ) at a fixed point in
the flow are obtainable, are sufficient to complete the Reynolds stress matrix with
nine elements. The advantage of the ZCM has been thus again demonstrated.

8.4 Restriction and Validation of ZCM

The zero correlation method is indeed an approximation method that is introduced
to simplify the turbulence measurements. Respective application restrictions and
accuracies must be considered. From Eqs. (8.14) and (8.15), it is evident that the
main flow angle ϕ in the used coordinate system should not be equal or very close
to 45◦. This limitation could also be confirmed from Eq. (8.16) when measurements
of ux and uy should be accomplished. It is therefore recommended to arrange the
appropriate x − y coordinate system for measurements. At best the x-axis is set to
closely agree with the main flow direction.

The extent of errors resulting from the ZCM depends on the homogeneity of
turbulence in the respective flow to be measured. In actual fact, the method does
work accurately as long as the zero correlation condition according to Eq. (8.2) is
highly satisfied. This is always the case when the local flow does not sensitively
affected by the rigid surface or boundaries in the flow. An experimental verification
of the method was conducted once through measurements in a turbulent channel
flow (Zhang and Eisele 1998a, Zhang 1999). In this validation measurement, a two-
component coincident LDA system was applied, so that turbulent stresses u′2

x , u′2
y

and u′
xu′

y were directly obtained. Based on such measurements the validation of the
ZCM could be well accomplished by following calculations:

(1) From the coincident measurements of velocity components ux and uy other
velocity components uϕ and uϕ+90◦ for each given angle ϕ can be calculated
via coordinate transformation according to Eq. (6.4) as

uϕ = ux cosϕ + uy sinϕ (8.20)

uϕ+90◦ = −ux sinϕ + uy cosϕ (8.21)

Subsequently the covariance i.e. the correlation between velocity fluctuations
u′
ϕ and u′

ϕ+90◦ is calculated by

u′
ϕu′

ϕ+90◦ =
N
∑

i=1

(

uϕ − uϕ

) (

uϕ+90◦ − uϕ+90◦
)

(8.22)

This covariance indeed represents the turbulent shear stress and is a function of
angle ϕ.
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(2) On the other side the covariance u′
ϕu′

ϕ+90◦ for each given angle ϕ can also be

directly calculated from two normal stresses u′2
x and u′2

y by using Eq. (8.15).
Because of the use of this equation as a result of the ZCM, the calculation
results must be considered to be approximate.

(3) Calculation results from calculations in (1) and (2), respectively, will be
compared.

This validation procedure was applied to the validation measurements (Zhang and
Eisele 1998a, Zhang 1999). Figure 8.3a shows the comparison of respective calcu-
lations in function of each given angle ϕ. Obviously the ZCM provides satisfactory
measurement results.

The same validation can be completed by concerning the turbulence compo-
nent u′2

ϕ . On one side, this component can be calculated from velocity data that
are obtained by Eq. (8.20), leading to accurate values of variance. On the other side,
it can also be calculated directly from u′2

x and u′2
y by means of Eq. (8.14), leading

to approximated values. The comparison between two calculations in relying on
the mentioned validation measurement is shown in Fig. 8.3b. The same satisfactory
results were obtained.

Strictly, the zero correlation condition according to Eq. (8.2) is not satisfied if
applied to the turbulent boundary layer. With respect to the main flow direction
u1 = ux and to the perpendicular u2 = uy, the covariance u′

1u′
2 i.e. u′

xu′
y in the tur-

bulent boundary layer is indeed a function of the distance to the wall surface and
therefore does not disappear as it is assumed in the ZCM. The error arising from
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the assumption u′
xu′

y = 0, when applied to the turbulent boundary layer, has been

analyzed by Zhang and Zhang (2002). With known turbulent stresses u′2
x , u′2

y and

u′
xu′

y at a certain wall distance y+ the directional distributions of the normal and
shear stresses can be calculated by Eqs. (6.13) and (6.14), respectively. On the other
hand, these distributions can also be calculated by assuming u′

xu′
y = 0 which in

effect simulates the application of ZCM. Figure 8.4 represents the comparison of
respective calculations to the turbulent state at y+ = 90 in the turbulent boundary
layer. With certain reservation the ZCM in this application provides quite satisfac-
tory result. This obviously arises from the fact that the amplitudes of both the normal
and shear stresses in their trigonometric functions are mainly determined by the nor-
mal stresses u′2

x and u′2
y .The assumption of u′

xu′
y = 0 in the ZCM merely results in a

shift in the directional distribution of respective turbulent stresses. In practical appli-
cations, it is indeed a matter of the application requirement, whether the resultant
error could be accepted or not.



Chapter 9
Dual Measurement Method (DMM)

9.1 Possibility of Resolving the Secondary Flow

LDA measurements are component measurements. This means that the measured
velocity components are always referred to as coordinates in the LDA optical sys-
tem. For direct measurements of velocity components in the flow field coordinate
system, LDA coordinates have to be arranged to agree with the flow field coordi-
nates. In other cases, all interested velocity components in the flow field can be
obtained from coordinate transformation, as described in Chap. 6. Correspondingly,
LDA users in practical applications always try to make sure either the accurate
coincidence between two coordinate systems or an accurate rotation by a given
angle. The alignment error has mostly been assumed to be small and hence is often
neglected. This is generally allowed in most flow measurements at which the flow
field could still be truly represented from the measurements despite the measure-
ment errors. In contrast, however, there are cases at which a small error in LDA
alignment to the flow field coordinates could lead to total misinterpretation of the
actual flow field. Such a case has been for instance encountered by Zhang and
Parkinson (2001, 2002) while trying to measure the very weak but very important
secondary flow structure in a high speed water jet of a Pelton turbine (Fig. 9.1) In
principle, it is generally impossible to align LDA velocity components u and v to
be exactly coincident with velocity components ux (axial) and ut (tangential) of the
jet flow. An inevitable small alignment error τ �= 0 simply means that the measured
velocity component v additionally comprises a part of the axial velocity component,
as given by

ν = ut cos τ + ux sin τ (9.1)

Although the bias angle τ as an error parameter is usually very small, the term
ux sin τ in the above equation, however, could be still very large because of high
values of the axial velocity component ux in the high speed jet flow. In the case
that this term is comparable to or larger than the term ut cos τ ≈ ut, the secondary
flow pattern represented by ut would be sensitively and totally misinterpreted from
measurements. For this reason the mentioned secondary flow in a cross section of
the high speed jet flow could be measured neither directly nor indirectly through
coordinate transformation.

97Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
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v
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τ

Fig. 9.1 Possible inaccurate
LDA alignment to a high
speed jet flow and the
associated problem of
resolving the secondary flow
structure in the jet cross
section

Such a problem arising from inaccurate LDA alignment could be basically
solved, when the alignment error i.e. the bias angle τ could be accurately identified
and then the appropriate correction calculation of measurement date is implemented.
In the mentioned measurement of the secondary flow structure in the high speed
water jet, a method that is known as the Dual Measurement Method (DMM) was
developed and applied to accurately identify the geometrical deviation in the LDA
alignment to the jet flow. After finding out the alignment error, measurement data
could be correctly evaluated. It dealt with a quite interesting flow phenomenon
which could be detected by DMM.

The background of the dual measurement method is the two-measurement prin-
ciple which is sometimes also called two-step method. The most famous example
of using this principle is the Michelson-Morley experiment (Hecht 1990) that was
constructed, by subsequently rotating the apparatus horizontally for 90◦, to be able
to measure the difference of light speeds in different directions, provided that this
difference would exist. Another example that is directly related to LDA techniques
is to exactly check the constant shift frequency generated in one of two laser beams
of a laser beam pair, as it will be shown in Chap. 18.

In this chapter, the dual measurement method will be firstly presented in the
version of its initial application to the high speed jet flow with complex secondary
flow structures (Zhang and Parkinson 2001, 2002). Then the extended form of DMM
(Zhang 2005) will be shown that can be applied to other special cases.

The readers would probably be interested in how the laser beams could enter
into the jet that has a turbulent and hence opaque surface. The corresponding mea-
surement technique of using an optical wedge can be found in Chap. 18 showing
application examples.
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9.2 DMM in Basic Form

The dual measurement method was initially developed to accurately resolve the
secondary flow structure in the high speed jet flow of a Pelton turbine. The jet was
generated by an injector which was connected to a bend, as shown in Fig. 9.2a
Because of the bend effect and the resultant change in the flow state, the flow after
passing through the bend is characterised by the existence of a secondary flow struc-
ture across the pipe section, as shown in Fig. 9.2b based on LDA measurements of
tangential velocity components. It deals with a typical secondary flow pattern that
clearly demonstrates two identical areas with flow rotations. This flow structure
remains while passing through the injector, as it was measured and has been shown
in Fig. 9.2c, provisionally without mentioning how this secondary flow structure
could be measured. Although it deals with a small scale secondary flow structure,
it represents the main reason for the jet instability. One of the most serious distur-
bances on the jet because of related secondary flows is the generation of a chain
of droplets on the jet surface, as indicated in Fig. 9.2a. The measurement of the
secondary flow structure in the mentioned high speed water jet represents a highly
difficult task and could only be conducted by means of DMM.

(a)

A

measurement

injector

(c)

(b)

measurement

di
st

ur
ba

nc
e

Fig. 9.2 Application example of the Dual Measurement Method (DMM) for accurately resolving
the secondary flow in the high speed jet of a Pelton turbine (Zhang 2009)
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The jet flow was made accessible for LDA measurements from all directions
around the jet axis, as shown in Fig. 9.3a where a support platform for LDA head
was installed. The LDA head is mounted on the traversing board of the support
device that enables a velocity profile in the jet to be measured. For the measurement
technique of getting the laser beams into the jet with turbulent and rough surface the
readers are referred to Chap. 18.

The LDA optics was aligned for direct measurements of the tangential velocity
component without using coordinate transformation. In assuming an alignment error
i.e. a bias angle τ �= 0 as shown in Fig. 9.3b, the measured velocity component v
takes

ν0 = ut cos τ + ux sin τ (9.2)

In this equation the positive bias angle is defined as it is shown in Fig. 9.3.
The dual measurement method is constructed so as to arrange an additional

flow measurement by simply rotating the LDA head around the jet axis by 180◦
(Fig. 9.3c). While rotating the measurement system the alignment error i.e. the bias
angle τ can be assumed to be constant. The measured velocity component v this
time at the same point in the jet flow is then given by

ν1 = −ut cos τ + ux sin τ (9.3)

The second term on the r.h.s. of the above equation is the part arising from the axial
velocity component ux. For exact LDA arrangement with τ = 0 there is

ν1 = −ν0 (9.4)

(a) (b)

u0

v0

ut

ux

τ τ

(c)

ut

ux

v1

u1

injector

jet

LDA

support system

Fig. 9.3 DMM principle for accurately resolving the secondary flow structure in the high speed
jet of a Pelton turbine
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This equation represents a criterion of the faultless LDA alignment for direct mea-
surement of velocity component ut. Both values (v1 and v0) act as mirrored about
ν = 0. This ideal “mirrored view” of two velocity components v1 and v0 will be
more or less disturbed by errors with τ �= 0 in LDA alignment. It can be con-
cluded that any deviation from Eq. (9.4) is quantitatively related to the bias angle τ
Since this bias angle τ is actually a geometrical or mechanical arrangement error,
it basically causes a systematic error which, according to Eqs. (9.2) and (9.3), takes
ux sin τ . This systematic error in the velocity measurement is called velocity shift
because it acts as an additive quantity in both Eqs. (9.2) and (9.3).

From Eqs. (9.2) and (9.3) one obtains

νsh = ux sin τ = ν0 + ν1

2
(9.5)

as well as for τ << 1

ut = ν0 − ν1

2
= ν0 − νsh (9.6)

It is now clear that through twice measurements of the same flow the velocity shift
as the outcome of the LDA alignment error can be exactly identified. This dual deal
of the jet flow measurement leads to direct determination of the tangential velocity
component that otherwise could not be accurately measured. Because of this, the
applied method is called the Dual Measurement Method (DMM).

With regard to the assumption that the velocity shift vsh is a kind of systematic
error involved in the LDA arrangement, it needs only to be determined one time at a
fixed point in the flow by means of DMM. It can then be directly applied, according
to Eq. (9.6), to correct the measurement results that are achieved at other points in
the flow.

In the above mentioned example, the dual measurement method was applied to
identify the bias angle τ and the associated velocity shift. The completed two mea-
surements of the same velocity profile across the jet have been shown in Fig. 9.4a
Because it deals with the same velocity profile, the “mirrored view” of two-time
measurements would have been expected. That is to say that two velocity profiles
should have symmetrically lain on both sides of the neutral line with ν = 0, if the
bias angle τ would be zero. The measured deviation of the symmetry line from
ν = 0, as shown in Fig. 9.4a, just corresponds to the velocity shift calculated
by Eq. (9.5). In this measurement example, the velocity shift reads at 0.4 m/s. It
corresponds to a bias angle of τ = 0.92◦ (for ux = 25 m/s). Obviously this is a
quite small angle. The associated velocity shift, however, is of the same order as the
existing velocity component itself or even higher. With respect to the velocity shift
determined from Fig. 9.4a measurement results could be immediately corrected, as
shown in Fig. 9.4b. Both measurements after correction then behave as mirrored at
ν = 0, as expected.
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Fig. 9.4 Determination of the velocity shift by means of DMM and correction of the measurement
results across the jet flow

With respect to the constant systematic error of νsh = 0.4 in the installed system
the complete secondary flow structure in a jet section has been measured and cor-
rected, as already shown in Fig. 9.2c. Obviously the secondary flow that contains
two counter-rotating vortices exhibits the similar flow structure as in the pipe ahead
of the injector. At the point A both streams from two flow areas come together.
Because of the absence of any rigid boundaries that could guide the jet flow, the
fluid tends to escape from the jet. As the consequence a chain of water droplets
comes about, as this has often been observed in hydro power plants with Pelton
turbines since more than half century (Zhang 2009).

The comparison between Fig. 9.4a and Fig. 9.4b points out that a small bias
angle τ could lead to total misinterpretation of the flow. In fact, none of the two
measurements in Fig. 9.4a represents the real flow. While the real flow pattern in
the jet section involves the swirling flow structures (Fig. 9.2c), each uncorrected
measurement (Fig. 9.4a) simply shows a transversal motion of the fluid almost with
ν > 0.

Basically it is sufficient to apply the DMM to a single point in the flow to deter-
mine the bias angle τ and hence the systematic error in form of the velocity shift vsh
In the presented example as shown in Fig. 9.4, the dual measurement method has
been applied to a survey across the jet. This could be well realized by the constructed
measurement system according to Fig. 9.3. The constant velocity shift across the jet
straightforwardly demonstrates the reliability of DMM. The velocity shift as the
systematic error involved in measurements has been thus verified.
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It should be emphasized that the velocity shift could only be assumed as a con-
stant systematic error, when the bias angle τ is kept constant while rotating the LDA
support system. The consistency of the bias angle τ thus represents the prerequisite
for applying the DMM.

9.3 DMM with Coordinate Transformation

In the last section, the direct dual measurement method has been presented. It is
known as the direct method because in the applied example the LDA coordinates
were initially set to be coincident with the flow coordinates by u = ux, ν = uy and
w = uz. Sometimes it is advantageous to rotate the LDA coordinate system by an
angle α against the flow system, so that a coordinate transformation matrix R(α)
generally exists between two coordinate systems (Chap. 6).

Because the angle of rotation of one coordinate system against another is by no
means exact, its real value has to be assumed to involve a small LDA alignment error
i.e. bias angle τ (<<1) and hence takes α + τ according to Fig. 9.5 As for the general
case, the velocity component to be measured in the secondary flow is denoted by uy,
instead of ut that is used for the example in Sect. 9.2.

The alignment of a two-component LDA head according to Fig. 9.5a enables the
measurements of velocity components u0 and v0. The velocity component ux and uy
in the flow system are then simply obtained by

ux = u0 cos(α + τ ) + ν0 sin(α + τ ) (9.7)

uy = −u0 sin(α + τ ) + ν0 cos(α + τ ) (9.8)

(a)  ϕ = 0°

u0

uy

ux

v0α+τ

uz

(b) ϕ = 180°

α+τ u1

uy

ux

 v1

uz 

Fig. 9.5 DMM principle for
accurately resolving the
secondary flow structure in a
high speed jet flow
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Since the small alignment error τ only causes the negligible relative change in the
axial velocity component ux, so τ = 0 can be applied to Eq. (9.7). Thus ux acts as
a component that is not affected by the alignment error τ . To Eq. (9.8) the approxi-
mations sin(α + τ ) ≈ sinα + τ cosα and cos(α + τ ) ≈ cosα − τ sinα because of
τ << 1 will be applied. This leads to

uy = (−u0 sinα + ν0 cosα) − uxτ (9.9)

and further with the velocity shift νsh = uxτ

uy = (−u0 sinα + ν0 cosα) − νsh (9.10)

Like in Eq. (9.5) the velocity shift appears again in the form of νsh = ux sin τ
i.e.νsh ≈ uxτ because of τ << 1. In addition, it has been again confirmed as an
error that shifts the measurement results. Basically the velocity component uy is
intended to be determined by the first term on the r.h.s. of Eq. (9.10). This will be
only true if τ = 0 is true. The existence of the velocity shift vsh as the consequence
of the alignment error τ could significantly influence the determination of velocity
component uy, as already shown in the last section.

In order to examine the velocity shift existing in Eq. (9.10), the dual measurement
method is again applied. This means that the LDA set-up needs to be turned around
the x-axis by 180◦, as shown in Fig. 9.5b. Attention has to be paid so that the bias
angle τ as a systematic error has to remain constant.

From Fig. 9.5b and in analogy to Eq. (9.8), the velocity component uy is directly
written as

uy = u1 sin(α + τ ) − ν1 cos(α + τ ) (9.11)

Based on similar calculation as that leading to Eq. (9.10) and newly with ux =
u1 cosα + ν1 sinα one obtains from the above equation

uy = (u1 sinα − ν1 cosα) + νsh (9.12)

Eq. (9.10) and (9.12) are found as basic equations to resolve both the velocity shift
and the velocity component uy. It yields

νsh = uxτ = ν0 + ν1

2
cosα − u0 + u1

2
sinα (9.13)

uy = u1 − u0

2
sinα + ν0 − ν1

2
cosα (9.14)

For α = 0 one obtains Eq. (9.5) and (9.6), respectively.
Basically, the application of DMM in this case with coordinate transformation is

completed. Although the velocity component uy in Eq. (9.14) seems to be directly
obtained from the dual measurements without via the calculation of the velocity
shift, the velocity shift, however, gives a clear indication about the inaccuracy in
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the LDA alignment. It will also be used, according to Eq. (9.10), to directly correct
measurements at other measurement points in the flow with the same LDA setup.
In practical applications, one can estimate the possible velocity shift according to
νsh = uxτ by assuming the possible alignment error τ before carrying out the LDA
measurement. When the estimated velocity shift is negligible against the velocity
component uy to be measured, then the dual measurement would not be necessary.

Sometimes it may be convenient to conduct calculations by using the velocity
component ux which is often assumed to be known. For this purpose, two cases
in Fig. 9.5 are again considered. The velocity component v in LDA system can be
expressed by

ν0 = ux sin(α + τ ) + uy cos(α + τ ) (9.15)

ν1 = ux sin(α + τ ) − uy cos(α + τ ) (9.16)

From these two equations and with respect to sin(α+τ ) ≈ sinα+τ cosα it follows

ν0 + ν1

2
= ux sin(α + τ ) = ux sinα + uxτ cosα (9.17)

The velocity shift can thus be resolved as

νsh = uxτ = ν0 + ν1

2 cosα
− ux tanα (9.18)

It is completely equivalent to Eq. (9.13).
Especially it follows from (9.15) and (9.16) directly

uy = ν0 − ν1

2 cos(α + τ )
≈ ν0 − ν1

2 cosα
(9.19)

This equation is completely equivalent to Eq. (9.14). Further for α = 0, Eq. (9.6)
is again obtained.

9.4 Extension of DMM

The Dual Measurement Method (DMM) has been constructed based on the “mir-
rored view” of two measurements. Through the direct comparison between two
measurements of the same velocity component, the alignment error in LDA optics
and the associated velocity shift can be exactly determined. However, it often comes
about that the positioning of the LDA head at 180◦ for the second measurement is
impossible. This will limit the application of DMM in such a way that by position-
ing the LDA head at another angle the measurement cannot be compared with the
first measurement, because it deals with the measurements of two different velocity
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components. This means that two measurements are generally not sufficient to iden-
tify the alignment error and the associated velocity shift. As an extension of DMM,
a method of carrying out three arbitrary measurements at a fixed point in the flow
from three different azimuth angles ϕ has been developed and also experimentally
validated by Zhang (2005). The concept was that at a fixed point in the flow, any
three velocity components measured at three different azimuth angles have to lie in
a same plane and thus are related to a unique plane vector, when the LDA optics
is aligned to the flow without any alignment error. Otherwise a unique plane vector
would not exist, when the LDA system is aligned to the flow system with an error
τ �= 0. Indeed, this concept has been clearly shown in Fig. 9.3. Because of the align-
ment error τ �= 0 the two measured velocity components v0 and v1 do not lie in the
plane perpendicular to the jet axis.

9.4.1 Direct Component Measurements

The flow is given in the flow coordinate system by �uflow = (ux, uy, uz). Herein
ux represents the component in the main flow direction. As an example, the jet
flow with the axial component ux has been shown in Fig. 9.3 The velocity compo-
nents related to LDA are involved in the velocity vector �uLDA = (u, ν, w). Usually a
two-component LDA system is applied and the measured velocity components are
denoted by u and v, respectively. The theoretically exact coincidence between the
LDA and the flow systems is assumed to be given by u = ux and ν = uy The cor-
responding arrangement of the LDA head to the flow (Fig. 9.6a, b) is denoted as the
basic arrangement. Deviations from this basic arrangement are confirmed by

(1) bias angle τ �= 0. It is unknown and should be identified through measurements.
Here τ is like in Fig. 9.3 the angle between velocity components u and ux;

(2) rotation of the LDA head about the x-axis for further carrying out two
measurements at two other azimuth angles (Fig. 9.6c, ϕ = ϕ1 and ϕ = ϕ2).

With respect to these two deviations, specified by angles τ and ϕ, the general
relationship between velocity components in two coordinate systems should be
established. The velocity shift is expected to appear again in the form νsh = uxτ . For
the reason of mathematical simplicity the LDA alignment with τ and ϕ as param-
eters is assumed to be achieved by successively getting ϕ and τ from the basic
arrangement with u = ux and ν = uy (Fig. 9.6a). In the first step, when the LDA
head has rotated about the x-axis by ϕ (Fig. 9.6c), the relationship between velocity
components in LDA and flow systems is given by

u′ = ux (9.20)

ν′ = uy cosϕ − uz sinϕ (9.21)
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Fig. 9.6 Explanation of extended Dual Measurement Method

or in the form of matrix

[

u′
v′
]

= R′
⎡

⎣

ux
uy
uz

⎤

⎦ =
[

1 0 0
0 cosϕ − sinϕ

]
⎡

⎣

ux
uy
uz

⎤

⎦ (9.22)

The LDA head is subsequently turned about its axis by τ (Fig. 9.6d). Corresponding
relationship between velocity components is given by

[

u
v

]

= R′′
[

u′
v′
]

=
[

cos τ − sin τ
sin τ cos τ

] [

u′
v′
]

(9.23)

From Eqs. (9.22) and (9.23), the general relationship between velocity components
in two coordinate systems with τ and ϕ as parameters is obtained as

[

u
v

]

= R

⎡

⎣

ux
uy
uz

⎤

⎦ =
[

cos τ − cosϕ sin τ sinϕ sin τ
sin τ cosϕ cos τ − sinϕ cos τ

]
⎡

⎣

ux
uy
uz

⎤

⎦ (9.24)

with R = R′′R′
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Equation (9.24) represents the background for both the basic DMM, as described
in Sect. 9.2, and the extended DMM. In fact, for ϕ0 = 0 and ϕ1 = 180◦ both v0 and v1
are obtained which are equal to Eqs. (9.2) and (9.3), respectively. Correspondingly
Eqs. (9.5) and (9.6) will also be obtained.

As mentioned at the beginning of this section, three single measurements at a
fixed point in the flow would be necessary to determine the velocity shift, if the
positioning of the LDA head at ϕ1 = 180◦ is ineffectual. This can be achieved for
instance by positioning the measurement volume on the x-axis (y = 0, z = 0) and the
LDA optics to three azimuth angles ϕ = 0, ϕ1and ϕ2. The following relationships
between velocity components from measurements and in the actual flow field can
be obtained from Eq. (9.24):

ν0 = ux sin τ + uy cos τ (9.25)

ν1 = ux sin τ + uy cosϕ1 cos τ − uz sinϕ1 cos τ (9.26)

ν2 = ux sin τ + uy cosϕ2 cos τ − uz sinϕ2 cos τ (9.27)

These three velocity components represent those which are measured by LDA
method at a fixed point in the flow from three different azimuth directions. They
will be used to determine the LDA alignment error and the associated velocity shift,
in order to finally accurately determine the velocity component uy.

By eliminating uz cos τ in Eqs. (9.26) and (9.27) one obtains

ν1 sinϕ2 − ν2 sinϕ1 = ux sin τ (sinϕ2 − sinϕ1) + uy cos τ sin(ϕ2 − ϕ1) (9.28)

The term uy cos τ in this equation will be replaced by that from Eq. (9.25). The
velocity shift is finally resolved as

νsh = ux sin τ = (ν1 sinϕ2 − ν2 sinϕ1) − ν0 sin(ϕ2 − ϕ1)

(sinϕ2 − sinϕ1) − sin(ϕ2 − ϕ1)
(9.29)

The actual velocity component uy then results from Eq. (9.25) with cos τ ≈ 1

uy = ν0 − sin τ · ux = ν0 − νsh (9.30)

Eq. (9.29) represents the extended DMM in determining the velocity shift by three
single measurements. As long as the velocity shift is obtained through this way, it
can be applied to Eq. (9.30) to determine the velocity component uy, which is simply
the same as that in Eq. (9.6) and represents the velocity component in the secondary
flow. The prerequisite of the applicability of the method is to maintain the bias angle
τ as the constant systematic error in the measurement system. This can be ensured
for instance by an appropriate mechanical system like that is shown in Fig. 9.3a.
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For recognising the LDA arrangement error and the associated velocity shift in
such an application, it is recommended that one locates the LDA measurement vol-
ume on the x-axis. This enables the LDA users to merely rotate the LDA support
system, without having to realign the measurement volume.

The reliability of Eq. (9.29) could be successively verified by making use of the
measurement results which have been shown in Fig. 9.2c. As shown, the flow on
the jet axis was measured eight times. According to Eq. (9.29) any combination of
three initial measurements is sufficient for calculating the velocity shift as a sys-
tematic error. Corresponding calculations (altogether 56 combinations) showed the
satisfactory consistency of the velocity shift with a maximum uncertainty of about
14% around νsh = 0.4 m/s.

In addition, Eq. (9.29) also points out that for the purpose of determining the
velocity shift only measurements of the v-component are required. In other words,
the one-component LDA instrument can be applied.

Finally, the velocity component uz at the measuring point can also be derived.
From Eq. (9.26) for instance this velocity component is calculated as

uz = ux sin τ + uy cosϕ1 cos τ − ν1

sinϕ1 cos τ
(9.31)

With respect to νsh = ux sin τ and uy from Eq. (9.30) as well as τ << 1 leading to
cos τ ≈ 1, the above equation becomes

uz = (ν0 − νsh) cosϕ1 − (ν1 − νsh)

sinϕ1
(9.32)

Correspondingly this velocity component can also be calculated from Eq. (9.27) as

uz = (ν0 − νsh) cosϕ2 − (ν2 − νsh)

sinϕ2
(9.33)

Combining Eq. (9.32) and (9.33) to eliminate v0 yields

uz = (ν1 − νsh) cosϕ2 − (ν2 − νsh) cosϕ1

sin(ϕ2 − ϕ1)
(9.34)

These last three equations are fully equivalent.

9.4.2 Method of Using Coordinate Transformation

In Sect. 9.2, DMM was applied to the case at which the LDA coordinate system
is rotated against the flow system by the angle α + τ (see Fig. 9.5) inclusive the
unknown alignment error τ . Based on the “mirrored view” of two velocities and the
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direct comparison between them, the velocity shift as a systematic error can be iden-
tified. Restriction of the “mirrored view” may be encountered if the positioning of
the LDA head at ϕ = 180◦ is impossible. Like in the case treated in the last section,
three measurements at a single point in the flow are required in order to determine
the velocity shift that is resulted from the alignment error. Clearly, the LDA head
with rotation by an angle α + τ (Fig. 9.5a) has to be positioned at ϕ = 0, ϕ1and
ϕ2, successively. To establish the relationship between velocity components in LDA
and flow field systems, Eq. (9.24) that is available for α = 0 can be made of use.
Because the angle α always appears in the form α + τ , Eq. (9.24) is directly taken
over for the present use by substituting the bias angle τ through α + τ . In accor-
dance with Eqs. (9.25) to (9.27) the following relationships between measurements
and the actual flow are obtained:

ν0 = ux sin(α + τ ) + uy cos(α + τ ) (9.35)

ν1 = ux sin(α + τ ) + uy cosϕ1 cos(α + τ ) − uz sinϕ1 cos(α + τ ) (9.36)

ν2 = ux sin(α + τ ) + uy cosϕ2 cos(α + τ ) − uz sinϕ2 cos(α + τ ) (9.37)

They are velocity components which are measured by LDA method at a fixed
point in the flow from three different azimuth directions.

Equations (9.36) and (9.37) are combined to eliminate uz cos(α+τ ). This results
in, similar to Eq. (9.28)

ν1 sinϕ2 − ν2 sinϕ1 = ux sin(α + τ )(sinϕ2 − sinϕ1) + uy cos(α + τ ) sin(ϕ2 − ϕ1)
(9.38)

The term uy cos(α + τ ) in this equation will be replaced by that from Eq. (9.35),
leading to

ux sin(α + τ ) = ν1 sinϕ2 − ν2 sinϕ1 − ν0 sin(ϕ2 − ϕ1)

sinϕ2 − sinϕ1 − sin(ϕ2 − ϕ1)
(9.39)

With respect to τ << 1 and thus sin(α + τ ) ≈ sinα + τ cosα the velocity shift is
finally resolved as

νsh = uxτ = 1

cosα
· (ν1 sinϕ2 − ν2 sinϕ1) − ν0 sin(ϕ2 − ϕ1)

(sinϕ2 − sinϕ1) − sin(ϕ2 − ϕ1)
− ux tanα (9.40)

For α = 0 this equation is simplified to Eq. (9.29). Further for the positioning of the
LDA head at ϕ1 = 180◦ the above equation becomes the same as Eq. (9.5) which
represents the basic form of DMM.

After the velocity shift has been determined through Eq. (9.40), the velocity com-
ponent uy can then be determined from Eq. (9.35). With respect to τ << 1 and thus
sin(α + τ ) ≈ sinα + τ cosα and cos(α + τ ) ≈ cosα one obtains
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uy = 1

cosα
(ν0 − ux sinα) − νsh (9.41)

For α = 0 this equation is simplified to Eq. (9.30).
Because the velocity component ux appears in both Eqs. (9.40) and (9.41), the

two-component LDA system is required for the current case with α �= 0.



Chapter 10
Symmetrical Method of 3D-Velocity
Measurements

Most LDA measurement systems are two-component systems. In the case where
all three velocity components need to be measured, then two separate mea-
surements must be carried out with the necessary realignment of LDA optics
between the measurement series. Such measurements with the optical realignment
always lead to more expenses and are also time-consuming. They are espe-
cially not applicable when the flow measurements should be completed within
a short time as demanded by special flow processes. Basically, it seems to be
unreliable to directly measure all three velocity components by using a two-
component LDA system without realignment. There are cases, however, in which
the symmetrical flow distribution can be utilized to cleverly succeed such a flow
measurement. It actually deals with a method of simply carrying out the two-
component measurements and afterwards making an appropriate evaluation of
measurement data.

The simplest case is obviously the axial symmetrical flow like the swirling flow
out of a burner for instance. According to Fig. 10.1 measurements of all three veloc-
ity components by using a two-component LDA optics can be accomplished by
positioning the LDA head firstly along the z-axis for measurements of both the axial
and radial velocity components and then along the y-axis for the tangential velocity
component. The entire measurements have been thus completed without the opti-
cal realignment. As a special case for direct measurements of all three velocity
components in this example there is no need to reprocess measurement data.

In reality, such a possibility exists in any type of symmetrical flows that can be
encountered in lots of practical applications. Figure 10.2 shows a practical water
atomization process flow, at which the flow in the atomization region is clearly
three-dimensional, however, symmetrical about the x − z plane. In this example
(Zhang et al. 1998, Zhang and Eisele 1999, Zhang and Ziada 2000), it dealt with the
measurements of water droplet distribution in the atomization region by means of
the Phase Doppler Anemometry (PDA) which is an extension of the LDA method.
For quantitative evaluation of the related atomization process the local mass flux of
droplets is an extraordinarily important quantity. Its measurements, however, pre-
sumes the measurements of all three velocity components at each point in the flow.
The method of using two-component LDA system to measure all three velocity

113Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_10, C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 10.2 Symmetrical atomization flow and the method for measurements of all three velocity
components

components without rearranging the LDA optics was applied there. The main thing
to do in this special application is the arrangement of measurements and the mea-
surement data processing. This appears somewhat more complex than in the case
that has been shown in Fig. 10.1.

In order to represent the universal applicability of this measurement method, the
measurement example shown in Fig. 10.2 will be considered. For other cases and
at other optical arrangements the LDA users have to probably find out respective
relations for post-processing the measurement data.

According to Fig. 10.2 the flow is symmetrical about the x − z plane. The two-
component LDA head is aligned so that the optical axis is inclined by an angle τ
in the y − z plane. The two laser beam pairs are arranged to measure the velocity
component u which is parallel to the x-axis and the component ν which lies in
the plane parallel to the y − z plane. Two coordinate systems have been shown in
Fig. 10.2: In the LDA-coordinate system, the velocity components are represented
by u, ν and w; And in the flow coordinate system, they are symbolized by ux, uy and
uz. Obviously there is ux = u. In the flow coordinate system, there are additionally
ux (+y) = ux (−y), uy (+y) = −uy (−y) and uz (+y) = uz (−y) because of the
symmetry of the flow distribution about the x − z plane.

The measurements are arranged by positioning the measurement volume
sequentially and symmetrically in flow areas with positive and negative y-values
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(Fig. 10.2b). This can be easily achieved by means of a traversing system on which
the LDA head is mounted.

While the velocity component ux in the flow coordinate system is directly mea-
sured because of ux = u, the other two components uy and uz should be resolved
from the measurements of velocity component ν alone. In general, the velocity com-
ponent ν in the LDA coordinate system can be expressed by velocity components in
the flow coordinate system. Depending on whether this ν-component is measured in
the positive (+) or negative (−) region of y, the velocity transformation is given by

ν+ = uy (+y) · cos τ + uz sin τ (10.1)

and

ν− = uy (−y) · cos τ + uz sin τ (10.2)

respectively.
With regard to the symmetry condition uy (+y) = −uy (−y) = uy these are two

equations from which both the velocity component uy and the component uz can be
resolved. By subtracting Eq. (10.2) from Eq. (10.1) as well as adding Eq. (10.1) to
Eq. (10.2) one obtains

uy = ν+ − ν−
2 cos τ

(10.3)

uz = ν+ + ν−
2 sin τ

(10.4)

Together with ux = u, these equations fully describe the three-dimensional flow
state at the measurement point in the flow region y > 0. It refers to the flow region
y > 0 because of the specification uy = uy (+y). The velocity component ν− in
above equations refers to the conjugate measurement point in the flow region y < 0.
As a result of the symmetry of the flow distribution about the x − z plane, corre-
sponding three-dimensional flow states in the flow region y < 0 can be obtained
immediately.

In the LDA coordinate system according to Fig. 10.2b, the third velocity
component can be calculated by (for y > 0)

w = uz · cos τ − uy · sin τ = ν+ + ν−
2 tan τ

− ν+ − ν−
2

tan τ (10.5)

It is indeed the on-axis velocity component. The restriction of the method is that the
inclination angle of the LDA head could not be set at τ = 0 or τ = 90◦. The ideal
inclination angle is obviously around τ = 45◦ (Fig. 10.2c). At τ = 45◦ it yields from
Eq. (10.5)

w = ν− (10.6)
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It signifies that the velocity component ν which is measured in the flow region y < 0
is equal to the velocity component w i.e. the on-axis component in the flow region
y > 0. This results by all means because of the symmetry of the flow field and the
LDA inclination at τ = 45◦.

The method outlined above demonstrates that at least in the presented LDA
alignment, measurements of all three velocity components are very well possible.
Obviously data processing and calculation algorithms depend on used coordinate
systems for both LDA optics and the flow. The calculation will be complex when
for instance the u component in LDA-system does not coincide with the ux compo-
nent in the flow system. The calculation made above is obviously the simplest one.
For other cases dealing with measurements of symmetrical flows, LDA users have
to make their own calculations according to their LDA configurations.



Chapter 11
Non-stationary Turbulent Flows

11.1 Non-stationary Turbulent Flows in the Practice

Non-stationary turbulent flows are often encountered while starting or stopping a
flow process. There are also designed non-stationary flow processes like the peri-
odic flows in a reciprocating engine (also known as the piston engine) and the
pulsatile flow through an prosthetic heart valve (Hirt et al.1994). Even in a station-
ary flow system, the local flow unsteadiness could occur. This can be encountered
for instance in the alternating vortex flow from the trailing edge of a wing or in the
flow at the exit of the impeller of a centrifugal pump (Fig. 11.1). The non-stationary
flows are thus expressed either as the time- or phase-dependent flows. As in most
cases, the non-stationary flows are usually also turbulent flows. Hence they are usu-
ally considered to be composed of the built-in i.e. enforced flow instability and the
flow instability because of the flow turbulence. Mostly, as in the case of starting
and stopping a flow process and even in the flow with local instabilities (Fig. 11.1),
the flow turbulence can be considered as the small-scale flow fluctuations against
the enforced flow state changes. The latter and their dependence on the time have
been usually of much interest while evaluating a non-stationary flow process. For
a general non-stationary turbulent flow, as presented in Fig. 11.2 for instance, the
flow at a local point in the flow field can be expressed by the corresponding velocity
component:

u(t) = û(t) + u′(t) (11.1)

The enforced non-stationary flow velocity û(t) is thus superimposed by the ran-
dom flow fluctuation that is quantified by deviations of velocities from the enforced
velocity profile. From measurements by means of LDA method that enables the
rapid change of velocities in the non-stationary flow to be highly resolved and pro-
vides a time series of flow velocities, the enforced non-stationary flow û(t) can
be well reconstructed i.e. regressed by the method of least squares fitting. This
method has been widely applied in data analyses commonly based on experimental
measurements.

117Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_11, C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 11.1 Non-stationary flow at the exit of the impeller of a centrifugal pump, measured by LDA
and rearranged to be the function of the angular position of the impeller
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Fig. 11.2 Non-stationary
turbulent flow and the method
of data processing

Measurement data that do not lie on the fitted curve correspond to velocity fluc-
tuations u′(t) and can be considered, because of randomness, as resulted from the
flow turbulence. In dealing with non-stationary flows, it is of most interest how the
flow turbulence can be statistically evaluated. With regard to the time-dependent
behavior of flow fluctuations, it is to distinguish between two fluctuation forms:

– nearly constant intensity of velocity fluctuations and
– variable intensity of velocity fluctuations in the function of time.

The first form of velocity fluctuations is characterized by the fact that the band-
width of the flow fluctuation around the regressed curve is approximately constant.
This can be confirmed for instance at Fig. 11.2 by considering the flow in the time
period from 2 to 4 s. A unique value representing this bandwidth is representative
for this form of flow turbulence. As the unique value the so-called standard devia-
tion σ of the mean velocity (Chap. 2) has often been used. The second form of the
turbulence distribution can be confirmed at Fig. 11.2 for instance by considering the
flow in the time period from 0 to 2 s. A unique value representing the statistics of
flow turbulence, however, does not exist in this case. Neither the turbulent normal
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nor the shear stresses can be clearly represented by use of respective mean values.
On the other hand, it is usually not clear what does the flow turbulence in such
non-stationary flows actually mean for the related flow process (could be thermal
or chemical for instance). Without knowing this, any complicated data processing
would generally be of less value and could not be made of use. It is therefore always
necessary to carry out the preliminary study and to carefully clarify the significance
of respective turbulence quantities. In the case of dealing with turbulence models in
computational fluid dynamics (CFD), for instance, the turbulent kinetic energy and
hence the complete Reynolds turbulent stresses are known as the most important
turbulence quantities. In the example shown in Fig. 11.2 with non-constant turbu-
lence intensities, one can basically calculate the bandwidth of standard deviations
of velocities in the function of time. The calculation indeed merely provides the
precondition for further evaluations of measurement data with regard to the related
physical and engineering flow processes.

The non-stationary flows encountered in the engineering practices can be divided
into two categories. The first category is related to the start or stop of the flow
process, so that the flow state is purely a function of the time. The second category
of non-stationary flows is related to the enforced periodic flow that can be rearranged
in function of the phase angle, like that as already shown in Fig. 11.1, for example.

11.2 Time-Resolved Non-stationary Turbulent Flows

11.2.1 Method of Linear Least Squares Fitting

In accounting for a non-stationary turbulent flow, it is in the first place interesting to
know the time dependence of the enforced flow part. Based on LDA measurements,
such a time-dependent flow can be well reconstructed by the curve fitting methods.
Amongst lots of available mathematical functions used to approach the measure-
ment data, the method of linear least squares fitting behaves as the basic form. As
long as the linear trend of flow velocities measured in the interested time range is
evident (e.g. at Fig. 11.2 in the time range from 0 to 2 s), the method can be applied
to approximate the non-stationary turbulent flow. The linear regression function of
the enforced flow is expressed as

û(t) = at + b (11.2)

Eq. (11.1) then becomes

u(t) = (at + b) + u′(t) (11.3)

In order to perform the linear least squares fitting of measurement data, the sample
means of both the time as the independent variable and the velocity as the dependent
variable will be firstly calculated as
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t̄ = 1

N

N
∑

i=1

ti, ū = 1

N

N
∑

i=1

ui (11.4)

Other quantities that are required are

stt = 1

N

N
∑

i=1

(

ti − t̄
)2 , suu = 1

N

N
∑

i=1

(

ui − ū
)2 , sut = 1

N

N
∑

i=1

(

ui − ū
) (

ti − t̄
)

(11.5)
In all these calculations, no weighting factor has been used. The calculations hence
suffer from certain inaccuracies which for instance are arising from the effect of
velocity bias (Chap. 17). In particular, there is strictly t̄ �= (t1 + tN)/2 because of
velocity bias or other reasons and consecutively of non-constant data sampling rate
during LDA measurements. For simplicity and also because of its negligible effect,
the velocity bias is not considered here.

In LDA measurements, the time that is related to each velocity event is the inde-
pendent variable and should be considered as accurate. The method of least squares
fitting is formulated as

N
∑

i=1

(ui − ûi)
2 → min (11.6)

In performing such a calculation with respect to û as defined in Eq. (11.2), both
constants a and b are determined as

a = sut

stt
, b = ū − at̄ (11.7)

The enforced non-stationary flow has been thus calculated based on the linear least
squares fitting in the period tN − t1 containing N velocity events. The pure mathe-
matical calculation additionally provides the knowledge about the degree of linearity
between dependent and independent variables, given by the correlation coefficient

R = sut√
suustt

(11.8)

The special case of R = 1 is obtained in that all measurement data lie on the fitted
curve û(t) = at + b. This implies the negligible random fluctuations of flow veloc-
ities. As will be shown in the next section, the correlation coefficient that is always
less than unity actually involves the information about the mean flow turbulence in
the time period tN − t1.

Because the velocity gradient that is given by a may be positive and negative, the
correlation coefficient R in Eq. (11.8) may be so. In some applications like those of
using a spreadsheet, the correlation coefficient is simply given in the form R2.
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11.2.2 Linear Trend of the Velocity and the Calculation Method

The random velocity fluctuation in the non-stationary flow is denoted by u′(t) for
the given velocity component. The associated kinetic energy is represented by the
turbulent normal stress or equivalently by the variance u′2 as a statistical parameter.
In considering the measurement within the time period tN − t1, it is then calculated
according to Eq. (11.3) and with respect to b = ū − at̄ as

u′2 = 1

N

N
∑

i=1

[(

ui − ū
)− a

(

ti − t̄
)]2 (11.9)

The calculation is given here simply as the arithmetic mean. Because of the use of
b = ū − at̄ it is actually only applicable to the flow process with linear trend of
velocity in the time period tN − t1.

Eq. (11.9) is then further written as

u′2 = 1

N

N
∑

i=1

(

ui − ū
)2 − 2a

N

N
∑

i=1

(

ui − ū
) (

t − t̄
)+ a2

N

N
∑

i=1

(

ti − t̄
)2 (11.10)

and because of Eq. (11.5) also as

u′2 = suu − 2asut + a2stt (11.11)

For the second term on the r.h.s. of this equation there is asut = a2stt because of
Eq. (11.7). Equation (11.11) then becomes

u′2 = suu − a2stt (11.12)

The regular data distribution i.e. the regular distribution of velocity events in the
period tN − t1 will be assumed. This simply means t̄ ≈ (tN + t1)/2. Then stt can be
further calculated by converting the summation into the integral calculation as

stt = 1

N

N
∑

i=1

(

ti − t̄
)2 = 1

tN − t1

tN∫

t1

(

t − t̄
)2 dt =

(

tN − t̄
)3 − (t1 − t̄

)3

3(tN − t1)
(11.13)

Because of t̄ ≈ (tN + t1)/2 there is

stt = 1

12
(tN − t1)2 (11.14)

and from Eq. (11.7)

sut = astt = a

12
(tN − t1)2 (11.15)
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Eq. (11.12) is then rewritten as

u′2 = suu − a2 1

12
(tN − t1)2 (11.16)

with suu as given in Eq. (11.5).
Furthermore, because of �û = ûN − û1 = a(tN − t1) from Eq. (11.2) the above

equation is also written as

u′2 = 1

N

N
∑

i=1

(ui − ū)2 − 1

12
(ûN − û1)2 (11.17)

The second term on the r.h.s. of this equation behaves as the correction term to
the first term in calculating the turbulent normal stress in a non-stationary turbulent
flow. Also to be mentioned is that the relationship given in Eq. (11.17) is obtained
based on the assumption of linear trend of velocity in the time period tN − t1.

Following the similar calculations based on linear least squares fitting, the covari-
ance of two orthogonal velocity components (u and v), that represents the turbulent
shear stress, can be calculated as

u′v′ = suv − auav

12
(tN − t1)2 (11.18)

Herein suv is calculated by the corresponding arithmetic mean as given by

suv = 1

N

N
∑

i=1

(ui − ū)(vi − v̄) (11.19)

The second term on the r.h.s. of Eq. (11.18) is again the correction term. Both the
constant au and av are equivalent to the constant a in Eq. (11.2). They are related to
the velocity components u and v, respectively, and are calculated as

au = sut

stt
and av = svt

stt
(11.20)

Because of relationships ûN − û1 = au(tN − t1) and v̂N − v̂1 = av(tN − t1) Eq. (11.18)
can then be written as

u′v′ = suv − 1

12
(ûN − û1)(v̂N − v̂1) (11.21)

In the last section, the correlation coefficient has been calculated and given in
Eq. (11.8). Usually this correlation coefficient is directly accessible while carry-
ing out the linear least squares fitting, for instance by applying a graphical tool with
spreadsheet functions. As a matter of fact, the obtained correlation coefficient also
contains information about the variance u′2 within the time interval tN − t1 and
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therefore can be applied to determine the turbulent normal stress. With respect to
stt from Eq. (11.14) and suu from Eq. (11.16) as well as sut = astt from Eq. (11.7),
Eq. (11.8) is expressed as

R2 = s2
ut

suustt
= a2

12
· (tN − t1)2

u′2 + a2

12 (tN − t1)2
(11.22)

The variance is then resolved as

u′2 = a2

12

(
1

R2
− 1

)

(tN − t1)2 (11.23)

Because for linear data fitting there is ûN − û1 = a(tN − t1) Eq. (11.23) is also
written as

u′2 = 1

12

(
1

R2
− 1

)

(ûN − û1)2 (11.24)

These last two equations can be applied to estimate the variance of each inter-
ested velocity component directly from the correlation coefficient R which is
obtained from linear data fitting. Obviously the correlation coefficient R represents
its mechanical significance always in the form R2. Also to be mentioned is that it
cannot be concluded from Eq. (11.23) that for a = 0 there would be u ′ 2 = 0. This
is because for a = 0 there is also sut = 0 and further R = 0.

Similarly the covariance of two orthogonal velocity components which are mea-
sured in the same time series can be obtained immediately when Eq. (8.16) is
concerned:

u′v′ = 1

24
tan 2ϕ

[(
1

R2
u

− 1

)

(ûN − û1)2 −
(

1

R2
v

− 1

)

(v̂N − v̂1)2
]

(11.25)

This equation is actually only applicable, if the enforced flow direction i.e. the flow
angle ϕ in the plane of velocity components u and v remains constant despite of the
flow instability. Otherwise the above equation is not valid.

Calculations given above based on the method of linear least squares fitting. In
many other cases dealing with non-stationary flows, the enforced non-stationary
flow can be, however, better approximated by other mathematical functions.
Calculations presented in this section are then not applicable.

11.2.3 Time-Dependent Flow Turbulences

In the last section, the linear regression method in data processing has been pre-
sented. The method is applicable to each interested non-stationary flow in that in
the time interval tN − t1, it can be approximated by the linear velocity distribution.
Within this time interval, each turbulence quantity can be represented by its average,
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like the turbulent normal stress by Eq. (11.9). This treatment has commonly found
its wide practical applications.

In association with the determination of turbulence quantities in non-stationary
turbulent flows there are generally two cases that limit the application of the
presented method:

– The non-stationary flow could not be reconstructed through the linear or
other approximations of measurement data within the interested time interval
(Fig. 11.2).

– The turbulence is highly time-dependent and appreciably changes along the
regressed curve in function of the time (Fig. 11.2 in the time interval 0–2 s).
The flow turbulence in this case should be resolved in time and not be simply
approximated by an average.

For both cases dealing with time-dependent turbulence quantities, an appropri-
ate data processing method has to be worked out. Usually the data processing of
non-stationary turbulent flows requires the classification of measurement data in the
time series with predefined time steps which are also called time-averaging win-
dows (Fig. 11.3). Inside each small sized time window, the flow could be roughly
considered to be quasi-stationary. This treatment, however, is only valid if no appre-
ciable change in the flow state within the time window is confirmed. This condition
can be generally ensured by setting the time window �t to be sufficiently small.
Otherwise the variable flow within the time window has to be concerned. Because it
deals now with a small sized window, the variable flow within it can be well approx-
imated by the linear velocity distribution. In any case, either of quasi-steady or of
variable flow state in each time window �t, one has to make sure that sufficient
measurement data are included for reliable statistical calculations of interested flow
parameters.
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The mean velocity inside the time window �t in which n velocity events are
included is obtained by the sample mean as

ū = 1

n

n
∑

i=1

ui (11.26)

As a matter of fact, this mean velocity is approximately equal to the middle value
of û in the time window �t. It is thus independent of the slope of linear velocity
distributions and further almost non-sensitive to the window size �t. In contrast,
the determination of turbulence quantities in the respective time window strongly
depends on both the flow distribution in it and the window size itself. For simplicity,
the general case of linear velocity distribution with regular velocity fluctuations in
the time window �t is considered. Calculations executed in Sect. 11.2.2 using the
linear least squares fitting method in the time interval tN − t1 can then be directly
applied to the present case with small sized time window �t = tn − t1. From
Eqs. (11.16) and (11.18) one obtains by substituting �t = tn − t1 immediately
the Reynolds normal and shear stresses being averaged in the time window

u′2 = 1

n

n
∑

i=1

(ui − ū)2 − a2
u

12
(�t)2 (11.27)

u′v′ = 1

n

n
∑

i=1

(ui − ū)(vi − v̄) − auav

12
(�t)2 (11.28)

The temporal gradients of velocities inside the time window are denoted by au and
av, respectively for velocity components u and v. In both equations, the second terms
on the r.h.s. behave as the correction terms. Obviously the actual Reynolds stresses
within the time window �t are not simply equal to those from respective arithmetic
average in the summation form of using (ui − ū) and (vi − v̄) in above equations.
Both first terms on the r.h.s. of equations given above are therefore called pseudo or
apparent turbulent stresses. The apparent turbulent normal stress plainly implies the
overestimation of flow turbulence. Hence turbulent stresses from arithmetic average
should generally be corrected by respective terms like a2

u/12 · �t2 for the normal
stress. It is, however, evident that for sufficiently small window all correction terms
disappear. On the other hand, the time window of small size usually also implies
few or insufficient data that are included in each time window for reliable statistical
calculations. For this reason, the time window should be sufficiently large so that the
real turbulence quantities can be accurately determined by accounting for respective
correction terms in above equations. For stationary turbulent flow there is au = 0
and av = 0.

It should be mentioned that the necessity of accounting for the respective correc-
tion terms in Eqs. (11.27) and (11.28) depends on the requirement of calculation
accuracies and therefore on the engineering application purposes of respective
turbulence quantities. With regard to Eq. (11.28) for instance, it is possible that
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the apparent shear stress (the first term on the r.h.s. of the equation) in the used
coordinate system is equal or close to zero and hence the correction term dominates.
The correction term, however, can still be neglected if it is sufficiently small against
the normal stress in Eq. (11.27). This is grounded in that the relevant turbulence
behavior in a turbulent flow is the directional dependence of respective turbulence
quantities rather than that in a given spatial direction, see Figs. 8.3 and 8.4. In other
words, the directional dependence of the turbulent stresses is mainly determined by
the turbulent normal stresses.

11.3 Phase-Resolved Non-stationary Turbulent Flows

The most often encountered non-stationary flows in the engineering applications
are periodic flows. As an example of this type of non-stationary flows the fluctu-
ation velocity at the impeller exit of a centrifugal pump has been already shown
in Fig. 11.1. The velocity data used in the diagram were achieved by LDA mea-
surements and rearranged to be phase-resolved i.e. in the function of the angular

(a)

(b)

5

6

7

8

9

10

0 6 12 18 24 30 36 42 48 54

0

2

4

6

8

10

0 6 12 18 24 30 36 42 48 54

rms 

window method (3 deg) 

3rd polynomial

)s/
m(

u
u 

(m
/s

)
rm

s

Angular position of the impeller (deg) 

3rd  polynomial 

Fig. 11.4 Method of data processing by means of the small-sized phase averaging window (3◦)
without overlap, (a) Rearrangement of data from Fig. 11.1 to a sub-period of 51.4◦ (360/7), (b)
Curve fitting and window method



11.3 Phase-Resolved Non-stationary Turbulent Flows 127

position of the impeller. Obviously the enforced periodic flow is superimposed by
the random flow fluctuations. The main objective of evaluating and processing such
measurement data is to resolve both the periodicity of the flow and the turbulent
flow fluctuations. In the example shown in Fig. 11.1, the flow repeated seven times
in each pump rotation, corresponding to the flows in seven channels of the pump
impeller. Because flows in all seven channels are primitively identical, the mea-
surement data could also be rearranged to a sub-period which is specified by the
phase angle range from 0 to 51.4◦ see Fig. 11.4a. The data rearrangement in this
way greatly contributes to the simplification of further data processing. In order to
resolve the phase-dependent mean velocity, usually appropriate data regression that
is not necessarily linear can be calculated. In the example shown in Fig. 11.4a, an
approach with a polynomial of 3rd order has been applied.

In principle, any deviation of velocities from the fitted velocity distribution
should be considered to be from the random flow fluctuations. However, this devi-
ation may actually also come from errors in the flow repeatability from circle to
circle and thus is not of the randomness of velocity fluctuations as a result of the
flow turbulence. The outcome of this situation, however, should only be considered
at flows with low turbulence intensities, when the errors in the flow repeatability
could not be simply accepted as the turbulent flow fluctuations.

On the side of measurement techniques, each periodic flow like that in the rotat-
ing machinery has to be resolved by the phase angle. This can be easily achieved
by applying a rotary encoder that is mounted on the rotor shaft for instance and
connected to the data acquisition unit.

11.3.1 Method of Linear Least Squares Fitting

As stated before with respect to Fig. 11.4a, the enforced velocity distribution of a
non-stationary turbulent flow within an entire period can be well approximated by
the regression of measurement data in accordance with an appropriate polynomial
of at least second order. In order to utilize the advantages of linear least squares
fitting to evaluate the phase-dependent flow turbulence, the periodic flow of interest
can be approached by dividing a period into partial lengths and subsequently by
assuming the linear distribution of velocities in form û (ϕ) = aϕ + b in each of
them. This approach is comparable with that described in Sect. 11.2.1 and applied in
Sect. 11.2.2. For the purpose of direct application, similar calculations are presented
here, as shown below.

In assuming the linear distribution of the enforced flow in the partial length ϕN −
ϕ1, the velocity component u for instance with fluctuations can be expressed as

u (ϕ) = (aϕ + b)+ u′ (ϕ) (11.29)

Like that shown in Sect. 11.2.1 both constant a and b are calculated respectively by

a = suϕ

sϕϕ

and b = ū − aϕ (11.30)
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In the second equation, ū and ϕ are sample means of N velocity events that are
involved in the considered phase interval i.e. partial length ϕN−ϕ1 and calculated by

ū = 1

N

N
∑

i=1

ui and ϕ = 1

N

N
∑

i=1

ϕi (11.31)

Other available arithmetic means are

sϕϕ = 1

N

N
∑

i=1

(ϕi − ϕ)2, suu = 1

N

N
∑

i=1

(ui − ū)2, suϕ = 1

N

N
∑

i=1

(ui − ū) (ϕi − ϕ)

(11.32)
While performing the data regression, the correlation coefficient that represents the
degree of linearity between dependent and independent variables is given as

R = suϕ√
suusϕϕ

(11.33)

It specifies a statistical quantity that most computational tools like the spreadsheet
can provide with, usually in the form R2. It also represents a quantity that involves
the information about the averaged flow turbulence within the phase interval ϕN−ϕ1,
see Sect. 11.3.2 below.

All the above equations can be further simplified when regular data distribution
within the phase interval ϕN − ϕ1 is assumed. The assumption simply implies the
approximation ϕ ≈ (ϕN + ϕ1)/2. Following the similar calculations as those in
Sect. 11.2.2, one obtains

sϕϕ = 1

12
(ϕN − ϕ1)

2 (11.34)

suu = u′2 + a2

12
(ϕN − ϕ1)

2 (11.35)

suϕ = asϕϕ = a

12
(ϕN − ϕ1)

2 (11.36)

In all these calculations, accurate angle measurements (ϕ) have been assumed. Also
to be mentioned is that Eq. (11.35) actually represents the determination equation
of the turbulent normal stress u′2.

11.3.2 Linear Trend of the Velocity and the Calculation Method

In order to calculate respective turbulence quantities in the interested phase inter-
val ϕN − ϕ1, the random flow fluctuation u′(ϕ) should be basically resolved from
Eq. (11.29). In likeness to Sect. 11.2.2 or directly from Eq. (11.35), the turbulent
normal stress in the phase interval ϕN − ϕ1 is calculated as
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u′2 = 1

N

N
∑

i=1

(ui − ū)2 − a2

12
(ϕN − ϕ1)

2 (11.37)

And because of ûN − û1 = a (ϕN − ϕ1) it is also written as

u′2 = 1

N

N
∑

i=1

(

ui − ū
)2 − 1

12

(

ûN − û1
)2 (11.38)

Herein û1 and ûN represent the linearized velocities at ϕ = ϕ1 and ϕ = ϕN,
respectively.

Correspondingly the turbulent shear stress that is given by the covariance of two
orthogonal velocity components is calculated as

u′v′ = suv − auav

12
(ϕN − ϕ1)

2 (11.39)

with

suv = 1

N

N
∑

i=1

(ui − ū) (vi − v̄) (11.40)

Both au and av are constants that are obtained from calculating linear least squares
fitting for velocity components u and v, respectively, see Eq. (11.30).

In an analogy to Sect. 11.2.2, the correlation coefficient that is calculated by
Eq. (11.33) can be utilized to directly calculate the variance i.e. the turbulent nor-
mal stress. From Eqs. (11.23) and (11.24) regarding the velocity component u one
obtains immediately

u′2 = a2

12

(
1

R2
− 1

)

(ϕN − ϕ1)
2 (11.41)

u′2 = 1

12

(
1

R2
− 1

)
(

ûN − û1
)2 (11.42)

It should be mentioned again that in all above calculations the repeatability errors
of mean velocity distribution from circle to circle in the periodic flow have been
neglected. In addition, all calculations assumed the regular data distribution within
the phase interval ϕN − ϕ1, leading to the use of ϕ̄ ≈ (ϕN + ϕ1)/2. This condition
could be more or less distorted when the measurement data is rearranged from the
time to the phase domain under the condition of non-linearity between the time
and the phase angle. This should only be considered when the associated effect is
significantly large.
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11.3.3 Phase-Dependent Flow Turbulences

More complex data processing is encountered when accounting for the periodic
flows with complex velocity distribution and non-regular velocity fluctuations. Not
only the mean velocities but also the turbulence quantities usually need to be
resolved in the function of the phase angle. The method of linear least squares fitting
presented in the last section appears to be not applicable, because it only applies to
the phase interval ϕN − ϕ1 with linear velocity distribution and almost consistent
flow turbulence.

As in Sect. 11.2.3 of processing measurement data in the time domain by means
of small sized time-averaging windows, periodic flows with complex velocity distri-
bution and non-regular velocity fluctuations can be treated by specifying appropriate
small sized phase-averaging windows. With sufficiently small phase angle window,
both velocities and turbulence quantities within each window can be assumed to
be constant and calculated by arithmetic average. In doing this, overlapping of the
phase angle window can be arranged in order to smooth calculation results.

An example of calculating non-stationary turbulent flows by means of the win-
dow method named above has been shown in Fig. 11.4b, relying on the rearranged
measurement data that had been shown in Fig. 11.4a. The mean velocity distribution
was calculated by specifying a window size equal to �ϕ = 3◦ without overlapping.
The extent of velocity fluctuation has been shown as the time-dependent standard
deviation in form of the root mean squares (rms).

In principle, calculations of mean velocity distributions will usually be less
affected by the predefined phase-averaging window size. However, calculation
results of the flow turbulence notably depend on the applied window size, if velocity
gradients in these windows are significantly large. This is comparable with the data
processing of time-dependent flow velocities (Sect. 11.2.3). The effect of velocity
gradients on the data processing can only be neglected, when the window size is
sufficiently small. Otherwise, the linear velocity distribution û = aϕ + b within the
phase angle window �ϕ should be assumed, so that

u (ϕ) = (aϕ + b)+ u′(ϕ) (11.43)

Calculations performed in the last section based on linear least squares fitting in
the phase interval ϕN − ϕ1 can then be directly applied to the present case of using
the small sized phase angle window �ϕ = ϕn − ϕ1, in which n velocity events
are involved. From Eqs. (11.37) and (11.39) and by substituting �ϕ = ϕn − ϕ1
one immediately obtains the respective turbulence quantities representing Reynolds
normal and shear stresses in the considered phase angle window as

u′2 = 1

n

n
∑

i=1

(ui − ū)2 − a2
u

12
�ϕ2 (11.44)

u′v′ = 1

n

n
∑

i=1

(ui − ū) (vi − v̄)− auav

12
�ϕ2 (11.45)
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They are comparable to Eqs. (11.27) and (11.28), respectively (Zhang et al. 1996,
1997). The temporal gradients of velocities inside the phase angle window are
denoted by au and av, corresponding to velocity components u and v. In both
equations, the second terms on the r.h.s. again behave as the correction terms.
Correspondingly the arithmetic averages in the summation form of using (ui − ū)
and (vi − v̄) in above equations are called pseudo or apparent turbulent stresses. It
is, however, evident that for sufficiently small window size both correction terms
become negligible. The respective arithmetic average can then be directly applied
to represent the actual turbulent stresses (u′2 and u′v′). On the other hand, the small
window size usually also implies few or insufficient data that are included in each
window for reliable statistical calculations. For this reason, each specified phase
angle window should be sufficiently large and the related turbulence quantities
should be determined by accounting for respective correction terms given in above
equations. For a quasi-stationary turbulent flow inside the phase-averaging window
there are au = 0 and av = 0.

As in Sect. 11.3.2, the repeatability errors of mean velocity distribution from
circle to circle in the periodic flow have been neglected, while carrying out the
above calculations.



Chapter 12
Turbulent Flow with Spatial Velocity Gradient

In most applications, LDA measurements are considered as measurements of
local flow velocities because of the small dimension of the measurement volume.
Typically the LDA measurement volume possesses a thickness of about 0.1 mm
and a finite length of about 0.3–3 mm, depending on the geometrical layout of LDA
optics, see Sects. 3.8 and 4.2. This geometrical property of the measurement volume
permits one to presume the uniform flow across the LDA measurement volume. On
the side of instrumentations, the LDA unit is also commonly designed without being
able to resolve the possible velocity distribution within the measurement volume.
The assumption of the uniform flow within the LDA measurement volume is avail-
able, as long as the measurement volume is positioned sufficiently far away from
the boundaries or in the flow where the spatial velocity gradient arising from eddy
motions, for instance, is statistically negligible. In all these cases, no special care
should be taken with regard to the measurement volume size. Because of the small
dimension of the measurement volume, the LDA method has been acknowledged as
being a method with high spatial resolutions in flow field measurements.

The high spatial resolution property of the LDA method can be made of use for
special flow investigations. The well-known application is the measurement of the
flow distribution in the near-wall region for instance in the turbulent boundary lay-
ers. Because of the large velocity gradient within the thin boundary layer the LDA
measurement volume should be arranged so that the LDA optical plane is fairly
parallel to the plane of the boundary layer (Fig. 12.1). By traversing the LDA head
along the normal of the wall (z-axis) the velocity profile can be well measured.
Such a measurement arrangement is generally able to resolve the velocity distribu-
tion within the near-wall region. Nevertheless, the measurement of velocity profiles
in the viscous sub-layer region of a turbulent boundary layer could still be difficult
because this viscous sub-layer has a thickness which is comparable to or even less
than the thickness of the LDA measurement volume. In the practical application
of flows with non-uniform velocity distribution and thus non-negligible influence
on the measurement accuracy, the constant velocity gradient within the thickness
of the thin measurement volume can be assumed. Naturally the arithmetic aver-
age of measurement data (velocity) has to be considered as existing at the centre
of the measurement volume. While this can be sometimes accepted, the evaluation

133Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
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of measurement data to estimate the turbulence quantities requires the special pro-
cess. This is comparable with the apparent turbulence intensity in the measurement
of non-stationary turbulent flows, which has been treated in Chap. 11. In partic-
ular, the same remains true that the turbulence intensity is always overestimated.
The associated broadening effect in turbulence measurements becomes significant,
if the non-uniform velocity distribution is along the length of the measurement vol-
ume. Corresponding descriptions of the associated phenomenon and the quantitative
specifications can be found for instance by Albrecht et al. (2003) and Durst et al.
(1998).

Although LDA method can be satisfactorily applied to flow measurements in
the near-wall region according to the optical arrangement as shown in Fig. 12.1,
this LDA arrangement in the flow with velocity gradient, however, is not always
available. This may be encountered for instance in the measurement of the flow
in a circular pipe, at which the length scale of LDA measurement volume is usu-
ally aligned perpendicular to the pipe wall. Because the velocity gradient in this
case lies along the length of the measurement volume, the apparent turbulence
intensity becomes significant. For LDA measurements that are not restricted to
the near-wall region of the turbulent boundary layer, however, the linear velocity
distribution i.e. the constant velocity gradient along and within the length of the
measurement volume can still be assumed in the first approximation. This applies
to most complex engineering flows with velocity gradients and greatly contributes
to the simplification of resolving the real from the apparent turbulence intensity.

Another phenomenon that is associated with the non-uniform velocity distribu-
tion in the measurement volume and affects the measurement accuracy is that the
velocity sampling rate is proportional to the velocity itself, when homogeneous par-
ticle distribution in the flow is assumed. This phenomenon leads to some special
features in calculating both the mean and turbulence velocities from the correspond-
ing arithmetic average of measurement data. Because it is purely related to flow
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velocities and is of the same mechanism as the flow instability in influencing the
measurements, this phenomenon is also called velocity bias, which has been well
known in measurements of non-stationary flows and the flows with high turbulence
intensity (Chap. 17). In the case of large velocity gradient being present along the
length of the measurement volume, the bias effect could be significant. It should
be mentioned that the velocity bias, against the traditional viewpoint, could indeed
not be simply categorized as being the measurement error. For details about this
statement see Sect. 12.2 and Chap. 17.

It can be concluded that in dealing with flows that exhibit the velocity gradient
within the area of LDA measurement volume, both the measurement and the related
data processing suffer from two effects:

– the effect that leads to apparent turbulence intensity and
– the effect that leads to velocity bias in all flow quantities.

Two expressions have been used here to specify the two different effects. For
LDA users it is helpful to know the quantitative outcomes of each and the com-
bined effect. For simplicity and with respect to the practical engineering flows the
linear velocity distribution in the LDA measurement volume will be supposed in the
following analyses. In the related graphical illustrations, the non-uniform velocity
distribution is assumed to be present along the length of the measurement volume
(Fig. 12.2). The results are applicable to the velocity distribution along the thickness
of the measurement volume. One needs only to make substitution for the respective
length scale. For the purpose of comprehension, the case that results in the apparent
turbulence intensity without the bias effect, will be considered first.

12.1 Apparent Turbulence Intensity and Related Quantities

The arrangement of LDA optics to the flow with velocity gradient has been
illustrated in Fig. 12.2. In the applied coordinate system, the turbulent flow to be
measured is considered as the superposition of the time-averaged linear velocity
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distribution û = u1 + a(z − z1) along the measurement volume and the random
velocity fluctuations, as given by

u(z) = u1 + a(z − z1) + u′(z) (12.1)

The randomness of velocity fluctuations also implies that each velocity event
is randomly ordered to a z-value. The linear velocity distribution is presented by
the constant velocity gradient which is denoted by a and can be expressed by a =
(u2 − u1)/(z2 − z1). In assuming the unit thickness of the measurement volume in
the direction perpendicular to the drawing plane, the volumetric mean velocity in
the area of �z = z2 − z1 is calculated as

u = 1

z2 − z1

z2∫

z1

udz = 1

2
(u1 + u2) (12.2)

It is equal to the mean velocity that is found at the centre of the measurement
volume. In this calculation, u′dz = 0 has been applied because of randomness of
velocity fluctuations and their random distribution along the measurement volume
length.

Combining the above equation with a = (u2 −u1)/(z2 −z1) to eliminate u2 yields

u1 = u − 1

2
a(z2 − z1) (12.3)

Then Eq. (12.1) can be expressed as

u(z) = u − 1

2
a(z1 + z2 − 2z) + u′(z) (12.4)

To further calculate the turbulent normal stress, the fluctuation velocity in the above
equation is resolved and then squared as

u′2 = (u − u)2 + a(u − u)(z1 + z2 − 2z) + 1

4
a2(z1 + z2 − 2z)2 (12.5)

The velocity difference u − u in the second term on the r.h.s. of above equation will
be interpreted by Eq. (12.4) in function of z, so that it yields, after a rearrangement,

u′2 = (u − u)2 − 1

4
a2(z1 + z2 − 2z)2 + a(z1 + z2 − 2z)u′ (12.6)

The averaged turbulent normal stress within the length of the LDA measurement
volume can then be obtained by entirely averaging all three terms on the r.h.s. of the
above equation. In reality, it deals with the arithmetic average of measurement data.
To be expected is that the third term vanishes because of the randomness of veloc-
ity fluctuations and their random distribution along the z-axis. The corresponding



12.1 Apparent Turbulence Intensity and Related Quantities 137

calculation of the second term can be transformed into an integral under the assump-
tion of uniform distribution of velocity events along the LDA measurement volume
(The case of non-uniform distribution of velocity events will be considered in the
next section). The averaged turbulent normal stress in the area of the measurement
volume is then calculated as

u′2 = 1

N

N
∑

i=1

(ui − u)2 − 1

4

a2

z2 − z1

z2∫

z1

(z1 + z2 − 2z)2dz (12.7)

The integral calculation can be performed easily. With �z = z2 − z1 as the
measurement volume length one obtains

u′2 = 1

N

N
∑

i=1

(ui − u)2 − 1

12
a2(�z)2 (12.8)

The first term on the r.h.s. of the above equation corresponds to the direct arithmetic
average (sample mean). Because it does not represent the actual value of the related
turbulence quantity it is called the pseudo or apparent normal stress. Using a�z =
�u, Eq. (12.8) is further written as

u′2 = u′2
app − 1

12
(�u)2 (12.9)

For the turbulent flow currently treated, the normal stress, which is calculated by the
arithmetic average and thus is of apparent nature, needs to be corrected through a
part that considers the spatial velocity difference�u = u2−u1 i.e. the linear velocity
distribution within the LDA measurement volume. The algorithm is similar to and
comparable with that in Chap. 11 considering the non-stationary turbulent flows,
see Eqs. (11.27) and (11.44). Only at flows with small spatial velocity gradient
and comparably high turbulent velocities or at LDA with short measurement vol-
umes, does the correction term become insufficient. The arithmetic average like in
Eq. (12.8) can then be used, for convenience, to represent the actual value of the
related turbulent normal stress.

Based on the same calculation procedure the turbulent shear stress is obtained in
the form of the covariance of two orthogonal velocity components as

u′v′ = 1

N

N
∑

i=1

(ui − u)(vi − v) − auav

12
�z2 (12.10)

It is comparable with Eq. (11.28) as well as Eq. (11.45).
The calculations given above have been performed with respect to the flow distri-

bution along the LDA measurement volume that has a length equal to�z = z2 − z1.
The results can also be applied to the case of the flow distribution which is confirmed
to be along the cross section of the measurement volume (Fig. 12.1). One needs only
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to replace the length scale�z in all above equations through the thickness dmv of the
LDA measurement volume. From Eq. (12.8) for instance, one obtains immediately

u′2 = u′2
app − 1

12
a2d2

mv (12.11)

Because the thickness dmv of the LDA measurement volume is usually very thin,
the respective correction terms in both the normal and the shear stresses do behave
as negligible.

It should be remembered that above calculations are based on the assumption of
uniform distribution of velocity events along the LDA measurement volume. In real-
ity, there are two factors that counteract this assumption. The first one is the velocity
bias effect which implies that the high velocities will be more frequently detected
by LDA optics than the low velocities. This effect will be considered in detail in
the next section of this chapter. The second factor is related to the cross-section
form of the LDA measurement volume. Because of the ellipsoidal form of the LDA
measurement volume and hence non-constant width in its cross-section along the
z-axis (Fig. 12.2), the assumption of uniform distribution of velocity events is not
exact. The maximum probability of velocity events is obviously expected in the cen-
tre area of the measurement volume. This circumstance also applies to the case of
LDA alignment as in Fig. 12.1, where along the thickness of LDA measurement
volume the velocity gradient is present. With respect to the elliptic detection area of
LDA measurement volume and in assuming the linear velocity distribution across
the measurement volume thickness (dmv), the averaged turbulent normal stress is
calculated, according to Albrecht et al. (2003), as

u′2 = 1

N

N
∑

i=1

(ui − u)2 − 1

16
a2d2

mv (12.12)

In comparison with Eq. (12.11), only a small difference in the correction term is
present.

At the end of this section, both the momentum and energy flow rates across the
measurement volume should be considered. The mean velocity that is calculated
in Eq. (12.2) is indeed the volumetric mean. In the practical application dealing
with the flow with non-uniform velocity distribution, the mean velocities that are
related to both the momentum and energy flow rates are all relevant flow quantities.
The momentum flow rate as a vector quantity is calculated by the product of the
velocity vector and the mass flow rate as ṁ · �u. Its x-component is given by ṁ · ux.
The corresponding component of the so-called momentum flux (momentum flow
rate per unit area) is then given by J̇x = (ρux)ux = ρu2

x. Herein ρux represents the
x-component of the mass flux. The related volumetric flux ux in the unit of m3/(m2s)
is measured by LDA. In the case of Fig. 12.2, it is ux = u. Furthermore the simplified
rectangular cross-section with unit width is assumed. The averaged momentum flux
component through the measurement volume is then calculated by
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J̇x = ρ
1

�z

z2∫

z1

u2dz (12.13)

To the term u2 in the integral, the linear velocity distribution according to Eq. (12.4)
is applied. While calculating the integral, all terms with uneven power of velocity
fluctuations (u′) disappear. One obtains

¯̇Jx

ρ
= ū2 + 1

12
a2 (z2 − z1)

2 + 1

�z

z2∫

z1

u′2dz (12.14)

On the other side the interested momentum flux can also be written as ¯̇Jx = ρūJū,
with ū as the mean of volumetric flux and ūJ as the mean velocity that is relevant for
calculating the momentum flux. Eq. (12.14) then becomes

ūJū = ū2 + 1

12
a2 (�z)2 + u′2 (12.15)

Because of a�z = ū2 − ū1 = �ū it is further written as

ūJū = ū2 + 1

12
(�ū)2 + u′2 (12.16)

As it will be shown in the next section, the mean velocity ūJ exactly corresponds to
the sample mean undergoing the effect of velocity bias.

In practical applications, the momentum flux correction factor β has been used
to represent the mean velocity ūJ through ūJ = βū. From Eq. (12.16) it follows

β = ūJ

ū
= 1 + 1

12

(�ū)2

ū2
+ u′2

ū2
(12.17)

It represents a correction factor that is greater than unity.
For completeness, the mean velocity which is relevant for representing the energy

flux is calculated by

u2
E · u = 1

�z

z2∫

z1

u3dz (12.18)

Following the similar calculations and by neglecting all terms with uneven power of
velocity fluctuations (u′) one finally obtains

u2
E = ū2 + 1

4
(�ū)2 + 3u′2 (12.19)
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Correspondingly, the kinetic energy flux correction factor is calculated as

α = u2
E

ū2
= 1 + 1

4

(�ū)2

ū2
+ 3

u′2
ū2

(12.20)

It represents a value that is greater than unity.

12.2 Combined Velocity Bias Effect

It has been indicated that the velocity bias as a flow phenomenon is ascribed as
the dependence of velocity sampling rate in LDA measurements on the velocity
magnitude. Traditionally, the velocity bias has been acknowledged as being related
to the non-stationary flows or the flows with velocity fluctuations (McLaughlin and
Tiederman 1973). It is confirmed by that high velocities will be more frequently
sampled than low velocities, if the homogeneous particle distribution in the flow is
assumed. A great number of investigations aiming to estimate and correct the effect
of velocity bias have been carried out. Detailed description and quantification of
velocity bias in this traditional sense will be shown in Chap. 17.

As a matter of fact, the velocity bias in the similar form and of equal mechanism
also exists in the flow with spatial velocity gradient. In this case, the non-uniform
velocity distribution in the flow leads to non-uniform particle arrival rate and thus
to non-uniform distribution of velocity events along the LDA measurement volume.
To be expected is that more velocity events will be detected where the flow velocity
is high. The arithmetic mean of velocities will be slightly shifted, if compared with
the volumetric mean velocity, towards the upper value of the velocity.

The existence of velocity bias that is currently associated with the finite length
of the LDA measurement volume and the spatially non-uniform velocity distribu-
tion will influence experimental determinations of both the mean velocity and all
turbulent stresses. It is therefore reasonable to estimate the associated relationships
in respective calculations. For simplicity, linear velocity distribution according to
Eq. (12.4) as well as Fig. 12.2 is again assumed to be present along the measurement
volume. In addition, further assumptions are specified as follows:

(1) homogeneous particle distribution in the flow;
(2) constant flow direction along the length of the measurement volume;
(3) proportional dependence of velocity sampling rate on the magnitude of the

measured velocity component.

Because of the second assumption the velocity bias which is hypothetically a
function of the absolute velocity can be expressed in the proportional function of a
velocity component.

Starting from the third assumption, the probability distribution of velocity sam-
pling rate along the length of the measurement volume can be expressed by the
probability density function
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pu = 1

N

dN

dz
= ku (12.21)

In this equation, the constant k must be determined from the condition that the prob-
ability of total velocity events sampled during a measurement is equal to unity. With
the linear velocity distribution according to Eq. (12.4) one then obtains

z2∫

z1

pudz = k

z2∫

z1

[

ū − 1

2
a (z1 + z2 − 2z)+ u′

]

dz = 1 (12.22)

Without any difficulty the constant k can be resolved from this last equation. With
�z = z2 − z1 one obtains

k = 1

ū�z
(12.23)

12.2.1 Mean Velocity

From direct data processing of LDA measurements without any weighting form, the
arithmetic mean velocity specifies the biased mean and is given as

ūbias = 1

N

N
∑

i=1

ui (12.24)

On the other hand, the mean velocity that undergoes the bias effect is calculated
with respect to the probability density function of velocity events as

ūbias =
z2∫

z1

puudz = 1

ū�z

z2∫

z1

u2dz (12.25)

The integral in this equation has been already encountered at Eq. (12.13) and
calculated at Eq. (12.14) in the last section. Thus, one immediately obtains

ūbiasū = ū2 + 1

12
(�ū)2 + u′2 (12.26)

Obviously the mean velocity is shifted towards the upper value of the velocity
(ūbias > ū). The bias effect will disappear only when the second and the third terms
on the r.h.s. of the above equation are negligible. For this reason it deals with a flow
phenomenon and is therefore called velocity bias. The traditional aspect of velocity
bias is related to the third term i.e. u′2.
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As can be seen by comparing the above equation with Eq. (12.16), the biased
mean velocity precisely represents the mean velocity that is used to calculate the
mean momentum flow rate or the mean momentum flux across the measurement
volume. In the field of flow dynamics as well as in related investigations, it is usual
to distinguish between the volumetric mean velocity and mean velocities that are
relevant for the momentum and the energy flux, respectively. While in applying the
law of mass conservation the volumetric mean velocity is considered, the corre-
sponding mean velocity should be accounted for when dealing with the momentum
equations like Euler, Navier-Stokes or Reynolds equations (see Sect. 2.2). For this
reason, the velocity bias represents an error only when the arithmetic mean velocity
ūbias according to Eq. (12.24) is used as the volumetric mean.

Correspondingly, the ratio of the biased to the volumetric mean velocities is equal
to the momentum flux correction factor as β = ūbias/ū.

For flows without velocity gradient (a = 0) as the special case, there is �ū = 0
across the measurement volume. Eq. (12.26) is then simplified as

ūbias = ū

(

1 + u′2
ū2

)

= ū
(

1 + Tu2
)

(12.27)

Here the use of turbulence intensity in the form Tu2 = u′2/ū2 is valid only when
the velocity component u approximately represents the main flow. The fact that
the biased velocity is simply related to the turbulence intensity agrees well with
the approximation that was applied to estimate the bias effect in the traditional
aspect of velocity bias (see Chap. 17). Because of this agreement it can be con-
cluded that Eq. (12.26) concerns the effects of velocity bias in both the traditional
aspect regarding the flow turbulence and the aspect that regards both the finite extent
of LDA measurement volume and the non-uniform velocity distribution along the
measurement volume.

As can be seen, Eq. (12.26) would basically also behave as the determination
equation (polynomial of second order) for the volumetric mean velocity ū. While
the biased mean velocity ūbias is obtained by arithmetic mean of velocities according
to Eq. (12.24), the actual turbulence quantity u′2, at the moment, remains unknown.
Its determination will be presented in the next section, where it will be shown that
the volumetric mean velocity ū can be rather more simply calculated than by using
Eq. (12.26). The readers are kindly referred to Eq. (12.32).

12.2.2 Turbulent Normal Stress

More complex outcomes of non-uniform velocity distribution and thus non-uniform
distribution of velocity events along the length of LDA measurement volume are
found in determining actual values of turbulence quantities such as the turbulent nor-
mal stress. Firstly, the non-uniform velocity distribution results in the broadening of
the turbulence scale, so that an apparent turbulent normal stress comes about. This
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is comparable with the apparent turbulence that is resulted from the non-stationary
flow and the related data processing. Secondly, both the non- uniformity of velocity
events and the flow turbulence lead to combined velocity bias. To be noted is that the
effect of this combined velocity bias on the mean velocity has been already treated
in the last section.

With respect to these aspects the biased apparent turbulent normal stress
in the velocity component u is calculated by direct data processing of LDA
measurements as

u′2
app,bias = 1

N

N
∑

i=1

(ui − ūbias)
2 (12.28)

It is called the apparent turbulent normal stress just because the velocity difference
ui − ūbias of each velocity event stands for the apparent velocity fluctuation. Like
calculations of the biased mean velocity in the last section the biased apparent tur-
bulent normal stress can be calculated by converting its summation form into the
integral form. For this purpose the non-uniformity of velocity events along the mea-
surement volume should be taken into account by again concerning the probability
density function that is given in Eq. (12.21) with k = 1/(ū�z), so that

u′2
app,bias =

z2∫

z1

pu (u − ūbias)
2 dz = 1

ū�z

z2∫

z1

u (u − ūbias)
2 dz (12.29)

The velocity component u in this equation is related to Eq. (12.4). It linearly changes
along the measurement volume and further involves the flow fluctuations. In per-
forming the integral calculation, all terms containing u′ and u′3 disappear because
of the randomness of flow fluctuations. One obtains then from above equation

u′2
app,bias = (ū − ūbias)

2 + 1

12

(

3 − 2
ūbias

ū

)

(�ū)2 +
(

3 − 2
ūbias

ū

)

u′2 (12.30)

Combining this equation with Eq. (12.26) to eliminate u′2 yields

u′2
app,bias = (2ū − ūbias) (ūbias − ū) (12.31)

The volumetric mean velocity is then resolved as

ū = 1

4

(

3ūbias +
√

ū2
bias − 8u′2

app,bias

)

(12.32)

This equation represents a simple method of determining the volumetric mean
velocity ū directly from two arithmetic means. According to the context it actually
belongs to the last section.
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Equation (12.31) is further considered. The expression (ūbias − ū) in it will be
replaced by that from Eq. (12.26). It yields then

u′2
app,bias =

(

2 − ūbias

ū

)(
1

12
(�ū)2 + u′2

)

(12.33)

or because of Eq. (12.9)

u′2
app,bias =

(

2 − ūbias

ū

)

· u′2
app (12.34)

The biased apparent turbulent normal stress has been thus shown to be the apparent
normal stress corrected by a factor which accounts for the bias effect. This relation-
ship exactly represents the combination between the effect of velocity bias and the
effect of non-uniform velocity distribution along the LDA measurement volume. In
addition, comparing Eqs. (12.31) and (12.34) yields

u′2
app = ū (ūbias − ū) (12.35)

For vanishing bias effect that is given only at laminar flows (u′ = 0) with uni-
form velocity distribution along the LDA measurement volume, there is ūbias ≈ ū.

Accordingly, there is u′2
app,bias ≈ u′2

app ≈ u′2 ≈ 0, as expected.
The actual turbulent normal stress can be calculated from Eq. (12.26) as

u′2 =
(

ūbias

ū
− 1

)

ū2 − 1

12
(�ū)2 (12.36)

and further with respect to �ū = a�z as

u′2 =
(

ūbias

ū
− 1

)

ū2 − 1

12
a2 (�z)2 (12.37)

In this equation, the biased mean velocity ūbias acts as known according to
Eq. (12.24). The volumetric mean velocity has been already calculated in
Eq. (12.32).

Based on all above calculations, additional simplifications are considered as
follows:

12.2.2.1 Uniform Velocity Distribution

Because of �ū = 0 along the LDA measurement volume, there is no apparent

turbulence to be concerned, so that it comes about u′2
app,bias = u′2

bias and u′2
app = u′2.

From Eq. (12.34) one obtains

u′2
bias =

(

2 − ūbias

ū

)

· u′2 (12.38)
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As can be confirmed from this relationship, the biased turbulent normal stress is
less than its actual value because of ūbias > ū and hence (2 − ūbias/ū) < 1. This
circumstance has already been confirmed in earlier studies (Nobach 1998, Zhang
2002), see Chap. 17.

12.2.2.2 Negligible Turbulent Flow Fluctuations u′2 ≈ 0

This case can be considered to be comparable with measurements of laminar flows.
From Eq. (12.33) one obtains

u′2
app,bias = 1

12

(

2 − ūbias

ū

)

(�ū)2 (12.39)

The term ūbias / ū in this equation is substituted by that from Eq. (12.26). It follows
then with �ū = a�z

u′2
app,bias = 1

12
a2 (�z)2 − a4

122

(�z)4

ū2
(12.40)

Although the flow does not show any velocity fluctuations, a non-vanishing normal
stress has been confirmed when using Eq. (12.28) to process LDA measurement
data. The first term on the r.h.s. of above equation is the apparent part, as can be
confirmed by comparing it with Eq. (12.9), and the second term of the part aris-
ing from the velocity bias, however, in negative effect. Obviously this second term
represents a negligible part against the first term, especially at high velocity flow
and the short measurement volume length. This indicates that for all practical flows
with LDA measurements, when considering the turbulent normal stress, the velocity
bias associated with non-uniform velocity distribution along the LDA measurement
volume can be neglected. To be noted is that this conclusion is not applicable to the
mean velocity according to Eq. (12.26).

12.3 Method of Resolving the Non-uniform Velocity Distribution

As shown above, the non-uniform velocity distribution for instance in the turbulent
boundary layer complicates its accurate measurements. Neither the mean velocity
nor the averaged turbulence quantities can be accurately located within the finite
length of LDA measurement volume. Only when the LDA optics is arranged as in
Fig. 12.1, the spatial distribution of the flow can be more accurately measured by a
spatial resolution of about 0.1 mm.

In order to resolve both the mean velocity profile and the turbulence quantities
within the finite length of the LDA measurement volume, separate receiving optics
can be used, as shown in Fig. 12.3a for measurements of the velocity profile beneath
a thin film of falling water. The transmitting optics is arranged to be perpendicular to
the wall. The separate receiving optics is aligned with its focus to the measurement
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Fig. 12.3 LDA configuration to resolve the velocity profile beneath a thin water film

volume. In this case, a transparent wedge is applied to suppress all possible optical
aberrations and hence to enhance the optical performance. Because of the small
aperture of the receiving optics, only velocities at a local point along the length of
the measurement volume will be measured each time. By traversing the receiving
optics as shown in Fig. 12.3a, the velocity profile in the height of the thin water
film can then be accurately resolved. Such an optical arrangement with the separate
receiving optics has also been found by Wittig et al. (1996).

Another possible optical configuration is illustrated in Fig. 12.3b. This option,
however, has a significant deficiency. Because of the symmetrical arrangement of
transmitting and receiving optics the partial laser beams that are reflected on the
window-water interface, will be directly guided to the receiving unit. This will lead
to the rapid overloading of used photodetectors (e.g. photomultiplier) and to high
noise in the opto-electronic signals. In addition, because of the non-regular refrac-
tions of two laser beams on the window-water interface, the optical performance of
the measurement volume such as the fringe spacing and the fringe orientation will
be affected.



Chapter 13
Flow Measurements Behind the Plane
Window: On-axis

The non-intrusive property of the LDA method represents the greatest advantage
against other methods using mechanical sensors for flow measurements. The LDA
method thus has found its wide applications in measurements of internal flows such
as the flows in ducts and machines. In such applications, both the ducts and the
machines have to be configured to posses a window so that the flow is made optically
accessible. It is well known by LDA users that the plane windows with parallel
surfaces are always the first choice in practical applications, because the use of
plane windows will significantly simplify calculations of laser beam transmissions
through both the window and the test fluid. Another important advantage in using
plane windows is that the fringe spacing in the LDA measurement volume remains
constant i.e. independent of the optical properties both of the window and the test
fluid, if the LDA optical axis is perpendicularly i.e. on-axis aligned to the window
surface. This implies that in using plane windows no remarkable optical aberrations
will occur. Refractions of laser beams do not have any remarkable influence on the
measurements. These properties will be briefly revealed in this chapter.

13.1 Fringe Spacing

The refraction of light waves on a medium interface follows the law of refraction
according to Eq. (3.6). At the on-axis alignment of the LDA head to the plane
of the medium interface, two laser beams of each laser beam pair in an LDA
system undergo the symmetrical refraction. The half intersection angle between two
refracted laser beams in the medium 2 is thus calculated according to Fig. 13.1

sinα2 = sin ε2 = n1

n2
sin ε1 (13.1)

The speed of light in mediums 1 and 2, respectively, is given by c1 = λ1 ν1 and
c2 = λ2ν2 with λ as the wavelength and ν the frequency of the light wave. Firstly,
the ratio of two light speeds is equal to the reciprocal of the corresponding refrac-
tive index ratio (c2/c1 = n1/n2). Secondly, the frequency of the light wave does not
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change with the light ray refraction on the medium interface (ν2 = ν1). From these
two conditions the wavelength of the light wave in the medium 2 is given by

λ2 = n1

n2
λ1 (13.2)

According to Eq. (3.46) for fringe model of LDA optics, the fringe spacing in the
measurement volume, which is present in medium 2, should be calculated using
the light wavelength λ2 and the half intersection angle between two laser beams α2.
With respect to Eqs. (13.1) and (13.2) the fringe spacing in the measurement volume
is calculated as (α1 = ε1)

�x = λ2

2 sinα2
= λ1

2 sinα1
(13.3)

This equation signifies that at the on-axis i.e. perpendicular alignment of the LDA
head to the medium interface, the fringe spacing in the measurement volume is
independent of the fluid properties of the test flow. This is true even though both
laser beams pass through a series of windows of different optical properties before
reaching the flow.

13.2 Shift of the Measurement Volume

As a result of laser beam refractions on the medium interface, the intersection point
of two laser beams, i.e. the measurement volume in the flow, shifts away from the
virtual beam intersection point o (Fig. 13.1). The measurement volume as the actual
intersection point of two laser beams is denoted by mν. Obviously the location of the
measurement volume is a function of the location of the virtual beam intersection
point. According to Fig. 13.1 this function can be easily established by considering
the distance yb−ya on the y-axis. By starting both from the virtual beam intersection



13.3 Optical Dispersion and its Negligible Effect 149

point and the measurement volume, respectively, this distance is given by

yb − ya = 2xmv tanα2 = 2xo tanα1 (13.4)

Obviously the distance of the measurement volume from the medium interface is
proportional to that distance of the virtual beam crossing point. The proportional
constant is simply tanα1/tanα2, as can be obtained from the above equation:

kmv = dxmv

dxo
= tanα1

tanα2
(13.5)

It also represents the ratio of the shift of the actual measurement volume to the shift
of the virtual beam crossing point. The latter is equal to the shift of the LDA head,
if the LDA head is positioned in the medium 1.

Although the calculation is achieved by considering two mediums, the ratio given
in Eq. (13.5) also applies to the case of laser beam transmissions from air through a
glass window into the test flow. It corresponds to the case of most available optical
arrangement. The application of Eq. (13.5) is independent of the window used in
between.

Because of small angles α1 and α2 in most LDA configurations, both tanα1
and tanα2 can be approximated by sinα1 and sinα2, respectively. With regard to
Eq. (13.1), that represents the law of refraction, Eq. (13.5) then becomes

kmv ≈ sinα1

sinα2
= n2

n1
(13.6)

The shift ratio of LDA measurement volume to the LDA head has been shown to be
equal to the ratio of refractive indices of two mediums. It can be used to accurately
position the LDA measurement volume in the flow by starting from a reference point
of the measurement volume that lies, for instance, on the medium interface (x = 0).

Because of the simplest geometrical and optical behaviours in on-axis alignment
of LDA optics, measurements of all types of internal flows behind a plane window
can be well accomplished without having to pay any special attentions. In contrast
to this, the optical condition and the measurement facilities will become much com-
plex, when the LDA optical axis is aligned off-axis to the plane wall. This will be
thoroughly described in Chap. 14.

13.3 Optical Dispersion and its Negligible Effect

A special phenomenon in the LDA optics with laser beams of different wavelengths
should be mentioned. It is the optical dispersion which states that the refractive
index of a dielectric medium fundamentally depends on the light wavelength. This
phenomenon can be well demonstrated by using a dispersing prism to separate the
white light that is composed of numerous wavelengths. The occurrence of the optical
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dispersion in LDA measurements is confirmed by that the laser beams of differ-
ent wavelengths, for instance λ = 488 and λ = 514.5 nm in a two-component
LDA unit, will be differently refracted on the medium interface. As a result, both
measurement volumes in the flow will no longer be found at the same point. The
displacement between two measurement volumes, however, is usually negligible.
This can be demonstrated by considering the laser beam refraction in water based
on the following calculation example.

A two-component LDA system applies the laser light of wavelengths λ = 488
and λ = 514.5 nm. The half intersection angle between two laser beams in each
laser beam pair is assumed to be equal to α1 = 6.77◦. The LDA head is assumed to
be found in open air (n1 = 1). Corresponding to both wavelengths of the laser light,
the refractive index of water at a temperature of 20◦C is given by n2 = 1.337 for
λ = 488 and n2 = 1.336 for λ = 514.5. According to Eq. (13.6) the positions of
both measurement volumes in the flow, corresponding to both laser beam pairs, are
given by

xmv,488 = n2xo = 1.337xo (13.7)

and

xmv,514 = n2xo = 1.336xo (13.8)

respectively.
For example, the virtual beam crossing point is assumed to be given at xo = 100

mm, to which the corresponding measurement volumes are then found at about
xmv = 134 mm. The displacement between two measurement volumes is calculated
to be

xmv,488 − xmv,514 = 0.001xo = 0.1 (mm) (13.9)

In comparison to the measurement volume length of about 0.40 mm (Table 4.1) this
displacement can usually be neglected.



Chapter 14
Flow Measurements Behind the Plane
Window: Off-axis

The simplest case for internal flow measurements is the on-axis alignment of LDA
optics, as this has been shown in the last chapter. There are other cases in which the
LDA optics has to be aligned off-axis, i.e. the optical axis is no more perpendicular
to the window plane. This situation indeed occurs very frequently, when for instance
according to Fig. 14.1 the normal velocity component in the flow behind a plane
window should be measured. The off-axis of LDA optics in this case is arranged
within the plane containing two laser beams. Because of the asymmetrical beam
refraction all geometrical specifications in both forming and shifting the measure-
ment volume will change. This undesired and partly complex circumstance makes
the flow measurements difficult. Every measurement result needs to be corrected.

In contrast to the on-axis alignment of LDA optics, the asymmetry of laser beam
refractions in the off-axis case becomes a very serious matter when considered fur-
ther in the aspect of entire optical performances. This is confirmed by the occurrence
of optical aberrations in both the transmitting and the receiving optics. The situation
with such optical aberrations may be so serious that no LDA measurements can be
achieved. This corresponds to the case where both laser beams after the refractions
do not intersect at all. The associated optical phenomenon has been recognized to be
astigmatism (Zhang 1995, Zhang and Eisele 1995a, b). This phenomenon sensitively
affects both the optical features of the LDA measurement volume and the signal
quality in the receiving optics. Some LDA users may have probably encountered
great difficulties of getting satisfactory optical signals while performing measure-
ments by the LDA head at off-axis position. The cause is nothing other than the
effect of astigmatism. In addition, the asymmetry of laser beam refractions leads to
different deformation of beam waists on each individual laser beam and hence to
the distortion of the LDA measurement volume. This again leads to fringe distor-
tion in the measurement volume and further to measurement errors. Clearly a great
deal of troubles in performing LDA measurements is related with the off-axis LDA
alignment.

In the past, parallel to identifying all the influences of optical aberrations named
above on LDA measurements, diverse measures have also been worked out to
enhance the optical performances in the described complex situations. It should be
mentioned that the passive method of matching refractive indices of test fluids does
help reducing the optical aberration in LDA measurements. The method, however,
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Fig. 14.1 Off-axis alignment of LDA optics for indirect measurements of velocity component uz

is often not applicable where, for instance, field measurements out of the laboratory
should be conducted.

A great deal of optical aspects related with the off-axis alignment of LDA optics
will be presented in this chapter.

14.1 Off-axis Measurements and Velocity Transformation

As mentioned before, the off-axis alignment of the LDA head to the normal of the
plane window usually aims to measure the velocity component out of the window
plane. The optical arrangement according to Fig. 14.1 has found its broad applica-
tions, despite the measurement of the third velocity component not being coincident
with the measurements of other two in-plane velocity components. In order to obtain
the third velocity component uz i.e. the component along the normal of the window
surface, velocity transformation as described in Chap. 6 can be applied. The mean
value of this velocity component is then obtained from Eq. (6.40)

uz = 1

sinϕ

(

uϕ − ux cosϕ
)

(14.1)

The main flow direction in the x − z plane is calculated by

tanϕ = uz

ux
(14.2)
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In order to determine the related turbulence quantities, the Zero-Correlation Method
(ZCM) that is described in Chap. 8 can be applied. From Eq. (8.18) one obtains

u′2
z = cosϕ cos (2ϕ − ϕ) · u′2

x − cos 2ϕ · u′2
ϕ

sinϕ sin (2ϕ − ϕ)
(14.3)

Further according to Eq. (8.16) the turbulence quantity representing the Reynolds
shear stress is obtained as

u′
xu′

z = 1

2
tan 2ϕ

(

u′2
x − u′2

z

)

(14.4)

Basically, when the off-axis alignment of the LDA head only aims to indirectly mea-
sure the on-axis velocity component according to Eq. (14.1), the measurement could
be achieved at each off-axis position excluding ϕ = 0. Nevertheless, some spe-
cial aspects associated with this LDA configuration have to be considered for high
quality measurements and the maximum achievement from the measurements.

– Only one component measurement is possible. Otherwise two measurement
volumes would separate from each other, see Sect. 14.5 of this chapter.

– The angle ϕ used in above equations is the effective off-set angle of the LDA
optical axis in the flow. This angle can be obtained approximately from ϕLDA by
applying the law of refraction to the LDA optical axis. The velocity component
which is measured is then approximately perpendicular to the refracted optical
axis (Sect. 14.3).

– Because of different refractions of two laser beams the crossing angle between
two laser beams in the fluid flow changes with the off-axis angle of the LDA
head. This means that the fringe spacing in the measurement volume also depends
on this angle. The measured velocity has thus to be corrected based on the fringe
model of LDA optics, see Sect. 14.2.

– The traversing path of the LDA measurement volume is generally two-
dimensional, even though the LDA head is traversing along the normal of the
window surface, see Sect. 14.4

– The LDA signal quality strongly depends on the off-axis angle of the LDA head,
the focal length of used LDA optics and the depth of the measurement volume in
the flow. Usually the deterioration of signal qualities is significant so that in worst
cases no measurements could be accomplished at all. More to deteriorated signal
qualities see Sect. 14.8.

14.2 Fringe Spacing in Measurement Volume
and Velocity Corrections

Depending on the off-axis alignment angle of the LDA head, the beam cross-
ing angle in the flow changes. The fringe spacing in the measurement volume is
then calculated by �xoff = 1

2λn / sinαoff according to Eq. (3.46), with λn as the
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wavelength of the laser light in the test medium (refractive index n) and αoff as the
half intersection angle of two laser beams in the flow. Obviously this fringe spacing
differs from that at the on-axis configuration �xon = 1

2λn / sinαon. A systematic
error in velocity measurements then takes place as a result of this change in the
fringe spacing. The ratio of the actual to the initial fringe spacing is obtained as

kvel = �xoff

�xon
= sinαon

sinαoff
(14.5)

To each off-axis angle ϕLDA in the LDA alignment according to Fig. 14.1, the half
intersection angle of two laser beams in the flow αoff can be calculated by applying
the law of refraction, given by Eq. (3.6), to each laser beam. Thus there is αoff =
f (ϕLDA) and naturally αon = f (ϕLDA = 0).

Equation (14.5) represents, because of Eq. (3.47), a correction factor for each
velocity that is measured at the off-axis LDA alignment:

uϕ = �xoff · νD = kvel�xonνD = kveluϕ,measured (14.6)

The correction of velocities is necessary because the specification of both the optical
and geometrical parameters in a LDA-system is usually referred to the open air case.
It is equivalent to the case of the on-axis alignment of the LDA head to the plane
window (fringe spacing �xon), as has been shown in Chap. 13.

Figure 14.2 shows an example that represents the correction factor according to
Eq. (14.5) as a function of the LDA off-axis angle ϕLDA for measurements of a water
flow. As can be seen, velocity corrections up to 10% or even 15% are indispensable.
The optical configuration at the LDA head, say the half intersection angle α0 of two
laser beams, has indeed the negligible influence on the velocity correction factor.
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Fig. 14.2 Velocity correction factor for measurements of water flows (n = 1.333) by means of
LDA in off-axis alignment; The half intersection angle α0 between two laser beams is related to
the design angle at the LDA head
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14.3 Refraction of Optical Axis and Orientation
of the Measurement Volume

As in common applications of LDA method, the velocity component that is mea-
sured with the off-axis LDA is spatially perpendicular to the bisector of two laser
beams in the test flow. As a result of optical aberrations the bisector of two refracted
laser beams neither coincides with nor is parallel to the refracted optical axis.
Such a disagreement is called comatic aberration. This phenomenon, however,
does not have significant influence on LDA measurements. This can be demon-
strated according to Fig. 14.3a with two laser beams that are refracted in a test
medium. In applying the law of refraction according to Eq. (3.6) and because of
εA1 = ϕLDA + α0 and εB1 = ϕLDA − α0, the refraction angles at two laser beams
are calculated, respectively, as

εA2 = arcsin

(
n1

n2
sin (ϕLDA + α0)

)

(14.7)

εB2 = arcsin

(
n1

n2
sin (ϕLDA − α0)

)

(14.8)

The inclination angle of the bisector of two laser beams in the test medium is then
given by

εb = 1

2
(εA2 + εB2) (14.9)
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Because the half intersection angle α0 is usually small, this last equation can be
approximated by considering the linear terms in the Taylor series of εA2 and εB2, so
that it becomes

εb = arcsin

(
n1

n2
sinϕLDA

)

(14.10)

It is equal to the refraction angle of the optical axis εo of the LDA head. For this rea-
son, the refracted optical axis in the flow can be used to represent the measurement
volume orientation. For water flow (n2 /n1 = 1.333) and the LDA configuration
with α0 = 3◦ and ϕLDA = 30◦, for instance, the uncertainty in εb arising from the
above simplification is less than 0.02◦. The comatic aberration is thus irrelevant.
The velocity component measured by the off-axis LDA alignment corresponds to
the component that is perpendicular to the refracted optical axis in the flow.

The intersection point of the optical axis on the medium interface is denoted by c,
as shown in Fig. 14.3b. Sometimes one needs to know this intersection point, in
order to further calculate and to track the laser beams with respect to the optical axis
and its refraction on the interface. According to Fig. 14.3b the law of sines will be
applied to triangles Aac and Bbc, respectively. Because of sin (90 − εB1) = cos εB1
and sin (90 + εA1) = cos εA1 there are accordingly

ha

sin θ
= s

cos εA1
(14.11)

hb

sin θ
= s

cos εB1
(14.12)

Eliminating s and sin θ yields

ha

hb
= cos εB1

cos εA1
(14.13)

With h = ha + hb there are further

ha

h
= cos εB1

cos εA1 + cos εB1
(14.14)

hb

h
= cos εA1

cos εA1 + cos εB1
(14.15)

14.4 Two-Dimensional Shift of the Measurement Volume

In order to measure the flow distribution in an internal flow that is found behind an
optical window, the measurement volume needs to be shifted through the flow field.
An outstanding behaviour of the off-axis LDA setup is the two-dimensional shift
of the measurement volume when the LDA head moves one-dimensionally parallel
to the normal of the medium interface. This feature of the measurement volume
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shift can be specified by accounting for the geometrical relations between two laser
beams, as shown in Fig. 14.4. The virtual and actual intersection points of two laser
beams (A and B) are marked by o and mν, respectively. Herein mν stands for the
measurement volume. Corresponding incident and refraction angles of both laser
beams are denoted by εA1, εB1, εA2 and εB2. Both laser beams A and B intersect the
y-axis at ya and yb, respectively. The distance between intersection points a and b
can be calculated respectively form the virtual and actual intersection points of two
laser beams, as given by

xmv (tan εA2 − tan εB2) = xo (tan εA1 − tan εB1) = yb − ya (14.16)

From this equation the following differentiation is obtained

kmv = dxmv

dxo
= tan εA1 − tan εB1

tan εA2 − tan εB2
(14.17)

This equation represents the x-component of the shift ratio between the actual and
virtual crossing points of two laser beams. Because the virtual crossing point moves
with the LDA head, the ratio kmv given in above equation simply represents the ratio
of the measurement volume shift to the shift of the LDA head. Like in the case of
on-axis alignment that has been treated in Chap. 13, the shift ratio in the present
case is also independent of the glass window which is found between the LDA head
and the flow.

In Fig. 14.4, it has also shown that the shift of the measurement volumes mν
does not follow a path that is parallel to the x-axis, even though the LDA head is
merely shifting in the x-direction. Such a two-dimensional feature of the measure-
ment volume shift can be well quantified. According to Fig. 14.4 the y-coordinate
of the measurement volume is given as

ymv = ya + xmv tan εA2 (14.18)

and because of ya = yo − xo tan εA1 as
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ymv = yo − xo tan εA1 + xmv tan εA2 (14.19)

It is of concern that the shift of the LDA head along the x-axis means that the
y-coordinate of the virtual crossing point remains constant. Thus differentiation of
above equation with respect to yo = const and kmv = dxmv /dxo yields

dymv

dxmv
= tan εA2 − dxo

dxmv
tan εA1 = tan εA2 − 1

kmv
tan εA1 (14.20)

This equation describes the path that the measurement volume follows when the
LDA head is moving parallel to the x-direction. In general, the lateral shift of the
measurement volume dymv / dxmv does not disappear, except for the special cases
of the on-axis alignment, the off-axis alignment with one laser beam perpendicular
to the plane of the medium interface, or the flow medium that is the same as the
medium in which the LDA head is present. Figure 14.5 as an example shows the
two-dimensional shift rate of the measurement volume in water, calculated from
Eqs. (14.17) and (14.20) for an LDA optics with α0 = 2.75◦.

The results presented here are of special importance for cases where simulta-
neous three-component velocity measurements would be carried out by using two
LDA heads. When trying to shift measurement volumes in the flow, all three mea-
surement volumes will separate from each other, so that both LDA heads need to be
realigned, see also Thiele and Eckelmann (1994).
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14.5 Astigmatism and its Presence in Transmitting Optics

Astigmatism is an optical aberration which refers to the loss of the unique focal
point of a light bundle after the refraction through a non-perpendicular interface
(Fig. 14.6). While the meridian plane (also called the tangential plane) of the light
bundle focuses on the point m after the refraction, the sagittal plane focuses on the
point s. The distance between these two focal points is known as the astigmatic
difference. Obviously this astigmatic difference depends on both the off-axis angle
ϕ of the light bundle against the normal of the interface and the focusing angle i.e.
the thickness of the incident light bundle. In addition, it also depends on the distance
of the virtual focal point from the plane interface.

In the context of LDA applications, the focused light bundle that is shown in
Fig. 14.6 can be considered as being constructed by four laser beams of a two-
component LDA system. One pair of laser beams forms the meridian plane and
another pair the sagittal plane. Correspondingly two measurement volumes are
obtained, respectively, at the meridian and the sagittal focal point. Because of the
remarkable separation between two measurement volumes, two-component coinci-
dent LDA measurements become impossible. Also other optical features such as
signal qualities and the fringe distortion in the measurement volume are related to
the effect of astigmatism aberration. This will be separately shown in following
sections.

The occurrence of astigmatism at off-axis LDA alignment and the related effect
on measurements are always inevitable, even if only one-component measurements
by using two laser beams in the meridian plane will be carried out. Besides the fringe
distortion in the measurement volume the astigmatism effect is additionally con-
firmed in the backward propagation of scattered laser lights from the measurement
volume to the receiving optics, which is integrated in the LDA head. As a result,
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Fig. 14.6 Astigmatism
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the existence of astigmatism in the receiving optics directly influences the signal
strength and qualities. To quantify such an influence, the astigmatic difference as a
quantitative measure of the phenomenon should be considered. It is represented in
the present case with two pairs of laser beams (Fig. 14.6) by the distance between
two focal points i.e. the available (m) and unavailable (s) measurement volumes.

For practical LDA applications in internal flow measurements, astigmatism takes
place twice: in the transparent optical window of thickness d and in the fluid flow,
as illustrated in Fig. 14.7 showing the laser beam refractions in the meridian plane.
The crossing point of two in-plane laser beams (A and B) is denoted by m. Because
of symmetrical refraction of two other laser beams in the sagittal plane, the cor-
responding crossing point s is also found in the meridian plane. According to the
detailed calculations, as shown in Appendix A using the theory of ray optics (Zhang
1995), the displacement between two measurement volumes (m and s) along the
x-axis is given by

�xm,s = 1

T20
(Ψ1d + Ψ2ds) (14.21)

Herein

Ψ1 = cosα0 cosϕLDA
√

n2
1

n2
0

− (1 − cos2 α0 cos2 ϕLDA
)

− T10 (14.22)

Ψ2 = cosα0 cosϕLDA
√

n2
2

n2
0

− (1 − cos2 α0 cos2 ϕLDA
)

− T20 (14.23)

T10 = tan εA1 − tan εB1

tan εA0 − tan εB0
(14.24)
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Fig. 14.7 Calculation of the
distance between the
available (m) and the
unavailable (s) measurement
volumes in the test flow
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T20 = tan εA2 − tan εB2

tan εA0 − tan εB0
(14.25)

with εA1, εA2, εB1 and εB2 as the refraction angles of laser beams (A and B) in the
medium 1 and 2, respectively. They can be calculated from corresponding incident
angles in the form of εA0 = ϕLDA +α0 and εB0 = ϕLDA −α0 by applying the law of
refraction. The half intersection angle between two laser beams in air is designated
by α0. Also worth mentioning is that at small off-axis angles there may be εB0 < 0
according to Fig. 14.7 with given parameter notations. The parameters Ψ1 and Ψ2
refer to the window and the test fluid, respectively.

The above equations are obtained based on the assumption that in the medium
0 all four laser beams intersect at a unique point. This medium is denoted as the
reference medium. Usually it is the air in that the LDA head is found. The special
case with water as the reference medium will be shown in Sect. 14.10.

Figure 14.8 represents an example of calculated displacements between two
measurement volumes (m and s) at the off-axis LDA alignment. The calculations
are referred to an air-glass-water system with a glass thickness of d = 20 mm.
The displacement i.e. the distance between two measurement volumes is enormous,
especially at large off-axis angles. It linearly increases with the depth of the mea-
surement volume in the test flow and is also dominated by this depth. The effect of
the glass window on the extent of astigmatism can be read out at ds = 0 in Fig. 14.8.
Usually it deals with a relatively small effect because of the small thickness of the
used window.

Because of the great distance between two measurement volumes the two-
component LDA measurements become impossible. In the practical applications,
the LDA off-axis alignment is indeed initially required for separate one-component
velocity measurement, as already shown in Fig. 14.1. The two laser beams used for
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measurements lie in the meridian plane and form the measurement volume at dm.
This measurement volume is therefore called available measurement volume, while
the measurement volume at ds is unavailable. For using dm as the parameter to
express the distance between two measurement volumes, Eq. (14.21) is rearranged
by substituting ds = dm −�xm,s as

�xm,s = 1

T20 + Ψ2
(Ψ1d + Ψ2dm) (14.26)

For d = 0 there is simply

�xm,s

dm
= Ψ2

T20 + Ψ2
(14.27)

These two expressions are sometimes preferred because of the use of the
available and hence visible measurement volume at the distance dm. Also worth
mentioning is that for small values of the distance dm the unavailable measurement
volume may be found virtually within the window because of ds < 0.

Based on Eq. (14.27) for negligible window thickness, Fig. 14.9 shows the
related displacement between the available and unavailable measurement volumes
in function of the LDA off-axis angle, as for the medium with n = 1.333.

A special case will be considered in which the test medium is equal to the ref-
erence medium. For measurements of air flows behind the window, which implies
an arrangement of air-glass-air, all related equations can be simplified. Because of
n2 = n0 = 1 there is T20 = 1. From Eq. (14.23) one obtains

Ψ2 = 0 (14.28)

Eq. (14.26) then becomes

�xm,s = Ψ1d (14.29)
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The astigmatism and the associated displacement between two measurement vol-
umes have been thus related to the thickness and the refractive index of the used
glass window. They are independent of the depth of the measurement volumes in
the air flow. In reality, this is always the case as long as the test medium is equal to
the reference medium. See also Sect. 14.10 dealing with the method of suppressing
the astigmatism effect.

At the end of this section, it should be emphasized that the LDA off-axis align-
ment should be performed strictly in the optical plane i.e. the plane containing two
laser beams. Deviations from this requirement will lead to separation of two laser
beams and thus to failure in forming the measurement volume. More about this
aspect will be given in Sect. 14.9.

In the following sections, some other related optical aspects in LDA measure-
ments will be further accounted for.

14.6 Astigmatism at the Focused Laser Beam Bundle

As is known, astigmatism represents an optical aberration and refers in the present
context to the loss of the unique focal point of a light bundle after the refraction
through a non-perpendicular interface (Fig. 14.6). Since each individual laser beam
in an LDA-system is precisely a focused light bundle, its refraction on the medium
interface then leads to the occurrence of astigmatism. As a result each refracted laser
beam exhibits two characteristic focal points: one in the meridian plane and another
in the sagittal plane. Because these two focal points in a laser beam do not coincide,
the wave front of the laser beam is thus nowhere of the plane form. The intersection
of two such laser beams obviously leads to fringe distortion in the measurement
volume. This type of the fringe distortion, however, cannot be simply described as
the well-known fringe distortions caused by the improper crossing of two regular
laser beams (Chap. 16). The attempt by Li and Tieu (1998) to get the insight into
the measurement volume that is distorted by reasons of astigmatism did not refer to
the astigmatism associated with the off-axis LDA as presented here.

The extent of the fringe distortion caused by astigmatism in the present case
clearly depends on the relative positions of the measurement volume and the respec-
tive meridian and sagittal focal points of two laser beams. It depends therefore on the
off-axis angle in the individual LDA arrangement. For this reason, the laser beams
that suffer from astigmatism should be characterized in function of LDA off-axis
angle. Corresponding detailed investigations have been performed by Zhang and
Eisele (1996b).

14.6.1 One-time Refraction of a Focused Beam Bundle

A spatially focused beam bundle is considered which is refracted at the interface of
mediums 1 and 2 (Fig. 14.10). For this configuration, a coordinate system is chosen
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Fig. 14.10 Ray optics to calculate the astigmatism in a focused light bundle

with the y − z plane on the interface between two mediums. The x-axis is then
directed from medium 1 to medium 2. The virtual focal point of the incident beam
bundle lies on the x − z plane and is thus given at o = (xo, 0, zo). In accordance
with definitions of astigmatism parameters, two characteristic planes related to the
incident beam should be noted: the plane containing the beam axis and the normal
of the interface is called the meridian plane; the plane perpendicular to this and
through the beam axis is called the sagittal plane.

To simplify the geometric optical calculations the beam bundle will be firstly
considered as a single ray which may be described by a straight line with the parallel
unit vector �r1

(

r1x, r1y, r1z
)

as follows

x − 0

r1x
= y − ys

r1y
= z − zs

r1z
(14.30)

with s (0, ys, zs) as the intersection point of the straight line on the interface.
The coordinates of the intersection point s can be determined by inserting the

coordinates of the known virtual focal point of the incident beam o = (xo, 0, zo) into
Eq. (14.30). For ys for instance one obtains

ys = − r1y

r1x
xo (14.31)



14.6 Astigmatism at the Focused Laser Beam Bundle 165

Analogous to Eq. (14.30) the refracted ray that departs from the intersection point s
can be represented by a straight line with �r2

(

r2x, r2y, r2z
)

as a parallel unit vector

x − 0

r2x
= y − ys

r2y
= z − zs

r2z
(14.32)

The unit vector �r2 depends on the unit vector �r1 and can be determined by use of the
law of refraction according to Eqs. (3.8) and (3.9):

r2y = n1

n2
· r1y (14.33)

r2z = n1

n2
· r1z (14.34)

with n1 and n2 as the refractive index of respective mediums.
The objective of the following calculations is to find out the focal points of the

refracted beam for a given incident beam bundle that is focused at o = (xo, 0, zo).
The form of the considered focused beam bundle can be imagined to be created
by infinitesimally turning the incident ray �r1 around the virtual focal point o, so
that in the plane of the medium interface (y − z plane) the intersection point s shifts.
A certain infinitesimal change d�r1 in the incident ray will thus cause an infinitesimal
change d�r2 in the refracted ray �r2 and an infinitesimal shift of the intersection point s
in the plane of the medium interface. Usually both the ray �r2 and �r2 + d�r2 propagate
spatially and thus do not meet each other. By projecting the rays onto the x − y
plane, the intersection between two refracted rays can be confirmed, as shown in
Fig. 14.10b. The related infinitesimal shift of the intersection point s in the plane of
the medium interface is identified by the component dys.

In reality, the intersection of the projected rays �r2 and �r2 + d�r2 just represents a
focal point of the simulated beam bundle after the refraction, however, conditionally
for the given change d�r1 in the incident ray and in the section plane that is parallel to
the x − y plane. Because the rays �r2 and �r2 +d�r2 generally do not spatially intersect,
the observed intersection between them obviously depends on the orientation of the
projection plane. This means that no unique focal point could be expected. This
phenomenon with the loss of the unique focal point in the refracted beam bundle,
as outlined, is known as astigmatism. In order to mathematically specify this type
of optical aberrations, the intersection point of �r2 and �r2 + d�r2 is mathematically
interpreted as to be found at the coordinate xp, at which the refracted ray �r2 does
not show any change in the y-coordinate for instance in the projected x − y plane
(Fig. 14.10b), despite the infinitesimal change d�r1 in the incident ray. For simplicity,
the change in the incident ray is firstly assumed to be dr1y i.e. in the y-component
of the unit vector �r1. The corresponding focal point at xp on the refracted beam,
considered in the projected x − y plane, then has to fulfil the condition

∂yp

∂r1y
= 0 (14.35)
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In further derivations, the z-component of the unit vector �r1 will be assumed to be
constant. The change in r1y will then cause a simultaneous change in r1x. On the side
of the refracted ray which is described by Eq. (14.32) there will be both a change
in the unit vector �r2 and a displacement of the ray because of the displacement of
the intersection point s in the plane of the medium interface. With regard to this
behaviour of ray optics the corresponding relation y = f (x) from Eq. (14.32) is
inserted into Eq. (14.35), which leads to

∂ys

∂r1y
+ xp

∂

∂r1y

(
r2y

r2x

)

= 0 (14.36)

The differentiation ∂ys /∂r1y can be calculated from Eq. (14.31) which applies to
the incident ray. With regard to r1z = const it follows then

∂ys

∂r1y
= −xo

∂

∂r1y

⎛

⎝
r1y

√

1 − r2
1y − r2

1z

⎞

⎠ = −xo
1 − r2

1z

r3
1x

(14.37)

Regarding the second term in Eq. (14.36) the following expression with regard to
Eq. (14.33) is considered first

r2y

r2x
= n1

n2

r1y
√

1 − (n1 / n2)
2 r2

1y − (n1 / n2)
2 r2

1z

(14.38)

Its differentiation leads to

∂

∂r1y

(
r2y

r2x

)

= n1

n2

1 − r2
2z

r3
2x

(14.39)

Both Eqs. (14.37) and (14.39) are inserted into Eq. (14.36). Then the x-coordinate,
at which the geometrical condition given by Eq. (14.35) is fulfilled, is resolved as

xp = xo
n2

n1

r3
2x

r3
1x

1 − r2
1z

1 − r2
2z

(14.40)

This is the position on the refracted ray, within which there is no change in
y-coordinate despite the given change in the incident ray. The related point at xp
can thus be seen as a focal point of the refracted laser beam bundle, however,
conditionally in the section plane which is parallel to x − y plane because of Eq.
(14.35).

As can also be seen from Eq. (14.40), xp obviously depends on the spatial ori-
entation of the incident beam bundle, or in other words, in the specification of used
coordinate system. For the case where the meridian plane of the incident beam i.e.
the plane containing the unit vector �r1 and a parallel of x-axis, coincides with or
is parallel to the x − y plane (Fig. 14.10c), then there is simply r1z = r2z = 0.
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Equation (14.35) represents the condition of a focal point in the meridian plane of
the refracted beam bundle. From Eq. (14.40) the corresponding focal point on the
refracted beam bundle is then given as

xm = xo
n2

n1

r3
2x

r3
1x

(14.41)

A second case will be considered when departing from the first case the coordinate
system is rotated around the x-axis by 90◦ (Fig. 14.10d). Then Eq. (14.35) represents
a focusing condition in the sagittal plane of the refracted beam bundle. Calculations
given above are hence available for the ray optics in the sagittal plane. Because of
r1y = r2y = 0 i.e. 1 − r2

1z = r2
1x and 1 − r2

2z = r2
2x one obtains from Eq. (14.40) the

corresponding sagittal focal point on the refracted beam bundle as

xs = xo
n2

n1

r2x

r1x
(14.42)

Obviously the meridian and sagittal focal points are found at different positions on
the refracted beam bundle. The distance between them is given by

�xm,s = xm − xs = xo
n2

n1

(

r2
2x

r2
1x

− 1

)

r2x

r1x
(14.43)

In the conventional specification of astigmatism, the spatial distance between both
focal points is called astigmatic difference. With r2x as the projection of the unit
vector �r2 on the x-axis the astigmatic difference is calculated as

�sm,s = xm − xs

r2x
= xo

n2

n1

r2
2x − r2

1x

r3
1x

(14.44)

The unit vector components r1x and r2x in this equation can be expressed by r1x =
cos ε1 and r2x = cos ε2, respectively, with ε1 and ε2 as the incident and the refraction
angles of the beam bundle. Equation (14.43) then becomes

�xm,s = xo
n2

n1

(
cos2 ε2

cos2 ε1
− 1

)
cos ε2

cos ε1
(14.45)

Because the two focal points respectively on the meridian and sagittal planes no
longer occur at the same place, there exists at each focal point indeed a focal line.
This focal line changes its orientation as observed from one focal point (xm) to
another (xs). For a finite beam bundle like a laser beam in an LDA-system, the ellip-
tical cross section of the beam between xm and xs should be observed. The existence
of an elliptical cross section, instead of the single focal line, arises from the coma
effect (see Sect. 14.3) and other third-order aberrations. The comatic aberration,
however, is much smaller than that caused by astigmatism.
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The results presented above are relevant for LDA measurements and measure-
ment accuracies. The change in the cross section of each refracted laser beam from
one to another focal point influences the uniformity of the fringe spacing in the mea-
surement volume that is created by intersection of two laser beams. The extent of
the fringe distortion in the measurement volume clearly depends on deviations of all
focal points (xm and xs) from the measurement volume. Detailed calculations of such
deviations will be presented in Sect. 14.7.

Equation (14.43) will be further considered. Substituting xo from Eq. (14.42)
yields

�xm,s = xs

(

r2
2x

r2
1x

− 1

)

(14.46)

Because of Eq. (3.12) this can also be written as

�xm,s = xs

(

1 − n2
1

n2
2

)

tan2 ε1 (14.47)

The astigmatic difference has thus been shown to depend on both the incident angle
of the light bundle and the position of the sagittal focal point in the medium 2.
Sometimes it would be necessary to relate the astigmatic difference to the position
of the meridian focal point. For this reason xs = xm − �xm,s is inserted in above
equation:

�xm,s = (xm −�xm,s
)

(

1 − n2
1

n2
2

)

tan2 ε1 (14.48)

Then the astigmatic difference, related to xm, is resolved as

�xm,s

xm
=

(

1 − n2
1

n2
2

)

tan2 ε1

1 +
(

1 − n2
1

n2
2

)

tan2 ε1

(14.49)

For the given two mediums, the related astigmatic difference is thus only a function
of the incident angle of the light bundle, as this dependence has been shown in
Fig. 14.11 for n2/n1 = 1.333. At large incident angles of the beam bundle, the
astigmatic difference becomes significant. If compared with Fig. 14.9, which stands
for a macro light bundle comprising four laser beams and being aligned off-axis at
angle ϕLDA, it is evident that the displacement or the astigmatic difference does not
much depend on the light bundle thickness.

It should be mentioned that Eq. (14.47) and hence Eq. (14.49) can also be
obtained from Eq. (14.21) through corresponding simplifications. In the present case
with two mediums, one needs to set d = 0. In addition, it deals here with a thin beam
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bundle, so that to the beam crossing angle in Eq. (14.21) the condition α0 << 1 has
to be put to use. Corresponding verification calculations have been performed by
Zhang (1995).

14.6.2 Multiple Refraction of a Focused Beam Bundle

Multiple refraction of a focused beam bundle is often encountered in LDA mea-
surements of internal flows, at which all laser beams have always to pass through
at least one glass window of thickness d. In this case, both focal points correspond-
ing to the meridian and the sagittal planes of a beam bundle will be calculated in
line with Fig. 14.12. In order to simplify the presentation, only the meridian plane
of the beam bundle is sketched in Fig. 14.12. The initial i.e. virtual focal point of
the incident beam is again found at o (xo, yo). To calculate the focal point o2 of the
refracted beam bundle in the medium 2, the focal point o1 of the refracted beam
bundle in medium 1 has to be calculated first.

d
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o(xo, yo)

s o1(xm1, ym1)

o2(xm2, ym2)

x

y

ε1
ε2

Fig. 14.12 Meridian plane
of a focused light bundle with
refractions in the medium
1 and 2
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The first beam refraction takes place on the interface between mediums 0 and 1.
From Eqs. (14.41) and (14.42) the meridian and sagittal focal points of the beam
bundle in medium 1 are given at

xm1 = xo
n1

n0

r3
1x

r3
0x

(14.50)

xs1 = xo
n1

n0

r1x

r0x
(14.51)

In Fig. 14.12, only the focal point in the meridian plane has been shown by o1. Both
this point and the related sagittal focal point are virtual. They will be utilized to
further calculate the focal points of the refracted beam bundle in the medium 2.

Equations (14.41) and (14.42) will again be applied to the beam that is refracted
on the interface between mediums 1 and 2. With regard to the thickness d of the
medium 1 one obtains

xm2 = (xm1 − d)
n2

n1

r3
2x

r3
1x

+ d (14.52)

xs2 = (xs1 − d)
n2

n1

r2x

r1x
+ d (14.53)

The displacement between two focal points in medium 2 is then given by

�xm,s = xm2 − xs2 = (xm1 − d)
n2

n1

r3
2x

r3
1x

− (xs1 − d)
n2

n1

r2x

r1x

= xo
n2

n0

(

r2
2x

r2
0x

− 1

)

r2x

r0x
− d

n2

n1

(

r2
2x

r2
1x

− 1

)

r2x

r1x

(14.54)

Corresponding components of unit vectors in this equation can be substituted by
respective refraction angles for instance r2x = cos ε2.

The same calculation procedure will be given, if a beam bundle is refracted more
than two times. In particular, if d = 0, Eq. (14.54) takes the form of Eq. (14.43) for
the one-time refraction of a focused beam bundle.

14.7 Measurement Volume and Its Distortion

In LDA measurements there are at least two laser beams that create the measurement
volume through their intersection. Each laser beam will suffer from astigmatism, if
it has to be refracted for measuring the internal flow. The existence of astigma-
tism results in spatial deviations of beam focal points (meridian and sagittal) from
the measurement volume. These deviations act as the main reason for the distor-
tion and the non-uniformity of interference fringes in the measurement volume. The
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possibility of calculating these deviations is therefore of great relevance for further
investigations of optical properties of the measurement volume. The fringe distor-
tion in the measurement volume in association with astigmatism indeed represents
a new type that has not been widely investigated. Conventional fringe distortions in
LDA measurement volume have been concerned to be merely caused by improper
intersection of two normal laser beams (see Chap. 16).

In order to quantify the separations of diverse focal points as well as deviations
of them from the measurement volume, calculation results in the last section deal-
ing with the characterizations of astigmatism will be needed. For practical reasons
a one-component LDA system with two laser beams at off-axis alignment will be
considered. In order to ensure the intersection of two laser beams after refractions,
the off-axis alignment of the LDA head has to be taken exactly in the plane con-
taining both laser beams, as shown in Fig. 14.13. For the general case two-time
refractions of laser beams will be firstly considered. The refracted laser beams in
the first medium (often a glass window) are denoted by A1 and B1, while they are
denoted in the test medium by A2 and B2, respectively.

Deviations of diverse focal points on the refracted laser beams from the mea-
surement volume can be specified by firstly determining the measurement volume
in the test medium. From the first interface (0–1) to the measurement volume in the
medium 2, both laser beams (A and B) converge themselves by a lateral distance
equal to t (Fig. 14.13a). With respect to this distance the following relation can be
established

xo (tan εA0 − tan εB0)

= [d tan εA1 + (xmv − d) tan εA2] − [d tan εB1 + (xmv − d) tan εB2] = t
(14.55)
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In relying on this basic equation, calculations will be given by taking into account
the single and the multiple refractions of laser beams, respectively.

14.7.1 Single Refraction of Laser Beams

The occurrence of single or one-time refraction of laser beams, as shown in
Fig. 14.13b, is encountered for instance in measuring an open channel flow or an
internal flow whose refractive index is matched to that of the optical window. In
such cases, Eq. (14.55) is simplified for d = 0 as

xmv

xo
= tan εA1 − tan εB1

tan εA2 − tan εB2
(14.56)

Herein the order of two mediums is rearranged by using the subscripts 1 and 2.
For a given off-axis LDA alignment, the distance ratio xmv/xo in the above equa-

tion is a constant. This implies that it also represents the ratio of the measurement
volume shift to the shift of the virtual beam intersection, given by dxmv/dxo. This is
equal to Eq. (14.17), as expected.

The above equation is, to eliminate xo, combined with Eqs. (14.41) and (14.42),
respectively. This leads to respective deviations of the meridian and sagittal focal
points of a laser beam from the measurement volume as

�x∗
m,mv = xm − xmv

xmv
= n2

n1

r3
2x

r3
1x

tan εA2 − tan εB2

tan εA1 − tan εB1
− 1 (14.57)

�x∗
s,mv = xs − xmv

xmv
= n2

n1

r2x

r1x

tan εA2 − tan εB2

tan εA1 − tan εB1
− 1 (14.58)

Both deviations are referred to a single laser beam that is specified by the unit vector
components r1x in medium 1 and r2x in medium 2. For two laser beams (A and B)
of a beam pair forming the measurement volume there are four focal points in total
to be considered. Their deviations from the measurement volume can be calculated
from the above two equations, as quantitatively shown in Fig. 14.14a for a concrete
LDA configuration and demonstratively in Fig. 14.14b. As can be seen, the sagittal
focal points of both laser beams are further away from the measurement volume
than the meridian focal points. Because of such deviations, the measurement vol-
ume and the interference fringes in it will clearly be distorted. At least the form of
the measurement volume is no longer an exact ellipsoid. It remains, however, still
unknown, how the fringes in the measurement volume will be distorted and how the
measurement accuracies will be affected.
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14.7.2 Multiple Refractions of Laser Beams

Multiple refractions of laser beams are found in measuring internal flows where at
least one glass window is present, as shown in Fig. 14.13a. Following the similar
calculation procedure as that in Sect. 14.7.1, however, with the window thickness
d �= 0, Eq. (14.55) is combined with Eqs. (14.50) and (14.51) aiming to eliminate
the initial focal point xo. This leads to

xm1 = n1

n0

r3
1x

r3
0x

(tan εA1 − tan εB1) d − (tan εB2 − tan εA2) (xmv − d)

tan εA0 − tan εB0
(14.59)

xs1 = n1

n0

r1x

r0x

(tan εA1 − tan εB1) d − (tan εB2 − tan εA2) (xmv − d)

tan εA0 − tan εB0
(14.60)

Then from Eq. (14.52) as well as Eq. (14.53) the relative deviations of respective
focal points from the measurement volume can be derived to be

�x∗
m,mv = xm2 − xmv

xmv − d

= n2

n0

r3
2x

r3
0x

tan εA2 − tan εB2

tan εA0 − tan εB0
− 1 +

(

n2

n0

r3
2x

r3
0x

tan εA1 − tan εB1

tan εA0 − tan εB0
− n2

n1

r3
2x

r3
1x

)

d

xmv − d
(14.61)

�x∗
s,mv = xs2 − xmv

xmv − d

= n2

n0

r2x

r0x

tan εA2 − tan εB2

tan εA0 − tan εB0
− 1 +

[
n2

n0

r2x

r0x

tan εA1 − tan εB1

tan εA0 − tan εB0
− n2

n1

r2x

r1x

]
d

xmv − d
(14.62)

with xmv − d as the depth of the measurement volume in the test medium.
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All deviations calculated in the current case of multiple beam refractions depend
on the off-axis angle of the LDA head as well as on the depth of the measurement
volume in the test fluid. In the case of very small window thickness (d /xmv << 1),
Eqs. (14.61) and (14.62) can be simplified, leading to Eqs. (14.57) and (14.58),
respectively, for one-time refractions.

Taking into account both laser beams forming the measurement volume, the
deviations of all four focal points from the measurement volume are presented in
Fig. 14.15 for a concrete LDA configuration with α0 = 2.75◦ and xmv/d = 2. They
are similar to those in Fig. 14.14. In particular, it has been again confirmed that the
sagittal focal points of both laser beams are further away from the measurement
volume than the meridian focal points. For the same reason the distortion of the
measurement volume will be expected.

14.7.3 Astigmatism at the On-axis LDA Alignment

In most cases of practical applications, LDA measurements of channel flows are
carried out with on-axis alignment of the LDA head (ϕLDA = 0). Both laser beams
suffers from the same effect of astigmatism, however, only in relation to the small
beam crossing angle (2α0). Corresponding deviations of laser focal points from the
measurement volume can be calculated for instance for the case of d/xmv << 1 by
Eqs. (14.57) and (14.58) with respective incident and refraction angles of two laser
beams. In assuming α0 = 2.75◦ and the refractive index ratio n1/n0 = 1.333, one
obtains

�x∗
m,mv = 0.001 (14.63)

�x∗
s,mv = 0 (14.64)
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This result signifies that no distortion of the measurement volume takes place. The
best optical condition for LDA measurements is reached in this way (see Chap. 13).

14.8 Signal Qualities and the Lens Dependence

14.8.1 Deterioration of Signal Qualities and Strengths

It can be inferred from Fig. 14.6 that in the case of occurring astigmatism, each
elementary segment on the front lens of the LDA head has its individual focal point
in the medium. The measurement volume that is formed by two laser beams in
the meridian plane obviously coincides with the focal points of only a few such
elementary segments and thus cannot be seen by others. The scattered laser light
from the measurement volume therefore cannot be efficiently detected by the receiv-
ing unit. The direct consequence is that the velocity signal rate rapidly decreases
with the LDA off-axis angle. In this respect, the influence of astigmatism on the
signal quality is rooted in the receiving optics rather than in the transmitting optics,
as this is illustrated in Fig. 14.16. The light scattered from the measurement volume
backward propagates along the optical axis through the medium interface. It is ini-
tially a beam bundle with a unique focal point at mv i.e. the measurement volume.
After passing through the medium interface the light in the meridian plane has its
virtual focal point at om, which is the same as that of the transmitting optics. The
light in the sagittal plane, however, shows its virtual focal point os which does not
coincide with om. This phenomenon exactly demonstrates the existence of astigma-
tism in the receiving optics. The distance between two virtual focal points is again
called the astigmatic difference. Because the scattered light after passing trough the
medium interface is no longer a beam bundle with unique focal point, it cannot be
efficiently collected to the detector for further signal processing. Both the signal

mvosom

Fig. 14.16 Astigmatism
in the receiving optics
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quality and the strength will thus be considerably affected. As a result the reduction
of the signal rate will come about.

14.8.2 Lens Dependence of Signal Qualities and Strengths

The existence of astigmatism in receiving optics deteriorates both the qualities and
the strengths of light signals and hence leads to a reduction of the sampling rate in
measurements. In a detailed investigation carried out by Zhang and Eisele (1996a,
1998b), it has been demonstrated that the reduction of the sampling rate in off-axis
LDA measurements additionally and sensitively depends on the lens focal length
specified at the LDA-head.

As known and explained in Sect. 4.2, the use of an LDA front lens with short
focal length (f ) will enhance the brightness of the measurement volume and con-
sequently the strength of the scattered laser light. It is also known that this front
lens as the receiving optics in turn has a large aperture to the measurement volume
(proportional to 1/ f 2). For these two reasons the light signal received is then much
stronger than that received by using a lens with a long focal length. A much high
sampling rate in LDA measurements may usually be expected. This advantage of
receiving optics with short focal length is lost, however, if the receiving optics is
aligned off-axis, as in the case treated here. This can be demonstrated by employing
the ray optics with respect to two lenses with different focal lengths (f1 < f2).

In order to model the astigmatism in LDA measurements, it is assumed, accord-
ing to Fig. 14.7a, that the measurement volume (mv) is located at the distance s to
the left of the lens and does not coincide with the focus of the lens. This modelling
of astigmatism is based on the demonstration in the last section that hardly any ele-
mentary segments on the receiving lens have their focal points being coincident with
the measurement volume. Because of the distance s the scattered laser light from the
measurement volume will not be parallel to the lens axis after passing the lens. The
slopes of the light rays before and after the lens are denoted by m and m′, respec-
tively. From the geometric optics the relationship between oncoming and departing
light rays is given by

m′ = m − h/ f (14.65)

With m = h/ s as the slope of the oncoming ray and d = s − f as the deviation of the
measurement volume from the lens focus, the above equation is rearranged to

f · (f + d)m′ = −h · d (14.66)

For the purpose of comparing the effectiveness of two changeable receiving lenses
with different focal lengths, the deviation d in above equation should be considered.
In the first instance, the approximation f + d ≈ f can be made because of d << f1
and d << f2 in both cases of lenses. In the second instance, the deviation d can
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be assumed to be constant i.e. d1 ≈ d2. This assumption relies on the fact that the
astigmatic difference is nearby independent of the light bundle thickness, as this
can be verified by comparing Fig. 14.11 as being calculated for a thin light bundle
with Fig. 14.9 as being calculated for a thick light bundle which comprises four laser
beams. The nearby constant astigmatic difference points out that the same astigmatic
difference will be given when using a lens with another focal length. With respect
to these two aspects of the distance d Eq. (14.66) can be applied in comparison of
optical effectiveness of two receiving lenses with different focal lengths. It yields
then from Eq. (14.66) with h = const

f 2
1 m′

1 = f 2
2 m′

2 = −d · h (14.67)

This equation is available for comparison between corresponding segments (condi-
tion h1 = h2 = h) on both lenses. As known, the non-zero slope of the light ray
after a lens segment implies that this light will not be efficiently collimated to the
small aperture in the receiving optics and the corresponding segment on the lens
behaves as blind to the measurement volume. Obviously the lens with short focal
length (f1 < f2) behaves as more blind (m′

1 > m′
2) to the measurement volume than

the lens with long focal length, as shown in Fig. 14.17b. For achieving better optical
conditions in off-axis LDA measurements, the applying of the lenses with long focal
lengths is therefore suggested.

Analogous to Eq. (14.67) another comparison with regard to the slopes of both
departing rays for equal oncoming rays (m1 = m2 = m) can be made. Combining
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Fig. 14.17 Effects of the lens focal length on the signal transmission performance (quality and
strength of signals) in the receiving optics
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m = h/ s and d = s − f yields h = (d + f )m which is again inserted into Eq. (14.65).
One obtains then

f1m′
1 = f2m′

2 = −md (14.68)

Since m1 = m2 represents the same aperture of the lens segments to the measure-
ment volume, Eq. (14.68) implies that for the same amount of incident light and thus
of incident light energy (Fig. 14.17c) the inclination of departure rays is inversely
proportional to the lens focal length. The lens with the short focal length (f1 < f2)
is thus comparatively inefficient (m′

1 > m′
2) to conduct the scattered laser light from

the measurement volume to be received by the receiving optics. It again suggests
applying the lenses with long focal length.

A third comparison between lenses with different focal lengths can be made from
Eq. (14.65) if equal slopes of departure rays from the lenses (m′

1 = m′
2 = m′) are

considered. Combining m = h/ s and d = s − f yields m = h/ (d + f ) which is again
inserted into Eq. (14.65). One obtains then with f + d ≈ f

h1

f 2
1

= h2

f 2
2

= −m′

d
(14.69)

This equation shows that for detecting the departure lights whose inclinations are
below a given value

∣
∣m′∣∣ the available lens height (h) is proportional to the square

of the lens focal length. This means that the lens with a longer focal length (f2 > f1)
also has a large available lens surface (h2 > h1) and thus a large aperture to the
measurement volume, as shown in Fig. 14.17d. This circumstance again suggests
the use of the lenses with long focal length.

Based on above analyses it can be concluded that at a given off-axis angle
of an LDA head and for the given position of the measurement volume in the
test medium, an LDA receiving lens with longer focal length is preferred in use
instead of the lenses with short focal length. This ensures the effective conduction of
scattered laser light from the measurement volume to the receiving optics and con-
sequently the obtaining of signals of better qualities. The rapid reduction of velocity
sampling rate because of the occurrence of astigmatism can then be successfully
suppressed.

Figure 14.18 shows an experimental verification concerning the velocity sam-
pling rate as a function of the off-axis angle of an LDA head with two different
focal lengths. The appearance of astigmatism has been here realized by means of
a plane window of Plexiglas (40 mm of thickness) between the LDA head and the
flow. The orientation of the plane window to the optical axis was changed, so that
a great number of cases with astigmatism could be obtained. It can be clearly seen
from Fig. 14.18 that the data sampling rate by using the lens with the long focal
length (f = 400 mm) has hardly changed with the LDA off-axis angle up to 20◦. In
contrast to this, the data sampling rate by using the lens with the short focal length
(f = 160 mm) rapidly decreases, as the LDA off-axis angle increases.
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Another possibility to compensate for astigmatism and its influence on the signal
strength and qualities is to use a water-filled prism if water flow is measured. Details
in use of such a prism and its calculation will be given in Sect. 14.10.

14.9 Error Sensitivities in Forming the Measurement Volume

14.9.1 Beam Separation in the Test Medium

In the foregoing sections, the LDA off-axis alignment against the plane wall (i.e.
the medium interface) is assumed to be within the optical plane containing two laser
beams. This is the way that ensures the laser beam propagation, after being refracted,
within the same plane and thus leads to perfect laser beam intersection. Any devi-
ation in arranging the off-axis LDA from this requirement, as the consequence of
inaccurate mechanical support of LDA for instance, will cause the imperfect laser
beam intersection or laser beam separation. This undesired outcome comes about
because two refracted laser beams after being refracted do not propagate in a unique
plane (Fig. 14.19). For the practical use as well as for the reference purpose, the pos-
sible beam separations arising from errors and inaccuracy in LDA off-axis alignment
will be presented based on investigations carried out by Zhang and Eisele (1998b).
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The desired off-axis LDA alignment is given by arranging the LDA off-axis in
the LDA optical plane. It can also be said that the normal of the medium interface
lies in the optical plane. Any inaccurate LDA off-axis alignment can be considered
as the combined outcome of the accurate off-axis alignment in the optical plane
followed by

– tilting this plane by ψ (Fig. 14.19) and/or by
– rotating the optical plane about the optical axis by δ (Fig. 14.20).

These two bias angles are independent and represent two possible sources leading
to separation between the normal of the medium interface and the LDA optical
plane. As a result, no or an imperfect measurement volume can be formed. In fact,
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Fig. 14.20 Bias angle δ and
the separation of two laser
beams after the refraction in
the medium 2
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any improper LDA off-axis alignment can be expressed to be the additive effect of
these two bias angles.

To simulate the improper off-axis LDA alignment for internal flow measure-
ments, a one-component LDA head with two laser beams is assumed to generally
have an arbitrary spatial orientation against the normal of the medium interface. In
order to calculate the beam separation explicitly, both laser beams that are denoted
by A and B, respectively, will be expressed by unit vectors �a1 and �b1 before and �a2
and �b2 after the refractions. As in the geometric optics, the unit vectors �a2 and �b2
can be determined from the unit vectors �a1 and �b1 by applying the law of refraction
in the vector form according to Eqs. (3.8) and (3.9). For this reason, a coordinate
system will be fixed at which the y − z plane agrees with the medium interface
(Fig. 14.19).

Two laser beams will be assumed to have their initial (i.e. virtual) focal point at
o (xo, yo, zo). The intersection of laser beams with the medium interface (y−z plane)
at points sa and sb, respectively, is determined as follows:

xsa = 0, ysa = yo − a1y

a1x
xo, zsa = zo − a1z

a1x
xo (14.70)

xsb = 0, ysb = yo − b1y

b1x
xo, zsb = zo − b1z

b1x
xo (14.71)

Combining these two intersection points yields a new vector (from B to A) as

�sba = (0, ysa − ysb, zsa − zsb) (14.72)

The arbitrary spatial orientation of the LDA head to the medium interface implies
that the normal of the medium interface may not lie in the plane containing two
laser beams (LDA optical plane). If this occurs, both refracted laser beams then no
longer propagate in a common plane, so that no or imperfect intersection of two
laser beams will be given. The separation between these two spatial laser beams is
represented by the minimum distance in the direction perpendicular to both beam
axes. The direction perpendicular to both laser beams is given by the unit vector
(

�a2 × �b2

)/∣
∣
∣�a2 × �b2

∣
∣
∣. The projection of the separation vector �sba in this direc-

tion then gives the definite distance between both laser beams (plus and minus are
available):

s = �a2 × �b2
∣
∣
∣�a2 × �b2

∣
∣
∣

· �sba = n1

n2
xo

a1yb1z − a1zb1y
∣
∣
∣�a2 × �b2

∣
∣
∣

·
(

a2x

a1x
− b2x

b1x

)

(14.73)

Because the expression
∣
∣
∣�a2 × �b2

∣
∣
∣ represents the sine value of the angle between

both laser beams with �a2 and �b2 as unit vectors, it can be found by

∣
∣
∣�a2 × �b2

∣
∣
∣ =
√

1 −
(

�a2 · �b2

)2 =
√

1 − (a2xb2x + a2yb2y + a2zb2z
)2 (14.74)
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The desired i.e. accurate off-axis LDA alignment is regarded to occur in the LDA
optical plane. This means that, according to Fig. 14.19 with chosen coordinate sys-
tem and ψ = 0, the LDA optical plane coincides with the x − y plane. Because of
a1z = 0 and b1z = 0 the distance s from Eq. (14.73) is zero. This corresponds to the
case with perfect intersection of axes of two laser beams after being refracted in the
medium 2. Deviations from this desired off-axis LDA alignment may be caused by
inaccurate manipulation or the inaccurate mechanical support. As explained before,
any deviation can be considered as the combined and additive effect of two bias
angles ψ and δ. Because these two parameters are independent of each other, the
beam separations respectively caused by these two bias angles can be separately
calculated.

14.9.1.1 Beam Separation Due to the Bias Angle ψ

This case with the bias angle ψ as an error parameter corresponds to the case that
has been shown in Fig. 14.19. Both incident laser beams can be represented by the
unit vector �a1 and �b1, respectively, that are given by the following components:

a1x = cos (ϕLDA + α0) · cosψ (14.75)

a1y = sin (ϕLDA + α0) (14.76)

a1z = cos (ϕLDA + α0) · sinψ (14.77)

b1x = cos (ϕLDA − α0) · cosψ (14.78)

b1y = sin (ϕLDA − α0) (14.79)

b1z = cos (ϕLDA − α0) · sinψ (14.80)

In these equations, the constant α0 denotes the half intersection angle between two
laser beams.

With available incident beams given in above equations the spatial separation
between two laser beams after refraction in the medium 2 can be calculated from
Eq. (14.73). For the reason of compact writing form, only the expression a1yb1z −
a1zb1y in Eq. (14.73) is replaced by respective components listed above, leading to

s

xo
= n1

n2

sinψ sin 2α0
√

1 − (a2xb2x + a2yb2y + a2zb2z
)2

(
a2x

a1x
− b2x

b1x

)

(14.81)

In this equation, all components of unit vectors representing the refracted laser
beams in medium 2 can be calculated by applying the law of refraction that has
already been presented by Eqs. (3.8) and (3.9). One then obtains
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a2y = n1

n2
a1y, a2z = n1

n2
a1z, a2x =

√

1 − a2
2y − a2

2z (14.82)

b2y = n1

n2
b1y, b2z = n1

n2
b1z, b2x =

√

1 − b2
2y − b2

2z (14.83)

According to Eq. (14.81) the related separation between two refracted laser beams
has been shown as a function of the off-axis angle of the LDA head ϕLDA and the
bias angle ψ . For an example of calculations, Fig. 14.21 shows the beam separation
in medium 2 (water) in an air-water system. This simplified system can be applied
when the window thickness of an air-window-water system is negligible. The half
intersection angle between two laser beams is taken as α0 = 6.77◦. As it can be
read out for instance with ϕLDA = 30◦ and ψ = 1◦, the resultant beam separation is
given by s/xo = 1.4·10−3. If the initial focal point is positioned by xo = 100 mm, to
which the measurement volume in the medium 2 is found at about 1.65xo (Fig. 14.5),
then the beam separation takes s = 0.14 mm. It should be mentioned that this beam
separation may no longer be neglected in the practical LDA measurements because
the thickness of the measurement volume itself is only in the order of 0.1 mm. The
undesired outcome of the beam separation is the drop of velocity sampling rate and
in the worst case the total loss of LDA signals.

14.9.1.2 Beam Separation Due to the Bias Angle δ

This case with the bias angle δ corresponds to the case that has been shown in
Fig. 14.20. According to Appendix B, both incident laser beams can be again rep-
resented by the unit vector �a1 and �b1, respectively, that are given by the following
components:

a1x = cosϕLDA cosα0 + sinϕLDA sinα0 cos δ (14.84)

a1y = sinϕLDA cosα0 − cosϕLDA sinα0 cos δ (14.85)
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a1z = sinα0 sin δ (14.86)

b1x = cosϕLDA cosα0 − sinϕLDA sinα0 cos δ (14.87)

b1y = sinϕLDA cosα0 + cosϕLDA sinα0 cos δ (14.88)

b1z = − sinα0 sin δ (14.89)

Substituting respective expressions in Eq. (14.73) yields

s

xo
= −n1

n2

sinϕLDA sin 2α0 sin δ
√

1 − (a2xb2x + a2yb2y + a2zb2z
)2

(
a2x

a1x
− b2x

b1x

)

(14.90)

In this equation, all components of unit vectors representing the refracted laser
beams in medium 2 can be calculated by Eqs. (14.82) and (14.83).

From the above equation the resultant separation between both refracted laser
beams has been shown as a function of the off-axis angle of the LDA head ϕLDA
and the bias angle δ. For an example of calculations, Fig. 14.22 shows the beam
separation in medium 2 (water) in a simplified air-water system. The half intersec-
tion angle between two laser beams is again taken as α0 = 6.77◦. As it can be read
out for instance with ϕLDA = 30◦ and δ = 1◦ typically, the resultant beam separa-
tion is s/xo = 0.7 · 10−3. If the initial focal point is positioned by xo = 100 mm,
to which the measurement volume in the medium 2 is found at about 1.65xo, then
the beam separation takes s = 0.07 mm. This value has also to be considered as suf-
ficiently large if compared with the measurement volume whose thickness is only
about 0.1 mm. As said before, the undesired outcome of the beam separation is the
drop of velocity sampling rate or the total loss of LDA signals.
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Fig. 14.22 Beam separation caused by the bias angle δ
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14.9.1.3 Statement Regarding the Inaccurate Laser Beam Alignment

Calculations made above and shown in Figs. 14.21 and 14.22 clearly pointed out
that the uncertainty in forming the measurement volume is very sensitive to the
imperfect off-axis LDA alignment, especially at large off-axis angles. The resultant
beam separation implies that either no measurement is possible (for large beam
separation) or the geometrical size of the measurement volume decreases. The signal
rate will thus be much affected. This knowledge undoubtedly suggests that the off-
axis LDA alignment has to be accurately accomplished, so that the laser beams after
refractions do propagate in the same optical plane containing two incident beams. It
is, however, usually not necessary to exactly know the error i.e. the beam separation
s while forming the measurement volume. In addition, both bias angles (ψ and δ)
are usually not available.

If possible, LDA alignment at large off-axis angles should be avoided. This is
recommended also in concerning the rapid reduction of the signal rate because of
astigmatism, as already treated in Sect. 14.8.

In dealing with multiple refractions e.g. in an air-window-water system, calcula-
tions of the beam separation will be given in the next section.

14.9.2 Beam Separation After Multiple Refractions

Most LDA applications to internal flow measurements are characterized by at least
two-time refraction of each laser beam, for instance at medium interface air-glass
and glass-water. Analogous to the derivation of Eq. (14.73) the beam separation after
passing through a plane layer, say a glass window of thickness d, can be calculated
as (Zhang and Eisele 1998b)

s

xo
= n0

n2

a0yb0z − a0zb0y
√

1 − (a2xb2x + a2yb2y + a2zb2z
)2

[(
a2x

a0x
− b2x

b0x

)

− d

xo

n0

n1

(
a2x

a1x
− b2x

b1x

)]

(14.91)

Herein the indices 0, 1 and 2 are commonly rearranged to the medium air, glass and
water. xo indicates the location of the virtual focal point of laser beams. The origin
of x-axis lies on the first refraction surface.

14.9.3 Possible Impact on PDA Measurements

As stated, LDA is a method for flow velocity measurements. It operates on the
wave theory and makes use of the Doppler effect in the light that is scattered by
a moving particle in the flow. Based on the LDA principle, the LDA method has
also been extended to measure the particle size. The extended method makes use
of the phase difference in the scattered laser lights that are detected from two spa-
tially different directions. Because this phase difference is proportional to the size
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of the particle that scatters the laser light, the particle size can be calculated from the
measured phase difference. It again deals with a method that does not need any cal-
ibration. This extended LDA for particle size measurements is known as the Phase
Doppler Anemometry (PDA). It contains a transmitting optics that is the same as
that in the LDA method and a separate receiving optics. Detailed descriptions of the
functionality of the PDA method can be found for instance by Albrecht et al. (2003).

The analyses of the outcome of errors in LDA alignment, as described above
with regard to the LDA off-axis angle ϕLDA and two bias angles ψ and δ, also apply
to the transmitting optics of the PDA method in measuring the particle size in the
flow. Because of the beam separation, the Gaussian distributions of the light inten-
sity in both laser beams may no longer be coincident in the measurement volume,
as illustrated in Fig. 14.23. It is then quite possible that the light of one laser beam
is mainly reflected by a particle, whereas the light of another laser beam is mainly
refracted by the same particle. The superposition and detection of two such different
types of scattered laser light will lead to erroneous interpretation of the particle size.
In addition, only large particles have a high probability of simultaneously scattering
both laser beams. This again leads to mistaken interpretation of the size distribution
of particles in the flow. Furthermore, because the effective flow area in the mea-
surement volume could not be clearly specified, accurate measurements of both the
concentration and the mass flux of particles in the flow could not be achieved. This
will in turn largely limit the fundamental evaluations of related physical and engi-
neering processes with particle flows (Zhang et al. 1998, Zhang and Eisele 1999,
Zhang and Ziada 2000).

14.10 Method for Compensation of Astigmatism

The astigmatism in LDA measurements has been confirmed to greatly influence
the measurement accuracy. In worst cases, no measurement can be carried out
at all because of the separation between two laser beams. To compensate for the
astigmatism, for instance in measuring the internal water flow, a water-filled prism
according to Fig. 14.24, with or without the air gap, can be applied. Such an optical
arrangement has already found its practical applications (Booij and Tukker 1994).
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Fig. 14.24 Application example of using a water-filled prism to reduce and compensate for the
optical aberration (astigmatism) in LDA measurements of water flows

The air gap serves to cause a “negative” astigmatism so that a complete compensa-
tion of astigmatism in both the transmitting and the receiving optics can be achieved.
Because the perpendicular entry of laser beams into the prism does not cause any
significant optical aberrations (see Chap. 13 and especially Sect. 14.7.3), the use
of a water-filled prism acts as to submerge the LDA head into the same water. The
occurrence of astigmatism on the side of transmitting optics thus changes from the
case of air-glass-water to the case of water-glass-air-water. This is meaningful not
only because of the possibility of completely suppressing the astigmatism, but also
because of the simplicity of doing this, as will be shown below.

With the help of the water-filled prism the LDA head acts as to be submerged
in water. This ensures that all four laser beams within the water of the water-filled
prism are free of the optical aberrations and would intersect at a unique virtual focal
point. The water in the prism should thus be considered as the reference medium for
calculating the astigmatic difference in relying on calculation fundamentals in Sect.
14.5. The first non-perpendicular refraction of the optical axis occurs at ϕ0 = 30◦,
while the optical axis intersects the next medium interface. The same optical prop-
erty of transparent walls on both sides of the air gap is assumed. Hence for further
calculations an equivalent wall thickness to the sum of both can be used.

The half intersection angle between two laser beams in the reference medium αw
should be used in place of α0. Between αw and α0 it applies the law of refraction
with n0 = 1

sinαw = n0

nw
sinα0 (14.92)

The two laser beams in the meridian plane are designated by A and B. There
are generally three distances that cause astigmatism and contribute to the astig-
matic difference: the glass thickness (dg), the air gap (da) and the depth of the
measurement volume in the water flow (dw). Against the reference medium the
air gap causes a negative astigmatic difference. In order to achieve the complete
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compensation of astigmatism, the necessary thickness of the air gap can be
calculated from Eq. (14.26) by setting �xm,s = 0:

Ψgdg + Ψada + Ψwdw = 0 (14.93)

Herein

Ψg = cosαw cosϕo
√

n2
g

n2
w

− (1 − cos2 αw cos2 ϕo
)

− Tg,w (14.94)

Ψa = cosαw cosϕo
√

n2
a

n2
w

− (1 − cos2 αw cos2 ϕo
)

− Ta,w (14.95)

Ψw = 0 (14.96)

Tg,w = tan εAg − tan εBg

tan εAw − tan εBw
(14.97)

Ta,w = tan εAa − tan εBa

tan εAw − tan εBw
(14.98)

The result Ψw = 0 has been automatically obtained as expected since the test
medium is equal to the reference medium (see Sect. 14.5). This just represents the
advantage of using a water-filled prism for water flow measurements, because the
astigmatism and thus the optical aberration become independent of the depth of
the measurement volume in the flow. From Eq. (14.93) the necessary thickness of the
air gap is calculated as

da = −Ψg

Ψa
dg (14.99)

A calculation example of using the water-filled prism should be demonstrated here.
The LDA head is specified by the laser beams with a half intersection angle equal to
α0 = 5.5◦. The water-filled prism is designed with ϕo = 30◦. Table 14.1 shows the
calculation results, from which the thickness of the air gap is calculated as 1.9 mm.

As shown in Table 14.1, the parameter Ψa is negative. This means that the used
air gap leads to a negative astigmatic difference which enables the total astigmatism
to be compensated for. If no air gap is used, then an astigmatic difference, caused
by the glass wall of the thickness dg = 18 mm, is calculated from Eq. (14.29) again
with Ψw = 0 to

�xm,s = Ψgdg = 1.1 (mm) (14.100)

This astigmatic difference which in effect represents a displacement between two
measurement volumes appears to be too large for the 2D LDA optics in Fig. 14.24.
For two component measurements, therefore, it is indispensable to use an air gap
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Table 14.1 Calculation example of using a water-filled prism and the air gap to completely
compensate for the astigmatism

Parameter specifications:
Refractive index of water nw 1.333
Refractive index of transparent glass window ng 1.52
Half intersection angle of two laser beams at LDA head α0 5.5
Geometrical angle of the water-filled prism ϕo 30
Glass window thickness total (mm) dg 18

Calculations:
Half intersection angle of two laser beams in water αw 4.1
Refraction angle of beam A in glass εAg 29.5
Refraction angle of beam B in glass εBg 22.5
Refraction angle of beam A in air εAa 48.4
Refraction angle of beam B in air εBa 35.6
Refraction angle of beam A in water εAw 34.1
Refraction angle of beam B in water εBw 25.9
Parameter (glass – water) Tg,w 0.78
Parameter (air – water) Ta,w 2.13
Parameter (glass) Ψg 0.061
Parameter (air gap) Ψa −0.58
Air gap needed (mm) da 1.9

to completely compensate for the astigmatism. For 1D LDA optics in Fig. 14.24,
however, the astigmatic difference �xm,s = 1.1 mm is irrelevant. This means that
measurements of using the 1D LDA head can be performed without any significant
difficulties and inaccuracies.

For the purposes of comparison, the case of off-axis LDA alignment without
using the prism should be considered. Because the reference medium in this case is
air (index 0), the parameter Ψ1 (for glass), Ψ2 (for water) and T20 are recalculated
to be Ψ1 = 0.098, Ψ2 = 0.091 and T20 = 0.608, respectively. The astigmatic
difference that is caused by the glass wall of the thickness d = 10 (Fig. 14.24) is
calculated to �xm,s(glass) = 1.4, by concerning the first part in Eq. (14.26). Also
worth being mentioned is that in this case the depth of the measurement volume
in the flow additionally contributes to the astigmatic difference. Because of this a
water-filled prism should always be applied when the LDA optics has to be aligned
off-axis.

It should be further mentioned that in the case of Fig. 14.24 with full com-
pensation of astigmatism, the shift of each measurement volume is generally
two-dimensional, even though the LDA head outside of the flow merely moves
along the normal direction of the plane wall. This leads to undesirable separation
between the measurement volumes of one- and two-component LDA units. This
two-dimensional shift of each measurement volume is similar to that considered in
Sect. 14.4. The flow field behind the wall could only be measured, provided that the
optical realignment would take place for each new measurement point in the flow.



Chapter 15
Flow Measurements in Circular Pipes

Fluid flows in circular pipes belong to the most familiar and most broadly
investigated flows. But the measurement of such flows by means of laser Doppler
anemometry is not at all straightforward because of the surface curvatures on
both the inside and the outside of the pipe. As is well known, simultaneous
two-component velocity measurements, that are taken by using two pairs of laser
beams, cannot be carried out, as the four laser beams do not intersect at a unique
point in the flow because of optical aberrations. One of these optical aberrations is
comparable with the astigmatism that occurs when the LDA optical axis is aligned
off-axis against the normal of a plane wall, as treated in the last chapter. Nearly
all the optical features and the effects of astigmatism in the case of plane windows
also exist in a similar but often more complex form in the measurement of the cir-
cular pipe flow. Laser beam refractions on the curved interfaces of a circular pipe,
for instance, complicate the calculation of beam propagations with regard to both
the location of the measurement volume and the intersection angle between two
laser beams (Boadway and Karahan 1981). In order to avoiding the difficulty of cal-
culating complex laser beam refractions on the curved flow interface, the method
of matching the refractive index of the test fluid to that of the pipe wall has often
been applied in small-scaled laboratory measurements. The method, however, is not
applicable to the flows in most industrial applications where the refractive index
matching is impossible or the gaseous flows are in use.

The problems that are related with direct measurements of flows in circular pipes
have been additionally recognized in the signal strengths and qualities. Experiences
show that in traversing the velocity profile across a circular pipe, the available signal
qualities and thus the signal rate could be achieved only within a depth of about
1/3 of the pipe diameter. Beyond this depth both the signal strengths and qualities
briskly drop down so that no measurements can be further carried out. The reason
for such a disturbance in the respective measurement is the optical aberration in the
receiving optics. This means, in concrete terms, that only a few elementary segments
on the LDA receiving lens can see the measurement volume, while majorities are
blind. This circumstance is comparable with that in flow measurements behind a
plane wall by means of an off-axis LDA head, as already treated in Sect. 14.8. It
appears that the flow in the centre area of a circular pipe could hardly be directly
measured without matching the refractive index of the flow to that of the pipe wall.

191Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_15, C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 15.1 Method to improve
the optical condition in LDA
measurements of flows in the
circular pipe, effective but not
quite convenient

Because of this, some LDA users applied the method of putting the circular pipe
with flows into a rectangular water tank with plane walls (Fig. 15.1). In using such
a measurement facility, the optical performance on the side of receiving optics can
be significantly enhanced, so that better qualities of signals can be obtained. The
problem of calculating the measurement volume, however, remains because each
laser beam still suffers from two-time refraction on the curved interfaces.

In dealing with flow measurements in a circular pipe by means of the LDA
method without matching the refractive index, the optical performance can be con-
siderably improved if the outside of the pipe is cut off and made plane, as illustrated
in Fig. 15.2 from an industrial application (Zhang and Casey 2007, Zhang and
Parkinson 2002). This approach was initially considered to simplify calculations
of laser beam transmissions, as each laser beam undergoes only one time refraction
on the curved interface and the formation of the measurement volume is indepen-
dent of the thickness of the pipe wall. The approach indeed additionally contributes
to a lot of reductions of diverse optical aberrations, since the main optical aberration
is then only restricted to the beam refraction on the internal surface of the circu-
lar pipe. Therefore high quality signals can be obtained even at a distance of about
2/3 of pipe diameters from the pipe wall. To get the complete distribution of each

ut
0.2 m/s

Fig. 15.2 Plane wall configuration on the outside of a circular pipe and measurements of the
tangential velocity component (Zhang and Parkinson 2002)



15.1 Measurements of Axial Velocities 193

velocity component across the pipe, additional measurements need to be performed
from the opposite side by rotating the LDA head 180◦ around the pipe axis. The use
of a moveable prism according to Fig. 15.2 creates a comparable plane cut-off on
the outside of the pipe and enables the free alignment of the LDA head to the pipe
and around the pipe axis. With this method both the main and the secondary flow
distributions in the cross section of the respective pipe flow could be well measured.
Clearly, measurements of all three velocity components in a pipe flow could only be
achieved one after another.

As a matter of fact, a great number of flow measurements in circular pipes have
been restricted to axial and tangential velocity components. The measurement of
the tangential velocity component (secondary flow) does require some more calcu-
lations for tracking the laser beam in the flow. It actually does not represent a highly
difficult task. In contrast, the measurement of the radial velocity component is obvi-
ously very restricted by complexities and intricacies of tracking the laser beams in
the flow. It is in any case true that almost no such measurements have ever been car-
ried out or can be referred to. Based on detailed analyses a fundamental guideline
of measuring the radial velocity component of the flow in a circular pipe has been
worked out by Zhang (2004a, b).

Another serious aspect associated with the laser beam refraction on the curved
interface is the dislocation of all laser beam waists from the measurement volume.
At large displacement between the measurement volume and the laser beam waists,
the laser light intensity in the measurement volume decreases so that velocity sig-
nals will become too weak to be detected. This incident states an additional reason
for the measurement limitation within a depth at about 2/3 of the pipe diameter.
Furthermore, the dislocation of laser beam waists inevitably leads to the fringe
distortion in the measurement volume and hence to measurement errors.

In the following sections, essential calculations of tracking the laser beams in the
flow will be presented with respect to the shift and optical properties of the mea-
surement volume. All three velocity components will be considered. In that case,
possible influences on both the signal quality and the measurement accuracy will
be revealed and quantified. Because the plane outside of the circular pipe, as shown
in Fig. 15.2, has been confirmed to be very effective and helpful in improving the
optical conditions, all calculations will be referred to in this optical configuration.
Correspondingly, the LDA head is assumed to be perpendicularly aligned to this
plane surface.

15.1 Measurements of Axial Velocities

The measurements of axial velocities require that the two laser beams lie in a plane
parallel to the pipe axis. The plane containing two laser beams is called the optical
plane. By arranging the optical plane to go through the pipe axis (Fig. 15.3b), the
laser beam refraction on the inside of the circular pipe is comparable with that on
a perpendicular plane surface. Both laser beams propagate in the same plane as the
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Fig. 15.3 Deviation of the optical plane from the pipe axis and its effect on the measurements of
the axial velocity component

optical plane prior to refractions. The optical aberration in the transmitting optics
remains at a minimum so that the best available optical condition is ensured.

The position of the measurement volume, measured from the pipe wall, can
be directly written out from Eq. (13.6) in proportion to the position of the virtual
measurement volume as

s2 = n2

n1
s1 (15.1)

with s1 as the coordinate of the virtual intersection point of two laser beams.
A particular property of the optical layout for measurements of axial velocities

should be highlighted here for future reference. As long as the optical plane is kept
parallel to the pipe axis, without having to go through it, the intersection angle
between the two refracted laser beams remains unchanged. This can be confirmed
according to Fig. 15.3a which shows a deviation e of the optical plane from the pipe
axis. With regard to the laser beam A for instance, the laser beam is denoted by
the unit vector �a1 in the medium 1 and �a2 after the refraction in the medium 2. For
the applied coordinate system the corresponding z-component of the unit vector �a2
is given, according to Eq. (3.9), as a2z = n1/n2 · a1z. The intersection angle 2α2
between the two refracted laser beams A and B can then be calculated by

cos 2α2 = �a2 · �b2 (15.2)
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Because of the symmetry condition between two laser beams there are a2x = b2x,
a2y = b2y and a2z = −b2z as well as a2

2x + a2
2y = 1 − a2

2z for the unit vector �a2.
From Eq. (15.2) it then follows

cos 2α2 = 1 − 2a2
2z = 1 − 2

(
n1

n2
a1z

)2

(15.3)

With respect to the trigonometric identity cos 2α2 = 1 − 2 sin2 α2 and a1z = sinα1
for the incident laser beam A it further follows from the above equation

sinα2 = n1

n2
a1z = n1

n2
sinα1 (15.4)

The intersection angle of the two laser beams and thus the optical properties of the
measurement volume in the test fluid remain the same as that on the pipe axis. This
result indicates that the deviation in aligning the optical plane from going through
the pipe axis does not lead to any error in velocity measurements. The analysis
made here can be easily demonstrated by a table-top experiment when a scaled rule
is inserted into a circular pipe with or without water (Fig. 15.4). Observation from
the outside verifies that there is no longitudinal distortion in the rule scale along the
pipe axis. The distortion only occurs in the radial direction.

Although a certain deviation of the optical plane from the pipe axis does not lead
to any change in the beam intersection angle, there are, however, some other aspects
that should be accounted for:

– With the displacement of the LDA head in the x-direction, the measurement vol-
ume in the test fluid gets moved along the bisector of two refracted laser beams
i.e. along a path which is not parallel to the x-axis. Because of the comatic
aberration, similar to that in Fig. 14.3a, the bisector of the two refracted laser

Fig. 15.4 A table-top
experiment showing no any
longitudinal distortion in the
rule scale along the pipe axis
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beams does not precisely coincide with the refracted optical axis. The differ-
ence between them can, however, be left to a first approximation. The refracted
optical axis in the test fluid is calculated by using the law of refraction as

sin εo2 = n1

n2
sin εo1 = n1

n2

e

R
(15.5)

As an example, the beam refraction with n1/n2 = 1.52/1.33 is assumed. For
e/R = 0.5 which means εo1 = 30◦ there is εo2 = 34.8◦. The inclination angle of
the refracted optical axis in the flow against the x-axis is 4.8◦.

– Because the intersection angle between two refracted laser beams in the flow
is entirely a constant and thus independent of the position of the measurement
volume, the shift of the measurement volume along the bisector (s) of two laser
beams is proportional to the displacement of the LDA head along the x-axis. The
corresponding shift ratio is for α0 << 1 and α2 << 1 simply

kmv = �smv

�xLDA
= tanα0

tanα2
≈ sinα0

sinα2
= n2

n0
(15.6)

The LDA head is assumed to be positioned in air (n0 = 1).
The x-component of the above shift ratio is calculated, according to

Fig. 15.3, by

kmv,x = kmv cos (εo2 − ϕo) (15.7)

Usually the inclination angle of the refracted optical axis in the flow is small.
For instance for e/R < 0.5 there is almost εo2 − ϕo < 5◦, so that kmv,x ≈ kmv
can be applied.

– At large deviations of the optical plane from the pipe axis (e/R > 0.5), which
might be desired in some cases, the LDA optical axis tends to largely devi-
ate from the normal �n of the interface. This situation is comparable with large
off-axis angles of the LDA head against the normal of a plane wall (see Chap.
14). As a result the optical aberration related to the LDA optics, or accurately
speaking, the effect of astigmatism becomes significant and the quality of opti-
cal signals will be considerably deteriorated. This optical aberration can also be
visualized with the table-top experiment mentioned above, at which the scale on
the rule in the pipe becomes continuously more unclear along the pipe radius
(Fig. 15.4).

Since the deviation of the LDA optical plane from the pipe axis causes unde-
sirable features, large deviations should be avoided. For moderate deviations (say
e/R < 0.5), as long as the signal rate is sufficiently high, no particular attention
needs to be paid. The fringe distortion in the measurement volume, which results
from the dislocation of laser beam waists, is not significant and can be neglected.
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15.2 Measurements of Tangential Velocities

For measurements of tangential velocities the LDA head is aligned, so that the opti-
cal plane is perpendicular to the pipe axis (Fig. 15.2). With regard to the laser beam
refractions on the circular surface, two main aspects need to be considered:

– The shift of the measurement volume in the flow is no longer proportional to the
shift of the LDA head.

– The intersection angle between the two refracted laser beams and thus both the
geometrical and optical properties of the measurement volume depend on the
local position of the measurement volume in the flow.

Detailed calculations of tracking the laser beams in the flow should therefore be
conducted to ensure correct LDA measurements.

15.2.1 Basic Geometrical Relationships

The laser beams are again considered as they are present in the transparent pipe wall
(index 1). Owing to the symmetrical layout between two laser beams, only one beam
will be considered. The measurement volume is then formed on the symmetrical
axis i.e. the x-axis in Fig. 15.5. For clarity, the crossing angle between two laser
beams has been shown exaggerated. The laser beam is assumed to have its start
position 1, when the measurement volume is positioned on the inside of the circular
pipe. The shift of the laser beam to the position 2 is given by a distance s1 with
which the virtual measurement volume is moved to m′. The distance s1 is about n1-
times the movement of the LDA head in air. Because of the laser beam refraction
the real measurement volume is found at m. The application of the law of sines to
the triangles ocm′ and ocm, respectively, yields

R − s1

sin (α1 − ϕ)
= R

sinα1
(15.8)

R − s2

sin (α2 − ϕ)
= R

sinα2
(15.9)

The law of refraction in such a case is given by

n1 sin (α1 − ϕ) = n2 sin (α2 − ϕ) (15.10)

These three equations form the basic solutions for both the new position (s2) and
the geometrical parameter (2α2) of the measurement volume in the flow. For a given
movement s1 the following calculation process can be performed

s1
(15.8)−−−→ϕ

(15.10)−−−−→α2
(15.9)−−−→ s2 (15.11)
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An application example of the presented technique has already been shown in
Fig. 15.2.

15.2.2 Simplifications of Calculations

In the above calculation, Eq. (15.11) represents the way of indirectly calculating
the relevant parameters α2 and s2 that are related to the measurement volume. This
process seems to be somewhat inconvenient. With respect to the configuration of
common LDA systems, at which the half intersection angle of laser beams is usually
not more than 10◦, the half intersection angle of laser beams in the transparent pipe
wall is then not more than 7◦ and the angle ϕ seldom exceeds 14◦. For this reason
all the angles under the symbol of sine functions (α1, α2, α1 − ϕ and α2 − ϕ) in the
basic equations from Eq. (15.8) to Eq. (15.10) can be considered as small angles.
All three equations can then be simplified by using the approximation sin x = x for
paraxial rays. The characteristic parameters for the measurement volume can then
be directly interpreted as the function of the virtual position of the measurement
volume as follows:

s2

R
= 1

1 + n1
n2

(
R
s1

− 1
) (15.12)

α2

α1
= n1

n2
−
(

n1

n2
− 1

)
s1

R
(15.13)

ϕ

α1
= s1

R
(15.14)

At present, Eq. (15.14) is only written for completeness. It will not be applied to
quantify the measurement volume.

The inaccuracy arising from the approximations made above should be esti-
mated. An LDA system is assumed to have a half intersection angle α1 = 4.45◦
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Fig. 15.6 Relative uncertainties in calculating the measurement volume in the water flow by using
the simplified relations

between laser beams in the pipe wall (n1 = 1.52). It is further assumed that the mea-
surement volume traverses the pipe section for the case of water flows (n2 = 1.33).
From Eqs. (15.12) and (15.13), respectively, both the parameter s2 and α2 are cal-
culated in the function of s1. Their relative deviations from those as calculated from
Eq. (15.11) can then be determined, as shown in Fig. 15.6. As can be seen, the
maximum error arising from the approximations leading to Eqs. (15.12) to (15.14)
is below 0.1% and really negligible. The same calculation can also be made for
air flow (n2 = 1). The maximum error embedded in Eq. (15.12) is 0.4%, while in
Eq. (15.13) is only 0.1%.

15.2.3 Fringe Spacing and Velocity Corrections

By using the laser beam intersection angle in the fluid, the fringe spacing in the
measurement volume is calculated as

�x = λ2

2 sinα2
(15.15)

Because of λ1/λ2 = n2/n1 this equation is rewritten as

�x = n1

n2

sinα1

sinα2

λ1

2 sinα1
= n1

n2

sinα1

sinα2
�x0 (15.16)

Herein �x0 represents the predefined fringe spacing in the LDA optics i.e. the ref-
erence fringe spacing, when the measurement volume is found in the open air or in
the pipe wall.
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Equation (15.16) points out that the tangential velocities that are measured have
to be corrected by a factor equal to

kvel = ut

ut,measured
= �x

�x0
= n1

n2

sinα1

sinα2
(15.17)

or with respect to Eqs. (15.8), (15.9) and (15.10) to

kvel = R − s2

R − s1
(15.18)

In applying Eq. (15.12), this is again reformed as

kvel = 1 +
(

n1

n2
− 1

)
s2

R
(15.19)

It linearly depends on the depth of the measurement volume in the pipe flow. While
in the near region to the pipe wall the correction factor is equal to unity, it takes n1/n2
on the pipe axis. For n1 = 1.52 (glass) and n2 = 1.33 (water) there is kvel = 1.14.

15.3 Measurements of Radial Velocities

The measurements of radial velocities in circular pipes represent a highly complex
process, if no index matching method is applied. In positioning the LDA head for
radial velocity measurements according to Fig. 15.7, the following problems have
to be solved:

– How can the measurement volume (m) be accurately positioned?
– How can the beam intersection angle (2α2) be calculated?
– What about the orientation (τ ) of the measurement volume?

The beam intersection angle and the measurement volume orientation have to be
known in order to correct systematic measurement errors. In reality, because of
τ �= 0 each measured velocity does not exactly represent the radial velocity
component.

15.3.1 Accurate Positioning of the Measurement Volume

In principle, each LDA head position determines a position of the measurement
volume in the flow. With the shift of the LDA head parallel to the y-axis, the mea-
surement volume would generally travel along a two-dimensional path. This will
considerably complicate the profile measurements of the radial velocity compo-
nent. A relatively easy method is to calculate the necessary movement of the LDA
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head for the given path of the measurement volume along the y-axis, as shown in
Fig. 15.7. The starting point is the LDA head position at which the measurement
volume is positioned on the pipe axis (as the starting position). This can be achieved
from the method described in the last section for measurement of the tangential
velocity component. For each new position of the measurement volume (m) on the
y-axis at r, the necessary movement of the beam pair in medium 1 from the starting
position is assumed to be �xr and �yr. These are measured by shifting the refer-
ence line a0b0 (denoted by a fine dotted line) from the starting position to the new
position. Then the following relationships can be obtained:

�xr = (ya − yb)− (ya0 − yb0)

2 tanα1
(15.20)

�yr = 1

2
(ya + yb) (15.21)

In these two equations, a0, b0, a and b are intersections between laser beams and the
tangent of the circular pipe at x = −R. The basic intersection coordinates ya0 and
yb0 are given by

ya0 = R · tanα1 (15.22)

and

yb0 = −R · tanα1 (15.23)
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The intersection points a and b represent positions which the laser beams A and B at
the new position of the beam pair must pass through. Clearly detailed calculations
of ya and yb for a given measurement volume position have to be completed.

15.3.1.1 Determination of Intersection Points ya and yb

The purpose of present calculations is to establish the functions of both ya = f (r)
and yb = f (r) for the given measurement volume along the y-axis. Because it deals
with the same calculations both for ya and yb, only detailed calculations of ya = f (r)
for the laser beam A will be presented below.

According to Fig. 15.8 the function ya = f (r) can be obtained if the function
ϕa = f (r) is known. For this reason the function ϕa = f (r) or equivalently r =
f (ϕa)will be established first. The position of the measurement volume on the y-axis
can be expressed by

r = R sinϕa − R cosϕa tanα2a (15.24)

or related to R as

r

R
= sinϕa − cosϕa tanα2a (15.25)

Here tanα2a needs to be expressed as a function of ϕa.
With respect to α2a = ϕa − ε2 and the law of refraction in the form of n2 sin ε2 =

n1 sin ε1 the following relationship can be obtained:

tanα2a =
√

Ta − 1 tanϕa − 1√
Ta − 1 + tanϕa

(15.26)
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Herein Ta is given by

Ta =
(

n2

n1

)2 1

sin2 ε1
=
(

n2

n1

)2 1

sin2 (ϕa − α1a)
(15.27)

According to Eq. (15.26) there has to be Ta ≥ 1. In fact, Ta = 1 just represents the
beginning of the total reflection, as given in Eq. (15.27).

Together with Eq. (15.25), the position of the measurement volume on the y-axis
is now expressed as a function of the angle ϕa:

r

R
= 1√

Ta − 1 + tanϕa

1

cosϕa
= f (ϕa) (15.28)

According to Figs. 15.7 and 15.8 the angle ϕa begins at ϕa = α1a, at which the
measurement volume is positioned in the pipe centre.

In a similar way, the same function for the laser beam B could be found. As
a matter of fact, the subscript a in Eq. (15.28) needs only to be replaced by the
subscript b. However, attention should be paid to the fact that both the angle α1b
and α2b are negative for the laser beam B. Correspondingly the angle ϕb begins at
ϕb = α1b.

The intersection between laser beam A and the tangent at x = −R is calculated
according to Fig. 15.8 as

ya = R · sinϕa + R (1 − cosϕa) tanα1a = f (r) (15.29)

Similarly there is for the laser beam B

yb = R · sinϕb + R (1 − cosϕb) tanα1b = f (r) (15.30)

They are both functions of r because of Eq. (15.28) for the laser beam A and
the corresponding equation for the laser beam B. Together with Eqs. (15.20) and
(15.21) the necessary movements of the laser beam pair in the medium 1 for a given
measurement volume at r can be determined.

15.3.1.2 Simplifications of Calculations

Both functions given in Eqs. (15.29) and (15.30) are not explicit, because according
to Eq. (15.28) the polar angle ϕa cannot be expressed to be an explicit function of
r/R. For a series of angles ϕa being assumed to be given, however, corresponding
ya/R and r/R can be calculated and related to each other, as these have been shown in
Fig. 15.9 as an example. In this figure, the corresponding function for the laser beam
B has also been shown. It can be concluded that below r/R = 0.8 there exist linear
functions of both ya = f (r) and yb = f (r). For r = 0 there are ya0 = R tanα1a
and yb0 = R tanα1b according to Fig. 15.7. To calculate these linear functions, one
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needs to further calculate the respective gradients at r = 0. From Eq. (15.29), for
instance, for the laser beam A one obtains

dya

dr
= dya

dϕa

dϕa

dr
= R (cosϕa + tanα1a sinϕa)

dϕa

dr
(15.31)

It is known that at r = 0 there is ϕa = α1a. Furthermore it results from Eq. (15.28)
Ta → ∞ and then from Eq. (15.27)

√
Ta sin (ϕa − α1a) = n2/n1. With respect to

these conditions it can be calculated from Eq. (15.28)

1

R

dr

dϕa

∣
∣
∣
∣
r=0

= 1

cosα1a

n1

n2
(15.32)

Hence it follows from Eq. (15.31) for r = 0

dya

dr
= n2

n1
(15.33)

From similar calculations or immediately from Fig. 15.9 the same gradient is
obtained for the laser beam B at r = 0.

The linear functions of both ya = f (r) and yb = f (r) are thus obtained as

ya

R
= tanα1a + n2

n1

r

R
(15.34)

yb

R
= tanα1b + n2

n1

r

R
(15.35)

To be mentioned again is α1b < 0 and thus tanα1b < 0.
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15.3.1.3 Necessary Movement �xr and �yr of Laser Beam Pair

The intersection coordinates shown in Eqs. (15.34) and (15.35) are now used to
calculate the necessary movements of the laser beam pair in medium 1, when the
measurement volume is shifted from the pipe centre (r = 0) to a given radius r on
the y-axis. With respect to α1a = −α1b = α1 Eqs. (15.20) and (15.21) are calculated
respectively to

�xr

R
= 0 (15.36)

�yr

R
= n2

n1

r

R
(15.37)

These beautiful results point out that for measurements along the y-axis the LDA
head needs only to be moved in the parallel direction. The ratio between the LDA
movement and the shift of the measurement volume is equal to the ratio of respective
refractive indices. It deals with a simple way which enables the LDA measurement
volume to be easily positioned in the flow. Measurements of radial velocities thus
become possible.

15.3.2 Laser Beam Intersection Angle

It is generally the case that the results of velocity measurements must be corrected
because of systematic errors arising from the change in the fringe spacing in the
measurement volume. Related to this change is, in the first place, the intersection
angle between two laser beams refracted in the flow. For this reason Eqs. (15.34)
and (15.35) are again considered for further calculations. Combining these two
equations with Eqs. (15.29) and (15.30), respectively, yields

sin (ϕa − α1a) = n2

n1

r

R
cosα1a (15.38)

sin (ϕb − α1b) = n2

n1

r

R
cosα1b (15.39)

Due to α1a = −α1b = α1 the r.h.s. of these two equations are equal to each other,
so that it yields from equality of both terms on the l.h.s. of the two equations

ϕa − ϕb = α1a − α1b = 2α1 (15.40)

With regard to Eq. (15.10) that represents the law of refraction Eqs. (15.38) and
(15.39) are further written as

sin (ϕa − α2a) = r

R
cosα1 (15.41)

sin (ϕb − α2b) = r

R
cosα1 (15.42)
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These two equations straightforwardly indicate

ϕa − ϕb = α2a − α2b (15.43)

Because of Eq. (15.40) there is then

α2a − α2b = 2α1 (15.44)

That is to say

α2 = α1 (15.45)

This beautiful result indicates that the beam intersection angle remains constant and
is the same as that in the medium 1 (pipe wall). This angle will be used to correct
the measurement results which involve systematic errors.

15.3.3 Fringe Spacing and Velocity Corrections

In using the laser beam intersection angle in the fluid, the fringe spacing in the
measurement volume is calculated to be:

�x = λ2

2 sinα2
(15.46)

Due to α2 = α1 and λ1/λ2 = n2/n1 this equation is rewritten as

�x = n1

n2

λ1

2 sinα1
= n1

n2
�x0 (15.47)

Herein �x0 represents the initial fringe spacing in the LDA optics i.e. the reference
fringe spacing, when the measurement volume is found in the open air or in the pipe
wall.

Equation (15.47) points out that the measured velocities must be corrected by a
factor equal to kvel = n1/n2:

uτ = n1

n2
umeasured (15.48)

It must be mentioned, however, that the measured velocity corresponds to the veloc-
ity component that is perpendicular to the bisector of two laser beams (Fig. 15.7). It
should not be considered to be the radial velocity component.
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15.3.4 Orientation of the Measurement Volume

The orientation of the measurement volume i.e. the bisector of two refracted laser
beams determines the measured velocity component that generally differs from the
radial velocity. The deviation angle τ of the bisector, as shown in Fig. 15.7, is
considered positive and given by

τ = α2 − α2a = α1 − α2a (15.49)

For α2a see Fig. 15.8.
In order to express the deviation angle of the measurement volume as a function

of the radial position r of the measurement volume, Eqs. (15.38) and (15.41) are
taken into account, respectively, so that

τ = (ϕa − α2a)− (ϕa − α1) = arcsin
( r

R
cosα1

)

−arcsin

(
n2

n1

r

R
cosα1

)

(15.50)

Clearly both the optical layout (α1) and the medium properties (n2/n1) additionally
influence the deviation angle of the measurement volume. Figure 15.10 for example
shows the calculated deviation angle of the measurement volume in the function of
the radial position r/R for a given optical configuration. For the measurement vol-
ume that is positioned within r/R = 0.8, the corresponding deviation angle slowly
increases up to 10◦.

The optical axis and its refraction should now be considered. In reality, the sit-
uation of the optical axis in the present case is equal to the situation that was
shown in Fig. 15.3 concerning the measurement of the axial velocity component.
The inclination angle of the refracted optical axis in the flow against the x-axis is
thus

τo = εo2 − ϕo (15.51)
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For the angle ϕo it applies that sinϕo = �yr/R. Because of Eq. (15.37) this is further
written as

sinϕo = n2

n1

r

R
(15.52)

The refraction angle of the optical axis in the present case is obtained directly from
Eq. (15.5) as given by

sin εo2 = n1

n2

�yr

R
= r

R
(15.53)

Herein �yr, as the displacement of the optical axis from the x-axis, is applied
according to Fig. 15.8 and Eq. (15.37).

Equation (15.51) then becomes

τo = arcsin
( r

R

)

− arcsin

(
n2

n1

r

R

)

(15.54)

This equation represents an approximation of Eq. (15.50) by assuming cosα1 ≈ 1
for small laser beam intersection angles. The difference between Eqs. (15.50) and
(15.54) is less than 0.4% for the case considered in Fig. 15.10 for r/R < 0.5. Because
of this Eq. (15.54) can be applied to specify the deviation angle of the measurement
volume in the flow.

15.3.5 Determination of Radial Velocities

Because of τ �= 0, the measured velocity uτ does not directly represent the radial
velocity component. In principle, the radial velocity component can be obtained if
the tangential velocity at the given measurement point on the y-axis is known. By
assuming that the positive tangential velocity agrees with the x-direction, the radial
velocity component can be resolved according to Fig. 15.7 from

uτ = ur cos τ − ut sin τ (15.55)

For measurements of tangential velocities, refer to Sect. 15.2.

15.3.6 Remarks on the Method

The entire treatments shown above are based on the linearization according to Eqs.
(15.34) and (15.35) for r/R < 0.8. This is in any case available because mea-
surements beyond r/R = 0.5 rapidly become impossible, just as a result of the
optical aberrations (e.g. astigmatism) and the growth of the beam thickness. The
latter straightforwardly leads to the drop of laser light intensity in the measurement
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volume (total reflection occurs at T = 1). Calculations have shown that within
r/R = 0 to r/R = 0.5 the maximum error in uτ arising from the linearization is less
than 1% (at r/R = 0.5). In most engineering flows, this error is well acceptable. The
error in the deviation angle τ of the measurement volume, if Eq. (15.54) is applied,
is less than 0.4%.

The optical aberration is related to the off-axis positioning of the measurement
volume by r/R and can be represented, according to Eq. (15.52), by the off-axis
angle ϕo of the optical axis. At large values of r/R, the off-axis angle becomes large.
The entire optical properties then are comparable with those related with the off-axis
LDA alignment to a plane wall, as thoroughly treated in Chap. 14. In the example
of n1/n2 = 1.14 and r/R = 0.6 there is ϕo = 32◦. This off-axis angle is associated
with huge astigmatism effects, so that the effective aperture of the receiving lens
and consequently the signal rate would be radically reduced, for reference see Fig.
14.9 as well as Fig. 14.18. Another serious problem at the large off-axis angle is
the increased probability that due to a small inaccuracy in the optical layout both
laser beams after refractions could no longer intersect at all. For this reason, it could
be concluded that at positions of the measurement volume beyond r/R = 0.5, mea-
surements would become impossible. This optical behaviour, in fact, also applies to
the case for measurements of axial velocities with a deviation limit at e/R < 0.5, as
already discussed in Sect. 15.1.

15.4 Optical Aberrations and Measurement Volume Distortion

Generally the optical condition of measurements continuously deteriorates as the
depth of the measurement volume in the test fluid increases, for instance in mea-
surements of both axial and tangential velocity distributions. From experience, as
mentioned at the beginning of this chapter, flow measurements can be achieved at
the most up to a depth of about 2/3 of the pipe diameter. The worsening of the
optical condition, while positioning the measurement volume in the upper depth,
is related to the increased optical aberration and the enlarged dislocation of laser
beam waists. In measurements of radial velocities, the worsening of signal quali-
ties becomes more and more significant with the shift of the measurement volume
away from the pipe centre. This phenomenon as related to the optical aberration has
already been discussed at the end of the last section.

The optical aberration and the beam waist dislocation will be quantified in the
following sections. In particular, the analysis should comprehensibly reveal why the
measurements of axial and tangential velocities will become impossible if the mea-
surement volume is located in the pipe at a distance beyond 2/3 of the pipe diameter.
To be mentioned is that analyses that will be made below are rather complex. They
should mainly serve as the references and fundamentals for further extended investi-
gations. For most LDA users it would be sufficient to correctly make measurements
and afterwards to properly correct measurement results. They are therefore mostly
referred to foregoing sections. In the case where the measurements do not run or
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both signal strengths and qualities are not satisfactory, the LDA users should know
the reason that is often ascribed to the optical aberrations i.e. to the existence of
astigmatism.

15.4.1 Optical Aberrations in Transmitting and Receiving Optics

The significance of using the plane cut-off on the outside of a circular pipe and
aligning the LDA head perpendicular to this plane is to ensure laser beams in the
pipe wall to be free of any optical aberrations. This is confirmed in that all four
laser beams of a two-component LDA system intersect at an actual or a virtual
unique point. The optical aberration then originates only at the internal surface of the
circular pipe, leading to separations of two measurement volumes. In the case where
the LDA optical axis goes through the pipe centre, these two measurement volumes
correspond to those for measurements of axial and tangential velocities. To describe
the optical aberration associated with the non-regular laser beam refractions on the
curved pipe surface, the displacement between two measurement volumes for axial
and tangential velocities, for the given LDA head position, can be applied. This is
indeed the common case of using such a displacement as the astigmatic difference to
represent the extent of the present optical aberration i.e. astigmatism, see Chap. 14.

The displacement between the two measurement volumes can be easily obtained
from the calculation results that have already been obtained in Sects. 15.1 and 15.2.
In using Eqs. (15.1) and (15.12), the displacement between two measurement vol-
umes is obtained in function of the position of the virtual beam crossing point as

�sR = s2, t − s2, a

R
= 1

1 + n1
n2

(
R
s1

− 1
) − n2

n1

s1

R
(15.56)

This distance can also be shown in the function of the measurement volume position
for tangent velocity component. The first term on the r.h.s. of the above equation is
simply s2, t/R. The second term with s1/R should be replaced by respective value
from Eq. (15.12), so that

�sR = s2, t

R
− 1
(

R
s2, t

− 1
)

+ n1
n2

(15.57)

Figure 15.11 shows the calculated displacements between two measurement vol-
umes in function of the position of the measurement volume for tangential velocity
component. As can be seen, both measurement volumes get separated from each
other, as the depth of the measurement volume in the flow increases. In other words,
the optical aberration related to the LDA optics increases with the distance of the
measurement volume from the pipe wall. This phenomenon significantly influences
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the measurements of both the axial and the tangential velocities. The influence
mechanism is again found in the receiving optics.

Like in the case of astigmatism associated with the off-axis LDA against a plane
medium interface (Chap. 14), the optical aberration in the current case implies
that the larger the depth of the measurement volume in the flow, the fewer are
the effective elementary segments on the receiving lens, that can see the measure-
ment volume. Because the majority of elementary segments on the receiving lens
behave as blind to the measurement volume, the signal strength diminishes and con-
sequently the signal rate in data acquisition decreases. For this reason it is almost
impossible to get optical signals of sufficiently high strengths and qualities in the
flow area of a depth beyond 2/3 of the pipe diameter. Because of this the entire flow
distribution through the pipe section could only be achieved, if an additional mea-
surement is completed from the opposite side by rotating the LDA head for 180◦
around the pipe axis. This two-measurement feature applies to measurements of
both the axial and tangential velocities. It provides, however, just an opportunity for
utilizing the so-called Dual Measurement Method (DMM) with which the distribu-
tion of the very weak tangential velocity component can be exactly resolved from
two measurements (see Chap. 9).

15.4.2 Dislocation of Laser Beam Waists from
the Measurement Volume

Another undesirable outcome of the optical aberration related to measurements of
tangential and radial velocities in a circular pipe is the dislocation i.e. the separa-
tion of laser beam waists from the measurement volume. This feature leads, on one
hand, to the well-known fringe distortion in the measurement volume and, on the
other hand, to the decrease of laser light intensity in the measurement volume and
successively to the reduction of signal qualities. This type of signal disturbances
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additionally contributes to a reduction of signal qualities on account of the optical
aberration just treated before.

To quantify the beam waist dislocation, the laser beams in the medium 1 prior
to the test fluid are considered as focused light bundle and thus to be free of any
optical aberration. Both cases of respectively measuring the tangential and the radial
velocity components are separately considered.

15.4.2.1 Laser Beam Waists in Measuring the Tangential Velocities

With regard to the symmetrical refraction of two laser beams, only one laser beam is
considered which is found in the x − y plane (Fig. 15.12). Associated with the laser
beam refraction on the internal surface of the pipe, the laser beam suffers from astig-
matism effect. As a result there exist two particular focal points that are confirmed
in the meridian and sagittal planes of the laser beam and denoted by pm and ps,
respectively. The distance between these two focal points is called astigmatic differ-
ence. It is a measure of the extent of the associated optical aberration. To calculate
the respective locations of these two focal points and to directly apply the analysis
results in Sect. 14.6, a new coordinate ξ will be inserted that begins at the beam
intersection point c and runs along the normal of the circular pipe i.e. goes through
the pipe axis. The laser beam considered is represented here by the unit vector �r.
Its corresponding ξ -coordinates prior to and after the refraction are represented by
r1ξ = cos ε1 and r2ξ = cos ε2, respectively.

Because the laser beam is thin, the intersection area on the cylindrical surface
is assumed as the plane surface. This assumption contributes to the simplification
of beam refraction calculations. The respective meridian and sagittal focal points of
the refracted laser beam in the test fluid have their ξ -coordinates which, according
to Eqs. (14.41) and (14.42) for the plane interface, are given by

ξm = ξo
n2

n1

r3
2ξ

r3
1ξ

(15.58)
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and

ξs = ξo
n2

n1

r2ξ

r1ξ

(15.59)

Herein ξo denotes the ξ -coordinate of the virtual focal point m′, as given by

ξo = cm′ · cos ε1 = R sinϕ

sinα1
r1ξ (15.60)

In the case of water flow in the circular pipe, it can be verified that
(

r1ξ − r2ξ

)

/r1ξ <

0.1% is nearly always satisfied, so that r2ξ ≈ r1ξ can be assumed. This shows that
there is no need to differ from the meridian and sagittal focal points and the refracted
laser beam can still be considered as a focused light bundle with a unique beam
waist. For the sake of getting the simple form of the results, however, Eq. (15.59) is
applied to represent the ξ -coordinate of the approximated unique laser beam waist:

ξw = ξs = ξo
n2

n1

r2ξ

r1ξ

(15.61)

On the refracted laser beam in the test fluid, this beam waist lies at a distance from
the intersection point c:

�w = ξw/cos ε2 = ξw/r2ξ (15.62)

Because of the symmetrical refraction at two laser beams the measurement volume
lies on the x-axis at m and has a distance from the intersection point c:

�mv = R sinϕ

sinα2
(15.63)

The distance between the measurement volume and the waist of the laser beam is
then given by �mv − �w or in dimensionless form by

�R = �mv − �w

R
= sinϕ

sinα2
− n2

n1

sinϕ

sinα1
(15.64)

Clearly this distance depends on the local position of the measurement volume in
the flow. Both the angle ϕ and α2 in function of the position s2 of the measurement
volume can be obtained by Eq. (15.11). Figure 15.13 shows a calculation example,
in which the position parameter s2 is replaced by the radial position r = R − s2.
Evidently, there exists a largely extended dislocation of the beam waist from the
measurement volume, when the measurement volume is located beyond the pipe
centre. Such a dislocation of the beam waist doubtless implies the low brightness
of the measurement volume and the undesirable fringe distortion in it. These two
features related to the measurement volume on the side of LDA transmitting optics
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again signify that the measurement of tangential velocity components is more crit-
ical than that of axial velocities. In addition, it can be concluded from the values
shown in Fig. 15.13 in dimensionless form that the absolute beam waist disloca-
tion (�mv − �w) will be bigger, if circular pipes of large diameter are encountered
in use. On the pipe axis for instance, the distance between the beam waist and the
measurement volume is about 0.12R, which will be 12 mm when R = 100 mm.

In comparing Fig. 15.13 with Fig. 15.11, it is evident that two curves are rather
identical. This identity can be confirmed by applying the approximation for paraxial
rays as in the form of sinϕ ≈ ϕ, sinα1 ≈ α1 and sinα2 ≈ α2. Equation (15.64) can
then be conducted to a form equal to Eq. (15.57).

The fringe distortion in the measurement volume in the current case is caused
by the dislocation of beam waists in two symmetrical laser beams. It exactly repre-
sents the well-known type of fringe distortions at which the measurement volume
is found prior to or after their respective waists located at equal distance from the
beam intersection point. The optical occurrence in the present case is illustrated in
Fig. 15.14. The fringe spacing in the measurement volume then linearly varies along
the measurement volume. Corresponding errors involved in measurements of both
the mean velocity and the flow turbulence have already been exactly analyzed by
Zhang and Eisele (1997, 1998c). The apparent i.e. the affected mean velocity and
its standard deviation are given as

ūapp

ū
= 1 + 1

3
γ 2 (15.65)

σ 2
app − σ 2

ū2
= γ 2

(
σ 2

ū2
+ 1

3

)

(15.66)

The exact derivation of these two equations will be presented in Chap. 16.
In these two equations, the fringe distortion number γ is a geometrical parameter

that represents the relative change in the fringe spacing at the end of the measure-
ment volume to the initial fringe spacing and is usually below 0.02. Because it deals
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with a quite small number, the fringe distortion in the LDA measurement volume
usually does not appreciably influence the measurement accuracies.

15.4.2.2 Laser Beam Waists in Measuring the Radial Velocities

In Sect. 15.3, it has been indicated that for measurements of radial velocity com-
ponents the measurement volume should be located on the y-axis, as shown in
Fig. 15.7. It has also been indicated, relying on Eq. (15.36), that for shifting the
measurement volume along the y-axis the laser beam pair in the medium 1 needs
only to be shifted in the parallel direction. This implies that the virtual beam cross-
ing point has also to lie on the y-axis, as it is so when the measurement volume is
positioned at the pipe centre (y = 0). Corresponding locations of both the actual and
virtual measurement volumes have been shown in Fig. 15.15, in which for simplic-
ity only one laser beam has been illustrated. To be expected is that the dislocation
of laser beam waists from the measurement volume also exists in this case. For cal-
culations the laser beam is again represented by the unit vector �r1 in the medium 1
and �r2 in the medium 2.

Like in the above calculations, a new coordinate ξ will be inserted which begins
at the beam intersection point c and runs along the normal of the circular pipe. Both
unit vectors then have their components r1ξ = cos ε1 and r2ξ = cos ε2, respectively.
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For simplicity only the sagittal focal point of the refracted laser beam in the test
fluid is considered as the beam waist pw. Similarly there is

ξw = ξo
n2

n1

r2ξ

r1ξ

(15.67)

with

ξo = cm′ cos ε1 = R cosϕ

cosα1a
r1ξ (15.68)

On the refracted laser beam in the test fluid, the beam waist lies at pw with a distance
from the intersection point c

�w = ξw

cos ε2
= ξw

r2ξ

(15.69)

The measurement volume m has a distance from the same intersection point c

�mv = R cosϕ

cosα2a
(15.70)

The distance between the measurement volume (m) and the laser beam waist (pw) is
then given by �mv − �w. In dimensionless form and with subscripts a and b for laser
beam A and B, respectively, there are

�R,a = cosϕa

cosα2a
− n2

n1

cosϕa

cosα1a
(15.71)

�R,b = cosϕb

cosα2b
− n2

n1

cosϕb

cosα1b
(15.72)

Clearly both of these distances depend on the local position r/R of the measure-
ment volume in the flow. Angles ϕa, ϕb, α2a and α2b and their dependences on r/R
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have already been found to be given by Eqs. (15.38), (15.39), (15.40), (15.41), and
(15.42).

Figure 15.16 shows the results calculated from Eqs. (15.71) and (15.72) for laser
beam A and B, respectively. Because in the available area of r/R < 0.6 both beam
waists are on the same side of the measurement volume and show no large dif-
ferences in the distance to the measurement volume, it can be assumed that the
fringe distortion in the manner according to Fig. 15.14 occurs. Like in the case
of beam waist dislocation at measurements of tangential velocity components, the
beam waist dislocation (�mv − �w) in the current case of measuring the radial veloc-
ities will also be large, if circular pipes of large diameter are encountered to use. On
the pipe axis same values are obtained as in Fig. 15.13.



Chapter 16
Fringe Distortion Effects

From the LDA principle described in Chap. 3, the necessary condition for accurate
LDA measurements is the uniformity of the fringe spacing in the measurement vol-
ume. The uniform fringe spacing can be achieved if the measurement volume that
is formed by two laser beams coincides with two beam waists. Each deviation from
this requirement will lead to fringe distortion in the measurement volume and hence
to measurement errors. Because of the non-uniformity of the fringe spacing along
the measurement volume a uniform constant laminar flow for instance will then
be measured as a flow with velocity fluctuations. Measurements of both the mean
velocity and the turbulence quantities thus suffer from systematic errors.

Fringe distortions in LDA measurement volumes have been historically consid-
ered as the consequence of improper optical layout. Two most well-known forms of
the optical layout causing the fringe distortion have been shown in Fig. 16.1. The
visible non-uniformity of the fringe spacing in these two cases is either along or
across the measurement volume. Corresponding detailed investigations to character-
ize the non-uniformity of two such different fringe patterns have been performed for
instance by Hanson (1973, 1975), Durst and Stevenson (1975) and Miles and Witze
(1994, 1996). According to Hanson (1973, 1975) linear distributions of the fringe
spacing exist in both longitudinally (Fig. 16.1a) and laterally (Fig. 16.1b) distorted
measurement volumes. The influence of the fringe distortion on the measurement
accuracy has been investigated by Zhang and Eisele (1997, 1998c) with respect to
the longitudinal fringe distortion. As it has already been shown in Fig. 15.14, the
first type of the fringe distortion in the measurement volume is confirmed as exactly
taking place, when the tangential velocity of the flow in a circular pipe is measured
without matching the refractive index of the fluid. It is obviously the most represen-
tative fringe distortion encountered in the practical applications. The second type
of fringe distortion across the measurement volume (Fig. 16.1b), however, is still
considered as merely a matter of the improper optical layout.

Another type or the third type of possible fringe distortions in the LDA measure-
ment volume, as shown in Fig. 14.14b for a special case, is related to the astigmatism
due to the laser beam refractions. Because of the irregular distribution of the beam
waists around the LDA measurement volume and hence the complexity of the form
of respective wave front of two laser beams, this type of fringe distortion may not yet

219Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
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Fig. 16.1 Fringe distortions (first and second types) in the measurement volume; The third type
of the possible fringe distortion is referred to Fig. 14.14b

be well characterized. A further type of fringe distortions in the measurement vol-
ume is known as the local fringe distortion which is caused by laser light diffraction
through particles in the transmission path of the laser beams (Ruck 1991).

The outcome of the fringe distortion in the LDA measurement volume is the
systematic measurement error in both the mean velocity and the turbulence quanti-
ties. In all cases of measuring the flow turbulence, the fringe distortion results in the
broadening of the Doppler frequency and hence the overestimation of the turbulence
intensity. This overestimation obviously depends on both the form and the scale of
the complex fringe distortion. As an LDA user one is indeed interested in knowing
the extent of respective measurement errors and the possibility of correcting them.
For this purpose, the influence of the most representative fringe distortion in form of
Fig. 16.1a on the flow measurement is considered here, in order to give a reference
as well as to make a criterion for error estimations. The analysis assumes the linear
distribution of the fringe spacing along the measurement volume length.

16.1 Linear Longitudinal Distribution of the Fringe Spacing

According to Fig. 16.1a the crossing of two Gaussian beams takes place after their
respective waists located at equal distance from the beam intersection point. The
same fringe distortion with the same consequence in LDA flow measurements will
be given when the beam crossing is found prior to both beam waists. The assump-
tion of linear distribution of the fringe spacing in the LDA measurement volume is
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based on earlier investigations of this type of fringe distortion and contributes to the
simplification of calculations.

The uniform velocity distribution within the measurement volume length is
assumed. From its measurement by u = �x · νD with non-uniform fringe spacing,
one obtains the related non-uniform Doppler frequency as

1

νD

d(νD)

dz
= − 1

�x

d(�x)

dz
(16.1)

According to Hanson (1973, 1975) from accounting for the relative shift in Doppler
frequency, the fringe spacing gradient is expressed as

1

�x

d(�x)

dz
= 1

R
(16.2)

Herein R is the radius of curvature of two Gaussian beam wave fronts at the beam
crossing point. It is calculated, according to Eq. (3.63), with the spot size (radius w0)
at the beam waist and the distance (z1) of the beam waist from the beam crossing
point as follows

R = z1

⎡

⎣1 +
(

πw2
0

λz1

)2
⎤

⎦ = z1

[

1 +
(

zR

z1

)2
]

(16.3)

In this equation, zR represents the Rayleigh length, as given in Eq. (3.66).
From Eq. (16.2) it can be shown that, by assuming |z/R| << 1 within the region

of the measurement volume, the longitudinal fringe spacing varies linearly over the
length of the measurement volume. That is with k = �x0/R

�x = kz +�x0 (16.4)

In this equation, �x0 is the fringe spacing at the centre of the measurement volume
(z = 0). According to Hanson (1973), this value of fringe spacing is equal to that in
the undistorted measurement volume (λ/2 sinα).

16.2 Fringe Distortion Number and the Apparent Mean Velocity

It should be mentioned that the fringe distortion in the measurement volume also
influences the measurement of mean velocities. Indeed, the error in the mean veloc-
ity will not disappear, even if linear fringe distortion according to Eq. (16.4) takes
place. This can be easily demonstrated by assuming the uniform flow of velocity u0
through the measurement volume. From the measured Doppler frequency and the
specified constant fringe spacing in the software, the flow velocity is calculated as
follows:
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u = �x0νD = �x0
u0

�x
(16.5)

It is inversely related to the fringe spacing which linearly changes along the
measurement volume. For this reason the ensemble average of velocities u from
measurements is in no cases equal to the actual flow velocity u0 and is therefore
denoted as the apparent mean. For the general case a turbulent flow with random
velocity fluctuations is considered to have a mean velocity equal to u. The apparent
mean velocity is calculated by the arithmetic average as

uapp = �x0
1

N

N
∑

i=1

ui

�xi
(16.6)

On the side of the measurement volume, the measurement volume will longitudi-
nally be divided into m partial volumes of equal distance. In each partial volume,
the fringe spacing can be considered to be constant. On the side of the flow, the
same and constant statistical flow properties are assumed to exist among all par-
tial volumes. This also includes the assumption that particles have equal probability
in passing through every partial volume. With respect to N = m · n and the mean
velocity equal to u Eq. (16.6) is then written as

uapp = �x0
1

N

m
∑

j=1

(

1

�xj

n
∑

i=1

ui

)

= �x0u
1

m

m
∑

j=1

1

�xj
(16.7)

By extending m to infinity and with substitution of�xj by Eq. (16.4) the summation
in the above equation can be presented by the corresponding integral calculation, so
that with �z/2 as the half length of the measurement volume

uapp = u
�x0

�z

�z/2∫

−�z/2

dz

kz +�x0
(16.8)

To simplify the calculation results, the fringe distortion number is introduced as
defined by

γ = k�z/2

�x0
= �z/2

R
(16.9)

It represents the relative change of the fringe spacing at the end of the measurement
volume. Usually it is a small value because of �z << R.

Equation (16.8) is then calculated as

uapp

u
= 1

2γ
ln

1 + γ

1 − γ
≈ 1 + 1

3
γ 2 (16.10)
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Herein the approximation has been made because of γ << 1.
This calculation result demonstrates that the measurement of the mean flow

velocity will also be affected by the fringe distortion in the measurement volume,
even though the linear fringe spacing distribution is assumed. The relative error,
however, is mostly negligible because of γ << 1.

The fringe distortion number has been defined in Eq. (16.9) as a pure function
of geometric parameters of the measurement volume. Since it specifies the relative
change in the fringe spacing at the end of the measurement volume (z = �z/2)
against that at the measurement volume centre (z = 0), it also represents the
frequency broadening �νD/νD at z = �z/2.

According to Eq. (16.9) the fringe distortion number has also been shown to be
a function of the radius of wave front curvature of two Gaussian beams at the beam
crossing point. Substituting this curvature radius by Eq. (16.3) then yields

γ = �z/2

z1
[

1 + (zR/z1)
2]

(16.11)

For laser beams with given beam waist thickness 2w0 and hence given Raleigh
length zR the fringe distortion number has been shown as the function of the distance
z1 between the beam waist and the measurement volume centre. This functionality
is illustrated in Fig. 16.2 for a given LDA optical set-up. The radius of the curvature
of the Gaussian beam wave front has also been shown in function of the distance.
At the Rayleigh length which is equal to zR = 30 mm in this example, the fringe
distortion number reaches its maximum.

Based on parameter quantifications in this example the fringe distortion number
has been confirmed to be in the range of usually not exceeding 0.02. In applying
this limit to Eq. (16.10), the error in the mean velocity is practically very small.
By the way, the minimum radius of the curvature of the Gaussian beam wave front
reads R = 60 mm. Compared with this value, the half length of the measurement
volume (�z/2 = 1 mm) is negligible. The assumption of |z/R| << 1 that leads to
Eq. (16.4) is thus validated.
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16.3 Overestimation of the Flow Turbulence

As is well-known, the most significant outcome of the fringe distortion in LDA
measurements is the Overestimation of the turbulence intensity. This is also called
the broadening effect in turbulence measurements. In order to quantify this effect, a
stationary turbulent flow is considered which is specified by a mean velocity ū and
a fluctuation velocity σ (standard deviation). From the viewpoint of statistics, the
connection between the mean velocity and the standard deviation is given, according
to Eq. (5.5), as

σ 2 = u2 − ū2 (16.12)

with u2 as the mean square of velocity component u.
This relationship also applies in the case of velocity data from measure-

ments undergoing the effect of fringe distortion in the measurement volume.
Corresponding velocities are thus apparent, as given by

σ 2
app = u2

app − ū2
app (16.13)

The overestimation of the turbulence intensity and the related quantities as a result
of the fringe distortion in the measurement volume is then determined by

σ 2
app − σ 2 =

(

u2
app − u2

)

−
(

ū2
app − ū2

)

(16.14)

While the second term on the r.h.s. of this equation can be calculated by using
Eq. (16.10) or simply set to zero, the first term requires similar calculations as those
in Sect. 16.2. In response to each velocity event the Doppler frequency is again
ui/�xi. The apparent mean square of velocities in the above equation is basically
calculated, in analogy to Eq. (16.6), by

u2
app = (�x0)

2 1

N

N
∑

i=1

(
ui

�xi

)2

(16.15)

By dividing the measurement volume into m partial volumes of equal distance and
based on same assumptions that led to Eq. (16.7), the above equation is converted
into

u2
app = (�x0)

2 u2 1

m

m
∑

j=1

1
(

�xj
)2

(16.16)

The linear fringe spacing distribution according Eq. (16.4) is applied. By extend-
ing m to infinity, the summation in the above equation can be presented by the
corresponding integral calculation, so that
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u2
app = (�x0)

2 u2 1

�z

�z/2∫

−�z/2

dz

(kz +�x0)
2

(16.17)

In using the fringe distortion number as defined by Eq. (16.9), one obtains

u2
app = 1

1 − γ 2
u2 ≈

(

1 + γ 2
)

u2 (16.18)

Substitution of Eqs. (16.10) and (16.18) in Eq. (16.14) and with respect to u2 =
σ 2 + ū2 yields

σ 2
app − σ 2

ū2
= γ 2

(
σ 2

ū2
+ 1

3

)

(16.19)

Because of σapp + σ ≈ 2σ (not for σ = 0) this equation can also be written as

�σ

ū
= 1

2
γ 2 ū

σ

(
σ 2

ū2
+ 1

3

)

(16.20)

with �σ = σapp − σ as the overestimation of the standard deviation of the mean
flow velocity.

The overestimation of the turbulence intensity obviously depends on both the
real flow turbulence to be measured and the extent of the fringe distortion that is
specified by the fringe distortion number. In regards Eq. (16.20), the overestimation
of the flow turbulence is illustrated in Fig. 16.3 in the function of the real turbulence
intensity for different fringe distortion numbers. For typical fringe distortions (γ <
0.02) the overestimation of the flow turbulence has been found to be not significant,
especially in the measurement of flows with high turbulence intensity.
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For a uniform laminar flow with σ = 0 the apparent turbulence intensity is
calculated from Eq. (16.19) as

σapp

u
= √1/3 · γ (16.21)

Calculations made in this chapter basically refer to the fringe distortion with lin-
ear longitudinal variation in the fringe spacing (Fig. 16.1a). The calculation results
can be used as the reference, if other types of fringe distortions and the respective
influences on measurements should be accounted for. In general, the influence of
the second type of fringe distortions (Fig. 16.1b) on turbulence measurements is
rather smaller than that treated above, as this influence was already considered by
Hanson (1975) in the earlier time to be negligible. The same might also be true
for the case accounting for the third type of fringe distortions that is caused by the
optical aberration i.e. astigmatism according to Fig. 14.14.



Chapter 17
Velocity Bias Effects

17.1 Velocity Bias as a Flow Phenomenon

Flow velocity measurements by means of LDA method are based on random sam-
pling of velocity events which occur when particles pass through the measurement
volume. The available velocity sampling rate depends on particle concentration,
particle size, flow velocity and other flow and optical parameters. The dependence
on the velocity magnitude in the turbulent flow becomes significant, if the sam-
pling rate is considerably larger than the mean frequency of flow fluctuations. This
type of dependence is generally characterized by the fact that velocities of large
magnitudes will be more frequently sampled than velocities of small magnitudes.
Accordingly, the time between two subsequent velocity samples is not equidistant.
The sample mean of velocities according to Eq. (5.1) is then higher than that from
velocities with equidistant time intervals. The shift of the sample mean of velocities
towards the high value has been called the velocity bias and was first recognised
by McLaughlin and Tiederman (1973). From the mechanism of velocity bias it is
expected that not only the mean velocity but also other statistical parameters like the
standard deviation show the difference to those from measurements with equidis-
tant time intervals. Because of its dependence purely on velocity fluctuations, the
velocity bias indeed represents a flow phenomenon. In the LDA terminology, the
velocity bias i.e. the related difference in mean velocities has been categorized as
being the measurement error. Corresponding investigations are generally restricted
to two aspects: estimation and correction of effects of velocity bias.

In assuming homogeneous particle distribution in the flow, the particle arrival
rate across the measurement volume and thus the velocity sampling rate are theo-
retically proportional to the velocity magnitude. From this viewpoint, considerable
efforts have been made to estimate and correct the effect of velocity bias (Buchhave
1975, Buchhave et al. 1979, Lehmann 1986, Nobach 1998, Owen and Rogers 1975).
An empirical estimation of the biased mean velocity has been given for instance by
Edwards (1987) as a function of the turbulence intensity ub/u = 1+Tu2. In applying
the numerical method, Nobach (1998) investigated bias effects which are included in
both the mean velocity and the standard deviations in all three velocity components
of a complex three-dimensional turbulent flow. Exact analytical quantifications of
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the bias effects have been carried out by Zhang (2002), considering all three compo-
nents of velocity fluctuations from zero to infinity. The analysis serves as a reference
to estimate the extent of the bias effects.

One of the well-known effects of velocity bias on measurements of turbulent
flows is the distortion of the symmetrical distribution of velocity fluctuations around
the corresponding mean. Another effect is the misinterpretation of an isotropic tur-
bulence as an apparent anisotropic one. In addition, the bias errors in all three
velocity components obviously differ from each other.

Concerning the matter of correcting for the bias effect, different methods have
been developed and applied in data processing of LDA measurements. The most
common method uses the reciprocal velocity or the residence time of particles
in the measurement volume as a weighting factor in the calculations for arith-
metic averages, as these have been shown at Eqs. (5.13), (5.14), and (5.15). The
method of using the reciprocal value of each velocity vector as the weighting factor
is obviously very limited, because this value must be known from measurement.
In addition, the result is only true if the flow fluctuation is one-dimensional. The
method of using the residence time or the transit time as the weighting factor is
based on the assumption of statistically uniform flow through the measurement vol-
ume (no velocity gradient within the measurement volume). This method indeed
has been recognised to be able to account for both the three-dimensionality of flow
fluctuations and the measurement volume shape (Buchhave et al. 1979). The transit
time can be theoretically attained by measuring the burst lengths. Another correction
method to be mentioned is the method of using controlled processors to externally
impose a constant sampling frequency (Edwards 1987, Erdmann and Tropea 1981).
Such processors are basically only recommended for measurements with high data
densities. In reality, the constant sampling frequency that is externally imposed can
also be obtained by the post data processing.

As it states, the velocity bias has been historically considered to affect the mea-
surement accuracy. This viewpoint, however, has to be partially declined. According
to Chap. 12, the velocity bias does represent a measurement error if the volumet-
ric flow rate (or volumetric flux) is to be calculated without any correction. The
velocity bias, however, precisely ensures correct velocity measurements and data
processing if the momentum flux is interesting. This will be required when deal-
ing with the momentum equations like Euler, Navier-Stokes or Reynolds equations.
Concerning the matter of flow turbulence, the relevant physical turbulence quan-
tities are generally turbulent Reynolds stresses according to Eqs. (2.7), (2.8), and
(2.9). Because they all represent the momentum quantities (or in terms of the spe-
cific kinetic energy), the occurrence of velocity bias in LDA measurements does not
mean any measurement errors. For this reason, it is generally necessary to basically
clarify the physical significance of each flow parameter that needs to be obtained
from measurements.

For the historical reason, nevertheless, the word “velocity bias” will still be
applied to denote the related flow phenomenon.

For LDA users in engineering applications, it is rather more interesting to know
about the extent of velocity bias and its influences than to correct it. In general, it
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is the responsibility of researchers and engineers to decide whether the associated
measurement inaccuracy is acceptable or not, based on requirements of each related
flow process. It is therefore reasonable to make distinctions between mean velocities
and other flow parameters with and without the effect of velocity bias. The analysis
made by Zhang (2002) will be referred to as the main content of this chapter.

It should be mentioned that in measurements of turbulent flows by the LDA
method, another type of bias, the so-called angular bias, exists. This bias arises
from the fact that the cross sectional area of the measurement volume and thus
the particle arrival rate changes with the flow direction. It differs from the velocity
bias physically in that the angular bias is not simply a flow phenomenon. Due to
the three-dimensionality of flow fluctuations, it is usually impossible to distinguish
between the velocity bias and the angular bias in the measurements.

17.2 Velocity Bias and the Momentum Flow Rate

It has been indicated that the velocity bias is in effect a flow phenomenon. This
gives rise to basically clarifying its related flow dynamic properties. In Chap. 12
with regard to the non-uniform velocity distribution along the LDA measurement
volume, it has been demonstrated that the related biased mean velocity precisely
represents the mean velocity which is relevant for the momentum flow rate across
the measurement volume. The ratio of the biased to the unbiased mean velocity sim-
ply stands for the so-called momentum flux correction factor. Because the velocity
bias is traditionally referred to the turbulent flow with time-dependent velocity fluc-
tuations, it is naturally of interest whether the same relation exists. The following
analysis will demonstrate that this is true.

As known, the momentum flow rate is a vector quantity that is determined by
the velocity vector (�u) and the normal vector (�nA) of the related cross-sectional area
in the flow. The so-called momentum flux (momentum flow rate per unit area) is
then given by J̇ = ρ�u · (�nA · �u). In this equation, the product in brackets represents
the volumetric flux in unit of m3/(m2s). For further discussion a one-dimensional
stationary turbulent flow of velocity ux is considered. The volumetric flux through
the unit area perpendicular to x-axis is then simply equal to ux. The mean momentum
flux during a time interval �t is calculated by

J̇x = ρ
1

�t

�t∫

0

u2
x · dt (17.1)

For large time intervals, the averaged momentum flux represents a statistical con-
stant of the flow. Based on the ergodic hypothesis the average of such a process
parameter over time is equal to the average over the statistical ensemble. In order
to convert the above calculation into the ensemble average, the statistical distri-
bution of fluctuation velocity, as the ensemble from measurements, is considered
as being described by an existing probability density function (pdf) p. The most
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well-known pdf is obviously the Gaussian function (see Figs. 2.1 and 2.2). The
ensemble averaged momentum flux can then be calculated by the corresponding
integral

J̇x = ρ

∞∫

−∞
pu2

xdux (17.2)

On the other side, the averaged momentum flux is usually represented by the product
of an appropriate mean velocity and the mean of the volumetric flux ux as

J̇x = ρux,Jux (17.3)

With respect to Eq. (17.2) the mean velocity ux,J that represents a significant param-
eter for the momentum flow rate or likewise for the momentum flux is calculated by

ux,J = 1

ux

∞∫

−∞
pu2

xdux (17.4)

In dealing with stationary laminar flows there is simply ux,J = ux.
For practical applications and in likeness to dealing with flows with non-uniform

velocity distributions, the momentum flux correction factor β can be applied to the
concerns of the effect of velocity fluctuations in each interested turbulent flow, as
given in the form

ux,J = βux (17.5)

The momentum flux given in Eq. (17.3) is then expressed as

J̇x = β · ρu2
x (17.6)

The velocity bias involved in LDA measurements will be again considered. As a
result of velocity bias the probability density function p of the fluctuation veloc-
ity distribution will be distorted when calculated from measurements. In assuming
the linear dependence of velocity sampling rate on the magnitude of velocities, the
distorted i.e. biased probability density function then takes the form as given by

pb = k |ux| p (17.7)

The constant k in this equation must fulfil the condition

∞∫

−∞
pbdux = 1 (17.8)

from which one obtains
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k = 1
∞∫

−∞
p |ux|dux

(17.9)

Like at Eq. (5.2), the sample mean of velocities based on Eq. (5.1) can be calculated
equivalently by the following integral with respect to the biased probability density
function

ux,b =
∞∫

−∞
pbuxdux = k

∞∫

−∞
pux |ux| dux (17.10)

In all low turbulent flows, the velocity fluctuations (u′
x = ux − ux) are always small

compared to the mean velocity so that the occurrence of the back flow is negligible
and ux > 0 at all times is satisfied. From Eq. (17.9) with respect to ux > 0 it follows
k = 1/ux directly from the mean velocity definition. Consequently Eq. (17.10)
becomes

ux,b = 1

ux

∞∫

0

pu2
xdux (17.11)

Because for ux < 0 there is p = 0 this equation is equal to Eq. (17.4). It can then
be pronounced that the biased mean velocity actually stands for the mean velocity
that is applied to the momentum flow rate or similarly to the momentum flux at a
local point in the flow. It can thus be directly applied in all momentum equations
like the Euler, Navier-Stokes as well as Reynolds equations. On the other hand,
both the use of the continuity equation and the calculation of the momentum flux
according to Eq. (17.3) suppose the knowledge of the volumetric flux (ux). Thus
the objective in dealing with the velocity bias is to estimate the difference between
the mean for volumetric flux and its biased value for momentum flux. In other
words, it is intended to determine the momentum flux correction factor according to
Eq. (17.5).

17.3 Velocity Bias in One-Dimensional Flow Fluctuations

Although the flow fluctuation in a turbulent flow is always three-dimensional, the
assumption of one-dimensional flow fluctuations contributes to the significant sim-
plification of theoretical analyses of velocity bias. Since velocity fluctuations in the
turbulent flow are of random nature, the fluctuations can then be approximated by
the Gaussian probability distribution given by

p = 1√
2πσ

e− (u−u)2

2σ2 (17.12)



232 17 Velocity Bias Effects

Herein u and σ are the volumetric mean velocity and its standard devia-
tion, respectively. Clearly, the probability distribution of fluctuation velocity is
symmetrical.

The symmetrical probability density function according to Eq. (17.12) will be
distorted by the velocity bias in LDA measurements. As in the common case
with the assumption of homogeneous particle distribution in the flow, the linear
dependence of velocity sampling rate on the magnitude of velocities can be further
assumed. The biased probability density function then must be written as

pb = k |u| p = k |u|√
2πσ

e− (u−u)2

2σ2 (17.13)

As it states, the probability of negative velocity occurrence (back flow) because of
velocity fluctuations has also been accounted for. From the same condition as given
in Eq. (17.8) the constant k is determined as

1

kσ
=
√

2

π
· e

− u2

2σ2 + u

σ
erf

(
u√
2σ

)

(17.14)

In this equation, the error function is defined by

erf (x) = 2√
π

x∫

0

e−u2
du (17.15)

The product of kσ is given here as a function of relative flow fluctuations i.e. of
the turbulence intensity σ /u. Since the constant k appears always in the product
form with σ , the product kσ is designated here to be the bias product. It represents
a measure of the distortion of the symmetrical probability distribution of the tur-
bulent flow velocity. This has been demonstrated in Fig. 17.1 with two calculation
examples.
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Fig. 17.1 Distortion of the distributions of the fluctuation velocity due to the effect of velocity
bias in turbulent flows
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For large turbulence i.e. u / σ << 1 and due to the error function erf(0) = 0, the
bias product is calculated from Eq. (17.14) as

kσ = √
π / 2 (17.16)

On the other hand, the bias product becomes zero if laminar flows (σ / u = 0) are
measured:

kσ = σ /u = 0 (17.17)

As shown in Fig. 17.1, there is kσ ≈ σ / u i.e. k ≈ 1/ u already for σ / u ≤ 0.5.
Actually, for low turbulent flow at which u > 0 can be assumed, k = 1/ u is available
as it has been already applied to Eq. (17.10), leading to Eq. (17.11).

In applying the biased probability density function and like in Eq. (17.10), the
biased mean velocity is calculated by the integral

ub =
∞∫

−∞
pbudu (17.18)

With respect to Eq. (17.13) for pb the integral in above equation is calculated as

ub

u
= 1 + kσ

σ

u
erf

(
u√
2σ

)

(17.19)

Like the bias product, the ratio of the biased to the initial mean velocity is again
a function of the turbulence intensity σ /u.

Similarly, the biased standard deviation because of the distortion of the probabil-
ity distribution of velocities is calculated as

σ 2
b

σ 2
= 1

σ 2

∞∫

−∞
pb (u − ub)

2 du

= 2 +
(

u

σ

)2 (

1 − ub

u

)2

+ kσ

(
u

σ
− 2

ub

σ

)

erf

(
u√
2σ

)

(17.20)

or with Eq. (17.19) to replace ub as

σ 2
b

σ 2
= 2 − (kσ)2

[

erf

(
u√
2σ

)]2

− kσ
u

σ
erf

(
u√
2σ

)

(17.21)

For flows with turbulence intensities σ / u < 0.5, the error function tends to unity
(erf(u /

√
2σ ) > 0.95). Since this again leads to kσ ≈ σ / u i.e. k ≈ 1 / u, Eqs.

(17.19) and (17.21) are then simplified to
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ub

u
≈ 1 + σ 2

u2
(17.22)

and

σ 2
b

σ 2
≈ 1 − σ 2

u2
(17.23)

respectively.
Equation (17.22) agrees exactly with the empirical estimation given by Edwards

(1987), as mentioned in Sect. 17.1.
In Fig. 17.2, both the biased mean velocity and its standard deviation according

to Eqs. (17.19), (17.21), (17.22) and (17.23), respectively, are shown in the function
of turbulence intensity (Tu = σ /u). The turbulence intensities applied in Fig. 17.2
are restricted in the range between 0.01 and 10. This range, however, is sufficient
to show the related effect of velocity bias for turbulence intensities varying from
zero to infinity. As can be seen from the figure, the volumetric mean velocity is
always overestimated because of the effect of velocity bias, while its standard devi-
ation is underestimated at low and overestimated at high turbulence intensities. The
approximations leading to Eqs. (17.22) and (17.23) are obviously valid for turbu-
lence intensities below 50%. Again worth mentioning is that at low turbulent flows,
at which ui > 0 applies to all velocity samples, the overestimated mean velocity
exactly agrees with the mean velocity that is relevant for the momentum flux. This
means that the biased mean velocity given in Eq. (17.22) can be directly applied to
the momentum flux.

At flows with very high turbulence intensities, the biased mean velocity and its
standard deviation become

ub / u = 2 (17.24)
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Fig. 17.2 Velocity bias in turbulent flow with one-dimensional flow fluctuations
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and

σ 2
b /σ 2 = 2 (17.25)

respectively.
For measurements of flows with low turbulence intensities (σ / u ≈ 0), the

velocity bias becomes negligible (ub ≈ u, σb ≈ σ ).

17.4 Velocity Bias in Two- and Three-Dimensional
Flow Fluctuations

In reality, turbulent flow fluctuations are always three-dimensional and consist of
fluctuations in both the velocity magnitude and the flow direction. LDA measure-
ments of such turbulent flows undergo the velocity bias in each measured velocity
component. It is therefore reasonable to establish the relationship between biased
velocity components. In the case of isotropic or mostly anisotropic turbulence, the
mean velocity vector can be considered to be the value which is surrounded sym-
metrically by velocities with fluctuations (Fig. 17.3). It can then be assumed that
to each velocity event existing on one side of the symmetry line, there is always a
conjugate one on the opposite side. For this type of flow turbulence, the velocity
bias does not result in any change in the main flow direction. The ratio of the biased
and the unbiased velocity component (for instance ux) is then

ux,b

ux
= ub cosϕ

u cosϕ
= ub

u
(17.26)

The relative bias in the velocity component ux is thus independent of the mean flow
angle ϕ. This signifies that the relative bias in the mean velocity is constant amongst
all the velocity components. This is obviously also true if one-dimensional velocity
fluctuations are assumed, as considered in Sect. 17.3.

ϕ

ux

uy

u1

u2

symmetry line 

Fig. 17.3 Velocity
fluctuations symmetrically
around the mean velocity
vector
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17.4.1 Velocity Bias in Mean Velocities

With respect to Eq. (17.26) it is sufficient to estimate the velocity bias in the velocity
component that corresponds to the main flow direction. For the sake of simplicity,
an isotropic turbulent flow is considered as having a unique standard deviation σ of
velocities. The coordinate system has been chosen, such that the first axis coincides
with the main flow direction (Fig. 17.3).

17.4.1.1 Two-Dimensional Flow Fluctuations

In the case of two-dimensional flow fluctuations, the velocity components on the
coordinates axis are denoted by u1 and u2, respectively. The Gaussian probability
distribution of fluctuation velocity is given by

p = 1

2πσ 2
e
− (u1−u1)

2+u2
2

2σ2 (17.27)

Because of the effect of velocity bias, this distribution is distorted, as this can be

formulated by multiplying it with the factor k
√

u2
1 + u2

2

pb = k
√

u2
1 + u2

2
1

2πσ 2
e− (u1−u1)

2+u2
2

2σ2 (17.28)

The bias constant kσ can be determined from the similar condition as that in
Eq. (17.8), so that

1

kσ
= 1

2π

∞∫

−∞
X
(u2

σ

)

d
(u2

σ

)

(17.29)

In this equation, the expression X is given by

X
(u2

σ

)

=
∞∫

−∞

√
(u1

σ

)2 +
(u2

σ

)2 · e
− 1

2

[
(

u1
σ

− u1
σ

)2+( u2
σ

)2
]

d
(u1

σ

)

(17.30)

The biased mean of velocity component u1 is then calculated as

u1,b

u1
= 1

u1

∞∫

−∞

∞∫

−∞
pbu1du1du2 = kσ

2π

σ

u1

1

σ 4

∞∫

−∞

∞∫

−∞
u1

√

u2
1 + u2

2 e− (u1−u1)
2+u2

2
2σ2 du1du2

(17.31)
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Fig. 17.4 Velocity bias in the mean velocity of the turbulent flow, respectively, with one-, two-
and three-dimensional flow fluctuations

It is evident that the biased velocity component is again only a function of the
turbulence intensity (Tu = σ /u1). Because the integrations in both Eqs. (17.29)
and (17.31) could not be analytically performed, the finite numerical method has
to be applied. Figure 17.4 shows corresponding calculation results regarding the
biased velocity component u1,b / u1 in the function of the turbulence intensity (curve
2D). For the purposes of comparison, the biased mean velocity in the case of one-
dimensional flow fluctuations, calculated from Eq. (17.19), has also been shown
(curve 1D).

17.4.1.2 Three-Dimensional Flow Fluctuations

Similar calculation procedures can be applied to the flows with three-dimensional
flow fluctuations. In place of Eq. (17.27), the Gaussian probability distribution of
velocities takes the following form:

p = 1√
8ππσ 3

e
− (u1−u1)

2+u2
2+u2

3
2σ2 (17.32)

Because of the effect of velocity bias this distribution is distorted, as this can be

similarly formulated by multiplying it with the factor k
√

u2
1 + u2

2 + u2
3, so that

pb =
k
√

u2
1 + u2

2 + u2
3√

8ππσ 3
e− (u1−u1)

2+u2
2+u2

3
2σ2 (17.33)

The bias constant kσ can be again determined from the similar condition as that in
Eq. (17.8). The biased mean of velocity component u1 is then calculated as
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u1,b

u1
= 1

u1

∞∫

−∞

∞∫

−∞

∞∫

−∞
pbu1du1du2du3

= kσ√
8ππ

σ

u1

1

σ 5

∞∫

−∞

∞∫

−∞

∞∫

−∞
u1

√

u2
1 + u2

2 + u2
3 e− (u1−u1)

2+u2
2+u2

3
2σ2 du1du2du3

(17.34)

The integration must be again performed by the finite numerical method.
Corresponding calculation results have been shown in Fig. 17.4 (curve 3D) in the
function of the turbulence intensity. Obviously the effect of velocity bias in the
velocity component is lowest if the flow fluctuation is three-dimensional.

The above calculations for three cases of flow fluctuations (1D, 2D and 3D) help
to understand the extent of influences of velocity bias in LDA measurements. The
flow fluctuations in turbulent flows, in fact, are always three-dimensional. For this
reason and by comparing Figs. 17.2 and 17.4 it can be concluded that the approxi-
mation ub / u = 1 + Tu2 is only applicable for real flows with turbulence intensities
up to 30%.

17.4.2 Velocity Bias in Turbulent Normal Stresses

The influence of velocity bias on measurements of turbulence quantities is identi-
fied, for instance, in that the velocity bias will cause the actual isotropic turbulence to
be measured and presented as an apparent anisotropic one. For simplicity, turbulent
flows that show the symmetrical velocity fluctuations around the main flow direc-
tion are considered here. According to Chap. 8 and in considering a two-dimensional
section in the flow field (Fig. 17.3), the turbulent normal stress in the velocity com-
ponent ux for instance is calculated by Eq. (8.7). Obviously, Eq. (8.7) also applies
to the biased normal stress, so that

σ 2
x,b = σ 2

1,b cos2 ϕ + σ 2
2,b sin2 ϕ (17.35)

For this reason, one needs only to determine the effects of velocity bias on the tur-
bulence quantities σ 2

1,b, σ 2
2,b and σ 2

3,b in a general turbulent flow. The simplest case
would be again the turbulent flow with isotropic turbulence (σ1 = σ2 = σ3 = σ ) that
is described by the turbulence intensity Tu = σ/u1 and undergoes the velocity bias
with σ2,b �= σ1,b and σ2,b = σ3,b. For this reason and because of Eq. (17.35) it is pro-
posed that one only calculates the biased quantities σ1,b and σ2,b, respectively. From
the viewpoint of statistics leading to Eq. (5.5), the following relationship between
the statistical quantities, as applied to the velocity component u1 for instance, is
available

σ 2
1,b = u2

1,b − u2
1,b (17.36)
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As the biased mean velocity has been obtained in Sect. 17.4.1, only the first term on
the r.h.s. of above equation needs to be calculated. For the purpose of again making
a comparison between flows with two- and three-dimensional turbulence, respective
flows will be separately considered, as presented below.

17.4.2.1 Two-Dimensional Turbulence

For an assumed flow with two-dimensional and isotropic velocity fluctuations,
Eq. (17.36) is rewritten in detail

σ 2
1,b

σ 2
= 1

σ 2

∞∫

−∞

∞∫

−∞
u2

1pbdu1du2 − u2
1,b

σ 2
(17.37)

The biased probability distribution pb is the same as that which is given by
Eq. (17.28) and has been used in Eq. (17.31). Equation (17.37) is expected to be
a function of the turbulence intensity (Tu = σ /u1) only.

Similarly, the biased standard deviation in the second velocity component i.e. the
component perpendicular to the flow direction is given by

σ 2
2,b

σ 2
= 1

σ 2

∞∫

−∞

∞∫

−∞
u2

2pbdu1du2 (17.38)

with u2 = u2,b = 0.
Figure 17.5 shows corresponding calculation results in the function of the turbu-

lence intensity. In the velocity component u1, the related turbulent normal stress is
underestimated for flows of the turbulence intensity below 65%. At the flows of the
turbulence intensity Tu < 30%, the over- and underestimation of the turbulent stress
in the velocity component u1 and u2, respectively, are of the same order.
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Fig. 17.5 Velocity bias in the turbulent stresses of the turbulent flow with two-dimensional flow
fluctuations
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17.4.2.2 Three-Dimensional Turbulence

Under the assumption of isotropic turbulence in a turbulent flow with three-
dimensional velocity fluctuations, measurements of velocity components perpen-
dicular to the main flow direction then undergo the same effect of velocity bias.
This simply means σ 2

2,b = σ 2
3,b. Because of this equality one needs to only estimate

the biased quantities σ 2
1,b and σ 2

2,b. The biased turbulence quantities in other veloc-
ity components can be generally calculated through the coordinate transformation
of the related Reynolds stress matrix with σ 2

2,b = σ 2
3,b. For the turbulent normal

stress σ 2
x,b for instance, it applies (Appendix C)

σ 2
x,b = σ 2

1,b cos2 α1 + σ 2
2,b sin2 α1 (17.39)

Herein α1 is the angle between the main flow direction (axis with σ1) and the x-axis
(see also Fig. 6.1). The above equation is formally equal to Eq. (17.35). It applies,
however, also to the flow in which the main flow direction does not lie in the x − y
plane.

Following the same calculation procedures, as presented above with respect to
the two-dimensional flow fluctuations, the biased turbulence quantities σ 2

1,b and σ 2
2,b

in the current case are calculated as

σ 2
1,b

σ 2
= 1

σ 2

∞∫

−∞

∞∫

−∞

∞∫

−∞
u2

1pbdu1du2du3 − u2
1,b

σ 2
(17.40)

σ 2
2,b

σ 2
= 1

σ 2

∞∫

−∞

∞∫

−∞

∞∫

−∞
u2

2pbdu1du2du3 (17.41)

In these two equations, the biased probability density function pb is the same as that
given by Eq. (17.33) which has been applied in Eq. (17.34).
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Fig. 17.6 Velocity bias in the turbulent stresses of the turbulent flow with three-dimensional flow
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Corresponding calculation results have been shown in Fig. 17.6. The effect of
velocity bias in this case, if compared with Fig. 17.5 regarding two-dimensional
flow fluctuations, has further diminished.

17.4.3 Velocity Bias in Turbulent Shear Stresses

Based on calculations of velocity bias in turbulent normal stresses in the last section,
the velocity bias in the respective turbulent shear stress can be determined by means
of the coordinate transformation of the related second order tensor i.e. the Reynolds

stress matrix with σ 2
2,b = σ 2

3,b. In interest of biased turbulent shear stress
(

u′
xu′

y

)

b
for instance, it applies (Appendix C)

(

u′
xu′

y

)

b
=
(

σ 2
1,b − σ 2

2,b

)

cosα1 cosβ1 (17.42)

In this equation, α1 stands for the angle between the velocity components u1 and ux,
as in Eq. (17.39). The angle β1 conventionally denotes the angle between velocity
components u1 and uy.

A special case is obtained when all four velocity components (u1,u2, ux and uy)
are found in a plane. It is assumed that it deals with the x − y plane, as shown in
Fig. 17.3. Because of α1 = ϕ and β1 = π / 2 − α1 = π / 2 − ϕ it follows from
Eq. (17.42)

(

u′
xu′

y

)

b
= 1

2

(

σ 2
1,b − σ 2

2,b

)

sin 2ϕ (17.43)

It completely agrees with Eq. (8.9) in Chap. 8.



Chapter 18
LDA Application Examples

18.1 High Speed Water Jet Flow in a Pelton Turbine

One of the most successful applications of the LDA method in flow measurements
is the measurement of the high speed jet in a Pelton turbine. Such an application
has been partly shown in Chap. 9 while describing the Dual Measurement Method
(DMM). The high speed jet flow in a Pelton turbine represents a very important
component which influences the entire hydraulic performance of the turbine sys-
tem (Zhang 2009). For a long time, jet measurements were carried out by means
of the pressure tubes and the photography with very limited accuracies. The first
application of the LDA method to the high speed jet flow was conducted by Zhang
et al. (2000a, b) in using a model injector of a Pelton turbine. In performing such
measurements, the first step that must be completed is to bring the laser beams
through the rough jet surface into the jet. This can be realized by using a transpar-
ent plane piece to slightly contact the jet, as illustrated in Fig. 18.1. The resulted
disturbance on the jet flow is restricted within the boundary layer thickness on
the rigid surface of the plane piece. Because this thickness is in the order of only
about 0.1 mm, the flow disturbance can be neglected. In addition, the use of the
plane piece as an optical window ensures the perfect optical conditions for LDA
measurements.

It has been confirmed from measurements that the jet flow and the flow prop-
erties significantly depend on the flow condition ahead of the injector. The flow
presented in Sect. 9.2 (see Fig. 9.2) corresponds to the condition of the inlet flow
passing through a 90◦ bend. The secondary flow has been thus generated. Because
it represents swirling flows, it persists while passing through the injector and thus
also remains in the jet.

The simplest case of the jet flow is the jet flow without any secondary flow struc-
ture in it. This almost ideal flow can be generated by connecting the injector to
a long straight pipe with uniform inlet flow. Corresponding measurements of flow
distributions in such a high speed jet could be well carried out by means of the LDA
method, as demonstrated in Fig. 18.2. At four different sections along the jet, the
axial jet speeds are measured and normalized by the theoretical maximum jet speed
c0 = √

2gh0, with h0 = 30 meters as the hydraulic head that is available at the

243Zh. Zhang, LDA Application Methods, Experimental Fluid Mechanics,
DOI 10.1007/978-3-642-13514-9_18, C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 18.2 Velocity distributions in the high speed jet flow measured by LDA

injector. Based on these accurate measurements, the following statements can be
additionally made with regard to the flow dynamics.

A Flow deficit in the jet core
A significant flow deficit is confirmed in the jet core while the jet flow is formed
at the nozzle exit. This is the wake arising from the viscous boundary layers on
the needle surface. The boundary layer and its spatial limitation could thus be
clearly identified.
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B Streamline curvature
At the jet section 0.8D0 downstream of the nozzle, the flow velocity distribution
across the jet and out of the jet core is non-uniform. The highest flow velocity
is found near the edge of the jet. Such a velocity distribution indicates that the
flow at this distance exhibits the streamline curvature in the length plane. This
streamline curvature leads to the increase of the static pressure along the curva-
ture radius towards the jet core and in a flow with constant total pressure, the
velocity has to decrease. This appearance signifies that the slope of such a veloc-
ity distribution is simply a measure of the streamline curvature and thus of the
pressure distribution, as this can be demonstrated here.

To calculate the streamline curvature in the jet near to the nozzle outlet, the jet
flow is considered in the cylindrical coordinate system to have no circumferential
velocity component. The streamline of the flow is then given by

r′ = dr

dz
= ur

uz
(18.1)

For the general case of dr/dz = f (r, z), it is further differentiated as

r′′ = d2r

dz2
= 1

u2
z

[

uz

(
∂ur

∂z
+ ∂ur

∂r

dr

dz

)

− ur

(
∂uz

∂z
+ ∂uz

∂r

dr

dz

)]

(18.2)

The jet flow out of the jet core can be considered to be the potential flow because
a short distance downstream of the considered flow section, the flow with uniform
and straight streamlines exhibits no vorticity. With respect to dr/dz = ur/uz and
ur/uz << 1 as well as ∂ur/∂z = ∂uz/∂r for potential flow the above equation is
simplified to

r′′ = 1

uz

∂uz

∂r
(18.3)

The curvature radius of a streamline is calculated by

1

R
= r′′
(

1 + r′2)3/ 2
≈ r′′ = 1

uz

∂uz

∂r
(18.4)

The streamline curvature is thus directly related to the velocity gradient in the area
out of the jet core. In the first approximation, the velocity distribution out of the
jet core can be considered to be a linear function of the radial coordinate, so that
the velocity gradient ∂uz/∂r is a constant. Based on calculations in Eq. (18.4) an
abstract of calculated radii of streamline curvatures from a series of measurements
with different hydraulic heads is shown in Table 18.1.

As can be seen, the calculated radii of streamline curvatures are nearly indepen-
dent of the available hydraulic head. This indicates that the jet flows operating at
three different hydraulic heads are hydraulically similar.



246 18 LDA Application Examples

Table 18.1 Streamline curvature radii in the near region to the nozzle exit for a constant needle
stroke (Zhang and Casey 2007)

Needle stroke s=16 mm

Hydraulic
head h0 ∂uz/∂r Curvature radius R (m)

10 m 37.7 0.37
20 m 54.0 0.37
30 m 61.1 0.39

R

Streamline curvatures in the jet flow lead to pressure increase toward the jet core.
This pressure increase can be calculated by applying the Euler momentum equation
for the radial component as

− 1

ρ

dp

dr
= ur

∂ur

∂r
+ uz

∂ur

∂z
(18.5)

As mentioned above the jet flow is considered to be the potential flow to which the
irrotational flow condition ∂ur/∂z−∂uz/∂r = 0 is satisfied. Combining this condition
with ∂uz/∂r = uz/R from Eq. (18.4) leading to

∂ur

∂z
= uz

R
(18.6)

With respect to ur ≈ 0 the pressure gradient in the jet at the considered jet section
is then calculated as

1

ρ

dp

dr
= −uz

∂ur

∂z
= −u2

z

R
(18.7)

The non-uniform flow distribution due to the streamline curvature clearly shows
that the flow velocity in the considered section has not reached its maximum and
the jet flow still undergoes acceleration. The mean velocity across this jet section is
thus smaller than the mean velocity downstream at other sections. This first section
was initially localized for detailed measurements as it was taken as the jet waist
from photographic estimation. According to the presented LDA measurements, it is
evident that the true jet waist is found further downstream. This also signifies that
the LDA method is much more accurate than the photographic method even though
for the purpose of localizing the jet waist.

It is worth mentioning here that because of the non-uniform static pressure dis-
tribution across the jet, the flow in the considered section could not be accurately
measured by a conventional Pitot tube, which in reality only measures the total pres-
sure. In assuming the constant static pressure, the Pitot tube measurement would
then provide a uniform velocity distribution across the jet, which is clearly not
true.
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C Limitation of measuring the jet diameter
The use of the small wedge shaped Perspex window, as shown in Fig. 18.1,
means that the jet surface position on the side of the jet adjacent to the wedge
cannot be estimated. On the opposite side of the jet, the rough jet surface scatters
so much laser light that the LDA optics rapidly reaches its limitation. For this
reason it is impossible to accurately estimate the location of the edge of the jet,
i.e. the jet thickness, from LDA measurements.

D Negligible energy loss in the jet flow
The mean velocity in the jet remains nearly constant along the jet, at least up to
the section of a distance that is measured seven times of the nozzle exit diameter.
This indicates that the jet is highly compact and the loss of the kinetic energy is
negligible.

Measurements shown above were carried out at the hydraulic head up to 30
meters, as shown in Table 18.1. Successful LDA measurements of the jet flows at
the hydraulic head of 90 meters have been carried out by Zhang et al. (2003). More
about the measurements including those with a 90◦ bend ahead of the injector as
well as at the hydraulic head of 90 meters can be found in Zhang and Casey (2007)
that summarized the most relevant jet flow measurements by the LDA method.

18.2 Measurements of Warp Yarn Speed in a Weaving Machine

LDA method has been generally recognized to be a technique for flow measure-
ments. In reality, it can also be applied to measurements of other object motions
instead of small particle motions in the flow. One needs only to position the LDA
measurement volume on the surface of the moving object of finite dimensions. The
possible problem associated with the positioning of the measurement volume is
obviously the light scattering that is very strong and will lead to rapid overloading
of used photodetectors like the photomultiplier. In addition, the visibility of sig-
nals will considerably decrease, like in the case of large particles passing through
the measurement volume. The high quality burst like that in Fig. 3.6 could not be
achieved. Instead, continuous signals with highly diminished signal to noise ratio
(SNR) will be obtained. Although the signal quality is largely deteriorated by the
low SNR, signals can still be successfully evaluated by the powerful signal proces-
sor like the burst spectrum analyzer (BSA) that is based on the spectrum analysis
using FFT and corresponds to the current state of the art LDA technologies. Because
of this performance, the application area of the LDA method has been significantly
extended, as it can be found for instance in measurements of mechanical vibrations
at machines or machine components.

Figure 18.3 shows an example of extended LDA applications in the weaving
machine. It represents the measurements of the time-dependent moving speed of
a warp yarn with the purpose of checking and controlling the yarn tension in the
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Fig. 18.3 LDA application to measurements of the warp yarn speed in a weaving machine

weaving machine. In the example given, the LDA measurement volume was directly
positioned on the moving yarn. The measurement could be conducted with a very
high data rate of about 30 kHz. This enables the highly dynamical motion of the
yarn to be highly resolved.

In principle, the mean speed of the yarn movement can be calculated from the
arithmetic average of measurement data. The calculation, however, has shown that
this mean speed mostly does not agree with the actual mean speed of yarns while
the machine is operating. The reason for this discrepancy is simply the non-constant
data sampling rate. Worth remembering is that the non-constant data sampling rate
as a result of the velocity bias in flow measurements (Chap. 17) usually does not
significantly influence the determination of the mean velocity. In the present case,
the non-constant data sampling rate arises from the non-constant light scattering on
the moving yarn of about 0.1 mm in diameter. Such a non-constant data sampling
rate can be shown by the time-dependent time-between-data (tbd = ti+1 − ti), as
also shown in Fig. 18.3 together with the corresponding probability distribution in
form of the histogram. Obviously the measurements were carried out with a wide
spectrum of the time-between-data i.e. data sampling rate. Because of the highly
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dynamical motion and comparably very low mean speed of yarns the non-constant
data sampling rate will considerably sensitively influence the measurement of the
mean speed of the moving yarn. In the example shown in Fig. 18.3, the relative fluc-
tuation speed is measured at about σ /ū ≈ 100 = 10000%, with σ as the standard
deviation of the mean speed. Worth mentioning is that in the measurement of a tur-
bulent flow with comparable turbulence intensity the biased mean velocity is equal
to two times of the unbiased mean, see Fig. 17.2.

It has been shown that in the present case the mean speed of the moving yarn
could not be accurately determined. In reality, the most significant meaning of the
current LDA measurements is in showing the dynamic behaviours of moving yarns
in a weaving machine. The mean speed of the moving yarns could be accurately
measured by simply using a meter and a stop watch.

The measurement shown in Fig. 18.3 clearly demonstrates the excellent applica-
bility of the LDA method in areas other than the fluid flow mechanics.

18.3 Verification of the Shift Frequency in the Laser Beam

For purposes of resolving the flow direction in LDA measurements, the frequency of
one laser beam in each laser beam pair is usually shifted, as described in Sect. 3.6.
Sometimes it is necessary to verify the accuracy of the shift frequency, in order to
estimate the system accuracy of the LDA unit and to identify the possible system-
atic error in LDA measurements. Direct measurements of the shift frequency as an
optical quantity by using the interferometer, for instance, are not always available
or usually very time-consuming. The simplest way to verify the shift frequency is
probably to measure a non-moving object with the present LDA optics. For the cor-
rect setup and specification of shift frequency in LDA optics, zero velocity should
be obtained. Any deviation of measured velocities from zero indicates the error in
the shift frequency specifications.

The method of measuring the non-moving object seems to be somewhat inade-
quate, because it does not deal with the direct measurement of velocities. In addition,
the object might likely be burned down at the place where the laser beams are
focused. The strong laser light scattering at the object also leads to continuous over-
loading of the photodetectors such as the photomultiplier. For this reason it would
be very helpful to use a rotating object such as a variable frequency optical chopper.
Either the object surface, or better a thin wire on it, can be utilized to scatter the
laser light in the configured LDA test.

For the purpose of merely verifying the shift frequency in the transmitting laser
light, one doesn’t need to compare the measured velocities with the actual velocity
of the rotating object. The measurements can be quite easy and accurately per-
formed, if the motor of the used optical chopper can be switched to rotate in both
directions at equal rotational speed. The LDA measurement volume will be sim-
ply positioned on the rotating object without having to know where it is and which
velocity component will be measured. One needs to only compare two velocities
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which are measured while the motor rotates, respectively, in two different directions
at the same speed. Theoretically both velocities with different signs should exhibit
the same absolute value when the specification of the shift frequency in the trans-
mitting laser light is exact. Each difference in the absolute values of both velocities
straightforwardly indicates that there is a difference between the shift frequency that
is specified in the software and the actual shift frequency that is achieve by means
of the Bragg cell, for instance. In reality, the error in the specification of the shift
frequency can not only be confirmed, but also quantified. For this purpose, the error
in the shift frequency is considered to result in an error in the shift speed of fringes
in the measurement volume according to Eq. (3.60). This shift speed error is con-
stantly involved in the verification measurements by means of the rotating object.
As the motor rotates in two different directions, the measured velocity components
are

u+ = u0 +�ush (18.8)

and

u− = −u0 +�ush (18.9)

respectively. Herein the actual velocity component is assumed to be u0. By elimi-
nating this actual velocity from above two equations, the error that is involved in the
measurements is determined as

�ush = u+ + u−
2

(18.10)
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This error should remain constant, when the verification measurement is carried out
at other rotational speeds of the motor. Figure 18.4 shows an example of the outlined
verification measurement by using a variable frequency optical chopper that can be
accurately set at each constant value of rotational speeds. As can be seen, the error
in the outlined velocity measurements is highly constant. It indeed represents an
error which is negligibly small. In the example shown in Fig. 18.4, the error in the
shift speed takes�ush = 0.047. It corresponds to an additive amount to the velocity
component that is positive in the LDA coordinate system. With respect to the fringe
spacing�x = 2.18 μm, the error in the shift frequency is calculated from Eq. (3.60)
to be 22 kHz. If related to the applied shift frequency of 40 MHz, the error takes
about 0.05%.

The method of rotating the object in two different directions represents an
accurate method to examine any negligible difference between the actual and the
specified shift frequency in an LDA unit. It is accurate because it is founded on the
natural law and is occasionally called the two-step method. The most famous appli-
cation example of this method might be the Michelson-Morley experiment (Hecht
1991) that was conducted to find out whether the light speed is different in different
spatial directions. The same principle has also been applied in Chap. 9 to derive the
Dual Measurement Method (DMM) which enables the very small secondary flow
structures in the high speed jet flow to be accurately measured.



Appendix A
Off-axis LDA Alignment and Measurement
Volume Displacement

For measurements of internal flows or flows behind a plane wall by means of the
LDA method, it is sometimes necessary to align the LDA head off-axis against the
normal of the plane wall. Such an arrangement of LDA optics requires a special
concern that the LDA head should be off-axis aligned strictly in the plane containing
two laser beams. This ensures the laser beams in both the window and the flow
to propagate within the same plane and thus to intersect (Fig. A.1). One of the
most significant outcomes of such an arrangement of a two-component LDA head
with two pairs of laser beams is that the two measurement volumes (m and s) do
not meet together. This phenomenon is known as astigmatism as a special form of
optical aberrations. The distance between two intersection points, i.e. measurement
volumes, is denoted as the astigmatic difference. Details about this form of optical
aberrations have been described in Chap. 14, see Fig. 14.6.

To specify and evaluate the optical performance of an LDA system at the off-
axis alignment, the distance between two separate measurement volumes has been
considered to be a measure of the related optical aberration. It can be applied even
in the case of using a one-component LDA with two laser beams. As a reference,
this distance will be calculated in this appendix.

ϕLDA

s
m

d ds

flow wall 

Δxm,s

Fig. A.1 Off-axis alignment of a two-component LDA head and the separation of two measure-
ment volumes (astigmatic difference)
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For the common purpose of regarding the astigmatism, the plane in which the
off-axis alignment takes place is denoted as the meridian plane. The plane that is
perpendicular to the meridian plane is denoted as the sagittal plane. For an LDA
head with four laser beams then each plane contains two laser beams. The way to
calculate the distance between two measurement volumes is to firstly calculate the
intersection point of two laser beams in each laser beam pair.

The medium 0, in which all four laser beams intersect at a unique point, is
denoted as the reference medium. Usually it refers to the air in which the LDA
head is present.

A.1 Laser Beams in the Meridian Plane

The two laser beams in the meridian plane will be considered according to Fig. A.2
first. The initial i.e. virtual intersection point of two laser beams is fount at o that is
measured by xo in the used coordinate system. Obviously both laser beams propa-
gate in the same two-dimensional plane from the medium 0 to the medium 2. For
the calculation purpose both laser beams A and B in the medium 0 are represented
by the unit vector �a0 and �b0, respectively. In the used x−y coordinate system, these
two unit vectors are expressed as

�a0 = [cos (ϕLDA + α0) , sin (ϕLDA + α0)] = (cos εA0, sin εA0) (A.1)

�b0 = [cos (ϕLDA − α0) , sin (ϕLDA − α0)] = (cos εB0, sin εB0) (A.2)

In the medium 1 and 2, the corresponding laser beams are represented by respective
unit vectors as
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�a1 = (cos εA1, sin εA1) (A.3)

�b1 = (cos εB1, sin εB1) (A.4)

�a2 = (cos εA2, sin εA2) (A.5)

�b2 = (cos εB2, sin εB2) (A.6)

Both laser beams intersect with the y-axis. The distance between two intersection
points, as shown by t, can be calculated from either the virtual intersection point o
or the actual point m, as given by

t = (tan εA0 − tan εB0) xo = (d tan εA1 + dm tan εA2)− (d tan εB1 + dm tan εB2)

(A.7)
from which one obtains

xo = tan εA1 − tan εB1

tan εA0 − tan εB0
d + tan εA2 − tan εB2

tan εA0 − tan εB0
dm (A.8)

This equation relates the actual and virtual intersection points of two laser beams
which lie in the meridian plane

A.2 Laser Beams in the Sagittal Plane

The two laser beams in the sagittal plane will be considered according to Fig. A.3.
The virtual intersection point of two laser beams is again given by o and located
at xo. Obviously both laser beams propagate in the medium 1 and 2 in other two-
dimensional planes than that in medium 0. The optical axis lies in the x−y plane and
is inclined by ϕLDA. Two laser beams are denoted by C and D, respectively. Because
of the symmetry condition only the beam C will be further considered.

The laser beam C in the medium 0 is represented by the unit vector �c0. Because
the projection of this unit vector on the optical axis in the x−y plane leads to cosα0
and this in turn has its x- and y-components cosα0 cosϕLDA and cosα0 sinϕLDA,
respectively, the unit vector �c0 is expressed by

�c0 = (cosα0 cosϕLDA, cosα0 sinϕLDA, sinα0) (A.9)

The projection of this unit vector in the x−z plane (Fig. A.3b) has a slope that is
given by

c0z

c0x
= sinα0

cosα0 cosϕLDA
= tanα0

cosϕLDA
(A.10)
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According to Eqs. (3.8) and (3.9) the unit vector after the first refraction i.e. in the
medium 1 is expressed as

�c1 =
(

c1x,
n0

n1
cosα0 sinϕLDA,

n0

n1
sinα0

)

(A.11)

Herein

c1x =
√

1 − c2
1y − c2

1z =
√

1 − n2
0

n2
1

(

1 − cos2 α0 cos2 ϕLDA
)

(A.12)

The projection of the unit vector �c1 in the x−z plane has a slope that is calculated as

c1z

c1x
= n0

n1

sinα0

c1x
(A.13)

In a similar way, the unit vector after the second refraction i.e. in the medium 2 is
expressed as

�c2 =
(

c2x,
n0

n2
cosα0 sinϕLDA,

n0

n2
sinα0

)

(A.14)

with

c2x =
√

1 − c2
2y − c2

2z =
√

1 − n2
0

n2
2

(

1 − cos2 α0 cos2 ϕLDA
)

(A.15)
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The projection of the unit vector �c2 in the x−z plane exhibits a slope confirmed by

c2z

c2x
= n0

n2

sinα0

c2x
(A.16)

Two laser beams in the medium 2 intersect at point s which is located at ds. In order
to find out the relation between xo and ds, two intersection points of two laser beams
on the first medium interface (y − z plane) are considered. Half of the distance 2 h
between two intersection points can be calculated from either the virtual intersection
point o or the actual point s, as given by

h = c0z

c0x
xo = c1z

c1x
d + c2z

c2x
ds (A.17)

With respect to the slopes of respective unit vectors in the x − z plane (Fig. A.3b),
as calculated above, the following relationship can be found:

xo =
(

n0

n1

1

c1x
d + n0

n2

1

c2x
ds

)

cosα0 cosϕLDA (A.18)

This equation relates the actual and virtual intersection point of two laser beams
which lie in the sagittal plane.

A.3 Combination

Combining Eqs. (A.8) and (A.18) to eliminate xo yields

tan εA1 − tan εB1

tan εA0 − tan εB0
d + tan εA2 − tan εB2

tan εA0 − tan εB0
dm

=
(

n0

n1

1

c1x
d + n0

n2

1

c2x
ds

)

cosα0 cosϕLDA

(A.19)

With dm = ds + �xm,s then the distance between the meridian and sagittal focal
points �xm,s (Fig. A.1) is resolved as

�xm,s = 1

T20
(Ψ1d + Ψ2ds) (A.20)

Herein

Ψ1 = n0

n1

1

c1x
cosα0 cosϕLDA − T10 (A.21)

Ψ2 = n0

n2

1

c2x
cosα0 cosϕLDA − T20 (A.22)
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T10 = tan εA1 − tan εB1

tan εA0 − tan εB0
(A.23)

T20 = tan εA2 − tan εB2

tan εA0 − tan εB0
(A.24)

In these equations, all refraction angles (εA1, εA2, εB1, εB2) can be calculated from
incident angles εA0 and εB0 in the form of εA0 = ϕLDA+α0 and εB0 = ϕLDA−α0 by
applying the law of refraction. Both c1x and c2x can be determined from Eqs. (A.12)
and (A.15), respectively.

A special case will be considered in that the flow medium to be measured is equal
to the reference medium. Then because of n2 = n0 it yields from Eqs. (A.15) and
(A.24)

c2x = cosα0 cosϕLDA (A.25)

T20 = 1 (A.26)

These values are inserted into Eq. (A.22), yielding

Ψ2 = 0 (A.27)

The distance between two measurement volumes, as given in Eq. (A.20), is then
reduced to

�xm,s = Ψ1d (A.28)

It is independent of the location of the measurement volume in the flow. This also
means that the depth of the measurement volume in the flow does not contribute to
the astigmatic difference.



Appendix B
Laser Beam Orientation Under the Effect
of the Bias Angle δ

This appendix refers to Sect. 14.9.1.
One reason that leads to inaccurate off-axis LDA alignment is confirmed by the

off-axis alignment angle ϕLDA followed by the bias angle δ, at which the LDA
head has turned around its own axis i.e. the optical axis. This type of imperfect
off-axis LDA alignment indicates that the unit vector �n that represents the normal of
the plane containing two laser beams (known as the optical plane) deviates from
z-axis by δ (Fig. B.1). Thus the normal vector �n of the optical plane generally
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has its spatial orientation. In order to determine the spatial direction of this nor-
mal vector, an auxiliary unit vector �mxy is introduced which lies in the x − y plane
and is perpendicular to the optical axis. Because the optical axis is represented by
�o = (cosϕLDA, sinϕLDA, 0), it yields for the unit vector �mxy

�mxy = (sinϕLDA, − cos ϕLDA, 0) (B.1)

Then, the following equations are used to derive the spatial direction of the normal
vector �n:

�n · �z = cos δ (B.2)

(�n × �mxy
) · �z = 0 (B.3)

In these equations, the z-axis has been considered as a unit vector �z = (0, 0, 1). The
triple product in Eq. (B.3) is zero because all three vectors lie in the same plane.
From these two equations and with respect to |�n| = 1 the normal vector �n can be
solved as

nx = − sinϕLDA sin δ (B.4)

ny = cosϕLDA sin δ (B.5)

nz = cos δ (B.6)

In using these calculation results, the spatial orientations of both laser beams A and
B can be calculated. According to Fig. B.1 following equations can be immediately
obtained:

�a · �o = cosα0 (B.7)

�b · �o = cosα0 (B.8)

(�a × �o) · �n = sinα0 (B.9)
(�b × �o

)

· �n = − sinα0 (B.10)

Equations (B.9) and (B.10) are derived from the knowledge that the vectors in the
respective parentheses have the magnitude of sinα0 and the directions parallel to �n
and −�n, respectively.

From Eqs. (B.7) and (B.9) it results for the laser beam A

ax = cosϕLDA cosα0 + sinϕLDA sinα0 cos δ (B.11)

ay = sinϕLDA cosα0 − cosϕLDA sinα0 cos δ (B.12)
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az = sinα0 sin δ (B.13)

Analogous to the related calculations one obtains from Eqs. (B.8) and (B.10) for the
laser beam B:

bx = cosϕLDA cosα0 − sinϕLDA sinα0 cos δ (B.14)

by = sinϕLDA cosα0 + cosϕLDA sinα0 cos δ (B.15)

bz = − sinα0 sin δ (B.16)

As can be seen, the bias angle δ �= 0 leads to az �= 0 and bz �= 0. This means that
both laser beams A and B, after refractions in the medium 2, do not lie in the same
plane as in the medium 1. They will obviously propagate in different directions
which indeed do not lie in a two-dimensional plane at all. Because of this, two
laser beams will not intersect in the medium 2 to form the measurement volume.
Corresponding calculations of using the above results have been performed in Sect.
14.9.1.



Appendix C
Coordinate Transformation of the Reynolds
Stress Matrix

In representing the flow velocities and the velocity fluctuations, the method of using
coordinate transformation has often been applied. In Chap. 6, transformations of
both velocities and turbulence quantities in the two-dimensional x − y plane have
been presented. For reference purposes, as required for instance by Sect. 17.4.2, the
velocity transformation in three-dimensional orthogonal coordinate systems should
be shown in this appendix.

According to Fig. C.1, the Cartesian coordinate system is shown to represent the
velocity vector �u with components ux, uy and uz. This coordinate system is usually
directly related to the flow system. Another orthogonal coordinate system is also
drawn to represent the same velocity vector, however in components of u1, u2 and
u3. The relative position between two coordinate systems is specified by angles αi,βi
andγi. For instance, the coordinate axis for velocity component u1 is given by angles
α1,β1 and γ1 in the x − y − z coordinate system. The components of the velocity
vector �u in both coordinate systems are related by (see also Sect. 6.1.1)

⎡

⎣

u1
u2
u3

⎤

⎦ =
⎡

⎣

cosα1 cosβ1 cos γ1
cosα2 cosβ2 cos γ2
cosα3 cosβ3 cos γ3

⎤

⎦

⎡

⎣

ux
uy
uz

⎤

⎦ = R

⎡

⎣

ux
uy
uz

⎤

⎦ (C.1)

Herein R represents the orthogonal transformation matrix. As an orthogonal matrix
its inverse is simply equal to its transpose, as given by R−1 = R′.

ux

uy

uz

ui

βi

αi

γi

Fig. C.1 Relative position
between two coordinate
systems for velocity
transformations
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In order to transform the turbulent Reynolds stresses, the following matrix
calculation is applied

σmn = R′σijR (C.2)

that is in concrete form

⎡

⎣

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

⎤

⎦ = R′
⎡

⎣

σ11 τ12 τ13
τ21 σ22 τ23
τ31 τ32 σ33

⎤

⎦R (C.3)

A special case will be considered in which the velocity component u1 coincides with
the main flow direction. Based on the zero correlation principle that has been pre-
sented in Chap. 8 for conducting the Zero Correlation Method (ZCM), the main flow
direction also corresponds to the orientation of the principal normal stress. Because
all turbulent shear stresses vanish in the related coordinate system it remains

σij =
⎡

⎣

σ11 0 0
0 σ22 0
0 0 σ33

⎤

⎦ (C.4)

Starting from this state of turbulent stresses, all turbulent stresses in the x − y − z
coordinate system are then calculated from Eq. (C.2) as follows:

σxx = σ11 cos2 α1 + σ22 cos2 α2 + σ33 cos2 α3 (C.5)

σyy = σ11 cos2 β1 + σ22 cos2 β2 + σ33 cos2 β3 (C.6)

σzz = σ11 cos2 γ1 + σ22 cos2 γ2 + σ33 cos2 γ3 (C.7)

τxy = σ11 cosα1 cosβ1 + σ22 cosα2 cosβ2 + σ33 cosα3 cosβ3 (C.8)

τzy = σ11 cosβ1 cos γ1 + σ22 cosβ2 cos γ2 + σ33 cosβ3 cos γ3 (C.9)

τxz = σ11 cosα1 cos γ1 + σ22 cosα2 cos γ2 + σ33 cosα3 cos γ3 (C.10)

A further special case will be considered. It is assumed that in the plane perpendic-
ular to the main flow direction, i.e. in the plane of velocity components u2 and u3,
isotropic turbulence is present. This simply means σ22 = σ33. Then, with respect to
cos2 α1 + cos2 α2 + cos2 α3 = 1 and the corresponding trigonometric identities for
both the angle β and γ , one obtains

σxx = σ11 cos2 α1 + σ22 sin2 α1 (C.11)

σyy = σ11 cos2 β1 + σ22 sin2 β1 (C.12)
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σzz = σ11 cos2 γ1 + σ22 sin2 γ1 (C.13)

τxy = σ11 cosα1 cosβ1 + σ22 (cosα2 cosβ2 + cosα3 cosβ3) (C.14)

The last equation for τxy can be further simplified. Both the x- and the y-coordinate
in the x − y − z system will be represented by the respective unit vectors �x =
(cosα1, cosα2, cosα3) and �y = (cosβ1, cosβ2, cosβ3) in the ui-coordinate system.
Because of �x⊥�y there is �x · �y = 0. This leads to

cosα2 cosβ2 + cosα3 cosβ3 = − cosα1 cosβ1 (C.15)

By substituting this expression into Eq. (C.14) it then follows

τxy = (σ11 − σ22) cosα1 cosβ1 (C.16)

This equation has been referred to in Sect. 17.4.2 by Eq. (17.42).
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Index

A
Added mass, 71, 73–76, 87–88
Air bubbles in water, 88
Angular bias, 229
Apparent mean velocity, 221–223
Apparent turbulence intensity, 134–140, 226
Apparent turbulent stresses, 125, 131
Astigmatic difference, 159–160, 167–168, 253

negative, 187–188
Astigmatism, 5–6, 151, 159–171, 174–176,

178–179, 253
compensation, 186–189

B
Beam separation, 179–186
Beam waist, 36–40, 44–45

dislocation, 209, 212, 214, 217
thickness, 36, 38, 40, 44

Beat frequency, 27–28
Bernoulli equation, 72–73
Bias angle, 97–98, 100–104, 106, 108, 110,

180–186
Bias product, 232–233
Bragg cell, 29, 32, 35, 41, 250
Burst spectrum analyzer, 247

C
Coma effect, 167
Comatic aberration, 155–156, 167, 195
Correlation coefficient, 120, 122–123, 128–129

D
Detection volume, 40, 52
Diffuser flow, 76–82
Dispersion, 20, 149–150
Doppler burst, 31–32
Doppler effect, 22–24, 27
Doppler frequency, 28–29, 31–33
Drag coefficient, 70–71

Drag force, 69–76, 79, 86–88
Dual measurement method (DMM), 97–111

E
Ellipse form of the turbulence distribution,

65–66
Energy flux, 139–140, 142

correction factor, 139–140
Ergodic hypothesis, 229
Euler momentum equation, 246

F
Flatness, 50–51
Fringe distortion, 4–6, 211, 213–215, 217,

219–226
Fringe distortion number, 214, 221–223, 225
Fringe model, 29–31, 33
Fringe number, 39, 45
Fringe shift speed, 33–35
Fringe spacing, 31, 35, 39–40, 44–45

G
Gaussian beam, 35–38

divergence angle, 37–38
Gaussian probability density function,

12–13, 49

I
Isotropic and anisotropic turbulences, 13–15

J
Jet flow, 97–103, 243–247

K
Kurtosis factor, 51

L
Linear least squares fitting, 119–123, 127–130

271



272 Index

M
Measurement volume, 27–29, 31–33, 35–36,

39–41, 43–45
available, 162
length, 40, 44–45
size, 39–40, 44
thickness, 39–40, 44–45

Meridian focal points, 168, 172, 174
Michelson-Morley experiment, 98, 251
Modulation frequency, 25–26, 28
Modulation wavenumber, 26
Mohr’s stress circle, 60, 66–67
Momentum flow rate, 138, 142, 229–231
Momentum flux, 138–139, 142, 228–231

correction factor, 139, 142, 229–231

N
Non-orthogonal transformation, 61–65
Nozzle flow, 77–80

O
Optical chopper, 249, 251
Oscillation flow model, 85

P
Particle motion equation, 69–88
Phase Doppler Anemometry (PDA), 40, 113,

185–186
Photodetector, 28–29, 41–42
Photomultiplier tubes, 27
Plane of incidence, 20–21
Potential flow, 73–74, 245–246
Pressure force, 69–74, 76, 82, 87–88
Principal normal stresses, 16, 56–57, 60–61
Probability density function, 12–13, 48–49,

140–141, 143
biased, 230–233, 240

R
Rayleigh length, 36–38, 44, 221, 223
Receiving unit, 33, 41–43
Reference medium, 161–163, 187–189
Refraction, 19–21

law of refraction, 20–21
Refractive index, 20
Relaxation time, 75–77, 80, 84, 87
Reynolds equations, 15–16
Reynolds stress, 15–17

matrix, 16–17, 240–241, 263–264

normal, 15
shear, 16, 153

Root mean square, 48–49, 66, 130
Rotary encoder, 127

S
Sagittal focal point, 159, 163, 167–168, 170,

172, 174
Shift frequency, 33–35, 249–251
Signal to noise ratio (SNR), 247
Skewness, 50
Special theory of relativity, 22–23
Standard deviation, 12–14, 16, 48–51
Stokes drag force, see Drag force
Stokes law, 70–71
Stokes number, 83–88
Streamline curvature, 69–70, 245–246
Superposition of two light waves, 24–25, 27

T
Time-between-data, 248
Table-top experiment, 195–196
Total reflection, 203, 209
Transformation matrix, 54, 63, 263
Transit time, 52, 228
Transmitter, 41–42
Turbulence intensity, 14, 17, 49
Turbulent kinetic energy, 16–17, 51
Turbulent stresses, see Reynolds stress
Two-step method, 98, 251

V
Velocity bias, 47–49, 51–52, 135, 138–145,

227–241
Velocity shift (DMM), 101–106, 108–110
Viscous drag force, see Drag force
Volumetric flow rate, 228
Volumetric flux, 52, 138–139, 228–231

W
Water-filled prism, 179, 186–189
Wavenumber, 19–20, 26, 29–30
Weaving machine, 247–249
Weighting factor, 51–52, 120, 228

Z
Zero correlation method (ZCM), 7–8, 64,

89–96, 153
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