Amihood Amir
Laxmi Parida (Eds.)

Combinatorial
Pattern Matching

21st Annual Symposium, CPM 2010
New York, NY, USA, June 2010
Proceedings

LNCS 6129

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

6129

Amihood Amir Laxmi Parida (Eds.)

Combinatorial
Pattern Matching

21st Annual Symposium, CPM 2010
New York, NY, USA, June 21-23, 2010
Proceedings

@ Springer

Volume Editors

Amihood Amir

Johns Hopkins University
Baltimore, MD, USA

and

Bar-Ilan University

Department of Computer Science
52900 Ramat-Gan, Israel

E-mail: amir@macs.biu.ac.il

Laxmi Parida

IBM T.J. Watson Research Center
Yorktown Heights, NY, USA
E-mail: parida@us.ibm.com

Library of Congress Control Number: 2010927801

CR Subject Classification (1998): F.2, 1.5, H.3.3,J.3,1.4.2, E4, G.2.1, E.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13508-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13508-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The papers contained in this volume were presented at the 21st Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2010) held at NYU-Poly,
Brooklyn, New York during June 21-23, 2010.

All the papers presented at the conference are original research contributions.
We received 53 submissions from 21 countries. Each paper was reviewed by at
least three reviewers. The committee decided to accept 28 papers. The program
also includes three invited talks by Zvi Galil from Tel Aviv University, Israel,
Richard M. Karp from University of California at Berkeley, USA, and Jeffrey S.
Vitter from Texas A&M University, USA.

The objective of the annual CPM meetings is to provide an international
forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated pat-
terns such as trees, regular expressions, graphs, point sets, and arrays. The goal
is to derive non-trivial combinatorial properties of such structures and to exploit
these properties in order to either achieve superior performance for the corre-
sponding computational problems or pinpoint conditions under which searches
cannot be performed efficiently. The meeting also deals with problems in com-
putational biology, data compression and data mining, coding, information re-
trieval, natural language processing and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in Paris,
London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscat-
away, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island,
Barcelona, London, Ontario, Pisa, and Lille.

Starting from the third meeting, proceedings of all meetings have been pub-
lished in the LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645,
1848, 2089, 2373, 2676, 3109, 3537, 4009, 4580, 5029, 5577, and 6129.

Selected papers from the first meeting appeared in volume 92 of Theoretical
Computer Science, from the 11th meeting in volume 2 of Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathe-
matics, from the 14th meeting in volume 3 of Journal of Discrete Algorithms,
from the 15th meeting in volume 368 of Theoretical Computer Science, from the
16th meeting in volume 5 of Journal of Discrete Algorithms, and from the 19th
meeting in volume 410 of Theoretical Computer Science.

The whole submission and review process was carried out with the help of
the EasyChair conference system. The conference was sponsored by the NYU-
Poly, Brooklyn, and by IBM Research. Special thanks are due to the members of
the Program Committee who worked very hard to ensure the timely review of all

VI Preface

the submitted manuscripts, and participated in stimulating discussions that led
to the selection of the papers for the conference.

April 2010 Amihood Amir
Laxmi Parida

Program Committee

Amihood Amir

Rolf Backofen
Ayelet Butman

Matteo Comin
Miklos Csuros
Petros Drineas
Leszek Gasieniec
Steffen Heber
John Tacono

Shunsuke Inenaga
Rao Kosaraju
Gregory Kucherov

Gad Landau
Thierry Lecroq
Avivit Levy

Ton Mandoiu
Avi Ma’ayan
Gonzalo Navarro
Laxmi Parida

Heejin Park

Nadia Pisanti

Ely Porat

Naren Ramakrishnan
Marie-France Sagot
Rahul Shah

Dennis Shasha,
Dina Sokol

Torsten Suel

Jens Stoye

Oren Weimann

Organization

Johns Hopkins University, USA, and Bar-Ilan
University, Israel (Co-chair)

Albert-Ludwigs-Universitat Freiburg, Germany

Holon Academic Institute of Technology, Holon,
Israel

University of Padova, Italy

Université de Montréal, Canada

Rensselaer Polytechnic Institute, USA

University of Liverpool, UK

North Carolina State University, USA

Polytechnic Institute of New York University,
USA

Kyushu University, Japan

Johns Hopkins University, USA

Laboratoire d’Informatique Fondamentale de
Lille, France

NYU-Poly, USA, and University of Haifa, Israel

University of Rouen, France

Shenkar College and CRI, University of Haifa,
Israel

University of Connecticut, USA

Mount Sinai, USA

University of Chile, Chile

IBM T.J. Watson Research Center, USA
(Co-chair)

Hanyang University, Korea

University of Pisa, Italy

Bar-Ilan University, Israel

Virginia Tech, USA

INRIA, France

Louisiana State University, USA

New York University, USA

City University of New York, USA

Polytechnic Institute of NYU, USA

Universitat Bielefeld, Germany

Weizmann Institute of Science, Israel

VIII Organization

Yufeng Wu

Dekel Tsur

Michal Ziv-Ukelson
Organizing Committee
Gad Landau

Laxmi Parida

Steering Committee

Alberto Apostolico
Maxime Crochemore

Zvi Galil

University of Connecticut, USA
Ben Gurion University of the Negev, Israel
Ben Gurion University of the Negev, Israel

NYU-Poly, USA, and University of Haifa, Israel
IBM T.J. Watson Research Center, USA

University of Padova, [taly, and Georgia
Institute of Technology, USA

Université Paris-Est, France, and King’s
College London, UK

Columbia University, USA, and Tel Aviv
University, Israel

Web and Publications Committee

Asif Javed

External Referees

Hideo Bannai
Michaél Cadilhac
Sabrina Chandrasekaran
Francisco Claude
Maxime Crochemore
Danny Hermelin
Wing Kai Hon

Brian Howard

Peter Husemann
Asif Javed

Erez Katzenelson
Takuya Kida
Sung-Ryul Kim

Tsvi Kopelowitz
Alexander Lachmann
Taehyung Lee
Arnaud Lefebvre
Zsuzsanna Liptak
Nimrod Milo

IBM T.J. Watson Research Center, USA

Mathias Mohl

Joong Chae Na
Shoshana Neuburger
Marius Nicolae

Ge Nong

Pierre Peterlongo
Tamar Pinhas

Yoan Pinzon

Boris Pismenny

Igor Potapov

Sven Rahmann

Paolo Ribeca

Luis M.S. Russo
Jeong Seop Sim
Tatiana Starikovskaya
Sharma Thankachan
Alex Tiskin
Charalampos Tsourakakis
Fabio Vandin

Organization IX

Rossano Venturini Sebastian Will
Davide Verzotto Prudence W.H. Wong
Isana Vexler-Lublinsky Shay Zakov

Sponsoring Institutions

IBM Research
NYU-Poly, Brooklyn

Table of Contents

Algorithms for Forest Pattern Matching 1
Kaizhong Zhang and Yunkun Zhu

Affine Image Matching Is Uniform TCY-Complete 13
Christian Hundt

Old and New in Stringologyt 26
Zvi Galil

Small-Space 2D Compressed Dictionary Matching 27
Shoshana Neuburger and Dina Sokol

Bidirectional Search in a String with Wavelet Trees 40
Thomas Schnattinger, Enno Ohlebusch, and Simon Gog

A Minimal Periods Algorithm with Applications 51
Zhi Xu

The Property Suffix Tree with Dynamic Properties................... 63

Tsvi Kopelowitz

Approximate All-Pairs Suffix/Prefix Overlaps........................ 76
Niko Vilimdki, Susana Ladra, and Veli Mikinen

Succinct Dictionary Matching with No Slowdown 88
Djamal Belazzougui

Pseudo-realtime Pattern Matching: Closing the Gap 101
Raphaél Clifford and Benjamin Sach

Breakpoint Distance and PQ-Trees, 112
Haitao Jiang, Cedric Chauve, and Binhai Zhu

On the Parameterized Complexity of Some Optimization Problems
Related to Multiple-Interval Graphs 125
Minghui Jiang

Succinct Representations of Separable Graphs 138
Guy E. Blelloch and Arash Farzan

Implicit Hitting Set Problems and Multi-genome Alignment 151
Richard M. Karp

Bounds on the Minimum Mosaic of Population Sequences under
Recombination 152
Yufeng Wu

XII Table of Contents

The Highest Expected Reward Decoding for HMMs with Application
to Recombination Detection,
Michal Nandsi, Tomds Vinar, and Brona Brejovd

Phylogeny- and Parsimony-Based Haplotype Inference with
Constraintsot
Michael Elberfeld and Till Tantau

Faster Computation of the Robinson-Foulds Distance between
Phylogenetic Networks. i
Tetsuo Asano, Jesper Jansson, Kunihiko Sadakane,
Ryuhei Uehara, and Gabriel Valiente

Mod/Resc Parsimony Inference
Igor Nor, Danny Hermelin, Sylvain Charlat, Jan Engelstadter,
Mazx Reuter, Olivier Duron, and Marie-France Sagot

Extended Islands of Tractability for Parsimony Haplotyping
Rudolf Fleischer, Jiong Guo, Rolf Niedermeier, Johannes Uhlmann,
Yihui Wang, Mathias Weller, and Xi Wu

Sampled Longest Common Prefix Array
Jouni Sirén

Verifying a Parameterized Border Array in O(n!®) Time..............
Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Cover Array String Reconstruction
Mazime Crochemore, Costas S. Iliopoulos, Solon P. Pissis, and
German Tischler

Compression, Indexing, and Retrieval for Massive String Data
Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

Building the Minimal Automaton of A*X in Linear Time, When X Is
of Bounded Cardinality
Omar AitMous, Frédérique Bassino, and Cyril Nicaud

A Compact Representation of Nondeterministic (Suffix) Automata for
the Bit-Parallel Approach
Domenico Cantone, Simone Faro, and Emanuele Giaquinta

Algorithms for Three Versions of the Shortest Common Superstring
Problem
Mazxime Crochemore, Marek Cygan, Costas S. Iliopoulos,
Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and
Tomasz Walent

Table of Contents

Finding Optimal Alignment and Consensus of Circular Strings.........
Taehyung Lee, Joong Chae Na, Heejin Park, Kunsoo Park, and
Jeong Seop Sim

Optimizing Restriction Site Placement for Synthetic Genomes
Pablo Montes, Heraldo Memelli, Charles Ward, Joondong Kim,
Joseph S.B. Mitchell, and Steven Skiena

Extension and Faster Implementation of the GRP Transform for
Lossless Compressionvuu ittt
Hidetoshi Yokoo

Parallel and Distributed Compressed Indexes
Luis M.S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira

Author Index

Algorithms for Forest Pattern Matching

Kaizhong Zhang and Yunkun Zhu

Dept. of Computer Science, University of Western Ontario,
London, Ontario N6A 5B7, Canada
kzhang@csd.uwo.ca, yzhu2330@csd.uwo.ca

Abstract. Ordered labelled trees are trees where the left-to-right order
among siblings is significant. An ordered labelled forest is a sequence of
ordered labelled trees. Given an ordered labelled forest F' (“the target
forest”) and an ordered labelled forest G (“the pattern forest”), the for-
est pattern matching problem is to find a sub-forest F’ of F' such that
F’' and G are the most similar over all possible F’. In this paper, we
present efficient algorithms for the forest pattern matching problem for
two types of sub-forests: closed subforests and closed substructures. As
RNA molecules’ secondary structures could be represented as ordered
labelled forests, our algorithms can be used to locate the structural or
functional regions in RNA secondary structures.

1 Introduction

An ordered labelled tree is a tree where the left-to-right order among siblings
is significant and each node is labelled by a symbol from a given alphabet. An
ordered labelled forest is a sequence of ordered labelled trees. Ordered labelled
trees and forests are very useful data structures for hierarchical data representa-
tion. In this paper, we refer to ordered labelled trees and ordered labelled forests
as trees and forests, respectively.

Among numerous applications where trees and forests are useful representa-
tions of objects, the need for comparing trees and forests frequently arises. As a
typical example, consider the secondary structure comparison problem for RNA.
Since RNA is a single strand of nucleotides, it folds back onto itself into a shape
that is topologically a forest [T4J3I6JT0], which we call its secondary structure.
Figure 1 which is adapted from [5] shows an example of the RNA GI:2347024
structure, where (a) is a segment of the RNA sequence, (b) is its secondary
structure and (c) is the forest representation. Algorithms for the edit distance
between forests (tree) [I5I2] could be used to measure the global similarity be-
tween forests (trees). Motivated mainly by the problem of locating structural or
functional regions in RNA secondary structures, the forest (tree) pattern match-
ing (FPM) problem became interesting and attracted some attention [3J4lJ56].

In this paper, the forest pattern matching (FPM) problem is defined as the
following: Given a target forest ' and a pattern forest G, find a sub-forest F” of

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 1 2010.
© Springer-Verlag Berlin Heidelberg 2010

2 K. Zhang and Y. Zhu

—UGAUAAAGCAGAAAACUGAGCAGUCAUCCCUGUGUGUAGGGGUAUAUCG--
@) 3287) 5(337)

UG
GC
3287) UG 5(337) AU
(b) GC © ‘
AU ua
U-A AU
AA-Uy
AGACGA UGGGGAUGU AAGCGAGCAGUCAUA
A S RN AU UG
A ! |
ACUGAG CAUCCCUGU GC cG
U ‘
€At ATA A A cG
CG
UA
GU
/’\
UGUG

Fig.1. (a) A segment of the RNA GI: 2347024 primary structure [§], (b) its secondary
structure, (c) its forest representation

F which is the most similar to G over all possible F’. There are various ways to
define the term “sub-forest”. For the definition of “sub-forest” as substructures or
simple substructures [5], algorithms have been developed [I55]. We consider two
alternative definitions of “sub-forest”: closed subforests and closed substructures.

For the closed subforests definition, we present an efficient algorithm which
improved the complexity results given in [5] of CPM 2006. For the new closed
substructures definition, we present an efficient algorithm.

2 Preliminaries

Throughout this paper, we use the following definitions and notations.

Let F' be any given forest, we use a left-to-right postorder numbering of the
nodes in F. |F| denotes the number of nodes in F. In the postorder numbering,
F[i..j] will generally be an ordered subforest of F' induced by the nodes numbered
from i to j inclusive. Let f[i] be the ith node in F' and F[i] be the subtree rooted
at f[i]. A subforest of F' is an ordered sequence of subtrees of F. A substructure
of F is any connected sub-graph of F. [(i) denotes the postorder number of the
leftmost leaf descendant of f[i]. We say f[i1] and f[i2] (or just 41 and i3) are
siblings if they have the same parent. Dr and Lp denote the depth and the
number of leaves of F' respectively. To simplify the presentation, we assume that
the forest F' has an imaginary parent node, denoted by p(F’). Finally we define
the key roots of F as the set K(F) = {p(F)}U{i|i € F and ¢ has a left sibling}
and from [I5] we have |K(F)| < Lp.

Algorithms for Forest Pattern Matching 3

2.1 Forest Edit Distance

Our algorithms are based on forest edit distance. For forest edit distance, there
are three edit operations on a forest F. (1) Change: to change one node label
to another in F'. (2) Delete: to delete a node i from F' (making the children of
i become the children of the parent of ¢ and then removing 7). (3) Insert: to
insert a node 4 into F' (the complement of delete). An edit operation can be
represented as (a,b) where a and b are labels of forest nodes or a null symbol
indicating insertion or deletion. Let v be a cost function that assigns to each
edit operation (a,b) a nonnegative real number ~y(a,b). We constrain 7 to be a
distance metric.

Let S be a sequence s1, - - -, s of edit operations. An S-derivation from A to B
is a sequence of forests Ag, - -+, A such that A = Ay, B = Ag,and A;_1 — A; via
s; for 1 <i < k. We extend v to the sequence S by letting v(S) = Z:zllsl ~v(s;).
Formally the distance between F' and G is defined as follows:

O0(F,G) =min{y(S) | S is an edit operation sequence taking F' to G}.

The definition of v makes § a distance metric also. Equivalently forest edit
distance can also be defined using the minimum cost mapping between two
forests [TIUT5].

Tai [11] gave the first algorithm for computing the tree edit distance between
two given trees F and G (one can easily extend this algorithm to the forest
edit distance problem). Zhang and Shasha [I5] gave a more efficient algorithm
for this problem running in O(|F| - |G| - min{Dp, Lr} - min{ D¢, Lc}) time and
O(|F| - |G|) space. More recently, Klein [7], Touzet [12], and Demaine et al. [2]
developed faster algorithms which have better time complexity in the worst case.
The algorithm of Demaine et al. [2] runs in O(|F|-|G|? - (1 +log }g‘l), |G| < |FY,
time and O(|F| - |G|) space.

2.2 Sub-forest Definitions

Let F be a forest. In this paper, we consider two types of sub-forests of F: (1) a
closed subforest: a sequence of subtrees of F' such that their roots are consecutive
siblings. (2) a closed substructure: a sequence of substructures of F' such that
their roots are consecutive siblings. Figure 2 shows these two types of sub-forests
of the forest F' in Figure 1(c). Here, F; is a substructure of F', F» is a closed
subforest of F', and F3 is a closed substructure of F.

Therefore, we can now define the forest pattern matching (FPM) problem
more formally: given a target forest F' and a pattern forest G, find a sub-forest
(using any one of the above definitions for “sub-forest”) F’ of F which minimizes
the forest edit distance to G over all possible F”.

Forest pattern matching problem for substructures have been studied in [I515].
Forest pattern matching problem for closed subforests has been studied in [5].
We propose the forest pattern matching problem for closed substructures. The
motivation is from the forest representation of RNA secondary structures. In

4 K. Zhang and Y. Zhu

UA G CG A G
AU AU
‘ AGCGAGCAGUCAU
A GCGA C UAU GC AU UG
AU UG AAAA cG
GC CG
PN
A A
Fy F, 3

Fig. 2. Examples of variant sub-forest of the forest F' in Figure 1(c)

this representation, see Figure 1, sibling nodes are in fact connected through the
backbone of RNA primary structure. Therefore, it is natural to assume that,
in addition to the parent child connection, a node is also connected to its left
and right siblings. Hence a closed substructure we defined is just a connected
sub-graph in this representation. A closed substructure can be used to repre-
sent a pattern local to a multiple loop, although it does not imply a physically
connected RNA fragment in a tree representatation of RNA [I].

2.3 Previous Work and Our Results

The problem of finding a most similar “closed subforest” was discussed by
Jansson and Peng in their CPM 2006 paper [5] and their algorithm runs in
O(‘F‘ . ‘G‘ -Lp ~min{Dg,Lg}) time and O(|F| . |G| +Lp-Dp- ‘G‘ + ‘F‘ -Lg-Dg)
space.

In this paper, we show how to solve the forest pattern matching (FPM) prob-
lem efficiently based on [I5)2] for two types of sub-forests, “closed subforest” and
“closed substructure”. The time complexity of our algorithms are summarized
in Table 1 and the space complexity of our algorithm is O(|F| - |G]).

Table 1. Our results

FPM Time complexity Section
O(|F| - |G| - min{Dp, Lr} - min{Dg, Lg})

O(F|-1G| - (1G] - (1 +log [5)) + min{Ds, Lr})) >
O(|F| - |G| - min{Dp, Lr} - min{D¢, Lg})

(IF| - |G| - (IG] - (1 +log |}) +min{Dr, Lr}))

Closed subforest

Closed substructure o 3.2

Compared with the algorithm of Jansson and Peng [5], our first algorithm
solving the same problem is faster and uses less space. Our second algorithm
solves the problem of finding a most similar closed substructure which could be
used to search an RNA structural pattern local to a multiple loop.

Algorithms for Forest Pattern Matching 5

3 Algorithms for the Forest Pattern Matching Problem

In this section, we present efficient algorithms for forest pattern matching
problem for two types of sub-forests, closed subforest and closed substructure,
respectively. We also refer the forest pattern matching problem as the problem
of finding a most similar sub-forest.

3.1 An Algorithm for Finding a Most Similar Closed Subforest

Given a target forest F' and a pattern forest G, our goal is to compute
min{d(F[l(i1)..i2], G) | i1 and io are siblings}.

Jansson and Peng [0] gave an algorithm for this problem in O(|F| - |G| - Lp -
min{D¢, Lg}) time and O(|F| - |G| + Lg - Dp - |G| + |F| - Lg - D¢) space.
We present an algorithm which is more efficient in both time and space. Our
algorithm combines the idea of [I5] and the method of approximate pattern
matching for sequences [9/T3].

We first examine sequence pattern matching method and then give a natural
extension from sequence pattern matching to forest pattern matching for closed
subforest.

Given a pattern sequence P[l..m] and a text sequence T'[1..n], the problem
is to find a segment T'[k..[] in the text which yields a minimum edit distance
to P[1..m]. The idea is that in calculating the score for T[1..i] and P[1..j], any
prefix of T'[1..i] could be deleted without any penalty. In other words, the score
is min{d(T'[i1..3], P[1..5]) | 1 < iy <i+1}.

Now consider a node 7 in a forest F' and let the degree of node i be d; and its
children be 41,19, ...,iq4,. Given a pattern forest G, we would like to find v and
v such that F[l(iy)..i,] yields the minimum distance to G. Let k € F[is] where
1 < s < d;, how could we define a score A(F[i(i1)..k], G[1..j]) for F[l(i1)..k] and
G[1..7] in order to extend the definition from sequences to forests?

If k& € {i,i2,...,iq,}, then F[i(i1)..k] is a sequence of sibling
trees, ie. Tli1],...,T[is]. A(F[(i1).-k],G[1..5]) is therefore defined as
min{d(F[I(i¢)..is], G[1..5]) | 1 <t < s+ 1} where 4(,) is the forest edit distance.
In particular, if s = 1, then the score is min{d(F[I(i1)...1], G[1..7]), 8(0, G[1..5])}
which can be obtained directly using the forest edit distance algorithm.

It k& ¢ {i1,i2,...,44,}, then A(F[i(i1)..k],G[1..5]) is defined as
min{d(F[I(i)..k], G[1..7]) | 1 <t < s} since F[I(is)..k] is a proper part of F[i4]
that can not be deleted without penalty.

With this definition, min{ A(F[I(i1) ..i], G[1..|G|]) | 1 < ¢ < d;} is what we
want to compute for node i. We have the following two lemmas for the the
calculation of A(F[l(i1)..k], G[1..5]).

6 K. Zhang and Y. Zhu

Lemma 1. Leti, F' and G be defined as the above, i1 < k <4, and1 < j < |G|,
then

A(D,0) =0;

AF[I(0r).k),0) = 4 ° ifke{i,... i}
(Flii)-#1,0) = {A(F[l(ll)k — 1]., 0) +7(f[k], —); otherwise

A(F[i(i1)-i1], G[1..7]) = mm{ggg:[gﬁ)ﬁ)ﬂ G[1..4]

Proof. This is directly from the above definition. O

Lemma 2. Leti, F' and G be defined as the above, i1 < k < iq4, and1 < j < |G|,
then

Proof. We prove this lemma inductively. The base case is k = i3 + 1
where we need the fact that A(F[l(41)..41], G[1..5])= min{d(F[I(i1)..i1], G[1..5]),
5(0, L))}

For k > i1 and k € {iz,i3, . 7idi}7

A(F[l(i1).-k — 1], G[1..5]) + v (f[k], —)
min § A(F[l(i1).-k], G[1..j — 1]) + (=, g[4])
A(F[I(in).1(k) = 1], G[1..1(5) — 1]) + 6(F[L(k)..k], GL(5)--5])
min{§(F[l(i)..k —1],G[1..3]) | 1 <t < s} +~(f[K],—)
) {8l R, Gl - 1) [12 ¢ <5+ 1)+ (- gl
min{d(F[I(i).1(k) = 1],G[L..1(G) —1]) | 1 <t < s}
+ B(F(L(R) K], GG)
_ min min{d(F[l(i)..k],G[1..7]) | 1 <t < s}
(0, G[1..5]).
=min{d(F[I(it)..k],G[1..5]) | 1 <t < s+ 1}
= A(F[l(i1)..k], G[1..5]).
For k >4y and k ¢ {i2,i3,...,%4,},
A(F[L(i1)-k = 1], G[1..5]) + 7 (fIK], —)
min ¢ A(F[l(i1)..k], G[1..j — 1]) + v(=, g[4])
A(F[I(ir)--1(k) = 1], G[L.1(j) — 1]) + 6(F[I(K)-.k], G[(5)--5])
min{6(F[l(ir).-k — 1], G[L..j]) | 1 <t < s} +(f[k],)
_ min min{d(F[l(i)..k],G[1..7 —1]) | 1 <t < s} +v(—, glj])
min{d(F[l(i).1(k) —1],G[1..0(7) —1]) | 1 <t < s}
+5(F[l(k)..k] Gll(5)--9])
k], G[L.g]) |1 <t <s}

Algorithms for Forest Pattern Matching 7

il

2" layer ——

1* layer ——

Fig. 3. The bold line is the leftmost path of F[i]. The black nodes (a,c) belong to ip(7)
and the black and gray nodes (a,b,c,d) belong to layer(7).

With these two lemmas, we can calculate min{A(F[I(i1) - --i¢], G[1..|G]) | 1 <
t < d;} using dynamic programming. However, we have to do this for every node
i of F. Because for each child subtree of F[i] the calculation starts at i; instead
of I(i1) and §(F[l(é1)..41], G[1..7]) is needed in the calculation, the best way is
to do the calculations for all the nodes on the path from a leaf to its nearest
ancestor key root together. In this way, we do the computation layer by layer,
see Figure 3. Lemma [3 and M extend Lemma [Iland 2] from a node to the leftmost
path of a key root. Due to the page limitation, we omit the proofs.

We will need the following definitions: Ip(i): a set which contains the nodes
on the leftmost path of F[i] except the root i; layer(i): a set which contains all
of the sibling nodes of nodes in Ip(¢) including Ip(7). In Figure 3, Ip(i) = {a,c}
and layer(i) = {a,b,c,d}. With these definitions, we have the following two
lemmas. In Lemma [l for convenience, forestdist(F[l(i)..i1], G[1..j1]) represents
O(Fl(2)..i1], G[1..71]) and treedist(i1,j1) represents §(F[l(i1)..i1], G[1(41)--71])-

Lemma 3. Let i be a key root of F, 1(i) < i1 < i and 1 < j; <|G|, then

A0,0) = 0;

N _Jo if i1 € layer(i)
A(F[I(i)..i1],0) = { AFE)- i = 1],0) + (],)5 z‘fii.% layer (i)
A(F[i(i)..i1], G[1..71]) = min { g(oqieét[‘lifji(ﬁ“(z)““]’ Clal) ir i) ipgi)

Lemma 4. Let i be a key root of F, I(i) < iy <1, i1 ¢ Ip(3), and 1 < j; < |G|,
then

A(F[I(i)..ia], G[1..51])
A(F[U(@).ix = 1], G[Lja]) +(flia], —),

= min ¢ A(F[L(¢)..41], G[1..jh — 1]) + (=, gl1]),
A(F[L(3)..1(i1) — 1], G[1..1(51) — 1]) + treedist(i1, j1)-

8 K. Zhang and Y. Zhu

Our algorithm is a dynamic programming algorithm. In the first stage of our
algorithm, we call forest edit distance algorithm [I5)2] for F and G to get
treedist(i, j) needed in Lemma [l In the second stage, the key roots of F are
sorted in an increasing order and put in an array Kg. And for any key root k
of F, we first call forest edit distance algorithm of [I5] for F[k] and G to get
forestdist(,) needed in Lemma [3] and then call the procedure for A(,) compu-
tation for F[k] and G. We are now ready to give our algorithm for finding a most
similar closed subforest of F' to G:

Theorem 1. Our algorithm correctly computes the cost of an optimal solution.

Proof. Because of step 1 in Algorithm 1, all the treedist(,) used in step 7
in Procedure Delta(F[i],G) are available. Because of step 4 in Algorithm 1,
all the forestdist(,) used in step 7 in Procedure Delta(F[i],G) are available.

O

Input: A target forest F' and a pattern forest G.
Output: min{A(F[l(z1)..z2],G) | z1 is x2’s leftmost sibling}.
Algorithm:

1 Call TreeDistance(F,G) according to [I5] or [2];
2 for i :=1 to |[Kr| do
3 7= KF [i/];
4 Call ForestDistance(F[i],G) according to [I5];
5 Call Procedure Delta(F'[i], G);
6 end
Algorithm 1. Finding a most similar closed subforest of F' to G
Procedure Delta(F[i], G):
1 A(0,0) = 0;
2 for 4, :=1(i) toi— 1 do
3 Compute A(F[1(%)..i1], 0) according to Lemma[3]
4 end
5 for i1 :=1(z) toi— 1 do
6 for ji1 :=1 to |G| do
7 Compute A(F[l()..i1], G[1..51]) according to Lemma[3 and Lemma @l
8 end
9 end

Theorem 2. Our algorithm can be implemented to run in O(|F| - |G| -
min{Dp, Lr} - min{ D¢, Lg}) time and O(|F| - |G|) space.

Proof. The time and space complexity of the computation for the edit distance
of all subtree pairs of F' and G is O(|F| - |G| - min{Dp, Lr} - min{Dg, Lg})
and O(|F| - |G|) due to [15]. For one key root 4, the time and space for

Algorithms for Forest Pattern Matching 9

ForestDistance(F|i], G) and Delta(F[i], G) are the same: O(|F[i]| - |G]). There-
fore the total time and space for all key roots are O(|G||F| - min{Dp, Lr}) and
O(|G||F]) due to Lamma 7 in [I5]. Hence the time and space complexity of
our algorithm are O(|F| - |G| - min{Dp, L} - min{Dg, Lg}) and O(|F| - |G])
respectively.

If we use the algorithm [2] to compute the edit distance, the time complexity
is O(|F|-|G|? - (1 +log(|F|/|G|))) and the total time complexity is O(|F| - |G| -
(IGI- (1+1og |¢)) +min{Dp, Lr})). O

3.2 An Algorithm for Finding a Most Similar Closed Substructure

In this section we consider the problem of finding a most similar closed sub-
structure. Recall that, for a given forest F, a subtree of F is one of Fi]
where 1 < ¢ < |F| and a subforest of F' is an ordered sequence of subtrees
of F.

Giving a target forest F' and a pattern forest G, the forest removing distance
from F to G, 6,(F,G), is defined as the following where subf(F') is the set of
subforests of F' and F'\ f represents the forest resulting from the deletion of
subforest f from F.

6. (F,G) = fegg?(F){é(F \ f.G)}

Zhang and Shasha’s algorithm [I5] for approximate tree pattern matching with
removing solves this problem. This can also be solved using the technique of
Demaine et al. [2].

We again consider a node 7 in forest F' and let the degree of node i be d; and its
children be i1, is,...,iq,. Let k € F[is] where 1 < s < d;, we now define another
removing distance dr(F[l(i1)..k], G[1..5]) as follows where subf(F,node set) is
the set of subforests of F' such that nodes in node set are not in any of the
subforests.

Sn(Fl) K Gl = iSRG S GIL)

From this definition and the algorithm in [I5], we have the following formula for
Or(Fi(it)..k], G[1..5]), where 1 <t < s.

Sr(Fll(ir).. K], G[1..j]) =
OR(F[1(i). 1(k) — 1],G[1..]), if k¢ {i1,i2,... ia,}
Or(F[l(is). .k — 1], G[1..5]) +v(f[K], —),

min ¢ Or(F[l(ir)..k], G[1..5 — 1]) +~(—, glj]),

Sr(F (). U(k) — 1], G[1..1(§) — 1]) + v (f[k], gl4])

10 K. Zhang and Y. Zhu

We can now define W(F[l(i1)..k],G[1..5]) for Fi(i1)..k] and G[l..j] using
0r(,) for closed substructures. This is exactly the same way as we define
A(F[l(i1)..k], G[1..4]) using d(,) for closed subforests.

If & € {id2,...,4q}, then W(F[(i1)..k],G[1..7]) is defined as
min{og(F[l(i¢)..is], G[1..7]) | 1 <t < s+ 1}.

In particular, if s = 1, ¥(F[l(i1).-i1],G[1..5]) is min{dr(0, G[1..5]),
Or(Fl(i1)..41], G[1..9])} = 6,(F[l(i1)..i1], G[1..5]) which can be obtained directly
using the forest removing distance algorithm.

If & ¢ {i1,d2,...,4q}, then W(F[(i1)..k],G[1..7]) is defined as
min{og(F[l(i)..k], G[1..4]) | 1 <t < s}.

For the calculation of W (F[I(1)..k], G[1..5]), we have the following two lemmas.
The proofs are similar to Lemma [I] and Lemma

Lemma 5. Leti, F' and G be defined as the above, i1 < k <4, and1 < j < |G|,
then

1) = 6.(Fll(ir)-.ia], GI1..40).

Lemma 6. Leti, F' and G be defined as the above, i1 < k <4, and1 < j < |G|,
then

= min

Lemma [[and [8 extend Lemma [B] and [6] from a node to the leftmost path of a
key root. Due to the page limitation, we omit the proofs.

Lemma 7. Let i be a key root of F, 1(i) < i1 < i and 1 < j; <|G|, then

w(0,0) = 0;
W(F(I(0)..ir], 0) =
FlI(i).i

@ (F[I(i)..1a], G[1. J1]) or(F[I(2)..11], G[1.jn]). if ia € Ip(4)
Lemma 8. Let i be a key root of F, I(i) < i1 <1, i1 ¢ Ip(3), and 1 < j; < |G|,
then
U(F[i(z).1], G[1..1]) =
U(F[l(7)..l(i1) — 1], G[1..71]), if i1 ¢ layer(i)
(F[(i)..i1 — 1), G[L..ja]) +y(flia], —),
min ¢ Y(F[I(i)..i1], G[1..51 — 1]) + (=, g[51]),
@(F[U(i)-L(i1) — 1], G[L..1(j1) — 1]) + y(flin], g[in))
+ 0p (F[U(i1)..i1 — 1], G[l(j1).-51 — 1]).

We can now show our algorithm for closed substructures.

Algorithms for Forest Pattern Matching 11

Input: A target forest F' and a pattern forest G.
Output: min{¥(F[l(z1)..x2],G) | x1 is x2’s leftmost sibling}.
Algorithm:

1 Call Tree RemoveDistance(F,G) according to [15];

2 for i':=1 to |K(F)| do

3 i:=K(F)[];

4 Call Forest RemoveDistance(F[i],|G|) according to [I5];
5 Call Procedure Psi(Fi], G);

6 end

Algorithm 2. Finding most similar closed substructure of F' to G

Procedure Psi(F[i], G):

1 ¥(0,0) = 0;

2 for i1 :=1(i) toi—1do

s W(F[(i)..1],0) = 0;

4 end

5 for i1 :=1(i) toi— 1 do

6 for j: :=1 to |G| do

7 Compute ¥(F[l(7)..i1], G[1..j1]) according to Lemma[fl and Lemma [
8 end

9 end

4 Conclusion

We have presented two algorithms for the forest pattern matching problem for
two types of sub-forest. Our first algorithm for finding a most similar closed
subforest is better than that of [5]. Our second algorithm for finding a most
similar closed substructure can be used to search for local forest patterns.

When the input are two sequences represented as forests, both our algorithms
reduce to the sequence approximate pattern matching algorithm [9]. When the
input are two sequences represented as linear trees, our second algorithm reduces
to the sequence approximate pattern matching algorithm [9].

References

1. Backofen, R., Will, S.: Local Sequence-structure Motifs in RNA. Journal of Bioin-
formatics and Computational Biology 2(4), 681-698 (2004)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146-157. Springer, Heidelberg (2007)

3. Hochsmann, M., Téller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA sec-
ondary structures. In: Proceedings of the IEEE Computational Systems Bioinfor-
matics Conference, pp. 159-168 (2003)

4. Jansson, J., Hieu, N.T., Sung, W.-K.: Local gapped subforest alignment and its
application in finding RNA structural motifs. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 569-580. Springer, Heidelberg (2004)

12

6

7

o]

10.

11.

12.

13.

14.

15.

K. Zhang and Y. Zhu

. Jansson, J., Peng, Z.: Algorithms for Finding a Most Similar Subforest. In: Lewen-
stein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 377-388. Springer,
Heidelberg (2006)

. Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit.
Theoretical Computer Science 143, 137-148 (1995)

. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bi-
lardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91-102. Springer, Heidelberg (1998)

. Motifs database, http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi

. Sellers, P.H.: The theory and computation of evolutionary distances: pattern recog-

nition. Journal of Algorithms 1(4), 359-373 (1980)

Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using

tree comparisons. Computer Applications in the Biosciences 6(4), 309-318 (1990)

Tai, K.-C.: The tree-to-tree correction problem. Journal of the Association for

Computing Machinery (JACM) 26(3), 422-433 (1979)

Touzet, H.: A linear time edit distance algorithm for similar ordered trees. In:

Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537,

pp. 334-345. Springer, Heidelberg (2005)

Ukkonen, E.: Algorithms for approximate string matching. Information and Con-

trol 64(1-3), 100-118 (1985)

Zhang, K.: Computing similarity between RNA secondary structures. In: Proceed-

ings of IEEE International Joint Symposia on Intelligence and Systems, Rockville,

Maryland, May 1998, pp. 126-132 (1998)

Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. STAM Journal on Computing 18(6), 1245-1262 (1989)

http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi

Affine Image Matching Is Uniform
TC% Complete

Christian Hundt

Institut fiir Informatik, Universitit Rostock, Germany
christian.hundt@uni-rostock.de

Abstract. Affine image matching is a computational problem to deter-
mine for two given images A and B how much an affine transformated A
can resemble B. The research in combinatorial pattern matching led to a
polynomial time algorithm which solves this problem by a sophisticated
search in the set D(A) of all affine transformations of A. This paper shows
that polynomial time is not the lowest complexity class containing this
problem by providing its TC%-completeness. This result means not only
that there are extremely efficient parallel solutions but also reveals further
insight into the structural properties of image matching. The completeness
in TCO relates affine image matching to a number of most basic problems
in computer science, like integer multiplication and division.

Keywords: digital image matching, combinatorial pattern matching,
design and analysis of parallel algorithms.

1 Introduction

The affine image matching problem (AIMP, for short) is to determine for two
given images A and B how much an affine transformation of A can resemble
B. Affine image matching (AIM) has a wide range of applications in various
image processing settings, e.g., in computer vision [I6], medical imaging [BIT8IT9],
pattern recognition, digital watermarking [7], etc.

Recently, discretization techniques developed in the combinatorial pattern
matching research (CPM, for short) have been used successfully for AIM. Apart
from algorithmic achievements, this led to improved techniques for the analysis of
the problem. Essentially, all algorithms developed in CPM for computing a best
match f(A) with B share the same plane idea, to perform exhaustive search of
the entire set D(A), which contains all affine transformations of A. Surprisingly,
the fastest known methods which determine the provably best affine image match
come from this simple approach. In fact, the main challenge of computing D(A),
is to find a discretization of the set F of all affine transformations. A convenient
starting point for the research in this direction is given by the discretization
techniques developed in CPM, although the problem in the focus of CPM consists
in locating an ezact match of an affine transformation of A in B, rather than on
computing the best one like in AIM. See e.g. [TTUTTITOMTI4Y3I2].

In [T3|T4] affine transformations are characterized by six real parameters and,
based on this, a new generic discretization of F is developed which is basically

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 137 2010.
© Springer-Verlag Berlin Heidelberg 2010

14 C. Hundt

a partition of the parameter space RS into subspaces 1, ..., ©7(n), Where 7(n)
depends on the size n x n of image A. Every subspace ¢; represents one possible
transformation of A and consequently the cardinality of D(A) is shown to be
in O(n'®) by estimating an upper bound on the number 7(n) of subspaces. The
discretization motivates an algorithm that first constructs a data structure Z,
representing the partition and then, to solve the AIMP, it searches all images in
D(A) by traversing Z,. Its running time is linear in 7(n) and thus, in O(n'®) for
images A and B of size n x n.

However, the exact time complexity remains unknown. It is also an open
question whether the decision version of the AIMP is included in a complexity
class that is “easier” than P — the class of problems decidable in polynomial
time. Particularly, it is open whether the problem belongs to low complexity
classes of the hierarchy inside P:

AC cTCc’CcNCtCLCP.

Every class in the hierarchy implies a structural computational advantage against
the hardness in P. This paper continues the research on AIM in the combinatorial
setting using the algebraic approach introduced in [I3] and refined in [14] to
give a new, surprisingly low complexity for AIM by showing that the affine
image matching problem is TC°-complete. TC® is a very natural complexity
class because it exactly expresses the complexity of a variety of basic problems in
computation, such as integer addition, multiplication, comparison and division.

The containment of the AIMP in TC® C NC' means first that AIM can be
solved in logarithmic parallel time on multi-processor systems which have bounded
fan-in architecture. However, theoretically it can even be solved in constant time
if the processors are assumed to have unbounded fan-in. Secondly, since TC® C L
AIM can also be solved on deterministic sequential machines using only a loga-
rithmic amount of memory. Finally, the completeness of the AIMP in TC® means
that there is no polynomially sized, uniformly shaped family of Boolean formulas
expressing AIM since this captures the computational power of AC? # TCP.

Anyway, the new results have no immediate impact on practical settings of
AIM. In fact, they have to be seen more as an ambition to uncover the structural
properties of AIM and related problems. Particularly, the novel TC? approach to
AIM is based on a characterization of the parameter space partition @1, ..., ¢ ()
for affine transformations. Every subspace ; is shown to exhibit a positive vol-
ume such that an algorithm can simply sample a certain subregion of R® to hit
every element of the partition. Thus D(A) can be computed without the data
structure Z,, that implicitely represents the space partition. Interestingly, this
is not an hereditary property. The parameter space partition of linear trans-
formations, i.e., the subset of F without translations, contains subspaces with
zero volume [I4]. This means that, although linear image matching is weaker
than AIM, the low-complexity approach of this paper cannot be applied to this
problem in a straight forward manner. The author leaves the estimation of this
problem’s complexity as an open challenge.

This paper presents results which heavily build on previous work [I3I14].
After a short presentation of technical preliminaries Section [B] briefly provides

Affine Image Matching Is Uniform TC°-Complete 15

the basics of the AIM approach introduced in [I3JI4] which are necessary to
understand the new results of this paper. Then Section Fl provides the new TC
approach to AIM and next Section B proves that the AIMP belongs to the hardest
problems of TC®. Finally, the paper concludes by drawing a wider picture of the
finding’s impact. All proofs are removed due to space limitations.

2 Technical Preliminaries

Digital Images and their Affine Transformations. Through the whole
paper, an image is a two-dimensional array of pixels, i.e., of unit squares parti-
tioning a certain square area of the real plane R2. The pixels of an image A are
indexed over a set N' = {(i,7) | —n <14,j < n}, where n is called the size of A.
The geometric center point of the pixel with index (i, j) can be found at coordi-
nates (i,7). Each pixel (¢,) has a color A(i, 5) that is an element from a finite
set X ={0,1,...,0} of color values. To simplify the dealing with A’s borders let
Ali,7) = 0if (i,7) € N. The distortion between two given images A and B of size
n is measured by A(A, B) = 3, »en 0(A(i, j), B(i, j)) where § : X' x X' — N is
a function charging color mismatches, for example, d(c1,c2) = |c1 — cal.

The set F of affine transformations contains exactly all injective functions
f : R? — R? which can be described by

flay) = (aiad) - (y) +(a) (1)

for some constants aq,...,as € R, with the additional property of aias # asay.

Applying an affine transformation f to A gives a transformed image f(A) of
size n. To define a color value for any pixel (4,) in f(A), let f~! be the inverse
function of f. Notice that f~! is always an affine transformation, too. Then define
the color value f(A)(i,) as the color A(I,J) of the pixel (I,J) = [f~1(4,5)],
where [(z,y)] := ([z], [y]) denotes rounding both components of a vector (x,y) €
R2. Hence, determining f(A)(i,j) means to choose the pixel (I, J) of A which
geometrically contains the point f~1(i, j) in its square area. This setting models
nearest-neighbor interpolation, commonly used in image processing. Now, any
image A defines the set D(A) = {f(A) | f € F} that contains all possible affine
transformations of A.

Based on this, the following defines the affine image matching problem:

For given images A and B of size n find the minimal distortion A(f(A), B) over
all transformations f € F.

For the analysis of complexity aspects consider the decision variant of this prob-
lem which asks if there is a transformation f € F which yields A(f(A4),B) <t
for some given threshold ¢ € N.

Circuit Complexity. This paper discusses the complexity of certain functions
f:{0,1}* — {0,1}* mapping binary strings to binary strings. Let |s| be the
length of a binary string s € {0,1}* and for all € {0...,|s| — 1} let s(i) denote
the ith character of s. Moreover, let 1™ be the string of n sequent characters 1
and for all strings s and s’ let s|s’ be their concatenation.

16 C. Hundt

Circuits C' can be imagined as directed acyclic graphs were vertices, also
called gates, compute Boolean functions. Gates gain input truth values from
predecessor gates and distribute computation results to all their successor gates.
If C has n sources and m sinks, then it computes a function f : {0,1}™ — {0,1}™,
i.e., C' computes for every input string of length n an output string of length
m. This makes circuits weaker than other computational models, which can
compute functions f : {0,1}* — {0, 1}*. Consequently one considers families C =
{C1, Cy, ...} of circuits to compute f for every input length n with an individual
circuit C,,. On the other hand, such families can be surprisingly powerful because
they may not necessarily be finitely describable in the traditional sense. A usual
workaround is a uniformity constraint which demands that every circuit C,
of C can be described by a Turing machine M with resource bounds related
to n. Usually M¢ is chosen much weaker than the computational power of C to
avoid the obscuration of C’s complexity. This paper considers only DLOGTIME-
uniform families C where M¢ has to verify in O(logn) time whether C,, fulfills a
given structural property like, e.g., “Gate i computes the N-function” or “Gate
i is a predecessor of gate j”.

The class DLOGTIME-uniform FAC® contains all functions f : {0,1}* —
{0,1}* which can be computed by constant-depth, polynomial-size families C
of DLOGTIME-uniform circuits, i.e., where (a) every gate computes a function
“A”SV” or “=") (b) all circuits C,, can be verified by a Turing machine M that
runs in O(log n)-time (c) the number of gates in C,, grows only polynomially in n
and (d) regardless of n, the length of any path in C,, from input to output is not
longer than a constant. For convenience denote this class also by Up-FAC®. A
prominent member of Up-FACY is the addition function of two integer numbers.

If the gates can also compute threshold-functions T}, a generalization of “A”
and “V” which is true if at least k inputs are true, then the generated function
class is called DLOGTIME-uniform FTC? (Up-FTC), a class that contains a
big variety of integer arithmetic functions.

A decision problem is a set IT C {0,1}*, i.e., a set of strings. By Up-AC®
denote the class of all decision problems which can be decided by a function
f € Up-FAC?, i, f:{0,1}* — {0,1} is a function with f(s) = 1 < s € II.
Accordingly, Up-TC" is the class of decision problems decidable by a function
in Up-FTC®.

This paper uses special decision problems Iy for any function f :{0,1}* —
{0,1}*. The set II; contains all binary strings s which encode pairs (i,s’) €
N x {0,1}* using a unary encoding for integer i and a binary encoding for s’
such that (i,s') € Il if and only if f(s’)(i) = 1, i.e., if the ith character of f(s’)
is a 1. Clearly, f is in Up-FAC? if the output length of f is bounded polynomially
in the input length and II; is in Up-ACP. A circuit family C deciding 1y can
be used to compute also f simply by spending one circuit of C for every output
bit. The same holds for functions in Up-FTCP.

By definition, Up-(F)AC? is a subset of Up-(F)TC® and thus, Up-FAC’-
reductions are suited well to define completeness in the class Up-TC°. A problem
1T is UD—TCO—complete if IT belongs to Up-TCY and if for all 1T’ € Up-TCP there

Affine Image Matching Is Uniform TC°-Complete 17

is a function 77 in Up-FAC® such that for all s € {0,1}* it is true s € II' &
ri(s) € II. Clearly, since Up-FAC?-reductions are transitive, it is also sufficient
for Up-TCC-completeness to find one other Up-TC -complete problem 17’ and
then provide a function 7 in Up-FAC® such that for all s € {0,1}* it is true
s € II' & r(s) € II. A canonical Up-TC’-complete set is MAJ, containing
strings over {0, 1}* with a majority of 1-characters [@].

For convenience the uniformity statement Up is mostly omitted in the rest
of the paper since all considered circuit families apply DLOGTIME-uniformity.
Due to space limitations this section cannot go into further details of this rich
theory and the author refers the reader to the text book [21].

First Order Logic. First order formulas are an important concept from logic. A
comprehensive introduction to first order logic and in particular the connection
to circuit families is given in [2].

In this paper a first order formula F' is build recursively over a unary pred-
icate s(-) and two binary predicates bit(-,-) and <(-,-) by the standard use
of “A7, “v7 «=7 9" and “3”. Without loss of generality F' is of the form
F = Quv1...QununF’ where Q1,...,Q. are quantifiers, “¥” or “3”, for the
variables vy, ..., v, and F’ is a quantifier free formula. The variables v1,..., v,
are called bounded and every other variable in F’ is free. If there are no free
variables then F' is called a sentence.

The assertion of a formula F' is either true or false, which is defined over the
recursive construction of F' and relative to (1) a universe, that is a finite subset
{0,...,n — 1} of N, (2) a specification of s(-) and (3) an assignment of values
for free variables. The meaning of the binary predicates is fixed, thus, bit(a,) is
true if and only if the ¢th bit in the n-bit binary representation of a is one, and
<(a,b) is true if and only if a < b.

This paper applies first order logic to describe sets of strings IT C {0, 1}*,
i.e., decision problems. Particularly, any string s € {0,1}* defines a universe
{0,...,]s| — 1} and a specification of s(-) by giving for all : € {0,...,|s| — 1}
that the predicate s(¢) is true if and only if s(i) = 1. Consequently, a string s
alone determines the truth value of a sentence F because it has no free variables.
Then a string s is said to model F', which is denoted by s = F, if s satisfies F'.
Thereby a sentence F' describes a set ITp = {s € {0,1}* | s = F'}. For example
F = 3Jv s(v) gives the set of strings which contain at least one character 1.

If F has free variables vy, ..., vy, then a string s alone is not enough to deter-
mine the truth value. However, in this case the formula Fvy <« i1,..., 0 < in],
where the free variables are assigned certain values i1, ..., %, from the universe,
defines a proper truth value. This paper applies the concept of free variables
in terms of a modular design principle. The variables vq, ..., v, can be under-
stood as parameters of F' which influence the formula’s assertion. This means
that F' can be applied as a subformula in a sentence F’ which uses v, ..., vy, to
pass auxiliary arguments i1, ...,%,; to F. Such “subformula-calls” are denoted
by F[il, ce ,’im}.

18 C. Hundt

The set of all problems IT which can be expressed by a first order sentence
F, i.e., for which IT = IIp, is denoted by FO. It turns out that FO = Up-ACP.
Consequently integer addition is first-order-expressible and therefore this paper
utilizes the subformula AD D[z, x2,y] which is satisfied if and only if 1, 25 and
y are assigned values satisfying x1 + z2 = y.

TC" being a generalization of ACY implies that a characterization of TC® in
terms of first order logic needs a language extension. Therefore consider beside
“Y” and “3” the additional majority quantifier “AM”, which is defined as follows:
The sentence F' = Mv F’ is true for given strings s if and only if the formulas
F'[v « 4] are true for a majority of assignments of i € {0,...,|s| — 1} to the
free variable v. Then Up-TC® = F O[M], the set of problems expressible by first
order sentences with additional quantifier “M”.

In some cases it is difficult to express certain relations in FO or FO[M]-
sentences just because the values of variables are restricted to {0,...,|s| — 1}.
However, one can simply assume that there are long variables v which are able
to take values in the range {—|s|*—1,...,|s|¥ —1} for some arbitrary constant k.
The value of v can simply be represented in k+ 1 ordinary variables vg, ..., vx_1
and sgn by v = (=1)%9" . Zi‘:ol |s|* - v;. A sentence F using a long variable
v realizes the quantification and the predicates <(-,-) and bit(-,-) over v by
reducing them to their ordinary counterparts.

Beside long variables first order logic can be extended also with a <(-,-)
predicate because it easily reduces to <(-,-). This paper applies these predicates
in infix notation.

3 Previous Results

Previous work [I3T4] presented a new algorithmic approach to solve affine image
matching in linear time with respect to the cardinality |D(A)|. Moreover, it
provided an upper bound of O(n!®) for this cardinality which means that AIM
can be solved in polynomial time. This section briefly discusses some basics of
this approach which are used in this paper.

By equation () in the previous section, all transformations in F can be char-
acterized by the six parameters a; to ag. Hence, each affine transformation f
can be described by a point (ay, ..., as)” in the six-dimensional parameter space
RS. Reversely, every such point in RS which fulfills ajas # agas characterizes
an affine transformation. Now, a discrete characterization of F can be obtained
by a subdivision of the parameter space R® into a finite number of subspaces
@1, Pr(n) With the following property: Any pair of transformations f, f' € F
gives the same transformation f(A) = f'(A) of an image A of size n if their in-
verses f~1 and f'~! are represented by points (ay, ..., as)T, resp. (af,...,a5)T,
contained in the same subspace ; for some i € {1,...,7(n)}. This means that
each of the 7(n) subspaces represents one transformed image in D(A).

The principle of the polynomial time algorithm is searching the whole set D(A)
which is a common practice in the CPM. Using the discrete characterization
of F the algorithm traverses all the subspaces @1 to ¢r(,) of the parameter

Affine Image Matching Is Uniform TC°-Complete 19

space. With each subspace it finds one of the possible transformed images A’ in
D(A). Subsequently, the distortion between such images A’ and B is evaluated
to eventually find the best match.

For images of size n the subdivision of the parameter space into the spaces
©1 10 7 (n) is determined by the following set H,, of functions R® — R:

Hn:{lijk(al,...,ag):ial +ja2—|—a3—(k—0.5) | (’L,j) 6N,k€{—n,...,n—|—1}}
@] {Jijk(al,...,ag):ia4+ja5—|—ag—(k—O.S) ‘ (Z,j) EN,kE{—n,...,n—i—l}}

Hence, H, = {{1,..., ()} is a set of r(n) = (2n+1)?(2n + 2) linear functions
where every £, either (,, = I, or {, = J;j; for some (i,j) € N and k €
{—n,...,n+ 1}, describes the following two subspaces of R®:

ht(ly) = {(a1,...,a6)T €R® | Ly(ar,... a6) >0},

h™(C) = {(ar,...,a5)" € RS | Luy(as,...,ag) < O}

The meaning of the sets h*(¢,) and h™(f,) can be understood as follows:
All the points (ay,...,as)” in h*(I;j;) describe inverse affine transformations
flHzy) = (2 a2) - () + (&) which have one thing in common: It is always
true that [f~1(4,)] = (I, J) with I > k. Accordingly, all points (ay,...,as)T in
h~ (1) give transformations f~' which uniquely fulfill [f~1(4, j)] = (I, J) with
I < k. Finally, a similar property is true for the J-coordinate of [f~1(i,)] =
(I,J) depending on the situation of the point describing f~! with respect to
h+(Jijk) and hi(ka)

Now, the partition of the parameter space into the pieces 1 to ¢r(y,) is defined
by the intersection of the subspaces k™ (£) and h~(£) given by the lines £ in H,,.
Particularly, for H, = {{1,...,{.(n)} define

r(n)

0= m h*(£y) for some s1,...,5.) € {+, =}, ¢ # Q)}.

w=1

-A(Hn) = {‘P - R®

In literature the set A(H,) is called the (hyperplane) arrangement given by H,,.
For detailed information on such arrangements see [8]. In this paper the elements
of A(H,,) are called faces.

The relation between A(H,) and D(A) is the most important property for-
mulated in [T4]:

Theorem 1 ([14]). For all n and every image A of size n there exists a sur-
jective mapping
I, : A(H,) — D(4).

Thus, Theorem [l reduces the enumeration of D(A), a set with no obvious struc-
ture, to the enumeration of A(H,,). In turn, the efficient enumeration of all faces
in A(H,,) can be realized easily. The algorithm conveniently constructs a graph
Z,, which contains a node v(p) for each face ¢ € A(H,) and which encodes
the incidence of faces by edges, i.e., two nodes v(p) and v(¢') are connected by
an edge if the faces ¢ and ¢ are neighbors in R®. For a detailed description of

20 C. Hundt

incidence graphs for arrangements and the complexity of computing them see [§]
and [9]. The affine image matching algorithm proposed in [I4] works as follows

The AIM Algorithm

1. Construct the incidence graph Z,;

2. Perform depth first searching to traverse all nodes v(p) in Z,;

3. For each enumerated face ¢ apply I, () to compute f(A);

4. Return the image f(A) that induces the minimum distortion A(f(A), B).

This algorithm finds the best affine image match in O(|A(H,)|) time plus the
time needed to compute the incidence graph which is linear with respect to
|A(Hy)|, too. The following estimation bounds the algorithm’s running time:

Theorem 2 ([14]). The cardinality of A(H,) is O(n'®). As a consequence AIM
can be done in time bounded by O(n'®).

The rest of this paper shows how to avoid the sequential manner of computation
and introduces how to get a TC? circuit family to solve affine image matching.
Moreover, it provides a simple FAC’-reduction of the majority function to the
affine image matching problem.

4 Membership in TC°

Define IT C {0,1}* the set of strings s = n|a|b|t which encode (1) a number
n € N in zero-terminated unary 1™0, (2) two images A and B of size n by binary
strings a and b each of (2n+1)[log,(0+1)] bits and (3) a number ¢ € N in binary
representation such that the minimum of A(f(A), B) over all transformations
f in F is at most t. Hence, the set IT is a concrete realization of the AIMP’s
decision version. This section develops an FO[M]-sentence F' to express I1, i.e.,
such that ITr = IT, which implies that the decision version of AIM is in TC.
Subsequently it argues that also the optimization version is in FTC.

Basically the new FO[M] approach to AIM is somehow a relaxation of the
old one. To compute D(A) it is sufficient to find one point from every face in
A(H,,) in order to describe a representative inverse affine transformation f~!.
By Theorem [M one can find all images f(A) in D(A) in this way. The graph Z,,
makes sure that every face in A(H,,) is processed only once. However, it may
be possible to drop the computation of Z, if one does not insist on this exact
processing of A(H,,).

Consequently, the FO[M] approach works as follows: To find at least one
point from every face in A(H,,) a sentence F' can sample a hypercube region of
RS in such a way that avoids points (a1, ... ,ag)T with the property ai1as = azay.
In this way all images f(A) of D(A) can be computed in a parallel fashion. Then
F expresses A(f(A), B) and subsequently the minimum over all f € F.

For this new technique consider G,, the grid of points

ai t14+0.5
az ta
a3 — 10—7n—7 . t3

Affine Image Matching Is Uniform TC°-Complete 21

where ty,. .., ts are integers in the set {—1012n'3 ... 1012n!3}. The central prop-
erty of G, applied in F is given in the following theorem:

Theorem 3. 1. |G,| € O(n™).
2. Every point p = (a1, ...,as)" € G, fulfills ajas # asay.
3. For all faces ¢ in A(H,) there is a point p in the grid G, such that p € .

The proof of the theorem is somewhat technical. However, it first shows that
there is a hypercube that intersects all faces of A(H,,). Then it establishes a lower
bound on the volume of all faces. Consequently, if the hypercube is sampled with
points of adequately small distance, every face of A(H,,) gets a hit. Because all
points (ay,...,as)T avoid the condition ajas = asay it is satisfactory to process
the grid G,, to find all elements of D(A) for any given image A of size n.

The advantage of G, against Z,, is the simple structure which can be easily
generated on the fly. The disadvantage is the enormous growth of size, which,
nevertheless, remains polynomial in n.

The following develops a rough idea of the sentence F' that expresses II.
Particularly,

F=3t...3ts DELTA[ty,...,ts] A (—=10"2n'3 <t1) A (1 < 10203 A L.
A (=101 < tg) A (ts < 10'20'3)

is build by a subformula DELTA[t;,...,ts] which is true for given parameters
t1,...,te if the string s encodes numbers and images that fulfill A(f(A4),B) <t
where f~1 is the transformation given by the grid point (t,...,t)T. In this
fashion the sentence samples all points of the grid G, and accepts if and only if
at least one of them represents a transformation of A which resembles B enough
in terms of ¢. Theorem Bl guarantees the correctness of this approach. Obviously
t1 to tg are variables representing long integers such that they can hold values
polynomially in n.

The formula DELTA can be expressed in first order logic with majority
quantifiers as follows: Basically, DELTAJty, ..., ts] has to (1) find the trans-
formation f~! represented by (t1,...,ts)7, (2) compute the sum A(f(A), B) =
do(ij)eN S(A(f~Y(i,5)), B{i,j)) and (3) compare this to t. The computation of
f~! by the grid point (¢1,...,ts)”7 means to determine

I — (2t1+;?i-g72£27j+2t3} and J = 2t4i+(22§%j23j+2t6} _

for all (¢,5) € N. This is easily first-order-expressible with majority because it
involves only a constant number of integer additions, multiplications, divisions
and roundings, all functions in TC? [6/12]. Now since iterated addition is also in
TC? [6] DELTA can easily compute the sum of §(A(I, J), B(i, 7)) over all (i, j) €
N. Consequently, the descriptiveness of F in first order logic with majority
depends on the function § : X’ x X' — N. However, since X is finite it follows that
d is even first order-expressible. The expression equivalence between FO[M] and
TCY implies:

Lemma 1. The decision version of Affine Image Matching is in Up-TCP.

22 C. Hundt

Consequently there exists a uniform family C of constant-depth, polynomial-size
threshold circuits which decide II. The optimization version of the AIMP can be
computed by similar means using C. Basically this can be done by constructing
another family Cy of threshold circuits which try all possible values of A(f(A), B)
in separate parallel copies of C’s circuits. Since A(f(A), B) < m-(2n+1)2, where
m = max{d(c1,c2) | c1,c2 € X) is a constant, it follows that this approach
induces at most a polynomial growth in size. Then, since the minimum of all
satisfying distortion trials can be computed in Up-AC® [6], the depth remains
constant, too.

Theorem 4. Affine Image Matching is in Up-FTC.

5 Completeness in TC?

This section shows the decision version of the AIMP to be TC’-complete. Con-
sider the TC -complete majority problem, i.e., the set MAJ C {0, 1}* of strings
which contain at least [0.5|s|] characters 1. This section gives an FAC’-reduction
r of MAJ to I, the set of strings s encoding A, B and ¢ such that the minimum
A(f(A), B) over all affine transformations f is at most ¢. Hence, r is a function
which maps strings s € {0,1}* to a binary encoding of images A and B and an
integer ¢t such that s € MAJ if and only if A(A, B) < t. Remember, a function r
is in FACY if the set IT, is in AC®. Consequently, this section argues the existence
of a first order sentence F' which expresses II,, i.e., such that IlTp = II,.

The basic idea for the reduction is in fact very simple: Consider any string
s € {0,1}*. Then imagine images As and B, of size n = 4|s| where As(i,j) =
Bs(i,4) = 0 for all pixels (i,7) € N with j # 0. Additionally set

N0 <
ao= ({7 B mo -
for all ¢ € {—n,...,n} and let t; = [0.5]s||. Obviously, A, contains a copy of
s and B, a row of 1-characters. Moreover ¢, describes the maximum number
of 0-characters in s to be in MAJ. Then the majority of characters in s is 1
if and only if A(As, Bs) < t, for the distortion measure d(c1,c2) = |c1 — ca.
Hence, if transformations were not allowed on A, this approach would already
be successful.

However, the AIMP allows any affine transformation on A; and thus, the
above relation is not enough. To use a similar approach A; and B; are extended
in such a way that the transformations that lead to the optimal match are close
to identity and thus, still count the number of zeros in s. For this end leave most
of A and B; as before but for all k € {—n,...,n} let

As(k,—n+2) = Ag(k,n —2) = A(—n+2,k) = A;(n — 2, k) =
Bs(k,—n) = B(k,n) = By(—n, k) = Bg(n, k) =2

i.e., draw a frame in A4 and a little bigger frame in Bs. Now consider the following
lemma:

Affine Image Matching Is Uniform TC°-Complete 23

Lemma 2. Let s € {0,1}* and As, Bs and ts as defined above. Moreover, con-
sider the transformation

fopt(way) = (82)(;)—’_(8)

where a = 15&'“1‘7. Then s contains a majority of characters 1 if and only if

A(fopt(As), Bs) < ts for 0(cy, c2) = |er — eal.

The transformation f,,; guarantees that (1) the string s remains unaltered and
(2) the rest of fopt(As) looks like Bs. This means A(fopi(As), Bs) equals the
number of 0 in s and thus, is at most ¢, if and only if the majority of characters
in s is 1. However, that is not enough. It remains to show that there is no
transformation f’ € F that performs a better match of f'(A) to B because
otherwise the solution of the AIMP would rather go with f’ and not fop::

Lemma 3. For all s € {0,1}* it is true that A(fopt(As), Bs) under 6(c1,c2) =
|c1 — c2| is minimum over all affine transformations in F.

The basic idea behind the lemma’s proof is that the frames in f(A;) and Bs
have to be aligned. Together with the alignment of the row j = 0 this leaves
all in all only one true transformation f(As). Moreover, the small frame in A
guarantees that f(As) has to be scaled up to match B’s frame. This results in
the effect that every pixel (I, J) in the center of A is represented by a pixel (4, 5)
in f(Ay), ie., (I,J) = [f~1(i,)]. Consequently no s-character 0 represented in
A is forgotten in f(A;). Thus, every transformation f(A;) has to count at least
all characters 0 in the string s.

The rest is to argue that the computation r(s) = (As, Bs,ts) of the images
A, and Bjg as well as the threshold ¢, from the string s can be accomplished
by a first order sentence expressing II,.. However, a big deal of that is simply
copying and filling in constants. In particular, both Ay and B, can be computed
by these simple operations, namely, inserting the string s in A; and preparing
the frames in both images. The most complex work is the computation of ¢
because it contains a division. But whereas general division is TC’-complete the
division by the constant two can be established using only addition by

DIV2[z,y] = 3z ADDJy,y,z] V (ADDJy, y, z] A ADD|z, 1, z]),

i.e., there is a first order subformula DIV2[x,y| that expresses |0.52] = y. The
following theorem states the completeness result:

Theorem 5. The decision wversion of the AIMP is UD—TCO—complete under
Up -FACC-reductions.

6 Conclusions

This paper analyzes the complexity of affine image matching. It argues the ex-
istence of a first order sentence using the majority quantifier that expresses this
problem, thus, showing that affine image matching is contained in Up-FTCP.

24 C. Hundt

Moreover, it gives a Up-FAC -reduction from majority to affine image matching
and therefore provides that the problem is even complete in Up-TCP.

This work concentrates on affine image matching and neglects the superset of
projective transformations and the subset of linear transformations considered
n [T4]. Tt is a natural conjecture that linear image matching can also be solved
in TC® and that projective image matching is at least hard in TC.

In particular the whole approach of this paper can be easily transfered to
the case of projective transformations, i.e., even projective image matching is
Up-TC%-complete under Up-FAC-reductions. This paper sticks to affine image
matching only for convenience because some results become more technical for
projective transformations. Beside the pure complication of introducing previous
work, especially the formulation of an analogue of Theorem [l requires handling
a multiplicity of cases which makes the basic ideas less perspicuous.

For linear transformations the case is more complicated. Although a proper
subclass, the structure of linear transformations is geometrically harder than in
the affine case. This results basically from the fact that the arrangement A(H,,)
under linear transformations contains faces which have no volume. Consequently,
it is likely that they are missed during a sampling process as described in this
paper. The same holds for several of the small subclasses of affine transforma-
tions like scaling and rotation which were analyzed in [15]. Although the author
believes that image matching under each of these classes can be done in TC?,
it remains open whether this is true. At least the problem’s hardness for TCY is
evident even for scalings because the reduction builds mainly on A and benefits
from a restriction on the class of transformations.

Regarding the practicability of this paper’s results notice that problems in
TCP can be solved very efficiently in time. However, whereas TC? restricts size
only polynomially, it is practically impossible to create circuits of n® proces-
sors even for small n. But the containment in TCY has to be seen more in a
structural context that gains insight into the problem’s properties. Particularly,
the immense growth in size is partially caused by the weak uniformity con-
straint, which is a natural choice for complexity analysis. But more powerful
models of construction produce much smaller circuits. Consider e.g. P-uniform
TCY families, i.e., where circuits C), must be constructible by a Turing machine
in polynomial time. This is a very natural model for practical settings because
it allows resources consumption during the planning of C,, but saves them when
C,, comes into operation. Under this setting the graph Z,, can be generated and
then used to construct C,,, thus, to reduce the size consumption of the circuit.

According to the above note, this paper is another step towards image match-
ing in real applications. The author hopes that it helps to initiate future work
on the practical aspects of image matching like for example the first impressions
that were revealed from [20].

Acknowledgment

The author thanks Maciej Liskiewicz and Ragnar Nevries for helpful ideas and
proof reading as well as the anonymous reviewers for improvement suggestions.

Affine Image Matching Is Uniform TC°-Complete 25

References

1.

2.

oo

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Amir, A., Butman, A., Crochemore, M., Landau, G., Schaps, M.: Two-dimensional
pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173-187 (2004)
Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled
matching. Algorithmica 53(3), 314-336 (2009)

. Amir, A., Chencinski, E.: Faster two-dimensional scaled matching. In: Lewen-

stein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 200-210. Springer,
Heidelberg (2006)

. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with

rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 409-419. Springer, Heidelberg (2004)

. Brown, L.G.: A survey of image registration techniques. ACM Computing Sur-

veys 24(4), 325-376 (1992)

. Chandra, A.K., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. STAM J.

Comput. 13(2), 423-439 (1984)

. Cox, I.J., Bloom, J.A., Miller, M.L.: Digital Watermarking, Principles and Practice.

Morgan Kaufmann, San Francisco (2001)

. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)
. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and

hyperplanes with applications. STAM J. Comput. 15, 341-363 (1986)

Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast approximate
two-dimensional pattern matching allowing rotations. In: Apostolico, A., Takeda,
M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 235-248. Springer, Heidelberg (2002)
Fredriksson, K., Ukkonen, E.: A rotation invariant filter for two-dimensional string
matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 118-125.
Springer, Heidelberg (1998)

Hesse, W.: Division is in uniform TCP. In: Orejas, F., Spirakis, P.G., van Leeuwen,
J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104-114. Springer, Heidelberg (2001)
Hundt, C., Liskiewicz, M.: On the complexity of affine image matching. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 284-295. Springer,
Heidelberg (2007)

Hundt, C., Liskiewicz, M.: Combinatorial bounds and algorithmic aspects of image
matching under projective transformations. In: Ochmariski, E., Tyszkiewicz, J.
(eds.) MFCS 2008. LNCS, vol. 5162, pp. 395-406. Springer, Heidelberg (2008)
Hundt, C., Liskiewicz, M., Nevries, R.: A combinatorial geometric approach to two-
dimensional robustly pattern matching with scaling and rotation. Theor. Comput.
Sci. 51(410), 5317-5333 (2009)

Kasturi, R., Jain, R.C.: Computer Vision: Principles. IEEE Computer Society
Press, Los Alamitos (1991)

Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Algorith-
mica 12(3/4), 375-408 (1994)

Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical
Image Analysis 2(1), 1-36 (1998)

Modersitzki, J.: Numerical Methods for Image Registration. Oxford University
Press, Oxford (2004)

Nevries, R.: Entwicklung und Analyse eines beschleunigten Image Matching-
Algorithmus fiir natiirliche Bilder, Diplomarbeit, Universitat Rostock (2008)
Vollmer, H.: Introduction to circuit complexity. Springer, Berlin (1999)

Old and New in Stringology

Zvi Galil

Blavatnik School of Computer Science
Tel Aviv University

Twenty five years ago in a paper titled ”Open Problems in Stringology” I listed
thirteen open problems in a field I called Stringology. The first part of the talk
will revisit the list. Some problems were solved, others were partially solved and
some resisted any progress.

The second part of the talk will review some recent results in Stringology,
namely algorithms in the streaming model. In this model, the algorithms cannot
store the entire input string(s) and can use only very limited space. Surprisingly,
efficient algorithms were discovered for a number of string problems.

The talk will conclude with new open problems that are raised by these new
results.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, p. 26, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Small-Space 2D Compressed Dictionary
Matching

Shoshana Neuburger!* and Dina Sokol?**

! Department of Computer Science, The Graduate Center of the City University of
New York, New York, NY, 10016
shoshana@sci.brooklyn.cuny.edu
2 Department of Computer and Information Science, Brooklyn College of the City
University of New York, Brooklyn, NY, 11210
sokol@sci.brooklyn.cuny.edu

Abstract. The dictionary matching problem seeks all locations in a text
that match any of the patterns in a dictionary. In the compressed dictio-
nary matching problem, the input is in compressed form. In this paper
we introduce the 2-dimensional compressed dictionary matching problem
in Lempel-Ziv compressed images, and present an efficient solution for
patterns whose rows are all periodic. Given k patterns, each of (uncom-
pressed) size m X m, and a text of (uncompressed) size n X n, all in 2D-LZ
compressed form, our algorithm finds all occurrences of the patterns in the
text. The algorithm is strongly inplace, i.e., the extra space it uses is pro-
portional to the optimal compression of the dictionary, which is O(km).
The preprocessing time of the algorithm is O(km?), linear in the uncom-
pressed dictionary size, and the time for performing the search is linear in
the uncompressed text size, independent of the dictionary size. Our algo-
rithm is general in the sense that it can be used for any 2D compression
scheme which can be sequentially decompressed in small space.

1 Introduction

The compressed matching problem is the problem of finding all occurrences of a
pattern in a compressed text. Various algorithms have been devised to solve the
2D compressed matching problem, e.g., [0, B [4]. The dictionary matching problem
is that of locating all occurrences of a set of patterns in a given text. In this paper
we introduce the compressed dictionary matching problem in 2-dimensions. Com-
pressed dictionary matching can be trivially solved using any compressed pattern
matching algorithm and searching for each pattern separately. Preferably, an al-
gorithm should scan the text once so that its search time depends only on the size
of the text and not on the size of the dictionary of patterns. Aho and Corasick
achieved this goal for uncompressed patterns and text.

* This work has been supported in part by the National Science Foundation Grant
DB&I 0542751.

** This work has been supported in part by the National Science Foundation Grant
DB&I 0542751 and the PSC-CU Research Award 62280-0040.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 27139] 2010.
© Springer-Verlag Berlin Heidelberg 2010

28 S. Neuburger and D. Sokol

We address 2D compressed dictionary matching when the patterns and text
are in LZ78 compressed form. Space is an important concern of a compressed
pattern matching algorithm. An algorithm is strongly inplace if the amount of
extra space it uses is proportional to the optimal compression of the data. The
algorithm we present is both linear time and strongly inplace. The problem we
are addressing is of practical significance. Many images are stored in Lempel-Ziv
compressed form. Facial recognition is a direct application of 2D compressed
dictionary matching. The goal of such software is to identify individuals in a
larger image based on a dictionary of previously identified faces. An efficient
algorithm does not depend on the size of the database of known images.

Pattern matching cannot be performed directly on compressed data since com-
pression is context-sensitive. The same uncompressed string can be compressed
differently in different files, depending on the data that precedes the matching
content. The key property of LZ78 is the ability to perform decompression using
constant space in time linear in the uncompressed string. We follow the assump-
tion of Amir et. al. [3] and consider the row-by-row linearization of 2D data.

Existing algorithms for 2D dictionary matching are not sequential. Thus, they
are not easily adapted to form strongly-inplace algorithms. Amir and Farach
contributed a 2D dictionary matching algorithm that can be used for square
patterns [2]. Its time complexity is linear in the size of the text with prepro-
cessing time linear in the size of the dictionary. Their algorithm linearizes the
patterns by considering subrow /subcolumn pairs around the diagonal, which is
not conducive to row-by-row decompression. Idury and Schaffer discuss multiple
pattern matching in two dimensions for rectangular patterns [9]. Although their
algorithm is efficient, the data structures require more space than we allow.

We do not know of a small-space dictionary matching algorithm for even
one-dimensional data. Multiple pattern matching in LZW compressed text is
addressed by Kida et. al. [I0]. They present an algorithm that simulates the
Aho-Corasick search mechanism for compressed, one-dimensional texts and an
uncompressed dictionary of patterns. Their approach uses space proportional
to both the compressed text and uncompressed dictionary sizes, which is more
space than we allow.

In this paper we present an algorithm that solves the 2D LZ-Compressed
Dictionary Matching Problem where all pattern rows are periodic and the periods
are no greater than m/4. Given a dictionary of 2D LZ-compressed patterns,
P, P, ..., P, each of uncompressed size m X m, and a compressed text of
uncompressed size n X n, we find all occurrences of patterns in the text. Our
algorithm is strongly inplace since it uses O(km) space. The best compression
that LZ78 can achieve on the dictionary is O(km) [14]. The time complexity
of our algorithm is O(km? + n? log o), where o = min(km,|X|) and X is the
alphabet. After preprocessing the dictionary, the time complexity is independent
of the dictionary size.

Amir et. al. present an algorithm for strongly-inplace single pattern matching
in 2D LZ78-compressed data [3]. Their algorithm requires O(m?) time to pre-
process the pattern of uncompressed size m x m and search time proportional

Small-Space 2D Compressed Dictionary Matching 29

to the uncompressed text size. Our preprocessing scheme can be used to reduce
the preprocessing time of their algorithm to O(m?), linear in the size of the
uncompressed pattern, resulting in an overall time complexity of O(m? + n?).

2 Overview

We overcome the space requirement of traditional 2D dictionary matching al-
gorithms with an innovative preprocessing scheme that converts 2D patterns
to a linear representation. The pattern rows are initially classified into groups,
with each group having a single representative. We store a witness, or position
of mismatch, between the group representatives. A 2D pattern is named by the
group representative for each of its rows. This is a generalization of the naming
technique used by Bird [7] and Baker [5] to linearize 2D data. The preprocessing
is performed in a single pass over the patterns with no need to decompress more
than two pattern rows at a time. O(1) information is stored per pattern row,
resulting in a total of O(km) information. Details of the preprocessing stage can
be found in Section Bl

In the text scanning phase, we name the rows of the text to form a 1D repre-
sentation of the 2D text. Then, we use an Aho-Corasick (AC) automaton [I] to
mark candidates of possible pattern occurrences in the 1D text in O(n? log o)
time. Since similar pattern rows were grouped together, we need a verification
stage to determine if the candidates are actual pattern occurrences. With addi-
tional preprocessing of the 1D pattern representations, a single pass suffices to
verify potential pattern occurrences in the text. The details of the text scanning
stage are described in Section [l

The algorithm of Amir et. al. [3] is divided into two cases. A pattern can (i)
have only periodic rows with all periods < m/4 or (ii) have at least one aperiodic
row or a row with a period > m/4. We focus on the more difficult case, (i). In
such an instance, the number of pattern occurrences is potentially larger than the
amount of working space we allow. Our algorithm performs linear-time strongly-
inplace 2D LZ-compressed dictionary matching of patterns in which all rows are
periodic with periods < m/4.

A known technique for minimizing space is to work with small overlapping text
blocks of uncompressed size 3m /2 x 3m /2. The potential starts all lie in the upper-
left m/2 x m/2 square. If O(km?) space were allowed, then the 2D-LZ dictionary
matching problem would easily be solved by decompressing small text blocks and
using any known 2D dictionary matching algorithm within each text block. How-
ever, a strongly-inplace algorithm, such as ours, uses only O(km) extra space.

We follow the framework of [3] to sequentially decompress small blocks of 2D-
LZ data in time linear in the uncompressed text and in constant space. O(m)
pointers are used to keep track of the current location in the compressed text.

3 Pattern Preprocessing

Definition 1. A string p is primitive if it cannot be expressed in the form p =
u®, for k > 1 and a prefiz u of p.

30 S. Neuburger and D. Sokol

Definition 2. A string p is periodic in u if p = w/u* where u' is a suffir of u,
u is primitive, and k > 2.

A periodic string p can be expressed as u’u* for one unique primitive u. We refer
to u as “the period” of p. Depending on the context, u can refer to either the
string u or the period size |u.

Definition 3. [§] A 2D m x m pattern is h-periodic, or horizontally periodic,
if two copies of the pattern can be aligned in the top row so that there is no
mismatch in the region of overlap and the length of overlap in each row is > m/2.

Observation 1. A 2D pattern is h-periodic iff each of its rows is periodic.

A dictionary of h-periodic patterns can occur £2(km) times in a text block. It is dif-
ficult to search for periodic patterns in small space since the output can be larger
than the amount of extra space we allow. We take advantage of the periodicity of
pattern rows to succinctly represent pattern occurrences. The distance between
any two overlapping occurrences of P; in the same row is the Least Common Mul-
tiple (LCM) of the periods of all rows of P;. We precompute the LCM of each
pattern so that O(1) space suffices to store all occurrences of a pattern in a row,
and O(km) space suffices to store all occurrences of h-periodic patterns.

We introduce two new data structures that allow our algorithm to achieve a
small space yet linear time complexity. They are the witness tree and the offset
tree. The witness tree facilitates the linear-time preprocessing of pattern rows.
The offset tree allows the text scanning stage to achieve linear time complexity,
independent of the number of patterns in the dictionary.

3.1 Lyndon Word Naming

Definition 4. Two words x, y are conjugate if x = uv, y = vu for some words
u, v [12)].

Definition 5. A Lyndon word is a primitive string which is lexicographically
smaller than any of its conjugates [12].

We partition the pattern rows into disjoint groups. Each group is given a different
name and a representative is chosen for each group. Pattern rows whose periods
are conjugates of each other are grouped together. Conjugacy is an equivalence
relation. Every primitive word has a conjugate which is a Lyndon word; namely,
its least conjugate. Computing the smallest conjugate of a word is a practical way
of obtaining a standard representation of a word’s conjugacy class. This process
is called canonization and can be done in linear time and space [12]. We will use
the same 1D name to represent all patterns whose periods are conjugates of each
other. This enables us to linearize the 2D patterns in a meaningful manner.
We decompress and name the pattern rows, one at a time. After decompressing
a row, its period is found and canonized. If a new Lyndon word or a new period
size is encountered, the row is given a new name. Otherwise, the row adopts the
name already given to another member of its conjugacy class. A 2D pattern is

Small-Space 2D Compressed Dictionary Matching 31

Pattern 1 Pattern 2 Pattern 3

- N -

ofofofofo|ofe|e

oo |o|e|e|e]c|c

vlofofo|oc]e|e|e

oo |o|e|o|e]|c|c

o|o|e|[o]|o]e|o]|
oo|o|o]e oo]|
oo |o|e oo |o|o
oo |o|o|o|o|e |
o|o|o|o|o|o|o|o
o|o|o|o|o|o ||
o|o|o|e|[o|e]|o|c
oo |o|o|e|o|e |
o|o|o|o|o|6|o|o
w]o]o]e]o e [e]|o
oo |o|e|o|e|o|o
c|o|o|o|o|6|o|o
olo|e|o]o]e]e]|e
oo |o|o|o|o|o|o
oo |o|e|o|e|o|o
c|o|o|o|o|o|o|o
olo|e|o|e|e]e]|e

olo|le|oc|e|s]n]|=
ol|le|o|o|e|o|e |

ol|o|o|o|o|o|e o

Fig. 1. Three 2D patterns with their 1D representations. Patterns 1 and 2 are not the
same, yet their 1D representations are the same.

transformed to a 1D representation by naming its rows. Thus, an m X m pattern
can be represented in O(m) space and a 2D dictionary can be represented in
O(km) space.

Three 2D patterns and their 1D representations are shown in Figure [[I To
understand the naming process we will look at Pattern 1. The period of the
first row is aabb, which is four characters long. It is given the name 1. When
the second row is examined, its period is found to be aabc, which is also four
characters long. aabb and aabc are both Lyndon words of size four, but they
are different, so the second row is named 2. The period of the third row is abca,
which is represented by the Lyndon word aabc. Thus, the second and third rows
are given the same name even though they are not identical.

Pattern preprocessing is performed on one row at a time to conserve space. We
decompress one row at a time and gather the necessary information. An LZ78
compressed string can be decompressed in time and space linear to the size of the
uncompressed string [3]. After decompressing a pattern row, its period is identified
using known techniques in linear time and space, i.e., using a KMP automaton [11]
of the string. Then, we compute and store O(1) information per rowll: period size,
name, and position of the first Lyndon word occurrence in the row (LYpos).

We use the witness tree to name the pattern rows. Since we know which
Lyndon word represents a row, the same name is given to pattern rows whose
periods are conjugates of each other. Rows that have already been named are
stored in a witness tree. We only compare a new string to previously named
strings of the same size. The witness tree keeps track of failures in Lyndon word
character comparisons. With the witness tree, we compare at most one named
row to the new row.

3.2 Witness Tree
Components of witness tree:

— Internal node: position of a character mismatch. The position is an integer
€ [1, m)].

! This is under the assumption that the word size is large enough to store log m bits
in one word.

32 S. Neuburger and D. Sokol

Witness Tree

Name | Period size | Lyndon word
1 4 aabb
2 4 aabc
3 3 abc
a
4 2 ab
5 4 aacc
6 4 aaab
7 4 acbc

Fig. 2. A witness tree for the Lyndon words of length 4

— FEdge: labeled with a character in Y. Two edges emanating from a node must
have different labels.
— Leaf: an equivalence class representing one or more pattern rows.

When a new row is examined, we need to determine if the Lyndon word of its
period has already been named. An Aho-Corasick [I] automaton completes this
task in O(km?) time and space, but we allow only O(km) space. The witness
tree allows us to identify the only named string of the same size that has no
recorded position of mismatch with the new string, if there is one. A witness
tree for Lyndon words of length four is depicted in Figure

The witness tree is used as it is constructed in the pattern preprocessing
stage. As strings of the same size are compared, points of distinction between
the representatives of 1D names are identified and stored in a tree structure.
When a mismatch is found between strings that have no recorded distinction,
comparison halts, and the point of failure is added to the tree. Characters of
a new string are examined in the order dictated by traversal of the witness
tree, possibly out of sequence. If traversal halts at an internal node, the string
receives a new name. Otherwise, traversal halts at a leaf, and the new string
is sequentially compared to the string represented by the leaf. Depending on
whether comparison completes successfully, the new string receives either the
name of the leaf or a new name.

As an example, we explain how the name 7 becomes a leaf in the witness
tree of Figure 2l We seek to classify the Lyndon word acbe, using the witness
tree for Lyndon words of size four. Since the root represents position 4, the
first comparison finds that ¢, the fourth character in acbec, matches the edge
connecting the root to its right child. This brings us to the right child of the
root, which tells us to look at position 3. Since there is a b at the third position
of acbc, we reach the leaf labeled 2. Thus, we compare the Lyndon words acbc
and aabc. They differ at the second position, so we create an internal node for
position 2, with leaves labeled 2 and 7 as its children, and their edges labeled a
and c¢, respectively.

Small-Space 2D Compressed Dictionary Matching 33

Lemma 1. Of the named strings that are the same size as a new string, i, there
s at most one equivalence class, j, that has no recorded mismatch against i.

Proof. The proof is by contradiction. Suppose we have two such classes, [and j.
Both [and j have the same size as ¢ and neither has a recorded mismatch with
i. By transitivity of the equivalence relation, we have not recorded a mismatch
between [and j. This means that [and j should have received the same name.
This contradicts the assumption that [and j are different classes. O

Lemma 2. The witness trees for the rows of k patterns, each of size m X m, is
O(km) in size.

Proof. The proof is by induction. The first time a string of size u is encountered,
initialize the tree for strings of size u to a single leaf. Subsequent examination of
a string of size u contributes either zero or one new node (with an accompanying
edge) to the tree. Either the string is given a name that has already been used
or it is given a new name. If the string is given a name already used, the tree
remains unchanged. If the string is given a new name, it mismatched another
string of the same size. There are two possibilities to consider.

(i) A leaf is replaced with an internal node to represent the position of mis-
match. The new internal node has two leaves as its children. One leaf represents
the new name, and the other represents the string to which it was compared.
The new edges are labeled with the characters that mismatched.

(ii) A new leaf is created by adding an edge to an existing internal node. The
new edge represents the character that mismatched and the new leaf represents
the new name. O

Corollary 1. The witness tree for Lyndon words of length u has depth < u.

Lemma 3. A pattern row of size O(m) is named in O(m) time using the ap-
propriate witness tree.

Proof. By Lemma [Il a new string is compared to at most one other string, j.
A witness tree is traversed from the root to identify j. Traversal of a witness
tree ceases either at an internal node or at a leaf. The time spent traversing a
tree is bounded by its depth. By Corollary[dl the tree-depth is O(m), so the tree
is traversed in O(m) comparisons. Thus, a new string is classified with O(m)
comparisons. a

The patterns are named in O(km?) time using only O(km) extra space. This
time complexity is optimal since each pattern row must be decompressed and
examined at least once. Since we require only O(1) rows to be decompressed at
a time, naming is done within O(m) extra space.

3.3 Preprocessing the 1D Patterns

Once the pattern rows are named, an Aho-Corasick (AC) automaton is con-
structed for the 1D patterns of names. (See Figure [for the 1D names of three

34 S. Neuburger and D. Sokol

patterns.) Several different patterns have the same 1D name if their rows belong
to the same equivalence classes. This is easily detected in the AC automaton
since the patterns occur at the same terminal state.

The next preprocessing step computes the Least Common Multiple (LCM)
of each distinct 1D pattern. This can be done incrementally, one row at a time,
in time proportional to the number of pattern rows. The LCM of an h-periodic
pattern reveals the horizontal distance between its candidates in a text block.
This conserves space as there are fewer candidates to maintain. In effect, this
will also conserve verification time.

If several patterns share a 1D name, an offset tree is constructed of the Lyndon
word positions in these patterns. We defer the description of the offset tree to
Section [£.I] where it is used in the verification phase.

In summary, pattern preprocessing in O(km?) time and O(m) space:

1. For each pattern row, (i) decompress (ii) compute period and canonize (iii)
store period size, name, first Lyndon word occurrence (LYpos).

Construct AC automaton of 1D patterns.

Find LCM of each 1D pattern.

4. For multiple patterns of same 1D name, build offset tree.

w N

4 Text Scanning

Our algorithm processes the text once and searches for all patterns simultane-
ously. The text is broken into overlapping blocks of uncompressed size 3m /2 x
3m/2. Each text row is decompressed O(1) times with 1 or 2 pointers to mark
the end of each row in the block of text. One pointer indicates the position in
the compressed text. When the endpoint of a row in the text block occurs in
middle of a compressed character, a second pointer indicates its position within
the compressed character. In total, O(m) pointers are used to keep track of the
current location in the compressed text.
The text scanning stage has three steps:

1. Name rows of text.

2. Identify candidates with a 1D dictionary matching algorithm, e.g., AC.

3. Verify candidates separately for each text row using the offset tree of the 1D
pattern.

Step [l Name Text Rows

We search a 2D text for a 1D dictionary patterns using a 1D Aho-Corasick (AC)
automaton. A 1D pattern can begin at any of the first m/2 positions of a text
block row. The AC automaton can branch to one of several characters; we can’t
afford the time or space to search for each of them in the text row. Thus, we
name the rows of a text block before searching for patterns. The divide-and-
conquer algorithm of Main and Lorentz [I3] finds all maximal repetitions that
cross a given point in linear time. Repetitions of length > m that cross the
midpoint and have a period size < m/4 are the only ones that are of interest to
our algorithm.

Small-Space 2D Compressed Dictionary Matching 35

Lemma 4. At most one mazimal periodic substring of length > m with period
<m/4 can occur in a text block row of size 3m/2.

Proof. The proof is by contradiction. Suppose that two maximal periodic sub-
strings of length m, with period < m/4 occur in a row. Call the periods of these
strings v and v. Since we are looking at periodic substrings that begin within an
m/2 xm/2 square, the two substrings overlap by at least m/2 characters. Since u
and v are no larger than m/4, at least two adjacent copies of both u and v occur
in the overlap. This contradicts the fact that both u and v are primitive. a

After finding the only maximal periodic substring of length > m with period
< m/4, the text rows are named in much the same way as the pattern rows
are named. The period of the maximal run is found and canonized. Then, the
appropriate witness tree is used to name the text row. We use the witness tree
constructed during pattern preprocessing since we are only interested in identi-
fying text rows that correspond to Lyndon words found in the pattern rows. At
most one pattern row will be decompressed to classify the conjugacy class of a
text row. In addition to the name, period size, and LYpos, we maintain a left
and right pointer for each row of a text block. left and right mark the endpoints
of the periodic substring in the text. The LYpos (position of first Lyndon word
occurrence) is computed relative to the left pointer of the row. This process is
repeated for each row, and O(m) information is obtained for the text block.

Complexity of Step [I The largest periodic substring of a row of width 3m /2,
if it exists, can be found in O(m) time and space [13]. Its period can be found
and canonized in linear time and space [12]. The row is named in O(m) time
and space using the appropriate witness tree (Lemma [)). Overall, O(m?) time
and O(m) space is needed to name the rows of a text block.

Step [2l Identify Candidates
After Step[Ilcompletes, a 1D text remains, each row labeled with a name, period

size, LYpos, and left / right boundaries. A 1D dictionary matching algorithm, such
as AC, is used to mark occurrences of the 1D patterns of names. The occurrence
of a 1D pattern indicates the potential occurrence of 2D pattern(s) since several
2D dictionary patterns can have the same 1D name. All candidates, or possible
pattern starts, are in rows marked with occurrences of the 1D pattern. The
occurrence of a 1D pattern is not sufficient evidence that a 2D pattern actually
occurs. Thus, a separate verification step is necessary. The left pointer with the
LYpos identify the first occurrence of a pattern row. Since the patterns are h-
periodic, pattern occurrences are at multiples of the first row’s period size that
leave enough space for the pattern width before right.

Complexity of Step 2k 1D dictionary matching in a string of size m can be
done in O(mlogo) time and O(mk) space using an AC automaton [I].

Step Bl Verify Candidates
The verification process considers each row of text that contains candidates

separately. Recall that a text row contains candidates iff a 1D pattern begins

36 S. Neuburger and D. Sokol

b b afaisloielaisle X |x [x|x X |x [x|x
abcfafalbiclalale X |x [x |x X |x [x|x
alaBfclafaloiclsls X |x [x|x X | x [x|x
clafbfclalblc]alc]a XX |X XX [X
b |a|blalfbilalblalyp]a XX XX
albofafalol®lalsle X |x [x |x X |x [x|x
b |c|alafblc|alalp]ec X XX XX [X|X
a|bfafblalfbfalb]|alp X X XX

(a) (b) (c)

Fig. 3. (a) Two consistent patterns are shown. Each pattern is a horizontal cyclic
shift of the other. (b) The first Lyndon word occurrence on each row of the pattern is
represented by a sequence of Xs. (¢) The representative of this consistency class. The
class representative is the shift in which the Lyndon word of the first row begins at the
first position.

there. Several patterns can share a 1D representation. We need to verify the
overall width of the 1D names, as well as the alignment of the periods among
rOWS.

After identifying a text row as containing candidates for a pattern occurrence,
we need to ensure that the labeled periodic string extends over at least m columns
in each of the next m rows. We are interested in the minimum of all right pointers,
minRight, as well as the maximum of all left pointers, mazLeft, as this is the
range of positions in which the pattern(s) can occur. If the pattern will not fit
between minRight and mazLeft, i.e., minRight — mazLeft < m, candidates in the
row are eliminated.

The verification stage must also ascertain that the Lyndon word positions in
the text align with the Lyndon word positions in the pattern rows. Naively, this
can be done in O(m?) time. We verify a candidate row in O(m) time using the
offset tree of a 1D pattern.

Several different patterns that have the same 1D representation can occur
at overlapping positions on the same text row. We call such a set of patterns
consistent. Consistent patterns can be obtained from one another by performing
a horizontal cyclic permutation of the characters, i.e., by moving several columns
to the opposite end of the matrix. Figure [3] depicts a pair of consistent patterns.
Pattern consistency is an equivalence relation. We can form equivalence classes
of patterns with the same 1D name and then classify the text as belonging to
at most one group. We choose a representative for each equivalence class. The
class representative is the shift in which the Lyndon word of the first row begins
at the first position.

Each row of the 2D array is represented by its 1D arrays of names and LYpos.
To convert a pattern to one that is consistent with it, its rows are shifted by
the same constant, but the LYpos of its rows may not be. However, the shift
is the same across the rows, relative to the period size of each row. Figure [3
shows an example of consistent patterns and the relative shifts of their rows.
Notice that (b) can be obtained from (c) by shifting two columns towards the
left. The first occurrence of the Lyndon word of the first row is at position 3 in

Small-Space 2D Compressed Dictionary Matching 37

(b) and at position 1 in (c¢). This shift seems to reverse in the third row, since the
Lyndon word first occurs at position 1 in (b) and at position 3 in (c¢). However,
the relative shift remains the same, since the shift is cyclic. We summarize this
relationship in the following lemma.

Lemma 5. Two patterns are consistent iff the LYpos of all their rows are shifted
by C mod period size of the row, where C is a constant.

The proof is omitted due to lack of space and will be included in the journal
version.

4.1 Offset Tree

We construct an offset tree to align the shifted LYpos arrays of patterns with
the same 1D name so that the text can be classified, and ultimately verified, in
O(m) time. This allows the text scanning stage to complete in time proportional
to the text size, independent of the dictionary size. An offset tree is shown in
Figure @

Components of offset tree:

— Root: represents the first row of a pattern.

— Internal node: represents a row from 1 to m, strictly larger than its parent.
Edge: labeled by shifted LYpos entries. Two edges that leave a node must
have different labels.

— Leaf: represents a consistency class of dictionary patterns.

We construct an offset tree for each 1D pattern of names. One pattern at a time,
we traverse the tree and compare the shifted LYpos arrays in sequential order
until a mismatch is found or we reach a leaf. If a mismatch occurs at an edge
leading to a leaf, a new internal node and a leaf are created, to represent the
position of mismatch and the new consistency class, respectively. If a mismatch
occurs at an edge leading to an internal node, a new branch is created (and
possibly a new internal node) with a new leaf to represent the new consistency
class.

Offset Tree
CP Name | Period | Patternl | Pattern2
1 size LYpos LYpos
1 4 1 3
2 4 1 4
2 4 4 1
3 3 1 2
4 2 1 2
1 4 4 4
2 4 2 3
[Pattern 1] [Patt::rn 2] 4 2 1 1

Fig. 4. Offset tree for patterns 1 and 2 which have the same 1D name. The LYpos
entries are not shifted for the first pattern since its first entry is 1, while the LYpos
entries of the second pattern are shifted by 2 mod period size of row.

38 S. Neuburger and D. Sokol

Lemma 6. The consistency class of a string of length m is found in O(m) time.

The proof is omitted due to lack of space and will be included in the journal
version.

Observation 2. The offset trees for k 1D patterns, each of size m, is of size

O(km).

We modify the LYpos array of the text to reflect the first Lyndon word occurrence
in each text row after mazLeft. Each modified LYpos entry is > maxLeft and
can be computed in O(1) time with basic arithmetic.

We shift the text’s LYpos values so that the Lyndon word of the first row
occurs at the first position. We traverse the offset tree to determine which pat-
tern(s), if any, are consistent with the text. If traversal ceases at a leaf, then its
pattern(s) can occur in the text, provided the text is sufficiently wide.

At this point, we know which patterns are consistent with the window of m
rows beginning in a given text row. The last step is to locate the actual positions
at which a pattern begins, within the given text row. We need to reverse the shift
of the consistent patterns by looking up the first LYpos of each pattern that is
consistent with the text block. Then we verify that the periodic substrings of the
text are sufficiently wide. That is, we announce position i as a pattern occurrence
iff minRight — i > m. Subsequent pattern occurrences in the same row are at
LCM multiples of the pattern.

Complexity of Step B There can be O(m) rows in a text block that contain
candidates. mazLeft and minRight are computed in O(m) time for the m rows
that a pattern can span. The LYpos array is modified and shifted in O(m) time.
Then, the offset tree is traversed with O(m log o) comparisons. Determining the
actual occurrences of a pattern requires O(m) time, proportional to the width
of a pattern row.

Verification of a candidate row is done in O(m log o) time. Overall, verification
of a text block is done in time proportional to the uncompressed text block size,
O(m? log o). The verification process requires O(m) space in addition to the
O(km) preprocessing space.

Complexity of Text Scanning Stage: Each block of text is processed sepa-
rately in O(m) space and in O(m? log o) time. Since the text blocks are O(m?)
in size, there are O(n?)/(m?) blocks of text. Overall, O(n? log o) time and O(m)
space are required to process text of uncompressed size n x n.

5 Conclusion

We have developed the first strongly-inplace dictionary matching algorithm for
2D LZ78-compressed data. Our algorithm is for h-periodic patterns in which the
period of each row is < m/4. The preprocessing time-complexity of our algorithm
is optimal, as it is proportional to the uncompressed dictionary size. The text
scanning stage searches for multiple patterns simultaneously, allowing the text

Small-Space 2D Compressed Dictionary Matching 39

block to be decompressed and processed one row at a time. After information
is gathered about the rows of a text block, potential pattern occurrences are
identified and then verified in a single pass. Overall, our algorithm requires only
O(km) working space.

We would like to extend the algorithm to patterns with an aperiodic row or
with a row whose period period > m/4. With such a row, many pattern rows
with different 1D names can overlap in a text block row. Pattern preprocessing
can focus on the first such row of each pattern and form an AC automaton of
those rows. However, verification of the candidates requires a small-space 1D
dictionary matching algorithm, which seems to be an open problem.

References

[1] Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Commun. ACM 18(6), 333-340 (1975)

[2] Amir, A., Farach, M.: Two-dimensional dictionary matching. Inf. Process.
Lett. 44(5), 233-239 (1992)

[3] Amir, A., Landau, G.M., Sokol, D.: Inplace 2d matching in compressed images. J.
Algorithms 49(2), 240-261 (2003)

[4] Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2d compressed search.
Theor. Comput. Sci. 290(3), 1361-1383 (2003)

[5] Baker, T.J.: A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM J. Comp. (7), 533-541 (1978)

[6] Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. J.
Comput. Syst. Sci. 65(2), 332-350 (2002)

[7] Bird, R.S.: Two dimensional pattern matching. Information Processing Let-
ters 6(5), 168-170 (1977)

[8] Crochemore, M., Gasieniec, L., Hariharan, R., Muthukrishnan, S., Rytter, W.: A
constant time optimal parallel algorithm for two-dimensional pattern matching.
SIAM J. Comput. 27(3), 668-681 (1998)

[9] Idury, R.M., Schiffer, A.A.: Multiple matching of rectangular patterns. In:
STOC 1993: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pp. 81-90. ACM, New York (1993)

[10] Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., Arikawa, S.: Multiple pattern
matching in lzw compressed text. In: DCC 1998: Proceedings of the Conference
on Data Compression, Washington, DC, USA, p. 103. IEEE Computer Society,
Los Alamitos (1998)

[11] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. STAM
J. Comput. 6(2), 323-350 (1977)

[12] Lothaire, M.: Applied Combinatorics on Words (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, New York (2005)

[13] Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in
a string. ALGORITHMS: Journal of Algorithms 5 (1984)

[14] Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory IT-24, 530-536 (1978)

Bidirectional Search in a String with Wavelet
Trees

Thomas Schnattinger, Enno Ohlebusch, and Simon Gog

Institute of Theoretical Computer Science, University of Ulm, D-89069 Ulm
{Thomas.Schnattinger,Enno.0Ohlebusch,Simon.Gog}@uni-ulm.de

Abstract. Searching for genes encoding microRNAs (miRNAs) is an
important task in genome analysis. Because the secondary structure of
miRNA (but not the sequence) is highly conserved, the genes encoding
it can be determined by finding regions in a genomic DNA sequence that
match the structure. It is known that algorithms using a bidirectional
search on the DNA sequence for this task outperform algorithms based
on unidirectional search. The data structures supporting a bidirectional
search (affix trees and affix arrays), however, are rather complex and
suffer from their large space consumption. Here, we present a new data
structure called bidirectional wavelet index that supports bidirectional
search with much less space. With this data structure, it is possible
to search for RNA secondary structural patterns in large genomes, for
example the human genome.

1 Introduction

It is now known that microRNAs (miRNAs) regulate the expression of many
protein-coding genes and that the proper functioning of certain miRNAs is im-
portant for preventing cancer and other diseases. microRNAs are RNA molecules
that are encoded by genes from whose DNA they are transcribed, but they are
not translated into protein. Instead each primary transcript is processed into a
secondary structure (consisting of approximately 70 nucleotides) called a pre-
miRNA and finally into a functional miRNA. This so-called mature miRNA is
21-24 nucleotides long, so a gene encoding a miRNA is much longer than the pro-
cessed mature miRNA molecule itself. Mature miRNA molecules are either fully
or partially complementary to one or more messenger RNA (mRNA) molecules,
and their main function is to down-regulate gene expression. The first miRNA
was described by Lee et al. [I]], but the term miRNA was only introduced in 2001
when the abundance of these tiny regulatory RNAs was discovered; see [2] for an
overview. miRNAs are highly conserved during evolution, not on the sequence
level, but as secondary structures. Thus, the task of finding the genes coding for
a certain miRNA in a genome is to find all regions in the genomic DNA sequence
that match its structural pattern. Because the structural pattern often consists
of a hairpin loop and a stem (which may also have bulges), the most efficient
algorithms first search for candidate regions matching the loop and then try to
extend both ends by searching for complementary base pairs A-U, G-C, or G-U

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 40 2010.
© Springer-Verlag Berlin Heidelberg 2010

Bidirectional Search in a String with Wavelet Trees 41

that form the stem. Because T (thymine) is replaced with U (uracil) in the tran-
scription from DNA to RNA, one must search for the pairs A-T, G-C, or G-T
in the DNA sequence. For example, if the loop is the sequence GGAC, then it is
extended by one of the four nucleotides to the left or to the right, say by G to
the right, and all regions in the DNA sequence matching GGACG are searched
for (by forward search). Out of these candidate regions only those survive that
can be extended by C or T to the left because only C and T (U, respectively)
form a base pair with G, and the stem is formed by complementary base pairs.
In other words, in the next step one searches for all regions in the DNA sequence
matching either CGGACG or TGGACG (by backward search). Such a search
strategy can be pursued only if bidirectional search is possible. Mauri and Pavesi
[3] used affix trees for this purpose, while Strothmann [4] employed affix arrays.

Research on data structures supporting bidirectional search in a string started
in 1995 with Stoye’s diploma thesis on affix trees (the English translation ap-
peared in [5]), and Maak [6] showed that affix trees can be constructed on-line
in linear time. Basically, the affix tree of a string S comprises both the suffix
tree of S (supporting forward search) and the suffix tree of the reverse string
S7eV (supporting backward search). It requires approximately 45n bytes, where
n is the length of S. Strothmann [4] showed that affix arrays have the same
functionality as affix trees, but they require only 18n—20n bytes (depending on
the implementation). An affix array combines the suffix arrays of S and S™¢,
but it is a complex data structure because the interplay between the two suffix
arrays is rather difficult to implement. In this paper, we present a new data
structure called bidirectional wavelet index that consists of the wavelet tree of
the Burrows-Wheeler transformed string of S (supporting backward search) and
the wavelet tree of the Burrows-Wheeler transformed string of S™ (supporting
forward search). In contrast to affix arrays, however, the interplay between the
two is easy to implement. Our experiments show that the bidirectional wavelet
index decreases the space requirement by a factor of 21 (compared to affix ar-
rays), making it possible to search bidirectionally in very large strings.

2 Preliminaries

Let X be an ordered alphabet whose smallest element is the so-called sentinel
character $. If X consists of o characters and is fixed, then we may view X as
an array of size o such that the characters appear in ascending order in the array
Y[l.o],ie, X[1] = $ < X[2] < ... < X[o]. In the following, S is a string of
length n over X' having the sentinel character at the end (and nowhere else). For
1 <4 < n, S[i] denotes the character at position i in S. For i < j, S[i..j] denotes
the substring of S starting with the character at position ¢ and ending with the
character at position j. Furthermore, S; denotes the ith suffix S[i..n] of S. The
suffix array SA of the string S is an array of integers in the range 1 to n specify-
ing the lexicographic ordering of the n suffixes of the string S, that is, it satisfies
Ssaj) < Ssajz) < ... < Ssap); see Fig. M for an example. In the following, SA™!
denotes the inverse of the permutation SA. The suffix array was introduced by

42 T. Schnattinger, E. Ohlebusch, and S. Gog

i SA BWT Ssap

1 19 n $

2 3 1 anele lepanelen$ getBounds([6..11], [1..7],1)

3 9 e lepanelen$ [nle p‘iﬁinnllzee eaae]

4 4 anele lepanelen$ 11001{10111100000000

5 13 p anelen$

6 8 1 e lepanelen$ getBoundn([4..8], [5..7],1)
7 1 $ el anele lepanelen$ e $eece eaae nlpinnll)
8 6 n ele lepanelen$ 10011101111 oo
9 15 n elen$

10 17 1 en$

11 11 1 epanelen$ getBounds([3..7]/[5..6],1)
12 2 e 1 anele lepanelen$ $ eeeecaas nl zmll

13 7 & 1le lepanelen$ 101 11111001 0110

14 16 e len$

15 10 lepanelen$

16 18 e n$ ° .

17 5 a nele lepanelen$

18 14 a nelen$

19 12 e panelen$

Fig. 1. Left: Suffix array and Burrows-Wheeler-transformed string BWT of string S =
el_anele_lepanelen$. Right: Conceptual illustration of the wavelet tree of the string
BWT = nle_pl$nnlleee_eaae. Only the bit vectors are stored; the corresponding
strings are shown for clarity. The shaded regions and the function get Bounds will be
explained later.

Manber and Myers [7]. In 2003, it was shown independently and contemporane-
ously by three research groups that a direct linear time construction of the suffix
array is possible. To date, over 20 different suffix array construction algorithms are
known; see [§] for details. Forward search on a suffix array can be done in O(log n)
time per character by binary search; see [7].

Given the suffix array SA of a string S, the Burrows and Wheeler transforma-
tion BWTIL..n] of S is defined by BWT[i] = S[SA[i] — 1] for all ¢ with SA[i] # 1
and BWT[i] = $ otherwise; see Fig.[Il In virtually all cases, the Burrows-Wheeler
transformed string compresses much better than the original string; see [9]. The
permutation LF, defined by LF(i) = SA™'[SA[i] — 1] for all i with SA[i] # 1
and LF(i) = 1 otherwise, is called L F-mapping. Its inverse permutation is usu-
ally called y-function. Both LF and v can be represented more compactly than
the suffix array. A compressed full-text index based on a compressed form of
the LF-mapping is commonly referred to as FM-index [10]. If it is based on a
compressed 1-function it is usually called compressed suffiz array [11]. The LF-
mapping can be implemented by LF (i) = C|c] + Occ(c,i) where ¢ = BWT][i],
C[c] is the overall number (of occurrences) of characters in S which are strictly
smaller than ¢, and Occ(c,) is the number of occurrences of the character ¢ in
BWT]1..i]. Details about the Burrows and Wheeler transform and related topics
can for instance be found in [12].

Bidirectional Search in a String with Wavelet Trees 43

Algorithm 1. Given ¢ € ¥ and an w-interval [i..j], backwardSearch(c, [i..j])
returns the cw-interval if it exists, and L otherwise.
backwardSearch(c, [i..j])

i C[c] + Oce(c,i — 1) + 1

J = Cld + Oce(c, j)

if ¢ < j then return [i..j]

else return |

Ferragina and Manzini [I0] showed that it is possible to search a pattern
character-by-character backwards in the suffix array SA of string S, without
storing SA. Backward search can be implemented such that each step takes
only constant time, albeit a more space-efficient implementation takes O(log o)
time; see below. In the following, the w-interval in SA of a substring w of S
is the interval [i..j] such that w is a prefix of Ssap; for all i < k < j, but
w is not a prefix of any other suffix of S. For example, the le-interval in the
suffix array of Fig. [[lis the interval [13..15]. Searching backwards in the string
S = el_anele_lepanelen$ for the pattern le works as follows. By definition,
backward search for the last character of the pattern starts with the e-interval
[1..n], where £ denotes the empty string. Algorithm [l shows the pseudo-code of
one backward search step. In our example, backwardSearch(e,[1..19]) returns
the e-interval [6..11] because Cle] + Occ(e,1 —1) +1 =5+0+1 = 6 and
Cle] + Occ(e,19) = 5+ 6 = 11. In the next step, backwardSearch(1,[6..11])
delivers the le-interval [13..15] because C[1]+Occ(1,6 —1)+1=11+1+1=13
and C[1] 4+ Occ(1,11) =114+ 4 = 15.

With the space-efficient wavelet tree introduced by Grossi et al. [13], each
step of the backward search in string S takes O(logo) time, as we shall see
next. We say that an interval [I..r] is an alphabet interval, if it is a subinterval
of [1..0], where o = |X|. For an alphabet interval [I..r], the string BWT" is
obtained from the Burrows-Wheeler transformed string BWT of S by deleting all
characters in BWT that do not belong to the subalphabet X[l..r] of X[1..0]. As
an example, consider the string BWT =nle_pl$nnlleee_eaae and the alphabet
interval [1..4]. The string BWT! % is obtained from nle_pl$nnlleee_eaae by
deleting the characters 1, n, and p. Thus, BWT 4 = e_geece_ecaae.

The wavelet tree of the string BWT over the alphabet X[1..0] is a balanced
binary search tree defined as follows. Each node v of the tree corresponds to a
string BWT!"1 where [I..7] is an alphabet interval. The root of the tree cor-
responds to the string BWT = BWTM9l If I = 7, then v has no children.
Otherwise, v has two children: its left child corresponds to the string BwT -]
and its right child corresponds to the string BWT[mH“T], where m = LHQ'TJ. In
this case, v stores a bit vector Bl of size r — [+ 1 whose i-th entry is 0 if
the i-th character in BWT!") belongs to the subalphabet X[I..m] and 1 if it
belongs to the subalphabet X [m + 1..r]. To put it differently, an entry in the bit
vector is 0 if the corresponding character belongs to the left subtree and 1 if it

44 T. Schnattinger, E. Ohlebusch, and S. Gog

Algorithm 2. For a character ¢, an index ¢, and an alphabet interval [I..r],
the function Occ/(c, i, [l..r]) returns the number of occurrences of ¢ in the string
BWT"I[1..4], unless I = r (in this case, it returns 7).

Occ (¢, [I..7])
if [= r then return 1
else
m = LngrJ

if ¢ < X[m] then

return Occ (¢, ranko(B"7,4), [I..m])
else

return Occ (¢, rank: (B"7,4), [m + 1..r])

belongs to the right subtree; see Fig.[Il Moreover, each bit vector B in the tree is
preprocessed such that the queries ranko(B, 1) and rank; (B, i) can be answered
in constant time [I4], where rank,(B,i) is the number of occurrences of bit b
in BJ[1..i]. Obviously, the wavelet tree has height O(log o). Because in an actual
implementation it suffices to store only the bit vectors, the wavelet tree requires
only nlog o bits of space plus o(n log o) bits for the data structures that support
rank-queries in constant time.

The query Occ(c,i) can be answered by a top-down traversal of the wavelet
tree in O(log o) time. As an example, we compute Occ(e, 16) on the wavelet tree
of the string BWT = nle_pl$nnlleee_eaae from Fig. [l Because e belongs to
the first half X'[1..4] of the ordered alphabet X, the occurrences of e correspond
to zeros in the bit vector at the root, and they go to the left child, say node vy,
of the root. Now the number of e’s in BWT!'"") = nle_pl$nnlleee_eaae up to
position 16 equals the number of e’s in the string BWT L4 = o_$eece_eaae up
to position ranky(B!7,16). So we compute ranky(B!'7,16) = 8. Because e
belongs to the second quarter X[3..4] of X, the occurrences of e correspond to
ones in the bit vector at node v1, and they go to the right child, say node vo, of
v1. The number of e’s in BWTH4 = ¢_gece_caae up to position 8 is equal to
the number of e’s in BWTE Y = eeceeaae up to position rank; (B[l“4], 8) =5.
In the third step, we must go to the right child of vs, and the number of e’s in
BWTE 4 = eceecane up to position 5 equals the number of e’s in BwTl4 =
eeeeee up to position rank; (BB, 5) = 5. Since BWT* 4 consists solely of e’s
(by the way, that is the reason why it does not appear in the wavelet tree) the
number of e’s in BWT4] up to position 5 is 5. Pseudo-code for the computation
of Occ(c, i) = Occ/ (e, i,[1..0]) can be found in Algorithm

3 Bidirectional Search

The bidirectional wavelet index of a string S consists of

— the backward index, supporting backward search based on the wavelet tree
of the Burrows-Wheeler transformed string BWT of S, and

Bidirectional Search in a String with Wavelet Trees 45

K3 SSA['L] 7 Sg‘ffr)ev

1n$ 1e$

2 1 anele lepanelen$ 2 1 elena le$

3 e lepanelen$ 3 a 1le$

4 anele lepanelen$ 4 n a le$

5 p anelen$ 5 n apel elena le$

6 11‘ e) lepanelen$ 61

7l$' e[l anele lepanelen$ 7p 1 elena le$
8:11; e[le lepanelen$ 8 na le$

9:11: e [len$ 9 napel elena le$
1011,/ e p$ 10 nla le$

11 \1 e panelens$ 11 \n:apel elena le$

12 £ 1 anele lepanelen$ 12 e 1 elena le$

13 le | lepanelen$ 13 le$

14 &Y le n$ 14 e lena le$

15 le panelen$ 15 e lenapel elena le$
16 e n$ 16 e na le$

17 a nele lepanelen$ 17 e napel elena le$

18 a nelen$ 18 $ nelenapel elena le$
19 e panelen$ 19 a pel elena le$

Fig. 2. Bidirectional wavelet index of S = el_anele_lepanelen$

— the forward index, supporting backward search on the reverse string S™¢" of
S (hence forward search on S) based on the wavelet tree of the Burrows-
Wheeler transformed string BWT"™ of S"¢.

The difficult part is to synchronize the search on both indexes. To see this,
suppose we know the w-interval [i..j] in the backward index as well as the w"®-
interval [i"¢"..j7¢"] in the forward index, where w is some substring of S. Given
[i..7] and a character ¢, backwardSearch(c, [i..j]) returns the cw-interval in the
backward index (cf. Algorithm [IJ), but it is unclear how the corresponding in-
terval, the interval of the string (cw)™¥ = w"’¢, can be found in the forward
index. Vice versa, given [i"¢"..;7"] and a character ¢, backward search returns
the cw”®-interval in the forward index, but it is unclear how the corresponding
wc-interval can be found in the backward index. Because both cases are symmet-
ric, we will only deal with the first case. So given the w”*’-interval, we have to
find the w™¢’c-interval in the forward index. As an example, consider the bidirec-
tional wavelet index of the string S = el_anele_lepanelen$ in Fig. 2 and the
substring w = e = w"*’. The e-interval in both indexes is [6..11]. The le-interval
in the backward index is determined by backwardSearch(1,[6..11]) = [13..15]
and the task is to identify the el-interval in the forward index.

All we know is that the suffixes of S™¢¥ are lexicographically ordered in the for-
ward index. In other words, the w™*’c-interval [p..q] is a subinterval of [i"¢"..;7¢"]
such that (note that |w"’| = |w]|)

46 T. Schnattinger, E. Ohlebusch, and S. Gog

— STSAT®[k] + |w]] < ¢ for all k with i"¢" < k < p,
— ST [SATV[k] + |w|] = ¢ for all k with p <k < ¢,
— STUSATY[k] + |w|] > ¢ for all k with ¢ < k < j7¢.

In the example of Fig. 2

_ Sre’u[SAreU[k] + 1] =$<1lfork= 67
— STU[SA™[k] + 1] =1 for all k with 7 < k <9,
— STV[SA™[k] + 1] =n > 1 for all k with 9 < k < 11.

Unfortunately, we do not know these characters, but if we would know the num-
ber smaller of all occurrences of characters at these positions that precede ¢ in
the alphabet and the number greater of all occurrences of characters at these
positions that follow ¢ in the alphabet, then we could identify the unknown
w"c-interval [p..q] by p = i"¢” + smaller and ¢ = j"°” — greater. In our exam-
ple, the knowledge of smaller = 1 and greater = 2 would yield the el-interval
[6+1..11 — 2] = [7..9]. The key observation is that the multiset of characters

{STEU[SATGU[]C} + |WH :irev S k Sj’r‘e’u}
coincides with the multiset {BWT[k] : ¢ < k < j}. In the example of Fig. 2]
{STV[SA™[k]+1]: 6 <k <11} ={$,1,1,1,n,n} ={BWT[k]:6<k <11}

In other words, it suffices to determine the numbers smaller and greater of
all occurrences of characters in the string BWT]Ji..j] that precede and follow
character ¢ in the alphabet X. And this task can be accomplished by a top-
down traversal of the wavelet tree of BWT. The procedure is similar to the
implementation of Occ(c, i) as explained above. As an example, we compute the
values of smaller and greater for the interval [6..11] and the character 1. This
example is illustrated in Fig. [[l Because 1 belongs to the second half X[5..7]
of the ordered alphabet X, the occurrences of 1 correspond to ones in the bit
vector at the root, and they go to the right child, say node vy, of the root.
In order to compute the number of occurrences of characters in the interval
[6..11] that belong to X[1..4] and hence are in the left child of the root, we
compute

(ag,bo) = (ranke(B™ 6 — 1), ranke(B"*+7,11)) = (2,3)

and the number we are searching for is by — ap = 3 — 2 = 1. Then we descend
to the right child v; and have to compute the boundaries of the search interval
in the bit vector B57) that corresponds to the search interval [6..11] in the bit
vector BT, These boundaries are a; + 1 and b1, where

(a1,b1) = (rank,(BM7,6 — 1), rank, (BM7,11)) = (3,8)

Proceeding recursively, we find that 1 belongs to the third quarter X'[5..6] of X,
so the occurrences of 1 correspond to zeros in the bit vector at vy, and they go
to the left child, say node wvo, of v1. Again, we compute

Bidirectional Search in a String with Wavelet Trees 47

Algorithm 3. Given a BWT-interval [i..j], an alphabet-interval [I..r], and ¢ €
X, getBounds([i..j], [I..r], ¢) returns the pair (smaller, greater), where smaller
(greater) is the number of all occurrences of characters from the subalphabet
X[l..r] in BWT]i..j] that are smaller (greater) than c.
getBounds([i..j], [l..r], ¢)
if = r then return (0,0)
else
(ao0,bo) — (ranko(BY" i — 1), ranko(B"", 1))
(a1,b1) — (’L —-1- ao,j — bo)
/% (a1,b1) = (rank; (BY" i — 1), rank: (BY7), §)) =/
m= (1]
if ¢ < X[m] then
(smaller, greater) «— getBounds([ao + 1..bo], [l..m], ¢)
return (smaller, greater + b1 — a1)
else
(smaller, greater) «— getBounds([a1 + 1..b1], [m + 1..7], ¢)
return (smaller + by — ao, greater)

(ah, b)) = (ranke(BP7 4 — 1), ranke(BP78)) = (2,7)
(ah, b)) = (rank; (BP7 4 — 1), rank, (B 8)) = (1,1)

The number of occurrences of characters in the string BWTE8 that belong to
Y7 =pisb) —a} =1—1=0 and the new search interval in the bit vector
B0l is [af + 1..b4] = [3..7]. In the third step, we compute

(ag,by) = (ranko (B 3 — 1), ranke (BP9, 7)) = (1,4)
(af,b]) = (ranky (BP9 3 — 1), rank, (B9, 7)) = (1,3)

and find that there are b} —a} = 2 occurrences of the character n and b —ay = 3
occurrences of the character 1. In summary, during the top-down traversal,
we found that in the string BWTI[6..11] there is one character smaller than
1 (so smaller = 1), there are two characters greater than 1 (so greater =
2), and three characters coincide with 1. Pseudo-code for the computation of
(smaller, greater) = get Bounds([i..j],[1..0], ¢) can be found in Algorithm [3

4 Experimental Results

An implementation of the bidirectional wavelet index is available under the GNU
General Public Licenseathttp://www.uni-ulm.de/in/theo/research/seqgana.
To assess the performance of our new data structure, we used it to search for RNA
secondary structures in large DNA sequences. We adopted the depth-first search
method described in [4]; for space reasons, it is not repeated here. The following
RNA secondary structures are also taken from [4]:

http://www.uni-ulm.de/in/theo/research/seqana

48 T. Schnattinger, E. Ohlebusch, and S. Gog

Table 1. Comparison of the running times (in seconds) of the searches for the six RNA
structural patterns in the human DNA sequence (about one billion nucleotides). The
numbers in parentheses below the pattern names are the numbers of matches found.
Index (D is our new bidirectional wavelet index, Index @) consists of the suffix array
SA of S (supporting binary search in the forward direction), and the wavelet tree of
the Burrows-Wheeler transformed string of S (supporting backward search). Index (3)
is similar to Index (2, but SA is replaced with a compressed suffix array.

Index MB hairpinl hairpin2 hairpin4 hloop(5) acloop(5) acloop(10)

(2343) (286) (3098) (14870) (204) (224)
@ 799 11.053 0.079 0.792 28.373 0.958 0.420
@ 4408 8.855 0.041 0.365 22.208 0.781 0.336
@ 1053 137.371 0.651 5642 345.860 12.174 6.381

hairpinl = (stem:=N{20,50}) (loop:=NNN) ~stem

hairpin2 = (stem:=N{10,50}) (loop:=GGAC) ~stem

hairpind = (stem:=N{10,15}) (loop:=GGAC[1]) ~stem
hloop(length) = (stem:=N{15,20}) (loop:=N{length}) ~stem
acloop(length) = (stem:=N{15,20}) (loop:=(A|C){length}) ~stem

CU 0=

The symbol N is used as a wildcard matching any nucleotide. The first pattern
describes a hairpin structure with an apical loop consisting of three nucleotides.
On the left and right hand sides of the loop are two reverse complementary se-
quences, each consisting of 20 - 50 nucleotides. The second pattern describes a
similar structure, where the loop must be the sequence GGAC. The [1] in the
third pattern means that one nucleotide can be inserted at any position, i.e., the
loop is one of the sequences GGAC, NGGAC, GNGAC, GGNAC, GGANC or GGACN. In the
last two patterns length denotes the length of the loop sequence. For example,
in the pattern acloop(5) the loop consists of five nucleotides, each of which must
either be A or C. In the experiments reported in Table[I] we searched for six pat-
terns in the first five chromosomes of the human genomeE The concatenation of
the DNA sequences of these five chromosomes is called “human DNA sequence”
in the following; it constitutes about one third of the whole genome (one billion
nucleotides). All experiments were conducted on a PC with a Dual-Core AMD
Opteron 8218 processor (2,6 GHz) and 8 GB main memory. Unfortunately, the
implementations of affix trees/arrays [3/4] are currently not available[d For this
reason, one cannot compare the running times. (We conjecture, however, that
our method outperforms the affix array method.) Nevertheless, we can say some-
thing about the space consumption. According to Strothmann [4], an affix array
requires 18 bytes per nucleotide, so approximately 16.8 GB for the human DNA
sequence. The bidirectional wavelet index (index (D) takes only 799 MB; see
Table [[l Hence it decreases the space requirement by a factor of 21.

! mttp://hgdownload.cse.ucsc.edu/goldenPath/hgl9/bigZips/chromFa.tar.gz
2 However, a reimplementation of the affix array method is under way.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz

Bidirectional Search in a String with Wavelet Trees 49

Due to the lack of affix tree/array implementations, we compared our method
with the following two approaches to support bidirectional search. First, we com-
bined the two well-known data structures supporting forward search (the suffix
array SA of string S) and backward search (the wavelet tree of the Burrows-
Wheeler transformed string BWT of S), and obtained an index (index @) which
also supports bidirectional search. Because both data structures deliver intervals
of the suffix array, the two searches can directly be combined without synchro-
nization. Interestingly enough, in the technical literature this natural approach
has not been considered yet, i.e., it is new as well. Table [[l shows that index 2
takes 4.4 GB for the human DNA sequence. Second, to reduce the space con-
sumption even more, we replaced the suffix array in index @) by a compressed
suffix array (CSA) which also supports binary search in the forward direction,
yielding index (). This reduces the memory consumption by another factor of 4,
but slows down the running time by a factor of 15.5 (compared with index @);
see Table [I1 This is because the CSA must frequently recover SA-values from
its sampled SA-values (in our implementation every twelveth value is stored;
more samples would decrease the running time, but increase the memory re-
quirements). By contrast, the time-space trade-off of our bidirectional wavelet
index @ is much better: it reduces the space consumption by a factor of 5.5, but
it is only 1.2 - 2.2 time slower than index 2). This can be attributed to the fact
that SA-values are solely needed to output the positions of the matching regions
in the string S (in our implementation a hundredth of all SA-values is stored).

References

1. Lee, R., Feinbaum, R., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes
small RNAs with antisense complementarity to lin-14. Cell 75(5), 843-854 (1993)

2. Kim, N., Nam, J.W.: Genomics of microRNA. TRENDS in Genetics 22(3), 165-173
(2006)

3. Mauri, G., Pavesi, G.: Pattern discovery in RNA secondary structure using affix
trees. In: Baeza-Yates, R., Chavez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 278-294. Springer, Heidelberg (2003)

4. Strothmann, D.: The affix array data structure and its applications to RNA sec-
ondary structure analysis. Theoretical Computer Science 389, 278-294 (2007)

5. Stoye, J.: Affix trees. Technical report 2000-04, University of Bielefeld (2000)

6. Maafs, M.: Linear bidirectional on-line construction of affix trees. Algorithmica 37,
43-74 (2003)

7. Manber, U., Myers, E.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935-948 (1993)

8. Puglisi, S., Smyth, W., Turpin, A.: A taxonomy of suffix array construction algo-
rithms. ACM Computing Surveys 39(2), 1-31 (2007)

9. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center (1994)

10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE Symposium on Foundations of Computer Science, pp. 390-398 (2000)

11. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: Proc. ACM Symposium on the Theory
of Computing, pp. 397-406. ACM Press, New York (2000)

50

12.

13.

14.

T. Schnattinger, E. Ohlebusch, and S. Gog

Manzini, G.: The Burrows-Wheeler Transform: Theory and practice. In: Ku-
tytowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 34-47. Springer, Heidelberg (1999)

Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 841-850 (2003)
Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sym-
posium on Foundations of Computer Science, pp. 549-554. IEEE, Los Alamitos
(1989)

A Minimal Periods Algorithm with Applications

Zhi Xu

The University of Western Ontario, Department of Computer Science,
Middlesex College, London, Ontario, Canada N6A 5B7

zhi_xu@csd.uwo.ca

Abstract. Kosaraju in “Computation of squares in a string” briefly
described a linear-time algorithm for computing the minimal squares
starting at each position in a word. Using the same construction of suffix
trees, we generalize his result and describe in detail how to compute the
minimal o power, with a period of length longer than s, starting at each
position in a word w for arbitrary exponent « > 1 and integer s > 0. The
algorithm runs in O(a|w |)-time for s = 0 and in O(| w|*)-time other-
wise. We provide a complete proof of the correctness and computational
complexity of the algorithm. The algorithm can be used to detect cer-
tain types of pseudo-patterns in words, which was our original goal in
studying this generalization.

1 Introduction

A word of the form ww is a square, which is the simplest type of repetition. Study
on repetitions in words occurred as early as Thue’s work [23] in the early 1900’s.
There are many works in the literature on finding repetitions (periodicities), an
important topic in combinatorics on words. In 1983, Slisenko [21] described a
linear-time algorithm for finding all syntactically distinct maximal repetitions in
a word. Crochemore [5], Main and Lorentz [I7] described linear-time algorithms
for testing whether a word contains any square and thus for testing whether a
word contains any repetition. Since a word of length n may have §2(n?)-many
square factors (such as word 0™), only primitively-rooted or maximal repetitions
are ordinarily considered. Crochemore [4] described an O(n log n)-time algorithm
for finding all maximal primitively-rooted integer repetitions, where maximal
means that some kth power cannot be extended in either direction to obtain the
(k + 1)th power. The O(nlogn)-time is optimal since a word of length n may
have £2(nlogn)-many primitively-rooted repetitions (such as Fibonacci words).
Apostolico and Preparata [I] described an O(nlogn)-time algorithm for finding
all right-maximal repetitions. Main and Lorentz [16] described an O(nlogn)-
time algorithm for finding all maximal repetitions. Gusfield and Stoye [22I0]
described several algorithms for finding repetitions. Both the number of dis-
tinct squares [8I12] and the number of maximal repetitions (runs) [14] in a word
are in O(n). This fact suggests the existence of linear-time algorithms on dis-
tinct (or maximal) repetitions. Main [I8] described a linear-time algorithm for
finding all left-most occurrences of distinct maximal repetitions. Kolpakov and

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 51162 2010.
© Springer-Verlag Berlin Heidelberg 2010

52 Z. Xu

Kucherov [I4] described a linear-time algorithm for finding all occurrences of
maximal repetitions. See the paper [6] for the most recent survey of the topic.

Rather than considering repetitions from a global point of view, there are
works considering repetitions from a local point of view. In a five-pages extended
abstract, Kosaraju [I5] briefly described a linear-time algorithm for finding the
minimal square when starting at each position in a word. In the same vein, Duval,
Kolpakov, Kucherov, Lecroq, and Lefebvre [7] described a linear-time algorithm
for finding the local periods (of squares) centered at each position in a word.
Since there may be §2(logn) primarily-rooted maximal repetitions starting at
the same position (for example, consider the left-most position in a Fibonacci
word), the local approach cannot achieve the same efficiency by directly applying
linear-time algorithms on finding maximal repetitions.

In this paper, we generalize Kosaraju’s algorithm [I5] for computing mini-
mal squares. Instead of squares, we discuss arbitrary (fractional) powers. Based
on a proper modification of Kosaraju’s algorithm, we use the same techniques
of Weiner’s algorithm for suffix-tree construction and lowest-common-ancestor
query algorithms, and describe in detail an algorithm: the algorithm takes an
arbitrary rational number « > 1 and integer s > 0, starts at each position in a
word w, and finds the minimal a power with a period of length longer than s.
This algorithm runs in O(e| w|)-time for s = 0 and in O(| w |*)-time for arbitrary
s. In this paper, we provide a complete proof of the correctness and computa-
tional complexity of the modified algorithm. In concluding, we show how this
algorithm can be used to detect certain types of pseudo-patterns in words, which
was our original goal in studying this algorithm.

2 Preliminary

We assume the alphabet X' is fixed throughout this paper. Let w = ajas - - - a,, be
a word. The length |w| of wis n. A factor w[p..q] of w is the word a,ap41 - - - aq
if 1 < p < g < n; otherwise w[p..q] is the empty word e. In particular, w1 .. q]
and w[p .. n] are called a prefix and a suffiz, respectively. The reverse of w is the
word w® = a,, - - - asa;. Word w is called an o power for rational number a > 1
if w = xFy for some words x,y and integer k such that x # €, y is a prefix of ,
and @ = k + ‘Izl" where « is called the exponent and x is called the period; we
also write w = x® in this case. The 2nd power and the 3rd power are called the
square and the cube, respectively.

The prefix period (resp., strict prefix period) of a word w with respect to
exponent o and integer s is the shortest word x of length |z | > s, such that z”
is a prefix of w for some exponent 5 > « (resp., § = «). We denote the length
of the prefix period by pp%(w), if there is one, or otherwise pp$(w) = +oo. For
example, if word w = 0100101001, then ppZ(w) = 3, pp3(w) = +o0, pp2(w) = 5,
ppg/2(w) = ppg/4(w) = 2, and the length of the strict prefix period of w with
respect to exponent 5/4 and integer 0 is 8. By definition, pp?! (w) < ppk2 (w) for
s1 < s2,p1 < p2. Furthermore, the following lemma holds naturally.

A Minimal Periods Algorithm with Applications 53

Lemma 1. Let a > 1 be a rational number, s > 0 be an integer, and word u be a
prefiz of word v. (1) If pp() £ +0o, then pp? (v) = ppe(u). (2) If pp(v) £ +o00
and |u| > a- pp¥(v), then pp%(u) = pp%(v); otherwise, pp%(u) = +oo. The
lemma also holds when the length of the prefix period pp$ is replaced by the
length of the strict prefix period.

The right minimal period array of a word w is defined with respect to the ex-
ponent « and the integer s as rmp%(w)[i] = ppS(wli..n]), and the left minimal
period array is defined as Imp2(w)[i] = pp2(w[1..i]%), for 1 < i < n. For ex-
ample, if word w = 0100101001, then rmp(w) = [3, +o0, 1, 2, 2, +00, +00,
1, 400, +oo | and rmp?/z(w) =12,3,5,2,2,2, 400, 400, +00, 400 | (in the
non-strict sense).

A suffiz tree T, for a word w = w[1 .. n] is a rooted tree with each edge labeled
with a non-empty word that satisfies the following conditions.

1. All internal nodes excluding the root have at least two children;
2. labels on edges from the same node begin with different letters;
3. there are exactly n leaves, denoted by leaf;, and 7(leaf;) = w[i .. n|$,

where function 7 maps each node v to the word obtained by concatenating the
labels along the path from the root to v, and $ is a special letter not in the
alphabet of w. By definition, a suffix tree for a word is unique up to renaming

nodes and reordering among children. For more details on suffix tree, see the
book [0, Chap. 5-9].

root
0 3 03

leafg leafg leafy

Fig. 1. The suffix tree for 100

We denote by p(v), or more specifically by pr, (v), the father of node v in the
tree 7,,. The concepts ancestor and descendent are defined as usual. If node x
is a common ancestor of nodes y and z in 7,,, by the definition of a suffix tree,
7(x) is a common prefix of 7(y) and 7(z). We define function ¢ as §(v) = | 7(v) |.

We denote by lca(u, v) the lowest common ancestor of nodes u and v in a tree
such that any other common ancestor of v and v is an ancestor of lca(u, v). After
a linear-time preprocessing on the tree, the lowest common ancestor of any pair
of nodes can be found in constant-time [TTJ20].

Lemma 2. Let leaf;,leaf;, i > j, be leaves in T,,. The word on the edge from
p(leaf;) to leaf; is not longer than the word on the edge from p(leaf;) to leaf;.

A suffix tree for a word can be constructed in linear-time [25[19/24]. Both
Kosaraju’s algorithm [I5] for computing rmp2(w) and our generalization for
computing rmp¢(w) for arbitrary a > 1 and s > 0 are based on Weiner’s al-
gorithm [25]. Consequently, we briefly describe it here (see Fig. 2]). Weiner’s

54 Z. Xu

algorithm constructs suffix tree 7, by adding lea f,, ..., leafs, leaf; into a suf-
fix tree incrementally. After each extension by leaf;, the new tree is precisely
the suffix tree 7,,|; .). By using indicator vectors and inter-node links, the total
time to locate positions y at Lines 7-8 is in O(n). We omit the details of the
method for locating y because it is not quite relevant.

Input: a word w = w[l..n].
Output: the suffix tree 7.

1 begin function make_suffix_tree(w)

2 construct Ty, = Toy[n .. n) ;

3 for i from n—1to 1 do T; «—extend(Tiy1, wli..n]) ; // Ti = Typi.. n
4 return 77 ;

5 end

6 begin function extend(tree, word[i..n]) // we assume tree = Tyord[it1..n]
7 find the proper position y in tree to insert the new node leaf; ;

8 if needed, split an edge © — z to * — y,y — z by adding a new node vy ;
9 create and label the edge y — leaf; by word[i + | 7(y)|..n|$;
10 end

Fig. 2. Framework of Weiner’s algorithm for constructing suffix tree

3 The Algorithm for Computing rmp(w) and Imp$(w)

First, we show how to compute both non-strict and strict prefix periods from
the suffix tree 7, in O (lwl)})—time. Although in the worst case the time

min{s,ppg (w
can be in O(|w]), when both s and pp§(w) are in 2(|w), the time does not
depend on | w |, which is one of the essential reasons that the time of computing
rmp§ (w) and Imp§(w) is linear in |w |.

Lemma 3. Let o > 1 be a rational number, s > 0 be an integer, and T, be the

suffiz tree for a word w. Then pp%(w) can be computed in O (min{sl ;f’pla(w)})
»PPo

time, even for the strict prefix period case.

Proof. There is an O (min{sl ;f’p%(w)}>—time algorithm (see Fig. B) to compute
pp% (w). First, along the path from leaf; to the root, we find the highest ancestor
h of leaf, such that §(h) > (o — 1)(s + 1). Second, we find the lowest common
ancestor of leaf; and every leaf;, i > s+ 1, that is a descendent of h and check

whether the inequality
d(lca(leafi,leaf;)) > (e —1)(i—1) (1)

holds. If no such leaf; satisfies ([Il), then pp%(w) = +o00; otherwise, pp%(w)
=i — 1, where i is the smallest 7 such that leaf; satisfies ().

To prove correctness, we observe that w = 2%y for some non-empty word = and
B > «aif, and only if, the common prefix of w[1..n] and w[| z | 4+ 1 .. n] is of length

A Minimal Periods Algorithm with Applications 55

Input: a suffix tree tree = 7,1 .. ») and two integers s > 0, a > 1.
Output: the length of the prefix period ppg (w).
1 begin function compute_pp(iree, s, a)

2 if a(s+ 1) > n then return +co ; else h «—— leafi ;
3 while 6(p(h)) > (e —1)(s + 1) do h «— p(h) ;
4 pp «— +00;
5 preprocessing the tree rooted at h for constant-time lca operation ;
6 foreach leaf; being a descendent of h other than leafi do
7 if d(lca(leafr,leaf;)) > (e —1)(i — 1) and i — 1 > s then
8 ifpp>i—1thenpp«—i—1;// w[l..i—1] is a period
9 return pp ;
10 end

Fig. 3. Algorithm for computing pp§ (w), using the suffix tree 7o,

at least [(o — 1)| 2 |], which means leaf), |41 satisfies (I]). Furthermore, such x
satisfies | x| > s only if leaf| ;|41 satisfies d(Ica(leafi,leaf| ;1)) > (a—1)(s+1),
which means leaf| |11 is a descendent of h. The minimal length of such a period,
if any, is returned and correctness is ensured.

Let us turn to the computational complexity. Let T} be the sub-tree rooted at
h and let [be the number of leaves in Tj,. By the definition of a suffix tree, each
internal node has at least two children, and thus the number of internal nodes in
T}, is less than [. Therefore, the time cost of the algorithm is linear in [. Now we
prove [<1+ min{s-s-fppg(w)} by contradiction. Suppose [> 1 + min{s+17jppg(w)}
and leaf;,,leafi,,...,leaf; are leaves of T}. Then, there are l-many factors of
length t = (o — 1)(s + 1) such that wliy..i1 +t — 1] = wlig..ia +t —1] = - =
wlig..ip+t—1]. Since 1 < 4; < n for 1 < j < [, the pigeon hole principle
guarantees two indices, say i1 and 4, such that 0 < iy —i; < ;" < min{s +
1,pp§(w)}. Then the common prefix of wli;..n| and wliz..n] is of length at
least t = (o — 1)(s + 1) > (a — 1)(i2 — 41), which means there is a prefix
of wliy..i1 +t—1] = wliz..i2 +t — 1] = w[l..t — 1] that is an a power with
period of length ip — i1, which contradicts ia — i1 < pp§(w). Therefore, the
number of leaves in T}, is [< } + 1 and the algorithm runs in

0 (min{s,gpg (w)})_time'

For the strict prefix period, we add an extra condition “¢—1 mod den = 0” to
the if-statement in Line 7 to check whether the length of a candidate period is
a multiple of den for a = num/den, gcd(num, den) = 1. This condition ensures
that the period for the exponent « is strict. a

n
min{s-+1,ppg (w)

For a word w = wll..n], the left minimal period array and the right minimal
period array satisfy Imp%(w)[i] = rmp®(wf)[n +1 —i] for 1 < i < n. In what
follows, we solely discuss the algorithm for computing rmp% (w).

A suffiz tree with prefiz periods T, ¥ for a word w is a suffix tree 7., integrated
with a labeling function 7¢(v) = ppS(7(v)). When s and « are clear from the

56 Z. Xu

context, we simply write 7.7. The suffix tree with prefix periods satisfies the
following property.

Lemma 4. Let a > 1 be a rational number, s > 0 be an integer, and w be a
word. For any node v in the tree T." such that 7¢(p(v)) = +oo, either 7&(v) is
+oo or & (v) satisfies §(p(v))/a < ¢ (v) < p(v)/(a —1).

Proof. Let v be anode in 7.7 with 7%(p(v)) = +o00. Suppose 7¢(v) # +o00. Since
7(p(v))isaprefix of 7(v) and 7% (p(v)) = +o0, the inequality d(p(v)) < ar?(v) fol-
lows by Lemmal[ll The common prefix of 7(v)[1..d(v)] and 7(v)[7% (v) + 1..6(v)]
is of length at least (o — 1)7&(v). Since p(v) is the lowest ancestor of v in 7.7, the
inequality (o — 1)7$(v) < d(p(v)) holds. This completes the proof. O

Now we will show how to construct the ’Eg: for a word w with arbitrary s > 0
and o > 1. Then rmp%(w) can be obtained directly from 7.7 by rmp%(w) =
[7%(leaf),...,m%(leafy,)]. This result generalizes Kosaraju’s result [I5] for the
case s =0, o = 2.

The algorithm is outlined in Fig. [l The main idea is to use Weiner’s algorithm
to construct the underlying suffix tree Z,(; ., for i = n,...,1 (Lines 2,5) and
a series of auxiliary trees (Lines 3,8,11,15,17) to help compute the = (Line 18).
By Weiner’s algorithm (see Fig. [), at each step, either one or two nodes are
created in the underlying suffix tree and we assign the 7 values on those new
nodes (Lines 7,10,18). The father y of leaf; is a new node when there is a split
on the edge from x to z. Since 7¢(z) is already computed, we update 7$(y)
directly. leaf; is the second new node. When 7¢(p(leaf;)) # +o0, we update
7% (leaf;) directly. Otherwise, we compute 7¢(leaf;) by constructing auxiliary
suffix trees. The naive method constructs 7,,; . ,,; and then computes 7§ (leaf;) =
ppS(wli..n]), both of which run in O(|wli..n]|)-time. We instead construct
a series of trees A = T,[; . ; for some j in such a way that ppg(wli..n]) =
ppS(wli .. 7]). Additionally, the total time of constructing the trees A is in O(n);
the time of computing 7¢(leaf;) = ppd(w[i .. j]) in each A is in O(«) for s =0
and in O(n) for arbitrary s.

Theorem 1. Let a > 1 be a rational number and s > 0 be an integer. Function
compute_rmp in Fig. []] correctly computes rmp%(w) for w.

Proof. The correctness of the algorithm relies on the claim T; = TJ[i..n]. By
Weiner’s algorithm, the underlying suffix tree of 7; is indeed 7,,[; .. So it re-
mains to show the assignment of 7&(v) on each node v is correct.

At the beginning, 7y, ..) contains two nodes and we have 7' (root) = pp¢ (€) =
+oo, m&(leaf,) = pp¥(w[n..n]) = +oo. Thus, the assignments on Line 2 are
correct. Node y is the father of z (when splitting happens) and the father of lea f;.
Thus, by Lemmal[ll the assignments on Lines 7,10 are correct. The only remaining
case is the assignment of 7% (leaf;) when 7¢(y) = +oo. Since y = p(leaf;), by
Lemmal pp%(7(leaf;)) > §(y)/, and thus the arguments for calling compute_pp
on Line 18 is valid. The only thing that remains is to prove that ppS(w[i..n]) =

pps (wli .. j]).

A Minimal Periods Algorithm with Applications 57

Input: a word w = w[l .. n] and two integers s > 0, a > 1.
Output: the right minimal period array rmpg(w).
1 begin function compute_rmp(w, s, a)

2 construct T5, by constructing Ty, .. nj With 7(root), w(leafn) «— 400 ;
3 A« empty, j«— n,and d «—— 0 ;
4 for i from n—1to 1 do
5 T; —extend(Tiy1, wli..n]) 5 // Ti = Tyl n)
6 if splitting then // y,z are obtained from extend()
7 if §(y) > an(z) then n(y) «— 7(z) ; else w(y) «— 400 ;
8 if j—i+1>2ad/(a—1) or§(y) < d/2 then A — empty ;
9 if m(y) # +oo then

10 r(leafi) — (y)

11 if A # empty then A «——extend(A, wli..j]) ;

12 else

13 if A = empty then

14 d—9dy)and j — i+ (a+1)d/(a—1)—1;

15 A «—make_suffix_tree(w[i..j]) ;

16 else

17 A ——extend(A, wli..j]) ;

18 m(leaf;) «—compute_pp(A, max{s,d(y)/a}, a) ;

19 rmpli] «— w(leaf;) ; // T; = T,; . , is made

20 rmp[n] «— 400 and return rmp ;

21 end

Fig. 4. Algorithm for computing rmp$ (w)

First, we claim that 0(pr, (leaf;)) < 6(pr,,, (leafit1))+ 1, where the subscript
of p specifies in which tree the father is discussed. If pr, (leafit1)pr,,, (leafit1),
then there is splitting on the edge from pr, , (leafi;1) to leafit1, and thus
leaf;,leaf;+1 have the same father in T;. So 7(leaf;) begins with a repetition of a
single letter. Thus, we have §(pr, (leaf;)) = d(pr, (leafiz1)) = 6(pr.,, (leafiy1))+
L If pr,(leafi+1) = pr,.,(leafiy1), then since (leaf;) = 6(leafiy1) + 1, by
Lemma [2, we have 6(pr, (leaf;)) < d(pr,(leafiy1)) +1 = d(pr,,, (leafit1)) + 1.

We claim 6(y) < j —i+ 1 — _? d holds immediately before Line 18, where
y = p(leaf;). Consider the suffix tree A. If A is newly created, then 6(y) = d,
i=j+1—2"1d Thus, 6(y) = j—i+1— ? d.If Ais extended from a previous
suffix tree, then the index ¢ decreases by 1 and the depth d(y) increases at most
by 1. So 5()<j—i+1- aild still holds.

Now we prove ppS(w[i..n]) = ppY(wli..j]). If pp@(wli..n]) = +oo, by
Lemma [pp%(w[i..j]) = 400 = pp%(w[i..n]). Assume pp%(wli..n]) # +oo.
By Lemmaldl pp%(wli..n]) = ppd(r(leaf;)) < 6(y) . In addition, j—i4+1 < 2* d
always holds 1mmed1ately before Line 18 Whenever A # empty. Therefore,

a-pps(wli..n)) < % (] —i4+1- a31d) < |wl[é..4]|, and thus, by Lemma [I]
it follows pp%(wli .. J]) = pp%(w[i..n]). This completes the proof of the correct-
ness of the algorithm. O

58 Z. Xu

Theorem 2. The algorithm in Fig. []] computes rmp%(w) in O(a| w|)-time for
s =0 and in O(|w|*)-time for arbitrary s.

Proof. Let n = |w|. Constructing the underlying suffix tree 7., is in O(n)-
time. Every remaining statement except those on Lines 11,15,17,18 can each be
done on constant-time in a unit-cost model, where we assume the operations on
integers with O(logn)-bits can be done in constant-time.

Now we consider the computation of Line 18. We already showed in the proof
of Theorem [that pp%(w[i .. j]) = ppd(wli..n]). By Lemma @ pp%(w[i..n]) >
(y) . In addition, j —i+1 < 2“ 1dand 0(y) > 1d always hold when A # empty.
By Lemmal[3] since A = 7,,;. J} the running tlme of each calling to compute_pp

in Fig. Blis linear in
|wli..]| < 2ad/(a— 1)
min{max{s, d(y)/a},pps(wli..j])} — min{d/2a, pp§(wli..j])}’
which is in O(«) for s = 0 and is in O(n) otherwise.

Now we consider the computation of Lines 11,15,17. Those statements con-
struct a series of suffix trees A = 7,(;. ; by calling make_suffix_tree and
extend in Fig.[2l Each suffix tree is initialized at Line 15, extended at Lines 11,17,
and destroyed at Line 8. Suppose there are, in total, [such suffix trees, and
suppose, for 1 < m < [, they are initialized by A = 7., .., With d,,, =
o(pr,,, (leafi,,)) and destroyed when A = 7., ;| such that either j, — (i;, —
)+1> 2 dy or 5(pTi,m_1(leafi;n_1)) < 3dp,. In addition, when A # empty,
the inequality j,, — i+ 1 < 0,2:11 d,, always holds for i, < i <4/ . Since a suf-
fix tree is constructed in linear-time in the tree size, the total running time on
Lines 11,15,17 is linear in

l l L 9n
pDITCANATES SITARARSIED S
m=1 m=1 m=1
First, we consider those cases j, — (i, —1) +1 > o?f‘l dp,. Then g, —il, +1=
2 s jon = i+ 351y — 1 hold, and thus iy, = i, = (jm — S +1) =
(jm +1- azixldm) - dm’ Hence’ anse 1 a2a1d = a,z—al case 1(7;7” - Z;n) <
(3_“1 ((n—1) —1) = O(n). Second, we consider those cases 5(pT7:;n_1 (leafi 1))
< gdm. It follows 5(pTi%L_1(leafi;n,1)) — O(pr, (leaf;,)) < —3dm
In the proof of Theorem [0 we already showed (5(pT (leaf;)) —
d(priy, (leafizr)) < 1. Hence, we have > .. o .2%dm <

042:11 case 2 2 (6(pTi (leafzm)) (pT/ _ (leafi;n—l))) S oc4al (Tl - 1) = O(n)
The only remaining case is that the suffix tree A is not destroyed even after the
construction of T3. This situation can be avoided by virtually adding a letter £
not in the alphabet of w at the beginning of w. Thus, the total running time on
Lines 11,15,17 is in O(n).

Therefore, the total running time of the algorithm is in O(an) for s = 0 and
in O(n?) for arbitrary s. O

A Minimal Periods Algorithm with Applications 59

The discussion in this section is also valid for the strict prefix period. The strict
version of the algorithm in Fig. Bl slightly differs from the non-strict version as
described in the proof of Lemma Bl and the algorithm in Fig. @ is the same.

4 Applications — Detecting Special Pseudo-Powers

In this section, we will show how the algorithm for computing rmp$(w) and
Imp%(w) can be applied to test whether a word w contains any factor of a
particular type of repetition: the pseudo-powers.

Let X be the alphabet. A function 6 : X* — X* is called an involution if
0(0(w)) = w for all w € X* and called an antimorphism if 8(uv) = 6(v)0(u)
for all u,v € X*. We call 6 an antimorphic involution if 6 is both an involution
and an antimorphism. For example, the classic Watson-Crick complementarity in
biology is an antimorphic involution over four letters {A, T, C, G} such that A — T,
T— A, C— G, G — C. For integer k£ and antimorphism 6, we call word w a pseudo
kth power (with respect to 6) if w can be written as w = x1xs - - -z such that
either z; = ; or x; = 0(z;) for 1 <, j < k. In particular, we call a pseudo 2nd
(3rd) power a pseudo square (cube). For example, over the four letters {4, T, C, G},
the word ACGCGT = ACGH(ACG) is a pseudo square and ACGTAC = ACH(AC)AC is
a pseudo cube with respect to the Watson-Crick complementarity. Pseudo kth
powers are of particular interest in bio-computing [3]. A variation on the pseudo
kth power has also appeared in tiling problems [2].

Chiniforooshan, Kari, and Xu [3] discussed the problem of testing whether a
word w contains any pseudo kth power as a factor. There is a linear-time al-
gorithm and a quadratic-time algorithm for testing pseudo squares and pseudo
cubes, respectively. For testing arbitrary pseudo kth powers, the known algo-
rithm is in O(| w|” log | w |)-time.

We will show these particular types of pseudo kth powers, 6(z)z*~1, 2*~16(x),
and (20(z))5 (where (20(z))% = (26(2))L%)z for odd k) can be tested faster.
First, we need the following concept. The centralized mazimal pseudo-palindrome
array cmp? of word w with respect to an antimorphic involution 6 is de-
fined by empf[i] = max{m : 0 < m < min{i,|w|—i},0(wli —m+1..i]) =
wli +1..i4+m]} for 0 <i < |w]. For example, cmp§ig0101001 = [0, 0, 0, 3, 0, 0,
0,0,2,0,0].

Lemma 5. Let be an antimorphic involution. The array cmp? can be com-
puted in O(] w|)-time.

Proof. Constructing suffix tree 7,, £¢(u,), where letter £ is not in w, emp? can be
computed via 7y, £9(w) by emp? [i] = d(lca(leafii1,leafan_iy2)) for 1 <i<n—1
and cmp? [0] = emp? [n] = 0. |

Theorem 3. Let k > 2 and s > 0 be integers, and 0 be an antimorphic in-
volution. Whether a word w contains any factor of the form x*~16(x) (resp.,
O(x)z*1) with || > s can be tested in O(|w |*)-time and in O(k|w |)-time for
s=0.

60 Z. Xu

Proof. Computing Imp“~1(w) (resp., rmp*~1(w)) and emp?, there is a factor

zF=19(z) (resp., O(x)z*~1) with |z | > s if and only if Imp =1 (w)[i] < emp? [i]
(resp., rmp*~t(w)[i] < empf [i — 1]) for some 1 < i < n. o

Theorem 4. Let k > 2 and s > 0 be integers and 0 be an antimorphic involu-

tion. Whether a word w contains any factor of the form (:109(:10))]2c with |z | > s
can be tested in O(|w | /k)-time.

Proof. Computing cmp?, and enumerating all possible indices and periods, there

k
is a factor (zf(z))2 with |z| > s if, and only if, there are k — 1 consecutive
terms greater than s in emp? with indices being an arithmetic progression with
difference greater than s. O

5 Conclusion

We generalized Kosaraju’s O(| w |)-time algorithm of computing minimal squares
starting at each position in a word w, which by our definition is presented by
rmp3(w). We showed a modified algorithm that can compute, for an arbitrary
rational number a > 1 and integer s > 0, the minimal « powers to the right
and to the left, with (either non-strict or strict) period larger than s, starting at
each position in a word, which are presented as the right minimal period array
rmp%(w) and the left minimal period array Imp%(w), respectively.

The algorithm is based on the frame of Weiner’s suffix-tree construction. Al-
though there are other linear-time algorithms for suffix-tree construction, such as
McCreight’s algorithm and Ukkonen’s algorithm, none of the two can be altered
to compute minimal period arrays with the same efficiency, due to the special
requirement that the suffixes of the given word are added into the tree in the
order of shortest to longest and 7¢(v) is only updated when node v is created.

The naive approach to compute rmp%(w) is to compare factors, for each
position and for each possible choice of period, to test whether that period
satisfies the definition of the prefix period. This procedure leads to an algorithm
using O(1) extra space and running in O(|w |*/a)-time. By building a failure
table as used in the Knuth-Morris-Pratt pattern matching algorithm [13], there
is an algorithm using O(n)-space and running in O(n?)-time for the case of non-
strict prefix period with s = 0. The algorithm in the paper uses O(n)-space, runs
in O(a| w|)-time for s = 0, and runs in O(| w|?)-time for arbitrary s. Here we
assume the alphabet is fixed. An online interactive demonstration of all three
algorithms can be found at the author’s web-page [26].

We showed the algorithm for computing minimal period arrays can be used
to test whether a word w contains any factor of the form z*6(z) (resp., 0(z)z*)
with |2| > s, which runs in O(k|w|)-time for s = 0 and runs in O(|w|*)-
time for arbitrary s. We also discussed an O(| w|?/k)-time algorithm for testing

whether a word w contains any factor of the form (x6(z))2 with |z| > s. All
of the words zz - - - z0(x), 8(x)x - - - xx, x0(x)xb(x) -+ are pseudo-powers. There
are possibilities that some particular types of pseudo-powers other than those

A Minimal Periods Algorithm with Applications 61

discussed here may be detected faster than the known O(|w |*log|w|)-time
algorithm.

Acknowledgements

The author would like to thank Prof. Lila Kari for discussion on pseudo-powers,
Prof. Lucian Ilie for discussion on the computing of cmpzj, and the anonymous
referees for their valuable comments.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.

Theoret. Comput. Sci. 22, 297-315 (1983)

. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete

Comput. Geom. 6(1), 575-592 (1991)

. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudo-power avoidance. CoRR abs/0911.

2233 (2009), http://arxiv.org/abs/0911.2233

. Crochemore, M.: Optimal algorithm for computing the repetitions in a word. Info.

Proc. Lett. 12(5), 244-250 (1981)

. Crochemore, M.: Recherche linéaire d’'un carré dans un mot. Comptes Rendus

Acad. Sci. Paris Sér. I 296, 781-784 (1983)

. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-

binatorics. Theoret. Comput. Sci. 410(50), 5227-5235 (2009)

. Duval, J., Kolpakov, R., Kucherov, G., Lecroq, T., Lefebvre, A.: Linear-time com-

putation of local periods. Theoret. Comput. Sci. 326, 229-240 (2004)

. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin.

Theory Ser. A 82(1), 112-120 (1998)

. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and

computational biology. Cambridge University Press, Cambridge (1997)

Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525-546 (2004)

Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338355 (1984)

Ilie, L.: A note on the number of squares in a word. Theoret. Comput. Sci. 380(3),
373-376 (2007)

Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. Com-
put. 6(2), 323-350 (1977)

Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proc. 40th Ann. Symp. Found. Comput. Sci (FOCS 1999), pp. 596-604. IEEE
Computer Society Press, Los Alamitos (1999)

Kosaraju, S.R.: Computation of squares in a string. In: Crochemore, M., Gusfield,
D. (eds.) Proc. 5th Combinat. Patt. Matching, pp. 146-150. Springer, Heidelberg
(1994)

Main, M., Lorentz, R.: An O(nlogn) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422-432 (1984)

Main, M., Lorentz, R.: Linear time recognition of square free strings. In: Apostolico,
A., Galil, Z. (eds.) Combinat. Algor. on Words, pp. 272-278. Springer, Heidelberg
(1985)

http://arxiv.org/abs/0911.2233

62

18.

19.

20.

21.

22.

23.

24.

25.

26.

Z. Xu

Main, M.G.: Detecting leftmost maximal periodicities. Discrete Appl. Math. 25(1—
2), 145-153 (1989)

McCreight, E.M.: A space-economical suffix tree construction algorithm. J. Assoc.
Comput. Mach. 23(2), 262-272 (1976)

Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. STAM J. Comput. 17(6), 1253-1262 (1988)

Slisenko, A.O.: Detection of periodicities and string-matching in real time. J. Math.
Sci (N. Y.) 22(3), 1316-1387 (1983)

Stoye, J., Gusfield, D.: Simple and flexible detection of contiguous repeats using
a suffix tree preliminary version. In: Farach-Colton, M. (ed.) Proc. 9th Combinat.
Patt. Matching, pp. 140-152. Springer, Heidelberg (1998)

Thue, A.: Uber unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat.-Nat.
Kl (7), 1-22 (1906)

Ukkonen, E.: Constructing suffix trees on-line in linear time. In: Leeuwen, J.V.
(ed.) Proc. Infor. Proces. 92, IFIP Trans. A-12., Vol. 1. pp. 484-492. Elsevier,
Amsterdam (1992)

Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Ann. Symp.
on Switching and Automata Theory (SWAT), pp. 1-11 (1973)

Xu, Z.:http://www.csd.uwo.ca/~zhi_xu/demons/cpm2010xu.html| (2010)

http://www.csd.uwo.ca/~zhi_xu/demons/cpm2010xu.html

The Property Suffix Tree with Dynamic
Properties

Tsvi Kopelowitz

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract. Recently there has been much interest in the Property In-
dexing Problem ([1],[7],[8]), where one is interested to preprocess a text
T of size n over alphabet X' (which we assume is of constant size), and a
set of intervals m over the text positions, such that give a query pattern
P of size m we can report all of the occurrences of P in T which are
completely contained within some interval from 7. This type of match-
ing is extremely helpful in scenarios in molecular biology where it has
long been a practice to consider special areas in the genome by their
structure.

The work done so far has focused on the static version of this problem
where the intervals are given a-priori and never changed. This paper is
the first to focus on several dynamic settings of 7 including an incremen-
tal version where new intervals are inserted into 7, decremental version
where intervals are deleted from , fully dynamic version where intervals
may be inserted or deleted to or from 7, or batched insertions where a set
of intervals is inserted into 7. In particular, the batched version provides
us with a new (optimal) algorithm for the static case.

1 Introduction

In many pattern matching applications the text has some properties attached to
various locations in it. A property for a string is the set of intervals corresponding
to the parts of the string satisfying the conceptual property we are looking for.
Property Matching, involves a string matching between the pattern and the text,
and the requirement that the text part is contained within one of the intervals.

Some examples come from molecular biology, where it has long been a practice
to consider special areas of the genome by their structure. Examples are repet-
itive genomic structures [I0] such as tandem repeats, LINEs (Long Interspersed
Nuclear Sequences) and SINEs (Short Interspersed Nuclear Sequences) [9]. Many
problems in biology can be expressed as property matching problems, for exam-
ple, finding all occurrences of a given pattern in a genome, provided it appears
in a SINE, or LINE.

Clearly, there is no great challenge in sequential pattern matching with prop-
erties since the intersection of the properties and matching can be done in linear
time. However, the problem becomes more complex when it is required to indez
a text with properties. The classical pattern matching problem [2],[13] is that of
finding all occurrences of pattern P = pips -« pm in text T = tito - - - t,, where

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 63 2010.
© Springer-Verlag Berlin Heidelberg 2010

64 T. Kopelowitz

T and P are strings over alphabet Y. In the indezing problem we are given a
large text that we want to preprocess in a manner that allows fast solution of
the following queries: ”Given a (relatively short) pattern P find all occurrences
of P in T in time proportional to |P| and the number of occurrences”.

The indexing problem and its many variants have been central in pattern
matching (e.g. [I8],[6],[5],[15],[3]). However, when it comes to indexing a text
with properties, we are now presented with a dilemma. If we use the conventional
indexing techniques and then do the intersection with the properties, our worst
case time may be very large in case the pattern appears many times, and there
may not be any final matches in case all the indexed matches do not satisfy the
property.

Thus, a few recent results papers have tackled this problem by building the
Property Suffiz Tree (or PST for short), which is essentially a suffix tree, where
each suffix is truncated so we only consider the smallest prefix of it which satisfies
our property. In [I], where the PST was defined, it was shown how one can
construct the PST in O(|r| + nloglogn) time using weighted ancestor queries
([),[12]). Later on, in [7] the authors there showed how one can construct the
PST in O(|x| + n) time using range minimum queries. However, there was an
unfortunate error in their result, which was corrected by [g].

In this paper, we consider the dynamic version of the problem, where intervals
are inserted or removed to or from the property. We present algorithms for a
few versions of this problem, namely incremental updates, decremental updates,
fully dynamic updates, and batched updates. While one could use the previous
results, and use the dynamic versions of the inner data structures in there (like
dynamic range minimum queries), the overhead of such a change is too expensive.
Thus, we present a new approach for confronting the PST, resulting in a new
optimal construction algorithm for the static case as well. The approach is based
on clever use of suffix links.

The paper is organized as follows. In section 2] we give some definitions and
preliminaries. In section [3] we confront the incremental version of the dynamic
problem, which includes the introduction of the basic procedure implementing
our new approach for this problem, using suffix links. In section] we show how
to solve the decremental version. In sections Bl and [, we show how to solve the
fully dynamic and batched versions, respectively, and the batched version leads
us to a new optimal static construction.

2 Preliminaries and Definitions

For a string T' = t; - - -, we denote by Tj...; the substring ¢; - - - t;. The suffix
T;...n is denoted by T, and the suffix tree of T' is denoted by ST(T). The leaf
corresponding to T in ST(T) is denoted by leaf(T?). The label of an edge e
in ST(T) is denoted by label(e). The concatenation of all of the labels of edges
from the root of the suffix tree to a node w is denoted by label(u). For a node u
in the suffix tree of a string 7', we denote by ST, the subtree of the suffix tree
rooted by wu.
We are now ready to define a property for a string.

The Property Suffix Tree with Dynamic Properties 65

Definition 1. A property © of a string T = t1...t, is a set of intervals T =
{(815 f1); -, (8¢, ft)} where for each 1 < i <t it holds that: (1) s;, fi € {1,...,n},
and (2) s; < fi. The size of property w, denoted by |r|, is the number of intervals
in the property (or in other words - t).

The following definition is a slight simplification of a similar definition in [IJ.

Definition 2. Given a text T = t;...t,, with property m and pattern P = p1...pm,
we say that P matches T;...; under property m if P = Tj...;, and there exists
(Sk, fr) € ™ such that s, < i and j < f.

If P = T;..; we want to be able to quickly check if there exists an interval
(s, f) € m for which s <14 < j < f. To simplify such a test we introduce the
notion of extents and the mazximal extent.

Definition 3. Given a text T = ty...t,, with property w for every text location
1 <i<n and interval (s, f) € m such that s < i < f we say that f is an extent
of i. The maximal extent of i is the extent of i of largest value, or in other words,
the finish of the interval containing i which is the most distant fromi. We denote
the mazimal extent of i by end(i). If for some location i there is no interval in
7 containing it, we define end(i) = NIL.

The following lemma shows us the connection between the maximal extents
defined by a property 7, and being able to quickly test if a pattern matches a
location in the text under 7.

Lemma 1. Given a text T = ty...t, with property @ and pattern P = p1...pm,
P matches T;...; under property 7 if and only if P =T;...; and j < end(i).

Proof. We need to show that j < end(i) if and only if there exists (sg, fx) € 7
such that s < 7 and j < fr. The first direction is true, as by definition of
maximal extents, if j < end(i) we have that there exists an interval (s, f) € 7
such that s < i < j < f = end(i). The reverse direction is true as well, as if
there exists an interval (s, fi) € 7 such that sy < ¢ and j < f, we have that
i € [sk,J] C [sk, fr] and so fi is an extent of ¢ implying that j < fr < end(i). O

Being that the size of m can be O(n?), it would be helpful if we could reduce
to another property ' where we are guaranteed that the size of n’ is at most n.
In fact, it will be even more helpful to reduce our property to one of minimal
size. This can be accomplished with the following.

Definition 4. Two properties m and 7' for text T = ty...t,, are said to be con-
gruent if for any pattern P, P matches a substring T; ; under m if and only if it
matches the same substring under w'.

The congruent relation between properties defines equivalence classes for all
possible properties of a text of size n. Every two properties in a given equivalence
class will produce the same output when querying a text T with pattern P under
those properties. This naturally leads us to the following definition:

66 T. Kopelowitz

Definition 5. A property m for a string of length n is said to be minimal if
for any property @' congruent to m we have that |7| < |x’|. Also, the process of
converting 7' into 7 is called minimizing 7'.

Lemma 2. A property m for a string of length n can be minimized using the
following process. For any two intervals (s, f), (s', f') € m we remove (s, f') if
one of the following conditions holds: (a)s < s < f' < f, (b)s< s < f'=f, or
(c) s =s < f < f'. Furthermore, the minimized form of w is of size O(n).

Proof. Due to space limitations, this easy proof is omitted. a

Definition 6. A property w for a string of length n is said to be in standard
form if (a) m is minimal, and (b) 51 < 53 < -+ < 8|z

For some of the dynamic settings (incremental, and batch inserts) we will want to
maintain 7 in its minimized form. For other settings, we will need to maintain m
completely (meaning not minimized), as deletions of intervals can strongly affect
the resulting properties’ equivalence classes due to deletions from two different
properties in the same equivalence class.

2.1 The Property Suffix Tree

The PST in essence shortens the root to leaf path of each suffix (leaf) in the
suffix tree, to its maximal extent. A simple (naive) method for constructing the
PST would be for every leaf in the suffix tree, traverse the path from the root to
it, and stop at the character corresponding to the maximal extent of the suffix.
If this location is an edge, we break that edge into two, and insert a new node
for the suffix. If this location is a node, we just add the suffix to a list of suffixes
in each node. When removing the leaf corresponding to the suffix in the original
suffix tree, and the edge connecting it to its parent, we might need to remove
the parent from the tree as well. In fact, we won’t want to remove nodes from
the tree, but rather create a shortcut edge skipping the internal node that needs
to be removed. So, we can envision the PST to be the complete suffix tree with
the addition of some shortened suffix nodes, and shortcut edges, so that when
we traverse the PST (through the suffix tree) with a pattern query, we take a
shortcut edge whenever possible.

When answering a query, we traverse down the PST with our pattern, and
once we find the edge or node corresponding to the pattern, we traverse that
node’s or edge’s subtree to output all of the (shortened) suffixes in it. It should be
noted that although not all of the nodes in the subtree have at least two children
(as some inner nodes correspond to shortened suffixes), we can still perform this
traversal in time linear in the size of the output as the non branching nodes are
those which correspond to part of the output.

The construction takes quadratic time, and is therefore inefficient. However,
we show in section how the PST can be constructed in linear time.

The Property Suffix Tree with Dynamic Properties 67

3 The Incremental Version

In this section it is shown how to solve the following problem:

Problem 1. Given a PST for text T' = t;...t,, and a property 7 of T' we wish to
maintain the PST under the following updates efficiently:

— Insert(s, f) - Insert a new interval (s, f) into .

We assume that 7 is maintained in standard form. So 7 consists of at most n
intervals, each with a different starting index.

There are several types of updates that can happen to the PST due to an
Insert(s, f) update. These different types of updates are provided by the different
interactions between the newly inserted interval (s, f) and the intervals already
in 7 prior to the insertion. For simplicity we assume that there is only one interval
(s, f") € m, such that [s, f] N [s’, f'] # 0. This interval can be easily located in
O(f — s) time by maintaining each interval in its starting and end location (due
to the minimized form, there is at most one starting and one ending interval at
each location). Then we can scan the length of the interval, locating (s',) (if
it exists). In a situation where there are no starting or finishing locations in the
interval, we check end(s) so that if it is not NIL, it must be that end(s) > f and
so the new interval is completely contained within an already existing interval
in 7 (a situation which we briefly discuss next).

The possible interactions are as follows

1. The first type of interaction is when s’ < s < f < f’. In such a case the new
interval does not affect the maximum extent of any of the text locations due
to this interaction and so the PST and 7 remain unchanged as we want to
maintain 7 in standard form.

2. The second type of interaction is when s < s’ < f/ < f. In such a case
the new interval completely contains (s, f/) so for any text location ¢ where
s < i < f, the new interval will change end(i) to be f, and the PST must
be updated to support this. Furthermore, the insertion of the new interval
will force (s', f') out of 7 to be replaced by (s, f).

3. The third type of interaction is when s < s’ < f < f’. In such a case we
only need to update the maximal extent for text location ¢ where s <1i < s’
as for any location s’ < i < f’ we have that f’ provides a longer property
extent. The PST must be updated to support this, and the new interval is
added to m.

4. The fourth type of interaction is when s’ < s < f’ < f. In such a case we
only need to update the maximal extent for text location ¢ where s < i < f/
as for any text location s < i < f’ we have that f provides a longer property
extent (as opposed to the one provided by (s, f’)), and for the remaining
' <i < f we have that end(i) = f as it is the only extent available. The
PST must be updated to support this, and the new interval is added to .

For the last three (out of four) types of interactions, we need to update
the maximum extent for some text locations, and update the PST accordingly.

68 T. Kopelowitz

The locations for which we will have changes made in the PST can be found
in O(f — s) time by scanning the interval in the text, and marking the appro-
priate locations (according to the interaction). If we are given the old location
of a shortened suffix in the PST prior to the insertion, together with its new
location in the PST after the insertion, the additional work will take constant
time. Thus, we are left with the job of locating the new position of each location
in the interval which imposes a change in the PST, as the old locations can be
easily maintained per location. This is explained next.

3.1 The PST Update Traversal

We begin by noting that in any interaction that imposes changes to the suffix
tree, the location s (the start of the interval) will always cause a change. We
traverse the PST with the substring T ¢, till we reach a node w for which label (u)
is a prefix of T, y and is of maximum length. We can denote label(u) = T , for
some s < x < f. If x = f then the shortened suffix of s needs to be inserted at
w in the PST (as f is the maximal extent of s). Otherwise, let w be the child of
u in the PST for which the first character on the edge (u,w) is t,41. The path
in the PST corresponding to T ; ends on this edge, and so, the shortened suffix
of s needs to be inserted at a new node v breaking the edge (u,w) into two.
We note briefly that the time to traverse any edge in the traversal can be done
in constant time, as we know that T r is in the text. However, when inserting
the new edge v, we want to insert it into the original suffix tree as well (as edge
(u, w) might be a shortcut). To do this, we traverse down the suffiz tree from u
till we reach a node (%) for which label (%) is a prefix of T, ; and is of maximum
length. We can denote label(i) = T ; for some s < & < f. If & = f then the
shortened suffix of s needs to be inserted at @ in the suffix tree. Otherwise, let W
be the child of 4 in the suffix tree for which the first character on the edge (@, W)
is tz4+1. We then insert node v into edge (a,), updating shortcuts as needed.
We now wish to find the new location in the PST for s + 1. We could re-
scan the PST with T4 ¢, however that would take too long. Instead, we use
the suffix link of u to find a node u' for which label(u) = tslabel(u’). Thus,
label(uw') = Ts11,,. From u' we continue to traverse down the suffix tree with
the substring T,11, ¢, till we reach a node u; for which label(u;) is a prefix of
Tsy1,5 and is of maximum length. We can denote label(u1) = T 4, for some
s+ 1<z < f.If xr;1 = f then the shortened suffix of s + 1 needs to be inserted
at the node corresponding to u; in the PST. Otherwise, let w; be the child of
uy for which the first character on the edge (u1,w1) is t;,+1. The path in the
PST corresponding to Ts41,¢ ends on this edge, and so, the shortened suffix of
s+ 1 needs to be inserted at a new node v; breaking the edge (u1,w;) into two.
As before, when inserting the new node vy, we want to insert it into the original
suffix tree as well. To do this, we take the suffix link from «, and continue to
traverse down the suffix tree from the node at the other side of the suffix link
@y for which label(t,) is a prefix of Ts41,5 and is of maximum length. We can
denote label(t1) = Ts41,3, for some s +1 < & < f. The rest of the work for

The Property Suffix Tree with Dynamic Properties 69

this case is the same as in the first phase, however we might also need to update
suffix links for the newly inserted node.

We continue this process, where at the i'th iteration we use the suffix link of u; _1
to find a node u)_, for which label(u;_1) = tilabel(u}_,). Thus, label(u} |) =
Tsyi From u}_, we continue to traverse down the suffix tree with the substring
Ty, 5, till we reach a node u; for which label(u;) is a prefix of Ts4, r and is of max-
imum length. We can denote label(u;) = T o, for some s +i <2y < f. Ifx; = f
then the shortened suffix of s + ¢ needs to be inserted at the node corresponding
to u; in the PST. Otherwise, let w; be the child of u; for which the first character
on the edge (u;, w;) is tz,+1. The path in the PST corresponding to Ts4; ¢ ends
on this edge, and so, the shortened suffix of s + 7 needs to be inserted at a new
node breaking the edge (u;, w;) into two. As before, when inserting the new node
v;, we want to insert it into the original suffix tree as well. To do this, we take the
suffix link from 4;, and continue to traverse down the suffix tree from the node at
the other side of the suffix link 4; for which label(%;) is a prefix of T4, r and is of
maximum length. We can denote label(4;) = Tsy; 2, for some s+i < Z; < f. The
rest of the work for this case is the same as in the first phase, however we might
also need to update suffix links for the newly inserted node.

The process ends after f — s iterations. In each iteration we updated the
location of at most one shortened suffix. The running time is as follows. All of
the updates done to a suffix once its new location is found take constant time.
The total traversal in order to find all of the new locations in the PST take a
total of (f — s) time, as in each iteration ¢ we will traverse from x;_1 to z;, and
from -i‘i—l to iz

3.2 Multiple Interactions

If our new interval (s, f) interacts with more than one interval already in 7
we need to be able to determine which different interactions occur, and decide
accordingly which locations require a change. In order to do this, we note that
the two types of interactions that might cause the maximum extent for a given
location not to change are the first and third. It is enough to detect one interval
(s', f') € m whose interaction with (s, f) is of the first type. This can be done by
checking the end location of s. So assume this is not the case, and focus on dealing
with many interactions of the third type. we can locate all such interactions in
O(f — s) time by scanning the interval, and checking end locations for each
location encountered. for a location i if end(i) > f then we know that for any
location j such that < j < f, end(j) will not change. So, once we reach the
first s < i < f we know that the only locations that need to change are in the
range [s,7 — 1]. Once these locations have been determined, we perform the PST
update traversal in order to complete the process.

Theorem 7. Given a PST for text T = ty...t, and a property w of T it is
possible to maintain the PST under Insert(s, f) operations in O(f — s) time.

70 T. Kopelowitz

4 The Decremental Version

In this section it is shown how to solve the following problem:

Problem 2. Given a PST for text T' = t;...t,, and a property 7 of T' we wish to
maintain the PST under the following updates efficiently:

— Delete(s, f) - Delete the interval (s, f) from 7.

As intervals are being deleted from 7, maintaining 7« in standard form is
dangerous, as once an interval is deleted, we might require another interval which
was not in the standard form. Therefore we can no longer assume that the size
of 7 is linear in the size of the text. We begin with a preprocessing phase in
which for every text location ¢ we build two lists. The first list, denoted by ¢;, is
the list of all intervals in 7 for which the starting time is ¢, sorted by decreasing
finishing time. The second list, denoted by ~y; is the list of all intervals in 7 for
which the finishing time is i, sorted by increasing starting time. We can easily
construct both lists in O(n + |7|) time. In addition, we use a hash function such
that given an interval (s, f) we can locate in constant time if (s, f) € 7, and if
so it will return two pointers to nodes, one to the node in the list ¢, and one to
the node in the list 7y which refer to that interval in those lists.

Like in the incremental version, there are several types of updates that can
happen to the PST due to a Delete(s, f) update. These different types of updates
are provided by the different interactions between the deleted interval (s, f) and
the other intervals currently in 7. For simplicity we assume that there is only
one interval (s, f') € w\ {(s, f)}, such that [s, f]N[s, f'] # ¢. This interval can
be easily found in O(f — s) time as mentioned before in the incremental version,
however we need to use the first nodes in the lists ¢; and ~; for each s <1i < f.

1. The first type of interaction is when s’ < s < f < f’. In such a case
the deleted interval does not affect the maximum extent of any of the text
locations.

2. The second type of interaction is when s < s’ < f/ < f. In such a case the
deleted interval completely contains (s, f') and so for any text location ¢
where s' < ¢ < f’, the deletion will change end(i) to be f’, while for the
other locations in [s, f] we need to set their end location to NIL.

3. The third type of interaction is when s < s’ < f < f’. In such a case we
only need to update the end location for text location ¢ where s < i < s’ to
be NIL.

4. The fourth type of interaction is when s’ < s < f’ < f. In such a case we
only need to update the end location for text location ¢ where s < i < f as
for any location s < ¢ < f’ we have that f’ provided the longer property
extent (as opposed to the one provided by (s, f)), and for the remaining
f' < i< f we have that end(i) = NIL as there is no extent available.

For the last three (out of four) types of interactions, we need to update the
maximum extent for some text locations, and update the PST accordingly.

The Property Suffix Tree with Dynamic Properties 71

The locations for which we will have changes made in the PST can be found
in O(f — s) time by scanning the interval in the text, and marking the appropri-
ate locations (according to the interaction). If we are given the old location of a
shortened suffix in the PST prior to the insertion, together with its new location
in the PST after the insertion or an indication that no such extent exists, the
additional work will take constant time. Thus, we are left with the job of locating
the new position of each location in the interval which imposes a change in the
PST, as the old locations can be easily maintained per location.

In order to do this, we want to use the PST update traversal. However in
order for the traversal to be correct, we must prove the following lemma.

Lemma 3. Any change to a mazimal extent made due to a Delete(s, f) update
will result in a NIL, or an extend k such that s < k < f.

Proof. Assume by contradiction that there exists a text location ¢ such that due
to a Delete(s, f) update, end(i) changes to be k such that k < sork > f.ifk < s
then we also must have i < s, and as such the interval which provides i with its
maximal extent does not interact with (s, f), contradicting our assumption that
end(i) was changed. If k > f, then there exists an interval (s',k) € 7 such that
s’ <i < f < k. However, this interval existed prior to the deletion of (s, f) and
so the maximal extent of ¢ should not have changed due to the deletion. O

Now aided by the lemma, we note that the PST traversal will traverse through
all of the new locations that the shortened suffixes need to be updated at due
to the deletions. Also, we must remove (s, f) from ¢, and gammay, however as
these values are hashed, this takes constant time. The running time is the same
as that of the insert operation - O(f — s).

4.1 Multiple Interactions

If our deleted interval (s, f) interacts with more than one interval in 7\ {(s, f)}
we need to be able to determine which different interactions occur, and decide
accordingly which locations require a change. This is done in a similar method
to that of the insertions, and is thus omitted.

Theorem 8. Given a PST for text T = ty...t, and a property w of T it is
possible to maintain the PST under Delete(s, f) operations in O(f — s) time.

5 The Fully Dynamic Version

Problem 3. Given a PST for text T' = t;...t,, and a property 7 of T' we wish to
maintain the PST under the following updates efficiently:

— Insert(s, f) - Insert a new interval (s, f) into .
— Delete(s, f) - Delete the interval (s, f) from 7.

72 T. Kopelowitz

As intervals are being deleted from 7, maintaining 7 in standard form is still
dangerous, as once an interval is deleted, we might require another interval which
was not in the standard form. We begin with a preprocessing phase in which for
every text location ¢ we build ¢; and ~;, both maintained as dynamic priority
queues. In addition, we use a hash function such that given an interval (s, f) we
can locate in constant time if (s, f) € 7, and if so it will return two pointers
to nodes, one to the node in ¢, and one to the node in 7; which refer to that
interval in those lists.

The procedures for processing an insertion or deletion are the same as that
of the incremental and decremental ones, with the following changes. All of the
interactions that are made with ¢; and ~; for some location i are done through
the appropriate priority queue. Thus each update performs two lookups (one
for a minimum value, and one for a maximum value), each insertion performs
two priority queue insertions, and each deletion performs two priority queue
deletions. We can use the data structure by van Emde Boas [I7] so that each
priority queue operation requires O(loglogn) time. Thus we have the following.

Theorem 9. Given a PST for text T = ti...t, and a property © of T it is
possible to maintain the PST under Delete(s, f) and Insert(s, f) operations in
O(f — s+ loglogn) time per operation.

6 The Batched Insert Version and the Static Case

In this section we solve the following problem.

Problem 4. Given a PST for text T' = t;...t,, and a property 7 of T' we wish to
maintain the PST under the following updates efficiently:

— Insert(I) - Insert the set of intervals I = {(s1, f1), (2, f2), .-, (8¢, fe)}
into .

We could perform an insert operation per interval in I, and that would take
O(Z(&f)e[f — s) time. However, we do better by presenting an algorithm that
runs in O(cover-size(I)) where

cover-size(I) = {1 <i<mn:3(s, f) € Ist.i € s, f]}.

To do this, we begin by processing the intervals in I as follows. We start with
an array A of size n. We do not need to spend the time to initialize A - instead
we can use standard techniques which know for a given location in A if it has
been set or not. Next we create an undirected graph G = (V, E), where for each
interval (sg, fr) € I we have a corresponding vertex vy, € V', and we initiate F
to be empty. Now for each 1 < i < ¢ we scan A[s], A[s + 1], ..., A[f] and do the
following. For each location in A, if it was never initialized, we insert 7. Otherwise,
it has some value j in it, and so we insert (v;, v;) into E, and stop the scan for this
interval. The total running time for all of the scans will be O(cover-size(I)+|I]) =
O(cover-size(I)). Next, we find the connected components in G in O(|1|) time.
For each connected component C', we define Ic to be the subset of intervals in
I which corresponds to the vertices in C.

The Property Suffix Tree with Dynamic Properties 73

Lemma 4. Let C and C' be two different connected components of G. Then
cover-size(I¢) + cover-size(Ior) = cover-size(Ic U Ior).

Proof. If cover-size(Ic) + cover-size(Icr) > cover-size(Ic U Icr) (as the opposite
is clearly not true) then this implies that there exists an interval with a vertex
in C, and an interval with a vertex in C’, such that the intersection of those
two intervals is not empty. However, from the way we chose the edges in G,
this implies that there is an edge between those two vertices, contradicting the
assumption that C and C’ are different connected components. O

For each connected component C' we can convert I to be in standard form in
time O(cover-size(Ic)). So we will assume I¢ is in standard form. We also as-
sume with out loss of generality, that for every interval in I, its interactions
with 7 prior to the batch insertion cause some changes (as this can be checked
in O(cover-size(Ic)) as well). Denote Ic = {(8iy, fi;), (Sins fin) s (Sijeps fije)}
where for every iy < j <i¢) — 1 we have i; < i;41. For each iy < j <)¢ we do
Insert(s;, f;) with the following changes. When we run the PST update traversal,
we only run till we reach the suffix at s;;;. Once this point is met, we know that
the maximal extent from this point onwards is at least f;11 which is larger than
f;j- Being that at that point we are considering the shortened suffix T, , r, we can
continue traversing down the tree in order to obtain the location of T, ¢, ,, and
then start the work needed for interval (s;11, fj+1). Thus, the total time spent on
interval j is s;41 — s;, and the total time spent on all intervals is

J=tcl-1

fiel = sje) + Z sj+1 — 85 = O(cover-size(Ic)).

Jj=i1

For each connected component C' we can convert I to be in standard form in
time O(cover-size(I¢c)). So we will assume I¢ is in standard form. We also assume
that for every interval in I, its interactions with 7 prior to the batch insertion
cause some changes (as this can be checked in O(cover-size(I¢)) as well). Denote
Ic = {(8iy, fir)s (8ins fin)s s (Sijc)» fijo)) b5 Where for every i1 < j < ijg) — 1 we
have i; < ij41. For each iy < j < ij¢| we do Insert(s;,, fi;) with the following
changes. When we run the PST update traversal, we only run till we reach the
suffix at s;;,,. Once this point is met, we know that the maximal extent from
this point onwards is at least f;,,, which is larger than f; . Being that at that
point we are considering the shortened suffix T we can continue traversing
et ije and then start the
work needed for interval (s;;,,, fi,.,). Thus, the total time spent on interval i,
is s4;,, — Sq;, and the total time spent on all intervals is

iiyq0fi;
j+1 J
down the tree in order to obtain the location of T}

J=t|c|-1

fie| = sjc + Z i, — 8i; = O(cover-size(Ic)).

Jj=t1

Problem 5. Given a PST for text T = t;...t,, and a property 7 of T can maintain
the PST under the following updates:

74 T. Kopelowitz

— Insert(I) - Insert the set of intervals I = {(s1, f1),(s2, f2), .-, (8¢, fe)}
into T,

where each update takes O(cover-size(I) time.

6.1 The (New) Static Version

The static version is a special case of batched update, where we have only one
update whose intervals are all the intervals in 7. This reproves the following.

Theorem 10. Given a property w over T = t1...t, it is possible to construct the
PST O(|x| + m) time.

References

1. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395, 298-310 (2008)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Comm. ACM 20,
762-772 (1977)

3. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. 36th annual ACM Symposium on the Theory of
Computing (STOC), pp. 91-100. ACM Press, New York (2004)

4. Farach, M., Muthukrishnan, S.: Perfect Hashing for Strings: Formalization
and Algorithms. In: Proc. 7th Combinatorial Pattern Matching Conference,
pp. 130-140 (1996)

5. Ferragina, P., Grossi, R.: Fast incremental text editing. In: Proc. 7th ACM-STAM
Symposium on Discrete Algorithms, pp. 531-540 (1995)

6. Gu, M., Farach, M., Beigel, R.: An efficient algorithm for dynamic text indexing.
In: Proc. 5th Annual ACM-STAM Symposium on Discrete Algorithms, pp. 697-704
(1994)

7. lliopoulos, C.S., Rahman, M.S.: Faster index for property matching. Inf. Process.
Lett. 105(6), 218-223 (2008)

8. Juan, M.T., Liu, J.J., Wang, Y.L.: Errata for “Faster index for property matching*“.
Inf. Process. Lett. 109(18), 1027-1029 (2009)

9. Jurka, J.: Origin and Evolution of Alu Repetitive Elements. In: The Impact of
Short Interspersed Elements (SINEs) on the Host Genome, pp. 25-41 (1995)

10. Jurka, J.: Human Repetitive Elements. In: Molecular Biology and Biotechnology,
pp. 438-441 (1995)

11. Kérkkainen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943-955. Springer, Heidelberg (2003)

12. Kopelwoitz, T., Lewenstein, M.: Dynamic Weighted Ancestors. In: Proc. 18th An-
nual ACM-SIAM Symposium on Discrete Algorithms(SODA), pp. 565-574 (2003)

13. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. STAM J.
Comp. 6, 323-350 (1977)

14. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. of the
ACM 23, 262-272 (1976)

15.

16.
17.

18.

The Property Suffix Tree with Dynamic Properties 75

Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm. In: Proc. 37th FOCS, pp. 320-328 (1996)
Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249-260 (1995)
van Emde Boas, P.: Preserving Order in a Forest in Less Than Logarithmic Time
and Linear Space. Inf. Process. Letters 6(3), 80-82 (1977)

Weiner, P.: Linear pattern matching algorithm. In: Proc. 14" IEEE Symposium
on Switching and Automata Theory, pp. 1-11 (1973)

Approximate All-Pairs Suffix/Prefix Overlaps

Niko Valimakil*, Susana Ladra?**, and Veli Makinen!* **

! Department of Computer Science, University of Helsinki, Finland
{nvalimak,vmakinen}@cs.helsinki.fi
2 Department of Computer Science, University of A Corufia, Spain
sladra@udc.es

Abstract. Finding approximate overlaps is the first phase of many se-
quence assembly methods. Given a set of strings of total length n and an
error-rate €, the goal is to find, for all-pairs of strings, their suffix/prefix
matches (overlaps) that are within edit distance k = [ef], where £ is the
length of the overlap. We propose new solutions for this problem based
on backward backtracking (Lam et al. 2008) and suffiz filters (Karkkainen
and Na, 2008). Techniques use nHy + o(nlogo) + rlogr bits of space,
where Hy is the k-th order entropy and o the alphabet size. In practice,
methods are easy to parallelize and scale up to millions of DNA reads.

1 Introduction

High-throughput short read sequencing is revolutionizing the way molecular bi-
ology is researched. For example, the routine task of measuring gene expression
by microarrays is now being replaced by a technology called RNA-seq [427];
the transcriptome is shotgun sequenced so that one is left with a set of short
reads (typically e.g. of length 36 basepairs) whose sequence is known but it is
not known from which parts of the genome they were transcribed. The process
is hence reversed by mapping the short reads back to the genome, assuming that
the reference genome sequence is known. Otherwise, one must resort to sequence
assembly methods [24].

The short read mapping problem is essentially identical to an indexed multiple
approximate string matching problem [21] when using a proper distance/similarity
measure capturing the different error types (SNPs, measurement errors, etc.). Re-
cently, many new techniques for short read mapping have come out building on
the Burrows- Wheeler transform (BWT) [1] and on the FM-index [7] concept. The
FM-index provides a way to index a sequence within space of compressed sequence
exploiting BWT. This index provides so-called backward search principle that
enables very fast exact string matching on the indexed sequence. Lam et al. [I3]
extended backward search to simulate backtracking on suffiz tree [28], i.e., to sim-
ulate dynamic programming on all relevant paths of suffix tree; their tool BWT-SW

* Funded by the Helsinki Graduate School in Computer Science and Engineering.
** Funded by MICINN grant TIN2009-14560-C03-02.
*** Funded by the Academy of Finland under grant 119815.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 767 2010.
© Springer-Verlag Berlin Heidelberg 2010

Approximate All-Pairs Suffix/Prefix Overlaps 7

provides an efficient way to do local alignment without the heuristics used in many
common bioinformatics tools. The same idea of backward backtracking coupled
with search space pruning heuristics is exploited in the tools tailored for short
read mapping: bowtie [I4], bwa [16], SOAP2 [5]. In a recent study [17], an exper-
imental comparison confirmed that the search space pruning heuristics used in
short read mapping software are competitive with the fastest index-based filters
— suffiz filters [11] by Kérkkainen and Na — proposed in the string processing
literature.

In this paper, we go one step further in the use of backward backtracking
in short read sequencing. Namely, we show that the technique can also be used
when the reference genome is not known, i.e., as part of overlap-layout-consensus
sequence assembly pipeline [12]. The overlap-phase of the pipeline is to detect
all pairs of sequences (short reads) that have significant approximate overlap.
We show how to combine suffix filters and backward backtracking to obtain a
practical overlap computation method that scales up to millions of DNA reads.

2 Background

A string S = S1, = s182--- 8, is a sequence of symbols (a.k.a. characters or
letters). Each symbol is an element of an alphabet X = {1,2,...,0}. A substring
of S is written S;; = s;5i41...5;. A prefix of S is a substring of the form 5 j,
and a suffiz is a substring of the form S; ,,. If i > j then S; ; = ¢, the empty string
of length |e| = 0. A text string T' = T} ,, is a string terminated by the special
symbol t, = $ € X, smaller than any other symbol in Y. The lexicographical
order “<” among strings is defined in the obvious way. Edit distance ed(T,T")
is defined as the minimum number of insertions, deletions and replacements of
symbols to transform string T into 7’ [15]. Hamming distance h(T,T’) is the
number of mismatching symbols between strings T and T”.

The methods to be studied are derivatives of the Burrows- Wheeler transform
(BWT) [1]. The transform produces a permutation of T, denoted by T°“! as
follows: (i) Build the suffiz array [19] SA[1,n] of T, that is an array of pointers
to all the suffixes of T in the lexicographic order; (ii) The transformed text is
TPt = L, where L[i] = T[SA[i] — 1], taking T[0] = T'[n]. The BWT is reversible,
that is, given T°%! = L we can obtain T as follows [1]: (a) Compute the array
C[1, 0] storing in C[c] the number of occurrences of characters {$,1,...,¢—1} in
the text T'; (b) Define the LF mapping as follows: LF (i) = C[L[i]]+rankg;(L,1),
where rank.(L,) is the number of occurrences of character ¢ in the prefix L[1, i];
(¢) Reconstruct T' backwards as follows: set s = 1, for each n —1,...,1 do
t; — L[s] and s «— LF[s]. Finally put the end marker t,, < $.

The FM-index [7] is a self-index based on the BWT. It is able to locate the
interval SA[sp, ep] that contains the occurrences of any given pattern P without
having SA stored. The FM-index uses an array C' and function rank.(L,?) in
the so-called backward search algorithm, calling the rank.(L,%) function O(|P))
times. Its pseudocode is given below.

78 N. Viliméki, S. Ladra, and V. Makinen

Algorithm. Count(P[1...m],L[1...n])
1) i—m;
sp«— 1; ep — n;
while (sp < ep) and (i > 1) do
s« PJi];
sp « C[s] + ranks(L, sp — 1)+1,;
ep — C[s] + ranks(L, ep);
i—1—1;
if (ep < sp) return “not found”
else return “found (ep — sp + 1) occurrences”.

NN N N N S S
R ~J O T W N
PN AN AN AN AN AN

The correctness of the algorithm is easy to see by induction: At each phase 1,
the range [sp, ep] gives the maximal interval of SA pointing to suffixes prefixed
by Pli...m].

To report the occurrence positions SA[i] for sp < i < ep a common approach
is to sample SA values and then use the LF-mapping to derive the unsampled
values from the sampled ones.

Many variants of the FM-index have been derived that differ mainly in the
way the rank.(L, i)-queries are solved [22]. For example, on small alphabets, it is
possible to achieve nHy, + o(nlog o) bits of space, for moderate k, with constant
time support for rank.(L, %) [8]. Here Hy, is the standard k-th order entropy, i.e.,
the minimum number of bits to code a symbol once its k-symbol context is seen.
There holds Hy < logo.

Let us denote by ¢ r and tsa the time complexities of LF-mapping (i.e.
rank.(L,4) computation) and SA[{] computation, respectively.

3 All-Pairs Suffix/Prefix Matching

Given a set 7 of r strings T, T2,...,T", of total length n, the ezact all-pairs
suffix /prefix matching problem is to find, for each ordered pair T, T7 € 7T, all
nonzero length suffix/prefix matches (dubbed overlaps). The problem can be
solved in optimal time by building a generalized suffix tree for the input strings:

Theorem 1 ([9), Sect. 7.10]). Given a set T of r strings of total length n, let
rx be the number of exact suffix/prefix overlaps longer than a given threshold.
All such overlaps can be found in O(n+rx) time and in @(nlogn) bits of space.

In the sequel, we concentrate on approximate overlaps and more space-efficient
data structures. Instead of generalized suffix trees, the following techniques use a
FM-index built on the concatenated sequence of strings in 7. Since all strings T
contain the $-terminator as their last symbol, the resulting BWT T*"! contains
all r terminators in some permuted order. This permutation is represented with
an array D that maps from positions of $s in T°%* to strings in 7. Thus, the
string 7" corresponding to a terminator T°“![j] = $ is i = D[rankg(T***, j)].
The array requires dlogd bits.

Next subsection introduces a basic backtracking algorithm that can find ap-
proximate overlaps within a fixed distance k. The second subsection describes a
filtering method that is able to find approximate overlaps when the maximum
number of errors depends on length of the overlap.

Approximate All-Pairs Suffix/Prefix Overlaps 79

3.1 Backward Backtracking

The backward search can be extended to backtracking to allow the search for
approximate occurrences of the pattern [I3]. To get an idea of this general ap-
proach, let us first concentrate on the k-mismatches problem: The pattern P ,,
approximately matches a substring X1 ,,, of some string 7% € 7, if there are at
most k indices ¢ such that P[i] # X|[i] (i.e. Hamming distance h(P, X) < k).
The following pseudocode finds the k-mismatch occurrences, and is analogous
to the schemes used in [T4JT6]. The first call to the recursive procedure is
kmismatches (P, T k,m,1,n).

Algorithm. kmismatches(P, L, k, j, sp, ep)

(1) if (sp > ep) return ;

(2) if (j=0)

(3) Report SA[sp], ..., SA[ep]; return ;

(4) for each s € ¥ do

(5) sp’ « Cls] + ranks(L, sp — 1)+1;

(6) ep’ — Cls] + ranks(L, ep);

(7) if (Pljl#£s)k —k—1;elsek’ —k;

(8) if (k' > 0) kmismatches(P, L, k’,j — 1,sp’,ep’);

The difference between the kmismatches algorithm and exact searching is
that the recursion considers incrementally, from right to left, all different ways
the pattern can be altered with at most k£ substitutions. Simultaneously, the
recursion maintains the suffix array interval SA[sp...ep|] where suffixes match
the current modified suffix of the pattern.

To find approximate overlaps of 7% having at most k& mismatches, we call
kmismatches (7%, T k,|T%,1,n) and modify the algorithm’s output as fol-
lows. Notice that, at each step, the range T*“![sp...ep] contains $-terminators
of all strings prefixed (with at most k& mismatches) by the suffix Tf’m where
m = |T?|. Thus, each of the terminators correspond to one valid overlap of
length j. Terminators and their respective strings T can be enumerated from
the array D in constant time per identifier; the identifiers 7’ to output are in the
range D[ranks(T"", sp)...rankg(T""¢, ep)].

The worst case complexity of backward backtracking is O(|X|*m* 1t g).
There are several recent proposals to prune the search space [T416] but none of
them can be directly adapted to this suffix/prefix matching problem.

To find all-pairs approximate overlaps, the k-mismatch algorithm is called for
each string T? € T separately. Thus, we obtain the following result:

Theorem 2. Given a set T of r strings of total length n, and a distance k,
let r+ be the number of approzimate suffix/prefix overlaps longer than a given
threshold and within Hamming distance k. All such approximate overlaps can be
found in O(c* Yo |T|¥F e + r%) time and in nHy, + o(nlogo) + rlogr bits
of space.

From the above theorem, it is straightforward to achieve a space-efficient and
easily parallelizable solution for the exact all-pairs suffix/prefix matching prob-
lem (cf. Theorem [):

80 N. Viliméki, S. Ladra, and V. Makinen

Corollary 1. Given a set T of r strings of total length n, let r+ be the number
of exact suffir/prefix overlaps longer than a given threshold. All such overlaps
can be found in O(ntLg +1rx) time and in nHy +o(nlog o) +rlogr bits of spacell

When k-errors searching (edit distance in place of Hamming distance) is used
instead of k-mismatches, one can apply dynamic programming by building one
column of the standard dynamic programming table [26] on each recursive step.
Search space can be pruned by detecting the situation when the minimum value
in the current column exceeds k. To optimize running time, one can use Myers’
bit-parallel algorithm [20] with the bit-parallel witnesses technique [I0] that
enables the same pruning condition as the standard computation. We omit the
details for brevity.

3.2 Suffix Filters

We build on suffiz filters [11] and show two different ways to modify the original
idea to be able to search for approximate overlaps. Let us first describe a sim-
plified version of the original idea using an example of approximate matching of
string P with edit distance k.

Suffix filter splits the string to be searched, here P of length m, into k + 1
pieces. More concretely, let string P be partitioned into pieces P = ajg - - - Qgt1-
Because the FM-index is searched backwards, it is more convenient to talk about
prefiz filters in this context. Now the set of filters to be considered is & =
{ojag - agq1, aras---ag, ..., a1} as visualized in Fig. [l To find candidate
occurrences of P within edit distance k, each filter S € S is matched against T
as follows. We use backward backtracking (Sect. BI]) and match pieces of the
filter S starting from the last one with distance ¥’ = 0. When the backtracking
advances from one piece to next one (i.e. the preceding piece), the number of
allowed errors &’ is increased by one. Figure [l gives a concrete example on how
k' increases. If there is an occurrence of P within distance k, at least one of the
filters will output it as an candidate [I1I]. In the end, all candidate occurrences
must be validated since the filters may find matches having edit distance larger
than k. However, suffix filters have been shown to be one of the strongest filters
producing quite low number of wrong candidates [I1].

Approximate suffix/prefix matches of 7% € 7 can be found as follows. Instead
of a fixed distance k, we are given two parameters: an error-rate ¢ < 1 and a
minimum overlap threshold ¢ > 1. Now an overlap of length ¢ is called valid if
it is within edit distance [e/] and ¢ > t. Again, the string T is partitioned into

! Notice that a stronger version of the algorithm in [9 Sect. 7.10] (the one using
doubly-linked stacks) can be modified to find r’ < 72 pairs of strings with mazimum
suffix/prefix overlap longer than a given threshold. We can simulate that algorithm
space-efficiently replacing doubly-linked stacks with dynamic compressed bit-vectors
[18] so that time complexity becomes O(n(tsa + logn) 4+ r’) and space complexity
becomes nHy +o(nlogo) +rlogr+n(1+o0(1)). We omit the details, as we focus on
the approximate overlaps. A stronger variant for approximate overlaps is an open
problem.

Approximate All-Pairs Suffix/Prefix Overlaps 81

D
/_Aﬁ
P -5, 4, 3, 2, 1,0,
4.3, 2411, 0, |
5, 4, 3,2, 1,0,
w3, 2, 1,0,
o4, 3,2, 1,0, , :
2, 1, 0
|3|2|l|0| 10 1 3
2,1,0 _
1o 0 ! !

0 T
| S —

| ——
)

Fig. 1. Prefix filters for a string P that Fig. 2. String 7" has an overlap of length
has been partitioned into even length ¢ = 3p with 79. One of the first three
pieces. Numbers correspond to maximum filters is bound to find the overlap during
number of errors allowed during backward backward search.

search.

pieces, denoted «;, but now the number of pieces is determined by the threshold
t and error-rate e. Let k = [et] be the maximum number of errors allowed for
the shortest overlap possible, and for simplicity, let us assume that all pieces are
of even length p (to be defined later). Now the number of pieces is h = [|T|/p].

Candidate overlaps are found by searching each prefix filter S* = ajas - - - o
for 1 < i < h separately: start the backward search from the end of the last
piece «; and match it exactly. Each time a boundary of two pieces is crossed,
the number of allowed errors is increased by one. Now assume that pieces from
to jth piece have been processed, that is, the current range [sp . . . ep] corresponds
to pieces ajarjy1 - - - . Before the backward search crosses the boundary from
the piece a; to aj_1, we check the range T"“![sp...ep] and output those $-
terminators as candidate overlaps. These candidates are prefixes of strings in 7°
that may be valid approximate overlaps of length p - (h — j + 1). Only overlaps
whose lengths are multiples of the piece length p can be obtained.

We give two different strategies to find all approximate overlaps, not just those
with length p,2p, 3p, ... But first, let us prove that the final set of candidates
produced by the above method contains all valid overlaps of length pj for any
J > [t/p] (recall that valid overlaps must be longer than ¢).

Assume that there is a valid overlap of length ¢ = pj between T and some
T7, as displayed in Fig. Pl Prefix filters of 7% will locate this occurrence if we
can guarantee that the suffix T} ¢.m has been partitioned into [el] + 1 pieces,
where [el] gives the maximum edit distance for an overlap of length ¢. Recall
that in our partition the suffix 77 ¢.m Was split into pieces of length p. We can

define p as miny:t‘ [fefﬁ +11' This guarantees that we have chosen short enough

pieces for our partition, as at least one of the filters S*, S"=1 ... Shr=i*l will
output the string 77 as a candidate overlap. Figure Rlillustrates this idea. In the

82 N. Viliméki, S. Ladra, and V. Makinen

p b
—— ——
p L L L L L L J L{A/_‘zj

Fig.3. Strategy I produces p different Fig. 4. Strategy II produces two different
partitions of T partitions of T

end, all candidate overlaps must be validated since some of the candidates may
not represent a valid approximate overlap.

Strategy I produces p different partitions for T so that the boundaries (start
position of pieces) cover all indices of T¢. For simplicity, assume that m = |T?|
is a multiple of p. The jth partition, 1 < j < p, has boundaries {j,p + j,2p +
Jy--.,m}. As a result, the very last piece “shrinks” as seen in Fig. Bl Each
partition forms its own set of filters, which are then searched as described above.
It is straightforward to see that filters of the jth partition find all overlaps of
lengths £ e {p—7+1,2p—j5+1,3p—j+1,...,m — j+ 1}. Thus, all overlap
lengths ¢ > t are covered by searching through all p partitions. Advantage of
this strategy is that during the backward search, we can always match p symbols
(with 0-errors) before we check for candidate matches. The “shrinking” last piece
ap, can be shorter than p but it never produces candidates since p < t. Downside
is that the number of different filter sets S° to search for grows to p.

Strategy II produces only two partitions for T¢. Again, assume that m = |T7|
is a multiple of p. Now the two partitions have the boundaries {1,p + 1,2p +
1,...,m} and {[p/2],p+ [p/2],2p + [p/2],...,m}, as visualized in Fig. @l To
acquire candidates for all overlap lengths ¢ > ¢, we modify the backtracking
search as follows: instead of outputting candidates only at the boundaries, we
start to output candidates after [p/2] symbols of each piece has been matched.
More precisely, assume we are matching symbol at position ¢’ in some «;. If
i’ < p—[p/2],we output all $-terminators from range T°“*[sp. .. ep] as candidate
overlaps. Then the first partition outputs candidates for overlap lengths ¢ €
[lp/2],p]Ulp + [p/2],2p]U--- and the second partition for lengths ¢ € [p +
Lp+ [p/2]]U2p + 1,2p + [p/2]]U- - Since [p/2] < t, these filters together
cover all overlap lengths ¢ > t. Obvious advantage of this strategy is that only two
sets of filters must be searched. However, the number of candidates produced is
generally higher than in strategy I. If p is really small, the number of candidates
found after [p/2] symbols grows substantially.

Unfortunately, prefix filters cannot guarantee any worst-case time complexi-
ties. We conclude with the following theorem:

Approximate All-Pairs Suffix/Prefix Overlaps 83

Table 1. Experiments with k-mismatches. Time is reported as average time (s) per
read. Strategy Il produces exactly the same overlaps as strategy I.

Method t k € Time (s) Max. £ Avg. (Std.dev. ¢
Backtracking 20 2 - 0.005 506 33.9 24.0
20 4 - 0.277 506 27.4 16.4
20 6 - ~ 8 full result not computed
Strategy 1 20 - 5% 0.365 524 42.1 34.5
20 - 10% 0.753 1040 46.5 38.1
40 - 2.5% 0.212 506 74.8 45.6
40 - 5% 0.213 524 76.7 45.7
40 - 10% 0.553 1040 78.8 46.4
Strategy 11 20 - 5% 0.140 524 42.1 34.5
20 - 10% 0.990 1040 46.5 38.1
40 - 2.5% 0.029 506 74.8 45.6
40 - 5% 0.053 524 76.7 45.7
40 - 10% 0.341 1040 78.8 46.4

Table 2. Experiments with k-errors. Time is reported as average time (s) per read.
Strategy Il produces exactly the same overlaps as strategy I.

Method t k € Time (s) Max. £ Avg. Std.dev. ¢
Backtracking 40 2 - 0.031 535 77.2 49.4
40 4 - ~ 6 full result not computed
Strategy 1 40 - 2.5% 1.196 561 116.1 80.9
40 - 5% 1.960 1010 121.4 82.2
40 - 10% ~ 6 1040 123.9 80.5
Strategy 1T 40 - 2.5% 0.072 561 116.1 80.9
40 - 5% 0.179 1010 121.4 82.2
40 - 10% 1.730 1040 123.9 80.5

Theorem 3. Given a set T of r strings of total length n, a minimum overlap
threshold t > 1 and an error-rate €, all approximate overlaps within edit distance
[€l], where € is the length of the overlap, can be found using prefix filters and in
nHy, + o(nlogo) + rlogr bits of space.

4 Experiments

We implemented the different techniques described in Sect. [3] on top of succinct
data structures from the libcds libraryﬁ. The implementation supports both the
k-mismatches and k-errors (i.e. edit distance) models. Edit distance computation
is done using bit-parallel dynamic programming [20]. Overlaps can be searched
by using either the backtracking algorithm (for fixed k) or suffix filters (for error-
rate €). The experiments were run on Intel Xeon E5440 and 32 GB of memory.

2 http://code.google.com/p/libcds/

84 N. Viliméki, S. Ladra, and V. Makinen

0.4
|- 5% - etliit distance - stlrategy 1l
---%--- 5% - mismatch - strategy I
0.35 - % 2 - mismatch - backtracking

03 |

0.25 -

Time per read (s)

Number of sequences (in millions)

Fig. 5. Average time per read when the number of sequences increases from 1 to 5
million. The average times for € = 5% (both edit distance and mismatches) were
measured using strategy II with minimum overlap length ¢ = 40. All averages were
measured by matching 10 000 reads against each set.

The algorithms were tested on sets of DNA sequences produced by a 454 Se-
quencing System [2]. All of the DNA was sequenced from one individual Melitaea
cinzia (a butterfly). Since the 454 system is known to produce sequencing errors
in long homopolymers (runs of single nucleotide) [6], all homopolymers longer
than 5 were truncated. The full set contained 5 million reads of total length
1.7 GB. The average read length was 355.1 with a standard deviation of 144.2.
Smaller sets of 4, 3, 2, and 1 million reads were produced by cutting down the
full set. Majority of these experiments were run using the smallest set of one
million reads to allow extensive coverage of different parameters in feasible time.

Our implementation of the suffix filters uses extra nlogo + O(dlog }j) bits
(plain sequences plus a delta-encoded bit-vector in main memory) to be able to
check candidate matches more efficiently. In practice, the total size of the index
for the sets of 5 and 1 million reads was 2.8 GB and 445 MB, respectively. A
minimum overlap length ¢ € {20,40} was used to limit the output size. Further-
more, results were post-processed to contain only the longest overlaps for each
ordered string pair.

Table [l summarizes our results on k-mismatch overlaps for the set of one
million reads. As expected, backtracking slows down exponentially and does not
scale up to high values of k. The parameter £k = 4 corresponds approximately
to 0.7% < € < 20%. Strategy I is faster than strategy II when the piece length
gets small (e = 10% and ¢ = 20). On all other parameters, however, it is more
efficient to check the candidates produced by the two filters in strategy II, than
to search through all partitions in strategy I. Notice that strategy II (¢ = 5% and
t = 40) is only about 10 times slower than k& = 2 but produces a significantly
bigger quantity of long overlaps (cf. Fig. [6). Against k& = 4, strategy II is on

Approximate All-Pairs Suffix/Prefix Overlaps 85

1e+07 T T
| 10% - edit distance
| 5% - edit distance
| 10% - mismatch
10106 | 4 - mismatch
e+06 2 - mismatch E
100000 -]
172
Q
©
B 10000 i
>
o
S
5
= 1000]
=]
b4
100 | E
10 | 3
1
0 100 200 300 400 500

Overlap length

Fig. 6. Graph of overlap lengths for different error-rates ¢ and k-mismatches over a
set of one million reads. The mismatch curves € = 10% and k = 4 cross each other at
overlap lengths £ where k = [ef]. The y-axis is logarithmic.

par regarding time (when ¢ = 40) and produces longer overlaps. Table [gives
numbers for similar tests in the k-errors model.

In our third experiment, we measured the average time as a function of the
number of sequences. Figure [j] gives the average times per read for backtracking
with 2-mismatch and suffix filters with € = 5% and ¢t = 40. The suffix filters,
for both edit distance and mismatch, slow down by a factor of ~ 3.5 between
the smallest and largest set. The backtracking algorithm slows down only by a
factor of = 1.5.

The graph in Fig. [l displays the frequencies of overlap lengths computed with
the different k and e parameters. Notice that increasing k from 2 to 4 mismatches
mainly increases the number of short overlaps. Overlaps computed using error-rate
give a much gentle distribution of overlaps, since they naturally allow less errors
for shorter overlaps. Furthermore, at overlap lengths 100-400, the 10%-mismatch
search finds about 5 times more overlaps than methods with fixed k. When search-
ing with 10%-edit distance, there are more than a hundred times more overlaps of
length 300 compared to the 2-mismatch search. This suggests that insertions and
deletions (especially at homopolymers) are frequent in the dataset.

5 Discussion

Currently, many state-of-the-art sequence assemblers for short read sequences
(e.g. [23I12913]) use de Bruijn graph alike structures that are based on the g-grams

86 N. Viliméki, S. Ladra, and V. Makinen

shared by the reads. It will be interesting to see whether starting instead from the
overlap graph (resulting from the approximate overlaps studied in this paper), and
applying the novel techniques used in the de Bruijn appoaches, yields a competi-
tive assembly result. Such pipeline is currently under implementation [25].

Acknowledgments

We wish to thank Richard Durbin, Jared T. Simpson, Esko Ukkonen and Leena
Salmela for insightful discussions, and Jouni Sirén for implementing the bit-
parallel techniques.

DNA sequences were provided by The Metapopulation Research Group/The
Glanville Fritillary Butterfly Genome and Population Genomics Project: Rainer
Lehtonerﬁ, Petri Auvinerﬂ, Liisa Holnﬁ, Mikko Frilandelﬁ, Ilkka Hanski?,
funded by ERC (232826) and the Academy of Finland (133132).

References

1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

2. Roche Company. 454 life sciences, http://www.454.com/

3. Simpson, J.T., et al.: Abyss: A parallel assembler for short read sequence data.
Genome Res. 19, 1117-1123 (2009)

4. Morin, R.D., et al.: Profiling the hela s3 transcriptome using randomly primed cdna
and massively parallel short-read sequencing. BioTechniques 45(1), 81-94 (2008)

5. Li, R., et al.: Soap2. Bioinformatics 25(15), 1966-1967 (2009)

6. Wicker, T., et al.: 454 sequencing put to the test using the complex genome of
barley. BMC Genomics 7(1), 275 (2006)

7. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4),
552-581 (2005)

8. Ferragina, P., Manzini, G., Mékinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3(2),
article 20 (2007)

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

10. Hyyro, H., Navarro, G.: Bit-parallel witnesses and their applications to approxi-
mate string matching. Algorithmica 41(3), 203-231 (2005)

11. Kérkkainen, J., Na, J.C.: Faster filters for approximate string matching. In: Proc.
ALENEX 2007, pp. 84-90. SIAM, Philadelphia (2007)

3 Metapopulation Research Group, Department of Biological and Environmental Sci-
ences, University of Helsinki.

4 DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University
of Helsinki.

5 Institute of Biotechnology and Department of Biological and Environmental Sci-
ences, University of Helsinki.

5 Institute of Biotechnology and Metapopulation Research Group, University of
Helsinki.

http://www.454.com/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

Approximate All-Pairs Suffix/Prefix Overlaps 87

Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for dna sequence assem-
bly. Algorithmica 13, 7-51 (1995)

Lam, T.W., Sung, W.K., Tam, S.L., Wong, C.K., Yiu, S.M.: Compressed indexing
and local alignment of dna. Bioinformatics 24(6), 791-797 (2008)

Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biology 10(3),
R25 (2009)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707—710 (1966)

Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics (2009), Advance access

Makinen, V., Viliméki, N., Laaksonen, A., Katainen, R.: Unifying view of back-
ward backtracking in short read mapping. In: Elomaa, T., Mannila, H., Orponen,
P. (eds.) LNCS Festschrifts. Springer, Heidelberg (to appear 2010)

Makinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3) (2008)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22(5), 935-948 (1993)

Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46(3), 395-415 (1999)

Navarro, G.: A guided tour to approximate string matching. ACM Comput. Sur-
veys 33(1), 31-88 (2001)

Navarro, G., Mékinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

Pevzner, P., Tang, H., Waterman, M.: An eulerian path approach to dna fragment
assembly. Proc. Natl. Acad. Sci. 98(17), 9748-9753 (2001)

Pop, M., Salzberg, S.L.: Bioinformatics challenges of new sequencing technology.
Trends Genet. 24, 142-149 (2008)

Salmela, L.: Personal communication (2010)

Sellers, P.: The theory and computation of evolutionary distances: Pattern recog-
nition. Journal of Algorithms 1(4), 359-373 (1980)

Wang, Z., Gerstein, M., Snyder, M.: Rna-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics 10(1), 57-63 (2009)

Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 1-11 (1973)

Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome Research 18(5), 821-829 (2008)

Succinct Dictionary Matching with No
Slowdown

Djamal Belazzougui

LIAFA, Univ. Paris Diderot - Paris 7, 75205 Paris Cedex 13, France

dbelaz@liafa. jussieu.fr

Abstract. The problem of dictionary matching is a classical problem in
string matching: given a set S of d strings of total length n characters over
an (not necessarily constant) alphabet of size o, build a data structure so
that we can match in a any text 7" all occurrences of strings belonging to
S. The classical solution for this problem is the Aho-Corasick automaton
which finds all occ occurrences in a text T in time O(|T| 4 occ) using a
representation that occupies O(mlogm) bits of space where m < n +1
is the number of states in the automaton. In this paper we show that the
Aho-Corasick automaton can be represented in just m(logo + O(1)) +
O(dlog(n/d)) bits of space while still maintaining the ability to answer to
queries in O(|T'| 4 occ) time. To the best of our knowledge, the currently
fastest succinct data structure for the dictionary matching problem uses
O(nlog o) bits of space while answering queries in O(|T|loglogn + occ)
time. In the paper we also show how the space occupancy can be reduced
to m(Ho+0(1))+0(dlog(n/d)) where Hy is the empirical entropy of the
characters appearing in the trie representation of the set S, provided that
o < mf for any constant 0 < £ < 1. The query time remains unchanged.

1 Introduction

A recent trend in text pattern matching algorithms has been to succinctly encode
data structures so that they occupy no more space than the data they are built
on, without a too significant sacrifice in their query time. The most prominent
example being the data structures used for indexing texts for substring matching
queries [15] [8l [].

In this paper we are interested in the succinct encoding of data structures
for the dictionary matching problem, which consists in the construction of a
data structure on a set S of d strings (a dictionary) of total length n over an
alphabet of size o (wlog we assume that o < n) so that we can answer to queries
of the kind: find in a text T all occurrences of strings belonging to S if any.
The dictionary matching problem has numerous applications including computer
security (virus detection software, intrusion detection systems), genetics and
others. The classical solution to this problem is the Aho-Corasick automaton
[1], which uses space O(mlogm) bits (where m is the number of states in the
automaton which in the worst case equals n + 1) and answers queries in time
O(|T| + occ) (where occ is number of occurrences) if hashing techniques are

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 88 2010.
© Springer-Verlag Berlin Heidelberg 2010

Succinct Dictionary Matching with No Slowdown 89

used, or O(|T|logo + occ) if only binary search is permitted. The main result
of our paper is that the Aho-corasick automaton can be represented in just
m(log o +3.44340(1))+d(3log(n/d)+O(1)) bits of space while still maintaining
the same O(|T| + occ) query time. As a corollary of the main result, we also
show a compressed representation suitable for alphabets of size o < m*® for
any constant 0 < € < 1. This compressed representation uses m(Hy + 3.443 +
o(1)) + O(dlog(n/d)) bits of space where Hy is the empirical entropy of the
characters appearing in the trie representation of the set S. The query time of
the compressed representation is also O(|T'| + occ).

The problem of succinct encoding for dictionary matching has already been
explored in [2, 10, [T6] IT]. The results in [2] and [11] deal with the dynamic case
which is not treated in this paper. The best results for the static case we have
found in the literature are the two results from [10] and the result from [16]. A
comparison of the results from [I0, 6] with our main result is summarized in
table [(the two dynamic results of |2, [IT] are not shown as in the static case
they are dominated by the static results in [10,[16]). In this table, the two results
from [10] are denoted by HLSTV1 and HLSTV2 and the result of [16] is denoted
by TWLY. For comparison purpose, we have replaced m with n in the space and
time bounds of our data structure.

Table 1. Comparison of dictionary matching succinct indexes

Algorithm Space usage (in bits) Query time

HLSTV1 O(nlogo) O(|T'| loglog(n) + occ)
HLSTV2 nlogo(1l+ o(1)) + O(dlog(n)) O(IT|(log® (n) + log(d)) + occ)
TWLY nlogo(2+ o(1)) + O(dlog(n)) O(|T'|(log(d) + log o) 4 occ)
Ours n(logo + 3.443 4+ o(1)) + O(dlog(n/d)) O(|T| + occ)

Our results assume a word RAM model, in which usual operations including
multiplications, divisions and shifts are all supported in constant time. We as-
sume that the computer word is of size 2(logn), where n is the total size of
the string dictionary on which we build our data structures. Without loss of
generality we assume that n is a power of two. All logarithms are intended as
base 2 logarithms. We assume that the strings are drawn from an alphabet of
size o, where o is not necessarily constant. That is, o could be as large as n.

The paper is organized as follows: in section 2] we present the main tools
that will be used in our construction. In section 3] we present our main result.
In section @l we give a compressed variant of the data structure. Finally some
concluding remarks are given in section

2 Basic Components

In this paper, we only need to use three basic data structures from the literature
of succinct data structures.

90 D. Belazzougui

2.1 Compressed Integer Arrays
We will use the following result about compression of integer arrays:

Lemma 1. Given an array A of n integers such that), ., Ali] = U. We can
produce a compressed representation that uses n([log(U/n)] + 2 + o(1)) bits of
space such that any element of the array A can be reproduced in constant time.

This result was first described in [9] based on Elias-Fano coding by Elias [5]
and Fano [6] combined with succinct bitvectors [3] which support constant time
queries.

2.2 Succinctly Encoded Ordinal Trees

In the result of [I3] a tree of n nodes of arbitrary degrees where the nodes are
ordered in depth first order can be represented in n(2 + o(1)) bits of space so
that basic navigation on the tree can be done in constant time. In this work we
will only need a single primitive: given a node x of preorder i (the preorder of
a node is the number attributed to the node in a DFS lexicographic traversal of
the tree), return the preorder j of the parent of x.

The following lemma summarizes the result which will be used later in our
construction:

Lemma 2. A tree with n nodes of arbitrary degrees can be represented in n(2 +
o(1)), so that the preorder of the parent of a node of given preorder can be
computed in constant time.

In this paper we also use the compressed tree representation presented in [12]
which permits to use much less space than 2n + o(n) bits in the case where tree
nodes degrees distribution is skewed (e.g. the tree has much more leaves than
internal nodes).

Lemma 3. A tree with n nodes of arbitrary degrees can be represented in n(H*+
o(1)), where H* is the entropy of the degree distribution of the tree, so that the
preorder of the parent of a node of given preorder can be computed in constant
time.

2.3 Succinct Indexable Dictionary
In the paper by Raman, Raman and Rao [14] the following result is proved :

Lemma 4. a dictionary on a set I' of m integer keys from a universe of size
U can be built in time O(m) and uses B(m,U) 4+ o(m) bits of space, where
B(m,U) = log (f{l) , so that the following two operations can be supported in
constant time:

— select(i): return the key of rank i in lexicographic order (natural order of
integers).

— rank(k): return the rank of key k in lexicographic order if k € I'. Otherwise
return —1.

Succinct Dictionary Matching with No Slowdown 91

The term B(m,U) = log (f{l) is the information theoretic lower bound on the
number of bits needed to encode all possible subsets of size n of a universe of size
U (we have (Z) different subsets and so we need log (g) to encode them). The
term B(m, U) can be upper bounded in the worst case by m(log(e)+log(U/m)).
The space usage of the dictionary can then be simplified as B(m,U) + o(m) <
m(log(e) +log(U/m) + o(1)) < m(log(U/m) + 1.443 + o(1)).

3 The Data Structure

Before describing our new representation, we briefly recall the original Aho-
Corasick automaton. The variant described here may slightly differ from other
ones for the reason that this variant is simpler to adapt to our case. In partic-
ular the strings of S' are implicitly represented by the automaton and are never
represented explicitly.

Given a set of strings S, our Aho-Corasick automaton has m = |P| states
where P is the set of all prefixes of strings in S including the empty string and
all the strings of S. Each state of the automaton uniquely corresponds to one
of the elements of P. We thus have |P| = m < n + 1 states in the automaton.
The states that correspond to strings in S are called terminal states. Our Aho-
Corasick representation has three kinds of transitions: next, failure and report:

— For each state v, corresponding to a prefix p, we have a transition next(v,, c)
labeled with character ¢ from the state v, to a state vy, corresponding to a
prefix pc for each prefix pc € P. Hence we may have up to o next transitions
per state.

— For each state v, we have a failure transition which connects v, to the state
vq corresponding to the longest suffix ¢ of p such that ¢ € P and p # q.

— Additionally , for each state v,, we may have a report transition from the
state v, to the state corresponding to the longest suffix g of p such that ¢ € S
and p # ¢ if such ¢ exists (a report transition always points to a terminal
state). If for a given state v, no such string exists, then we do not have a
report transition from the state vy,.

Our new data structure is very simple. We essentially use two succinctly encoded
dictionaries, two succinctly encoded ordinal trees and one Elias-Fano encoded
array. The representation we use is implicit in the sense that the strings of the
dictionary are not stored at all. A query will output the occurences as triplets
of the form (occ start pos,occ end pos, string id) where string id is the identi-
fier of a matched string from S and occ start pos (occ end pos) is the starting
(ending) position of the occurrence in the text.

The central idea is to represent each state corresponding to a prefix p €
P, by a unique number rankp(p) € [0,m — 1] which represents the rank of
p in P in suffix-lexicographic order (the suffix-lexicographic order is similar to
lexicographic order except that the strings are compared in right-to-left order
instead of left-to-right order). Then it is easy to see that the failure transitions
form a tree rooted at state 0 (which we call a failure tree) and a DF'S traversal of

92 D. Belazzougui

< Fail
< - Report
Next

Fig. 1. The Aho-Corasick automaton for the set {"ABC","B","BC","CA"}

the tree will enumerate the states in increasing order. Similarly, the set of report
transitions represent a forest of trees, which can be transformed into a tree rooted
at state 0 (which we call a report tree) by attaching all the roots of the forest
as children of state 0. Then similarly a DFS traversal of the report tree will
also enumerate the states of the automaton in order. Then computing a failure
(report) transition for a given state amounts to finding the parent of the state
in the failure (report) tree. It turns out that the succinct tree representations
(lemma 2] and lemma B]) do support parent queries on DFS numbered trees in
constant time.

3.1 State Representation

We now describe the state representation and the correspondence between states
and strings. The states of our Aho-Corasick automaton representation are de-
fined in the following way:

Definition 1. Let P be the set of all prefizes of the strings in S, and let m = |P)|.
We define the function state as a function from P into the interval [0,m — 1]
where state(p) = rankp(p) is the rank of the string p in P according to the suffiz-
lexicographic order (we count the number of elements of P which are smaller than
p in the suffiz lexicographic order).

The suffix-lexicographic order is defined in the same way as standard lexico-
graphic order except that the characters of the strings are compared in right-to-
left order instead of left-to-right order. That is the strings of P are first sorted
according to their last character and then ties are broken according to their next-
to-last character, etc. . .. In order to distinguish final states from the other states,
we simply note that we have exactly d terminal states corresponding to the d
elements of S. As stated in the definition, each of the m states is uniquely iden-
tified by a number in range [0, m — 1]. Therefore in order to distinguish terminal
from non-terminal states, we use a succinct indexable dictionary, in which we
store the d numbers corresponding to the d terminal states. As those d numbers

Succinct Dictionary Matching with No Slowdown 93

all belong to the range [0, m — 1], the total space occupation of our dictionary
is (at most) d(log(m/d) + 1.443 + o(1)) bits. In the following, we denote this
dictionary as the state dictionary.

3.2 Representation of Next Transitions

We now describe how next transitions are represented. First, we note that a
transition goes always from a state corresponding to a prefix p where p € P
to a state corresponding to a prefix pc for some character ¢ such that pc € P.
Therefore in order to encode the transition labeled with character ¢ and which
goes from the state corresponding to the string p (if such transition exists), we
need to encode two informations: whether there exists a state corresponding to
the prefix pc and the number corresponding to that state if it exists. In other
words, given state(p) and a character ¢, we need to know whether there exists
a state corresponding to pc in which case, we would wish to get the number
state(pc).

The transition from state(p) to state(pc) can be done in a very simple way
using a succinct indexable dictionary (lemma @) which we call the transition
dictionary. For that, we notice that state(p) € [0,m — 1]. For each non empty
string p; = pic; where p; € P, we store in the transition dictionary, the pair
pair(p;) = (¢, state(p})) as the concatenation of the bit representation of ¢;
followed by the bit representation of state(p;). That is we store a total of m — 1
pairs which correspond to the m — 1 non empty strings in P. Notice that the
pairs are from a universe of size om. Notice also that the pairs are first ordered
according to the characters ¢; and then by state(p}) (in the C language notation
a pair is an integer computed as pair(p;) = (¢; << logm) + state(p,). Now the
following facts are easy to observe:

1. Space occupation of the transition dictionary is m(log((o - m)/m)+ 1.443 +
0(1)) = m(log o + 1.443 4 o(1)).

2. The rank of the pairs stored in the succinct dictionary reflects the rank of
the elements of P in suffix-lexicographic order. This is easy to see as we are
sorting pairs corresponding to non empty strings, first by their last characters
before sorting them by the rank of their prefix excluding their last character.
Therefore we have rank(pair(p;)) = state(p;) + 1, where rank function is
applied on the transition dictionary.

3. A pair (¢;, state(p})) exists in the transition dictionary if and only if we have
a transition from the state corresponding to p} to the state corresponding to
pic; labeled with the ¢;.

From the last two observations we can see that a transition from a state
state(p) for a character ¢ can be executed in the following way: first compute
the pair (¢, state(p)). Then query the transition dictionary using the function
rank((c, state(p))). If that function returns —1, we can deduce that there is
no transition from state(p) labeled with character c. Otherwise we will have
state(pc) = rank((c, state(p))) + 1. In conclusion we have the following lemma:

94 D. Belazzougui

Lemma 5. The next transitions of an Aho-corasick automaton whose states are
defined according to definition[dl can be represented in (at most) m(logo+1.443+
o(1)) bits of space such that the eristence and destination state of a transition
can be computed in constant time.

3.3 Representation of Failure Transitions

We now describe how failure transitions are encoded. Recall that a failure tran-
sition connects a state representing a prefix p to the state representing a prefix ¢
where ¢ is the longest suffix of p such that ¢ € P and ¢ # p. The set of failure
transitions can be represented with a tree called the failure tree. Each node in the
failure tree represents an element of P and each element of P has a corresponding
node in the tree. The failure tree is simply defined in the following way:

— The node representing a string p is a descendant of a node representing the
string q if and only if ¢ # p and ¢ is suffix of p.

— The children of any node are ordered according to the suffix-lexicographic
order of the strings they represent.

Now an important observation on the tree we have just described is that a
depth first traversal of the tree will enumerate all the elements of P in suffix-
lexicographic order. That is the preorder of the nodes in the tree corresponds
to the suffix lexicographic order of the strings of P. It is clear from the above
description that finding the failure transition that connects a state state(p) to
a state state(q) (where ¢ is the longest element in P such that ¢ is a suffix
of p and ¢ # p) corresponds to finding the parent in the failure tree of the
node representing the element ¢. Using a succinet encoding (lemma [2)), the tree
can be represented using space 2m + o(m) bits such that the parent primitive
is supported in constant time. That is the node of the tree corresponding to
a state p will have preorder state(p), and the preorder of the parent of that
node is state(q). A failure transition is computed in constant time by state(q) =
parent(state(p)).

Lemma 6. The failure transitions of the Aho-corasick automaton whose states
are defined according to definition [l can be represented in m(2 + o(1)) bits of
space such that a failure transition can be computed in constant time.

3.4 Representation of Report Transitions

The encoding of the report transitions is similar to that of failure transitions. The
only difference with the failure tree is that except for the root, every internal node
is required to represent an element of S. We remark that the report transitions
form a forest of trees, which can be transformed into a tree by connecting all the
roots of the forest (nodes which do not have a report transition) as children of
state 0 (which hence becomes the root of the tree). In other words a report tree
is the unique tree built on the elements of P which satisfies :

Succinct Dictionary Matching with No Slowdown 95

— All the nodes are descendants of the root (representing state 0) which rep-
resents the empty string.

— The node representing a string p is a descendant of a node representing a
non empty string s if and only if s € S, s # p and s is a suffix of p.

— All children of a given node are ordered according to the suffix-lexicographic
order of the strings they represent.

We could encode the report tree in the same way as the failure tree (using lemma
) to occupy m(2+o0(1)) bits of space. However we can obtain better space usage
if we encode the report tree using the compressed tree representation (lemma
[B). More specifically, the report tree contains at most d internal nodes as only
strings of S can represent internal nodes. This means that the tree contains at
least m — d leaves. The entropy of the degree distribution of the report tree is
d(log(m/d) + O(1)) bits and the encoding of lemma [3] will use that much space
(this can easily be seen by analogy to suffix tree representation in [I2] which
uses d(log((d+t)/d) + O(1)) bits of space for a suffix tree with d internal nodes
and t leaves). Report transitions are supported similarly to failure transitions
in constant time using the parent primitive which is also supported in constant
time by the compressed tree representation (lemma [3).

Lemma 7. The report transitions of the Aho-corasick automaton whose states
are defined according to definition [can be represented in d(log(m/d) 4+ O(1))
bits of space such that a report transition can be computed in constant time.

3.5 Occurence Representation

Our Aho-corasick automaton will match strings from S which are suffixes of
prefixes of the text T'. This means that the Aho-corasick automaton will output
the end positions of occurrences. However the user might need to also have
the start position of occurrences. For that we have chosen to report occur-
rences as triplets (oce start pos,occ end pos, string id), where string € S and
occ start pos (occ end pos) is the start (end) position of the occurrence in the
text. For that we need to know the length of the matched strings. But this infor-
mation is not available as we do not store the original strings of the dictionary
in any explicit form. We note that our algorithm outputs string identifiers as
numbers from interval [0,d — 1] where the identifier of each string corresponds
to the rank of the string in the suffix lexicographic order of all strings. Hence
in order to store the string lengths, we succinctly store an array of d elements
using the Elias-Fano encoding. In that array a cell i will store the length of the
pattern number i. We call the resulting compressed array as the pattern length
store. As the total length of the strings of the dictionary is n, the total space
usage of the pattern length store will be d([log(n/d)] + 2).

If the user has to associate specific action to be applied when a given string
is matched, then he may use a table action of size d, where a cell number
stores the value representing the action associated with the pattern number i.
The table could be sorted during the building of the state dictionary.

96 D. Belazzougui

3.6 Putting Things Together

Summarizing the space usage of the data structures which are used for repre-
sentation of the Aho-Corasick automaton:

1. The state dictionary which indicates the final states occupies at most
d(log(m/d) + 1.443 + 0(1)) < d(log(n/d) + 1.443 + o(1)) bits of space.

2. The next transitions representation occupies B(m, mo)+o(m) < m(log(o)+

1.443 + o(1)) bits of space.

The failure transitions representation occupies m(2 + o(1)) bits of space.

4. The report transitions representation occupies d(log(m/d) + O(1)) <
d(log(n/d) + O(1)) bits of space.

5. The pattern length store occupies d([log(n/d)] + O(1)) bits of space.

w

The following lemma summarizes the space usage of our representation:

Lemma 8. The Aho-corasick automaton can be represented in m(logo+3.443+
o(1)) + d(3log(n/d) + O(1)) bits of space.

Implicit representation of the dictionary strings. We note that the state
dictionary and the transition dictionary can be used in combination as an implicit
representation of the elements of S.

Lemma 9. For any integeri € [0,d—1], we can retrieve the string x € S of rank
i (in suffiz-lexicographic order) in time O(|x|) by using the transition dictionary
and state dictionary.

The proof of the lemma is left to the full version.

3.7 Queries

Our query procedure essentially simulates the Aho-Corasick automaton opera-
tions, taking a constant time for each simulated operation. In particular perform-
ing each of the three kinds of transitions takes constant time. Thus our query
time is within a constant factor of the query time of the original Aho-Corasick.

Lemma 10. The query time of the succinct Aho-Corasick automaton on a text
T is O(|T| 4 occ), where occ is the number of reported occurrences.

3.8 Construction

We now describe the construction algorithm which takes O(n) time . The algo-
rithm is very similar to the one described in [4]. We first write each string s; of
S in reverse order and append a special character # at the end of each string
giving a set R. The character # is considered as smaller than all characters of
original alphabet . Then, we build a (generalized) suffix-tree on the set R. This
can be done in time O(n) using the algorithm in [7] for example. Each leaf in
the suffix tree will store a list of suffixes where a suffix s of a string x € R
is represented by the pair (string pointer, suf pos), where string pointer is a
pointer to x and suf pos is the starting position of s in z. Then we can build
the following elements:

Succinct Dictionary Matching with No Slowdown 97

1. The transition dictionary can be directly built as the suffix tree will give
us the (suffix-lexicographic) order of all elements of P by a DFS traversal
(top-down lexicographic traversal).

The failure tree is built by a simple DFS traversal of the suffix tree.

The report tree is built by doing a DFS traversal of the failure tree.

The state dictionary can be built by a traversal of the report tree.

The pattern length store can be built by a simple traversal of the set S.

Gt o

Details of the construction are left to the full version.

Lemma 11. The succinct Aho-corasick automaton representation can be con-
structed in time O(n).

The results about succinct Aho-Corasick representation are summarized by the
following theorem:

Theorem 1. The Aho-corasick automaton for a dictionary of d strings of total
length n characters over an alphabet of size o can be represented in m(logo +
3.443+0(1))+d(3log(n/d)+0O(1)) bits where m < n+1 is the number of states in
the automaton. A dictionary matching query on a text T using the Aho-corasick
representation can be answered in O(|T| + occ) time, where occ is the number
of reported strings. The representation can be constructed in O(n) randomized
expected time.

4 Compressed Representation

The space occupancy of theorem [can be further reduced to m(Hy + 3.443 +
o(1))+d(3log(n/d)+O(1)), where Hy is the entropy of the characters appearing
as labels in the next transitions of the Aho-Corasick automaton:

Theorem 2. The Aho-corasick automaton for a set S of d strings of total length
n characters over an alphabet of size o can be represented in m(Hy + 3.443 +
o(1)) + d(3log(n/d) + O(1)) bits where m < n + 1 is the number of states in
the automaton and Hy is the entropy of the characters appearing in the trie
representation of the set S. The theorem holds provided that o < m® for any
constant 0 < € < 1. A dictionary matching query for a text T can be answered
in O(|T| + occ) time.

Proof. Compared to theorem [I] we only modify the representation of the next
transition which dominates the total space usage. That is, we reduce the space
used to represent the next transitions from m(logo + 1.443 + o(1)) to m(Hp +
1.443 4+ o(1)) and thus reduce the total space usage to m(Hy + 3.443 + o(1)) +
d(3log(n/d) + O(1)) bits of space. We will use ¢ indexable dictionaries instead
of a single one to represent the next transitions. Each dictionary corresponds to
one of the characters of the alphabet. That is a pair (¢, state) will be stored in
the dictionary corresponding to character ¢ (we note that dictionary by Ic]).
Additionally we store a table T'[0..c — 1]. For each character ¢ we set T'[¢] to the
rank of character ¢ (in suffix-lexicographic order) relatively to the set P (that

98 D. Belazzougui

is the number of strings in the set P which are smaller than the string ”¢” in
the suffix lexicographic order). Let Y be the set of pairs to be stored in the
transition dictionary. The indexable dictionary I[c] will store all values state;
such that (c, state;) € Y. Thus the number of elements stored in I[c] is equal to
the number of next transitions labeled with character c.

Now the target state for a transition pair (c, state) is obtained by T[c] +
ranky)(state), where ranky(state) is the rank operation applied on the dic-
tionary I[c] for the value state. Let’s now analyze the total space used by
the table T' and by the indexable dictionaries. The space usage of table T is
ologm < mflogm = o(m). An indexable dictionary I[c] will use at most
tc(log(m/t.) + 1.443 + o(1)) bits , where t. is the number of transitions la-
beled with character c. Thus the total space used by all indexable dictionaries is
Y 0<eco te(log(m/te)+1.4434-0(1)) = m(Ho+1.443+0(1)) and the total summed
space used by the table T' and the indexable dictionaries is m(Hy+1.443+0(1)).H

5 Concluding Remarks

Our work gives rise to two open problems: the first one is whether the term
3.443m in the space usage of our method which is particularly significant for
small alphabets (DNA alphabet for example) can be removed without incurring
any slowdown. The second one is whether the query time can be improved to
O(|T'|log o /w + occ) (which is the best query time one could hope for).

Acknowledgements

The author is grateful to Mathieu Raffinot for proofreading the paper and for use-
ful comments and suggestions. The author wishes to thank Kunihiko Sadakane
and Rajeev Raman for confirming that the construction time of their respective
data structures in [12] and [14] is linear.

References

[1] Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Commun. ACM 18(6), 333-340 (1975)

[2] Chan, H.-L., Hon, W.-K., Lam, T.W., Sadakane, K.: Dynamic dictionary matching
and compressed suffix trees. In: SODA, pp. 13-22 (2005)

[3] Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended
abstract). In: SODA, pp. 383-391 (1996)

[4] Dori, S., Landau, G.M.: Construction of aho corasick automaton in linear time for
integer alphabets. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005.
LNCS, vol. 3537, pp. 168-177. Springer, Heidelberg (2005)

[5] Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246-260 (1974)

[6] Fano, R.M.: On the number of bits required to implement an associative memory,
Memorandum 61, Computer Structures Group, Project MAC. MIT, Cambridge
(1971)

(7]
(8]
(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

Succinct Dictionary Matching with No Slowdown 99

Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS,
pp. 137-143 (1997)

Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
FOCS, pp. 390-398 (2000)

Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching (extended abstract). In: STOC, pp. 397-406
(2000)

Hon, W.-K., Lam, T.W., Shah, R., Tam, S.-L., Vitter, J.S.: Compressed index for
dictionary matching. In: DCC, pp. 23-32 (2008)

Hon, W.-K., Lam, T.W., Shah, R., Tam, S.-L., Vitter, J.S.: Succinct index for dy-
namic dictionary matching. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878. Springer, Heidelberg (2009)

Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered
trees. In: SODA, pp. 575-584 (2007)

Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762-776 (2001)

Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: SODA, pp. 233-242 (2002)
Sadakane, K.: Compressed text databases with efficient query algorithms based on
the compressed suffix array. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS,
vol. 1969, pp. 410-421. Springer, Heidelberg (2000)

Tam, A., Wu, E., Lam, T.W., Yiu, S.-M.: Succinct text indexing with wildcards.
In: SPIRE, pp. 39-50 (2009)

A A Full Example

Let’s now take as example the set S = {"ABC"/ B"/ BC"/ CA"}.
The example is illustrated in figures [and Bl The set P of pre-

fixes

"

"

of S sorted in suffix-lexicographic order gives the sequence:
//A//, //CA//’ //B//’ //AB//’ //C//’ //BC//’ //ABC//. The ﬁrSt preﬁX

Fig. 2. Failure and report trees for the set {"ABC","B","BC","CA"}

100 D. Belazzougui

(the empty string) in the sequence corresponds to state 0 and the last one
corresponds to state 7. For this example, we store the following elements:

— The transition dictionary stores the following pairs:
(4,0),(4,5),(B,0),(B,1),(C,0),(C,3),(C,4).

The state dictionary stores the states 2,3, 6,7 which correspond to the final
states of the automaton (states corresponding to the strings of 5).

— The report and failure trees are depicted in figure

The pattern length store, stores the sequence 2,1,2,3 which correspond
to the lengths of the strings of S sorted in suffix lexicographic order
(//CA//// B//’// BC//’// ABC//).

Pseudo-realtime Pattern Matching:
Closing the Gap

Raphaél Clifford and Benjamin Sach

Department of Computer Science, University of Bristol, UK
{clifford,sach}@cs.bris.ac.uk

Abstract. We consider the k-difference and k-mismatch problems in
the pseudo-realtime model where the text arrives online and the time
complexity measure is per arriving character and unamortised. The well-
known k-difference/k-mismatch problems are those of finding all align-
ments of a pattern of length m with a text of length n where the
edit/Hamming distance is at most k. Offline, the literature gives efficient
solutions in O(nk) and O(nv/klogk) time, respectively. More recently,
a pseudo-realtime solution was given for the former in O(klogm) time
and the latter in O(y/klog klogm) time per arriving text character. Our
work improves these complexities to O(k) time for the k-difference prob-
lem and O(\/k log k +logm) for the k-mismatch problem. In the process
of developing the main results, we also give a simple solution with opti-
mal time complexity for performing longest common extension queries in
the same pseudo-realtime setting which may be of independent interest.

1 Introduction

We revisit the problem of pattern matching in streaming data. Many well known
and successful techniques have been developed since the 1970s for pattern match-
ing under a variety of norms. However, almost without exception, it has been
assumed that the entirety of the text is available to the algorithm during the
length of its operation. In two recent papers [3l4] the pseudo-realtime (PsR)
model was introduced. Here it is assumed that we are given a pattern P in
advance and the text T to which it is to be matched arrives one character at
a time. The overall task is to report matches between the pattern and text as
soon as they occur and to bound the worst case time per text input character.
The terminology extends the idea of realtime computing for situations where
achieving constant time per character is not feasible. Crucially, the running time
of the resulting algorithms is not amortised.

We focus on the well-known k-difference and k-mismatch problems in
the pseudo-realtime model. Previously, deterministic algorithms which run in
O(klogm) and O(v/klogklogm) time per text character respectively were
shown [3/4]. Our contribution is to narrow the gap between the best known
result in the offline setting and that which is achievable deterministically in
pseudo-realtime. We first consider the k-difference problem and show how to
solve it in O(k) time per text character in the PsR setting, thus matching the

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 101 2010.
© Springer-Verlag Berlin Heidelberg 2010

102 R. Clifford and B. Sach

best known O(nk) time offline result of [8]. In order to achieve this complexity
we require a realtime longest common extension (LCE) data structure which
can be updated in constant time as new text characters arrive and which still
permits constant time queries. Our solution achieves both aims and is, in the
authors’ view, remarkably straightforward and of independent interest. We then
show how to develop an O(\/k log k +log m) time per character PsR solution for
the k-mismatch problem, improving on the previous PsR result and enabling us
to close in on the O(ny/klog k) time offline solution of [2]. Our solution requires
two main technical innovations. First, a new filtering result given in Theorem [0
limits the number of k-mismatches that can occur in a length &k contiguous region
of the text. Second, we present a new trick that combines the PsR partitioning
scheme presented in [3] with a fast algorithm for small values of k.

Our motivation goes further than the interesting theoretical question of
whether offline and online approximate pattern matching algorithms need neces-
sarily have different time complexities. The removal of the multiplicative logm
factor, which is not there in the original offline versions, is also particularly sig-
nificant as these bounded versions of the Hamming and edit distance problems
are relevant to situations where the value of k is small.

Prior to the work on PsR approximate pattern matching, the problem of exact
matching in constant time per new text character has been considered in [5] for
example. Very recently, randomised algorithms both for the exact matching and
k-mismatch problems in the streaming model, where the amount of working
memory is smaller than the pattern size, have also been given [10].

2 Pseudo-realtime k-Differences

The k-difference problem is defined in relation to the edit distance. The edit dis-
tance between the pattern, P and some text substring, T'[¢’ . . .1], is the minimum
number of insert, delete and mismatch operations required to transform P into
T ...1]. These operations insert a single character, delete a single character or
substitute one character for another (mismatch). We consider a formulation of
the problem where the goal is to output the locations of all substrings of the
text to which the pattern can be transformed in at most k operations. For each
such location we also output the edit distance. In the pseudo-realtime model we
will require that each such location, T[i’ .. .14] is outputted as T'[i] arrives.

In a recent paper, the present authors demonstrated an algorithm for
pseudo-realtime k-differences requiring O(klogm) time per character and O(m)
space [4]. As each T'[¢] arrives, their algorithm outputs the minimal edit distance
over all substrings of the form T[i’...4] with distance at most k. Prior to this
work, Landau, Myers and Schmidt presented a different k-differences algorithm
in a related incremental model [7]. They allow text characters to arrive at either
end of the text and output all locations as required in O(k) time per arriving
character. However, their work is not immediately applicable in the PsR model
as it requires the entire text to be preprocessed in advance for constant time
LCE queries.

Pseudo-realtime Pattern Matching: Closing the Gap 103

In order to adapt the previous O(k) time k-differences algorithm to the sit-
uation where the text cannot be inspected in advance, we develop a realtime
version of the LCE data structure in Section 2l The LCE is traditionally com-
puted via lowest common ancestor (LCA) queries on a generalised suffix tree
of the pattern and text. However we completely avoid the complications that
would arise from performing dynamic LCA queries on an unamortised version of
a suffix tree, giving a conceptually simple solution which may be of independent
interest. We are then able to use this result to derive the final PsR k-differences
result in Theorem

A Simple Realtime Scheme for Constant Time LCE Queries

We give a dynamic text indexing structure that supports longest common ex-
tension (LCE) queries in constant time. The pattern is processed in advance
in linear time. An important feature of our approach is that it supports the
text arriving online one character at time and all operations, including updat-
ing the data structures used, can be performed in constant time without any
amortisation assumptions.

Throughout we let ¢ be the index of the most recently received text character,
Ti]. For a given pattern and text, the longest common extension, LCE(', j),
is the length of the longest prefix of P[j,...m] and T[¢’,¢] which is common to
both. In addition we will also consider pattern/pattern longest common exten-
sion queries, denoted by LCEp (4, j’). The value of LCEp(j, ') is the length of
the longest common prefix of P[j...m] and P[j’...m]. Observe that we can
preprocess P in linear time to answer LCEp queries in constant time before any
text has arrived using for example [9].

In the following, we will assume that all symbols in T occur at least once in
P. If this is not the case, we add a new character, § into the alphabet which
is different from all pattern and text characters. We then modify P so that
P[m] = ¢ and modify T as each character arrives online to replace any character
not in P with a § in constant time per character. The LCE returned may be at
most one symbol too long or too short. This can be corrected with knowledge
of the original P[m] in constant time per query. The details are simple but are
omitted for brevity.

Our algorithm splits the text into contiguous substrings which are encoded
as triples, (¢/,7',¢), each representing a text substring T'[i’,i’ + ¢ — 1] which
equals a pattern substring P[j’, j/ + ¢ — 1]. We refer to such triple as a p-region
and a disjoint ordered sequence of triples which encodes the entire text as a
p-representation. The length of a p-representation is the number of triples it
contains. Trivially, a representation of at most length n always exists as each T'[i']
occurs somewhere in P. To motivate the use of these representations, consider
that to answer an LCE query between the pattern and text we could use a
p-representation instead to identify a sequence of LC Ep queries to perform. We
now show in Lemma [Tl that if our p-representation is of minimal length, we need
never perform more than three LCEp queries. It will then remain only to show
how to build such a minimal representation efficiently in realtime.

104 R. Clifford and B. Sach

Lemma 1. In a minimal length p-representation of T, for any query LCE(i', j')
at most three of the p-regions overlap T[i',i' + LCE(¥', ') — 1].

Proof. For a contradiction, assume that at least four p-regions overlap T'[i’,i +
LCE(i,j") — 1]. There must be two contiguous p-regions which correspond to
text substrings which are themselves substrings of T'[i’,i + LCE(i',j') — 1]. Let
(a,b,¢) and (a+£,b+£,¢") be two such p-regions. Observe that T'[a,a+ £+ ¢ —1]
and P[b,b+ ¢ + ¢’ — 1] are substrings of T[¢',i' + LCE(¢/, j') — 1] and P[j’, 5 +
LCE(#,j")—1] respectively. By the definition of the LC'E we have that T'[i’, ¢’ +
LCE(#,j") — 1] matches P[j’,j' + LCE(i,j") — 1], therefore T[a,a + ¢ + ¢ — 1]
matches P[b,b+ ¢+ ¢ —1] and (a,b, £+ ¢') is a p-region. Further we can obtain
a shorter p-representation of T by replacing the two original p-regions with this
new p-region, a contradiction. g

For any p-representation ¢(T'), we can obtain a representation of T'[1,4], de-
noted ¢;(T) by shortening the region containing T[i] to end at text position
¢ and removing all regions to its right. For our realtime algorithm we desire
a p-representation, ¢(7T'), with the property that ¢;(7") is minimal for all i.
Observe that such a representation is suited to greedy construction. For mo-
tivation consider the pattern P = bab and text, T' = aba. There is a minimal
p-representation given by ¢(T) = (1,2,1),(2,1,2). However, the representation
¢2(T) = (1,2,1),(2,1,1) is not of minimal length. On the other hand, it is easily
verified that there is another minimal p-representation, ¢'(T') = (1,2,2), (3,2,1)
for which ¢} (T) and ¢4(T) are both minimal. Lemma [2] shows that for any
pattern and text such a representation exists.

Lemma 2. For any pattern and text, there exists a minimal length p-
representation, ¢(T), such that for all i, ¢;(T) is a p-representation of T[1,1]
with minimal length.

Proof. We begin by letting 7(T') be an arbitrary minimal p-representation of
T. Consider the largest ¢ such that r;(T") is not minimal. If no such i exists,
then there is no work to be done. Otherwise we will modify r(7') to make 7 (T)
minimal for all ¢ < ¢’ < n. Consider the p-region which contains T[] in (7). If
the region extends to the right of T'[i], split it in two so that there is a break
immediately after T'[¢]. This split increases |r(T")| by one. However, we can now
replace all the regions to the left of this break with the regions in any minimal
p-representation of T[1,]. As r;(T) was not minimal pre-modification this step
decreases the length of |r(T")| by at least one. Therefore our modified r(7") is no
longer than the original and in fact must be of the same length. Further, observe
that 7;(T) is now minimal and 7, (T) is still minimal for all i < i’ < n. We can
repeat this process until an r(7') is obtained for which 7;(7T) is minimal for all
1 <i < n as required. Let ¢(T") = r(T). O

Our algorithm incrementally constructs a greedy p-representation of the text
seen so far, T'[1,4], which we denote g;(7T"). We show below in Lemma [3 this is a
minimal length p-representation of T'[1,4]. As a preprocessing step, we construct

Pseudo-realtime Pattern Matching: Closing the Gap 105

a suffix tree of the pattern in linear time. When T'[¢] arrives we compute g;(T)
from g;_1(T) as follows. Consider the rightmost p-region in g;_1(T") which has
the form (i — £,b,£) for some b, {. We determine whether this region can be
extended into a p-region (i — ¢,b,¢ 4+ 1). To perform this check efficiently we
maintain a pointer into the position in the suffix tree representing the rightmost
p-region. Observe that the region can be extended iff it is possible to step down
from the current position in the suffix tree using the character T'[i]. If the p-
region cannot be extended, we insert a new p-region, (¢,b’,1) where b’ is some
location such that P[b'] = T'[i] and update the suffix tree pointer.

Lemma 3. For all i, the greedy p-representation, ¢;(T'), which represents T'[1, 1]
18 of minimal length.

Proof. Let ¢(T) be a minimal length p-representation with the property that
¢;(T) is minimal for all ¢. Such a ¢(T) exists by Lemma I We prove that
|g:(T)| = |¢:(T)| by induction on . Observe that for the base case i = 1, we
have that |g1(T")| = |¢1(T)| = 1. Therefore by the inductive hypothesis, we as-
sume that |gy (T)] = |¢#(T)] for all 1 < ¢’ < 4. By the algorithm description,
|g:(T)| either equals |g;—1(T)| or |gi—1(T)| + 1. In the former, by the mono-
tonicity of ¢;(T), we have that |¢;(T)| = |g:(T)|. Therefore we assume that
lg:(T)| = |gi—1(T)| + 1. Let (a,b,¢) and (a’,¥’,¢') be the triples corresponding
to the rightmost p-regions in ¢;—1(T") and respectively ¢;_1(T"). First suppose
that @ < @’ and observe that ¢,(T") contains less than |¢;—1(T")| regions. How-
ever, go(T) contains |g;—1(T)| = |¢i—1(T)| regions, which is a contradiction as
|9a(T)| = |¢a(T)| by the inductive hypothesis (a < a’ < i). Therefore we have
that a > a’. Further, by the construction of ¢;(T"), we have that T[a,] does not
match any substring of P and therefore T'[a’,i] does not match any substring of
P. Therefore |¢;(T)| = |¢pi—1(T)| + 1 as required. O

Theorem 4. There exists a dynamic data structure which can answer LCE
queries between the pattern and T[1,i] in O(1) time. When a new text char-
acter, T[i + 1] arrives, the structure can be updated in O(1) time. The structure
requires O(i) space and O(m) pattern preprocessing time.

Proof. The algorithm described maintains a p-representation of the text seen so
far which is minimal by Lemma [Bl When a text character arrives, the checks
required can be performed in constant timdl. By Lemma [I] we require at most
three LCEp queries to perform an LCE query. These LCEp queries can be
identified and then performed in constant time. O

The k-Differences Algorithm

Careful inspection of the k-difference algorithm of Landau, Myers and
Schmidt [7] shows that by using the pseudo-realtime LCE processing that we

! Strictly speaking traversing a suffix tree also incurs an O(log|X|) penalty at the
nodes. However we omit this from our results to be consistent with the large body
of previous work.

106 R. Clifford and B. Sach

have presented their algorithm can be translated fully to the pseudo-realtime
model. The details are left for the full version of the paper but the result is
summarised in Theorem B

Theorem 5. The k-differences problem can be solved in the PsR model in O(k)
time per character and O(m) space.

3 Pseudo-realtime k-Mismatches

The k-mismatch problem is defined in relation to the hamming distance which is
the number mismatches (single character differences) between two strings. The
goal is to find all alignments where the hamming distance is at most k. For
each such location we also output the hamming distance. In the pseudo-realtime
model we will require that each such location, T'[i —m + 1...4] is outputted as
Ti] arrives.

We now present our pseudo-realtime k-mismatch algorithm which follows the
overall structure of the offline solution of Amir et al. [2]. Their structure is in
turn based on a general frequent/infrequent splitting trick which is originally
due to Abrahamson and Kosaraju [IJ6]. Our algorithm is parameterised by two
variables f and b which will feature in the time complexity. These will then be
set to minimise the time complexity per character in terms of k& and m. When
minimising, we will ensure that bf > 3k which will be required below. We term
a character to be frequent if it occurs at least 6f times in the pattern. We now
separate the algorithm into two cases determined by the number of frequent
characters in the pattern:

Case 1: There Are Fewer Than 6b Frequent Characters in the
Pattern

For this case we are able to modify the solution of Amir et al. [2] to make the
solution PsR. Their original method counts matches rather than mismatches and
considers frequent and infrequent characters separately. They observe that each
text position which matches an infrequent character matches at fewer than,
in our case 6f, positions in the pattern. Therefore all matches involving an
infrequent character can be found in O(nf) time by directly counting the number
of matches at each alignment. This process can be made PsR straightforwardly
as the work is performed independently for each new text character that arrives.
However we may require O(log | X|) time to classify the arriving text character.
This process is therefore upper-bounded by O(f +logm) time per text character
if the text is arriving online.

To handle a single frequent character, Amir et al. transform the pattern and
text into binary representations. These representations have a 1 at locations
where the frequent character occurs and 0 otherwise. They observe that the num-
ber of matches at each alignment can then be found using cross-correlations in
O(nlogm) time. However, if the text arrives online, we cannot use the standard

Pseudo-realtime Pattern Matching: Closing the Gap 107

FFT-based cross-correlation method. Instead we replace this with the pseudo-
realtime cross-correlation method of [3/4]. This method now requires O(log® m)
time per arriving text character. As there are fewer than 6b frequent charac-
ters, the original process requires a total of O(nblogm) time and our modified
pseudo-realtime process requires O(b log? m) time per character. The result is
summarised in Lemma

Lemma 6. Assume that the pattern contains fewer than 6b frequent characters,
each of which occurs at least 6f times. The k-mismatch problem can solved in
pseudo-realtime in O(f + blog®> m) time per character and O(m) space.

Case 2: There Are at Least 6b Frequent Characters in the Pattern

As in Amir et al.’s offline algorithm we perform two main stages. First, we fil-
ter the locations where a potential match could occur and second we verify the
filtered locations which indeed contain at most k& mismatches. It is essential for
the translation to the pseudo-realtime setting that unlike the original, our filter-
ing results restrict not just the number but also the distribution of potentially
matching locations. Intuitively this is because otherwise we may encounter a
long stretch of potentially matching locations each requiring ©(k) time to verify.
To perform the verification in pseudo-realtime, we will require the use of our re-
altime LCE results which were presented in Section Pland also careful scheduling
to ensure that the time complexity of the resulting algorithm is unamortised.

We begin by trimming the pattern to remove its rightmost 3k characters,
as there are at least 6b frequent characters in P we have that m > 3k. The
mismatches between these 3k positions and the text will be handled separately.
For motivation we consider the advantage of this trimming. Consider some pat-
tern/text alignment where the rightmost character of the trimmed pattern is
aligned with the most recently arrived text character, T'[i]. At this alignment,
the rightmost position of the full pattern is aligned with text character T'[i + 3k].
Therefore there are 3k text character arrivals between the first point at which we
have the seen the text aligned with the trimmed pattern and the point at which
we must output the result. We will use this delay to give us sufficient scheduling
flexibility to output in pseudo-realtime.

The algorithm begins by preprocessing the pattern to identify a set of 2b
pattern substrings which can be used to filter the text locations where a k-
mismatch could occur. Formally, we say that R[j ... '] is an f-balanced substring
of some string R for symbol s € X if the substring R[j . ..j’ — k] contains exactly
2f occurrences of s, and R[j' —k+ 1...j] contains at most f occurrences of s.

To find enough f-balanced substrings in the trimmed pattern to perform our
filtering we need to show that the trimmed pattern still contains many characters
which are almost frequent (but not too frequent). As bf > 3k there cannot be
more than b symbols which occur at least f times in the rightmost 3k positions in
the pattern. Further observe that as the trimmed pattern is of length (m — 3k) it
contains at most b symbols which occur at least (m — 3k)/b times. Therefore the
trimmed pattern contains at least 4b symbols which occur at least 5f and less

108 R. Clifford and B. Sach

than (m — 3k)/b times and hence by Lemma [l we have that either the trimmed
pattern or its reverse contains an f-balanced substring for each of at least 2b
distinct symbols in Y. We concentrate our explanation on the former case. In
the latter case, simple modifications are needed and are left for the full version.
It is straightforward to find f-balanced substrings in the trimmed pattern for
2b distinct symbols in O(sort(m)) time. Here sort(m) is the time taken to sort
the pattern by character which is upper bounded by O(mlog|X|). We denote
the f-balanced substring found for some symbol s by W, (s). Further for each
Wy(s) := P[j...j'] we construct a linked list, L,(s) of the 2f occurrences of s
in P[j...7" — k] in O(m) total time and space.

Lemma 7. Consider an arbitrary string R. Let s € X' be a symbol which occurs
at least 5f and less than |R|/b times in R with bf > 3k. There is an f-balanced
substring in either R or the reverse of R.

Proof. Assume that R has no k-length substring which contains at most f occur-
rences of s. Therefore we have that all disjoint k length substrings of R contain
more than f occurrences of s, so R contains more than f|R|/k > |R|/b occur-
rences of s, a contradiction. Consider the first k-length R substring to contain
at most f occurrences of s. As s occurs at least 5f times there are at least 2f
occurrences of s either to the left or to the right of this substring. The result
follows from the definition of an f-balanced substring above. O

As the text arrives we will monitor the text substrings which align with the
f-balanced substrings found during preprocessing. For each of the 2b f-balanced
substrings we define the corresponding text window, W;(s,), to be the substring
of T of length |W,(s)| which is aligned with W, (s) when the rightmost position
in the trimmed pattern is aligned with T'[¢] (the most recently arrived character).
For each text window, we maintain a list L;(s,i) of up to 4f + 1 of the latest
(rightmost) occurrences of s in Wy(s,4). As there are 2b such windows these lists
can be updated when a new character arrives in O(b) total time per character
(and use O(m) total space). Lemma[8 gives the first filtering result for these text
windows.

Lemma 8. If at least b of the text windows, Wi(s,4), contain more than 4f
occurrences of s then T[i+ 3k —m + 1...4] has more than k mismatches with
the trimmed pattern.

Proof. We have for a single such s that Wy(s,i) contains more than 4f oc-
currences of s while W,(s) contains at most 3f so we have found more than f
mismatches where the text character is s. Across all such symbols we have found
more than bf > 3k mismatches which gives the desired result. a

As there are 2b text windows, by Lemma, [l we only need to consider locations
where at least b of the text windows contain at most 4f occurrences of their
corresponding symbol. Using the lists described above we can determine whether
the current T'[¢] has this property in constant time. Having found a suitable T'[i],
we will show how to efficiently find all alignments in the the next k positions

Pseudo-realtime Pattern Matching: Closing the Gap 109

which have at most k& mismatches with the trimmed pattern. Recall that the
alignment of the rightmost position in the trimmed pattern with T'[i] corresponds
to the alignment of the full pattern with T'[¢ + 3k]. Hence we still have 3k text
arrivals remaining before we need to output our first result. After finding all
these positions, the algorithm begins again with the first suitable position after
T[i+k—1]. Note that computations discussed may overlap but it is easily verified
that this only increases the time complexity by a small multiplicative constant.

Let 7’ be a suitable text position as identified above, which is fixed in the re-
mainder. Consider the at least b f-balanced substrings which correspond to text
windows, Wy(s,4) containing at most 4f occurrences of s. We have that these
f-balanced substrings contain a total of at least b-2f > 6k distinct pattern posi-
tions. Pick 2k of these pattern positions. For each alignment in the next k, count
the matches involving one of those picked pattern positions. Each pattern posi-
tion is in some list, L,(s) and by the construction of the f-balanced substrings,
during the next k alignments it only matches with text positions in Lq(s,).
As each |Li(s,i')| < 4f, we perform at total of at most 8 fk comparisons in this
step. We distribute these comparisons over the next k arriving characters so that
O(f) comparisons are made per alignment. Discard any alignment which has less
than k£ matches. By Lemma [0l we have that at most 8 f alignments remain and
that all discarded alignments had more than k mismatches. Note that there are
still 2k text arrivals before we must make our first output.

Lemma 9. If at least b of the text windows, Wy(s,), contain at most 4f oc-
currences of s then there are at most 8f alignments where there are at most
k-mismatches with the trimmed pattern in the next k text arrivals. The algo-
rithm above correctly identifies these positions.

Proof. Consider the 2k positions picked in the algorithm description. Recall that
each picked pattern position is in some Ly and matches at most |Li(s,4')] < 4f
times in the next k alignments. Summing over all 2k pattern positions this gives
a total of at most 8k f matches. However, any alignment with less than k£ matches
must have more than k mismatches as there are 2k positions. Therefore there
are at most 8 f positions where a k-mismatch could occur. O

Theorem [I0 summarises the main filtering result that we have shown which can
be seen as a tightening of the central filtering result of Amir et al. [2]. Tt follows
directly from Lemma [Lemma [and the algorithm description.

Theorem 10. Assume there are at least 5b symbols, each of which occurs at
least 5f times in the pattern where bf > 3k. In k consecutive alignments of the
pattern with the text, there are at most 8 f positions where a k-mismatch occurs.

Having found the at most 8 f potential matching alignments in the next k align-
ments, it only remains to verify them. To find mismatches with the trimmed pat-
tern we use the online LCE query algorithm presented in section[2l We can process
the text to answer text/pattern LCE queries in constant time per arriving charac-
ter. Further we can perform the LCE queries in constant time. We can find up to

110 R. Clifford and B. Sach

k + 1 mismatches at a potential location using k + 1 constant time LCE queries.
We distribute the at most 8 f(k + 1) queries evenly over the next k text arrivals
requiring O(f) time per character. Again note that there are still k text arrivals
before we must make the first output and 2k before the final output (for these k
alignments).

We now consider mismatches in the final 3k positions in the pattern. We
only need to consider the at most 8 f known potential k-mismatching alignments
identified by the filtering as if the trimmed pattern does not k-mismatch then
the full pattern certainly does not. Therefore we must make O(fk) comparisons
to determine the remaining mismatches. We distribute these comparisons evenly
over the next 2k text arrivals. The comparisons are performed ordered left to
right by corresponding alignment. Careful inspection shows that we will have
each result by the time it is needed on the arrival of a new text character. The
result is summarised in Lemma [T}

Lemma 11. Assume that the pattern contains at least 6b frequent characters,
each of which occurs at least 6b times and that bf > 3k. The k-mismatch problem
can solved in pseudo-realtime in O(f + blog®m) time per character and O(m)
space.

We are now able to give the first new result for the k-mismatch problem in
pseudo-realtime setting. Theorem [I2] combines the algorithms for the two cases
detailed above.

Theorem 12. The k-mismatch problem can be solved in pseudo-realtime in
O(Vklogm + log?m) time per character and O(m) space.

Proof. By combining Lemma [6] and Lemma [II] we obtain a general algorithm
for the k-mismatch algorithm in pseudo-realtime which is upper bounded by
O(f + blog® m) time per character (and O(m) space). To give the desired result,
let f =2[Vklogm] and b = 2[Vk/logm]. Observe that we have that bf > 3k
as required. By substituting and simplifying we obtain the result as stated. O

An Improved k-Mismatch Algorithm

The result in Theorem depends on both k and m. We now show how to
reduce the complexity so that the dependence on logm is only additive rather
than multiplicative. First consider the case that k®> > m/2. In this case the
algorithm presented above requires O(v/klogk) time per character as desired.
Therefore we only consider the case that k> < m/2:

Following the black box methodology of Clifford et al. [3], we divide the pat-
tern into consecutive substrings of halving length Py, P, ... Ps. However, we set
s so that the final section is of length k°/2 < |Ps| < k®. Note that all sections
except section s have |P;| > k°. Also note that 2 < s < [logm]. Using the
techniques of the previous work we can compute matches of Py, P> ... Ps_1 before
they are needed. However this time we use the small k algorithm of Amir et al [2]
(Cor 6.1) for each section. Their algorithm requires O(n + nk*logk/m) time.

Pseudo-realtime Pattern Matching: Closing the Gap 111

Therefore for subpattern P; with ¢ < s, the time per arriving text character is
upper bounded by O (1 + k*log k/|P;|) € O(1) as | P;| > k°. We achieve this com-
plexity by distributing the work over arriving characters as described by the black
box methodology. To compute mismatches with the final section, we use the result
of Theorem[[2l As |P;| < k°, this requires O(v'klog k) time per character. The
results can be summed in O(log m) time per character giving a total complexity
as summarised by Theorem [[31

Theorem 13. The k-mismatch problem can be solved in pseudo-realtime in
O(Vklogk +logm) time per character and O(m) space.

References

10.

. Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6),

1039-1051 (1987)

Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. In: SODA 2000, pp. 794-803 (2000)

Clifford, R., Efremenko, K., Porat, B., Porat, E.: A black box for online approxi-
mate pattern matching. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 143-151. Springer, Heidelberg (2008)

Clifford, R., Sach, B.: Online approximate matching with non-local distances.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 142-153.
Springer, Heidelberg (2009)

Galil, Z.: String matching in real time. Journal of the ACM 28(1), 134-149 (1981)
Kosaraju, S.R.: Efficient string matching (1987) (manuscript)

Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. STAM
J. Comput. 27(2), 557-582 (1998)

Landau, G.M., Vishkin, U.: Fast string matching with k differences. J. Comput.
Syst. Sci. 37(1), 63-78 (1988)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
SODA 1990, pp. 319-327 (1990)

Porat, E., Porat, B.: Exact and approximate pattern matching in the streaming
model. In: FOCS 2009, pp. 315-323 (2009)

Breakpoint Distance and PQ-Trees

Haitao Jiang"?, Cedric Chauve?, and Binhai Zhu!

! Department of Computer Science, Montana State University,
Bozeman, MT 59717, USA
bhz@cs.montana.edu
2 School of Computer Science and Technology, Shandong University, China
htjiang@cs.montana.edu
3 Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby, BC V5A 1S6, Canada

cedric.chauve@sfu.ca

Abstract. The PQ-tree is a fundamental data structure that can en-
code large sets of permutations. It has recently been used in compara-
tive genomics to model ancestral genomes with some uncertainty: given
a phylogeny for some species, extant genomes are represented by per-
mutations on the leaves of the tree, and each internal node in the phy-
logenetic tree represents an extinct ancestral genome, represented by a
PQ-tree. An open problem related to this approach is then to quantify
the evolution between genomes represented by PQ-trees. In this paper
we present results for two problems of PQ-tree comparison motivated by
this application. First, we show that the problem of comparing two PQ-
trees by computing the minimum breakpoint distance among all pairs
of permutations generated respectively by the two considered PQ-trees
is NP-complete for unsigned permutations. Next, we consider a gener-
alization of the classical Breakpoint Median problem, where an ances-
tral genome is represented by a PQ-tree and p permutations are given,
with p > 1, and we want to compute a permutation generated by the
PQ-tree that minimizes the sum of the breakpoint distances to the p
permutations. We show that this problem is Fixed-Parameter Tractable
with respect to the breakpoint distance value. This last result applies
both on signed and unsigned permutations, and to uni-chromosomal and
multi-chromosomal permutations.

1 Introduction

PQ-tree is a fundamental data structure in computer science. First invented
by Booth and Lueker as a tool to verify whether a matrix has the consecutive
ones property [4], it has numerous applications: for example, recognizing interval
graphs, testing whether a graph is planar, and creating a contig map from DNA
segments [4/IIT4]. In short, a PQ-tree on the set X' = {1,...,n} is a plane rooted
tree with three kinds of nodes: P-nodes, Q-nodes and leaves, with n leaves labeled
on X (no two leaves can have the same label). A fundamental feature of PQ-trees
is that a given PQ-tree encode in linear space a possibly exponential number of
permutations.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 112 2010.
© Springer-Verlag Berlin Heidelberg 2010

Breakpoint Distance and PQ-Trees 113

Recently, PQ-trees have been used to represent extinct ancestral genomes from
a set of extant genomes represented by permutations on the same set of markers
(see [6] and references there). The PQ-tree representing an extinct ancestral
genome generates possible marker orders that accounts for some uncertainty
regarding the order of some markers along the ancestral chromosomes. Note
that some other ways to account for uncertainty or contradictory information
have been defined, such as partial orders [I8], but not in the context of ancestral
genormes.

Once the internal nodes of a phylogenetic tree are each labeled with a PQ-
tree representing the corresponding extinct genome, a natural question is to use
this information to infer quantitative properties on the evolution that gener-
ated the observed extant genomes. For branches linking two internal nodes in
the tree, this amounts to quantify the similarity between these two PQ-trees.
We consider here the breakpoint distance. Following previous works on com-
paring structures generating several permutations, we consider the Minimum-
Breakpoint-Permutation from PQ-Trees (MBP-PQ): given two PQ-trees 77 and
Ty, find a permutation s; generated by 77 and a permutation sy generated by
T5 such that the breakpoint distance between s; and s is minimum. We show
that, as for partial orders [T0J3], this problem is NP-complete. Next, we consider
the restricted problem where T> generates a single permutation, that we call
the One-Sided MBP-PQ, and we show that this problem is Fixed-Parameter
Tractable (FPT), with parameter being the optimal breakpoint distance. We
show that the same result holds for the more general median problem that con-
siders p permutations {s1, ..., s,} and a PQ-tree T' and asks for a permutation s
generated by T' that minimizes the sum of the p breakpoint distances between s
and each permutation in {si,..., sp}, that we call the p-Minimum-Breakpoint-
Median from PQ-Tree (p-MBM-PQ). This problem generalizes naturally the
classical Breakpoint-Median Problem, by imposing constraints on the possible
medians, at least for permutations that represent uni-chromosomal genomes. As
far as we know, our FPT algorithm is only the second occurrence of an FPT
result for hard median problems, after [11].

2 Preliminaries

Permutations, breakpoints and medians. Genomes with unique gene content are
encoded using permutations on an alphabet of genome markers. Let X be such an
alphabet of n markers. A uni-chromosomal permutation is a permutation on Y.
Given a permutation s, an adjacency a,b is composed of two markers that form
a substring in s, either as ab or ba. A linear permutation of n markers contains
then n — 1 adjacencies. From now on, we omit the term linear and consider that
by default every permutation is linear. The two extremities of a permutation
are called telomeres. A multi-chromosomal permutation having k chromosomes
is a set of k permutations on k disjoint subsets of X. It then contains n — k
adjacencies and 2k telomeres.

114 H. Jiang, C. Chauve, and B. Zhu

Given two permutations s; and sg, over the same set of alphabet X, we say
ab forms a common adjacency if ab or ba is a substring in both s; and ss.
Otherwise, if ab appears in s; and neither ab nor ba appears in s9, then we
say ab forms a breakpoint. A marker a is a common telomere to s; and so if
it is a telomere in both permutations. We denote by a(s1,s2) (resp. t(s1,s2))
the number of common adjacencies (resp. telomeres) between s; and sa. The
breakpoint distance between s; and sg is defined, as in [I7], by the following
formula: dy(s1,$2) = n — a(s1, $2) — t(s1, $2)/2. Note that when s; and s, are
uni-chromosomal permutations, it is common to frame them by two new markers,
that become telomeres, and the distance formula, that we will use in this case,
is dp(s1, $2) = n — a(s1, s2), which is the number of breakpoints between s; and
s2. In both cases, the breakpoint distance can obviously be computed in linear
time.

Given p permutations {s1, ..., sp}, the Breakpoint-Median Problem asks for
a permutation s that minimizes Y7, dp(s;, s).

To handle signed markers in permutations, we use the same idea as in [12]:
we double the number of markers and for marker ¢, we represent it with the
two consecutive markers (2 — 1) (2¢), and for marker —i we represent it with
(27) (2¢ — 1). Common adjacencies and telomeres can then be described as com-
mon adjacencies for the corresponding unsigned permutations.

PQ-trees. Formally, a PQ-tree for unsigned permutations is a plane tree with
internal nodes that can be either P-nodes or Q-nodes (P-nodes and Q-nodes
have at least 2 children). (Note that when a P-node has 2 children, it is really
a Q-node.) Reading the leaves of a PQ-tree in a post-order traversal gives a
permutation called the signature of this PQ-trees. The operations of reordering
the children of a P-node in an arbitrary way and reversing the children of a Q-
node (and mirroring the corresponding subtrees) are called allowed operations.
These operations define an equivalence relation between PQ-trees: two PQ-trees
are equivalent if and only if we can transform one into the other by a sequence
of allowed operations. The set of uni-chromosomal permutations generated by a
given PQ-tree is the set of the signatures of all the PQ-trees of its equivalence
class. See Figure 1 for an illustration of PQ-trees and generated uni-chromosomal
permutations. When dealing with multi-chromosomal permutations, we assume
the root of the considered PQ-tree T is a P-node. The set of multi-chromosomal

Fig.1. (A) A PQ-tree T. (2,1,4,3,7,6,8,5) and (3,4,1,2,5,6,7,8) are permutations
generated by this PQ-tree, but not (1,2,3,4,5,6,7,8) as 1 has to be adjacent to 4
because they are adjacent siblings in a Q-node. (B) A graph representation G of T.

Breakpoint Distance and PQ-Trees 115

permutations from a PQ-tree, is defined as follows: a multi-chromosomal permu-
tation s with k£ chromosomes is generated by a PQ-tree T if and only if there
exists a uni-chromosomal permutation s’ generated by T such that, discarding
k—1 adjacencies in s’ formed of markers that belong to subtrees rooted at differ-
ent children of the root of T results in s. We denote the number of permutations
generated by a PQ-tree T by P(T'), assuming the context makes it clear if they
are uni-chromosomal or multi-chromosomal.

PQ-trees for signed permutations have the additional constraint that, for every
i, the leaves 2i and 2i — 1 are consecutive siblings of a Q-node.

Problem statements. We now formally state the problems we will investigate
in this paper. Each has four different versions, depending on whether the con-
sidered permutations are uni-chromosomal or multi-chromosomal, and signed or
unsigned.

Minimum Breakpoint Permutations from PQ-trees (MBP-PQ):
Input: PQ-trees T and 15 over the same set of n markers, integer K.
Question: Can T; and 75 generate permutations s; and sy respectively such
that dp(s1,s2) < K?

The One-Sided MBP-PQ is the special case where T> generates a single
permutation called so. It is a special case of a more general problem, that gen-
eralizes the classical Breakpoint Median Problem.

p-Minimum Breakpoint Median from PQ-tree (p-MBM-PQ):

Input: PQ-trees T" and p permutations si, ..., s, over the same set of n markers,
integer K.

Question: Can T generate a permutation s such that Y 7, dy(s,s;) < K?

FPT algorithms. An FPT (Fixed-Parameter Tractable) algorithm for an opti-
mization problem II with parameter value p is an algorithm which solves the
problem in O(f(p)n®) time, where f is any function only on p, n is the input
size and c is some fixed constant not related to p. For convenience we also say
that IT is in FPT. More details on FPT algorithms can be found in [§].

Ezxisting results. If T' is a PQ-tree generating all possible permutations, the p-
MBM-PQ Problem is equivalent to the classical Breakpoint-Median Problem
described above, that is NP-hard, for signed or unsigned, uni-chromosomal or
multi-chromosomal permutations [BJI6JI7]. In the uni-chromosomal case, even in
the case where the median is constrained to have only adjacencies that appear
in at least one of the genomes s;, the problem is NP-hard [5]. This implies
immediately that the p-MBM-P(Q Problem is NP-hard, for p > 3, in all cases.
The MBP-PQ Problem, which we prove to be NP-complete in next section for
unsigned permutations, can be solved by an FPT algorithm whose parameter is
t = P(T1) x P(T»), as it is easy to list all permutations generated by 77 and
T in polynomial time and examine each pair of permutations to compute the
breakpoint distance. However P(T) can be superexponential for a PQ-tree T'

116 H. Jiang, C. Chauve, and B. Zhu

with a P-node of large degree, and it is at least exponential in the number of
Q-nodes, as each Q-node can be reversed to generate a new signature.

The same argument applies to the p-MBM-PQ Problem, and, even in the
case where T' has only Q-nodes (say ¢ Q-nodes), the time complexity of the
algorithm is O(2%n). In datasets where ancestral genomes are well defined and
P(T) is small, this approach is the most efficient, especially as it allows to con-
sider more precise distances than the breakpoint distance. However, we consider
in Section [B] some real data where P(T') is too large for this approach, which
motivates our investigation of an FPT with respect to an alternative param-
eter. In Section Ml we describe an FPT algorithm parameterized by the value
of the searched optimal solution, that is the breakpoint distance of the median
permutation to the input permutations.

3 MBP-PQ Is NP-Complete

In this section, we prove that MBP-PQ is NP-complete for uni-chromosomal
and multi-chromosomal permutations, on unsigned markers. We first consider
uni-chromosomal case. We reduce X3C (Exact Cover by 3-Sets) to MBP-PQ.
Recall that the input for X3C is a set of 3-sets S = {51, Sa, ..., Sm }. Each set S;
contains exactly 3 elements from a base set V' = {vy,va, ..., v, }, where n = 3¢ for
some integer gq. The problem is to decide whether there are ¢ 3-sets in S which
cover each element in V' exactly once.

MBP-PQ is obviously in NP and we now show that X3C can be reduced to
MBP-PQ in polynomial time.

We first outline the difficulty in the proof and how to handle them one by
one. In terms of generating permutations, P-nodes give the maximum amount
of freedom while Q-nodes give the minimum amount of freedom. So we need
to somehow balance the use of P-nodes with Q-nodes. (1) In a solution for
X3C, each element belongs to exactly one selected 3-set. We enforce this by
constructing a sub-tree in T; for each element, using both P- and Q-nodes, such
that the element will appear exactly once in the final solution. (2) The second
difficulty is to make sure that we must construct a subtree in T3 such that the
number of possible adjacencies (non-breaking point) it could generate has a fixed
pattern. We construct such a sub-tree, using no P-nodes, for each 3-set. Once
these difficulties are resolved, we still need to have a match between the possible
adjacencies in T7 and T»; moreover, these matches imply a solution for X3C.
Next we present the details.

We first construct T3 as follows. The root of Ty, 7(711), is a Q-node. Each of the
children F; of the root corresponds to an element v; in V' and is of 4 levels (with
some leaves possibly compressed in level-3, see Figure 2 (A)), and these children
are further separated by peg markers (which are leaf nodes directly under the root
r(T1)). Note that peg markers are only used to separate T’s. Let v; appear in
Sp1sSpgs ey Sp, . For each v;, we construct a subtree F; as follows. The left child of
r(F;) is a P-node which contains ¢ Q-nodes as children, and the contents of these

.0y / 3 / . / . . N _
Q-nodes are: vj p, 8; . s Vi.ps Si g » -5 Viop, Si.p, - Lhe right child of r(F;) is a P-node

Breakpoint Distance and PQ-Trees 117

(A) (B)

Vip Sig ‘ Vig Sir Vir Sip ‘ Sip ‘

Fig. 2. The subtree F;. In (A) and (B) the dotted arcs indicate the corresponding
adjacencies. (A) shows the construction that v; appears three times in S. (B) shows
the case when v; appears only once in S.

with ¢ leaves: s; p,, Si pys s Si,p, - Intuitively, v; p ;. forms an adjacency iff S,
is selected (to cover v;) in the final X3C solution. In Figure 2 (A), note that ¢ = 3.

When v; appears in S exactly once (say, in S,), F; would be a Q-node with
two leaves: v; p, 55 (Figure 2 (B)). We would have to use some peg markers to
compose new leaf nodes to bound s i,p SO that it will never be adjacent to v; .
We will cover this special case at the end of the whole proof. At this point, we
assume that each v; appears in the 3-sets in S at least twice. We summarize the
construction of F;’s with the following lemma.

Lemma 1. F; can generate at most one adjacency v; p,, Si p., for somel < w <t.

We now construct 75. The root of T5 is also a Q-node. Each of the children of
r(T>) is a subtree H, with a root being a Q-node. H, corresponds to a 3-set
Sp = {vi, v, v, }. An illustration of H,, is shown in Figure 3. Notice that H), has
five levels. We have the following lemmas.

Lemma 2. H, can generate exactly two sets of adjacencies in the form of
/ / !/
{Vi,pSip, VipSjps VkpSk,p} OT {Uivpsi,zﬂ Vj,pSjps ”kmsk,p}-

Lemma 3. T1 and Ty each can generate at most 3m adjacencies in the form of
!/
Vi,pSi,p OT VipS; p

Proof. Following Lemma[2] T5 can generate at most 3m adjacencies in the form
of v; S p OF Vj s

J:p°

Fig. 3. The subtree H, corresponding to S, = {vi,v;,vr}. (A) and (B) show the two
different kinds of adjacencies (marked by dotted arcs).

118 H. Jiang, C. Chauve, and B. Zhu

Following Lemma [l 7 can generate exactly n adjacencies in the form of
Vi pw Si,p, fOr some 1 < w < t. The remaining 3m — n adjacencies can obviously
be generated in the form of v; s} . O

Lemma 4. The input X3C instance has a valid solution if and only if T1 and
T5 can generate 3m adjacencies.

Proof. The “only if” part is easy to prove. Assume that the instance (S, V') has
a solution, let S, = {v;,v;,vr} be in the solution. We permute the P-nodes
in F; and the Q-nodes in H,, such that v;,s;, forms an adjacency. Following
Lemma [3] we can obtain 3m adjacencies in T} and T5.

We now prove the “if” part. Assume that 77 and T generate exactly 3m
adjacencies, we first show that there must be n adjacencies in the form of v; p,s; .
If it is not the case, say in T5 some v; ;, is never forming an adjacency with s; p,
then the adjacencies in 77,75 will not reach 3m. Symmetrically, if in T one of
the subtrees F; cannot generate t adjacencies, then there is no way 77,75 can
generate 3m adjacencies.

Now assume that among the 3m adjacencies in 77, T5 there are n adjacencies in
the form of v; ,s; p, we argue that they exactly present a corresponding solution
for X3C. By the way we construct 717, if v; , forms an adjacency with s;, then
it implies that .S, is selected as part of the solution for the X3C instance. As we
have exactly n adjacencies in the form of v; ;,s; ,, each of the element appears in
the X3C solution exactly once and we have a valid solution for the X3C instance

(S, V). O

Theorem 1. MBP-PQ is NP-complete for uni-chromosomal unsigned permu-
tations.

Proof. Now it is necessary to cover the special case when v; appears in S exactly
once. In this case we use some peg markers as leaves to bound s , such that it
will never be adjacent to v; ,. The peg markers will be directly under the roots of
Ty and Ts so we can order them in increasing and decreasing order respectively
so that the peg markers will not form adjacencies in 17 and T5. It is easy to see
that we will not use more than O(n) peg markers.

Let N be the number of peg markers used in the construction. Following
Lemmalfdl there are 9m markers in 77 and T5. Therefore, the input X3C instance
has a valid solution if and only if 77 and 75 can generate two permutations with
N + 6m — 1 breakpoints.

It is clear that the whole transformation takes linear time. Hence, MBP-PQ
is NP-complete. a

We can extend the proof to the multi-chromosomal case. Given an instance
(T1,Tz) of the uni-chromosomal case, create an instance (77,74) by adding to
Ty (resp. T2) a P-node root and two children Q-nodes with each 4 leaves n +
1,n+2,n+3,n+4 (resp. n+2,n+4,n+1,n+ 3), in this order in both cases,
and n+5n+6,n+7,n+8 (resp. n+6,n+8,n+5n+7), again in this order
in both cases. There are no common telomeres in 77 and T5. Therefore, (11, 75%)

Breakpoint Distance and PQ-Trees 119

has breakpoint distance K if and only if (77, T4) has breakpoint distance K + 8
because we add 8 markers that do not form any adjacency, neither common
telomere.

Corollary 1. MBP-PQ is NP-complete for multi-chromosomal unsigned
permutations.

It is open whether one can design efficient FPT and/or approximation algorithms
for the optimization version of MBP-PQ.

4 An FPT Algorithm for One-Sided MBP-PQ and
p-MBM-PQ

In this section, we solve both One-Sided MBP-PQ and p-MBM-PQ with an FPT
algorithm, whose parameter is the value of the optimal breakpoint distance.
We first describe our algorithm for the uni-chromosomal case, then discuss its
generalization to the multi-chromosomal case.

A graphical representation of PQ-trees. We first introduce a graph-like repre-
sentation of a PQ-tree, that encodes the adjacency constraints between markers,
and was used in [6] to represent ancestral genomes in a linear-like way. The graph
G associated to a PQ-tree T has vertices for all nodes (internal and leaves) of T'
except the root, if it is a P-node. We call the vertices that correspond to leaves
markers. And the vertices corresponding to P-nodes (resp. Q-nodes) are called
super P-nodes (resp. Q-nodes). Edges of G are defined only between pairs of
markers (or, of course, two super-nodes which must be adjacent): two markers
2 and y define an edge (x,y) if and only if they are consecutive children of a
Q-node. Edges of G are called black edges. See Figure 1.

We also add an additional structure on G by embedding the vertices following
the recursive structure of T": the vertices of G corresponding to the children of
a node are embedded into the vertex representing this node (see Figure 1 (B)).
A vertex (leaf or super-node) X is contained in another vertex Z if X # Z and
the node corresponding to X is a descendant of the one corresponding to Z in
T (hence Z is a super-node); as a consequence, all the strings generated by X
are substrings of those generated by Z.

We now describe how to augment the graph representation G; of a PQ-tree
T, using another permutation ss. It turns out that this will be the basis for us to
handle the ancestral genome analysis when a phylogeny is given. We start with
G1, and then add an edge, called a blue edge, (z,y) in G; for every adjacency
2y in s3. We denote this new graph G/ (note that G conserves the embedding
structure we defined on G: only blue edges are added). The degree of a super-
node X in G} is the number of edges that connects a marker inside X to a
marker outside X. See Figure 1 and Figure 4.

At this point, it is easy to see that the One-Sided MBP-PQ Problem is closely
related to the classical Minimum Path Cover Problem.

120 H. Jiang, C. Chauve, and B. Zhu

An FPT algorithm for the One-Sided MBP-PQ Problem. We first state an easy
lemma that describes constraints on the blue edges that can be conserved in an
optimal solution of the problem.

Lemma 5. An optimal solution for One-Sided MBP-P(Q can be obtained by per-
forming the following operations on GY.

1. If a marker x is in the middle of a Q-node Y which contains x, then one
can delete all the blue edges incident to x to obtain an optimal solution.

2. If a marker x is of degree greater than two, then an optimal solution could
be obtained by allowing at most two blue edges connecting to x.

3. If a super-node X is of degree greater than two, then an optimal solution
could be obtained by allowing at most two blue edges connecting to some
markers inside X .

Let r be the maximum degree of a super node, after all edge deletion operations
at Step 1 of Lemma 5 have been performed. (If » < 2 the problem is trivially
solvable. So we assume that r > 3.) The principle of the FPT algorithm is to
use a bounded search tree [§] that considers super nodes of degree at least three
and, for such a node X, conserves 2 blue edges that link a marker inside X and a
marker outside X. Let K be the optimal solution value for One-Sided MBP-PQ,
and f(K) be the size (number of nodes) of the search tree. It is sufficient to keep
deleting edges such that the resulting nodes have degree at most two, so we have
the following recurrence relation

0 if K =0,

1 if K =1,
fF(K) = ,

<(T_2>ﬂK—r+2MH¥>L

The main recurrence can be simplified as

r

f(K) < (2> FIK—7+2) = 7“<7"2—1>

f(K—r+2).

This recurrence achieves its maximum value when r = 3. Therefore,
fK) <35

Once K blue edges are deleted from G’, all we need to do is to check whether
the resulting graph on X' defined by the markers and the remaining black and
blue edges is composed of paths. If less than K blue edges are deleted and there
is no vertex of degree at least three left, we can check whether there are still any
(disjoint) cycles left, if so, then delete the blue edges accordingly to break these
cycles. If, after K blue edges are deleted and no valid solution is found, then we
report ‘No solution of size K’. This can be easily done in O(n) time as at this
point the maximum degree of any vertex is at most two. Therefore, we can use
this bounded search tree method to obtain an algorithm which runs in O(3%n)
time, once G} is computed.

Breakpoint Distance and PQ-Trees 121

>

s = xyfabede

o def (A)

]
T m

Fig. 4. An example for the FPT algorithm for One-Sided MBP-PQ

In Figure 4, we show a simple example for the algorithm. An example of 77 and
sg is illustrated in Figure 4 (A). The augmented graph G/ is shown in Figure 4 (B).
The optimal solution value is K = 1. According to the algorithm, we will have to
delete one blue (or dashed) edge in Gj. The algorithm has the choice of deleting
either (a, f), (y, f), or (¢, d). Clearly, deleting (a, f) gives us the optimal solution
with s; = abede fyx and exactly one breakpoint between s; and sy = xy fabede.
Deleting (y, f) or (¢, d) alone both leads to infeasible solutions.

Theorem 2. One-Sided MBP-PQ can be solved in O(3%n) time for
uni-chromosomal signed and unsigned permutations, where n is the number of
markers and K is the number of breakpoints in the optimal solution.

Solving the p-MBM-PQ Problem. 1t is easy to see that p-MBM-P(Q can be solved
in O(3%n) time as well. The idea is to compute the graph G for the input PQ-
tree T' and then add blue edges from adjacencies in s;, for i = 1,...,p. Now a
blue edge (z,y) is weighted, with the weight corresponding to the total number
of adjacencies xy or yx in s;, for i = 1,...,p. So such a weight can be an integer
in [1,p]. Let this augmented (weighted) graph be G”’. Then the problem is clearly
equivalent to deleting blue edges with a total weights of K’ < K from G” such
that the resulting graph is composed of paths. If there are K" such paths, then
adjacencies need to be added to transform them into a single path, and arbitrary
adjacencies can be used, each contributing p to the breakpoint distance, that is
then K’ + p(K"” — 1). This leads to the following result.

Corollary 2. p-MBM-PQ can be solved in O(3%n) time for uni-chromosomal
signed and unsigned permutations.

Note that the actual running time of the FPT algorithm we described is in general
much faster than O(3%n) as any adjacency in one of the genomes s; that is dis-
carded following Lemma [0l (1) increases the breakpoint distance by 1 but is not
considered in the computation. More formally, if d is the number of edges dis-
carded due to Lemmal[5l(1), the running time is in fact O(3%~9n). This has been
confirmed in our initial computational results. We can also immediately apply our
algorithm to the variant where the median is constrained to contain only adja-
cencies that appear in at least one permutation s;, which is also NP-hard for the
classical Breakpoint-Median Problem [5]. Indeed, it suffices to forbid deleting blue
edges that disconnects the augmented graph, which is obviously connected at first.

122 H. Jiang, C. Chauve, and B. Zhu

Handling multi-chromosomal permutations. We need here to account for two
things: the set of generated permutations is different (larger in fact) and the
breakpoint distance requires to consider common telomeres. To deal with both
of these issues, we add in the augmented graph a vertex W, that represents
telomeres, and a blue edge (W, a) for every telomere a in the s;’s. Then, a set
of blue edges defining a valid permutation implies that, once edges (W, a) are
discarded, the resulting edges comprise of a set of paths. Finally, as common
telomeres contribute to half the weight of common adjacencies in the break-
point distance formula, when the bounded search discards a blue edge (W, a), it
increases the distance by 1/2 instead of 1. This proves the following result.

Corollary 3. p-MBM-PQ can be solved in O(3*5n) time for multi-chromosomal
signed and unsigned permutations.

5 Application to Real Datasets

We present here preliminary computational results on some mammalian and yeast
genomes to illustrate the ability of our FPT algorithm to handle real datasets,
using a regular Lenovo laptop and C++. Precise data and results are available
at the URL http://www.cs.montana.edu/bhz/PQ-TREE.html. In both cases, we
change a multi-choromosomal genome into a uni-chromosomal signed permuta-
tion; as a consequence, we do not compute exactly the breakpoint distance as
defined in [I7], as we might create conserved adjacencies and we ignore common
telomeres in the computation of the distance. But these results are presented to il-
lustrate the ability of our algorithm to handle datasets with PQ-trees generating
a large number of permutations. The running times are still high (varying from
two days to about a week), but they are already better than what the theoretical
results imply (for the three cases, we have K = 69,108, and 348).

The mammalian dataset we use is from the following simple phylogenetic
tree of five species, (((Human,Macaca)l,(Mouse,Rat)II)III,Dog), given in Newick
format, and we are interested in the ancestors of Human and Macaca (node I)
and Mouse and Rat (node IT). Permutations and PQ-trees at nodes I and IT were
generated using methods as described as in [I5]. In this case, n = 689. In the
companion webpage, we show in detail the dataset and the sequences generated
using the FPT algorithm for 2-MBM-PQ), for node I and node II. For node I, we
found that the optimal breakpoint distance is 69, and for node II, the optimal
distance is larger, at 108. Notice that these solutions are not unique (in fact in
both cases there are about 10! permutations which minimizes dy (s, s1)+dp (s, s2),
due to that the roots of the trees are both P-nodes). So an exhaustive search
would not work to generate an optimal permutation for node III.

The yeast data is from [13], the PQ-tree has a root which is a Q-node with 34
children (which are all Q-nodes or leaves). Among these 34 children, 8 of them
are leaves. We found an optimal distance of 348. If we wanted to enumerate all
generated permutations, we would have to try 226 different permutations.

Breakpoint Distance and PQ-Trees 123

6 Conclusion

In this paper, we make the first step in comparing the similarity of PQ-trees, with
application to comparative genomics. While the general problem is NP-complete
(not a surprise!), we show that several interesting cases, that are relevant from
an applied point of view, are in FPT, parameterized by the optimal breakpoint
distance. We also present some preliminary computational results.

Our first open question is how to construct a general graph or hypergraph
incorporating all the information regarding two PQ-trees Ty and T;. Without
such a (hyper?) graph, it seems difficult to design approximation and FPT algo-
rithms for the optimization version of MBP-PQ (and possibly some other ways
to compare the similarity of 77 and T3). A related question would be to find an
FPT algorithm for MBP-PQ whose parameter is the breakpoint distance. When
this distance is zero, the problem is in fact easy to solve: it is easy to decide if
Ty and T can generate the same permutation [412].

How to improve the efficiency of the FPT algorithms for One-Sided MBP-PQ
and p-MBM-PQ also makes interesting questions. The only other FPT algorithm
for a breakpoint median problem, described in [I1], has complexity O(2.15%n),
and it remains to see how the ideas used in that algorithm can be translated to
the case where the median is constrained to be generated by a given PQ-tree.

Regarding p-MBM-PQ), it is recently proved in [I7] that the Breakpoint Me-
dian Problem for signed multi-chromosomal genomes is tractable if the median
is allowed to have circular chromosomes; it can indeed be solved by a simple
maximum weight matching algorithm. In the case of the p-MBM-PQ, the cor-
responding problem would allow that, in the median, the leaves of one or more
subtree rooted at children of the root form a circular chromosome. The com-
plexity of this problem is open.

Finally, what if we consider the problems under other distances such as the
DCJ (Double-Cut-and-Join) distance? Intuitively, we can expect that such prob-
lems are hard too. For example, comparing two PQ-trees of height 2 (every path
between a leaf and the root contains at most two edges) whose internal nodes
are all P-nodes is equivalent to computing the syntenic distance [9] between two
genomes represented by the gene content of their chromosomes and with no gene
order information, which is NP-hard [7].

Acknowledgments

This research is partially supported by NSF grant DMS-0918034, by NSF of
China under grant 60928006, and by NSERC Discovery Grant 249834-2006.

References

1. Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes
using unique probes. J. Comp. Biol. 2, 159-184 (1995)

2. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral
gene orders using conserved intervals. In: Jonassen, 1., Kim, J. (eds.) WABI 2004.
LNCS (LNBI), vol. 3240, pp. 14-25. Springer, Heidelberg (2004)

124 H. Jiang, C. Chauve, and B. Zhu

3. Blin, G., Blais, E., Guillon, P., Blanchette, M., EIMabrouk, N.: Inferring Gene Or-
ders from Gene Maps Using the Breakpoint Distance. In: Bourque, G., El-Mabrouk,
N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 99-102. Springer,
Heidelberg (2006)

4. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Computer and System Sci-
ences 13, 335-379 (1976)

5. Bryant, D.: The complexity of the breakpoint median problem. Technical Re-
port CRM-2579. Centre de Recherches en Mathématiques, Université de Montréal
(1998)

6. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of
contiguous regions of ancestral genomes and its application to mammalian genome.
PLoS Comput. 4:¢1000234 (2008)

7. DasGupta, B., Jiang, T., Kannan, S., Li, M., Sweedyk, E.: On the Complexity and
Approximation of Syntenic Distance. Discrete Appl. Math. 88(1-3), 59-82 (1998)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

9. Feretti, V., Nadeau, J.H., Sankoff, D.: Original synteny. In: Hirschberg, D.S.,
Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 159-167. Springer, Heidelberg
(1996)

10. Fu, Z., Jiang, T.: Computing the breaking distance between partially ordered
genomes. In: APBC 2007, pp. 237-246 (2007)

11. Gramm, J., Niedermeier, R.: Breakpoint medians and breakpoint phylogenies: A
fixed-parameter approach. Bioinformatics 18(Suppl. 2), S128-S139 (2002)

12. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46(1), 1-27 (1999)

13. Jean, G., Sherman, D.M., Nikolski, M.: Mining the semantic of genome super-blocks
to infer ancestral architectures. J. Comp. Biol. 16(9), 12671284 (2009)

14. Landau, G., Parida, L., Weimann, O.: Gene proximity analysis across whole
genomes via PQ-trees. J. Comp. Biol. 12, 1289-1306 (2005)

15. Ouangraoua, A., McPherson, A., Tannier, E., Chauve, C.: Insight into the struc-
tural evolution of amniote genomes. In: Preliminary version in Cold Spring Harbor
Laboratory Genome Informatics Meeting 2009, poster 137 (2009)

16. Pe’er, 1., Shamir, R.: The median problems for breakpoints are NP-complete. Elec.
Collog. Comput. Complexity, TR-98-071 (1998)

17. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems under different genomic distances. BMC Bioinformatics 10, 120 (2009)

18. Zheng, C., Lennert, A., Sankoff, D.: Reversal distance for partially ordered
genomes. Bioinformatics 21(Suppl. 1), i502-508 (2005)

On the Parameterized Complexity of Some Optimization
Problems Related to Multiple-Interval Graphs*

Minghui Jiang

Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

Abstract. We show that for any constant ¢ > 2, k-INDEPENDENT SET and
k-DOMINATING SET in t-track interval graphs are W([1]-hard. This settles an
open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We
also give an FPT algorithm for k-CLIQUE in t-interval graphs, parameterized
by both k and ¢, with running time max{tC*), 20(k1ee k)1 . 1,61y (n), where n
is the number of vertices in the graph. This slightly improves the previous FPT
algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the
W([1]-hardness of k-INDEPENDENT SET in ¢-track interval graphs to obtain the
first parameterized intractability result for a recent bioinformatics problem called
MAXIMAL STRIP RECOVERY (MSR). We show that MSR-d is W[1]-hard for
any constant d > 4 when the parameter is either the total length of the strips, or
the total number of adjacencies in the strips, or the number of strips in the optimal
solution.

1 Introduction

The intersection graph 2(F) of a family of sets 7 = {S1,...,S,} is the graph with
F as the vertex set and with two different vertices .S; and S; adjacent if and only if
S; N'Sj # (. The family F is called a representation of the graph 2(F).

Let ¢ be an integer at least two. A t-interval is the union of ¢ disjoint intervals in
the real line. A t-track interval is the union of ¢ disjoint intervals in ¢ disjoint parallel
lines called tracks, one interval on each track. A t-interval graph is the intersection
graph of a family of t-intervals. A t-track interval graph is the intersection graph of a
family of ¢-track intervals. If all intervals in the representation of a ¢-interval graph have
unit lengths, then the graph is called a unit t-interval graph. Similarly for unit ¢-track
interval graphs.

As generalizations of the ubiquitous interval graphs, multiple-interval graphs such
as t-interval graphs and t-track interval graphs have wide applications, tradition-
ally to scheduling and resource allocation [3l5], and more recently to bioinformat-
ics [L70201907U1401]. In particular, 2-interval graphs and 2-track interval graphs are
natural models for the similar regions of DNA sequences [17/2/1]] and for the helices of
RNA secondary structures [[1947114]].

Fellows, Hermelin, Rosamond, and Vialette [9]] recently initiated the study of the
parameterized complexity of multiple-interval graph problems. In general graphs, the

* Supported in part by NSF grant DBI-0743670.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 125 2010.
(© Springer-Verlag Berlin Heidelberg 2010

126 M. Jiang

three classical optimization problem k-VERTEX COVER, k-INDEPENDENT SET, and k-
DOMINATING SET, parameterized by the optimal solution size k, are exemplary prob-
lems in parameterized complexity theory [8]: it is well-known that k- VERTEX COVER
is in FPT, k-INDEPENDENT SET is W[1]-hard, and £-DOMINATING SET is W[2]-hard.
Since t-interval graphs are a special class of graphs, all FPT algorithms for k- VERTEX
COVER in general graphs immediately carry over to t-interval graphs. On the other
hand, the parameterized complexity of k-INDEPENDENT SET in t-interval graphs is
not at all obvious. Indeed, in general graphs, k-INDEPENDENT SET and k-CLIQUE are
essentially the same problem, but in ¢-interval graphs, they manifest different parame-
terized complexities. Fellows et al. [9] showed that k-INDEPENDENT SET in ¢-interval
graphs is W[1]-hard for any constant ¢ > 2, then, in sharp contrast, gave an FPT algo-
rithm for k-CLIQUE in t-interval graphs parameterized by both & and ¢. Similarly, the
parameterized complexity of k-DOMINATING SET in t-interval graphs is not obvious
either. Fellows et al. [9]] showed that k-DOMINATING SET in t-interval graphs is also
W/[1]-hard for any constant ¢ > 2.

At the end of their paper, Fellows et al. [9] raised three open questions. First,
are k-INDEPENDENT SET and k-DOMINATING SET in 2-track interval graphs W[1]-
hard? Second, is k-DOMINATING SET in t-interval graphs W[2]-hard? Third, can the
parametric time-bound of their FPT algorithm for £-CLIQUE in ¢-interval graphs be
improved?

The ¢ disjoint tracks for a t-track interval graph can be viewed as ¢ disjoint “host”
intervals in the real line for a ¢t-interval graph. Thus the class of ¢-track interval graphs
is contained in the class of ¢-interval graphs. The containment is proper because the
complete bipartite graph K2, 141 is a t-interval graph but not a ¢-track interval
graph [21]]. It is also known that for any ¢ > 1, ¢-interval graphs are a proper subclass
of (¢t 4+ 1)-interval graphs, and unit ¢-interval (resp. unit ¢-track interval) graphs are a
proper subclass of t-interval (resp. t-track interval) graphs; see [18/12U13/10]. Fellows
et al. [9] proved that k-INDEPENDENT SET and k-DOMINATING SET in unit 2-interval
graphs are both W[1]-hard, hence k-INDEPENDENT SET and k-DOMINATING SET in
t-interval graphs are both W[1]-hard for all £ > 2. The main result of this paper is
the following theorem that answers the first open question of Fellows et al. [9] and
strengthens their W[1]-hardness results to encompass even the most basic subclass of
multiple-interval graphs:

Theorem 1. k-INDEPENDENT SET and k-DOMINATING SET in unit 2-track interval
graphs are W[|-hard.

Given a graph G and a vertex-coloring k : V(G) — {1,2,...,k}, the problem
k-MULTICOLORED CLIQUE is that of deciding whether G has a clique of k£ ver-
tices containing exactly one vertex of each color. Fellows et al. [9] proved that k-
MULTICOLORED CLIQUE is W[1]-complete, then proved that both k-INDEPENDENT
SET and k-DOMINATING SET in unit 2-interval graphs are W[1]-hard by FPT reduc-
tions from k-MULTICOLORED CLIQUE. Our proof of Theorem [I] follows the same
strategy. We note that this k&~-MULTICOLORED CLIQUE technique [9] is quickly be-
coming a standard tool for FPT reductions. We are unable to answer the second open
question of Fellows et al. [9] on the possible W[2]-hardness of k-DOMINATING SET in

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 127

t-interval graphs, but believe that any new techniques developed for this problem would
also have far-reaching influence in parameterized complexity theory.

Let’s move on to the third open question. Fellows et al. [9] presented an FPT algo-
rithm for k£-CLIQUE in t-interval graphs parameterized by both & and ¢. They estimated
that the running time of their algorithm is t©(*1°8%) . poly(n), where n is the number
of vertices in the graph, and asked whether the parametric time-bound of t©(*1°2%) can
be improved. Our next theorem makes some small progress on this open question:

Theorem 2. For any constant ¢ > 3, there is an algorithm for k-CLIQUE in t-interval
graphs with running time O(t°*) - O(n®) if k < } - n'=1/¢, where n is the number
of vertices in the graph. In particular, there is an FPT algorithm for k-CLIQUE in t-
interval graphs with running time max{t©*) 20 108k)1 . holy(n).

Finally, we extend the W[1]-hardness results in Theorem [l to a bioinformatics
problem. In comparative genomic, the first step of sequence analysis is usually to de-
compose two or more genomes into syntenic blocks that are segments of homologous
chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the
genomic maps need to be removed first. A genomic map is a sequence of gene mark-
ers. A gene marker appears in a genomic map in either positive or negative orientation.
Given d genomic maps as signed sequences of gene markers, MAXIMAL STRIP RE-
COVERY (MSR-d) [22l6] is the problem of finding d subsequences, one subsequence
of each genomic map, such that the total length ¢ of the strips in these subsequences is
maximized. Here a strip is a maximal string of at least two markers such that either the
string itself or its signed reversal appears contiguously as a substring in each of the d
subsequences in the solution. Without loss of generality, we can assume that all markers
appear in positive orientation in the first genomic map, as in [22/15]]. For example, the
two genomic maps (the markers in negative orientation are underlined)

1 2 3 45 6 7 8 9 10 11 12
8 5 76 4 1 3 2 12 11 10 9

have two subsequences

10 11 12

6 7 8
1 3 12 11 10

1 3
8§ 7 6
of the maximum total strip length 8. The strip (1, 3) is positive and forward in both
subsequences; the other two strips (6,7, 8) and (10,11, 12) are positive and forward in
the first subsequence, but are negative and backward in the second subsequence. The
four markers 2,4,5,9 are deleted. Intuitively, the strips are syntenic blocks, and the
deleted markers are noise and ambiguities in the genomic maps.

A strip of length [> 2 has exactly [— 1 adjacencies between consecutive markers. In
general, m strips of total length [have [— m adjacencies. Besides the total strip length,
the total number of adjacencies in the strips is also a natural objective function of MSR-
d. For both objective functions, it is known that MSR-d is APX-hard forany d > 2 [15]],
and moreover is NP-hard to approximate within {2(d/log d) [16]. On the other hand,
for any constant d > 2, MSR-d admits a polynomial-time 2d-approximation [[6]. See
also [20/4]] for some related results. Our following theorem gives the first parameterized

intractability result for MSR-d:

128 M. Jiang

Theorem 3. MSR-d for any constant d > 4 is W[1]-hard when the parameter is either
the total length of the strips, or the total number of adjacencies in the strips, or the
number of strips in the optimal solution. This holds even if all gene markers are distinct
and appear in positive orientation in each genomic map.

2 k-Independent Set

In this section we show that k-INDEPENDENT SET in unit 2-track interval graphs
is W[1]-hard. We first review the previous FPT reduction from k£-MULTICOLORED
CLIQUE in general graphs to k-INDEPENDENT SET in unit 2-interval graphs [9]], then
show how to modify it into an FPT reduction from k-MULTICOLORED CLIQUE in gen-
eral graphs to k-INDEPENDENT SET in unit 2-track interval graphs.

Previous Reduction. Let (G, x, k) be an instance of k-MULTICOLORED CLIQUE. The
construction consists of K+ (’2“) groups of unit intervals occupying disjoint regions of the
real line. Among the k+ (’;) groups, k groups are vertex gadgets, one for each color, and
(g) groups are edge gadgets, one for each pair of distinct colors. The vertex gadgets and
the edge gadgets are then linked together, according to the incidence relation between
the vertices and the edges, by the validation gadget. Each vertex gadget selects a vertex
of a particular color. Each edge gadget selects an edge of a particular pair of colors. The
validation gadget ensures the consistency of the selections.

Vertex selection: For each color ¢, 1 < 7 < k, let V; be the set of vertices with color 3.
The vertex gadget for the color 7 consists of a group of intervals that can viewed as a
tabld] with |V;| rows and k + 1 columns. Each row of the table corresponds to a distinct
vertex v € V;: the first interval and the last interval together form a vertex 2-interval
w;; the other intervals, each associated with a distinct color j € {1,...,k} \ {c} and
denoted by u;*;, and are used for validation. The intervals in the table are arranged in a
parallelogram formation with slanted columns: the intervals in each row are disjoint; the
intervals in each column intersect at a common point; the intervals in lower rows have
larger horizontal offsets such that each interval also intersects all intervals in higher
rows in the next column.

Edge selection: For each pair of distinct colors 7 and j, 1 < i < j < k, let Ej; be
the set of edges uv such that w has color ¢ and v has color j. The edge gadget for the
pair of colors ij consists of a group of intervals that can viewed as a table with | E;;|
rows and 4 columns. Each row of the table corresponds to a distinct edge uv € F;;: the
first interval and the fourth interval together form an edge 2-interval w;v;; the second
and the third intervals, denoted by w;v; and v;u;, respectively, are used for validation.
Again the intervals in the table are arranged in a parallelogram formation.

Validation: For each edge uv such that » has color ¢ and v has color j, the validation
gadget includes two validation 2-intervals u;v; and u;v;: the 2-interval u;v; consists of
the interval u;v; and the interval u;*;; the 2-interval u;v; consists of the interval v;u;

! The table is of course only a visualization device; in reality the intervals in all rows of the table
are in the same line.

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 129

;05

;
|

—
Wiy

Fig. 1. Construction for k-INDEPENDENT SET. On the left is a vertex gadget. On the right is an
edge gadget. The vertex 2-interval @; selects the vertex u for the color i. The edge 2-interval @;v;
selects the edge uwv for the pair of colors ¢5. The validation 2-interval validates the selections.

and the interval v; ;. Note that each validation 2-interval consists of an interval from
an edge gadget and an interval from a vertex gadget.
In summary, the following family F of 2-intervals are constructed:

fz{ﬂﬂuevi,1§i§k}u{@,uwj,m|uve&j,1§i<j§k;}.

Refer to Figure [l for an example. Now set the parameter k' = k + 3 (’;) It remains to
show that G has a k-multicolored clique if and only if F has a k’-independent set.

For the direct implication, it is easy to verify that if X' C V(G) is a k-multicolored
clique, then the following subset of 2-intervals is a k’-independent set in F:

{@- | uGK,i:m(u)}U{zﬂ-v\j,m,m | u,veK,i:m(u),j:/ﬁ(v)}.

For the reverse implication, suppose that Z is a k’-independent set in F. By construc-
tion, Z can include at most one vertex 2-interval for each color, and at most one edge
2-interval plus at most two validation 2-intervals for each pair of distinct colors. Since
E=k+3 (g) , Z must include exactly one vertex 2-interval for each color, and exactly
one edge 2-interval plus two validation 2-intervals for each pair of distinct colors. It fol-
lows that the 2 (’2“) = (k — 1)k validation 2-intervals in Z have exactly two intervals in
each edge gadget, and exactly & — 1 intervals in each vertex gadget. Moreover, in each
vertex gadget, the intervals of the vertex 2-interval and the & — 1 validation 2-intervals
in 7 must be in the same row. Similarly, in each edge gadget, the intervals of the edge
2-interval and the two validation 2-intervals in Z must be in the same row. Since all
intervals in the same row of a vertex gadget are associated with the same vertex, and
all intervals in the same row of an edge gadget are associated with the same edge, the
vertex selection and the edge selection must be consistent. Thus the & vertex 2-intervals
in Z corresponds to a k-multicolored clique in G.

This completes the review of the previous reduction. Before we present the new
reduction, let’s pause for a moment and ponder why this reduction works. You may
have noticed that the central idea behind the construction is essentially a geometric
packing argument. Consider each vertex 2-interval as a container of capacity k — 1,
each edge 2-interval as a container of capacity 2, and the validation 2-intervals as items
to be packed. Then, in order to pack each container to its full capacity, the items in each
container must be arranged in a regular pattern, that is, all intervals in each vertex or
edge gadget must be in the same row.

130 M. Jiang

New Reduction. We now modify the previous construction to transform each 2-interval
into a 2-track interval. Move all vertex gadgets to track 1, and move all edge gadgets to
track 2. Then all validation 2-intervals are immediately transformed into 2-track intervals.
It remains to fix the vertex 2-intervals on track 1 and the edge 2-intervals on track 2.

We first fix the vertex 2-intervals on track 1. Consider the vertex gadget for the ver-
tices V; with color ¢. To fix the vertex 2-intervals in this gadget, we replace each 2-
interval @; by two 2-track intervals w; 1o, and @; igp as follows:

— On track 1, let the intervals of @; jog and ; ,ight be the left and the right intervals,
respectively, of ;.

— On track 2, put the intervals of @; ¢ and @ yign for all u € V; in a separate region,
and arrange them in a parallelogram formation with |V;| rows and 2 columns: @; e
in the right column, 1; ,igp¢, in the left column. As usual, the intervals are disjoint in
each row and are pairwise intersecting in each column, moreover the columns are
slanted such that each interval in the left column intersects all intervals in higher
rows in the right column.

Refer to Figure 2] for an illustration of the vertex 2-track intervals on the two tracks.
In a similar way (with the roles of track 1 and track 2 reversed), we replace each edge
2-interval @;0; by two 2-track intervals w;v; g and @;v; ... Then all 2-interval are
transformed into 2-track intervals. The following family F of 2-track intervals are con-
structed:

F= {ﬂ\ileftvﬁ\iright ‘ u e ‘/;7 1 < { < k}
U {05 1oe» WiV ignes Wi, Wit | wv € Eyj, 1 <0 < j <k}
Now set the parameter k' = 2k + 4 (’2“) It remains to show that G has a k-multicolored
clique if and only if F has a k’-independent set.

For the direct implication, it is easy to verify that if K C V(G) is a k-multicolored
clique, then the following subset of 2-track intervals is a k’-independent set in F:

{{jf\ileftaﬂ\iright | u € K? i= I{(U)}

U {u/iv\jleftau/iv\j right? Yilj, Uilj | uv €K, i= ’{(u)v J= /ﬁ(’l))}.

Vileft —mM8 ce. — Ui right Vi right Vi left

Ui Joft ——————— ce — Uiright Ui right Ui left

track 1 track 2

Fig. 2. Transforming vertex 2-intervals into 2-track intervals for k-INDEPENDENT SET

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 131

For the reverse implication, suppose Z is a k’-independent set in F. The same argu-
ment as before shows that 7 must include exactly two vertex 2-track intervals for each
color, and exactly two edge 2-track intervals plus two validation 2-track intervals for
each pair of distinct colors. Refer back to Figure 2l Let @; jo¢ and 0; ,igpy be the two
vertex 2-track intervals in Z for some color i. The intersection pattern of the vertex 2-
track intervals for V; on track 2 ensures that the row of « must not be higher than the
row of v. Without loss of generality, we can assume that they are in the same row, i.e.,
u = v, so that the set of validation intervals in the middle columns on track 1 that are
dominated by ; 1eft, U right iS minimal (or, in terms of geometric packing, this gives the
container @; jog U; ignt the largest capacity on track 1). Thus we can assume that the two
vertex 2-track intervals for each color 4 form a pair @; jef; U; rignt for the same vertex u.
Similarly, we can assume that the two edge 2-track intervals for each pair of colors ij
form a pair w;v; |, UiV; right for the same edge uv. Then the same argument as before
shows that the & pairs of vertex 2-track intervals in Z corresponds to a k-multicolored
clique in G.

3 k-Dominating Set

In this section we show that k-DOMINATING SET in unit 2-track interval graphs
is W[1]-hard. We first review the previous FPT reduction from k£-MULTICOLORED
CLIQUE in general graphs to k-DOMINATING SET in unit 2-interval graphs [9], then
show how to modify it into an FPT reduction from k-MULTICOLORED CLIQUE in gen-
eral graphs to k-DOMINATING SET in unit 2-track interval graphs.

Previous Reduction. Let (G, «, k) be an instance of £-MULTICOLORED CLIQUE. The
reduction again constructs k vertex gadgets, one for each color, and (’;) edge gadgets,
one for each pair of distinct colors. The vertex gadgets and the edge gadgets are then
linked together by the validation gadget.

Vertex selection: For each color 7, 1 < ¢ < k, let V; be the set of vertices with color
i. The vertex gadget for the color ¢ includes one interval *; for the color ¢ and one
interval u; for each vertex u € V;. The interval %; is combined with each interval u; to
form a vertex 2-interval ;. The vertex gadget for V; also includes two disjoint dummy
2-intervals that contain the left and the right endpoints, respectively, of the interval ;.

Edge selection: For each pair of distinct colors ¢ and j, 1 < ¢ < j < K, let E;; be
the set of edges uv such that u has color ¢ and v has color j. The edge gadget for the
pair of colors ¢ includes a group of intervals that can viewed as a table with | E;;| rows
and 3 columns. Each row of the table corresponds to a distinct edge uv € E;;: the left
interval and the right interval together form an edge 2-interval u;v;; the middle interval,
denoted by wu;v;, is used for validation. Again the intervals in the table are arranged in
a parallelogram formation. The edge gadget for £;; also includes two disjoint dummy
2-intervals that intersect the left intervals and the right intervals, respectively, of all edge
2-intervals u;0;.

Validation: For each edge uv such that u has color ¢ and v has color j, the validation
gadget includes two validation 2-intervals u;v; and u;v;: the 2-interval u;v; consists

132 M. Jiang

@ @

R E—

uiv;

dummy dummy

-t T /T

dummy dummy

Fig. 3. Construction for k-DOMINATING SET. On the left is a vertex gadget. On the right is an
edge gadget. The vertex 2-interval @; selects the vertex u for the color ¢. The edge 2-interval @;v;
selects the edge uwv for the pair of colors ¢5. The validation 2-interval validates the selections.

of the interval u;v; and the interval u;; the 2-interval u;v; consists of the interval u;v;
and the interval v;.
In summary, the following family F of 2-intervals are constructed:

F={uilueV,1<i<k}
U {0}, 405, w05 | wv € Ejj, 1 <i < j < k} UDUMMIES,

where DUMMIES is the set of 2k + 2 (’2“) dummy 2-intervals, two in each vertex or edge

gadget. Refer to Figure[Blfor an example. Now set the parameter k' = k+ (g) . Itremains
to show that G has a k-multicolored clique if and only if F has a k’-dominating set.

For the direct implication, it is easy to verify that if K C V(G) is a k-multicolored
clique, then the following subset of 2-intervals is a k’-dominating set in F:

{@|u€K,i:/{(u)}U{vﬂv\j |u,v€K,i:ﬁ(u),j:/{(v)}.

For the reverse implication, suppose that Z is a k’-dominating set in F. Because ev-
ery dummy 2-interval can be replaced by an adjacent vertex or edge 2-interval in a
dominating set, we can assume without loss of generality that 7 does not include any
dummy 2-intervals. Then, to dominate the dummy 2-intervals@, 7 must include at least
one vertex 2-interval for each color, and at least one edge 2-interval for each pair of
distinct colors. Since k' = k + (’2“), 7 must include exactly one vertex 2-interval for
each color, and exactly one edge 2-interval for each pair of distinct colors. It follows
that for each pair of distinct colors 77, the two validation 2-intervals m and 171); must
be dominated by the two vertex 2-intervals «; and 0;, respectively. Therefore the ver-
tex selection and the edge selection are consistent, and the k vertex 2-intervals in Z
corresponds to a k-multicolored clique in G.

New Reduction. We now modify the previous construction to transform each 2-interval
into a 2-track interval. To transform the vertex 2-intervals into 2-track intervals, move
the intervals wu; to track 1, and move the intervals *; to track 2. Then, to transform

2 We remark that the construction can be simplified by including only one dummy 2-interval for
each vertex or edge gadget. Nevertheless we keep two dummy 2-intervals for each gadget in
this presentation, partly for truthfulness to the original reduction, and partly for convenience
in our new reduction (when we split each edge 2-interval into two 2-track intervals later, we
don’t have to add new dummies).

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 133

the validation 2-intervals into 2-track intervals, move all edge gadgets to track 2. The
dummy 2-intervals can be fixed accordingly. It remains to fix the edge 2-intervals now
on track 2.

Consider the edge gadget for the edges E;; with colors 7. To fix the edge 2-intervals
in this gadget, we replace each 2-interval u;v; by two 2-track intervals w;v; ., and
W0, righs as follows:

— On track 2, let the intervals of w;vj ., and u;v; right D€ the left and the right inter-
vals, respectively, of u/,FJ

— On track 1, put the intervals of u;v; ., and w;0; ; aht for all uv € E;; in a sepa-
rate region, then arrange them, together with | E;;| additional dummy intervals, in a
parallelogram formation with |E; ;| rows and 3 columns: @; ¢ in the right column,
@j yignt in the left column, and dummies in the middle column. As usual, the inter-
vals are pairwise intersecting in each column, and the columns are slanted. But in
each row the three intervals are not all disjoint: the left interval and the middle inter-
val slightly overlap, and are both disjoint from the right interval. Now each interval
in the right column intersects all intervals in lower rows in the middle column, and
each interval in the left column intersects all intervals in the same or higher rows
in the middle column. Finally, each of the |E;;| dummy intervals in the middle
column is combined with an isolated dummy interval on track 2 to form a dummy
2-track interval.

Refer to Figured for an illustration of the edge 2-track intervals on the two tracks. The
following family F of 2-track intervals are constructed:

F={uilueV,1<i<k}
U {@left,@right,uivj,uwj luv € E;j, 1 <i<j< k;} U DUMMIES,

where DUMMIES is the set of 2k + 2 (’2“) +|E(G)| dummy 2-track intervals, two in each
vertex or edge gadget as before, and one more for each edge (recall the middle column
of each edge gadget on track 1). Now set the parameter k' = k + 2(’;) It remains to
show that G has a k-multicolored clique if and only if F has a k’-dominating set.

UiVj 1ope, UiV yight WiVj jopy

WiVj pight

TilYj 1ofy Tilj right Tilj1ett

Tilj right

track 2 track 1

Fig. 4. Transforming edge 2-intervals into 2-track intervals for k-DOMINATING SET

134 M. Jiang

For the direct implication, it is easy to verify that if K C V(G) is a k-multicolored
clique, then the following subset of 2-track intervals is a k’-dominating set in F:

{'L/L\z lue K, i= ’{(u)} U {u/zv\j leftau/iv\jright |u,v € K, i=r(u), j = K(U)}’

For the reverse implication, suppose that Z is a k’-dominating set in . Note that any
one of the (original) two dummy 2-track intervals in each vertex or edge gadget can
be replaced by an adjacent vertex or edge 2-interval in a dominating set. Thus we can
assume without loss of generality that 7 includes none of these 2k + 2(’;) dummies.
Then, to dominate these dummies, Z must include at least one vertex 2-track interval
for each color, and at least two edge 2-track intervals for each pair of distinct colors.
Since k' =k + 2 (’2“), 7 must include exactly one vertex 2-track interval for each color,
and exactly two edge 2-track intervals for each pair of distinct colors. Refer back to
Figurel] Let u;v; ,; and Z;7; right D€ the two edge 2-track intervals in 7 for some pair
of colors ij. The intersection pattern of the edge 2-track intervals for F;; on track 1
ensures that, in order to dominate all the (new) dummies in the middle column, the row
of xy must not be higher than the row of uv. Without loss of generality, we can assume
that they are in the same row, i.e., uv = xy, so that the set of validation intervals in the
middle column on track 2 that are dominated by w;v; | ¢, Z:¥; right 1 maximal. Thus the
two edge 2-track intervals for each pair of colors ij form a pair w;v; |, %0, right for
the same edge uv. Then the same argument as before shows that the k vertex 2-track
intervals in Z corresponds to a k-multicolored clique in G.

4 Ek-Clique

In this section we prove Theorem[2] Fellows et al. [9]] presented the following algorithm
CLIQUE(G, k) that decides whether a given ¢-interval graph G has a k-clique:

CLIQUE(G, k):

If |[V(G)| < k, then return NO.

Let v be a vertex of minimum degree in G.
If deg(v) > 2tk, then return YES.

If v is in a k-clique of G, then return YES.
5. Return CLIQUE(G — v, k).

bl NS

The crucial step of this algorithm, step 3, is justified by a structural lemma [9,
Lemma 2]: “if G is a t-interval graph with no k-cliques then G has a vertex of de-
gree less than 2tk.” Step 4 can be implemented in O(k? - (2;k)) time by brute force;
all other steps have running time polynomial in n. Since the total number of recur-
sive calls, in step 5, is at most n, the overall time complexity of the algorithm is

O(k*- (%)) - poly(n). Fellows et al. [9] estimated that

O(kQ . <2;;k)) — to(klogk), (1)

and asked whether this parametric time-bound can be improved.

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 135

Fellows et al. [9] suggested that “a possible good place to start is to consider the
problem for constant values of ¢, and to attempt to obtain a parametric time-bound
of 20(F) » This suggestion is little misleading because for constant values of ¢, the
algorithm CLIQUE(G, k) already attains a parametric time-bound of 2°(*), Note that
(*1F) < 22%k Thusif t = O(1) then O(k? - (%%)) = O(2218k . 22th) = 20(k),

Anyway, can we improve the parametric time-bound of t©(¥1°2%)? We next describe
such an FPT algorithm. Our FPT algorithm has two components. The first component
is the following algorithm CLIQUE*(G, k) slightly modified from CLIQUE(G, k):

CLIQUE*(G, k):

1. If [V(G)| < k, then return NO.

2. Let v be a vertex of minimum degree in G.

3. If deg(v) > 2tk, then return YES.

4. If CLIQUE*(neighbors(v), k — 1) returns YES, then return YES.
5. Return CLIQUE*(G — v, k).

Note that CLIQUE*(G, k) is identical to CLIQUE(G, k) except step 4. The follow-
ing recurrence on the time bound f(k) - g(n) captures the recursive behavior of
CLIQUE*(G, k):

fk) - g(n) < f(k—1)-g(2tk) + f(k) - g(n — 1) + O(n?).

Lemma 1. For any constant ¢ > 3, if k < }l - n1=1e then the running time of

CLIQUE*(G, k) is O(t*) - O(n®).

The second component of our FPT algorithm is the obvious brute-force algorithm that
enumerates and checks all k-subsets of vertices for k-cliques.

Lemma 2. For any constant ¢ > 3, if k > i .

QO(k log k:)'

n'=1/¢, then the running time of the
brute-force algorithm is

Finally, for any constant ¢ > 3, by choosing the algorithm CLIQUE* (G, k) when k <
1+ -n!=Y/¢ and choosing the brute-force algorithm when k > } - n!~1/¢, we obtain an

FPT algorithm with a parametric time-bound of
maX{tO(k)720(k10gk)}. 2)

Compare our bound @) with the previous bound (I). It appears that we have obtained
an improvement], but asymptotically this improvement is negligible. Check that the
estimate in () is not tight:

O(k? - <2}t€k>) — O(k2(2tk)F) = tO(k) 90 (k105)

= max{(to(k))z’ (QO(klng)) } max{to(k 20(krlogk)}

In light of this delicate distinction, perhaps the open question on £-CLIQUE in ¢-interval
graphs [9] could be stated more precisely as follows:

* Under the condition that k& < } - n'=Y¢ for some constant ¢ > 3, CLIQUE*(G,k)
clearly improves CLIQUE(G, k): in particular, for t = O(log k), the parametric bound of
CLIQUE* (G, k) is 20 (F1°g 106 %) "and the parametric bound of CLIQUE(G, k) is 20 (F1og %),

136 M. Jiang

Question 1. Is there an FPT algorithm for k-CLIQUE in t-interval graphs with a para-
metric time-bound of t9(¥)?

Note that a parametric time-bound of 2€(¥1°8 %) alone is beyond reach. This is because
every graph of n vertices is a t-interval graph for ¢ > n/4 [I1]. If the parameter ¢
does not appear in the bound, then we would have an FPT algorithm for the W[1]-hard
problem of k-CLIQUE in general graphs.

5 Maximal Strip Recovery

In this section we prove Theorem[3] Let .-MSR-d be the problem MSR-d parameterized
by the total length ¢ of the strips in the optimal solution. We first prove that /-MSR-4 is
W/[1]-hard by an FPT-reduction from k-INDEPENDENT SET in 2-track interval graphs.

Let (F, k) be an instance of k-INDEPENDENT SET in 2-track interval graphs, where
F = {L,...,I,} is a set of n 2-track intervals. We construct four genomic maps

1 K3
G_,,G_,G1,Ga, where each map is a permutation of 2n distinct markers C and D,
1 <4 < n, all in positive orientation. G_, and G are concatenations of the n pairs of
markers with ascending and descending indices, respectively:

1 1 nn
G_.:CD c>
n n 11
G_:CD CcD

To construct G; and G2, we first modify the representation of the 2-track interval graph
for F until the 2n endpoints of the n intervals on each track are all distinct. This can
be done in polynomial time by a standard procedure for interval graphs. Then, on each
track, mark the left and the right endpoints of the interval for I; by the left and the right

markers C and 5, respectively. Thus we obtain two sequences of markers for the two
genomic maps G; and G2. This completes the construction.

Now set the parameter ¢ = 2k. By the following two observations, it is easy to check
that F has a k-independent set if and only G_,, G, G1, G2 have four subsequences of
total strip length ¢:

1. G_, and G ensure that each strip must be a pair of markers.
2. G1 and G encode the intersection pattern of the 2-track intervals.

Therefore -MSR-d is W[1]-hard.

Since the length of each strip is exactly 2 in our construction, the total number of
adjacencies in the strips and the number of strips are both equal to half the total strip
length. Therefore MSR-d remains W[1]-hard when the parameter is changed to either
the total number of adjacencies in the strips or the number of strips. For any two con-
stants d and d’ such that d’ > d > 2, the problem MSR-d is a special case of the
problem MSR-d’ with d’ — d redundant genomic maps. Thus the W[1]-hardness of
MSR-4 implies the W[1]-hardness of MSR-d for all constants d > 4.

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 137

References

1.

2.

(<]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Alcén, L., Cerioli, M.R., de Figueiredo, C.M.H., Gutierrez, M., Meidanis, J.: Tree loop
graphs. Discrete Applied Mathematics 155, 686-694 (2007)

Bafna, V., Narayanan, B., Ravi, R.: Nonoverlapping local alignments (weighted independent
sets of axis-parallel rectangles). Discrete Applied Mathematics 71, 41-53 (1996)

. Bar-Yehuda, R., Halldérsson, M.M., Naor, J(S.), Shachnai, H., Shapira, I.: Scheduling split

intervals. SIAM Journal on Computing 36, 1-15 (2006)

. Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: hardness and

approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 710-719. Springer, Heidelberg (2009)

. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-

interval graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 268-277 (2007)

. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps.

Journal of Combinatorial Optimization 18, 307-318 (2009)

. Crochemore, M., Hermelin, D., Landau, G.M., Rawitz, D., Vialette, S.: Approximating the

2-interval pattern problem. Theoretical Computer Science 395, 283-297 (2008)

. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)
. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity

of multiple-interval graph problems. Theoretical Computer Science 410, 53-61 (2009)
Gambette, P., Vialette, S.: On restrictions of balanced 2-interval graphs. In: Brandstadt, A.,
Kratsch, D., Miiller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 55-65. Springer, Heidelberg
(2007)

Griggs, J.R.: Extremal values of the interval number of a graph, II. Discrete Mathematics 28,
3747 (1979)

Griggs, J.R., West, D.B.: Extremal values of the interval number of a graph. SIAM Journal
on Algebraic and Discrete Methods 1, 1-7 (1980)

Gyirfas, A., West, D.B.: Multitrack interval graphs. Congressus Numerantium 109, 109-116
(1995)

Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbi-
trary pseudoknots. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
doi:10.1109/TCBB.2008.109 (to appear)

Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z., Ibarra, O.
(eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616-625. Springer, Heidelberg (2009)

Jiang, M.: Inapproximability of maximal strip recovery: II (Submitted)

Joseph, D., Meidanis, J., Tiwari, P.: Determining DNA sequence similarity using maximum
independent set algorithms for interval graphs. In: Nurmi, O., Ukkonen, E. (eds.) SWAT
1992. LNCS, vol. 621, pp. 326-337. Springer, Heidelberg (1992)

Trotter Jr., W.T., Harary, F.: On double and multiple interval graphs. Journal of Graph The-
ory 3, 205-211 (1979)

Vialette, S.: On the computational complexity of 2-interval pattern matching problems. The-
oretical Computer Science 312, 223-249 (2004)

Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Proceedings of the 6th
Annual Conference on Theory and Applications of Models of Computation (TAMC 2009),
pp. 400409 (2009)

West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-complete.
Discrete Applied Mathematics 8, 295-305 (1984)

Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in
rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 4, 515-522 (2007)

Succinct Representations of Separable Graphs

Guy E. Blelloch! and Arash Farzan?

! Computer Science Department, Carnegie Mellon University
2 Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany
blelloch@cs.cmu.edu, afarzan@mpi-inf.mpg.de

Abstract. We consider the problem of highly space-efficient represen-
tation of separable graphs while supporting queries in constant time in
the RAM with logarithmic word size. In particular, we show constant-
time support for adjacency, degree and neighborhood queries. For any
monotone class of separable graphs, the storage requirement of the rep-
resentation is optimal to within lower order terms.

Separable graphs are those that admit a O(n°)-separator theorem
where ¢ < 1. Many graphs that arise in practice are indeed separable.
For instance, graphs with a bounded genus are separable. In particular,
planar graphs (genus 0) are separable and our scheme gives the first
succinct representation of planar graphs with a storage requirement that
matches the information-theory minimum to within lower order terms
with constant time support for the queries.

We, furthers, show that we can also modify the scheme to succinctly
represent the combinatorial planar embedding of planar graphs (and
hence encode planar maps).

1 Introduction

Many applications use graphs to model connectivity information and relationship
between different objects. As the size of these graphs grow, the space efficiency
becomes increasingly important. The structural connectivity of the Web modeled
as the Web graph is an example which presently contains billions of vertices and
the number is growing [I]. As a result, compact representation of such graphs
for use in various algorithms has been in interest [23J4)5]. Planar (and almost
planar) graphs which capture various structural artifacts such as road networks,
form another example of graphs whose space-efficient representation is crucial
due to their massive size. For all these applications, it is desirable to represent the
graph compactly and be able to answer dynamic queries on the graph quickly.
A succinct representation of a combinatorial object is a compact representa-
tion of that object such that its storage requirement matches the information-
theoretic space lower bound to within lower order terms, and it supports a
reasonable set of queries in constant time. Succinct data structures perform
under the uniform-cost word RAM-model with © (Ign) word size [6] Hence,
the main distinction between succinct and compact representations of an object

1lgn denotes log, n.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 138 2010.
© Springer-Verlag Berlin Heidelberg 2010

Succinct Representations of Separable Graphs 139

is that unlike compact representations, the storage requirement of a succinct rep-
resentation cannot be a constant factor away from the optimal and moreover,
queries must perform in constant time.

Unstructured graphs are highly incompressible (see section [[I)). Fortunately
however, most types of graph that arise in practice have some structural prop-
erties. A most common structural property that graphs in practice have is that
they have small separators. A graph has small separators if its induced subgraphs
can be partitioned into two parts of roughly the same size by removing a small
number of vertices (to be defined precisely in section 2]). Planar graphs (such
as 2-dimensional meshes), almost planar graphs (such as road networks, distri-
bution networks) [7I§], and most 3-dimensional meshes [9] have indeed small
separators.

In this paper, we study the problem of succinct representations of separa-
ble undirected and unlabeled graphs (as defined precisely in definition [I). We
present a succinct representation with a storage requirement which achieves
the information-theoretic bound to within lower order terms and show constant
time support for the following set of queries: adjacency queries, neighborhood
queries, and degree queries. Adjacency queries on a pair of vertices x,y de-
termines whether (z,y) is an edge. Neighborhood queries iterate through the
neighbors of a given vertex x. Finally, the degree query outputs the number of
incident edges to a given vertex x. A representation that supports these queries
in constant time has the functionality of both an adjacency list and an adjacency
matrix at the same time.

Analogous to Fredrickson’s partitioning scheme for planar graphs [8], our suc-
cinct representation is based on recursive decomposition of graphs into smaller
graphs. We repeatedly separate the given graph into smaller graphs to obtain
small graphs of poly-logarithmic size which we refer to as by mini-graphs. These
mini-graphs are further separated into yet smaller graphs of sub-logarithmic size
which we refer to as by micro-graphs. Micro-graphs have small enough sizes
to be catalogued and listed in a look-up table. Micro-graphs are encoded by
a reference to within the look-up table. At each step that a graph is repeat-
edly split into two smaller subgraphs, the vertices in the separator are copied
into both subgraphs. Therefore there are duplicate vertices in mini-graphs and
micro-graphs. The main difficulty is to be able to represent the correspondence
between duplicate vertices and the original graph vertices.

The time to construct the representation is dominated by the time needed
to recursively decompose the graph into mini-graphs and micro-graphs and also
by the time needed to assemble the look-up table for micro-graphs. The time
for finding the separators and decomposing the graph recursively varies signif-
icantly from a family of graphs to another. For instance, there are linear time
algorithms for finding separators in planar graphs and well-shaped meshes in ar-
bitrary dimensions [7l9]. For our purposes a poly-logarithmic approximation of
the separator size suffices and therefore we use Leighton-Rao’s polynomial time
construction [I0]. The time required to assemble the look-up table depends on
the maximum size of micro-trees, since we need to exhaustively list all separable

140 G.E. Blelloch and A. Farzan

graphs modulo their isomorphism up to that size. We have a large degree of
Ign
lglgn
the maximum micro-graph size ensures a sub-linear look-up table construction

time. Albeit, for simplicity of presentation of this paper, we will use é‘%g"n as the

maximum micro-graph size.

freedom on the choice of maximum size of a micro-graph, choice of \/ as

1.1 Related Work

As mentioned previously, unstructured graphs are highly incompressible. A sim-
ple counting argument shows that a random graph with n vertices and m edges

requires {lg ((:2:;))-‘ bits. Blandford et al. [II] achieves this bound within a con-

stant multiplicative factor for sparse graphs. Raman et al. [I2] give a repre-
sentation with a storage requirement which is roughly twice the information
theory minimum and supports adjacency and neighborhood queries in constant
time. Farzan and Munro [I3] prove the infeasibility of achieving the information-
theoretic space lower bound to within lower order terms and constant-time query
support. and give a representation with a storage requirement that is a factor of
1+ € away from the minimum (for any constant e > 0).

Hence, space efficient representations of graphs with a certain combinato-
rial structure has been of interest: e.g. bounded-genus graphs [I4], graphs with
limited arboricity, and c-decomposable graphs [I5]. A strong line of research
has been on compressing planar graphs. Given a planar graph with n vertices,
Turdn [16] gives a O(n)-bit representation. Keeler and Westbrook [17] improve
the space by a constant factor. He et al. [I8] improve the first order term of
space to the information-theory minimum. However, none of these consider fast
support for queries.

Jacobson [19] gives a linear-space representation for planar graphs which sup-
ports adjacency queries in logarithmic time. Munro and Raman [20] gives a
linear-space encoding for planar graphs in which supports queries in constant
time. Chuang et al. [2I] and subsequently Chiang et al. [22] improve the con-
stant on the high order term for space. There is a vast literature on encoding
subfamilies of planar graphs. Two important subfamilies are tri-connected planar
graphs and triangulated planar graphs for which in a culminating work Castelli
Aleardi et al. [23] show a succinct representation. This representation, used for
general planar graphs, has a storage requirement which is a constant factor away
from the optimal (and therefore is not succinct).

One important aspect in representing planar graphs has been to also represent
the associated planar embedding together with the graph (i.e. to represent planar
maps). We demonstrate our scheme yields a succinct representation for both
general planar graphs and planar maps.

Blandford et al. [11] study space-efficient representations of separable graphs
with constant time support for adjacency, degree, and neighborhood queries.
However their representation is not succinct and can have a storage which is a
multiplicative factor away from the optimal. We present a succinct representation
for separable graphs that supports the same set of queries in constant time.

Succinct Representations of Separable Graphs 141

2 Preliminaries

A separator S in a graph G = (V, E) with n vertices is a set of vertices that
divides V into non-empty parts A C V and B C V such that {A,S,B} is a
partition of V| and no edge in G joins a vertex in A to a vertex in B.

Definition 1. A family of graphs G that is closed under taking the vertex-
induced subgraphs satisfies the f(.)-separator theorem [7] if there are constants
a < 1 and B > 0 such that each member graph G € G with n vertices has a
separator S of size |S| < Bf(n) which divides the vertices into parts A, B each
of which contains at most an vertices (|A| < an,|B| < an). We define a family
of graphs as separable if it satisfies the n°-separator theorem for some constant
c < 1. A graph is separable if it belongs to a separable family of graphs.

Lipton, Rose, and Tarjan [24] prove that a in family of graphs satisfying a
(n/(log n)HE)—separator theorem for some € > 0, the number of edges of a graph
is linear in the number of vertices. Since separable graphs satisfy a stronger sep-
arator theorem, a separable graph has linear number of edges.

We use the dictionary data structures heavily in this work. The first data
structure we need in our tool set is an indexable dictionary (ID) to represent a
subset of a universe supporting membership, rank, and select queries on member
elements in constant time. A membership query on a given element X determines
whether z is present in the subset. A rank query on an element x reports the
number of present elements less than x in the subset. Finally, a select query
(which are reverse to rank queries) for a given number i reports element at rank
i in the increasing order in the subset.

Lemma 1 ([12]). Given a set S of size s which is a subset of a universe U =
{1,...,u}, there is an indezable dictionary (ID) on S that requires 1g (%) +
o(s) + O (loglogw) bits and supports rank/select on elements of S in constant
time (rank/select on non-members is not supported).

Unlike IDs, fully indezable dictionaries (FID) support membership, rank, and
select queries on both members and non-members. These are very powerful struc-
tures, as they can support predecessor queries in constant time. As a result, they
are not as space-efficient as IDs.

Lemma 2 ([12]). Given a subset S of a universe U, there is a fully indexable
dictionary (FID) structure which requires lg (llgl‘) + O (JU|loglog |U| /log|UJ)
bits and supports rank and select queries both on members and nonmembers of
S in constant time.

3 Succinct Representation

Analogous to the compact representation of separable graphs [I1], we find and
remove separators recursively to decompose the graph. Given a graph G with
n vertices, we find a small separator S (|S| < On®) whose removal divides G

142 G.E. Blelloch and A. Farzan

The Original Graph

.
.

Wini graph Wini graph Wini graph i graph

|

Micro graphs

Fig.1. Decomposition of a separable Fig.2. A schematic view of the decompo-
graph G into G1, G2 sition of a separable graph to mini-graphs
and then to micro-graphs

into two parts A, B with at most an vertices each. We obtain two induced
subgraphs G; = AU S and G2 = BU S. We remove internal edges of S from G,
(and retain them in G3). Therefore, we obtain two subgraphs Gp, G2 from G.
Figure [illustrates the decomposition of an example graph G into G; and Gs.

We decompose G and G2 to obtain smaller subgraphs. Smaller subgraphs
are in turn decomposed similarly into yet smaller subgraphs. We define a con-
stant 6 = 2/(1 — ¢) where there are n®-separators (definition [Il). We repeat the
separator-based decomposition till the subgraphs have at most (lg n)® vertices
where n is the number of vertices in the initial graph. We refer to these subgraphs
with at most (Ign)? vertices as mini-graphs.

Mini-graphs are further decomposed in the same fashion. Each mini-graph
is decomposed repeatedly until the number of vertices in subgraphs is at most
lgn/lglgn. We refer to these subgraphs with at most lgn/lglgn vertices as
micro-graphs. Figure Pl illustrates the decomposition into mini and micro graphs.

The graph representation consists of the representations of mini-graphs which
in turn consist of the representations of micro-graphs. Micro-graphs are small
enough to be catalogued by a look-up table. Vertices in separators are dupli-
cated by each iteration of the decomposition and therefore there can be many
occurrences of a single vertex of the original graph across different mini-graphs
and/or micro-graphs.

Each occurrence of a vertex receives three labels: a label within the containing
micro-graph which we refer to as by micro-graph label, a label within the con-
taining mini-graph which we refer to as by mini-graph label, and finally a label
in the entire graph which we refer to as by graph label and is visible from out-
side our abstract data type for the graph. Queries indicate vertices using their
graph labels. Dictionary structures of lemmas [Tl and 2] are used to maintain the
relationship between duplicates of a single vertex.

Succinct Representations of Separable Graphs 143

Combining representations of mini-graphs. We assume mini-graphs are encoded
(using a scheme to be discussed shortly), we explain here how these encodings
can be combined to represent the entire graph. We start by bounding the number
of vertices of an individual mini-graph and their accumulative size (proof omitted
due to space constrainsts):

Lemma 3. The number of mini-graphs is © (n/(log n)‘g). The total number of
duplicates among mini-graphs (i.e. sum of multiplicities greater than one) is
O (n/ log? n) The sum of the number of vertices of mini-graphs together is n +

O (n/ log? n). O

As discussed previously the given graph is unlabeled and we pick (graph) labels
for vertices. Labels of vertices with no duplicates precede labels of vertices with
duplicates. Mini-graphs are scanned in order and non-duplicate vertices are as-
signed graph labels consecutively. Duplicate vertices in the original graph are
assigned graph labels arbitrarily using the remaining labels.

To translate graph labels to/from mini-graph labels, we build a bit vector
Translate with length equal to the sum of the number of vertices in mini-
graphs. This vector spans across all mini-graphs in order containing an entry for
each vertex of a mini-graph. The entry is set to zero if the corresponding vertex
has no duplicates and is set to one if it has a duplicate. The fully indexable
dictionary (FID) of lemma [is used to represent one entries over the universe
of all entries in Translate. Support for rank and select on both zeros and ones
allows us to translate between locations in Translate and graph labels. The
space of this structure by lemmas 28] is o (n). Figure Bl depicts an overview of
these structures.

Boundaries is another bit vector which is encoded also using a FID. It marks
the boundaries of mini-graphs in Translate. Translate and Boundaries to-
gether enable us to translate labels of non-duplicate vertices. Given the graph
label of such a vertex, we find the corresponding location in Translate by a
select query and then perform rank on Boundary to obtain the mini-graph num-
ber and the offset from the predecessor one which is the mini-graph label of
that vertex. Conversely, given the mini-graph label of a non-duplicate vertex,
we perform select on boundaries to find the start location of the mini-graph in
Translate and add to it the mini-graph label to find the corresponding location
in there. Now a rank over non-duplicates gives us the graph label.

For translating labels of duplicate vertices, we maintain other structures.
Duplicates has a list for each duplicate vertex which contains all duplicates
of the vertex as positions in Translate. Duplicates empowers us to iterate
through duplicates of a vertex. Real-names is an array with length equal to the
sum of multiplicities of duplicates vertices. Its entries contain in order the graph
label of each occurrence of a duplicate vertex in Translate. Real-names allows
us to determine the graph label of an occurrence of a duplicate vertex. Using
these structures we can translate between graph labels and mini-graph labels
of duplicate vertices. To account for the space of these structures, we note that
O (logn) bits are used for any occurrence of duplicate vertices of which there are
C] (n/ log? n) by lemma[3] and therefore the space is © (n/logn) bits.

144 G.E. Blelloch and A. Farzan

| Non-duplicates L Duplicates)
1| {
Graph
o | 2lolelale]r]o]1]2]a]s]
1 2345;6789101151213141516
1 a 3 4 b'!'2 ¢ d e f 1'3 g 4 2 1
Translate: [1 JoJ1]1JoJiJoJoJoJoli[i]o]]
Boundaries:|1|o|o|o|o|1|o|o|o|o|oi1|o|o|o|o|
K‘ T\ TK
] 1
1 1
] !
] 1
1 1
] !
] 1
1 1
Mini-graphs: | i
i i
] 1
1 1
| !
‘1: 1 1 16
Duplicates: = 5 15
| 3 3 12
| 4: 4 14
Real-name: |1|3|4|2|1|3|4|2|1|

Fig. 3. Indexing structures used to translate between graph labels and mini-graph
labels

Combining representations of micro-graphs. The representation of a mini-graph
is composed of those of micro-graphs in the same manner as the representation
of the entire graph is composed out of mini-graphs. The same set of structures
are built and stored. The technical lemma in this construction is analogous to
lemma Bl The details of this construction and the proof of lemma is omitted due
to space constraints.

Lemma 4. Within a particular mini-graph of m vertices, the number of micro-
graphs is © ((mloglogn)/logn). The total number of duplicates (i.e. sum of
multiplicities) is O ((mlog log'™¢n)/log*~* n). Sum of the number of vertices
of micro-graphs together is m + O ((mlog log'~“n)/log"~® n). O

Representations of micro-graphs. Micro-graphs have © (logn/loglogn) vertices
and are encoded by an Index to a look-up table. The look-up table lists all
possible micro-graphs with @ (logn/loglogn) vertices ordered according to their
numbers of vertices. The table also stores pre-computed answers to all queries
of interest.

Index fields account for the dominant space term. Since we enumerate micro-
graphs to list them in the look-up table, the length of the Index field matches the
entropy bound for each micro-tree. Since a family of separable graphs has a linear
entropy (H() = O (n)) [11], the sum of the lengths of Index fields over all micro-
graphs is H(X) + o(n) where X is the sum of the number of vertices of micro-
graphs (o(n) comes from the round-up for individual indices). Lemmas [and @]

Succinct Representations of Separable Graphs 145

show that X' = n 4+ o(n) and thus the length of the encoding is H(n) + o (n).
Since all indexes built to combine micro-graphs into mini-graphs and combine
mini-graphs into an entire graph is o (n) as shown, and the storage requirement
of the look-up table is o(n), the entire representation requires H(n) 4 o (n) bits.

We now turn to showing support for queries in constant time. The two main
queries of interest are neighborhood and adjacency queries and support for degree
queries is straightforward.

3.1 Neighborhood Queries

We now explain how neighbors of a vertex can be reported in constant time per
neighbor. Given a vertex v by its graph label, we first determine if it has dupli-
cates by a simple comparison. If there is no duplicates then the corresponding
mini-graph and the mini-graph label are determined. If there are duplicates, we
use Duplicates array to look-up each occurrence of the vertex one by one. Each
occurrence leads us to a particular vertex in a mini-graph.

Once confined to a mini-graph and a particular vertex u therein, we determine
analogously if v has duplicates across micro-graphs. If no duplicate exists, then
we find the micro-graph and the micro-graph label therein and the query is an-
swered using the pre-computed neighbors in the look-up table. In case duplicates
exist, array Duplicates is used and each occurrence is handled analogously.

Each neighbor vertex name is a micro-graph label and should be translated
to a graph label which is performed by a conversion to mini-graph label and
subsequently to a graph label using Translate, Boundaries structures.

3.2 Adjacency Queries

We use the same approach as in [II] and direct the edges such that in the
resulting graph each vertex has a bounded out-degree:

Lemma 5 ([I1]). The edges of a separable graph can be directed in linear time
such that each vertex has out-degree at most b for some constant b > 0.

In order to answer the adjacency query q(u,v), it suffices to show how outgoing
edges of a vertex can be looked-up in constant time as the (possible) edge between
u, v is either directed from u to v or vice versa.

We cannot store the directed graph as the space requirement would exceed
our desirable bound. We only store the direction of a sub-linear number of edges.
The look-up table remains undirected and intact, and thus it does not reflect
the direction of any edge.

We add the following structures to enable constant time look-up for out-going
edges. In a mini-graph, for each vertex v with duplicates, we store b vertices that
are endpoints of edges going out of v (O (loglogn) bits each). Similarly, in the
entire graph, for each vertex v with duplicates we explicitly store b endpoints of
edges going out of u (O (logn) bits each).

More importantly, for each vertex with duplicates across different mini-graphs,
we store, in Structure Duplicate-components, the mini-graph numbers in which

146 G.E. Blelloch and A. Farzan

it has a duplicate . We cannot simply list mini-graphs in Duplicate-components
as we must support membership queries. We use the indexable dictionary struc-
ture (lemmalll) over the universe of mini-graphs. Internal to each mini-graph, we
build the same structure as Duplicate components which captures the micro-
graph numbers of duplicates of the same vertex across different micro-graphs.
The extra space added by using these structures can be proved to be o(n).

Given a query ¢(u,v) on two vertices u,v. We state the procedure for vertex
u, however the same procedure must be repeated for vertex v afterwards. We
first determine if v has duplicates in different mini-graphs or micro-graphs. If
it does so, then endpoints of its outgoing edges are explicitly listed which we
compare against v by translating mini-graph and/or micro-graph labels of the
listed vertices. In case u has duplicates neither across micro-graphs within the
mini-graph nor across different mini-graphs, u appears in only one mini-graph
and one micro-graph therein. For v to have and edge to u, it must appear in
the same micro and mini-graph. We use structure Duplicate-components to
determine if v has a duplicate in the same micro-graph as u. As otherwise, there
cannot be an edge uv. We now use a rank query in Duplicate-components to
index to Duplicates and retrieve the micro-graph label of the proper duplicate
of v. Within a micro-graph, we use the look-up table, to determine if they are
adjacent in constant time.

Theorem 1. Any family of separable graphs (definition [1l) with entropy H(n)
where n is the number of vertices, can be succinctly encoded in H(n) + o(n) bits
such that adjacency, neighborhood, and degree queries are supported in constant
time.]

4 Representing Planar Maps: Encoding the
Combinatorial Embedding

A planar drawing of a planar graph is a drawing of the graph in IR? with no edge
crossings. There is infinitely many planar drawings for any fixed planar graphs
G. Two such planar drawings are equivalent if for all vertices the clockwise cyclic
ordering of neighbors is the same in both graphs. An equivalency class of planar
drawings specifies a clockwise cyclic order of neighbors for all vertices which is
known as the combinatorial planar embedding. A planar map is a planar graph
together with a fixed combinatorial planar embedding.

In this section, we address the issue of representing (unlabeled) planar maps.
The underlying planar graphs of a planar map is separable and therefore the
representation of section [J] can encode them succinctly to support adjacency,
degree, and neighborhood queries in constant time. In planar maps representa-
tions, we not only need to encode the planar graph, but also we need to store the
combinatorial planar embedding. Hence, we enhance the definition of neighbor-
hood queries to report neighbors of a fixed vertex according to the combinatorial
planar embedding: i.e. neighbors should be reported in the clockwise cyclic order
in constant time per neighbor.

Succinct Representations of Separable Graphs 147

Fig.4. A planar map (left) and the resulting graph where edges are subdivided and
connected according to the combinatorial planar embedding (right)

We first note that we can easily achieve a planar map encoding by increas-
ing the storage requirement by a constant factor. Given a planar map G, we
subdivide all edges by introducing a dummy vertex of degree two on each edge
and connect these dummy vertices circularly around each vertex (as depicted in
figure @l Since the number of edges of a planar graph is linear, the number of
vertices is increased by a constant factor. It is easy to verify that the resulting
graph is planar and therefore separable. We can encode this graph using any of
the compact planar graph representations referred to in section [[.T] using O(n)
bits. Using the dummy vertices, we can produce neighbors of a vertex in the cir-
cular order according to the combinatorial embedding. Moreover, we explicitly
store a bit for each dummy node which distinguishes the immediate clockwise
and counter-clockwise neighbor (e.g. we set the bit to zero if the neighbor with a
higher label is the clockwise one). Using these bits we can produce the neighbors
in the actual clockwise circular order for any fixed node. This encoding proves
that the entropy H,(n) of planar maps is linear in the number of vertices n.

Although the simple encoding scheme achieves the entropy to within a con-
stant factor, a succinct representation that achieves the entropy tightly to within
lower order terms is desired and we will give such representation in this section.

Theorem 2. A planar map G with n wvertices can be encoded succinctly in
Hp(n)+o(n) bits where n is the number of vertices of G. The encoding supports
queries adjacency queries, degree queries, and neighborhood queries (according
to combinatorial planar embedding of G) in constant time.

We subdivide edges of G by introducing dummy vertices of degree two on each
edge as described before to obtain graph G’. Since G’ is planar and separable, we
use the succinct separable graph representation of section [3 to represent it. This
representation in its current form requires a space which is a constant factor
away from entropy H,(n). We will make modifications to lessen the space to
Hp(n) + o(n). We will also show constant-time support for queries.

The succinct separable representation of section Bl divides G into mini-graphs
and micro-graphs and creates duplicate vertices which are repeated in more than
one mini/micro-graphs. Among dummy vertices, we retain all that are duplicates
and discard all that are not. A non-duplicate dummy vertex d is discarded by
a contraction which deletes the vertex and connects the endpoints of the edge
d stood for. We refer to by the resulting graph as G. By lemmas Bl and, @ the

148 G.E. Blelloch and A. Farzan

total number of dummy vertices that are retained is o(n) and therefore the total
number of vertices in the graph is n + o(n). Using a bit vector which is stored
as in lemma 2] we explicitly store whether a vertex is a dummy vertex.

Micro-graphs are stored by references into a look-up table as before. The
micro-graph is a subgraph of G’ and therefore is planar. Furthermore, the com-
binatorial planar embedding of G’ induces a combinatorial planar embedding for
micro-graphs. The table stores the combinatorial planar embedding of micro-
graphs together with the structure of the graphs. Theorem [implies that the
storage requirement of the representation is H,(n) + o(n) bits.

It only remains to show constant-time support for queries. As the degrees of
original vertices in G remain unchanged supporting degree queries is trivial. Sup-
port for adjacency queries is more complicated since we have introduced dummy
vertices on edges of G. Nevertheless, the adjacency queries in G are handled in
the same manner as adjacency queries in the representation (section B2). To
show support for adjacency queries in section [3.2] we first oriented the edges of
the graph such that each vertex has a bounded out-degree (lemma [Bl). To orient
G’, we orient the underlying graph G according to lemma [and if edge uv in
G has a dummy vertex d in G’, we orient edges of G’ as u — d and d — v. We
orient edges between dummy vertices according to the clockwise cyclic order. It
is easy to verify that all vertices have a constant out-degree in G, and therefore
we can repeat the same procedure as in section However, the procedure
guarantees that we can discover edges between immediate neighbors and in G
there could be a dummy vertex on an edge. We first note that this is not an
issue within a micro-graph as using the look-up table we can easily test if two
vertices are connected through a degree-two vertex (which we must also verify
to be a dummy vertex). For vertices that have a duplicate across mini/micro-
graphs, we explicitly listed out-neighbors in section here we list explicitly
out-neighbors through dummy vertices as well (i.e. if node u is a duplicate and
there are edges u — d — v where d is a dummy vertex, we explicitly store v in
the list). Response to adjacency queries can be computed as in section 3.2

We now demonstrate how neighborhood queries
are supported. Given an edge uv between two ver-
tices u and v of graph G, the neighborhood query
is to report the next neighbor of v in the circular
order according to the combinatorial planar embed-
ding. Let us denote by d the dummy vertex in G’
that resides on edge uv of G. Also we denote by w Fig.5. Supporting neigh-
the next neighbor of w in the circular order in G, horhood queries on vertex
and d’ the dummy vertex that resides on edge uw in 4 vertex w is reported after
G’'. Either of dummy vertices d,d’ in G’ may or may vertex v regardless of exis-
not be present in G. Refer to figure [l tence of d or d’

We distinguish two cases according to whether the
edge dd' is present or absent in G. If dd’ € G’ (both
d and d' are present in G), then clearly we can discover the next neighbor of
u by taking the edge dd’ and arriving at vertex d’ which leads us to vertex w.

Succinct Representations of Separable Graphs 149

Therefore, the more interesting case is where edge dd’ is absent. In this case,
neither of d or d’ could be a duplicate vertex (as otherwise, since we retain
duplicate dummy vertices and their immediate neighbors, they both would be
present and therefore edge dd’ would exist). Since d and d’ do not have duplicates
and they are immediately connected (by edge dd’'), they belong to the same
micro-graph of G’. Moreover, since u, v, w are immediate neighbors of vertices
d,d’, these vertices or a duplicate of them must also belong to the same micro-
graph. Since edges of G are not repeated in more than one micro-graph, the
micro-graph is the one containing the (possibly subdivided) edge uwv in G. Hence,
the edge uw can be read from the look-up table as the next neighbor of uv in
the circular order. O

5 Conclusion and Discussion

We studied the problem of succinctly encoding separable graphs while supporting
degree, adjacency, and neighborhood queries in constant time. For each family of
separable graphs (e.g. planar graphs). The storage is the information-theoretic
minimum to within lower order terms. We achieve the entropy bound for any
monotone family of separable graphs with no knowledge of the actual entropy for
that family of graphs since we use look-up tables for tiny graphs. Namely, when
used for planar graphs, our representation requires a space which is the entropy
of the planar graphs to within lower order terms while supporting queries in
constant time. This is when the actual entropy (or equivalently the number of
unlabeled planar graphs) is still unknown [25]. This is an improvement in the
heavily-studied compact encoding of planar graphs. Moreover, we showed that
our approach yields a succinct representation for planar maps (i.e. planar graphs
together with a given embedding).

One interesting direction for future work is to extend the idea of this paper to
represent dynamic separable graphs. These are graphs under updates in form of
insertion and deletion of vertices and edges while the graphs remains separable.

References

1. Gulli, A., Signorini, A.: The indexable web is more than 11.5 billion pages. In:
WWW 2005: Special interest tracks and posters of the 14th international conference
on World Wide Web, pp. 902-903. ACM, New York (2005)

2. Claude, F., Navarro, G.: A fast and compact web graph representation. In: Ziviani,
N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 118-129. Springer,
Heidelberg (2007)

3. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1-6),
309-320 (2000)

4. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: DCC 2001:
Proceedings of the Data Compression Conference, Washington, DC, USA, p. 203.
IEEE Computer Society, Los Alamitos (2001)

5. Suel, T., Yuan, J.: Compressing the graph structure of the web. In: DCC 2001:
Data Compression Conference, p. 213. IEEE, Los Alamitos (2001)

150

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G.E. Blelloch and A. Farzan

Munro, J.I.: Succinct data structures. Electronic Notes in Theoretical Computer
Science 91, 3 (2004)

Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. STAM Journal
on Applied Mathematics 36(2), 177-189 (1979)

Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM J. Comput. 16(6), 1004—1022 (1987)

Miller, G.L., Teng, S.H., Thurston, W., Vavasis, S.A.: Separators for sphere-
packings and nearest neighbor graphs. J. ACM 44(1), 1-29 (1997)

Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In:
FOCS 1988: Foundations of Computer Science, pp. 422-431. IEEE, Los Alamitos
1988

](BIaLnd)ford7 D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (2003)
Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algo-
rithms 3(4), 43 (2007)

Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393-404. Springer,
Heidelberg (2008)

Lu, H.I.: Linear-time compression of bounded-genus graphs into information-
theoretically optimal number of bits. In: SODA 2002: Proceedings of ACM-SIAM
symposium on Discrete algorithms, pp. 223-224 (2002)

Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. STAM J. Dis-
crete Math. 5(4), 596-603 (1992)

Turdn, G.: On the succinct representation of graphs. Discrete Applied Mathemat-
ics 8, 289-294 (1984)

Keeler, W.: Short encodings of planar graphs and maps. DAMATH: Discrete Ap-
plied Mathematics and Combinatorial Operations Research and Computer Sci-
ence 58 (1995)

He, X., Kao, M.Y., Lu, HI: A fast general methodology for information-
theoretically optimal encodings of graphs. SIAM Journal on Computing 30(3),
838-846 (2000)

Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium on
Foundations of Computer Science, 1989, October 30— November 1, pp. 549-554 (1989)
Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: IEEE Symposium on Foundations of Computer Sci-
ence, pp. 118-126 (1997)

Chuang, R.C.N., Garg, A., He, X., Kao, M.Y., Lu, H.I.: Compact encodings of
planar graphs via canonical orderings and multiple parentheses. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118-129. Springer,
Heidelberg (1998)

Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to
graph encoding and graph drawing. In: SODA 2001: ACM-SIAM symposium on
Discrete algorithms, pp. 506-515 (2001)

Devillers, L.C.A.O., Schaeffer, G.: Succinct representations of planar maps. Theor.
Comput. Sci. 408(2-3), 174-187 (2008)

Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. STAM Journal
on Numerical Analysis 16, 346-358 (1979)

Liskovets, V.A., Walsh, T.R.: Ten steps to counting planar graphs. Congressus
Numerantium 60, 269-277 (1987)

Implicit Hitting Set Problems
and Multi-genome Alignment

Richard M. Karp

University of California at Berkeley and
International Computer Science Institute

Let U be a finite set and S a family of subsets of U. Define a hitting set as a subset
of U that intersects every element of S. The optimal hitting set problem is: given a
positive weight for each element of U, find a hitting set of minimum total weight.
This problem is equivalent to the classic weighted set cover problem.We consider
the optimal hitting set problem in the case where the set system S is not explicitly
given, but there is an oracle that will supply members of S satisfying certain
conditions; for example, we might ask the oracle for a minimum-cardinality set
in S that is disjoint from a given set Q. The problems of finding a minimum
feedback arc set or minimum feedback vertex set in a digraph are examples of
implicit hitting set problems. Our interest is in the number of oracle queries
required to find an optimal hitting set. After presenting some generic algorithms
for this problem we focus on our computational experience with an implicit
hitting set problem related to multi-genome alignment in genomics. This is joint
work with Erick Moreno Centeno.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, p. 151, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Bounds on the Minimum Mosaic of Population
Sequences under Recombination

Yufeng Wu

Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, U.S.A.

ywu@engr .uconn.edu

Abstract. We study the minimum mosaic problem, an optimization
problem originated in population genomics. We develop a new lower
bound, called the C' bound. The C' bound is provably higher and sig-
nificantly more accurate in practice than an existing bound. We show
how to compute the exact C' bound using integer linear programming.
We also show that a weaker version of the C' bound is also more accu-
rate than the existing bound, and can be computed in polynomial time.
Simulation shows that the new bounds often match the exact optimum
at least for the range of data we tested. Moreover, we give an analytical
upper bound for the minimum mosaic problem.

1 Introduction

Recombination is a key genetic process that creates mosaic population sequences
during meiosis. Throughout this paper, we assume population sequences are bi-
nary. This is justified by the current interests in single nucleotide polymorphisms
(SNPs). A SNP is a single nucleotide site where exactly two (of four) different
nucleotides occur in a large percentage of the population, and thus can be rep-
resented as a binary number. The input data is a binary matrix M with n rows
(sequences) and m columns (SNPs). Recombination plays an important role in
the evolutionary history of these sequences. Conceptually, recombination takes
two equal length sequences and generates a new sequence of same length by
concatenating a prefix of one sequence and a suffix of the other sequence. The
position between the prefix and the suffix is called a breakpoint. Studying recom-
bination in populations needs genealogical models. In this paper, we focus on a
model called the mosaic model. The mosaic model [I0] assumes that current
population sequences are descendants of a small number of founder sequences.
Due to recombination, an extant sequence consists of multiple segments from
the founders, where breakpoints separate the segments. We ignore point muta-
tions in this paper. That is, extant sequences contain ezxact copies of founder
segments. See Figure [I] for an illustration of the mosaic structure.

The mosaic model is a recurring formulation in population genomics with
applications including study of recombinant inbred mouses [13], hidden Markov
models (HMMSs) in inferring haplotypes from genotypes [2/5I8] and genotype

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 152 2010.
© Springer-Verlag Berlin Heidelberg 2010

Bounds on the Minimum Mosaic 153

0100110011011010110000000111011011110001

0110000000111 0

Fig.1. A minimum mosaic found by program RecBlock containing 55 breakpoints for
the given twenty sequences of length forty. Note that only the sequences are given as
input: we do not know the founders nor the positions of the breakpoints. The top four
sequences are founders inferred by program RecBlock, each with a distinct color. A
different mosaic for these sequences with 56 breakpoints was shown in [6].

imputation methods (e.g. [3]). A main technical challenge is that even when
sequences of M are formed as a mosaic, the breakpoints are invisible. Thus
inference needs to be performed to reconstruct the mosaic pattern (and the
founder sequences) from the given sequences. In [10], Ukkonen formulated an
optimization problem for the mosaic model based on parsimony.

The Minimum Mosaic Problem. For a binary matrix M with n rows (sequences)
and m columns as well as an integer K, find Ky founder sequences that minimize
the total number of breakpoints needed to be put in the input sequences, which
break the input sequences into segments from the founder sequences at matching
positions. Such a mosaic is called the minimum mosaic for M and the number of
breakpoints needed in the minimum mosaic is denoted as By, (M). Note that
no shifting is allowed: segments of founders in the input sequences must retain
their original positions in the founders.

The minimum mosaic problem can be viewed as a sequence coloring problem
as shown in Figure [l We need to assign colors (one per each founder) to the
given sequences (i.e. sequences are colored by founders). The total number of
color changes (i.e. breakpoints) in the minimum mosaic is the smallest among
all possible coloring. Note at a column, if two sequences are assigned the same
color, then they must have identical values at this column. Also, K is usually
much smaller than n.

The minimum mosaic problem has a simple polynomial time algorithm for
binary data [I0J12] or even for the so-called genotype data (a mixed descrip-
tion of two binary sequences) [12] when Ky = 2. There are two exact methods
for the general minimum mosaic problem, which are implemented in program
Haplovisual [10] and program RecBlock [12]. None of these exact methods runs in

154 Y. Wu

polynomial-time. Our experience suggests that program RecBlock outperforms
program Haplovisual for many datasets. The basic idea of program RecBlock is
to scan from left to right, and enumerate all possible founders at each column.
For example, suppose K; = 3. Then there are 6 configurations for founder set-
tings at column 1: 001, 010, 100, 011, 101 and 110 (000 and 111 are excluded
because we can preprocess the input sequences to remove any columns with only
Os or only 1s, and such preprocessing does not change the solution). Now for
column 2, we need to enumerate all 6 founder configurations for each of the
configurations at column 1. Full enumeration quickly becomes infeasible. To ob-
tain a practical method, program RecBlock uses several techniques to prune the
search space. Empirical study shows that program RecBlock seems to work well
for small number of founders (say three to five) when the data is of medium
size (say 50 by 50). However, its performance degrades as Ky and/or the size of
matrix increase.

Since there exists no known polynomial-time algorithm for the minimum mo-
saic problem, heuristic methods for handling larger datasets are also developed
[1207]. For example, program RecBlock can run in a non-optimal mode to find
relatively good solutions for larger datasets when exact solutions are difficult to
obtain. Although these methods are fast, a major problem is the lack of knowl-
edge on the optimality of their solutions. Moreover, little is known on theoretical
quantification of the mosaic structure in general.

This motivates computing lower bounds for the minimum mosaic problem. A
lower bound gives an estimate on the necessary breakpoints. Lower bounds can
be useful in the following two ways.

1. A lower bound quantifies the range of the solution, together with the up-
per bounds found by heuristic methods. In the ideal case, the lower bound
matches the upper bound, and thus certifies the optimality of the heuristic
solution. Even when the lower bound is smaller than the upper bound, the
range of solution given by the bounds can still be useful.

2. A good lower bound can speed up the branch and bound search for the
optimal solution.

A known lower bound. There is an existing lower bound (called the CH
bound) in [12] for the minimum mosaic problem, which is inspired by [4]. The
CH bound considers ecach segment [i,j] of M (i.e. the sub-matrix M, ; with
columns between ¢ and j inclusive, where i < j). We let set S; ; contain the
distinct rows of M; j, and we denote the multlphclty of a sequence sfj € Si
in M, ; as n . Each s ; represents a “cluster” of n¥ i; identical sequence within
the interval. For example, in Figure 2] there are four clusters between the first
and the third columns: 001, 100, 010 and 000 (which are numbered from 1
to 4 in this order). For the clubter si3 = 001, n} 4 = 2, while nf 4 = 1 for
k = 2,3,4. We order sequences s ; so that the list of nzj is non-increasing.
Now if |S; ;] < Kf, then the lower bound on Byin(M; ;) is simply 0. Otherwise,

Z‘ks;(l 41 nzj is a lower bound on By, (M; ;). For the data in Figure [2
When Ky = 3 Bi3 =1. We say a cluster is cut if each identical sequence of the

Bounds on the Minimum Mosaic 155

cluster contains breakpoints. Otherwise, the cluster is un-cut if some sequence
of the cluster contains no breakpoints. The correctness of B; ; as a lower bound
on Bpin(M; ;) is due to the fact that there are only K colors and Lemmalll

Lemma 1. Within an interval, two distinct sequences containing no breakpoints
can not be colored by the same founder.

B, ; for each [i, j] is often much smaller than By, (M). But Myers and Griffiths
[4] introduced a general method to combine B; ; from all intervals to get a much
higher overall bound. Intuitively, we consider a straight horizontal line. We need
to place the minimum number of breakpoints along the horizontal line, so that for
each interval [¢, j], there is at least B; ; breakpoints that are properly contained
inside [¢,j]. The CH bound is equal to the minimum number of breakpoints
needed. A breakpoint located at position within [¢, j] contributes to the interval
if i < x < j. Note that breakpoints are not placed at integer points. The CH
bound is simple and efficiently computable using a greedy approach [4]. However,
practical experience shows that the CH bound often significantly underestimates
Binin(M) (see Section M), which greatly limits its use.

Contributions. In this paper, we present a new lower bound (called the C
bound) for the minimum mosaic problem. We show that the C' bound is prov-
ably higher than (or equal to) the CH bound, and often significantly higher
in practice. For a large portion of datasets we simulate, the C' bound matches
Biin(M). Thus, the C' bound can be useful in quantifying the tighter range of
optimal solution. In terms of efficiency, the C' bound can be computed exactly
for many datasets, and a variation of the C' bound (which leads to only a little
loss of accuracy) can be computed in polynomial time. We also evaluate the per-
formance of the lower bounds in branch and bound search through simulation,
where we do observe, albeit modest, speedup. On the theoretical side, we give
an analytical upper bound on B (M).

2 The C Bound: A New Lower Bound

We now present a new lower bound, called the clique bound (or simply C' bound)
for the minimum mosaic problem. Clique here refers to segments of input se-
quences used in the definition of the C' bound that are pairwise incompatible
(see blow). If we create a graph of sequence segments where there is an edge
between two segments if they are incompatible, the C' bound corresponds to
cliques with some special property in this graph.

2.1 Breakpoint Placement

The breakpoint placement by the CH bound is a two-stage approach: first es-
timate the number of needed breakpoints inside each interval, and then place
breakpoints along a horizontal line. A breakpoint placed this way is not as-
sociated with any particular sequence. Our first idea is to adopt a one-stage

156 Y. Wu

approach: place necessary breakpoints directly in M. That is, each breakpoint
belongs to a particular sequence in M. Formally,

Placement of necessary breakpoints. Place the smallest number (denoted
as nyp) of breakpoints in M (i.e. a breakpoint is placed inside some sequence of
M) such that for each interval [¢, j], no more than Ky clusters remain un-cut.
Our first version of the C' bound is equal to n, which is a lower bound on
B,in(M). This is due to Lemma [2] which is implied by Lemma [l

Lemma 2. ny < Bpin(M).

We say a lower bound x beats a lower bound y if = is always higher than or equal
to y. First note that the C' bound always beats the CH bound. This is because
we can place breakpoints created by the C' bound along a horizontal line by
projecting these breakpoints onto the line. These are at least B; ; breakpoints for
[i, 7] on the horizontal line. In practice, the C' bound is usually higher (sometime
significantly higher) than the CH bound.

We do not know a polynomial-time algorithm to compute the exact C' bound.
To compute the C' bound in practice, we use the following integer linear pro-
gramming (ILP) formulation. We define a binary variable C, . for each row r
and column ¢, where C,. . = 1 if there is a breakpoint in row r between columns
c and ¢+ 1. For each interval [, j] with |S; ;| clusters within [¢, j], we create a
binary variable U, ;5 for the k-th cluster within [¢, j], where U, ;, = 1 if this
cluster is un-cut within [4, j], and 0 otherwise.

Objective: minimize > ;<. <, 1 << Cr k-
Subject to
1 Uik + Zigi/<j Cri > 1, for each 1 < i < j < m and each row r in
cluster k within [z, j].
2 1903177, 1 < K, for each 1 < i < j < m.
For each 1 <k <m and 1 <7 < n, there is a binary variable C; .
For each 1 <i < j<m,and 1<k <|S;;|, there is a binary variable U ; x.

Briefly, constraint (1) says that cluster k is un-cut if any sequence in the cluster
contains no breakpoints. Constraint (2) says within each interval [¢, j], there is
no more than Ky un-cut clusters. This ILP formulation can be solved relatively
efficiently in practice for many datasets.

A polynomial-time computable bound. The C' bound beats the CH bound
both in theory and in practice. Still, we do not have a polynomial-time algorithm
for computing it. This may limit its use for larger datasets. We now show a
weaker version of the C' bound (denoted as the C, bound) that is polynomial-
time computable and provably beats the CH bound. This provides more evidence
on the strength of the exact C' bound. The C,, bound is computed by solving the
linear programing (LP) relazation of the ILP formulation of the C' bound. Briefly,
linear programming relaxation treats each variable in the ILP formulation to be
a general real variable (between 0 and 1 for a binary variable). The C,, bound
is a legal lower bound on By, (M) because the objective of the LP relaxation

Bounds on the Minimum Mosaic 157

can not be higher than that of the original C' bound. The number of variables
and constraints in the ILP formulation for the C' bound is O(nm?). Thus, the
C,, bound can be computed in polynomial-time.

We now show that the C,, bound beats the CH bound.

Proposition 1. C, > CH.

Proof. Conceptually, the CH bound can be computed by the following ILP for-
mulation (called the CH formulation).

Objective: minimize), ., .. Ck.
* Subject to: Zi: Cy > B;j,foreach 1 <i<j<m.
For each 1 < k < m, there is a general integer variable C.

C; refers to the number of breakpoints between columns 7 and i+ 1. We will first
show that C, beats the objective of the LP relazation of the CH formulation.
Then we will show the LP relaxation of the CH formulation has an integer
optimal solution. By combining these two observations, we have C,, > CH.

First, we let C, be an optimal solution for C,, (where C, j is a real value
between 0 and 1). We now let C, = >, .., Cr . We claim C}, is a legal solution
for the relaxed CH formulation (with the identical objective value as the C,,
formulation). To show this, we only need to show Cj, satisfies Zi§x<j Cy > By j
for each interval [4, j] when B;; > 0. Since } ;. Co = 37, j1<p<n Cras
and from constraint [1] in the C' bound formulation,

[Si;]

Z Cp>n— Z nﬁjUi,j,k
k=1

i<z<j

Since 0 < U; ;1 < 1, and Z‘ks;fl Ui jrx < Ky and note that nfj is ordered

non-decreasingly, we have: >, ., . Cy > n — ZkK:fl nfj = B, ;. We achieve the
minimum value by making each U; ; =1 for k < K.

We now show the LP relaxation of the CH formulation has an integer optimal
solution. For contradiction, we assume no integer solutions exists for the CH
relaxed formulation. We consider an optimal solution to the LP relaxation of the
CH formulation so that its first C; with non-integer value occurs at a column p
where p < m is the largest among all such solutions. That is, C,, is not an integer,
while C}, is an integer when k < p, and there is no optimal solutions with integer
values for C ...Cp. Let C, = v+ f, where v is an integer and 0 < f < 1. Then
we create a new solution C}, by letting C} = Cj when k # p and p + 1. Then
C, =vand C, ; = Cp1+ f. We need to show the changed solution is legal (i.e.
satisfying constraint “*”). Note that only intervals [i, j] overlapping breakpoint
p need to be checked. This contains two cases: (a) intervals [i, p+1]; (b) intervals
[i, 7], where i < p and p +1 < j. The type (a) intervals’ bounds are satisfied
because the bounds are integers and thus discarding f still satisfies the bounds
since all previous Cj, are integer. The type (b) intervals are satisfied since the
summation of C}, values is the same as summation of C; values. This contradicts

158 Y. Wu

our previous assumption that there is no optimal solutions with integer values
for C ... C). Therefore, there exists an integer solution to the LP relaxation of
the CH bound. O

2.2 Improving the C Bound

Simulation shows that the C' bound (and the C,, bound) is usually higher than
the CH bound. For the datasets we simulate, the gap between the C' and the CH
bounds is usually 10-20%, but the C' bound can still be significantly lower than
Binin(M). We now describe techniques that significantly improve the C' bound.

We start by strengthening Lemma[ll A moment’s thought suggests Lemma [T]
can be extended to overlapping segments of different intervals (instead of within
a single interval). We say segment [aq,b1] of row r; (denoted as r1[az, b1]) and
segment [az, ba] of row 7o (i.e. r2faz, ba]) are incompatible if a1, b1] and [az, bo]
overlap (i.e. with non-empty intersection) and ri[a1,b1] and rqfas,be] are not
identical within the overlapping region. Here, [a1,b;] and [b1, ¢1] are considered
to overlap at [b1, b1]. For example, in Figure[2] r1[1, 2] and r3[2, 3] are compatible
while 71[3, 4] and r2[2, 3] are incompatible. Then we have:

Lemma 3. Two incompatible segments can not be colored by the same founder.

Note that Lemma [0l is a special case of Lemma [3]

and Lemma [3] can give a higher bound than the €1 Co €3 Cy
original C' bound. This motivates an improved C' rm0 01 1
bound as follows. For each interval [¢, j], we search e 1100 1
for pairwise incompatible segments [ir, jx], each for 50 01 0
one of the |S; ;| clusters. Here, ¢ < iy < ji < j. It r4 0 10 |1
is desired that the total length of the segments is rs 0 00 1

small. The shorter the incompatible segments are,

the more restrictive the placement of breakpoints Fig.2. An example dataset
is: fewer breakpoints can contribute to shorter seg-

ments and so more breakpoints may be needed. Then, we require no more than
K¢ incompatible segments remain un-cut: Z‘ks:’l" Usy. jiseijnin.gr) < Ky. Here,
Cij.k (K, jx) is the cluster index of the [ig, jx] part within the k-th cluster of [, j]
(since [ig, jx] may have a different set of distinct rows from [¢, j]). From Lemma
@ the new C bound beats the original C' bound.

Lemma 4. Using incompatible segments gives a higher C bound.

Proof. For [i,j], if U; j» = 1, then there is no breakpoint between columns 4
and j. Since [ig, ji] is contained inside [z, j], this implies Uj, j, » = 1 (where
k' = ¢ ji(in, jir)). Thus, Ui < Ui, j. k- Since the C' bound prefers smaller
Ui j.r values (by constraint 2 of the C' bound formulation), using incompatible
segments leads to a higher bound. O

As an example, we consider the dataset in Figure [2] where we assume Ky = 3.
We first consider the ILP constraints of each interval from the original C' bound.

Bounds on the Minimum Mosaic 159

For example, for interval [1,4], we have Uy a1+ Ui a0+ U143+ U144+ Ui a5 <
3, and for 11 = 0011 we have Ui 41 + C1;1 + Ci2 + C1,3 > 1. Suppose as
shown in Figure @] we place a breakpoint between ¢; and ¢o in ro (ie. Co
= 1), and a breakpoint between cs and ¢4 for ry (i.e. Cy3 = 1). This would
satisfy constraints of all intervals. But these two breakpoints will not be enough
when we consider the following five pairwise incompatible segments: (3, 4],
r2[1,3], r3[3,4], r4[2,3] and r5[1, 3]. These segments impose an ILP constraint:
Usa1+Uiz2+Usas+Uszszs+Usss < 3. Clearly, setting Co 1 and Cy 3 to be
1 will not satisfy this constraint since Cy 3 does not contribute to r4[2, 3] (recall
Cy 3 refers to the breakpoint between columns 3 and 4, and r4(2, 3] is the 3rd
cluster within [2, 3]). So only U; 32 = 0 and the other four terms are equal to 1.

Finding incompatible segments. Ideally, we would like to find incompatible
segments whose total length is minimized (called the shortest incompatible seg-
ments or SISs). It is not known whether there is a polynomial-time algorithm
for finding the SISs. We also want to find more than one set of SISs to obtain
higher lower bounds. Thus, we use the following heuristic algorithm for finding
approximate SISs that works reasonably well in practice. This heuristic greedily
finds incompatible segments for each cluster. To find multiple SISs, we choose
different initial positions in the first cluster.

1 Order the clusters (e.g. in the order of their appearance in the dataset).
2 Set posy « 1.
3 while pos; <m
3a Initialize the first segment for row 1 as ry[posy, pos; + 1].
3b For each remaining cluster row r;, let its segment be the shortest segment
such that the segment is incompatible with all previous segments.
3c Set pos; < posy + 1.

Now with ILP constraints imposed on incompatible segments, higher C' bounds
can be obtained. Moreover, the C bound can also be computed faster than
the original C' bound by ILP. Simulation results show that the CPLEX ILP
solver usually takes only a few seconds for fairly large datasets (say with 100
rows and 100 columns with Ky = 10), which is much faster than computing
the original C' bound. The speedup is likely due to the reduction of the size of
the ILP formulation: same segments are often chosen for different overlapping
intervals, which reduces the number of needed variables. Thus, the number of
needed Uj; ;1 is often much smaller than that in the original formulation. Our
experience shows that the new C formulation with overlapping segments can use
only 10% (or fewer) variables as in the original formulation for larger datasets.

Other improvements. The C' bound can be further improved by the following
observations. (a) We can find different SISs by picking a small number of different
cluster orders. (b) We can avoid enumeration of all (7)) intervals for a matrix
with m columns in searching for incompatible segments. Suppose for an interval
[a, b] the found incompatible segments within [a, b] are all between [a1,b;1]. Then

we can skip all intervals [z, y] where a <z < ay and by <y <b.

160 Y. Wu

2.3 Application in Finding the Exact Minimum Mosaic Using
Branch and Bound

The C bound can speedup program RecBlock in finding the exact minimum
mosaic with the branch and bound scheme. We have experimented with the
following straightforward approach. Briefly, we use the approximate C' bound
to determine whether a current search path can lead to a better solution. We
first compute the C bounds for the segment of input data between column 7 and
m, for each 1 < i < m — 1. For the purpose of efficiency, we only compute the
Cy bound by solving linear programming relaxation. Program RecBlock builds
a partial mosaic from column 1 to i during its search for the minimum mosaic.
If the lower bound on the minimum number of breakpoints for the sub-matrix
(from the current site to the right end of the input matrix) plus the currently
needed breakpoints in the partial solution is no smaller than the known upper
bound, then this search path will not lead to a better solution and can thus be
dropped.

Other more advanced strategies are also possible. For example, we can make
the lower bounds more effective by switching to heuristic mode with promising
search paths at each column. This may help because it may find the optimal
solution earlier whose optimality may be certified by the lower bound.

3 An Analytical Upper Bound

A natural question is how many breakpoints we may need in a minimum mosaic
for an arbitrary (i.e. unknown) n by m matrix. An answer to this question gives
an upper bound and also an estimate on the range of By, (M). It was stated in
[6] that there can be as many as (m — 1)n/2 breakpoints needed in a minimum
mosaic when Ky = 2. We now extend to the general case.

Proposition 2. By, < (1 — Igf)([longKf)] — 1)n, for any K.

Proof. First note that when K = 2, this reduces to the (m —1)n/2 bound. Our
approach is similar to [II]. We divide M into m/[log2(Kf)| non-overlapping
intervals, each with [logs(K¢)] columns. There are at most K distinct binary
sequences within each interval. We then pick each of these unique sequences as
founders within the interval. Thus, no breakpoints is needed inside intervals.
Since there are m/[log2(K)] intervals for each of the n rows, we need no more
than (m/[loga(Ks)] — 1)n breakpoints between intervals.

We can further improve this bound by carefully picking the colors for neigh-
boring intervals and removing some breakpoints between the intervals in a way
similar to [I0[9]. More specifically, we construct a weighted bipartite graph for
two neighboring intervals IV and IV’. A vertex F; corresponds to a founder and
also a sequence cluster colored with this particular founder. There is an edge of
weight n; ; between vertices F; within IV and F; within IV’ if there are n; ;
input sequences as concatenation of founder F; within /V and founder F}; within
IV’'. We add a weight 0 edge between two founders if there is no such combina-
tion in the input sequences. When choosing the coloring for IV and I'V’, we use

Bounds on the Minimum Mosaic 161

the maximum weighted matching of the graph: if F; is matched with F}, F; and
F}; are colored by the same founder. We avoid n; ; breakpoints between IV and
IV’ since there is no color change within these n; ; rows.

Since the input matrix M is unknown, we can not explicitly construct the
bipartite graph and compute the maximum weighted matching. Nonetheless, we
can still rely on the matching to improve the upper bound as follows. First, the
total weight of the bipartite graph is n. Also, there exists a maximum weighted
matching which is also a perfect matching since the bipartite graph is complete.
We claim that there exists a perfect matching in the bipartite graph with at
least n/Ky weight. To see this, note that there are K ! perfect matchings for
a bipartite graph with Ky nodes on one side, and each edge appears in exactly
(K —1)! of these perfect matchings. Thus, the sum of the weights of all perfect
matchings is (K —1)!n. The maximum weighted matching has weight of at least
(Ky—1)In/K¢! = n/Kj. Therefore, we can remove at least n/Ky breakpoints at
each interval boundary by properly selecting how founders are matched for the
two neighboring intervals. So we need no more than (1—1/K¢)(m/[log2(K¢)] —
1)n breakpoints for any input dataset with Ky founders. O

4 Simulation Results

We have implemented the lower bound method in program RecBlock with ei-
ther CPLEX (a commercial ILP solver) or GNU GLPK ILP solver (mainly a
demo of the functionalities for users without a CPLEX license). The CPLEX
version is often much faster. The simulation results in this section are for the
CPLEX version. We test our method for simulated data on a 3192 MHz Intel
Xeon workstation. We use Hudson’s program ms [I] to generate binary popula-
tion sequences. We fix the scaled population mutation rate to 10, and the scaled
recombination rate to 10, and generate 100 datasets for 20, 30, 40 and 50 se-
quences. We then remove from datasets any columns that have more than 95%
or less than 5% 1s. This helps to remove more recent mutations and focus on
the underlying mosaic structures.

Performance of lower bounds. To demonstrate the usefulness of the new C'
bound, we compare the performance of the CH bound and the C' bound. We use
program RecBlock to compute the exact Byp,in(M). We also evaluate the approx-
imate C bound (i.e. the C,, bound) obtained by solving LP relaxation. This is
useful since the C,, bound can be more scalable when data size grows. The per-
formance of the lower bounds is shown in Table [Il We use three statistics: (a)
percent of datasets where the lower bound matches By, (M); (b) average gap
between the lower bound and B, (M) (normalized by Bpin(M)); (c) average
running time. From Table[I] we can see that the C bound is very accurate for the
range of data we test: for a large percentage of datasets, the C' bound matches
Binin (M), and the average gap between the C bound and B, (M) is very small
(within 2%). Moreover, the C' bound remains accurate for larger K. In terms of
efficiency, computing the C' bound scales well with large Ky: the larger Ky is, the
faster computation is. This is likely because the size of integer programs decreases

162 Y. Wu

when Ky increases since fewer intervals contain more than K clusters when Ky
increases. This is very useful to obtain an estimate of By, (M): program RecBlock
gets increasingly slower when Ky increases. We also note that the C', bound is
very accurate, and slightly faster to compute than the original C' bound. On the
other hand, the CH bound performs poorly in all the cases with much larger gaps,
although the CH bound is often much faster to compute.

Also, it appears that the GLPK version can be slow in computing the exact C'
bound, while it performs relatively well in computing the approximate C' bound.
For example, the GLPK version takes on average 208 seconds in computing
the exact C' bound (excluding one dataset where GLPK runs for more than
one day but does not find the optimal solution), and 61 seconds for computing
the approximate C' bounds with the datasets with n = 30 and Ky = 5. As
a comparison, the CPLEX version takes on average 24 seconds and 18 seconds
respectively for computing the exact and the approximate C' bounds for the same
datasets. Thus, when using the GLPK version, computing the approximate C'
bounds may be more practical for some more difficult datasets.

Application in finding the exact minimum mosaic using branch and
bound. We also evaluate how the C' bound performs in speeding up program
RecBlock with the branch and bound scheme. Simulation results are shown in
Table [When Ky becomes larger, branch and bound are more likely to be
effective. Although reduction of running time is modest in these simulations,
greater speed-up could be achieved if better heuristics are used for finding upper
bounds since the C bound is often close to the optimal solution. Moreover, since
branch and bound needs to compute the C' bounds for many segments, using a
more powerful integer programming solver (e.g. CPLEX) may have a significant
impact on the running time.

Table 1. Performance of lower bounds. Exact: compute Bmin(M) by program
RecBlock. Exact (C): the branch and bound mode of program RecBlock using the C,,
bound. %Opt: percentage of datasets where the lower bound matches Bmin(M). Gap:
percentage of difference between Bpin (M) and the lower bound (divided by Bin (M)).
T: time (in seconds). n: number of sequences. K y: number of founders.

n 20 30 40 50
Ky 56 7 8 56 7 8 56 78 5 6 7 8
Exact T 1 739255 8 958483620 8 61418 - 131232024 -
Exact (C) T 3 7 38196 14 483042152 13 46361 - 21 731671 -
CH %Opt 62143 67 1 210 27 1 710 - 0 1 5 -
Gap 34 27 18 9 42 37 31 24 38 32 27 - 43 39 33 -
T <l<l<l<l<l<l<l <1<1<l<l<l<l<l <l<1
c %Opt 85 94 98100 81 82 85 90 72 73 77 - 63 69 68 -
Gap 1 1<1 0 1 2 1 1 2 2 2 - 2 2 2 -
T 3 3 2 22419 19 14 18 18 15 12 40 37 29 21
Chu %Opt 83 94 98100 77 81 83 90 71 70 77 - 59 67 66 -
Gap 1 1<l 0 1 2 1 1 2 2 2 - 2 2 2 -

T 3 3 2 21818 15 13 17 15 14 12 26 24 23 21

Bounds on the Minimum Mosaic 163

Acknowledgment. This work is supported by National Science Foundation
[IIS-0803440]. I am also supported by the Research Foundation of University of
Connecticut.

References

10.

11.

12.

13.

. Hudson, R.: Generating Samples under the Wright-Fisher neutral model of genetic

variation. Bioinformatics 18(2), 337-338 (2002)

. Kimmel, G., Shamir, R.: A block-free hidden markov model for genotypes and its

application to disease association. J. of Comp. Bio. 12, 1243-1260 (2005)

. Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A new multipoint

method for genome-wide associationstudies by imputation of genotypes. Nature
Genetics 39, 906-913 (2007)

. Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination

events in a sample history. Genetics 163, 375-394 (2003)

. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A Hidden Markov Technique

for Haplotype Reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS
(LNBI), vol. 3692, pp. 140-151. Springer, Heidelberg (2005)

. Rastas, P., Ukkonen, E.: Haplotype Inference Via Hierarchical Genotype Parsing.

In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp.
85-97. Springer, Heidelberg (2007)

. Roli, A., Blum, C.: Tabu Search for the Founder Sequence Reconstruction Prob-

lem: A Preliminary Study. In: Proceedings of Distributed Computing, Artifi-
cial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living
(IWANN 2009), pp. 1035-1042 (2009)

Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale pop-
ulation genotype data: applications to inferring missing genotypes and haplotypic
phase. Am. J. Human Genetics 78, 629-644 (2006)

Schwartz, R., Clark, A., Istrail, S.: Methods for Inferring Block-Wise Ancestral
History from Haploid Sequences. In: Guigé, R., Gusfield, D. (eds.) WABI 2002.
LNCS, vol. 2452, pp. 44-59. Springer, Heidelberg (2002)

Ukkonen, E.: Finding Founder Sequences from a Set of Recombinants. In: Guigd,
R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 277-286. Springer,
Heidelberg (2002)

Wu, Y.: Analytical Upper Bound on the Minimum Number of Recombinations in
the History of SNP Sequences in Populations, Info. Proc. Letters 109, 427-431
(2009)

Wu, Y., Gusfield, D.: Improved Algorithms for Inferring the Minimum Mosaic of
a Set of Recombinants. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580,
pp. 150-161. Springer, Heidelberg (2007)

Zhang, Q., Wang, W., McMillan, L., Prins, J., de Villena, F.P.; Threadgill, D.:
Genotype Sequence Segmentation: Handling Constraints and Noise. In: Crandall,
K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 271-283.
Springer, Heidelberg (2008)

The Highest Expected Reward Decoding
for HMMs with Application to
Recombination Detection

Michal Nanési, Tomas Vinaf, and Brona Brejova

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynska Dolina, 842 48 Bratislava, Slovakia

Abstract. Hidden Markov models are traditionally decoded by the Vi-
terbi algorithm which finds the highest probability state path in the
model. In recent years, several limitations of the Viterbi decoding have
been demonstrated, and new algorithms have been developed to ad-
dress them (Kall et all, 2005; [Brejova et all, 2007; |Gross et all, 12007;
Brown and Truszkowski, 2010). In this paper, we propose a new effi-
cient highest expected reward decoding algorithm (HERD) that allows
for uncertainty in boundaries of individual sequence features. We demon-
strate usefulness of our approach on jumping HMMs for recombination
detection in viral genomes.

Keywords: hidden Markov models, decoding algorithms, recombination
detection, jumping HMMs.

1 Introduction

Hidden Markov models (HMMs) are an important tool for modeling and anno-
tation of biological sequences and other data, such as natural language texts.
The goal of sequence annotation is to label each symbol of the input sequence
according to its meaning or a function. For example, in gene finding, we seek
to distinguish regions of DNA that encode proteins from non-coding sequence.
An HMM defines a probability distribution Pr(A|X) over all annotations A of
sequence X . Typically, one uses the well-known Viterbi algorithm (Forney Jr.,
1973) or its variants for more complex models (Brejova et all, [2007) to find the
annotation with the highest overall probability argmax4 Pr(A4|X). In this pa-
per, we design an efficient HMM decoding algorithm that finds the optimal an-
notation for a different optimization criterion that is more appropriate in many
applications.

In recent years, several annotation strategies were shown to achieve better
performance than the Viterbi decoding in particular applications (Kall et all,
2005; |Gross et all, 12007; Brown and Truszkowski, [2010). Generally, they can be
expressed in the terminology of gain functions introduced in the context of
stochastic context-free grammars (Hamada et all,2009). In particular, we choose
a gain function G(A, A’) which characterizes similarity between a proposed an-
notation A and the (unknown) correct annotation A’. The goal is then to find the

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 164 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Highest Expected Reward Decoding for HMMs 165

annotation A with the highest expected value of G(A, A’) over the distribution
of A’ defined by the HMM, conditioning on sequence X. That is, we maximize
Bax[G(A, A)] = Y2, G(A, A)P(A|X).

Intuitively, the gain function should characterize the measure of prediction ac-
curacy appropriate for a particular application domain. If the sequences and the
true annotations are generated from the HMM, the decoding algorithm optimiz-
ing the expected gain will on average reach higher prediction accuracy, measured
by G(A, A’), than any other decoding.

In this framework, the Viterbi decoding optimizes the identity gain function
G(A,A") = [A = A'], that is the gain is 1 if we predict the whole annotation
exactly correctly, and 0 otherwise. There may be many high-probability anno-
tations besides the optimal one, and they are disregarded by this gain function,
even though their consensus may suggest a different answer that is perhaps more
accurate locally. On the other hand, the posterior decoding (Durbin et al!, [1998)
predicts at each position a label that has the highest posterior probability at that
position, marginalizing over all annotations. Therefore, it optimizes the expected
gain under the gain function that counts the number of correctly predicted labels
in A with respect to A’.

These two gain functions are extremes: the Viterbi decoding assigns a positive
gain to the annotation only if it is completely correct, while the posterior decod-
ing gain function rewards every correct label. It is often appropriate to consider
gain functions in between these two extremes. For example, in the context of
gene finding, |Gross et all (2007) use a gain function that assigns a score +1
for each correctly predicted coding region boundary and score —v for predicted
boundary that is a false positive. Indeed, one of the main objectives of gene
finding is to find exact positions of these boundaries, since even a small error
may change the predicted protein significantly. Parameter « in the gain function
controls the trade-off between sensitivity and specificity.

While the coding region boundaries are well defined in gene finding, and it is
desirable to locate them precisely, in other applications, such as transmembrane
protein topology prediction, we only wish to infer the approximate locations of
feature boundaries. The main reason is that the underlying HMMSs do not contain
enough information to locate the boundaries exactly, and there are typically
many annotations of similar probability with slightly different boundaries. This
issue was recently examined by Brown and Truszkowski (2010) in a Viterbi-like
setting, where we assign gain to an annotation, if all feature boundaries in A
are within some distance W from the corresponding boundary in the correct
annotation A’. Unfortunately, the problem has to be addressed by heuristics,
since it is NP-hard even for W = 0.

In this paper, we propose a new gain function in which each feature boundary
in A gets score +1 if it is within distance W from the corresponding boundary in
A’, and score —v otherwise. Our definition allows to consider nearby boundary
positions as equivalent, as in [Brown and Truszkowski (2010), yet it avoids the
requirement that the whole annotation needs to be essentially correct to receive

166 M. Nénési, T. Vinaf, and B. Brejova

any gain at all. Another benefit is that our gain function can be efficiently
optimized in time linear in the length of the input sequence.

We apply our algorithm to the problem of detecting recombination in the
genome of the human immunodeficiency virus (HIV) with jumping HMMs
(Schultz et all,2006). A jumping HMM consists of a profile HMM (Durbin et all,
1998) for each known subtype of HIV. Recombination events are represented by
a special jump transitions between different profile HMMs. The goal is to deter-
mine for a new HIV genome whether it comes from one of the known subtypes
or whether it is a recombination of several subtypes. However, the exact position
of a breakpoint can be difficult to determine, particularly if the two recombin-
ing strains were very similar near the recombination point. Our gain function
corresponds to this problem very naturally: it scores individual predicted recom-
bination points, but allows some tolerance in their exact placement.

2 HERD: The Highest Expected Reward Decoding

In this section, we propose a new gain function and describe an algorithm for find-
ing the annotation with the highest expected gain. Our algorithm is a non-trivial
extension of the maximum expected boundary accuracy decoding (Gross et all,
2007).

Hidden Markov models and notation. A hidden Markov model (HMM) is a gener-
ative probabilistic model with a finite set of states V' and transitions F. There is
a single designated start state s and a final state t. The generative process starts
in the start state, and in each round it emits a single symbol x; from the emission
probability distribution e,, 5, of the current state v;, and then changes the state
to viy1 according to the transition probability distribution a,,,.,,,. The genera-
tive process continues until the final state is reached. Thus, the joint probability
of generating a sequence X = x1,...,x, by a state path 7 = s,vq,...,0,,t
is Pr(m,X) = asu, - [[11 €vs,2s * Qu; 05,0, Where v, 11 = t. In other words, the
HMM defines a probability distribution Pr(w, X) over all possible sequences X
and state paths 7, or perhaps more appropriately, for a given sequence X, the
HMM defines a conditional distribution over all state paths Pr(7 | X).

Our aim is to produce an annotation of an input sequence X, i.e. to label
each symbol of X by a color corresponding to its function (e.g., coding or non-
coding in the case of gene finding, or a virus subtype in case of recombination
detection). Position 7 in the annotation A = ay .. . ay, is a boundary, if a; and a;11
are different colors. For convenience, we consider positions 0 and n as boundaries.
A feature is a region between two consecutive boundaries.

To use HMMs for sequence annotation, we color each state v by a color
c(v). Every state path m = s,v1,...,0,,t thus implies an annotation ¢(7w) =
c(v1)...c(vy). In general, multiple states can have the same color, and several
state paths may produce the same annotation. Thus, HMMs also define a prob-
ability distribution over annotations A, where Pr(4|X) =>_ _4Pr(m] X).

mie(m)

The Highest Expected Reward Decoding for HMMs 167

AYoooo oVo YoYeYo O
A 80,0 @@ o °0 OA.AO

Fig. 1. Example of buddy pairs in two annotations over three colors (white, gray, black)
for W = 3. Boundaries are shown by arrows, buddy pairs are connected by lines. The
second boundary in A does not have a buddy pair due to condition (ii), whereas the
fourth and fifth boundary due to condition (iii). In this example, G(A, A") = 3 — 4.

The highest expected reward decoding problem. To formally define our problem,
we first define a gain function G(A, A’) characterizing similarity between any
two annotations A and A’ of the same sequence. We assign a positive score to a
boundary in A if A’ contains a corresponding boundary sufficiently close so that
they can be considered equivalent. This notion of closeness is formalized in the
following definition (see also Figure [).

Definition 1. Let A and A’ be two annotations of the same sequence. Bound-
aries i in A and j in A" are called buddies if (i) both of them separate the same
pair of colors ¢ and ca, (i) |i — j| < W, and (iii) there is no other boundary at
positions min{i, 7}, ..., max{i,j} in either A or A’.

The intuition behind condition (iii) is that the buddies should correspond to
boundaries that are only slightly shifted from their correct position, but still
separate essentially the same pair of features. In the extreme case, such as the
boundaries between gray and black features in Figure [[l even a slight shift in
the boundary causes the flanking black features to become non-overlapping.
Condition (iii) in fact enforces that pairs of such non-overlapping features are
not considered as corresponding to each other. Moreover, condition (iii) also
enforces that each boundary in A’ is a buddy to at most one boundary in A and
vice versa.

Definition 2 (Highest expected reward decoding problem). Let gain
function G(A, A’) assign score +1 to each boundary in A if it has a buddy in
A’ and score —v to boundaries in A without a buddy. In the highest expected
reward decoding (HERD), we seek the annotation A maximizing the expected
gain Eax[G(A,A")] =>4 G(A, A") Pr(A’| X), where the conditional probabil-
ity Pr(A"| X) is defined by the HMM as 3. .o x Pr(m, X)/ Pr(X).

Note that our objective £4/x[G(A, A")] can be further decomposed. In partic-
ular, from linearity of expectation, Eax[G(A, A')] = 3 ;cpa) Ry(pa.i), where
B(A) is the set of all boundaries in A, pa; is the posterior probability in the
HMM that the boundary i in A has a buddy, and Ry(p) =p—v- (1 —p) is the
expected score (reward) for a boundary with posterior probability p.

The HERD algorithm computes posterior probabilities and expected rewards
for all possible boundaries and then uses dynamic programming to choose an
annotation with the highest possible sum of expected rewards in its boundaries.
The details of the algorithm are described below.

168 M. Nénési, T. Vinaf, and B. Brejova

A eocooo

'Y Xe) p(i,o,o,3,2)
ceee = Pr(aj—2. ;41 =0 o3 |X)
cee +Pr(ai-1..i+1 =0 ¢ |X)
oe +Pr(a; it1 =oce|X)
coe +Pr(a;...it2 = o o |X)

Fig. 2. Illustration of annotations contributing probability to p(i,c1,c2,wr,wr) for

Expected reward of a boundary. To compute the posterior probability p4 ; that
a boundary 7 in A has a buddy in A’ sampled from the HMM, it is sufficient to
examine only a local neighborhood of boundary i in A. In particular, let ¢; and
co be the two colors separated by this boundary and ny and ng be the lengths
of the two adjacent features. If ny, < W, the leftmost possible position of the
buddy in A’ is i — nr + 1, otherwise it is ¢ — W + 1; a symmetric condition holds
for the rightmost position. Therefore, if A has a buddy in A’, it must be in the
interval [i —wr +1,i+wg— 1], where wy, = min{W,ny}, and wg = min{W,ng}.
If we denote by p(i, c1, c2, wy,, wr) the sum of probabilities of all annotations A’
that have a buddy for boundary ¢ in the interval [i — wy, + 1,7 + wr — 1] (see
Figure), the expected reward of boundary ¢ will be R+ (p(3, c1, c2, wr, wr)).

Probability p(i, c1, ca, wr,, wr) can be expressed as a sum of simpler terms,
one for each possible position j of the buddy in A’:

K3
p(i, c1, c2,wr, WR) = Z Pr(aj. it1=cica™ 77| X)
j=i—wr+1
i+wpr—1
+ Z Pr(ai,,,jﬂ = C1j7i7102 | X)
j=i+1

Note that if the buddy is at position j < i, this position needs to have color ¢y
and all successive positions up to ¢ + 1 need to have color co, otherwise there
would be a different boundary between ¢ and j in A’. However, positions outside
of interval [, i+ 1] can be colored arbitrarily. Similarly for the buddy at position
j > 1, all positions from 7 up to j need to have color ¢; and position j + 1 color
co. Also note that all terms in the sum represent disjoint sets of annotations,
and therefore we are justified to compute the probability of the union of these
sets by a sum. All terms of this sum can be computed efficiently, as described at
the end of this section.

Finding the annotation with the highest expected reward. Once the expected
rewards R, (p(¢,c1,c2, wr,wr)) are known for all possible boundaries, we can
compute the annotation A with the highest expected gain by dynamic pro-
gramming. We can view the algorithm as the computation of the highest-weight

The Highest Expected Reward Decoding for HMMs 169

directed path between two vertices in a directed acyclic graph, where each path
corresponds to one annotation and its weight to the expected gain.

In particular, the graph has a vertex (i, ¢, w) for each position i, color ¢, and
window length w < W. This vertex represents a boundary at position ¢ between
an unspecified color on the left and the color ¢ on the right, where the adjacent
feature of color ¢ has length exactly w if w < W, or at least W otherwise. If
w < W, we will connect vertex (i, ¢, w) with vertices (i + w, ¢/, w’) for all colors
¢’ and lengths w’ < W. Each such edge will have weight R (p(i +w, ¢, ¢, w,w’)),
representing the expected reward of boundary at position i + w. If w = W, we
connect vertex (4, ¢, w) with vertices (i + w”, ¢, ¢, w’) for all w” > W, w’ < W
and color ¢ by long-distance edges. The weight of such edges will be R (p(i +
w’ ¢, d,W,w')).

To finish the construction, we will assume that positions 0 and n + 1 are
labeled by special colors ¢, and ¢y and that these two features have corresponding
nodes in the graph. We also add a starting vertex (—1, ¢4, 1) and connect it to
vertices (0,c,w) according to normal rules. The annotation with the highest
reward corresponds to the highest-weight path from vertex (—1, ¢, 1) to vertex
(n,cy,1).

In this graph, the number of long-distance edges is quadratic in the length
of sequence X, leading to an inefficient algorithm. Fortunately, the cost of a
long-distance edge from (i, ¢, w) to (i +w”, ¢, ¢’,w’) does not depend on index 1,
only on 7 + w”. Therefore, every long-distance edge can be replaced by a path
through a series of special collector vertices of the form (i,c¢) for a position i
and color ¢. There is an edge of weight 0 from (i, ¢, W) to (¢ + W, ¢) for entering
the collector path at an appropriate minimum distance from ¢, edge of weight
0 from (4,¢) to (i + 1,¢) for continuing in the collector path, and an edge of
weight R, (p(i,c,c/,W,w")) for leaving the collector path from vertex (i,c) to
vertex (i,c¢/,w’). This modified graph has O(nWC) vertices and O(nW?2(C?)
edges, where n is the length of the sequence, W is the size of the window, and
C' is the number of different colors in the HMM.

Implementation details and running time. The only remaining detail is the com-
putation of the posterior probabilities of the form Pr(a;. 4w = cice® | X) and
Pr(a;. itw = ¢¥co | X) needed to compute p(i, ¢, ¢/, w,w’). We will show how to
compute the first of these two quantities, the second is analogous.

First, we use the standard forward algorithm (Durbin et al), [1998) to com-
pute F'[¢,v], the sum of the probabilities of all state paths ending in state v af-
ter generating the first ¢ symbols from X . We use a modified backward algorithm
(Durbin et all,[1998) to compute Bli, v, w], the sum of the probabilities of all state
paths generating symbols x; ... x, that start in state v and generate the first w
symbols in the states of color ¢(v). Values BJi, v, 1] are computed by the standard
backward algorithm, and Bli, v, w] for 1 < w < W is computed as follows:

B[’L.,’U,’UJ}: Z B[i'i_lvvvw_l]‘e'u,zi'av,v/~

170 M. Nénési, T. Vinaf, and B. Brejova

Finally, the desired posterior probability is obtained by combining forward and
backward probabilities over all transitions passing from color ¢; to color co at
position i:

Pr(ai...i+w = CICQw | X) = Z F[Z,U] TR B[l +]_,’U/,U)]/PT(IE).
v — v
c(v) =1
c(v') = co

The standard forward algorithm works in O(n|E|) time, our extended backward
algorithm takes O(nW|E|) time. Posterior probabilities are summarized from
these quantities also in O(nW|E|) time. Finally, we construct and search the
graph in O(nW?2C?) time. Thus the overall running time is O(nW|E|+nW?2C?).
Note that the time is linear in the sequence length, which is very important for
applications in genomics, where we analyze very long genomic sequences.

3 Application to Viral Recombination Detection

Most HIV infections are caused by HIV-1 group M viruses. These viruses can
be classified by a phylogenetic analysis into several subtypes and sub-subtypes.
However, some HIV genomes are a mosaic of sequences from different subtypes
resulting from recombination between different strains (Robertson et all, 2000).
Our goal is to classify whether a newly sequenced HIV genome comes entirely
from one of the known subtypes or whether it is a recombination of different
subtypes, which is important for monitoring the HIV epidemics.

Schultz et all (2006) propose to detect recombination by jumping HMMs. In
this framework, multiple sequence alignment of known HIV genomes is divided
into parts corresponding to individual subtypes or sub-subtypes, and a profile
HMM is built for each. A profile HMM (Durbin et all, [1998) represents one
column of alignment by a match state, insert state and delete state. Emission
probabilities of the match state correspond to the frequencies of symbols in that
alignment column. The insert state represents sequences inserted immediately
after the column, and the delete state is a silent state allowing to bypass the
match state without emitting any symbols, thus corresponding to a deletion. A
jumping HMM also contains low probability jump transitions between profile
HMDMs corresponding to individual subtypes, as shown in Figure Bl

To use a jumping HMM for recombination detection, we color each state by
its subtype. Then, boundaries in the annotation correspond to recombination
breakpoints. [Schultz et all (2006) use the Viterbi algorithm and report the an-
notation corresponding to the most probable state path. However, the same
annotation can be obtained by many different state paths corresponding to dif-
ferent alignments of the input sequence to the profile HMMs. Even though in the
latest version of their software (Schultz et all;|2009) they augment the output by
displaing the posterior probabilities, they still output only a single annotation
obtained by the Viterbi algorithm. Since we are not interested in the alignment,

The Highest Expected Reward Decoding for HMMs 171

_ AN

MF
D D

Fig. 3. A small example of a jumping HMM with two profile HMMs. For readability,
jumping transitions between match states (M) and insert (I) or delete (D) states are
not shown.

only in the annotation, it is more appropriate to use the most probable anno-
tation instead of the most probable path. However, the problem of finding the
most probable annotation is NP-hard for many HMMs (Brejova et all, 2007),
and jumping HMMs, due to their complicated structure with many transitions
between states of different color, are likely to belong to this class.

The HERD bypasses this computational difficulty by maximizing a different
gain function that scores individual breakpoints rather than the whole annota-
tion. Compared to the Viterbi algorithm, our algorithm considers all possible
state paths (alignments) contributing to the resulting annotation. In addition,
our algorithm considers nearby potential recombination points as equivalent,
since in practice it is difficult to determine the exact recombination point, par-
ticularly in strongly conserved regions or between related subtypes.

The use of jumping HMMs on HIV genomes is relatively time consuming, as a
typical HIV genome has the length of almost 10,000 bases, and the jumping HMM
has 7,356,740 transitions. [Schultz et al! (2006) use the beam search heuristic to
speed up the Viterbi algorithm. Unfortunately, this heuristic is not applicable in
our case, and our algorithm is also asymptotically slower than the Viterbi algo-
rithm by a factor of W. To reduce the running time, we use a simple anchoring
strategy, similar to the heuristics frequently used in the global sequence alignment
(Kurtz et all, [2004). We have selected 19 well-conserved portions of the HIV mul-
tiple alignment as anchors, and align the consensus sequence of each anchor to the
query sequence. In the forward and backward algorithm, we constrain the align-
ment of the query to the profile HMMSs so that the position of the anchor in the
query aligns to its known position in the profile HMM. We also extend the algo-
rithm described above to handle silent states by modifying the preprocessing stage.

4 Experiments

A toy sequence annotation HMM. We have first tested our algorithm on data
generated from a toy HMM in Figure @ This HMM has multiple state paths
for a given annotation, and we have previously demonstrated that the most
probable annotation is more accurate than the annotation corresponding to the
most probable state path found by the Viterbi algorithm (Brejova et all, 2007).

172 M. Nénési, T. Vinaf, and B. Brejova

¢U—O—8—%—0

0.95 /y.t 095 0.9
(05 1 oO—o—B—a @

Fig. 4. A toy HMM emitting symbols over the binary alphabet, where the numbers
inside states represent the emission probability of the symbol 1. States s and t are
silent. The HMM outputs alternating white regions of mean length 20 and gray regions
of mean length 34. The distribution of symbols is constant in the white regions, while
in the gray regions it changes towards the end. The gray regions are flanked by a two-
symbol signal 11 on both sides. The HMM was inspired by models of CT-rich intron
tails in gene finding (Brejova et all, 2007).

Table [[l shows different measures of accuracy for several decoding algorithms
on 5000 randomly generated sequences of mean length about 500. We report re-
sults for two sets of parameter values of the model, however, the trends observed
in the table generally hold also for the other combinations of p; and ps. As we
have shown earlier, the extended Viterbi algorithm (EVA) (Brejova et all, 2007)
for finding the most probable annotation generally outperforms the Viterbi al-
gorithm. The HERD with parameters W = 5 and 7 = 1 is more accurate when
the performance is measured by its own gain function, which is not surprising,
since the data and baseline predictions are generated from the same model as is
used for annotation. On the other hand, the HERD colors fewer bases correctly
and tends to place boundaries on average further away from the correct ones
than the EVA. This is also not unexpected, as the HERD explicitly disregards
small differences in the boundary position. We have also measured sensitivity
and specificity in predicting individual features. Here the HERD works better
than the EVA for some parameter settings (e.g. p1 = p2 = 0.9 in the table),
but not for others. We have also run the HERD with W = 1, which is equiv-
alent to maximum expected boundary accuracy decoding (Gross et all, 2007).
The accuracy of this decoding is very poor for v = 1, but markedly improves for
lower penalty v = 0.1. The reason is that for W = 1, we sum over fewer state
paths and therefore the posterior probability of a boundary rarely reaches the
threshold 1/2 necessary to achieve positive expected reward at v = 1.

HIV recombination detection. Table 2l shows the accuracy of the HERD on pre-
dicting recombination in HIV genomes. In all tests, we have used the sequence
data and the jumping of [Schultz et all (2006), though in most tests we have
increased the jump probability P; from 1079 to 10~°. With the original value,
the HERD rarely predicts any recombination, since the posterior probability
of a breakpoint has to be at least 1/2 for v = 1 to receive a positive score,
and with the lower jumping probability, we usually do not reach such a level of
confidence. We have conducted the tests on a 1696 column region of the whole
genomic alignment, starting at position 6925. This restriction allowed us to test
higher number of sequences than [Schultz et al! (2006) reasonably fast.

The Highest Expected Reward Decoding for HMMs 173

Table 1. The accuracy on synthetic data generated from the HMM in Figure @l (i)
Fraction of the bases colored by the same color by the algorithm and the correct
annotation (baseline). (ii) Gain G(4, A’) of the prediction compared to the baseline.
For evaluation, the parameters of the gain function were set to W = 5 and v = 1,
even though in some tests we have used different parameters in the algorithm. (iii) A
feature is predicted correctly if there is a corresponding feature of the same color in the
baseline with both boundaries within the distance of less than 5. Specificity (sp.) is the
fraction of all predicted features that are correct, and sensitivity (sn.) is the fraction of
baseline features that are correctly predicted. (iv) Mean distance between the baseline
and predicted boundary for all correctly predicted features.

Algorithm % bases Gain Feature Feature Avg.
correct™® (9 sp.(iii) sn.(%) dist.
HMM parameters p; = 0.9, p2 = 0.9
HERD W =5,v=1 88.7% 127 75.9% 66.9% 1.8
HERD W =1,v=1 47.5% 3.0 55.1% 17.8% 0.0
HERD W =1,v=0.1 90.4% 2.4 51.8% 66.0% 0.9
Viterbi 89.4% 8.9 66.3% 47.3% 0.7
Extended Viterbi 91.2% 10.3 69.9% 56.2% 0.8
HMM parameters p; = 0.7, p2 = 0.8
HERD W =5,v=1 77.6% 5.9 54.8% 39.3% 1.37
HERDW =1,v=1 47.5% 3.0 55.0% 17.7% 0.0
HERD W =1,y=0.1 79.6% -2.7 382% 43.9% 0.9
Viterbi 75.0% 3.6 51.2% 25.7% 0.4
Extended Viterbi 79.7% 41 49.0% 31.3% 0.6

The first set of tests was done on 62 real HIV sequences without known
recombination. These sequences were selected from the subtypes Al, B, C, D,
F1 (10 sequences from each subtype) and G, A2, F2 (5, 3, and 4 sequences
respectively) and omitted from the training set (except for the subtypes A2,
F1 and F2 which have very few samples). As we can see in Table 2] the Viterbi
algorithm always predicts the correct result. Our algorithm on the jumping HMM
with the original low jumping probability P; = 10~ also produces correct answer
every time. However, the value of P; = 107" leads to spurious recombinations
predicted in 11.3% of sequences, thus lowering the accuracy.

The second set of sequences contains artificial recombinants. Each of them
was created as a combination of two sequences from two different subtypes by
alternating regions of length 300. The set contains recombinants between sub-
type pairs A-B, A-C, A-G, B-C, B-G and C-G, 50 sequences from each pair.
Our algorithm performs slightly better with respect to the total number of cor-
rectly labeled bases and average distance to the correct boundary, and also it
finds individual features (recombinant regions) with much greater sensitivity and
specificity if we allow some tolerance in the boundary placement. For W = 1, the
HERD has a very low accuracy even for lowered penalty v = 0.1. This suggests
that our generalization of the maximum expected boundary accuracy decoding
to the case W > 1 is crucial in this setting.

174 M. Nénési, T. Vinaf, and B. Brejova

Table 2. The accuracy on the HIV recombination data. The meaning of the columns
is the same as in Table [Tl except that we use W = 10 and v = 1 in the definition of
the gain function and correctly predicted features.

Algorithm % bases Gain Feature Feature Avg.
correct® () sp.<m) sn.(dist.

Sequences without recombination

HERD, W =10,y =1, P; = 107° 100.0% 2.0 100.0% 100.0% 0.0

HERD, W =10,y =1,P;, =10"° 93.7% 1.5 83.9% 83.9% 0.0

Viterbi 100.0% 2.0 100.0% 100.0% 0.0

Sequences with artificial inter-subtype recombination

HERD W =10,y =1,P; =10"° 95.7% 261 63.1% 58.9% 2.4

HERD W =1,y=0.1,P; =107° 81.6% 1.17 37.7% 30.2% 14

Viterbi 95.4% 2.1 53.4% 47.9% 1.8

Sequences with artificial intra-subtype recombination

HERD W =10,y =1,P; =107° 91.6% 1.7 46.5% 41.9% 2.7

Viterbi 88.0% 1.3 32.8% 26.1% 2.7

In the third test, we have used the same procedure to create 170 artificial
recombinants between sequences of two sub-subtypes of the same subtype (Al
and A2, F1 and F2), and from the two subtypes (B and D) at a small phylogenetic
distance that is more typical for sub-subtypes. The overall accuracy is lower in
this test, because it is more difficult to distinguish recombination among more
closely related sequences. The HERD is still much more accurate at the feature
level and also more accurate than the Viterbi algorithm on the base level.

One issue with our tests is that we have used a lower jump probability
P; = 109 for sequences without recombination and a higher value P; = 1075
for sequences with recombination. This distinction is justified by the fact that
although recombinant sequences are generally rare, suggesting a low jumping
probability, they usually have several recombination points, whose detection
then requires a higher value of P;. In practice, when faced with a sequence
of unknown origin we propose to first test whether the sequence is likely to be a
recombinant, perhaps by a likelihood ratio test with nested models (Felsenstein,
2004) in which P; is optimized for the input sequence in one model and set to
0 for the null model. If the sequence appears to contain recombination, we can
then apply the HERD with the higher value of P; to determine the breakpoints.

We have also run our algorithm on 12 naturally occurring recombinants, using
W =10, v = 1.5, and P; = 1075, Here, we have used the whole length of
the sequence. Due to the small number of sequences and uncertain annotation,
we do not report the accuracy statistics. Nonetheless, on six sequences, the
HERD found the correct set of recombining subtypes (on annotated regions).
Two of them the HERD annotated better than Viterbi (CRF08, CRF12). On
the remaining six, the HERD predicted at least one erroneous subtype and often
misplaced breakpoints or jumped frequently, but the Viterbi algorithm also made
numerous mistakes on the two of these sequences.

The Highest Expected Reward Decoding for HMMs 175

5 Conclusion

In this paper, we have introduced a novel decoding algorithm for hidden Markov
models seeking an annotation of the sequence in which boundaries of individ-
ual sequence features are at least approximately correct. This decoding is par-
ticularly appropriate in situations where the exact boundaries are difficult to
determine, and perhaps their knowledge is not even necessary.

We apply our algorithm to the problem of recombination detection in HIV
genomes. Here, the Viterbi decoding considers for a given annotation only a
single alignment of the query to the profile HMMs and only one placement
of breakpoints. In contrast, we marginalize the probabilities over all possible
alignments and over nearby placements of recombination boundaries. As a result,
we are able to predict individual recombinant regions with greater sensitivity and
specificity.

Our experiments also suggest venues for future improvement. First of all, the
accuracy results vary with the choice of parameters P;, W, and «. It remains an
open question how to choose these parameters in a principled way. We have also
observed that our algorithm does not perform as well as the Viterbi algorithm in
finding the exact boundaries. Perhaps this could be solved by a gain function in
which a boundary with a more distant buddy gets a smaller score. Similarly, our
algorithm performs in some tests slightly worse in terms of base-level accuracy,
and this shortcoming perhaps could be addressed by adding a positive score for
every correctly colored nucleotide to the gain function. In general, the framework
of maximum expected gain decoding is very promising, because it allows to tailor
decoding algorithm to a specific application domain.

Acknowledgements. We would like to thank Dan Brown and Jakub
Truszkowski for helpful discussion on related problems. Research of TV and BB
is funded by European Community FP7 grants IRG-224885 and TRG-231025.

References

Brejova, B., Brown, D.G., Vinar, T.: The most probable annotation problem in
HMMs and its application to bioinformatics. Journal of Computer and System Sci-
ences 73(7), 1060-1077 (2007)

Brown, D.G., Truszkowski, J.: New decoding algorithms for hidden Markov models
using distance measures on labellings. BMC Bioinformatics 11(S1), S40 (2010)

Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Proba-
bilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge
(1998)

Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2004)

Forney Jr., G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3), 268-278 (1973)

Gross, S.S., Do, C.B., Sirota, M., Batzoglou, S.: CONTRAST: a discriminative,
phylogeny-free approach to multiple informant de novo gene prediction. Genome
Biology 8(12), R269 (2007)

Hamada, M., Kiryu, H., Sato, K., Mituyama, T., Asai, K.: Prediction of RNA secondary
structure using generalized centroid estimators. Bioinformatics 25(4), 465-473 (2009)

176 M. Nénési, T. Vinaf, and B. Brejova

Kall, L., Krogh, A., Sonnhammer, E.LL.L..: An HMM posterior decoder for sequence
feature prediction that includes homology information. Bioinformatics 21(S1), i251—
i257 (2005)

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biology 5(2), R12 (2004)

Robertson, D.L., et al.: HIV-1 nomenclature proposal. Science 288(5463), 55-56 (2000)

Schultz, A.-K., Zhang, M., Bulla, 1., Leitner, T., Korber, B., Morgenstern, B., Stanke,
M.: jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic
Acids Research 37(W), W647-W651 (2009)

Schultz, A.-K., Zhang, M., Leitner, T., Kuiken, C., Korber, B., Morgenstern, B., Stanke,
M.: A jumping profile Hidden Markov Model and applications to recombination sites
in HIV and HCV genomes. BMC Bioinformatics 7, 265 (2006)

Phylogeny- and Parsimony-Based
Haplotype Inference with Constraints

Michael Elberfeld and Till Tantau

Institut fiir Theoretische Informatik
Universitat zu Liibeck, 23538 Liibeck, Germany
{elberfeld,tantau}@tcs.uni-luebeck.de

Abstract. Haplotyping, also known as haplotype phase prediction, is
the problem of predicting likely haplotypes based on genotype data.
One fast computational haplotyping method is based on an evolution-
ary model where a perfect phylogenetic tree is sought that explains the
observed data. In their cPM 2009 paper, Fellows et al. studied an ex-
tension of this approach that incorporates prior knowledge in the form
of a set of candidate haplotypes from which the right haplotypes must
be chosen. While this approach may help to increase the accuracy of
haplotyping methods, it was conjectured that the resulting formal prob-
lem constrained perfect phylogeny haplotyping might be NP-complete. In
the present paper we present a polynomial-time algorithm for it. Our
algorithmic ideas also yield new fixed-parameter algorithms for related
haplotyping problems based on the maximum parsimony assumption.

1 Introduction

In large-scale studies of the relation between genomic variation and phenotypic
traits, low-cost sequencing methods are used to read out the DNA sequences of
many individuals. For each individual the bases present on the two chromosomes
at a large number of SNP (single nucleotide polymorphism) sites are determined,
yielding the individual’s genotype for the different sites. In order to study pheno-
typic traits that are related to the bases present on multiple loci on a single DNA
strand, it is important to determine haplotypes rather than genotypes. They
describe how bases are assigned to chromosomes (this assignment of bases to
haplotypes is also known as phasing), but are expensive to determine directly.
Haplotype inference or just haplotyping methods aim at predicting haplotypes
from genotypes computationally by using biological insights into the haplotype
distribution in a population. They either use statistics, pioneered in [I1], or com-
binatorics, the two most common approaches being the perfect phylogeny method
(haplotype evolution is assumed to take place with unique point mutation and
without recombination) and the mazimum parsimony method (haplotype evolu-
tion is assumed to produce only few haplotypes).

Most combinatorial algorithms ignore prior knowledge that we might have on
which haplotypes may be permissible to explain a given genotype. In some sit-
uations a pool of haplotypes from prior studies is already known and we should

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 177189} 2010.
© Springer-Verlag Berlin Heidelberg 2010

178 M. Elberfeld and T. Tantau

only pick haplotypes out of this pool. We may even have more specific informa-
tion about the permissible haplotypes for the genotypes of the individuals: the
ethnicity of individuals may be known, allowing us to narrow the pool of per-
missible haplotypes for each individual. On the other hand, for some individuals
no prior knowledge may be available.

In the present paper we study combinatorial haplotyping methods that take
such pool constraints into account. For some or all genotypes we are given a
pool of haplotypes that are allowed for this particular genotype. The task is to
predict haplotypes for the genotypes such that all constraints are satisfied and
the haplotypes form a perfect phylogeny or their number is minimal or both.

The above ideas lead to three mathematical problems, whose complexity we
study in the present paper: CpoosPPH is the constrained perfect phylogeny hap-
lotyping problem, CpooisMH is the constrained mazimum parsimony haplotyping
problem, and Cpoo1sMPPH is the combined problem (see Section [for formal defi-
nitions). The two problems Cpoo1sPPH and CpoolsMH are generalizations of the two
problems Cgne pool for allPPH and Cone pool for altMH recently studied by Fellows et
al. [12]; the difference is that Fellows et al. require a single pool of haplotypes
to be used for all genotypes while we allow pools to be specified individually
for each genotype. We remark that, since we also allow that no constraints are
imposed at all, the standard problems PPH, MH, and MPPH (without any con-
straints) are special cases of their constrained counterparts and the algorithms
we present also work for them.

Our Results. Our first main result is a polynomial-time algorithm for Cpoe1sPPH.
It is based on an initial partition of the genotypes into independent subinstances
and a subsequent recursive decomposition of the pool constraints. Since this
algorithm also solves the simpler problem Cone pool for allPPH, We settle the main
open problem of Fellow et al. [I2]: Cone pool for allPPH is polynomial-time solvable.

Our second set of results concerns maximum parsimony haplotyping. Both
MH and Cone pool for alMH are known to be NP-complete, but fixed-parameter
tractable with respect to the number of distinct haplotypes in the solution [20/12].
We show that, in contrast, CpeoisMH is hard for the class W[2] for the same pa-
rameter and, therefore, unlikely to have a fixed-parameter algorithm. We prove
this by showing that Cpools for allMH, where some pool must be specified for each
genotype, is W[2]-complete. On the positive side we present a fixed-parameter
algorithm for Cpoo1sMH wWhere the parameter is the number of distinct haplotypes
in the solution plus the number of times duplicated genotypes have incomparable
pool constraints.

Our third main result is that the NP-complete problem Cpo01sMPPH is fixed-
parameter tractable with respect to the number of distinct haplotypes in the
solution. So, CpoolsMPPH has the same complexity as Cone pool for allMH. As corol-
laries we obtain that MPPH and Cone pool for atMPPH are both fixed-parameter
tractable, which was not known before. Our algorithm is a combination of the
algorithmic ideas for Cpoo1sPPH and CpoolsMH.

We have implemented our polynomial-time algorithm for Cpoo1sPPH. The im-
plementation shows that the algorithm works very fast in practice. We have

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 179

also started applying it to real genotype data and plan to report on the results
in a future publication. In the present paper, however, we concentrate on the
algorithmic side.

Related Work. The study of the perfect-phylogeny haplotyping problem was
initiated by the seminal paper of Gusfield [13], who showed that it is solvable in
polynomial time. Subsequent papers presented conceptually simpler polynomial-
time algorithms [2/T0], linear-time algorithms [BI3IT8TY], and fine-grained com-
plexity-theoretic results [7J8] for it.

The problem MH is NP-complete, as remarked in [14], and a later publication
sharpens this lower bound by showing that MH remains NP-complete if every
given genotype has at most three heterozygous sites [I7]. On the positive site
Sharan, Halldérsson, and Istrail [20] devised a fixed-parameter algorithm for
MH, where the parameter is the number of distinct haplotypes in the solution.
Moreover, algorithms based on linear programming [4], branch-and-bound algo-
rithms [22], and a recent combination of both methods [I6] are known.

To increase the accuracy of the predicted haplotypes, the perfect phylogeny
and the maximum parsimony assumptions have been combined, leading to the
problem MPPH. It was shown to be NP-complete for instances with at most three
heterozygous entries per genotypes by Bafna et al. [I] and later studied by Iersel
et al. [21].

Another direction to increase prediction accuracy is to constrain the set of
solution haplotypes: Fellows et al. [12] proposed the Cone pool for alPPH problem
and presented polynomial-time algorithms for some special cases like the number
of heterozygous entries in the genotypes and in the sites being bounded by
small constants. They left open the complexity of Cone pool for anPPH and leaned
towards the conjecture that it is NP-complete. The problem Cgne pool for all MH is
NP-complete by a reduction from MH with at most three heterozygous entries per
genotypes (for each genotype put all its explaining haplotypes, of which there
can be at most four, into the pool). Huang et al. [I5] studied approximation
algorithms for this problem, Fellows et al. [12] showed that it is fixed-parameter
tractable with respect to the number of distinct haplotypes in the solution.

Organization of This Paper. We first give formal definitions of genotypes, haplo-
types, and the computational problems we study. SectionsBl @l and[Elare devoted
to the algorithmic and complexity-theoretic studies of CpoolsPPH, CpoolsMH, and
CpoolsMPPH, respectively.

Due to lack of space, all proofs are omitted. They can be found in the technical
report version of this paper [9].

2 Haplotyping Problems and Constraints

A haplotype describes the genetic information from a single chromosome at SNP
sites. Since most SNP sites are biallelic, it is customary to encode a haplotype
as a binary string h € {0,1}", where 0 and 1 represent the two possible alle-
les. A genotype combines the genetic information of two haplotypes by joining

180 M. Elberfeld and T. Tantau

their entries to a sequence of sets. Following common conventions, instead of
sets we write a 0 or a 1 when both underlying haplotypes have this value (these
entries are called homozygous) and use the value 2 when the underlying hap-
lotypes have different entries (these entries are called heterozygous). A pair of
haplotypes {h,h’'} C {0,1}"™ explains a genotype g € {0,1,2}™ if for every site
s €{1,...,n} we have g[s] = h[s] = h'[s] whenever g[s] € {0,1} and h[s] # h/[s]
whenever g[s] = 2. In a genotype matriz A each row is a genotype. If the matrix
is clear from the context, we refer to the genotype in row ¢ by g;. Similar, we
arrange haplotypes in a haplotype matriz B and refer to the haplotype in row ¢
by h;. A 2n x m haplotype matrix B explains an n X m genotype matrix A if
every genotype g; is explained by the haplotype pair {ho;_1,ho;}. We use the
term site to refer to a position in genotypes and haplotypes and to a column of
genotype and haplotype matrices.

For a pair s and t of sites the induced set ind(B, s,t) contains all strings from
{00, 01, 10,11} that appear in the sites s and ¢ in the haplotype matrix B. We say
that these strings are induced by s and t. The notion of induces can be extended
to genotype matrices A: for two sites s and ¢ the set ind(A, s,) contains a string
xzy € {00,01,10,11} if A has a genotype g with either g[s] = z A g[t] = y or
gls] = x A g[t] =2 or g[s] =2 A g[t] = y. This implies ind(4, s,¢) C ind(B, s,t)
for every haplotype matrix B explaining A.

A haplotype matrix B admits a perfect phylogeny if there exists a tree T' (an
undirected acyclic graph), such that: (a) Each haplotype from B labels exactly
one vertex of T'; (b) each site s € {1,...,m} labels exactly one edge of T' and
each edge is labeled by at least one site; and (c) for every two haplotypes h;
and h; from B and every site s € {1,...,m}, we have h;[s] # h;[s] if, and only
if, s lies on the path from h; to h; in T'. It is well-known that B admits a perfect
phylogeny if, and only if, it satisfies the following four gamete property: for every
pair of sites s and t we have {00,01, 10,11} # ind(B, s,t).

For the three problems PPH, MH, and MPPH the input is always a genotype
matrix plus, for the last two problems, a number k. The questions are whether
there exists a haplotype matrix B that explains A and admits a perfect phylogeny
(pPH), has at most k different haplotypes (MH), or admits a perfect phylogeny
and has at most & different haplotypes (MPPH).

Constrained Haplotyping Problems. For constrained haplotyping problems dif-
ferent kinds of constraints are specified along with the input genotype matrix.
The first kind of constraints that we study are pool constraints. Let A be an nxm
genotype matrix. A pool constraint specifies that, in the output haplotype ma-
trix, the two explaining haplotypes for some particular genotype g; should both
be drawn from a pool H; C {0,1}" of allowed haplotypes. We write such a
constraint as pool(i, H;). Clearly, it suffices to allow only one such constraint
per genotype. Two pool constraints are incomparable if none of their pools is a
subset of the other.

The second kind of constraints are restrictions on the phase of sites. For a
genotype g with 2-entries in two sites s and t, the explaining haplotypes add
either {00,11} or {01,10} to the induced set. If there is another genotype ¢

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 181

with 2-entries in the sites s and t, then, in order to satisfy the four gamete prop-
erty, it must choose the same pair for its explaining haplotypes. In the first case
we say that s and t are phased equally, otherwise phased unequally. The con-
straints “equal-phase(s,t)” and “unequal-phase(s,t)” specify that a particular
phasing must be chosen for the two sites s and ¢ in a solution matrix. Formally,
a haplotype matrix B satisfies equal-phase(s,t) if {01,10} < ind(B,s,t); and
unequal-phase(s, t) if {00,11} Z ind(B, s, t).

We indicate constrained haplotyping problems by prefixing the haplotyping
problems MH, PPH, and MPPH with a ¢ whose index indicates which constraints
are allowed to be specified as part of the input. The index “pools” means that
arbitrary pool constraints are allowed; “pools for all” indicates that (possibly
different) pools must be specified for all genotypes (and not only for some); and
“one pool for all” indicates that, additionally, the same pool must be specified
for all genotypes. The index “phase” indicates that phase constraints are permis-
sible. For example, Cpools,phaseMPPH is the MPPH problem where both haplotype
and phase constraints are allowed as part of the input.

Haplotyping with phase constraints has not been defined formally in the lit-
erature, but many known algorithms implicitly handle phase constraints:

Fact 2.1 ([2/10]). There exists an algorithm that, given an n X m genotype
matriz with phase constraints, solves the problem CpnasePPH in time O(nm?).

3 Constrained Perfect Phylogeny Haplotyping

In this section we prove the following theorem, which answers the main question
of Fellows et al. [12] affirmatively: There is a polynomial-time algorithm for
Cone pool for allPPH.

Theorem 3.1. There exists an algorithm that solves Cpools,phasePPH in time
O(p(n + p)m?), where the input genotype matriz has size n x m and p is the
sum of the sizes of all pool constraints.

The outline of the algorithm for Cpools phasePPH, Which we detail in the rest of
this section, is as follows: Given an n X m genotype matrix A and a set K
of pool and phase constraints, our algorithm uses procedure SOLVE-CPPH from
Figure[lto preprocesses the input and to partition the genotypes into at most m
matrices A; that can be solved independently. Each matrix Ag has the property
that there is a site s, called the 2-site of Ag, that has 2-entries in all genotypes
from Ag. Each A, along with its corresponding constraints is then solved by the
procedure SOLVE-CPPH-2-SITE from Figure[I] via a recursive branch-and-reduce
approach: For each of the two possible phasings between the 2-site and another
site, it branches recursively, derives new phase constraints, and splits the pool
constraints.

In the following we describe the four procedures that make up our algo-
rithm: the two main procedures SOLVE-CPPH and SOLVE-CPPH-2-SITE, whose
pseudo-code is depicted in Figure[I], and the simpler procedures SANITIZE-POOL-
CONSTRAINTS and DEDUCE-PHASE-CONSTRAINTS for which no pseudo-code is

182 M. Elberfeld and T. Tantau

given. In the following, we say that a computational step has the correctness
property if the following holds: There exists a haplotype matriz that explains the
genotype matriz and satisfies the four gamete property and the constraints before
the step if, and only, if this holds for the instance after the step. Furthermore,
whenever the step outputs “no”, no solution exist for the current instance.

Procedure SOLVE-CPPH(A, K).

Input: An n X m genotype matrix A and a set of constraints K

Output: An explaining haplotype matrix B for A that satisfies the four gamete
property and the constraints K, if it exists; or “no”, otherwise

Preprocessing:

1 ensure that column pairs with different entries induce 00

2 sort columns decreasingly by leaf count

3 update phase constraints with induces

4 call DEDUCE-PHASE-CONSTRAINTS

5 call SANITIZE-POOL-CONSTRAINTS

Solve independent subinstances:

6 for eachsite s € {1,...,m} do

7 B, « call SOLVE-CPPH-2-SITE(As, K5, s)
8 if B, is “no” then return “no”

9 return combination of matrices Bs and genotypes without 2-entries

Procedure SOLVE-CPPH-2-SITE (A, K, s2).

Input: An n X m genotype matrix A with 2-site s and a set of constraints K
Output: An explaining haplotype matrix B for A that satisfies the four gamete
property and the constraints K, if it exists; or “no”, otherwise

Recursion break:

1 if for every pool(i, H;) € K we have |H;| = 2 then

2 replace all pool constraints by corresponding phase constraints

3 return solution for the resulting CpnasePPH instance

Recursive branch-and-reduce:

4 else for each component G’ of Gcover With corresponding instance A’, K’ do
5 s « some site from G’

6 B! « call TRY-PHASE-CPPH(A’, K’ U {equal-phase(sz, s)}, s2)

7 B, « call TRY-PHASE-CPPH(A’, K’ U {unequal-phase(sz, s)}, s2)

8 if B, = B, = “no” then return “no” else add B. or B, to solution

9 return solution

Sub-Procedure TRY-PHASE-CPPH(A, K s2).

1 call DEDUCE-PHASE-CONSTRAINTS and SANITIZE-POOL-CONSTRAINTS for A, K
2 if pool(i,) ¢ K for all i then return SOLVE-CPPH-2-SITE(A, K, s2)

3 else return “no”

Fig. 1. The polynomial-time algorithm for Cpools,phasePPH

Procedure SANITIZE-POOL-CONSTRAINTS. This procedure removes superfluous
haplotypes from pool constraints. Let K be a set of constraints. First, for a
constraint pool(i, H;) € K and a genotype g;, it removes all h from H; for which
there exists a site s such that h[s] # g¢;[s] € {0,1}. Second, it deletes every

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 183

haplotype h from H; for which there exists no other haplotype h’ € H; such that
{h, R’} explains g;. Third, it deletes haplotypes contradicting phase constraints:
For two sites s and ¢t with g;[s] = g;[t] = 2, it deletes h from H; whenever
hls] = h[t] A unequal-phase(s,t) € K or h[s] # h[t] A equal-phase(s,t) € K.
Finally, if a pool constraint becomes empty, it outputs “no.” Clearly, this step
has the correctness property.

Procedure DEDUCE-PHASE-CONSTRAINTS. Let A be a genotype matrix and K a
set of constraints. The procedure repeats the following rule as long as possible:
Let s, t and u be three sites such that there is a genotype g; with g;[s] =
gi[t] = gi[u] = 2 and there is no phase constraint for the pair ¢ and wu, but
phase constraints for both pairs s and ¢, and s and u. If these phase constraints
have the same type, we insert equal-phase(t,u) into K and, if their type is
different, we insert unequal-phase(¢,u) into K. Using graph representations for
phase constraints and their dependencies, the result of this procedure can be
computed in time O(nm?) [210].

Lemma 3.2. DEDUCE-PHASE-CONSTRAINTS has the correctness property.

Procedure SOLVE-CPPH. The pseudo-code of this procedure is shown in Figure[ll
We go over this method line by line.

The first five lines preprocess the input. Line 1 extends an idea from Eskin,
Halperin and Karp [I0] to constraints. For every site s we iterate downwards
through the genotypes and if a 1-entry appears before a 0-entry, we substitute
all 1-entries by O-entries and vice versa and adjust the constraints accordingly.
As shown in [I0], this step ensures that any two sites with at least one different
entry induce 00. In line 2 the procedure first calculates the leaf count [13] of each
column, which is the number of 2-entries of a column plus twice the number of
its 1-entries. Then it sorts the columns decreasingly from left to right by this
value. After this sorting we have 10 € ind(A4, s, t) for every two sites s and ¢ with
different entries and s < ¢. This holds since otherwise there is no genotype with
gls] = 1 Agft] € {0,2} or g[s] = 2 A g[t] = 0, but at least one genotype with
gls] € {0,2} Ag[t] =1 or g[s] = 0 A g[t] = 2. This would imply that the leaf
count of site ¢t should be greater than the leaf count of site s, a contradiction.
In line 3 the algorithm considers all pairs of sites s and ¢ and updates their
phase constraints as follows: If {00,11} C ind(A4, s,t), it inserts equal-phase(s, t)
into K; and if {01,01} C ind(A,s,t), it inserts unequal-phase(s,t). This step
has the correctness property since the new phase constraints reflect only induces
that are already in the matrix. Finally, lines 4 and 5 deduce phase constraints
and sanitize the pool constraints. In the following, we call a matrix that has
undergone the preprocessing from lines 1 to 5 a preprocessed genotype matriz.

In lines 6 to 8 the genotype matrix A is partitioned genotype-wise into m
submatrices Ay, ..., A, one matrix for each site. A genotype g belongs to the
matrix A, if g[s] = 2 and for every site ¢ < s we have g[t] # 2. Each A, is passed
along with the corresponding pool constraint and all phase constraints, stored
in the set K, to a call of the procedure SOLVE-CPPH-2-SITE. The construction

184 M. Elberfeld and T. Tantau

of A4 ensures that site s has 2-entries in all genotypes from A,. The effect of the
partition is stated by the following lemma:

Lemma 3.3. Let A be a preprocessed nx m genotype matriz with constraints K.
Then there exists an explaining haplotype matriz B for A that satisfies the
four gamete property and the constraints K if, and only if, for every site s €
{1,...,m} there exists an explaining haplotype matriz B, for A, that satisfies
the four gamete property and the constraints K.

Putting it altogether, SOLVE-CPPH correctly solves Cpools,phasePPH, provided that
the procedure SOLVE-CPPH-2-SITE is correct, which we prove next.

Procedure SOLVE-CPPH-2-SITE. This procedure recursively solves the instances
that are produced by SOLVE-CPPH, each consisting of a genotype matrix A with
a 2-site sy and constraints K. The recursion stops when all pool constraints
contain only two haplotypes (they must contain at least two haplotypes be-
cause a 2-entry is present in the genotype). In such a case the phasing of the
genotype is completely known. We remove the pool constraints and, instead,
add phase constraints that describe this particular phasing: For each constraint
pool(i, {h,h'}) and sites s and ¢ add the phase constraint equal-phase(s,t) if
h[s] = h[t] # Rh/[s] = W'[t] and unequal-phase(s,t) if h[s] = h'[t] # h[t] = h'[s].
The resulting instance of Cphase PPH can be solved in polynomial time by Fact 211

To describe the recursive step, we need some terminology. Let geno,(s) be
the set of A’s genotypes that have a 2-entry at site s. Let Sgeo be the set of
sites s of A where s # s5 and there is no phase constraint for s and ss in K.
Let Scover be the set of sites s € Sgee for which there is no site s’ € Sgee With
geno,(s) C genoy(s’); in the case that sites from Sgee have the same set of 2-
entries, we choose exactly one of them to be contained in Scover. Note that when
a genotype from A has a 2-entry in a site from Sgee, then it also has a 2-entry
a site from Scover. Let Geover be the graph that has Scover as its vertex set and
an edge between sites s and s if geno,(s) Ngeno,(s’) # (). Whenever there is an
edge between sites in Gcover, then there exists a phase constraint for them.

In the recursive step the algorithm iterates over the components G’ of Geover
and considers the submatrix A’ of A made up by all genotypes with 2-entries in
sites of G’ along with a constraints set K’, consisting of the pool constraints for
the genotypes from A’ and all phase constraints. It chooses a site s from G’ and
adds once the constraint equal-phase(ss, s) and once unequal-phase(sz, s) to the
set of constraints. In each case, it checks which additional phase constraints are
now triggered using the sub-procedure TRY-PHASE-CPPH. This sub-procedure
calls DEDUCE-PHASE-CONSTRAINTS followed by SANITIZE-POOL-CONSTRAINTS
and tries to solve the resulting instance recursively by calling SOLVE-CPPH-2-
SITE. If for all components a recursive call returns a solution, the procedure
combines them along with haplotypes for genotypes that are not in any matrix A’
to a solution for the whole instance. The following lemma states the correctness
of SOLVE-CPPH-2-SITE:

Lemma 3.4. Let A be a preprocessed n X m genotype matriz with 2-site so
and constraints K. Then SOLVE-CPPH-2-SITE returns a haplotype matriz B that

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 185

explains A and satisfies the four gamete property and the constraints K, if it
exists, or “no”, otherwise.

Runtime. The input to the algorithm consists of a genotype matrix of dimension
n X m, phase constraints and pool constraints. Let p equal the sum of the sizes of
all pool constraints. We show that the runtime is O(p(n + p)m?), as claimed in
Theorem 3]l All individual operations of the algorithm take time at most O((n+
p)m?). Thus, it suffice to show that the tree of recursive calls of procedure SOLVE-
CPPH-2-SITE has at most p leafs: The procedure partitions its input matrix into
submatrices with constraints. For every submatrix A’ with constraints K’ it may
branch into two possible phasings for the sites ss and s. The call of DEDUCE-
PHASE-CONSTRAINTS ensures that there are phase constraints between s, and
all sites from G’: when two sites are connected via an edge in Gcover, We know
that there is a phase constraint for them and a genotype that contains 2-entries
in these sites and ss. Note that the phases between sy and the sites from G’
for the case equal-phase(ss, s) are exactly opposite to the phases for the case
unequal-phase(sa, s). This implies that, since all genotypes in A’ have a 2-entry
in so and a site from G’, every haplotype from the pool constraints is passed to
at most one recursive call. This yields a partition of sets of haplotypes from the
pool constraints among all recursive calls. Since the procedure stops when the
sizes of the pools drop to two (or zero), the number of leafs of the recursive tree
of procedure SOLVE-CPPH-2-SITE is bounded by p + 1.

We remark that we have implemented the algorithm in Java and applied it
to laboratory data. Our prototypical implementation handles typical real-data
inputs in a matter of seconds on a standard machine.

4 Constrained Maximum Parsimony Haplotyping

In this section, we present two results on the fixed-parameter tractability (see [6]
for background in parametrized complexity theory) of the constrained maximum
parsimony haplotyping problem. First, we prove that Cpools for atMH is W[2]-
complete when parametrized by the minimum number of distinct haplotypes
in an explaining haplotype matrix. In sharp contrast, MH and Cone pool for all MH
are fixed-parameter tractable for this parameter, as shown in [20] and [12], re-
spectively. This means that the possibility to specify pool constraints on a per-
genotype basis vastly increases the complexity of the problem. Second, we show
that a fixed-parameter algorithm is possible even for Cpoo1sMH when we extend
the parameter to the number of distinct haplotypes plus the number of dupli-
cated genotypes that have incomparable pools.

The algorithms for MH and Cone pool for atMH from the literature use data
structures that describe how haplotypes are shared among genotypes. Given an
n X m genotype matrix A, we define a haplotype sharing plan P for A of size k as
a multigraph G = (V, E) (a graph with multiple edges between the same vertices)
with |V| = k and |E| = n where (a) edges are labeled bijectively by genotypes
from A, (b) some vertices are labeled by haplotypes, and (c) every genotype that

186 M. Elberfeld and T. Tantau

has two labeled incident vertices is explained by the haplotype labels. We call
a plan complete if all vertices are labeled and empty if no vertex is labeled. A
plan P extends a plan P’ if P arises from P’ by labeling previously unlabeled
vertices. A haplotype sharing plan P satisfies a pool constraint pool(i, H;) if the
incident haplotypes of g; lie in H;. With this definition, constructing haplotype
matrices with at most k distinct haplotypes is equivalent to constructing plans
of at most size k.

Given a budget k for the number of distinct haplotypes in the solution, the
known fixed-parameter algorithms for MH and Cene pool for alt MH consider all pos-
sible empty haplotype sharing plans of size k and check whether they can be ex-
tended to complete ones in polynomial time, using GF|[2] equations for MH [20]
and dynamic-programming for Cone pool for atMH [12]. To bound the number of
edges of the plan they use a preprocessing step that deletes duplicated genotypes
and retains only one of them. Since k haplotypes can explain at most k(k —1)/2
different genotypes, these algorithms consider at most O(k?") < O(k2k2) differ-
ent empty plans.

These ideas cannot be extended to a fixed-parameter algorithm when geno-
type-specific pool constraints are given since we cannot delete duplicated geno-
types in a preprocessing step. This is due to the fact that genotypes might
have the same entries, but incomparable pools, which we cannot merge directly.
Strong evidence that no slightly variation of the standard approaches will work
is given by Theorem (.1

Theorem 4.1. Cpools for atMH, parametrized by the number of distinct haplo-
types in the solution, is W[2]-complete. Consequently, CpoolsMH is W[2]-hard for
the same parametrization.

The instances constructed in the W[2]-hardness proof of Cpools for alMH contain
only identical genotypes, namely completely heterozygous genotypes, while pools
might be highly incomparable. Since such a worst case instance is unlikely to be
present in practice, we propose to additionally parametrize the problem by the
maximum number [of duplicated genotypes with pairwise incomparable pool
constraints. When parametrized by the number k of distinct haplotypes and at
the same time by I, CpoolsMH becomes fixed-parameter tractable.

Theorem 4.2. CpoosMH 45 fized-parameter tractable with respect to the num-
ber of distinct haplotypes that are used in an explaining haplotype matriz plus
the maximum number of duplicated genotypes with pairwise incomparable pool
constraints.

The algorithm (Figure[2lshows pseudo-code) first preprocesses the instance, such
that at most [genotypes have the same entries. Then it iterates over at most
O(k*™) < O(K'™") empty plans. After an initial check of whether a plan can be
extended to a complete one without constraints, the algorithm considers every
component of the plan independently. If a component contains genotypes having
pool constraints, it picks one of these genotypes and an incident vertex and
tries all assignments of permissible pool haplotypes to the vertex. A haplotype

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 187

Procedure SOLVE-CMH(A, K, k).

Input: An n X m genotype matrix A, pool constraints K and a budget k.

Output: An explaining haplotype matrix B for A with at most k distinct haplotypes
that satisfies the constraints K, if it exists; or “no”, otherwise.

Preprocessing:

1 call SANITIZE-POOL-CONSTRAINTS

2 for each g; and g; with g; = g; do

3 if there is no pool constraint for gj,
or pool(i, H;) € K, pool(j, H;) € K, H; C H; then
4 delete g;

5 if there are more than lk(k — 1)/2 genotypes then output “no”
Try to extend empty haplotype sharing plans:
6 for each empty haplotype sharing plan P of size k£ do

7 if P cannot be extended to a complete plan then skip P
8 for each component P’ of P do
9 if there is a genotype g; in P’ with pool(i, H;) € K then
10 v «— some vertex incident to g;
11 for each haplotype h € H; that is permissible for v in P do
12 P” « P’; label v with h in P” and calculate haplotypes for all vertices
13 if P" is a haplotype sharing plan satisfying its pool constraints then
14 store P as a solution for P’ and continue with next P’
15 skip P
16 else choose a permissible haplotype for one vertex from P’,
calculate haplotypes for all other vertices, and store the solution P”
17 combine all P” to a plan for A and K and return combined plan

18 output “no”

Fig. 2. The fixed-parameter algorithm for Cpoo1sMH

is permissible for a vertex in a plan if there exists an extending complete plan
with the vertex labeled by this haplotype. Conversely, its assignment directly
determines haplotypes for all other vertices in the component and it remains to
check that these haplotypes satisfy the other pool constraints. For components
without constraints, an assignment of haplotypes is always possible, due to line 7.
Since the inner part of the main loop needs only polynomial time, this gives the
desired fixed-parameter runtime.

5 Constrained Maximum Parsimony
Perfect Phylogeny Haplotyping

We show that Cpools,phaseMPPH and, therefore, MPPH and Cone pool for all MPPH,
are fixed-parameter tractable with respect to the number of distinct haplotypes
in the solution.

Theorem 5.1. Cpools,phaseMPPH is fized-parameter tractable with respect to the
number of distinct haplotypes in the solution.

We prove the theorem by combining the recursive branch-and-reduce technique
from Section [l with haplotype sharing plans, which control the size of solutions.

188 M. Elberfeld and T. Tantau

The algorithm first ensures that the input contains no duplicate genotypes. Then
it iterates over at most O(k*") < O(k**’) empty plans. In every iteration it
computes the partition from SOLVE-CPPH and solves the matrices independently.
For this, it also decomposes the current plan such that a subplan is made up
by the edges from the genotypes of its corresponding submatrix. To ensure that
different instances are not related through vertices in the plan, the algorithm
labels all vertices that are incident to genotypes from different submatrices with
haplotypes. In the second main part, a recursive branch-and-reduce procedure,
instances are partitioned such that the different parts are neither related through
the matrix nor through the plan. For each part, similar to procedure SOLVE-
CPPH-2-SITE, the algorithm branches into different phases between two columns.
After labeling some vertices in the plan and sanitizing pool constraints, the
algorithm solves completely independent matrices recursively. The iteration over
at most O(k2k2) plans and the polynomial-time recursion give the desired fixed-
parameter runtime.

6 Conclusion

We studied phylogeny- and parsimony-based haplotype inference in the pres-
ence of pool and phase constraints. Our main result is that Cpools,phasePPH is
polynomial-time solvable by a new recursive decomposition technique for geno-
types and pools. This solves the question from [12] whether Cone pool for allPPH is
polynomial-time solvable. Our Java implementation of this algorithm shows that
it works fast in practice. We showed that Cpoo1sMH is W[2]-hard by proving that
Cpools for atMH is W[2]-complete when parametrized by the number of distinct
haplotypes in the solution. Both problems are fixed-parameter tractable when
we also use the comparability of the pools as a parameter. For Cpools phaseMPPH
we presented an algorithm that extends the recursive decomposition of geno-
types and pools by a decomposition of haplotype sharing plans, yielding a fixed-
parameter algorithm for Cpools,phaseMPPH with respect to the number of distinct
haplotypes in the solution.

For future work one research direction would be to incorporate more general
constraints, like, for example, *-constraints where some entries in the haplotypes
can be chosen freely. We may also try to allow a few additional rare haplotypes
to be used that are not in any pool. A second direction would be to adjust the
ideas to algorithms that work on incomplete data.

References

1. Bafna, V., Gusfield, D., Hannenhalli, S., Yooseph, S.: A note on efficient computa-
tion of haplotypes via perfect phylogeny. J. Comput. Biol. 11(5), 858-866 (2004)

2. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny:
A direct approach. J. of Comput. Biol. 10(3-4), 323-340 (2003)

3. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem.
Algorithmica 48(3), 267-285 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 189

. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype infer-

ence by pure parsimony. IEEE/ACM T. on Comput. Biol. and Bioinf. 3(2), 141-154
(2006)

. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny

haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522-553 (2006)

. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York

(1999)

. Elberfeld, M.: Perfect phylogeny haplotyping is complete for logspace. Computing

Research Repository (CoRR), abs/0905.0602 (2009)

. Elberfeld, M., Tantau, T.: Computational complexity of perfect-phylogeny-related

haplotyping problems. In: Ochmanski, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 299-310. Springer, Heidelberg (2008)

. Elberfeld, M., Tantau, T.: Phylogeny- and parsimony-based haplotype infer-

ence with constraints. Technical Report SIIM-TR-A-10-01, Universitat zu Liibeck
(2010)

Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure
via perfect phylogeny. J. Bioinf. and Comput. Biol. 1(1), 1-20 (2003)

Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Mol. Biol. and Evol. 12(5), 921-927 (1995)
Fellows, M.R., Hartman, T., Hermelin, D., Landau, G.M., Rosamond, F.A.,
Rozenberg, L.: Haplotype inference constrained by plausible haplotype data. In:
Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 339-352.
Springer, Heidelberg (2009)

Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In: Proc. of RECOMB 2002, pp. 166-175. ACM Press, New York (2002)
Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chéavez,
E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144-155. Springer,
Heidelberg (2003)

Huang, Y.-T., Chao, K.-M., Chen, T.: An approximation algorithm for haplotype
inference by maximum parsimony. J. Comput. Biol. 12(10), 1261-1274 (2005)
Jager, G., Climer, S., Zhang, W.: Complete parsimony haplotype inference prob-
lem and algorithms. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757,
pp. 337-348. Springer, Heidelberg (2009)

Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsi-
mony: Complexity of exact and approximation algorithms. INFORMS J. on Com-
put. 16(4), 348-359 (2004)

Liu, Y., Zhang, C.-Q.: A linear solution for haplotype perfect phylogeny prob-
lem. In: Proc. Int. Conf. Adv. in Bioinf. and Appl., pp. 173-184. World Scientific,
Singapore (2005)

Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyp-
ing. J. Comput. Biol. 13(4), 897-928 (2006)

Sharan, R., Halldérsson, B.V., Istrail, S.: Islands of tractability for parsimony hap-
lotyping. IEEE/ACM T. Comput. Biol. and Bioinf. 3(3), 303-311 (2006)

van lersel, L., Keijsper, J., Kelk, S., Stougie, L.: Shorelines of islands of tractability:
Algorithms for parsimony and minimum perfect phylogeny haplotyping problems.
IEEE/ACM T. Comput. Biol. and Bioinf. 5(2), 301-312 (2008)

Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformat-
ics 19(14), 1773-1780 (2003)

Faster Computation of the Robinson-Foulds
Distance between Phylogenetic Networks

Tetsuo Asano!, Jesper Jansson?, Kunihiko Sadakane?,
Ryuhei Uehara!, and Gabriel Valiente*

1 School of Information Science, Japan Advanced Institute of Science and
Technology, Ishikawa 923-1292, Japan
{t-asano,uehara}@jaist.ac.jp
2 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
jesper. jansson@ocha.ac. jp
3 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430,
Japan
sada@nii.ac.jp
4 Algorithms, Bioinformatics, Complexity and Formal Methods Research Group,
Technical University of Catalonia, E-08034 Barcelona, Spain
valiente@lsi.upc.edu

Abstract. The Robinson-Foulds distance, which is the most widely used
metric for comparing phylogenetic trees, has recently been generalized
to phylogenetic networks. Given two networks Ni, No with n leaves, m
nodes, and e edges, the Robinson-Foulds distance measures the number
of clusters of descendant leaves that are not shared by N1 and Na. The
fastest known algorithm for computing the Robinson-Foulds distance
between those networks runs in O(m(m + €)) time. In this paper, we
improve the time complexity to O(n(m + €)/logn) for general networks
and O(nm/logn) for general networks with bounded degree, and to
optimal O(m + e) time for planar phylogenetic networks and bounded-
level phylogenetic networks. We also introduce the natural concept of the
minimum spread of a phylogenetic network and show how the running
time of our new algorithm depends on this parameter. As an example,
we prove that the minimum spread of a level-k phylogenetic network is
at most k£ + 1, which implies that for two level-k phylogenetic networks,
our algorithm runs in O((k + 1)(m + €)) time.

1 Introduction

The Robinson-Foulds distance, introduced in [I7], has been the most widely
used metric over almost three decades for comparing phylogenetic trees. How-
ever, it is now known that the evolutionary history of life cannot be properly
represented as a phylogenetic tree [7], and phylogenetic networks have emerged
as the representation of choice for incorporating reticulate evolutionary events,
like recombination, hybridization, or lateral gene transfer, in an evolutionary
history [16].

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 1907 2010.
© Springer-Verlag Berlin Heidelberg 2010

Faster Computation of the Robinson-Foulds Distance 191

Phylogenetic networks are directed acyclic graphs with ¢ree nodes (those with
at most one parent) corresponding to point mutation events and hybrid nodes
(with more than one parent) corresponding to hybrid speciation events. As in
the case of phylogenetic trees, the leaves are distinctly labeled by a set of ex-
tant species. Additional conditions are usually imposed on these directed acyclic
graphs to narrow down the output space of reconstruction algorithms [I3I14] or
to provide a realistic model of recombination [L9/20].

Two such additional conditions are especially relevant to the Robinson-Foulds
distance. A phylogenetic network is time consistent when it has a temporal
representation [I], that is, an assignment of discrete time stamps to the nodes
that increases from parents to tree children and remains the same from parents
to hybrid children, meaning that the parents of each hybrid node coexist in
time and thus, the corresponding reticulate evolutionary event can take place.
A phylogenetic network is tree-child when every internal node has at least one
tree child [4], meaning that every non-extant species has some extant descendant
through mutation alone.

The Robinson-Foulds distance between two phylogenetic networks is defined
as the cardinality of the symmetric difference between their two sets of all in-
duced clusters (where the cluster induced by a node v in a phylogenetic network
is the set of all descendant leaves of v in the network) divided by two, and thus
it measures the number of clusters not shared by the networks. It is a metric on
the space of all tree-child time-consistent phylogenetic networks [4, Cor. 1], and
it generalizes the Robinson-Foulds distance between rooted phylogenetic trees.
Clearly, the Robinson-Foulds distance requires computing the cluster represen-
tation of the networks, that is, the set of descendant leaves for each node in
the networks. While there are improved algorithms for computing the cluster
representation of a phylogenetic tree [GII5I21122], the only known algorithm for
computing the cluster representation of a phylogenetic network [3] is based on
breadth-first searching descendant leaves from each of the nodes in turn, and
takes O(m(m + ¢€)) time using O(nm) space on phylogenetic networks with n
leaves, m nodes, and e edges.

In this paper, we present a faster algorithm for computing the Robinson-
Foulds distance between two input phylogenetic networks. For general phyloge-
netic networks, we first improve the time complexity by following an approach
similar in spirit to the algorithm proposed in [4] for computing the path multiplic-
ity representation of a phylogenetic network; by using a compressed representa-
tion of the characteristic vectors, we obtain a simple algorithm for computing the
Robinson-Foulds distance between phylogenetic networks in O(n(m + €)/logn)
time using O(nm/ logn) space, assuming a word size of w = [logn] bits; see [12].
For phylogenetic networks of bounded degree, this becomes O(nm/logn) time
and space.

In the case of level-k phylogenetic networks [5], we further improve the time
complexity by using a more succinct representation of a cluster of descendant
leaves as an interval of consecutive integers, which allows us to compute the Robin-
son-Foulds distance in O((k+1)(m+e)) time. For this purpose, we introduce what

192 T. Asano et al.

we call the minimum spread of a phylogenetic network, and prove that every level-
k network has minimum spread at most k + 1. For special cases of bounded-level
phylogenetic networks such as planar phylogenetic networks, in particular outer-
labeled planar split networks [2I8] and galled-trees [TOJT1], we show that the min-
imum spread is 1, which means that our algorithm can be implemented to run in
optimal O(m + e) time.

The paper is organized as follows. Section [2] introduces some notation and
explains the naive representation of clusters. Section [B] describes more efficient
ways to represent the clusters both for general networks and for planar and
level-k networks, and defines the minimum spread of a phylogenetic network. A
bottom-up algorithm for computing the Robinson-Foulds distance is presented
in Section @ that takes advantage of the cluster representation. Finally, some
conclusions are drawn in Section Bl

2 Preliminaries

Let N = (V,E) be a given phylogenetic network with n leaves, m nodes, and
e edges. For any nodes u,v € V, we say that v is a descendant of u if v is
reachable from u in N. (Here, any node is considered to be a descendant of
itself.) For every v € V, define Cv] as the set of all leaves which are descendants
of v. The set C[v] is called the cluster of v, and the collection {C[v] | v € V} is
called the naive cluster representation of N.

The naive cluster representation of N can be computed in O(m(m + ¢€)) time
and O(nm) space by breadth-first searching descendant leaves from each of
the nodes of N in turn [3]. A significant improvement in time complexity can
be achieved by replacing the m top-down searches by n bottom-up searches,
because m can be arbitrarily large for a phylogenetic network with n leaves and,
even in the particular case of a tree-child time-consistent phylogenetic network,
m < (n+4)(n—1)/2, and this bound is tight [3| Prop. 1]. The following lemma
is the basis of such an improvement.

Lemma 1. Let v € V be a node of a phylogenetic network N = (V, E). Then,
Cv] = {v} if v is a leaf, and C[v] = Clv1] U --- U Clvg] if v is an internal node
with children {vy,...,vg}.

Proof. The only (trivial) descendant of a leaf in a phylogenetic network is the leaf
itself. The paths from an internal node to the leaves of a phylogenetic network
are the paths from the children of the internal node to the leaves. a

Lemma [suggests a simple bottom-up algorithm (Algorithm [I)) for computing
the naive cluster representation of N in polynomial time. In the following de-
scription, the cluster Clv] of each node v in N is computed during a bottom-up
traversal of N, with the help of an (initially empty) queue @ of nodes. The clus-
ter C[v] of each child v of an internal node u is joined in turn to the (initially
empty) cluster Clu] of the parent node wu.

Faster Computation of the Robinson-Foulds Distance 193

Algorithm 1. Compute the naive cluster representation C' of a phylogenetic network N

procedure naive_cluster_representation(N, C)
for each node v of N do
if v is a leaf then
Clv] « {label(v)}
enqueue(Q,v)
else
Clv] — 0
while @ is not empty do
v« dequeue(Q)
mark node v as visited
for each parent u of node v do
Clu] < Clu] U C[v]
if all children of u are visited then
enqueue(Q, u)

Lemma 2. Let N be a phylogenetic network with n leaves, m nodes, and e edges.
The naive cluster representation of N can be computed in O(n(m+-e)) time using
O(nm) space.

Proof. Each node is enqueued and dequeued only once, and each parent of each
dequeued node v is visited only once from v. The union of two subsets of an n
element set, which takes O(n) time, is computed O(m + €) times. O

3 More Efficient Cluster Representation

3.1 Characteristic Vector Representation

A leaf numbering function is a bijection from the set of leaves in N to the
set {1,2,...,n}. For any leaf numbering function f and node v € V, the char-
acteristic vector for v under f, denoted by Cy[v], is a bit vector of length n
such that for any i € {1,2,...,n}, the ith bit equals 1 if and only if f=1(i) is a
descendant of v in N. Note that Cf[r] = 111...1 for the root r of N, and that
C¢[f] contains exactly one 1 for any leaf ¢ of N.

Example 1. Consider the phylogenetic network in Figure [l Number the leaves
according to the circular ordering wvs, vog, Va7, U2s, Usq, Va5, V42, V43, V46, V47, V10,
V22, V23, Usg, V37, Us3, U12, V18, V25, U2, U14 along the outer face. This corresponds
to a depth-first search of the directed spanning tree obtained by removing one
incoming edge (shown in red in Figure [I]) for each node of in-degree 2 in the
network, and it yields the characteristic vectors listed in Table [Il a

194 T. Asano et al.

Fig. 1. An example of a phylogenetic network based on real data, adapted from [23].
This is the smallest level-2 phylogenetic network consistent with 1,330 rooted triplets
of sequences from different isolates of the yeast Cryptococcus gattii.

Obviously, the characteristic vector representation of all clusters in N can be
stored explicitly using a total of mn bits and can be constructed in O(n(m+e))
time by an algorithm analogous to Algorithm[Il Our next goal is to find suitable
leaf numbering functions for different types of phylogenetic networks which lead
to more compact ways of storing the characteristic vectors as well as faster
ways of computing them. We first consider arbitrary leaf numbering functions,
and then study leaf numbering functions for some important special classes of
phylogenetic networks.

3.2 Compressed Characteristic Vector Representation

Fix any arbitrary leaf numbering function f for the given phylogenetic net-
work N. The time complexity of Algorithm [I] can be improved by employing a
characteristic vector of size n to encode each cluster, packing the characteristic
vector of a subset of the n leaves into O(n/logn) integers (assuming a word

Faster Computation of the Robinson-Foulds Distance 195

Table 1. Characteristic vector representation of the clusters for the phylogenetic net-
work in Figure [T

node characteristic vector of the cluster

V2 V20 V27 V28 U34 V45 V42 V43 V46 V47 V10 V22 V23 U36 U37 U33 V12 V18 V25 V26 V14
0 0 0 0 0 0 0
0

V21
V15
V41
U39

V44

s
o

el =lelolelalelelelolelelelalolelalalolalalalolelalao)
O OOOHROOOOOOOOHRFOOOODOOoOOoO—O
O OOOHROOOOOOOHRFOOOOOOOO
HEOOOOROOOOOOORFOOOOOOoOOoOO
—HEHEOOORFEFEHEFEOOORFHEHOOOOOoOOOO
RFRROOORRRFRRROOORRFRRFRFRHRFRFOORFOO
RFRROOORRRFRRROOORRFRRFRFRHRHEFOOFROOO
RFRROOORRRRFROOORRFRERFRRFRRHEROOOO
HEHEOOORFEFEHEEFEOOORRFEHEHEEFERFEHEEFEOOOO
HEHEOOORFEFEHEFEOOORRFEHEHEEFERFEHEEFEOOOO
il eleleldelelelalelalel loelelalelalololaolole]
—H_EOOOORFHFHOOOOHOOODODOOOOOOO
HHEOOOOHFFEFOOOOHOOOOOOODOODOOOOoO
HEHEOOORRFEFEHEEFEEFEFEOOOOOOOOOoOOoOOoOOoOo
HEHEOOORRFEFEHEEFEEFEFEOOOOOOOOOoOOoOOoOOoOOo
HEROOORFHFFEREHEFOOOOODODOODODOOoOoOOoOOoO
il elelelg doleloalelalalalolelalelololololole]
HEHEEREEOOOOOOOOOOOOOOOOOOooOoOOo0O
RO OO0 OO0 OoOo0o
el =l elelelolelalal ool ol ol ol o) el)
el e lelolelaleloalalalalalolelalelololol ol

size of w = [logn] bits), and computing the bitwise-OR of vectors instead of
performing the set union operation. See [12] for further details about bit-level
parallelism.

The pseudocode for the improved version of Algorithm [l is given in Algo-
rithm 2l where x < ¢ denotes the bitwise shift of an integer x to the left by ¢,
and z | y denotes the bitwise OR of two integers = and y.

The improvement in time complexity of Algorithm [2] comes from bit-level
parallelism of the set union operations.

Lemma 3. Let N be a phylogenetic network with n leaves, m nodes, and e
edges. The cluster representation of N can be computed in O(n(m + e)/logn)
time using O(n? +nm/logn) words.

Proof. There are 2!°8™ = n bit vectors, and the bitwise-OR of all these w-bit
vectors takes O(n?) time. After this prepreprocessing, each node is enqueued and
dequeued only once, and each parent of each dequeued node v is visited only once
from v. The union of two subsets of an n element set, which takes O(n/logn)
time as the bitwise-OR of [n/w] w-bit vectors, is computed O(m + €) times.
The bitwise-OR of all the w-bit vectors is stored in O(n?) words, and the
cluster representation is stored as a compact boolean table, with m rows and
n/logn columns. |

196 T. Asano et al.

Algorithm 2. Compute the compressed cluster representation C' of a phylogenetic
network N

3.3 Interval List Representation

A maximal consecutive sequence of 1’s in a bit vector is called an interval. For a
given leaf numbering function f and node v € V, let I;(v) denote the number of
intervals in C¢[v] and let the spread of f be Iy = max,cv If(v). The minimum
spread of N is the minimum value of Iy, taken over all possible leaf numbering
functions f.

Below, we first bound the minimum spread of certain types of phylogenetic
networks, and then show more generally how the characteristic vectors of phylo-
genetic networks having small minimum spread can be stored compactly. From
here on, we only consider phylogenetic networks in which each node has either
at most one parent (tree node) or exactly two parents (hybrid node).

A phylogenetic network is planar if the underlying undirected graph is outer-
labeled planar, that is, if it admits a non-crossing layout on the plane with all the
leaves lying on the outer face. Planar phylogenetic networks arise for instance
when representing conflicting phylogenetic signals, leading to the so-called outer-
labeled planar split networks; see [2/9].

Faster Computation of the Robinson-Foulds Distance 197

Lemma 4. If N is a planar phylogenetic network then a leaf numbering func-
tion f with Iy =1 can be computed in O(m + e) time.

Proof. Fix any planar embedding of N and let f be the leaf numbering function
that assigns the numbers 1,2,...,n to the leaves in consecutive order along the
outer face from the leftmost to the rightmost leaf. We claim that for every v € V,
C[v] has a single interval. Since every leaf has a singleton cluster and the union
of two overlapping or neighboring intervals is a single interval, we need to show
that the children of any internal node have overlapping or neighboring clusters
of descendant leaves.

Let v € V be an internal node with children u,w € V and assume Clu] =

{h,...,i} and Clw] = {¢,...,m} are intervals of descendant leaves with h <
i <j< k<€ mbutj...,k ¢ Cv]. Then, any path from the root of
N to any of the leaves j,...,k will cross some edge along either a path from

v to i or a path from v to ¢, contradicting the assumption that N is planar.
Therefore, j,...,k € C[v] and the set {h,...,i,5,...,k,£,...,m} of descendant
leaves forms one interval. a

Next, let U (N) denote the undirected graph obtained by replacing every directed
edge in N by an undirected edge. A biconnected component of an undirected
graph is a connected subgraph that remains connected after removing any node
and all edges incident to it; see [I§]. Recall the following definition from [5].

Definition 1. A network N is called level-k phylogenetic network if, for every
biconnected component B in U(N), the subgraph of N induced by the set of nodes
i B contains at most k nodes with indegree 2.

Corollary 1. IfN is alevel-1 phylogenetic network (that is, a galled-tree [T0JT1)]),
then a leaf numbering function f with Iy =1 can be computed in O(m + e) time.

Proof. Since each biconnected component of N forms a cycle and all the cycles
in N are disjoint, the outside of an embedding of a cycle into a plane lies on the
outer-plane. Then, it is obvious that Iy = 1. a

Lemma 5. If N is a level-k phylogenetic network then a leaf numbering func-
tion f with Iy =k +1 can be computed in O(m + e) time.

Proof. Fix any (directed) spanning tree T' of N, and let f be the leaf numbering
function obtained by doing a depth-first search of T' starting at the root and
assigning the numbers 1,2,...,n to the leaves in the order that they are first
visited. Clearly, this takes O(m + e) time.

We now prove that f has spread k+ 1. For any node v in V, define L(T'[v]) as
the set of all leaves in the subtree of T rooted at v. The key observation is that
the leaves in L(T'[v]) must be visited consecutively by any depth-first search of T',
and thus form a single interval in C¢[v]. Next, let u be any node in V' and let H
be the set of hybrid nodes in N that belong to the same biconnected component
as u and which are descendants of u (in case w is not on any merge path then
H is the empty set). Then, the set of leaves that are descendants of w in N can

198 T. Asano et al.

Table 2. Interval list representation of the clusters for the phylogenetic network in
Figure [T

node interval list node interval list node interval list of the cluster
va1 (var, Vo Vg V20, Va7 vy (vs4,va7), (V22,v12)

V15 V20, V28 Ve V20, V10 V4 V20, V12

V41 V45, V45 Vie V22, V23 V19 V25, V26

V39 V45, V42 V32 V36, V37 V13 V18, V26

Va4 V46, Va7 V16 V22, V23 Us V18, V14

vao (va3, Var v32 (vse, V37 Us V34, Va7), (V36,V33), (V18, V14)
V38 V45, Va7 V30 V36, U33 U3 V20, V14

U35 V45, V47 V24 V34, V47), (VU36, U33 U1 V2, V14

V31 V34, V47 vi7 V34, Va7), (VU36, U33

V29 V34, Va7 V11 V34, Va7), (VU22, V33

be written as L(T'[u]) U U,cy L(T[R]). N is a level-k phylogenetic network, so
|H| < k, which together with the key observation above implies that C[u] is the
union of at most k+ 1 intervals. It follows that Ir(u) < k+1foreveryu e V. O

Ezample 2. Consider again the phylogenetic network in Figure [l The leaf num-
bering in Example [yields the interval lists listed in Table 2l The network is
level-2 and its spread corresponds to the 3 disjoint intervals (vs4, v47), (vss, V33),
(v1s, v14) of node vs. O

Now, we consider how to store characteristic vectors under leaf numbering func-
tions having small spread. An efficient approach is to store the starting and
ending positions of all intervals in sorted order. We call this representation the
interval list representation of the clusters. We immediately obtain the following
result.

Lemma 6. Given any leaf numbering function f, the total space meeded to
store all characteristic vectors under f using the interval list representation is
O(If mlogn) bits.

Proof. For each of the m nodes in N, the starting and ending positions of each
of its at most Iy intervals are stored in [2logn] bits. a

Lemma 7. Given any leaf numbering function f, all descendant leaf bit vectors
under f using the interval list representation can be computed in O(If(m + €))
time.

Proof. Use Algorithm [I] but replace the union operation as follows. Let v be an
internal node with children u, w. Assuming that C¢[u] and Cflw] are known,
C¢|v] can be computed in O(Iy) time by a straightforward algorithm which scans
the two sorted position lists for C¢[u] and Cf[w] and merges any intervals which
overlap or are neighbors. a

4 An Algorithm for Computing the Robinson-Foulds
Distance

We now present an algorithm for computing the Robinson-Foulds distance be-
tween two input phylogenetic networks Ny, No (Algorithm [3).

Faster Computation of the Robinson-Foulds Distance 199

The algorithm first computes the clusters of N; and Na using any of the
cluster representations described in the previous sections of this paper. Then,
the cardinality of the symmetric difference of the two cluster representations
is obtained by radix sorting and simultaneous traversal techniques. Finally, the
algorithm outputs the Robinson-Foulds distance between N; and Ns.

Algorithm 3. Compute the Robinson-Foulds distance between two phylogenetic net-
works N1, Na

Theorem 1. Let Ny, Ny be two phylogenetic networks with n leaves, m nodes,
and e edges. The Robinson-Foulds distance between N1, No can be computed in:

— O(n(m+e)/logn) time and O(n? +nm/logn) words for general networks,

— O(nm/logn) time and O(n? + nm/logn) words for general networks with
bounded degree,

— O(m + e) time and O(mlogn) bits for planar phylogenetic networks,

— O((k+1)(m+e)) time and O(k mlogn) bits for level-k phylogenetic networks.

Proof. ITmplement Algorithm Bl by applying Lemmas BH7 to obtain the respective
cluster representations. The radix sort step and remaining operations can be
performed in O(mz) time, where z denotes the amount of space needed to
represent one cluster. O

200 T. Asano et al.

5 Conclusion

We have presented a new and simple algorithm for computing the Robinson-
Foulds distance between two phylogenetic networks. While the fastest known
algorithm for computing the Robinson-Foulds distance between two phylogenetic
networks with n leaves, m nodes, and e edges runs in O(m(m+e)) time, the new
algorithm takes advantage of bit-level parallelism and runs in O(n(m+e)/logn)
time on general networks, assuming a word size of w = [logn| bits. In the case of
level-k phylogenetic networks, we take advantage of the succinct representation
of clusters as intervals of consecutive integers, and the new algorithm runs in
O((k + 1)(m + €)) time.

We have also introduced a new parameter, the minimum spread of a phylo-
genetic network, and proved that every level-k network has minimum spread at
most k + 1. For the particular case of bounded-level phylogenetic networks such
as planar phylogenetic networks, which include outer-labeled planar split net-
works and galled-trees, we have shown that the minimum spread is 1, meaning
that the new algorithm can be implemented to run in optimal O(m + e) time.

Acknowledgment

JJ was supported by the Special Coordination Funds for Promoting Science and
Technology. TA, RU, GV were supported by the Spanish government and the
EU FEDER program under project PCI2006-A7-0603.

References

1. Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Syst. Biol. 55(1), 46-56
(2006)

2. Bryant, D., Moulton, V.: Neighbor-Net: An agglomerative method for the con-
struction of phylogenetic networks. Mol. Biol. Evol. 21(2), 255-265 (2004)

3. Cardona, G., Llabrés, M., Rosselld, F., Valiente, G.: Metrics for phylogenetic net-
works I: Generalizations of the Robinson-Foulds metric. IEEE ACM T. Comput.
Biol. 6(1), 1-16 (2009)

4. Cardona, G., Rosselld, F., Valiente, G.: Comparison of tree-child phylogenetic net-
works. IEEE ACM T. Comput. Biol. (2009)

5. Choy, C., Jansson, J., Sadakane, K., Sung, W.K.: Computing the maximum agree-
ment of phylogenetic networks. Theor. Comput. Sci. 335(1), 93-107 (2005)

6. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Clas-
sif. 2(1), 7-28 (1985)

7. Doolittle, W.F.: Phylogenetic classification and the universal tree. Sci-
ence 284(5423), 2124-2128 (1999)

8. Griinewald, S., Forslund, K., Dress, A., Moulton, V.: QNet: An agglomerative
method for the construction of phylogenetic networks from weighted quartets. Mol.
Biol. Evol. 24(2), 532-538 (2007)

9. Griinewald, S., Moulton, V., Spillner, A.: Consistency of the QNet algorithm
for generating planar split networks from weighted quartets. Discr. Appl.
Math. 157(10), 2325-2334 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Faster Computation of the Robinson-Foulds Distance 201

Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic net-
works with constrained recombination. In: Proc. 2nd IEEE Computer Society
Bioinformatics Conf., pp. 363-374 (2003)

Gusfield, D., Eddhu, S., Langley, C.H.: The fine structure of galls in phylogenetic
networks. INFORMS J. Comput. 16(4), 459-469 (2004)

Hagerup, T.: Sorting and searching on the word RAM. In: Meinel, C., Morvan, M.
(eds.) STACS 1998. LNCS, vol. 1373, pp. 366-398. Springer, Heidelberg (1998)
Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic net-
works. Bioinformatics 22(21), 2604-2611 (2006)

Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for
phylogenetic network reconstruction. Bioinformatics 23(2), 123-128 (2007)
Pattengale, N.D., Gottlieb, E.J., Moret, B.M.: Efficiently computing the Robinson-
Foulds metric. J. Comput. Biol. 14(6), 724-735 (2007)

Posada, D., Crandall, K.A.: Intraspecific gene genealogies: Trees grafting into net-
works. Trends Ecol. Evol. 16(1), 37-45 (2001)

Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math.
Biosci. 53(1/2), 131-147 (1981)

Rosselld, F., Valiente, G.: All that glisters is not galled. Math. Biosci. 221(1), 54-59
(2009)

Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using
directed graphical models. Mol. Biol. Evol. 17(6), 875-881 (2000)

Strimmer, K., Wiuf, C., Moulton, V.: Recombination analysis using directed graph-
ical models. Mol. Biol. Evol. 18(1), 97-99 (2001)

Sul, S.-J., Brammer, G., Williams, T.L.: Efficiently computing arbitrarily-sized
Robinson-Foulds distance matrices. In: Crandall, K.A., Lagergren, J. (eds.)
WABI 2008. LNCS (LNBI), vol. 5251, pp. 123-134. Springer, Heidelberg (2008)
Sul, S.-J., Williams, T.L.: An experimental analysis of Robinson-Foulds distance
matrix algorithms. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193,
pp. 793-804. Springer, Heidelberg (2008)

van lersel, L., Keijsper, J., Kelk, S.; Stougie, L., Hagen, F., Boekhout, T.: Con-
structing level-2 phylogenetic networks from triplets. IEEE ACM T. Comput.
Biol. 6(4), 667-681 (2009)

Mod/Resc Parsimony Inference

Igor Nor’?* Danny Hermelin?, Sylvain Charlat!, Jan Engelstadter,

Max Reuter®, Olivier Duron®, and Marie-France Sagot!2*
b b

! Université de Lyon, F-69000, Lyon, Université Lyon 1, CNRS, UMR5558
2 Bamboo Team, INRIA Grenoble Rhéne-Alpes, France
3 Max Planck Institute for Informatics, Saarbriicken - Germany
4 Institute of Integrative Biology, ETH Zurich, Switzerland
5 University College London, UK
5 Institute of Evolutionary Sciences, CNRS - University of Montpellier II, France
norigor@gmail.com, Marie-France.Sagot@Qinria.fr

Abstract. We address in this paper a new computational biology prob-
lem that aims at understanding a mechanism that could potentially be
used to genetically manipulate natural insect populations infected by in-
herited, intra-cellular parasitic bacteria. In this problem, that we denote
by MobD/RESC PARSIMONY INFERENCE, we are given a boolean matrix
and the goal is to find two other boolean matrices with a minimum num-
ber of columns such that an appropriately defined operation on these
matrices gives back the input. We show that this is formally equiva-
lent to the BIPARTITE BICLIQUE EDGE COVER problem and derive some
complexity results for our problem using this equivalence. We provide a
new, fixed-parameter tractability approach for solving both that slightly
improves upon a previously published algorithm for the BIPARTITE BI-
CLIQUE EDGE COVER. Finally, we present experimental results where we
applied some of our techniques to a real-life data set.

Keywords: Computational biology, biclique edge covering, bipartite
graph, boolean matrix, NP-completeness, graph theory, fixed-parameter
tractability, kernelization.

1 Introduction

Wolbachia is a genus of inherited, intra-cellular bacteria that infect many arthro-
pod species, including a significant proportion of insects. The bacterium was first
identified in 1924 by M. Hertig and S. B. Wolbach in Culex pipiens, a species of
mosquito. Wolbachia spreads by altering the reproductive capabilities of its hosts
[6]. One of these alterations consists in inducing so-called cytoplasmic incompat-
ibility [7]. This phenomenon, in its simplest expression, results in the death of
embryos produced in crosses between males carrying the infection and uninfected
females. A more complex pattern is the death of embryos seen in crosses between
males and females carrying different Wolbachia strains. The study of Wolbachia

* Corresponding authors.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 202{2132010.
© Springer-Verlag Berlin Heidelberg 2010

Mod/Resc Parsimony Inference 203

and cytoplasmic incompatibility is of interest due to the high incidence of such
infections, amongst others in human disease vectors such as mosquitoes, where
cytoplasmic incompatibility could potentially be used as a driver mechanism for
the genetic manipulation of natural populations.

The molecular mechanisms underlying cytoplasmic incompatibility are cur-
rently unknown, but the observations are consistent with a “toxin / antitoxin”
model [I6]. According to this model, the bacteria present in males modify the
sperm (the so-called modification, or mod factor) by depositing a “toxin” during
its maturation. Bacteria present in females, on the other hand, deposit an anti-
toxin (rescue, or resc factor) in the eggs, so that offsprings of infected females can
develop normally. The simple compatibility patterns seen in several insect hosts
species [1I2[3] has led to the general view that cytoplasmic incompatibility relies
on a single pair of mod / resc genes. However, more complex patterns, such as
those seen in Figure[Ilof the mosquito Culez pipiens [0], suggest that this conclu-
sion cannot be generalized. The aim of this paper is to provide a first model and
algorithm to determine the minimum number of mod and resc genes required to
explain a compatibility dataset for a given insect host. Such an algorithm will
have an important impact on the understanding of the genetic architecture of
cytoplasmic incompatibility. Beyond Wolbachia, the method proposed here can
be applied to any parasitic bacteria inducing cytoplasmic incompatibility.

C 1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15 |16 |17 [18 |19
1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1, 1
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1] 0 1 0] 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0
9 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0
0 n 0 1 0 0 0 1. 0 1 0 1 0 0 1 0 0 1 1, 0
11]0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
12 |0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
13 |0 0 0 0 0 1 0 1 0 0 0 0 0 (6] 0 0 0 0 0
14 |0 0 0 0 0 0 0 1 0 0 0 1] 0 0 0 0 0 0 0
15 |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
16 |0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17 |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
18 |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
19 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1. The Culex pipiens dataset. Rows represent females and columns males.

Let us now propose a formal description of this problem. Let the compatibility
matriz C' be an n-by-n matrix describing the observed cytoplasmic compatibility
relationships among n strains, with females in rows and males in columns. For the
Culex pipiens dataset, the content of the C' matrix is directly given by Figure[ll
For each entry C; ; of this matrix, a value of 1 indicates that the cross between
the i’th female and j’th male is incompatible, while a value of 0 indicates it

204 I. Nor et al.

is compatible. No intermediate levels of incompatibility are observed in Culex
pipiens, so that such a discrete code (0 or 1) is sufficient to describe the data.
Let the mod matriz M be an n-by-k matrix, with n strains and k mod genes.
For each M; ; entry, a 0 indicates that strain ¢ does not carry gene j, and a 1
indicates that it does carry this gene. Similarly, the rescue matriz R is an n-by-k
matrix, with n strains and k resc genes, where each R; ; entry indicates whether
strain ¢ carries gene j. A cross between female i and male j is compatible only
if strain 4 carries at least all the rescue genes matching the mod genes present
in strain j. Using this rule, one can assess whether an (M, R) pair is a solution
to the C' matrix, that is, to the observed data.

We can easily find non-parsimonious solutions to this problem, that is, large
M and R matrices that are solutions to C', as will be proven in the next sec-
tion. However, solutions may also exist with fewer mod and resc genes. We are
interested in the minimum number of genes for which solutions to C' exist, and
the set of solutions for this minimum number. This problem can be summarized
as follows: Let C (compatibility) be a boolean n-by-n matrix. A pair of n-by-k
boolean matrices M (mod) and R (resc) is called a solution to C' if, for any
row j in R and row ¢ in M, C; ; = 0 if and only if R;, > M;, holds for all ¢,
1 < /¢ < k. This appropriately models the fact stated above that, for any cross
to be compatible, the female must carry at least all the rescue genes matching
the mod genes present in the male. For a given matrix C, we are interested in
the minimum value of k for which solutions to C' exist, and the set of solutions
for this minimum k. We refer to this problem as the MoD/RESC PARSIMONY
INFERENCE problem (see also Section [2). Since in some cases, data (on females
or males) may be missing, the compatibility matrix C' has dimension n-by-m
for n not necessarily equal to m. We will consider this more general situation in
what follows.

In this paper, we present the MOD/RESC PARSIMONY INFERENCE problem
and prove it is equivalent to a well-studied graph-theoretical problem known
in the literature by the name of BIPARTITE BICLIQUE EDGE COVER. In this
problem, we are given a bipartite graph, and we want to cover its edges with
a minimum number of complete bipartite subgraphs (bicliques). This problem
is known to be NP-complete, and thus MoD/RESC PARSIMONY INFERENCE
turns out to be NP-complete as well. In Section M we investigate a previous
fixed-parameter tractability approach [§] for solving the BIPARTITE BICLIQUE
EDGE COVER problem and improve its algorithm. In addition, we show a re-
duction between this problem and the CLIQUE EDGE COVER problem. Finally,
in Section Bl we present experimental results where we applied some of these
techniques to the Culex pipiens data set presented in Figure[Il This provided a
surprising finding from a biological point of view.

2 Problem Definition and Notation

In this section, we briefly review some notation and terminology that will be
used throughout the paper. We also give a precise mathematical definition of

Mod/Resc Parsimony Inference 205

the MoD/RESC PARSIMONY INFERENCE problem we study. For this, we first
need to define a basic operation between two boolean vectors:

Definition 1. The ® vectors multiplication is an operation between two boolean
vectors U,V € {0,1}* such that :

1 : U] >VIi] for someic{1,... k}

VeV = {0 : otherwise

In other words, the result of the ® multiplication is 0 if, for all corresponding
locations, the value in the second vector is not less than in the first.

The reader should note that this operation is not symmetric. For example, if
U:=(0,1,1,0) and V := (1,1,1,0), then U @ V = 0, while V @ U = 1. We next
generalize the ® multiplication to boolean matrices. This follows easily from the
observation that the boolean vectors U,V € {0,1}* may be seen as matrices
of dimension 1-by-k. We thus use the same symbol ® to denote the operation
applied to matrices.

Definition 2. The ® row-by-row matriz multiplication is a function {0, 1}"** x
{0,1}m>k — {0,1}"*™ such that C = M @ R iff C;j = M; ® R; for all i €
{1,...,n} and j € {1,...m}. (Here M; and R; respectively denote the i’th and
J’th row of M and R.)

Definition 3. In the MoD/RESC PARSIMONY INFERENCE problem, the input
is a boolean matriz C' € {0,1}™*™, and the goal is to find two boolean matrices
M € {0,1}"** and R € {0,1}™*% such that C = M ® R and with k minimal.

We first need to prove there is always a correct solution to the Mobp/RESC
INFERENCE PROBLEM. Here we show that there is always a solution for as many
mod and resc genes as the minimum between the number of male and female
strains in the dataset.

Lemma 1. The MoD/RESC PARSIMONY INFERENCE problem always has a
solution.

Proof. A satisfying output for the MoD/RESC PARSIMONY INFERENCE problem
always exists for any possible C of size n-by-m. For instance, let M be of size
n-by-n and equal to the identity matrix, and let R be of size m-by-n and such
that R = C" . This solution is correct since the only 1-value in an arbitrary row
r; of the matrix M is at location Mj;. Thus, the only situation where Cj; =1 is
when Rj; = 0, which is the case by construction. a

We will be using some standard graph-theoretic terminology and notation. We
use G, G’, and so forth to denote graphs in general, where V(G) denotes the
vertex set of a graph G, and E(G) its edge-set. By a subgraph of G, we mean
a graph G’ with V(G’) C V(G) and E(G') C E(G). For a bipartite graph G,
i.e. a graph whose vertex-set can be partitioned into two classes with no edges
occurring between vertices of the same class, we use V1 (G) and V2(G) to denote
the two vertex classes of G. A complete bipartite graph (biclique) is a bipartite
graph G with E(G) = {{u,v} : v € V1(G),v € V2(G)}. We will sometimes use
B, Bi, and so forth to denote bicliques.

206 I. Nor et al.

3 Equivalence to Bipartite Biclique Edge Cover

In this section, we show that the MoD/RESC PARSIMONY INFERENCE problem
is equivalent to a classical and well-studied graph theoretical problem known in
the literature as the BIPARTITE GRAPH BICLIQUE EDGE COVER problem. Using
this equivalence, we first derive the complexity status of MOD/RESC PARSIMONY
INFERENCE, and later devise FPT algorithms for this problem. We begin with
a formal definition of the BIPARTITE GRAPH BICLIQUE EDGE COVER problem.

Definition 4. In the BIPARTITE BICLIQUE EDGE COVER PROBLEM problem,

the input is a bipartite graph G, and the goal is to find the minimum number of
biclique subgraphs B, ..., By of G such that E(G) :=J, E(By).

Given a bipartite graph G with V1(G) = {uq,...,un} and Vo(G) := {uy,...,
Um }, the bi-adjacency matrix of G is a boolean matrix A(G) € {0,1}"*™ defined
by A(G)i; =1 <= {u;,v;} € E(G). In this way, every boolean matrix C
corresponds to a bipartite graph, and vice versa.

Theorem