

Lecture Notes in Computer Science 6129
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Amihood Amir Laxmi Parida (Eds.)

Combinatorial
Pattern Matching

21st Annual Symposium, CPM 2010
New York, NY, USA, June 21-23, 2010
Proceedings

13

Volume Editors

Amihood Amir
Johns Hopkins University
Baltimore, MD, USA
and
Bar-Ilan University
Department of Computer Science
52900 Ramat-Gan, Israel
E-mail: amir@macs.biu.ac.il

Laxmi Parida
IBM T.J. Watson Research Center
Yorktown Heights, NY, USA
E-mail: parida@us.ibm.com

Library of Congress Control Number: 2010927801

CR Subject Classification (1998): F.2, I.5, H.3.3, J.3, I.4.2, E.4, G.2.1, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13508-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13508-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The papers contained in this volume were presented at the 21st Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2010) held at NYU-Poly,
Brooklyn, New York during June 21–23, 2010.

All the papers presented at the conference are original research contributions.
We received 53 submissions from 21 countries. Each paper was reviewed by at
least three reviewers. The committee decided to accept 28 papers. The program
also includes three invited talks by Zvi Galil from Tel Aviv University, Israel,
Richard M. Karp from University of California at Berkeley, USA, and Jeffrey S.
Vitter from Texas A&M University, USA.

The objective of the annual CPM meetings is to provide an international
forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated pat-
terns such as trees, regular expressions, graphs, point sets, and arrays. The goal
is to derive non-trivial combinatorial properties of such structures and to exploit
these properties in order to either achieve superior performance for the corre-
sponding computational problems or pinpoint conditions under which searches
cannot be performed efficiently. The meeting also deals with problems in com-
putational biology, data compression and data mining, coding, information re-
trieval, natural language processing and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in Paris,
London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscat-
away, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island,
Barcelona, London, Ontario, Pisa, and Lille.

Starting from the third meeting, proceedings of all meetings have been pub-
lished in the LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645,
1848, 2089, 2373, 2676, 3109, 3537, 4009, 4580, 5029, 5577, and 6129.

Selected papers from the first meeting appeared in volume 92 of Theoretical
Computer Science, from the 11th meeting in volume 2 of Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathe-
matics, from the 14th meeting in volume 3 of Journal of Discrete Algorithms,
from the 15th meeting in volume 368 of Theoretical Computer Science, from the
16th meeting in volume 5 of Journal of Discrete Algorithms, and from the 19th
meeting in volume 410 of Theoretical Computer Science.

The whole submission and review process was carried out with the help of
the EasyChair conference system. The conference was sponsored by the NYU-
Poly, Brooklyn, and by IBM Research. Special thanks are due to the members of
the Program Committee who worked very hard to ensure the timely review of all

VI Preface

the submitted manuscripts, and participated in stimulating discussions that led
to the selection of the papers for the conference.

April 2010 Amihood Amir
Laxmi Parida

Organization

Program Committee

Amihood Amir Johns Hopkins University, USA, and Bar-Ilan
University, Israel (Co-chair)

Rolf Backofen Albert-Ludwigs-Universität Freiburg, Germany
Ayelet Butman Holon Academic Institute of Technology, Holon,

Israel
Matteo Comin University of Padova, Italy
Miklós Csurös Université de Montréal, Canada
Petros Drineas Rensselaer Polytechnic Institute, USA
Leszek Gasieniec University of Liverpool, UK
Steffen Heber North Carolina State University, USA
John Iacono Polytechnic Institute of New York University,

USA
Shunsuke Inenaga Kyushu University, Japan
Rao Kosaraju Johns Hopkins University, USA
Gregory Kucherov Laboratoire d’Informatique Fondamentale de

Lille, France
Gad Landau NYU-Poly, USA, and University of Haifa, Israel
Thierry Lecroq University of Rouen, France
Avivit Levy Shenkar College and CRI, University of Haifa,

Israel
Ion Mandoiu University of Connecticut, USA
Avi Ma’ayan Mount Sinai, USA
Gonzalo Navarro University of Chile, Chile
Laxmi Parida IBM T.J. Watson Research Center, USA

(Co-chair)
Heejin Park Hanyang University, Korea
Nadia Pisanti University of Pisa, Italy
Ely Porat Bar-Ilan University, Israel
Naren Ramakrishnan Virginia Tech, USA
Marie-France Sagot INRIA, France
Rahul Shah Louisiana State University, USA
Dennis Shasha New York University, USA
Dina Sokol City University of New York, USA
Torsten Suel Polytechnic Institute of NYU, USA
Jens Stoye Universität Bielefeld, Germany
Oren Weimann Weizmann Institute of Science, Israel

VIII Organization

Yufeng Wu University of Connecticut, USA
Dekel Tsur Ben Gurion University of the Negev, Israel
Michal Ziv-Ukelson Ben Gurion University of the Negev, Israel

Organizing Committee

Gad Landau NYU-Poly, USA, and University of Haifa, Israel
Laxmi Parida IBM T.J. Watson Research Center, USA

Steering Committee

Alberto Apostolico University of Padova, Italy, and Georgia
Institute of Technology, USA

Maxime Crochemore Université Paris-Est, France, and King’s
College London, UK

Zvi Galil Columbia University, USA, and Tel Aviv
University, Israel

Web and Publications Committee

Asif Javed IBM T.J. Watson Research Center, USA

External Referees

Hideo Bannai
Michaël Cadilhac
Sabrina Chandrasekaran
Francisco Claude
Maxime Crochemore
Danny Hermelin
Wing Kai Hon
Brian Howard
Peter Husemann
Asif Javed
Erez Katzenelson
Takuya Kida
Sung-Ryul Kim
Tsvi Kopelowitz
Alexander Lachmann
Taehyung Lee
Arnaud Lefebvre
Zsuzsanna Liptak
Nimrod Milo

Mathias Möhl
Joong Chae Na
Shoshana Neuburger
Marius Nicolae
Ge Nong
Pierre Peterlongo
Tamar Pinhas
Yoan Pinzon
Boris Pismenny
Igor Potapov
Sven Rahmann
Paolo Ribeca
Luis M.S. Russo
Jeong Seop Sim
Tatiana Starikovskaya
Sharma Thankachan
Alex Tiskin
Charalampos Tsourakakis
Fabio Vandin

Organization IX

Rossano Venturini
Davide Verzotto
Isana Vexler-Lublinsky

Sebastian Will
Prudence W.H. Wong
Shay Zakov

Sponsoring Institutions

IBM Research
NYU-Poly, Brooklyn

Table of Contents

Algorithms for Forest Pattern Matching . 1
Kaizhong Zhang and Yunkun Zhu

Affine Image Matching Is Uniform TC0-Complete . 13
Christian Hundt

Old and New in Stringology . 26
Zvi Galil

Small-Space 2D Compressed Dictionary Matching . 27
Shoshana Neuburger and Dina Sokol

Bidirectional Search in a String with Wavelet Trees 40
Thomas Schnattinger, Enno Ohlebusch, and Simon Gog

A Minimal Periods Algorithm with Applications . 51
Zhi Xu

The Property Suffix Tree with Dynamic Properties 63
Tsvi Kopelowitz

Approximate All-Pairs Suffix/Prefix Overlaps . 76
Niko Välimäki, Susana Ladra, and Veli Mäkinen

Succinct Dictionary Matching with No Slowdown . 88
Djamal Belazzougui

Pseudo-realtime Pattern Matching: Closing the Gap 101
Raphaël Clifford and Benjamin Sach

Breakpoint Distance and PQ-Trees . 112
Haitao Jiang, Cedric Chauve, and Binhai Zhu

On the Parameterized Complexity of Some Optimization Problems
Related to Multiple-Interval Graphs . 125

Minghui Jiang

Succinct Representations of Separable Graphs . 138
Guy E. Blelloch and Arash Farzan

Implicit Hitting Set Problems and Multi-genome Alignment 151
Richard M. Karp

Bounds on the Minimum Mosaic of Population Sequences under
Recombination . 152

Yufeng Wu

XII Table of Contents

The Highest Expected Reward Decoding for HMMs with Application
to Recombination Detection . 164

Michal Nánási, Tomáš Vinař, and Broňa Brejová

Phylogeny- and Parsimony-Based Haplotype Inference with
Constraints . 177

Michael Elberfeld and Till Tantau

Faster Computation of the Robinson-Foulds Distance between
Phylogenetic Networks . 190

Tetsuo Asano, Jesper Jansson, Kunihiko Sadakane,
Ryuhei Uehara, and Gabriel Valiente

Mod/Resc Parsimony Inference . 202
Igor Nor, Danny Hermelin, Sylvain Charlat, Jan Engelstadter,
Max Reuter, Olivier Duron, and Marie-France Sagot

Extended Islands of Tractability for Parsimony Haplotyping 214
Rudolf Fleischer, Jiong Guo, Rolf Niedermeier, Johannes Uhlmann,
Yihui Wang, Mathias Weller, and Xi Wu

Sampled Longest Common Prefix Array . 227
Jouni Sirén

Verifying a Parameterized Border Array in O(n1.5) Time 238
Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Cover Array String Reconstruction . 251
Maxime Crochemore, Costas S. Iliopoulos, Solon P. Pissis, and
German Tischler

Compression, Indexing, and Retrieval for Massive String Data 260
Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

Building the Minimal Automaton of A∗X in Linear Time, When X Is
of Bounded Cardinality . 275

Omar AitMous, Frédérique Bassino, and Cyril Nicaud

A Compact Representation of Nondeterministic (Suffix) Automata for
the Bit-Parallel Approach . 288

Domenico Cantone, Simone Faro, and Emanuele Giaquinta

Algorithms for Three Versions of the Shortest Common Superstring
Problem . 299

Maxime Crochemore, Marek Cygan, Costas S. Iliopoulos,
Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and
Tomasz Waleń

Table of Contents XIII

Finding Optimal Alignment and Consensus of Circular Strings 310
Taehyung Lee, Joong Chae Na, Heejin Park, Kunsoo Park, and
Jeong Seop Sim

Optimizing Restriction Site Placement for Synthetic Genomes 323
Pablo Montes, Heraldo Memelli, Charles Ward, Joondong Kim,
Joseph S.B. Mitchell, and Steven Skiena

Extension and Faster Implementation of the GRP Transform for
Lossless Compression . 338

Hidetoshi Yokoo

Parallel and Distributed Compressed Indexes . 348
Lúıs M.S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira

Author Index . 361

Algorithms for Forest Pattern Matching

Kaizhong Zhang and Yunkun Zhu

Dept. of Computer Science, University of Western Ontario,
London, Ontario N6A 5B7, Canada

kzhang@csd.uwo.ca, yzhu233@csd.uwo.ca

Abstract. Ordered labelled trees are trees where the left-to-right order
among siblings is significant. An ordered labelled forest is a sequence of
ordered labelled trees. Given an ordered labelled forest F (“the target
forest”) and an ordered labelled forest G (“the pattern forest”), the for-
est pattern matching problem is to find a sub-forest F ′ of F such that
F ′ and G are the most similar over all possible F ′. In this paper, we
present efficient algorithms for the forest pattern matching problem for
two types of sub-forests: closed subforests and closed substructures. As
RNA molecules’ secondary structures could be represented as ordered
labelled forests, our algorithms can be used to locate the structural or
functional regions in RNA secondary structures.

1 Introduction

An ordered labelled tree is a tree where the left-to-right order among siblings
is significant and each node is labelled by a symbol from a given alphabet. An
ordered labelled forest is a sequence of ordered labelled trees. Ordered labelled
trees and forests are very useful data structures for hierarchical data representa-
tion. In this paper, we refer to ordered labelled trees and ordered labelled forests
as trees and forests, respectively.

Among numerous applications where trees and forests are useful representa-
tions of objects, the need for comparing trees and forests frequently arises. As a
typical example, consider the secondary structure comparison problem for RNA.
Since RNA is a single strand of nucleotides, it folds back onto itself into a shape
that is topologically a forest [14,3,6,10], which we call its secondary structure.
Figure 1 which is adapted from [5] shows an example of the RNA GI:2347024
structure, where (a) is a segment of the RNA sequence, (b) is its secondary
structure and (c) is the forest representation. Algorithms for the edit distance
between forests (tree) [15,2] could be used to measure the global similarity be-
tween forests (trees). Motivated mainly by the problem of locating structural or
functional regions in RNA secondary structures, the forest (tree) pattern match-
ing (FPM) problem became interesting and attracted some attention [3,4,5,6].

In this paper, the forest pattern matching (FPM) problem is defined as the
following: Given a target forest F and a pattern forest G, find a sub-forest F ′ of

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 K. Zhang and Y. Zhu

Fig. 1. (a) A segment of the RNA GI: 2347024 primary structure [8], (b) its secondary
structure, (c) its forest representation

F which is the most similar to G over all possible F ′. There are various ways to
define the term “sub-forest”. For the definition of “sub-forest” as substructures or
simple substructures [5], algorithms have been developed [15,5]. We consider two
alternative definitions of “sub-forest”: closed subforests and closed substructures.

For the closed subforests definition, we present an efficient algorithm which
improved the complexity results given in [5] of CPM 2006. For the new closed
substructures definition, we present an efficient algorithm.

2 Preliminaries

Throughout this paper, we use the following definitions and notations.
Let F be any given forest, we use a left-to-right postorder numbering of the

nodes in F . |F | denotes the number of nodes in F . In the postorder numbering,
F [i..j] will generally be an ordered subforest of F induced by the nodes numbered
from i to j inclusive. Let f [i] be the ith node in F and F [i] be the subtree rooted
at f [i]. A subforest of F is an ordered sequence of subtrees of F . A substructure
of F is any connected sub-graph of F . l(i) denotes the postorder number of the
leftmost leaf descendant of f [i]. We say f [i1] and f [i2] (or just i1 and i2) are
siblings if they have the same parent. DF and LF denote the depth and the
number of leaves of F respectively. To simplify the presentation, we assume that
the forest F has an imaginary parent node, denoted by p(F). Finally we define
the key roots of F as the set K(F) = {p(F)}∪{i | i ∈ F and i has a left sibling}
and from [15] we have |K(F)| ≤ LF .

Algorithms for Forest Pattern Matching 3

2.1 Forest Edit Distance

Our algorithms are based on forest edit distance. For forest edit distance, there
are three edit operations on a forest F . (1) Change: to change one node label
to another in F . (2) Delete: to delete a node i from F (making the children of
i become the children of the parent of i and then removing i). (3) Insert: to
insert a node i into F (the complement of delete). An edit operation can be
represented as (a, b) where a and b are labels of forest nodes or a null symbol
indicating insertion or deletion. Let γ be a cost function that assigns to each
edit operation (a, b) a nonnegative real number γ(a, b). We constrain γ to be a
distance metric.

Let S be a sequence s1, · · · , sk of edit operations. An S-derivation from A to B
is a sequence of forests A0, · · · , Ak such that A = A0, B = Ak, and Ai−1 → Ai via
si for 1 ≤ i ≤ k. We extend γ to the sequence S by letting γ(S) =

∑i=|S|
i=1 γ(si).

Formally the distance between F and G is defined as follows:

δ(F, G) = min{γ(S) | S is an edit operation sequence taking F to G}.

The definition of γ makes δ a distance metric also. Equivalently forest edit
distance can also be defined using the minimum cost mapping between two
forests [11,15].

Tai [11] gave the first algorithm for computing the tree edit distance between
two given trees F and G (one can easily extend this algorithm to the forest
edit distance problem). Zhang and Shasha [15] gave a more efficient algorithm
for this problem running in O(|F | · |G| · min{DF , LF } · min{DG, LG}) time and
O(|F | · |G|) space. More recently, Klein [7], Touzet [12], and Demaine et al. [2]
developed faster algorithms which have better time complexity in the worst case.
The algorithm of Demaine et al. [2] runs in O(|F | · |G|2 · (1 + log |F |

|G|), |G| < |F |,
time and O(|F | · |G|) space.

2.2 Sub-forest Definitions

Let F be a forest. In this paper, we consider two types of sub-forests of F : (1) a
closed subforest : a sequence of subtrees of F such that their roots are consecutive
siblings. (2) a closed substructure: a sequence of substructures of F such that
their roots are consecutive siblings. Figure 2 shows these two types of sub-forests
of the forest F in Figure 1(c). Here, F1 is a substructure of F , F2 is a closed
subforest of F , and F3 is a closed substructure of F .

Therefore, we can now define the forest pattern matching (FPM) problem
more formally: given a target forest F and a pattern forest G, find a sub-forest
(using any one of the above definitions for “sub-forest”) F ′ of F which minimizes
the forest edit distance to G over all possible F ′.

Forest pattern matching problem for substructures have been studied in [15,5].
Forest pattern matching problem for closed subforests has been studied in [5].
We propose the forest pattern matching problem for closed substructures. The
motivation is from the forest representation of RNA secondary structures. In

4 K. Zhang and Y. Zhu

Fig. 2. Examples of variant sub-forest of the forest F in Figure 1(c)

this representation, see Figure 1, sibling nodes are in fact connected through the
backbone of RNA primary structure. Therefore, it is natural to assume that,
in addition to the parent child connection, a node is also connected to its left
and right siblings. Hence a closed substructure we defined is just a connected
sub-graph in this representation. A closed substructure can be used to repre-
sent a pattern local to a multiple loop, although it does not imply a physically
connected RNA fragment in a tree representatation of RNA [1].

2.3 Previous Work and Our Results

The problem of finding a most similar “closed subforest” was discussed by
Jansson and Peng in their CPM 2006 paper [5] and their algorithm runs in
O(|F | · |G| ·LF ·min{DG, LG}) time and O(|F | · |G|+LF ·DF · |G|+ |F | ·LG ·DG)
space.

In this paper, we show how to solve the forest pattern matching (FPM) prob-
lem efficiently based on [15,2] for two types of sub-forests, “closed subforest” and
“closed substructure”. The time complexity of our algorithms are summarized
in Table 1 and the space complexity of our algorithm is O(|F | · |G|).

Table 1. Our results

FPM Time complexity Section

Closed subforest
O(|F | · |G| · min{DF , LF } · min{DG, LG})

O(|F | · |G| · (|G| · (1 + log |F |
|G|) + min{DF , LF })) 3.1

Closed substructure
O(|F | · |G| · min{DF , LF } · min{DG, LG})

O(|F | · |G| · (|G| · (1 + log |F |
|G|) + min{DF , LF })) 3.2

Compared with the algorithm of Jansson and Peng [5], our first algorithm
solving the same problem is faster and uses less space. Our second algorithm
solves the problem of finding a most similar closed substructure which could be
used to search an RNA structural pattern local to a multiple loop.

Algorithms for Forest Pattern Matching 5

3 Algorithms for the Forest Pattern Matching Problem

In this section, we present efficient algorithms for forest pattern matching
problem for two types of sub-forests, closed subforest and closed substructure,
respectively. We also refer the forest pattern matching problem as the problem
of finding a most similar sub-forest.

3.1 An Algorithm for Finding a Most Similar Closed Subforest

Given a target forest F and a pattern forest G, our goal is to compute

min{δ(F [l(i1)..i2], G) | i1 and i2 are siblings}.

Jansson and Peng [5] gave an algorithm for this problem in O(|F | · |G| · LF ·
min{DG, LG}) time and O(|F | · |G| + LF · DF · |G| + |F | · LG · DG) space.
We present an algorithm which is more efficient in both time and space. Our
algorithm combines the idea of [15] and the method of approximate pattern
matching for sequences [9,13].

We first examine sequence pattern matching method and then give a natural
extension from sequence pattern matching to forest pattern matching for closed
subforest.

Given a pattern sequence P [1..m] and a text sequence T [1..n], the problem
is to find a segment T [k..l] in the text which yields a minimum edit distance
to P [1..m]. The idea is that in calculating the score for T [1..i] and P [1..j], any
prefix of T [1..i] could be deleted without any penalty. In other words, the score
is min{δ(T [i1..i], P [1..j]) | 1 ≤ i1 ≤ i + 1}.

Now consider a node i in a forest F and let the degree of node i be di and its
children be i1, i2, . . . , idi. Given a pattern forest G, we would like to find u and
v such that F [l(iu)..iv] yields the minimum distance to G. Let k ∈ F [is] where
1 ≤ s ≤ di, how could we define a score Δ(F [l(i1)..k], G[1..j]) for F [l(i1)..k] and
G[1..j] in order to extend the definition from sequences to forests?

If k ∈ {i1, i2, . . . , idi}, then F [l(i1)..k] is a sequence of sibling
trees, i.e. T [i1], . . . , T [is]. Δ(F [l(i1)..k], G[1..j]) is therefore defined as
min{δ(F [l(it)..is], G[1..j]) | 1 ≤ t ≤ s + 1} where δ(,) is the forest edit distance.
In particular, if s = 1, then the score is min{δ(F [l(i1)..i1], G[1..j]), δ(∅, G[1..j])}
which can be obtained directly using the forest edit distance algorithm.

If k /∈ {i1, i2, . . . , idi}, then Δ(F [l(i1)..k], G[1..j]) is defined as
min{δ(F [l(it)..k], G[1..j]) | 1 ≤ t ≤ s} since F [l(is)..k] is a proper part of F [is]
that can not be deleted without penalty.

With this definition, min{Δ(F [l(i1) ..it], G[1..|G|]) | 1 ≤ t ≤ di} is what we
want to compute for node i. We have the following two lemmas for the the
calculation of Δ(F [l(i1)..k], G[1..j]).

6 K. Zhang and Y. Zhu

Lemma 1. Let i, F and G be defined as the above, i1 ≤ k ≤ idi and 1 ≤ j ≤ |G|,
then

Δ(∅, ∅) = 0;

Δ(F [l(i1)..k], ∅) =
{

0 if k ∈ {i1, . . . , idi}
Δ(F [l(i1)..k − 1], ∅) + γ(f [k],−); otherwise

Δ(F [l(i1)..i1], G[1..j]) = min
{

δ(F [l(i1)..i1], G[1..j])
δ(∅, G[1..j]).

Proof. This is directly from the above definition. �

Lemma 2. Let i, F and G be defined as the above, i1 < k ≤ idi and 1 ≤ j ≤ |G|,
then

Δ(F [l(i1)..k], G[1..j])

= min

⎧⎨
⎩

Δ(F [l(i1)..k − 1], G[1..j]) + γ(f [k],−),
Δ(F [l(i1)..k], G[1..j − 1]) + γ(−, g[j]),
Δ(F [l(i1)..l(k) − 1], G[1..l(j) − 1]) + δ(F [l(k)..k], G[l(j)..j]).

Proof. We prove this lemma inductively. The base case is k = i1 + 1
where we need the fact that Δ(F [l(i1)..i1], G[1..j])= min{δ(F [l(i1)..i1], G[1..j]),
δ(∅, G[1..j])}.

For k > i1 and k ∈ {i2, i3, . . . , idi},

min

⎧⎨
⎩

Δ(F [l(i1)..k − 1], G[1..j]) + γ(f [k],−)
Δ(F [l(i1)..k], G[1..j − 1]) + γ(−, g[j])
Δ(F [l(i1)..l(k) − 1], G[1..l(j) − 1]) + δ(F [l(k)..k], G[l(j)..j])

= min

⎧⎪⎪⎨
⎪⎪⎩

min{δ(F [l(it)..k − 1], G[1..j]) | 1 ≤ t ≤ s} + γ(f [k],−)
min{δ(F [l(it)..k], G[1..j − 1]) | 1 ≤ t ≤ s + 1} + γ(−, g[j])
min{δ(F [l(it)..l(k) − 1], G[1..l(j) − 1]) | 1 ≤ t ≤ s}

+ δ(F [l(k)..k], G[l(j)..j])

= min
{

min{δ(F [l(it)..k], G[1..j]) | 1 ≤ t ≤ s}
δ(∅, G[1..j]).

= min{δ(F [l(it)..k], G[1..j]) | 1 ≤ t ≤ s + 1}
= Δ(F [l(i1)..k], G[1..j]).

For k > i1 and k /∈ {i2, i3, . . . , idi},

min

⎧⎨
⎩

Δ(F [l(i1)..k − 1], G[1..j]) + γ(f [k],−)
Δ(F [l(i1)..k], G[1..j − 1]) + γ(−, g[j])
Δ(F [l(i1)..l(k) − 1], G[1..l(j)− 1]) + δ(F [l(k)..k], G[l(j)..j])

= min

⎧⎪⎪⎨
⎪⎪⎩

min{δ(F [l(it)..k − 1], G[1..j]) | 1 ≤ t ≤ s} + γ(f [k],−)
min{δ(F [l(it)..k], G[1..j − 1]) | 1 ≤ t ≤ s} + γ(−, g[j])
min{δ(F [l(it)..l(k) − 1], G[1..l(j) − 1]) | 1 ≤ t ≤ s}

+ δ(F [l(k)..k], G[l(j)..j])
= min{δ(F [l(it)..k], G[1..j]) | 1 ≤ t ≤ s}
= Δ(F [l(i1)..k], G[1..j]). �

Algorithms for Forest Pattern Matching 7

Fig. 3. The bold line is the leftmost path of F [i]. The black nodes (a,c) belong to lp(i)
and the black and gray nodes (a,b,c,d) belong to layer(i).

With these two lemmas, we can calculate min{Δ(F [l(i1) · · · it], G[1..|G|) | 1 ≤
t ≤ di} using dynamic programming. However, we have to do this for every node
i of F . Because for each child subtree of F [i] the calculation starts at i1 instead
of l(i1) and δ(F [l(i1)..i1], G[1..j]) is needed in the calculation, the best way is
to do the calculations for all the nodes on the path from a leaf to its nearest
ancestor key root together. In this way, we do the computation layer by layer,
see Figure 3. Lemma 3 and 4 extend Lemma 1 and 2 from a node to the leftmost
path of a key root. Due to the page limitation, we omit the proofs.

We will need the following definitions: lp(i): a set which contains the nodes
on the leftmost path of F [i] except the root i; layer(i): a set which contains all
of the sibling nodes of nodes in lp(i) including lp(i). In Figure 3, lp(i) = {a, c}
and layer(i) = {a, b, c, d}. With these definitions, we have the following two
lemmas. In Lemma 4, for convenience, forestdist(F [l(i)..i1], G[1..j1]) represents
δ(F [l(i)..i1], G[1..j1]) and treedist(i1, j1) represents δ(F [l(i1)..i1], G[l(j1)..j1]).

Lemma 3. Let i be a key root of F , l(i) ≤ i1 < i and 1 ≤ j1 ≤ |G|, then

Δ(∅, ∅) = 0;

Δ(F [l(i)..i1], ∅) =
{

0 if i1 ∈ layer(i)
Δ(F [l(i)..i1 − 1], ∅) + γ(f [i1],−); if i1 /∈ layer(i)

Δ(F [l(i)..i1], G[1..j1]) = min
{

forestdist(F [l(i)..i1], G[1..j1])
δ(∅, G[1..j1]).

if i1 ∈ lp(i)

Lemma 4. Let i be a key root of F , l(i) ≤ i1 < i, i1 /∈ lp(i), and 1 ≤ j1 ≤ |G|,
then

Δ(F [l(i)..i1], G[1..j1])

= min

⎧⎨
⎩

Δ(F [l(i)..i1 − 1], G[1..j1]) + γ(f [i1],−),
Δ(F [l(i)..i1], G[1..j1 − 1]) + γ(−, g[j1]),
Δ(F [l(i)..l(i1) − 1], G[1..l(j1) − 1]) + treedist(i1, j1).

8 K. Zhang and Y. Zhu

Our algorithm is a dynamic programming algorithm. In the first stage of our
algorithm, we call forest edit distance algorithm [15,2] for F and G to get
treedist(i, j) needed in Lemma 4. In the second stage, the key roots of F are
sorted in an increasing order and put in an array KF . And for any key root k
of F , we first call forest edit distance algorithm of [15] for F [k] and G to get
forestdist(,) needed in Lemma 3 and then call the procedure for Δ(,) compu-
tation for F [k] and G. We are now ready to give our algorithm for finding a most
similar closed subforest of F to G:

Theorem 1. Our algorithm correctly computes the cost of an optimal solution.

Proof. Because of step 1 in Algorithm 1, all the treedist(,) used in step 7
in Procedure Delta(F [i], G) are available. Because of step 4 in Algorithm 1,
all the forestdist(,) used in step 7 in Procedure Delta(F [i], G) are available.

�

Input: A target forest F and a pattern forest G.
Output: min{Δ(F [l(x1)..x2], G) | x1 is x2’s leftmost sibling}.
Algorithm:
Call TreeDistance(F,G) according to [15] or [2];1

for i′ := 1 to |KF | do2

i := KF [i′];3

Call ForestDistance(F [i], G) according to [15];4

Call Procedure Delta(F [i], G);5

end6

Algorithm 1. Finding a most similar closed subforest of F to G

Procedure Delta(F [i], G):
Δ(∅, ∅) = 0;1

for i1 := l(i) to i − 1 do2

Compute Δ(F [l(i)..i1], ∅) according to Lemma 3.3

end4

for i1 := l(i) to i − 1 do5

for j1 := 1 to |G| do6

Compute Δ(F [l(i)..i1], G[1..j1]) according to Lemma 3 and Lemma 4.7

end8

end9

Theorem 2. Our algorithm can be implemented to run in O(|F | · |G| ·
min{DF , LF } · min{DG, LG}) time and O(|F | · |G|) space.

Proof. The time and space complexity of the computation for the edit distance
of all subtree pairs of F and G is O(|F | · |G| · min{DF , LF} · min{DG, LG})
and O(|F | · |G|) due to [15]. For one key root i, the time and space for

Algorithms for Forest Pattern Matching 9

ForestDistance(F [i], G) and Delta(F [i], G) are the same: O(|F [i]| · |G|). There-
fore the total time and space for all key roots are O(|G||F | ·min{DF , LF }) and
O(|G||F |) due to Lamma 7 in [15]. Hence the time and space complexity of
our algorithm are O(|F | · |G| · min{DF , LF } · min{DG, LG}) and O(|F | · |G|)
respectively.

If we use the algorithm [2] to compute the edit distance, the time complexity
is O(|F | · |G|2 · (1 + log(|F |/|G|))) and the total time complexity is O(|F | · |G| ·
(|G| · (1+ log |F |

|G|)+min{DF , LF })). �

3.2 An Algorithm for Finding a Most Similar Closed Substructure

In this section we consider the problem of finding a most similar closed sub-
structure. Recall that, for a given forest F , a subtree of F is one of F [i]
where 1 ≤ i ≤ |F | and a subforest of F is an ordered sequence of subtrees
of F .

Giving a target forest F and a pattern forest G, the forest removing distance
from F to G, δr(F, G), is defined as the following where subf(F) is the set of
subforests of F and F \ f represents the forest resulting from the deletion of
subforest f from F .

δr(F, G) = min
f∈subf(F)

{δ(F \ f, G)}

Zhang and Shasha’s algorithm [15] for approximate tree pattern matching with
removing solves this problem. This can also be solved using the technique of
Demaine et al. [2].

We again consider a node i in forest F and let the degree of node i be di and its
children be i1, i2, . . . , idi . Let k ∈ F [is] where 1 ≤ s ≤ di, we now define another
removing distance δR(F [l(i1)..k], G[1..j]) as follows where subf(F, node set) is
the set of subforests of F such that nodes in node set are not in any of the
subforests.

δR(F [l(i1)..k], G[1..j]) = min
f∈subf(F [l(i1)..k],{i1,...idi

})
δ(F [l(i1)..k] \ f, G[1..j])

From this definition and the algorithm in [15], we have the following formula for
δR(F [l(it)..k], G[1..j]), where 1 ≤ t ≤ s.

δR(F [l(it)..k], G[1..j]) =

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δR(F [l(it)..l(k) − 1], G[1..j]), if k /∈ {i1, i2, . . . , idi}
δR(F [l(it)..k − 1], G[1..j]) + γ(f [k],−),
δR(F [l(it)..k], G[1..j − 1]) + γ(−, g[j]),
δR(F [l(it)..l(k) − 1], G[1..l(j) − 1]) + γ(f [k], g[j])

+ δr(F [l(k)..k − 1], G[l(j)..j − 1]).

10 K. Zhang and Y. Zhu

We can now define Ψ(F [l(i1)..k], G[1..j]) for F [l(i1)..k] and G[1..j] using
δR(,) for closed substructures. This is exactly the same way as we define
Δ(F [l(i1)..k], G[1..j]) using δ(,) for closed subforests.

If k ∈ {i1, i2, . . . , idi}, then Ψ(F [l(i1)..k], G[1..j]) is defined as
min{δR(F [l(it)..is], G[1..j]) | 1 ≤ t ≤ s + 1}.

In particular, if s = 1, Ψ(F [l(i1)..i1], G[1..j]) is min{δR(∅, G[1..j]),
δR(F [l(i1)..i1], G[1..j])} = δr(F [l(i1)..i1], G[1..j]) which can be obtained directly
using the forest removing distance algorithm.

If k /∈ {i1, i2, . . . , idi}, then Ψ(F [l(i1)..k], G[1..j]) is defined as
min{δR(F [l(it)..k], G[1..j]) | 1 ≤ t ≤ s}.

For the calculation of Ψ(F [l(i1)..k], G[1..j]), we have the following two lemmas.
The proofs are similar to Lemma 1 and Lemma 2.

Lemma 5. Let i, F and G be defined as the above, i1 ≤ k ≤ idi and 1 ≤ j ≤ |G|,
then

Ψ(∅, ∅) = 0;
Ψ(F [l(i1)..k], ∅) = 0;
Ψ(F [l(i1)..i1], G[1..j]) = δr(F [l(i1)..i1], G[1..j]).

Lemma 6. Let i, F and G be defined as the above, i1 < k ≤ idi and 1 ≤ j ≤ |G|,
then

Ψ(F [l(i1)..k], G[1..j])

= min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ψ(F [l(i1)..l(k) − 1], G[1..j]), if k /∈ {i2, . . . , idi}
Ψ(F [l(i1)..k − 1], G[1..j]) + γ(f [k],−),
Ψ(F [l(i1)..k], G[1..j − 1]) + γ(−, g[j]),
Ψ(F [l(i1)..l(k) − 1], G[1..l(j) − 1]) + γ(f [k], g[j])

+ δr(F [l(k)..k − 1], G[l(j)..j − 1]).

Lemma 7 and 8 extend Lemma 5 and 6 from a node to the leftmost path of a
key root. Due to the page limitation, we omit the proofs.

Lemma 7. Let i be a key root of F , l(i) ≤ i1 < i and 1 ≤ j1 ≤ |G|, then

Ψ(∅, ∅) = 0;
Ψ(F [l(i)..i1], ∅) = 0;
Ψ(F [l(i)..i1], G[1..j1]) = δr(F [l(i)..i1], G[1..j1]). if i1 ∈ lp(i)

Lemma 8. Let i be a key root of F , l(i) < i1 < i, i1 /∈ lp(i), and 1 ≤ j1 ≤ |G|,
then

Ψ(F [l(i)..i1], G[1..j1]) =

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ψ(F [l(i)..l(i1) − 1], G[1..j1]), if i1 /∈ layer(i)
Ψ(F [l(i)..i1 − 1], G[1..j1]) + γ(f [i1],−),
Ψ(F [l(i)..i1], G[1..j1 − 1]) + γ(−, g[j1]),
Ψ(F [l(i)..l(i1) − 1], G[1..l(j1) − 1]) + γ(f [i1], g[j1])

+ δr(F [l(i1)..i1 − 1], G[l(j1)..j1 − 1]).

We can now show our algorithm for closed substructures.

Algorithms for Forest Pattern Matching 11

Input: A target forest F and a pattern forest G.
Output: min{Ψ(F [l(x1)..x2], G) | x1 is x2’s leftmost sibling}.
Algorithm:
Call Tree RemoveDistance(F,G) according to [15];1

for i′:=1 to |K(F)| do2

i := K(F)[i′];3

Call Forest RemoveDistance(F [i], |G|) according to [15];4

Call Procedure Psi(F [i], G);5

end6

Algorithm 2. Finding most similar closed substructure of F to G

Procedure Psi(F [i], G):
Ψ(∅, ∅) = 0;1

for i1 := l(i) to i − 1 do2

Ψ(F [l(i)..i1], ∅) = 0;3

end4

for i1 := l(i) to i − 1 do5

for j1 := 1 to |G| do6

Compute Ψ(F [l(i)..i1], G[1..j1]) according to Lemma 7 and Lemma 8.7

end8

end9

4 Conclusion

We have presented two algorithms for the forest pattern matching problem for
two types of sub-forest. Our first algorithm for finding a most similar closed
subforest is better than that of [5]. Our second algorithm for finding a most
similar closed substructure can be used to search for local forest patterns.

When the input are two sequences represented as forests, both our algorithms
reduce to the sequence approximate pattern matching algorithm [9]. When the
input are two sequences represented as linear trees, our second algorithm reduces
to the sequence approximate pattern matching algorithm [9].

References

1. Backofen, R., Will, S.: Local Sequence-structure Motifs in RNA. Journal of Bioin-
formatics and Computational Biology 2(4), 681–698 (2004)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

3. Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA sec-
ondary structures. In: Proceedings of the IEEE Computational Systems Bioinfor-
matics Conference, pp. 159–168 (2003)

4. Jansson, J., Hieu, N.T., Sung, W.-K.: Local gapped subforest alignment and its
application in finding RNA structural motifs. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 569–580. Springer, Heidelberg (2004)

12 K. Zhang and Y. Zhu

5. Jansson, J., Peng, Z.: Algorithms for Finding a Most Similar Subforest. In: Lewen-
stein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 377–388. Springer,
Heidelberg (2006)

6. Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit.
Theoretical Computer Science 143, 137–148 (1995)

7. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bi-
lardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

8. Motifs database, http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi
9. Sellers, P.H.: The theory and computation of evolutionary distances: pattern recog-

nition. Journal of Algorithms 1(4), 359–373 (1980)
10. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using

tree comparisons. Computer Applications in the Biosciences 6(4), 309–318 (1990)
11. Tai, K.-C.: The tree-to-tree correction problem. Journal of the Association for

Computing Machinery (JACM) 26(3), 422–433 (1979)
12. Touzet, H.: A linear time edit distance algorithm for similar ordered trees. In:

Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537,
pp. 334–345. Springer, Heidelberg (2005)

13. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol 64(1–3), 100–118 (1985)

14. Zhang, K.: Computing similarity between RNA secondary structures. In: Proceed-
ings of IEEE International Joint Symposia on Intelligence and Systems, Rockville,
Maryland, May 1998, pp. 126–132 (1998)

15. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi

Affine Image Matching Is Uniform
TC0-Complete

Christian Hundt

Institut für Informatik, Universität Rostock, Germany
christian.hundt@uni-rostock.de

Abstract. Affine image matching is a computational problem to deter-
mine for two given images A and B how much an affine transformated A
can resemble B. The research in combinatorial pattern matching led to a
polynomial time algorithm which solves this problem by a sophisticated
search in the set D(A) of all affine transformations of A. This paper shows
that polynomial time is not the lowest complexity class containing this
problem by providing its TC0-completeness. This result means not only
that there are extremely efficient parallel solutions but also reveals further
insight into the structural properties of image matching. The completeness
in TC0 relates affine image matching to a number of most basic problems
in computer science, like integer multiplication and division.

Keywords: digital image matching, combinatorial pattern matching,
design and analysis of parallel algorithms.

1 Introduction

The affine image matching problem (AIMP, for short) is to determine for two
given images A and B how much an affine transformation of A can resemble
B. Affine image matching (AIM) has a wide range of applications in various
image processing settings, e.g., in computer vision [16], medical imaging [5,18,19],
pattern recognition, digital watermarking [7], etc.

Recently, discretization techniques developed in the combinatorial pattern
matching research (CPM, for short) have been used successfully for AIM. Apart
from algorithmic achievements, this led to improved techniques for the analysis of
the problem. Essentially, all algorithms developed in CPM for computing a best
match f(A) with B share the same plane idea, to perform exhaustive search of
the entire set D(A), which contains all affine transformations of A. Surprisingly,
the fastest known methods which determine the provably best affine image match
come from this simple approach. In fact, the main challenge of computing D(A),
is to find a discretization of the set F of all affine transformations. A convenient
starting point for the research in this direction is given by the discretization
techniques developed in CPM, although the problem in the focus of CPM consists
in locating an exact match of an affine transformation of A in B, rather than on
computing the best one like in AIM. See e.g. [17,11,10,1,4,3,2].

In [13,14] affine transformations are characterized by six real parameters and,
based on this, a new generic discretization of F is developed which is basically

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 13–25, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 C. Hundt

a partition of the parameter space R6 into subspaces ϕ1, . . . , ϕτ(n), where τ(n)
depends on the size n×n of image A. Every subspace ϕi represents one possible
transformation of A and consequently the cardinality of D(A) is shown to be
in O(n18) by estimating an upper bound on the number τ(n) of subspaces. The
discretization motivates an algorithm that first constructs a data structure In

representing the partition and then, to solve the AIMP, it searches all images in
D(A) by traversing In. Its running time is linear in τ(n) and thus, in O(n18) for
images A and B of size n × n.

However, the exact time complexity remains unknown. It is also an open
question whether the decision version of the AIMP is included in a complexity
class that is “easier” than P – the class of problems decidable in polynomial
time. Particularly, it is open whether the problem belongs to low complexity
classes of the hierarchy inside P:

AC0 ⊂ TC0 ⊆ NC1 ⊆ L ⊆ P.

Every class in the hierarchy implies a structural computational advantage against
the hardness in P. This paper continues the research on AIM in the combinatorial
setting using the algebraic approach introduced in [13] and refined in [14] to
give a new, surprisingly low complexity for AIM by showing that the affine
image matching problem is TC0-complete. TC0 is a very natural complexity
class because it exactly expresses the complexity of a variety of basic problems in
computation, such as integer addition, multiplication, comparison and division.

The containment of the AIMP in TC0 ⊆ NC1 means first that AIM can be
solved in logarithmic parallel time on multi-processor systems which have bounded
fan-in architecture. However, theoretically it can even be solved in constant time
if the processors are assumed to have unbounded fan-in. Secondly, since TC0 ⊆ L
AIM can also be solved on deterministic sequential machines using only a loga-
rithmic amount of memory. Finally, the completeness of the AIMP in TC0 means
that there is no polynomially sized, uniformly shaped family of Boolean formulas
expressing AIM since this captures the computational power of AC0 	= TC0.

Anyway, the new results have no immediate impact on practical settings of
AIM. In fact, they have to be seen more as an ambition to uncover the structural
properties of AIM and related problems. Particularly, the novel TC0 approach to
AIM is based on a characterization of the parameter space partition ϕ1, . . . , ϕτ(n)
for affine transformations. Every subspace ϕi is shown to exhibit a positive vol-
ume such that an algorithm can simply sample a certain subregion of R6 to hit
every element of the partition. Thus D(A) can be computed without the data
structure In that implicitely represents the space partition. Interestingly, this
is not an hereditary property. The parameter space partition of linear trans-
formations, i.e., the subset of F without translations, contains subspaces with
zero volume [14]. This means that, although linear image matching is weaker
than AIM, the low-complexity approach of this paper cannot be applied to this
problem in a straight forward manner. The author leaves the estimation of this
problem’s complexity as an open challenge.

This paper presents results which heavily build on previous work [13,14].
After a short presentation of technical preliminaries Section 3 briefly provides

Affine Image Matching Is Uniform TC0-Complete 15

the basics of the AIM approach introduced in [13,14] which are necessary to
understand the new results of this paper. Then Section 4 provides the new TC0

approach to AIM and next Section 5 proves that the AIMP belongs to the hardest
problems of TC0. Finally, the paper concludes by drawing a wider picture of the
finding’s impact. All proofs are removed due to space limitations.

2 Technical Preliminaries

Digital Images and their Affine Transformations. Through the whole
paper, an image is a two-dimensional array of pixels, i.e., of unit squares parti-
tioning a certain square area of the real plane R2. The pixels of an image A are
indexed over a set N = {(i, j) | − n ≤ i, j ≤ n}, where n is called the size of A.
The geometric center point of the pixel with index (i, j) can be found at coordi-
nates (i, j). Each pixel (i, j) has a color A〈i, j〉 that is an element from a finite
set Σ = {0, 1, . . . , σ} of color values. To simplify the dealing with A’s borders let
A〈i, j〉 = 0 if (i, j) 	∈ N . The distortion between two given images A and B of size
n is measured by Δ(A, B) =

∑
(i,j)∈N δ(A〈i, j〉, B〈i, j〉) where δ : Σ ×Σ → N is

a function charging color mismatches, for example, δ(c1, c2) = |c1 − c2|.
The set F of affine transformations contains exactly all injective functions

f : R2 → R2 which can be described by

f(x, y) = (a1 a2
a4 a5) · (x

y) + (a3
a6) (1)

for some constants a1, . . . , a6 ∈ R, with the additional property of a1a5 	= a2a4.
Applying an affine transformation f to A gives a transformed image f(A) of

size n. To define a color value for any pixel (i, j) in f(A), let f−1 be the inverse
function of f . Notice that f−1 is always an affine transformation, too. Then define
the color value f(A)〈i, j〉 as the color A〈I, J〉 of the pixel (I, J) = [f−1(i, j)],
where [(x, y)] := ([x], [y]) denotes rounding both components of a vector (x, y) ∈
R2. Hence, determining f(A)〈i, j〉 means to choose the pixel (I, J) of A which
geometrically contains the point f−1(i, j) in its square area. This setting models
nearest-neighbor interpolation, commonly used in image processing. Now, any
image A defines the set D(A) = {f(A) | f ∈ F} that contains all possible affine
transformations of A.

Based on this, the following defines the affine image matching problem:

For given images A and B of size n find the minimal distortion Δ(f(A), B) over
all transformations f ∈ F .

For the analysis of complexity aspects consider the decision variant of this prob-
lem which asks if there is a transformation f ∈ F which yields Δ(f(A), B) ≤ t
for some given threshold t ∈ N.

Circuit Complexity. This paper discusses the complexity of certain functions
f : {0, 1}∗ → {0, 1}∗ mapping binary strings to binary strings. Let |s| be the
length of a binary string s ∈ {0, 1}∗ and for all i ∈ {0 . . . , |s| − 1} let s〈i〉 denote
the ith character of s. Moreover, let 1n be the string of n sequent characters 1
and for all strings s and s′ let s|s′ be their concatenation.

16 C. Hundt

Circuits C can be imagined as directed acyclic graphs were vertices, also
called gates, compute Boolean functions. Gates gain input truth values from
predecessor gates and distribute computation results to all their successor gates.
If C has n sources and m sinks, then it computes a function f : {0, 1}n → {0, 1}m,
i.e., C computes for every input string of length n an output string of length
m. This makes circuits weaker than other computational models, which can
compute functions f : {0, 1}∗ → {0, 1}∗. Consequently one considers families C =
{C1, C2, . . .} of circuits to compute f for every input length n with an individual
circuit Cn. On the other hand, such families can be surprisingly powerful because
they may not necessarily be finitely describable in the traditional sense. A usual
workaround is a uniformity constraint which demands that every circuit Cn

of C can be described by a Turing machine MC with resource bounds related
to n. Usually MC is chosen much weaker than the computational power of C to
avoid the obscuration of C’s complexity. This paper considers only DLOGTIME-
uniform families C where MC has to verify in O(log n) time whether Cn fulfills a
given structural property like, e.g., “Gate i computes the ∧-function” or “Gate
i is a predecessor of gate j”.

The class DLOGTIME-uniform FAC0 contains all functions f : {0, 1}∗ →
{0, 1}∗ which can be computed by constant-depth, polynomial-size families C
of DLOGTIME-uniform circuits, i.e., where (a) every gate computes a function
“∧”, “∨” or “¬”, (b) all circuits Cn can be verified by a Turing machine MC that
runs in O(log n)-time (c) the number of gates in Cn grows only polynomially in n
and (d) regardless of n, the length of any path in Cn from input to output is not
longer than a constant. For convenience denote this class also by UD-FAC0. A
prominent member of UD-FAC0 is the addition function of two integer numbers.

If the gates can also compute threshold-functions Tk, a generalization of “∧”
and “∨” which is true if at least k inputs are true, then the generated function
class is called DLOGTIME-uniform FTC0 (UD-FTC0), a class that contains a
big variety of integer arithmetic functions.

A decision problem is a set Π ⊆ {0, 1}∗, i.e., a set of strings. By UD-AC0

denote the class of all decision problems which can be decided by a function
f ∈ UD-FAC0, i.e., f : {0, 1}∗ → {0, 1} is a function with f(s) = 1 ⇔ s ∈ Π .
Accordingly, UD-TC0 is the class of decision problems decidable by a function
in UD-FTC0.

This paper uses special decision problems Πf for any function f : {0, 1}∗ →
{0, 1}∗. The set Πf contains all binary strings s which encode pairs (i, s′) ∈
N × {0, 1}∗ using a unary encoding for integer i and a binary encoding for s′

such that (i, s′) ∈ Πf if and only if f(s′)〈i〉 = 1, i.e., if the ith character of f(s′)
is a 1. Clearly, f is in UD-FAC0 if the output length of f is bounded polynomially
in the input length and Πf is in UD-AC0. A circuit family C deciding Πf can
be used to compute also f simply by spending one circuit of C for every output
bit. The same holds for functions in UD-FTC0.

By definition, UD-(F)AC0 is a subset of UD-(F)TC0 and thus, UD-FAC0-
reductions are suited well to define completeness in the class UD-TC0. A problem
Π is UD-TC0-complete if Π belongs to UD-TC0 and if for all Π ′ ∈ UD-TC0 there

Affine Image Matching Is Uniform TC0-Complete 17

is a function rΠ in UD-FAC0 such that for all s ∈ {0, 1}∗ it is true s ∈ Π ′ ⇔
rΠ(s) ∈ Π . Clearly, since UD-FAC0-reductions are transitive, it is also sufficient
for UD-TC0-completeness to find one other UD-TC0-complete problem Π ′ and
then provide a function r in UD-FAC0 such that for all s ∈ {0, 1}∗ it is true
s ∈ Π ′ ⇔ r(s) ∈ Π . A canonical UD-TC0-complete set is MAJ, containing
strings over {0, 1}∗ with a majority of 1-characters [6].

For convenience the uniformity statement UD is mostly omitted in the rest
of the paper since all considered circuit families apply DLOGTIME-uniformity.
Due to space limitations this section cannot go into further details of this rich
theory and the author refers the reader to the text book [21].

First Order Logic. First order formulas are an important concept from logic. A
comprehensive introduction to first order logic and in particular the connection
to circuit families is given in [21].

In this paper a first order formula F is build recursively over a unary pred-
icate s(·) and two binary predicates bit(·, ·) and <(·, ·) by the standard use
of “∧”, “∨”, “¬”, “∀” and “∃”. Without loss of generality F is of the form
F = Q1v1 . . . QmvmF ′ where Q1, . . . , Qm are quantifiers, “∀” or “∃”, for the
variables v1, . . . , vm and F ′ is a quantifier free formula. The variables v1, . . . , vm

are called bounded and every other variable in F ′ is free. If there are no free
variables then F is called a sentence.

The assertion of a formula F is either true or false, which is defined over the
recursive construction of F and relative to (1) a universe, that is a finite subset
{0, . . . , n − 1} of N, (2) a specification of s(·) and (3) an assignment of values
for free variables. The meaning of the binary predicates is fixed, thus, bit(a, i) is
true if and only if the ith bit in the n-bit binary representation of a is one, and
<(a, b) is true if and only if a < b.

This paper applies first order logic to describe sets of strings Π ⊆ {0, 1}∗,
i.e., decision problems. Particularly, any string s ∈ {0, 1}∗ defines a universe
{0, . . . , |s| − 1} and a specification of s(·) by giving for all i ∈ {0, . . . , |s| − 1}
that the predicate s(i) is true if and only if s〈i〉 = 1. Consequently, a string s
alone determines the truth value of a sentence F because it has no free variables.
Then a string s is said to model F , which is denoted by s |= F , if s satisfies F .
Thereby a sentence F describes a set ΠF = {s ∈ {0, 1}∗ | s |= F}. For example
F = ∃v s(v) gives the set of strings which contain at least one character 1.

If F has free variables v1, . . . , vm, then a string s alone is not enough to deter-
mine the truth value. However, in this case the formula F [v1 ← i1, . . . , vm ← im],
where the free variables are assigned certain values i1, . . . , im from the universe,
defines a proper truth value. This paper applies the concept of free variables
in terms of a modular design principle. The variables v1, . . . , vm can be under-
stood as parameters of F which influence the formula’s assertion. This means
that F can be applied as a subformula in a sentence F ′ which uses v1, . . . , vm to
pass auxiliary arguments i1, . . . , im to F . Such “subformula-calls” are denoted
by F [i1, . . . , im].

18 C. Hundt

The set of all problems Π which can be expressed by a first order sentence
F , i.e., for which Π = ΠF , is denoted by FO. It turns out that FO = UD-AC0.
Consequently integer addition is first-order-expressible and therefore this paper
utilizes the subformula ADD[x1, x2, y] which is satisfied if and only if x1, x2 and
y are assigned values satisfying x1 + x2 = y.

TC0 being a generalization of AC0 implies that a characterization of TC0 in
terms of first order logic needs a language extension. Therefore consider beside
“∀” and “∃” the additional majority quantifier “M”, which is defined as follows:
The sentence F = Mv F ′ is true for given strings s if and only if the formulas
F ′[v ← i] are true for a majority of assignments of i ∈ {0, . . . , |s| − 1} to the
free variable v. Then UD-TC0 = FO[M], the set of problems expressible by first
order sentences with additional quantifier “M”.

In some cases it is difficult to express certain relations in FO or FO[M]-
sentences just because the values of variables are restricted to {0, . . . , |s| − 1}.
However, one can simply assume that there are long variables v which are able
to take values in the range {−|s|k−1, . . . , |s|k−1} for some arbitrary constant k.
The value of v can simply be represented in k+1 ordinary variables v0, . . . , vk−1

and sgn by v = (−1)sgn ·
∑k−1

i=0 |s|i · vi. A sentence F using a long variable
v realizes the quantification and the predicates <(·, ·) and bit(·, ·) over v by
reducing them to their ordinary counterparts.

Beside long variables first order logic can be extended also with a ≤(·, ·)
predicate because it easily reduces to <(·, ·). This paper applies these predicates
in infix notation.

3 Previous Results

Previous work [13,14] presented a new algorithmic approach to solve affine image
matching in linear time with respect to the cardinality |D(A)|. Moreover, it
provided an upper bound of O(n18) for this cardinality which means that AIM
can be solved in polynomial time. This section briefly discusses some basics of
this approach which are used in this paper.

By equation (1) in the previous section, all transformations in F can be char-
acterized by the six parameters a1 to a6. Hence, each affine transformation f
can be described by a point (a1, . . . , a6)T in the six-dimensional parameter space
R6. Reversely, every such point in R6 which fulfills a1a5 	= a2a4 characterizes
an affine transformation. Now, a discrete characterization of F can be obtained
by a subdivision of the parameter space R6 into a finite number of subspaces
ϕ1, . . . , ϕτ(n) with the following property: Any pair of transformations f, f ′ ∈ F
gives the same transformation f(A) = f ′(A) of an image A of size n if their in-
verses f−1 and f ′−1 are represented by points (a1, . . . , a6)T , resp. (a′

1, . . . , a
′
6)

T ,
contained in the same subspace ϕi for some i ∈ {1, . . . , τ(n)}. This means that
each of the τ(n) subspaces represents one transformed image in D(A).

The principle of the polynomial time algorithm is searching the whole set D(A)
which is a common practice in the CPM. Using the discrete characterization
of F the algorithm traverses all the subspaces ϕ1 to ϕτ(n) of the parameter

Affine Image Matching Is Uniform TC0-Complete 19

space. With each subspace it finds one of the possible transformed images A′ in
D(A). Subsequently, the distortion between such images A′ and B is evaluated
to eventually find the best match.

For images of size n the subdivision of the parameter space into the spaces
ϕ1 to ϕτ(n) is determined by the following set Hn of functions R6 → R:

Hn = {Iijk(a1, . . . , a6) = ia1 + ja2 + a3 − (k − 0.5) | (i, j) ∈ N , k ∈ {−n, . . . , n + 1}}
∪ {Jijk(a1, . . . , a6) = ia4 + ja5 + a6 − (k − 0.5) | (i, j) ∈ N , k ∈ {−n, . . . , n + 1}}

Hence, Hn = {�1, . . . , �r(n)} is a set of r(n) = (2n +1)2(2n + 2) linear functions
where every �w, either �w = Iijk or �w = Jijk for some (i, j) ∈ N and k ∈
{−n, . . . , n + 1}, describes the following two subspaces of R6:

h+(�w) = {(a1, . . . , a6)T ∈ R6 | �w(a1, . . . , a6) ≥ 0},
h−(�w) = {(a1, . . . , a6)T ∈ R6 | �w(a1, . . . , a6) < 0}.

The meaning of the sets h+(�w) and h−(�w) can be understood as follows:
All the points (a1, . . . , a6)T in h+(Iijk) describe inverse affine transformations
f−1(x, y) = (a1 a2

a4 a5) · (x
y) + (a3

a6) which have one thing in common: It is always
true that [f−1(i, j)] = (I, J) with I ≥ k. Accordingly, all points (a1, . . . , a6)T in
h−(Iijk) give transformations f−1 which uniquely fulfill [f−1(i, j)] = (I, J) with
I < k. Finally, a similar property is true for the J-coordinate of [f−1(i, j)] =
(I, J) depending on the situation of the point describing f−1 with respect to
h+(Jijk) and h−(Jijk).

Now, the partition of the parameter space into the pieces ϕ1 to ϕτ(n) is defined
by the intersection of the subspaces h+(�) and h−(�) given by the lines � in Hn.
Particularly, for Hn = {�1, . . . , �r(n)} define

A(Hn) =

{
ϕ ⊆ R6

∣∣∣∣∣ ϕ =
r(n)⋂
w=1

hsw(�w) for some s1, . . . , sr(n) ∈ {+,−}, ϕ 	= ∅
}

.

In literature the set A(Hn) is called the (hyperplane) arrangement given by Hn.
For detailed information on such arrangements see [8]. In this paper the elements
of A(Hn) are called faces.

The relation between A(Hn) and D(A) is the most important property for-
mulated in [14]:

Theorem 1 ([14]). For all n and every image A of size n there exists a sur-
jective mapping

Γn : A(Hn) → D(A).

Thus, Theorem 1 reduces the enumeration of D(A), a set with no obvious struc-
ture, to the enumeration of A(Hn). In turn, the efficient enumeration of all faces
in A(Hn) can be realized easily. The algorithm conveniently constructs a graph
In, which contains a node v(ϕ) for each face ϕ ∈ A(Hn) and which encodes
the incidence of faces by edges, i.e., two nodes v(ϕ) and v(ϕ′) are connected by
an edge if the faces ϕ and ϕ′ are neighbors in R6. For a detailed description of

20 C. Hundt

incidence graphs for arrangements and the complexity of computing them see [8]
and [9]. The affine image matching algorithm proposed in [14] works as follows

The AIM Algorithm
1. Construct the incidence graph In;
2. Perform depth first searching to traverse all nodes v(ϕ) in In;
3. For each enumerated face ϕ apply Γn(ϕ) to compute f(A);
4. Return the image f(A) that induces the minimum distortion Δ(f(A), B).

This algorithm finds the best affine image match in O(|A(Hn)|) time plus the
time needed to compute the incidence graph which is linear with respect to
|A(Hn)|, too. The following estimation bounds the algorithm’s running time:

Theorem 2 ([14]). The cardinality of A(Hn) is O(n18). As a consequence AIM
can be done in time bounded by O(n18).

The rest of this paper shows how to avoid the sequential manner of computation
and introduces how to get a TC0 circuit family to solve affine image matching.
Moreover, it provides a simple FAC0-reduction of the majority function to the
affine image matching problem.

4 Membership in TC0

Define Π ⊆ {0, 1}∗ the set of strings s = n|a|b|t which encode (1) a number
n ∈ N in zero-terminated unary 1n0, (2) two images A and B of size n by binary
strings a and b each of (2n+1)�log2(σ+1)� bits and (3) a number t ∈ N in binary
representation such that the minimum of Δ(f(A), B) over all transformations
f in F is at most t. Hence, the set Π is a concrete realization of the AIMP’s
decision version. This section develops an FO[M]-sentence F to express Π , i.e.,
such that ΠF = Π , which implies that the decision version of AIM is in TC0.
Subsequently it argues that also the optimization version is in FTC0.

Basically the new FO[M] approach to AIM is somehow a relaxation of the
old one. To compute D(A) it is sufficient to find one point from every face in
A(Hn) in order to describe a representative inverse affine transformation f−1.
By Theorem 1 one can find all images f(A) in D(A) in this way. The graph In

makes sure that every face in A(Hn) is processed only once. However, it may
be possible to drop the computation of In if one does not insist on this exact
processing of A(Hn).

Consequently, the FO[M] approach works as follows: To find at least one
point from every face in A(Hn) a sentence F can sample a hypercube region of
R6 in such a way that avoids points (a1, . . . , a6)T with the property a1a5 = a2a4.
In this way all images f(A) of D(A) can be computed in a parallel fashion. Then
F expresses Δ(f(A), B) and subsequently the minimum over all f ∈ F .

For this new technique consider Gn, the grid of points⎛
⎝ a1

a2
a3
a4
a5
a6

⎞
⎠ = 10−7n−7 ·

⎛
⎝

t1+0.5
t2
t3
t4

t5+0.5
t6

⎞
⎠

Affine Image Matching Is Uniform TC0-Complete 21

where t1, . . . , t6 are integers in the set {−1012n13, . . . , 1012n13}. The central prop-
erty of Gn applied in F is given in the following theorem:

Theorem 3. 1. |Gn| ∈ O(n78).
2. Every point p = (a1, . . . , a6)T ∈ Gn fulfills a1a5 	= a2a4.
3. For all faces ϕ in A(Hn) there is a point p in the grid Gn such that p ∈ ϕ.

The proof of the theorem is somewhat technical. However, it first shows that
there is a hypercube that intersects all faces of A(Hn). Then it establishes a lower
bound on the volume of all faces. Consequently, if the hypercube is sampled with
points of adequately small distance, every face of A(Hn) gets a hit. Because all
points (a1, . . . , a6)T avoid the condition a1a5 = a2a4 it is satisfactory to process
the grid Gn to find all elements of D(A) for any given image A of size n.

The advantage of Gn against In is the simple structure which can be easily
generated on the fly. The disadvantage is the enormous growth of size, which,
nevertheless, remains polynomial in n.

The following develops a rough idea of the sentence F that expresses Π .
Particularly,

F = ∃t1 . . .∃t6 DELTA[t1, . . . , t6] ∧ (−1012n13 ≤ t1) ∧ (t1 ≤ 1012n13) ∧ . . .

∧ (−1012n13 ≤ t6) ∧ (t6 ≤ 1012n13)

is build by a subformula DELTA[t1, . . . , t6] which is true for given parameters
t1, . . . , t6 if the string s encodes numbers and images that fulfill Δ(f(A), B) ≤ t
where f−1 is the transformation given by the grid point (t1, . . . , t6)T . In this
fashion the sentence samples all points of the grid Gn and accepts if and only if
at least one of them represents a transformation of A which resembles B enough
in terms of t. Theorem 3 guarantees the correctness of this approach. Obviously
t1 to t6 are variables representing long integers such that they can hold values
polynomially in n.

The formula DELTA can be expressed in first order logic with majority
quantifiers as follows: Basically, DELTA[t1, . . . , t6] has to (1) find the trans-
formation f−1 represented by (t1, . . . , t6)T , (2) compute the sum Δ(f(A), B) =∑

(i,j)∈N δ(A〈f−1(i, j)〉, B〈i, j〉) and (3) compare this to t. The computation of
f−1 by the grid point (t1, . . . , t6)T means to determine

I =
[

(2t1+1)i+2t2j+2t3
2·107n7

]
and J =

[
2t4i+(2t5+1)j+2t6

2·107n7

]
.

for all (i, j) ∈ N . This is easily first-order-expressible with majority because it
involves only a constant number of integer additions, multiplications, divisions
and roundings, all functions in TC0 [6,12]. Now since iterated addition is also in
TC0 [6] DELTA can easily compute the sum of δ(A(I, J), B(i, j)) over all (i, j) ∈
N . Consequently, the descriptiveness of F in first order logic with majority
depends on the function δ : Σ×Σ → N. However, since Σ is finite it follows that
δ is even first order-expressible. The expression equivalence between FO[M] and
TC0 implies:

Lemma 1. The decision version of Affine Image Matching is in UD-TC0.

22 C. Hundt

Consequently there exists a uniform family C of constant-depth, polynomial-size
threshold circuits which decide Π . The optimization version of the AIMP can be
computed by similar means using C. Basically this can be done by constructing
another family Cf of threshold circuits which try all possible values of Δ(f(A), B)
in separate parallel copies of C’s circuits. Since Δ(f(A), B) ≤ m ·(2n+1)2, where
m = max{δ(c1, c2) | c1, c2 ∈ Σ) is a constant, it follows that this approach
induces at most a polynomial growth in size. Then, since the minimum of all
satisfying distortion trials can be computed in UD-AC0 [6], the depth remains
constant, too.

Theorem 4. Affine Image Matching is in UD-FTC0.

5 Completeness in TC0

This section shows the decision version of the AIMP to be TC0-complete. Con-
sider the TC0-complete majority problem, i.e., the set MAJ ⊆ {0, 1}∗ of strings
which contain at least �0.5|s|� characters 1. This section gives an FAC0-reduction
r of MAJ to Π , the set of strings s encoding A, B and t such that the minimum
Δ(f(A), B) over all affine transformations f is at most t. Hence, r is a function
which maps strings s ∈ {0, 1}∗ to a binary encoding of images A and B and an
integer t such that s ∈ MAJ if and only if Δ(A, B) ≤ t. Remember, a function r
is in FAC0 if the set Πr is in AC0. Consequently, this section argues the existence
of a first order sentence F which expresses Πr, i.e., such that ΠF = Πr.

The basic idea for the reduction is in fact very simple: Consider any string
s ∈ {0, 1}∗. Then imagine images As and Bs of size n = 4|s| where As〈i, j〉 =
Bs〈i, j〉 = 0 for all pixels (i, j) ∈ N with j 	= 0. Additionally set

As〈i, 0〉 =
{

s〈i〉, if 0 ≤ i < |s|
1, otherwise and Bs〈i, 0〉 = 1

for all i ∈ {−n, . . . , n} and let ts = �0.5|s|�. Obviously, As contains a copy of
s and Bs a row of 1-characters. Moreover ts describes the maximum number
of 0-characters in s to be in MAJ. Then the majority of characters in s is 1
if and only if Δ(As, Bs) ≤ ts for the distortion measure δ(c1, c2) = |c1 − c2|.
Hence, if transformations were not allowed on As this approach would already
be successful.

However, the AIMP allows any affine transformation on As and thus, the
above relation is not enough. To use a similar approach As and Bs are extended
in such a way that the transformations that lead to the optimal match are close
to identity and thus, still count the number of zeros in s. For this end leave most
of As and Bs as before but for all k ∈ {−n, . . . , n} let

As〈k,−n + 2〉 = As〈k, n − 2〉 = As〈−n + 2, k〉 = As〈n − 2, k〉 =
Bs〈k,−n〉 = Bs〈k, n〉 = Bs〈−n, k〉 = Bs〈n, k〉 = 2

i.e., draw a frame in As and a little bigger frame in Bs. Now consider the following
lemma:

Affine Image Matching Is Uniform TC0-Complete 23

Lemma 2. Let s ∈ {0, 1}∗ and As, Bs and ts as defined above. Moreover, con-
sider the transformation

fopt(x, y) = (a 0
0 a) · (x

y) + (0
0)

where a = 16|s|
16|s|−7 . Then s contains a majority of characters 1 if and only if

Δ(fopt(As), Bs) ≤ ts for δ(c1, c2) = |c1 − c2|.

The transformation fopt guarantees that (1) the string s remains unaltered and
(2) the rest of fopt(As) looks like Bs. This means Δ(fopt(As), Bs) equals the
number of 0 in s and thus, is at most ts if and only if the majority of characters
in s is 1. However, that is not enough. It remains to show that there is no
transformation f ′ ∈ F that performs a better match of f ′(A) to B because
otherwise the solution of the AIMP would rather go with f ′ and not fopt:

Lemma 3. For all s ∈ {0, 1}∗ it is true that Δ(fopt(As), Bs) under δ(c1, c2) =
|c1 − c2| is minimum over all affine transformations in F .

The basic idea behind the lemma’s proof is that the frames in f(As) and Bs

have to be aligned. Together with the alignment of the row j = 0 this leaves
all in all only one true transformation f(As). Moreover, the small frame in A
guarantees that f(As) has to be scaled up to match B’s frame. This results in
the effect that every pixel (I, J) in the center of A is represented by a pixel (i, j)
in f(As), i.e., (I, J) = [f−1(i, j)]. Consequently no s-character 0 represented in
A is forgotten in f(As). Thus, every transformation f(As) has to count at least
all characters 0 in the string s.

The rest is to argue that the computation r(s) = (As, Bs, ts) of the images
As and Bs as well as the threshold ts from the string s can be accomplished
by a first order sentence expressing Πr. However, a big deal of that is simply
copying and filling in constants. In particular, both As and Bs can be computed
by these simple operations, namely, inserting the string s in As and preparing
the frames in both images. The most complex work is the computation of ts
because it contains a division. But whereas general division is TC0-complete the
division by the constant two can be established using only addition by

DIV2[x, y] = ∃z ADD[y, y, x] ∨ (ADD[y, y, z] ∧ ADD[z, 1, x]),

i.e., there is a first order subformula DIV2[x, y] that expresses �0.5x� = y. The
following theorem states the completeness result:

Theorem 5. The decision version of the AIMP is UD-TC0-complete under
UD-FAC0-reductions.

6 Conclusions
This paper analyzes the complexity of affine image matching. It argues the ex-
istence of a first order sentence using the majority quantifier that expresses this
problem, thus, showing that affine image matching is contained in UD-FTC0.

24 C. Hundt

Moreover, it gives a UD-FAC0-reduction from majority to affine image matching
and therefore provides that the problem is even complete in UD-TC0.

This work concentrates on affine image matching and neglects the superset of
projective transformations and the subset of linear transformations considered
in [14]. It is a natural conjecture that linear image matching can also be solved
in TC0 and that projective image matching is at least hard in TC0.

In particular the whole approach of this paper can be easily transfered to
the case of projective transformations, i.e., even projective image matching is
UD-TC0-complete under UD-FAC0-reductions. This paper sticks to affine image
matching only for convenience because some results become more technical for
projective transformations. Beside the pure complication of introducing previous
work, especially the formulation of an analogue of Theorem 3 requires handling
a multiplicity of cases which makes the basic ideas less perspicuous.

For linear transformations the case is more complicated. Although a proper
subclass, the structure of linear transformations is geometrically harder than in
the affine case. This results basically from the fact that the arrangement A(Hn)
under linear transformations contains faces which have no volume. Consequently,
it is likely that they are missed during a sampling process as described in this
paper. The same holds for several of the small subclasses of affine transforma-
tions like scaling and rotation which were analyzed in [15]. Although the author
believes that image matching under each of these classes can be done in TC0,
it remains open whether this is true. At least the problem’s hardness for TC0 is
evident even for scalings because the reduction builds mainly on Δ and benefits
from a restriction on the class of transformations.

Regarding the practicability of this paper’s results notice that problems in
TC0 can be solved very efficiently in time. However, whereas TC0 restricts size
only polynomially, it is practically impossible to create circuits of n78 proces-
sors even for small n. But the containment in TC0 has to be seen more in a
structural context that gains insight into the problem’s properties. Particularly,
the immense growth in size is partially caused by the weak uniformity con-
straint, which is a natural choice for complexity analysis. But more powerful
models of construction produce much smaller circuits. Consider e.g. P-uniform
TC0 families, i.e., where circuits Cn must be constructible by a Turing machine
in polynomial time. This is a very natural model for practical settings because
it allows resources consumption during the planning of Cn but saves them when
Cn comes into operation. Under this setting the graph In can be generated and
then used to construct Cn, thus, to reduce the size consumption of the circuit.

According to the above note, this paper is another step towards image match-
ing in real applications. The author hopes that it helps to initiate future work
on the practical aspects of image matching like for example the first impressions
that were revealed from [20].

Acknowledgment

The author thanks Maciej Lískiewicz and Ragnar Nevries for helpful ideas and
proof reading as well as the anonymous reviewers for improvement suggestions.

Affine Image Matching Is Uniform TC0-Complete 25

References

1. Amir, A., Butman, A., Crochemore, M., Landau, G., Schaps, M.: Two-dimensional
pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173–187 (2004)

2. Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled
matching. Algorithmica 53(3), 314–336 (2009)

3. Amir, A., Chencinski, E.: Faster two-dimensional scaled matching. In: Lewen-
stein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 200–210. Springer,
Heidelberg (2006)

4. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with
rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 409–419. Springer, Heidelberg (2004)

5. Brown, L.G.: A survey of image registration techniques. ACM Computing Sur-
veys 24(4), 325–376 (1992)

6. Chandra, A.K., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM J.
Comput. 13(2), 423–439 (1984)

7. Cox, I.J., Bloom, J.A., Miller, M.L.: Digital Watermarking, Principles and Practice.
Morgan Kaufmann, San Francisco (2001)

8. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)
9. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and

hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)
10. Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast approximate

two-dimensional pattern matching allowing rotations. In: Apostolico, A., Takeda,
M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 235–248. Springer, Heidelberg (2002)

11. Fredriksson, K., Ukkonen, E.: A rotation invariant filter for two-dimensional string
matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 118–125.
Springer, Heidelberg (1998)

12. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen,
J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)

13. Hundt, C., Lískiewicz, M.: On the complexity of affine image matching. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 284–295. Springer,
Heidelberg (2007)

14. Hundt, C., Lískiewicz, M.: Combinatorial bounds and algorithmic aspects of image
matching under projective transformations. In: Ochmański, E., Tyszkiewicz, J.
(eds.) MFCS 2008. LNCS, vol. 5162, pp. 395–406. Springer, Heidelberg (2008)

15. Hundt, C., Lískiewicz, M., Nevries, R.: A combinatorial geometric approach to two-
dimensional robustly pattern matching with scaling and rotation. Theor. Comput.
Sci. 51(410), 5317–5333 (2009)

16. Kasturi, R., Jain, R.C.: Computer Vision: Principles. IEEE Computer Society
Press, Los Alamitos (1991)

17. Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Algorith-
mica 12(3/4), 375–408 (1994)

18. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical
Image Analysis 2(1), 1–36 (1998)

19. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University
Press, Oxford (2004)

20. Nevries, R.: Entwicklung und Analyse eines beschleunigten Image Matching-
Algorithmus für natürliche Bilder, Diplomarbeit, Universität Rostock (2008)

21. Vollmer, H.: Introduction to circuit complexity. Springer, Berlin (1999)

Old and New in Stringology

Zvi Galil

Blavatnik School of Computer Science
Tel Aviv University

Twenty five years ago in a paper titled ”Open Problems in Stringology” I listed
thirteen open problems in a field I called Stringology. The first part of the talk
will revisit the list. Some problems were solved, others were partially solved and
some resisted any progress.

The second part of the talk will review some recent results in Stringology,
namely algorithms in the streaming model. In this model, the algorithms cannot
store the entire input string(s) and can use only very limited space. Surprisingly,
efficient algorithms were discovered for a number of string problems.

The talk will conclude with new open problems that are raised by these new
results.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, p. 26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Small-Space 2D Compressed Dictionary
Matching

Shoshana Neuburger1,� and Dina Sokol2,��

1 Department of Computer Science, The Graduate Center of the City University of
New York, New York, NY, 10016
shoshana@sci.brooklyn.cuny.edu

2 Department of Computer and Information Science, Brooklyn College of the City
University of New York, Brooklyn, NY, 11210

sokol@sci.brooklyn.cuny.edu

Abstract. The dictionary matching problem seeks all locations in a text
that match any of the patterns in a dictionary. In the compressed dictio-
nary matching problem, the input is in compressed form. In this paper
we introduce the 2-dimensional compressed dictionary matching problem
in Lempel-Ziv compressed images, and present an efficient solution for
patterns whose rows are all periodic. Given k patterns, each of (uncom-
pressed) size m×m, and a text of (uncompressed) size n×n, all in 2D-LZ
compressed form, our algorithm finds all occurrences of the patterns in the
text. The algorithm is strongly inplace, i.e., the extra space it uses is pro-
portional to the optimal compression of the dictionary, which is O(km).
The preprocessing time of the algorithm is O(km2), linear in the uncom-
pressed dictionary size, and the time for performing the search is linear in
the uncompressed text size, independent of the dictionary size. Our algo-
rithm is general in the sense that it can be used for any 2D compression
scheme which can be sequentially decompressed in small space.

1 Introduction

The compressed matching problem is the problem of finding all occurrences of a
pattern in a compressed text. Various algorithms have been devised to solve the
2D compressed matching problem, e.g., [6, 3, 4]. The dictionary matching problem
is that of locating all occurrences of a set of patterns in a given text. In this paper
we introduce the compressed dictionary matching problem in 2-dimensions. Com-
pressed dictionary matching can be trivially solved using any compressed pattern
matching algorithm and searching for each pattern separately. Preferably, an al-
gorithm should scan the text once so that its search time depends only on the size
of the text and not on the size of the dictionary of patterns. Aho and Corasick
achieved this goal for uncompressed patterns and text.
� This work has been supported in part by the National Science Foundation Grant

DB&I 0542751.
�� This work has been supported in part by the National Science Foundation Grant

DB&I 0542751 and the PSC-CU Research Award 62280-0040.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 27–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

28 S. Neuburger and D. Sokol

We address 2D compressed dictionary matching when the patterns and text
are in LZ78 compressed form. Space is an important concern of a compressed
pattern matching algorithm. An algorithm is strongly inplace if the amount of
extra space it uses is proportional to the optimal compression of the data. The
algorithm we present is both linear time and strongly inplace. The problem we
are addressing is of practical significance. Many images are stored in Lempel-Ziv
compressed form. Facial recognition is a direct application of 2D compressed
dictionary matching. The goal of such software is to identify individuals in a
larger image based on a dictionary of previously identified faces. An efficient
algorithm does not depend on the size of the database of known images.

Pattern matching cannot be performed directly on compressed data since com-
pression is context-sensitive. The same uncompressed string can be compressed
differently in different files, depending on the data that precedes the matching
content. The key property of LZ78 is the ability to perform decompression using
constant space in time linear in the uncompressed string. We follow the assump-
tion of Amir et. al. [3] and consider the row-by-row linearization of 2D data.

Existing algorithms for 2D dictionary matching are not sequential. Thus, they
are not easily adapted to form strongly-inplace algorithms. Amir and Farach
contributed a 2D dictionary matching algorithm that can be used for square
patterns [2]. Its time complexity is linear in the size of the text with prepro-
cessing time linear in the size of the dictionary. Their algorithm linearizes the
patterns by considering subrow/subcolumn pairs around the diagonal, which is
not conducive to row-by-row decompression. Idury and Schaffer discuss multiple
pattern matching in two dimensions for rectangular patterns [9]. Although their
algorithm is efficient, the data structures require more space than we allow.

We do not know of a small-space dictionary matching algorithm for even
one-dimensional data. Multiple pattern matching in LZW compressed text is
addressed by Kida et. al. [10]. They present an algorithm that simulates the
Aho-Corasick search mechanism for compressed, one-dimensional texts and an
uncompressed dictionary of patterns. Their approach uses space proportional
to both the compressed text and uncompressed dictionary sizes, which is more
space than we allow.

In this paper we present an algorithm that solves the 2D LZ-Compressed
Dictionary Matching Problem where all pattern rows are periodic and the periods
are no greater than m/4. Given a dictionary of 2D LZ-compressed patterns,
P1, P2, . . . , Pk, each of uncompressed size m × m, and a compressed text of
uncompressed size n × n, we find all occurrences of patterns in the text. Our
algorithm is strongly inplace since it uses O(km) space. The best compression
that LZ78 can achieve on the dictionary is O(km) [14]. The time complexity
of our algorithm is O(km2 + n2 log σ), where σ = min(km, |Σ|) and Σ is the
alphabet. After preprocessing the dictionary, the time complexity is independent
of the dictionary size.

Amir et. al. present an algorithm for strongly-inplace single pattern matching
in 2D LZ78-compressed data [3]. Their algorithm requires O(m3) time to pre-
process the pattern of uncompressed size m × m and search time proportional

Small-Space 2D Compressed Dictionary Matching 29

to the uncompressed text size. Our preprocessing scheme can be used to reduce
the preprocessing time of their algorithm to O(m2), linear in the size of the
uncompressed pattern, resulting in an overall time complexity of O(m2 + n2).

2 Overview

We overcome the space requirement of traditional 2D dictionary matching al-
gorithms with an innovative preprocessing scheme that converts 2D patterns
to a linear representation. The pattern rows are initially classified into groups,
with each group having a single representative. We store a witness, or position
of mismatch, between the group representatives. A 2D pattern is named by the
group representative for each of its rows. This is a generalization of the naming
technique used by Bird [7] and Baker [5] to linearize 2D data. The preprocessing
is performed in a single pass over the patterns with no need to decompress more
than two pattern rows at a time. O(1) information is stored per pattern row,
resulting in a total of O(km) information. Details of the preprocessing stage can
be found in Section 3.

In the text scanning phase, we name the rows of the text to form a 1D repre-
sentation of the 2D text. Then, we use an Aho-Corasick (AC) automaton [1] to
mark candidates of possible pattern occurrences in the 1D text in O(n2 log σ)
time. Since similar pattern rows were grouped together, we need a verification
stage to determine if the candidates are actual pattern occurrences. With addi-
tional preprocessing of the 1D pattern representations, a single pass suffices to
verify potential pattern occurrences in the text. The details of the text scanning
stage are described in Section 4.

The algorithm of Amir et. al. [3] is divided into two cases. A pattern can (i)
have only periodic rows with all periods ≤ m/4 or (ii) have at least one aperiodic
row or a row with a period > m/4. We focus on the more difficult case, (i). In
such an instance, the number of pattern occurrences is potentially larger than the
amount of working space we allow. Our algorithm performs linear-time strongly-
inplace 2D LZ-compressed dictionary matching of patterns in which all rows are
periodic with periods ≤ m/4.

A known technique for minimizing space is to work with small overlapping text
blocks of uncompressed size 3m/2×3m/2. The potential starts all lie in the upper-
left m/2×m/2 square. If O(km2) space were allowed, then the 2D-LZ dictionary
matching problem would easily be solved by decompressing small text blocks and
using any known 2D dictionary matching algorithm within each text block. How-
ever, a strongly-inplace algorithm, such as ours, uses only O(km) extra space.

We follow the framework of [3] to sequentially decompress small blocks of 2D-
LZ data in time linear in the uncompressed text and in constant space. O(m)
pointers are used to keep track of the current location in the compressed text.

3 Pattern Preprocessing

Definition 1. A string p is primitive if it cannot be expressed in the form p =
uk, for k > 1 and a prefix u of p.

30 S. Neuburger and D. Sokol

Definition 2. A string p is periodic in u if p = u′uk where u′ is a suffix of u,
u is primitive, and k ≥ 2.

A periodic string p can be expressed as u′uk for one unique primitive u. We refer
to u as “the period” of p. Depending on the context, u can refer to either the
string u or the period size |u|.

Definition 3. [8] A 2D m × m pattern is h-periodic, or horizontally periodic,
if two copies of the pattern can be aligned in the top row so that there is no
mismatch in the region of overlap and the length of overlap in each row is ≥ m/2.

Observation 1. A 2D pattern is h-periodic iff each of its rows is periodic.

A dictionary of h-periodic patterns can occur Ω(km) times in a text block. It is dif-
ficult to search for periodic patterns in small space since the output can be larger
than the amount of extra space we allow. We take advantage of the periodicity of
pattern rows to succinctly represent pattern occurrences. The distance between
any two overlapping occurrences of Pi in the same row is the Least Common Mul-
tiple (LCM) of the periods of all rows of Pi. We precompute the LCM of each
pattern so that O(1) space suffices to store all occurrences of a pattern in a row,
and O(km) space suffices to store all occurrences of h-periodic patterns.

We introduce two new data structures that allow our algorithm to achieve a
small space yet linear time complexity. They are the witness tree and the offset
tree. The witness tree facilitates the linear-time preprocessing of pattern rows.
The offset tree allows the text scanning stage to achieve linear time complexity,
independent of the number of patterns in the dictionary.

3.1 Lyndon Word Naming

Definition 4. Two words x, y are conjugate if x = uv, y = vu for some words
u, v [12].

Definition 5. A Lyndon word is a primitive string which is lexicographically
smaller than any of its conjugates [12].

We partition the pattern rows into disjoint groups. Each group is given a different
name and a representative is chosen for each group. Pattern rows whose periods
are conjugates of each other are grouped together. Conjugacy is an equivalence
relation. Every primitive word has a conjugate which is a Lyndon word; namely,
its least conjugate. Computing the smallest conjugate of a word is a practical way
of obtaining a standard representation of a word’s conjugacy class. This process
is called canonization and can be done in linear time and space [12]. We will use
the same 1D name to represent all patterns whose periods are conjugates of each
other. This enables us to linearize the 2D patterns in a meaningful manner.

We decompress and name the pattern rows, one at a time. After decompressing
a row, its period is found and canonized. If a new Lyndon word or a new period
size is encountered, the row is given a new name. Otherwise, the row adopts the
name already given to another member of its conjugacy class. A 2D pattern is

Small-Space 2D Compressed Dictionary Matching 31

��������	

� � � � � � � �

� � � � � � � �

�

�� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

� � � � � � � �

� � � � � � � �

�

�

��������	

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

� � � � � � � �

� � � � � � � �

�

�

��������	

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

	

�

�

�

Fig. 1. Three 2D patterns with their 1D representations. Patterns 1 and 2 are not the
same, yet their 1D representations are the same.

transformed to a 1D representation by naming its rows. Thus, an m×m pattern
can be represented in O(m) space and a 2D dictionary can be represented in
O(km) space.

Three 2D patterns and their 1D representations are shown in Figure 1. To
understand the naming process we will look at Pattern 1. The period of the
first row is aabb, which is four characters long. It is given the name 1. When
the second row is examined, its period is found to be aabc, which is also four
characters long. aabb and aabc are both Lyndon words of size four, but they
are different, so the second row is named 2. The period of the third row is abca,
which is represented by the Lyndon word aabc. Thus, the second and third rows
are given the same name even though they are not identical.

Pattern preprocessing is performed on one row at a time to conserve space. We
decompress one row at a time and gather the necessary information. An LZ78
compressed string can be decompressed in time and space linear to the size of the
uncompressed string [3]. After decompressing a pattern row, its period is identified
using known techniques in linear time and space, i.e., using a KMP automaton [11]
of the string. Then, we compute and store O(1) information per row1: period size,
name, and position of the first Lyndon word occurrence in the row (LYpos).

We use the witness tree to name the pattern rows. Since we know which
Lyndon word represents a row, the same name is given to pattern rows whose
periods are conjugates of each other. Rows that have already been named are
stored in a witness tree. We only compare a new string to previously named
strings of the same size. The witness tree keeps track of failures in Lyndon word
character comparisons. With the witness tree, we compare at most one named
row to the new row.

3.2 Witness Tree

Components of witness tree:

– Internal node: position of a character mismatch. The position is an integer
∈ [1, m].

1 This is under the assumption that the word size is large enough to store log m bits
in one word.

32 S. Neuburger and D. Sokol

�

��

�

� � �

�

�

��������	
��

�

��

�
�
	 �

�
�
�

 �

�
�
� �

�
�

���� ����	
���
� ���
	���	�

� � ����

� � ����

� � ���

� � ��

� � ����� � ����

� � ����

� � ����

Fig. 2. A witness tree for the Lyndon words of length 4

– Edge: labeled with a character in Σ. Two edges emanating from a node must
have different labels.

– Leaf: an equivalence class representing one or more pattern rows.

When a new row is examined, we need to determine if the Lyndon word of its
period has already been named. An Aho-Corasick [1] automaton completes this
task in O(km2) time and space, but we allow only O(km) space. The witness
tree allows us to identify the only named string of the same size that has no
recorded position of mismatch with the new string, if there is one. A witness
tree for Lyndon words of length four is depicted in Figure 2.

The witness tree is used as it is constructed in the pattern preprocessing
stage. As strings of the same size are compared, points of distinction between
the representatives of 1D names are identified and stored in a tree structure.
When a mismatch is found between strings that have no recorded distinction,
comparison halts, and the point of failure is added to the tree. Characters of
a new string are examined in the order dictated by traversal of the witness
tree, possibly out of sequence. If traversal halts at an internal node, the string
receives a new name. Otherwise, traversal halts at a leaf, and the new string
is sequentially compared to the string represented by the leaf. Depending on
whether comparison completes successfully, the new string receives either the
name of the leaf or a new name.

As an example, we explain how the name 7 becomes a leaf in the witness
tree of Figure 2. We seek to classify the Lyndon word acbc, using the witness
tree for Lyndon words of size four. Since the root represents position 4, the
first comparison finds that c, the fourth character in acbc, matches the edge
connecting the root to its right child. This brings us to the right child of the
root, which tells us to look at position 3. Since there is a b at the third position
of acbc, we reach the leaf labeled 2. Thus, we compare the Lyndon words acbc
and aabc. They differ at the second position, so we create an internal node for
position 2, with leaves labeled 2 and 7 as its children, and their edges labeled a
and c, respectively.

Small-Space 2D Compressed Dictionary Matching 33

Lemma 1. Of the named strings that are the same size as a new string, i, there
is at most one equivalence class, j, that has no recorded mismatch against i.

Proof. The proof is by contradiction. Suppose we have two such classes, l and j.
Both l and j have the same size as i and neither has a recorded mismatch with
i. By transitivity of the equivalence relation, we have not recorded a mismatch
between l and j. This means that l and j should have received the same name.
This contradicts the assumption that l and j are different classes. ��

Lemma 2. The witness trees for the rows of k patterns, each of size m×m, is
O(km) in size.

Proof. The proof is by induction. The first time a string of size u is encountered,
initialize the tree for strings of size u to a single leaf. Subsequent examination of
a string of size u contributes either zero or one new node (with an accompanying
edge) to the tree. Either the string is given a name that has already been used
or it is given a new name. If the string is given a name already used, the tree
remains unchanged. If the string is given a new name, it mismatched another
string of the same size. There are two possibilities to consider.

(i) A leaf is replaced with an internal node to represent the position of mis-
match. The new internal node has two leaves as its children. One leaf represents
the new name, and the other represents the string to which it was compared.
The new edges are labeled with the characters that mismatched.

(ii) A new leaf is created by adding an edge to an existing internal node. The
new edge represents the character that mismatched and the new leaf represents
the new name. ��

Corollary 1. The witness tree for Lyndon words of length u has depth ≤ u.

Lemma 3. A pattern row of size O(m) is named in O(m) time using the ap-
propriate witness tree.

Proof. By Lemma 1, a new string is compared to at most one other string, j.
A witness tree is traversed from the root to identify j. Traversal of a witness
tree ceases either at an internal node or at a leaf. The time spent traversing a
tree is bounded by its depth. By Corollary 1, the tree-depth is O(m), so the tree
is traversed in O(m) comparisons. Thus, a new string is classified with O(m)
comparisons. ��

The patterns are named in O(km2) time using only O(km) extra space. This
time complexity is optimal since each pattern row must be decompressed and
examined at least once. Since we require only O(1) rows to be decompressed at
a time, naming is done within O(m) extra space.

3.3 Preprocessing the 1D Patterns

Once the pattern rows are named, an Aho-Corasick (AC) automaton is con-
structed for the 1D patterns of names. (See Figure 1 for the 1D names of three

34 S. Neuburger and D. Sokol

patterns.) Several different patterns have the same 1D name if their rows belong
to the same equivalence classes. This is easily detected in the AC automaton
since the patterns occur at the same terminal state.

The next preprocessing step computes the Least Common Multiple (LCM)
of each distinct 1D pattern. This can be done incrementally, one row at a time,
in time proportional to the number of pattern rows. The LCM of an h-periodic
pattern reveals the horizontal distance between its candidates in a text block.
This conserves space as there are fewer candidates to maintain. In effect, this
will also conserve verification time.

If several patterns share a 1D name, an offset tree is constructed of the Lyndon
word positions in these patterns. We defer the description of the offset tree to
Section 4.1 where it is used in the verification phase.

In summary, pattern preprocessing in O(km2) time and O(m) space:

1. For each pattern row, (i) decompress (ii) compute period and canonize (iii)
store period size, name, first Lyndon word occurrence (LYpos).

2. Construct AC automaton of 1D patterns.
3. Find LCM of each 1D pattern.
4. For multiple patterns of same 1D name, build offset tree.

4 Text Scanning

Our algorithm processes the text once and searches for all patterns simultane-
ously. The text is broken into overlapping blocks of uncompressed size 3m/2 ×
3m/2. Each text row is decompressed O(1) times with 1 or 2 pointers to mark
the end of each row in the block of text. One pointer indicates the position in
the compressed text. When the endpoint of a row in the text block occurs in
middle of a compressed character, a second pointer indicates its position within
the compressed character. In total, O(m) pointers are used to keep track of the
current location in the compressed text.

The text scanning stage has three steps:

1. Name rows of text.
2. Identify candidates with a 1D dictionary matching algorithm, e.g., AC.
3. Verify candidates separately for each text row using the offset tree of the 1D

pattern.

Step 1. Name Text Rows
We search a 2D text for a 1D dictionary patterns using a 1D Aho-Corasick (AC)
automaton. A 1D pattern can begin at any of the first m/2 positions of a text
block row. The AC automaton can branch to one of several characters; we can’t
afford the time or space to search for each of them in the text row. Thus, we
name the rows of a text block before searching for patterns. The divide-and-
conquer algorithm of Main and Lorentz [13] finds all maximal repetitions that
cross a given point in linear time. Repetitions of length ≥ m that cross the
midpoint and have a period size ≤ m/4 are the only ones that are of interest to
our algorithm.

Small-Space 2D Compressed Dictionary Matching 35

Lemma 4. At most one maximal periodic substring of length ≥ m with period
≤ m/4 can occur in a text block row of size 3m/2.

Proof. The proof is by contradiction. Suppose that two maximal periodic sub-
strings of length m, with period ≤ m/4 occur in a row. Call the periods of these
strings u and v. Since we are looking at periodic substrings that begin within an
m/2×m/2 square, the two substrings overlap by at least m/2 characters. Since u
and v are no larger than m/4, at least two adjacent copies of both u and v occur
in the overlap. This contradicts the fact that both u and v are primitive. ��
After finding the only maximal periodic substring of length ≥ m with period
≤ m/4, the text rows are named in much the same way as the pattern rows
are named. The period of the maximal run is found and canonized. Then, the
appropriate witness tree is used to name the text row. We use the witness tree
constructed during pattern preprocessing since we are only interested in identi-
fying text rows that correspond to Lyndon words found in the pattern rows. At
most one pattern row will be decompressed to classify the conjugacy class of a
text row. In addition to the name, period size, and LYpos, we maintain a left
and right pointer for each row of a text block. left and right mark the endpoints
of the periodic substring in the text. The LYpos (position of first Lyndon word
occurrence) is computed relative to the left pointer of the row. This process is
repeated for each row, and O(m) information is obtained for the text block.

Complexity of Step 1: The largest periodic substring of a row of width 3m/2,
if it exists, can be found in O(m) time and space [13]. Its period can be found
and canonized in linear time and space [12]. The row is named in O(m) time
and space using the appropriate witness tree (Lemma 3). Overall, O(m2) time
and O(m) space is needed to name the rows of a text block.

Step 2. Identify Candidates
After Step 1 completes, a 1D text remains, each row labeled with a name, period
size, LYpos, and left/right boundaries. A 1D dictionary matching algorithm, such
as AC, is used to mark occurrences of the 1D patterns of names. The occurrence
of a 1D pattern indicates the potential occurrence of 2D pattern(s) since several
2D dictionary patterns can have the same 1D name. All candidates, or possible
pattern starts, are in rows marked with occurrences of the 1D pattern. The
occurrence of a 1D pattern is not sufficient evidence that a 2D pattern actually
occurs. Thus, a separate verification step is necessary. The left pointer with the
LYpos identify the first occurrence of a pattern row. Since the patterns are h-
periodic, pattern occurrences are at multiples of the first row’s period size that
leave enough space for the pattern width before right.

Complexity of Step 2: 1D dictionary matching in a string of size m can be
done in O(m log σ) time and O(mk) space using an AC automaton [1].

Step 3. Verify Candidates
The verification process considers each row of text that contains candidates
separately. Recall that a text row contains candidates iff a 1D pattern begins

36 S. Neuburger and D. Sokol

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� �

� �

� �

� �

� �

���

� � � � � � � �

� � � � � � � �

� � � � � � � �

� �

� �

� �

� � � �

� � � �

� � � �

� � �

� �

� � � �

� � � �

� � � �

� � � �

� � �

� �

� � � �

��� ���

� � � �

� � � �

� �

� � � �

� � � �

� �

Fig. 3. (a) Two consistent patterns are shown. Each pattern is a horizontal cyclic
shift of the other. (b) The first Lyndon word occurrence on each row of the pattern is
represented by a sequence of Xs. (c) The representative of this consistency class. The
class representative is the shift in which the Lyndon word of the first row begins at the
first position.

there. Several patterns can share a 1D representation. We need to verify the
overall width of the 1D names, as well as the alignment of the periods among
rows.

After identifying a text row as containing candidates for a pattern occurrence,
we need to ensure that the labeled periodic string extends over at least m columns
in each of the next m rows. We are interested in the minimum of all right pointers,
minRight, as well as the maximum of all left pointers, maxLeft, as this is the
range of positions in which the pattern(s) can occur. If the pattern will not fit
between minRight and maxLeft, i.e., minRight−maxLeft < m, candidates in the
row are eliminated.

The verification stage must also ascertain that the Lyndon word positions in
the text align with the Lyndon word positions in the pattern rows. Naively, this
can be done in O(m3) time. We verify a candidate row in O(m) time using the
offset tree of a 1D pattern.

Several different patterns that have the same 1D representation can occur
at overlapping positions on the same text row. We call such a set of patterns
consistent. Consistent patterns can be obtained from one another by performing
a horizontal cyclic permutation of the characters, i.e., by moving several columns
to the opposite end of the matrix. Figure 3 depicts a pair of consistent patterns.
Pattern consistency is an equivalence relation. We can form equivalence classes
of patterns with the same 1D name and then classify the text as belonging to
at most one group. We choose a representative for each equivalence class. The
class representative is the shift in which the Lyndon word of the first row begins
at the first position.

Each row of the 2D array is represented by its 1D arrays of names and LYpos.
To convert a pattern to one that is consistent with it, its rows are shifted by
the same constant, but the LYpos of its rows may not be. However, the shift
is the same across the rows, relative to the period size of each row. Figure 3
shows an example of consistent patterns and the relative shifts of their rows.
Notice that (b) can be obtained from (c) by shifting two columns towards the
left. The first occurrence of the Lyndon word of the first row is at position 3 in

Small-Space 2D Compressed Dictionary Matching 37

(b) and at position 1 in (c). This shift seems to reverse in the third row, since the
Lyndon word first occurs at position 1 in (b) and at position 3 in (c). However,
the relative shift remains the same, since the shift is cyclic. We summarize this
relationship in the following lemma.

Lemma 5. Two patterns are consistent iff the LYpos of all their rows are shifted
by C mod period size of the row, where C is a constant.

The proof is omitted due to lack of space and will be included in the journal
version.

4.1 Offset Tree

We construct an offset tree to align the shifted LYpos arrays of patterns with
the same 1D name so that the text can be classified, and ultimately verified, in
O(m) time. This allows the text scanning stage to complete in time proportional
to the text size, independent of the dictionary size. An offset tree is shown in
Figure 4.

Components of offset tree:

– Root: represents the first row of a pattern.
– Internal node: represents a row from 1 to m, strictly larger than its parent.
– Edge: labeled by shifted LYpos entries. Two edges that leave a node must

have different labels.
– Leaf: represents a consistency class of dictionary patterns.

We construct an offset tree for each 1D pattern of names. One pattern at a time,
we traverse the tree and compare the shifted LYpos arrays in sequential order
until a mismatch is found or we reach a leaf. If a mismatch occurs at an edge
leading to a leaf, a new internal node and a leaf are created, to represent the
position of mismatch and the new consistency class, respectively. If a mismatch
occurs at an edge leading to an internal node, a new branch is created (and
possibly a new internal node) with a new leaf to represent the new consistency
class.

��������	��

�

�

��

�

�

�

�

��	
 �
�
���

�
�

����
���

�����

����
����

�����

� � � �

� � � �

� � � �

� � � ���

��

��

��

�

�

�

�

�

�

�
�

����
��������
���� �
�

� � � �

� � � �

� � � �

� � � �

� � � �

Fig. 4. Offset tree for patterns 1 and 2 which have the same 1D name. The LYpos
entries are not shifted for the first pattern since its first entry is 1, while the LYpos
entries of the second pattern are shifted by 2 mod period size of row.

38 S. Neuburger and D. Sokol

Lemma 6. The consistency class of a string of length m is found in O(m) time.

The proof is omitted due to lack of space and will be included in the journal
version.

Observation 2. The offset trees for k 1D patterns, each of size m, is of size
O(km).

We modify the LYpos array of the text to reflect the first Lyndon word occurrence
in each text row after maxLeft. Each modified LYpos entry is ≥ maxLeft and
can be computed in O(1) time with basic arithmetic.

We shift the text’s LYpos values so that the Lyndon word of the first row
occurs at the first position. We traverse the offset tree to determine which pat-
tern(s), if any, are consistent with the text. If traversal ceases at a leaf, then its
pattern(s) can occur in the text, provided the text is sufficiently wide.

At this point, we know which patterns are consistent with the window of m
rows beginning in a given text row. The last step is to locate the actual positions
at which a pattern begins, within the given text row. We need to reverse the shift
of the consistent patterns by looking up the first LYpos of each pattern that is
consistent with the text block. Then we verify that the periodic substrings of the
text are sufficiently wide. That is, we announce position i as a pattern occurrence
iff minRight − i ≥ m. Subsequent pattern occurrences in the same row are at
LCM multiples of the pattern.

Complexity of Step 3: There can be O(m) rows in a text block that contain
candidates. maxLeft and minRight are computed in O(m) time for the m rows
that a pattern can span. The LYpos array is modified and shifted in O(m) time.
Then, the offset tree is traversed with O(m log σ) comparisons. Determining the
actual occurrences of a pattern requires O(m) time, proportional to the width
of a pattern row.

Verification of a candidate row is done in O(m log σ) time. Overall, verification
of a text block is done in time proportional to the uncompressed text block size,
O(m2 log σ). The verification process requires O(m) space in addition to the
O(km) preprocessing space.

Complexity of Text Scanning Stage: Each block of text is processed sepa-
rately in O(m) space and in O(m2 log σ) time. Since the text blocks are O(m2)
in size, there are O(n2)/(m2) blocks of text. Overall, O(n2 log σ) time and O(m)
space are required to process text of uncompressed size n × n.

5 Conclusion

We have developed the first strongly-inplace dictionary matching algorithm for
2D LZ78-compressed data. Our algorithm is for h-periodic patterns in which the
period of each row is ≤ m/4. The preprocessing time-complexity of our algorithm
is optimal, as it is proportional to the uncompressed dictionary size. The text
scanning stage searches for multiple patterns simultaneously, allowing the text

Small-Space 2D Compressed Dictionary Matching 39

block to be decompressed and processed one row at a time. After information
is gathered about the rows of a text block, potential pattern occurrences are
identified and then verified in a single pass. Overall, our algorithm requires only
O(km) working space.

We would like to extend the algorithm to patterns with an aperiodic row or
with a row whose period period > m/4. With such a row, many pattern rows
with different 1D names can overlap in a text block row. Pattern preprocessing
can focus on the first such row of each pattern and form an AC automaton of
those rows. However, verification of the candidates requires a small-space 1D
dictionary matching algorithm, which seems to be an open problem.

References

[1] Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975)

[2] Amir, A., Farach, M.: Two-dimensional dictionary matching. Inf. Process.
Lett. 44(5), 233–239 (1992)

[3] Amir, A., Landau, G.M., Sokol, D.: Inplace 2d matching in compressed images. J.
Algorithms 49(2), 240–261 (2003)

[4] Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2d compressed search.
Theor. Comput. Sci. 290(3), 1361–1383 (2003)

[5] Baker, T.J.: A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM J. Comp. (7), 533–541 (1978)

[6] Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. J.
Comput. Syst. Sci. 65(2), 332–350 (2002)

[7] Bird, R.S.: Two dimensional pattern matching. Information Processing Let-
ters 6(5), 168–170 (1977)

[8] Crochemore, M., Gasieniec, L., Hariharan, R., Muthukrishnan, S., Rytter, W.: A
constant time optimal parallel algorithm for two-dimensional pattern matching.
SIAM J. Comput. 27(3), 668–681 (1998)

[9] Idury, R.M., Schäffer, A.A.: Multiple matching of rectangular patterns. In:
STOC 1993: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pp. 81–90. ACM, New York (1993)

[10] Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., Arikawa, S.: Multiple pattern
matching in lzw compressed text. In: DCC 1998: Proceedings of the Conference
on Data Compression, Washington, DC, USA, p. 103. IEEE Computer Society,
Los Alamitos (1998)

[11] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

[12] Lothaire, M.: Applied Combinatorics on Words (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, New York (2005)

[13] Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in
a string. ALGORITHMS: Journal of Algorithms 5 (1984)

[14] Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory IT-24, 530–536 (1978)

Bidirectional Search in a String with Wavelet
Trees

Thomas Schnattinger, Enno Ohlebusch, and Simon Gog

Institute of Theoretical Computer Science, University of Ulm, D-89069 Ulm
{Thomas.Schnattinger,Enno.Ohlebusch,Simon.Gog}@uni-ulm.de

Abstract. Searching for genes encoding microRNAs (miRNAs) is an
important task in genome analysis. Because the secondary structure of
miRNA (but not the sequence) is highly conserved, the genes encoding
it can be determined by finding regions in a genomic DNA sequence that
match the structure. It is known that algorithms using a bidirectional
search on the DNA sequence for this task outperform algorithms based
on unidirectional search. The data structures supporting a bidirectional
search (affix trees and affix arrays), however, are rather complex and
suffer from their large space consumption. Here, we present a new data
structure called bidirectional wavelet index that supports bidirectional
search with much less space. With this data structure, it is possible
to search for RNA secondary structural patterns in large genomes, for
example the human genome.

1 Introduction

It is now known that microRNAs (miRNAs) regulate the expression of many
protein-coding genes and that the proper functioning of certain miRNAs is im-
portant for preventing cancer and other diseases. microRNAs are RNA molecules
that are encoded by genes from whose DNA they are transcribed, but they are
not translated into protein. Instead each primary transcript is processed into a
secondary structure (consisting of approximately 70 nucleotides) called a pre-
miRNA and finally into a functional miRNA. This so-called mature miRNA is
21-24 nucleotides long, so a gene encoding a miRNA is much longer than the pro-
cessed mature miRNA molecule itself. Mature miRNA molecules are either fully
or partially complementary to one or more messenger RNA (mRNA) molecules,
and their main function is to down-regulate gene expression. The first miRNA
was described by Lee et al. [1], but the term miRNA was only introduced in 2001
when the abundance of these tiny regulatory RNAs was discovered; see [2] for an
overview. miRNAs are highly conserved during evolution, not on the sequence
level, but as secondary structures. Thus, the task of finding the genes coding for
a certain miRNA in a genome is to find all regions in the genomic DNA sequence
that match its structural pattern. Because the structural pattern often consists
of a hairpin loop and a stem (which may also have bulges), the most efficient
algorithms first search for candidate regions matching the loop and then try to
extend both ends by searching for complementary base pairs A–U, G–C, or G–U

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 40–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bidirectional Search in a String with Wavelet Trees 41

that form the stem. Because T (thymine) is replaced with U (uracil) in the tran-
scription from DNA to RNA, one must search for the pairs A–T, G–C, or G–T
in the DNA sequence. For example, if the loop is the sequence GGAC, then it is
extended by one of the four nucleotides to the left or to the right, say by G to
the right, and all regions in the DNA sequence matching GGACG are searched
for (by forward search). Out of these candidate regions only those survive that
can be extended by C or T to the left because only C and T (U, respectively)
form a base pair with G, and the stem is formed by complementary base pairs.
In other words, in the next step one searches for all regions in the DNA sequence
matching either CGGACG or TGGACG (by backward search). Such a search
strategy can be pursued only if bidirectional search is possible. Mauri and Pavesi
[3] used affix trees for this purpose, while Strothmann [4] employed affix arrays.

Research on data structures supporting bidirectional search in a string started
in 1995 with Stoye’s diploma thesis on affix trees (the English translation ap-
peared in [5]), and Maaß [6] showed that affix trees can be constructed on-line
in linear time. Basically, the affix tree of a string S comprises both the suffix
tree of S (supporting forward search) and the suffix tree of the reverse string
Srev (supporting backward search). It requires approximately 45n bytes, where
n is the length of S. Strothmann [4] showed that affix arrays have the same
functionality as affix trees, but they require only 18n–20n bytes (depending on
the implementation). An affix array combines the suffix arrays of S and Srev,
but it is a complex data structure because the interplay between the two suffix
arrays is rather difficult to implement. In this paper, we present a new data
structure called bidirectional wavelet index that consists of the wavelet tree of
the Burrows-Wheeler transformed string of S (supporting backward search) and
the wavelet tree of the Burrows-Wheeler transformed string of Srev (supporting
forward search). In contrast to affix arrays, however, the interplay between the
two is easy to implement. Our experiments show that the bidirectional wavelet
index decreases the space requirement by a factor of 21 (compared to affix ar-
rays), making it possible to search bidirectionally in very large strings.

2 Preliminaries

Let Σ be an ordered alphabet whose smallest element is the so-called sentinel
character $. If Σ consists of σ characters and is fixed, then we may view Σ as
an array of size σ such that the characters appear in ascending order in the array
Σ[1..σ], i.e., Σ[1] = $ < Σ[2] < . . . < Σ[σ]. In the following, S is a string of
length n over Σ having the sentinel character at the end (and nowhere else). For
1 ≤ i ≤ n, S[i] denotes the character at position i in S. For i ≤ j, S[i..j] denotes
the substring of S starting with the character at position i and ending with the
character at position j. Furthermore, Si denotes the ith suffix S[i..n] of S. The
suffix array SA of the string S is an array of integers in the range 1 to n specify-
ing the lexicographic ordering of the n suffixes of the string S, that is, it satisfies
SSA[1] < SSA[2] < . . . < SSA[n]; see Fig. 1 for an example. In the following, SA−1

denotes the inverse of the permutation SA. The suffix array was introduced by

42 T. Schnattinger, E. Ohlebusch, and S. Gog

i SA BWT SSA[i]

getBounds([6..11], [1..7],)

getBounds([4..8], [5..7],)

getBounds([3..7], [5..6],)

Fig. 1. Left: Suffix array and Burrows-Wheeler-transformed string BWT of string S =
el_anele_lepanelen$. Right: Conceptual illustration of the wavelet tree of the string
BWT = nle_pl$nnlleee_eaae. Only the bit vectors are stored; the corresponding
strings are shown for clarity. The shaded regions and the function getBounds will be
explained later.

Manber and Myers [7]. In 2003, it was shown independently and contemporane-
ously by three research groups that a direct linear time construction of the suffix
array is possible. To date, over 20 different suffix array construction algorithms are
known; see [8] for details. Forward search on a suffix array can be done in O(log n)
time per character by binary search; see [7].

Given the suffix array SA of a string S, the Burrows and Wheeler transforma-
tion BWT[1..n] of S is defined by BWT[i] = S[SA[i] − 1] for all i with SA[i] 	= 1
and BWT[i] = $ otherwise; see Fig. 1. In virtually all cases, the Burrows-Wheeler
transformed string compresses much better than the original string; see [9]. The
permutation LF , defined by LF (i) = SA−1[SA[i] − 1] for all i with SA[i] 	= 1
and LF (i) = 1 otherwise, is called LF -mapping. Its inverse permutation is usu-
ally called ψ-function. Both LF and ψ can be represented more compactly than
the suffix array. A compressed full-text index based on a compressed form of
the LF -mapping is commonly referred to as FM-index [10]. If it is based on a
compressed ψ-function it is usually called compressed suffix array [11]. The LF -
mapping can be implemented by LF (i) = C[c] + Occ(c, i) where c = BWT[i],
C[c] is the overall number (of occurrences) of characters in S which are strictly
smaller than c, and Occ(c, i) is the number of occurrences of the character c in
BWT[1..i]. Details about the Burrows and Wheeler transform and related topics
can for instance be found in [12].

Bidirectional Search in a String with Wavelet Trees 43

Algorithm 1. Given c ∈ Σ and an ω-interval [i..j], backwardSearch(c, [i..j])
returns the cω-interval if it exists, and ⊥ otherwise.
backwardSearch(c, [i..j])

i ← C[c] + Occ(c, i − 1) + 1
j ← C[c] + Occ(c, j)
if i ≤ j then return [i..j]
else return ⊥

Ferragina and Manzini [10] showed that it is possible to search a pattern
character-by-character backwards in the suffix array SA of string S, without
storing SA. Backward search can be implemented such that each step takes
only constant time, albeit a more space-efficient implementation takes O(log σ)
time; see below. In the following, the ω-interval in SA of a substring ω of S
is the interval [i..j] such that ω is a prefix of SSA[k] for all i ≤ k ≤ j, but
ω is not a prefix of any other suffix of S. For example, the le-interval in the
suffix array of Fig. 1 is the interval [13..15]. Searching backwards in the string
S = el_anele_lepanelen$ for the pattern le works as follows. By definition,
backward search for the last character of the pattern starts with the ε-interval
[1..n], where ε denotes the empty string. Algorithm 1 shows the pseudo-code of
one backward search step. In our example, backwardSearch(e, [1..19]) returns
the e-interval [6..11] because C[e] + Occ(e, 1 − 1) + 1 = 5 + 0 + 1 = 6 and
C[e] + Occ(e, 19) = 5 + 6 = 11. In the next step, backwardSearch(l, [6..11])
delivers the le-interval [13..15] because C[l]+Occ(l, 6−1)+1 = 11+1+1 = 13
and C[l] + Occ(l, 11) = 11 + 4 = 15.

With the space-efficient wavelet tree introduced by Grossi et al. [13], each
step of the backward search in string S takes O(log σ) time, as we shall see
next. We say that an interval [l..r] is an alphabet interval, if it is a subinterval
of [1..σ], where σ = |Σ|. For an alphabet interval [l..r], the string BWT[l..r] is
obtained from the Burrows-Wheeler transformed string BWT of S by deleting all
characters in BWT that do not belong to the subalphabet Σ[l..r] of Σ[1..σ]. As
an example, consider the string BWT = nle_pl$nnlleee_eaae and the alphabet
interval [1..4]. The string BWT[1..4] is obtained from nle_pl$nnlleee_eaae by
deleting the characters l, n, and p. Thus, BWT[1..4] = e_$eee_eaae.

The wavelet tree of the string BWT over the alphabet Σ[1..σ] is a balanced
binary search tree defined as follows. Each node v of the tree corresponds to a
string BWT[l..r], where [l..r] is an alphabet interval. The root of the tree cor-
responds to the string BWT = BWT[1..σ]. If l = r, then v has no children.
Otherwise, v has two children: its left child corresponds to the string BWT[l..m]

and its right child corresponds to the string BWT[m+1..r], where m = � l+r
2 �. In

this case, v stores a bit vector B[l..r] of size r − l + 1 whose i-th entry is 0 if
the i-th character in BWT[l..r] belongs to the subalphabet Σ[l..m] and 1 if it
belongs to the subalphabet Σ[m+1..r]. To put it differently, an entry in the bit
vector is 0 if the corresponding character belongs to the left subtree and 1 if it

44 T. Schnattinger, E. Ohlebusch, and S. Gog

Algorithm 2. For a character c, an index i, and an alphabet interval [l..r],
the function Occ′(c, i, [l..r]) returns the number of occurrences of c in the string
BWT[l..r][1..i], unless l = r (in this case, it returns i).
Occ′(c, i, [l..r])

if l = r then return i
else

m = � l+r
2
	

if c ≤ Σ[m] then
return Occ′(c, rank0(B[l..r], i), [l..m])

else
return Occ′(c, rank1(B[l..r], i), [m + 1..r])

belongs to the right subtree; see Fig. 1. Moreover, each bit vector B in the tree is
preprocessed such that the queries rank0(B, i) and rank1(B, i) can be answered
in constant time [14], where rankb(B, i) is the number of occurrences of bit b
in B[1..i]. Obviously, the wavelet tree has height O(log σ). Because in an actual
implementation it suffices to store only the bit vectors, the wavelet tree requires
only n log σ bits of space plus o(n log σ) bits for the data structures that support
rank-queries in constant time.

The query Occ(c, i) can be answered by a top-down traversal of the wavelet
tree in O(log σ) time. As an example, we compute Occ(e, 16) on the wavelet tree
of the string BWT = nle_pl$nnlleee_eaae from Fig. 1. Because e belongs to
the first half Σ[1..4] of the ordered alphabet Σ, the occurrences of e correspond
to zeros in the bit vector at the root, and they go to the left child, say node v1,
of the root. Now the number of e’s in BWT[1..7] = nle_pl$nnlleee_eaae up to
position 16 equals the number of e’s in the string BWT[1..4] = e_$eee_eaae up
to position rank0(B[1..7], 16). So we compute rank0(B[1..7], 16) = 8. Because e
belongs to the second quarter Σ[3..4] of Σ, the occurrences of e correspond to
ones in the bit vector at node v1, and they go to the right child, say node v2, of
v1. The number of e’s in BWT[1..4] = e_$eee_eaae up to position 8 is equal to
the number of e’s in BWT[3..4] = eeeeeaae up to position rank1(B[1..4], 8) = 5.
In the third step, we must go to the right child of v2, and the number of e’s in
BWT[3..4] = eeeeeaae up to position 5 equals the number of e’s in BWT[4..4] =
eeeeee up to position rank1(B[3..4], 5) = 5. Since BWT[4..4] consists solely of e’s
(by the way, that is the reason why it does not appear in the wavelet tree) the
number of e’s in BWT[4..4] up to position 5 is 5. Pseudo-code for the computation
of Occ(c, i) = Occ′(c, i, [1..σ]) can be found in Algorithm 2.

3 Bidirectional Search

The bidirectional wavelet index of a string S consists of

– the backward index, supporting backward search based on the wavelet tree
of the Burrows-Wheeler transformed string BWT of S, and

Bidirectional Search in a String with Wavelet Trees 45

i SSA[i] i Srev
SArev [i]

Fig. 2. Bidirectional wavelet index of S = el_anele_lepanelen$

– the forward index, supporting backward search on the reverse string Srev of
S (hence forward search on S) based on the wavelet tree of the Burrows-
Wheeler transformed string BWTrev of Srev.

The difficult part is to synchronize the search on both indexes. To see this,
suppose we know the ω-interval [i..j] in the backward index as well as the ωrev-
interval [irev..jrev] in the forward index, where ω is some substring of S. Given
[i..j] and a character c, backwardSearch(c, [i..j]) returns the cω-interval in the
backward index (cf. Algorithm 1), but it is unclear how the corresponding in-
terval, the interval of the string (cω)rev = ωrevc, can be found in the forward
index. Vice versa, given [irev..jrev] and a character c, backward search returns
the cωrev-interval in the forward index, but it is unclear how the corresponding
ωc-interval can be found in the backward index. Because both cases are symmet-
ric, we will only deal with the first case. So given the ωrev-interval, we have to
find the ωrevc-interval in the forward index. As an example, consider the bidirec-
tional wavelet index of the string S = el_anele_lepanelen$ in Fig. 2, and the
substring ω = e = ωrev. The e-interval in both indexes is [6..11]. The le-interval
in the backward index is determined by backwardSearch(l, [6..11]) = [13..15]
and the task is to identify the el-interval in the forward index.

All we know is that the suffixes of Srev are lexicographically ordered in the for-
ward index. In other words, the ωrevc-interval [p..q] is a subinterval of [irev..jrev]
such that (note that |ωrev| = |ω|)

46 T. Schnattinger, E. Ohlebusch, and S. Gog

– Srev[SArev[k] + |ω|] < c for all k with irev ≤ k < p,
– Srev[SArev[k] + |ω|] = c for all k with p ≤ k ≤ q,
– Srev[SArev[k] + |ω|] > c for all k with q < k ≤ jrev.

In the example of Fig. 2,

– Srev[SArev[k] + 1] = $ < l for k = 6,
– Srev[SArev[k] + 1] = l for all k with 7 ≤ k ≤ 9,
– Srev[SArev[k] + 1] = n > l for all k with 9 < k ≤ 11.

Unfortunately, we do not know these characters, but if we would know the num-
ber smaller of all occurrences of characters at these positions that precede c in
the alphabet and the number greater of all occurrences of characters at these
positions that follow c in the alphabet, then we could identify the unknown
ωrevc-interval [p..q] by p = irev + smaller and q = jrev − greater. In our exam-
ple, the knowledge of smaller = 1 and greater = 2 would yield the el-interval
[6 + 1..11 − 2] = [7..9]. The key observation is that the multiset of characters

{Srev[SArev[k] + |ω|] : irev ≤ k ≤ jrev}

coincides with the multiset {BWT[k] : i ≤ k ≤ j}. In the example of Fig. 2,

{Srev[SArev[k] + 1] : 6 ≤ k ≤ 11} = { $, l, l, l, n, n} = {BWT[k] : 6 ≤ k ≤ 11}

In other words, it suffices to determine the numbers smaller and greater of
all occurrences of characters in the string BWT[i..j] that precede and follow
character c in the alphabet Σ. And this task can be accomplished by a top-
down traversal of the wavelet tree of BWT. The procedure is similar to the
implementation of Occ(c, i) as explained above. As an example, we compute the
values of smaller and greater for the interval [6..11] and the character l. This
example is illustrated in Fig. 1. Because l belongs to the second half Σ[5..7]
of the ordered alphabet Σ, the occurrences of l correspond to ones in the bit
vector at the root, and they go to the right child, say node v1, of the root.
In order to compute the number of occurrences of characters in the interval
[6..11] that belong to Σ[1..4] and hence are in the left child of the root, we
compute

(a0, b0) = (rank0(B[1..7], 6 − 1), rank0(B[1..7], 11)) = (2, 3)

and the number we are searching for is b0 − a0 = 3 − 2 = 1. Then we descend
to the right child v1 and have to compute the boundaries of the search interval
in the bit vector B[5..7] that corresponds to the search interval [6..11] in the bit
vector B[1..7]. These boundaries are a1 + 1 and b1, where

(a1, b1) = (rank1(B[1..7], 6 − 1), rank1(B[1..7], 11)) = (3, 8)

Proceeding recursively, we find that l belongs to the third quarter Σ[5..6] of Σ,
so the occurrences of l correspond to zeros in the bit vector at v1, and they go
to the left child, say node v2, of v1. Again, we compute

Bidirectional Search in a String with Wavelet Trees 47

Algorithm 3. Given a BWT-interval [i..j], an alphabet-interval [l..r], and c ∈
Σ, getBounds([i..j], [l..r], c) returns the pair (smaller, greater), where smaller
(greater) is the number of all occurrences of characters from the subalphabet
Σ[l..r] in BWT[i..j] that are smaller (greater) than c.
getBounds([i..j], [l..r], c)

if l = r then return (0, 0)
else

(a0, b0) ← (rank0(B[l..r], i − 1), rank0(B[l..r], j))
(a1, b1) ← (i − 1 − a0, j − b0)
/* (a1, b1) = (rank1(B[l..r], i − 1), rank1(B[l..r], j)) */
m = � l+r

2
	

if c ≤ Σ[m] then
(smaller, greater) ← getBounds([a0 + 1..b0], [l..m], c)
return (smaller, greater + b1 − a1)

else
(smaller, greater) ← getBounds([a1 + 1..b1], [m + 1..r], c)
return (smaller + b0 − a0, greater)

(a′
0, b

′
0) = (rank0(B[5..7], 4 − 1), rank0(B[5..7], 8)) = (2, 7)

(a′
1, b

′
1) = (rank1(B[5..7], 4 − 1), rank1(B[5..7], 8)) = (1, 1)

The number of occurrences of characters in the string BWT[3..8] that belong to
Σ[7] = p is b′1 − a′

1 = 1 − 1 = 0 and the new search interval in the bit vector
B[5..6] is [a′

0 + 1..b′0] = [3..7]. In the third step, we compute

(a′′
0 , b′′0) = (rank0(B[5..6], 3 − 1), rank0(B[5..6], 7)) = (1, 4)

(a′′
1 , b′′1) = (rank1(B[5..6], 3 − 1), rank1(B[5..6], 7)) = (1, 3)

and find that there are b′′1−a′′
1 = 2 occurrences of the character n and b′′0−a′′

0 = 3
occurrences of the character l. In summary, during the top-down traversal,
we found that in the string BWT[6..11] there is one character smaller than
l (so smaller = 1), there are two characters greater than l (so greater =
2), and three characters coincide with l. Pseudo-code for the computation of
(smaller, greater) = getBounds([i..j], [1..σ], c) can be found in Algorithm 3.

4 Experimental Results

An implementation of the bidirectional wavelet index is available under the GNU
GeneralPublicLicense athttp://www.uni-ulm.de/in/theo/research/seqana.
To assess the performance of our new data structure, we used it to search for RNA
secondary structures in large DNA sequences. We adopted the depth-first search
method described in [4]; for space reasons, it is not repeated here. The following
RNA secondary structures are also taken from [4]:

http://www.uni-ulm.de/in/theo/research/seqana

48 T. Schnattinger, E. Ohlebusch, and S. Gog

Table 1. Comparison of the running times (in seconds) of the searches for the six RNA
structural patterns in the human DNA sequence (about one billion nucleotides). The
numbers in parentheses below the pattern names are the numbers of matches found.
Index 1© is our new bidirectional wavelet index, Index 2© consists of the suffix array
SA of S (supporting binary search in the forward direction), and the wavelet tree of
the Burrows-Wheeler transformed string of S (supporting backward search). Index 3©
is similar to Index 2©, but SA is replaced with a compressed suffix array.

Index MB hairpin1 hairpin2 hairpin4 hloop(5) acloop(5) acloop(10)
(2343) (286) (3098) (14870) (294) (224)

1© 799 11.053 0.079 0.792 28.373 0.958 0.420

2© 4408 8.855 0.041 0.365 22.208 0.781 0.336

3© 1053 137.371 0.651 5.642 345.860 12.174 6.381

1. hairpin1 = (stem:=N{20,50}) (loop:=NNN) ^stem
2. hairpin2 = (stem:=N{10,50}) (loop:=GGAC) ^stem
3. hairpin4 = (stem:=N{10,15}) (loop:=GGAC[1]) ^stem
4. hloop(length) = (stem:=N{15,20}) (loop:=N{length}) ^stem
5. acloop(length) = (stem:=N{15,20}) (loop:=(A|C){length}) ^stem

The symbol N is used as a wildcard matching any nucleotide. The first pattern
describes a hairpin structure with an apical loop consisting of three nucleotides.
On the left and right hand sides of the loop are two reverse complementary se-
quences, each consisting of 20 - 50 nucleotides. The second pattern describes a
similar structure, where the loop must be the sequence GGAC. The [1] in the
third pattern means that one nucleotide can be inserted at any position, i.e., the
loop is one of the sequences GGAC, NGGAC, GNGAC, GGNAC, GGANC or GGACN. In the
last two patterns length denotes the length of the loop sequence. For example,
in the pattern acloop(5) the loop consists of five nucleotides, each of which must
either be A or C. In the experiments reported in Table 1, we searched for six pat-
terns in the first five chromosomes of the human genome.1 The concatenation of
the DNA sequences of these five chromosomes is called “human DNA sequence”
in the following; it constitutes about one third of the whole genome (one billion
nucleotides). All experiments were conducted on a PC with a Dual-Core AMD
Opteron 8218 processor (2,6 GHz) and 8 GB main memory. Unfortunately, the
implementations of affix trees/arrays [3,4] are currently not available.2 For this
reason, one cannot compare the running times. (We conjecture, however, that
our method outperforms the affix array method.) Nevertheless, we can say some-
thing about the space consumption. According to Strothmann [4], an affix array
requires 18 bytes per nucleotide, so approximately 16.8 GB for the human DNA
sequence. The bidirectional wavelet index (index 1©) takes only 799 MB; see
Table 1. Hence it decreases the space requirement by a factor of 21.
1 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
2 However, a reimplementation of the affix array method is under way.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz

Bidirectional Search in a String with Wavelet Trees 49

Due to the lack of affix tree/array implementations, we compared our method
with the following two approaches to support bidirectional search. First, we com-
bined the two well-known data structures supporting forward search (the suffix
array SA of string S) and backward search (the wavelet tree of the Burrows-
Wheeler transformed string BWT of S), and obtained an index (index 2©) which
also supports bidirectional search. Because both data structures deliver intervals
of the suffix array, the two searches can directly be combined without synchro-
nization. Interestingly enough, in the technical literature this natural approach
has not been considered yet, i.e., it is new as well. Table 1 shows that index 2©
takes 4.4 GB for the human DNA sequence. Second, to reduce the space con-
sumption even more, we replaced the suffix array in index 2© by a compressed
suffix array (CSA) which also supports binary search in the forward direction,
yielding index 3©. This reduces the memory consumption by another factor of 4,
but slows down the running time by a factor of 15.5 (compared with index 2©);
see Table 1. This is because the CSA must frequently recover SA-values from
its sampled SA-values (in our implementation every twelveth value is stored;
more samples would decrease the running time, but increase the memory re-
quirements). By contrast, the time-space trade-off of our bidirectional wavelet
index 1© is much better: it reduces the space consumption by a factor of 5.5, but
it is only 1.2 - 2.2 time slower than index 2©. This can be attributed to the fact
that SA-values are solely needed to output the positions of the matching regions
in the string S (in our implementation a hundredth of all SA-values is stored).

References

1. Lee, R., Feinbaum, R., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes
small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993)

2. Kim, N., Nam, J.W.: Genomics of microRNA. TRENDS in Genetics 22(3), 165–173
(2006)

3. Mauri, G., Pavesi, G.: Pattern discovery in RNA secondary structure using affix
trees. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 278–294. Springer, Heidelberg (2003)

4. Strothmann, D.: The affix array data structure and its applications to RNA sec-
ondary structure analysis. Theoretical Computer Science 389, 278–294 (2007)

5. Stoye, J.: Affix trees. Technical report 2000-04, University of Bielefeld (2000)
6. Maaß, M.: Linear bidirectional on-line construction of affix trees. Algorithmica 37,

43–74 (2003)
7. Manber, U., Myers, E.: Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing 22(5), 935–948 (1993)
8. Puglisi, S., Smyth, W., Turpin, A.: A taxonomy of suffix array construction algo-

rithms. ACM Computing Surveys 39(2), 1–31 (2007)
9. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.

Research Report 124, Digital Systems Research Center (1994)
10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:

Proc. IEEE Symposium on Foundations of Computer Science, pp. 390–398 (2000)
11. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. In: Proc. ACM Symposium on the Theory
of Computing, pp. 397–406. ACM Press, New York (2000)

50 T. Schnattinger, E. Ohlebusch, and S. Gog

12. Manzini, G.: The Burrows-Wheeler Transform: Theory and practice. In: Ku-
tyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 34–47. Springer, Heidelberg (1999)

13. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850 (2003)

14. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sym-
posium on Foundations of Computer Science, pp. 549–554. IEEE, Los Alamitos
(1989)

A Minimal Periods Algorithm with Applications

Zhi Xu

The University of Western Ontario, Department of Computer Science,
Middlesex College, London, Ontario, Canada N6A 5B7

zhi_xu@csd.uwo.ca

Abstract. Kosaraju in “Computation of squares in a string” briefly
described a linear-time algorithm for computing the minimal squares
starting at each position in a word. Using the same construction of suffix
trees, we generalize his result and describe in detail how to compute the
minimal α power, with a period of length longer than s, starting at each
position in a word w for arbitrary exponent α > 1 and integer s ≥ 0. The
algorithm runs in O(α|w |)-time for s = 0 and in O(|w |2)-time other-
wise. We provide a complete proof of the correctness and computational
complexity of the algorithm. The algorithm can be used to detect cer-
tain types of pseudo-patterns in words, which was our original goal in
studying this generalization.

1 Introduction

A word of the form ww is a square, which is the simplest type of repetition. Study
on repetitions in words occurred as early as Thue’s work [23] in the early 1900’s.
There are many works in the literature on finding repetitions (periodicities), an
important topic in combinatorics on words. In 1983, Slisenko [21] described a
linear-time algorithm for finding all syntactically distinct maximal repetitions in
a word. Crochemore [5], Main and Lorentz [17] described linear-time algorithms
for testing whether a word contains any square and thus for testing whether a
word contains any repetition. Since a word of length n may have Ω(n2)-many
square factors (such as word 0n), only primitively-rooted or maximal repetitions
are ordinarily considered. Crochemore [4] described an O(n log n)-time algorithm
for finding all maximal primitively-rooted integer repetitions, where maximal
means that some kth power cannot be extended in either direction to obtain the
(k + 1)th power. The O(n log n)-time is optimal since a word of length n may
have Ω(n log n)-many primitively-rooted repetitions (such as Fibonacci words).
Apostolico and Preparata [1] described an O(n log n)-time algorithm for finding
all right-maximal repetitions. Main and Lorentz [16] described an O(n log n)-
time algorithm for finding all maximal repetitions. Gusfield and Stoye [22,10]
described several algorithms for finding repetitions. Both the number of dis-
tinct squares [8,12] and the number of maximal repetitions (runs) [14] in a word
are in O(n). This fact suggests the existence of linear-time algorithms on dis-
tinct (or maximal) repetitions. Main [18] described a linear-time algorithm for
finding all left-most occurrences of distinct maximal repetitions. Kolpakov and

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 51–62, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 Z. Xu

Kucherov [14] described a linear-time algorithm for finding all occurrences of
maximal repetitions. See the paper [6] for the most recent survey of the topic.

Rather than considering repetitions from a global point of view, there are
works considering repetitions from a local point of view. In a five-pages extended
abstract, Kosaraju [15] briefly described a linear-time algorithm for finding the
minimal square when starting at each position in a word. In the same vein, Duval,
Kolpakov, Kucherov, Lecroq, and Lefebvre [7] described a linear-time algorithm
for finding the local periods (of squares) centered at each position in a word.
Since there may be Ω(log n) primarily-rooted maximal repetitions starting at
the same position (for example, consider the left-most position in a Fibonacci
word), the local approach cannot achieve the same efficiency by directly applying
linear-time algorithms on finding maximal repetitions.

In this paper, we generalize Kosaraju’s algorithm [15] for computing mini-
mal squares. Instead of squares, we discuss arbitrary (fractional) powers. Based
on a proper modification of Kosaraju’s algorithm, we use the same techniques
of Weiner’s algorithm for suffix-tree construction and lowest-common-ancestor
query algorithms, and describe in detail an algorithm: the algorithm takes an
arbitrary rational number α > 1 and integer s ≥ 0, starts at each position in a
word w, and finds the minimal α power with a period of length longer than s.
This algorithm runs in O(α|w |)-time for s = 0 and in O(|w |2)-time for arbitrary
s. In this paper, we provide a complete proof of the correctness and computa-
tional complexity of the modified algorithm. In concluding, we show how this
algorithm can be used to detect certain types of pseudo-patterns in words, which
was our original goal in studying this algorithm.

2 Preliminary

We assume the alphabet Σ is fixed throughout this paper. Let w = a1a2 · · · an be
a word. The length |w | of w is n. A factor w[p .. q] of w is the word apap+1 · · ·aq

if 1 ≤ p ≤ q ≤ n; otherwise w[p .. q] is the empty word ε. In particular, w[1 .. q]
and w[p .. n] are called a prefix and a suffix, respectively. The reverse of w is the
word wR = an · · · a2a1. Word w is called an α power for rational number α > 1
if w = xky for some words x, y and integer k such that x 	= ε, y is a prefix of x,
and α = k + | y |

|x | , where α is called the exponent and x is called the period ; we
also write w = xα in this case. The 2nd power and the 3rd power are called the
square and the cube, respectively.

The prefix period (resp., strict prefix period) of a word w with respect to
exponent α and integer s is the shortest word x of length |x | > s, such that xβ

is a prefix of w for some exponent β ≥ α (resp., β = α). We denote the length
of the prefix period by ppα

s (w), if there is one, or otherwise ppα
s (w) = +∞. For

example, if word w = 0100101001, then pp2
0(w) = 3, pp3

0(w) = +∞, pp2
3(w) = 5,

pp
3/2
0 (w) = pp

5/4
0 (w) = 2, and the length of the strict prefix period of w with

respect to exponent 5/4 and integer 0 is 8. By definition, ppp1
s1

(w) ≤ ppp2
s2

(w) for
s1 ≤ s2, p1 ≤ p2. Furthermore, the following lemma holds naturally.

A Minimal Periods Algorithm with Applications 53

Lemma 1. Let α > 1 be a rational number, s ≥ 0 be an integer, and word u be a
prefix of word v. (1) If ppα

s (u) 	= +∞, then ppα
s (v) = ppα

s (u). (2) If ppα
s (v) 	= +∞

and |u | ≥ α · ppα
s (v), then ppα

s (u) = ppα
s (v); otherwise, ppα

s (u) = +∞. The
lemma also holds when the length of the prefix period ppα

s is replaced by the
length of the strict prefix period.

The right minimal period array of a word w is defined with respect to the ex-
ponent α and the integer s as rmpα

s (w)[i] = ppα
s (w[i .. n]), and the left minimal

period array is defined as lmpα
s (w)[i] = ppα

s (w[1 .. i]R), for 1 ≤ i ≤ n. For ex-
ample, if word w = 0100101001, then rmp2

0(w) = [3, +∞, 1, 2, 2, +∞, +∞,
1, +∞, +∞] and rmp

3/2
1 (w) = [2, 3, 5, 2, 2, 2, +∞, +∞, +∞, +∞] (in the

non-strict sense).
A suffix tree Tw for a word w = w[1 .. n] is a rooted tree with each edge labeled

with a non-empty word that satisfies the following conditions.

1. All internal nodes excluding the root have at least two children;
2. labels on edges from the same node begin with different letters;
3. there are exactly n leaves, denoted by leafi, and τ(leafi) = w[i .. n]$,

where function τ maps each node v to the word obtained by concatenating the
labels along the path from the root to v, and $ is a special letter not in the
alphabet of w. By definition, a suffix tree for a word is unique up to renaming
nodes and reordering among children. For more details on suffix tree, see the
book [9, Chap. 5–9].

root

leaf2 leaf3 leaf1

0$ $
0 100$

Fig. 1. The suffix tree for 100

We denote by p(v), or more specifically by pTw(v), the father of node v in the
tree Tw. The concepts ancestor and descendent are defined as usual. If node x
is a common ancestor of nodes y and z in Tw, by the definition of a suffix tree,
τ(x) is a common prefix of τ(y) and τ(z). We define function δ as δ(v) = | τ(v) |.

We denote by lca(u, v) the lowest common ancestor of nodes u and v in a tree
such that any other common ancestor of u and v is an ancestor of lca(u, v). After
a linear-time preprocessing on the tree, the lowest common ancestor of any pair
of nodes can be found in constant-time [11,20].

Lemma 2. Let leafi, leafj, i > j, be leaves in Tw. The word on the edge from
p(leafi) to leafi is not longer than the word on the edge from p(leafj) to leafj.

A suffix tree for a word can be constructed in linear-time [25,19,24]. Both
Kosaraju’s algorithm [15] for computing rmp2

0(w) and our generalization for
computing rmpα

s (w) for arbitrary α > 1 and s ≥ 0 are based on Weiner’s al-
gorithm [25]. Consequently, we briefly describe it here (see Fig. 2). Weiner’s

54 Z. Xu

algorithm constructs suffix tree Tw by adding leafn, . . . , leaf2, leaf1 into a suf-
fix tree incrementally. After each extension by leafi, the new tree is precisely
the suffix tree Tw[i .. n]. By using indicator vectors and inter-node links, the total
time to locate positions y at Lines 7–8 is in O(n). We omit the details of the
method for locating y because it is not quite relevant.

Input: a word w = w[1 .. n].
Output: the suffix tree Tw.
begin function make_suffix_tree(w)1

construct Tn = Tw[n .. n] ;2

for i from n − 1 to 1 do Ti ←−extend(Ti+1, w[i .. n]) ; // Ti = Tw[i .. n]3

return T1 ;4

end5

begin function extend(tree, word[i .. n]) // we assume tree = Tword[i+1 .. n]6

find the proper position y in tree to insert the new node leafi ;7

if needed, split an edge x → z to x → y, y → z by adding a new node y ;8

create and label the edge y → leafi by word[i + | τ (y) | .. n]$;9

end10

Fig. 2. Framework of Weiner’s algorithm for constructing suffix tree

3 The Algorithm for Computing rmpα
s (w) and lmpα

s (w)

First, we show how to compute both non-strict and strict prefix periods from
the suffix tree Tw in O

(
| w |

min{s,ppα
0 (w)}

)
-time. Although in the worst case the time

can be in Θ(|w |), when both s and ppα
0 (w) are in Ω(|w |), the time does not

depend on |w |, which is one of the essential reasons that the time of computing
rmpα

0 (w) and lmpα
0 (w) is linear in |w |.

Lemma 3. Let α > 1 be a rational number, s ≥ 0 be an integer, and Tw be the
suffix tree for a word w. Then ppα

s (w) can be computed in O
(

|w |
min{s,ppα

0 (w)}

)
-

time, even for the strict prefix period case.

Proof. There is an O
(

|w |
min{s,ppα

0 (w)}

)
-time algorithm (see Fig. 3) to compute

ppα
s (w). First, along the path from leaf1 to the root, we find the highest ancestor

h of leaf1 such that δ(h) ≥ (α − 1)(s + 1). Second, we find the lowest common
ancestor of leaf1 and every leafi, i > s + 1, that is a descendent of h and check
whether the inequality

δ(lca(leaf1, leafi)) ≥ (α − 1)(i − 1) (1)

holds. If no such leafi satisfies (1), then ppα
s (w) = +∞; otherwise, ppα

s (w)
= i − 1, where i is the smallest i such that leafi satisfies (1).

To prove correctness, we observe that w = xβy for some non-empty word x and
β ≥ α if, and only if, the common prefix of w[1 .. n] and w[|x | + 1 .. n] is of length

A Minimal Periods Algorithm with Applications 55

Input: a suffix tree tree = Tw[1 .. n] and two integers s ≥ 0, α > 1.
Output: the length of the prefix period ppα

s (w).
begin function compute_pp(tree, s, α)1

if α(s + 1) > n then return +∞ ; else h ←− leaf1 ;2

while δ(p(h)) ≥ (α − 1)(s + 1) do h ←− p(h) ;3

pp ←− +∞ ;4

preprocessing the tree rooted at h for constant-time lca operation ;5

foreach leafi being a descendent of h other than leaf1 do6

if δ(lca(leaf1, leafi)) ≥ (α − 1)(i − 1) and i − 1 > s then7

if pp > i − 1 then pp ←− i − 1 ; // w[1 .. i − 1] is a period8

return pp ;9

end10

Fig. 3. Algorithm for computing ppα
s (w), using the suffix tree Tw

at least �(α − 1)|x |�, which means leaf|x |+1 satisfies (1). Furthermore, such x
satisfies |x | > s only if leaf|x |+1 satisfies δ(lca(leaf1, leaf|x |+1)) ≥ (α−1)(s+1),
which means leaf|x |+1 is a descendent of h. The minimal length of such a period,
if any, is returned and correctness is ensured.

Let us turn to the computational complexity. Let Th be the sub-tree rooted at
h and let l be the number of leaves in Th. By the definition of a suffix tree, each
internal node has at least two children, and thus the number of internal nodes in
Th is less than l. Therefore, the time cost of the algorithm is linear in l. Now we
prove l ≤ 1 + n

min{s+1,ppα
0 (w)} by contradiction. Suppose l > 1 + n

min{s+1,ppα
0 (w)}

and leafi1 , leafi2, . . . , leafil
are leaves of Th. Then, there are l-many factors of

length t = (α − 1)(s + 1) such that w[i1 .. i1 + t − 1] = w[i2 .. i2 + t − 1] = · · · =
w[il .. il + t − 1]. Since 1 ≤ ij ≤ n for 1 ≤ j ≤ l, the pigeon hole principle
guarantees two indices, say i1 and i2, such that 0 ≤ i2 − i1 ≤ n

l−1 < min{s +
1, ppα

0 (w)}. Then the common prefix of w[i1 .. n] and w[i2 .. n] is of length at
least t = (α − 1)(s + 1) > (α − 1)(i2 − i1), which means there is a prefix
of w[i1 .. i1 + t − 1] = w[i2 .. i2 + t − 1] = w[1 .. t − 1] that is an α power with
period of length i2 − i1, which contradicts i2 − i1 < ppα

0 (w). Therefore, the
number of leaves in Th is l ≤ n

min{s+1,ppα
0 (w)} + 1 and the algorithm runs in

O
(

n
min{s,ppα

0 (w)}

)
-time.

For the strict prefix period, we add an extra condition “i−1 mod den = 0” to
the if -statement in Line 7 to check whether the length of a candidate period is
a multiple of den for α = num/den, gcd(num, den) = 1. This condition ensures
that the period for the exponent α is strict. ��

For a word w = w[1 .. n], the left minimal period array and the right minimal
period array satisfy lmpα

s (w)[i] = rmpα
s (wR)[n + 1 − i] for 1 ≤ i ≤ n. In what

follows, we solely discuss the algorithm for computing rmpα
s (w).

A suffix tree with prefix periods T πα
s

w for a word w is a suffix tree Tw integrated
with a labeling function πα

s (v) = ppα
s (τ(v)). When s and α are clear from the

56 Z. Xu

context, we simply write T π
w . The suffix tree with prefix periods satisfies the

following property.

Lemma 4. Let α > 1 be a rational number, s ≥ 0 be an integer, and w be a
word. For any node v in the tree T π

w such that πα
s (p(v)) = +∞, either πα

s (v) is
+∞ or πα

s (v) satisfies δ(p(v))/α < πα
s (v) ≤ p(v)/(α − 1).

Proof. Let v be a node in T π
w with πα

s (p(v)) = +∞. Suppose πα
s (v) 	= +∞. Since

τ(p(v)) is a prefix of τ(v) and πα
s (p(v)) = +∞, the inequality δ(p(v)) < απα

s (v) fol-
lows by Lemma 1. The common prefix of τ(v)[1 .. δ(v)] and τ(v)[πα

s (v) + 1 .. δ(v)]
is of length at least (α− 1)πα

s (v). Since p(v) is the lowest ancestor of v in T π
w , the

inequality (α − 1)πα
s (v) ≤ δ(p(v)) holds. This completes the proof. ��

Now we will show how to construct the T πα
s

w for a word w with arbitrary s ≥ 0
and α > 1. Then rmpα

s (w) can be obtained directly from T π
w by rmpα

s (w) =
[πα

s (leaf1), . . . , πα
s (leafn)]. This result generalizes Kosaraju’s result [15] for the

case s = 0, α = 2.
The algorithm is outlined in Fig. 4. The main idea is to use Weiner’s algorithm

to construct the underlying suffix tree Tw[i .. n] for i = n, . . . , 1 (Lines 2,5) and
a series of auxiliary trees (Lines 3,8,11,15,17) to help compute the π (Line 18).
By Weiner’s algorithm (see Fig. 2), at each step, either one or two nodes are
created in the underlying suffix tree and we assign the π values on those new
nodes (Lines 7,10,18). The father y of leafi is a new node when there is a split
on the edge from x to z. Since πα

s (z) is already computed, we update πα
s (y)

directly. leafi is the second new node. When πα
s (p(leafi)) 	= +∞, we update

πα
s (leafi) directly. Otherwise, we compute πα

s (leafi) by constructing auxiliary
suffix trees. The näıve method constructs Tw[i .. n] and then computes πα

s (leafi) =
ppα

s (w[i .. n]), both of which run in O(|w[i .. n] |)-time. We instead construct
a series of trees A = Tw[i .. j] for some j in such a way that ppα

s (w[i .. n]) =
ppα

s (w[i .. j]). Additionally, the total time of constructing the trees A is in O(n);
the time of computing πα

s (leafi) = ppα
s (w[i .. j]) in each A is in O(α) for s = 0

and in O(n) for arbitrary s.

Theorem 1. Let α > 1 be a rational number and s ≥ 0 be an integer. Function
compute_rmp in Fig. 4 correctly computes rmpα

s (w) for w.

Proof. The correctness of the algorithm relies on the claim Ti = T π
w[i .. n]. By

Weiner’s algorithm, the underlying suffix tree of Ti is indeed Tw[i .. n]. So it re-
mains to show the assignment of πα

s (v) on each node v is correct.
At the beginning, Tw[n .. n] contains two nodes and we have πα

s (root) = ppα
s (ε) =

+∞, πα
s (leafn) = ppα

s (w[n .. n]) = +∞. Thus, the assignments on Line 2 are
correct. Node y is the father of z (when splitting happens) and the father of leafi.
Thus, by Lemma 1, the assignments on Lines 7,10 are correct. The only remaining
case is the assignment of πα

s (leafi) when πα
s (y) = +∞. Since y = p(leafi), by

Lemma 4, ppα
s (τ(leafi)) > δ(y)/α, and thus the arguments for calling compute_pp

on Line 18 is valid. The only thing that remains is to prove that ppα
s (w[i .. n]) =

ppα
s (w[i .. j]).

A Minimal Periods Algorithm with Applications 57

Input: a word w = w[1 .. n] and two integers s ≥ 0, α > 1.
Output: the right minimal period array rmpα

s (w).
begin function compute_rmp(w, s, α)1

construct Tn by constructing Tw[n .. n] with π(root), π(leafn) ←− +∞ ;2

A ←− empty, j ←− n, and d ←− 0 ;3

for i from n − 1 to 1 do4

Ti ←−extend(Ti+1, w[i .. n]) ; // Ti = Tw[i .. n]5

if splitting then // y, z are obtained from extend()6

if δ(y) ≥ απ(z) then π(y) ←− π(z) ; else π(y) ←− +∞ ;7

if j − i + 1 > 2αd/(α − 1) or δ(y) < d/2 then A ←− empty ;8

if π(y) �= +∞ then9

π(leafi) ←− π(y) ;10

if A �= empty then A ←−extend(A, w[i .. j]) ;11

else12

if A = empty then13

d ←− δ(y) and j ←− i + (α + 1)d/(α − 1) − 1 ;14

A ←−make_suffix_tree(w[i .. j]) ;15

else16

A ←−extend(A, w[i .. j]) ;17

π(leafi) ←−compute_pp(A, max{s, δ(y)/α}, α) ;18

rmp[i] ←− π(leafi) ; // Ti = T π
w[i .. n] is made19

rmp[n] ←− +∞ and return rmp ;20

end21

Fig. 4. Algorithm for computing rmpα
s (w)

First, we claim that δ(pTi(leafi)) ≤ δ(pTi+1(leafi+1))+1, where the subscript
of p specifies in which tree the father is discussed. If pTi(leafi+1)pTi+1(leafi+1),
then there is splitting on the edge from pTi+1(leafi+1) to leafi+1, and thus
leafi, leafi+1 have the same father in Ti. So τ(leafi) begins with a repetition of a
single letter. Thus, we have δ(pTi(leafi)) = δ(pTi(leafi+1)) = δ(pTi+1(leafi+1))+
1. If pTi(leafi+1) = pTi+1(leafi+1), then since δ(leafi) = δ(leafi+1) + 1, by
Lemma 2, we have δ(pTi(leafi)) ≤ δ(pTi(leafi+1)) + 1 = δ(pTi+1(leafi+1)) + 1.

We claim δ(y) ≤ j − i + 1 − 2
α−1d holds immediately before Line 18, where

y = p(leafi). Consider the suffix tree A. If A is newly created, then δ(y) = d,
i = j +1− α+1

α−1d. Thus, δ(y) = j− i+1− 2
α−1d. If A is extended from a previous

suffix tree, then the index i decreases by 1, and the depth δ(y) increases at most
by 1. So δ(y) ≤ j − i + 1 − 2

α−1d still holds.
Now we prove ppα

s (w[i .. n]) = ppα
s (w[i .. j]). If ppα

s (w[i .. n]) = +∞, by
Lemma 1, ppα

s (w[i .. j]) = +∞ = ppα
s (w[i .. n]). Assume ppα

s (w[i .. n]) 	= +∞.
By Lemma 4, ppα

s (w[i .. n]) = ppα
s (τ(leafi)) ≤ δ(y)

α−1 . In addition, j− i+1 ≤ 2α
α−1d

always holds immediately before Line 18 whenever A 	= empty. Therefore,
α · ppα

s (w[i .. n]) ≤ α
α−1

(
j − i + 1 − 2

α−1d
)
≤ |w[i .. j] |, and thus, by Lemma 1,

it follows ppα
s (w[i .. j]) = ppα

s (w[i .. n]). This completes the proof of the correct-
ness of the algorithm. ��

58 Z. Xu

Theorem 2. The algorithm in Fig. 4 computes rmpα
s (w) in O(α|w |)-time for

s = 0 and in O(|w |2)-time for arbitrary s.

Proof. Let n = |w |. Constructing the underlying suffix tree Tw is in O(n)-
time. Every remaining statement except those on Lines 11,15,17,18 can each be
done on constant-time in a unit-cost model, where we assume the operations on
integers with O(log n)-bits can be done in constant-time.

Now we consider the computation of Line 18. We already showed in the proof
of Theorem 1 that ppα

s (w[i .. j]) = ppα
s (w[i .. n]). By Lemma 4, ppα

s (w[i .. n]) >
δ(y)
α . In addition, j − i +1 ≤ 2α

α−1d and δ(y) ≥ 1
2d always hold when A 	= empty.

By Lemma 3, since A = Tw[i .. j], the running time of each calling to compute_pp
in Fig. 3 is linear in

|w[i .. j] |
min{max{s, δ(y)/α}, ppα

0 (w[i .. j])} ≤ 2αd/(α − 1)
min{d/2α, ppα

0 (w[i .. j])} ,

which is in O(α) for s = 0 and is in O(n) otherwise.
Now we consider the computation of Lines 11,15,17. Those statements con-

struct a series of suffix trees A = Tw[i .. j] by calling make_suffix_tree and
extend in Fig. 2. Each suffix tree is initialized at Line 15, extended at Lines 11,17,
and destroyed at Line 8. Suppose there are, in total, l such suffix trees, and
suppose, for 1 ≤ m ≤ l, they are initialized by A = Tw[im .. jm] with dm =
δ(pTim

(leafim)) and destroyed when A = Tw[i′m .. jm] such that either jm − (i′m −
1) + 1 > 2α

α−1dm or δ(pTi′m−1
(leafi′m−1)) < 1

2dm. In addition, when A 	= empty,
the inequality jm − i + 1 ≤ 2α

α−1dm always holds for im ≤ i ≤ i′m. Since a suf-
fix tree is constructed in linear-time in the tree size, the total running time on
Lines 11,15,17 is linear in

l∑
m=1

|w[i′m .. jm] | =
l∑

m=1

(jm − i′m + 1) ≤
l∑

m=1

2α

α − 1
dm.

First, we consider those cases jm − (i′m − 1) + 1 > 2α
α−1dm. Then jm − i′m + 1 =

2α
α−1dm, jm = im + α+1

α−1dm − 1 hold, and thus im − i′m =
(
jm − α+1

α−1dm + 1
)
−(

jm + 1 − 2α
α−1dm

)
= dm. Hence,

∑
case 1

2α
α−1dm = 2α

α−1

∑
case 1(im − i′m) ≤

2α
α−1 ((n − 1) − 1) = O(n). Second, we consider those cases δ(pTi′m−1

(leafi′m−1))
< 1

2dm. It follows δ(pTi′m−1
(leafi′m−1)) − δ(pTim

(leafim)) < − 1
2dm.

In the proof of Theorem 1, we already showed δ(pTi(leafi)) −
δ(pTi+1(leafi+1)) ≤ 1. Hence, we have

∑
case 2

2α
α−1dm <

2α
α−1

∑
case 2 2

(
δ(pTim

(leafim)) − δ(pTi′m−1
(leafi′m−1))

)
≤ 4α

α−1 (n − 1) = O(n).
The only remaining case is that the suffix tree A is not destroyed even after the
construction of T1. This situation can be avoided by virtually adding a letter £
not in the alphabet of w at the beginning of w. Thus, the total running time on
Lines 11,15,17 is in O(n).

Therefore, the total running time of the algorithm is in O(αn) for s = 0 and
in O(n2) for arbitrary s. ��

A Minimal Periods Algorithm with Applications 59

The discussion in this section is also valid for the strict prefix period. The strict
version of the algorithm in Fig. 3 slightly differs from the non-strict version as
described in the proof of Lemma 3, and the algorithm in Fig. 4 is the same.

4 Applications — Detecting Special Pseudo-Powers

In this section, we will show how the algorithm for computing rmpα
s (w) and

lmpα
s (w) can be applied to test whether a word w contains any factor of a

particular type of repetition: the pseudo-powers.
Let Σ be the alphabet. A function θ : Σ∗ → Σ∗ is called an involution if

θ(θ(w)) = w for all w ∈ Σ∗ and called an antimorphism if θ(uv) = θ(v)θ(u)
for all u, v ∈ Σ∗. We call θ an antimorphic involution if θ is both an involution
and an antimorphism. For example, the classic Watson-Crick complementarity in
biology is an antimorphic involution over four letters {A, T, C, G} such that A �→ T,
T �→ A, C �→ G, G �→ C. For integer k and antimorphism θ, we call word w a pseudo
kth power (with respect to θ) if w can be written as w = x1x2 · · ·xk such that
either xi = xj or xi = θ(xj) for 1 ≤ i, j ≤ k. In particular, we call a pseudo 2nd
(3rd) power a pseudo square (cube). For example, over the four letters {A, T, C, G},
the word ACGCGT = ACGθ(ACG) is a pseudo square and ACGTAC = ACθ(AC)AC is
a pseudo cube with respect to the Watson-Crick complementarity. Pseudo kth
powers are of particular interest in bio-computing [3]. A variation on the pseudo
kth power has also appeared in tiling problems [2].

Chiniforooshan, Kari, and Xu [3] discussed the problem of testing whether a
word w contains any pseudo kth power as a factor. There is a linear-time al-
gorithm and a quadratic-time algorithm for testing pseudo squares and pseudo
cubes, respectively. For testing arbitrary pseudo kth powers, the known algo-
rithm is in O(|w |2 log |w |)-time.

We will show these particular types of pseudo kth powers, θ(x)xk−1 , xk−1θ(x),
and (xθ(x))

k
2 (where (xθ(x))

k
2 = (xθ(x))�

k
2 �x for odd k) can be tested faster.

First, we need the following concept. The centralized maximal pseudo-palindrome
array cmpθ

w of word w with respect to an antimorphic involution θ is de-
fined by cmpθ

w[i] = max
{
m : 0 ≤ m ≤ min{i, |w | − i}, θ(w[i − m + 1 .. i]) =

w[i + 1 .. i + m]
}

for 0 ≤ i ≤ |w |. For example, cmpθ
0100101001 = [0, 0, 0, 3, 0, 0,

0, 0, 2, 0, 0].

Lemma 5. Let θ be an antimorphic involution. The array cmpθ
w can be com-

puted in O(|w |)-time.

Proof. Constructing suffix tree Tw£θ(w), where letter £ is not in w, cmpθ
w can be

computed via Tw£θ(w) by cmpθ
w[i] = δ(lca(leafi+1, leaf2n−i+2)) for 1 ≤ i ≤ n−1

and cmpθ
w[0] = cmpθ

w[n] = 0. ��

Theorem 3. Let k ≥ 2 and s ≥ 0 be integers, and θ be an antimorphic in-
volution. Whether a word w contains any factor of the form xk−1θ(x) (resp.,
θ(x)xk−1) with |x | > s can be tested in O(|w |2)-time and in O(k|w |)-time for
s = 0.

60 Z. Xu

Proof. Computing lmpk−1
s (w) (resp., rmpk−1

s (w)) and cmpθ
w, there is a factor

xk−1θ(x) (resp., θ(x)xk−1) with |x | > s if and only if lmpk−1
s (w)[i] ≤ cmpθ

w[i]
(resp., rmpk−1

s (w)[i] ≤ cmpθ
w[i − 1]) for some 1 ≤ i ≤ n. ��

Theorem 4. Let k ≥ 2 and s ≥ 0 be integers and θ be an antimorphic involu-
tion. Whether a word w contains any factor of the form (xθ(x))

k
2 with |x | > s

can be tested in O(|w |2/k)-time.

Proof. Computing cmpθ
w and enumerating all possible indices and periods, there

is a factor (xθ(x))
k
2 with |x | > s if, and only if, there are k − 1 consecutive

terms greater than s in cmpθ
w with indices being an arithmetic progression with

difference greater than s. ��

5 Conclusion

We generalized Kosaraju’s O(|w |)-time algorithm of computing minimal squares
starting at each position in a word w, which by our definition is presented by
rmp2

0(w). We showed a modified algorithm that can compute, for an arbitrary
rational number α > 1 and integer s ≥ 0, the minimal α powers to the right
and to the left, with (either non-strict or strict) period larger than s, starting at
each position in a word, which are presented as the right minimal period array
rmpα

s (w) and the left minimal period array lmpα
s (w), respectively.

The algorithm is based on the frame of Weiner’s suffix-tree construction. Al-
though there are other linear-time algorithms for suffix-tree construction, such as
McCreight’s algorithm and Ukkonen’s algorithm, none of the two can be altered
to compute minimal period arrays with the same efficiency, due to the special
requirement that the suffixes of the given word are added into the tree in the
order of shortest to longest and πα

s (v) is only updated when node v is created.
The näıve approach to compute rmpα

s (w) is to compare factors, for each
position and for each possible choice of period, to test whether that period
satisfies the definition of the prefix period. This procedure leads to an algorithm
using O(1) extra space and running in O(|w |3/α)-time. By building a failure
table as used in the Knuth-Morris-Pratt pattern matching algorithm [13], there
is an algorithm using O(n)-space and running in O(n2)-time for the case of non-
strict prefix period with s = 0. The algorithm in the paper uses O(n)-space, runs
in O(α|w |)-time for s = 0, and runs in O(|w |2)-time for arbitrary s. Here we
assume the alphabet is fixed. An online interactive demonstration of all three
algorithms can be found at the author’s web-page [26].

We showed the algorithm for computing minimal period arrays can be used
to test whether a word w contains any factor of the form xkθ(x) (resp., θ(x)xk)
with |x | > s, which runs in O(k|w |)-time for s = 0 and runs in O(|w |2)-
time for arbitrary s. We also discussed an O(|w |2/k)-time algorithm for testing
whether a word w contains any factor of the form (xθ(x))

k
2 with |x | > s. All

of the words xx · · ·xθ(x), θ(x)x · · · xx, xθ(x)xθ(x) · · · are pseudo-powers. There
are possibilities that some particular types of pseudo-powers other than those

A Minimal Periods Algorithm with Applications 61

discussed here may be detected faster than the known O(|w |2 log |w |)-time
algorithm.

Acknowledgements

The author would like to thank Prof. Lila Kari for discussion on pseudo-powers,
Prof. Lucian Ilie for discussion on the computing of cmpθ

w, and the anonymous
referees for their valuable comments.

References

1. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.
Theoret. Comput. Sci. 22, 297–315 (1983)

2. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete
Comput. Geom. 6(1), 575–592 (1991)

3. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudo-power avoidance. CoRR abs/0911.
2233 (2009), http://arxiv.org/abs/0911.2233

4. Crochemore, M.: Optimal algorithm for computing the repetitions in a word. Info.
Proc. Lett. 12(5), 244–250 (1981)

5. Crochemore, M.: Recherche linéaire d’un carré dans un mot. Comptes Rendus
Acad. Sci. Paris Sér. I 296, 781–784 (1983)

6. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-
binatorics. Theoret. Comput. Sci. 410(50), 5227–5235 (2009)

7. Duval, J., Kolpakov, R., Kucherov, G., Lecroq, T., Lefebvre, A.: Linear-time com-
putation of local periods. Theoret. Comput. Sci. 326, 229–240 (2004)

8. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin.
Theory Ser. A 82(1), 112–120 (1998)

9. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

10. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

12. Ilie, L.: A note on the number of squares in a word. Theoret. Comput. Sci. 380(3),
373–376 (2007)

13. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. Com-
put. 6(2), 323–350 (1977)

14. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proc. 40th Ann. Symp. Found. Comput. Sci (FOCS 1999), pp. 596–604. IEEE
Computer Society Press, Los Alamitos (1999)

15. Kosaraju, S.R.: Computation of squares in a string. In: Crochemore, M., Gusfield,
D. (eds.) Proc. 5th Combinat. Patt. Matching, pp. 146–150. Springer, Heidelberg
(1994)

16. Main, M., Lorentz, R.: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422–432 (1984)

17. Main, M., Lorentz, R.: Linear time recognition of square free strings. In: Apostolico,
A., Galil, Z. (eds.) Combinat. Algor. on Words, pp. 272–278. Springer, Heidelberg
(1985)

http://arxiv.org/abs/0911.2233

62 Z. Xu

18. Main, M.G.: Detecting leftmost maximal periodicities. Discrete Appl. Math. 25(1–
2), 145–153 (1989)

19. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. Assoc.
Comput. Mach. 23(2), 262–272 (1976)

20. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)

21. Slisenko, A.O.: Detection of periodicities and string-matching in real time. J. Math.
Sci (N. Y.) 22(3), 1316–1387 (1983)

22. Stoye, J., Gusfield, D.: Simple and flexible detection of contiguous repeats using
a suffix tree preliminary version. In: Farach-Colton, M. (ed.) Proc. 9th Combinat.
Patt. Matching, pp. 140–152. Springer, Heidelberg (1998)

23. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat.-Nat.
Kl (7), 1–22 (1906)

24. Ukkonen, E.: Constructing suffix trees on-line in linear time. In: Leeuwen, J.V.
(ed.) Proc. Infor. Proces. 92, IFIP Trans. A-12., Vol. 1. pp. 484–492. Elsevier,
Amsterdam (1992)

25. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Ann. Symp.
on Switching and Automata Theory (SWAT), pp. 1–11 (1973)

26. Xu, Z.: http://www.csd.uwo.ca/~zhi_xu/demons/cpm2010xu.html (2010)

http://www.csd.uwo.ca/~zhi_xu/demons/cpm2010xu.html

The Property Suffix Tree with Dynamic
Properties

Tsvi Kopelowitz

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract. Recently there has been much interest in the Property In-
dexing Problem ([1],[7],[8]), where one is interested to preprocess a text
T of size n over alphabet Σ (which we assume is of constant size), and a
set of intervals π over the text positions, such that give a query pattern
P of size m we can report all of the occurrences of P in T which are
completely contained within some interval from π. This type of match-
ing is extremely helpful in scenarios in molecular biology where it has
long been a practice to consider special areas in the genome by their
structure.

The work done so far has focused on the static version of this problem
where the intervals are given a-priori and never changed. This paper is
the first to focus on several dynamic settings of π including an incremen-
tal version where new intervals are inserted into π, decremental version
where intervals are deleted from π, fully dynamic version where intervals
may be inserted or deleted to or from π, or batched insertions where a set
of intervals is inserted into π. In particular, the batched version provides
us with a new (optimal) algorithm for the static case.

1 Introduction

In many pattern matching applications the text has some properties attached to
various locations in it. A property for a string is the set of intervals corresponding
to the parts of the string satisfying the conceptual property we are looking for.
Property Matching, involves a string matching between the pattern and the text,
and the requirement that the text part is contained within one of the intervals.

Some examples come from molecular biology, where it has long been a practice
to consider special areas of the genome by their structure. Examples are repet-
itive genomic structures [10] such as tandem repeats, LINEs (Long Interspersed
Nuclear Sequences) and SINEs (Short Interspersed Nuclear Sequences) [9]. Many
problems in biology can be expressed as property matching problems, for exam-
ple, finding all occurrences of a given pattern in a genome, provided it appears
in a SINE, or LINE.

Clearly, there is no great challenge in sequential pattern matching with prop-
erties since the intersection of the properties and matching can be done in linear
time. However, the problem becomes more complex when it is required to index
a text with properties. The classical pattern matching problem [2],[13] is that of
finding all occurrences of pattern P = p1p2 · · · pm in text T = t1t2 · · · tn, where

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 63–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

64 T. Kopelowitz

T and P are strings over alphabet Σ. In the indexing problem we are given a
large text that we want to preprocess in a manner that allows fast solution of
the following queries: ”Given a (relatively short) pattern P find all occurrences
of P in T in time proportional to |P | and the number of occurrences”.

The indexing problem and its many variants have been central in pattern
matching (e.g. [18],[6],[5],[15],[3]). However, when it comes to indexing a text
with properties, we are now presented with a dilemma. If we use the conventional
indexing techniques and then do the intersection with the properties, our worst
case time may be very large in case the pattern appears many times, and there
may not be any final matches in case all the indexed matches do not satisfy the
property.

Thus, a few recent results papers have tackled this problem by building the
Property Suffix Tree (or PST for short), which is essentially a suffix tree, where
each suffix is truncated so we only consider the smallest prefix of it which satisfies
our property. In [1], where the PST was defined, it was shown how one can
construct the PST in O(|π| + n log log n) time using weighted ancestor queries
([4],[12]). Later on, in [7] the authors there showed how one can construct the
PST in O(|π| + n) time using range minimum queries. However, there was an
unfortunate error in their result, which was corrected by [8].

In this paper, we consider the dynamic version of the problem, where intervals
are inserted or removed to or from the property. We present algorithms for a
few versions of this problem, namely incremental updates, decremental updates,
fully dynamic updates, and batched updates. While one could use the previous
results, and use the dynamic versions of the inner data structures in there (like
dynamic range minimum queries), the overhead of such a change is too expensive.
Thus, we present a new approach for confronting the PST, resulting in a new
optimal construction algorithm for the static case as well. The approach is based
on clever use of suffix links.

The paper is organized as follows. In section 2 we give some definitions and
preliminaries. In section 3 we confront the incremental version of the dynamic
problem, which includes the introduction of the basic procedure implementing
our new approach for this problem, using suffix links. In section 4 we show how
to solve the decremental version. In sections 5 and 6, we show how to solve the
fully dynamic and batched versions, respectively, and the batched version leads
us to a new optimal static construction.

2 Preliminaries and Definitions

For a string T = t1 · · · tn, we denote by Ti···j the substring ti · · · tj . The suffix
Ti···n is denoted by T i, and the suffix tree of T is denoted by ST (T). The leaf
corresponding to T i in ST (T) is denoted by leaf(T i). The label of an edge e
in ST (T) is denoted by label(e). The concatenation of all of the labels of edges
from the root of the suffix tree to a node u is denoted by label(u). For a node u
in the suffix tree of a string T , we denote by STu the subtree of the suffix tree
rooted by u.

We are now ready to define a property for a string.

The Property Suffix Tree with Dynamic Properties 65

Definition 1. A property π of a string T = t1...tn is a set of intervals π =
{(s1, f1), ..., (st, ft)} where for each 1 ≤ i ≤ t it holds that: (1) si, fi ∈ {1, ..., n},
and (2) si ≤ fi. The size of property π, denoted by |π|, is the number of intervals
in the property (or in other words - t).

The following definition is a slight simplification of a similar definition in [1].

Definition 2. Given a text T = t1...tn with property π and pattern P = p1...pm,
we say that P matches Ti···j under property π if P = Ti···j, and there exists
(sk, fk) ∈ π such that sk ≤ i and j ≤ fk.

If P = Ti···j we want to be able to quickly check if there exists an interval
(s, f) ∈ π for which s ≤ i ≤ j ≤ f . To simplify such a test we introduce the
notion of extents and the maximal extent.

Definition 3. Given a text T = t1...tn with property π for every text location
1 ≤ i ≤ n and interval (s, f) ∈ π such that s ≤ i ≤ f we say that f is an extent
of i. The maximal extent of i is the extent of i of largest value, or in other words,
the finish of the interval containing i which is the most distant from i. We denote
the maximal extent of i by end(i). If for some location i there is no interval in
π containing it, we define end(i) = NIL.

The following lemma shows us the connection between the maximal extents
defined by a property π, and being able to quickly test if a pattern matches a
location in the text under π.

Lemma 1. Given a text T = t1...tn with property π and pattern P = p1...pm,
P matches Ti···j under property π if and only if P = Ti···j and j ≤ end(i).

Proof. We need to show that j ≤ end(i) if and only if there exists (sk, fk) ∈ π
such that sk ≤ i and j ≤ fk. The first direction is true, as by definition of
maximal extents, if j ≤ end(i) we have that there exists an interval (s, f) ∈ π
such that s ≤ i ≤ j ≤ f = end(i). The reverse direction is true as well, as if
there exists an interval (sk, fk) ∈ π such that sk ≤ i and j ≤ fk, we have that
i ∈ [sk, j] ⊆ [sk, fk] and so fk is an extent of i implying that j ≤ fk ≤ end(i). ��
Being that the size of π can be O(n2), it would be helpful if we could reduce π
to another property π′ where we are guaranteed that the size of π′ is at most n.
In fact, it will be even more helpful to reduce our property to one of minimal
size. This can be accomplished with the following.

Definition 4. Two properties π and π′ for text T = t1...tn are said to be con-
gruent if for any pattern P , P matches a substring Ti,j under π if and only if it
matches the same substring under π′.

The congruent relation between properties defines equivalence classes for all
possible properties of a text of size n. Every two properties in a given equivalence
class will produce the same output when querying a text T with pattern P under
those properties. This naturally leads us to the following definition:

66 T. Kopelowitz

Definition 5. A property π for a string of length n is said to be minimal if
for any property π′ congruent to π we have that |π| ≤ |π′|. Also, the process of
converting π′ into π is called minimizing π′.

Lemma 2. A property π for a string of length n can be minimized using the
following process. For any two intervals (s, f), (s′, f ′) ∈ π we remove (s′, f ′) if
one of the following conditions holds: (a)s < s′ ≤ f ′ < f , (b)s < s′ ≤ f ′ = f , or
(c) s′ = s ≤ f ≤ f ′. Furthermore, the minimized form of π is of size O(n).

Proof. Due to space limitations, this easy proof is omitted. ��

Definition 6. A property π for a string of length n is said to be in standard
form if (a) π is minimal, and (b) s1 < s2 < · · · < s|π|.

For some of the dynamic settings (incremental, and batch inserts) we will want to
maintain π in its minimized form. For other settings, we will need to maintain π
completely (meaning not minimized), as deletions of intervals can strongly affect
the resulting properties’ equivalence classes due to deletions from two different
properties in the same equivalence class.

2.1 The Property Suffix Tree

The PST in essence shortens the root to leaf path of each suffix (leaf) in the
suffix tree, to its maximal extent. A simple (naive) method for constructing the
PST would be for every leaf in the suffix tree, traverse the path from the root to
it, and stop at the character corresponding to the maximal extent of the suffix.
If this location is an edge, we break that edge into two, and insert a new node
for the suffix. If this location is a node, we just add the suffix to a list of suffixes
in each node. When removing the leaf corresponding to the suffix in the original
suffix tree, and the edge connecting it to its parent, we might need to remove
the parent from the tree as well. In fact, we won’t want to remove nodes from
the tree, but rather create a shortcut edge skipping the internal node that needs
to be removed. So, we can envision the PST to be the complete suffix tree with
the addition of some shortened suffix nodes, and shortcut edges, so that when
we traverse the PST (through the suffix tree) with a pattern query, we take a
shortcut edge whenever possible.

When answering a query, we traverse down the PST with our pattern, and
once we find the edge or node corresponding to the pattern, we traverse that
node’s or edge’s subtree to output all of the (shortened) suffixes in it. It should be
noted that although not all of the nodes in the subtree have at least two children
(as some inner nodes correspond to shortened suffixes), we can still perform this
traversal in time linear in the size of the output as the non branching nodes are
those which correspond to part of the output.

The construction takes quadratic time, and is therefore inefficient. However,
we show in section 6.1 how the PST can be constructed in linear time.

The Property Suffix Tree with Dynamic Properties 67

3 The Incremental Version

In this section it is shown how to solve the following problem:

Problem 1. Given a PST for text T = t1...tn and a property π of T we wish to
maintain the PST under the following updates efficiently:

– Insert(s, f) - Insert a new interval (s, f) into π.

We assume that π is maintained in standard form. So π consists of at most n
intervals, each with a different starting index.

There are several types of updates that can happen to the PST due to an
Insert(s, f) update. These different types of updates are provided by the different
interactions between the newly inserted interval (s, f) and the intervals already
in π prior to the insertion. For simplicity we assume that there is only one interval
(s′, f ′) ∈ π, such that [s, f] ∩ [s′, f ′] 	= ∅. This interval can be easily located in
O(f − s) time by maintaining each interval in its starting and end location (due
to the minimized form, there is at most one starting and one ending interval at
each location). Then we can scan the length of the interval, locating (s′, f ′) (if
it exists). In a situation where there are no starting or finishing locations in the
interval, we check end(s) so that if it is not NIL, it must be that end(s) > f and
so the new interval is completely contained within an already existing interval
in π (a situation which we briefly discuss next).

The possible interactions are as follows

1. The first type of interaction is when s′ ≤ s ≤ f ≤ f ′. In such a case the new
interval does not affect the maximum extent of any of the text locations due
to this interaction and so the PST and π remain unchanged as we want to
maintain π in standard form.

2. The second type of interaction is when s ≤ s′ ≤ f ′ ≤ f . In such a case
the new interval completely contains (s′, f ′) so for any text location i where
s ≤ i ≤ f , the new interval will change end(i) to be f , and the PST must
be updated to support this. Furthermore, the insertion of the new interval
will force (s′, f ′) out of π to be replaced by (s, f).

3. The third type of interaction is when s ≤ s′ ≤ f ≤ f ′. In such a case we
only need to update the maximal extent for text location i where s ≤ i < s′

as for any location s′ ≤ i ≤ f ′ we have that f ′ provides a longer property
extent. The PST must be updated to support this, and the new interval is
added to π.

4. The fourth type of interaction is when s′ ≤ s ≤ f ′ ≤ f . In such a case we
only need to update the maximal extent for text location i where s ≤ i ≤ f ′

as for any text location s ≤ i ≤ f ′ we have that f provides a longer property
extent (as opposed to the one provided by (s′, f ′)), and for the remaining
f ′ < i ≤ f we have that end(i) = f as it is the only extent available. The
PST must be updated to support this, and the new interval is added to π.

For the last three (out of four) types of interactions, we need to update
the maximum extent for some text locations, and update the PST accordingly.

68 T. Kopelowitz

The locations for which we will have changes made in the PST can be found
in O(f − s) time by scanning the interval in the text, and marking the appro-
priate locations (according to the interaction). If we are given the old location
of a shortened suffix in the PST prior to the insertion, together with its new
location in the PST after the insertion, the additional work will take constant
time. Thus, we are left with the job of locating the new position of each location
in the interval which imposes a change in the PST, as the old locations can be
easily maintained per location. This is explained next.

3.1 The PST Update Traversal

We begin by noting that in any interaction that imposes changes to the suffix
tree, the location s (the start of the interval) will always cause a change. We
traverse the PST with the substring Ts,f , till we reach a node u for which label(u)
is a prefix of Ts,f and is of maximum length. We can denote label(u) = Ts,x for
some s ≤ x ≤ f . If x = f then the shortened suffix of s needs to be inserted at
u in the PST (as f is the maximal extent of s). Otherwise, let w be the child of
u in the PST for which the first character on the edge (u, w) is tx+1. The path
in the PST corresponding to Ts,f ends on this edge, and so, the shortened suffix
of s needs to be inserted at a new node v breaking the edge (u, w) into two.
We note briefly that the time to traverse any edge in the traversal can be done
in constant time, as we know that Ts,f is in the text. However, when inserting
the new edge v, we want to insert it into the original suffix tree as well (as edge
(u, w) might be a shortcut). To do this, we traverse down the suffix tree from u
till we reach a node (û) for which label(û) is a prefix of Ts,f and is of maximum
length. We can denote label(û) = Ts,x̂ for some s ≤ x̂ ≤ f . If x̂ = f then the
shortened suffix of s needs to be inserted at û in the suffix tree. Otherwise, let ŵ
be the child of û in the suffix tree for which the first character on the edge (û, ŵ)
is tx̂+1. We then insert node v into edge (û, ŵ), updating shortcuts as needed.

We now wish to find the new location in the PST for s + 1. We could re-
scan the PST with Ts+1,f , however that would take too long. Instead, we use
the suffix link of u to find a node u′ for which label(u) = ts l̇abel(u′). Thus,
label(u′) = Ts+1,x. From u′ we continue to traverse down the suffix tree with
the substring Tx+1,f , till we reach a node u1 for which label(u1) is a prefix of
Ts+1,f and is of maximum length. We can denote label(u1) = Ts,x1 for some
s + 1 ≤ x1 ≤ f . If x1 = f then the shortened suffix of s + 1 needs to be inserted
at the node corresponding to u1 in the PST. Otherwise, let w1 be the child of
u1 for which the first character on the edge (u1, w1) is tx1+1. The path in the
PST corresponding to Ts+1,f ends on this edge, and so, the shortened suffix of
s + 1 needs to be inserted at a new node v1 breaking the edge (u1, w1) into two.
As before, when inserting the new node v1, we want to insert it into the original
suffix tree as well. To do this, we take the suffix link from û, and continue to
traverse down the suffix tree from the node at the other side of the suffix link
û1 for which label(û1) is a prefix of Ts+1,f and is of maximum length. We can
denote label(û1) = Ts+1,x̂1 for some s + 1 ≤ x̂1 ≤ f . The rest of the work for

The Property Suffix Tree with Dynamic Properties 69

this case is the same as in the first phase, however we might also need to update
suffix links for the newly inserted node.

We continue this process, where at the i′th iteration we use the suffix link of ui−1
to find a node u′

i−1 for which label(ui−1) = ts l̇abel(u′
i−1). Thus, label(u′

i−1) =
Ts+i,x. From u′

i−1 we continue to traverse down the suffix tree with the substring
Txi,f , till we reach a node ui for which label(ui) is a prefix of Ts+i,f and is of max-
imum length. We can denote label(ui) = Ts,xi for some s + i ≤ x1 ≤ f . If xi = f
then the shortened suffix of s + i needs to be inserted at the node corresponding
to ui in the PST. Otherwise, let wi be the child of ui for which the first character
on the edge (ui, wi) is txi+1. The path in the PST corresponding to Ts+i,f ends
on this edge, and so, the shortened suffix of s + i needs to be inserted at a new
node breaking the edge (ui, wi) into two. As before, when inserting the new node
vi, we want to insert it into the original suffix tree as well. To do this, we take the
suffix link from ûi, and continue to traverse down the suffix tree from the node at
the other side of the suffix link ûi for which label(ûi) is a prefix of Ts+i,f and is of
maximum length. We can denote label(ûi) = Ts+i,x̂1 for some s+ i ≤ x̂i ≤ f . The
rest of the work for this case is the same as in the first phase, however we might
also need to update suffix links for the newly inserted node.

The process ends after f − s iterations. In each iteration we updated the
location of at most one shortened suffix. The running time is as follows. All of
the updates done to a suffix once its new location is found take constant time.
The total traversal in order to find all of the new locations in the PST take a
total of (f − s) time, as in each iteration i we will traverse from xi−1 to xi, and
from x̂i−1 to x̂i.

3.2 Multiple Interactions

If our new interval (s, f) interacts with more than one interval already in π
we need to be able to determine which different interactions occur, and decide
accordingly which locations require a change. In order to do this, we note that
the two types of interactions that might cause the maximum extent for a given
location not to change are the first and third. It is enough to detect one interval
(s′, f ′) ∈ π whose interaction with (s, f) is of the first type. This can be done by
checking the end location of s. So assume this is not the case, and focus on dealing
with many interactions of the third type. we can locate all such interactions in
O(f − s) time by scanning the interval, and checking end locations for each
location encountered. for a location i if end(i) > f then we know that for any
location j such that ≤ j ≤ f , end(j) will not change. So, once we reach the
first s ≤ i ≤ f we know that the only locations that need to change are in the
range [s, i−1]. Once these locations have been determined, we perform the PST
update traversal in order to complete the process.

Theorem 7. Given a PST for text T = t1...tn and a property π of T it is
possible to maintain the PST under Insert(s, f) operations in O(f − s) time.

70 T. Kopelowitz

4 The Decremental Version

In this section it is shown how to solve the following problem:

Problem 2. Given a PST for text T = t1...tn and a property π of T we wish to
maintain the PST under the following updates efficiently:

– Delete(s, f) - Delete the interval (s, f) from π.

As intervals are being deleted from π, maintaining π in standard form is
dangerous, as once an interval is deleted, we might require another interval which
was not in the standard form. Therefore we can no longer assume that the size
of π is linear in the size of the text. We begin with a preprocessing phase in
which for every text location i we build two lists. The first list, denoted by ϕi, is
the list of all intervals in π for which the starting time is i, sorted by decreasing
finishing time. The second list, denoted by γi is the list of all intervals in π for
which the finishing time is i, sorted by increasing starting time. We can easily
construct both lists in O(n + |π|) time. In addition, we use a hash function such
that given an interval (s, f) we can locate in constant time if (s, f) ∈ π, and if
so it will return two pointers to nodes, one to the node in the list ϕs and one to
the node in the list γf which refer to that interval in those lists.

Like in the incremental version, there are several types of updates that can
happen to the PST due to a Delete(s, f) update. These different types of updates
are provided by the different interactions between the deleted interval (s, f) and
the other intervals currently in π. For simplicity we assume that there is only
one interval (s′, f ′) ∈ π \ {(s, f)}, such that [s, f]∩ [s′, f ′] 	= φ. This interval can
be easily found in O(f − s) time as mentioned before in the incremental version,
however we need to use the first nodes in the lists ϕi and γi for each s ≤ i ≤ f .

1. The first type of interaction is when s′ ≤ s ≤ f ≤ f ′. In such a case
the deleted interval does not affect the maximum extent of any of the text
locations.

2. The second type of interaction is when s ≤ s′ ≤ f ′ ≤ f . In such a case the
deleted interval completely contains (s′, f ′) and so for any text location i
where s′ ≤ i ≤ f ′, the deletion will change end(i) to be f ′, while for the
other locations in [s, f] we need to set their end location to NIL.

3. The third type of interaction is when s ≤ s′ ≤ f ≤ f ′. In such a case we
only need to update the end location for text location i where s ≤ i < s′ to
be NIL.

4. The fourth type of interaction is when s′ ≤ s ≤ f ′ ≤ f . In such a case we
only need to update the end location for text location i where s ≤ i ≤ f as
for any location s ≤ i ≤ f ′ we have that f ′ provided the longer property
extent (as opposed to the one provided by (s, f)), and for the remaining
f ′ < i ≤ f we have that end(i) = NIL as there is no extent available.

For the last three (out of four) types of interactions, we need to update the
maximum extent for some text locations, and update the PST accordingly.

The Property Suffix Tree with Dynamic Properties 71

The locations for which we will have changes made in the PST can be found
in O(f − s) time by scanning the interval in the text, and marking the appropri-
ate locations (according to the interaction). If we are given the old location of a
shortened suffix in the PST prior to the insertion, together with its new location
in the PST after the insertion or an indication that no such extent exists, the
additional work will take constant time. Thus, we are left with the job of locating
the new position of each location in the interval which imposes a change in the
PST, as the old locations can be easily maintained per location.

In order to do this, we want to use the PST update traversal. However in
order for the traversal to be correct, we must prove the following lemma.

Lemma 3. Any change to a maximal extent made due to a Delete(s, f) update
will result in a NIL, or an extend k such that s ≤ k ≤ f .

Proof. Assume by contradiction that there exists a text location i such that due
to a Delete(s, f) update, end(i) changes to be k such that k < s or k > f . if k < s
then we also must have i < s, and as such the interval which provides i with its
maximal extent does not interact with (s, f), contradicting our assumption that
end(i) was changed. If k > f , then there exists an interval (s′, k) ∈ π such that
s′ ≤ i ≤ f < k. However, this interval existed prior to the deletion of (s, f) and
so the maximal extent of i should not have changed due to the deletion. ��
Now aided by the lemma, we note that the PST traversal will traverse through
all of the new locations that the shortened suffixes need to be updated at due
to the deletions. Also, we must remove (s, f) from ϕs and gammaf , however as
these values are hashed, this takes constant time. The running time is the same
as that of the insert operation - O(f − s).

4.1 Multiple Interactions

If our deleted interval (s, f) interacts with more than one interval in π \ {(s, f)}
we need to be able to determine which different interactions occur, and decide
accordingly which locations require a change. This is done in a similar method
to that of the insertions, and is thus omitted.

Theorem 8. Given a PST for text T = t1...tn and a property π of T it is
possible to maintain the PST under Delete(s, f) operations in O(f − s) time.

5 The Fully Dynamic Version

Problem 3. Given a PST for text T = t1...tn and a property π of T we wish to
maintain the PST under the following updates efficiently:

– Insert(s, f) - Insert a new interval (s, f) into π.
– Delete(s, f) - Delete the interval (s, f) from π.

72 T. Kopelowitz

As intervals are being deleted from π, maintaining π in standard form is still
dangerous, as once an interval is deleted, we might require another interval which
was not in the standard form. We begin with a preprocessing phase in which for
every text location i we build ϕi and γi, both maintained as dynamic priority
queues. In addition, we use a hash function such that given an interval (s, f) we
can locate in constant time if (s, f) ∈ π, and if so it will return two pointers
to nodes, one to the node in ϕs and one to the node in γf which refer to that
interval in those lists.

The procedures for processing an insertion or deletion are the same as that
of the incremental and decremental ones, with the following changes. All of the
interactions that are made with ϕi and γi for some location i are done through
the appropriate priority queue. Thus each update performs two lookups (one
for a minimum value, and one for a maximum value), each insertion performs
two priority queue insertions, and each deletion performs two priority queue
deletions. We can use the data structure by van Emde Boas [17] so that each
priority queue operation requires O(log log n) time. Thus we have the following.

Theorem 9. Given a PST for text T = t1...tn and a property π of T it is
possible to maintain the PST under Delete(s, f) and Insert(s, f) operations in
O(f − s + log log n) time per operation.

6 The Batched Insert Version and the Static Case

In this section we solve the following problem.

Problem 4. Given a PST for text T = t1...tn and a property π of T we wish to
maintain the PST under the following updates efficiently:

– Insert(I) - Insert the set of intervals I = {(s1, f1), (s2, f2), ..., (s�, f�)}
into π.

We could perform an insert operation per interval in I, and that would take
O(

∑
(s,f)∈I f − s) time. However, we do better by presenting an algorithm that

runs in O(cover-size(I)) where

cover-size(I) = |{1 ≤ i ≤ n : ∃(s, f) ∈ Is.t.i ∈ [s, f]}|.

To do this, we begin by processing the intervals in I as follows. We start with
an array A of size n. We do not need to spend the time to initialize A - instead
we can use standard techniques which know for a given location in A if it has
been set or not. Next we create an undirected graph G = (V, E), where for each
interval (sk, fk) ∈ I we have a corresponding vertex vk ∈ V , and we initiate E
to be empty. Now for each 1 ≤ i ≤ � we scan A[s], A[s + 1], ..., A[f] and do the
following. For each location in A, if it was never initialized, we insert i. Otherwise,
it has some value j in it, and so we insert (vi, vj) into E, and stop the scan for this
interval. The total running time for all of the scans will be O(cover-size(I)+|I|) =
O(cover-size(I)). Next, we find the connected components in G in O(|I|) time.
For each connected component C, we define IC to be the subset of intervals in
I which corresponds to the vertices in C.

The Property Suffix Tree with Dynamic Properties 73

Lemma 4. Let C and C′ be two different connected components of G. Then
cover-size(IC) + cover-size(IC′) = cover-size(IC ∪ IC′).

Proof. If cover-size(IC)+ cover-size(IC′) > cover-size(IC ∪ IC′) (as the opposite
is clearly not true) then this implies that there exists an interval with a vertex
in C, and an interval with a vertex in C′, such that the intersection of those
two intervals is not empty. However, from the way we chose the edges in G,
this implies that there is an edge between those two vertices, contradicting the
assumption that C and C′ are different connected components. ��
For each connected component C we can convert IC to be in standard form in
time O(cover-size(IC)). So we will assume IC is in standard form. We also as-
sume with out loss of generality, that for every interval in IC , its interactions
with π prior to the batch insertion cause some changes (as this can be checked
in O(cover-size(IC)) as well). Denote IC = {(si1 , fi1), (si2 , fi2), ..., (si|C| , fi|C|)},
where for every i1 ≤ j ≤ i|C| − 1 we have ij < ij+1. For each i1 ≤ j ≤ i|C| we do
Insert(sj , fj) with the following changes. When we run the PST update traversal,
we only run till we reach the suffix at sj+1. Once this point is met, we know that
the maximal extent from this point onwards is at least fj+1 which is larger than
fj. Being that at that point we are considering the shortened suffix Tsj+1,fj we can
continue traversing down the tree in order to obtain the location of Tsj+1,fj+1 , and
then start the work needed for interval (sj+1, fj+1). Thus, the total time spent on
interval j is sj+1 − sj , and the total time spent on all intervals is

f|C| − s|C| +
j=i|C|−1∑

j=i1

sj+1 − sj = O(cover-size(IC)).

For each connected component C we can convert IC to be in standard form in
time O(cover-size(IC)). So we will assume IC is in standard form. We also assume
that for every interval in IC , its interactions with π prior to the batch insertion
cause some changes (as this can be checked in O(cover-size(IC)) as well). Denote
IC = {(si1 , fi1), (si2 , fi2), ..., (si|C| , fi|C|)}, where for every i1 ≤ j ≤ i|C| − 1 we
have ij < ij+1. For each i1 ≤ j ≤ i|C| we do Insert(sij , fij) with the following
changes. When we run the PST update traversal, we only run till we reach the
suffix at sij+1 . Once this point is met, we know that the maximal extent from
this point onwards is at least fij+1 which is larger than fij . Being that at that
point we are considering the shortened suffix Tsij+1 ,fij

we can continue traversing
down the tree in order to obtain the location of Tsij+1 ,fij+1

, and then start the
work needed for interval (sij+1 , fij+1). Thus, the total time spent on interval ij
is sij+1 − sij , and the total time spent on all intervals is

f|C| − s|C| +
j=i|C|−1∑

j=i1

sij+1 − sij = O(cover-size(IC)).

Problem 5. Given a PST for text T = t1...tn and a property π of T can maintain
the PST under the following updates:

74 T. Kopelowitz

– Insert(I) - Insert the set of intervals I = {(s1, f1), (s2, f2), ..., (s�, f�)}
into π,

where each update takes O(cover-size(I) time.

6.1 The (New) Static Version

The static version is a special case of batched update, where we have only one
update whose intervals are all the intervals in π. This reproves the following.

Theorem 10. Given a property π over T = t1...tn it is possible to construct the
PST O(|π| + m) time.

References

1. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395, 298–310 (2008)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Comm. ACM 20,
762–772 (1977)

3. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. 36th annual ACM Symposium on the Theory of
Computing (STOC), pp. 91–100. ACM Press, New York (2004)

4. Farach, M., Muthukrishnan, S.: Perfect Hashing for Strings: Formalization
and Algorithms. In: Proc. 7th Combinatorial Pattern Matching Conference,
pp. 130–140 (1996)

5. Ferragina, P., Grossi, R.: Fast incremental text editing. In: Proc. 7th ACM-SIAM
Symposium on Discrete Algorithms, pp. 531–540 (1995)

6. Gu, M., Farach, M., Beigel, R.: An efficient algorithm for dynamic text indexing.
In: Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 697–704
(1994)

7. Iliopoulos, C.S., Rahman, M.S.: Faster index for property matching. Inf. Process.
Lett. 105(6), 218–223 (2008)

8. Juan, M.T., Liu, J.J., Wang, Y.L.: Errata for “Faster index for property matching“.
Inf. Process. Lett. 109(18), 1027–1029 (2009)

9. Jurka, J.: Origin and Evolution of Alu Repetitive Elements. In: The Impact of
Short Interspersed Elements (SINEs) on the Host Genome, pp. 25–41 (1995)

10. Jurka, J.: Human Repetitive Elements. In: Molecular Biology and Biotechnology,
pp. 438–441 (1995)

11. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

12. Kopelwoitz, T., Lewenstein, M.: Dynamic Weighted Ancestors. In: Proc. 18th An-
nual ACM-SIAM Symposium on Discrete Algorithms(SODA), pp. 565–574 (2003)

13. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comp. 6, 323–350 (1977)

14. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. of the
ACM 23, 262–272 (1976)

The Property Suffix Tree with Dynamic Properties 75

15. Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm. In: Proc. 37th FOCS, pp. 320–328 (1996)

16. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
17. van Emde Boas, P.: Preserving Order in a Forest in Less Than Logarithmic Time

and Linear Space. Inf. Process. Letters 6(3), 80–82 (1977)
18. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium

on Switching and Automata Theory, pp. 1–11 (1973)

Approximate All-Pairs Suffix/Prefix Overlaps

Niko Välimäki1,�, Susana Ladra2,��, and Veli Mäkinen1,� � �

1 Department of Computer Science, University of Helsinki, Finland
{nvalimak,vmakinen}@cs.helsinki.fi

2 Department of Computer Science, University of A Coruña, Spain
sladra@udc.es

Abstract. Finding approximate overlaps is the first phase of many se-
quence assembly methods. Given a set of r strings of total length n and an
error-rate ε, the goal is to find, for all-pairs of strings, their suffix/prefix
matches (overlaps) that are within edit distance k = �ε��, where � is the
length of the overlap. We propose new solutions for this problem based
on backward backtracking (Lam et al. 2008) and suffix filters (Kärkkäinen
and Na, 2008). Techniques use nHk + o(n log σ) + r log r bits of space,
where Hk is the k-th order entropy and σ the alphabet size. In practice,
methods are easy to parallelize and scale up to millions of DNA reads.

1 Introduction

High-throughput short read sequencing is revolutionizing the way molecular bi-
ology is researched. For example, the routine task of measuring gene expression
by microarrays is now being replaced by a technology called RNA-seq [4,27];
the transcriptome is shotgun sequenced so that one is left with a set of short
reads (typically e.g. of length 36 basepairs) whose sequence is known but it is
not known from which parts of the genome they were transcribed. The process
is hence reversed by mapping the short reads back to the genome, assuming that
the reference genome sequence is known. Otherwise, one must resort to sequence
assembly methods [24].

The short read mapping problem is essentially identical to an indexed multiple
approximate stringmatching problem [21] when using a proper distance/similarity
measure capturing the different error types (SNPs, measurement errors, etc.). Re-
cently, many new techniques for short read mapping have come out building on
the Burrows-Wheeler transform (BWT) [1] and on the FM-index [7] concept. The
FM-index provides a way to index a sequence within space of compressed sequence
exploiting BWT. This index provides so-called backward search principle that
enables very fast exact string matching on the indexed sequence. Lam et al. [13]
extended backward search to simulate backtracking on suffix tree [28], i.e., to sim-
ulate dynamic programming on all relevant paths of suffix tree; their tool BWT-SW

� Funded by the Helsinki Graduate School in Computer Science and Engineering.
�� Funded by MICINN grant TIN2009-14560-C03-02.

� � � Funded by the Academy of Finland under grant 119815.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 76–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximate All-Pairs Suffix/Prefix Overlaps 77

provides an efficient way to do local alignment without the heuristics used in many
common bioinformatics tools. The same idea of backward backtracking coupled
with search space pruning heuristics is exploited in the tools tailored for short
read mapping: bowtie [14], bwa [16], SOAP2 [5]. In a recent study [17], an exper-
imental comparison confirmed that the search space pruning heuristics used in
short read mapping software are competitive with the fastest index-based filters
— suffix filters [11] by Kärkkäinen and Na — proposed in the string processing
literature.

In this paper, we go one step further in the use of backward backtracking
in short read sequencing. Namely, we show that the technique can also be used
when the reference genome is not known, i.e., as part of overlap-layout-consensus
sequence assembly pipeline [12]. The overlap-phase of the pipeline is to detect
all pairs of sequences (short reads) that have significant approximate overlap.
We show how to combine suffix filters and backward backtracking to obtain a
practical overlap computation method that scales up to millions of DNA reads.

2 Background

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. characters or
letters). Each symbol is an element of an alphabet Σ = {1, 2, . . . , σ}. A substring
of S is written Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j ,
and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the empty string
of length |ε| = 0. A text string T = T1,n is a string terminated by the special
symbol tn = $ 	∈ Σ, smaller than any other symbol in Σ. The lexicographical
order “<” among strings is defined in the obvious way. Edit distance ed(T, T ′)
is defined as the minimum number of insertions, deletions and replacements of
symbols to transform string T into T ′ [15]. Hamming distance h(T, T ′) is the
number of mismatching symbols between strings T and T ′.

The methods to be studied are derivatives of the Burrows-Wheeler transform
(BWT) [1]. The transform produces a permutation of T , denoted by T bwt, as
follows: (i) Build the suffix array [19] SA[1, n] of T , that is an array of pointers
to all the suffixes of T in the lexicographic order; (ii) The transformed text is
T bwt = L, where L[i] = T [SA[i]− 1], taking T [0] = T [n]. The BWT is reversible,
that is, given T bwt = L we can obtain T as follows [1]: (a) Compute the array
C[1, σ] storing in C[c] the number of occurrences of characters {$, 1, . . . , c−1} in
the text T ; (b) Define the LF mapping as follows: LF (i) = C[L[i]]+rankL[i](L, i),
where rankc(L, i) is the number of occurrences of character c in the prefix L[1, i];
(c) Reconstruct T backwards as follows: set s = 1, for each n − 1, . . . , 1 do
ti ← L[s] and s ← LF [s]. Finally put the end marker tn ← $.

The FM-index [7] is a self-index based on the BWT. It is able to locate the
interval SA[sp, ep] that contains the occurrences of any given pattern P without
having SA stored. The FM-index uses an array C and function rankc(L, i) in
the so-called backward search algorithm, calling the rankc(L, i) function O(|P |)
times. Its pseudocode is given below.

78 N. Välimäki, S. Ladra, and V. Mäkinen

Algorithm. Count(P [1 . . . m],L[1 . . . n])
(1) i ← m;
(2) sp ← 1; ep ← n;
(3) while (sp ≤ ep) and (i ≥ 1) do
(4) s ← P [i];
(5) sp ← C[s] + ranks(L, sp − 1)+1;
(6) ep ← C[s] + ranks(L, ep);
(7) i ← i − 1;
(8) if (ep < sp) return “not found”

else return “found (ep − sp + 1) occurrences”.

The correctness of the algorithm is easy to see by induction: At each phase i,
the range [sp, ep] gives the maximal interval of SA pointing to suffixes prefixed
by P [i . . .m].

To report the occurrence positions SA[i] for sp ≤ i ≤ ep a common approach
is to sample SA values and then use the LF -mapping to derive the unsampled
values from the sampled ones.

Many variants of the FM-index have been derived that differ mainly in the
way the rankc(L, i)-queries are solved [22]. For example, on small alphabets, it is
possible to achieve nHk + o(n log σ) bits of space, for moderate k, with constant
time support for rankc(L, i) [8]. Here Hk is the standard k-th order entropy, i.e.,
the minimum number of bits to code a symbol once its k-symbol context is seen.
There holds Hk ≤ log σ.

Let us denote by tLF and tSA the time complexities of LF -mapping (i.e.
rankc(L, i) computation) and SA[i] computation, respectively.

3 All-Pairs Suffix/Prefix Matching

Given a set T of r strings T 1, T 2, . . . , T r, of total length n, the exact all-pairs
suffix/prefix matching problem is to find, for each ordered pair T i, T j ∈ T , all
nonzero length suffix/prefix matches (dubbed overlaps). The problem can be
solved in optimal time by building a generalized suffix tree for the input strings:

Theorem 1 ([9, Sect. 7.10]). Given a set T of r strings of total length n, let
r∗ be the number of exact suffix/prefix overlaps longer than a given threshold.
All such overlaps can be found in O(n+ r∗) time and in Θ(n log n) bits of space.

In the sequel, we concentrate on approximate overlaps and more space-efficient
data structures. Instead of generalized suffix trees, the following techniques use a
FM-index built on the concatenated sequence of strings in T . Since all strings T i

contain the $-terminator as their last symbol, the resulting BWT T bwt contains
all r terminators in some permuted order. This permutation is represented with
an array D that maps from positions of $s in T bwt to strings in T . Thus, the
string T i corresponding to a terminator T bwt[j] = $ is i = D[rank$(T bwt, j)].
The array requires d log d bits.

Next subsection introduces a basic backtracking algorithm that can find ap-
proximate overlaps within a fixed distance k. The second subsection describes a
filtering method that is able to find approximate overlaps when the maximum
number of errors depends on length of the overlap.

Approximate All-Pairs Suffix/Prefix Overlaps 79

3.1 Backward Backtracking

The backward search can be extended to backtracking to allow the search for
approximate occurrences of the pattern [13]. To get an idea of this general ap-
proach, let us first concentrate on the k-mismatches problem: The pattern P1,m

approximately matches a substring X1,m of some string T i ∈ T , if there are at
most k indices i such that P [i] 	= X [i] (i.e. Hamming distance h(P, X) ≤ k).
The following pseudocode finds the k-mismatch occurrences, and is analogous
to the schemes used in [14,16]. The first call to the recursive procedure is
kmismatches(P, T bwt, k, m, 1, n).

Algorithm. kmismatches(P, L, k, j, sp, ep)
(1) if (sp > ep) return ;
(2) if (j = 0)
(3) Report SA[sp], . . . , SA[ep]; return ;
(4) for each s ∈ Σ do
(5) sp′ ← C[s] + ranks(L, sp − 1)+1;
(6) ep′ ← C[s] + ranks(L, ep);
(7) if (P [j] �= s) k′ ← k − 1; else k′ ← k;
(8) if (k′ ≥ 0) kmismatches(P, L, k′, j − 1, sp′, ep′);

The difference between the kmismatches algorithm and exact searching is
that the recursion considers incrementally, from right to left, all different ways
the pattern can be altered with at most k substitutions. Simultaneously, the
recursion maintains the suffix array interval SA[sp . . . ep] where suffixes match
the current modified suffix of the pattern.

To find approximate overlaps of T i having at most k mismatches, we call
kmismatches(T i, T bwt, k, |T i|, 1, n) and modify the algorithm’s output as fol-
lows. Notice that, at each step, the range T bwt[sp . . . ep] contains $-terminators
of all strings prefixed (with at most k mismatches) by the suffix T i

j,m where
m = |T i|. Thus, each of the terminators correspond to one valid overlap of
length j. Terminators and their respective strings T i′ can be enumerated from
the array D in constant time per identifier; the identifiers i′ to output are in the
range D[rank$(T bwt, sp) . . . rank$(T bwt, ep)].

The worst case complexity of backward backtracking is O(|Σ|kmk+1tLF).
There are several recent proposals to prune the search space [14,16] but none of
them can be directly adapted to this suffix/prefix matching problem.

To find all-pairs approximate overlaps, the k-mismatch algorithm is called for
each string T i ∈ T separately. Thus, we obtain the following result:

Theorem 2. Given a set T of r strings of total length n, and a distance k,
let r∗ be the number of approximate suffix/prefix overlaps longer than a given
threshold and within Hamming distance k. All such approximate overlaps can be
found in O(σk

∑
T∈T |T |k+1tLF + r∗) time and in nHk + o(n log σ) + r log r bits

of space.

From the above theorem, it is straightforward to achieve a space-efficient and
easily parallelizable solution for the exact all-pairs suffix/prefix matching prob-
lem (cf. Theorem 1):

80 N. Välimäki, S. Ladra, and V. Mäkinen

Corollary 1. Given a set T of r strings of total length n, let r∗ be the number
of exact suffix/prefix overlaps longer than a given threshold. All such overlaps
can be found in O(ntLF +r∗) time and in nHk +o(n log σ)+r log r bits of space.1

When k-errors searching (edit distance in place of Hamming distance) is used
instead of k-mismatches, one can apply dynamic programming by building one
column of the standard dynamic programming table [26] on each recursive step.
Search space can be pruned by detecting the situation when the minimum value
in the current column exceeds k. To optimize running time, one can use Myers’
bit-parallel algorithm [20] with the bit-parallel witnesses technique [10] that
enables the same pruning condition as the standard computation. We omit the
details for brevity.

3.2 Suffix Filters

We build on suffix filters [11] and show two different ways to modify the original
idea to be able to search for approximate overlaps. Let us first describe a sim-
plified version of the original idea using an example of approximate matching of
string P with edit distance k.

Suffix filter splits the string to be searched, here P of length m, into k + 1
pieces. More concretely, let string P be partitioned into pieces P = α1α2 · · ·αk+1.
Because the FM-index is searched backwards, it is more convenient to talk about
prefix filters in this context. Now the set of filters to be considered is S =
{α1α2 · · ·αk+1, α1α2 · · ·αk, . . . , α1} as visualized in Fig. 1. To find candidate
occurrences of P within edit distance k, each filter S ∈ S is matched against T
as follows. We use backward backtracking (Sect. 3.1) and match pieces of the
filter S starting from the last one with distance k′ = 0. When the backtracking
advances from one piece to next one (i.e. the preceding piece), the number of
allowed errors k′ is increased by one. Figure 1 gives a concrete example on how
k′ increases. If there is an occurrence of P within distance k, at least one of the
filters will output it as an candidate [11]. In the end, all candidate occurrences
must be validated since the filters may find matches having edit distance larger
than k. However, suffix filters have been shown to be one of the strongest filters
producing quite low number of wrong candidates [11].

Approximate suffix/prefix matches of T i ∈ T can be found as follows. Instead
of a fixed distance k, we are given two parameters: an error-rate ε ≤ 1 and a
minimum overlap threshold t ≥ 1. Now an overlap of length � is called valid if
it is within edit distance �ε�� and � ≥ t. Again, the string T i is partitioned into

1 Notice that a stronger version of the algorithm in [9, Sect. 7.10] (the one using
doubly-linked stacks) can be modified to find r′ < r2 pairs of strings with maximum
suffix/prefix overlap longer than a given threshold. We can simulate that algorithm
space-efficiently replacing doubly-linked stacks with dynamic compressed bit-vectors
[18] so that time complexity becomes O(n(tSA + log n) + r′) and space complexity
becomes nHk + o(n log σ)+ r log r +n(1+ o(1)). We omit the details, as we focus on
the approximate overlaps. A stronger variant for approximate overlaps is an open
problem.

Approximate All-Pairs Suffix/Prefix Overlaps 81

Fig. 1. Prefix filters for a string P that
has been partitioned into even length
pieces. Numbers correspond to maximum
number of errors allowed during backward
search.

Fig. 2. String T i has an overlap of length
� = 3p with T j . One of the first three
filters is bound to find the overlap during
backward search.

pieces, denoted αi, but now the number of pieces is determined by the threshold
t and error-rate ε. Let k = �εt� be the maximum number of errors allowed for
the shortest overlap possible, and for simplicity, let us assume that all pieces are
of even length p (to be defined later). Now the number of pieces is h = �|T i|/p�.

Candidate overlaps are found by searching each prefix filter Si = α1α2 · · ·αi

for 1 ≤ i ≤ h separately: start the backward search from the end of the last
piece αi and match it exactly. Each time a boundary of two pieces is crossed,
the number of allowed errors is increased by one. Now assume that pieces from i
to jth piece have been processed, that is, the current range [sp . . . ep] corresponds
to pieces αjαj+1 · · ·αi. Before the backward search crosses the boundary from
the piece αj to αj−1, we check the range T bwt[sp . . . ep] and output those $-
terminators as candidate overlaps. These candidates are prefixes of strings in T
that may be valid approximate overlaps of length p · (h − j + 1). Only overlaps
whose lengths are multiples of the piece length p can be obtained.

We give two different strategies to find all approximate overlaps, not just those
with length p, 2p, 3p, . . . But first, let us prove that the final set of candidates
produced by the above method contains all valid overlaps of length pj for any
j ≥ �t/p� (recall that valid overlaps must be longer than t).

Assume that there is a valid overlap of length � = pj between T i and some
T j, as displayed in Fig. 2. Prefix filters of T i will locate this occurrence if we
can guarantee that the suffix T i

m−�,m has been partitioned into �ε�� + 1 pieces,
where �ε�� gives the maximum edit distance for an overlap of length �. Recall
that in our partition the suffix T i

m−�,m was split into pieces of length p. We can

define p as min|T i|
�=t � �

�ε�	+1�. This guarantees that we have chosen short enough
pieces for our partition, as at least one of the filters Sh, Sh−1, . . . , Sh−j+1 will
output the string T j as a candidate overlap. Figure 2 illustrates this idea. In the

82 N. Välimäki, S. Ladra, and V. Mäkinen

Fig. 3. Strategy I produces p different
partitions of T i

Fig. 4. Strategy II produces two different
partitions of T i

end, all candidate overlaps must be validated since some of the candidates may
not represent a valid approximate overlap.

Strategy I produces p different partitions for T i so that the boundaries (start
position of pieces) cover all indices of T i. For simplicity, assume that m = |T i|
is a multiple of p. The jth partition, 1 ≤ j ≤ p, has boundaries {j, p + j, 2p +
j, . . . , m}. As a result, the very last piece “shrinks” as seen in Fig. 3. Each
partition forms its own set of filters, which are then searched as described above.
It is straightforward to see that filters of the jth partition find all overlaps of
lengths � ∈ {p − j + 1, 2p − j + 1, 3p − j + 1, . . . , m − j + 1}. Thus, all overlap
lengths � ≥ t are covered by searching through all p partitions. Advantage of
this strategy is that during the backward search, we can always match p symbols
(with 0-errors) before we check for candidate matches. The “shrinking” last piece
αh can be shorter than p but it never produces candidates since p ≤ t. Downside
is that the number of different filter sets Si to search for grows to p.

Strategy II produces only two partitions for T i. Again, assume that m = |T i|
is a multiple of p. Now the two partitions have the boundaries {1, p + 1, 2p +
1, . . . , m} and {�p/2�, p + �p/2�, 2p + �p/2�, . . . , m}, as visualized in Fig. 4. To
acquire candidates for all overlap lengths � ≥ t, we modify the backtracking
search as follows: instead of outputting candidates only at the boundaries, we
start to output candidates after �p/2� symbols of each piece has been matched.
More precisely, assume we are matching symbol at position i′ in some αi. If
i′ ≤ p−�p/2�,we output all $-terminators from range T bwt[sp . . . ep] as candidate
overlaps. Then the first partition outputs candidates for overlap lengths � ∈
[�p/2�, p]

⋃
[p + �p/2�, 2p]

⋃
· · · and the second partition for lengths � ∈ [p +

1, p + �p/2�]
⋃

[2p + 1, 2p + �p/2�]
⋃
· · · Since �p/2� ≤ t, these filters together

cover all overlap lengths � ≥ t. Obvious advantage of this strategy is that only two
sets of filters must be searched. However, the number of candidates produced is
generally higher than in strategy I. If p is really small, the number of candidates
found after �p/2� symbols grows substantially.

Unfortunately, prefix filters cannot guarantee any worst-case time complexi-
ties. We conclude with the following theorem:

Approximate All-Pairs Suffix/Prefix Overlaps 83

Table 1. Experiments with k-mismatches. Time is reported as average time (s) per
read. Strategy II produces exactly the same overlaps as strategy I.

Method t k ε Time (s) Max. � Avg. � Std.dev. �

Backtracking 20 2 – 0.005 506 33.9 24.0
20 4 – 0.277 506 27.4 16.4
20 6 – ≈ 8 full result not computed

Strategy I 20 – 5% 0.365 524 42.1 34.5
20 – 10% 0.753 1040 46.5 38.1
40 – 2.5% 0.212 506 74.8 45.6
40 – 5% 0.213 524 76.7 45.7
40 – 10% 0.553 1040 78.8 46.4

Strategy II 20 – 5% 0.140 524 42.1 34.5
20 – 10% 0.990 1040 46.5 38.1
40 – 2.5% 0.029 506 74.8 45.6
40 – 5% 0.053 524 76.7 45.7
40 – 10% 0.341 1040 78.8 46.4

Table 2. Experiments with k-errors. Time is reported as average time (s) per read.
Strategy II produces exactly the same overlaps as strategy I.

Method t k ε Time (s) Max. � Avg. � Std.dev. �

Backtracking 40 2 – 0.031 535 77.2 49.4
40 4 – ≈ 6 full result not computed

Strategy I 40 – 2.5% 1.196 561 116.1 80.9
40 – 5% 1.960 1010 121.4 82.2
40 – 10% ≈ 6 1040 123.9 80.5

Strategy II 40 – 2.5% 0.072 561 116.1 80.9
40 – 5% 0.179 1010 121.4 82.2
40 – 10% 1.730 1040 123.9 80.5

Theorem 3. Given a set T of r strings of total length n, a minimum overlap
threshold t ≥ 1 and an error-rate ε, all approximate overlaps within edit distance
�ε��, where � is the length of the overlap, can be found using prefix filters and in
nHk + o(n log σ) + r log r bits of space.

4 Experiments

We implemented the different techniques described in Sect. 3 on top of succinct
data structures from the libcds library2. The implementation supports both the
k-mismatches and k-errors (i.e. edit distance) models. Edit distance computation
is done using bit-parallel dynamic programming [20]. Overlaps can be searched
by using either the backtracking algorithm (for fixed k) or suffix filters (for error-
rate ε). The experiments were run on Intel Xeon E5440 and 32 GB of memory.

2 http://code.google.com/p/libcds/

84 N. Välimäki, S. Ladra, and V. Mäkinen

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5

T
im

e
pe

r
re

ad
 (

s)

Number of sequences (in millions)

5% - edit distance - strategy II
5% - mismatch - strategy II
2 - mismatch - backtracking

Fig. 5. Average time per read when the number of sequences increases from 1 to 5
million. The average times for ε = 5% (both edit distance and mismatches) were
measured using strategy II with minimum overlap length t = 40. All averages were
measured by matching 10 000 reads against each set.

The algorithms were tested on sets of DNA sequences produced by a 454 Se-
quencing System [2]. All of the DNA was sequenced from one individual Melitaea
cinxia (a butterfly). Since the 454 system is known to produce sequencing errors
in long homopolymers (runs of single nucleotide) [6], all homopolymers longer
than 5 were truncated. The full set contained 5 million reads of total length
1.7 GB. The average read length was 355.1 with a standard deviation of 144.2.
Smaller sets of 4, 3, 2, and 1 million reads were produced by cutting down the
full set. Majority of these experiments were run using the smallest set of one
million reads to allow extensive coverage of different parameters in feasible time.

Our implementation of the suffix filters uses extra n log σ + O(d log u
d) bits

(plain sequences plus a delta-encoded bit-vector in main memory) to be able to
check candidate matches more efficiently. In practice, the total size of the index
for the sets of 5 and 1 million reads was 2.8 GB and 445 MB, respectively. A
minimum overlap length t ∈ {20, 40} was used to limit the output size. Further-
more, results were post-processed to contain only the longest overlaps for each
ordered string pair.

Table 1 summarizes our results on k-mismatch overlaps for the set of one
million reads. As expected, backtracking slows down exponentially and does not
scale up to high values of k. The parameter k = 4 corresponds approximately
to 0.7% ≤ ε ≤ 20%. Strategy I is faster than strategy II when the piece length
gets small (ε = 10% and t = 20). On all other parameters, however, it is more
efficient to check the candidates produced by the two filters in strategy II, than
to search through all partitions in strategy I. Notice that strategy II (ε = 5% and
t = 40) is only about 10 times slower than k = 2 but produces a significantly
bigger quantity of long overlaps (cf. Fig. 6). Against k = 4, strategy II is on

Approximate All-Pairs Suffix/Prefix Overlaps 85

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500

N
um

be
r

of
 o

ve
rla

ps

Overlap length

10% - edit distance
5% - edit distance

10% - mismatch
4 - mismatch
2 - mismatch

Fig. 6. Graph of overlap lengths for different error-rates ε and k-mismatches over a
set of one million reads. The mismatch curves ε = 10% and k = 4 cross each other at
overlap lengths � where k = �ε��. The y-axis is logarithmic.

par regarding time (when t = 40) and produces longer overlaps. Table 2 gives
numbers for similar tests in the k-errors model.

In our third experiment, we measured the average time as a function of the
number of sequences. Figure 5 gives the average times per read for backtracking
with 2-mismatch and suffix filters with ε = 5% and t = 40. The suffix filters,
for both edit distance and mismatch, slow down by a factor of ≈ 3.5 between
the smallest and largest set. The backtracking algorithm slows down only by a
factor of ≈ 1.5.

The graph in Fig. 6 displays the frequencies of overlap lengths computed with
the different k and ε parameters. Notice that increasing k from 2 to 4 mismatches
mainly increases the number of short overlaps.Overlaps computed using error-rate
give a much gentle distribution of overlaps, since they naturally allow less errors
for shorter overlaps. Furthermore, at overlap lengths 100–400, the 10%-mismatch
search finds about 5 times more overlaps than methods with fixed k. When search-
ing with 10%-edit distance, there are more than a hundred times more overlaps of
length 300 compared to the 2-mismatch search. This suggests that insertions and
deletions (especially at homopolymers) are frequent in the dataset.

5 Discussion

Currently, many state-of-the-art sequence assemblers for short read sequences
(e.g. [23,29,3]) use de Bruijn graph alike structures that are based on the q-grams

86 N. Välimäki, S. Ladra, and V. Mäkinen

shared by the reads. It will be interesting to see whether starting instead from the
overlap graph (resulting from the approximate overlaps studied in this paper), and
applying the novel techniques used in the de Bruijn appoaches, yields a competi-
tive assembly result. Such pipeline is currently under implementation [25].

Acknowledgments

We wish to thank Richard Durbin, Jared T. Simpson, Esko Ukkonen and Leena
Salmela for insightful discussions, and Jouni Sirén for implementing the bit-
parallel techniques.

DNA sequences were provided by The Metapopulation Research Group/The
Glanville Fritillary Butterfly Genome and Population Genomics Project: Rainer
Lehtonen3, Petri Auvinen4, Liisa Holm5, Mikko Frilander6, Ilkka Hanski3,
funded by ERC (232826) and the Academy of Finland (133132).

References

1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

2. Roche Company. 454 life sciences, http://www.454.com/
3. Simpson, J.T., et al.: Abyss: A parallel assembler for short read sequence data.

Genome Res. 19, 1117–1123 (2009)
4. Morin, R.D., et al.: Profiling the hela s3 transcriptome using randomly primed cdna

and massively parallel short-read sequencing. BioTechniques 45(1), 81–94 (2008)
5. Li, R., et al.: Soap2. Bioinformatics 25(15), 1966–1967 (2009)
6. Wicker, T., et al.: 454 sequencing put to the test using the complex genome of

barley. BMC Genomics 7(1), 275 (2006)
7. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4),

552–581 (2005)
8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3(2),
article 20 (2007)

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

10. Hyyrö, H., Navarro, G.: Bit-parallel witnesses and their applications to approxi-
mate string matching. Algorithmica 41(3), 203–231 (2005)

11. Kärkkäinen, J., Na, J.C.: Faster filters for approximate string matching. In: Proc.
ALENEX 2007, pp. 84–90. SIAM, Philadelphia (2007)

3 Metapopulation Research Group, Department of Biological and Environmental Sci-
ences, University of Helsinki.

4 DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University
of Helsinki.

5 Institute of Biotechnology and Department of Biological and Environmental Sci-
ences, University of Helsinki.

6 Institute of Biotechnology and Metapopulation Research Group, University of
Helsinki.

http://www.454.com/

Approximate All-Pairs Suffix/Prefix Overlaps 87

12. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for dna sequence assem-
bly. Algorithmica 13, 7–51 (1995)

13. Lam, T.W., Sung, W.K., Tam, S.L., Wong, C.K., Yiu, S.M.: Compressed indexing
and local alignment of dna. Bioinformatics 24(6), 791–797 (2008)

14. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biology 10(3),
R25 (2009)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

16. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics (2009), Advance access

17. Mäkinen, V., Välimäki, N., Laaksonen, A., Katainen, R.: Unifying view of back-
ward backtracking in short read mapping. In: Elomaa, T., Mannila, H., Orponen,
P. (eds.) LNCS Festschrifts. Springer, Heidelberg (to appear 2010)

18. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3) (2008)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

20. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46(3), 395–415 (1999)

21. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Sur-
veys 33(1), 31–88 (2001)

22. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

23. Pevzner, P., Tang, H., Waterman, M.: An eulerian path approach to dna fragment
assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

24. Pop, M., Salzberg, S.L.: Bioinformatics challenges of new sequencing technology.
Trends Genet. 24, 142–149 (2008)

25. Salmela, L.: Personal communication (2010)
26. Sellers, P.: The theory and computation of evolutionary distances: Pattern recog-

nition. Journal of Algorithms 1(4), 359–373 (1980)
27. Wang, Z., Gerstein, M., Snyder, M.: Rna-seq: a revolutionary tool for transcrip-

tomics. Nature Reviews Genetics 10(1), 57–63 (2009)
28. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-

posium on Switching and Automata Theory, pp. 1–11 (1973)
29. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using

de bruijn graphs. Genome Research 18(5), 821–829 (2008)

Succinct Dictionary Matching with No
Slowdown

Djamal Belazzougui

LIAFA, Univ. Paris Diderot - Paris 7, 75205 Paris Cedex 13, France
dbelaz@liafa.jussieu.fr

Abstract. The problem of dictionary matching is a classical problem in
string matching: given a set S of d strings of total length n characters over
an (not necessarily constant) alphabet of size σ, build a data structure so
that we can match in a any text T all occurrences of strings belonging to
S. The classical solution for this problem is the Aho-Corasick automaton
which finds all occ occurrences in a text T in time O(|T | + occ) using a
representation that occupies O(m log m) bits of space where m ≤ n + 1
is the number of states in the automaton. In this paper we show that the
Aho-Corasick automaton can be represented in just m(log σ + O(1)) +
O(d log(n/d)) bits of space while still maintaining the ability to answer to
queries in O(|T |+ occ) time. To the best of our knowledge, the currently
fastest succinct data structure for the dictionary matching problem uses
O(n log σ) bits of space while answering queries in O(|T | log log n + occ)
time. In the paper we also show how the space occupancy can be reduced
to m(H0+O(1))+O(d log(n/d)) where H0 is the empirical entropy of the
characters appearing in the trie representation of the set S, provided that
σ < mε for any constant 0 < ε < 1. The query time remains unchanged.

1 Introduction

A recent trend in text pattern matching algorithms has been to succinctly encode
data structures so that they occupy no more space than the data they are built
on, without a too significant sacrifice in their query time. The most prominent
example being the data structures used for indexing texts for substring matching
queries [15, 8, 9].

In this paper we are interested in the succinct encoding of data structures
for the dictionary matching problem, which consists in the construction of a
data structure on a set S of d strings (a dictionary) of total length n over an
alphabet of size σ (wlog we assume that σ ≤ n) so that we can answer to queries
of the kind: find in a text T all occurrences of strings belonging to S if any.
The dictionary matching problem has numerous applications including computer
security (virus detection software, intrusion detection systems), genetics and
others. The classical solution to this problem is the Aho-Corasick automaton
[1], which uses space O(m log m) bits (where m is the number of states in the
automaton which in the worst case equals n + 1) and answers queries in time
O(|T | + occ) (where occ is number of occurrences) if hashing techniques are

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 88–100, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Succinct Dictionary Matching with No Slowdown 89

used, or O(|T | log σ + occ) if only binary search is permitted. The main result
of our paper is that the Aho-corasick automaton can be represented in just
m(log σ+3.443+o(1))+d(3 log(n/d)+O(1)) bits of space while still maintaining
the same O(|T | + occ) query time. As a corollary of the main result, we also
show a compressed representation suitable for alphabets of size σ < mε for
any constant 0 < ε < 1. This compressed representation uses m(H0 + 3.443 +
o(1)) + O(d log(n/d)) bits of space where H0 is the empirical entropy of the
characters appearing in the trie representation of the set S. The query time of
the compressed representation is also O(|T |+ occ).

The problem of succinct encoding for dictionary matching has already been
explored in [2, 10, 16, 11]. The results in [2] and [11] deal with the dynamic case
which is not treated in this paper. The best results for the static case we have
found in the literature are the two results from [10] and the result from [16]. A
comparison of the results from [10, 16] with our main result is summarized in
table 1 (the two dynamic results of [2, 11] are not shown as in the static case
they are dominated by the static results in [10, 16]). In this table, the two results
from [10] are denoted by HLSTV1 and HLSTV2 and the result of [16] is denoted
by TWLY. For comparison purpose, we have replaced m with n in the space and
time bounds of our data structure.

Table 1. Comparison of dictionary matching succinct indexes

Algorithm Space usage (in bits) Query time
HLSTV1 O(n log σ) O(|T | log log(n) + occ)
HLSTV2 n log σ(1 + o(1)) + O(d log(n)) O(|T |(logε(n) + log(d)) + occ)
TWLY n log σ(2 + o(1)) + O(d log(n)) O(|T |(log(d) + log σ) + occ)
Ours n(log σ + 3.443 + o(1)) + O(d log(n/d)) O(|T | + occ)

Our results assume a word RAM model, in which usual operations including
multiplications, divisions and shifts are all supported in constant time. We as-
sume that the computer word is of size Ω(log n), where n is the total size of
the string dictionary on which we build our data structures. Without loss of
generality we assume that n is a power of two. All logarithms are intended as
base 2 logarithms. We assume that the strings are drawn from an alphabet of
size σ, where σ is not necessarily constant. That is, σ could be as large as n.

The paper is organized as follows: in section 2, we present the main tools
that will be used in our construction. In section 3 we present our main result.
In section 4, we give a compressed variant of the data structure. Finally some
concluding remarks are given in section 5.

2 Basic Components

In this paper, we only need to use three basic data structures from the literature
of succinct data structures.

90 D. Belazzougui

2.1 Compressed Integer Arrays

We will use the following result about compression of integer arrays:

Lemma 1. Given an array A of n integers such that
∑

0≤i<n A[i] = U . We can
produce a compressed representation that uses n(�log(U/n)� + 2 + o(1)) bits of
space such that any element of the array A can be reproduced in constant time.

This result was first described in [9] based on Elias-Fano coding by Elias [5]
and Fano [6] combined with succinct bitvectors [3] which support constant time
queries.

2.2 Succinctly Encoded Ordinal Trees

In the result of [13] a tree of n nodes of arbitrary degrees where the nodes are
ordered in depth first order can be represented in n(2 + o(1)) bits of space so
that basic navigation on the tree can be done in constant time. In this work we
will only need a single primitive: given a node x of preorder i (the preorder of
a node is the number attributed to the node in a DFS lexicographic traversal of
the tree), return the preorder j of the parent of x.

The following lemma summarizes the result which will be used later in our
construction:

Lemma 2. A tree with n nodes of arbitrary degrees can be represented in n(2+
o(1)), so that the preorder of the parent of a node of given preorder can be
computed in constant time.

In this paper we also use the compressed tree representation presented in [12]
which permits to use much less space than 2n + o(n) bits in the case where tree
nodes degrees distribution is skewed (e.g. the tree has much more leaves than
internal nodes).

Lemma 3. A tree with n nodes of arbitrary degrees can be represented in n(H∗+
o(1)), where H∗ is the entropy of the degree distribution of the tree, so that the
preorder of the parent of a node of given preorder can be computed in constant
time.

2.3 Succinct Indexable Dictionary

In the paper by Raman, Raman and Rao [14] the following result is proved :

Lemma 4. a dictionary on a set Γ of m integer keys from a universe of size
U can be built in time O(m) and uses B(m, U) + o(m) bits of space, where
B(m, U) = log

(
U
m

)
, so that the following two operations can be supported in

constant time:

– select(i): return the key of rank i in lexicographic order (natural order of
integers).

– rank(k): return the rank of key k in lexicographic order if k ∈ Γ . Otherwise
return −1.

Succinct Dictionary Matching with No Slowdown 91

The term B(m, U) = log
(

U
m

)
is the information theoretic lower bound on the

number of bits needed to encode all possible subsets of size n of a universe of size
U(we have

(
U
m

)
different subsets and so we need log

(
U
m

)
to encode them). The

term B(m, U) can be upper bounded in the worst case by m(log(e)+log(U/m)).
The space usage of the dictionary can then be simplified as B(m, U) + o(m) ≤
m(log(e) + log(U/m) + o(1)) ≤ m(log(U/m) + 1.443 + o(1)).

3 The Data Structure

Before describing our new representation, we briefly recall the original Aho-
Corasick automaton. The variant described here may slightly differ from other
ones for the reason that this variant is simpler to adapt to our case. In partic-
ular the strings of S are implicitly represented by the automaton and are never
represented explicitly.

Given a set of strings S, our Aho-Corasick automaton has m = |P | states
where P is the set of all prefixes of strings in S including the empty string and
all the strings of S. Each state of the automaton uniquely corresponds to one
of the elements of P . We thus have |P | = m ≤ n + 1 states in the automaton.
The states that correspond to strings in S are called terminal states. Our Aho-
Corasick representation has three kinds of transitions: next,failure and report:

– For each state vp corresponding to a prefix p, we have a transition next(vp, c)
labeled with character c from the state vp to a state vpv corresponding to a
prefix pc for each prefix pc ∈ P . Hence we may have up to σ next transitions
per state.

– For each state vp we have a failure transition which connects vp to the state
vq corresponding to the longest suffix q of p such that q ∈ P and p �= q.

– Additionally , for each state vp, we may have a report transition from the
state vp to the state corresponding to the longest suffix q of p such that q ∈ S
and p �= q if such q exists (a report transition always points to a terminal
state). If for a given state vp no such string exists, then we do not have a
report transition from the state vp.

Our new data structure is very simple. We essentially use two succinctly encoded
dictionaries, two succinctly encoded ordinal trees and one Elias-Fano encoded
array. The representation we use is implicit in the sense that the strings of the
dictionary are not stored at all. A query will output the occurences as triplets
of the form (occ start pos, occ end pos, string id) where string id is the identi-
fier of a matched string from S and occ start pos (occ end pos) is the starting
(ending) position of the occurrence in the text.

The central idea is to represent each state corresponding to a prefix p ∈
P , by a unique number rankP (p) ∈ [0, m − 1] which represents the rank of
p in P in suffix-lexicographic order (the suffix-lexicographic order is similar to
lexicographic order except that the strings are compared in right-to-left order
instead of left-to-right order). Then it is easy to see that the failure transitions
form a tree rooted at state 0 (which we call a failure tree) and a DFS traversal of

92 D. Belazzougui

A

C

B

A

CB

C

Fail

Report

Next

0 3

5

6

2

4 71

Fig. 1. The Aho-Corasick automaton for the set {"ABC","B","BC","CA"}

the tree will enumerate the states in increasing order. Similarly, the set of report
transitions represent a forest of trees, which can be transformed into a tree rooted
at state 0 (which we call a report tree) by attaching all the roots of the forest
as children of state 0. Then similarly a DFS traversal of the report tree will
also enumerate the states of the automaton in order. Then computing a failure
(report) transition for a given state amounts to finding the parent of the state
in the failure (report) tree. It turns out that the succinct tree representations
(lemma 2 and lemma 3) do support parent queries on DFS numbered trees in
constant time.

3.1 State Representation

We now describe the state representation and the correspondence between states
and strings. The states of our Aho-Corasick automaton representation are de-
fined in the following way:

Definition 1. Let P be the set of all prefixes of the strings in S, and let m = |P |.
We define the function state as a function from P into the interval [0, m − 1]
where state(p) = rankP (p) is the rank of the string p in P according to the suffix-
lexicographic order (we count the number of elements of P which are smaller than
p in the suffix lexicographic order).

The suffix-lexicographic order is defined in the same way as standard lexico-
graphic order except that the characters of the strings are compared in right-to-
left order instead of left-to-right order. That is the strings of P are first sorted
according to their last character and then ties are broken according to their next-
to-last character, etc. . . . In order to distinguish final states from the other states,
we simply note that we have exactly d terminal states corresponding to the d
elements of S. As stated in the definition, each of the m states is uniquely iden-
tified by a number in range [0, m−1]. Therefore in order to distinguish terminal
from non-terminal states, we use a succinct indexable dictionary, in which we
store the d numbers corresponding to the d terminal states. As those d numbers

Succinct Dictionary Matching with No Slowdown 93

all belong to the range [0, m − 1], the total space occupation of our dictionary
is (at most) d(log(m/d) + 1.443 + o(1)) bits. In the following, we denote this
dictionary as the state dictionary.

3.2 Representation of Next Transitions

We now describe how next transitions are represented. First, we note that a
transition goes always from a state corresponding to a prefix p where p ∈ P
to a state corresponding to a prefix pc for some character c such that pc ∈ P .
Therefore in order to encode the transition labeled with character c and which
goes from the state corresponding to the string p (if such transition exists), we
need to encode two informations: whether there exists a state corresponding to
the prefix pc and the number corresponding to that state if it exists. In other
words, given state(p) and a character c, we need to know whether there exists
a state corresponding to pc in which case, we would wish to get the number
state(pc).

The transition from state(p) to state(pc) can be done in a very simple way
using a succinct indexable dictionary (lemma 4) which we call the transition
dictionary. For that, we notice that state(p) ∈ [0, m − 1]. For each non empty
string pi = p′ici where pi ∈ P , we store in the transition dictionary, the pair
pair(pi) = (ci, state(p′i)) as the concatenation of the bit representation of ci

followed by the bit representation of state(p′i). That is we store a total of m− 1
pairs which correspond to the m − 1 non empty strings in P . Notice that the
pairs are from a universe of size σm. Notice also that the pairs are first ordered
according to the characters ci and then by state(p′i) (in the C language notation
a pair is an integer computed as pair(pi) = (ci << log m) + state(p′i). Now the
following facts are easy to observe:

1. Space occupation of the transition dictionary is m(log((σ ·m)/m) + 1.443 +
o(1)) = m(log σ + 1.443 + o(1)).

2. The rank of the pairs stored in the succinct dictionary reflects the rank of
the elements of P in suffix-lexicographic order. This is easy to see as we are
sorting pairs corresponding to non empty strings, first by their last characters
before sorting them by the rank of their prefix excluding their last character.
Therefore we have rank(pair(pi)) = state(pi) + 1, where rank function is
applied on the transition dictionary.

3. A pair (ci, state(p′i)) exists in the transition dictionary if and only if we have
a transition from the state corresponding to p′i to the state corresponding to
p′ici labeled with the ci.

From the last two observations we can see that a transition from a state
state(p) for a character c can be executed in the following way: first compute
the pair (c, state(p)). Then query the transition dictionary using the function
rank((c, state(p))). If that function returns −1, we can deduce that there is
no transition from state(p) labeled with character c. Otherwise we will have
state(pc) = rank((c, state(p))) + 1. In conclusion we have the following lemma:

94 D. Belazzougui

Lemma 5. The next transitions of an Aho-corasick automaton whose states are
defined according to definition 1 can be represented in (at most) m(log σ+1.443+
o(1)) bits of space such that the existence and destination state of a transition
can be computed in constant time.

3.3 Representation of Failure Transitions

We now describe how failure transitions are encoded. Recall that a failure tran-
sition connects a state representing a prefix p to the state representing a prefix q
where q is the longest suffix of p such that q ∈ P and q �= p. The set of failure
transitions can be represented with a tree called the failure tree. Each node in the
failure tree represents an element of P and each element of P has a corresponding
node in the tree. The failure tree is simply defined in the following way:

– The node representing a string p is a descendant of a node representing the
string q if and only if q �= p and q is suffix of p.

– The children of any node are ordered according to the suffix-lexicographic
order of the strings they represent.

Now an important observation on the tree we have just described is that a
depth first traversal of the tree will enumerate all the elements of P in suffix-
lexicographic order. That is the preorder of the nodes in the tree corresponds
to the suffix lexicographic order of the strings of P . It is clear from the above
description that finding the failure transition that connects a state state(p) to
a state state(q) (where q is the longest element in P such that q is a suffix
of p and q �= p) corresponds to finding the parent in the failure tree of the
node representing the element q. Using a succinct encoding (lemma 2), the tree
can be represented using space 2m + o(m) bits such that the parent primitive
is supported in constant time. That is the node of the tree corresponding to
a state p will have preorder state(p), and the preorder of the parent of that
node is state(q). A failure transition is computed in constant time by state(q) =
parent(state(p)).

Lemma 6. The failure transitions of the Aho-corasick automaton whose states
are defined according to definition 1 can be represented in m(2 + o(1)) bits of
space such that a failure transition can be computed in constant time.

3.4 Representation of Report Transitions

The encoding of the report transitions is similar to that of failure transitions. The
only difference with the failure tree is that except for the root, every internal node
is required to represent an element of S. We remark that the report transitions
form a forest of trees, which can be transformed into a tree by connecting all the
roots of the forest (nodes which do not have a report transition) as children of
state 0 (which hence becomes the root of the tree). In other words a report tree
is the unique tree built on the elements of P which satisfies :

Succinct Dictionary Matching with No Slowdown 95

– All the nodes are descendants of the root (representing state 0) which rep-
resents the empty string.

– The node representing a string p is a descendant of a node representing a
non empty string s if and only if s ∈ S, s �= p and s is a suffix of p.

– All children of a given node are ordered according to the suffix-lexicographic
order of the strings they represent.

We could encode the report tree in the same way as the failure tree (using lemma
2) to occupy m(2+o(1)) bits of space. However we can obtain better space usage
if we encode the report tree using the compressed tree representation (lemma
3). More specifically, the report tree contains at most d internal nodes as only
strings of S can represent internal nodes. This means that the tree contains at
least m − d leaves. The entropy of the degree distribution of the report tree is
d(log(m/d) + O(1)) bits and the encoding of lemma 3 will use that much space
(this can easily be seen by analogy to suffix tree representation in [12] which
uses d(log((d + t)/d) + O(1)) bits of space for a suffix tree with d internal nodes
and t leaves). Report transitions are supported similarly to failure transitions
in constant time using the parent primitive which is also supported in constant
time by the compressed tree representation (lemma 3).

Lemma 7. The report transitions of the Aho-corasick automaton whose states
are defined according to definition 1 can be represented in d(log(m/d) + O(1))
bits of space such that a report transition can be computed in constant time.

3.5 Occurence Representation

Our Aho-corasick automaton will match strings from S which are suffixes of
prefixes of the text T . This means that the Aho-corasick automaton will output
the end positions of occurrences. However the user might need to also have
the start position of occurrences. For that we have chosen to report occur-
rences as triplets (occ start pos, occ end pos, string id), where string ∈ S and
occ start pos (occ end pos) is the start (end) position of the occurrence in the
text. For that we need to know the length of the matched strings. But this infor-
mation is not available as we do not store the original strings of the dictionary
in any explicit form. We note that our algorithm outputs string identifiers as
numbers from interval [0, d − 1] where the identifier of each string corresponds
to the rank of the string in the suffix lexicographic order of all strings. Hence
in order to store the string lengths, we succinctly store an array of d elements
using the Elias-Fano encoding. In that array a cell i will store the length of the
pattern number i. We call the resulting compressed array as the pattern length
store. As the total length of the strings of the dictionary is n, the total space
usage of the pattern length store will be d(�log(n/d)�+ 2).

If the user has to associate specific action to be applied when a given string
is matched, then he may use a table action of size d, where a cell number i
stores the value representing the action associated with the pattern number i.
The table could be sorted during the building of the state dictionary.

96 D. Belazzougui

3.6 Putting Things Together

Summarizing the space usage of the data structures which are used for repre-
sentation of the Aho-Corasick automaton:

1. The state dictionary which indicates the final states occupies at most
d(log(m/d) + 1.443 + o(1)) ≤ d(log(n/d) + 1.443 + o(1)) bits of space.

2. The next transitions representation occupies B(m, mσ)+o(m) ≤ m(log(σ)+
1.443 + o(1)) bits of space.

3. The failure transitions representation occupies m(2 + o(1)) bits of space.
4. The report transitions representation occupies d(log(m/d) + O(1)) ≤

d(log(n/d) + O(1)) bits of space.
5. The pattern length store occupies d(�log(n/d)�+ O(1)) bits of space.

The following lemma summarizes the space usage of our representation:

Lemma 8. The Aho-corasick automaton can be represented in m(log σ+3.443+
o(1)) + d(3 log(n/d) + O(1)) bits of space.

Implicit representation of the dictionary strings. We note that the state
dictionary and the transition dictionary can be used in combination as an implicit
representation of the elements of S.

Lemma 9. For any integer i ∈ [0, d−1], we can retrieve the string x ∈ S of rank
i (in suffix-lexicographic order) in time O(|x|) by using the transition dictionary
and state dictionary.

The proof of the lemma is left to the full version.

3.7 Queries

Our query procedure essentially simulates the Aho-Corasick automaton opera-
tions, taking a constant time for each simulated operation. In particular perform-
ing each of the three kinds of transitions takes constant time. Thus our query
time is within a constant factor of the query time of the original Aho-Corasick.

Lemma 10. The query time of the succinct Aho-Corasick automaton on a text
T is O(|T |+ occ), where occ is the number of reported occurrences.

3.8 Construction

We now describe the construction algorithm which takes O(n) time . The algo-
rithm is very similar to the one described in [4]. We first write each string si of
S in reverse order and append a special character # at the end of each string
giving a set R. The character # is considered as smaller than all characters of
original alphabet σ. Then, we build a (generalized) suffix-tree on the set R. This
can be done in time O(n) using the algorithm in [7] for example. Each leaf in
the suffix tree will store a list of suffixes where a suffix s of a string x ∈ R
is represented by the pair (string pointer, suf pos), where string pointer is a
pointer to x and suf pos is the starting position of s in x. Then we can build
the following elements:

Succinct Dictionary Matching with No Slowdown 97

1. The transition dictionary can be directly built as the suffix tree will give
us the (suffix-lexicographic) order of all elements of P by a DFS traversal
(top-down lexicographic traversal).

2. The failure tree is built by a simple DFS traversal of the suffix tree.
3. The report tree is built by doing a DFS traversal of the failure tree.
4. The state dictionary can be built by a traversal of the report tree.
5. The pattern length store can be built by a simple traversal of the set S.

Details of the construction are left to the full version.

Lemma 11. The succinct Aho-corasick automaton representation can be con-
structed in time O(n).

The results about succinct Aho-Corasick representation are summarized by the
following theorem:

Theorem 1. The Aho-corasick automaton for a dictionary of d strings of total
length n characters over an alphabet of size σ can be represented in m(log σ +
3.443+o(1))+d(3 log(n/d)+O(1)) bits where m ≤ n+1 is the number of states in
the automaton. A dictionary matching query on a text T using the Aho-corasick
representation can be answered in O(|T | + occ) time, where occ is the number
of reported strings. The representation can be constructed in O(n) randomized
expected time.

4 Compressed Representation

The space occupancy of theorem 1 can be further reduced to m(H0 + 3.443 +
o(1))+d(3 log(n/d)+O(1)), where H0 is the entropy of the characters appearing
as labels in the next transitions of the Aho-Corasick automaton:

Theorem 2. The Aho-corasick automaton for a set S of d strings of total length
n characters over an alphabet of size σ can be represented in m(H0 + 3.443 +
o(1)) + d(3 log(n/d) + O(1)) bits where m ≤ n + 1 is the number of states in
the automaton and H0 is the entropy of the characters appearing in the trie
representation of the set S. The theorem holds provided that σ < mε for any
constant 0 < ε < 1. A dictionary matching query for a text T can be answered
in O(|T |+ occ) time.

Proof. Compared to theorem 1 we only modify the representation of the next
transition which dominates the total space usage. That is, we reduce the space
used to represent the next transitions from m(log σ + 1.443 + o(1)) to m(H0 +
1.443 + o(1)) and thus reduce the total space usage to m(H0 + 3.443 + o(1)) +
d(3 log(n/d) + O(1)) bits of space. We will use σ indexable dictionaries instead
of a single one to represent the next transitions. Each dictionary corresponds to
one of the characters of the alphabet. That is a pair (c, state) will be stored in
the dictionary corresponding to character c (we note that dictionary by I[c]).
Additionally we store a table T [0..σ− 1]. For each character c we set T [c] to the
rank of character c (in suffix-lexicographic order) relatively to the set P (that

98 D. Belazzougui

is the number of strings in the set P which are smaller than the string ′′c′′ in
the suffix lexicographic order). Let Y be the set of pairs to be stored in the
transition dictionary. The indexable dictionary I[c] will store all values statei

such that (c, statei) ∈ Y . Thus the number of elements stored in I[c] is equal to
the number of next transitions labeled with character c.

Now the target state for a transition pair (c, state) is obtained by T [c] +
rankI[c](state), where rankI[c](state) is the rank operation applied on the dic-
tionary I[c] for the value state. Let’s now analyze the total space used by
the table T and by the indexable dictionaries. The space usage of table T is
σ log m ≤ mε log m = o(m). An indexable dictionary I[c] will use at most
tc(log(m/tc) + 1.443 + o(1)) bits , where tc is the number of transitions la-
beled with character c. Thus the total space used by all indexable dictionaries is∑

0≤c<σ tc(log(m/tc)+1.443+o(1)) = m(H0+1.443+o(1)) and the total summed
space used by the table T and the indexable dictionaries is m(H0+1.443+o(1)).�

5 Concluding Remarks

Our work gives rise to two open problems: the first one is whether the term
3.443m in the space usage of our method which is particularly significant for
small alphabets (DNA alphabet for example) can be removed without incurring
any slowdown. The second one is whether the query time can be improved to
O(|T | log σ/w + occ) (which is the best query time one could hope for).

Acknowledgements

The author is grateful to Mathieu Raffinot for proofreading the paper and for use-
ful comments and suggestions. The author wishes to thank Kunihiko Sadakane
and Rajeev Raman for confirming that the construction time of their respective
data structures in [12] and [14] is linear.

References

[1] Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975)

[2] Chan, H.-L., Hon, W.-K., Lam, T.W., Sadakane, K.: Dynamic dictionary matching
and compressed suffix trees. In: SODA, pp. 13–22 (2005)

[3] Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended
abstract). In: SODA, pp. 383–391 (1996)

[4] Dori, S., Landau, G.M.: Construction of aho corasick automaton in linear time for
integer alphabets. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005.
LNCS, vol. 3537, pp. 168–177. Springer, Heidelberg (2005)

[5] Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246–260 (1974)

[6] Fano, R.M.: On the number of bits required to implement an associative memory,
Memorandum 61, Computer Structures Group, Project MAC. MIT, Cambridge
(1971)

Succinct Dictionary Matching with No Slowdown 99

[7] Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS,
pp. 137–143 (1997)

[8] Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
FOCS, pp. 390–398 (2000)

[9] Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching (extended abstract). In: STOC, pp. 397–406
(2000)

[10] Hon, W.-K., Lam, T.W., Shah, R., Tam, S.-L., Vitter, J.S.: Compressed index for
dictionary matching. In: DCC, pp. 23–32 (2008)

[11] Hon, W.-K., Lam, T.W., Shah, R., Tam, S.-L., Vitter, J.S.: Succinct index for dy-
namic dictionary matching. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878. Springer, Heidelberg (2009)

[12] Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered
trees. In: SODA, pp. 575–584 (2007)

[13] Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

[14] Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

[15] Sadakane, K.: Compressed text databases with efficient query algorithms based on
the compressed suffix array. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS,
vol. 1969, pp. 410–421. Springer, Heidelberg (2000)

[16] Tam, A., Wu, E., Lam, T.W., Yiu, S.-M.: Succinct text indexing with wildcards.
In: SPIRE, pp. 39–50 (2009)

A A Full Example

Let’s now take as example the set S = {′′ABC′′,′′ B′′,′′ BC′′,′′ CA′′}.
The example is illustrated in figures 1 and 2. The set P of pre-
fixes of S sorted in suffix-lexicographic order gives the sequence:
′′ ′′, ′′A′′, ′′CA′′, ′′B′′, ′′AB′′, ′′C′′, ′′BC′′, ′′ABC′′. The first prefix

13

0

5

6 4 2

7

(B)

(BC)

(C)

(ABC)

(AB) (CA)

(A)

3

0

4

5 2 16

7

Fig. 2. Failure and report trees for the set {"ABC","B","BC","CA"}

100 D. Belazzougui

(the empty string) in the sequence corresponds to state 0 and the last one
corresponds to state 7. For this example, we store the following elements:

– The transition dictionary stores the following pairs:
(A, 0), (A, 5), (B, 0), (B, 1), (C, 0), (C, 3), (C, 4).

– The state dictionary stores the states 2, 3, 6, 7 which correspond to the final
states of the automaton (states corresponding to the strings of S).

– The report and failure trees are depicted in figure 2.
– The pattern length store, stores the sequence 2, 1, 2, 3 which correspond

to the lengths of the strings of S sorted in suffix lexicographic order
(′′CA′′,′′ B′′,′′ BC′′,′′ ABC′′).

Pseudo-realtime Pattern Matching:
Closing the Gap

Raphaël Clifford and Benjamin Sach

Department of Computer Science, University of Bristol, UK
{clifford,sach}@cs.bris.ac.uk

Abstract. We consider the k-difference and k-mismatch problems in
the pseudo-realtime model where the text arrives online and the time
complexity measure is per arriving character and unamortised. The well-
known k-difference/k-mismatch problems are those of finding all align-
ments of a pattern of length m with a text of length n where the
edit/Hamming distance is at most k. Offline, the literature gives efficient
solutions in O(nk) and O(n

√
k log k) time, respectively. More recently,

a pseudo-realtime solution was given for the former in O(k log m) time
and the latter in O(

√
k log k log m) time per arriving text character. Our

work improves these complexities to O(k) time for the k-difference prob-
lem and O(

√
k log k + log m) for the k-mismatch problem. In the process

of developing the main results, we also give a simple solution with opti-
mal time complexity for performing longest common extension queries in
the same pseudo-realtime setting which may be of independent interest.

1 Introduction

We revisit the problem of pattern matching in streaming data. Many well known
and successful techniques have been developed since the 1970s for pattern match-
ing under a variety of norms. However, almost without exception, it has been
assumed that the entirety of the text is available to the algorithm during the
length of its operation. In two recent papers [3,4] the pseudo-realtime (PsR)
model was introduced. Here it is assumed that we are given a pattern P in
advance and the text T to which it is to be matched arrives one character at
a time. The overall task is to report matches between the pattern and text as
soon as they occur and to bound the worst case time per text input character.
The terminology extends the idea of realtime computing for situations where
achieving constant time per character is not feasible. Crucially, the running time
of the resulting algorithms is not amortised.

We focus on the well-known k-difference and k-mismatch problems in
the pseudo-realtime model. Previously, deterministic algorithms which run in
O(k log m) and O(

√
k log k log m) time per text character respectively were

shown [3,4]. Our contribution is to narrow the gap between the best known
result in the offline setting and that which is achievable deterministically in
pseudo-realtime. We first consider the k-difference problem and show how to
solve it in O(k) time per text character in the PsR setting, thus matching the

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 101–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

102 R. Clifford and B. Sach

best known O(nk) time offline result of [8]. In order to achieve this complexity
we require a realtime longest common extension (LCE) data structure which
can be updated in constant time as new text characters arrive and which still
permits constant time queries. Our solution achieves both aims and is, in the
authors’ view, remarkably straightforward and of independent interest. We then
show how to develop an O(

√
k log k+log m) time per character PsR solution for

the k-mismatch problem, improving on the previous PsR result and enabling us
to close in on the O(n

√
k log k) time offline solution of [2]. Our solution requires

two main technical innovations. First, a new filtering result given in Theorem 10
limits the number of k-mismatches that can occur in a length k contiguous region
of the text. Second, we present a new trick that combines the PsR partitioning
scheme presented in [3] with a fast algorithm for small values of k.

Our motivation goes further than the interesting theoretical question of
whether offline and online approximate pattern matching algorithms need neces-
sarily have different time complexities. The removal of the multiplicative log m
factor, which is not there in the original offline versions, is also particularly sig-
nificant as these bounded versions of the Hamming and edit distance problems
are relevant to situations where the value of k is small.

Prior to the work on PsR approximate pattern matching, the problem of exact
matching in constant time per new text character has been considered in [5] for
example. Very recently, randomised algorithms both for the exact matching and
k-mismatch problems in the streaming model, where the amount of working
memory is smaller than the pattern size, have also been given [10].

2 Pseudo-realtime k-Differences

The k-difference problem is defined in relation to the edit distance. The edit dis-
tance between the pattern, P and some text substring, T [i′ . . . i], is the minimum
number of insert, delete and mismatch operations required to transform P into
T [i′ . . . i]. These operations insert a single character, delete a single character or
substitute one character for another (mismatch). We consider a formulation of
the problem where the goal is to output the locations of all substrings of the
text to which the pattern can be transformed in at most k operations. For each
such location we also output the edit distance. In the pseudo-realtime model we
will require that each such location, T [i′ . . . i] is outputted as T [i] arrives.

In a recent paper, the present authors demonstrated an algorithm for
pseudo-realtime k-differences requiring O(k log m) time per character and O(m)
space [4]. As each T [i] arrives, their algorithm outputs the minimal edit distance
over all substrings of the form T [i′ . . . i] with distance at most k. Prior to this
work, Landau, Myers and Schmidt presented a different k-differences algorithm
in a related incremental model [7]. They allow text characters to arrive at either
end of the text and output all locations as required in O(k) time per arriving
character. However, their work is not immediately applicable in the PsR model
as it requires the entire text to be preprocessed in advance for constant time
LCE queries.

Pseudo-realtime Pattern Matching: Closing the Gap 103

In order to adapt the previous O(k) time k-differences algorithm to the sit-
uation where the text cannot be inspected in advance, we develop a realtime
version of the LCE data structure in Section 2. The LCE is traditionally com-
puted via lowest common ancestor (LCA) queries on a generalised suffix tree
of the pattern and text. However we completely avoid the complications that
would arise from performing dynamic LCA queries on an unamortised version of
a suffix tree, giving a conceptually simple solution which may be of independent
interest. We are then able to use this result to derive the final PsR k-differences
result in Theorem 5.

A Simple Realtime Scheme for Constant Time LCE Queries

We give a dynamic text indexing structure that supports longest common ex-
tension (LCE) queries in constant time. The pattern is processed in advance
in linear time. An important feature of our approach is that it supports the
text arriving online one character at time and all operations, including updat-
ing the data structures used, can be performed in constant time without any
amortisation assumptions.

Throughout we let i be the index of the most recently received text character,
T [i]. For a given pattern and text, the longest common extension, LCE(i′, j),
is the length of the longest prefix of P [j, . . . m] and T [i′, i] which is common to
both. In addition we will also consider pattern/pattern longest common exten-
sion queries, denoted by LCEP (j, j′). The value of LCEP (j, j′) is the length of
the longest common prefix of P [j . . . m] and P [j′ . . .m]. Observe that we can
preprocess P in linear time to answer LCEP queries in constant time before any
text has arrived using for example [9].

In the following, we will assume that all symbols in T occur at least once in
P . If this is not the case, we add a new character, δ into the alphabet which
is different from all pattern and text characters. We then modify P so that
P [m] = δ and modify T as each character arrives online to replace any character
not in P with a δ in constant time per character. The LCE returned may be at
most one symbol too long or too short. This can be corrected with knowledge
of the original P [m] in constant time per query. The details are simple but are
omitted for brevity.

Our algorithm splits the text into contiguous substrings which are encoded
as triples, (i′, j′, �), each representing a text substring T [i′, i′ + � − 1] which
equals a pattern substring P [j′, j′ + �− 1]. We refer to such triple as a p-region
and a disjoint ordered sequence of triples which encodes the entire text as a
p-representation. The length of a p-representation is the number of triples it
contains. Trivially, a representation of at most length n always exists as each T [i′]
occurs somewhere in P . To motivate the use of these representations, consider
that to answer an LCE query between the pattern and text we could use a
p-representation instead to identify a sequence of LCEP queries to perform. We
now show in Lemma 1 that if our p-representation is of minimal length, we need
never perform more than three LCEP queries. It will then remain only to show
how to build such a minimal representation efficiently in realtime.

104 R. Clifford and B. Sach

Lemma 1. In a minimal length p-representation of T , for any query LCE(i′, j′)
at most three of the p-regions overlap T [i′, i′ + LCE(i′, j′)− 1].

Proof. For a contradiction, assume that at least four p-regions overlap T [i′, i +
LCE(i′, j′) − 1]. There must be two contiguous p-regions which correspond to
text substrings which are themselves substrings of T [i′, i + LCE(i′, j′)− 1]. Let
(a, b, �) and (a+�, b+�, �′) be two such p-regions. Observe that T [a, a+�+�′−1]
and P [b, b + � + �′ − 1] are substrings of T [i′, i′ + LCE(i′, j′)− 1] and P [j′, j′ +
LCE(i′, j′)−1] respectively. By the definition of the LCE we have that T [i′, i′+
LCE(i′, j′)− 1] matches P [j′, j′ + LCE(i′, j′)− 1], therefore T [a, a + � + �′ − 1]
matches P [b, b + � + �′ − 1] and (a, b, � + �′) is a p-region. Further we can obtain
a shorter p-representation of T by replacing the two original p-regions with this
new p-region, a contradiction. �	

For any p-representation φ(T), we can obtain a representation of T [1, i], de-
noted φi(T) by shortening the region containing T [i] to end at text position
i and removing all regions to its right. For our realtime algorithm we desire
a p-representation, φ(T), with the property that φi(T) is minimal for all i.
Observe that such a representation is suited to greedy construction. For mo-
tivation consider the pattern P = bab and text, T = aba. There is a minimal
p-representation given by φ(T) = (1, 2, 1), (2, 1, 2). However, the representation
φ2(T) = (1, 2, 1), (2, 1, 1) is not of minimal length. On the other hand, it is easily
verified that there is another minimal p-representation, φ′(T) = (1, 2, 2), (3, 2, 1)
for which φ′

1(T) and φ′
2(T) are both minimal. Lemma 2 shows that for any

pattern and text such a representation exists.

Lemma 2. For any pattern and text, there exists a minimal length p-
representation, φ(T), such that for all i, φi(T) is a p-representation of T [1, i]
with minimal length.

Proof. We begin by letting r(T) be an arbitrary minimal p-representation of
T . Consider the largest i such that ri(T) is not minimal. If no such i exists,
then there is no work to be done. Otherwise we will modify r(T) to make ri′(T)
minimal for all i ≤ i′ ≤ n. Consider the p-region which contains T [i] in r(T). If
the region extends to the right of T [i], split it in two so that there is a break
immediately after T [i]. This split increases |r(T)| by one. However, we can now
replace all the regions to the left of this break with the regions in any minimal
p-representation of T [1, i]. As ri(T) was not minimal pre-modification this step
decreases the length of |r(T)| by at least one. Therefore our modified r(T) is no
longer than the original and in fact must be of the same length. Further, observe
that ri(T) is now minimal and ri′(T) is still minimal for all i < i′ ≤ n. We can
repeat this process until an r(T) is obtained for which ri(T) is minimal for all
1 ≤ i ≤ n as required. Let φ(T) = r(T). �	

Our algorithm incrementally constructs a greedy p-representation of the text
seen so far, T [1, i], which we denote gi(T). We show below in Lemma 3 this is a
minimal length p-representation of T [1, i]. As a preprocessing step, we construct

Pseudo-realtime Pattern Matching: Closing the Gap 105

a suffix tree of the pattern in linear time. When T [i] arrives we compute gi(T)
from gi−1(T) as follows. Consider the rightmost p-region in gi−1(T) which has
the form (i − �, b, �) for some b, �. We determine whether this region can be
extended into a p-region (i − �, b, � + 1). To perform this check efficiently we
maintain a pointer into the position in the suffix tree representing the rightmost
p-region. Observe that the region can be extended iff it is possible to step down
from the current position in the suffix tree using the character T [i]. If the p-
region cannot be extended, we insert a new p-region, (i, b′, 1) where b′ is some
location such that P [b′] = T [i] and update the suffix tree pointer.

Lemma 3. For all i, the greedy p-representation, gi(T), which represents T [1, i]
is of minimal length.

Proof. Let φ(T) be a minimal length p-representation with the property that
φi(T) is minimal for all i. Such a φ(T) exists by Lemma 2. We prove that
|gi(T)| = |φi(T)| by induction on i. Observe that for the base case i = 1, we
have that |g1(T)| = |φ1(T)| = 1. Therefore by the inductive hypothesis, we as-
sume that |gi′(T)| = |φi′(T)| for all 1 ≤ i′ < i. By the algorithm description,
|gi(T)| either equals |gi−1(T)| or |gi−1(T)| + 1. In the former, by the mono-
tonicity of φi(T), we have that |φi(T)| = |gi(T)|. Therefore we assume that
|gi(T)| = |gi−1(T)| + 1. Let (a, b, �) and (a′, b′, �′) be the triples corresponding
to the rightmost p-regions in gi−1(T) and respectively φi−1(T). First suppose
that a < a′ and observe that φa(T) contains less than |φi−1(T)| regions. How-
ever, ga(T) contains |gi−1(T)| = |φi−1(T)| regions, which is a contradiction as
|ga(T)| = |φa(T)| by the inductive hypothesis (a < a′ ≤ i). Therefore we have
that a ≥ a′. Further, by the construction of gi(T), we have that T [a, i] does not
match any substring of P and therefore T [a′, i] does not match any substring of
P . Therefore |φi(T)| = |φi−1(T)|+ 1 as required. �	

Theorem 4. There exists a dynamic data structure which can answer LCE
queries between the pattern and T [1, i] in O(1) time. When a new text char-
acter, T [i + 1] arrives, the structure can be updated in O(1) time. The structure
requires O(i) space and O(m) pattern preprocessing time.

Proof. The algorithm described maintains a p-representation of the text seen so
far which is minimal by Lemma 3. When a text character arrives, the checks
required can be performed in constant time1. By Lemma 1 we require at most
three LCEP queries to perform an LCE query. These LCEP queries can be
identified and then performed in constant time. �	

The k-Differences Algorithm

Careful inspection of the k-difference algorithm of Landau, Myers and
Schmidt [7] shows that by using the pseudo-realtime LCE processing that we
1 Strictly speaking traversing a suffix tree also incurs an O(log |Σ|) penalty at the

nodes. However we omit this from our results to be consistent with the large body
of previous work.

106 R. Clifford and B. Sach

have presented their algorithm can be translated fully to the pseudo-realtime
model. The details are left for the full version of the paper but the result is
summarised in Theorem 5.

Theorem 5. The k-differences problem can be solved in the PsR model in O(k)
time per character and O(m) space.

3 Pseudo-realtime k-Mismatches

The k-mismatch problem is defined in relation to the hamming distance which is
the number mismatches (single character differences) between two strings. The
goal is to find all alignments where the hamming distance is at most k. For
each such location we also output the hamming distance. In the pseudo-realtime
model we will require that each such location, T [i−m + 1 . . . i] is outputted as
T [i] arrives.

We now present our pseudo-realtime k-mismatch algorithm which follows the
overall structure of the offline solution of Amir et al. [2]. Their structure is in
turn based on a general frequent/infrequent splitting trick which is originally
due to Abrahamson and Kosaraju [1,6]. Our algorithm is parameterised by two
variables f and b which will feature in the time complexity. These will then be
set to minimise the time complexity per character in terms of k and m. When
minimising, we will ensure that bf ≥ 3k which will be required below. We term
a character to be frequent if it occurs at least 6f times in the pattern. We now
separate the algorithm into two cases determined by the number of frequent
characters in the pattern:

Case 1: There Are Fewer Than 6b Frequent Characters in the
Pattern

For this case we are able to modify the solution of Amir et al. [2] to make the
solution PsR. Their original method counts matches rather than mismatches and
considers frequent and infrequent characters separately. They observe that each
text position which matches an infrequent character matches at fewer than,
in our case 6f , positions in the pattern. Therefore all matches involving an
infrequent character can be found in O(nf) time by directly counting the number
of matches at each alignment. This process can be made PsR straightforwardly
as the work is performed independently for each new text character that arrives.
However we may require O(log |Σ|) time to classify the arriving text character.
This process is therefore upper-bounded by O(f +log m) time per text character
if the text is arriving online.

To handle a single frequent character, Amir et al. transform the pattern and
text into binary representations. These representations have a 1 at locations
where the frequent character occurs and 0 otherwise. They observe that the num-
ber of matches at each alignment can then be found using cross-correlations in
O(n log m) time. However, if the text arrives online, we cannot use the standard

Pseudo-realtime Pattern Matching: Closing the Gap 107

FFT-based cross-correlation method. Instead we replace this with the pseudo-
realtime cross-correlation method of [3,4]. This method now requires O(log2 m)
time per arriving text character. As there are fewer than 6b frequent charac-
ters, the original process requires a total of O(nb log m) time and our modified
pseudo-realtime process requires O(b log2 m) time per character. The result is
summarised in Lemma 6.

Lemma 6. Assume that the pattern contains fewer than 6b frequent characters,
each of which occurs at least 6f times. The k-mismatch problem can solved in
pseudo-realtime in O(f + b log2 m) time per character and O(m) space.

Case 2: There Are at Least 6b Frequent Characters in the Pattern

As in Amir et al.’s offline algorithm we perform two main stages. First, we fil-
ter the locations where a potential match could occur and second we verify the
filtered locations which indeed contain at most k mismatches. It is essential for
the translation to the pseudo-realtime setting that unlike the original, our filter-
ing results restrict not just the number but also the distribution of potentially
matching locations. Intuitively this is because otherwise we may encounter a
long stretch of potentially matching locations each requiring Θ(k) time to verify.
To perform the verification in pseudo-realtime, we will require the use of our re-
altime LCE results which were presented in Section 2 and also careful scheduling
to ensure that the time complexity of the resulting algorithm is unamortised.

We begin by trimming the pattern to remove its rightmost 3k characters,
as there are at least 6b frequent characters in P we have that m > 3k. The
mismatches between these 3k positions and the text will be handled separately.
For motivation we consider the advantage of this trimming. Consider some pat-
tern/text alignment where the rightmost character of the trimmed pattern is
aligned with the most recently arrived text character, T [i]. At this alignment,
the rightmost position of the full pattern is aligned with text character T [i+3k].
Therefore there are 3k text character arrivals between the first point at which we
have the seen the text aligned with the trimmed pattern and the point at which
we must output the result. We will use this delay to give us sufficient scheduling
flexibility to output in pseudo-realtime.

The algorithm begins by preprocessing the pattern to identify a set of 2b
pattern substrings which can be used to filter the text locations where a k-
mismatch could occur. Formally, we say that R[j . . . j′] is an f -balanced substring
of some string R for symbol s ∈ Σ if the substring R[j . . . j′−k] contains exactly
2f occurrences of s, and R[j′ − k + 1 . . . j′] contains at most f occurrences of s.

To find enough f -balanced substrings in the trimmed pattern to perform our
filtering we need to show that the trimmed pattern still contains many characters
which are almost frequent (but not too frequent). As bf ≥ 3k there cannot be
more than b symbols which occur at least f times in the rightmost 3k positions in
the pattern. Further observe that as the trimmed pattern is of length (m−3k) it
contains at most b symbols which occur at least (m−3k)/b times. Therefore the
trimmed pattern contains at least 4b symbols which occur at least 5f and less

108 R. Clifford and B. Sach

than (m− 3k)/b times and hence by Lemma 7 we have that either the trimmed
pattern or its reverse contains an f -balanced substring for each of at least 2b
distinct symbols in Σ. We concentrate our explanation on the former case. In
the latter case, simple modifications are needed and are left for the full version.
It is straightforward to find f -balanced substrings in the trimmed pattern for
2b distinct symbols in O(sort(m)) time. Here sort(m) is the time taken to sort
the pattern by character which is upper bounded by O(m log |Σ|). We denote
the f -balanced substring found for some symbol s by Wp(s). Further for each
Wp(s) := P [j . . . j′] we construct a linked list, Lp(s) of the 2f occurrences of s
in P [j . . . j′ − k] in O(m) total time and space.

Lemma 7. Consider an arbitrary string R. Let s ∈ Σ be a symbol which occurs
at least 5f and less than |R|/b times in R with bf ≥ 3k. There is an f -balanced
substring in either R or the reverse of R.

Proof. Assume that R has no k-length substring which contains at most f occur-
rences of s. Therefore we have that all disjoint k length substrings of R contain
more than f occurrences of s, so R contains more than f |R|/k ≥ |R|/b occur-
rences of s, a contradiction. Consider the first k-length R substring to contain
at most f occurrences of s. As s occurs at least 5f times there are at least 2f
occurrences of s either to the left or to the right of this substring. The result
follows from the definition of an f -balanced substring above. �	

As the text arrives we will monitor the text substrings which align with the
f -balanced substrings found during preprocessing. For each of the 2b f -balanced
substrings we define the corresponding text window, Wt(s, i), to be the substring
of T of length |Wp(s)| which is aligned with Wp(s) when the rightmost position
in the trimmed pattern is aligned with T [i] (the most recently arrived character).
For each text window, we maintain a list Lt(s, i) of up to 4f + 1 of the latest
(rightmost) occurrences of s in Wt(s, i). As there are 2b such windows these lists
can be updated when a new character arrives in O(b) total time per character
(and use O(m) total space). Lemma 8 gives the first filtering result for these text
windows.

Lemma 8. If at least b of the text windows, Wt(s, i), contain more than 4f
occurrences of s then T [i + 3k −m + 1 . . . i] has more than k mismatches with
the trimmed pattern.

Proof. We have for a single such s that Wt(s, i) contains more than 4f oc-
currences of s while Wp(s) contains at most 3f so we have found more than f
mismatches where the text character is s. Across all such symbols we have found
more than bf ≥ 3k mismatches which gives the desired result. �	

As there are 2b text windows, by Lemma, 8, we only need to consider locations
where at least b of the text windows contain at most 4f occurrences of their
corresponding symbol. Using the lists described above we can determine whether
the current T [i] has this property in constant time. Having found a suitable T [i],
we will show how to efficiently find all alignments in the the next k positions

Pseudo-realtime Pattern Matching: Closing the Gap 109

which have at most k mismatches with the trimmed pattern. Recall that the
alignment of the rightmost position in the trimmed pattern with T [i] corresponds
to the alignment of the full pattern with T [i + 3k]. Hence we still have 3k text
arrivals remaining before we need to output our first result. After finding all
these positions, the algorithm begins again with the first suitable position after
T [i+k−1]. Note that computations discussed may overlap but it is easily verified
that this only increases the time complexity by a small multiplicative constant.

Let i′ be a suitable text position as identified above, which is fixed in the re-
mainder. Consider the at least b f -balanced substrings which correspond to text
windows, Wt(s, i) containing at most 4f occurrences of s. We have that these
f -balanced substrings contain a total of at least b ·2f ≥ 6k distinct pattern posi-
tions. Pick 2k of these pattern positions. For each alignment in the next k, count
the matches involving one of those picked pattern positions. Each pattern posi-
tion is in some list, Lp(s) and by the construction of the f -balanced substrings,
during the next k alignments it only matches with text positions in Lt(s, i′).
As each |Lt(s, i′)| ≤ 4f , we perform at total of at most 8fk comparisons in this
step. We distribute these comparisons over the next k arriving characters so that
O(f) comparisons are made per alignment. Discard any alignment which has less
than k matches. By Lemma 9 we have that at most 8f alignments remain and
that all discarded alignments had more than k mismatches. Note that there are
still 2k text arrivals before we must make our first output.

Lemma 9. If at least b of the text windows, Wt(s, i), contain at most 4f oc-
currences of s then there are at most 8f alignments where there are at most
k-mismatches with the trimmed pattern in the next k text arrivals. The algo-
rithm above correctly identifies these positions.

Proof. Consider the 2k positions picked in the algorithm description. Recall that
each picked pattern position is in some Ls and matches at most |Lt(s, i′)| ≤ 4f
times in the next k alignments. Summing over all 2k pattern positions this gives
a total of at most 8kf matches. However, any alignment with less than k matches
must have more than k mismatches as there are 2k positions. Therefore there
are at most 8f positions where a k-mismatch could occur. �	

Theorem 10 summarises the main filtering result that we have shown which can
be seen as a tightening of the central filtering result of Amir et al. [2]. It follows
directly from Lemma 8, Lemma 9 and the algorithm description.

Theorem 10. Assume there are at least 5b symbols, each of which occurs at
least 5f times in the pattern where bf ≥ 3k. In k consecutive alignments of the
pattern with the text, there are at most 8f positions where a k-mismatch occurs.

Having found the at most 8f potential matching alignments in the next k align-
ments, it only remains to verify them. To find mismatches with the trimmed pat-
tern we use the online LCE query algorithm presented in section 2. We can process
the text to answer text/pattern LCE queries in constant time per arriving charac-
ter. Further we can perform the LCE queries in constant time. We can find up to

110 R. Clifford and B. Sach

k + 1 mismatches at a potential location using k + 1 constant time LCE queries.
We distribute the at most 8f(k + 1) queries evenly over the next k text arrivals
requiring O(f) time per character. Again note that there are still k text arrivals
before we must make the first output and 2k before the final output (for these k
alignments).

We now consider mismatches in the final 3k positions in the pattern. We
only need to consider the at most 8f known potential k-mismatching alignments
identified by the filtering as if the trimmed pattern does not k-mismatch then
the full pattern certainly does not. Therefore we must make Θ(fk) comparisons
to determine the remaining mismatches. We distribute these comparisons evenly
over the next 2k text arrivals. The comparisons are performed ordered left to
right by corresponding alignment. Careful inspection shows that we will have
each result by the time it is needed on the arrival of a new text character. The
result is summarised in Lemma 11.

Lemma 11. Assume that the pattern contains at least 6b frequent characters,
each of which occurs at least 6b times and that bf ≥ 3k. The k-mismatch problem
can solved in pseudo-realtime in O(f + b log2 m) time per character and O(m)
space.

We are now able to give the first new result for the k-mismatch problem in
pseudo-realtime setting. Theorem 12 combines the algorithms for the two cases
detailed above.

Theorem 12. The k-mismatch problem can be solved in pseudo-realtime in
O(
√

k log m + log2 m) time per character and O(m) space.

Proof. By combining Lemma 6 and Lemma 11 we obtain a general algorithm
for the k-mismatch algorithm in pseudo-realtime which is upper bounded by
O(f + b log2 m) time per character (and O(m) space). To give the desired result,
let f = 2�

√
k log m� and b = 2�

√
k/ log m�. Observe that we have that bf ≥ 3k

as required. By substituting and simplifying we obtain the result as stated. �	

An Improved k-Mismatch Algorithm

The result in Theorem 12 depends on both k and m. We now show how to
reduce the complexity so that the dependence on log m is only additive rather
than multiplicative. First consider the case that k5 ≥ m/2. In this case the
algorithm presented above requires O(

√
k log k) time per character as desired.

Therefore we only consider the case that k5 < m/2:
Following the black box methodology of Clifford et al. [3], we divide the pat-

tern into consecutive substrings of halving length P1, P2 . . . Ps. However, we set
s so that the final section is of length k5/2 ≤ |Ps| < k5. Note that all sections
except section s have |Pi| > k5. Also note that 2 ≤ s ≤ �log m�. Using the
techniques of the previous work we can compute matches of P1, P2 . . . Ps−1 before
they are needed. However this time we use the small k algorithm of Amir et al [2]
(Cor 6.1) for each section. Their algorithm requires O(n + nk4 log k/m) time.

Pseudo-realtime Pattern Matching: Closing the Gap 111

Therefore for subpattern Pi with i < s, the time per arriving text character is
upper bounded by O

(
1 + k4 log k/|Pi|

)
∈ O(1) as |Pi| > k5. We achieve this com-

plexity by distributing the work over arriving characters as described by the black
box methodology. To compute mismatches with the final section, we use the result
of Theorem 12. As |Ps| < k5, this requires O(

√
k log k) time per character. The

results can be summed in O(log m) time per character giving a total complexity
as summarised by Theorem 13.

Theorem 13. The k-mismatch problem can be solved in pseudo-realtime in
O(
√

k log k + log m) time per character and O(m) space.

References

1. Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6),
1039–1051 (1987)

2. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. In: SODA 2000, pp. 794–803 (2000)

3. Clifford, R., Efremenko, K., Porat, B., Porat, E.: A black box for online approxi-
mate pattern matching. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 143–151. Springer, Heidelberg (2008)

4. Clifford, R., Sach, B.: Online approximate matching with non-local distances.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 142–153.
Springer, Heidelberg (2009)

5. Galil, Z.: String matching in real time. Journal of the ACM 28(1), 134–149 (1981)
6. Kosaraju, S.R.: Efficient string matching (1987) (manuscript)
7. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM

J. Comput. 27(2), 557–582 (1998)
8. Landau, G.M., Vishkin, U.: Fast string matching with k differences. J. Comput.

Syst. Sci. 37(1), 63–78 (1988)
9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:

SODA 1990, pp. 319–327 (1990)
10. Porat, E., Porat, B.: Exact and approximate pattern matching in the streaming

model. In: FOCS 2009, pp. 315–323 (2009)

Breakpoint Distance and PQ-Trees

Haitao Jiang1,2, Cedric Chauve3, and Binhai Zhu1

1 Department of Computer Science, Montana State University,
Bozeman, MT 59717, USA

bhz@cs.montana.edu
2 School of Computer Science and Technology, Shandong University, China

htjiang@cs.montana.edu
3 Department of Mathematics, Simon Fraser University, 8888 University Drive,

Burnaby, BC V5A 1S6, Canada
cedric.chauve@sfu.ca

Abstract. The PQ-tree is a fundamental data structure that can en-
code large sets of permutations. It has recently been used in compara-
tive genomics to model ancestral genomes with some uncertainty: given
a phylogeny for some species, extant genomes are represented by per-
mutations on the leaves of the tree, and each internal node in the phy-
logenetic tree represents an extinct ancestral genome, represented by a
PQ-tree. An open problem related to this approach is then to quantify
the evolution between genomes represented by PQ-trees. In this paper
we present results for two problems of PQ-tree comparison motivated by
this application. First, we show that the problem of comparing two PQ-
trees by computing the minimum breakpoint distance among all pairs
of permutations generated respectively by the two considered PQ-trees
is NP-complete for unsigned permutations. Next, we consider a gener-
alization of the classical Breakpoint Median problem, where an ances-
tral genome is represented by a PQ-tree and p permutations are given,
with p ≥ 1, and we want to compute a permutation generated by the
PQ-tree that minimizes the sum of the breakpoint distances to the p
permutations. We show that this problem is Fixed-Parameter Tractable
with respect to the breakpoint distance value. This last result applies
both on signed and unsigned permutations, and to uni-chromosomal and
multi-chromosomal permutations.

1 Introduction

PQ-tree is a fundamental data structure in computer science. First invented
by Booth and Lueker as a tool to verify whether a matrix has the consecutive
ones property [4], it has numerous applications: for example, recognizing interval
graphs, testing whether a graph is planar, and creating a contig map from DNA
segments [4,1,14]. In short, a PQ-tree on the set Σ = {1, . . . , n} is a plane rooted
tree with three kinds of nodes: P-nodes, Q-nodes and leaves, with n leaves labeled
on Σ (no two leaves can have the same label). A fundamental feature of PQ-trees
is that a given PQ-tree encode in linear space a possibly exponential number of
permutations.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 112–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Breakpoint Distance and PQ-Trees 113

Recently, PQ-trees have been used to represent extinct ancestral genomes from
a set of extant genomes represented by permutations on the same set of markers
(see [6] and references there). The PQ-tree representing an extinct ancestral
genome generates possible marker orders that accounts for some uncertainty
regarding the order of some markers along the ancestral chromosomes. Note
that some other ways to account for uncertainty or contradictory information
have been defined, such as partial orders [18], but not in the context of ancestral
genomes.

Once the internal nodes of a phylogenetic tree are each labeled with a PQ-
tree representing the corresponding extinct genome, a natural question is to use
this information to infer quantitative properties on the evolution that gener-
ated the observed extant genomes. For branches linking two internal nodes in
the tree, this amounts to quantify the similarity between these two PQ-trees.
We consider here the breakpoint distance. Following previous works on com-
paring structures generating several permutations, we consider the Minimum-
Breakpoint-Permutation from PQ-Trees (MBP-PQ): given two PQ-trees T1 and
T2, find a permutation s1 generated by T1 and a permutation s2 generated by
T2 such that the breakpoint distance between s1 and s2 is minimum. We show
that, as for partial orders [10,3], this problem is NP-complete. Next, we consider
the restricted problem where T2 generates a single permutation, that we call
the One-Sided MBP-PQ, and we show that this problem is Fixed-Parameter
Tractable (FPT), with parameter being the optimal breakpoint distance. We
show that the same result holds for the more general median problem that con-
siders p permutations {s1, . . . , sp} and a PQ-tree T and asks for a permutation s
generated by T that minimizes the sum of the p breakpoint distances between s
and each permutation in {s1, . . . , sp}, that we call the p-Minimum-Breakpoint-
Median from PQ-Tree (p-MBM-PQ). This problem generalizes naturally the
classical Breakpoint-Median Problem, by imposing constraints on the possible
medians, at least for permutations that represent uni-chromosomal genomes. As
far as we know, our FPT algorithm is only the second occurrence of an FPT
result for hard median problems, after [11].

2 Preliminaries

Permutations, breakpoints and medians. Genomes with unique gene content are
encoded using permutations on an alphabet of genome markers. Let Σ be such an
alphabet of n markers. A uni-chromosomal permutation is a permutation on Σ.
Given a permutation s, an adjacency a, b is composed of two markers that form
a substring in s, either as ab or ba. A linear permutation of n markers contains
then n− 1 adjacencies. From now on, we omit the term linear and consider that
by default every permutation is linear. The two extremities of a permutation
are called telomeres. A multi-chromosomal permutation having k chromosomes
is a set of k permutations on k disjoint subsets of Σ. It then contains n − k
adjacencies and 2k telomeres.

114 H. Jiang, C. Chauve, and B. Zhu

Given two permutations s1 and s2, over the same set of alphabet Σ, we say
ab forms a common adjacency if ab or ba is a substring in both s1 and s2.
Otherwise, if ab appears in s1 and neither ab nor ba appears in s2, then we
say ab forms a breakpoint. A marker a is a common telomere to s1 and s2 if
it is a telomere in both permutations. We denote by a(s1, s2) (resp. t(s1, s2))
the number of common adjacencies (resp. telomeres) between s1 and s2. The
breakpoint distance between s1 and s2 is defined, as in [17], by the following
formula: db(s1, s2) = n − a(s1, s2) − t(s1, s2)/2. Note that when s1 and s2 are
uni-chromosomal permutations, it is common to frame them by two new markers,
that become telomeres, and the distance formula, that we will use in this case,
is db(s1, s2) = n− a(s1, s2), which is the number of breakpoints between s1 and
s2. In both cases, the breakpoint distance can obviously be computed in linear
time.

Given p permutations {s1, . . . , sp}, the Breakpoint-Median Problem asks for
a permutation s that minimizes

∑p
i=1 db(si, s).

To handle signed markers in permutations, we use the same idea as in [12]:
we double the number of markers and for marker i, we represent it with the
two consecutive markers (2i − 1) (2i), and for marker −i we represent it with
(2i) (2i− 1). Common adjacencies and telomeres can then be described as com-
mon adjacencies for the corresponding unsigned permutations.

PQ-trees. Formally, a PQ-tree for unsigned permutations is a plane tree with
internal nodes that can be either P-nodes or Q-nodes (P-nodes and Q-nodes
have at least 2 children). (Note that when a P-node has 2 children, it is really
a Q-node.) Reading the leaves of a PQ-tree in a post-order traversal gives a
permutation called the signature of this PQ-trees. The operations of reordering
the children of a P-node in an arbitrary way and reversing the children of a Q-
node (and mirroring the corresponding subtrees) are called allowed operations.
These operations define an equivalence relation between PQ-trees: two PQ-trees
are equivalent if and only if we can transform one into the other by a sequence
of allowed operations. The set of uni-chromosomal permutations generated by a
given PQ-tree is the set of the signatures of all the PQ-trees of its equivalence
class. See Figure 1 for an illustration of PQ-trees and generated uni-chromosomal
permutations. When dealing with multi-chromosomal permutations, we assume
the root of the considered PQ-tree T is a P-node. The set of multi-chromosomal

P

Q P

Q

8 7 65

2 1 4 3

2 1 4 3

5 8 7 6

(A) (B)

Fig. 1. (A) A PQ-tree T . 〈2, 1, 4, 3, 7, 6, 8, 5〉 and 〈3, 4, 1, 2, 5, 6, 7, 8〉 are permutations
generated by this PQ-tree, but not 〈1, 2, 3, 4, 5, 6, 7, 8〉 as 1 has to be adjacent to 4
because they are adjacent siblings in a Q-node. (B) A graph representation G of T .

Breakpoint Distance and PQ-Trees 115

permutations from a PQ-tree, is defined as follows: a multi-chromosomal permu-
tation s with k chromosomes is generated by a PQ-tree T if and only if there
exists a uni-chromosomal permutation s′ generated by T such that, discarding
k−1 adjacencies in s′ formed of markers that belong to subtrees rooted at differ-
ent children of the root of T results in s. We denote the number of permutations
generated by a PQ-tree T by P (T), assuming the context makes it clear if they
are uni-chromosomal or multi-chromosomal.

PQ-trees for signed permutations have the additional constraint that, for every
i, the leaves 2i and 2i− 1 are consecutive siblings of a Q-node.

Problem statements. We now formally state the problems we will investigate
in this paper. Each has four different versions, depending on whether the con-
sidered permutations are uni-chromosomal or multi-chromosomal, and signed or
unsigned.

Minimum Breakpoint Permutations from PQ-trees (MBP-PQ):
Input: PQ-trees T1 and T2 over the same set of n markers, integer K.
Question: Can T1 and T2 generate permutations s1 and s2 respectively such
that db(s1, s2) ≤ K?

The One-Sided MBP-PQ is the special case where T2 generates a single
permutation called s2. It is a special case of a more general problem, that gen-
eralizes the classical Breakpoint Median Problem.

p-Minimum Breakpoint Median from PQ-tree (p-MBM-PQ):
Input: PQ-trees T and p permutations s1, . . . , sp over the same set of n markers,
integer K.
Question: Can T generate a permutation s such that

∑p
i=1 db(s, si) ≤ K?

FPT algorithms. An FPT (Fixed-Parameter Tractable) algorithm for an opti-
mization problem Π with parameter value p is an algorithm which solves the
problem in O(f(p)nc) time, where f is any function only on p, n is the input
size and c is some fixed constant not related to p. For convenience we also say
that Π is in FPT. More details on FPT algorithms can be found in [8].

Existing results. If T is a PQ-tree generating all possible permutations, the p-
MBM-PQ Problem is equivalent to the classical Breakpoint-Median Problem
described above, that is NP-hard, for signed or unsigned, uni-chromosomal or
multi-chromosomal permutations [5,16,17]. In the uni-chromosomal case, even in
the case where the median is constrained to have only adjacencies that appear
in at least one of the genomes si, the problem is NP-hard [5]. This implies
immediately that the p-MBM-PQ Problem is NP-hard, for p ≥ 3, in all cases.

The MBP-PQ Problem, which we prove to be NP-complete in next section for
unsigned permutations, can be solved by an FPT algorithm whose parameter is
t = P (T1) × P (T2), as it is easy to list all permutations generated by T1 and
T2 in polynomial time and examine each pair of permutations to compute the
breakpoint distance. However P (T) can be superexponential for a PQ-tree T

116 H. Jiang, C. Chauve, and B. Zhu

with a P-node of large degree, and it is at least exponential in the number of
Q-nodes, as each Q-node can be reversed to generate a new signature.

The same argument applies to the p-MBM-PQ Problem, and, even in the
case where T has only Q-nodes (say q Q-nodes), the time complexity of the
algorithm is O(2qn). In datasets where ancestral genomes are well defined and
P (T) is small, this approach is the most efficient, especially as it allows to con-
sider more precise distances than the breakpoint distance. However, we consider
in Section 5 some real data where P (T) is too large for this approach, which
motivates our investigation of an FPT with respect to an alternative param-
eter. In Section 4, we describe an FPT algorithm parameterized by the value
of the searched optimal solution, that is the breakpoint distance of the median
permutation to the input permutations.

3 MBP-PQ Is NP-Complete

In this section, we prove that MBP-PQ is NP-complete for uni-chromosomal
and multi-chromosomal permutations, on unsigned markers. We first consider
uni-chromosomal case. We reduce X3C (Exact Cover by 3-Sets) to MBP-PQ.
Recall that the input for X3C is a set of 3-sets S = {S1, S2, ..., Sm}. Each set Si

contains exactly 3 elements from a base set V = {v1, v2, ..., vn}, where n = 3q for
some integer q. The problem is to decide whether there are q 3-sets in S which
cover each element in V exactly once.

MBP-PQ is obviously in NP and we now show that X3C can be reduced to
MBP-PQ in polynomial time.

We first outline the difficulty in the proof and how to handle them one by
one. In terms of generating permutations, P-nodes give the maximum amount
of freedom while Q-nodes give the minimum amount of freedom. So we need
to somehow balance the use of P-nodes with Q-nodes. (1) In a solution for
X3C, each element belongs to exactly one selected 3-set. We enforce this by
constructing a sub-tree in T1 for each element, using both P- and Q-nodes, such
that the element will appear exactly once in the final solution. (2) The second
difficulty is to make sure that we must construct a subtree in T2 such that the
number of possible adjacencies (non-breaking point) it could generate has a fixed
pattern. We construct such a sub-tree, using no P-nodes, for each 3-set. Once
these difficulties are resolved, we still need to have a match between the possible
adjacencies in T1 and T2; moreover, these matches imply a solution for X3C.
Next we present the details.

We first construct T1 as follows. The root of T1, r(T1), is a Q-node. Each of the
children Fi of the root corresponds to an element vi in V and is of 4 levels (with
some leaves possibly compressed in level-3, see Figure 2 (A)), and these children
are further separated by peg markers (which are leaf nodes directly under the root
r(T1)). Note that peg markers are only used to separate Tf ’s. Let vi appear in
Sp1 , Sp2 , ..., Spt . For each vi, we construct a subtree Fi as follows. The left child of
r(Fi) is a P-node which contains t Q-nodes as children, and the contents of these
Q-nodes are: vi,p1s

′
i,p2

, vi,p2s
′
i,p3

, ..., vi,pts
′
i,p1

. The right child of r(Fi) is a P-node

Breakpoint Distance and PQ-Trees 117

ip iq iq ir ir ip s s sip iq irv s’ v s’ v s’

vip sip

(B)(A)

Fig. 2. The subtree Fi. In (A) and (B) the dotted arcs indicate the corresponding
adjacencies. (A) shows the construction that vi appears three times in S. (B) shows
the case when vi appears only once in S.

with t leaves: si,p1 , si,p2 , ..., si,pt . Intuitively, vi,pwsi,pw forms an adjacency iff Spw

is selected (to cover vi) in the final X3C solution. In Figure 2 (A), note that t = 3.
When vi appears in S exactly once (say, in Sp), Fi would be a Q-node with

two leaves: vi,p, si,p (Figure 2 (B)). We would have to use some peg markers to
compose new leaf nodes to bound s′i,p so that it will never be adjacent to vi,p.
We will cover this special case at the end of the whole proof. At this point, we
assume that each vi appears in the 3-sets in S at least twice. We summarize the
construction of Fi’s with the following lemma.

Lemma 1. Fi can generate at most one adjacency vi,pwsi,pw for some 1 ≤ w ≤ t.

We now construct T2. The root of T2 is also a Q-node. Each of the children of
r(T2) is a subtree Hp with a root being a Q-node. Hp corresponds to a 3-set
Sp = {vi, vj , vk}. An illustration of Hp is shown in Figure 3. Notice that Hp has
five levels. We have the following lemmas.

Lemma 2. Hp can generate exactly two sets of adjacencies in the form of
{vi,psi,p, vj,psj,p, vk,psk,p} or {vi,ps

′
i,p, vj,ps

′
j,p, vk,ps

′
k,p}.

Lemma 3. T1 and T2 each can generate at most 3m adjacencies in the form of
vi,psi,p or vi,ps

′
i,p.

Proof. Following Lemma 2, T2 can generate at most 3m adjacencies in the form
of vi,psi,p or vj,ps

′
j,p.

vip

v

v

s’ s ip jp jp

kp

jp

ips s’ kpskp s’

ipv vjp

kpv

s’ip kps jps sip s’kp s’jp

(A) (B)

Fig. 3. The subtree Hp corresponding to Sp = {vi, vj , vk}. (A) and (B) show the two
different kinds of adjacencies (marked by dotted arcs).

118 H. Jiang, C. Chauve, and B. Zhu

Following Lemma 1, T1 can generate exactly n adjacencies in the form of
vi,pwsi,pw for some 1 ≤ w ≤ t. The remaining 3m− n adjacencies can obviously
be generated in the form of vi,ps

′
i,p. �	

Lemma 4. The input X3C instance has a valid solution if and only if T1 and
T2 can generate 3m adjacencies.

Proof. The “only if” part is easy to prove. Assume that the instance (S, V) has
a solution, let Sp = {vi, vj , vk} be in the solution. We permute the P-nodes
in Fi and the Q-nodes in Hp such that vi,psi,p forms an adjacency. Following
Lemma 3, we can obtain 3m adjacencies in T1 and T2.

We now prove the “if” part. Assume that T1 and T2 generate exactly 3m
adjacencies, we first show that there must be n adjacencies in the form of vi,psi,p.
If it is not the case, say in T2 some vi,p is never forming an adjacency with si,p,
then the adjacencies in T1, T2 will not reach 3m. Symmetrically, if in T1 one of
the subtrees Fi cannot generate t adjacencies, then there is no way T1, T2 can
generate 3m adjacencies.

Now assume that among the 3m adjacencies in T1, T2 there are n adjacencies in
the form of vi,psi,p, we argue that they exactly present a corresponding solution
for X3C. By the way we construct T1, if vi,p forms an adjacency with si,p then
it implies that Sp is selected as part of the solution for the X3C instance. As we
have exactly n adjacencies in the form of vi,psi,p, each of the element appears in
the X3C solution exactly once and we have a valid solution for the X3C instance
(S, V). �	

Theorem 1. MBP-PQ is NP-complete for uni-chromosomal unsigned permu-
tations.

Proof. Now it is necessary to cover the special case when vi appears in S exactly
once. In this case we use some peg markers as leaves to bound s′i,p such that it
will never be adjacent to vi,p. The peg markers will be directly under the roots of
T1 and T2 so we can order them in increasing and decreasing order respectively
so that the peg markers will not form adjacencies in T1 and T2. It is easy to see
that we will not use more than O(n) peg markers.

Let N be the number of peg markers used in the construction. Following
Lemma 4, there are 9m markers in T1 and T2. Therefore, the input X3C instance
has a valid solution if and only if T1 and T2 can generate two permutations with
N + 6m− 1 breakpoints.

It is clear that the whole transformation takes linear time. Hence, MBP-PQ
is NP-complete. �	

We can extend the proof to the multi-chromosomal case. Given an instance
(T1, T2) of the uni-chromosomal case, create an instance (T ′

1, T
′
2) by adding to

T1 (resp. T2) a P-node root and two children Q-nodes with each 4 leaves n +
1, n + 2, n + 3, n + 4 (resp. n + 2, n + 4, n + 1, n + 3), in this order in both cases,
and n + 5, n + 6, n + 7, n + 8 (resp. n + 6, n + 8, n + 5, n + 7), again in this order
in both cases. There are no common telomeres in T1 and T2. Therefore, (T1, T2)

Breakpoint Distance and PQ-Trees 119

has breakpoint distance K if and only if (T ′
1, T

′
2) has breakpoint distance K + 8

because we add 8 markers that do not form any adjacency, neither common
telomere.

Corollary 1. MBP-PQ is NP-complete for multi-chromosomal unsigned
permutations.

It is open whether one can design efficient FPT and/or approximation algorithms
for the optimization version of MBP-PQ.

4 An FPT Algorithm for One-Sided MBP-PQ and
p-MBM-PQ

In this section, we solve both One-Sided MBP-PQ and p-MBM-PQ with an FPT
algorithm, whose parameter is the value of the optimal breakpoint distance.
We first describe our algorithm for the uni-chromosomal case, then discuss its
generalization to the multi-chromosomal case.

A graphical representation of PQ-trees. We first introduce a graph-like repre-
sentation of a PQ-tree, that encodes the adjacency constraints between markers,
and was used in [6] to represent ancestral genomes in a linear-like way. The graph
G associated to a PQ-tree T has vertices for all nodes (internal and leaves) of T
except the root, if it is a P-node. We call the vertices that correspond to leaves
markers. And the vertices corresponding to P-nodes (resp. Q-nodes) are called
super P-nodes (resp. Q-nodes). Edges of G are defined only between pairs of
markers (or, of course, two super-nodes which must be adjacent): two markers
x and y define an edge (x, y) if and only if they are consecutive children of a
Q-node. Edges of G are called black edges. See Figure 1.

We also add an additional structure on G by embedding the vertices following
the recursive structure of T : the vertices of G corresponding to the children of
a node are embedded into the vertex representing this node (see Figure 1 (B)).
A vertex (leaf or super-node) X is contained in another vertex Z if X �= Z and
the node corresponding to X is a descendant of the one corresponding to Z in
T (hence Z is a super-node); as a consequence, all the strings generated by X
are substrings of those generated by Z.

We now describe how to augment the graph representation G1 of a PQ-tree
T1 using another permutation s2. It turns out that this will be the basis for us to
handle the ancestral genome analysis when a phylogeny is given. We start with
G1, and then add an edge, called a blue edge, (x, y) in G1 for every adjacency
xy in s2. We denote this new graph G′

1 (note that G′
1 conserves the embedding

structure we defined on G1: only blue edges are added). The degree of a super-
node X in G′

1 is the number of edges that connects a marker inside X to a
marker outside X . See Figure 1 and Figure 4.

At this point, it is easy to see that the One-Sided MBP-PQ Problem is closely
related to the classical Minimum Path Cover Problem.

120 H. Jiang, C. Chauve, and B. Zhu

An FPT algorithm for the One-Sided MBP-PQ Problem. We first state an easy
lemma that describes constraints on the blue edges that can be conserved in an
optimal solution of the problem.

Lemma 5. An optimal solution for One-Sided MBP-PQ can be obtained by per-
forming the following operations on G′

1.

1. If a marker x is in the middle of a Q-node Y which contains x, then one
can delete all the blue edges incident to x to obtain an optimal solution.

2. If a marker x is of degree greater than two, then an optimal solution could
be obtained by allowing at most two blue edges connecting to x.

3. If a super-node X is of degree greater than two, then an optimal solution
could be obtained by allowing at most two blue edges connecting to some
markers inside X.

Let r be the maximum degree of a super node, after all edge deletion operations
at Step 1 of Lemma 5 have been performed. (If r ≤ 2 the problem is trivially
solvable. So we assume that r ≥ 3.) The principle of the FPT algorithm is to
use a bounded search tree [8] that considers super nodes of degree at least three
and, for such a node X , conserves 2 blue edges that link a marker inside X and a
marker outside X . Let K be the optimal solution value for One-Sided MBP-PQ,
and f(K) be the size (number of nodes) of the search tree. It is sufficient to keep
deleting edges such that the resulting nodes have degree at most two, so we have
the following recurrence relation

f(K) =

⎧⎪⎪⎨
⎪⎪⎩

0 if K = 0,
1 if K = 1,

≤
(

r
r − 2

)
f(K − r + 2) if K > 1.

The main recurrence can be simplified as

f(K) ≤
(

r
2

)
f(K − r + 2) =

r(r − 1)
2

f(K − r + 2).

This recurrence achieves its maximum value when r = 3. Therefore,

f(K) ≤ 3K .

Once K blue edges are deleted from G′, all we need to do is to check whether
the resulting graph on Σ defined by the markers and the remaining black and
blue edges is composed of paths. If less than K blue edges are deleted and there
is no vertex of degree at least three left, we can check whether there are still any
(disjoint) cycles left, if so, then delete the blue edges accordingly to break these
cycles. If, after K blue edges are deleted and no valid solution is found, then we
report ‘No solution of size K’. This can be easily done in O(n) time as at this
point the maximum degree of any vertex is at most two. Therefore, we can use
this bounded search tree method to obtain an algorithm which runs in O(3Kn)
time, once G′

1 is computed.

Breakpoint Distance and PQ-Trees 121

abc defxy

T1

a − b − c x − y d − e − f
G’

(A)

(B)

s 2 = xyfabcde

1

Fig. 4. An example for the FPT algorithm for One-Sided MBP-PQ

In Figure 4, we show a simple example for the algorithm. An example of T1 and
s2 is illustrated in Figure 4 (A). The augmented graph G′

1 is shown in Figure 4 (B).
The optimal solution value is K = 1. According to the algorithm, we will have to
delete one blue (or dashed) edge in G′

1. The algorithm has the choice of deleting
either (a, f), (y, f), or (c, d). Clearly, deleting (a, f) gives us the optimal solution
with s1 = abcdefyx and exactly one breakpoint between s1 and s2 = xyfabcde.
Deleting (y, f) or (c, d) alone both leads to infeasible solutions.

Theorem 2. One-Sided MBP-PQ can be solved in O(3Kn) time for
uni-chromosomal signed and unsigned permutations, where n is the number of
markers and K is the number of breakpoints in the optimal solution.

Solving the p-MBM-PQ Problem. It is easy to see that p-MBM-PQ can be solved
in O(3Kn) time as well. The idea is to compute the graph G for the input PQ-
tree T and then add blue edges from adjacencies in si, for i = 1, . . . , p. Now a
blue edge (x, y) is weighted, with the weight corresponding to the total number
of adjacencies xy or yx in si, for i = 1, . . . , p. So such a weight can be an integer
in [1,p]. Let this augmented (weighted) graph be G′′. Then the problem is clearly
equivalent to deleting blue edges with a total weights of K ′ ≤ K from G′′ such
that the resulting graph is composed of paths. If there are K ′′ such paths, then
adjacencies need to be added to transform them into a single path, and arbitrary
adjacencies can be used, each contributing p to the breakpoint distance, that is
then K ′ + p(K ′′ − 1). This leads to the following result.

Corollary 2. p-MBM-PQ can be solved in O(3Kn) time for uni-chromosomal
signed and unsigned permutations.

Note that the actual running time of the FPT algorithm we described is in general
much faster than O(3Kn) as any adjacency in one of the genomes si that is dis-
carded following Lemma 5.(1) increases the breakpoint distance by 1 but is not
considered in the computation. More formally, if d is the number of edges dis-
carded due to Lemma 5.(1), the running time is in fact O(3K−dn). This has been
confirmed in our initial computational results. We can also immediately apply our
algorithm to the variant where the median is constrained to contain only adja-
cencies that appear in at least one permutation si, which is also NP-hard for the
classical Breakpoint-Median Problem [5]. Indeed, it suffices to forbid deleting blue
edges that disconnects the augmented graph, which is obviously connected at first.

122 H. Jiang, C. Chauve, and B. Zhu

Handling multi-chromosomal permutations. We need here to account for two
things: the set of generated permutations is different (larger in fact) and the
breakpoint distance requires to consider common telomeres. To deal with both
of these issues, we add in the augmented graph a vertex W , that represents
telomeres, and a blue edge (W, a) for every telomere a in the si’s. Then, a set
of blue edges defining a valid permutation implies that, once edges (W, a) are
discarded, the resulting edges comprise of a set of paths. Finally, as common
telomeres contribute to half the weight of common adjacencies in the break-
point distance formula, when the bounded search discards a blue edge (W, a), it
increases the distance by 1/2 instead of 1. This proves the following result.

Corollary 3. p-MBM-PQ can be solved in O(32Kn) time for multi-chromosomal
signed and unsigned permutations.

5 Application to Real Datasets

We present here preliminary computational results on some mammalian and yeast
genomes to illustrate the ability of our FPT algorithm to handle real datasets,
using a regular Lenovo laptop and C++. Precise data and results are available
at the URL http://www.cs.montana.edu/bhz/PQ-TREE.html. In both cases, we
change a multi-choromosomal genome into a uni-chromosomal signed permuta-
tion; as a consequence, we do not compute exactly the breakpoint distance as
defined in [17], as we might create conserved adjacencies and we ignore common
telomeres in the computation of the distance. But these results are presented to il-
lustrate the ability of our algorithm to handle datasets with PQ-trees generating
a large number of permutations. The running times are still high (varying from
two days to about a week), but they are already better than what the theoretical
results imply (for the three cases, we have K = 69, 108, and 348).

The mammalian dataset we use is from the following simple phylogenetic
tree of five species, (((Human,Macaca)I,(Mouse,Rat)II)III,Dog), given in Newick
format, and we are interested in the ancestors of Human and Macaca (node I)
and Mouse and Rat (node II). Permutations and PQ-trees at nodes I and II were
generated using methods as described as in [15]. In this case, n = 689. In the
companion webpage, we show in detail the dataset and the sequences generated
using the FPT algorithm for 2-MBM-PQ, for node I and node II. For node I, we
found that the optimal breakpoint distance is 69, and for node II, the optimal
distance is larger, at 108. Notice that these solutions are not unique (in fact in
both cases there are about 10! permutations which minimizes db(s, s1)+db(s, s2),
due to that the roots of the trees are both P-nodes). So an exhaustive search
would not work to generate an optimal permutation for node III.

The yeast data is from [13], the PQ-tree has a root which is a Q-node with 34
children (which are all Q-nodes or leaves). Among these 34 children, 8 of them
are leaves. We found an optimal distance of 348. If we wanted to enumerate all
generated permutations, we would have to try 226 different permutations.

Breakpoint Distance and PQ-Trees 123

6 Conclusion

In this paper, we make the first step in comparing the similarity of PQ-trees, with
application to comparative genomics. While the general problem is NP-complete
(not a surprise!), we show that several interesting cases, that are relevant from
an applied point of view, are in FPT, parameterized by the optimal breakpoint
distance. We also present some preliminary computational results.

Our first open question is how to construct a general graph or hypergraph
incorporating all the information regarding two PQ-trees T1 and T2. Without
such a (hyper?) graph, it seems difficult to design approximation and FPT algo-
rithms for the optimization version of MBP-PQ (and possibly some other ways
to compare the similarity of T1 and T2). A related question would be to find an
FPT algorithm for MBP-PQ whose parameter is the breakpoint distance. When
this distance is zero, the problem is in fact easy to solve: it is easy to decide if
T1 and T2 can generate the same permutation [4,2].

How to improve the efficiency of the FPT algorithms for One-Sided MBP-PQ
and p-MBM-PQ also makes interesting questions. The only other FPT algorithm
for a breakpoint median problem, described in [11], has complexity O(2.15Kn),
and it remains to see how the ideas used in that algorithm can be translated to
the case where the median is constrained to be generated by a given PQ-tree.

Regarding p-MBM-PQ, it is recently proved in [17] that the Breakpoint Me-
dian Problem for signed multi-chromosomal genomes is tractable if the median
is allowed to have circular chromosomes; it can indeed be solved by a simple
maximum weight matching algorithm. In the case of the p-MBM-PQ, the cor-
responding problem would allow that, in the median, the leaves of one or more
subtree rooted at children of the root form a circular chromosome. The com-
plexity of this problem is open.

Finally, what if we consider the problems under other distances such as the
DCJ (Double-Cut-and-Join) distance? Intuitively, we can expect that such prob-
lems are hard too. For example, comparing two PQ-trees of height 2 (every path
between a leaf and the root contains at most two edges) whose internal nodes
are all P-nodes is equivalent to computing the syntenic distance [9] between two
genomes represented by the gene content of their chromosomes and with no gene
order information, which is NP-hard [7].

Acknowledgments

This research is partially supported by NSF grant DMS-0918034, by NSF of
China under grant 60928006, and by NSERC Discovery Grant 249834-2006.

References

1. Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes
using unique probes. J. Comp. Biol. 2, 159–184 (1995)

2. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral
gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004.
LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

124 H. Jiang, C. Chauve, and B. Zhu

3. Blin, G., Blais, E., Guillon, P., Blanchette, M., ElMabrouk, N.: Inferring Gene Or-
ders from Gene Maps Using the Breakpoint Distance. In: Bourque, G., El-Mabrouk,
N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 99–102. Springer,
Heidelberg (2006)

4. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Computer and System Sci-
ences 13, 335–379 (1976)

5. Bryant, D.: The complexity of the breakpoint median problem. Technical Re-
port CRM-2579. Centre de Recherches en Mathématiques, Université de Montréal
(1998)

6. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of
contiguous regions of ancestral genomes and its application to mammalian genome.
PLoS Comput. 4:e1000234 (2008)

7. DasGupta, B., Jiang, T., Kannan, S., Li, M., Sweedyk, E.: On the Complexity and
Approximation of Syntenic Distance. Discrete Appl. Math. 88(1–3), 59–82 (1998)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
9. Feretti, V., Nadeau, J.H., Sankoff, D.: Original synteny. In: Hirschberg, D.S.,

Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 159–167. Springer, Heidelberg
(1996)

10. Fu, Z., Jiang, T.: Computing the breaking distance between partially ordered
genomes. In: APBC 2007, pp. 237–246 (2007)

11. Gramm, J., Niedermeier, R.: Breakpoint medians and breakpoint phylogenies: A
fixed-parameter approach. Bioinformatics 18(Suppl. 2), S128–S139 (2002)

12. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

13. Jean, G., Sherman, D.M., Nikolski, M.: Mining the semantic of genome super-blocks
to infer ancestral architectures. J. Comp. Biol. 16(9), 1267–1284 (2009)

14. Landau, G., Parida, L., Weimann, O.: Gene proximity analysis across whole
genomes via PQ-trees. J. Comp. Biol. 12, 1289–1306 (2005)

15. Ouangraoua, A., McPherson, A., Tannier, E., Chauve, C.: Insight into the struc-
tural evolution of amniote genomes. In: Preliminary version in Cold Spring Harbor
Laboratory Genome Informatics Meeting 2009, poster 137 (2009)

16. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec.
Colloq. Comput. Complexity, TR-98-071 (1998)

17. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems under different genomic distances. BMC Bioinformatics 10, 120 (2009)

18. Zheng, C., Lennert, A., Sankoff, D.: Reversal distance for partially ordered
genomes. Bioinformatics 21(Suppl. 1), i502–i508 (2005)

On the Parameterized Complexity of Some Optimization
Problems Related to Multiple-Interval Graphs�

Minghui Jiang

Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

Abstract. We show that for any constant t ≥ 2, k-INDEPENDENT SET and
k-DOMINATING SET in t-track interval graphs are W[1]-hard. This settles an
open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We
also give an FPT algorithm for k-CLIQUE in t-interval graphs, parameterized
by both k and t, with running time max{tO(k), 2O(k log k)} · poly(n), where n
is the number of vertices in the graph. This slightly improves the previous FPT
algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the
W[1]-hardness of k-INDEPENDENT SET in t-track interval graphs to obtain the
first parameterized intractability result for a recent bioinformatics problem called
MAXIMAL STRIP RECOVERY (MSR). We show that MSR-d is W[1]-hard for
any constant d ≥ 4 when the parameter is either the total length of the strips, or
the total number of adjacencies in the strips, or the number of strips in the optimal
solution.

1 Introduction

The intersection graph Ω(F) of a family of sets F = {S1, . . . , Sn} is the graph with
F as the vertex set and with two different vertices Si and Sj adjacent if and only if
Si ∩ Sj �= ∅. The family F is called a representation of the graph Ω(F).

Let t be an integer at least two. A t-interval is the union of t disjoint intervals in
the real line. A t-track interval is the union of t disjoint intervals in t disjoint parallel
lines called tracks, one interval on each track. A t-interval graph is the intersection
graph of a family of t-intervals. A t-track interval graph is the intersection graph of a
family of t-track intervals. If all intervals in the representation of a t-interval graph have
unit lengths, then the graph is called a unit t-interval graph. Similarly for unit t-track
interval graphs.

As generalizations of the ubiquitous interval graphs, multiple-interval graphs such
as t-interval graphs and t-track interval graphs have wide applications, tradition-
ally to scheduling and resource allocation [3,5], and more recently to bioinformat-
ics [17,2,19,7,14,1]. In particular, 2-interval graphs and 2-track interval graphs are
natural models for the similar regions of DNA sequences [17,2,1] and for the helices of
RNA secondary structures [19,7,14].

Fellows, Hermelin, Rosamond, and Vialette [9] recently initiated the study of the
parameterized complexity of multiple-interval graph problems. In general graphs, the

� Supported in part by NSF grant DBI-0743670.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 125–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 M. Jiang

three classical optimization problem k-VERTEX COVER, k-INDEPENDENT SET, and k-
DOMINATING SET, parameterized by the optimal solution size k, are exemplary prob-
lems in parameterized complexity theory [8]: it is well-known that k-VERTEX COVER

is in FPT, k-INDEPENDENT SET is W[1]-hard, and k-DOMINATING SET is W[2]-hard.
Since t-interval graphs are a special class of graphs, all FPT algorithms for k-VERTEX

COVER in general graphs immediately carry over to t-interval graphs. On the other
hand, the parameterized complexity of k-INDEPENDENT SET in t-interval graphs is
not at all obvious. Indeed, in general graphs, k-INDEPENDENT SET and k-CLIQUE are
essentially the same problem, but in t-interval graphs, they manifest different parame-
terized complexities. Fellows et al. [9] showed that k-INDEPENDENT SET in t-interval
graphs is W[1]-hard for any constant t ≥ 2, then, in sharp contrast, gave an FPT algo-
rithm for k-CLIQUE in t-interval graphs parameterized by both k and t. Similarly, the
parameterized complexity of k-DOMINATING SET in t-interval graphs is not obvious
either. Fellows et al. [9] showed that k-DOMINATING SET in t-interval graphs is also
W[1]-hard for any constant t ≥ 2.

At the end of their paper, Fellows et al. [9] raised three open questions. First,
are k-INDEPENDENT SET and k-DOMINATING SET in 2-track interval graphs W[1]-
hard? Second, is k-DOMINATING SET in t-interval graphs W[2]-hard? Third, can the
parametric time-bound of their FPT algorithm for k-CLIQUE in t-interval graphs be
improved?

The t disjoint tracks for a t-track interval graph can be viewed as t disjoint “host”
intervals in the real line for a t-interval graph. Thus the class of t-track interval graphs
is contained in the class of t-interval graphs. The containment is proper because the
complete bipartite graph Kt2+t−1,t+1 is a t-interval graph but not a t-track interval
graph [21]. It is also known that for any t ≥ 1, t-interval graphs are a proper subclass
of (t + 1)-interval graphs, and unit t-interval (resp. unit t-track interval) graphs are a
proper subclass of t-interval (resp. t-track interval) graphs; see [18,12,13,10]. Fellows
et al. [9] proved that k-INDEPENDENT SET and k-DOMINATING SET in unit 2-interval
graphs are both W[1]-hard, hence k-INDEPENDENT SET and k-DOMINATING SET in
t-interval graphs are both W[1]-hard for all t ≥ 2. The main result of this paper is
the following theorem that answers the first open question of Fellows et al. [9] and
strengthens their W[1]-hardness results to encompass even the most basic subclass of
multiple-interval graphs:

Theorem 1. k-INDEPENDENT SET and k-DOMINATING SET in unit 2-track interval
graphs are W[1]-hard.

Given a graph G and a vertex-coloring κ : V (G) → {1, 2, . . . , k}, the problem
k-MULTICOLORED CLIQUE is that of deciding whether G has a clique of k ver-
tices containing exactly one vertex of each color. Fellows et al. [9] proved that k-
MULTICOLORED CLIQUE is W[1]-complete, then proved that both k-INDEPENDENT

SET and k-DOMINATING SET in unit 2-interval graphs are W[1]-hard by FPT reduc-
tions from k-MULTICOLORED CLIQUE. Our proof of Theorem 1 follows the same
strategy. We note that this k-MULTICOLORED CLIQUE technique [9] is quickly be-
coming a standard tool for FPT reductions. We are unable to answer the second open
question of Fellows et al. [9] on the possible W[2]-hardness of k-DOMINATING SET in

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 127

t-interval graphs, but believe that any new techniques developed for this problem would
also have far-reaching influence in parameterized complexity theory.

Let’s move on to the third open question. Fellows et al. [9] presented an FPT algo-
rithm for k-CLIQUE in t-interval graphs parameterized by both k and t. They estimated
that the running time of their algorithm is tO(k log k) · poly(n), where n is the number
of vertices in the graph, and asked whether the parametric time-bound of tO(k log k) can
be improved. Our next theorem makes some small progress on this open question:

Theorem 2. For any constant c ≥ 3, there is an algorithm for k-CLIQUE in t-interval
graphs with running time O(tck) · O(nc) if k ≤ 1

4 · n1−1/c, where n is the number
of vertices in the graph. In particular, there is an FPT algorithm for k-CLIQUE in t-
interval graphs with running time max{tO(k), 2O(k log k)} · poly(n).

Finally, we extend the W[1]-hardness results in Theorem 1 to a bioinformatics
problem. In comparative genomic, the first step of sequence analysis is usually to de-
compose two or more genomes into syntenic blocks that are segments of homologous
chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the
genomic maps need to be removed first. A genomic map is a sequence of gene mark-
ers. A gene marker appears in a genomic map in either positive or negative orientation.
Given d genomic maps as signed sequences of gene markers, MAXIMAL STRIP RE-
COVERY (MSR-d) [22,6] is the problem of finding d subsequences, one subsequence
of each genomic map, such that the total length � of the strips in these subsequences is
maximized. Here a strip is a maximal string of at least two markers such that either the
string itself or its signed reversal appears contiguously as a substring in each of the d
subsequences in the solution. Without loss of generality, we can assume that all markers
appear in positive orientation in the first genomic map, as in [22,15]. For example, the
two genomic maps (the markers in negative orientation are underlined)

1 2 3 4 5 6 7 8 9 10 11 12
8 5 7 6 4 1 3 2 12 11 10 9

have two subsequences

1 3 6 7 8 10 11 12
8 7 6 1 3 12 11 10

of the maximum total strip length 8. The strip 〈1, 3〉 is positive and forward in both
subsequences; the other two strips 〈6, 7, 8〉 and 〈10, 11, 12〉 are positive and forward in
the first subsequence, but are negative and backward in the second subsequence. The
four markers 2, 4, 5, 9 are deleted. Intuitively, the strips are syntenic blocks, and the
deleted markers are noise and ambiguities in the genomic maps.

A strip of length l ≥ 2 has exactly l−1 adjacencies between consecutive markers. In
general, m strips of total length l have l−m adjacencies. Besides the total strip length,
the total number of adjacencies in the strips is also a natural objective function of MSR-
d. For both objective functions, it is known that MSR-d is APX-hard for any d ≥ 2 [15],
and moreover is NP-hard to approximate within Ω(d/ log d) [16]. On the other hand,
for any constant d ≥ 2, MSR-d admits a polynomial-time 2d-approximation [6]. See
also [20,4] for some related results. Our following theorem gives the first parameterized
intractability result for MSR-d:

128 M. Jiang

Theorem 3. MSR-d for any constant d ≥ 4 is W[1]-hard when the parameter is either
the total length of the strips, or the total number of adjacencies in the strips, or the
number of strips in the optimal solution. This holds even if all gene markers are distinct
and appear in positive orientation in each genomic map.

2 k-Independent Set

In this section we show that k-INDEPENDENT SET in unit 2-track interval graphs
is W[1]-hard. We first review the previous FPT reduction from k-MULTICOLORED

CLIQUE in general graphs to k-INDEPENDENT SET in unit 2-interval graphs [9], then
show how to modify it into an FPT reduction from k-MULTICOLORED CLIQUE in gen-
eral graphs to k-INDEPENDENT SET in unit 2-track interval graphs.

Previous Reduction. Let (G, κ, k) be an instance of k-MULTICOLORED CLIQUE. The
construction consists of k+

(
k
2

)
groups of unit intervals occupying disjoint regions of the

real line. Among the k+
(
k
2

)
groups, k groups are vertex gadgets, one for each color, and(

k
2

)
groups are edge gadgets, one for each pair of distinct colors. The vertex gadgets and

the edge gadgets are then linked together, according to the incidence relation between
the vertices and the edges, by the validation gadget. Each vertex gadget selects a vertex
of a particular color. Each edge gadget selects an edge of a particular pair of colors. The
validation gadget ensures the consistency of the selections.

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices with color i.
The vertex gadget for the color i consists of a group of intervals that can viewed as a
table1 with |Vi| rows and k +1 columns. Each row of the table corresponds to a distinct
vertex u ∈ Vi: the first interval and the last interval together form a vertex 2-interval
ûi; the other intervals, each associated with a distinct color j ∈ {1, . . . , k} \ {c} and
denoted by ui∗j , and are used for validation. The intervals in the table are arranged in a
parallelogram formation with slanted columns: the intervals in each row are disjoint; the
intervals in each column intersect at a common point; the intervals in lower rows have
larger horizontal offsets such that each interval also intersects all intervals in higher
rows in the next column.

Edge selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij be
the set of edges uv such that u has color i and v has color j. The edge gadget for the
pair of colors ij consists of a group of intervals that can viewed as a table with |Eij |
rows and 4 columns. Each row of the table corresponds to a distinct edge uv ∈ Eij : the
first interval and the fourth interval together form an edge 2-interval ûivj ; the second
and the third intervals, denoted by uivj and vjui, respectively, are used for validation.
Again the intervals in the table are arranged in a parallelogram formation.

Validation: For each edge uv such that u has color i and v has color j, the validation
gadget includes two validation 2-intervals ←−−uivj and−−→uivj : the 2-interval←−−uivj consists of
the interval uivj and the interval ui∗j; the 2-interval −−→uivj consists of the interval vjui

1 The table is of course only a visualization device; in reality the intervals in all rows of the table
are in the same line.

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 129

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.

.

. . .

. . .

. . .

. . .

. . .

ûi

ûivj

←−−uivj

Fig. 1. Construction for k-INDEPENDENT SET. On the left is a vertex gadget. On the right is an
edge gadget. The vertex 2-interval ûi selects the vertex u for the color i. The edge 2-interval ûivj

selects the edge uv for the pair of colors ij. The validation 2-interval validates the selections.

and the interval vj∗i. Note that each validation 2-interval consists of an interval from
an edge gadget and an interval from a vertex gadget.

In summary, the following family F of 2-intervals are constructed:

F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
ûivj ,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
.

Refer to Figure 1 for an example. Now set the parameter k′ = k + 3
(
k
2

)
. It remains to

show that G has a k-multicolored clique if and only if F has a k′-independent set.
For the direct implication, it is easy to verify that if K ⊆ V (G) is a k-multicolored

clique, then the following subset of 2-intervals is a k′-independent set in F :{
ûi | u ∈ K, i = κ(u)

}
∪
{
ûivj ,

←−−uivj ,
−−→uivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.

For the reverse implication, suppose that I is a k′-independent set in F . By construc-
tion, I can include at most one vertex 2-interval for each color, and at most one edge
2-interval plus at most two validation 2-intervals for each pair of distinct colors. Since
k′ = k + 3

(
k
2

)
, I must include exactly one vertex 2-interval for each color, and exactly

one edge 2-interval plus two validation 2-intervals for each pair of distinct colors. It fol-
lows that the 2

(
k
2

)
= (k − 1)k validation 2-intervals in I have exactly two intervals in

each edge gadget, and exactly k − 1 intervals in each vertex gadget. Moreover, in each
vertex gadget, the intervals of the vertex 2-interval and the k − 1 validation 2-intervals
in I must be in the same row. Similarly, in each edge gadget, the intervals of the edge
2-interval and the two validation 2-intervals in I must be in the same row. Since all
intervals in the same row of a vertex gadget are associated with the same vertex, and
all intervals in the same row of an edge gadget are associated with the same edge, the
vertex selection and the edge selection must be consistent. Thus the k vertex 2-intervals
in I corresponds to a k-multicolored clique in G.

This completes the review of the previous reduction. Before we present the new
reduction, let’s pause for a moment and ponder why this reduction works. You may
have noticed that the central idea behind the construction is essentially a geometric
packing argument. Consider each vertex 2-interval as a container of capacity k − 1,
each edge 2-interval as a container of capacity 2, and the validation 2-intervals as items
to be packed. Then, in order to pack each container to its full capacity, the items in each
container must be arranged in a regular pattern, that is, all intervals in each vertex or
edge gadget must be in the same row.

130 M. Jiang

New Reduction. We now modify the previous construction to transform each 2-interval
into a 2-track interval. Move all vertex gadgets to track 1, and move all edge gadgets to
track 2. Then all validation 2-intervals are immediately transformed into 2-track intervals.
It remains to fix the vertex 2-intervals on track 1 and the edge 2-intervals on track 2.

We first fix the vertex 2-intervals on track 1. Consider the vertex gadget for the ver-
tices Vi with color i. To fix the vertex 2-intervals in this gadget, we replace each 2-
interval ûi by two 2-track intervals ûi left and ûi right as follows:

– On track 1, let the intervals of ûi left and ûi right be the left and the right intervals,
respectively, of ûi.

– On track 2, put the intervals of ûi left and ûi right for all u ∈ Vi in a separate region,
and arrange them in a parallelogram formation with |Vi| rows and 2 columns: ûi left
in the right column, ûi right in the left column. As usual, the intervals are disjoint in
each row and are pairwise intersecting in each column, moreover the columns are
slanted such that each interval in the left column intersects all intervals in higher
rows in the right column.

Refer to Figure 2 for an illustration of the vertex 2-track intervals on the two tracks.
In a similar way (with the roles of track 1 and track 2 reversed), we replace each edge
2-interval ûivj by two 2-track intervals ûivj left and ûivj right. Then all 2-interval are
transformed into 2-track intervals. The following family F of 2-track intervals are con-
structed:

F =
{
ûi left, ûi right | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
ûivj left, ûivj right,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
.

Now set the parameter k′ = 2k + 4
(
k
2

)
. It remains to show that G has a k-multicolored

clique if and only if F has a k′-independent set.
For the direct implication, it is easy to verify that if K ⊆ V (G) is a k-multicolored

clique, then the following subset of 2-track intervals is a k′-independent set in F :

{
ûi left, ûi right | u ∈ K, i = κ(u)

}
∪
{
ûivj left, ûivj right,

←−−uivj ,
−−→uivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.

track 1 track 2

.

.

.

. . .

. . .

. . .

. . .

. . .

ûi leftûi left ûi rightûi right

v̂i left v̂i leftv̂i right v̂i right

Fig. 2. Transforming vertex 2-intervals into 2-track intervals for k-INDEPENDENT SET

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 131

For the reverse implication, suppose I is a k′-independent set in F . The same argu-
ment as before shows that I must include exactly two vertex 2-track intervals for each
color, and exactly two edge 2-track intervals plus two validation 2-track intervals for
each pair of distinct colors. Refer back to Figure 2. Let ûi left and v̂i right be the two
vertex 2-track intervals in I for some color i. The intersection pattern of the vertex 2-
track intervals for Vi on track 2 ensures that the row of u must not be higher than the
row of v. Without loss of generality, we can assume that they are in the same row, i.e.,
u = v, so that the set of validation intervals in the middle columns on track 1 that are
dominated by ûi left v̂i right is minimal (or, in terms of geometric packing, this gives the
container ûi left v̂i right the largest capacity on track 1). Thus we can assume that the two
vertex 2-track intervals for each color i form a pair ûi left ûi right for the same vertex u.
Similarly, we can assume that the two edge 2-track intervals for each pair of colors ij
form a pair ûivj left ûivj right for the same edge uv. Then the same argument as before
shows that the k pairs of vertex 2-track intervals in I corresponds to a k-multicolored
clique in G.

3 k-Dominating Set

In this section we show that k-DOMINATING SET in unit 2-track interval graphs
is W[1]-hard. We first review the previous FPT reduction from k-MULTICOLORED

CLIQUE in general graphs to k-DOMINATING SET in unit 2-interval graphs [9], then
show how to modify it into an FPT reduction from k-MULTICOLORED CLIQUE in gen-
eral graphs to k-DOMINATING SET in unit 2-track interval graphs.

Previous Reduction. Let (G, κ, k) be an instance of k-MULTICOLORED CLIQUE. The
reduction again constructs k vertex gadgets, one for each color, and

(
k
2

)
edge gadgets,

one for each pair of distinct colors. The vertex gadgets and the edge gadgets are then
linked together by the validation gadget.

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices with color
i. The vertex gadget for the color i includes one interval ∗i for the color i and one
interval ui for each vertex u ∈ Vi. The interval ∗i is combined with each interval ui to
form a vertex 2-interval ûi. The vertex gadget for Vi also includes two disjoint dummy
2-intervals that contain the left and the right endpoints, respectively, of the interval ∗i.

Edge selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij be
the set of edges uv such that u has color i and v has color j. The edge gadget for the
pair of colors ij includes a group of intervals that can viewed as a table with |Eij | rows
and 3 columns. Each row of the table corresponds to a distinct edge uv ∈ Eij : the left
interval and the right interval together form an edge 2-interval ûivj ; the middle interval,
denoted by uivj , is used for validation. Again the intervals in the table are arranged in
a parallelogram formation. The edge gadget for Eij also includes two disjoint dummy
2-intervals that intersect the left intervals and the right intervals, respectively, of all edge
2-intervals ûivj .

Validation: For each edge uv such that u has color i and v has color j, the validation
gadget includes two validation 2-intervals ←−−uivj and −−→uivj : the 2-interval ←−−uivj consists

132 M. Jiang

.
. . .

. . .

. . .

. . .

. . .

. . .
ûi ûivj

←−−uivj

dummy dummy

dummydummy

Fig. 3. Construction for k-DOMINATING SET. On the left is a vertex gadget. On the right is an
edge gadget. The vertex 2-interval ûi selects the vertex u for the color i. The edge 2-interval ûivj

selects the edge uv for the pair of colors ij. The validation 2-interval validates the selections.

of the interval uivj and the interval ui; the 2-interval −−→uivj consists of the interval uivj

and the interval vj .
In summary, the following family F of 2-intervals are constructed:

F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
ûivj ,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of 2k+2
(
k
2

)
dummy 2-intervals, two in each vertex or edge

gadget. Refer to Figure 3 for an example. Now set the parameter k′ = k+
(
k
2

)
. It remains

to show that G has a k-multicolored clique if and only if F has a k′-dominating set.
For the direct implication, it is easy to verify that if K ⊆ V (G) is a k-multicolored

clique, then the following subset of 2-intervals is a k′-dominating set in F :{
ûi | u ∈ K, i = κ(u)

}
∪
{
ûivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.

For the reverse implication, suppose that I is a k′-dominating set in F . Because ev-
ery dummy 2-interval can be replaced by an adjacent vertex or edge 2-interval in a
dominating set, we can assume without loss of generality that I does not include any
dummy 2-intervals. Then, to dominate the dummy 2-intervals2, I must include at least
one vertex 2-interval for each color, and at least one edge 2-interval for each pair of
distinct colors. Since k′ = k +

(
k
2

)
, I must include exactly one vertex 2-interval for

each color, and exactly one edge 2-interval for each pair of distinct colors. It follows
that for each pair of distinct colors ij, the two validation 2-intervals ←−−uivj and−−→uivj must
be dominated by the two vertex 2-intervals ûi and v̂j , respectively. Therefore the ver-
tex selection and the edge selection are consistent, and the k vertex 2-intervals in I
corresponds to a k-multicolored clique in G.

New Reduction. We now modify the previous construction to transform each 2-interval
into a 2-track interval. To transform the vertex 2-intervals into 2-track intervals, move
the intervals ui to track 1, and move the intervals ∗i to track 2. Then, to transform

2 We remark that the construction can be simplified by including only one dummy 2-interval for
each vertex or edge gadget. Nevertheless we keep two dummy 2-intervals for each gadget in
this presentation, partly for truthfulness to the original reduction, and partly for convenience
in our new reduction (when we split each edge 2-interval into two 2-track intervals later, we
don’t have to add new dummies).

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 133

the validation 2-intervals into 2-track intervals, move all edge gadgets to track 2. The
dummy 2-intervals can be fixed accordingly. It remains to fix the edge 2-intervals now
on track 2.

Consider the edge gadget for the edges Eij with colors ij. To fix the edge 2-intervals
in this gadget, we replace each 2-interval ûivj by two 2-track intervals ûivj left and
ûivj right as follows:

– On track 2, let the intervals of ûivj left and ûivj right be the left and the right inter-
vals, respectively, of ûivj .

– On track 1, put the intervals of ûivj left and ûivj right for all uv ∈ Eij in a sepa-
rate region, then arrange them, together with |Eij | additional dummy intervals, in a
parallelogram formation with |Eij | rows and 3 columns: ûi left in the right column,
ûi right in the left column, and dummies in the middle column. As usual, the inter-
vals are pairwise intersecting in each column, and the columns are slanted. But in
each row the three intervals are not all disjoint: the left interval and the middle inter-
val slightly overlap, and are both disjoint from the right interval. Now each interval
in the right column intersects all intervals in lower rows in the middle column, and
each interval in the left column intersects all intervals in the same or higher rows
in the middle column. Finally, each of the |Eij | dummy intervals in the middle
column is combined with an isolated dummy interval on track 2 to form a dummy
2-track interval.

Refer to Figure 4 for an illustration of the edge 2-track intervals on the two tracks. The
following family F of 2-track intervals are constructed:

F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
ûivj left, ûivj right,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of 2k+2
(
k
2

)
+ |E(G)| dummy 2-track intervals, two in each

vertex or edge gadget as before, and one more for each edge (recall the middle column
of each edge gadget on track 1). Now set the parameter k′ = k + 2

(
k
2

)
. It remains to

show that G has a k-multicolored clique if and only if F has a k′-dominating set.

track 1track 2

. . .

. . .
. . .

. . .
. . .

. . .

. . .

.

.

duivj left duivj leftduivj right duivj right

dxiyj leftdxiyj left dxiyj right
dxiyj right

Fig. 4. Transforming edge 2-intervals into 2-track intervals for k-DOMINATING SET

134 M. Jiang

For the direct implication, it is easy to verify that if K ⊆ V (G) is a k-multicolored
clique, then the following subset of 2-track intervals is a k′-dominating set in F :{

ûi | u ∈ K, i = κ(u)
}
∪
{
ûivj left, ûivj right | u, v ∈ K, i = κ(u), j = κ(v)

}
.

For the reverse implication, suppose that I is a k′-dominating set in F . Note that any
one of the (original) two dummy 2-track intervals in each vertex or edge gadget can
be replaced by an adjacent vertex or edge 2-interval in a dominating set. Thus we can
assume without loss of generality that I includes none of these 2k + 2

(
k
2

)
dummies.

Then, to dominate these dummies, I must include at least one vertex 2-track interval
for each color, and at least two edge 2-track intervals for each pair of distinct colors.
Since k′ = k + 2

(
k
2

)
, I must include exactly one vertex 2-track interval for each color,

and exactly two edge 2-track intervals for each pair of distinct colors. Refer back to
Figure 4. Let ûivj left and x̂iyj right be the two edge 2-track intervals in I for some pair
of colors ij. The intersection pattern of the edge 2-track intervals for Eij on track 1
ensures that, in order to dominate all the (new) dummies in the middle column, the row
of xy must not be higher than the row of uv. Without loss of generality, we can assume
that they are in the same row, i.e., uv = xy, so that the set of validation intervals in the
middle column on track 2 that are dominated by ûivj left x̂iyj right is maximal. Thus the
two edge 2-track intervals for each pair of colors ij form a pair ûivj left ûivj right for
the same edge uv. Then the same argument as before shows that the k vertex 2-track
intervals in I corresponds to a k-multicolored clique in G.

4 k-Clique

In this section we prove Theorem 2. Fellows et al. [9] presented the following algorithm
CLIQUE(G, k) that decides whether a given t-interval graph G has a k-clique:

CLIQUE(G, k):

1. If |V (G)| < k, then return NO.
2. Let v be a vertex of minimum degree in G.
3. If deg(v) ≥ 2tk, then return YES.
4. If v is in a k-clique of G, then return YES.
5. Return CLIQUE(G− v, k).

The crucial step of this algorithm, step 3, is justified by a structural lemma [9,
Lemma 2]: “if G is a t-interval graph with no k-cliques then G has a vertex of de-
gree less than 2tk.” Step 4 can be implemented in O(k2 ·

(2tk
k

)
) time by brute force;

all other steps have running time polynomial in n. Since the total number of recur-
sive calls, in step 5, is at most n, the overall time complexity of the algorithm is
O(k2 ·

(2tk
k

)
) · poly(n). Fellows et al. [9] estimated that

O(k2 ·
(

2tk

k

)
) = tO(k log k), (1)

and asked whether this parametric time-bound can be improved.

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 135

Fellows et al. [9] suggested that “a possible good place to start is to consider the
problem for constant values of t, and to attempt to obtain a parametric time-bound
of 2O(k).” This suggestion is little misleading because for constant values of t, the
algorithm CLIQUE(G, k) already attains a parametric time-bound of 2O(k). Note that(2tk

k

)
≤ 22tk. Thus if t = O(1) then O(k2 ·

(2tk
k

)
) = O(22 log k · 22tk) = 2O(k).

Anyway, can we improve the parametric time-bound of tO(k log k)? We next describe
such an FPT algorithm. Our FPT algorithm has two components. The first component
is the following algorithm CLIQUE*(G, k) slightly modified from CLIQUE(G, k):

CLIQUE*(G, k):

1. If |V (G)| < k, then return NO.
2. Let v be a vertex of minimum degree in G.
3. If deg(v) ≥ 2tk, then return YES.
4. If CLIQUE*(neighbors(v), k − 1) returns YES, then return YES.
5. Return CLIQUE*(G− v, k).

Note that CLIQUE*(G, k) is identical to CLIQUE(G, k) except step 4. The follow-
ing recurrence on the time bound f(k) · g(n) captures the recursive behavior of
CLIQUE*(G, k):

f(k) · g(n) ≤ f(k − 1) · g(2tk) + f(k) · g(n− 1) + O(n2).

Lemma 1. For any constant c ≥ 3, if k ≤ 1
4 · n1−1/c, then the running time of

CLIQUE*(G, k) is O(tck) ·O(nc).

The second component of our FPT algorithm is the obvious brute-force algorithm that
enumerates and checks all k-subsets of vertices for k-cliques.

Lemma 2. For any constant c ≥ 3, if k > 1
4 · n1−1/c, then the running time of the

brute-force algorithm is 2O(k log k).

Finally, for any constant c ≥ 3, by choosing the algorithm CLIQUE*(G, k) when k ≤
1
4 · n1−1/c, and choosing the brute-force algorithm when k > 1

4 · n1−1/c, we obtain an
FPT algorithm with a parametric time-bound of

max{tO(k), 2O(k log k)}. (2)

Compare our bound (2) with the previous bound (1). It appears that we have obtained
an improvement3, but asymptotically this improvement is negligible. Check that the
estimate in (1) is not tight:

O(k2 ·
(

2tk

k

)
) = O(k2(2tk)k) = tO(k)2O(k log k)

= max{(tO(k))2, (2O(k log k))2} = max{tO(k), 2O(k log k)}.

In light of this delicate distinction, perhaps the open question on k-CLIQUE in t-interval
graphs [9] could be stated more precisely as follows:

3 Under the condition that k ≤ 1
4
· n1−1/c for some constant c ≥ 3, CLIQUE*(G,k)

clearly improves CLIQUE(G,k): in particular, for t = Θ(log k), the parametric bound of
CLIQUE*(G,k) is 2O(k log log k), and the parametric bound of CLIQUE(G,k) is 2O(k log k).

136 M. Jiang

Question 1. Is there an FPT algorithm for k-CLIQUE in t-interval graphs with a para-
metric time-bound of tO(k)?

Note that a parametric time-bound of 2O(k log k) alone is beyond reach. This is because
every graph of n vertices is a t-interval graph for t ≥ n/4 [11]. If the parameter t
does not appear in the bound, then we would have an FPT algorithm for the W[1]-hard
problem of k-CLIQUE in general graphs.

5 Maximal Strip Recovery

In this section we prove Theorem 3. Let �-MSR-d be the problem MSR-d parameterized
by the total length � of the strips in the optimal solution. We first prove that �-MSR-4 is
W[1]-hard by an FPT-reduction from k-INDEPENDENT SET in 2-track interval graphs.

Let (F , k) be an instance of k-INDEPENDENT SET in 2-track interval graphs, where
F = {I1, . . . , In} is a set of n 2-track intervals. We construct four genomic maps

G→, G←, G1, G2, where each map is a permutation of 2n distinct markers
i
⊂ and

i
⊃,

1 ≤ i ≤ n, all in positive orientation. G→ and G← are concatenations of the n pairs of
markers with ascending and descending indices, respectively:

G→ :
1
⊂

1
⊃ · · ·

n
⊂

n
⊃

G← :
n
⊂

n
⊃ · · ·

1
⊂

1
⊃

To construct G1 and G2, we first modify the representation of the 2-track interval graph
for F until the 2n endpoints of the n intervals on each track are all distinct. This can
be done in polynomial time by a standard procedure for interval graphs. Then, on each
track, mark the left and the right endpoints of the interval for Ii by the left and the right

markers
i
⊂ and

i
⊃, respectively. Thus we obtain two sequences of markers for the two

genomic maps G1 and G2. This completes the construction.
Now set the parameter � = 2k. By the following two observations, it is easy to check

that F has a k-independent set if and only G→, G←, G1, G2 have four subsequences of
total strip length �:

1. G→ and G← ensure that each strip must be a pair of markers.
2. G1 and G2 encode the intersection pattern of the 2-track intervals.

Therefore �-MSR-d is W[1]-hard.
Since the length of each strip is exactly 2 in our construction, the total number of

adjacencies in the strips and the number of strips are both equal to half the total strip
length. Therefore MSR-d remains W[1]-hard when the parameter is changed to either
the total number of adjacencies in the strips or the number of strips. For any two con-
stants d and d′ such that d′ > d ≥ 2, the problem MSR-d is a special case of the
problem MSR-d′ with d′ − d redundant genomic maps. Thus the W[1]-hardness of
MSR-4 implies the W[1]-hardness of MSR-d for all constants d ≥ 4.

Parameterized Complexity of Problems Related to Multiple-Interval Graphs 137

References

1. Alcón, L., Cerioli, M.R., de Figueiredo, C.M.H., Gutierrez, M., Meidanis, J.: Tree loop
graphs. Discrete Applied Mathematics 155, 686–694 (2007)

2. Bafna, V., Narayanan, B., Ravi, R.: Nonoverlapping local alignments (weighted independent
sets of axis-parallel rectangles). Discrete Applied Mathematics 71, 41–53 (1996)

3. Bar-Yehuda, R., Halldórsson, M.M., Naor, J(S.), Shachnai, H., Shapira, I.: Scheduling split
intervals. SIAM Journal on Computing 36, 1–15 (2006)

4. Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: hardness and
approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 710–719. Springer, Heidelberg (2009)

5. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-
interval graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 268–277 (2007)

6. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps.
Journal of Combinatorial Optimization 18, 307–318 (2009)

7. Crochemore, M., Hermelin, D., Landau, G.M., Rawitz, D., Vialette, S.: Approximating the
2-interval pattern problem. Theoretical Computer Science 395, 283–297 (2008)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)
9. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity

of multiple-interval graph problems. Theoretical Computer Science 410, 53–61 (2009)
10. Gambette, P., Vialette, S.: On restrictions of balanced 2-interval graphs. In: Brandstädt, A.,

Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 55–65. Springer, Heidelberg
(2007)

11. Griggs, J.R.: Extremal values of the interval number of a graph, II. Discrete Mathematics 28,
37–47 (1979)

12. Griggs, J.R., West, D.B.: Extremal values of the interval number of a graph. SIAM Journal
on Algebraic and Discrete Methods 1, 1–7 (1980)

13. Gyárfás, A., West, D.B.: Multitrack interval graphs. Congressus Numerantium 109, 109–116
(1995)

14. Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbi-
trary pseudoknots. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
doi:10.1109/TCBB.2008.109 (to appear)

15. Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z., Ibarra, O.
(eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg (2009)

16. Jiang, M.: Inapproximability of maximal strip recovery: II (Submitted)
17. Joseph, D., Meidanis, J., Tiwari, P.: Determining DNA sequence similarity using maximum

independent set algorithms for interval graphs. In: Nurmi, O., Ukkonen, E. (eds.) SWAT
1992. LNCS, vol. 621, pp. 326–337. Springer, Heidelberg (1992)

18. Trotter Jr., W.T., Harary, F.: On double and multiple interval graphs. Journal of Graph The-
ory 3, 205–211 (1979)

19. Vialette, S.: On the computational complexity of 2-interval pattern matching problems. The-
oretical Computer Science 312, 223–249 (2004)

20. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Proceedings of the 6th
Annual Conference on Theory and Applications of Models of Computation (TAMC 2009),
pp. 400–409 (2009)

21. West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-complete.
Discrete Applied Mathematics 8, 295–305 (1984)

22. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in
rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 4, 515–522 (2007)

Succinct Representations of Separable Graphs

Guy E. Blelloch1 and Arash Farzan2

1 Computer Science Department, Carnegie Mellon University
2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

blelloch@cs.cmu.edu, afarzan@mpi-inf.mpg.de

Abstract. We consider the problem of highly space-efficient represen-
tation of separable graphs while supporting queries in constant time in
the RAM with logarithmic word size. In particular, we show constant-
time support for adjacency, degree and neighborhood queries. For any
monotone class of separable graphs, the storage requirement of the rep-
resentation is optimal to within lower order terms.

Separable graphs are those that admit a O(nc)-separator theorem
where c < 1. Many graphs that arise in practice are indeed separable.
For instance, graphs with a bounded genus are separable. In particular,
planar graphs (genus 0) are separable and our scheme gives the first
succinct representation of planar graphs with a storage requirement that
matches the information-theory minimum to within lower order terms
with constant time support for the queries.

We, furthers, show that we can also modify the scheme to succinctly
represent the combinatorial planar embedding of planar graphs (and
hence encode planar maps).

1 Introduction

Many applications use graphs to model connectivity information and relationship
between different objects. As the size of these graphs grow, the space efficiency
becomes increasingly important. The structural connectivity of the Web modeled
as the Web graph is an example which presently contains billions of vertices and
the number is growing [1]. As a result, compact representation of such graphs
for use in various algorithms has been in interest [2,3,4,5]. Planar (and almost
planar) graphs which capture various structural artifacts such as road networks,
form another example of graphs whose space-efficient representation is crucial
due to their massive size. For all these applications, it is desirable to represent the
graph compactly and be able to answer dynamic queries on the graph quickly.

A succinct representation of a combinatorial object is a compact representa-
tion of that object such that its storage requirement matches the information-
theoretic space lower bound to within lower order terms, and it supports a
reasonable set of queries in constant time. Succinct data structures perform
under the uniform-cost word RAM-model with Θ (lg n) word size [6]1. Hence,
the main distinction between succinct and compact representations of an object
1 lg n denotes log2 n.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 138–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Succinct Representations of Separable Graphs 139

is that unlike compact representations, the storage requirement of a succinct rep-
resentation cannot be a constant factor away from the optimal and moreover,
queries must perform in constant time.

Unstructured graphs are highly incompressible (see section 1.1). Fortunately
however, most types of graph that arise in practice have some structural prop-
erties. A most common structural property that graphs in practice have is that
they have small separators. A graph has small separators if its induced subgraphs
can be partitioned into two parts of roughly the same size by removing a small
number of vertices (to be defined precisely in section 2). Planar graphs (such
as 2-dimensional meshes), almost planar graphs (such as road networks, distri-
bution networks) [7,8], and most 3-dimensional meshes [9] have indeed small
separators.

In this paper, we study the problem of succinct representations of separa-
ble undirected and unlabeled graphs (as defined precisely in definition 1). We
present a succinct representation with a storage requirement which achieves
the information-theoretic bound to within lower order terms and show constant
time support for the following set of queries: adjacency queries, neighborhood
queries, and degree queries. Adjacency queries on a pair of vertices x, y de-
termines whether (x, y) is an edge. Neighborhood queries iterate through the
neighbors of a given vertex x. Finally, the degree query outputs the number of
incident edges to a given vertex x. A representation that supports these queries
in constant time has the functionality of both an adjacency list and an adjacency
matrix at the same time.

Analogous to Fredrickson’s partitioning scheme for planar graphs [8], our suc-
cinct representation is based on recursive decomposition of graphs into smaller
graphs. We repeatedly separate the given graph into smaller graphs to obtain
small graphs of poly-logarithmic size which we refer to as by mini-graphs. These
mini-graphs are further separated into yet smaller graphs of sub-logarithmic size
which we refer to as by micro-graphs. Micro-graphs have small enough sizes
to be catalogued and listed in a look-up table. Micro-graphs are encoded by
a reference to within the look-up table. At each step that a graph is repeat-
edly split into two smaller subgraphs, the vertices in the separator are copied
into both subgraphs. Therefore there are duplicate vertices in mini-graphs and
micro-graphs. The main difficulty is to be able to represent the correspondence
between duplicate vertices and the original graph vertices.

The time to construct the representation is dominated by the time needed
to recursively decompose the graph into mini-graphs and micro-graphs and also
by the time needed to assemble the look-up table for micro-graphs. The time
for finding the separators and decomposing the graph recursively varies signif-
icantly from a family of graphs to another. For instance, there are linear time
algorithms for finding separators in planar graphs and well-shaped meshes in ar-
bitrary dimensions [7,9]. For our purposes a poly-logarithmic approximation of
the separator size suffices and therefore we use Leighton-Rao’s polynomial time
construction [10]. The time required to assemble the look-up table depends on
the maximum size of micro-trees, since we need to exhaustively list all separable

140 G.E. Blelloch and A. Farzan

graphs modulo their isomorphism up to that size. We have a large degree of
freedom on the choice of maximum size of a micro-graph, choice of

√
lg n

lg lg n as
the maximum micro-graph size ensures a sub-linear look-up table construction
time. Albeit, for simplicity of presentation of this paper, we will use lg n

lg lg n as the
maximum micro-graph size.

1.1 Related Work

As mentioned previously, unstructured graphs are highly incompressible. A sim-
ple counting argument shows that a random graph with n vertices and m edges
requires

⌈
lg
((n

2)
m

)⌉
bits. Blandford et al. [11] achieves this bound within a con-

stant multiplicative factor for sparse graphs. Raman et al. [12] give a repre-
sentation with a storage requirement which is roughly twice the information
theory minimum and supports adjacency and neighborhood queries in constant
time. Farzan and Munro [13] prove the infeasibility of achieving the information-
theoretic space lower bound to within lower order terms and constant-time query
support. and give a representation with a storage requirement that is a factor of
1 + ε away from the minimum (for any constant ε > 0).

Hence, space efficient representations of graphs with a certain combinato-
rial structure has been of interest: e.g. bounded-genus graphs [14], graphs with
limited arboricity, and c-decomposable graphs [15]. A strong line of research
has been on compressing planar graphs. Given a planar graph with n vertices,
Turán [16] gives a O(n)-bit representation. Keeler and Westbrook [17] improve
the space by a constant factor. He et al. [18] improve the first order term of
space to the information-theory minimum. However, none of these consider fast
support for queries.

Jacobson [19] gives a linear-space representation for planar graphs which sup-
ports adjacency queries in logarithmic time. Munro and Raman [20] gives a
linear-space encoding for planar graphs in which supports queries in constant
time. Chuang et al. [21] and subsequently Chiang et al. [22] improve the con-
stant on the high order term for space. There is a vast literature on encoding
subfamilies of planar graphs. Two important subfamilies are tri-connected planar
graphs and triangulated planar graphs for which in a culminating work Castelli
Aleardi et al. [23] show a succinct representation. This representation, used for
general planar graphs, has a storage requirement which is a constant factor away
from the optimal (and therefore is not succinct).

One important aspect in representing planar graphs has been to also represent
the associated planar embedding together with the graph (i.e. to represent planar
maps). We demonstrate our scheme yields a succinct representation for both
general planar graphs and planar maps.

Blandford et al. [11] study space-efficient representations of separable graphs
with constant time support for adjacency, degree, and neighborhood queries.
However their representation is not succinct and can have a storage which is a
multiplicative factor away from the optimal. We present a succinct representation
for separable graphs that supports the same set of queries in constant time.

Succinct Representations of Separable Graphs 141

2 Preliminaries

A separator S in a graph G = (V, E) with n vertices is a set of vertices that
divides V into non-empty parts A ⊂ V and B ⊂ V such that {A, S, B} is a
partition of V , and no edge in G joins a vertex in A to a vertex in B.

Definition 1. A family of graphs G that is closed under taking the vertex-
induced subgraphs satisfies the f(.)-separator theorem [7] if there are constants
α < 1 and β > 0 such that each member graph G ∈ G with n vertices has a
separator S of size |S| < βf(n) which divides the vertices into parts A, B each
of which contains at most αn vertices (|A| ≤ αn, |B| ≤ αn). We define a family
of graphs as separable if it satisfies the nc-separator theorem for some constant
c < 1. A graph is separable if it belongs to a separable family of graphs.

Lipton, Rose, and Tarjan [24] prove that a in family of graphs satisfying a(
n/(log n)1+ε

)
-separator theorem for some ε > 0, the number of edges of a graph

is linear in the number of vertices. Since separable graphs satisfy a stronger sep-
arator theorem, a separable graph has linear number of edges.

We use the dictionary data structures heavily in this work. The first data
structure we need in our tool set is an indexable dictionary (ID) to represent a
subset of a universe supporting membership, rank, and select queries on member
elements in constant time. A membership query on a given element X determines
whether x is present in the subset. A rank query on an element x reports the
number of present elements less than x in the subset. Finally, a select query
(which are reverse to rank queries) for a given number i reports element at rank
i in the increasing order in the subset.

Lemma 1 ([12]). Given a set S of size s which is a subset of a universe U =
{1, . . . , u}, there is an indexable dictionary (ID) on S that requires lg

(
u
s

)
+

o (s) + O (log log u) bits and supports rank/select on elements of S in constant
time (rank/select on non-members is not supported).

Unlike IDs, fully indexable dictionaries (FID) support membership, rank, and
select queries on both members and non-members. These are very powerful struc-
tures, as they can support predecessor queries in constant time. As a result, they
are not as space-efficient as IDs.

Lemma 2 ([12]). Given a subset S of a universe U , there is a fully indexable
dictionary (FID) structure which requires lg

(|U|
|S|
)

+ O (|U | log log |U | / log |U |)
bits and supports rank and select queries both on members and nonmembers of
S in constant time.

3 Succinct Representation

Analogous to the compact representation of separable graphs [11], we find and
remove separators recursively to decompose the graph. Given a graph G with
n vertices, we find a small separator S (|S| < βnc) whose removal divides G

142 G.E. Blelloch and A. Farzan

A B

A B

S

G

S S

G1
G2

Fig. 1. Decomposition of a separable
graph G into G1, G2

The Original Graph

Mini graph Mini graph Mini graph Mini graph

Micro graphs

Fig. 2. A schematic view of the decompo-
sition of a separable graph to mini-graphs
and then to micro-graphs

into two parts A, B with at most αn vertices each. We obtain two induced
subgraphs G1 = A∪ S and G2 = B ∪S. We remove internal edges of S from G1
(and retain them in G2). Therefore, we obtain two subgraphs G1, G2 from G.
Figure 1 illustrates the decomposition of an example graph G into G1 and G2.

We decompose G1 and G2 to obtain smaller subgraphs. Smaller subgraphs
are in turn decomposed similarly into yet smaller subgraphs. We define a con-
stant δ = 2/(1− c) where there are nc-separators (definition 1). We repeat the
separator-based decomposition till the subgraphs have at most (lg n)δ vertices
where n is the number of vertices in the initial graph. We refer to these subgraphs
with at most (lg n)δ vertices as mini-graphs.

Mini-graphs are further decomposed in the same fashion. Each mini-graph
is decomposed repeatedly until the number of vertices in subgraphs is at most
lg n/ lg lg n. We refer to these subgraphs with at most lg n/ lg lg n vertices as
micro-graphs. Figure 2 illustrates the decomposition into mini and micro graphs.

The graph representation consists of the representations of mini-graphs which
in turn consist of the representations of micro-graphs. Micro-graphs are small
enough to be catalogued by a look-up table. Vertices in separators are dupli-
cated by each iteration of the decomposition and therefore there can be many
occurrences of a single vertex of the original graph across different mini-graphs
and/or micro-graphs.

Each occurrence of a vertex receives three labels: a label within the containing
micro-graph which we refer to as by micro-graph label, a label within the con-
taining mini-graph which we refer to as by mini-graph label, and finally a label
in the entire graph which we refer to as by graph label and is visible from out-
side our abstract data type for the graph. Queries indicate vertices using their
graph labels. Dictionary structures of lemmas 1 and 2 are used to maintain the
relationship between duplicates of a single vertex.

Succinct Representations of Separable Graphs 143

Combining representations of mini-graphs. We assume mini-graphs are encoded
(using a scheme to be discussed shortly), we explain here how these encodings
can be combined to represent the entire graph. We start by bounding the number
of vertices of an individual mini-graph and their accumulative size (proof omitted
due to space constrainsts):

Lemma 3. The number of mini-graphs is Θ
(
n/(log n)δ

)
. The total number of

duplicates among mini-graphs (i.e. sum of multiplicities greater than one) is
O
(
n/ log2 n

)
. The sum of the number of vertices of mini-graphs together is n +

O
(
n/ log2 n

)
. �	

As discussed previously the given graph is unlabeled and we pick (graph) labels
for vertices. Labels of vertices with no duplicates precede labels of vertices with
duplicates. Mini-graphs are scanned in order and non-duplicate vertices are as-
signed graph labels consecutively. Duplicate vertices in the original graph are
assigned graph labels arbitrarily using the remaining labels.

To translate graph labels to/from mini-graph labels, we build a bit vector
Translate with length equal to the sum of the number of vertices in mini-
graphs. This vector spans across all mini-graphs in order containing an entry for
each vertex of a mini-graph. The entry is set to zero if the corresponding vertex
has no duplicates and is set to one if it has a duplicate. The fully indexable
dictionary (FID) of lemma 2 is used to represent one entries over the universe
of all entries in Translate. Support for rank and select on both zeros and ones
allows us to translate between locations in Translate and graph labels. The
space of this structure by lemmas 2,3 is o (n). Figure 3 depicts an overview of
these structures.

Boundaries is another bit vector which is encoded also using a FID. It marks
the boundaries of mini-graphs in Translate. Translate and Boundaries to-
gether enable us to translate labels of non-duplicate vertices. Given the graph
label of such a vertex, we find the corresponding location in Translate by a
select query and then perform rank on Boundary to obtain the mini-graph num-
ber and the offset from the predecessor one which is the mini-graph label of
that vertex. Conversely, given the mini-graph label of a non-duplicate vertex,
we perform select on boundaries to find the start location of the mini-graph in
Translate and add to it the mini-graph label to find the corresponding location
in there. Now a rank over non-duplicates gives us the graph label.

For translating labels of duplicate vertices, we maintain other structures.
Duplicates has a list for each duplicate vertex which contains all duplicates
of the vertex as positions in Translate. Duplicates empowers us to iterate
through duplicates of a vertex. Real-names is an array with length equal to the
sum of multiplicities of duplicates vertices. Its entries contain in order the graph
label of each occurrence of a duplicate vertex in Translate. Real-names allows
us to determine the graph label of an occurrence of a duplicate vertex. Using
these structures we can translate between graph labels and mini-graph labels
of duplicate vertices. To account for the space of these structures, we note that
Θ (log n) bits are used for any occurrence of duplicate vertices of which there are
Θ
(
n/ log2 n

)
by lemma 3, and therefore the space is Θ (n/ logn) bits.

144 G.E. Blelloch and A. Farzan

4321gfedcba

Non-duplicates Duplicates

Graph
labels:

1

16

1gb3 32 ca f1 4 e 21 4d

0

2 15

1

14

1

13

010 0 11 011 1 0 0

12111098765431

Translate:

00 00000 0 10 001 1 0 0Boundaries:

161111:

156

123

144

2:

3:

4:

Duplicates:

123 31 4241Real-name:

1a

b
1

3

4

2

c d

e
f

3

g 4

2

Mini-graphs:

Fig. 3. Indexing structures used to translate between graph labels and mini-graph
labels

Combining representations of micro-graphs. The representation of a mini-graph
is composed of those of micro-graphs in the same manner as the representation
of the entire graph is composed out of mini-graphs. The same set of structures
are built and stored. The technical lemma in this construction is analogous to
lemma 3. The details of this construction and the proof of lemma is omitted due
to space constraints.

Lemma 4. Within a particular mini-graph of m vertices, the number of micro-
graphs is Θ ((m log log n)/ log n). The total number of duplicates (i.e. sum of
multiplicities) is O

(
(m log log1−c n)/ log1−c n

)
. Sum of the number of vertices

of micro-graphs together is m + O
(
(m log log1−c n)/ log1−c n

)
. �	

Representations of micro-graphs. Micro-graphs have Θ (log n/ log log n) vertices
and are encoded by an Index to a look-up table. The look-up table lists all
possible micro-graphs with Θ (log n/ log log n) vertices ordered according to their
numbers of vertices. The table also stores pre-computed answers to all queries
of interest.

Index fields account for the dominant space term. Since we enumerate micro-
graphs to list them in the look-up table, the length of the Index field matches the
entropy bound for each micro-tree. Since a family of separable graphs has a linear
entropy (H() = O (n)) [11], the sum of the lengths of Index fields over all micro-
graphs is H(Σ) + o(n) where Σ is the sum of the number of vertices of micro-
graphs (o(n) comes from the round-up for individual indices). Lemmas 3 and 4

Succinct Representations of Separable Graphs 145

show that Σ = n + o (n) and thus the length of the encoding is H(n) + o (n).
Since all indexes built to combine micro-graphs into mini-graphs and combine
mini-graphs into an entire graph is o (n) as shown, and the storage requirement
of the look-up table is o(n), the entire representation requires H(n) + o (n) bits.

We now turn to showing support for queries in constant time. The two main
queries of interest are neighborhood and adjacency queries and support for degree
queries is straightforward.

3.1 Neighborhood Queries

We now explain how neighbors of a vertex can be reported in constant time per
neighbor. Given a vertex v by its graph label, we first determine if it has dupli-
cates by a simple comparison. If there is no duplicates then the corresponding
mini-graph and the mini-graph label are determined. If there are duplicates, we
use Duplicates array to look-up each occurrence of the vertex one by one. Each
occurrence leads us to a particular vertex in a mini-graph.

Once confined to a mini-graph and a particular vertex u therein, we determine
analogously if u has duplicates across micro-graphs. If no duplicate exists, then
we find the micro-graph and the micro-graph label therein and the query is an-
swered using the pre-computed neighbors in the look-up table. In case duplicates
exist, array Duplicates is used and each occurrence is handled analogously.

Each neighbor vertex name is a micro-graph label and should be translated
to a graph label which is performed by a conversion to mini-graph label and
subsequently to a graph label using Translate, Boundaries structures.

3.2 Adjacency Queries

We use the same approach as in [11] and direct the edges such that in the
resulting graph each vertex has a bounded out-degree:

Lemma 5 ([11]). The edges of a separable graph can be directed in linear time
such that each vertex has out-degree at most b for some constant b > 0.

In order to answer the adjacency query q(u, v), it suffices to show how outgoing
edges of a vertex can be looked-up in constant time as the (possible) edge between
u, v is either directed from u to v or vice versa.

We cannot store the directed graph as the space requirement would exceed
our desirable bound. We only store the direction of a sub-linear number of edges.
The look-up table remains undirected and intact, and thus it does not reflect
the direction of any edge.

We add the following structures to enable constant time look-up for out-going
edges. In a mini-graph, for each vertex v with duplicates, we store b vertices that
are endpoints of edges going out of v (Θ (log log n) bits each). Similarly, in the
entire graph, for each vertex u with duplicates we explicitly store b endpoints of
edges going out of u (Θ (log n) bits each).

More importantly, for each vertex with duplicates across different mini-graphs,
we store, in Structure Duplicate-components, the mini-graph numbers in which

146 G.E. Blelloch and A. Farzan

it has a duplicate . We cannot simply list mini-graphs in Duplicate-components
as we must support membership queries. We use the indexable dictionary struc-
ture (lemma 1) over the universe of mini-graphs. Internal to each mini-graph, we
build the same structure as Duplicate components which captures the micro-
graph numbers of duplicates of the same vertex across different micro-graphs.
The extra space added by using these structures can be proved to be o (n).

Given a query q(u, v) on two vertices u, v. We state the procedure for vertex
u, however the same procedure must be repeated for vertex v afterwards. We
first determine if u has duplicates in different mini-graphs or micro-graphs. If
it does so, then endpoints of its outgoing edges are explicitly listed which we
compare against v by translating mini-graph and/or micro-graph labels of the
listed vertices. In case u has duplicates neither across micro-graphs within the
mini-graph nor across different mini-graphs, u appears in only one mini-graph
and one micro-graph therein. For v to have and edge to u, it must appear in
the same micro and mini-graph. We use structure Duplicate-components to
determine if v has a duplicate in the same micro-graph as u. As otherwise, there
cannot be an edge uv. We now use a rank query in Duplicate-components to
index to Duplicates and retrieve the micro-graph label of the proper duplicate
of v. Within a micro-graph, we use the look-up table, to determine if they are
adjacent in constant time.

Theorem 1. Any family of separable graphs (definition 1) with entropy H(n)
where n is the number of vertices, can be succinctly encoded in H(n) + o(n) bits
such that adjacency, neighborhood, and degree queries are supported in constant
time. �	

4 Representing Planar Maps: Encoding the
Combinatorial Embedding

A planar drawing of a planar graph is a drawing of the graph in IR2 with no edge
crossings. There is infinitely many planar drawings for any fixed planar graphs
G. Two such planar drawings are equivalent if for all vertices the clockwise cyclic
ordering of neighbors is the same in both graphs. An equivalency class of planar
drawings specifies a clockwise cyclic order of neighbors for all vertices which is
known as the combinatorial planar embedding. A planar map is a planar graph
together with a fixed combinatorial planar embedding.

In this section, we address the issue of representing (unlabeled) planar maps.
The underlying planar graphs of a planar map is separable and therefore the
representation of section 3 can encode them succinctly to support adjacency,
degree, and neighborhood queries in constant time. In planar maps representa-
tions, we not only need to encode the planar graph, but also we need to store the
combinatorial planar embedding. Hence, we enhance the definition of neighbor-
hood queries to report neighbors of a fixed vertex according to the combinatorial
planar embedding: i.e. neighbors should be reported in the clockwise cyclic order
in constant time per neighbor.

Succinct Representations of Separable Graphs 147

Fig. 4. A planar map (left) and the resulting graph where edges are subdivided and
connected according to the combinatorial planar embedding (right)

We first note that we can easily achieve a planar map encoding by increas-
ing the storage requirement by a constant factor. Given a planar map G, we
subdivide all edges by introducing a dummy vertex of degree two on each edge
and connect these dummy vertices circularly around each vertex (as depicted in
figure 4. Since the number of edges of a planar graph is linear, the number of
vertices is increased by a constant factor. It is easy to verify that the resulting
graph is planar and therefore separable. We can encode this graph using any of
the compact planar graph representations referred to in section 1.1 using O(n)
bits. Using the dummy vertices, we can produce neighbors of a vertex in the cir-
cular order according to the combinatorial embedding. Moreover, we explicitly
store a bit for each dummy node which distinguishes the immediate clockwise
and counter-clockwise neighbor (e.g. we set the bit to zero if the neighbor with a
higher label is the clockwise one). Using these bits we can produce the neighbors
in the actual clockwise circular order for any fixed node. This encoding proves
that the entropy Hp(n) of planar maps is linear in the number of vertices n.

Although the simple encoding scheme achieves the entropy to within a con-
stant factor, a succinct representation that achieves the entropy tightly to within
lower order terms is desired and we will give such representation in this section.

Theorem 2. A planar map G with n vertices can be encoded succinctly in
Hp(n)+ o(n) bits where n is the number of vertices of G. The encoding supports
queries adjacency queries, degree queries, and neighborhood queries (according
to combinatorial planar embedding of G) in constant time.

We subdivide edges of G by introducing dummy vertices of degree two on each
edge as described before to obtain graph G′. Since G′ is planar and separable, we
use the succinct separable graph representation of section 3 to represent it. This
representation in its current form requires a space which is a constant factor
away from entropy Hp(n). We will make modifications to lessen the space to
Hp(n) + o(n). We will also show constant-time support for queries.

The succinct separable representation of section 3 divides G into mini-graphs
and micro-graphs and creates duplicate vertices which are repeated in more than
one mini/micro-graphs. Among dummy vertices, we retain all that are duplicates
and discard all that are not. A non-duplicate dummy vertex d is discarded by
a contraction which deletes the vertex and connects the endpoints of the edge
d stood for. We refer to by the resulting graph as Ĝ. By lemmas 3, and, 4 the

148 G.E. Blelloch and A. Farzan

total number of dummy vertices that are retained is o(n) and therefore the total
number of vertices in the graph is n + o(n). Using a bit vector which is stored
as in lemma 2, we explicitly store whether a vertex is a dummy vertex.

Micro-graphs are stored by references into a look-up table as before. The
micro-graph is a subgraph of G′ and therefore is planar. Furthermore, the com-
binatorial planar embedding of G′ induces a combinatorial planar embedding for
micro-graphs. The table stores the combinatorial planar embedding of micro-
graphs together with the structure of the graphs. Theorem 1 implies that the
storage requirement of the representation is Hp(n) + o(n) bits.

It only remains to show constant-time support for queries. As the degrees of
original vertices in G remain unchanged supporting degree queries is trivial. Sup-
port for adjacency queries is more complicated since we have introduced dummy
vertices on edges of G. Nevertheless, the adjacency queries in G are handled in
the same manner as adjacency queries in the representation (section 3.2). To
show support for adjacency queries in section 3.2, we first oriented the edges of
the graph such that each vertex has a bounded out-degree (lemma 5). To orient
G′, we orient the underlying graph G according to lemma 5 and if edge uv in
G has a dummy vertex d in G′, we orient edges of G′ as u → d and d → v. We
orient edges between dummy vertices according to the clockwise cyclic order. It
is easy to verify that all vertices have a constant out-degree in Ĝ, and therefore
we can repeat the same procedure as in section 3.2. However, the procedure
guarantees that we can discover edges between immediate neighbors and in Ĝ
there could be a dummy vertex on an edge. We first note that this is not an
issue within a micro-graph as using the look-up table we can easily test if two
vertices are connected through a degree-two vertex (which we must also verify
to be a dummy vertex). For vertices that have a duplicate across mini/micro-
graphs, we explicitly listed out-neighbors in section 3.2; here we list explicitly
out-neighbors through dummy vertices as well (i.e. if node u is a duplicate and
there are edges u → d → v where d is a dummy vertex, we explicitly store v in
the list). Response to adjacency queries can be computed as in section 3.2.

u

v w

d d'

Fig. 5. Supporting neigh-
borhood queries on vertex
u: vertex w is reported after
vertex v regardless of exis-
tence of d or d′

We now demonstrate how neighborhood queries
are supported. Given an edge uv between two ver-
tices u and v of graph G, the neighborhood query
is to report the next neighbor of v in the circular
order according to the combinatorial planar embed-
ding. Let us denote by d the dummy vertex in G′

that resides on edge uv of G. Also we denote by w
the next neighbor of u in the circular order in G,
and d′ the dummy vertex that resides on edge uw in
G′. Either of dummy vertices d, d′ in G′ may or may
not be present in Ĝ. Refer to figure 5.

We distinguish two cases according to whether the
edge dd′ is present or absent in Ĝ. If dd′ ∈ G′ (both
d and d′ are present in Ĝ), then clearly we can discover the next neighbor of
u by taking the edge dd′ and arriving at vertex d′ which leads us to vertex w.

Succinct Representations of Separable Graphs 149

Therefore, the more interesting case is where edge dd′ is absent. In this case,
neither of d or d′ could be a duplicate vertex (as otherwise, since we retain
duplicate dummy vertices and their immediate neighbors, they both would be
present and therefore edge dd′ would exist). Since d and d′ do not have duplicates
and they are immediately connected (by edge dd′), they belong to the same
micro-graph of G′. Moreover, since u, v, w are immediate neighbors of vertices
d, d′, these vertices or a duplicate of them must also belong to the same micro-
graph. Since edges of G are not repeated in more than one micro-graph, the
micro-graph is the one containing the (possibly subdivided) edge uv in Ĝ. Hence,
the edge uw can be read from the look-up table as the next neighbor of uv in
the circular order. �	

5 Conclusion and Discussion

We studied the problem of succinctly encoding separable graphs while supporting
degree, adjacency, and neighborhood queries in constant time. For each family of
separable graphs (e.g. planar graphs). The storage is the information-theoretic
minimum to within lower order terms. We achieve the entropy bound for any
monotone family of separable graphs with no knowledge of the actual entropy for
that family of graphs since we use look-up tables for tiny graphs. Namely, when
used for planar graphs, our representation requires a space which is the entropy
of the planar graphs to within lower order terms while supporting queries in
constant time. This is when the actual entropy (or equivalently the number of
unlabeled planar graphs) is still unknown [25]. This is an improvement in the
heavily-studied compact encoding of planar graphs. Moreover, we showed that
our approach yields a succinct representation for planar maps (i.e. planar graphs
together with a given embedding).

One interesting direction for future work is to extend the idea of this paper to
represent dynamic separable graphs. These are graphs under updates in form of
insertion and deletion of vertices and edges while the graphs remains separable.

References

1. Gulli, A., Signorini, A.: The indexable web is more than 11.5 billion pages. In:
WWW 2005: Special interest tracks and posters of the 14th international conference
on World Wide Web, pp. 902–903. ACM, New York (2005)

2. Claude, F., Navarro, G.: A fast and compact web graph representation. In: Ziviani,
N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 118–129. Springer,
Heidelberg (2007)

3. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1-6),
309–320 (2000)

4. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: DCC 2001:
Proceedings of the Data Compression Conference, Washington, DC, USA, p. 203.
IEEE Computer Society, Los Alamitos (2001)

5. Suel, T., Yuan, J.: Compressing the graph structure of the web. In: DCC 2001:
Data Compression Conference, p. 213. IEEE, Los Alamitos (2001)

150 G.E. Blelloch and A. Farzan

6. Munro, J.I.: Succinct data structures. Electronic Notes in Theoretical Computer
Science 91, 3 (2004)

7. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36(2), 177–189 (1979)

8. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM J. Comput. 16(6), 1004–1022 (1987)

9. Miller, G.L., Teng, S.H., Thurston, W., Vavasis, S.A.: Separators for sphere-
packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997)

10. Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In:
FOCS 1988: Foundations of Computer Science, pp. 422–431. IEEE, Los Alamitos
(1988)

11. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (2003)

12. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algo-
rithms 3(4), 43 (2007)

13. Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer,
Heidelberg (2008)

14. Lu, H.I.: Linear-time compression of bounded-genus graphs into information-
theoretically optimal number of bits. In: SODA 2002: Proceedings of ACM-SIAM
symposium on Discrete algorithms, pp. 223–224 (2002)

15. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596–603 (1992)

16. Turán, G.: On the succinct representation of graphs. Discrete Applied Mathemat-
ics 8, 289–294 (1984)

17. Keeler, W.: Short encodings of planar graphs and maps. DAMATH: Discrete Ap-
plied Mathematics and Combinatorial Operations Research and Computer Sci-
ence 58 (1995)

18. He, X., Kao, M.Y., Lu, H.I.: A fast general methodology for information-
theoretically optimal encodings of graphs. SIAM Journal on Computing 30(3),
838–846 (2000)

19. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium on
FoundationsofComputerScience,1989,October30–November1,pp.549–554(1989)

20. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: IEEE Symposium on Foundations of Computer Sci-
ence, pp. 118–126 (1997)

21. Chuang, R.C.N., Garg, A., He, X., Kao, M.Y., Lu, H.I.: Compact encodings of
planar graphs via canonical orderings and multiple parentheses. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118–129. Springer,
Heidelberg (1998)

22. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to
graph encoding and graph drawing. In: SODA 2001: ACM-SIAM symposium on
Discrete algorithms, pp. 506–515 (2001)

23. Devillers, L.C.A.O., Schaeffer, G.: Succinct representations of planar maps. Theor.
Comput. Sci. 408(2-3), 174–187 (2008)

24. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM Journal
on Numerical Analysis 16, 346–358 (1979)

25. Liskovets, V.A., Walsh, T.R.: Ten steps to counting planar graphs. Congressus
Numerantium 60, 269–277 (1987)

Implicit Hitting Set Problems
and Multi-genome Alignment

Richard M. Karp

University of California at Berkeley and
International Computer Science Institute

Let U be a finite set and S a family of subsets of U. Define a hitting set as a subset
of U that intersects every element of S. The optimal hitting set problem is: given a
positive weight for each element of U, find a hitting set of minimum total weight.
This problem is equivalent to the classic weighted set cover problem.We consider
the optimal hitting set problem in the case where the set system S is not explicitly
given, but there is an oracle that will supply members of S satisfying certain
conditions; for example, we might ask the oracle for a minimum-cardinality set
in S that is disjoint from a given set Q. The problems of finding a minimum
feedback arc set or minimum feedback vertex set in a digraph are examples of
implicit hitting set problems. Our interest is in the number of oracle queries
required to find an optimal hitting set. After presenting some generic algorithms
for this problem we focus on our computational experience with an implicit
hitting set problem related to multi-genome alignment in genomics. This is joint
work with Erick Moreno Centeno.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, p. 151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bounds on the Minimum Mosaic of Population
Sequences under Recombination

Yufeng Wu

Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, U.S.A.
ywu@engr.uconn.edu

Abstract. We study the minimum mosaic problem, an optimization
problem originated in population genomics. We develop a new lower
bound, called the C bound. The C bound is provably higher and sig-
nificantly more accurate in practice than an existing bound. We show
how to compute the exact C bound using integer linear programming.
We also show that a weaker version of the C bound is also more accu-
rate than the existing bound, and can be computed in polynomial time.
Simulation shows that the new bounds often match the exact optimum
at least for the range of data we tested. Moreover, we give an analytical
upper bound for the minimum mosaic problem.

1 Introduction

Recombination is a key genetic process that creates mosaic population sequences
during meiosis. Throughout this paper, we assume population sequences are bi-
nary. This is justified by the current interests in single nucleotide polymorphisms
(SNPs). A SNP is a single nucleotide site where exactly two (of four) different
nucleotides occur in a large percentage of the population, and thus can be rep-
resented as a binary number. The input data is a binary matrix M with n rows
(sequences) and m columns (SNPs). Recombination plays an important role in
the evolutionary history of these sequences. Conceptually, recombination takes
two equal length sequences and generates a new sequence of same length by
concatenating a prefix of one sequence and a suffix of the other sequence. The
position between the prefix and the suffix is called a breakpoint. Studying recom-
bination in populations needs genealogical models. In this paper, we focus on a
model called the mosaic model. The mosaic model [10] assumes that current
population sequences are descendants of a small number of founder sequences.
Due to recombination, an extant sequence consists of multiple segments from
the founders, where breakpoints separate the segments. We ignore point muta-
tions in this paper. That is, extant sequences contain exact copies of founder
segments. See Figure 1 for an illustration of the mosaic structure.

The mosaic model is a recurring formulation in population genomics with
applications including study of recombinant inbred mouses [13], hidden Markov
models (HMMs) in inferring haplotypes from genotypes [2,5,8] and genotype

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 152–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bounds on the Minimum Mosaic 153

Fig. 1. A minimum mosaic found by program RecBlock containing 55 breakpoints for
the given twenty sequences of length forty. Note that only the sequences are given as
input: we do not know the founders nor the positions of the breakpoints. The top four
sequences are founders inferred by program RecBlock, each with a distinct color. A
different mosaic for these sequences with 56 breakpoints was shown in [6].

imputation methods (e.g. [3]). A main technical challenge is that even when
sequences of M are formed as a mosaic, the breakpoints are invisible. Thus
inference needs to be performed to reconstruct the mosaic pattern (and the
founder sequences) from the given sequences. In [10], Ukkonen formulated an
optimization problem for the mosaic model based on parsimony.

The Minimum Mosaic Problem. For a binary matrix M with n rows (sequences)
and m columns as well as an integer Kf , find Kf founder sequences that minimize
the total number of breakpoints needed to be put in the input sequences, which
break the input sequences into segments from the founder sequences at matching
positions. Such a mosaic is called the minimum mosaic for M and the number of
breakpoints needed in the minimum mosaic is denoted as Bmin(M). Note that
no shifting is allowed: segments of founders in the input sequences must retain
their original positions in the founders.

The minimum mosaic problem can be viewed as a sequence coloring problem
as shown in Figure 1. We need to assign colors (one per each founder) to the
given sequences (i.e. sequences are colored by founders). The total number of
color changes (i.e. breakpoints) in the minimum mosaic is the smallest among
all possible coloring. Note at a column, if two sequences are assigned the same
color, then they must have identical values at this column. Also, Kf is usually
much smaller than n.

The minimum mosaic problem has a simple polynomial time algorithm for
binary data [10,12] or even for the so-called genotype data (a mixed descrip-
tion of two binary sequences) [12] when Kf = 2. There are two exact methods
for the general minimum mosaic problem, which are implemented in program
Haplovisual [10] and program RecBlock [12]. None of these exact methods runs in

154 Y. Wu

polynomial-time. Our experience suggests that program RecBlock outperforms
program Haplovisual for many datasets. The basic idea of program RecBlock is
to scan from left to right, and enumerate all possible founders at each column.
For example, suppose Kf = 3. Then there are 6 configurations for founder set-
tings at column 1: 001, 010, 100, 011, 101 and 110 (000 and 111 are excluded
because we can preprocess the input sequences to remove any columns with only
0s or only 1s, and such preprocessing does not change the solution). Now for
column 2, we need to enumerate all 6 founder configurations for each of the
configurations at column 1. Full enumeration quickly becomes infeasible. To ob-
tain a practical method, program RecBlock uses several techniques to prune the
search space. Empirical study shows that program RecBlock seems to work well
for small number of founders (say three to five) when the data is of medium
size (say 50 by 50). However, its performance degrades as Kf and/or the size of
matrix increase.

Since there exists no known polynomial-time algorithm for the minimum mo-
saic problem, heuristic methods for handling larger datasets are also developed
[12,7]. For example, program RecBlock can run in a non-optimal mode to find
relatively good solutions for larger datasets when exact solutions are difficult to
obtain. Although these methods are fast, a major problem is the lack of knowl-
edge on the optimality of their solutions. Moreover, little is known on theoretical
quantification of the mosaic structure in general.

This motivates computing lower bounds for the minimum mosaic problem. A
lower bound gives an estimate on the necessary breakpoints. Lower bounds can
be useful in the following two ways.

1. A lower bound quantifies the range of the solution, together with the up-
per bounds found by heuristic methods. In the ideal case, the lower bound
matches the upper bound, and thus certifies the optimality of the heuristic
solution. Even when the lower bound is smaller than the upper bound, the
range of solution given by the bounds can still be useful.

2. A good lower bound can speed up the branch and bound search for the
optimal solution.

A known lower bound. There is an existing lower bound (called the CH
bound) in [12] for the minimum mosaic problem, which is inspired by [4]. The
CH bound considers each segment [i, j] of M (i.e. the sub-matrix Mi,j with
columns between i and j inclusive, where i < j). We let set Si,j contain the
distinct rows of Mi,j, and we denote the multiplicity of a sequence sk

i,j ∈ Si,j

in Mi,j as nk
i,j . Each sk

i,j represents a “cluster” of nk
i,j identical sequence within

the interval. For example, in Figure 2, there are four clusters between the first
and the third columns: 001, 100, 010 and 000 (which are numbered from 1
to 4 in this order). For the cluster s1

1,3 = 001, n1
1,3 = 2, while nk

1,3 = 1 for
k = 2, 3, 4. We order sequences sk

i,j so that the list of nk
i,j is non-increasing.

Now if |Si,j | ≤ Kf , then the lower bound on Bmin(Mi,j) is simply 0. Otherwise,
Bi,j =

∑|Si,j |
k=Kf +1 nk

i,j is a lower bound on Bmin(Mi,j). For the data in Figure 2,
when Kf = 3, B1,3 = 1. We say a cluster is cut if each identical sequence of the

Bounds on the Minimum Mosaic 155

cluster contains breakpoints. Otherwise, the cluster is un-cut if some sequence
of the cluster contains no breakpoints. The correctness of Bi,j as a lower bound
on Bmin(Mi,j) is due to the fact that there are only Kf colors and Lemma 1.

Lemma 1. Within an interval, two distinct sequences containing no breakpoints
can not be colored by the same founder.

Bi,j for each [i, j] is often much smaller than Bmin(M). But Myers and Griffiths
[4] introduced a general method to combine Bi,j from all intervals to get a much
higher overall bound. Intuitively, we consider a straight horizontal line. We need
to place the minimum number of breakpoints along the horizontal line, so that for
each interval [i, j], there is at least Bi,j breakpoints that are properly contained
inside [i, j]. The CH bound is equal to the minimum number of breakpoints
needed. A breakpoint located at position x within [i, j] contributes to the interval
if i < x < j. Note that breakpoints are not placed at integer points. The CH
bound is simple and efficiently computable using a greedy approach [4]. However,
practical experience shows that the CH bound often significantly underestimates
Bmin(M) (see Section 4), which greatly limits its use.

Contributions. In this paper, we present a new lower bound (called the C
bound) for the minimum mosaic problem. We show that the C bound is prov-
ably higher than (or equal to) the CH bound, and often significantly higher
in practice. For a large portion of datasets we simulate, the C bound matches
Bmin(M). Thus, the C bound can be useful in quantifying the tighter range of
optimal solution. In terms of efficiency, the C bound can be computed exactly
for many datasets, and a variation of the C bound (which leads to only a little
loss of accuracy) can be computed in polynomial time. We also evaluate the per-
formance of the lower bounds in branch and bound search through simulation,
where we do observe, albeit modest, speedup. On the theoretical side, we give
an analytical upper bound on Bmin(M).

2 The C Bound: A New Lower Bound

We now present a new lower bound, called the clique bound (or simply C bound)
for the minimum mosaic problem. Clique here refers to segments of input se-
quences used in the definition of the C bound that are pairwise incompatible
(see blow). If we create a graph of sequence segments where there is an edge
between two segments if they are incompatible, the C bound corresponds to
cliques with some special property in this graph.

2.1 Breakpoint Placement

The breakpoint placement by the CH bound is a two-stage approach: first es-
timate the number of needed breakpoints inside each interval, and then place
breakpoints along a horizontal line. A breakpoint placed this way is not as-
sociated with any particular sequence. Our first idea is to adopt a one-stage

156 Y. Wu

approach: place necessary breakpoints directly in M . That is, each breakpoint
belongs to a particular sequence in M . Formally,

Placement of necessary breakpoints. Place the smallest number (denoted
as nb) of breakpoints in M (i.e. a breakpoint is placed inside some sequence of
M) such that for each interval [i, j], no more than Kf clusters remain un-cut.
Our first version of the C bound is equal to nb, which is a lower bound on
Bmin(M). This is due to Lemma 2, which is implied by Lemma 1.

Lemma 2. nb ≤ Bmin(M).

We say a lower bound x beats a lower bound y if x is always higher than or equal
to y. First note that the C bound always beats the CH bound. This is because
we can place breakpoints created by the C bound along a horizontal line by
projecting these breakpoints onto the line. These are at least Bi,j breakpoints for
[i, j] on the horizontal line. In practice, the C bound is usually higher (sometime
significantly higher) than the CH bound.

We do not know a polynomial-time algorithm to compute the exact C bound.
To compute the C bound in practice, we use the following integer linear pro-
gramming (ILP) formulation. We define a binary variable Cr,c for each row r
and column c, where Cr,c = 1 if there is a breakpoint in row r between columns
c and c + 1. For each interval [i, j] with |Si,j | clusters within [i, j], we create a
binary variable Ui,j,k for the k-th cluster within [i, j], where Ui,j,k = 1 if this
cluster is un-cut within [i, j], and 0 otherwise.

Objective: minimize
∑

1≤r≤n,1≤k<m Cr,k.
Subject to

1 Ui,j,k +
∑

i≤i′<j Cr,i′ ≥ 1, for each 1 ≤ i < j ≤ m and each row r in
cluster k within [i, j].

2
∑|Si,j|

k=1 Ui,j,k ≤ Kf , for each 1 ≤ i < j ≤ m.
For each 1 ≤ k < m and 1 ≤ r ≤ n, there is a binary variable Cr,k.
For each 1 ≤ i < j ≤ m, and 1 ≤ k ≤ |Si,j |, there is a binary variable Ui,j,k.

Briefly, constraint (1) says that cluster k is un-cut if any sequence in the cluster
contains no breakpoints. Constraint (2) says within each interval [i, j], there is
no more than Kf un-cut clusters. This ILP formulation can be solved relatively
efficiently in practice for many datasets.

A polynomial-time computable bound. The C bound beats the CH bound
both in theory and in practice. Still, we do not have a polynomial-time algorithm
for computing it. This may limit its use for larger datasets. We now show a
weaker version of the C bound (denoted as the Cw bound) that is polynomial-
time computable and provably beats the CH bound. This provides more evidence
on the strength of the exact C bound. The Cw bound is computed by solving the
linear programing (LP) relaxation of the ILP formulation of the C bound. Briefly,
linear programming relaxation treats each variable in the ILP formulation to be
a general real variable (between 0 and 1 for a binary variable). The Cw bound
is a legal lower bound on Bmin(M) because the objective of the LP relaxation

Bounds on the Minimum Mosaic 157

can not be higher than that of the original C bound. The number of variables
and constraints in the ILP formulation for the C bound is O(nm2). Thus, the
Cw bound can be computed in polynomial-time.

We now show that the Cw bound beats the CH bound.

Proposition 1. Cw ≥ CH .

Proof. Conceptually, the CH bound can be computed by the following ILP for-
mulation (called the CH formulation).

Objective: minimize
∑

1≤k<m Ck.
* Subject to:

∑j−1
x=i Cx ≥ Bi,j , for each 1 ≤ i < j ≤ m.

For each 1 ≤ k < m, there is a general integer variable Ck.

Ci refers to the number of breakpoints between columns i and i+1. We will first
show that Cw beats the objective of the LP relaxation of the CH formulation.
Then we will show the LP relaxation of the CH formulation has an integer
optimal solution. By combining these two observations, we have Cw ≥ CH .

First, we let Cr,k be an optimal solution for Cw (where Cr,k is a real value
between 0 and 1). We now let Ck =

∑
1≤r≤n Cr,k. We claim Ck is a legal solution

for the relaxed CH formulation (with the identical objective value as the Cw

formulation). To show this, we only need to show Ck satisfies
∑

i≤x<j Cx ≥ Bi,j

for each interval [i, j] when Bi,j > 0. Since
∑

i≤x<j Cx =
∑

i≤x<j,1≤r≤n Cr,x,
and from constraint [1] in the C bound formulation,

∑
i≤x<j

Cx ≥ n−
|Si,j |∑
k=1

nk
i,jUi,j,k

Since 0 ≤ Ui,j,k ≤ 1, and
∑|Si,j |

k=1 Ui,j,k ≤ Kf and note that nk
i,j is ordered

non-decreasingly, we have:
∑

i≤x<j Ci′ ≥ n−
∑Kf

k=1 nk
i,j = Bi,j . We achieve the

minimum value by making each Ui,j,k = 1 for k ≤ Kf .
We now show the LP relaxation of the CH formulation has an integer optimal

solution. For contradiction, we assume no integer solutions exists for the CH
relaxed formulation. We consider an optimal solution to the LP relaxation of the
CH formulation so that its first Ci with non-integer value occurs at a column p
where p < m is the largest among all such solutions. That is, Cp is not an integer,
while Ck is an integer when k < p, and there is no optimal solutions with integer
values for C1 . . . Cp. Let Cp = v + f , where v is an integer and 0 < f < 1. Then
we create a new solution C′

k by letting C′
k = Ck when k �= p and p + 1. Then

C′
p = v and C′

p+1 = Cp+1 +f . We need to show the changed solution is legal (i.e.
satisfying constraint “*”). Note that only intervals [i, j] overlapping breakpoint
p need to be checked. This contains two cases: (a) intervals [i, p+1]; (b) intervals
[i, j], where i ≤ p and p + 1 < j. The type (a) intervals’ bounds are satisfied
because the bounds are integers and thus discarding f still satisfies the bounds
since all previous C′

k are integer. The type (b) intervals are satisfied since the
summation of C′

k values is the same as summation of Ci values. This contradicts

158 Y. Wu

our previous assumption that there is no optimal solutions with integer values
for C1 . . .Cp. Therefore, there exists an integer solution to the LP relaxation of
the CH bound. �	

2.2 Improving the C Bound

Simulation shows that the C bound (and the Cw bound) is usually higher than
the CH bound. For the datasets we simulate, the gap between the C and the CH
bounds is usually 10-20%, but the C bound can still be significantly lower than
Bmin(M). We now describe techniques that significantly improve the C bound.

We start by strengthening Lemma 1. A moment’s thought suggests Lemma 1
can be extended to overlapping segments of different intervals (instead of within
a single interval). We say segment [a1, b1] of row r1 (denoted as r1[a1, b1]) and
segment [a2, b2] of row r2 (i.e. r2[a2, b2]) are incompatible if [a1, b1] and [a2, b2]
overlap (i.e. with non-empty intersection) and r1[a1, b1] and r2[a2, b2] are not
identical within the overlapping region. Here, [a1, b1] and [b1, c1] are considered
to overlap at [b1, b1]. For example, in Figure 2, r1[1, 2] and r2[2, 3] are compatible
while r1[3, 4] and r2[2, 3] are incompatible. Then we have:

Lemma 3. Two incompatible segments can not be colored by the same founder.

c1 c2 c3 c4

r1 0 0 1 1
r2 1 |0 0 1
r3 0 0 1 0
r4 0 1 0 |1
r5 0 0 0 1

Fig. 2. An example dataset

Note that Lemma 1 is a special case of Lemma 3,
and Lemma 3 can give a higher bound than the
original C bound. This motivates an improved C
bound as follows. For each interval [i, j], we search
for pairwise incompatible segments [ik, jk], each for
one of the |Si,j | clusters. Here, i ≤ ik < jk ≤ j. It
is desired that the total length of the segments is
small. The shorter the incompatible segments are,
the more restrictive the placement of breakpoints
is: fewer breakpoints can contribute to shorter seg-
ments and so more breakpoints may be needed. Then, we require no more than
Kf incompatible segments remain un-cut:

∑|Si,j|
k=1 Uik,jk,ci,j,k(ik,jk) ≤ Kf . Here,

ci,j,k(ik, jk) is the cluster index of the [ik, jk] part within the k-th cluster of [i, j]
(since [ik, jk] may have a different set of distinct rows from [i, j]). From Lemma
4, the new C bound beats the original C bound.

Lemma 4. Using incompatible segments gives a higher C bound.

Proof. For [i, j], if Ui,j,k = 1, then there is no breakpoint between columns i
and j. Since [ik, jk] is contained inside [i, j], this implies Uik,jk,k′ = 1 (where
k′ = ci,j,k(ik, jk)). Thus, Ui,j,k ≤ Uik,jk,k′ . Since the C bound prefers smaller
Ui,j,k values (by constraint 2 of the C bound formulation), using incompatible
segments leads to a higher bound. �	

As an example, we consider the dataset in Figure 2, where we assume Kf = 3.
We first consider the ILP constraints of each interval from the original C bound.

Bounds on the Minimum Mosaic 159

For example, for interval [1, 4], we have U1,4,1 +U1,4,2 +U1,4,3 +U1,4,4 +U1,4,5 ≤
3, and for r1 = 0011 we have U1,4,1 + C1,1 + C1,2 + C1,3 ≥ 1. Suppose as
shown in Figure 2, we place a breakpoint between c1 and c2 in r2 (i.e. C2,1
= 1), and a breakpoint between c3 and c4 for r4 (i.e. C4,3 = 1). This would
satisfy constraints of all intervals. But these two breakpoints will not be enough
when we consider the following five pairwise incompatible segments: r1[3, 4],
r2[1, 3], r3[3, 4], r4[2, 3] and r5[1, 3]. These segments impose an ILP constraint:
U3,4,1 + U1,3,2 + U3,4,3 + U2,3,3 + U1,3,5 ≤ 3. Clearly, setting C2,1 and C4,3 to be
1 will not satisfy this constraint since C4,3 does not contribute to r4[2, 3] (recall
C4,3 refers to the breakpoint between columns 3 and 4, and r4[2, 3] is the 3rd
cluster within [2, 3]). So only U1,3,2 = 0 and the other four terms are equal to 1.

Finding incompatible segments. Ideally, we would like to find incompatible
segments whose total length is minimized (called the shortest incompatible seg-
ments or SISs). It is not known whether there is a polynomial-time algorithm
for finding the SISs. We also want to find more than one set of SISs to obtain
higher lower bounds. Thus, we use the following heuristic algorithm for finding
approximate SISs that works reasonably well in practice. This heuristic greedily
finds incompatible segments for each cluster. To find multiple SISs, we choose
different initial positions in the first cluster.

1 Order the clusters (e.g. in the order of their appearance in the dataset).
2 Set pos1 ← 1.
3 while pos1 < m

3a Initialize the first segment for row 1 as r1[pos1, pos1 + 1].
3b For each remaining cluster row ri, let its segment be the shortest segment

such that the segment is incompatible with all previous segments.
3c Set pos1 ← pos1 + 1.

Now with ILP constraints imposed on incompatible segments, higher C bounds
can be obtained. Moreover, the C bound can also be computed faster than
the original C bound by ILP. Simulation results show that the CPLEX ILP
solver usually takes only a few seconds for fairly large datasets (say with 100
rows and 100 columns with Kf = 10), which is much faster than computing
the original C bound. The speedup is likely due to the reduction of the size of
the ILP formulation: same segments are often chosen for different overlapping
intervals, which reduces the number of needed variables. Thus, the number of
needed Ui,j,k is often much smaller than that in the original formulation. Our
experience shows that the new C formulation with overlapping segments can use
only 10% (or fewer) variables as in the original formulation for larger datasets.

Other improvements. The C bound can be further improved by the following
observations. (a) We can find different SISs by picking a small number of different
cluster orders. (b) We can avoid enumeration of all

(
m
2

)
intervals for a matrix

with m columns in searching for incompatible segments. Suppose for an interval
[a, b] the found incompatible segments within [a, b] are all between [a1, b1]. Then
we can skip all intervals [x, y] where a ≤ x ≤ a1 and b1 ≤ y ≤ b.

160 Y. Wu

2.3 Application in Finding the Exact Minimum Mosaic Using
Branch and Bound

The C bound can speedup program RecBlock in finding the exact minimum
mosaic with the branch and bound scheme. We have experimented with the
following straightforward approach. Briefly, we use the approximate C bound
to determine whether a current search path can lead to a better solution. We
first compute the C bounds for the segment of input data between column i and
m, for each 1 ≤ i ≤ m − 1. For the purpose of efficiency, we only compute the
Cw bound by solving linear programming relaxation. Program RecBlock builds
a partial mosaic from column 1 to i during its search for the minimum mosaic.
If the lower bound on the minimum number of breakpoints for the sub-matrix
(from the current site to the right end of the input matrix) plus the currently
needed breakpoints in the partial solution is no smaller than the known upper
bound, then this search path will not lead to a better solution and can thus be
dropped.

Other more advanced strategies are also possible. For example, we can make
the lower bounds more effective by switching to heuristic mode with promising
search paths at each column. This may help because it may find the optimal
solution earlier whose optimality may be certified by the lower bound.

3 An Analytical Upper Bound

A natural question is how many breakpoints we may need in a minimum mosaic
for an arbitrary (i.e. unknown) n by m matrix. An answer to this question gives
an upper bound and also an estimate on the range of Bmin(M). It was stated in
[6] that there can be as many as (m− 1)n/2 breakpoints needed in a minimum
mosaic when Kf = 2. We now extend to the general case.

Proposition 2. Bmin ≤ (1− 1
Kf

)(m
�log2(Kf)	 − 1)n, for any Kf .

Proof. First note that when Kf = 2, this reduces to the (m− 1)n/2 bound. Our
approach is similar to [11]. We divide M into m/�log2(Kf)� non-overlapping
intervals, each with �log2(Kf)� columns. There are at most Kf distinct binary
sequences within each interval. We then pick each of these unique sequences as
founders within the interval. Thus, no breakpoints is needed inside intervals.
Since there are m/�log2(Kf)� intervals for each of the n rows, we need no more
than (m/�log2(Kf)� − 1)n breakpoints between intervals.

We can further improve this bound by carefully picking the colors for neigh-
boring intervals and removing some breakpoints between the intervals in a way
similar to [10,9]. More specifically, we construct a weighted bipartite graph for
two neighboring intervals IV and IV ′. A vertex Fi corresponds to a founder and
also a sequence cluster colored with this particular founder. There is an edge of
weight ni,j between vertices Fi within IV and Fj within IV ′ if there are ni,j

input sequences as concatenation of founder Fi within IV and founder Fj within
IV ′. We add a weight 0 edge between two founders if there is no such combina-
tion in the input sequences. When choosing the coloring for IV and IV ′, we use

Bounds on the Minimum Mosaic 161

the maximum weighted matching of the graph: if Fi is matched with Fj , Fi and
Fj are colored by the same founder. We avoid ni,j breakpoints between IV and
IV ′ since there is no color change within these ni,j rows.

Since the input matrix M is unknown, we can not explicitly construct the
bipartite graph and compute the maximum weighted matching. Nonetheless, we
can still rely on the matching to improve the upper bound as follows. First, the
total weight of the bipartite graph is n. Also, there exists a maximum weighted
matching which is also a perfect matching since the bipartite graph is complete.
We claim that there exists a perfect matching in the bipartite graph with at
least n/Kf weight. To see this, note that there are Kf ! perfect matchings for
a bipartite graph with Kf nodes on one side, and each edge appears in exactly
(Kf − 1)! of these perfect matchings. Thus, the sum of the weights of all perfect
matchings is (Kf−1)!n. The maximum weighted matching has weight of at least
(Kf−1)!n/Kf ! = n/Kf . Therefore, we can remove at least n/Kf breakpoints at
each interval boundary by properly selecting how founders are matched for the
two neighboring intervals. So we need no more than (1−1/Kf)(m/�log2(Kf)�−
1)n breakpoints for any input dataset with Kf founders. �	

4 Simulation Results

We have implemented the lower bound method in program RecBlock with ei-
ther CPLEX (a commercial ILP solver) or GNU GLPK ILP solver (mainly a
demo of the functionalities for users without a CPLEX license). The CPLEX
version is often much faster. The simulation results in this section are for the
CPLEX version. We test our method for simulated data on a 3192 MHz Intel
Xeon workstation. We use Hudson’s program ms [1] to generate binary popula-
tion sequences. We fix the scaled population mutation rate to 10, and the scaled
recombination rate to 10, and generate 100 datasets for 20, 30, 40 and 50 se-
quences. We then remove from datasets any columns that have more than 95%
or less than 5% 1s. This helps to remove more recent mutations and focus on
the underlying mosaic structures.

Performance of lower bounds. To demonstrate the usefulness of the new C
bound, we compare the performance of the CH bound and the C bound. We use
program RecBlock to compute the exact Bmin(M). We also evaluate the approx-
imate C bound (i.e. the Cw bound) obtained by solving LP relaxation. This is
useful since the Cw bound can be more scalable when data size grows. The per-
formance of the lower bounds is shown in Table 1. We use three statistics: (a)
percent of datasets where the lower bound matches Bmin(M); (b) average gap
between the lower bound and Bmin(M) (normalized by Bmin(M)); (c) average
running time. From Table 1, we can see that the C bound is very accurate for the
range of data we test: for a large percentage of datasets, the C bound matches
Bmin(M), and the average gap between the C bound and Bmin(M) is very small
(within 2%). Moreover, the C bound remains accurate for larger Kf . In terms of
efficiency, computing the C bound scales well with large Kf : the larger Kf is, the
faster computation is. This is likely because the size of integer programs decreases

162 Y. Wu

when Kf increases since fewer intervals contain more than Kf clusters when Kf

increases. This is very useful to obtain an estimate of Bmin(M): programRecBlock
gets increasingly slower when Kf increases. We also note that the Cw bound is
very accurate, and slightly faster to compute than the original C bound. On the
other hand, the CH bound performs poorly in all the cases with much larger gaps,
although the CH bound is often much faster to compute.

Also, it appears that the GLPK version can be slow in computing the exact C
bound, while it performs relatively well in computing the approximate C bound.
For example, the GLPK version takes on average 208 seconds in computing
the exact C bound (excluding one dataset where GLPK runs for more than
one day but does not find the optimal solution), and 61 seconds for computing
the approximate C bounds with the datasets with n = 30 and Kf = 5. As
a comparison, the CPLEX version takes on average 24 seconds and 18 seconds
respectively for computing the exact and the approximate C bounds for the same
datasets. Thus, when using the GLPK version, computing the approximate C
bounds may be more practical for some more difficult datasets.

Application in finding the exact minimum mosaic using branch and
bound. We also evaluate how the C bound performs in speeding up program
RecBlock with the branch and bound scheme. Simulation results are shown in
Table 1. When Kf becomes larger, branch and bound are more likely to be
effective. Although reduction of running time is modest in these simulations,
greater speed-up could be achieved if better heuristics are used for finding upper
bounds since the C bound is often close to the optimal solution. Moreover, since
branch and bound needs to compute the C bounds for many segments, using a
more powerful integer programming solver (e.g. CPLEX) may have a significant
impact on the running time.

Table 1. Performance of lower bounds. Exact: compute Bmin(M) by program
RecBlock. Exact (C): the branch and bound mode of program RecBlock using the Cw

bound. %Opt: percentage of datasets where the lower bound matches Bmin(M). Gap:
percentage of difference between Bmin(M) and the lower bound (divided by Bmin(M)).
T: time (in seconds). n: number of sequences. Kf : number of founders.

n 20 30 40 50
Kf 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
Exact T 1 7 39 255 8 95 848 3620 8 61 418 - 13 123 2024 -
Exact (C) T 3 7 38 196 14 48 304 2152 13 46 361 - 21 73 1671 -
CH %Opt 6 21 43 67 1 2 10 27 1 7 10 - 0 1 5 -

Gap 34 27 18 9 42 37 31 24 38 32 27 - 43 39 33 -
T <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

C %Opt 85 94 98 100 81 82 85 90 72 73 77 - 63 69 68 -
Gap 1 1 <1 0 1 2 1 1 2 2 2 - 2 2 2 -
T 3 3 2 2 24 19 19 14 18 18 15 12 40 37 29 21

Cw %Opt 83 94 98 100 77 81 83 90 71 70 77 - 59 67 66 -
Gap 1 1 <1 0 1 2 1 1 2 2 2 - 2 2 2 -
T 3 3 2 2 18 18 15 13 17 15 14 12 26 24 23 21

Bounds on the Minimum Mosaic 163

Acknowledgment. This work is supported by National Science Foundation
[IIS-0803440]. I am also supported by the Research Foundation of University of
Connecticut.

References

1. Hudson, R.: Generating Samples under the Wright-Fisher neutral model of genetic
variation. Bioinformatics 18(2), 337–338 (2002)

2. Kimmel, G., Shamir, R.: A block-free hidden markov model for genotypes and its
application to disease association. J. of Comp. Bio. 12, 1243–1260 (2005)

3. Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A new multipoint
method for genome-wide associationstudies by imputation of genotypes. Nature
Genetics 39, 906–913 (2007)

4. Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination
events in a sample history. Genetics 163, 375–394 (2003)

5. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A Hidden Markov Technique
for Haplotype Reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS
(LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)

6. Rastas, P., Ukkonen, E.: Haplotype Inference Via Hierarchical Genotype Parsing.
In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp.
85–97. Springer, Heidelberg (2007)

7. Roli, A., Blum, C.: Tabu Search for the Founder Sequence Reconstruction Prob-
lem: A Preliminary Study. In: Proceedings of Distributed Computing, Artifi-
cial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living
(IWANN 2009), pp. 1035–1042 (2009)

8. Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale pop-
ulation genotype data: applications to inferring missing genotypes and haplotypic
phase. Am. J. Human Genetics 78, 629–644 (2006)

9. Schwartz, R., Clark, A., Istrail, S.: Methods for Inferring Block-Wise Ancestral
History from Haploid Sequences. In: Guigó, R., Gusfield, D. (eds.) WABI 2002.
LNCS, vol. 2452, pp. 44–59. Springer, Heidelberg (2002)

10. Ukkonen, E.: Finding Founder Sequences from a Set of Recombinants. In: Guigó,
R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 277–286. Springer,
Heidelberg (2002)

11. Wu, Y.: Analytical Upper Bound on the Minimum Number of Recombinations in
the History of SNP Sequences in Populations, Info. Proc. Letters 109, 427–431
(2009)

12. Wu, Y., Gusfield, D.: Improved Algorithms for Inferring the Minimum Mosaic of
a Set of Recombinants. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580,
pp. 150–161. Springer, Heidelberg (2007)

13. Zhang, Q., Wang, W., McMillan, L., Prins, J., de Villena, F.P., Threadgill, D.:
Genotype Sequence Segmentation: Handling Constraints and Noise. In: Crandall,
K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 271–283.
Springer, Heidelberg (2008)

The Highest Expected Reward Decoding
for HMMs with Application to

Recombination Detection

Michal Nánási, Tomáš Vinař, and Broňa Brejová

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská Dolina, 842 48 Bratislava, Slovakia

Abstract. Hidden Markov models are traditionally decoded by the Vi-
terbi algorithm which finds the highest probability state path in the
model. In recent years, several limitations of the Viterbi decoding have
been demonstrated, and new algorithms have been developed to ad-
dress them (Kall et al., 2005; Brejova et al., 2007; Gross et al., 2007;
Brown and Truszkowski, 2010). In this paper, we propose a new effi-
cient highest expected reward decoding algorithm (HERD) that allows
for uncertainty in boundaries of individual sequence features. We demon-
strate usefulness of our approach on jumping HMMs for recombination
detection in viral genomes.

Keywords: hidden Markov models, decoding algorithms, recombination
detection, jumping HMMs.

1 Introduction

Hidden Markov models (HMMs) are an important tool for modeling and anno-
tation of biological sequences and other data, such as natural language texts.
The goal of sequence annotation is to label each symbol of the input sequence
according to its meaning or a function. For example, in gene finding, we seek
to distinguish regions of DNA that encode proteins from non-coding sequence.
An HMM defines a probability distribution Pr(A|X) over all annotations A of
sequence X . Typically, one uses the well-known Viterbi algorithm (Forney Jr.,
1973) or its variants for more complex models (Brejova et al., 2007) to find the
annotation with the highest overall probability argmaxA Pr(A|X). In this pa-
per, we design an efficient HMM decoding algorithm that finds the optimal an-
notation for a different optimization criterion that is more appropriate in many
applications.

In recent years, several annotation strategies were shown to achieve better
performance than the Viterbi decoding in particular applications (Kall et al.,
2005; Gross et al., 2007; Brown and Truszkowski, 2010). Generally, they can be
expressed in the terminology of gain functions introduced in the context of
stochastic context-free grammars (Hamada et al., 2009). In particular, we choose
a gain function G(A, A′) which characterizes similarity between a proposed an-
notation A and the (unknown) correct annotation A′. The goal is then to find the

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 164–176, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Highest Expected Reward Decoding for HMMs 165

annotation A with the highest expected value of G(A, A′) over the distribution
of A′ defined by the HMM, conditioning on sequence X . That is, we maximize
EA′|X [G(A, A′)] =

∑
A′ G(A, A′)P (A′|X).

Intuitively, the gain function should characterize the measure of prediction ac-
curacy appropriate for a particular application domain. If the sequences and the
true annotations are generated from the HMM, the decoding algorithm optimiz-
ing the expected gain will on average reach higher prediction accuracy, measured
by G(A, A′), than any other decoding.

In this framework, the Viterbi decoding optimizes the identity gain function
G(A, A′) = [A = A′], that is the gain is 1 if we predict the whole annotation
exactly correctly, and 0 otherwise. There may be many high-probability anno-
tations besides the optimal one, and they are disregarded by this gain function,
even though their consensus may suggest a different answer that is perhaps more
accurate locally. On the other hand, the posterior decoding (Durbin et al., 1998)
predicts at each position a label that has the highest posterior probability at that
position, marginalizing over all annotations. Therefore, it optimizes the expected
gain under the gain function that counts the number of correctly predicted labels
in A with respect to A′.

These two gain functions are extremes: the Viterbi decoding assigns a positive
gain to the annotation only if it is completely correct, while the posterior decod-
ing gain function rewards every correct label. It is often appropriate to consider
gain functions in between these two extremes. For example, in the context of
gene finding, Gross et al. (2007) use a gain function that assigns a score +1
for each correctly predicted coding region boundary and score −γ for predicted
boundary that is a false positive. Indeed, one of the main objectives of gene
finding is to find exact positions of these boundaries, since even a small error
may change the predicted protein significantly. Parameter γ in the gain function
controls the trade-off between sensitivity and specificity.

While the coding region boundaries are well defined in gene finding, and it is
desirable to locate them precisely, in other applications, such as transmembrane
protein topology prediction, we only wish to infer the approximate locations of
feature boundaries. The main reason is that the underlying HMMs do not contain
enough information to locate the boundaries exactly, and there are typically
many annotations of similar probability with slightly different boundaries. This
issue was recently examined by Brown and Truszkowski (2010) in a Viterbi-like
setting, where we assign gain to an annotation, if all feature boundaries in A
are within some distance W from the corresponding boundary in the correct
annotation A′. Unfortunately, the problem has to be addressed by heuristics,
since it is NP-hard even for W = 0.

In this paper, we propose a new gain function in which each feature boundary
in A gets score +1 if it is within distance W from the corresponding boundary in
A′, and score −γ otherwise. Our definition allows to consider nearby boundary
positions as equivalent, as in Brown and Truszkowski (2010), yet it avoids the
requirement that the whole annotation needs to be essentially correct to receive

166 M. Nánási, T. Vinař, and B. Brejová

any gain at all. Another benefit is that our gain function can be efficiently
optimized in time linear in the length of the input sequence.

We apply our algorithm to the problem of detecting recombination in the
genome of the human immunodeficiency virus (HIV) with jumping HMMs
(Schultz et al., 2006). A jumping HMM consists of a profile HMM (Durbin et al.,
1998) for each known subtype of HIV. Recombination events are represented by
a special jump transitions between different profile HMMs. The goal is to deter-
mine for a new HIV genome whether it comes from one of the known subtypes
or whether it is a recombination of several subtypes. However, the exact position
of a breakpoint can be difficult to determine, particularly if the two recombin-
ing strains were very similar near the recombination point. Our gain function
corresponds to this problem very naturally: it scores individual predicted recom-
bination points, but allows some tolerance in their exact placement.

2 HERD: The Highest Expected Reward Decoding

In this section, we propose a new gain function and describe an algorithm for find-
ing the annotation with the highest expected gain. Our algorithm is a non-trivial
extension of the maximum expected boundary accuracy decoding (Gross et al.,
2007).

Hidden Markov models and notation. A hidden Markov model (HMM) is a gener-
ative probabilistic model with a finite set of states V and transitions E. There is
a single designated start state s and a final state t. The generative process starts
in the start state, and in each round it emits a single symbol xi from the emission
probability distribution evi,xi of the current state vi, and then changes the state
to vi+1 according to the transition probability distribution avi,vi+1 . The genera-
tive process continues until the final state is reached. Thus, the joint probability
of generating a sequence X = x1, . . . , xn by a state path π = s, v1, . . . , vn, t
is Pr(π, X) = as,v1 ·

∏n
i=1 evi,xi · avi,vi+1 , where vn+1 = t. In other words, the

HMM defines a probability distribution Pr(π, X) over all possible sequences X
and state paths π, or perhaps more appropriately, for a given sequence X , the
HMM defines a conditional distribution over all state paths Pr(π |X).

Our aim is to produce an annotation of an input sequence X , i.e. to label
each symbol of X by a color corresponding to its function (e.g., coding or non-
coding in the case of gene finding, or a virus subtype in case of recombination
detection). Position i in the annotation A = a1 . . . an is a boundary, if ai and ai+1
are different colors. For convenience, we consider positions 0 and n as boundaries.
A feature is a region between two consecutive boundaries.

To use HMMs for sequence annotation, we color each state v by a color
c(v). Every state path π = s, v1, . . . , vn, t thus implies an annotation c(π) =
c(v1) . . . c(vn). In general, multiple states can have the same color, and several
state paths may produce the same annotation. Thus, HMMs also define a prob-
ability distribution over annotations A, where Pr(A |X) =

∑
π:c(π)=A Pr(π |X).

The Highest Expected Reward Decoding for HMMs 167

A

A′

Fig. 1. Example of buddy pairs in two annotations over three colors (white, gray, black)
for W = 3. Boundaries are shown by arrows, buddy pairs are connected by lines. The
second boundary in A does not have a buddy pair due to condition (ii), whereas the
fourth and fifth boundary due to condition (iii). In this example, G(A, A′) = 3 − 4γ.

The highest expected reward decoding problem. To formally define our problem,
we first define a gain function G(A, A′) characterizing similarity between any
two annotations A and A′ of the same sequence. We assign a positive score to a
boundary in A if A′ contains a corresponding boundary sufficiently close so that
they can be considered equivalent. This notion of closeness is formalized in the
following definition (see also Figure 1).

Definition 1. Let A and A′ be two annotations of the same sequence. Bound-
aries i in A and j in A′ are called buddies if (i) both of them separate the same
pair of colors c1 and c2, (ii) |i− j| < W , and (iii) there is no other boundary at
positions min{i, j}, . . . , max{i, j} in either A or A′.

The intuition behind condition (iii) is that the buddies should correspond to
boundaries that are only slightly shifted from their correct position, but still
separate essentially the same pair of features. In the extreme case, such as the
boundaries between gray and black features in Figure 1, even a slight shift in
the boundary causes the flanking black features to become non-overlapping.
Condition (iii) in fact enforces that pairs of such non-overlapping features are
not considered as corresponding to each other. Moreover, condition (iii) also
enforces that each boundary in A′ is a buddy to at most one boundary in A and
vice versa.

Definition 2 (Highest expected reward decoding problem). Let gain
function G(A, A′) assign score +1 to each boundary in A if it has a buddy in
A′ and score −γ to boundaries in A without a buddy. In the highest expected
reward decoding (HERD), we seek the annotation A maximizing the expected
gain EA′|X [G(A, A′)] =

∑
A′ G(A, A′) Pr(A′ |X), where the conditional probabil-

ity Pr(A′ |X) is defined by the HMM as
∑

π:c(π)=A′ Pr(π, X)/ Pr(X).

Note that our objective EA′|X [G(A, A′)] can be further decomposed. In partic-
ular, from linearity of expectation, EA′|X [G(A, A′)] =

∑
i∈B(A) Rγ(pA,i), where

B(A) is the set of all boundaries in A, pA,i is the posterior probability in the
HMM that the boundary i in A has a buddy, and Rγ(p) = p− γ · (1− p) is the
expected score (reward) for a boundary with posterior probability p.

The HERD algorithm computes posterior probabilities and expected rewards
for all possible boundaries and then uses dynamic programming to choose an
annotation with the highest possible sum of expected rewards in its boundaries.
The details of the algorithm are described below.

168 M. Nánási, T. Vinař, and B. Brejová

i
A • ◦ ◦ ◦ ◦ • • ◦ p(i, ◦, •, 3, 2)

◦ • • • = Pr(ai−2...i+1 = ◦ •3 |X)
◦ • • + Pr(ai−1...i+1 = ◦ •2 |X)
◦ • + Pr(ai...i+1 = ◦ • |X)
◦ ◦ • + Pr(ai...i+2 = ◦2 • |X)

Fig. 2. Illustration of annotations contributing probability to p(i, c1, c2, wL, wR) for
W = 3

Expected reward of a boundary. To compute the posterior probability pA,i that
a boundary i in A has a buddy in A′ sampled from the HMM, it is sufficient to
examine only a local neighborhood of boundary i in A. In particular, let c1 and
c2 be the two colors separated by this boundary and nL and nR be the lengths
of the two adjacent features. If nL ≤ W , the leftmost possible position of the
buddy in A′ is i−nL + 1, otherwise it is i−W + 1; a symmetric condition holds
for the rightmost position. Therefore, if A has a buddy in A′, it must be in the
interval [i−wL+1, i+wR−1], where wL = min{W, nL}, and wR = min{W, nR}.
If we denote by p(i, c1, c2, wL, wR) the sum of probabilities of all annotations A′

that have a buddy for boundary i in the interval [i − wL + 1, i + wR − 1] (see
Figure 2), the expected reward of boundary i will be Rγ(p(i, c1, c2, wL, wR)).

Probability p(i, c1, c2, wL, wR) can be expressed as a sum of simpler terms,
one for each possible position j of the buddy in A′:

p(i, c1, c2, wL, wR) =
i∑

j=i−wL+1

Pr(aj...i+1 = c1c2
i−j−1 | X)

+
i+wR−1∑
j=i+1

Pr(ai...j+1 = c1
j−i−1c2 | X).

Note that if the buddy is at position j ≤ i, this position needs to have color c1
and all successive positions up to i + 1 need to have color c2, otherwise there
would be a different boundary between i and j in A′. However, positions outside
of interval [j, i+1] can be colored arbitrarily. Similarly for the buddy at position
j > i, all positions from i up to j need to have color c1 and position j + 1 color
c2. Also note that all terms in the sum represent disjoint sets of annotations,
and therefore we are justified to compute the probability of the union of these
sets by a sum. All terms of this sum can be computed efficiently, as described at
the end of this section.

Finding the annotation with the highest expected reward. Once the expected
rewards Rγ(p(i, c1, c2, wL, wR)) are known for all possible boundaries, we can
compute the annotation A with the highest expected gain by dynamic pro-
gramming. We can view the algorithm as the computation of the highest-weight

The Highest Expected Reward Decoding for HMMs 169

directed path between two vertices in a directed acyclic graph, where each path
corresponds to one annotation and its weight to the expected gain.

In particular, the graph has a vertex (i, c, w) for each position i, color c, and
window length w ≤ W . This vertex represents a boundary at position i between
an unspecified color on the left and the color c on the right, where the adjacent
feature of color c has length exactly w if w < W , or at least W otherwise. If
w < W , we will connect vertex (i, c, w) with vertices (i + w, c′, w′) for all colors
c′ and lengths w′ ≤ W . Each such edge will have weight Rγ(p(i+w, c, c′, w, w′)),
representing the expected reward of boundary at position i + w. If w = W , we
connect vertex (i, c, w) with vertices (i + w′′, c, c′, w′) for all w′′ ≥ W , w′ ≤ W
and color c′ by long-distance edges. The weight of such edges will be Rγ(p(i +
w′′, c, c′, W, w′)).

To finish the construction, we will assume that positions 0 and n + 1 are
labeled by special colors cs and cf and that these two features have corresponding
nodes in the graph. We also add a starting vertex (−1, cs, 1) and connect it to
vertices (0, c, w) according to normal rules. The annotation with the highest
reward corresponds to the highest-weight path from vertex (−1, cs, 1) to vertex
(n, cf , 1).

In this graph, the number of long-distance edges is quadratic in the length
of sequence X , leading to an inefficient algorithm. Fortunately, the cost of a
long-distance edge from (i, c, w) to (i + w′′, c, c′, w′) does not depend on index i,
only on i + w′′. Therefore, every long-distance edge can be replaced by a path
through a series of special collector vertices of the form (i, c) for a position i
and color c. There is an edge of weight 0 from (i, c, W) to (i + W, c) for entering
the collector path at an appropriate minimum distance from i, edge of weight
0 from (i, c) to (i + 1, c) for continuing in the collector path, and an edge of
weight Rγ(p(i, c, c′, W, w′)) for leaving the collector path from vertex (i, c) to
vertex (i, c′, w′). This modified graph has O(nWC) vertices and O(nW 2C2)
edges, where n is the length of the sequence, W is the size of the window, and
C is the number of different colors in the HMM.

Implementation details and running time. The only remaining detail is the com-
putation of the posterior probabilities of the form Pr(ai...i+w = c1c2

w | X) and
Pr(ai...i+w = cw

1 c2 | X) needed to compute p(i, c, c′, w, w′). We will show how to
compute the first of these two quantities, the second is analogous.

First, we use the standard forward algorithm (Durbin et al., 1998) to com-
pute F [i, v], the sum of the probabilities of all state paths ending in state v af-
ter generating the first i symbols from X . We use a modified backward algorithm
(Durbin et al., 1998) to compute B[i, v, w], the sum of the probabilities of all state
paths generating symbols xi . . . xn that start in state v and generate the first w
symbols in the states of color c(v). Values B[i, v, 1] are computed by the standard
backward algorithm, and B[i, v, w] for 1 < w ≤ W is computed as follows:

B[i, v, w] =
∑

v → v′

c(v) = c(v′)

B[i + 1, v, w − 1] · ev,xi · av,v′ .

170 M. Nánási, T. Vinař, and B. Brejová

Finally, the desired posterior probability is obtained by combining forward and
backward probabilities over all transitions passing from color c1 to color c2 at
position i:

Pr(ai...i+w = c1c2
w | X) =

∑
v → v′

c(v) = c1
c(v′) = c2

F [i, v] · av,v′ ·B[i + 1, v′, w]/ Pr(x).

The standard forward algorithm works in O(n|E|) time, our extended backward
algorithm takes O(nW |E|) time. Posterior probabilities are summarized from
these quantities also in O(nW |E|) time. Finally, we construct and search the
graph in O(nW 2C2) time. Thus the overall running time is O(nW |E|+nW 2C2).
Note that the time is linear in the sequence length, which is very important for
applications in genomics, where we analyze very long genomic sequences.

3 Application to Viral Recombination Detection

Most HIV infections are caused by HIV-1 group M viruses. These viruses can
be classified by a phylogenetic analysis into several subtypes and sub-subtypes.
However, some HIV genomes are a mosaic of sequences from different subtypes
resulting from recombination between different strains (Robertson et al., 2000).
Our goal is to classify whether a newly sequenced HIV genome comes entirely
from one of the known subtypes or whether it is a recombination of different
subtypes, which is important for monitoring the HIV epidemics.

Schultz et al. (2006) propose to detect recombination by jumping HMMs. In
this framework, multiple sequence alignment of known HIV genomes is divided
into parts corresponding to individual subtypes or sub-subtypes, and a profile
HMM is built for each. A profile HMM (Durbin et al., 1998) represents one
column of alignment by a match state, insert state and delete state. Emission
probabilities of the match state correspond to the frequencies of symbols in that
alignment column. The insert state represents sequences inserted immediately
after the column, and the delete state is a silent state allowing to bypass the
match state without emitting any symbols, thus corresponding to a deletion. A
jumping HMM also contains low probability jump transitions between profile
HMMs corresponding to individual subtypes, as shown in Figure 3.

To use a jumping HMM for recombination detection, we color each state by
its subtype. Then, boundaries in the annotation correspond to recombination
breakpoints. Schultz et al. (2006) use the Viterbi algorithm and report the an-
notation corresponding to the most probable state path. However, the same
annotation can be obtained by many different state paths corresponding to dif-
ferent alignments of the input sequence to the profile HMMs. Even though in the
latest version of their software (Schultz et al., 2009) they augment the output by
displaing the posterior probabilities, they still output only a single annotation
obtained by the Viterbi algorithm. Since we are not interested in the alignment,

The Highest Expected Reward Decoding for HMMs 171

D
M

D

I
M

D

I
M

D
M

D

I
M

D

I
M

s I tI

Fig. 3. A small example of a jumping HMM with two profile HMMs. For readability,
jumping transitions between match states (M) and insert (I) or delete (D) states are
not shown.

only in the annotation, it is more appropriate to use the most probable anno-
tation instead of the most probable path. However, the problem of finding the
most probable annotation is NP-hard for many HMMs (Brejova et al., 2007),
and jumping HMMs, due to their complicated structure with many transitions
between states of different color, are likely to belong to this class.

The HERD bypasses this computational difficulty by maximizing a different
gain function that scores individual breakpoints rather than the whole annota-
tion. Compared to the Viterbi algorithm, our algorithm considers all possible
state paths (alignments) contributing to the resulting annotation. In addition,
our algorithm considers nearby potential recombination points as equivalent,
since in practice it is difficult to determine the exact recombination point, par-
ticularly in strongly conserved regions or between related subtypes.

The use of jumping HMMs on HIV genomes is relatively time consuming, as a
typical HIV genome has the length of almost 10,000 bases, and the jumping HMM
has 7,356,740 transitions. Schultz et al. (2006) use the beam search heuristic to
speed up the Viterbi algorithm. Unfortunately, this heuristic is not applicable in
our case, and our algorithm is also asymptotically slower than the Viterbi algo-
rithm by a factor of W . To reduce the running time, we use a simple anchoring
strategy, similar to the heuristics frequently used in the global sequence alignment
(Kurtz et al., 2004). We have selected 19 well-conserved portions of the HIV mul-
tiple alignment as anchors, and align the consensus sequence of each anchor to the
query sequence. In the forward and backward algorithm, we constrain the align-
ment of the query to the profile HMMs so that the position of the anchor in the
query aligns to its known position in the profile HMM. We also extend the algo-
rithm described above to handle silent states by modifying the preprocessing stage.

4 Experiments

A toy sequence annotation HMM. We have first tested our algorithm on data
generated from a toy HMM in Figure 4. This HMM has multiple state paths
for a given annotation, and we have previously demonstrated that the most
probable annotation is more accurate than the annotation corresponding to the
most probable state path found by the Viterbi algorithm (Brejova et al., 2007).

172 M. Nánási, T. Vinař, and B. Brejová

s

t

0.5 1 1 p1 p2 1 1

0.95 0.95 0.90.1

Fig. 4. A toy HMM emitting symbols over the binary alphabet, where the numbers
inside states represent the emission probability of the symbol 1. States s and t are
silent. The HMM outputs alternating white regions of mean length 20 and gray regions
of mean length 34. The distribution of symbols is constant in the white regions, while
in the gray regions it changes towards the end. The gray regions are flanked by a two-
symbol signal 11 on both sides. The HMM was inspired by models of CT-rich intron
tails in gene finding (Brejova et al., 2007).

Table 1 shows different measures of accuracy for several decoding algorithms
on 5000 randomly generated sequences of mean length about 500. We report re-
sults for two sets of parameter values of the model, however, the trends observed
in the table generally hold also for the other combinations of p1 and p2. As we
have shown earlier, the extended Viterbi algorithm (EVA) (Brejova et al., 2007)
for finding the most probable annotation generally outperforms the Viterbi al-
gorithm. The HERD with parameters W = 5 and γ = 1 is more accurate when
the performance is measured by its own gain function, which is not surprising,
since the data and baseline predictions are generated from the same model as is
used for annotation. On the other hand, the HERD colors fewer bases correctly
and tends to place boundaries on average further away from the correct ones
than the EVA. This is also not unexpected, as the HERD explicitly disregards
small differences in the boundary position. We have also measured sensitivity
and specificity in predicting individual features. Here the HERD works better
than the EVA for some parameter settings (e.g. p1 = p2 = 0.9 in the table),
but not for others. We have also run the HERD with W = 1, which is equiv-
alent to maximum expected boundary accuracy decoding (Gross et al., 2007).
The accuracy of this decoding is very poor for γ = 1, but markedly improves for
lower penalty γ = 0.1. The reason is that for W = 1, we sum over fewer state
paths and therefore the posterior probability of a boundary rarely reaches the
threshold 1/2 necessary to achieve positive expected reward at γ = 1.

HIV recombination detection. Table 2 shows the accuracy of the HERD on pre-
dicting recombination in HIV genomes. In all tests, we have used the sequence
data and the jumping of Schultz et al. (2006), though in most tests we have
increased the jump probability Pj from 10−9 to 10−5. With the original value,
the HERD rarely predicts any recombination, since the posterior probability
of a breakpoint has to be at least 1/2 for γ = 1 to receive a positive score,
and with the lower jumping probability, we usually do not reach such a level of
confidence. We have conducted the tests on a 1696 column region of the whole
genomic alignment, starting at position 6925. This restriction allowed us to test
higher number of sequences than Schultz et al. (2006) reasonably fast.

The Highest Expected Reward Decoding for HMMs 173

Table 1. The accuracy on synthetic data generated from the HMM in Figure 4. (i)
Fraction of the bases colored by the same color by the algorithm and the correct
annotation (baseline). (ii) Gain G(A, A′) of the prediction compared to the baseline.
For evaluation, the parameters of the gain function were set to W = 5 and γ = 1,
even though in some tests we have used different parameters in the algorithm. (iii) A
feature is predicted correctly if there is a corresponding feature of the same color in the
baseline with both boundaries within the distance of less than 5. Specificity (sp.) is the
fraction of all predicted features that are correct, and sensitivity (sn.) is the fraction of
baseline features that are correctly predicted. (iv) Mean distance between the baseline
and predicted boundary for all correctly predicted features.

Algorithm % bases Gain Feature Feature Avg.
correct(i) (ii) sp.(iii) sn.(iii) dist.

HMM parameters p1 = 0.9, p2 = 0.9
HERD W = 5, γ = 1 88.7% 12.7 75.9% 66.9% 1.8
HERD W = 1, γ = 1 47.5% 3.0 55.1% 17.8% 0.0
HERD W = 1, γ = 0.1 90.4% 2.4 51.8% 66.0% 0.9
Viterbi 89.4% 8.9 66.3% 47.3% 0.7
Extended Viterbi 91.2% 10.3 69.9% 56.2% 0.8

HMM parameters p1 = 0.7, p2 = 0.8
HERD W = 5, γ = 1 77.6% 5.9 54.8% 39.3% 1.37
HERD W = 1, γ = 1 47.5% 3.0 55.0% 17.7% 0.0
HERD W = 1, γ = 0.1 79.6% -2.7 38.2% 43.9% 0.9
Viterbi 75.0% 3.6 51.2% 25.7% 0.4
Extended Viterbi 79.7% 4.1 49.0% 31.3% 0.6

The first set of tests was done on 62 real HIV sequences without known
recombination. These sequences were selected from the subtypes A1, B, C, D,
F1 (10 sequences from each subtype) and G, A2, F2 (5, 3, and 4 sequences
respectively) and omitted from the training set (except for the subtypes A2,
F1 and F2 which have very few samples). As we can see in Table 2, the Viterbi
algorithm always predicts the correct result. Our algorithm on the jumping HMM
with the original low jumping probability Pj = 10−9 also produces correct answer
every time. However, the value of Pj = 10−5 leads to spurious recombinations
predicted in 11.3% of sequences, thus lowering the accuracy.

The second set of sequences contains artificial recombinants. Each of them
was created as a combination of two sequences from two different subtypes by
alternating regions of length 300. The set contains recombinants between sub-
type pairs A-B, A-C, A-G, B-C, B-G and C-G, 50 sequences from each pair.
Our algorithm performs slightly better with respect to the total number of cor-
rectly labeled bases and average distance to the correct boundary, and also it
finds individual features (recombinant regions) with much greater sensitivity and
specificity if we allow some tolerance in the boundary placement. For W = 1, the
HERD has a very low accuracy even for lowered penalty γ = 0.1. This suggests
that our generalization of the maximum expected boundary accuracy decoding
to the case W > 1 is crucial in this setting.

174 M. Nánási, T. Vinař, and B. Brejová

Table 2. The accuracy on the HIV recombination data. The meaning of the columns
is the same as in Table 1, except that we use W = 10 and γ = 1 in the definition of
the gain function and correctly predicted features.

Algorithm % bases Gain Feature Feature Avg.
correct(i) (ii) sp.(iii) sn.(iii) dist.

Sequences without recombination
HERD, W = 10, γ = 1, Pj = 10−9 100.0% 2.0 100.0% 100.0% 0.0
HERD, W = 10, γ = 1, Pj = 10−5 93.7% 1.5 83.9% 83.9% 0.0
Viterbi 100.0% 2.0 100.0% 100.0% 0.0
Sequences with artificial inter-subtype recombination
HERD W = 10, γ = 1, Pj = 10−5 95.7% 2.61 63.1% 58.9% 2.4
HERD W = 1, γ = 0.1, Pj = 10−5 81.6% 1.17 37.7% 30.2% 1.4
Viterbi 95.4% 2.1 53.4% 47.9% 1.8
Sequences with artificial intra-subtype recombination
HERD W = 10, γ = 1, Pj = 10−5 91.6% 1.7 46.5% 41.9% 2.7
Viterbi 88.0% 1.3 32.8% 26.1% 2.7

In the third test, we have used the same procedure to create 170 artificial
recombinants between sequences of two sub-subtypes of the same subtype (A1
and A2, F1 and F2), and from the two subtypes (B and D) at a small phylogenetic
distance that is more typical for sub-subtypes. The overall accuracy is lower in
this test, because it is more difficult to distinguish recombination among more
closely related sequences. The HERD is still much more accurate at the feature
level and also more accurate than the Viterbi algorithm on the base level.

One issue with our tests is that we have used a lower jump probability
Pj = 10−9 for sequences without recombination and a higher value Pj = 10−5

for sequences with recombination. This distinction is justified by the fact that
although recombinant sequences are generally rare, suggesting a low jumping
probability, they usually have several recombination points, whose detection
then requires a higher value of Pj . In practice, when faced with a sequence
of unknown origin we propose to first test whether the sequence is likely to be a
recombinant, perhaps by a likelihood ratio test with nested models (Felsenstein,
2004) in which Pj is optimized for the input sequence in one model and set to
0 for the null model. If the sequence appears to contain recombination, we can
then apply the HERD with the higher value of Pj to determine the breakpoints.

We have also run our algorithm on 12 naturally occurring recombinants, using
W = 10, γ = 1.5, and Pj = 10−5. Here, we have used the whole length of
the sequence. Due to the small number of sequences and uncertain annotation,
we do not report the accuracy statistics. Nonetheless, on six sequences, the
HERD found the correct set of recombining subtypes (on annotated regions).
Two of them the HERD annotated better than Viterbi (CRF08, CRF12). On
the remaining six, the HERD predicted at least one erroneous subtype and often
misplaced breakpoints or jumped frequently, but the Viterbi algorithm also made
numerous mistakes on the two of these sequences.

The Highest Expected Reward Decoding for HMMs 175

5 Conclusion

In this paper, we have introduced a novel decoding algorithm for hidden Markov
models seeking an annotation of the sequence in which boundaries of individ-
ual sequence features are at least approximately correct. This decoding is par-
ticularly appropriate in situations where the exact boundaries are difficult to
determine, and perhaps their knowledge is not even necessary.

We apply our algorithm to the problem of recombination detection in HIV
genomes. Here, the Viterbi decoding considers for a given annotation only a
single alignment of the query to the profile HMMs and only one placement
of breakpoints. In contrast, we marginalize the probabilities over all possible
alignments and over nearby placements of recombination boundaries. As a result,
we are able to predict individual recombinant regions with greater sensitivity and
specificity.

Our experiments also suggest venues for future improvement. First of all, the
accuracy results vary with the choice of parameters Pj , W , and γ. It remains an
open question how to choose these parameters in a principled way. We have also
observed that our algorithm does not perform as well as the Viterbi algorithm in
finding the exact boundaries. Perhaps this could be solved by a gain function in
which a boundary with a more distant buddy gets a smaller score. Similarly, our
algorithm performs in some tests slightly worse in terms of base-level accuracy,
and this shortcoming perhaps could be addressed by adding a positive score for
every correctly colored nucleotide to the gain function. In general, the framework
of maximum expected gain decoding is very promising, because it allows to tailor
decoding algorithm to a specific application domain.

Acknowledgements. We would like to thank Dan Brown and Jakub
Truszkowski for helpful discussion on related problems. Research of TV and BB
is funded by European Community FP7 grants IRG-224885 and IRG-231025.

References

Brejova, B., Brown, D.G., Vinar, T.: The most probable annotation problem in
HMMs and its application to bioinformatics. Journal of Computer and System Sci-
ences 73(7), 1060–1077 (2007)

Brown, D.G., Truszkowski, J.: New decoding algorithms for hidden Markov models
using distance measures on labellings. BMC Bioinformatics 11(S1), S40 (2010)

Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Proba-
bilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge
(1998)

Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2004)
Forney Jr., G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)
Gross, S.S., Do, C.B., Sirota, M., Batzoglou, S.: CONTRAST: a discriminative,

phylogeny-free approach to multiple informant de novo gene prediction. Genome
Biology 8(12), R269 (2007)

Hamada, M., Kiryu, H., Sato, K., Mituyama, T., Asai, K.: Prediction of RNA secondary
structure using generalized centroid estimators. Bioinformatics 25(4), 465–473 (2009)

176 M. Nánási, T. Vinař, and B. Brejová

Kall, L., Krogh, A., Sonnhammer, E.L.L.: An HMM posterior decoder for sequence
feature prediction that includes homology information. Bioinformatics 21(S1), i251–
i257 (2005)

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biology 5(2), R12 (2004)

Robertson, D.L., et al.: HIV-1 nomenclature proposal. Science 288(5463), 55–56 (2000)
Schultz, A.-K., Zhang, M., Bulla, I., Leitner, T., Korber, B., Morgenstern, B., Stanke,

M.: jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic
Acids Research 37(W), W647–W651 (2009)

Schultz, A.-K., Zhang, M., Leitner, T., Kuiken, C., Korber, B., Morgenstern, B., Stanke,
M.: A jumping profile Hidden Markov Model and applications to recombination sites
in HIV and HCV genomes. BMC Bioinformatics 7, 265 (2006)

Phylogeny- and Parsimony-Based
Haplotype Inference with Constraints

Michael Elberfeld and Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck, 23538 Lübeck, Germany

{elberfeld,tantau}@tcs.uni-luebeck.de

Abstract. Haplotyping, also known as haplotype phase prediction, is
the problem of predicting likely haplotypes based on genotype data.
One fast computational haplotyping method is based on an evolution-
ary model where a perfect phylogenetic tree is sought that explains the
observed data. In their cpm 2009 paper, Fellows et al. studied an ex-
tension of this approach that incorporates prior knowledge in the form
of a set of candidate haplotypes from which the right haplotypes must
be chosen. While this approach may help to increase the accuracy of
haplotyping methods, it was conjectured that the resulting formal prob-
lem constrained perfect phylogeny haplotyping might be NP-complete. In
the present paper we present a polynomial-time algorithm for it. Our
algorithmic ideas also yield new fixed-parameter algorithms for related
haplotyping problems based on the maximum parsimony assumption.

1 Introduction

In large-scale studies of the relation between genomic variation and phenotypic
traits, low-cost sequencing methods are used to read out the dna sequences of
many individuals. For each individual the bases present on the two chromosomes
at a large number of snp (single nucleotide polymorphism) sites are determined,
yielding the individual’s genotype for the different sites. In order to study pheno-
typic traits that are related to the bases present on multiple loci on a single dna

strand, it is important to determine haplotypes rather than genotypes. They
describe how bases are assigned to chromosomes (this assignment of bases to
haplotypes is also known as phasing), but are expensive to determine directly.
Haplotype inference or just haplotyping methods aim at predicting haplotypes
from genotypes computationally by using biological insights into the haplotype
distribution in a population. They either use statistics, pioneered in [11], or com-
binatorics, the two most common approaches being the perfect phylogeny method
(haplotype evolution is assumed to take place with unique point mutation and
without recombination) and the maximum parsimony method (haplotype evolu-
tion is assumed to produce only few haplotypes).

Most combinatorial algorithms ignore prior knowledge that we might have on
which haplotypes may be permissible to explain a given genotype. In some sit-
uations a pool of haplotypes from prior studies is already known and we should

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 177–189, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

178 M. Elberfeld and T. Tantau

only pick haplotypes out of this pool. We may even have more specific informa-
tion about the permissible haplotypes for the genotypes of the individuals: the
ethnicity of individuals may be known, allowing us to narrow the pool of per-
missible haplotypes for each individual. On the other hand, for some individuals
no prior knowledge may be available.

In the present paper we study combinatorial haplotyping methods that take
such pool constraints into account. For some or all genotypes we are given a
pool of haplotypes that are allowed for this particular genotype. The task is to
predict haplotypes for the genotypes such that all constraints are satisfied and
the haplotypes form a perfect phylogeny or their number is minimal or both.

The above ideas lead to three mathematical problems, whose complexity we
study in the present paper: cpoolspph is the constrained perfect phylogeny hap-
lotyping problem, cpoolsmh is the constrained maximum parsimony haplotyping
problem, and cpoolsmpph is the combined problem (see Section 2 for formal defi-
nitions). The two problems cpoolspph and cpoolsmh are generalizations of the two
problems cone pool for allpph and cone pool for allmh recently studied by Fellows et
al. [12]; the difference is that Fellows et al. require a single pool of haplotypes
to be used for all genotypes while we allow pools to be specified individually
for each genotype. We remark that, since we also allow that no constraints are
imposed at all, the standard problems pph, mh, and mpph (without any con-
straints) are special cases of their constrained counterparts and the algorithms
we present also work for them.

Our Results. Our first main result is a polynomial-time algorithm for cpoolspph.
It is based on an initial partition of the genotypes into independent subinstances
and a subsequent recursive decomposition of the pool constraints. Since this
algorithm also solves the simpler problem cone pool for allpph, we settle the main
open problem of Fellow et al. [12]: cone pool for allpph is polynomial-time solvable.

Our second set of results concerns maximum parsimony haplotyping. Both
mh and cone pool for allmh are known to be NP-complete, but fixed-parameter
tractable with respect to the number of distinct haplotypes in the solution [20,12].
We show that, in contrast, cpoolsmh is hard for the class W[2] for the same pa-
rameter and, therefore, unlikely to have a fixed-parameter algorithm. We prove
this by showing that cpools for allmh, where some pool must be specified for each
genotype, is W[2]-complete. On the positive side we present a fixed-parameter
algorithm for cpoolsmh where the parameter is the number of distinct haplotypes
in the solution plus the number of times duplicated genotypes have incomparable
pool constraints.

Our third main result is that the NP-complete problem cpoolsmpph is fixed-
parameter tractable with respect to the number of distinct haplotypes in the
solution. So, cpoolsmpph has the same complexity as cone pool for allmh. As corol-
laries we obtain that mpph and cone pool for allmpph are both fixed-parameter
tractable, which was not known before. Our algorithm is a combination of the
algorithmic ideas for cpoolspph and cpoolsmh.

We have implemented our polynomial-time algorithm for cpoolspph. The im-
plementation shows that the algorithm works very fast in practice. We have

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 179

also started applying it to real genotype data and plan to report on the results
in a future publication. In the present paper, however, we concentrate on the
algorithmic side.

Related Work. The study of the perfect-phylogeny haplotyping problem was
initiated by the seminal paper of Gusfield [13], who showed that it is solvable in
polynomial time. Subsequent papers presented conceptually simpler polynomial-
time algorithms [2,10], linear-time algorithms [5,3,18,19], and fine-grained com-
plexity-theoretic results [7,8] for it.

The problem mh is NP-complete, as remarked in [14], and a later publication
sharpens this lower bound by showing that mh remains NP-complete if every
given genotype has at most three heterozygous sites [17]. On the positive site
Sharan, Halldórsson, and Istrail [20] devised a fixed-parameter algorithm for
mh, where the parameter is the number of distinct haplotypes in the solution.
Moreover, algorithms based on linear programming [4], branch-and-bound algo-
rithms [22], and a recent combination of both methods [16] are known.

To increase the accuracy of the predicted haplotypes, the perfect phylogeny
and the maximum parsimony assumptions have been combined, leading to the
problem mpph. It was shown to be NP-complete for instances with at most three
heterozygous entries per genotypes by Bafna et al. [1] and later studied by Iersel
et al. [21].

Another direction to increase prediction accuracy is to constrain the set of
solution haplotypes: Fellows et al. [12] proposed the cone pool for allpph problem
and presented polynomial-time algorithms for some special cases like the number
of heterozygous entries in the genotypes and in the sites being bounded by
small constants. They left open the complexity of cone pool for allpph and leaned
towards the conjecture that it is NP-complete. The problem cone pool for allmh is
NP-complete by a reduction from mh with at most three heterozygous entries per
genotypes (for each genotype put all its explaining haplotypes, of which there
can be at most four, into the pool). Huang et al. [15] studied approximation
algorithms for this problem, Fellows et al. [12] showed that it is fixed-parameter
tractable with respect to the number of distinct haplotypes in the solution.

Organization of This Paper. We first give formal definitions of genotypes, haplo-
types, and the computational problems we study. Sections 3, 4, and 5 are devoted
to the algorithmic and complexity-theoretic studies of cpoolspph, cpoolsmh, and
cpoolsmpph, respectively.

Due to lack of space, all proofs are omitted. They can be found in the technical
report version of this paper [9].

2 Haplotyping Problems and Constraints

A haplotype describes the genetic information from a single chromosome at snp

sites. Since most snp sites are biallelic, it is customary to encode a haplotype
as a binary string h ∈ {0, 1}n, where 0 and 1 represent the two possible alle-
les. A genotype combines the genetic information of two haplotypes by joining

180 M. Elberfeld and T. Tantau

their entries to a sequence of sets. Following common conventions, instead of
sets we write a 0 or a 1 when both underlying haplotypes have this value (these
entries are called homozygous) and use the value 2 when the underlying hap-
lotypes have different entries (these entries are called heterozygous). A pair of
haplotypes {h, h′} ⊆ {0, 1}n explains a genotype g ∈ {0, 1, 2}n if for every site
s ∈ {1, . . . , n} we have g[s] = h[s] = h′[s] whenever g[s] ∈ {0, 1} and h[s] �= h′[s]
whenever g[s] = 2. In a genotype matrix A each row is a genotype. If the matrix
is clear from the context, we refer to the genotype in row i by gi. Similar, we
arrange haplotypes in a haplotype matrix B and refer to the haplotype in row i
by hi. A 2n ×m haplotype matrix B explains an n × m genotype matrix A if
every genotype gi is explained by the haplotype pair {h2i−1, h2i}. We use the
term site to refer to a position in genotypes and haplotypes and to a column of
genotype and haplotype matrices.

For a pair s and t of sites the induced set ind(B, s, t) contains all strings from
{00, 01, 10, 11} that appear in the sites s and t in the haplotype matrix B. We say
that these strings are induced by s and t. The notion of induces can be extended
to genotype matrices A: for two sites s and t the set ind(A, s, t) contains a string
xy ∈ {00, 01, 10, 11} if A has a genotype g with either g[s] = x ∧ g[t] = y or
g[s] = x ∧ g[t] = 2 or g[s] = 2 ∧ g[t] = y. This implies ind(A, s, t) ⊆ ind(B, s, t)
for every haplotype matrix B explaining A.

A haplotype matrix B admits a perfect phylogeny if there exists a tree T (an
undirected acyclic graph), such that: (a) Each haplotype from B labels exactly
one vertex of T ; (b) each site s ∈ {1, . . . , m} labels exactly one edge of T and
each edge is labeled by at least one site; and (c) for every two haplotypes hi

and hj from B and every site s ∈ {1, . . . , m}, we have hi[s] �= hj[s] if, and only
if, s lies on the path from hi to hj in T . It is well-known that B admits a perfect
phylogeny if, and only if, it satisfies the following four gamete property: for every
pair of sites s and t we have {00, 01, 10, 11} �= ind(B, s, t).

For the three problems pph, mh, and mpph the input is always a genotype
matrix plus, for the last two problems, a number k. The questions are whether
there exists a haplotype matrix B that explains A and admits a perfect phylogeny
(pph), has at most k different haplotypes (mh), or admits a perfect phylogeny
and has at most k different haplotypes (mpph).

Constrained Haplotyping Problems. For constrained haplotyping problems dif-
ferent kinds of constraints are specified along with the input genotype matrix.
The first kind of constraints that we study are pool constraints. Let A be an n×m
genotype matrix. A pool constraint specifies that, in the output haplotype ma-
trix, the two explaining haplotypes for some particular genotype gi should both
be drawn from a pool Hi ⊆ {0, 1}n of allowed haplotypes. We write such a
constraint as pool(i, Hi). Clearly, it suffices to allow only one such constraint
per genotype. Two pool constraints are incomparable if none of their pools is a
subset of the other.

The second kind of constraints are restrictions on the phase of sites. For a
genotype g with 2-entries in two sites s and t, the explaining haplotypes add
either {00, 11} or {01, 10} to the induced set. If there is another genotype g′

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 181

with 2-entries in the sites s and t, then, in order to satisfy the four gamete prop-
erty, it must choose the same pair for its explaining haplotypes. In the first case
we say that s and t are phased equally, otherwise phased unequally. The con-
straints “equal-phase(s, t)” and “unequal-phase(s, t)” specify that a particular
phasing must be chosen for the two sites s and t in a solution matrix. Formally,
a haplotype matrix B satisfies equal-phase(s, t) if {01, 10} �⊆ ind(B, s, t); and
unequal-phase(s, t) if {00, 11} �⊆ ind(B, s, t).

We indicate constrained haplotyping problems by prefixing the haplotyping
problems mh, pph, and mpph with a c whose index indicates which constraints
are allowed to be specified as part of the input. The index “pools” means that
arbitrary pool constraints are allowed; “pools for all” indicates that (possibly
different) pools must be specified for all genotypes (and not only for some); and
“one pool for all” indicates that, additionally, the same pool must be specified
for all genotypes. The index “phase” indicates that phase constraints are permis-
sible. For example, cpools,phasempph is the mpph problem where both haplotype
and phase constraints are allowed as part of the input.

Haplotyping with phase constraints has not been defined formally in the lit-
erature, but many known algorithms implicitly handle phase constraints:

Fact 2.1 ([2,10]). There exists an algorithm that, given an n × m genotype
matrix with phase constraints, solves the problem cphasepph in time O(nm2).

3 Constrained Perfect Phylogeny Haplotyping

In this section we prove the following theorem, which answers the main question
of Fellows et al. [12] affirmatively: There is a polynomial-time algorithm for
cone pool for allpph.

Theorem 3.1. There exists an algorithm that solves cpools,phasepph in time
O(p(n + p)m2), where the input genotype matrix has size n × m and p is the
sum of the sizes of all pool constraints.

The outline of the algorithm for cpools,phasepph, which we detail in the rest of
this section, is as follows: Given an n × m genotype matrix A and a set K
of pool and phase constraints, our algorithm uses procedure solve-cpph from
Figure 1 to preprocesses the input and to partition the genotypes into at most m
matrices As that can be solved independently. Each matrix As has the property
that there is a site s, called the 2-site of As, that has 2-entries in all genotypes
from As. Each As along with its corresponding constraints is then solved by the
procedure solve-cpph-2-site from Figure 1 via a recursive branch-and-reduce
approach: For each of the two possible phasings between the 2-site and another
site, it branches recursively, derives new phase constraints, and splits the pool
constraints.

In the following we describe the four procedures that make up our algo-
rithm: the two main procedures solve-cpph and solve-cpph-2-site, whose
pseudo-code is depicted in Figure 1, and the simpler procedures sanitize-pool-

constraints and deduce-phase-constraints for which no pseudo-code is

182 M. Elberfeld and T. Tantau

given. In the following, we say that a computational step has the correctness
property if the following holds: There exists a haplotype matrix that explains the
genotype matrix and satisfies the four gamete property and the constraints before
the step if, and only, if this holds for the instance after the step. Furthermore,
whenever the step outputs “no”, no solution exist for the current instance.

Procedure solve-cpph(A, K).
Input: An n × m genotype matrix A and a set of constraints K
Output: An explaining haplotype matrix B for A that satisfies the four gamete
property and the constraints K, if it exists; or “no”, otherwise
Preprocessing:
1 ensure that column pairs with different entries induce 00
2 sort columns decreasingly by leaf count
3 update phase constraints with induces
4 call deduce-phase-constraints

5 call sanitize-pool-constraints

Solve independent subinstances:
6 for each site s ∈ {1, . . . , m} do
7 Bs ← call solve-cpph-2-site(As, Ks, s)
8 if Bs is “no” then return “no”
9 return combination of matrices Bs and genotypes without 2-entries

Procedure solve-cpph-2-site(A,K, s2).
Input: An n × m genotype matrix A with 2-site s2 and a set of constraints K
Output: An explaining haplotype matrix B for A that satisfies the four gamete
property and the constraints K, if it exists; or “no”, otherwise
Recursion break:
1 if for every pool(i, Hi) ∈ K we have |Hi| = 2 then
2 replace all pool constraints by corresponding phase constraints
3 return solution for the resulting cphasepph instance
Recursive branch-and-reduce:
4 else for each component G′ of Gcover with corresponding instance A′, K′ do
5 s ← some site from G′

6 B′
e ← call try-phase-cpph(A′, K′ ∪ {equal-phase(s2, s)}, s2)

7 B′
u ← call try-phase-cpph(A′, K′ ∪ {unequal-phase(s2, s)}, s2)

8 if B′
e = B′

u = “no” then return “no” else add B′
e or B′

u to solution
9 return solution

Sub-Procedure try-phase-cpph(A,K, s2).
1 call deduce-phase-constraints and sanitize-pool-constraints for A, K
2 if pool(i, ∅) /∈ K for all i then return solve-cpph-2-site(A, K, s2)
3 else return “no”

Fig. 1. The polynomial-time algorithm for cpools,phasepph

Procedure sanitize-pool-constraints. This procedure removes superfluous
haplotypes from pool constraints. Let K be a set of constraints. First, for a
constraint pool(i, Hi) ∈ K and a genotype gi, it removes all h from Hi for which
there exists a site s such that h[s] �= gi[s] ∈ {0, 1}. Second, it deletes every

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 183

haplotype h from Hi for which there exists no other haplotype h′ ∈ Hi such that
{h, h′} explains gi. Third, it deletes haplotypes contradicting phase constraints:
For two sites s and t with gi[s] = gi[t] = 2, it deletes h from Hi whenever
h[s] = h[t] ∧ unequal-phase(s, t) ∈ K or h[s] �= h[t] ∧ equal-phase(s, t) ∈ K.
Finally, if a pool constraint becomes empty, it outputs “no.” Clearly, this step
has the correctness property.

Procedure deduce-phase-constraints. Let A be a genotype matrix and K a
set of constraints. The procedure repeats the following rule as long as possible:
Let s, t and u be three sites such that there is a genotype gi with gi[s] =
gi[t] = gi[u] = 2 and there is no phase constraint for the pair t and u, but
phase constraints for both pairs s and t, and s and u. If these phase constraints
have the same type, we insert equal-phase(t, u) into K and, if their type is
different, we insert unequal-phase(t, u) into K. Using graph representations for
phase constraints and their dependencies, the result of this procedure can be
computed in time O(nm2) [2,10].

Lemma 3.2. deduce-phase-constraints has the correctness property.

Procedure solve-cpph. The pseudo-code of this procedure is shown in Figure 1.
We go over this method line by line.

The first five lines preprocess the input. Line 1 extends an idea from Eskin,
Halperin and Karp [10] to constraints. For every site s we iterate downwards
through the genotypes and if a 1-entry appears before a 0-entry, we substitute
all 1-entries by 0-entries and vice versa and adjust the constraints accordingly.
As shown in [10], this step ensures that any two sites with at least one different
entry induce 00. In line 2 the procedure first calculates the leaf count [13] of each
column, which is the number of 2-entries of a column plus twice the number of
its 1-entries. Then it sorts the columns decreasingly from left to right by this
value. After this sorting we have 10 ∈ ind(A, s, t) for every two sites s and t with
different entries and s < t. This holds since otherwise there is no genotype with
g[s] = 1 ∧ g[t] ∈ {0, 2} or g[s] = 2 ∧ g[t] = 0, but at least one genotype with
g[s] ∈ {0, 2} ∧ g[t] = 1 or g[s] = 0 ∧ g[t] = 2. This would imply that the leaf
count of site t should be greater than the leaf count of site s, a contradiction.
In line 3 the algorithm considers all pairs of sites s and t and updates their
phase constraints as follows: If {00, 11} ⊆ ind(A, s, t), it inserts equal-phase(s, t)
into K; and if {01, 01} ⊆ ind(A, s, t), it inserts unequal-phase(s, t). This step
has the correctness property since the new phase constraints reflect only induces
that are already in the matrix. Finally, lines 4 and 5 deduce phase constraints
and sanitize the pool constraints. In the following, we call a matrix that has
undergone the preprocessing from lines 1 to 5 a preprocessed genotype matrix.

In lines 6 to 8 the genotype matrix A is partitioned genotype-wise into m
submatrices A1, . . . , Am, one matrix for each site. A genotype g belongs to the
matrix As if g[s] = 2 and for every site t < s we have g[t] �= 2. Each As is passed
along with the corresponding pool constraint and all phase constraints, stored
in the set Ks, to a call of the procedure solve-cpph-2-site. The construction

184 M. Elberfeld and T. Tantau

of As ensures that site s has 2-entries in all genotypes from As. The effect of the
partition is stated by the following lemma:

Lemma 3.3. Let A be a preprocessed n×m genotype matrix with constraints K.
Then there exists an explaining haplotype matrix B for A that satisfies the
four gamete property and the constraints K if, and only if, for every site s ∈
{1, . . . , m} there exists an explaining haplotype matrix Bs for As that satisfies
the four gamete property and the constraints Ks.

Putting it altogether, solve-cpph correctly solves cpools,phasepph, provided that
the procedure solve-cpph-2-site is correct, which we prove next.

Procedure solve-cpph-2-site. This procedure recursively solves the instances
that are produced by solve-cpph, each consisting of a genotype matrix A with
a 2-site s2 and constraints K. The recursion stops when all pool constraints
contain only two haplotypes (they must contain at least two haplotypes be-
cause a 2-entry is present in the genotype). In such a case the phasing of the
genotype is completely known. We remove the pool constraints and, instead,
add phase constraints that describe this particular phasing: For each constraint
pool(i, {h, h′}) and sites s and t add the phase constraint equal-phase(s, t) if
h[s] = h[t] �= h′[s] = h′[t] and unequal-phase(s, t) if h[s] = h′[t] �= h[t] = h′[s].
The resulting instance of cphasepph can be solved in polynomial time by Fact 2.1.

To describe the recursive step, we need some terminology. Let geno2(s) be
the set of A’s genotypes that have a 2-entry at site s. Let Sfree be the set of
sites s of A where s �= s2 and there is no phase constraint for s and s2 in K.
Let Scover be the set of sites s ∈ Sfree for which there is no site s′ ∈ Sfree with
geno2(s) ⊆ geno2(s′); in the case that sites from Sfree have the same set of 2-
entries, we choose exactly one of them to be contained in Scover. Note that when
a genotype from A has a 2-entry in a site from Sfree, then it also has a 2-entry
a site from Scover. Let Gcover be the graph that has Scover as its vertex set and
an edge between sites s and s′ if geno2(s)∩ geno2(s

′) �= ∅. Whenever there is an
edge between sites in Gcover, then there exists a phase constraint for them.

In the recursive step the algorithm iterates over the components G′ of Gcover
and considers the submatrix A′ of A made up by all genotypes with 2-entries in
sites of G′ along with a constraints set K ′, consisting of the pool constraints for
the genotypes from A′ and all phase constraints. It chooses a site s from G′ and
adds once the constraint equal-phase(s2, s) and once unequal-phase(s2, s) to the
set of constraints. In each case, it checks which additional phase constraints are
now triggered using the sub-procedure try-phase-cpph. This sub-procedure
calls deduce-phase-constraints followed by sanitize-pool-constraints

and tries to solve the resulting instance recursively by calling solve-cpph-2-

site. If for all components a recursive call returns a solution, the procedure
combines them along with haplotypes for genotypes that are not in any matrix A′

to a solution for the whole instance. The following lemma states the correctness
of solve-cpph-2-site:

Lemma 3.4. Let A be a preprocessed n × m genotype matrix with 2-site s2
and constraints K. Then solve-cpph-2-site returns a haplotype matrix B that

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 185

explains A and satisfies the four gamete property and the constraints K, if it
exists, or “no”, otherwise.

Runtime. The input to the algorithm consists of a genotype matrix of dimension
n×m, phase constraints and pool constraints. Let p equal the sum of the sizes of
all pool constraints. We show that the runtime is O(p(n + p)m2), as claimed in
Theorem 3.1. All individual operations of the algorithm take time at most O((n+
p)m2). Thus, it suffice to show that the tree of recursive calls of procedure solve-

cpph-2-site has at most p leafs: The procedure partitions its input matrix into
submatrices with constraints. For every submatrix A′ with constraints K ′ it may
branch into two possible phasings for the sites s2 and s. The call of deduce-

phase-constraints ensures that there are phase constraints between s2 and
all sites from G′: when two sites are connected via an edge in Gcover, we know
that there is a phase constraint for them and a genotype that contains 2-entries
in these sites and s2. Note that the phases between s2 and the sites from G′

for the case equal-phase(s2, s) are exactly opposite to the phases for the case
unequal-phase(s2, s). This implies that, since all genotypes in A′ have a 2-entry
in s2 and a site from G′, every haplotype from the pool constraints is passed to
at most one recursive call. This yields a partition of sets of haplotypes from the
pool constraints among all recursive calls. Since the procedure stops when the
sizes of the pools drop to two (or zero), the number of leafs of the recursive tree
of procedure solve-cpph-2-site is bounded by p + 1.

We remark that we have implemented the algorithm in Java and applied it
to laboratory data. Our prototypical implementation handles typical real-data
inputs in a matter of seconds on a standard machine.

4 Constrained Maximum Parsimony Haplotyping

In this section, we present two results on the fixed-parameter tractability (see [6]
for background in parametrized complexity theory) of the constrained maximum
parsimony haplotyping problem. First, we prove that cpools for allmh is W[2]-
complete when parametrized by the minimum number of distinct haplotypes
in an explaining haplotype matrix. In sharp contrast, mh and cone pool for allmh

are fixed-parameter tractable for this parameter, as shown in [20] and [12], re-
spectively. This means that the possibility to specify pool constraints on a per-
genotype basis vastly increases the complexity of the problem. Second, we show
that a fixed-parameter algorithm is possible even for cpoolsmh when we extend
the parameter to the number of distinct haplotypes plus the number of dupli-
cated genotypes that have incomparable pools.

The algorithms for mh and cone pool for allmh from the literature use data
structures that describe how haplotypes are shared among genotypes. Given an
n×m genotype matrix A, we define a haplotype sharing plan P for A of size k as
a multigraph G = (V, E) (a graph with multiple edges between the same vertices)
with |V | = k and |E| = n where (a) edges are labeled bijectively by genotypes
from A, (b) some vertices are labeled by haplotypes, and (c) every genotype that

186 M. Elberfeld and T. Tantau

has two labeled incident vertices is explained by the haplotype labels. We call
a plan complete if all vertices are labeled and empty if no vertex is labeled. A
plan P extends a plan P ′ if P arises from P ′ by labeling previously unlabeled
vertices. A haplotype sharing plan P satisfies a pool constraint pool(i, Hi) if the
incident haplotypes of gi lie in Hi. With this definition, constructing haplotype
matrices with at most k distinct haplotypes is equivalent to constructing plans
of at most size k.

Given a budget k for the number of distinct haplotypes in the solution, the
known fixed-parameter algorithms for mh and cone pool for allmh consider all pos-
sible empty haplotype sharing plans of size k and check whether they can be ex-
tended to complete ones in polynomial time, using GF[2] equations for mh [20]
and dynamic-programming for cone pool for allmh [12]. To bound the number of
edges of the plan they use a preprocessing step that deletes duplicated genotypes
and retains only one of them. Since k haplotypes can explain at most k(k−1)/2
different genotypes, these algorithms consider at most O(k2n) ≤ O(k2k2

) differ-
ent empty plans.

These ideas cannot be extended to a fixed-parameter algorithm when geno-
type-specific pool constraints are given since we cannot delete duplicated geno-
types in a preprocessing step. This is due to the fact that genotypes might
have the same entries, but incomparable pools, which we cannot merge directly.
Strong evidence that no slightly variation of the standard approaches will work
is given by Theorem 4.1.

Theorem 4.1. cpools for allmh, parametrized by the number of distinct haplo-
types in the solution, is W[2]-complete. Consequently, cpoolsmh is W[2]-hard for
the same parametrization.

The instances constructed in the W[2]-hardness proof of cpools for allmh contain
only identical genotypes, namely completely heterozygous genotypes, while pools
might be highly incomparable. Since such a worst case instance is unlikely to be
present in practice, we propose to additionally parametrize the problem by the
maximum number l of duplicated genotypes with pairwise incomparable pool
constraints. When parametrized by the number k of distinct haplotypes and at
the same time by l, cpoolsmh becomes fixed-parameter tractable.

Theorem 4.2. cpoolsmh is fixed-parameter tractable with respect to the num-
ber of distinct haplotypes that are used in an explaining haplotype matrix plus
the maximum number of duplicated genotypes with pairwise incomparable pool
constraints.

The algorithm (Figure 2 shows pseudo-code) first preprocesses the instance, such
that at most l genotypes have the same entries. Then it iterates over at most
O(k2n) ≤ O(klk2

) empty plans. After an initial check of whether a plan can be
extended to a complete one without constraints, the algorithm considers every
component of the plan independently. If a component contains genotypes having
pool constraints, it picks one of these genotypes and an incident vertex and
tries all assignments of permissible pool haplotypes to the vertex. A haplotype

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 187

Procedure solve-cmh(A,K, k).
Input: An n × m genotype matrix A, pool constraints K and a budget k.
Output: An explaining haplotype matrix B for A with at most k distinct haplotypes
that satisfies the constraints K, if it exists; or “no”, otherwise.
Preprocessing :
1 call sanitize-pool-constraints

2 for each gi and gj with gi = gj do
3 if there is no pool constraint for gj ,

or pool(i, Hi) ∈ K, pool(j, Hj) ∈ K, Hi ⊆ Hj then
4 delete gj

5 if there are more than lk(k − 1)/2 genotypes then output “no”
Try to extend empty haplotype sharing plans:
6 for each empty haplotype sharing plan P of size k do
7 if P cannot be extended to a complete plan then skip P
8 for each component P ′ of P do
9 if there is a genotype gi in P ′ with pool(i, Hi) ∈ K then
10 v ← some vertex incident to gi

11 for each haplotype h ∈ Hi that is permissible for v in P do
12 P ′′ ← P ′; label v with h in P ′′ and calculate haplotypes for all vertices
13 if P ′′ is a haplotype sharing plan satisfying its pool constraints then
14 store P ′′ as a solution for P ′ and continue with next P ′

15 skip P
16 else choose a permissible haplotype for one vertex from P ′,

calculate haplotypes for all other vertices, and store the solution P ′′

17 combine all P ′′ to a plan for A and K and return combined plan
18 output “no”

Fig. 2. The fixed-parameter algorithm for cpoolsmh

is permissible for a vertex in a plan if there exists an extending complete plan
with the vertex labeled by this haplotype. Conversely, its assignment directly
determines haplotypes for all other vertices in the component and it remains to
check that these haplotypes satisfy the other pool constraints. For components
without constraints, an assignment of haplotypes is always possible, due to line 7.
Since the inner part of the main loop needs only polynomial time, this gives the
desired fixed-parameter runtime.

5 Constrained Maximum Parsimony
Perfect Phylogeny Haplotyping

We show that cpools,phasempph and, therefore, mpph and cone pool for allmpph,
are fixed-parameter tractable with respect to the number of distinct haplotypes
in the solution.

Theorem 5.1. cpools,phasempph is fixed-parameter tractable with respect to the
number of distinct haplotypes in the solution.

We prove the theorem by combining the recursive branch-and-reduce technique
from Section 3 with haplotype sharing plans, which control the size of solutions.

188 M. Elberfeld and T. Tantau

The algorithm first ensures that the input contains no duplicate genotypes. Then
it iterates over at most O(k2n) ≤ O(k2k2

) empty plans. In every iteration it
computes the partition from solve-cpph and solves the matrices independently.
For this, it also decomposes the current plan such that a subplan is made up
by the edges from the genotypes of its corresponding submatrix. To ensure that
different instances are not related through vertices in the plan, the algorithm
labels all vertices that are incident to genotypes from different submatrices with
haplotypes. In the second main part, a recursive branch-and-reduce procedure,
instances are partitioned such that the different parts are neither related through
the matrix nor through the plan. For each part, similar to procedure solve-

cpph-2-site, the algorithm branches into different phases between two columns.
After labeling some vertices in the plan and sanitizing pool constraints, the
algorithm solves completely independent matrices recursively. The iteration over
at most O(k2k2

) plans and the polynomial-time recursion give the desired fixed-
parameter runtime.

6 Conclusion

We studied phylogeny- and parsimony-based haplotype inference in the pres-
ence of pool and phase constraints. Our main result is that cpools,phasepph is
polynomial-time solvable by a new recursive decomposition technique for geno-
types and pools. This solves the question from [12] whether cone pool for allpph is
polynomial-time solvable. Our Java implementation of this algorithm shows that
it works fast in practice. We showed that cpoolsmh is W[2]-hard by proving that
cpools for allmh is W[2]-complete when parametrized by the number of distinct
haplotypes in the solution. Both problems are fixed-parameter tractable when
we also use the comparability of the pools as a parameter. For cpools,phasempph

we presented an algorithm that extends the recursive decomposition of geno-
types and pools by a decomposition of haplotype sharing plans, yielding a fixed-
parameter algorithm for cpools,phasempph with respect to the number of distinct
haplotypes in the solution.

For future work one research direction would be to incorporate more general
constraints, like, for example, ∗-constraints where some entries in the haplotypes
can be chosen freely. We may also try to allow a few additional rare haplotypes
to be used that are not in any pool. A second direction would be to adjust the
ideas to algorithms that work on incomplete data.

References

1. Bafna, V., Gusfield, D., Hannenhalli, S., Yooseph, S.: A note on efficient computa-
tion of haplotypes via perfect phylogeny. J. Comput. Biol. 11(5), 858–866 (2004)

2. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny:
A direct approach. J. of Comput. Biol. 10(3–4), 323–340 (2003)

3. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem.
Algorithmica 48(3), 267–285 (2007)

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints 189

4. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype infer-
ence by pure parsimony. IEEE/ACM T. on Comput. Biol. and Bioinf. 3(2), 141–154
(2006)

5. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny
haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522–553 (2006)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

7. Elberfeld, M.: Perfect phylogeny haplotyping is complete for logspace. Computing
Research Repository (CoRR), abs/0905.0602 (2009)

8. Elberfeld, M., Tantau, T.: Computational complexity of perfect-phylogeny-related
haplotyping problems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 299–310. Springer, Heidelberg (2008)

9. Elberfeld, M., Tantau, T.: Phylogeny- and parsimony-based haplotype infer-
ence with constraints. Technical Report SIIM-TR-A-10-01, Universität zu Lübeck
(2010)

10. Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure
via perfect phylogeny. J. Bioinf. and Comput. Biol. 1(1), 1–20 (2003)

11. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Mol. Biol. and Evol. 12(5), 921–927 (1995)

12. Fellows, M.R., Hartman, T., Hermelin, D., Landau, G.M., Rosamond, F.A.,
Rozenberg, L.: Haplotype inference constrained by plausible haplotype data. In:
Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 339–352.
Springer, Heidelberg (2009)

13. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In: Proc. of RECOMB 2002, pp. 166–175. ACM Press, New York (2002)

14. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez,
E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer,
Heidelberg (2003)

15. Huang, Y.-T., Chao, K.-M., Chen, T.: An approximation algorithm for haplotype
inference by maximum parsimony. J. Comput. Biol. 12(10), 1261–1274 (2005)

16. Jager, G., Climer, S., Zhang, W.: Complete parsimony haplotype inference prob-
lem and algorithms. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757,
pp. 337–348. Springer, Heidelberg (2009)

17. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsi-
mony: Complexity of exact and approximation algorithms. INFORMS J. on Com-
put. 16(4), 348–359 (2004)

18. Liu, Y., Zhang, C.-Q.: A linear solution for haplotype perfect phylogeny prob-
lem. In: Proc. Int. Conf. Adv. in Bioinf. and Appl., pp. 173–184. World Scientific,
Singapore (2005)

19. Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyp-
ing. J. Comput. Biol. 13(4), 897–928 (2006)

20. Sharan, R., Halldórsson, B.V., Istrail, S.: Islands of tractability for parsimony hap-
lotyping. IEEE/ACM T. Comput. Biol. and Bioinf. 3(3), 303–311 (2006)

21. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Shorelines of islands of tractability:
Algorithms for parsimony and minimum perfect phylogeny haplotyping problems.
IEEE/ACM T. Comput. Biol. and Bioinf. 5(2), 301–312 (2008)

22. Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformat-
ics 19(14), 1773–1780 (2003)

Faster Computation of the Robinson-Foulds
Distance between Phylogenetic Networks

Tetsuo Asano1, Jesper Jansson2, Kunihiko Sadakane3,
Ryuhei Uehara1, and Gabriel Valiente4

1 School of Information Science, Japan Advanced Institute of Science and
Technology, Ishikawa 923-1292, Japan

{t-asano,uehara}@jaist.ac.jp
2 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

jesper.jansson@ocha.ac.jp
3 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430,

Japan
sada@nii.ac.jp

4 Algorithms, Bioinformatics, Complexity and Formal Methods Research Group,
Technical University of Catalonia, E-08034 Barcelona, Spain

valiente@lsi.upc.edu

Abstract. The Robinson-Foulds distance, which is the most widely used
metric for comparing phylogenetic trees, has recently been generalized
to phylogenetic networks. Given two networks N1, N2 with n leaves, m
nodes, and e edges, the Robinson-Foulds distance measures the number
of clusters of descendant leaves that are not shared by N1 and N2. The
fastest known algorithm for computing the Robinson-Foulds distance
between those networks runs in O(m(m + e)) time. In this paper, we
improve the time complexity to O(n(m + e)/ log n) for general networks
and O(n m/ log n) for general networks with bounded degree, and to
optimal O(m + e) time for planar phylogenetic networks and bounded-
level phylogenetic networks. We also introduce the natural concept of the
minimum spread of a phylogenetic network and show how the running
time of our new algorithm depends on this parameter. As an example,
we prove that the minimum spread of a level-k phylogenetic network is
at most k + 1, which implies that for two level-k phylogenetic networks,
our algorithm runs in O((k + 1)(m + e)) time.

1 Introduction

The Robinson-Foulds distance, introduced in [17], has been the most widely
used metric over almost three decades for comparing phylogenetic trees. How-
ever, it is now known that the evolutionary history of life cannot be properly
represented as a phylogenetic tree [7], and phylogenetic networks have emerged
as the representation of choice for incorporating reticulate evolutionary events,
like recombination, hybridization, or lateral gene transfer, in an evolutionary
history [16].

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 190–201, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Faster Computation of the Robinson-Foulds Distance 191

Phylogenetic networks are directed acyclic graphs with tree nodes (those with
at most one parent) corresponding to point mutation events and hybrid nodes
(with more than one parent) corresponding to hybrid speciation events. As in
the case of phylogenetic trees, the leaves are distinctly labeled by a set of ex-
tant species. Additional conditions are usually imposed on these directed acyclic
graphs to narrow down the output space of reconstruction algorithms [13,14] or
to provide a realistic model of recombination [19,20].

Two such additional conditions are especially relevant to the Robinson-Foulds
distance. A phylogenetic network is time consistent when it has a temporal
representation [1], that is, an assignment of discrete time stamps to the nodes
that increases from parents to tree children and remains the same from parents
to hybrid children, meaning that the parents of each hybrid node coexist in
time and thus, the corresponding reticulate evolutionary event can take place.
A phylogenetic network is tree-child when every internal node has at least one
tree child [4], meaning that every non-extant species has some extant descendant
through mutation alone.

The Robinson-Foulds distance between two phylogenetic networks is defined
as the cardinality of the symmetric difference between their two sets of all in-
duced clusters (where the cluster induced by a node v in a phylogenetic network
is the set of all descendant leaves of v in the network) divided by two, and thus
it measures the number of clusters not shared by the networks. It is a metric on
the space of all tree-child time-consistent phylogenetic networks [4, Cor. 1], and
it generalizes the Robinson-Foulds distance between rooted phylogenetic trees.
Clearly, the Robinson-Foulds distance requires computing the cluster represen-
tation of the networks, that is, the set of descendant leaves for each node in
the networks. While there are improved algorithms for computing the cluster
representation of a phylogenetic tree [6,15,21,22], the only known algorithm for
computing the cluster representation of a phylogenetic network [3] is based on
breadth-first searching descendant leaves from each of the nodes in turn, and
takes O(m(m + e)) time using O(n m) space on phylogenetic networks with n
leaves, m nodes, and e edges.

In this paper, we present a faster algorithm for computing the Robinson-
Foulds distance between two input phylogenetic networks. For general phyloge-
netic networks, we first improve the time complexity by following an approach
similar in spirit to the algorithm proposed in [4] for computing the path multiplic-
ity representation of a phylogenetic network; by using a compressed representa-
tion of the characteristic vectors, we obtain a simple algorithm for computing the
Robinson-Foulds distance between phylogenetic networks in O(n(m + e)/ log n)
time using O(n m/ log n) space, assuming a word size of ω = �log n� bits; see [12].
For phylogenetic networks of bounded degree, this becomes O(n m/ log n) time
and space.

In the case of level-k phylogenetic networks [5], we further improve the time
complexity by using a more succinct representation of a cluster of descendant
leaves as an interval of consecutive integers, which allows us to compute the Robin-
son-Foulds distance in O((k+1)(m+e)) time. For this purpose, we introduce what

192 T. Asano et al.

we call the minimum spread of a phylogenetic network, and prove that every level-
k network has minimum spread at most k + 1. For special cases of bounded-level
phylogenetic networks such as planar phylogenetic networks, in particular outer-
labeled planar split networks [2,8] and galled-trees [10,11], we show that the min-
imum spread is 1, which means that our algorithm can be implemented to run in
optimal O(m + e) time.

The paper is organized as follows. Section 2 introduces some notation and
explains the naive representation of clusters. Section 3 describes more efficient
ways to represent the clusters both for general networks and for planar and
level-k networks, and defines the minimum spread of a phylogenetic network. A
bottom-up algorithm for computing the Robinson-Foulds distance is presented
in Section 4 that takes advantage of the cluster representation. Finally, some
conclusions are drawn in Section 5.

2 Preliminaries

Let N = (V, E) be a given phylogenetic network with n leaves, m nodes, and
e edges. For any nodes u, v ∈ V , we say that v is a descendant of u if v is
reachable from u in N . (Here, any node is considered to be a descendant of
itself.) For every v ∈ V , define C[v] as the set of all leaves which are descendants
of v. The set C[v] is called the cluster of v, and the collection {C[v] | v ∈ V } is
called the naive cluster representation of N .

The naive cluster representation of N can be computed in O(m(m + e)) time
and O(n m) space by breadth-first searching descendant leaves from each of
the nodes of N in turn [3]. A significant improvement in time complexity can
be achieved by replacing the m top-down searches by n bottom-up searches,
because m can be arbitrarily large for a phylogenetic network with n leaves and,
even in the particular case of a tree-child time-consistent phylogenetic network,
m � (n + 4)(n− 1)/2, and this bound is tight [3, Prop. 1]. The following lemma
is the basis of such an improvement.

Lemma 1. Let v ∈ V be a node of a phylogenetic network N = (V, E). Then,
C[v] = {v} if v is a leaf, and C[v] = C[v1] ∪ · · · ∪ C[vk] if v is an internal node
with children {v1, . . . , vk}.

Proof. The only (trivial) descendant of a leaf in a phylogenetic network is the leaf
itself. The paths from an internal node to the leaves of a phylogenetic network
are the paths from the children of the internal node to the leaves. �	

Lemma 1 suggests a simple bottom-up algorithm (Algorithm 1) for computing
the naive cluster representation of N in polynomial time. In the following de-
scription, the cluster C[v] of each node v in N is computed during a bottom-up
traversal of N , with the help of an (initially empty) queue Q of nodes. The clus-
ter C[v] of each child v of an internal node u is joined in turn to the (initially
empty) cluster C[u] of the parent node u.

Faster Computation of the Robinson-Foulds Distance 193

Algorithm 1. Compute the naive cluster representation C of a phylogenetic network N

procedure naive cluster representation(N,C)
for each node v of N do

if v is a leaf then
C[v] ← {label(v)}
enqueue(Q, v)

else
C[v] ← ∅

while Q is not empty do
v ← dequeue(Q)
mark node v as visited
for each parent u of node v do

C[u] ← C[u] ∪ C[v]
if all children of u are visited then

enqueue(Q, u)

Lemma 2. Let N be a phylogenetic network with n leaves, m nodes, and e edges.
The naive cluster representation of N can be computed in O(n(m+e)) time using
O(n m) space.

Proof. Each node is enqueued and dequeued only once, and each parent of each
dequeued node v is visited only once from v. The union of two subsets of an n
element set, which takes O(n) time, is computed O(m + e) times. �	

3 More Efficient Cluster Representation

3.1 Characteristic Vector Representation

A leaf numbering function is a bijection from the set of leaves in N to the
set {1, 2, . . . , n}. For any leaf numbering function f and node v ∈ V , the char-
acteristic vector for v under f , denoted by Cf [v], is a bit vector of length n
such that for any i ∈ {1, 2, . . . , n}, the ith bit equals 1 if and only if f−1(i) is a
descendant of v in N . Note that Cf [r] = 111 . . .1 for the root r of N , and that
Cf [�] contains exactly one 1 for any leaf � of N .

Example 1. Consider the phylogenetic network in Figure 1. Number the leaves
according to the circular ordering v2, v20, v27, v28, v34, v45, v42, v43, v46, v47, v10,
v22, v23, v36, v37, v33, v12, v18, v25, v26, v14 along the outer face. This corresponds
to a depth-first search of the directed spanning tree obtained by removing one
incoming edge (shown in red in Figure 1) for each node of in-degree 2 in the
network, and it yields the characteristic vectors listed in Table 1. �	

194 T. Asano et al.

v1

v2 v3

v4 v5

v6 v7 v8

v9 v10 v11 v12 v13 v14

v15 v16 v17 v18 v19

v20 v21 v22 v23 v24 v25 v26

v27 v28 v29 v30

v31 v32 v33

v34 v35 v36 v37

v38

v39 v40

v41 v42 v43 v44

v45 v46 v47

Fig. 1. An example of a phylogenetic network based on real data, adapted from [23].
This is the smallest level-2 phylogenetic network consistent with 1,330 rooted triplets
of sequences from different isolates of the yeast Cryptococcus gattii.

Obviously, the characteristic vector representation of all clusters in N can be
stored explicitly using a total of m n bits and can be constructed in O(n(m+e))
time by an algorithm analogous to Algorithm 1. Our next goal is to find suitable
leaf numbering functions for different types of phylogenetic networks which lead
to more compact ways of storing the characteristic vectors as well as faster
ways of computing them. We first consider arbitrary leaf numbering functions,
and then study leaf numbering functions for some important special classes of
phylogenetic networks.

3.2 Compressed Characteristic Vector Representation

Fix any arbitrary leaf numbering function f for the given phylogenetic net-
work N . The time complexity of Algorithm 1 can be improved by employing a
characteristic vector of size n to encode each cluster, packing the characteristic
vector of a subset of the n leaves into O(n/ log n) integers (assuming a word

Faster Computation of the Robinson-Foulds Distance 195

Table 1. Characteristic vector representation of the clusters for the phylogenetic net-
work in Figure 1

node characteristic vector of the cluster
v2 v20 v27 v28 v34 v45 v42 v43 v46 v47 v10 v22 v23 v36 v37 v33 v12 v18 v25 v26 v14

v21 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v15 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v41 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v39 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v44 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
v40 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v38 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v35 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v31 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v29 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v9 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v6 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
v16 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v32 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
v30 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
v24 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0
v17 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0
v11 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0
v7 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0
v4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
v19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
v13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
v5 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1
v3 0 1
v1 1

size of ω = �log n� bits), and computing the bitwise-OR of vectors instead of
performing the set union operation. See [12] for further details about bit-level
parallelism.

The pseudocode for the improved version of Algorithm 1 is given in Algo-
rithm 2, where x � t denotes the bitwise shift of an integer x to the left by t,
and x | y denotes the bitwise OR of two integers x and y.

The improvement in time complexity of Algorithm 2 comes from bit-level
parallelism of the set union operations.

Lemma 3. Let N be a phylogenetic network with n leaves, m nodes, and e
edges. The cluster representation of N can be computed in O(n(m + e)/ log n)
time using O(n2 + n m/ logn) words.

Proof. There are 2log n = n bit vectors, and the bitwise-OR of all these ω-bit
vectors takes O(n2) time. After this prepreprocessing, each node is enqueued and
dequeued only once, and each parent of each dequeued node v is visited only once
from v. The union of two subsets of an n element set, which takes O(n/ log n)
time as the bitwise-OR of �n/ω� ω-bit vectors, is computed O(m + e) times.

The bitwise-OR of all the ω-bit vectors is stored in O(n2) words, and the
cluster representation is stored as a compact boolean table, with m rows and
n/ logn columns. �	

196 T. Asano et al.

Algorithm 2. Compute the compressed cluster representation C of a phylogenetic
network N

procedure compressed cluster representation(N,C)
n ← number of leaves of N
k ← �n/ω�
for x ← 0, . . . , n− 1 do

for y ← 0, . . . , n− 1 do
OR[x, y] ← x | y

for each node v of N do
C1[v], . . . , Ck[v] ← 0
if v is a leaf then

i ← �(f(v)− 1)/ω�+ 1
Ci[v] ← 1 � ω · i− f(v)
enqueue(Q, v)

while Q is not empty do
v ← dequeue(Q)
mark node v as visited
for each parent u of node v do

for i ← 1, . . . , k do
Ci[u] ← OR[Ci[u], Ci[v]]

if all children of u are visited then
enqueue(Q, u)

3.3 Interval List Representation

A maximal consecutive sequence of 1’s in a bit vector is called an interval. For a
given leaf numbering function f and node v ∈ V , let If (v) denote the number of
intervals in Cf [v] and let the spread of f be If = maxv∈V If (v). The minimum
spread of N is the minimum value of If , taken over all possible leaf numbering
functions f .

Below, we first bound the minimum spread of certain types of phylogenetic
networks, and then show more generally how the characteristic vectors of phylo-
genetic networks having small minimum spread can be stored compactly. From
here on, we only consider phylogenetic networks in which each node has either
at most one parent (tree node) or exactly two parents (hybrid node).

A phylogenetic network is planar if the underlying undirected graph is outer-
labeled planar, that is, if it admits a non-crossing layout on the plane with all the
leaves lying on the outer face. Planar phylogenetic networks arise for instance
when representing conflicting phylogenetic signals, leading to the so-called outer-
labeled planar split networks; see [2,9].

Faster Computation of the Robinson-Foulds Distance 197

Lemma 4. If N is a planar phylogenetic network then a leaf numbering func-
tion f with If = 1 can be computed in O(m + e) time.

Proof. Fix any planar embedding of N and let f be the leaf numbering function
that assigns the numbers 1, 2, . . . , n to the leaves in consecutive order along the
outer face from the leftmost to the rightmost leaf. We claim that for every v ∈ V ,
Cf [v] has a single interval. Since every leaf has a singleton cluster and the union
of two overlapping or neighboring intervals is a single interval, we need to show
that the children of any internal node have overlapping or neighboring clusters
of descendant leaves.

Let v ∈ V be an internal node with children u, w ∈ V and assume C[u] =
{h, . . . , i} and C[w] = {�, . . . , m} are intervals of descendant leaves with h �
i < j � k < � � m but j, . . . , k /∈ C[v]. Then, any path from the root of
N to any of the leaves j, . . . , k will cross some edge along either a path from
v to i or a path from v to �, contradicting the assumption that N is planar.
Therefore, j, . . . , k ∈ C[v] and the set {h, . . . , i, j, . . . , k, �, . . . , m} of descendant
leaves forms one interval. �	

Next, let U(N) denote the undirected graph obtained by replacing every directed
edge in N by an undirected edge. A biconnected component of an undirected
graph is a connected subgraph that remains connected after removing any node
and all edges incident to it; see [18]. Recall the following definition from [5].

Definition 1. A network N is called level-k phylogenetic network if, for every
biconnected component B in U(N), the subgraph of N induced by the set of nodes
in B contains at most k nodes with indegree 2.

Corollary 1. If N is a level-1 phylogenetic network (that is, a galled-tree [10,11]),
then a leaf numbering function f with If = 1 can be computed in O(m + e) time.

Proof. Since each biconnected component of N forms a cycle and all the cycles
in N are disjoint, the outside of an embedding of a cycle into a plane lies on the
outer-plane. Then, it is obvious that If = 1. �	

Lemma 5. If N is a level-k phylogenetic network then a leaf numbering func-
tion f with If = k + 1 can be computed in O(m + e) time.

Proof. Fix any (directed) spanning tree T of N , and let f be the leaf numbering
function obtained by doing a depth-first search of T starting at the root and
assigning the numbers 1, 2, . . . , n to the leaves in the order that they are first
visited. Clearly, this takes O(m + e) time.

We now prove that f has spread k +1. For any node v in V , define L(T [v]) as
the set of all leaves in the subtree of T rooted at v. The key observation is that
the leaves in L(T [v]) must be visited consecutively by any depth-first search of T ,
and thus form a single interval in Cf [v]. Next, let u be any node in V and let H
be the set of hybrid nodes in N that belong to the same biconnected component
as u and which are descendants of u (in case u is not on any merge path then
H is the empty set). Then, the set of leaves that are descendants of u in N can

198 T. Asano et al.

Table 2. Interval list representation of the clusters for the phylogenetic network in
Figure 1

node interval list
v21 (v27, v28)
v15 (v20, v28)
v41 (v45, v45)
v39 (v45, v42)
v44 (v46, v47)
v40 (v43, v47)
v38 (v45, v47)
v35 (v45, v47)
v31 (v34, v47)
v29 (v34, v47)

node interval list
v9 (v20, v47)
v6 (v20, v10)
v16 (v22, v23)
v32 (v36, v37)
v16 (v22, v23)
v32 (v36, v37)
v30 (v36, v33)
v24 (v34, v47), (v36, v33)
v17 (v34, v47), (v36, v33)
v11 (v34, v47), (v22, v33)

node interval list of the cluster
v7 (v34, v47), (v22, v12)
v4 (v20, v12)
v19 (v25, v26)
v13 (v18, v26)
v8 (v18, v14)
v5 (v34, v47), (v36, v33), (v18, v14)
v3 (v20, v14)
v1 (v2, v14)

be written as L(T [u]) ∪
⋃

h∈H L(T [h]). N is a level-k phylogenetic network, so
|H | � k, which together with the key observation above implies that Cf [u] is the
union of at most k+1 intervals. It follows that If (u) � k+1 for every u ∈ V . �	

Example 2. Consider again the phylogenetic network in Figure 1. The leaf num-
bering in Example 1 yields the interval lists listed in Table 2. The network is
level-2 and its spread corresponds to the 3 disjoint intervals (v34, v47), (v36, v33),
(v18, v14) of node v5. �	
Now, we consider how to store characteristic vectors under leaf numbering func-
tions having small spread. An efficient approach is to store the starting and
ending positions of all intervals in sorted order. We call this representation the
interval list representation of the clusters. We immediately obtain the following
result.

Lemma 6. Given any leaf numbering function f , the total space needed to
store all characteristic vectors under f using the interval list representation is
O(If m log n) bits.

Proof. For each of the m nodes in N , the starting and ending positions of each
of its at most If intervals are stored in �2 log n� bits. �	
Lemma 7. Given any leaf numbering function f , all descendant leaf bit vectors
under f using the interval list representation can be computed in O(If (m + e))
time.

Proof. Use Algorithm 1 but replace the union operation as follows. Let v be an
internal node with children u, w. Assuming that Cf [u] and Cf [w] are known,
Cf [v] can be computed in O(If) time by a straightforward algorithm which scans
the two sorted position lists for Cf [u] and Cf [w] and merges any intervals which
overlap or are neighbors. �	

4 An Algorithm for Computing the Robinson-Foulds
Distance

We now present an algorithm for computing the Robinson-Foulds distance be-
tween two input phylogenetic networks N1, N2 (Algorithm 3).

Faster Computation of the Robinson-Foulds Distance 199

The algorithm first computes the clusters of N1 and N2 using any of the
cluster representations described in the previous sections of this paper. Then,
the cardinality of the symmetric difference of the two cluster representations
is obtained by radix sorting and simultaneous traversal techniques. Finally, the
algorithm outputs the Robinson-Foulds distance between N1 and N2.

Algorithm 3. Compute the Robinson-Foulds distance between two phylogenetic net-
works N1, N2

function robinson foulds distance(N1, N2)
cluster representation(N1, C1); radix sort C1

cluster representation(N2, C2); radix sort C2

m1,m2 ← number of nodes of N1, N2

i1 ← 1
i2 ← 1
c ← 0
while i1 � m1 and i2 � m2 do

if C1[i1] < C2[i2] then
i1 ← i1 + 1

else if C1[i1] > C2[i2] then
i2 ← i2 + 1

else
i1 ← i1 + 1
i2 ← i2 + 1
c ← c + 1

return m1 + m2 − 2 · c

Theorem 1. Let N1, N2 be two phylogenetic networks with n leaves, m nodes,
and e edges. The Robinson-Foulds distance between N1, N2 can be computed in:

– O(n(m + e)/ log n) time and O(n2 + n m/ logn) words for general networks,
– O(n m/ log n) time and O(n2 + n m/ logn) words for general networks with

bounded degree,
– O(m + e) time and O(m log n) bits for planar phylogenetic networks,
– O((k+1)(m+e)) time and O(k m log n) bits for level-k phylogenetic networks.

Proof. Implement Algorithm 3 by applying Lemmas 3–7 to obtain the respective
cluster representations. The radix sort step and remaining operations can be
performed in O(m x) time, where x denotes the amount of space needed to
represent one cluster. �	

200 T. Asano et al.

5 Conclusion

We have presented a new and simple algorithm for computing the Robinson-
Foulds distance between two phylogenetic networks. While the fastest known
algorithm for computing the Robinson-Foulds distance between two phylogenetic
networks with n leaves, m nodes, and e edges runs in O(m(m+e)) time, the new
algorithm takes advantage of bit-level parallelism and runs in O(n(m+e)/ log n)
time on general networks, assuming a word size of ω = �log n� bits. In the case of
level-k phylogenetic networks, we take advantage of the succinct representation
of clusters as intervals of consecutive integers, and the new algorithm runs in
O((k + 1)(m + e)) time.

We have also introduced a new parameter, the minimum spread of a phylo-
genetic network, and proved that every level-k network has minimum spread at
most k + 1. For the particular case of bounded-level phylogenetic networks such
as planar phylogenetic networks, which include outer-labeled planar split net-
works and galled-trees, we have shown that the minimum spread is 1, meaning
that the new algorithm can be implemented to run in optimal O(m + e) time.

Acknowledgment

JJ was supported by the Special Coordination Funds for Promoting Science and
Technology. TA, RU, GV were supported by the Spanish government and the
EU FEDER program under project PCI2006-A7-0603.

References

1. Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Syst. Biol. 55(1), 46–56
(2006)

2. Bryant, D., Moulton, V.: Neighbor-Net: An agglomerative method for the con-
struction of phylogenetic networks. Mol. Biol. Evol. 21(2), 255–265 (2004)

3. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic net-
works I: Generalizations of the Robinson-Foulds metric. IEEE ACM T. Comput.
Biol. 6(1), 1–16 (2009)

4. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic net-
works. IEEE ACM T. Comput. Biol. (2009)

5. Choy, C., Jansson, J., Sadakane, K., Sung, W.K.: Computing the maximum agree-
ment of phylogenetic networks. Theor. Comput. Sci. 335(1), 93–107 (2005)

6. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Clas-
sif. 2(1), 7–28 (1985)

7. Doolittle, W.F.: Phylogenetic classification and the universal tree. Sci-
ence 284(5423), 2124–2128 (1999)

8. Grünewald, S., Forslund, K., Dress, A., Moulton, V.: QNet: An agglomerative
method for the construction of phylogenetic networks from weighted quartets. Mol.
Biol. Evol. 24(2), 532–538 (2007)

9. Grünewald, S., Moulton, V., Spillner, A.: Consistency of the QNet algorithm
for generating planar split networks from weighted quartets. Discr. Appl.
Math. 157(10), 2325–2334 (2009)

Faster Computation of the Robinson-Foulds Distance 201

10. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic net-
works with constrained recombination. In: Proc. 2nd IEEE Computer Society
Bioinformatics Conf., pp. 363–374 (2003)

11. Gusfield, D., Eddhu, S., Langley, C.H.: The fine structure of galls in phylogenetic
networks. INFORMS J. Comput. 16(4), 459–469 (2004)

12. Hagerup, T.: Sorting and searching on the word RAM. In: Meinel, C., Morvan, M.
(eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg (1998)

13. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic net-
works. Bioinformatics 22(21), 2604–2611 (2006)

14. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for
phylogenetic network reconstruction. Bioinformatics 23(2), 123–128 (2007)

15. Pattengale, N.D., Gottlieb, E.J., Moret, B.M.: Efficiently computing the Robinson-
Foulds metric. J. Comput. Biol. 14(6), 724–735 (2007)

16. Posada, D., Crandall, K.A.: Intraspecific gene genealogies: Trees grafting into net-
works. Trends Ecol. Evol. 16(1), 37–45 (2001)

17. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math.
Biosci. 53(1/2), 131–147 (1981)

18. Rosselló, F., Valiente, G.: All that glisters is not galled. Math. Biosci. 221(1), 54–59
(2009)

19. Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using
directed graphical models. Mol. Biol. Evol. 17(6), 875–881 (2000)

20. Strimmer, K., Wiuf, C., Moulton, V.: Recombination analysis using directed graph-
ical models. Mol. Biol. Evol. 18(1), 97–99 (2001)

21. Sul, S.-J., Brammer, G., Williams, T.L.: Efficiently computing arbitrarily-sized
Robinson-Foulds distance matrices. In: Crandall, K.A., Lagergren, J. (eds.)
WABI 2008. LNCS (LNBI), vol. 5251, pp. 123–134. Springer, Heidelberg (2008)

22. Sul, S.-J., Williams, T.L.: An experimental analysis of Robinson-Foulds distance
matrix algorithms. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193,
pp. 793–804. Springer, Heidelberg (2008)

23. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Con-
structing level-2 phylogenetic networks from triplets. IEEE ACM T. Comput.
Biol. 6(4), 667–681 (2009)

Mod/Resc Parsimony Inference

Igor Nor1,2,�, Danny Hermelin3, Sylvain Charlat1, Jan Engelstadter4,
Max Reuter5, Olivier Duron6, and Marie-France Sagot1,2,∗

1 Université de Lyon, F-69000, Lyon, Université Lyon 1, CNRS, UMR5558
2 Bamboo Team, INRIA Grenoble Rhône-Alpes, France

3 Max Planck Institute for Informatics, Saarbrücken - Germany
4 Institute of Integrative Biology, ETH Zurich, Switzerland

5 University College London, UK
6 Institute of Evolutionary Sciences, CNRS - University of Montpellier II, France

norigor@gmail.com, Marie-France.Sagot@inria.fr

Abstract. We address in this paper a new computational biology prob-
lem that aims at understanding a mechanism that could potentially be
used to genetically manipulate natural insect populations infected by in-
herited, intra-cellular parasitic bacteria. In this problem, that we denote
by Mod/Resc Parsimony Inference, we are given a boolean matrix
and the goal is to find two other boolean matrices with a minimum num-
ber of columns such that an appropriately defined operation on these
matrices gives back the input. We show that this is formally equiva-
lent to the Bipartite Biclique Edge Cover problem and derive some
complexity results for our problem using this equivalence. We provide a
new, fixed-parameter tractability approach for solving both that slightly
improves upon a previously published algorithm for the Bipartite Bi-

clique Edge Cover. Finally, we present experimental results where we
applied some of our techniques to a real-life data set.

Keywords: Computational biology, biclique edge covering, bipartite
graph, boolean matrix, NP-completeness, graph theory, fixed-parameter
tractability, kernelization.

1 Introduction

Wolbachia is a genus of inherited, intra-cellular bacteria that infect many arthro-
pod species, including a significant proportion of insects. The bacterium was first
identified in 1924 by M. Hertig and S. B. Wolbach in Culex pipiens, a species of
mosquito. Wolbachia spreads by altering the reproductive capabilities of its hosts
[6]. One of these alterations consists in inducing so-called cytoplasmic incompat-
ibility [7]. This phenomenon, in its simplest expression, results in the death of
embryos produced in crosses between males carrying the infection and uninfected
females. A more complex pattern is the death of embryos seen in crosses between
males and females carrying different Wolbachia strains. The study of Wolbachia

� Corresponding authors.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 202–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mod/Resc Parsimony Inference 203

and cytoplasmic incompatibility is of interest due to the high incidence of such
infections, amongst others in human disease vectors such as mosquitoes, where
cytoplasmic incompatibility could potentially be used as a driver mechanism for
the genetic manipulation of natural populations.

The molecular mechanisms underlying cytoplasmic incompatibility are cur-
rently unknown, but the observations are consistent with a “toxin / antitoxin”
model [16]. According to this model, the bacteria present in males modify the
sperm (the so-called modification, or mod factor) by depositing a “toxin” during
its maturation. Bacteria present in females, on the other hand, deposit an anti-
toxin (rescue, or resc factor) in the eggs, so that offsprings of infected females can
develop normally. The simple compatibility patterns seen in several insect hosts
species [1,2,3] has led to the general view that cytoplasmic incompatibility relies
on a single pair of mod / resc genes. However, more complex patterns, such as
those seen in Figure 1 of the mosquito Culex pipiens [5], suggest that this conclu-
sion cannot be generalized. The aim of this paper is to provide a first model and
algorithm to determine the minimum number of mod and resc genes required to
explain a compatibility dataset for a given insect host. Such an algorithm will
have an important impact on the understanding of the genetic architecture of
cytoplasmic incompatibility. Beyond Wolbachia, the method proposed here can
be applied to any parasitic bacteria inducing cytoplasmic incompatibility.

Fig. 1. The Culex pipiens dataset. Rows represent females and columns males.

Let us now propose a formal description of this problem. Let the compatibility
matrix C be an n-by-n matrix describing the observed cytoplasmic compatibility
relationships among n strains, with females in rows and males in columns. For the
Culex pipiens dataset, the content of the C matrix is directly given by Figure 1.
For each entry Ci,j of this matrix, a value of 1 indicates that the cross between
the i’th female and j’th male is incompatible, while a value of 0 indicates it

204 I. Nor et al.

is compatible. No intermediate levels of incompatibility are observed in Culex
pipiens, so that such a discrete code (0 or 1) is sufficient to describe the data.
Let the mod matrix M be an n-by-k matrix, with n strains and k mod genes.
For each Mi,j entry, a 0 indicates that strain i does not carry gene j, and a 1
indicates that it does carry this gene. Similarly, the rescue matrix R is an n-by-k
matrix, with n strains and k resc genes, where each Ri,j entry indicates whether
strain i carries gene j. A cross between female i and male j is compatible only
if strain i carries at least all the rescue genes matching the mod genes present
in strain j. Using this rule, one can assess whether an (M, R) pair is a solution
to the C matrix, that is, to the observed data.

We can easily find non-parsimonious solutions to this problem, that is, large
M and R matrices that are solutions to C, as will be proven in the next sec-
tion. However, solutions may also exist with fewer mod and resc genes. We are
interested in the minimum number of genes for which solutions to C exist, and
the set of solutions for this minimum number. This problem can be summarized
as follows: Let C (compatibility) be a boolean n-by-n matrix. A pair of n-by-k
boolean matrices M (mod) and R (resc) is called a solution to C if, for any
row j in R and row i in M , Ci,j = 0 if and only if Rj,� ≥ Mi,� holds for all �,
1 ≤ � ≤ k. This appropriately models the fact stated above that, for any cross
to be compatible, the female must carry at least all the rescue genes matching
the mod genes present in the male. For a given matrix C, we are interested in
the minimum value of k for which solutions to C exist, and the set of solutions
for this minimum k. We refer to this problem as the Mod/Resc Parsimony

Inference problem (see also Section 2). Since in some cases, data (on females
or males) may be missing, the compatibility matrix C has dimension n-by-m
for n not necessarily equal to m. We will consider this more general situation in
what follows.

In this paper, we present the Mod/Resc Parsimony Inference problem
and prove it is equivalent to a well-studied graph-theoretical problem known
in the literature by the name of Bipartite Biclique Edge Cover. In this
problem, we are given a bipartite graph, and we want to cover its edges with
a minimum number of complete bipartite subgraphs (bicliques). This problem
is known to be NP-complete, and thus Mod/Resc Parsimony Inference

turns out to be NP-complete as well. In Section 4, we investigate a previous
fixed-parameter tractability approach [8] for solving the Bipartite Biclique

Edge Cover problem and improve its algorithm. In addition, we show a re-
duction between this problem and the Clique Edge Cover problem. Finally,
in Section 5, we present experimental results where we applied some of these
techniques to the Culex pipiens data set presented in Figure 1. This provided a
surprising finding from a biological point of view.

2 Problem Definition and Notation

In this section, we briefly review some notation and terminology that will be
used throughout the paper. We also give a precise mathematical definition of

Mod/Resc Parsimony Inference 205

the Mod/Resc Parsimony Inference problem we study. For this, we first
need to define a basic operation between two boolean vectors:

Definition 1. The ⊗ vectors multiplication is an operation between two boolean
vectors U, V ∈ {0, 1}k such that :

U ⊗ V :=
{

1 : U [i] > V [i] for some i ∈ {1, . . . , k}
0 : otherwise

In other words, the result of the ⊗ multiplication is 0 if, for all corresponding
locations, the value in the second vector is not less than in the first.

The reader should note that this operation is not symmetric. For example, if
U := (0, 1, 1, 0) and V := (1, 1, 1, 0), then U ⊗ V = 0, while V ⊗U = 1. We next
generalize the ⊗ multiplication to boolean matrices. This follows easily from the
observation that the boolean vectors U, V ∈ {0, 1}k may be seen as matrices
of dimension 1-by-k. We thus use the same symbol ⊗ to denote the operation
applied to matrices.

Definition 2. The ⊗ row-by-row matrix multiplication is a function {0, 1}n×k×
{0, 1}m×k → {0, 1}n×m such that C = M ⊗ R iff Ci,j = Mi ⊗ Rj for all i ∈
{1, . . . , n} and j ∈ {1, . . .m}. (Here Mi and Rj respectively denote the i’th and
j’th row of M and R.)

Definition 3. In the Mod/Resc Parsimony Inference problem, the input
is a boolean matrix C ∈ {0, 1}n×m, and the goal is to find two boolean matrices
M ∈ {0, 1}n×k and R ∈ {0, 1}m×k such that C = M ⊗R and with k minimal.

We first need to prove there is always a correct solution to the Mod/Resc

Inference Problem. Here we show that there is always a solution for as many
mod and resc genes as the minimum between the number of male and female
strains in the dataset.

Lemma 1. The Mod/Resc Parsimony Inference problem always has a
solution.

Proof. A satisfying output for the Mod/Resc Parsimony Inference problem
always exists for any possible C of size n-by-m. For instance, let M be of size
n-by-n and equal to the identity matrix, and let R be of size m-by-n and such
that R = C

T
. This solution is correct since the only 1-value in an arbitrary row

ri of the matrix M is at location Mii. Thus, the only situation where Cij = 1 is
when Rji = 0, which is the case by construction. �	
We will be using some standard graph-theoretic terminology and notation. We
use G, G′, and so forth to denote graphs in general, where V (G) denotes the
vertex set of a graph G, and E(G) its edge-set. By a subgraph of G, we mean
a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For a bipartite graph G,
i.e. a graph whose vertex-set can be partitioned into two classes with no edges
occurring between vertices of the same class, we use V1(G) and V2(G) to denote
the two vertex classes of G. A complete bipartite graph (biclique) is a bipartite
graph G with E(G) := {{u, v} : u ∈ V1(G), v ∈ V2(G)}. We will sometimes use
B, B1, and so forth to denote bicliques.

206 I. Nor et al.

3 Equivalence to Bipartite Biclique Edge Cover

In this section, we show that the Mod/Resc Parsimony Inference problem
is equivalent to a classical and well-studied graph theoretical problem known in
the literature as the Bipartite Graph Biclique Edge Cover problem. Using
this equivalence, we first derive the complexity status of Mod/Resc Parsimony

Inference, and later devise FPT algorithms for this problem. We begin with
a formal definition of the Bipartite Graph Biclique Edge Cover problem.

Definition 4. In the Bipartite Biclique Edge Cover Problem problem,
the input is a bipartite graph G, and the goal is to find the minimum number of
biclique subgraphs B1, . . . , Bk of G such that E(G) :=

⋃
� E(B�).

Given a bipartite graph G with V1(G) := {u1, . . . , un} and V2(G) := {u1, . . . ,
um}, the bi-adjacency matrix of G is a boolean matrix A(G) ∈ {0, 1}n×m defined
by A(G)i,j := 1 ⇐⇒ {ui, vj} ∈ E(G). In this way, every boolean matrix C
corresponds to a bipartite graph, and vice versa.

Theorem 1. Let C be a boolean matrix of size n × m. Then there are two
matrices M ∈ {0, 1}n×k and R ∈ {0, 1}m×k with C = M ⊗ R iff the bipartite
graph G with A(G) := C has a biclique edge cover with k bicliques.

Proof. (⇐=) Let G be the bipartite graph with the bi-adjacency matrix C, and
suppose G has biclique edge cover B1, B2, . . . , Bk. We construct two boolean ma-
trices M and R as follows. Let V1(G) := {u1, . . . , un} and V2(G) := {v1, . . . , vm}.
We define:

1. Mi,� = 1 ⇐⇒ ui ∈ V1(B�).
2. Rj,� = 0 ⇐⇒ vj ∈ V2(B�).

An illustration of this construction is given in Figure 2.
We argue that C = M ⊗ R. Consider an arbitrary location Ci,j = 1. By

definition we have {ui, vj} ∈ E(G). Since the bicliques B1, . . . , Bk cover all
edges of G, we know that there is some �, � ∈ {1, . . . , k}, with ui ∈ V1(B�)
and vj ∈ V2(B�). By construction we know that Mi,� = 1 and Rj,� = 0, and
so Mi ⊗ Rj = 1, which means that the entry at row i and column j in M ⊗ C
is equal to 1. On the other hand, if Cij = 0, then {ui, vj} /∈ E(G), and thus
there is no biclique B� with ui ∈ V1(B�) and vj ∈ V2(B�). As a result, for all
� ∈ {1, . . . , k}, if Mi,� = 1 then Ri,� = 1 as well, which means that the result of
the ⊗ multiplication between the i’th row in M and the j’th row in R will be
equal to 0.

(=⇒) Assume there are two matrices M ∈ {0, 1}n×k and R ∈ {0, 1}m×k with
C = M ⊗ R. Construct k subgraphs B1, . . . , Bk of G, where the �’th subgraph
is defined as follows:

1. ui ∈ V1(B�) ⇐⇒ Mi,� = 1.
2. vj ∈ V2(B�) ⇐⇒ Rj,� = 0.
3. {ui, vj} ∈ E(B�) ⇐⇒ {ui, vj} ∈ E(G).

Mod/Resc Parsimony Inference 207

Fig. 2. Reduction illustrated

We first argue that each of the subgraphs B1, . . . , Bk is a biclique. Consider
an arbitrary subgraph B�, and an arbitrary pair of vertices ui ∈ V1(B�) and
vj ∈ V2(B�). By construction, it follows that Mi,� = 1 and Ri,� = 0. As a
result, it must be that Ci,j = 1, which means that {ui, vj} ∈ E(G). Next, we
argue that

⋃
� E(B�) = E(G). Consider an arbitrary edge {ui, vj} ∈ E(G). Since

C = A(G), we have Ci,j = 1. Furthermore, since M⊗R = C, there must be some
� ∈ {1, . . . , k} with Mi,� > Rj,�. However, this is exactly the condition for having
ui and vj in the biclique subgraph B�. It follows that indeed

⋃
� E(B�) = E(G),

and thus the theorem is proved. �	

Due to the equivalence between Mod/Resc Parsimony Inference and Bipar-

tite Biclique Edge Cover, we can infer from known complexity results re-
garding Bipartite Biclique Edge Cover the complexity of our problem. First,
since Bipartite Biclique Edge Cover is well-known to be NP-complete [15],
it follows that Mod/Resc Parsimony Inference is NP-complete as well. Fur-
thermore, Gruber and Holzer [11] recently showed that the Bipartite Biclique

Edge Cover problem cannot be approximated within a factor of n1/3−ε unless
P = NP where n is the total number of vertices. Since the reduction given in
Theorem 1 is clearly an approximate preserving reduction, we can deduce the
following:

Theorem 2. Mod/Resc Parsimony Inference is NP-complete, and fur-
thermore, for all ε > 0, the problem cannot be approximated within a factor of
(n + m)1/3−ε unless P = NP.

208 I. Nor et al.

4 Fixed-Parameter Tractability

In this section, we explore a parameterized complexity approach [4,9,14] for the
Mod/Resc Parsimony Inference problem. Due to the equivalence shown in
the previous section, we focus for convenience reasons on Bipartite Biclique

Edge Cover. In parameterized complexity, problem instances are appended
with an additional parameter, usually denoted by k, and the goal is to find an
algorithm for the given problem which runs in time f(k) · nO(1), where f is an
arbitrary computable function. In our context, our goal is to determine whether
a given input bipartite graph G with n vertices has a biclique edge cover of size
k in time f(k) · nO(1).

4.1 The Kernelization

Fleischner et al. [8] studied the Bipartite Biclique Edge Cover problem
in the context of parameterized complexity. The main result in their paper is
to provide a kernel for the problem based on the techniques given by Gramm
et al. [10] for the similar Clique Edge Cover problem. Kernelization is a
central technique in parameterized complexity which is best described as a
polynomial-time transformation that converts instances of arbitrary size to in-
stances of a size bounded by the problem parameter (usually of the same prob-
lem), while mapping “yes”-instances to “yes”-instances, and “no”-instances to
“no”-instances. More precisely, a kernelization algorithm A for a parameterized
problem (language) Π is a polynomial-time algorithm such that there exists
some computable function f that, given an instance (I, k) of Π , A produces an
instance (I ′, k′) of Π with:

– |I ′|+ k′ ≤ f(k), and
– (I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π .

We refer the reader to e.g. [12,14] for more information on kernelization.
A typical kernelization algorithm works with reduction rules, which transform

a given instance to a slightly smaller equivalent instance in polynomial time. The
typical argument used when working with reduction rules is that once none of
these can be applied, the resultant instance has size bounded by a function of
the parameter. For the Bipartite Biclique Edge Cover, two kernelization
rules have been applied by Fleischner et al. [8]:

RULE 1: If G has a vertex with no neighbors, remove this vertex without changing
the parameter.

RULE 2: If G has two vertices with identical neighbors, remove one of these
vertices without changing the parameter.

Lemma 2 ([8]). Applying rules 1 and 2 above exhaustively gives a kernelization
algorithm for Bipartite Biclique Edge Cover that runs in O(max(n, m)3)
time, and transforms an instance (G, k) to an equivalent instance (G′, k) with
|V (G′)| ≤ 2k and |E(G′)| ≤ 22k.

Mod/Resc Parsimony Inference 209

We add two additional rules, which will be necessary for further interesting
properties.

RULE 3: If there is a vertex v with exactly one neighbor u in G, then remove
both v and u, and decrease the parameter by one.

Lemma 3. Rule 3 is correct.

Proof. Assume a biclique cover of size k of the graph, and assume that vertex
v is a member of some of the bicliques in this cover. By definition, at least one
of the bicliques covers the edge {u, v}. Since this is the only edge adjacent to
v, the bicliques that cover {u, v} include only vertex u among the vertices in
its bipartite vertex class. Thus, a biclique that covers {u, v} can be extended to
cover all other edges of u while keeping the property of being a biclique. �	

RULE 4: Assume Rule 3 does not apply. If there is a vertex v in G which is
adjacent to all vertices in the opposite bipartition class of G, then remove v
without decreasing the parameter.

Lemma 4. Rule 4 is correct.

Proof. After applying Rule 3 above, each remaining vertex in the graph has at
least two neighbors. Assume a biclique cover of size k of all the edges except
those adjacent to vertex v. Assume w.l.o.g. that v ∈ V1(G). Since each vertex
u ∈ V2(G) has degree at least 2, it is adjacent to an edge which is covered by
the biclique cover. It therefore belongs to some biclique in this cover. For each
biclique in the cover, add now vertex v to its set of vertices. Since v is adjacent
to all the vertices of V2(G), each changed component is a correct biclique and
the new solution covers all the edges, including those of vertex v, and is of same
size. �	

Let us now consider the time complexity for checking the new rules introduced.
Let us assume we have a counter for each vertex, which has the size of its set
of neighbors. Once a vertex has been found to which the rule should be applied,
applying each rule takes O(max(n, m)) time, including updating the counters of
the neighbors of the deleted vertex. Linearly running through the vertices and
checking each rule condition also requires O(max(n, m)) time using the counters.
Since one can apply the reduction rules at most O(max(n, m)) times, the total
time required for the extended kernelization remains O(max(n, m)3). We observe
that although the new rules do not change the kernelization size, which remains
2k vertices in a solution of size k, they can be useful in the following section.

4.2 Bipartite Biclique Edge Cover and Clique Edge Cover

In this section, we show the connection between the Bipartite Biclique Edge

Cover and the Clique Edge Cover problems. We show that in the context of
fixed-parameter tractability, we can easily translate our problem to the classical

210 I. Nor et al.

clique covering problem and then use it for a solution to our problem. For in-
stance, it gives another way for the kernelization of the problem and can provide
interesting heuristics, mentioned in [10].

Given a kernelized bipartite graph G′ as an instance to the Bipartite Bi-

clique Edge Cover problem, we transform G′ into a (non-bipartite) graph
G′′ defined by V (G′′) := V (G′) ∪ {v′} ∪ {u′} and E(G′′) := E(G′) ∪ {{u, v} :
u, v ∈ V1(G′)∪{v′} and u, v ∈ V2(G′)∪{u′}} where v′ and u′ are two new nodes
not in V (G′).

Theorem 3. The edges of G′ can be covered with k cliques iff the edges of G′′

can be covered with k + 2 cliques.

Proof. Suppose B1, . . . , Bk is a biclique edge cover of G′. Then each V (Bi),
i ∈ {1, . . . , k}, induces a clique in G′′. Furthermore, the only remaining edges
which are not covered in G′′ are the ones between vertices in V1(G′) ∪ {v′} and
vertices in V2(G′) ∪ {u′}, which can be covered by the two cliques induced by
these vertex sets in G′′. Altogether this gives us k+2 cliques that cover all edges
in G′′. Conversely, take a clique edge cover K1, . . . , Kc of G′′. By construction, v′

cannot share a same clique with any node in V2(G′)∪{u′} and likewise u′ cannot
share a same clique with any node in V1(G′)∪{v′}. It follows that there must be
at least two cliques in {K1, . . . , Kc}, say K1 and K2, with V (K1) ⊆ V1(G′)∪{v′}
and V (K2) ⊆ V2(G′)∪{u′}. Thus, there is a subset of the cliques in {K3, . . . , Kc}
which have vertices in both partition classes of G′, and which cover all the edges
in G′. Taking the corresponding bicliques in G′, and adding duplicated bicliques
if necessary, gives us k bicliques that cover all edges in G′. �	

4.3 Algorithms

After the kernelization algorithm is applied, the next step is usually to solve the
problem using brute-force. This is what is done in [8]. However, the time com-
plexity given there is inaccurate, and the parametric-dependent time bound of
their algorithm is O(k4k

23k) = O(222k lg k+3k) instead of the O(22k2+3k) bound
stated in their paper. Furthermore, the algorithm they describe is initially given
for the related Bipartite Biclique Edge Partition problem (where each
edge is allowed to appear exactly once in a biclique), and the adaptation of such
algorithm to the Bipartite Biclique Edge Cover problem is left vague and
imprecise. Here, we suggest two possible brute-force procedures for the Bipar-

tite Biclique Edge Cover problem, each of which outperforms the algorithm
of [8] in the worst-case. We assume throughout that we are working with a ker-
nelized instance obtained by applying the algorithm described in Section 4.1,
i.e. a pair (G′, k) where G′ is a bipartite graph with at most 2k vertices (and
consequently at most 4k edges).

The first brute-force algorithm: For each k′ ≤ k, try all possible partitions of the
edge-set E(G′) of G′ into k′ subsets. For each such partition Π = {E1, . . . , Ek′},
check whether each of the subgraphs G′[E1], . . . , G′[Ek′] is a biclique, where

Mod/Resc Parsimony Inference 211

G′[Ei] is the subgraph of G induced by Ei. If yes, report G′[E1], . . . , G′[Ek′] as a
solution. If some G′[Ei] is not a biclique, check whether edges in E(G′) \E(G′

i)
can be added to E[G′

i] in order to make the graph a biclique. Continue with the
next partition if some graph in G′[E1], . . . , G′[Ek′] cannot be appended in this
way in order to get a biclique, and otherwise report the solution found. Finally,
if the above procedure fails for all partitions of E(G′) into k′ ≤ k subsets, report
that G′ does not have a biclique edge cover of size k.

Lemma 5. The above algorithm correctly determines whether G′ has a bipartite

biclique edge cover of size k in time 222k lg k+2k+lg k

k! .

Proof. Correctness of the above algorithm is immediate in case a solution is
found. To see that the algorithm is also correct when it reports that no solution
can be found, observe that for any biclique edge cover B1, . . . , Bk of G, the
set {E1, . . . , Ek} with Ei := E(G′

i) \
⋃

j<i E(G′
j) defines a partition of E(G′)

(with some of the Ei’s possibly empty), and given this partition, the algorithm
above would find the biclique edge cover of G′. Correctness of the algorithm thus
follows.

Regarding the time complexity, the time needed for appending edges to each
subgraph is at most O(|(V (G′))2|) = O(22k), and thus a total of O(22kk) =
O(22k+lg k) time is required for the entire partition. The number of possible
partitions of E(G′) into k disjoint set is the Stirling number of the second kind

S(22k, k), which has been shown in [13] to be asymptotically equal to O(k4k

k! =
222k lg k

k!). Thus, the total complexity of the algorithm is O(222k lg k+2k+lg k

k!). �	

The second brute-force algorithm: We generate the set K(G′) of all possible
inclusion-wise maximal bicliques in G′, and try all possible k-subsets of K(G′)
to see whether one covers all edges in G′. Correctness of the algorithm is imme-
diate since one can always restrict oneself to using only inclusion-wise maximal
bicliques in a biclique edge cover. To generate all maximal bicliques, we first
transform G′ into the graph G′′ given in Theorem 3. Thus, every inclusion-wise
maximal biclique in G′ is an inclusion-wise maximal clique in G′′. We then use
the algorithm of [18] on the complement graph G′′ of G′′, i.e. the graph defined
by V (G′′) := V (G′′) and E(G′′) := {{u, v} : u, v ∈ V (G′′), u �= v, and {u, v} /∈
E(G′′)}.

Theorem 4. The Bipartite Biclique Edge Cover problem can be solved
in O(f(k) + max(n, m)3) time, where f(k) := 2k2k−1+3k.

Proof. Given a bipartite graph G as an instance to Bipartite Biclique Edge

Cover, we first apply the kernelization algorithm to obtain an equivalent
graph G′ with 2k vertices, and then apply the brute-force algorithm described
above to determine whether G′ has a biclique edge cover of size k. Correct-
ness of this algorithm follows directly from Section 4.1 and the correctness
of the brute-force procedure. To analyze the time complexity of this algo-
rithm, we first note that Prisner showed that any bipartite graph on n ver-
tices has at most 2n/2 inclusion-wise maximal bicliques [18]. This implies that

212 I. Nor et al.

|K(G′)| ≤ 22k−1
. The algorithm of [17] runs in O(|V (G′)||E(G′)||K(G′)|) time,

which is O(2k22k22k−1
) = O(22k−1+3k). Finally, the total number of k-subsets

of K(G′) is O(2k2k−1
), and checking whether each of these subsets covers the

edges of G′ requires O(|V (G′)||E(G′)|) = O(23k) time. Thus, the total time
complexity of the entire algorithm is O(22k−1+3k + 2k2k−1+3k + max(n, m)3) =
O(2k2k−1+3k + max(n, m)3). �	

It is worthwhile mentioning that some particular bipartite graphs have a number
of inclusion-wise maximal bicliques which is polynomial in the number of their
vertices. For these types of bipartite graphs, we could improve on the worst-
case analysis given in the theorem above. For instance, a bipartite chordal graph
G has at most |E(G)| inclusion-wise maximal bicliques [18]. A bipartite graph
with n + m vertices and no induced cocktail-party graph of order � has at most
max(n, m)2(�−1) inclusion-wise maximal bicliques [17]. The cocktail party graph
of order � is the graph with nodes consisting of two rows of paired nodes in
which all nodes but the paired ones are connected with a graph edge (for a
full definition, see [17]). Observing that the algorithm in Section 4.1 preserves
chordality and does not introduce any new cocktail-party induced subgraphs, we
obtain the following corollary:

Corollary 1. The Bipartite Biclique Edge Cover problem can be solved
in O(22k2+3k+max(n, m)3) time when restricted to chordal bipartite graphs, and
in O(22k2(�−1)+3k + max(n, m)3) time when restricted to bipartite graphs with
no induced cocktail-party graphs of order �.

5 Experimental Results

We performed experiments of the parameterized algorithms on the Culex pip-
iens dataset, given in Figure 1. We implemented the algorithms in the C++
programming language, with source code of approximately 2500 lines.

The main difficulty in practice is to find the minimal size k. Different ap-
proaches could be used. One would proceed by first checking if there is no solu-
tion of small sizes since this is easy to check using the FPT approach, and then
increasing the size until reaching a smallest size k for which one solution exists.
Another would proceed by using different fast and efficient heuristics to discover
a solution of a given size k′ that in general will be greater than the optimal size k
sought. Then applying dichotomy (the optimal solution is between 1 and k′−1),
the minimal size could be found using the FPT approach for the middle value
between 1 and k′− 1, and so on. The source code and the results can be viewed
on the webpage http://lbbe.univ-lyon1.fr/-Nor-Igor-.html.

The result obtained on the Culex pipiens dataset indicates that 8 pairs of
mod/resc genes are required to explain the dataset. This appears to be in sharp
contrast to simpler patterns seen in other host species [2,3,1] that had led to the
general belief that cytoplasmic incompatibility can be explained with a single
pair of mod / resc genes. In biological terms, this result means that contrary to

Mod/Resc Parsimony Inference 213

earlier beliefs, the number of genetic determinants of cytoplasmic incompatibility
present in a single Wolbachia strain can be large, consistent with the view that it
might involve repeated genetic elements such as transposable elements or phages.

References

1. Bordenstein, S.R., Werren, J.H.: Bidirectional incompatibility among divergent
wolbachia and incompatibility level differences among closely related wolbachia in
nasonia. Heredity 99(3), 278–287 (2007)

2. Merçot, H., Charlat, S.: Wolbachia infections in drosophila melanogaster and
d. simulans: polymorphism and levels of cytoplasmic incompatibility. Genetica
120(1-3), 51–59 (2004)

3. Dobson, S.L., Marsland, E.J., Rattanadechakul, W.: Wolbachia-induced cytoplas-
mic incompatibility in single- and superinfected aedes albopictus (diptera: Culici-
dae). J Med Entomol. 38(3), 382–387 (2001)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

5. Duron, O., Bernard, C., Unal, S., Berthomieu, A., Berticat, C., Weill, M.: Tracking
factors modulating cytoplasmic incompatibilities in the mosquito culex pipiens. Mol
Ecol. 15(10), 3061–3071 (2006)

6. Engelstadter, J., Hurst, G.D.D.: The ecology and evolution of microbes that ma-
nipulate host reproduction. Annual Review of Ecology, Evolution and Systemat-
ics (40), 127–149 (2009)

7. Engelstadter, J., Telschow, A.: Cytoplasmic incompatibility and host population
structure. Heredity (103), 196–207 (2009)

8. Fleischner, H., Mujuni, E., Paulusma, D., Szeider, S.: Covering graphs with
few complete bipartite subgraphs. Theoretical Computer Science 410(21-23),
2045–2053 (2009)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
10. Gramm, J., Guo, J., Huffner, F., Niedermeier, R.: Data reduction, exact, and

heuristic algorithms for clique cover. In: Proceedings of the 8th ACM/SIAM work-
shop on ALgorithm ENgineering and EXperiments (ALENEX), pp. 86–94 (2006)

11. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P�=NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT
2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

12. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

13. Korshunov, A.D.: Asymptotic behaviour of stirling numbers of the second kind.
Diskret. Anal. 39(1), 24–41 (1983)

14. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

15. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae 80(5), 406–424 (1977)

16. Poinsot, D., Charlat, S., Merçot, H.: On the mechanism of wolbachia-induced cy-
toplasmic incompatibility: confronting the models with the facts. Bioessays 25(1),
259–265 (2003)

17. Prisner, E.: Bicliques in graphs I: Bounds on their number. Combinatorica 20(1),
109–117 (2000)

18. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing 6(3), 505–517
(1977)

Extended Islands of Tractability for
Parsimony Haplotyping�

Rudolf Fleischer1, Jiong Guo2, Rolf Niedermeier3, Johannes Uhlmann3, Yihui Wang1,
Mathias Weller3, and Xi Wu1

1 School of Computer Science, IIPL, Fudan University, Shanghai, China
{rudolf,yihuiwang,wuxi}@fudan.edu.cn

2 Universität des Saarlandes,
Campus E 1.4, D-66123 Saarbrücken, Germany

jguo@mmci.uni-saarland.de
3 Institut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany
{rolf.niedermeier,johannes.uhlmann,mathias.weller}@uni-jena.de

Abstract. Parsimony haplotyping is the problem of finding a smallest size set of
haplotypes that can explain a given set of genotypes. The problem is NP-hard, and
many heuristic and approximation algorithms as well as polynomial-time solv-
able special cases have been discovered. We propose improved fixed-parameter
tractability results with respect to the parameter “size of the target haplotype
set” k by presenting an O∗(k4k)-time algorithm. This also applies to the practi-
cally important constrained case, where we can only use haplotypes from a given
set. Furthermore, we show that the problem becomes polynomial-time solvable if
the given set of genotypes is complete, i.e., contains all possible genotypes that
can be explained by the set of haplotypes.

1 Introduction

Over the last few years, haplotype inference has become one of the central problems in
algorithmic bioinformatics [10,2]. Its applications include drug design, pharmacogenet-
ics, mapping of disease genes, and inference of population histories. One of the major
approaches to haplotype inference is parsimony haplotyping: Given a set of genotypes,
the task is to find a minimum-cardinality set of haplotypes that explains the input set of
genotypes. The task to select as few haplotypes as possible (parsimony criterion) is mo-
tivated by the observation that in natural populations the number of haplotypes is much
smaller than the number of genotypes [2]. Referring for the background in molecular
biology to the rich literature (see, e.g., the surveys by Catanzaro and Labbé [2] and
Gusfield and Orzack [10]), we focus on the underlying combinatorial problem. In an
abstract way, a genotype can be seen as a length-m string over the alphabet {0, 1, 2},

� Supported by the DFG, research projects PABI, NI 369/7, and DARE, GU 1023/1, NI 369/11,
NSF China (No. 60973026), Shanghai Leading Academic Discipline Project (project num-
ber B114), Shanghai Committee of Science and Technology of China (nos. 08DZ2271800
and 09DZ2272800), the Excellence Cluster on Multimodal Computing and Interaction
(MMCI), and Robert Bosch Foundation (Science Bridge China 32.5.8003.0040.0).

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 214–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Extended Islands of Tractability for Parsimony Haplotyping 215

while a haplotype can be seen as a length-m string over the alphabet {0, 1}. A set H of
haplotypes explains, or resolves, a set G of genotypes if for every g ∈ G there is either
an h ∈ H with g = h (trivial case), or there are two haplotypes h1 and h2 in H such
that, for all i ∈ {1, . . . , m},

− if g has letter 0 or 1 at position i, then both h1 and h2 have this letter
at position i, and

− if g has letter 2 at position i, then one of h1 or h2 has letter 0 at position i
while the other one has letter 1.

For example, H = {00100, 01110, 10110} resolves G = {02120, 20120, 22110}. Par-
simony haplotyping is NP-hard, and numerous algorithmic approaches based on heuris-
tics and integer linear programming methods are applied in practice [2]. There is also
a growing list of combinatorial approaches (with provable performance guarantees) in-
cluding the identification of polynomial-time solvable special cases, approximation al-
gorithms, and fixed-parameter algorithms [5,13,14,16,11].

In this work, we contribute new combinatorial algorithms for parsimony haplotyp-
ing, based on new insights into the combinatorial structure of a haplotype solution.
Lancia and Rizzi [14] showed that parsimony haplotyping can be solved in polyno-
mial time if every genotype string contains at most two letters 2, while the problem
becomes NP-hard if genotypes may contain three letters 2 [13]. Sharan et al. [16]
proved that parsimony haplotyping is APX-hard in even very restricted cases and iden-
tified instances with a specific structure that allow for polynomial-time exact solutions
or constant-factor approximations. Moreover, they showed that the problem is fixed-
parameter tractable with respect to the parameter k =“number of haplotypes in the
solution set”. The corresponding exact algorithm has running time O(kk2+km). These
results were further extended by van Iersel et al. [11] to cases where the genotype ma-
trix (the rows are the genotypes and the columns are the m positions in the genotype
strings) has restrictions on the number of 2’s in the rows and/or columns. They identi-
fied various special cases of haplotyping with polynomial-time exact or approximation
algorithms with approximation factors depending on the numbers of 2’s per column
and/or row, leaving open the complexity of the case with at most two 2’s per column
(and an unbounded number of 2’s per row). Further results in this direction have been
recently provided by Cicalese and Milanic̆ [3]. Finally, Fellows et al. [5] introduced
the constrained parsimony haplotyping problem where the set of haplotypes may not
be chosen arbitrarily from {0, 1}m but only from a pool H̃ of plausible haplotypes.
Using an intricate dynamic programming algorithm, they extended the fixed-parameter
tractability result of Sharan et al. [16] to the constrained case, proving a running time
of kO(k2) · poly(m, |H̃ |). Jäger et al. [12] recently presented an experimental study of
algorithms for computing all possible haplotype solutions for a given set of genotypes,
where the integer linear programming and branch-and-bound algorithms were sped up
using some insights into the combinatorial structure of the haplotype solution, as for
example eliminating equal columns from the genotype matrix and recursively decom-
posing a large problem into smaller ones.

Our contributions are as follows. We simplify and improve the fixed-parameter
tractability results of Sharan et al. [16] and Fellows et al. [5] by proposing

216 R. Fleischer et al.

fixed-parameter algorithms for the constrained and unconstrained versions of parsi-
mony haplotyping that run in k4k ·poly(m, |H̃ |) time, which is a significant exponential
speed-up over previous algorithms. Moreover, we develop polynomial-time data reduc-
tion rules that yield a problem kernel of size at most 2kk2 for the unconstrained case. A
combinatorially demanding part is to show that the problems become polynomial-time
solvable if we require that the given set of genotypes is complete in the sense that it
contains all genotypes that can be resolved by some pair of haplotypes in the solution
set H . We call this special case induced parsimony haplotyping, and we distinguish
between the case that the genotypes are given as a multiset (note that different pairs of
haplotypes may resolve the same genotype), or just as a set without multiplicities. We
show that, while there may be an exponential number of optimal solutions in the general
case, there can be at most two optimal solutions in the induced case. For both induced
cases, unconstrained and constrained, we propose algorithms running in O(k ·m · |G|)
and O(k ·m · (|G|+ |H̃|)) time, respectively. Note that these polynomial-time solvable
cases stand in sharp contrast to previous polynomial-time solvable cases [3,14,16,11],
all of which require a bound on the number of 2’s in the genotype matrix.

2 Preliminaries and Definitions

Throughout this paper, we consider genotypes as strings of length m over the alpha-
bet {0, 1, 2}, while haplotypes are considered as strings of length m over the alpha-
bet {0, 1}. If s is a string, then s[i] denotes the letter of s at position i. This applies to
both haplotypes and genotypes. Two haplotypes h1 and h2 resolve a genotype g, de-
noted by res (h1, h2) = g, if, for all positions i, either h1[i] = h2[i] = g[i], or g[i] = 2
and h1[i] �= h2[i].

For a given set H of haplotypes, let res (H) := {res (h1, h2) | h1, h2 ∈ H} de-
note the set of genotypes resolved by H and mres (H) the multiset of genotypes re-
solved by H (the multiplicity of a genotype g in mres (H) corresponds to the number
of pairs of haplotypes in H resolving g). We also write res (h, H) (mres (h, H)) for
the (multi)set of genotypes resolved by h with all haplotypes in H . We say a set H
of haplotypes resolves a given set G of genotypes if G ⊆ res (H), and H induces G
if res (H) = G. If G is a multiset, we similarly require G ⊆ mres (H) and mres (H) =
G, respectively. A haplotype h is consistent with a genotype g if h[i] = g[i] for all po-
sitions i with g[i] �= 2.

We refer to the monographs [4,6,15] for any details concerning parameterized algo-
rithmics and the survey [9] for an overview on problem kernelization.

We consider the following haplotype inference problems parameterized with the size
of the haplotype set H to be computed:

HAPLOTYPE INFERENCE BY PARSIMONY (HIP):

Input: A set G of length-m genotypes and an integer k ≥ 0.
Question: Is there a set H of length-m haplotypes such that |H | ≤ k and G ⊆
res (H)?

In CONSTRAINED HAPLOTYPE INFERENCE BY PARSIMONY (CHIP) the input ad-
ditionally contains a set H̃ of length-m haplotypes and the task is to find a set of at

Extended Islands of Tractability for Parsimony Haplotyping 217

most k haplotypes from H̃ resolving G. Note that with k haplotypes one can resolve at
most

(
k
2

)
+ k genotypes. Hence, throughout this paper, we assume that |G| is bounded

by
(
k
2

)
+ k.

In this paper, we introduce the “induced case” of constrained and unconstrained par-
simony haplotyping. To simplify the presentation of the results for the induced case, in
Section 3 we assume that each genotype contains at least one letter 2. Then, we need
two different haplotypes to resolve a genotype. Hence, in the induced case, we assume
that res (H) does not contain an element of H . We claim without proof that our algo-
rithms in Section 3 can be adapted to instances without these restrictions.

Formally, INDUCED (CONSTRAINED) HAPLOTYPE INFERENCE BY PARSIMONY,
(C)IHIP for short, is defined as follows. Given a set G of length-m genotypes (and a
set H̃ of length-m haplotypes), the task is to find a set H(⊆ H̃) of length-m haplotypes
such that G = res (H)?

Due to the lack of space, some proofs are deferred to a full version of this paper.

3 Induced Haplotype Inference by Parsimony

The main result of this section is that one can solve INDUCED HAPLOTYPE INFERENCE

BY PARSIMONY (IHIP) and INDUCED CONSTRAINED HAPLOTYPE INFERENCE BY

PARSIMONY (ICHIP) in O(k ·m · |G|) and O(k ·m · |G| · |H̃ |) time, respectively. In the
first paragraph, we consider the following special case of IHIP: given a multiset of

(
k
2

)
length-m genotypes (which are not necessarily distinct), is there a multiset of k length-
m haplotypes inducing them? By allowing genotype multisets, we enforce that the input
contains information about how often each genotype is resolved by the haplotypes. This
allows us to observe a special structure in the input, which makes it easier to present
our results. In the second paragraph, we extend our findings to the case that the input
genotypes are given as a set, that is, without multiplicities. In this case, we might have
some genotypes that are resolved multiple times. However, we do not know in advance
which of the input genotypes would be resolved more than once. This makes the set
case more delicate than the multiset case. In fact, the set case can be interpreted as a
generalization of the multiset case. However, being easier to present, we focus on the
multiset case first. Recall that, for the ease of presentation, throughout this section we
assume that every genotype contains at least one letter 2 and that res (H) and mres (H)
do not intersect H .

The Multiset Case. In this paragraph, we show that one can solve INDUCED HAPLO-
TYPE INFERENCE BY PARSIMONY (IHIP) in O(k ·m · |G|) time in the multiset case.
This easily generalizes to the constrained case.

We need the following notation. Let #x(i) denote the number of genotypes in G
which have letter x at position i, for x ∈ {0, 1, 2}. We start with a simple structural
observation that must be fulfilled by yes-instances. If G is a yes-instance for IHIP, then
the set of genotypes restricted to their first positions (i.e., single-letter genotypes) is also
a yes-instance. By a simple column-exchange argument, this extends to all positions,
implying the following observation (see Fig. 1 for an example).

218 R. Fleischer et al.

011

110

000

101100

Fig. 1. An example illustrating the Number Condition with k0 = 2 and k1 = 3. Vertices are
labeled with haplotypes. Solid edges are genotypes starting with 0 or 1 while dashed edges are
genotypes starting with 2.

Observation 1 (“Number Condition”) If a multiset of genotypes is a yes-instance for
IHIP, then, for each position i ∈ {1, . . . , m}, there exist two integers k0 ≥ 0 and k1 ≥ 0
such that k = k0 + k1, #0(i) =

(
k0
2

)
, #1(i) =

(
k1
2

)
, and #2(i) = k0 · k1.

The next lemma is the basis for recursively solving IHIP. For the ease of presentation,
we define the operation ⊕. It can be applied to a haplotype h and a genotype g if,
for all i ∈ {1, . . . , m}, either h[i] = g[i] or g[i] = 2. It produces the unique length-
m haplotype h′ := h ⊕ g such that res (h, h′) = g. We further define i� as the first
position for which there are genotypes g, g′ ∈ G with g[i�] �= g′[i�]. Furthermore, for
all x ∈ {0, 1, 2}, we denote the set of all genotypes g ∈ G with g[i�] = x as Gx.
Clearly, any solution for G can be partitioned into a solution for G0 and a solution
for G1, as formalized by Lemma 1.

Lemma 1. Let G be a multiset of genotypes such that not all genotypes in G are iden-
tical. Let H be a set of haplotypes inducing G. For x ∈ {0, 1}, let Hx denote the
haplotypes in H with x at position i�. Then, H0 induces G0, H1 induces G1, and G2 is
exactly the multiset of genotypes resolved by taking each time one haplotype from H0
and one haplotype from H1. Moreover, H0 ∩H1 = ∅.

The function solve(G) (see Alg. 1) recursively computes a solution for G, with the
base cases provided by the next two lemmas. Lemma 2 identifies two cases for which
there exists a unique solution for G, which in each case can be computed in polynomial
time.

Lemma 2. Assume that |G| ≥ 2. If all genotypes in G are identical or if Gx = ∅ for
some x ∈ {0, 1}, then there exists at most one solution for G. Moreover, in O(|G| ·m)
time, one can compute a solution or report that G is a no-instance.

Proof. First we consider the case that all genotypes are identical. Since every genotype
has letter 2, Lemma 1 implies that G is a no-instance.

Now, assume that not all genotypes are identical and Gx = ∅ for some x ∈ {0, 1}.
Without loss of generality, G0 = ∅ and G1 �= ∅. By definition of i�, G2 �= ∅. Note
that in a solution for G there can be at most one haplotype having letter 0 at position i�

(otherwise, we have a contradiction to the fact that G0 = ∅). Moreover, there must exist
at least one haplotype with 0 at position i� (otherwise one cannot resolve the haplotypes

Extended Islands of Tractability for Parsimony Haplotyping 219

Function solve(G)
Input: A multiset of genotypes G ⊆ {0, 1, 2}m.
Output: A set H containing at most two multisets of haplotypes each of which induces G,

if G is a yes-instance; otherwise “no”.

begin1

if all genotypes in G are identical or Gx = ∅ for some x ∈ {0, 1} then2

return the unique solution {H} (see Lemma 2);3

else if |G0| = 1 and |G1| = 1 then4

return the at most two solutions {H, H ′} (see Lemma 3);5

else6

Choose x ∈ {0, 1} such that |Gx| > 1 and |Gx| is minimal;7

H ← solve(Gx);8

forall H ∈ H do replace H with MultisetExtend(H , G, G2) in H;9

if H contains only the empty set then return “no”;10

return H;11

end12

end13

Algorithm 1. solve(G) recursively computes all (at most two) solutions for G

in G2). Thus, in any solution H for G, there must exist a unique haplotype h ∈ H
with h[i�] = 0; further, G2 = mres (h, H \ {h}). One can now infer all haplotypes
as follows. Clearly, one can answer “no” if there is an i, 1 ≤ i ≤ m, such that both
letters 0 and 1 appear at position i of the genotypes in G2. If there is a position i and
a g ∈ G2 with g[i] �= 2, then one can set h[i] := g[i]; otherwise, to have a solution
for G, all genotypes in G1 must have the same letter y ∈ {0, 1} at this position, so
one can set h[i] := 1 − y. With h settled, one can easily determine the haplotypes h′

with h′[i�] = 1 (these are the haplotypes g ⊕ h for g ∈ G2). Finally, one has to make
sure that all these haplotypes induce G. If not, then the input instance is a no-instance.
The running time of this procedure is O(|G| ·m). �	

Next, we show that there are at most two solutions for G if each of G0 and G1 contains
only a single genotype.

Lemma 3. If |G0| = 1 and |G1| = 1, then there are at most two solutions for G.
Moreover, in O(m) time, one can compute these solutions or report that G is a no-
instance.

Proof. Let g0 and g1 be the genotypes in G0 and G1, respectively. By Lemma 1, two
pairs of haplotypes are required to resolve them, denoted by h0

0 and h1
0 (resolving g0),

and h0
1 and h1

1 (resolving g1). If |G2| �= 4, then return “no” (see Observation 1); other-
wise, let G2 = {g2, g3, g4, g5}. If none of g0 and g1 contains letter 2, then the haplo-
types are easily constructed (they are equal to the respective genotype). Otherwise, let i
be the first position where g0 or g1 has letter 2, say g0[i] = 2. Without loss of generality,
let h0

0[i] := 0 and h1
0[i] := 1. We consider the following two cases:

220 R. Fleischer et al.

Case 1: g1[i] �= 2.
Without loss of generality, let g1[i] = 0. Then, two of the genotypes in G2 must have 0
at position i and the other two must have 2 at position i; otherwise, return “no”. Without
loss of generality, let g2[i] = g3[i] = 0 and g4[i] = g5[i] = 2. Since g2 and g3 must
be resolved by h0

0, one can uniquely determine h0
0 as follows. Consider any position j.

If g2[j] �= 2 and g3[j] �= 2, then they must both be equal (if not, then return “no”). In
this case, let h0

0[j] = g2[j]. If exactly one of g2[j] and g3[j] is equal to 2, say g3[j] = 2,
then let h0

0[j] = g2[j]. If g2[j] = g3[j] = 2, then we know that g1[j] �= 2 (otherwise,
return “no”) and thus h0

0[j] := 1 − g1[j]. Finally, let h1
0 := h0

0 ⊕ g0, h0
1 := h0

0 ⊕ g2,
and h1

1 := h0
0 ⊕ g3. If these haplotypes also correctly resolve g1, g4, and g5, then we

have a unique solution for G, otherwise return “no”.

Case 2: g0[i] = g1[i] = 2.
There is a genotype in G2 having 0 at position i and another having 1 at position i
(otherwise, return “no”). Without loss of generality, let g2[i] = 0, g3[i] = 1, h0

1[i] := 0,
and h1

1[i] := 1. Then, g4[i] = g5[i] = 2 and g2 = res (h0
0, h

0
1) and g3 = res (h1

0, h
1
1).

Now there are two possibilities to resolve g4 and g5. Either g4 = res (h1
0, h

0
1) and g5 =

res (h0
0, h

1
1), or g4 = res (h0

0, h
1
1) and g5 = res (h1

0, h
0
1). By choosing one of these two

possibilities, all four haplotypes are fixed. Thus, there are at most two solutions for G.
Note that there are only six genotypes. Thus, for every position the computations are

clearly doable in constant time. Hence, the whole procedure runs in O(m) time. �	
The next two lemmas show that one can solve an IHIP instance recursively if neither
Lemma 2 nor Lemma 3 applies. That is, we now assume that not all genotypes are
identical and we have |Gx| > 1 for some x ∈ {0, 1}. We show that, given a solution
for Gx, one can uniquely extend this solution to a solution for G, or decide that G is a
no-instance, leading to function MultisetExtend (see Alg. 2)

Lemma 4. Let |Gx| > 1 for some x ∈ {0, 1}, let Hx be a multiset of haplotypes
inducing Gx, and let g be a genotype in G2 with the smallest number of 2’s. If G is
induced by H with Hx ⊆ H , then all haplotypes in Hx consistent with g must be
identical.

Proof. Without loss of generality, we assume that |G0| > 1. Suppose that there is an H
with Hx ⊆ H inducing G. Since g[i�] = 2, there must be a haplotype h1 ∈ Hx and
a haplotype h2 ∈ H \ Hx resolving g. Clearly, h1 and h2 are consistent with g. We
show that there is no other haplotype h ∈ Hx such that h �= h1 and h is consistent
with g. For the sake of contradiction, assume that there is such a haplotype h. First,
note that h, h1, and h2 are consistent with g and hence identical at positions where g
does not have letter 2. Since h �= h1, h differs from h1 in at least one of the positions
where g has letter 2. Thus, h2 (which together with h1 resolves g and hence is the
complement of h1 at the positions where g has letter 2) must have the same letter as h
at some position where h1 and h2 differ. This implies that res (h, h2) ∈ G2 has fewer
2’s than g, contradicting the choice of g. �	

Lemma 5. Let |Gx| > 1 for some x ∈ {0, 1}, and let Hx be a multiset of haplotypes
inducing Gx. If G is induced by H with Hx ⊆ H , then H is uniquely determined and
function MultisetExtend (see Alg. 2) computes H in O(|Hx| · |G2| ·m) time.

Extended Islands of Tractability for Parsimony Haplotyping 221

Function MultisetExtend(Hx, G, G2)
Input: A haplotype multiset Hx inducing Gx for some x ∈ {0, 1}, and a multiset G2 of

genotypes.
Output: A haplotype multiset H inducing G with Hx ⊆ H , if one exists; otherwise an

empty set.

begin1

H := Hx;2

while G2 �= ∅ do3

Choose a g ∈ G2 with smallest number of 2’s;4

Choose an h ∈ Hx consistent with g;5

h′ := h ⊕ g;6

H := H ∪ {h′};7

G′ := {g′ | ∃h′′ ∈ Hx : g′ = res (h′, h′′)};8

if G′ � G2 then return ∅;9

G2 := G2 \ G′;10

end11

if mres (H) = G then return H ;12

else return ∅;13

end14

Algorithm 2. An algorithm to extend a solution for Gx to G in the multiset case

Proof. The correctness of lines 4–7 of MultisetExtend (see Alg. 2) follows from
Lemma 4. Since including h′ := h⊕ g in H is the only choice, the genotypes resolved
by h′ and other haplotypes in Hx should also be in G2; otherwise, no solution exists.
Thus, lines 8 and 9 of MultisetExtend are correct. Line 10 of MultisetExtend
safely removes the genotypes resolved by h′ from G2. The next while-iteration pro-
ceeds to find the next pair consisting of a haplotype h and a genotype g ∈ G2 satis-
fying Lemma 4. If there is a solution for G comprising Hx, then we must end up with
an empty G2. Moreover, H \ Hx should resolve all genotypes in G1−x and, together
with Hx, the genotypes in G2; this is examined in line 12 of MultisetExtend. Thus,
the functionMultisetExtend is correct. By Lemma 4, the solution H with Hx ⊆ H
is unique.

Concerning the running time, note that the most time-consuming part of the function
is to find the consistent haplotypes in Hx for a given genotype in G2. This can be done
in O(|Hx| · |G2| ·m) time by iterating over all haplotypes in Hx and for each haplotype
over all genotypes in G2. �	

Putting all together, we obtain the main theorem of this paragraph.

Theorem 1. In case of a multiset G of length-m genotypes, INDUCED HAPLOTYPE

INFERENCE BY PARSIMONY and CONSTRAINED INDUCED HAPLOTYPE INFERENCE

BY PARSIMONY can be solved in O(k · m · |G|) and O(k · m · (|G| + |H̃ |)) time,
respectively.

Proof. (Sketch) We show that the algorithm solve(G) (see Alg. 1) is correct. If all
genotypes are identical or Gx = ∅, for some x ∈ {0, 1}, then the correctness follows

222 R. Fleischer et al.

from Lemma 2. Hence, in the following, assume that not all genotypes are identi-
cal, G0 �= ∅, and G1 �= ∅. Distinguish the cases that |G0| = |G1| = 1 and |Gx| > 1,
for some x ∈ {0, 1}. In the case that |G0| = |G1| = 1, one can compute the solu-
tions (at most two) for G using Lemma 3. In the other case, for some x ∈ {0, 1}, it
holds that |Gx| > 1 and |G1−x| > 0. Without loss of generality, assume |G0| > 1. By
Lemma 1, a solution for G consists of a solution H0 for G0 and a solution H1 for G1,
and H0 ∩H1 = ∅. Since one tries to extend every solution for G0 and these extensions
are unique by Lemma 5, one will find every possible solution for G. Since the base
cases have at most two solutions and extensions are uniquely determined by Lemma 5,
there exist at most two solutions for G. In the constrained case, one only needs to check
whether one of the computed solutions is in the given set of haplotypes. The claimed
running time follows from Lemmas 2, 3, and 5. �	

The Set Case. If the input is not a multiset, but a set G of genotypes, that is, all geno-
types in G are pairwise distinct, then the Number Condition (Observation 1) does not
necessarily hold. Consider the haplotype set H = {000, 001, 110, 111}which induces
the set res (H) = {002, 112, 221, 220, 222}, but also induces the multiset mres (H) =
{002, 112, 221, 220, 222, 222} (observe that res (000, 111) = res (001, 110) = 222).
The problem is that we cannot directly infer from G which genotypes should be re-
solved more than once. However, many properties of the multiset case (as for example
Lemmas 1,2, and 3) carry over to the set case, so we only need a moderate modification
of the multiset algorithm to solve the set case. More specifically, the key to solve the
set case is to adapt function MultisetExtend (all details are deferred to the long
version of this paper).

Theorem 2. In case of a set G of length-m genotypes, INDUCED HAPLOTYPE INFER-
ENCE BY PARSIMONY and CONSTRAINED INDUCED HAPLOTYPE INFERENCE BY

PARSIMONY can be solved in O(k ·m · |G|) and O(k ·m ·(|G|+ |H̃ |)) time, respectively.

4 General Haplotype Inference by Parsimony

This section contains an algorithm to solve the general parsimony haplotyping problem
for the unconstrained and the constrained versions in O(k4k+1 ·m) and O(k4k+1 ·m ·
|H̃ |) time, respectively, improving and partially simplifying previous fixed-parameter
tractability results [16,5]. In addition, we provide a simple kernelization.

We start with some preliminary considerations. Given a set of haplotypes resolving
a given set of genotypes, the relation between the haplotypes and the genotypes can
be depicted by an undirected graph, the solution graph, in which the edges are labeled
by the genotypes and every vertex v is labeled by a haplotype hv . If an edge {u, v} is
labeled by genotype g, we require that g = res (hu, hv). We call such a vertex/edge
labeling consistent. If only the edges are labeled, the graph is an inference graph (be-
cause it allows us to infer all the haplotypes). Solution graphs and inference graphs may
contain loops.

In what follows, assume that the input is a yes-instance, i.e., a solution graph exists.
Intuitively, our algorithm “guesses” an inference graph for G (by enumerating all pos-
sible such graphs) and then infers the haplotypes from the genotype labels on the edges.

Extended Islands of Tractability for Parsimony Haplotyping 223

Input: A set of genotypes G ⊆ {0, 1, 2}m and an integer k ≥ 0.
Output: Either a set of haplotypes H with |H | ≤ k and G ⊆ res (H), or “no” if there is no

solution of size at most k.

forall size-k subsets G′ ⊆ G do1

forall inference graphs Γ for G′ on k vertices and k edges do2

forall non-bipartite connected components of Γ do3

if possible, compute the labels of all vertices of the component (Lemma 7),4

otherwise try the next inference graph (goto line 2);
end5

forall bipartite connected components of Γ do6

if possible, compute a consistent vertex labeling for the component7

(Lemma 8), otherwise try the next inference graph (goto line 2);
end8

Let H denote the inferred haplotypes (vertex labels);9

if G ⊆ res (H) then return H ;10

end11

end12

return “no”;13

Algorithm 3. An algorithm solving HIP in O(k4k+1 ·m) time

To this end, it guesses for every connected component of the solution graph a spanning
subgraph with edges labeled by some of the genotypes in G in such a way that we have
enough information at hand to infer the haplotypes. Then, one has to solve the following
subproblem: Given an inference graph for a subset of genotypes of G, does there exist
a consistent vertex labeling? The next three lemmas show how to solve this subproblem
by separately considering the connected components of the inference graphs.

Lemma 6. Let G be a set of genotypes and let Γ = (V, E) be a connected inference
graph for G. For each position i, 1 ≤ i ≤ m, if there is a genotype g ∈ G with g[i] �=
2, then one can, in O(|V | + |E|) time, uniquely infer the letters of all haplotypes at
position i or report that there is no consistent vertex labeling.

Lemma 7. Let Γ = (V, E) be a connected inference graph for a set G of genotypes
that contains an odd-length cycle. Then, there exists at most one consistent vertex la-
beling. Furthermore, one can compute in O(m · (|V | + |E|)) time a consistent vertex
labeling or report that no consistent vertex labeling exists.

Lemma 8. Let Γ = (Va, Vb, E) be a connected bipartite inference graph for a set G
of length-m genotypes. Let u ∈ Va and w ∈ Vb be arbitrarily chosen. Then,

1. one can compute in O(m · (|Va|+ |Vb|+ |E|)) time a consistent vertex labeling or
report that no consistent vertex labeling exists, and

2. the genotypes resolved by hu and hw are identical for every consistent vertex la-
beling.

Next, we describe the algorithm for the unconstrained version (HIP), see Alg. 3. To
solve HIP, we could enumerate all inference graphs for G and then find the vertex

224 R. Fleischer et al.

labeling using Lemmas 7 and 8. However, to be more efficient, we first select a size-
k subset of genotypes (line 1 of Alg. 3), and then we enumerate all inference graphs
on k vertices containing exactly k edges labeled by the k chosen genotypes (line 2 of
Alg. 3). Assume that there exists a solution graph for G. Of all inference graphs on
k vertices and k edges consider one with the following properties:

− it contains a spanning subgraph of every connected component of the
solution graph, and

− the spanning subgraph of any non-bipartite connected component contains
an odd cycle (thus, the bipartite components of the inference graph are
exactly the bipartite components of the solution graph).

Obviously, this inference graph exists and is considered by Alg. 3. By Lemma 7, we
can uniquely infer the vertex labels for all connected components of the inference graph
containing an odd cycle. For every bipartite component, we can get a consistent vertex
labeling from Lemma 8. In such a bipartite component, for any two vertices u ∈ Va

and v ∈ Vb, the genotypes resolved by hu and hv are identical for every consistent
vertex labeling. Thus, the haplotypes resolve all genotypes contained in the respective
(bipartite) component of the solution graph. In summary, if the given instance is a yes-
instance, then our algorithm will find a set of at most k haplotypes resolving the given
genotypes.

Theorem 3. HAPLOTYPE INFERENCE BY PARSIMONY and CONSTRAINED HAPLO-
TYPE INFERENCE BY PARSIMONY can be solved in O(k4k+1 ·m) and O(k4k+1 ·m ·
|H̃ |) time, respectively.

Proof. (Sketch) We first consider the unconstrained case. By the discussion above,
Alg. 3 correctly solves HIP. It remains to analyze its running time. First, there are
O(
(|G|

k

)
) size-k subsets G′ of G. Second, there are O(k2k) inference graphs on k ver-

tices containing exactly k edges labeled by the genotypes in G′ because for every geno-
type g ∈ G′ we have k2 choices for the endpoints (loops are allowed) of the edge
labeled by g. For each of those inference graphs, applying Lemma 7 and Lemma 8 to
its connected components takes O(k·m) time. Hence, the overall running time of Alg. 3
sums up to O(

(|G|
k

)
· k2k · m · k). Since |G| ≤ k2, the running time can be bounded

by O(k4k+1 ·m).
One can easily adapt Alg. 3 to solve CHIP as follows. As before, one enumerates all

size-k subsets G′ ⊆ G and all inference graphs for G′. Since, by Lemma 7, the vertex
labels for the connected components containing an odd cycle are uniquely determined,
one only has to check whether the inferred haplotypes are contained in the given hap-
lotype pool H̃ (otherwise, try the next inference graph). Basically, the only difference
is how to proceed with the bipartite components of the inference graph. Let (W, F) be
a connected bipartite component of the current inference graph. Instead of choosing an
arbitrary consistent vertex labeling as done in Lemma 8, proceed as follows. Choose an
arbitrary vertex v ∈ W and check for every haplotype h ∈ H̃ whether there exists a
consistent vertex labeling for this component where v is labeled by h. Note that fixing
the vertex label for v implies the existence of at most one consistent vertex labeling
of (W, F). If it exists, this labeling can be computed by a depth-first traversal starting
at v. If for a haplotype h there exists a consistent vertex labeling of (W, F) such that

Extended Islands of Tractability for Parsimony Haplotyping 225

all labels are contained in H̃ , then proceed with the next bipartite component. Other-
wise, one can conclude that for the current inference graph there is no consistent vertex
labeling using only the given haplotypes, and, hence, one can proceed with the next in-
ference graph. The correctness and the claimed running time follow by almost the same
arguments as in the unconstrained case. �	

Problem Kernelization. In this paragraph, we show that HIP admits an exponential-size
problem kernel. To this end, we assume the input G to be in the matrix representation
that is mentioned in the introduction; that is, each row represents a genotype while
each column represents a position. Since it is obvious that we can upper-bound the
number n of genotypes in the input by k2, it remains to bound the number m of columns
(positions) in the input. The idea behind the following data reduction rule is that we can
safely delete a column if there is another column that is identical. By applying this rule
exhaustively, we can bound the number of columns by 2k.

Reduction Rule. Let (G, k) be an instance of HIP. If two columns of G are equal,
then delete one of them.

The correctness of the reduction rule follows by the observation that, given at most k
haplotypes resolving the genotypes in the reduced instance, we can easily find a solution
for the original instance by copying the respective haplotype positions. Next, we bound
the number of columns.

Lemma 9. Let (G, k) be a yes-instance of HIP that is reduced with respect to the
reduction rule. Then, G has at most 2k columns.

Proof. Let H denote a matrix of k haplotypes resolving G. It is obvious that if two
columns i and j of H are equal, then columns i and j of G are equal. Now, since G does
not contain a pair of equal columns, neither does H . Since there are only 2k different
strings in {0, 1}k, it is clear that H cannot contain more than 2k columns and thus,
neither can G. �	

Since the number n of genotypes can be bounded by k2 and the number m of columns
can be bounded by 2k (Lemma 9), one directly obtains Proposition 1.

Proposition 1. HAPLOTYPE INFERENCE BY PARSIMONY admits a problem kernel of
size at most 2k · k2 that can be constructed in O(n ·m · log m) time.

Plugging Proposition 1 into Theorem 3, we achieve the following.

Corollary 1. HIP can be solved in O(k4k+1 · 2k + n ·m · log m) time.

5 Conclusion

We contributed new combinatorial algorithms for parsimony haplotyping with the po-
tential to make the problem more feasible in practice without giving up the demand for
optimal solutions. Our results also lead to several new questions for future research. For
instance, our kernelization result yields a problem kernel of exponential size. It would

226 R. Fleischer et al.

be interesting to know whether a polynomial-size problem kernel exists, which may
also be seen in the light of recent breakthrough results on methods to prove the non-
existence of polynomial-size kernels [1,7]. A second line of research is to make use of
the polynomial-time solvable induced cases to pursue a “distance from triviality” ap-
proach [8]. The idea here is to identify and exploit parameters that measure the distance
of general instances of parsimony haplotyping to the “trivial” (that is, polynomial-time
solvable) induced cases. Research in this direction is underway. A more speculative re-
search direction could be to investigate whether our results on the induced case (with
at most two optimal solutions) may be useful in the context of recent research [12]
on finding all optimal solutions in the general case. Clearly, it remains an interesting
open problem to find a fixed-parameter algorithm for parsimony haplotyping with an
exponential factor of the form ck for some constant c.

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without poly-
nomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)

2. Catanzaro, D., Labbé, M.: The pure parsimony haplotyping problem: Overview and compu-
tational advances. International Transactions in Operational Research 16(5), 561–584 (2009)

3. Cicalese, F., Milanič, M.: On parsimony haplotyping. Technical Report 2008-04, Universität
Bielefeld (2008)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
5. Fellows, M.R., Hartman, T., Hermelin, D., Landau, G.M., Rosamond, F.A., Rozenberg, L.:

Haplotype inference constrained by plausible haplotype data. In: Kucherov, G., Ukkonen, E.
(eds.) CPM 2009. LNCS, vol. 5577, pp. 339–352. Springer, Heidelberg (2009)

6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
7. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP.

In: Proc. 40th STOC, pp. 133–142. ACM Press, New York (2008)
8. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: Distance

from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 162–173. Springer, Heidelberg (2004)

9. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM
SIGACT News 38(1), 31–45 (2007)

10. Gusfield, D., Orzack, S.H.: Haplotype inference. CRC Handbook on Bioinformatics, ch. 1,
pp. 1–25. CRC Press, Boca Raton (2005)

11. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Shorelines of islands of tractability: Algo-
rithms for parsimony and minimum perfect phylogeny haplotyping problems. IEEE/ACM
Trans. Comput. Biology Bioinform. 5(2), 301–312 (2008)

12. Jäger, G., Climer, S., Zhang, W.: Complete parsimony haplotype inference problem and al-
gorithms. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 337–348. Springer,
Heidelberg (2009)

13. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity
of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359
(2004)

14. Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem. Operations
Research Letters 34, 289–295 (2006)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford
(2006)

16. Sharan, R., Halldórsson, B.V., Istrail, S.: Islands of tractability for parsimony haplotyping.
IEEE/ACM Trans. Comput. Biology Bioinform. 3(3), 303–311 (2006)

Sampled Longest Common Prefix Array

Jouni Sirén�

Department of Computer Science, University of Helsinki, Finland
jltsiren@cs.helsinki.fi

Abstract. When augmented with the longest common prefix (LCP)
array and some other structures, the suffix array can solve many string
processing problems in optimal time and space. A compressed represen-
tation of the LCP array is also one of the main building blocks in many
compressed suffix tree proposals. In this paper, we describe a new com-
pressed LCP representation: the sampled LCP array. We show that when
used with a compressed suffix array (CSA), the sampled LCP array often
offers better time/space trade-offs than the existing alternatives. We also
show how to construct the compressed representations of the LCP array
directly from a CSA.

1 Introduction

The suffix tree is one of the most important data structures in string processing
and bioinformatics. While it solves many problems efficiently, its usefulness is
limited by its size: typically 10–20 times the size of the text [17]. Much work has
been put on reducing the size, resulting in data structures such as the enhanced
suffix array [1] and several variants of the compressed suffix tree [22,21,11,18].

Most of the proposed solutions are based on three structures: 1) the suffix ar-
ray, listing the suffixes of the text in lexicographic order; 2) the longest common
prefix (LCP) array, listing the lengths of the longest common prefixes of lexi-
cographically adjacent suffixes; and 3) a representation of suffix tree topology.
While there exists an extensive literature on compressed suffix arrays (CSA)1

[19], less has been done on compressing the other structures.
Existing proposals to compress the LCP information are based on the per-

muted LCP (PLCP) array that arranges the entries in text order. While the
PLCP array can be compressed, one requires expensive CSA operations to ac-
cess LCP values through it. In this paper, we describe the sampled LCP array as
an alternative to the PLCP-based approaches. Similar to the suffix array samples
used in CSAs, the sampled LCP array often offers better time/space trade-offs
than the PLCP-based alternatives.

We also modify a recent PLCP construction algorithm [14] to work directly
with a compressed suffix array. Using it, we can construct any PLCP repre-
sentation with negligible working space in addition to the CSA and the PLCP.
� Funded by the Academy of Finland under grant 119815.
1 In this paper, we use the term compressed suffix array to refer to any compressed

self-index based on the Burrows-Wheeler transform.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 227–237, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

228 J. Sirén

A variant of the algorithm can also be used to construct the sampled LCP array,
but requires more working space. While our algorithm is much slower than the
alternatives, it is the first LCP construction algorithm that does not require ac-
cess to the text and the suffix array. This is especially important for large texts,
as the suffix array may not be available or the text might not fit into memory.

We begin with basic definitions and background information in Sect. 2. Sec-
tion 3 is a summary of previous compressed LCP representations. In Sect. 4,
we show how to build the PLCP array directly from a CSA. We describe our
sampled LCP array in Sect. 5. Section 6 contains experimental evaluation of our
proposals. We finish with conclusions and discussion on future work in Sect. 7.

2 Background

A string S = S[1, n] is a sequence of characters from alphabet Σ = {1, 2, . . . , σ}.
A substring of S is written as S[i, j]. A substring of type S[1, j] is called a prefix,
while a substring of type S[i, n] is called a suffix. A text string T = T [1, n] is a
string terminated by T [n] = $ �∈ Σ with lexicographic value 0. The lexicographic
order ”<” among strings is defined in the usual way.

The suffix array (SA) of text T [1, n] is an array of pointers SA[1, n] to the
suffixes of T in lexicographic order. As an abstract data type, a suffix array is
any data structure with similar functionality as the concrete suffix array. This
can be defined by an efficient support for the following operations: (a) count the
number of occurrences of a pattern in the text; (b) locate these occurrences (or
more generally, retrieve a suffix array value); and (c) display any substring of T .

Compressed suffix arrays (CSA) [12,8] support these operations. Their com-
pression is based on the Burrows-Wheeler transform (BWT) [3], a permutation
of the text related to the SA. The BWT of text T is a sequence L[1, n] such that
L[i] = T [SA[i]− 1], if SA[i] > 1, and L[i] = T [n] = $ otherwise.

The Burrows-Wheeler transform is reversible. The reverse transform is based
on a permutation called LF -mapping [3,8]. Let C[1, σ] be an array such that
C[c] is the number of characters in {$, 1, 2, . . . , c− 1} occurring in the text. For
convenience, we also define C[0] = 0 and C[σ + 1] = n. By using this array and
the sequence L, we define LF -mapping as LF (i) = C[L[i]]+rankL[i](L, i), where
rankc(L, i) is the number of occurrences of character c in prefix L[1, i].

The inverse of LF -mapping is Ψ(i) = selectc(L, i−C[c]), where c is the highest
value with C[c] < i, and selectc(L, j) is the position of the jth occurrence of
character c in L [12]. By its definition, function Ψ is strictly increasing in the
range Ψc = [C[c] + 1, C[c + 1]] for every c ∈ Σ. Additionally, T [SA[i]] = c and
L[Ψ(i)] = c for every i ∈ Ψc.

These functions form the backbone of CSAs. As SA[LF (i)] = SA[i] − 1 [8]
and hence SA[Ψ(i)] = SA[i] + 1, we can use these functions to move the suffix
array position backward and forward in the sequence. Both of the functions can
be efficiently implemented by adding some extra information to a compressed
representation of the BWT. Standard techniques [19] to support suffix array
operations include backward searching [8] for count, and adding a sample of
suffix array values for locate and display.

Sampled Longest Common Prefix Array 229

Let lcp(A, B) be the length of the longest common prefix of sequences A and
B. The longest common prefix (LCP) array of text T [1, n] is the array LCP[1, n]
such that LCP[1] = 0 and LCP[i] = lcp(T [SA[i− 1], n], T [SA[i], n]) for i > 1. The
array requires n logn bits of space, and can be constructed in O(n) time [15,14].

3 Previous Compressed LCP Representations

We can exploit the redundancy in LCP values by reordering them in text order.
This results in the permuted LCP (PLCP) array, where PLCP[SA[i]] = LCP[i].
The following lemma describes a key property of the PLCP array.

Lemma 1 ([15,14]). For every i ∈ {2, . . . , n}, PLCP[i] ≥ PLCP[i− 1]− 1.

As the values PLCP[i] + 2i form a strictly increasing sequence, we can store the
array in a bit vector of length 2n [22]. Various schemes exist to represent this
bit vector in a succinct or compressed form [22,11,18].

Space-efficiency can also be achieved by sampling every qth PLCP value, and
deriving the missing values when needed [16]. Assume we have sampled PLCP[aq]
and PLCP[(a + 1)q], and we want to determine PLCP[aq + b] for some b < q.
Lemma 1 states that PLCP[aq] − b ≤ PLCP[aq + b] ≤ PLCP[(a + 1)q] + q − b,
so at most q + PLCP[(a + 1)q] − PLCP[aq] character comparisons are required
to determine the missing value. The average number of comparisons over all
entries is O(q) [14]. By carefully selecting the sampled positions, we can store
the samples in o(n) bits, while requiring only O(logδ n) comparisons in the worst
case for any 0 < δ ≤ 1 [10].

Unfortunately these compressed representations are not very suitable for use
with CSAs. The reason is that the LCP values are accessed through suffix array
values, and locate is an expensive operation in CSAs. In addition to that, sampled
PLCP arrays require access to the text, using the similarly expensive display.

Assume that a CSA has SA sample rate d, and that it computes Ψ(·) in time
tΨ . To retrieve SA[i], we compute i, Ψ(i), Ψ2(i), . . . , until we find a sampled suffix
array value. If the sampled value was SA[Ψk(i)] = j, then SA[i] = j−k. We find a
sample in at most d steps, so the time complexity for locate is O(d·tΨ). Similarly,
to retrieve a substring T [i, i + l], we use the samples to get SA−1[d · � i

d�]. Then
we iterate the function Ψ until we reach text position i + l. This takes at most
d + l iterations, making the time complexity for display O((d + l) · tΨ). From
these bounds, we get the PLCP access times shown in Table 1.2

Depending on the type of index used, tψ varies from O(1) to O(log n) in the
worst case [19], and is close to 1 microsecond for the fastest indexes in practice
[7,18]. This is significant enough that it makes sense to keep tΨ in Table 1.

The only (P)LCP representation so far that is especially designed for use
with CSAs is Fischer’s Wee LCP [10] that is basically the select structure from
Sadakane’s bit vector representation [22]. When the bit vector itself would be
required to answer a query, some characters of two lexicographically adjacent

2 Some CSAs use LF -mapping instead of Ψ , but similar results apply to them as well.

230 J. Sirén

Table 1. Time/space trade-offs for (P)LCP representations. R is the number of equal
letter runs in BWT, q is the PLCP sample rate, and 0 < δ ≤ 1 is a parameter. The
numbers for CSA assume Ψ access time tΨ and SA sample rate d.

Access times
Representation Space (bits) Using SA Using CSA

LCP n log n O(1) O(1)
PLCP [22] 2n + o(n) O(1) O(d · tΨ)
PLCP [11] 2R log n

R
+ O(R) + o(n) O(1) O(d · tΨ)

PLCP [18] 2R log n
R

+ O(R log log n
R

) O(log log n) O(d · tΨ + log log n)
Sampled PLCP [10] o(n) O(logδ n) O((d + logδ n) · tΨ)
Sampled PLCP [16] n

q
log n O(q) O((d + q) · tΨ)

suffixes are compared to determine the LCP value. This increases the time com-
plexity, while reducing the size significantly. In this paper, we take the other
direction by reducing the access time, while achieving similar compression as in
the run-length encoded PLCP variants [11,18].

4 Building the PLCP Array from a CSA

In this section, we adapt the irreducible LCP algorithm [14] to compute the
PLCP array directly from a CSA.

Definition 1. For i > 1, the left match of suffix T [SA[i], n] is T [SA[i− 1], n].

Definition 2. Let T [j, n] be the left match of T [i, n]. PLCP[i] is reducible, if
i, j > 1 and T [i−1] = T [j−1]. If PLCP[i] is not reducible, then it is irreducible.

The following lemma shows why reducible LCP values are called reducible.

Lemma 2 ([14]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i− 1]− 1.

The irreducible LCP algorithm works as follows: 1) find the irreducible PLCP
values; 2) compute them naively; and 3) fill in the reducible values by using
Lemma 2. As the sum of the irreducible values is at most 2n logn, the algorithm
works in O(n log n) time [14].

The original algorithm uses the text and its suffix array that are expensive to
access in a CSA. In the following lemma, we show how to find the irreducible
values by using the function Ψ instead.

Lemma 3. Let T [j, n] be the left match of T [i, n]. The value PLCP[i + 1] is
reducible if and only if T [i] = T [j] and Ψ(SA−1[j]) = Ψ(SA−1[i])− 1.

Proof. Let x = SA−1[i]. Then x− 1 = SA−1[j].
”If.” Assume that T [i] = T [j] and Ψ(x − 1) = Ψ(x) − 1. Then the left match

of T [SA[Ψ(x)], n] = T [i + 1, n] is T [SA[Ψ(x − 1)], n] = T [j + 1, n]. As i + 1 > 1
and j + 1 > 1, it follows that PLCP[i + 1] is reducible.

Sampled Longest Common Prefix Array 231

— Compute the PLCP array
1 PLCP[1] ← 0
2 (i, x) ← (1, SA−1[1])
3 while i < n
4 Ψc ← rangeContaining(x)
5 if x − 1 �∈ Ψc or Ψ(x − 1) �= Ψ(x) − 1
6 PLCP[i + 1] ← lcp(Ψ(x))
7 else PLCP[i + 1] ← PLCP[i] − 1
8 (i, x) ← (i + 1, Ψ(x))

— Compute an LCP value
9 def lcp(b)
10 (a, k) ← (b − 1, 0)
11 Ψc ← rangeContaining(b)
12 while a ∈ Ψc

13 (a, b, k) ← (Ψ(a), Ψ(b), k + 1)
14 Ψc ← rangeContaining(b)
15 return k

Fig. 1. The irreducible LCP algorithm for using a CSA to compute the PLCP array.
Function rangeContaining(x) returns Ψc = [C[c] + 1, C[c + 1]] where x ∈ Ψc.

”Only if.” Assume that PLCP[i + 1] is reducible, and let T [k, n] be the left
match of T [i + 1, n]. Then k > 1 and T [k − 1] = T [i]. As T [k − 1, n] and T [i, n]
begin with the same character, and T [k, n] is the left match of T [i + 1, n], there
cannot be any suffix S such that T [k − 1, n] < S < T [i, n]. But now j = k − 1,
and hence T [i] = T [j]. Additionally,

Ψ(SA−1[j]) = Ψ(SA−1[k − 1]) = SA−1[k] = SA−1[i + 1]− 1 = Ψ(SA−1[i])− 1.

The lemma follows. �

The algorithm is given in Fig. 1. We maintain invariant x = SA−1[i], and scan
through the CSA in text order. If the conditions of Lemma 3 do not hold for
T [i, n], then PLCP[i + 1] is irreducible, and we have to compute it. Otherwise
we reduce PLCP[i + 1] to PLCP[i]. To compute an irreducible value, we iterate
(Ψk(b − 1), Ψk(b)) for k = 0, 1, 2, . . . , until T [Ψk(b − 1)] �= T [Ψk(b)]. When this
happens, we return k as the requested LCP value. As we compute Ψ(·) for a
total of O(n log n) times, we get the following theorem.

Theorem 1. Given a compressed suffix array for a text of length n, the irre-
ducible LCP algorithm computes the PLCP array in O(n log n · tΨ) time, where
tΨ is the time required for accessing Ψ . The algorithm requires O(log n) bits of
working space in addition to the CSA and the PLCP array.

We can use the algorithm to build any PLCP representation from Table 1 di-
rectly. The time bound is asymptotically tight, as shown in the following lemma.

Lemma 4 (Direct extension of Lemma 5 in [14]). For an order-k de Bruijn
sequence on an alphabet of size σ, the sum of all irreducible PLCP values is
n(1− 1/σ) logσ n−O(n).

The sum of irreducible PLCP values of a random sequence should also be close
to n(1− 1/σ) logσ n. The probability that the characters preceding a suffix and
its left match differ, making the PLCP value irreducible, is (1 − 1/σ). On the
other hand, the average irreducible value should be close to logσ n [6]. For a text

232 J. Sirén

generated by an order-k Markov source with H bits of entropy, the estimate
becomes n(1− 1/σ′)(log n)/H . Here σ′ is the effective alphabet size, defined by
the probability 1/σ′ that two characters sharing an order-k context are identical.

The following proposition shows that large-scale repetitiveness reduces the
sum of the irreducible values, and hence improves the algorithm performance.

Proposition 1. For a concatenation of r copies of text T [1, n], the sum of irre-
ducible PLCP values is s + (r− 1)n, where s is the sum of the irreducible PLCP
values of T .

Proof. Let T = T1T2 · · ·Tr be the concatenation, Ta,i the suffix starting at Ta[i],
and PLCPa[i] the corresponding PLCP value. Assume that Tr[n] is lexicograph-
ically greater than the other end markers, but otherwise identical to them.

For every i, the suffix array of T contains a range with values T1,i, T2,i, . . . , Tr,i

[18]. Hence for any a > 1 and any i, the left match of Ta,i is Ta−1,i, making the
PLCP values reducible for almost all of the suffixes of T2 to Tr. The exception is
that T2,1 is irreducible, as its left match is T1,1, and hence PLCP2[1] = (r − 1)n.

Let T [j, n] be the left match of T [i, n] in the suffix array of T . Then the left
match of T1,i is Tr,j , and PLCP1[i] = PLCP[i]. Hence the sum of the irreducible
values corresponding to the suffixes of T1 is s. �

5 Sampled LCP Array

By Lemmas 1 and 2, the local maxima in the PLCP array are among the irre-
ducible values, and the local minima are immediately before them.

Definition 3. The value PLCP[i] is maximal, if it is irreducible, and minimal,
if either i = n or PLCP[i + 1] is maximal.

Lemma 5. If PLCP[i] is non-minimal, then PLCP[i] = PLCP[i + 1] + 1.

Proof. If PLCP[i] is non-minimal, then PLCP[i+1] is reducible. The result follows
from Lemma 2. �

In the following, R is the number of equal letter runs in BWT.

Lemma 6. The number of minimal PLCP values is R.

Proof. Lemma 3 essentially states that PLCP[i + 1] is reducible, if and only if
L[Ψ(SA−1[i])] = T [i] = T [j] = L[Ψ(SA−1[j])] = L[Ψ(SA−1[i])− 1], where T [j, n]
is the left match of T [i, n]. As this is true for n−R positions i, there are exactly
R irreducible values. As every maximal PLCP value can be reduced to the next
minimal value, and vice versa, the lemma follows. �

Lemma 7. The sum of minimal PLCP values is S − (n − R), where S is the
sum of maximal values.

Proof. From Lemmas 5 and 6. �

Sampled Longest Common Prefix Array 233

If we store the minimal PLCP values in SA order, and mark their positions
in a bit vector, we can use them in a similar way as the SA samples. If we
need LCP[i], and LCP[Ψk(i)] is a sampled position for the smallest k ≥ 0, then
LCP[i] = LCP[Ψk(i)] + k. As k can be Θ(n) in the worst case, the time bound is
O(n · tΨ).

To improve the performance, we sample one out of d′ = n/R1−ε consecutive
non-minimal values for some ε > 0. Then there are R minimal samples and
at most R1−ε extra samples. We mark the sampled positions in a bit vector of
Raman et al. [20], taking at most (1+o(1)) ·R log n

R +O(R)+o(n) bits of space.
Checking whether an LCP entry has been sampled takes O(1) time.

We use δ codes [5] to encode the actual samples. As the sum of the minimal
values is at most 2n log n, these samples take at most

R log
2n log n

R
+ O

(
R log log

n

R

)
≤ R log

n

R
+ O(R log log n)

bits of space. The extra samples require at most log n + O(log log n) bits each.
To provide fast access to the samples, we can use dense sampling [9] or directly
addressable codes [2]. This increases the size by a factor of 1 + o(1), making the
total for samples (1 + o(1)) ·R log n

R + O(R log log n) + o(R log n) bits of space.
We find a sampled position in at most n/R1−ε steps. By combining the size

bounds, we get the following theorem.

Theorem 2. Given a text of length n and a parameter 0 < ε < 1, the sampled
LCP array requires at most (2+o(1))·R log n

R +O(R log log n)+o(R log n)+o(n)
bits of space, where R is the number of equal letter runs in the BWT of the text.
When used with a compressed suffix array, retrieving an LCP value takes at most
O((n/R1−ε) · tΨ) time, where tΨ is the time required for accessing Ψ .

By using the BSD representation [13] for the bit vector, we can remove the o(n)
term from the size bound with a slight loss of performance.

When the space is limited, we can afford to sample the LCP array denser than
the SA, as SA samples are larger than LCP samples. In addition to the mark in
the bit vector, an SA sample requires 2 log n

d bits of space, while an LCP sample
takes just log v + O(log log v) bits, where v is the sampled value.

The LCP array can be sampled by a two-pass version of the irreducible LCP
algorithm. On the first pass, we scan the CSA in suffix array order to find the
minimal samples. Position x is minimal, if x is the smallest value in the corre-
sponding Ψc, or if Ψ(x−1) �= Ψ(x)−1. As we compress the samples immediately,
we only need O(log n) bits of working space. On the second pass, we scan the
CSA in text order, and store the extra samples in an array. Then we sort the
array to SA order, and merge it with the minimal samples. As the number of
extra samples is o(R), we need o(R log n) bits of working space.

Theorem 3. Given a compressed suffix array for a text of length n, the modified
irreducible LCP algorithm computes the sampled LCP array in O(n log n · tΨ)
time, where tΨ is the time required for accessing Ψ . The algorithm requires
o(R log n) bits of working space in addition to the CSA and the samples, where
R is the number of equal letter runs in the BWT of the text.

234 J. Sirén

6 Implementation and Experiments

We have implemented the sampled LCP array, a run-length encoded PLCP array,
and their construction algorithms as a part of the RLCSA [23].3 For PLCP, we
used the same run-length encoded bit vector as in the RLCSA. For the sampled
LCP, we used a gap encoded bit vector to mark the sampled positions, and a
stripped-down version of the same vector for storing the samples.

To avoid redundant work, we compute minimal instead of maximal PLCP
values, and interleave their computation with the main loop. To save space, we
only use strictly minimal PLCP values with PLCP[i] < PLCP[i + 1] + 1 as the
minimal samples. When sampling the LCP array, we make both of the passes in
text order, and store all the samples in an array before compressing them.

For testing, we used a 2.66 GHz Intel Core 2 Duo E6750 system with 4 GB
of memory (3.2 GB visible to OS) running a Fedora-based Linux with kernel
2.6.27. The implementation was written in C++, and compiled on g++ version
4.1.2. We used four data sets: human DNA sequences (dna) and English language
texts (english) from the Pizza & Chili Corpus [7], the Finnish language Wikipedia
with version history (fiwiki) [23], and the genomes of 36 strains of Saccharomyces
paradoxus (yeast) [18].4 When the data set was much larger than 400 megabytes,
a 400 MB prefix was used instead. Further information on the data sets can be
found in Table 2.

Only on the dna data set, the sum of the minimal values was close to the
entropy-based estimate. On the highly repetitive fiwiki and yeast data sets, the
difference between the estimate and the measurement was very large, as pre-
dicted by Proposition 1. Even regular English language texts contained enough
large-scale repetitiveness that the sum of the minimal values could not be ad-
equately explained by the entropy of the texts. This suggests that, for many
real-world texts, the number of runs in BWT is a better compressibility measure
than the empirical entropy.

The sum of minimal PLCP values was a good estimate for PLCP construction
time. LCP sampling was somewhat slower because of the second pass. Both
algorithms performed reasonably well on the highly repetitive data sets, but
were much slower on the regular ones. The overall performance was roughly an
order of magnitude worse than for the algorithms using plain text and SA [14].

We measured the performance of the sampled LCP array and the run-length
encoded PLCP array on each of the data sets. We also measured the locate
performance of the RLCSA to get a lower bound for the time and space of any
PLCP-based approach. The results can be seen in Fig. 2.

The sampled LCP array outperformed PLCP on english and dna, where most
of the queries were resolved through minimal samples. On fiwiki and yeast, the
situation was reversed. As many extra samples were required to get reasonable

3 The implementation is available at http://www.cs.helsinki.fi/group/suds/

rlcsa/
4 The yeast genomes were obtained from the Durbin Research Group at the Sanger

Institute, http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp/

http://www.cs.helsinki.fi/group/suds/
rlcsa/

Sampled Longest Common Prefix Array 235

Table 2. Properties of the data sets. H5 is the order-5 empirical entropy, σ′ the corre-
sponding effective alphabet size, # the number of (strictly) minimal values, and S the
sum of those values. S′ = n(1 − 1/σ′)(log n)/H5 − n/σ′ is an entropy-based estimate
for the sum of the minimal values. The construction times are in seconds.

Estimates Minimal values Strictly minimal
Name MB H5 σ′ S′/106 #/106 S/106 S/n #/106 S/106 S/n

english 400 1.86 2.09 3167 156.35 1736 4.14 99.26 1052 2.51
fiwiki 400 1.09 1.52 3490 1.79 273 0.65 1.17 117 0.28
dna 385 1.90 3.55 4252 243.49 3469 8.59 158.55 2215 5.48
yeast 409 1.87 3.34 4493 15.64 520 1.21 10.05 299 0.70

Sample rates PLCP Sampled LCP
Name SA LCP Time MB/s Time MB/s

english 8, 16, 32, 64 8, 16 1688 0.24 2104 0.19
fiwiki 64, 128, 256, 512 32, 64, 128 327 1.22 533 0.75
dna 8, 16, 32, 64 8, 16 3475 0.11 3947 0.10
yeast 32, 64, 128, 256 16, 32, 64 576 0.71 890 0.46

0 200 400 600 800

0
10

20
30

40
50

60

Size (MB)

T
im

e
(µ

s)

english

PLCP
Sampled
Locate

0 200 400 600 800

0
10

20
30

40
50

60

Size (MB)

T
im

e
(µ

s)

dna

PLCP
Sampled
Locate

0 20 40 60 80 100

0
50

10
0

20
0

Size (MB)

T
im

e
(µ

s)

fiwiki

PLCP
Sampled
Locate

0 50 100 150 200 250

0
50

10
0

15
0

Size (MB)

T
im

e
(µ

s)

yeast

PLCP
Sampled
Locate

Fig. 2. Time/space trade-offs for retrieving an LCP or SA value. The times are averages
over 106 random queries. Sampled LCP results are grouped by SA sample rate.

236 J. Sirén

performance, increasing the size significantly, the sampled LCP array had worse
time/space trade-offs than the PLCP array.

While we used RLCSA in the experiments, the results generalize to other types
of CSA as well. The reason for this is that, in both PLCP and sampled LCP,
the time required for retrieving an LCP value depends mostly on the number of
iterations of Ψ required to find a sampled position.

7 Discussion

We have described the sampled LCP array, and shown that it offers better
time/space trade-offs than the PLCP-based alternatives, when the number of
extra samples required for dense sampling is small. Based on the experiments,
it seems that one should use the sampled LCP array for regular texts, and a
PLCP-based representation for highly repetitive texts.

In a recent proposal [4], the entire LCP array was compressed by using directly
addressable codes (DAC) [2]. The resulting structure is much faster but usually
also much larger than the other compressed LCP representations. See the full
paper [24] for a comparison between the sampled LCP array and the DAC-based
approach.

We have also shown that it is feasible to construct the (P)LCP array directly
from a CSA. While the earlier algorithms are much faster, it is now possible to
construct the (P)LCP array for larger texts than before, and the performance is
still comparable to that of direct CSA construction [23]. On a multi-core system,
it is also easy to get extra speed by parallelizing the construction.

It is possible to maintain the (P)LCP array when merging two CSAs. The
important observation is that an LCP value can only change, if the left match
changes in the merge. An open question is, how much faster the merging is, both
in the worst case and in practice, than rebuilding the (P)LCP array.

While the suffix array and the LCP array can be compressed to a space
relative to the number of of equal letter runs in BWT, no such representation is
known for suffix tree topology. This is the main remaining obstacle in the way
to compressed suffix trees optimized for highly repetitive texts.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal on Discrete Algorithms 2(1), 53–86 (2004)

2. Brisaboa, N.R., Ladra, S., Navarro, G.: Directly addressable variable-length
codes. In: Hyyro, H. (ed.) SPIRE 2009. LNCS, vol. 5721, pp. 122–130. Springer,
Heidelberg (2009)

3. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

4. Cánovas, R., Navarro, G.: Practical compressed suffix trees. In: Festa, P. (ed.) SEA
2010. LNCS, vol. 6049, pp. 94–105. Springer, Heidelberg (2010)

5. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194–203 (1975)

Sampled Longest Common Prefix Array 237

6. Fayolle, J., Ward, M.D.: Analysis of the average depth in a suffix tree under a
Markov model. In: Proc. 2005 International Conference on Analysis of Algorithms,
DMTCS Proceedings, vol. AD, pp. 95–104. DMTCS (2005)

7. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. Journal of Experimental Algorithms 13, 1.12 (2009)

8. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

9. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. In: SODA 2007, pp. 690–696. SIAM, Philadelphia (2007)

10. Fischer, J.: Wee LCP. arXiv:0910.3123v1 [cs.DS] (2009)
11. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix

trees. Theoretical Computer Science 410(51), 5354–5364 (2009)
12. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. SIAM Journal on Computing 35(2), 378–407
(2005)

13. Gupta, A., Hon, W.-K., Shah, R., Vitter, J.S.: Compressed data structures: dic-
tionaries and data-aware measures. Theoretical Computer Science 387(3), 313–331
(2007)

14. Kärkkäinen, J., Manzini, G., Puglisi, S.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009)

15. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer,
Heidelberg (2001)

16. Khmelev, D.: Program lcp version 0.1.9 (2004),
http://www.math.toronto.edu/dkhmelev/PROGS/misc/lcp-eng.html

17. Kurtz, S.: Reducing the space requirement of suffix trees. Software: Practice and
Experience 29(13), 1149–1171 (1999)

18. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of individ-
ual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137.
Springer, Heidelberg (2009)

19. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), 2 (2007)

20. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: SODA 2002, pp. 233–242. SIAM,
Philadelphia (2002)

21. Russo, L., Navarro, G., Oliveira, A.: Fully-compressed suffix trees. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp.
362–373. Springer, Heidelberg (2008)

22. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

23. Sirén, J.: Compressed suffix arrays for massive data. In: Hyyro, H. (ed.)
SPIRE 2009. LNCS, vol. 5721, pp. 63–74. Springer, Heidelberg (2009)

24. Sirén, J.: Sampled longest common prefix array. arXiv:1001.2101v2 [cs.DS] (2010)

http://www.math.toronto.edu/dkhmelev/PROGS/misc/lcp-eng.html

Verifying a Parameterized Border Array
in O(n1.5) Time

Tomohiro I1, Shunsuke Inenaga2, Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University
2 Graduate School of Information Science and Electrical Engineering,

Kyushu University
744 Motooka, Nishiku, Fukuoka, 819–0395 Japan

tomohiro.i@i.kyushu-u.ac.jp,
inenaga@c.csce.kyushu-u.ac.jp,

{bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. The parameterized pattern matching problem is to check if
there exists a renaming bijection on the alphabet with which a given
pattern can be transformed into a substring of a given text. A param-
eterized border array (p-border array) is a parameterized version of a
standard border array, and we can efficiently solve the parameterized pat-
tern matching problem using p-border arrays. In this paper we present
an O(n1.5)-time O(n)-space algorithm to verify if a given integer array
of length n is a valid p-border array for an unbounded alphabet. The
best previously known solution takes time proportional to the n-th Bell
number 1

e

∑∞
k=0

kn

k!
, and hence our algorithm is quite efficient.

1 Introduction

The parameterized matching (p-matching) problem [1] is a kind of string match-
ing problem, where a pattern is considered to occur in a text when there exists a
renaming bijection on the alphabet with which the pattern can be transformed
into a substring of the text. Parameterized matching has applications in e.g.
software maintenance, plagiarism detection, and RNA structural matching, thus
it has extensively been studied (e.g., see [2,3,4,5,6]).

In this paper we focus on parameterized border arrays (p-border arrays) [7],
which are a parameterized version of border arrays [8]. Let Π be the alpha-
bet. The p-border array of a given pattern p of length m can be computed in
O(m log |Π |) time, and the p-matching problem can be solved in O(n log |Π |)
time for any text p-string of length n, using the p-border array [7].

This paper deals with the reverse engineering problem on p-border arrays,
namely, the problem of verifying if a given integer array of length n is a p-border
array of some string. We propose an O(n1.5)-time O(n)-space algorithm to solve
this problem for an unbounded alphabet. We emphasize that the best previously
known solution to this problem takes time proportional to the n-th Bell number
1
e

∑∞
k=0

kn

k! , and hence our algorithm is quite efficient.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 238–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verifying a Parameterized Border Array in O(n1.5) Time 239

Related Work. There exists a linear time algorithm to solve the reverse prob-
lem on p-border arrays for a binary alphabet [9]. An O(pn)-time algorithm to
enumerate all p-border arrays of length up to n on a binary alphabet was also
presented in [9], where pn denotes the number of p-border arrays of length at
most n for a binary alphabet.

In [10], a linear time algorithm to verify if a given integer array is the (stan-
dard) border array [8] of some string was presented. Their algorithm works for
both bounded and unbounded alphabets. A simpler linear-time solution for the
same problem for a bounded alphabet was shown in [11]. An algorithm to enu-
merate all border arrays of length at most n in O(bn)-time was given in [10],
where bn is the number of border arrays of length at most n.

The reverse engineering problems, as well as the enumeration problems for
other string data structures (suffix arrays, DAWG, etc.) have been extensively
studied [12,13,14,15,16,17,18], whose solutions give us further insight concerning
the data structures.

2 Preliminaries

Let Σ and Π be two disjoint finite alphabets. An element of (Σ ∪Π)∗ is called
a p-string. The length of any p-string s is the total number of constant and
parameter symbols in s and is denoted by |s|. The string of length 0 is called the
empty string and is denoted by ε. For any p-string s of length n, the i-th symbol
is denoted by s[i] for each 1 ≤ i ≤ n, and the substring starting at position i
and ending at position j is denoted by s[i : j] for 1 ≤ i ≤ j ≤ n.

Any two p-strings s, t ∈ (Σ ∪ Π)∗ of length m are said to parameterized
match (p-match) if s can be transformed into t by a renaming function f from
the symbols of s to the symbols of t, where f is the identify on Σ. The p-matching
problem on Σ∪Π is reducible in linear time to the p-matching problem on Π [2].
Thus we will only consider p-strings over Π .

Let N be the set of non-negative integers. Let pv : Π∗ → N ∗ be the function
s.t. for any p-string s of length n > 0, pv (s) = u where, for 1 ≤ i ≤ n, u[i] = 0
if s[i] �= s[j] for any 1 ≤ j < i, and u[i] = i − k if k = max{j | s[i] = s[j], 1 ≤
j < i}. Let pv (ε) = ε. Two p-strings s and t of the same length m p-match iff
pv(s) = pv(t). For any p ∈ N ∗, let zeros(p) denotes the number of 0’s in p, that
is, zeros(p) = |{i | p[i] = 0, 1 ≤ i ≤ |p|}|. For any s ∈ Π , zeros(pv (s)) equals the
number of different characters in s. For example, aabb and bbaa p-match since
pv(aabb) = pv (bbaa) = 0 1 0 1. Note zeros(pv (aabb)) = zeros(pv(bbaa)) = 2.

A parameterized border (p-border) of a p-string s of length n is any inte-
ger j s.t. 0 ≤ j < n and pv (s[1 : j]) = pv (s[n − j + 1 : n]). For example,
the set of p-borders of p-string aabb is {2, 1, 0} since pv (aa) = pv(bb) = 0 1,
pv(a) = pv (b) = 0, and pv(ε) = pv (ε) = ε. We also say that b is a p-border
of p ∈ N ∗ if b is a p-border of some p-string s ∈ Π∗ and p = pv (s). The
parameterized border array (p-border array) βs of a p-string s of length n is
an array of length n such that βs[i] = j, where j is the longest p-border of
s[1 : i]. For example, for p-string s = aabbaa, βs = [0, 1, 1, 2, 3, 4]. When it is

240 Tomohiro I et al.

clear from the context, we abbreviate βs as β. Let P = {pv(s) | s ∈ Π∗} and
Pβ = {p ∈ P | β[i] is the longest p-border of p[1 : i], 1 ≤ i ≤ |β|}.

For any i, j ∈ N , let cut(i, j) = 0 if i ≥ j, and cut(i, j) = i otherwise. For
any p ∈ P and 1 ≤ j ≤ |p|, let suf (p, j) = cut(p[|p| − j + 1], 1)cut(p[|p| − j +
2], 2) · · · cut(p[|p|], j). Let suf (p, 0) = ε. For example, if p[1 : 10] =
0 0 2 0 3 1 3 2 6 3,

suf (p, 5) = cut(p[6], 1)cut(p[7], 2)cut(p[8], 3)cut(p[9], 4)cut(p[10], 5)
= cut(1, 1)cut(3, 2)cut(2, 3)cut(6, 4)cut(3, 5) = 0 0 2 0 3.

Then, for any p-string s ∈ Π∗ and 1 ≤ j ≤ |s|, suf (pv (s), j) = pv(s[|s| − j + 1 :
|s|]). Hence, j is a p-border of pv(s) iff suf (pv (s), j) = pv (s)[1 : j] for some
1 ≤ j < |s|.

This paper deals with the following problem.

Problem 1 (Verifying a valid p-border array). Given an integer array y of length
n, determine if there exists a p-string s such that βs = y.

To solve Problem 1, we can use the algorithm of Moore et al. [19] to generate all
strings in Pn = {p | p ∈ P, |p| = n} in O(|Pn|) time, and then we check if p ∈ Py

for each generated p ∈ Pn. Still, it is known that |Pn| is equal to the n-th Bell
number 1

e

∑∞
k=0

kn

k! .
As a much more efficient solution, we present our O(n1.5)-time algorithm in

the sequel.

3 Properties on Parameterized Border Arrays

Here we introduce important properties of p-border arrays that are useful to
solve Problem 1.

For any integer array �, let |�| denote the length of the integer array �. Let
�[i : j] denote a subarray of � for any 1 ≤ i ≤ j ≤ |�|. Let Γ = {γ | γ[1] = 0, 1 ≤
γ[i] ≤ γ[i − 1] + 1, 1 < i ≤ |γ|}. For any γ ∈ Γ and any i ≥ 1, let γk[i] = γ[i]
if k = 1, and γ[γk−1[i]] if k > 1 and γk−1[i] ≥ 1. By the definition of Γ , the
sequence i, γ1[i], γ2[i], . . . is monotonically decreasing and terminates with 1, 0.
Let A = {α | α ∈ Γ, α[i] ∈ {α1[i− 1] + 1, α2[i− 1] + 1, . . . , 1}, 1 < i ≤ |α|}. It is
clear that A ⊂ Γ . Let B denote the set of all p-border arrays.

Lemma 1. B ⊆ Γ .

Proof. By definition, it is clear that β[1] = 0 and 1 ≤ β[i] for any 1 < i ≤ |β|. For
any p ∈ Pβ and i, since suf (p[1 : i], β[i]) = p[1 : β[i]], suf (p[1 : i− 1], β[i]− 1) =
p[1 : β[i]− 1]. Thus β[i− 1] ≥ β[i]− 1, and therefore β[i] ≤ β[i− 1] + 1. �	

Lemma 2. For any β ∈ B, p ∈ Pβ, and 1 ≤ i ≤ |p|, {β1[i], β2[i], . . . , 0} is the
set of p-borders of p[1 : i].

Lemma 3. For any β ∈ B, p ∈ Pβ, and 1 ≤ i ≤ |p|, if p[i] = 0, then p[b] = 0
for any b ∈ {β1[i], β2[i], . . . , 1}.

Verifying a Parameterized Border Array in O(n1.5) Time 241

Lemma 4. B ⊆ A.

Proof. For any β ∈ B, p ∈ Pβ and 1 < i ≤ |p|, since suf (p[1 : i], β[i]) =
p[1 : β[i]], suf (p[1 : i − 1], β[i] − 1) = p[1 : β[i] − 1]. Since β[i] − 1 is a p-
border of p[1 : i− 1], β[i]− 1 ∈ {β1[i− 1], β2[i− 1], . . . , 0} by Lemma 2. Hence,
β[i] ∈ {β1[i− 1] + 1, β2[i− 1] + 1, . . . , 1}. �	

Definition 1 (Conflict Points). Let α ∈ A. For any c′, c (1 < c′ < c ≤ |α|),
if α[c′] = α[c] and c′− 1 = αk[c− 1] with some k, then c′ and c are said to be in
conflict with each other. Such points are called conflict points.

Let Cα be the set of conflict points in α and Cα(c) be the set of points that
conflict with c (1 ≤ c ≤ |α|). For any i ≤ j ∈ N , let [i, j] = {i, i+1, . . . , j} ⊂ N .
We denote C

[i,j]
α = Cα∩ [i, j] and C

[i,j]
α (c) = Cα(c)∩ [i, j] to restrict the elements

of the sets within the range [i, j].

(2) (5)

()

(3) (8)

(10)

(7)

Fig. 1. The conflict tree of α =
[0, 1, 1, 2, 3, 4, 3, 1, 2, 1]

By Definition 1, C
[1,c]
α (c) = {c′}∪C

[1,c′]
α (c′)

where c′ = maxC
[1,c]
α (c). Consider a tree

such that Cα ∪ {⊥} is the set of nodes
where ⊥ is the root, and {(c′, c) | c ∈
Cα, c′ = maxC

[1,c]
α (c)} ∪ {(⊥, c) | c ∈

Cα, C
[1,c]
α (c) = ∅} the set of edges. This tree

is called the conflict tree of α and it repre-
sents the relations of conflict points of α. Let
CTα(c) denote the set of children of node
c and CT

[i,j]
α (c) = CTα(c) ∩ [i, j]. We de-

fine orderα(c) to be the depth of node c and
maxcα(c) = max{orderα(c′) | c′ ∈ {c} ∪
Cα(c)}.

Fig. 1 illustrates the conflict tree for
α = [0, 1, 1, 2, 3, 4, 3, 1, 2, 1]. Here Cα =
{2, 3, 5, 7, 8, 10}, Cα(3) = {2, 10}, CTα(2) = {3, 8}, orderα(2) = orderα(5) = 1,
orderα(3) = orderα(7) = orderα(8) = 2, orderα(10) = 3, maxcα(5) =
maxcα(7) = maxcα(8) = 2, maxcα(2) = maxcα(3) = maxcα(10) = 3, and
so on.

Lemma 5 will be used to show the O(n1.5) time complexity of our algorithm
of Section 4.

Lemma 5. For any α[1 : n] ∈ A, n ≥ 1 +
∑

c∈Cα
�2orderα(c)−2�.

Proof. Let ct ∈ Cα with t ≥ 2, C
[1:ct]
α (ct) = {c1, c2, . . . , ct−1} with c1 < c2 <

· · · < ct. Let m = α[c1] = α[c2] = · · · = α[ct]. By the definition of Γ , for any 1 <
i ≤ n, α[i] ≤ α[i−1]+1. Then, it follows from (ct−1)−ct−1 ≥ α[ct−1]−α[ct−1]
that m + (ct− 1)− ct−1 ≥ α[ct − 1]. Consequently, by Definition 1, we have ct ≥
2ct−1−m from α[ct−1] ≥ ct−1−1. Hence, ct ≥ 2ct−1−m ≥ 22ct−2−m(1+2) ≥
· · · ≥ 2t−1c1−m

∑t−2
i=0 2i = 2t−1c1−m(2t−1−1) = 2t−1(c1−m)+m ≥ 2t−1+m.

It leads to α[ct] − (α[ct − 1] + 1) ≤ m − ct−1 ≤ −2t−2. Since α[i] = 0 and

242 Tomohiro I et al.

β

p

c’ c
mm

Fig. 2. Let c, c′ ∈ Cβ and β[c′] = β[c] = m. Then, c′ ∈ Cβ(c), p[1 : m] = suf (p[1 :
c′], m) = suf (p[1 : c], m), and p[1 : c′ − 1] = suf (p[1 : c − 1], c′ − 1).

1 ≤ α[i] ≤ α[i− 1] + 1 for any 1 < i ≤ n, n− 1 should be greater than the value
subtracted over all conflict points. Therefore, the statement holds. �	

The relation between conflict points of β ∈ B and p ∈ Pβ is illustrated in Fig. 2.
Lemma 6 shows a necessary-and-sufficient condition for β[1 : i]m to be a valid

p-border array of some p[1 : i + 1] ∈ N ∗, when β[1 : i] is a valid p-border array.

Lemma 6. Let β[1 : i] ∈ B, m ∈ N , and p[1 : i + 1] ∈ N ∗. Then, β[1 : i]m ∈ B
and p[1 : i + 1] ∈ Pβ[1:i]m if and only if

p[1 : i + 1] ∈ P ∧ p[1 : i] ∈ Pβ[1:i] ∧ ∃k, βk[i] = m− 1 ∧ cut(p[i + 1], m) = p[m]

∧
(
Cβ[1:i]m(i + 1) �= ∅⇒

(
p[m] = 0 ∧ ∀c ∈ Cβ[1:i]m(i + 1), p[i + 1] �= p[c]

∧
(
∃c′ ∈ Cβ[1:i]m(i + 1), p[c′] = 0 ⇒ m ≤ p[i + 1] < c′

)))
.

Lemma 7 shows a yet stronger result, a necessary-and-sufficient condition for
β[1 : i]m to be a valid p-border array of length i + 1, when β[1 : i] is a valid
p-border array of length i.

Lemma 7. Let β[1 : i] ∈ B and m ∈ N . Then, β[1 : i]m ∈ B if and only if

∃k, βk[i] = m− 1
∧
(
Cβ[1:i]m(i + 1) �= ∅⇒

(
∃p[1 : i] ∈ Pβ[1:i] s.t. p[m] = 0

∧
(
∃c′ ∈ Cβ[1:i]m(i + 1), p[c′] = 0 ⇒ zeros(p[m : c′ − 1]) ≥ |Cβ[1:i]m(i + 1)|

)))
.

Proofs of Lemmas 6 and 7 will be shown in a full version of this paper.
In the next section we design our algorithm to solve Problem 1 based on

Lemmas 6 and 7.

4 Algorithm

This section presents our O(n1.5)-time O(n)-space algorithm to verify if a given
integer array of length n is a valid p-border array for an unbounded alphabet.

4.1 Z-Pattern Representation

Lemma 7 implies that, in order to check if β[1 : i]m ∈ B, it suffices for us to
know if p[i] is zero or non-zero for each i. Let � be a special symbol s.t. � �= 0.

Verifying a Parameterized Border Array in O(n1.5) Time 243

For any p ∈ P and 1 ≤ i ≤ |p|, let ptoz (p)[i] = 0 if p[i] = 0, and ptoz (p)[i] = �
otherwise. The sequence ptoz (p) ∈ {0, �}∗ is called the z-pattern of p. For any
β ∈ B, let Zβ = {ptoz (p) | p ∈ Pβ}.

The next lemma follows from Lemmas 3, 6, and 7.

Lemma 8. Let β ∈ B and z ∈ {0, �}∗. Then, z ∈ Zβ if and only if all of the
following conditions hold for any 1 ≤ i ≤ |z|:

1. i = 1 ⇒ z[i] = 0.
2. z[β[i]] = � ⇒ z[i] = �.
3. ∃c ∈ Cβ , ∃k, i = βk[c] ⇒ z[i] = 0.
4. ∃c ∈ Cβ(i), z[c] = 0 ⇒ z[i] = �.
5. i ∈ Cβ ∧ zeros(z[β[i] : i− 1]) < maxcβ(i)− 1 ⇒ z[i] = �.
6. i ∈ Cβ ∧ zeros(z[β[i] : i− 1]) = orderβ(i)− 1 ⇒ z[i] = 0.

Let Eβ = {i | ∃c ∈ Cβ , ∃k, i = βk[c]}. For any z ∈ Zβ and i ∈ Eβ , z[i] is always 0.
We check if a given integer array y[1 : n] is a valid p-border array in two steps.

Step 1: While scanning y[1 : n] from left to right, check whether y[1 : n] ∈ A
and whether each position i (1 ≤ i ≤ n) of y satisfies Conditions 3 and 4
of Lemma 8. Also, we compute Ey , and ordery(i) and maxcy(i) for each
i ∈ Cy.

Step 2: For each i = 1, 2, . . . , n, we determine the value of z[i] so that the
conditions of Lemma 8 hold.

If we can determine z[i] for all i = 1, 2, . . . , n in Step 2, then the input array y
is a p-border array of some p ∈ P such that ptoz (p) = z.

4.2 Pruning Techniques

Given an integer array y of length n, we inherently have to search {0, �}n for a z-
pattern z ∈ Zy. To achieve an efficient solution, we utilize the following pruning
lemmas.

For any β ∈ B and 1 ≤ i ≤ |β|, we write as u[1 : i] ∈ Zi
β if and only if

u[1 : i] ∈ {0, �}∗ satisfies all the conditions of Lemma 8 for any j (1 ≤ j ≤ i).
For any h > i, let z[h] = 0 if h ∈ Eβ , and leave it undefined otherwise. Clearly,
for any z ∈ Zβ and 1 ≤ i ≤ |β|, z[1 : i] ∈ Zi

β.
We can use the contraposition of the next lemma for pruning the search tree

at each non-conflict point of y.

Lemma 9. Let β ∈ B and i /∈ Cβ (2 ≤ i ≤ |β|). For any u[1 : i− 1] ∈ Zi−1
β , if

u[β[i]] = 0 and there exists z ∈ Zβ s.t. z[1 : i] = u[1 : i − 1]�, then there exists
z′ ∈ Zβ s.t. z′[1 : i] = u[1 : i− 1]0.

Proof. For any 1 ≤ j ≤ |β|, let v[j] = 0 if j = i, and v[j] = z[j] otherwise. Now
we show v ∈ Zβ . v[i] clearly holds all the conditions of Lemma 8. Since v[j] = z[j]
at any other points, v[j] satisfies Conditions 1, 2, 3 and 4. Furthermore, for any
c ∈ Cβ , v[c] holds Conditions 5 and 6, since zeros(v[β[c] : c− 1]) ≥ zeros(z[β[c] :
c− 1]) and z[c] holds those conditions. �	

244 Tomohiro I et al.

α[i +1]

i –1

i

α[i]α [i]2α [i]k’–1α [i]k’

Fig. 3. Illustration for Lemma 11. If αk′
[i] = α[i + 1] − 1 ∈ Fα(b), then i ∈ Fα(b).

Next, we discuss our pruning technique regarding conflict points of y. Let β ∈ B.
c ∈ Cβ is said to be an active conflict point of β, iff Eβ ∩ ({c} ∪ Cβ(c)) = ∅.
Obviously, for any z ∈ Zβ and c ∈ Cβ , z[c] = 0 if Eβ ∩ {c} �= ∅ and z[c] = � if
Eβ ∩Cβ(c) �= ∅. Hence we never branch out at any inactive conflict point during
the search for z ∈ Zβ. Let ACβ be the set of active conflict points in β. Our
pruning method for active conflict points is described in Lemma 10.

Lemma 10. Let β ∈ B, i ∈ ACβ and i ≤ r ≤ |β| with |CT
[1,r]
β (i)| < 2. For

any u[1 : i − 1] ∈ Zi−1
β , if u[1 : i − 1]0 ∈ Zi

β and there exists z[1 : r] ∈ Zr
β s.t.

z[1 : i] = u[1 : i− 1]�, then there exists z′[1 : r] ∈ Zr
β s.t. z′[1 : i] = u[1 : i− 1]0.

In order to prove Lemma 10, particularly to ensure Conditions 5 and 6 of
Lemma 8 hold, we will estimate the number of 0’s within the range [β[c], c− 1]
for each c ∈ Cβ that is obtained when the prefix of a z-pattern is u[1 : i − 1]0.
Here, for any α ∈ A and 1 ≤ b ≤ |α|, let Fα(b) = {b} ∪ {b′ | ∃k, b = αk[b′]} and
F

[i,j]
α (b) = Fα(b) ∩ [i, j]. Then, the number of 0’s related to i within the range

[β[c], c−1] can be estimated by |F [β[c],c−1]
β (i)|. The following lemmas show some

properties of Fα(b) that are useful to prove Lemma 10 above.

Lemma 11. Let α ∈ A. For any 1 ≤ b ≤ |α| and 1 < i < |α|,

|F [α[i+1],i]
α (b)|−|F [α[i],i−1]

α (b)|−
k′−1∑
k=1

|F [αk+1[i],αk[i]−1]
α (b)| =

⎧⎪⎨
⎪⎩

1
if i ∈ Fα(b) and
αk′

[i] /∈ Fα(b),
0 otherwise,

where k′ is the integer such that αk′
[i] = α[i + 1]− 1.

Proof. Since [α[i + 1]− 1, i− 1] = [αk′
[i], αk′−1[i]− 1] ∪ [αk′−1[i], αk′−2[i]− 1] ∪

· · ·∪[α1[i], i−1], |F [α[i+1]−1,i−1]
α (b)| = |F [α[i],i−1]

α (b)|+
∑k′−1

k=1 |F
[αk+1[i],αk[i]−1]
α (b)|

(See Fig. 3). Then, the key is whether each of i and α[i + 1] − 1 is in Fα(b) or
not. Obviously, if αk′

[i] = α[i + 1] − 1 ∈ Fα(b), then i ∈ Fα(b). It leads to the
statement. �	

Lemma 11 implies that |F [α[i],i−1]
α (b)| is monotonically increasing for i.

Verifying a Parameterized Border Array in O(n1.5) Time 245

Lemma 12. Let α ∈ A and c′, c ∈ Cα with c′ ∈ C
[1,c]
α (c). For any 1 ≤ b < c′,

|F [m,c−1]
α (b)| ≥ |F [α[c−1],c−2]

α (b)|+
k′−1∑
k=1

|F [αk+1[c−1],αk[c−1]−1]
α (b)|+ 1,

where m = α[c′] = α[c] and k′ is the integer such that αk′
[c− 1] = c′ − 1.

Proof. In a similar way to the proof of Lemma 11, we have |F [m,c−2]
α (b)| =

|F [α[c−1],c−2]
α (b)|+

∑k′−1
k=1 |F

[αk+1[c−1],αk[c−1]−1]
α (b)|+ |F [m,c′−2]

α (b)|. Since c− 1 /∈
Fα(b) ⇒ αk′

[c− 1] = c′ − 1 /∈ Fα(b),

|F [m,c−1]
α (b)| ≥ |F [α[c−1],c−2]

α (b)|+
k′−1∑
k=1

|F [αk+1[c−1],αk[c−1]−1]
α (b)|+ |F [m,c′−1]

α (b)|.

Also, |F [m,c′−1]
α (b)| ≥ 1 follows from Lemma 11. Hence, the lemma holds. �	

Lemma 13. For any α ∈ A, 1 ≤ b < b′ ≤ |α| and 1 ≤ i < |α|, |F [α[i+1],i]
α (b)| ≥

|F [α[i+1],i]
α (b′)|.

Proof. We will prove the lemma by induction on i. First, for any 1 ≤ i < b, it
is clear that |F [α[i+1],i]

α (b)| = |F [α[i+1],i]
α (b′)| = 0. Second, for any b ≤ i < b′, it

follows from Lemma 11 that |F [α[i+1],i]
α (b)| ≥ 1. Then, |F [α[i+1],i]

α (b)| ≥ 1 > 0 =
|F [α[i+1],i]

α (b′)|. Finally, when b′ ≤ i < |α|, let k′ be the integer such that αk′
[i] =

α[i +1]− 1. (I) When i /∈ Fα(b′) or αk′
[i] = α[i + 1]− 1 ∈ Fα(b′). It follows from

Lemma 11 that |F [α[i+1],i]
α (b)| ≥ |F [α[i],i−1]

α (b)| +
∑k′−1

k=1 |F
[αk+1[i],αk[i]−1]
α (b)| and

|F [α[i+1],i]
α (b′)| = |F [α[i],i−1]

α (b′)| +
∑k′−1

k=1 |F
[αk+1[i],αk[i]−1]
α (b′)|. By the induction

hypothesis, we have |F [α[i],i−1]
α (b)| ≥ |F [α[i],i−1]

α (b′)| and |F [αk+1[i],αk[i]−1]
α (b)| ≥

|F [αk+1[i],αk[i]−1]
α (b′)| for any 1 ≤ k ≤ k′ − 1. Hence, |F [α[i+1],i]

α (b)| ≥
|F [α[i+1],i]

α (b′)|. (II) When i ∈ Fα(b′) and αk′
[i] = α[i + 1] − 1 /∈ Fα(b′).

There always exists b′ ∈ {i, α1[i], . . . , αk′−1[i]}, and therefore |F [α[b′],b′−1]
α (b)| ≥

1 > 0 = |F [α[b′],b′−1]
α (b′)|. Then, |F [α[i+1],i]

α (b)| ≥ |F [α[i],i−1]
α (b)| +∑k′−1

k=1 |F
[αk+1[i],αk[i]−1]
α (b)| ≥ 1 + |F [α[i],i−1]

α (b′)| +
∑k′−1

k=1 |F
[αk+1[i],αk[i]−1]
α (b′)| =

|F [α[i+1],i]
α (b′)|. Hence, |F [α[i+1],i]

α (b)| ≥ |F [α[i+1],i]
α (b′)|. �	

In a similar way, we have the next lemma.

Lemma 14. Let α ∈ A and c ∈ Cα with CTα(c) = {c′}. For any 1 ≤ i < |α|,
|F [α[i+1],i]

α (c)| ≥
∑

g∈G|F
[α[i+1],i]
α (g)|, where G = (C [c,|α|]

α (c)− c′).

Now, we are ready to prove Lemma 10. We will use Lemmas 13 and 14.

Proof. Let G = {g | g ∈ C
[i,r]
β (i), z[g] = 0}. Let v be the sequence s.t. for each

1 ≤ j ≤ r, v[j] = 0 if j ∈ Fβ(i), v[j] = � if there is g ∈ G s.t. j ∈ Fβ(g), and
v[j] = z[j] otherwise.

Now we show v ∈ Zβ . By the definition of v and u[1 : i − 1]0 ∈ Zi
β , it is

clear that v[j] holds Conditions 1, 2, 3 and 4 of Lemma 8 for any 1 ≤ j ≤ r.

246 Tomohiro I et al.

Furthermore, u[1 : i− 1]� ∈ Zi
β means that zeros(v[β[i] : i− 1]) ≥ maxcβ(i)− 1.

Hence, v[c] satisfies Conditions 5 and 6 for any c ∈ C
[1,r]
β (i) since zeros(v[β[c] :

c−1]) ≥ zeros(v[β[i] : i−1]) and maxcβ(i)−1 ≥ maxcβ(c)−1. Then, as the proof
of Lemma 9, we have only to show zeros(v[β[c] : c−1]) ≥ zeros(z[β[c] : c−1]) for
any c ∈ Cβ . This can be proven by showing |F [β[c],c−1]

β (i)| ≥
∑

g∈G|F
[β[c],c−1]
β (g)|.

Since it is clear in case where G = ∅, we consider the case where G �= ∅. Let
c′ = CTβ(i). Note that |CTβ(i)| = 1 by the assumption. (I) When z[c′] = 0. Since
z[1 : r] satisfies Condition 4 of Lemma 8, G = {c′}. It follows from Lemma 13
that |F [β[c],c−1]

β (i)| ≥ |F [β[c],c−1]
β (c′)| for any c ∈ C

[1,r]
β . (II) When z[c′] �= 0.

It follows from Lemma 14 that |F [β[c],c−1]
β (i)| ≥

∑
g∈G|F

[β[c],c−1]
β (g)| for any

c ∈ C
[1,r]
β . Therefore, the lemma holds. �	

4.3 Complexity Analysis

Algorithm 1 shows our algorithm that solves Problem 1.

Theorem 1. Algorithm 1 solves Problem 1 in O(n1.5) time and O(n) space for
an unbounded alphabet.

Proof. The correctness should be clear from the discussions in the previous sub-
sections.

Let us estimate the time complexity of Algorithm 1 until the CheckPBA func-
tion is called at Line 1. As in the failure function construction algorithm, the
while loop of Line 6 is executed at most n times. Moreover, for any 1 ≤ i ≤ n,
the values of z[i], prevc[i], and order [i] are updated at most once. When i is
a conflict point, Line 20 is executed at most ordery(i) − 1 times. Hence, it
follows from Lemma 5 that the total number of times Line 20 is executed is∑

c∈Cy
(ordery(c)− 1) ≤ 1 +

∑
c∈Cy

�2ordery(c)−2� ≤ n.
Next, we show the CheckPBA function takes in O(n1.5) time for any input

α ∈ A. Let 2 ≤ r1 < r2 < · · · < rx ≤ n be the positions for which we execute
Line 6 or 10 when we first visit these positions. If such positions do not exist,
CheckPBA returns “valid” in O(n) time. Let us consider x ≥ 1. For any 1 ≤ t ≤ x,
let zt[1 : rt − 1] denote the z-pattern when we first visit rt and let lt = min{c |
c ∈ AC

[1,rt−1]
α , zt[c] = 0}. If x = 1 and such l1 does not exist, then CheckPBA

returns “invalid” in O(n) time. If x > 1, then there exists l1 as we reach rx.
Furthermore, there exists lt s.t. lt < r1 since otherwise we cannot get across r1.
Henceforth, we may assume l1 ≤ l2 ≤ · · · ≤ lx exist. Note that by the definition
of active conflict points, all elements of Fα(lt)−{lt} are not conflict points, and
therefore for any b ∈ Fα(lt), zt[b] = 0.

Here, let L1 = {c | c ∈ C
[l1+1,r1]
α , l1 < max C

[1,c]
α (c)} and Lt = {c | c ∈

C
[rt−1+1,rt]
α , lt < maxC

[1,c]
α (c)} for any 1 < t ≤ x. Since L1, L2, . . . , Lx are

pairwise disjoint, |L| =
∑x

t=1|Lt|, where L =
⋃x

t=1 Lt. It follows from Lemma 12
that |F [α[rt],rt−1]

α (lt)| − |F [α[rt−1],rt−1−1]
α (lt)| ≥ |Lt|. In addition, for any 1 ≤

t ≤ x, let Ein
t = Eα ∩ ([α[rt], rt − 1] − [α[rt−1], rt−1 − 1]}) and Eout

t = Eα ∩

Verifying a Parameterized Border Array in O(n1.5) Time 247

Algorithm 1. Algorithm to verify p-border array
Input: an integer array y[1 :n]
Output: whether y is a valid p-border array or not
/* zeros [1 :n] : zeros [i] = zeros(z[1 : i]). zeros [0] = 0 for convenience. */

/* sign[1 :n] : sign[i] = 1 if i ∈ Ey, sign[i] = −1 if (C[i,n]
y (i)∩Ey) �= ∅. */

/* prevc[1 :n] : prevc[i] = max C
[1,i]
y (i), prevc[i] = 0 otherwise. */

if y[1 :2] �= [0, 1] then return invalid;1

sign[1 :n] ← [1, 0, .., 0]; prevc[1 :n] ← [0, .., 0]; order [1 :n] ← [0, .., 0];2

maxc[1 :n] ← [0, .., 0];
for i = 3 to n do3

if y[i] = y[i − 1] + 1 then continue;4

b′ ← y[i − 1]; b ← y[b′];5

while b > 0 & y[i] �= y[b′ + 1] & y[i] �= b + 1 do6

b′ ← b; b ← y[b′];7

if y[i] = y[b′ + 1] then /* i conflicts with b′ + 1 */8

j ← y[i];9

while sign[j] = 0 & order [j] = 0 do /* z[y1[i]], z[y2[i]], . . . , z[0] must10

be 0 */

sign[j] ← 1; j ← y[j];11

if sign[j] = −1 then return invalid;12

if sign[j] �= 1 then13

sign[j] ← 1; j ← prevc[j];14

while j > 0 do /* ∀j ∈ C
[1,i]
y (i), z[j] must be 	 */15

if sign[j] = 1 then return invalid;16

sign[j] ← −1; j ← prevc[j];17

if order [b′ + 1] = 0 then order [b′ + 1] ← 1;18

prevc[i] ← b′ + 1; order [i] ← order [b′ + 1] + 1;19

maxc[i] ← order [b′ + 1] + 1; j ← b′ + 1;
while j > 0 & maxc[j] < order [b′ + 1] + 1 do20

maxc[j] ← order [b′ + 1] + 1; j ← prevc[j];21

else if y[i] �= b + 1 then return invalid;22

cnt[1 :n] ← [−1, ..,−1]; zeros [1] ← 1;23

return CheckPBA(2, n, y[1 :n], zeros [1 :n], sign[1 :n], cnt[1 :n],24

prevc[1 :n], order [1 :n], maxc[1 :n]);

([α[rt−1], rt−1 − 1] − [α[rt], rt − 1]}), where [α[r0], r0 − 1] = ∅. Since for any
1 < t ≤ x, zeros(zt[α[rt−1] : rt−1 − 1]) ≥ zeros(zt−1[α[rt−1] : rt−1 − 1]) + 1,

zeros(zt[α[rt] : rt − 1])
≥ zeros(zt[α[rt−1] : rt−1 − 1]) + |Ein

t | − |Eout
t |

+|F [α[rt],rt−1]
α (lt)| − |F [α[rt−1],rt−1−1]

α (lt)|
≥ zeros(zt−1[α[rt−1] : rt−1 − 1]) + 1 + |Ein

t | − |Eout
t |+ |Lt|.

248 Tomohiro I et al.

Function. CheckPBA(i, n, y[1 : n], zeros [1 : n], sign[1 : n], cnt[1 : n], prevc[1 :
n], order [1 :n], maxc[1 :n])

Result: whether y is a valid p-border array or not
if i = n then return valid;1

if order [i] = 0 then /* i is not a conflict point */2

zeros [i] ← zeros [i − 1] + zeros [y[i]] − zeros [y[i] − 1];3

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);4

if sign[i] = 1 then /* z[i] must be 0 */5

if zeros [i − 1] − zeros [y[i] − 1] < maxc[i] − 1 then return invalid;6

zeros [i] ← zeros [i − 1] + 1;7

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);8

if sign[i] = −1 ‖ zeros [i − 1] − zeros [y[i] − 1] < maxc[i] − 1 then /* z[i] must9

be 	 */

if zeros [i − 1] − zeros [y[i] − 1] < order [i] then return invalid;10

zeros [i] ← zeros [i − 1];11

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);12

/* from here sign[i] = 0 and zeros [i − 1] − zeros [y[i] − 1] ≥ maxc[i] − 1 */

if cnt[i] = −1 then /* first time arriving at i */13

cnt[i] + +; cnt[prevc[i]] + +14

if prevc[i] > 0 & sign[prevc[i]] = 1 then /* ∃c ∈ C
[1,i]
y (i), z[c] = 0 */15

sign[i] ← 1; zeros [i] ← zeros [i − 1];16

ret ← CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]); sign[i] ← 0;17

return ret;18

sign[i] ← 1; zeros [i] ← zeros [i − 1] + 1;19

ret ← CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]); sign[i] ← 0;20

if ret = valid ‖ cnt[i] < 2 then return ret;21

zeros [i] ← zeros [i − 1];22

return CheckPBA(i + 1, n, y[1 :n], . . . , maxc[1 :n]);23

By recursive procedures, we have orderα(rx) ≥ 1 + zeros(zx[α[rx] : rx − 1]) ≥
zeros(z1[α[r1] : r1 − 1]) + x +

∑x
t=2|Ein

t | −
∑x

t=2|Eout
t | +

∑x
t=2|Lt|. Since

zeros(z1[α[r1] : r1−1]) ≥ 1+ |Ein
1 |+ |L1| and

∑x
t=1|Ein

t |−
∑x

t=2|Eout
t | ≥ 1, then

orderα(rx) ≥ 2 + x + |L|.
Now, we evaluate the number of z-patterns we search for during the calls of

CheckPBA. Let C2(t) = {c | c ∈ C
[lt,rt]
α , |CT

[lt,rt]
α (c)| ≥ 2} for any 1 ≤ t ≤ x

and T ′ = {1} ∪ {t | 1 < t ≤ x, lt−1 < lt, |CT
[lt,rt−1]
α (lt)| = 0}. Let us assume

T ′ = {t′1, t′2, . . . , t′x′} with 1 = t′1 < t′2 < · · · < t′x′ ≤ x. By Lemmas 9 and 10,
the number of z-patterns searched for between lt′j and rt′j+1−1 is at most 2|C

′
2(t

′
j)|

for any 1 ≤ j ≤ x′, where t′x′+1 − 1 = x and C′
2(t

′
j) =

⋃t′j+1−1
t=t′j

C2(t). Then,

the total number of z-patterns is at most
∑x′

j=1 2|C
′
2(t

′
j)|. By Lemma 10, for any

1 ≤ j < x′, lt′j must be in C′
2(t′j) and by the definition of T ′, lt′j is only in

C′
2(t

′
j). Hence, if C2 =

⋃x
t=1 C2(t), then |C′

2(t
′
j)| ≤ |C2| − (x′ − 2), and therefore∑x′

j=1 2|C
′
2(t

′
j)| ≤ 4x′2|C2|−x′

.

Verifying a Parameterized Border Array in O(n1.5) Time 249

1r1l
t’ = 11

2r2l

3r3l

4r4l

5r5l

t’ = 32

t’ = 53

Fig. 4. Relation between L and C2. A pair of a big circle and a small circle connected
by an arc represents a parent-child relation in the conflict tree. © is a position in C.
• or ◦ is a position in L. � is a position not in L.

Finally, we consider the relation between L and C2 (See Fig. 4). By the defi-
nition of L and C2, for any c ∈ (C2 − {l1, l2, . . . , lx}), |CTα(c)∩L| ≥ 2. In addi-
tion, by the definition of T ′, for any c ∈ (C2 ∩{l1, l2, . . . , lx}−{lt′1, lt′2 , . . . , lt′x′}),
|CTα(c) ∩ L| ≥ 1. Here, let x′′ = |{l1, l2, . . . , lx} − {lt′1 , lt′2 , . . . , lt′x′}|. Clearly,
x′+x′′ ≤ x. For these reasons, orderα(rx) ≥ 2+x+|L| ≥ 2+x+2|C2|−2(x′+x′′)+
x′′ ≥ 2+2|C2|−x′. It follows from Lemma 5 that n ≥ 1+

∑
c∈Cα

�2orderα(c)−2� >

1 +
∑2+2|C2|−x′

i=2 2i−2 = 22|C2|−x′+1 and
√

n > 2
1+x′

2 2|C2|−x′
> x′2|C2|−x′

. Hence,
the total time complexity is proportional to n

∑x′

j=1 2|C
′
2(t

′
j)| ≤ 4nx′2|C2|−x′

<

4n
√

n.
The space complexity is O(n) as we use only a constant number of arrays of

length n. �	

5 Conclusions and Open Problems

We presented an O(n1.5)-time O(n)-space algorithm to verify if a given integer
array y of length n is a valid p-border array for an unbounded alphabet. In case
y is a valid p-border array, the proposed algorithm also computes a z-pattern
z ∈ {0, �}∗ s.t. z ∈ Zy, and we remark that some sequence p ∈ Py s.t. ptoz (p) = z
is then computable in linear time from z.

Open problems of interest are: (1) Can we solve the p-border array reverse
problem for an unbounded alphabet in o(n1.5) time? (2) Can we efficiently solve
the p-border array reverse problem for a bounded alphabet? (3) Can we effi-
ciently count p-border arrays of length n?

250 Tomohiro I et al.

References

1. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52(1), 28–42 (1996)

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3), 111–115 (1994)

3. Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees.
In: Proc. FOCS 1995, pp. 631–637 (1995)

4. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM
Transactions on Algorithms 3(3), Article No. 29 (2007)

5. Apostolico, A., Erdös, P.L., Lewenstein, M.: Parameterized matching with mis-
matches. Journal of Discrete Algorithms 5(1), 135–140 (2007)

6. I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight parameterized
suffix array construction. In: Proc. IWOCA, pp. 312–323 (2009)

7. Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. Theo-
retical Computer Science 154(2), 203–224 (1996)

8. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Re-
port 40, University of California, Berkeley (1970)

9. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays
for a binary alphabet. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA
2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009)

10. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying
a border array in linear time. J. Comb. Math. and Comb. Comp. 42, 223–236 (2002)

11. Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. Journal
of Automata, Languages and Combinatorics 10(1), 51–60 (2005)

12. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
Theoretical Informatics and Applications 36, 249–259 (2002)

13. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747,
pp. 208–217. Springer, Heidelberg (2003)

14. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoretical Com-
puter Science 395(2-1), 220–234 (2008)

15. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
Proc. STACS 2009, pp. 289–300 (2009)

16. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border
arrays and validation of string matching automata. RAIRO - Theoretical Informat-
ics and Applications 43(2), 281–297 (2009)

17. Gawrychowski, P., Jez, A., Jez, L.: Validating the Knuth-Morris-Pratt failure func-
tion, fast and online. In: Proc. CSR 2010 (to appear 2010)

18. Crochemore, M., Iliopoulos, C., Pissis, S., Tischler, G.: Cover array string recon-
struction. In: Proc. CPM 2010 (to appear 2010)

19. Moore, D., Smyth, W., Miller, D.: Counting distinct strings. Algorithmica 23(1),
1–13 (1999)

Cover Array String Reconstruction

Maxime Crochemore1,2, Costas S. Iliopoulos1,3,
Solon P. Pissis1, and German Tischler1,4

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, UK
{mac,csi,pississo,tischler}@dcs.kcl.ac.uk

2 Université Paris-Est, France
3 Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987 Perth WA 6845, Australia
4 Newton Fellow

Abstract. A proper factor u of a string y is a cover of y if every letter
of y is within some occurrence of u in y. The concept generalises the
notion of periods of a string. An integer array C is the minimal-cover
(resp. maximal-cover) array of y if C [i] is the minimal (resp. maximal)
length of covers of y[0 . . i], or zero if no cover exists.

In this paper, we present a constructive algorithm checking the va-
lidity of an array as a minimal-cover or maximal-cover array of some
string. When the array is valid, the algorithm produces a string over an
unbounded alphabet whose cover array is the input array. All algorithms
run in linear time due to an interesting combinatorial property of cover
arrays: the sum of important values in a cover array is bounded by twice
the length of the string.

1 Introduction

The notion of periodicity in strings is well studied in many fields like combina-
torics on words, pattern matching, data compression and automata theory (see
[11,12]), because it is of paramount importance in several applications, not to
talk about its theoretical aspects.

The concept of quasiperiodicity is a generalisation of the notion of periodicity,
and was defined by Apostolico and Ehrenfeucht in [2]. In a periodic repetition
the occurrences of the single periods do not overlap. In contrast, the quasiperiods
of a quasiperiodic string may overlap. We call a proper factor u of a nonempty
string y a cover of y, if every letter of y is within some occurrence of u in y.
In this paper, we consider the so-called aligned covers, where the cover u of y
needs to be a border (i.e. a prefix and a suffix) of y. The array C is called the
minimal-cover (resp. maximal-cover) array of the string y of length n, if for each
i, 0 ≤ i < n, C [i] stores either the length of the shortest (resp. longest) cover
of y[0 . . i], when such a cover exists, or zero otherwise. In particular, we do not
consider a string to be a cover of itself.

Apostolico and Breslauer [1,4] gave an online linear runtime algorithm com-
puting the minimal-cover array of a string. In their definition, a string is a cover

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 251–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 M. Crochemore et al.

of itself, but it is straightforward to modify their algorithm to accommodate our
definition. Li and Smyth [10] provided an online linear runtime algorithm for
computing the maximal-cover array.

In this paper, we present a constructive algorithm checking if an integer array
is the minimal-cover or maximal-cover array of some string. When the array
is valid, the algorithm produces a string over an unbounded alphabet whose
cover array is the input array. For our validity checking algorithm, we use the
aforementioned algorithms that compute cover arrays.

All algorithms run in linear time. This is essentially due to a combinatorial
property of cover arrays: the sum of important values in a cover array is bounded
by twice the length of the string.

The result of the paper completes the series of algorithmic characterisations of
data structures that store fundamental features of strings. They concern Border
arrays [6,7], Parameterized Border arrays [9] and Prefix arrays [5] that stores
periods of all the prefixes of a string, as well as the element of Suffix arrays [3,8]
that memorises the list of positions of lexicographically sorted suffixes of the
string. The question is not applicable to complete Suffix trees or Suffix automata
since the relevant string is part of these data structures. The algorithms may be
regarded as reverse engineering processes and, beyond their obvious theoretical
interest, they are useful to test the validity of some constructions. Their linear
runtime is an important part of their quality.

The rest of the paper is structured as follows. Section 2 presents the basic def-
initions used throughout the paper and the problem. In Section 3, we prove some
properties of minimal-cover arrays used later for the design or the analysis of
algorithms. In Section 4, we describe our constructive cover array validity check-
ing algorithms. Section 5 provides some combinatorially interesting numerical
data on minimal-cover arrays.

2 Definitions and Problems

Throughout this paper we consider a string y of length |y| = n on an unbounded
alphabet. It is represented as y[0 . . n− 1]. A string w is a factor of y if y = uwv
for two strings u and v. It is a prefix of y if u is empty and a suffix of y if
v is empty. A string u is a period of y if y is a prefix of uk for some positive
integer k, or equivalently if y is a prefix of uy. The period of y is the shortest
period of y. A string x of length m is a cover of y if both m < n and there
exists a set of positions P ⊆ {0, . . . , n −m} satisfying y[i . . i + m − 1] = x for
all i ∈ P and

⋃
i∈P{i, . . . , i + m − 1} = {0, . . . , n − 1}. Note that this requires

x to be a prefix as well as a suffix of y. The minimal-cover array C of y is the
array of integers C [0 . . n − 1] for which C [i], 0 ≤ i < n, stores the length of
the shortest cover of the prefix y[0 . . i], if such a cover exists, or zero otherwise.
The maximal-cover array CM stores longest cover at each position instead. The
following table provides the minimal-cover array C and the maximal-cover array
CM of the string y = abaababaababaabaababaaba.

Cover Array String Reconstruction 253

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
y[i] a b a a b a b a a b a b a a b a a b a b a a b a

C [i] 0 0 0 0 0 3 0 3 0 5 3 7 3 9 5 3 0 5 3 0 3 9 5 3
CM[i] 0 0 0 0 0 3 0 3 0 5 6 7 8 9 10 11 0 5 6 0 8 9 10 11

We consider the following problems for an integer array A:

Problem 1 (Minimal Validity Problem). Decide if A is the minimal-cover array
of some string.

Problem 2 (Maximal Validity Problem). Decide if A is the maximal-cover array
of some string.

Problem 3 (Minimal Construction Problem). When A is a valid minimal-cover
array, exhibit a string over an unbounded alphabet whose minimal-cover array
is A.

Problem 4 (Maximal Construction Problem). When A is a valid maximal-cover
array, exhibit a string over an unbounded alphabet whose maximal-cover array
is A.

3 Properties of the Minimal-Cover Array

In this section, we assume that C is the minimal-cover array of y. Its first element
is 0, as we do not consider a string to be a cover of itself. Next elements are 1
only for prefixes of the form ak for some letter a. We will use the following fact
in our argumentation.

Fact 1 (Transitivity). If u and v cover y and |u| < |v|, then u covers v.

For the rest of the section we assume that n > 1 and prove several less obvious
properties of the minimal-cover array.

Lemma 1. If 0 ≤ i < n and C [i] �= 0, then C [C [i]− 1] = 0.

Proof. Immediate from Fact 1. �	

Lemma 2. Let i and j be positions such that j < i, j−C [j] ≥ i−C [i], C [i] �= 0
and C [j] �= 0. Furthermore let r = j − (i−C [i] + 1). If i−C [i] = j −C [j] then
C [r] = 0, otherwise if i− C [i] < j − C [j], then C [r] = C [j].

Proof. First assume that i − C [i] = j − C [j]. Then C [j − (i − C [i] + 1)] =
C [j − (j − C [j] + 1)] = C [C [j] − 1] = 0 according to Lemma 1. Now assume
that i − C [i] < j − C [j]. This situation is depicted in Figure 1. The string
u = y[j −C [j] + 1 . . j] of length C [j] covers the string y[0 . . j]. By precondition
(j < i, j−C [j] > i−C [i]) u also covers y[0 . . r], as there exists an occurrence of u
at position r−C [j]+1. Thus we have C [r] ≤ C [j]. The assumption C [r] < C [j]
leads to a contradiction to the minimality of C . Thus we have C [r] = C [j]. �	

254 M. Crochemore et al.

u u

ijj'i'

u u

r+1r+1

r

Fig. 1. Case j − C [j] > i − C [i] of Lemma 2 (i′ = i − C[i] + 1, j′ = j − C[j] + 1)

Lemma 3. Let i and j be positions such that j < i and j − C [j] < i − C [i].
Then (i− C [i])− (j − C [j]) > C [j]/2.

Proof. For ease of notation let p = C [i], q = C [j] and r = (i − p) − (j − q).
Assume the statement does not hold, i.e. r ≤ q

2 . Let u = y[0 . . r − 1]. Then
due to the overlap of y[i − p + 1 . . i] and y[j − q + 1 . . j] both y[0 . . p − 1] and
y[0 . . q − 1] are powers of u. Let y[0 . . q − 1] = ue for some exponent e. Observe
that e = q/r ≥ q/(q/2) = 2. However y[0 . . q−1] is also covered by v = u1+e−�e�.
As |v| < q we obtain a contradiction. �	
Definition 1. A position j �= 0 of C is called totally covered, if there is a
position i > j for which C [i] �= 0 and i− C [i] + 1 ≤ j − C [j] + 1 < j.

Let Cp be obtained from C by setting C [i] = 0 for all totally covered indices i
on C . We call Cp the pruned minimal-cover array of y. The next table shows
the pruned minimal-cover array of the example string above.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
y[i] a b a a b a b a a b a b a a b a a b a b a a b a
C [i] 0 0 0 0 0 3 0 3 0 5 3 7 3 9 5 3 0 5 3 0 3 9 5 3

Cp[i] 0 0 0 0 0 3 0 0 0 0 0 0 0 9 5 0 0 0 0 0 0 9 5 3

Lemma 4. The sum of the elements of Cp does not exceed 2n.

Proof. Let Ii = {i−C [i]+1, i−C [i]+2, . . . i} for i = 0, . . . , n−1 if C [i] �= 0 and
Ii = ∅ otherwise. Let I ′i denote the lower half of Ii (if C [i] is uneven, the middle
element is included). According to Lemma 3, i �= j implies I ′i ∩ I ′j = ∅. Thus the
relation

∑n−1
i=0 |I ′i| ≤ n holds, which in turn implies

∑n−1
i=0 |Ii| ≤

∑n−1
i=0 2|I ′i| ≤ 2n.

�	
The bound of Lemma 4 is asymptotically tight. For an integer k > 1, let xk =
(akbak+1b)n/(2k+3). For k = 2 and n = 23 we get:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
y[i] a a b a a a b a a b a a a b a a b a a a b a a

Cp[i] 0 0 0 0 0 0 0 0 5 0 0 0 0 7 0 5 0 0 0 0 7 0 5

It is straightforward to see that all segments of length 2k + 3 of Cp contain the
values 2k + 1 and 2k + 3, except at the beginning of the string. Therefore the
sum of elements in Cp is (4k + 4)(n

2k+3 − 1), which tends to 2n when k (and n)
goes to infinity.

Cover Array String Reconstruction 255

4 Reverse Engineering a Cover Array

We solve the stated problems in three steps: array transformation, string infer-
ence and validity checking.

Transforming Maximal to Minimal-Cover Arrays. We first show how to trans-
form a maximal-cover array into a minimal-cover array in linear time. The fol-
lowing algorithm Maxtomin converts the maximal-cover array C of y to its
minimal-cover array in linear time.

Maxtomin(C , n)
1 for i ← 0 to n− 1 do
2 if C [i] �= 0 and C [C [i]− 1] �= 0 then
3 C [i] ← C [C [i]− 1]

The algorithm works in the following way. Assume the for loop is executing for
some i > 0. At this time the prefix C [0 . . i−1] of the array has been converted to
a minimal-cover array and we want to determine the value of C [i]. If C [i] is zero
then there is no cover and we leave the value as it is. If C [i] is not zero, then we
know from Fact 1 that if there is a shorter cover, then it covers y[0 . .C [i]− 1].
Thus we look up C [C [i]− 1] to see if there is a shorter cover we can substitute
for C [i]. As the segment before index i is already the minimal-cover array up to
this point, we know that such a value is minimal.

String Inference. In this step, we assume that the integer array C of length n is
the minimal- or maximal-cover array of at least one string. From what we wrote
above, we can assume without loss of generality that C is a minimal-cover array.

The nonzero values in C induce an equivalence relation on the positions of
every string that has the minimal-cover array C . More precisely, if we find the
value � �= 0 in position i of C , then this imposes the constraints

y[k] = y[i− � + 1 + k]

for k = 0, . . . , �−1. We say that the positions k and i−�+1+k are bidirectionally
linked. Let the undirected graph G(V, E) be defined by V = {0, . . . , n− 1} and

E =
⋃

i=0,...,n−1

⋃
j=0,...C [i]−1

({(j, i− C [i] + 1 + j)}) .

Then the nonzero values in C state that the letters at positions i and j of any
word y such that C is the minimal-cover array of y need to be equal, if i and j
are connected in G. According to Lemma 2, we do not lose connectivity between
vertices of G, if we remove totally covered indices from C , i.e. the graph induced
by C has the same connected components as the one induced by its pruned
version Cp. The number of edges in the graph induced by Cp is bounded by 2n
according to Lemma 4.

The pruned minimal-cover array Cp can be obtained from the minimal-cover
array C using the following algorithm Prune in linear time.

256 M. Crochemore et al.

Prune(C , n)
1 � ← 0
2 for i ← n− 1 downto 0 do
3 if � ≥ C [i] then
4 C [i] ← 0
5 � ← max(0, max(�,C [i])− 1)
6 return C

A non-zero value at index i in C defines an interval [i−C [i]+1, i]. The algorithm
scans C from large to small indices, where the value � stores the minimal lower
bound of all the intervals encountered so far. If an interval starting at a smaller
upper bound has a greater lower bound than �, we erase the corresponding value
in C by setting it to zero. Thus we remove all totally covered indices from C
and obtain the pruned array Cp.

So far we know how to extract information from the non-zero values of C by
computing connected components in a graph which has no more than 2n edges.
The vertices in each connected component designate positions in any produced
string which need to have equal letters. By assigning a different letter to each of
these components, we make sure not to violate any constraints set by the zero
values in C . The following algorithm MinArrayToString produces a string y
from an array A assumed to be a pruned minimal-cover array.

MinArrayToString(A, n)
1 � Produce edges
2 for i ← 0 to n− 1 do
3 E[i] ← empty list
4 for i ← 0 to n− 1 do
5 for j ← 0 to A[i]− 1 do
6 E[i−A[i] + 1 + j].add(j), E[j].add(i −A[i] + 1 + j)
7 � Compute connected components by Depth First Search
8 � and assign letters to output string
9 (S, �) ← (empty stack,−1)

10 for i ← 0 to n− 1 do
11 if y[i] is undefined then
12 S.push(i)
13 � ← � + 1
14 while not S.empty() do
15 p ← S.pop()
16 y[p] ← �
17 for each element j of E[p] do
18 if y[j] is undefined then
19 S.push(j)
20 return y

The first two for loops produce the edges E in the graph G induced by A, where
we implement the transition relation by assigning a linear list of outgoing edges

Cover Array String Reconstruction 257

to each vertex. The third for loop computes the connected components in the
graph by using depth first search and assigns the letters to the output string.
Each connected component is assigned a different letter. The runtime of the
algorithm is linear in the number of edges of the graph, which is bounded by 2n.

Theorem 1. The problems Minimal Construction Problem and Maximal
Construction Problem are solved in linear time by the algorithm MinAr-

rayToString and the sequence of algorithms MaxToMin and MinArray-

ToString respectively.

Validity Checking. In the third step we use the MinArrayToString algorithm
as a building block for our validity checking algorithm. Thus we have to ensure
some basic constraints so that the algorithm does not firstly access any unde-
fined positions in the input and secondly runs in linear time. As a first step, we
have to make sure that the algorithm will not try to define edges for which at
least one vertex number is not valid. This check is performed by the following
algorithm Precheck, which runs in linear time.

Precheck(A, n)
1 for i ← 0 to n− 1 do
2 if i−A[i] + 1 < 0 then
3 return false
4 return true

If Precheck returns true, then MinArrayToString will only generate edges
from valid to valid vertices. If we are checking for validity of a maximal-cover ar-
ray, we then pass the array through the algorithm MaxToMin as a next step. In
both cases (minimal and maximal) the next step is to prune the array using the
algorithm Prune. After this, we can call the algorithm MinArrayToString

with the so-modified array, but it may not run in linear time, as the constraints
imposed by Lemma 3 may not hold if the original input array is invalid. We
avoid this situation with the following algorithm Postcheck.

Postcheck(A, n)
1 j ← −1
2 for i ← 0 to n− 1 do
3 if A[i] �= 0 then

4 if j �= −1 and (i−A[i])− (j −A[j]) ≤
⌊

A[j]
2

⌋
then

5 return false
6 j ← i
7 return true

If Postcheck returns false, then the input array was invalid. Otherwise we
can call MinArrayToString and be sure that it will run in linear time. At
this point we have obtained a string from the input array in linear time. We
know that if the input array is valid, the minimal- or maximal- (depending on
what kind of input we are given) cover array of this string matches the input.

258 M. Crochemore et al.

If the input array is not valid, we cannot obtain it by computing the minimal-
or maximal-cover array from the obtained string. Thus we can check whether an
array A is a valid maximal-cover array using the following algorithm Check-

Maximal.
CheckMaximal(A, n)

1 if Precheck(A, n) = false then
2 return false
3 A ← MaxToMin(A, n)
4 A ← Prune(A, n)
5 if Postcheck(A, n) = false then
6 return false
7 y ← MinArrayToString(A, n)
8 if the maximal-cover array of y equals A then
9 return true

10 else return false

The algorithm CheckMinimal for checking whether an array A is a valid
minimal-cover array is obtained from CheckMaximal by removing the call
to the function MaxToMin in line 3 and checking whether the minimal instead
of the maximal-cover array of the string y equals A in line 8.

Theorem 2. The problems Minimal Validity Problem and Maximal Validity
Problem are solved by the algorithms CheckMinimal and CheckMaximal

respectively in linear time.

5 Experiments and Numerical Results

Figure 2 shows the maximal ratio of sums of elements of pruned minimal-cover
array, for all words over a two-letter alphabet, using even word lengths 8 to 30.
These ratios are known to be smaller than 2 by Lemma 4. However, values close
to this bound are not observed for small word length.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10 15 20 25 30

ra
ti
o

n

Fig. 2. Maximal ratio of sum over pruned minimal-cover array and word length for
words over the binary alphabet of even length 8 to 30

Cover Array String Reconstruction 259

We were able to verify the linear runtime of our algorithm in experiments.
The implementation for the CheckMinimal function is available at the Website
http://www.dcs.kcl.ac.uk/staff/tischler/src/recovering-0.0.0.tar.bz2,
which is set up for maintaining the source code and the documentation.

6 Conclusion

In this paper, we have provided linear runtime algorithms for checking the va-
lidity of minimal- and maximal-cover arrays and algorithms to infer strings from
valid minimal- and maximal-cover arrays. The linear time inference of strings
using the least possible alphabet size from cover arrays remains an open problem.

References

1. Apostolico, A., Breslauer, D.: Of periods, quasiperiods, repetitions and covers. In:
Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer
Science. LNCS, vol. 1261, pp. 236–248. Springer, Heidelberg (1997)

2. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science 119(2), 247–265 (1993)

3. Bannai, H., Inenaga, S., Shinohara, A., Take, M.: Inferring strings from graphs and
arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 208–217.
Springer, Heidelberg (2003)

4. Breslauer, D.: An on-line string superprimitivity test. Information Processing Let-
ters 44(6), 345–347 (1992)

5. Clement, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables.
In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theo-
retical Aspects of Computer Science (STACS 2009), Dagstuhl, Germany, pp.
289–300. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009),
http://drops.dagstuhl.de/opus/volltexte/2009/1825

6. Duval, J.-P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. Journal
of Automata, Languages and Combinatorics 10(1), 51–60 (2005)

7. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Veri-
fying a Border array in linear time. Journal on Combinatorial Mathematics and
Combinatorial Computing 42, 223–236 (2002)

8. Franek, F., Smyth, W.F.: Reconstructing a Suffix Array. International Journal of
Foundations of Computer Science 17(6), 1281–1295 (2006)

9. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border
arrays for a binary alphabet. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.)
LATA 2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009)

10. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002)

11. Lothaire, M. (ed.): Algebraic Combinatorics on Words. Cambridge University
Press, Cambridge (2001)

12. Lothaire, M. (ed.): Applied Combinatorics on Words. Cambridge University Press,
Cambridge (2005)

http://drops.dagstuhl.de/opus/volltexte/2009/1825

Compression, Indexing, and Retrieval
for Massive String Data�

Wing-Kai Hon1, Rahul Shah2, and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 Louisiana State University, USA
rahul@csc.lsu.edu

3 Texas A&M University, USA
jsv@ku.edu

Abstract. The field of compressed data structures seeks to achieve fast
search time, but using a compressed representation, ideally requiring less
space than that occupied by the original input data. The challenge is to
construct a compressed representation that provides the same function-
ality and speed as traditional data structures. In this invited presenta-
tion, we discuss some breakthroughs in compressed data structures over
the course of the last decade that have significantly reduced the space
requirements for fast text and document indexing. One interesting con-
sequence is that, for the first time, we can construct data structures for
text indexing that are competitive in time and space with the well-known
technique of inverted indexes, but that provide more general search ca-
pabilities. Several challenges remain, and we focus in this presentation
on two in particular: building I/O-efficient search structures when the
input data are so massive that external memory must be used, and in-
corporating notions of relevance in the reporting of query answers.

1 Introduction

The world is drowning in data! Massive data sets are being produced at un-
precedented rates from sources like the World-Wide Web, genome sequencing,
scientific experiments, business records, image processing, and satellite imagery.
The proliferation of data at massive scales poses serious challenges in terms of
storing, managing, retrieving, and mining information from the data.

Pattern matching — in which a pattern is matched against a massively sized
text or sequence of data — is a traditional field of computer science that forms
the basis for biological databases and search engines. Previous work has con-
centrated for the most part on the internal memory RAM model. However, we
are increasingly having to deal with massive data sets that do not easily fit into
internal memory and thus must be stored on secondary storage, such as disk
drives, or in a distributed fashion in a network.
� Supported in part by Taiwan NSC grant 96–2221–E–007–082–MY3 (W. Hon) and

USA National Science Foundation grant CCF–0621457 (R. Shah and J. S. Vitter).

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 260–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Compression, Indexing, and Retrieval for Massive String Data 261

Suffix trees and suffix arrays, which are the traditional data structures used
for pattern matching and a variety of other string processing tasks, are often
“bloated” in that they require much more space than that occupied by the un-
compressed input data. Moreover, the input data are typically highly compress-
ible, often by a factor of 5–10. When compared with the size of the input data
in compressed form, the size of suffix trees and suffix arrays can be prohibitively
large, often 20–150 times larger than the compressed data size. This extra space
blowup results in increased memory resources and energy usage, slower data ac-
cess (because the bloated data must reside in the slower levels of the memory
hierarchy), and reduced bandwidth.

1.1 Key Themes in This Presentation

In this presentation we focus on some emerging themes in the area of pat-
tern matching for massive data. One theme deals with the exciting new field
called compressed data structures, which addresses the bloat exhibited by suffix
trees and suffix arrays. There are two simultaneous goals: space-efficient com-
pression and fast indexing. The last decade has seen much progress, both in
theory and in practice. A practical consequence is that, for the first time, we
have space-efficient indexing methods for pattern matching and other tasks
that can compete in terms of space and time with the well-known technique
of inverted indexes [73,52,74] used in search engines, while offering more gen-
eral search capabilities. Some compressed data structures are in addition self-
indexing [61,19,20,28], and thus the original data can be discarded, making them
especially space-efficient. The two main techniques we discuss — compressed suf-
fix array (CSA) and FM-index — are self-indexing techniques that require space
roughly equal to the space occupied by the input data in compressed format.

A second theme deals with external memory access in massive data applica-
tions [1,71,70], in which we measure performance in terms of number of I/Os.
A key disadvantage of CSAs and the FM-index is that they do not exhibit lo-
cality of reference and thus do not perform well in terms of number of I/Os. If
the input data are so massive that the CSA and FM-index do not fit in internal
memory, their performance is slowed significantly. There is much interesting work
on compressed data structures in external memory (e.g., [2,4,27,17,16,38,48,55]),
but major challenges remain.

The technique of sparsification allows us to reduce space usage but at the
same time exploit locality for good I/O performance and multicore utilization.
We discuss sparsification in two settings: One involves a new transform called
the geometric Burrows-Wheeler transform (GBWT) [9,34] that provides a link
between text indexing and the field of range searching, which has been studied
extensively in the external memory setting. In this case, a sparse subset of suffix
array pointers are used to reduce space, and multiple offsets in the pattern must
be searched, which can be done especially fast on multicore processors. The other
setting introduces the notion of relevance in queries so that only the most relevant
(or top-k) matches [53,6,64,69,36] are reported. The technique of sparsification
provides approximate answers quickly in a small amount of space [36].

262 W.-K. Hon, R. Shah, and J.S. Vitter

Besides the external memory scenario, other related models of interest worth
exploring include the cache-oblivious model [25], data streams model [54], and
practical programming paradigms such as multicore [65] and MapReduce [11].

2 Background

2.1 Text Indexing for Pattern Matching

We use T [1 . . n] to denote an input string or text of n characters, where the
characters are drawn from an alphabet Σ of size σ. The fundamental task of text
indexing is to build an index for T so that, for any query pattern P (consisting of
p characters), we can efficiently determine if P occurs in T . Depending upon the
application, we may want to report all the occ locations of where P occurs in T ,
or perhaps we may merely want to report the number occ of such occurrences.

The string T has n suffixes, starting at each of the n locations in the text.
The ith suffix, which starts at position i, is denoted by T [i . . n]. The suffix
array [26,49] SA[1 . . n] of T is an array of n integers that gives the sorted order
of the suffixes of T . That is, SA[i] = j if T [j . . n] is the ith smallest suffix of T in
lexicographical order. Similarly, the inverse suffix array is defined by SA−1[j] = i.
The suffix tree ST is a compact trie on all the suffixes of the text [51,72,68].
Suffix trees are often augmented with suffix links. The suffix tree can list all occ
occurrences of P in O(p + occ) time in the RAM model. Suffix arrays can also
be used for pattern matching. If P appears in T , there exist indices � and r such
that SA[�],SA[�+1], . . . ,SA[r] store all the starting positions in text T where P
occurs. We can use the longest common prefix array to improve the query time
from O(p log n + occ) to O(p + log n + occ) time.

Suffix trees and suffix arrays use O(n) words of storage, which translates
to O(n log n) bits. This size can be much larger than that of the text, which
is n log σ bits, and substantially larger than the size of the text in compressed
format, which we approximate by nHk(T), where Hk(T) represents the kth-order
empirical entropy of the text T .

2.2 String B-Trees

Ferragina and Grossi introduced the string B-tree (SBT) [16], an elegant and
efficient index in the external memory model. The string B-tree acts conceptually
as a B-tree over the suffix array; each internal node does B-way branching. Each
internal node is represented as a “blind trie” with B leaves; each leaf is a pointer
to one of the B child nodes. The blind trie is formed as the compact trie on the B
leaves, except that all but the first character on each edge label is removed. When
searching within a node in order to determine the proper leaf (and therefore child
node) to go to next, the search may go awry since only the first character on each
edge is available for comparison. The search will always end up at the right place
when the pattern correctly matches one of the leaves, but in the case where there
is no match and the search goes awry, a simple scanning of the original text can
discover the mistake and find the corrected position where the pattern belongs.

Compression, Indexing, and Retrieval for Massive String Data 263

Each block of the text is never scanned more than once and thus the string
B-tree supports predecessor and range queries in O(p/B + logB n+ occ/B) I/Os
using O(n) words (or O(n/B) blocks) of storage.

3 Compressed Data Structures

In the field of compressed data structures, the goal is to build data structures
whose space usage is provably close to the entropy-compressed size of the text.
A simultaneous goal is to maintain fast query performance.

3.1 Wavelet Trees

The wavelet tree, introduced by Grossi et al. [28,24], has become a key tool in
modern text indexing. It supports rank and select queries on arrays of characters
from Σ. (A rank query rank(c, i) counts how many times character c occurs in
the first i positions of the array. A select query select(c, j) returns the location
of the jth occurrence of c.) In a sense, the wavelet tree generalizes the rank and
select operations from a bit array [59,57] to an arbitrary multicharacter text
array T , and it uses nH0(T) + t + O(n/ logσ n) bits of storage, where n is the
length of the array T , and t is the number of distinct characters in T .

The wavelet tree is conceptually a binary tree (often a balanced tree) of logical
bit arrays. A value of 0 (resp., 1) indicates that the corresponding entry is stored
in one of the leaves of the left (resp., right) child. The collective size of the
bit arrays at any given level of the tree is bounded by n, and they can be
stored in compressed format, giving the 0th-order entropy space bound. When
σ = O(polylog n), the height and traversal time of the wavelet tree can be
made O(1) by making the branching factor proportional to σε for some ε > 0 [21].

Binary wavelet trees have also been used to index an integer array A[1 . . n] in
linear space so as to efficiently support position-restricted queries [35,45]: given
any index range [�, r] and values x and y, we want to report all entries in A[� . . r]
with values between x and y. We can traverse each level of the wavelet tree in
constant time, so that the above query can be reported in O(occ log t) time,
where occ denotes the number of the desired entries.

Wavelet tree also work in the external memory setting [35]. Instead of using
a binary wavelet tree, we can increase the branching factor and obtain a B-ary
(or

√
B-ary) wavelet tree so that each query is answered in O(occ logB t) I/Os.

3.2 Compressed Text Indexes

Kärkkäinen [37] exploited Lempel-Ziv compression to develop a text index that,
in addition to the text, used extra space proportional to the size of the text (later
improved to O(nHk(T)) + o(n log σ) bits). Query time was quadratic in p plus
the time for p 2D range searches. Subsequent work focused on achieving faster
query times of the form O((p + occ)polylog n), more in line with that provided
by suffix trees and suffix arrays. In this section we focus on two parallel efforts
— compressed suffix arrays and the FM-index — that achieve the desired goal.

264 W.-K. Hon, R. Shah, and J.S. Vitter

Compressed Suffix Array (CSA). Grossi and Vitter [30,31] introduced the
compressed suffix array (CSA), which settled the open problem of whether it
was possible to simultaneously achieve fast query performance and break the
(n log n)-space barrier. In addition to the text, it used space proportional to the
text size, specifically, 2n logσ+O(n) bits, and answered queries in O(p/ logσ n+
occ logσ n) time. The key idea was to store a sparse representation of the full
suffix array, namely, the values that are multiples of 2j for certain j. The neighbor
function Φ(i) = SA−1[SA[i] + 1] allows suffix array values to be computed on
demand from the sparse representation in O(logσ n) time.

Sadakane [61,62] showed how to make the CSA self-indexing by adding auxil-
iary data structures so that the Φ function was entire and defined for all i, which
allowed the text values to be computed without need for storing the text T .
Queries took O((p + occ) log n) time. Sadakane also introduced an entropy anal-
ysis, showing that its space was bounded by nH0(T) + O(n log log σ) bits.1

Grossi et al. [28] gave the first self-index that provably achieved asymptotic
space optimality (i.e., with constant factor of 1 in the leading term). It used
nHk(T)+o(n) bits and achieved O(p log σ+occ(log4 n)/((log2 log n) log σ)) query
time.2 For 0 ≤ ε ≤ 1/3, there are various tradeoffs, such as 1

ε nHk(T) + o(n)
bits of space and O(p/ logσ n + occ(log2ε/(1−ε) n) log1−ε σ) query time. The Φ
function is encoded by representing a character in terms of the contexts of its
following k characters. For each character c in the text, the suffix array indices
for the contexts following c form an increasing sequence. The CSA achieves
high-order compression by encoding these increasing sequences in a context-by-
context manner, using 0th-order statistics for each context. A wavelet tree is
used to reduce redundancy in the sequence encodings.

FM-index. In parallel with the development of the CSA, Ferragina and Manzini
introduced the elegant FM-index [19,20], based upon the Burrows-Wheeler trans-
form (BWT) [7,50] data compressor. The FM-index was the first self-index
shown to have both fast performance and space usage within a constant factor
of the desired entropy bound for constant-sized alphabets. It used 5nHk(T) +
O(nεσσ+1 +nσ/ logn)+ o(n) bits and handled queries in O(p+ occ logε n) time.
The BWT of T is a permutation of T denoted by Tbwt, where Tbwt[i] is the
character in the text immediately preceding the ith lexicographically smallest
suffix of T . That is, Tbwt[i] = T [SA[i]−1]. Intuitively, the sequence Tbwt[i] is easy
to compress because adjacent entries often share the same higher-order context.
The “last to first” function LF is used to walk backwards through the text;
LF (i) = j if the ith lexicographically smallest suffix, when prepended with its
preceding character, becomes the jth lexicographically smallest suffix.

The FM-index and the CSA are closely related: The LF function and the
CSA neighbor function Φ are inverses. That is, SA[LF (i)] = SA[i] − 1; equiv-
alently LF (i) = SA−1[SA[i] − 1] = Φ−1(i). A partition-based implementation

1 We assume for convenience in this presentation that the alphabet size satisfies σ =
O(polylog n) so that the auxiliary data structures are negligible in size.

2 We assume that k ≤ α logσ n − 1 for any constant 0 ≤ α ≤ 1, so that the kth-order
model complexity is relatively small.

Compression, Indexing, and Retrieval for Massive String Data 265

and analysis of the FM-index, similar to the context-based CSA space anal-
ysis described above [28], reduced the constant factor in the FM-index space
bound to 1, achieving nHk(T) + o(n) bits and various query times, such as
O(p + occ log1+ε n) [21,29]. Intuitively, the BWT Tbwt (and the CSA lists) can
be partitioned into contiguous segments, where in each segment the context of
subsequent text characters is the same. The context length may be fixed (say, k)
or variable. We can code each segment of Tbwt (or CSA lists) using the statistics
of character occurrences for that particular context. A particularly useful tool
for encoding each segment is the wavelet tree, which reduces the coding problem
from encoding vectors of characters to encoding bit vectors. Since each individ-
ual partition (context) is encoded by a separate wavelet tree using 0th-order
compression, the net result is higher-order compression. This idea is behind the
notion of “compression boosting” of Ferragina et al. [14].

Simpler implementations for the FM-index and CSA achieve higher-order
compression without explicit partitioning into separate contexts. In fact, the
original BWT was typically implemented by encoding Tbwt using the move-to-
front heuristic [19,20]. Grossi et al. [24] proposed using a single wavelet tree
to encode the entire Tbwt and CSA lists rather than a separate wavelet tree
for each partition or context. Each wavelet tree node is encoded using run-
length encoding, such as Elias’s γ or δ codes [12]. (The γ code represents i > 0
with 2�log i� + 1 bits, and the δ code uses �log i� + 2�log(log i + 1)� + 1 bits.)
Most analyses of this simpler approach showed higher-order compression up to a
constant factor [50,24,44,13]. The intuition is that encoding a run of length i
by O(log i) bits automatically tunes itself to the statistics of the particular
context.

Mäkinen and Navarro [46] showed how to use a single wavelet tree and achieve
a space bound with a constant factor of 1, namely, nHk(T) + o(n) bits. They
used a compressed block-based bit representation [59,57] to encode each bit
array within the single wavelet tree. A similar bound can be derived if we instead
encode each bit array using δ coding, enhanced with rank and select capabilities,
as done by Sadakane [61,62]; however, the resulting space bound contains an
additional additive term of O(n log Hk(T)) = O(n log log σ) bits, which arises
from the 2 log log i term in δ encoding. This additive term increases the constant
factor in the linear space term nHk(T) when the entropy or alphabet size is
bounded by a constant, and under our assumptions on σ and k, it is bigger than
the secondary o(n) term. Mäkinen and Navarro [46] also apply their boosting
technique to achieve high-order compression for dynamic text indexes [8,47].

Extensions. In recent years, compressed data structures has been a thriving
field of research. The CSA and FM-index can be extended to support more
complex queries, including dictionary matching [8], approximate matching [40],
genome processing [22,41], XML subpath queries [18], multilabeled trees [3],
and general suffix trees [63,60,23]. Puglisi et al. [58] showed that compressed
text indexes provide faster searching than inverted indexes. However, they also
showed that if the number of occurrences (matching locations) are too many,
then inverted indexes perform better in terms of document retrieval. The survey

266 W.-K. Hon, R. Shah, and J.S. Vitter

by Navarro and Mäkinen [55] also discusses index construction time and other
developments, and Ferragina et al. [15] report experimental comparisons.

4 Geometric Burrows-Wheeler Transform (GBWT)

Range search is a useful tool in text indexing (see references in [9]).
Chien et al. [9] propose two transformations that convert a set S of points
(x1, y1), (x2, y2), . . . , (xn, yn) into text T , and vice-versa. These transformations
show a two-way connectivity between problems in text indexing and orthogonal
range search, the latter being a well-studied problem in the external memory
setting and in terms of lower bounds. Let 〈x〉 be the binary encoding of x seen
as a string, and let 〈x〉R be its reverse string. For each point (xi, yi) in S, the first
transform constructs a string 〈xi〉R#〈yi〉$. The desired text T is formed by con-
catenating the above string for each point, so that T = 〈x1〉R#〈y1〉$〈x2〉R#〈y2〉$
. . . 〈xn〉R#〈yn〉$. An orthogonal range query on S translates into O(log2 n) pat-
tern matching queries on T . This transformation provides a framework for trans-
lating (pointer machine as well as external memory) lower bounds known for
range searching to the problem of compressed text indexing. An extended ver-
sion of this transform, which maps 3D points into text, can be used to derive
lower bounds for the position-restricted pattern matching problem.

For upper bounds, Chien et al. introduced the geometric Burrows-Wheeler
transform (GBWT) to convert pattern matching problems into range queries.
Given a text T and blocking factor d, let T ′[1 . . n/d] be the text formed by
blocking every consecutive d characters of T to form a single metacharacter, as
shown in Figure 1. Let SA′[1 . . n/d] be the sparse suffix array of T ′. The GBWT
of T consists of the 2D points (i, ci), for 1 ≤ i ≤ n/d, where ci is the reverse of
the metacharacter that precedes T ′[SA′[i]]. The parameter d is set to 1

2 logσ n so
that the data structures require only O(n log σ) bits.

To perform a pattern matching query for pattern P , we find, for each possible
offset k between 0 and d−1, all occurrences of P that start k characters from the

pos sorted suffix

1 acg tac gtg cgt

4 cgt

3 gtg cgt

2 tac gtg cgt

T’ = acg tac gtg cgt

i SA[i] ci

1 1

4

3

2

2 gtg

3 cat

4 gca

sorted suffix of T’ GBWT of T’

(a) (b) (c)

cat
gca
gtg

1 2 3 4

2D representation
of GBWT

Fig. 1. Example of the GBWT for text T = acgtacgtgcgt. The text of metacharacters
is T ′ = acg tac gtg cgt. (a) The suffixes of T ′ sorted into lexicographical order.
(b) The suffix array SA′ and the reverse preceding metacharacters ci; the GBWT is
the set of tuples (i, ci), for all i. (c) The 2D representation of GBWT.

Compression, Indexing, and Retrieval for Massive String Data 267

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

N
um

be
r

of
 D

is
k

A
cc

es
s

Size of Index (MB)

No occ chart

ST
ST+SA

FSBT
FSBT+SA

SSBT+KDtree
SSBT+Rtree

SSBT+Wavelet

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

Size of Index (MB)

3000 occ chart

ST
ST+SA

FSBT
FSBT+SA

SSBT+KDtree
SSBT+Rtree

SSBT+Wavelet

Fig. 2. I/Os per query. On the left, there is no output (i.e., the searches are unsuccess-
ful). On the right, there are 3,000 occurrences on average per query.

beginning of a metacharacter. For k �= 0, this process partitions P into 〈P̂ , P̃ 〉,
where P̃ matches a prefix of a suffix of T ′, and P̂ has length k and matches
a suffix of the preceding metacharacter. By reversing P̂ , both subcomponents
must match prefixes, which corresponds to a 2D range query on the set S of 2D
points defined above. The range of indices in the sparse suffix array SA′ can be
found by a string B-tree, and the 2D search can be done using a wavelet tree or
using alternative indexes, such as kd-trees or R-trees.

If the pattern is small and fits entirely within a metacharacter, table lookup
techniques (akin to inverted indexes) provide the desired answer using a negli-
gible amount of space. The resulting space bound for GBWT is O(n log σ) bits,
and the I/O query bound is the same as for four-sided 2D range search, namely,
O(p/B + (logσ n) logB n + occ logB n) or O(p/B +

√
n/B logσ n + occ/B) [34].

Faster performance can often be achieved in practice using kd-trees or R-trees [10].
Hon et al. [34] introduce a variable-length sparsification so that each metachar-

acter corresponds to roughly d bits in compressed form. Assuming k = o(logσ n),
this compression further reduces the space usage from linear to O(nHk(T)+n)+
o(n log σ) bits of blocked storage. The query time for reporting pattern matches
is O(p/(B logσ n) + (log4 n)/ log log n + occ logB n) I/Os.

4.1 Experimental Results for GBWT

In Figure 2, we compare the pattern matching performance of several indexes:

1. ST: Suffix tree (with naive blocking) and a parenthesis encoding of subtrees.
2. ST + SA: Suffix tree (with naive blocking strategy) and the suffix array.

268 W.-K. Hon, R. Shah, and J.S. Vitter

Fig. 3. Finding all exact matches of 1 million short read patterns P with the human
genome. The left graph uses short read patterns sampled from the target genome; the
right graph uses short read patterns obtained from the SRR001115 experiment [56].

3. FSBT: Full version of string B-tree containing all suffixes. The structure of
each blind trie uses parentheses encoding, saving ≈ 1.75 bytes per trie node.

4. FSBT + SA: Full version of string B-tree and the suffix array.
5. SSBT(d) + Rtree: Sparse version of the string B-tree with the R-tree 2D

range search data structure. Metacharacter sizes are d = 2, 4, 8.
6. SSBT(d) + kd-tree: Sparse version of the string B-tree with the kd-tree

range search data structure. Metacharacter sizes are d = 2, 4, 8.
7. SSBT(d) + Wavelet: Sparse version of the string B-tree with the wavelet

tree used for 2D queries. Metacharacter sizes are d = 2, 4, 8.

The first four indexes are not compressed data structures and exhibit significant
space bloat; however, they achieve relatively good I/O performance. The latter
three use sparsification, which slows query performance but requires less space.

4.2 Parallel Sparse Index for Genome Read Alignments

In this section, we consider the special case in the internal memory setting in
which P is a “short read” that we seek to align with a genome sequence, such as
the human genome. The human genome consists of about 3 billion bases (A, T,
C, or G) and occupies roughly 800MB of raw space. In some applications, the
read sequence P may be on the order of 30 bases, while with newer equipment,
the length of P may be more than 100. We can simplify our GBWT approach
by explicitly checking, for each match of P̃ , whether P̂ also matches. We use
some auxiliary data structures to quickly search the sparse suffix array SA′ and
employ a backtracking mechanism to find approximate matches. The reliability
of each base in P typically degrades toward the end of P , and so our algorithm
prioritizes mismatches toward the end of the sequence.

Figure 3 gives timings of short read aligners for a typical instance of the prob-
lem, in which all exact matches between each P and the genome are reported:

Compression, Indexing, and Retrieval for Massive String Data 269

1. SOAP2 [42]: Index size is 6.1 GB, based on 2way-BWT, run with parameters
-r 1 -M 0 -v 0 (exact search).

2. BOWTIE [41]: Index size 2.9 GB, based upon BWT, run with -a option.
3. ZOOM [43]: No index, based on a multiple-spaced seed filtering technique, run

with -mm 0 (exact search).
4. Ψ-RA(4): Index size 3.4 GB, uses sparse suffix array with sparsification factor

of d = 4 bases, finds all occurrences of the input patterns.
5. Ψ-RA(8): Index size 2.0 GB, uses sparse suffix array with sparsification factor

of d = 8 bases, finds all occurrences of the input patterns.
6. Ψ-RA(12): Index size 1.6 GB, uses sparse suffix array with sparsification

factor of d = 12 bases, finds all occurrences of the input patterns.

The size listed for each index includes the space for the original sequence data.
Our simplified parallel sparse index read aligner (a.k.a. Ψ-RA) [39] achieves rel-
atively high throughput compared with other methods. The experiments were
performed on an Intel i7 with eight cores and 8GB memory. The Ψ-RA method
can take advantage of multicore processors, since each of the d offset searches
can be trivially parallelized. However, for fairness in comparisons, the timings
used a single-threaded implementation and did not utilize multiple cores.

5 Top-k Queries for Relevance

Inverted indexes have several advantages over compressed data structures that
need to be considered: (1) Inverted indexes are highly space-efficient, and they
naturally provide the demarcation between RAM storage (dictionary of words)
and disk storage (document lists for the words). (2) They are easy to con-
struct in external memory. (3) They can be dynamically updated and also allow
distributed operations [74]. (4) They can be easily tuned (by using frequency-
ordered or PageRank-ordered lists) to retrieve top-k most relevant answers to
the query, which is often required in search engines like Google.

Top-k query processing is an emerging field in databases [53,6,64,69,36]. When
there are too many query results, certain notions of relevance may make some
answers preferable to others. Database users typically want to see those answers
first. In the problem of top-k document retrieval, the input data consist of D
documents {d1, d2, . . . , dD} of total length n. Given a query pattern P , the
goal is to list which documents contain P ; there is no need to report where
in a document the matches occur. If a relevance measure is supplied (such as
frequency of matches, proximity of matches, or PageRank), the goal is to out-
put only the most relevant matching documents. The problem could specify an
absolute threshold K on the relevance, in which case all matching documents
are reported whose relevance value is ≥ K; alternatively, given parameter k, the
top-k most relevant documents are reported.

Early approaches to the problem did not consider relevance and instead re-
ported all matches [53,64,69]. They used a generalized suffix tree, and for each
leaf, they record which document it belongs to. On top of this basic data struc-
ture, early approaches employed either a chaining method to link together entries

270 W.-K. Hon, R. Shah, and J.S. Vitter

from the same document or else a wavelet tree built over the document array. As
a result, these data structures exhibit significant bloat in terms of space usage.

Hon et al. [36] employ a more space-conscious approach. They use a suffix
tree, and every node of the suffix tree is augmented with additional arrays.
A relevance queries can be seen as a (2, 1, 1)-query in 3D, where the two x-
constraints come from specifying the subtree that matches the pattern P , the
one-sided y-constraint is for preventing redundant output of the same document,
and the one-sided z-constraint is to get the highest relevance scores. This (2, 1, 1)-
query in 3D can be converted to at most p (2, 1)-queries in 2D, which in turn
can be answered quickly using range-maximum query structures, thus achieving
space-time optimal results. The result was the first O(n)-word index that takes
O(p + k log k) time to answer top-k queries.

Preliminary experimental results show that for 2MB of input data, the in-
dex size is 30MB and can answer top-k queries in about 4 × 10−4 seconds (for
k = 10). This implementation represents a major improvement because previous
solutions, such as an adaptation of [53], take about 500MB of index size and are
not as query-efficient. Further improvements are being explored.

Many challenging problems remain. One is to make the data structures com-
pressed. The space usage is Ω(n) nodes, and thus Ω(n log n) bits, which is larger
than the input data. To reduce the space usage to that of a compressed rep-
resentation, Hon et al. [36] employ sparsification to selectively augment only
O(n/ log2 n) carefully chosen nodes of the suffix tree with additional informa-
tion, achieving high-order compression, at the expense of slower search times.
Other challenges include improved bounds and allowing approximate matching
and approximate relevance. Thankachan et al. [67] develop top-k data structures
for searching two patterns using O(n) words of space with times related to 2D
range search; the approach can be generalized for multipattern queries.

6 Conclusions

We discussed recent trends in compressed data structures for text and document
indexing, with the goal of achieving the time and space efficiency of inverted
indexes, but with greater functionality. We focused on two important challenging
issues: I/O efficiency in external memory settings and building relevance into the
query mechanism. Sparsification can help address both questions, and it can also
be applied to the dual problem of dictionary matching, where the set of patterns
is given and the query is the text [32,33,66,5]. Much work remains to be done,
including addressing issues of parallel multicore optimization, dynamic updates,
online data streaming, and approximate matching.

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

2. Arroyuelo, D., Navarro, G.: A Lempel-Ziv text index on secondary storage. In: Ma,
B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 83–94. Springer, Heidelberg
(2007)

Compression, Indexing, and Retrieval for Massive String Data 271

3. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary rela-
tions and multi-labeled trees. In: Proc. ACM-SIAM Symp. on Discrete Algorithms,
pp. 680–689 (2007)

4. Bayer, R., Unterauer, K.: Prefix B-trees. ACM Transactions on Database Sys-
tems 2(1), 11–26 (1977)

5. Belazzougui, D.: Succinct dictionary matching with no slowdown. In: Proc. Symp.
on Combinatorial Pattern Matching (June 2010)

6. Bialynicka-Birula, I., Grossi, R.: Rank-sensitive data structures. In: Consens, M.P.,
Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 79–90. Springer, Heidelberg
(2005)

7. Burrows, M., Wheeler, D.: A block sorting data compression algorithm. Technical
report, Digital Systems Research Center (1994)

8. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed indexes for dy-
namic text collections. ACM Transactions on Algorithms 3(2) (2007)

9. Chien, Y.-F., Hon, W.-K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler
transform: Linking range searching and text indexing. In: Proc. IEEE Data Com-
pression Conf., pp. 252–261 (2008)

10. Chiu, S.-Y., Hon, W.-K., Shah, R., Vitter, J.S.: I/O-efficient compressed text in-
dexes: From theory to practice. In: Proc. IEEE Data Compression Conf., pp. 426–
434 (2010)

11. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Proc. Symp. on Operating Systems Design and Implementation. December
2004, pp. 137–150, USENIX (2004)

12. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory IT-21, 194–203 (1975)

13. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees.
Information and Computation 207(8), 849–866 (2009)

14. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compres-
sion in optimal linear time. Journal of the ACM 52(4), 688–713 (2005)

15. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. ACM Journal of Experimental Algorithmics 12, arti-
cle 1.12 (2008)

16. Ferragina, P., Grossi, R.: The String B-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM 46(2), 236–280 (1999)

17. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On searching com-
pressed string collections cache-obliviously. In: Proc. ACM Conf. on Principles of
Database Systems, Vancouver, June 2008, pp. 181–190 (2008)

18. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. IEEE Symp. on Foundations of
Computer Science, pp. 184–196 (2005)

19. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE Symp. on Foundations of Computer Science, November 2000, vol. 41,
pp. 390–398 (2000)

20. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4),
552–581 (2005)

21. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (May
2007) Conference version in SPIRE 2004

22. Ferragina, P., Venturini, R.: Compressed permuterm index. In: Proc. ACM SIGIR
Conf. on Res. and Dev. in Information Retrieval, pp. 535–542 (2007)

272 W.-K. Hon, R. Shah, and J.S. Vitter

23. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theoretical Computer Science 410(51), 5354–5364 (2009)

24. Foschini, L., Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression:
Experiments on suffix arrays and trees. ACM Transactions on Algorithms 2(4),
611–639 (2004); Conference versions in SODA 2004 and DCC 2004

25. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious al-
gorithms. In: Proc. IEEE Symp. on Foundations of Computer Science, vol. 40,
pp. 285–298 (1999)

26. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: PAT trees and
PAT arrays. In: Information Retrieval: Data Structures And Algorithms, ch. 5,
pp. 66–82. Prentice-Hall, Englewood Cliffs (1992)

27. González, R., Navarro, G.: A compressed text index on secondary memory. In: Proc.
Intl. Work. Combinatorial Algorithms, Newcastle, Australia, pp. 80–91. College
Publications (2007)

28. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. ACM-SIAM Symp. on Discrete Algorithms (January 2003)

29. Grossi, R., Gupta, A., Vitter, J.S.: Nearly tight bounds on the encoding length of
the Burrows-Wheeler transform. In: Proc. Work. on Analytical Algorithmics and
Combinatorics (January 2008)

30. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. In: Proc. ACM Symp. on Theory of
Computing, May 2000, vol. 32, pp. 397–406 (2000)

31. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35(32), 378–407
(2005)

32. Hon, W.-K., Lam, T.-W., Shah, R., Tam, S.-L., Vitter, J.S.: Compressed index for
dictionary matching. In: Proc. IEEE Data Compression Conf., pp. 23–32 (2008)

33. Hon, W.-K., Lam, T.-W., Shah, R., Tam, S.-L., Vitter, J.S.: Succinct index for dy-
namic dictionary matching. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878. Springer, Heidelberg (2009)

34. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: On entropy-compressed text
indexing in external memory. In: Hyyro, H. (ed.) SPIRE 2009. LNCS, vol. 5721,
pp. 75–89. Springer, Heidelberg (2009)

35. Hon, W.-K., Shah, R., Vitter, J.S.: Ordered pattern matching: Towards full-text
retrieval. In: Purdue University Tech. Rept. (2006)

36. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: Proc. IEEE Symp. on Foundations of Computer Science,
Atlanta (October 2009)

37. Kärkkäinen, J.: Repetition-Based Text Indexes. Ph.d., University of Helsinki (1999)
38. Kärkkäinen, J., Rao, S.S.: Full-text indexes in external memory. In: Meyer,

U., Sanders, P., Sibeyn, J. (eds.) Algorithms for Memory Hierarchies, ch. 7,
pp. 149–170. Springer, Berlin (2003)

39. Külekci, M.O., Hon, W.-K., Shah, R., Vitter, J.S., Xu, B.: A parallel sparse index
for read alignment on genomes (2010)

40. Lam, T.-W., Sung, W.-K., Wong, S.-S.: Improved approximate string matching
using compressed suffix data structures. Algorithmica 51(3), 298–314 (2008)

41. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3),
article R25 (2009)

Compression, Indexing, and Retrieval for Massive String Data 273

42. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: SOAP2:
An improved ultrafast tool for short read alignment. Bioinformatics 25(15),
1966–1967 (2009)

43. Lin, H., Zhang, Z., Zhang, M.Q., Ma, B., Li, M.: ZOOM: Zillions of oligos mapped.
Bioinformatics 24(21), 2431–2437 (2008)

44. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12(1), 40–66 (2005)

45. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: Proc. Latin
American Theoretical Informatics Symp., pp. 703–714 (2006)

46. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726,
pp. 229–241. Springer, Heidelberg (2007)

47. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3), article 12 (June 2008)

48. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching—
efficient secondary memory and distributed implementation of compressed suf-
fix arrays. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341,
pp. 681–692. Springer, Heidelberg (2004)

49. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

50. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3) (2001); Conference version in SODA 1999

51. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the ACM 23(2), 262–272 (1976)

52. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans-
actions on Information Systems 14(4), 349–379 (1996)

53. Muthukrishnan, S.: Efficient Algorithms for Document Retrieval Problems. In:
Proc. ACM-SIAM Symp. on Discrete Algorithms, pp. 657–666 (2002)

54. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science. now Publishers, Hanover (2005)

55. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

56. NCBI short read archive SRR001115, http://www.ncbi.nlm.nih.gov/
57. Patrascu, M.: Succincter. In: Proc. IEEE Symp. on Foundations of Computer Sci-

ence, pp. 305–313 (2008)
58. Puglisi, S.J., Smyth, W.F., Turpin, A.: Inverted files versus suffix arrays for locating

patterns in primary memory. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.)
SPIRE 2006. LNCS, vol. 4209, pp. 122–133. Springer, Heidelberg (2006)

59. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), article 43 (2007)

60. Russo, L., Navarro, G., Oliveira, A.: Fully-compressed suffix trees. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 362–373. Springer, Heidelberg (2008)

61. Sadakane, K.: Compressed text databases with efficient query algorithms based on
the compressed suffix array. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000, LNCS,
vol. 1969, pp. 410–421. Springer, Heidelberg (December 2000)

62. Sadakane, K.: New text indexing functiionalities of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003)

63. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

http://www.ncbi.nlm.nih.gov/

274 W.-K. Hon, R. Shah, and J.S. Vitter

64. Sadakane, K.: Succinct Data Structures for Flexible Text Retrieval Systems. Jour-
nal of Discrete Algorithms 5(1), 12–22 (2007)

65. Sodan, A.C., Machina, J., Deshmeh, A., Macnaughton, K., Esbaugh, B.: Paral-
lelism via multithreaded and multicore CPUs. IEEE Computer 43(3), 24–32 (2010)

66. Tam, A., Wu, E., Lam, T.W., Yiu, S.-M.: Succinct text indexing with wildcards.
In: Proc. Intl. Symp. on String Processing Information Retrieval, August 2009, pp.
39–50 (2009)

67. Thankachan, S.V., Hon, W.-K., Shah, R., Vitter, J.S.: String retrieval for multi-
pattern queries (2010)

68. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

69. Välimäki, N., Mäkinen, V.: Space-Efficient Algorithms for Document Retrieval.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

70. Vitter, J.S.: Algorithms and Data Structures for External Memory. Foundations
and Trends in Theoretical Computer Science. now Publishers, Hanover (2008)

71. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I: Two-level memo-
ries. Algorithmica 12(2–3), 110–147 (1994)

72. Weiner, P.: Linear pattern matching algorithm. In: Proc. IEEE Symp. on Switching
and Automata Theory, Washington, DC, vol. 14, pp. 1–11 (1973)

73. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images, 2nd edn. Morgan Kaufmann, Los Altos (1999)

74. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Sur-
veys 38(2) (2006)

Building the Minimal Automaton of A∗X in
Linear Time, When X Is of Bounded Cardinality

Omar AitMous1, Frédérique Bassino1, and Cyril Nicaud2

1 LIPN UMR 7030, Université Paris 13 - CNRS, 93430 Villetaneuse, France
2 LIGM, UMR CNRS 8049, Université Paris-Est, 77454 Marne-la-Vallée, France

{aitmous,bassino}@lipn.univ-paris13.fr, nicaud@univ-mlv.fr

Abstract. We present an algorithm for constructing the minimal au-
tomaton recognizing A∗X, where the pattern X is a set of m (that is a
fixed integer) non-empty words over a finite alphabet A whose sum of
lengths is n. This algorithm, inspired by Brzozowski’s minimization algo-
rithm, uses sparse lists to achieve a linear time complexity with respect
to n.

1 Introduction

This paper addresses the following issue: given a pattern X , that is to say a non-
empty language which does not contain the empty word ε, and a text T ∈ A+,
assumed to be very long, how to efficiently find occurrences of words of X in the
text T ?

A usual approach is to precompute a deterministic automaton recognizing the
language A∗X and use it to sequentially treat the text T . To find the occurrences
of words of X , we simply read the text and move through the automaton. An
occurrence of the pattern is found every time a final state is reached. Once built,
this automaton can of course be used for other texts.

The pattern X can be of different natures, and we can reasonably consider
three main categories: a single word, a finite set of words and a regular lan-
guage. Depending on the nature of the pattern, the usual algorithms [6] build a
deterministic automaton that is not necessary minimal.

For a single word u, very efficient algorithms such as the ones of Knuth, Morris
and Pratt [10,6] or Boyer and Moore [4,6] are used. Knuth-Morris-Pratt algo-
rithm simulates the minimal automaton recognizing A∗u. Aho-Corasick
algorithm [1] treats finite sets of words by constructing a deterministic yet non-
minimal automaton. And Mohri in [11] proposed an algorithm for regular lan-
guages given by a deterministic automaton.

In this article, we consider the case of a set of m non-empty words whose
sum of lengths is n, where m is fixed and n tends toward infinity. Aho-Corasick
algorithm [1] builds a deterministic automaton that recognizes A∗X with linear
time and space complexities. Experimentally we remark, by generating uniformly
at random patterns of m words whose sum of lengths is n, that the probability
for Aho-Corasick automaton to be minimal is very small for large n. One can

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 275–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

276 O. AitMous, F. Bassino, and C. Nicaud

apply a minimization algorithm such as Hopcroft’s algorithm [8] to Aho-Corasick
automaton, but this operation costs an extra O(n log n) time.

We propose another approach to directly build the minimal automaton of
A∗X . It is based on Brzozowski’s minimization algorithm described in [5]. This
algorithm considers a non-deterministic automaton A recognizing a language L,
and computes the minimal automaton in two steps. First the automaton A is
reversed and determinized. Second the resulting automaton is reversed and de-
terminized too. Though the complexity of Brzozowski’s algorithm is exponential
in the worst case, our adaptation is linear in time and quadratic in space, using
both automata constructions and an efficient implementation of sparse lists. The
fact that the space complexity is greater than the time complexity is typical for
that kind of sparse list implementation (see [3] for another such example, used
to minimize local automata in linear time).

Outline of the paper: Our algorithm consists in replacing the first step of
Brzozowski’s algorithm by a direct construction of a co-deterministic automaton
recognizing A∗X , and in changing the basic determinization algorithm into an ad
hoc one using the specificity of the problem in the second step. With appropriate
data structures, the overall time complexity is linear.

In Section 2 basic definitions and algorithms for words and automata are
recalled. A construction of a co-deterministic automaton recognizing A∗X is
described in Section 3. The specific determinization algorithm that achieves
the construction of the minimal automaton is presented in Section 4. Section 5
present the way of using sparse lists and the analysis the global complexity of
the construction.

2 Preliminary

In this section, the basic definitions and constructions used throughout this
article are recalled. For more details, the reader is referred to [9] for automata
and to [6,7] for algorithms on strings.

Automata. A finite automaton A over a finite alphabet A is a quintuple A =
(A, Q, I, F, δ), where Q is a finite set of states, I ⊂ Q is the set of initial states,
F ⊂ Q is the set of final states and δ is a transition function from Q × A to
P(Q), where P(Q) is the power set of Q. The automaton A is deterministic if it
has only one initial state and if for any (p, a) ∈ Q×A, |δ(q, a)| ≤ 1. It is complete
if for any (p, a) ∈ Q × A, |δ(q, a)| ≥ 1. A deterministic finite automaton A is
accessible when for each state q ∈ Q, there exists a path from the initial state to
q. The size of an automatonA is its number of states. The minimal automaton of
a regular language is the unique smallest accessible and deterministic automaton
recognizing this language.

The transition function δ is first extended to P(Q) × A by δ(P, a) =
∪p∈P δ(p, a), then inductively to P(Q) × A∗ by δ(P, ε) = P and δ(P, w · a) =
δ(δ(P, w), a). A word u is recognized by A if there exists an initial state i ∈ I
such that δ(i, u)∩F �= ∅. The set of words recognized by A is the language L(A).

Building the Minimal Automaton of A∗X in Linear Time 277

The reverse of an automaton A = (A, Q, I, F, δ) is the automaton tA =
(A, Q, F, I, tδ). For every (p, q, a) ∈ Q×Q×A, p ∈ tδ(q, a) if and only if q ∈ δ(p, a).
We denote by w̃ the mirror word of w. The automaton tA recognizes the lan-
guage L̃(A) = {w̃ | w ∈ L(A)}. An automaton A is co-deterministic if its reverse
automaton is deterministic.

Any finite automaton A = (A, Q, I, F, δ) can be transformed by the subset
construction into a deterministic automaton B = (A,P(Q), {I}, FB, δB) recog-
nizing the same language and in which FB = {P ∈ P(Q) | P ∩ F �= ∅} and
δB is a function from P(Q) × A to P(Q) defined by δB(P, a) = {q ∈ Q | ∃p ∈
P such that q ∈ δ(p, a)}. In the following we consider that the determinization
of A only produces the accessible and complete part of B.

Two complete deterministic finite automata A = (A, Q, i0, F, δ) and A′ =
(A, Q′, i′0, F

′, δ′) on the same alphabet are isomorphic when there exists a bijec-
tion φ from Q to Q′ such that φ(i0) = i′0, φ(F) = F ′ and for all (q, a) ∈ Q×A,
φ(δ(q, a)) = δ′(φ(q), a). Two isomorphic automata only differ by the labels of
their states.

Combinatorics on words. A word y is a factor of a word x if there exist two
words u and v such that x = u·y ·v. The word y is a prefix of x if u = ε; it is a
suffix of x if v = ε. We say that y is a proper prefix (resp. suffix) of x if y is a
prefix (resp. suffix) such that y �= ε and y �= x.

A word y is called a border of x if y �= x and y is both a prefix and a suffix
of x. The border of a non-empty word x denoted by Border(x) is the longest of
its borders. Note that any other border of x is a border of Border(x). The set
of all borders of x is {Border(x), Border(Border(x)), . . .}.

In the following we note x[i] the i-th letter of x, starting from position 0; the
factor of x from position i to j is denoted by x[i··j]. If i > j, x[i··j] = ε.

To compute all borders of a word x of length �, we construct the border array of
x defined from {1, . . . , �} to {0, 1, . . . , �−1} by border[i] = | Border(x[0··i−1]) |.
An efficient algorithm that constructs the border array is given in [6,7]. Its time
and space complexities are Θ(|x|). It is based on the following formula that holds
for any x ∈ A+ and any a ∈ A

Border(x ·a) =

{
Border(x) · a if Border(x) · a is a prefix of x,

Border(Border(x) · a) otherwise.
(1)

3 A Co-deterministic Automaton Recognizing A∗X

In this section we give a direct construction of a co-deterministic automaton
recognizing A∗X that can be interpreted as the first step of a Brzozowski-like
algorithm.

Remark that if there exist two words u, v ∈ X such that u is a suffix of v, one
can remove the word v without changing the language, since A∗v ⊂ A∗u and
thus A∗X = A∗(X \ {v}). Hence, in the following we only consider finite suffix
sets X , i.e. there are not two distinct words u, v ∈ X such that u is a suffix of v.

278 O. AitMous, F. Bassino, and C. Nicaud

Proposition 1. Let X be a set of m non-empty words whose sum of lengths is
n. There exists a deterministic automaton recognizing the language X̃A∗ whose
number of states is at most n−m + 2.

Proof. (By construction) Let A be the automaton that recognizes X̃ , built di-
rectly from the tree of X̃ by adding an initial state to the root and final states
to the leaves. The states are labelled by the prefixes of X̃. As we are basically
interested in X , change every state label by its mirror, so that the states of the
automaton are labelled by the suffixes of X . Merge all the final states into one
new state labelled i, and add a loop on i for every letter in A. The resulting
automaton is deterministic and recognizes the language X̃A∗. �	

The space and time complexities of this construction are linear in the length
of X . This automaton is then reversed to obtain a co-deterministic automaton
recognizing A∗X . For a given finite set of words X , we denote by CX this co-
deterministic automaton.

Example 1. Let A = {a, b} be the alphabet and X = {aaa, abaa, abab} be a set
of m = 3 words whose sum of lengths is n = 11. The steps of the process are
given in Figure 1.

ε

a b

aa ba

aaa aab bab

aaba baba

a b

a a

a b b

a a

ε

a b

aa ab

baa bab

i

a b

a a

b b

a a

a

a, b

ε

a b

aa ab

baa bab

i

a
a

b b

aa

ba

a

a, b

=⇒ =⇒

Fig. 1. Co-deterministic automaton CX recognizing A∗X, where X = {aaa, abaa, abab}

4 Computing the Minimal Automaton

Once CX is built, its determinization produces the minimal automaton recog-
nizing the same language. It comes from the property used by Brzozowski’s al-
gorithm, namely that the determinization of a co-deterministic automaton gives
the minimal automaton. According to Aho-Corasick algorithm this minimal au-
tomaton has at most n + 1 states.

It remains to efficiently handle sets of states in the determinization pro-
cess. The subset construction produces the accessible part B of the automaton

Building the Minimal Automaton of A∗X in Linear Time 279

{i}

{i, aa, baa, bab}

{i, aa, baa, bab, a} {i, aa, ab}

{i, aa, baa, bab, a, ε} {i, baa, bab, aa, a, b}

{i, aa, ab, ε}

a
b

a
b

a

b

a

b a

b

a

b
a

b

Fig. 2. Minimal automaton recognizing A∗X, with 7 states (by subset construction)

ε

a

aa
ab

aaa aba

abab

abaa

a
b

a
b

a
b

a

b a

b

a

b

a

b

a

b

Fig. 3. Aho Corasick automaton recognizing A∗X, with 8 states

(A,P(Q), {I}, FB, δB) from an automaton A = (A, Q, I, F, δ). The states of B
are labelled by subsets of Q.

Applied to the automaton of Figure 1 the subset construction leads to the
minimal automaton depicted in Figure 2. Figure 3 shows Aho-Corasick automa-
ton recognizing the same language A∗X where X = {aaa, abaa, abab}. The states
are labelled by prefixes of words of X. This automaton is not minimal since the
states aaa and abaa are equivalent.

4.1 Cost of the Naive Subset Construction

When computing the subset construction, one has to handle sets of states: start-
ing from the set of initial states, all the accessible states are built from the fly,
using a depth-first traversal (for instance) of the result. At each step, given a set

280 O. AitMous, F. Bassino, and C. Nicaud

of states P and a letter a, one has to compute the set δB(P, a) and then check
whether this state has already been built.

In the co-deterministic automaton CX , only the initial state i has non-determi-
nistic transitions, and for every letter a, the image of i by a is of size at most
m + 1, m being the number of words in X and one corresponding to the loop
on the initial state i. Hence δB(P, a) is of cardinality at most m + 1 + |P | and
is computed in time Θ(|P |), assuming that it is done using a loop through the
elements of P . So even without taking into account the cost of checking whether
δB(P, a) has already been built, the time complexity of the determinization is
Ω(
∑

P |P |), where the sum ranges over all P in the accessible part of the subset
construction.

For the pattern X = {an−1, b}, the states of the result are {i}, {i, an−2},
{i, an−2, an−3}, . . ., {i, an−2, an−3, . . . , a}, {i, an−2, an−3, . . . , a, ε} and {i, ε}, so
that

∑
P |P | = Ω(n2). Therefore the time complexity of the naive subset con-

struction is at least quadratic.
In the sequel, we present an alternative way to compute the determinization

of CX whose time complexity is linear.

4.2 Outline of the Construction

We make use of the following observations on CX . In the last automaton of
Figure 1, when the state labelled b is reached, a word u = v · aba has been read,
and the state bab has also been reached. This information can be obtained from
the word b and the borders of prefixes of words in X : aba is a prefix of the word
x = abab ∈ X , and Border(aba) = a. Our algorithm is based on limiting the
length of the state labels of the minimal automaton by storing only one state
per word of X , and one element to mark the state as final or not (ε or ε/). Hence
if aba is read, only b is stored for the word x = abab.

When, for a letter c ∈ A, δ(b, c) is undefined, we jump to the state correspond-
ing to the longest border of aba (the state bab in our example). We continue
until either a transition we are looking for is found, or the unique initial state i
is reached. More formally define the failure function f from X×Q\{i, ε}×A to
Q \ {ε} in the following way: f(x, p, a) is the smallest suffix q of x, with q �= x,
satisfying:

– x = up = vq, v being a border of u
– δ(q, a) is defined.

If no such q exists, f(x, p, a) = i.

4.3 Precomputation of the Failure Function

Our failure function is similar to Aho-Corasick one in [1]. The difference is that
ours is not based on suffixes but on borders of words. The value of Border(v·a)
for every proper prefix v of a word u ∈ X and every letter a ∈ A is needed for
the computation.

Building the Minimal Automaton of A∗X in Linear Time 281

Table 1. Extended border array for u = abab, given A = {a, b}

Prefix w of u
with w �= u

Letter ε a ab aba

a 0 1 1 1
b / 0 0 2

Extended border array. Let u be a word of length �. We define an extended
border array from {0, 1, . . . , �−1}×A to {0, 1, . . . , �−1} by border ext[0][u[0]] = 0
and border ext[i][a] = |Border(u[0 · ·i − 1] ·a)| for all i ∈ {1, . . . , � − 1}. Recall
that u[0 · ·i] is the prefix of u of length i + 1. Remark that |Border(u[0 · ·i])|=
|Border(u[0··i− 1]·u[i])| = border ext[i− 1][u[i]].

Table 1 depicts the extended border array of the word abab. Values computed
by a usual border array algorithm are represented in bold.

Algorithm 1 (see Figure 4) computes the extended border array for a word u
of length �, considering the given alphabet A.

Standard propositions concerning the border array algorithm given in [7] are
extended to Algorithm 1.

Proposition 2. Extended Borders algorithm above computes the extended
border array of a given word u of length � considering the alphabet A. Its space
and time complexities are linear in the length of the word u.

Proof. The routine Extended Borders computes sequentially |Border(v · a)|
for every proper prefix v of u and every letter a ∈ A. As the size of the alphabet

Algorithm 1. Extended Borders

Inputs: u ∈ X, � = |u|, alphabet A
1 border ext[0][u[0]] ← 0
2 for j ← 1 to � − 1 do
3 for a ∈ A do
4 i ← border ext[j − 1][u[j − 1]]
5 while i ≥ 0 and a �= u[i] do
6 if i = 0 then
7 i ← −1
8 else
9 i ← border ext[i−1][u[i−1]]

10 end if
11 end while
12 i ← i + 1
13 border ext[j][a] ← i
14 end for
15 end for
16 return border ext

For every word u ∈ X we compute its
extended border array using the routine
Extended Borders. It contains for
every proper prefix x of u and every letter
a ∈ A, |Border(x·a)|.

To compute border ext[j][a] =
|Border(u[0··j−1])·a|, we need the length
of Border(u[0··j − 1]) = Border(u[0··j −
2]·u[j − 1]). Thus |Border(u[0··j − 1])| =
border ext[j − 1][u[j − 1]].

According to Equation (1), if Border(u[0·
·i − 1]) ·a is not a prefix of u[0 · ·i − 1] ·a,
we need to find the longest border of the
prefix of u of length i.
Since Border(u[0··i−1]) = Border(u[0··i−
2]·u[i−1]), we have |Border(u[0··i−1])| =
border ext[i − 1][u[i − 1]]).

Fig. 4. Extended border array construction algorithm

282 O. AitMous, F. Bassino, and C. Nicaud

A is considered to be constant, the space complexity of the construction is linear
in �.

A comparison between two letters a and b is said to be positive if a = b
and negative if a �= b. The time complexity of the algorithm is linear in the
number of letter comparisons. The algorithm computes, for j = 1, . . . , �− 1 and
a ∈ A, border ext[j][a] = |Border(u[0 · ·j − 1] · a)|. For a given letter a ∈ A,
border ext[j][a] is obtained from |Border(u[0 · ·j−1])| that is already computed.
The quantity 2j − i increases by at least one after each letter comparison: both
i and j are incremented by one after a positive comparison; in the case of a
negative comparison j is unchanged while i is decreased by at least one.

When � = |u| ≥ 2, 2j− i is equal to 2 at the first comparison and 2�−2 at the
last one. Thus the number of comparisons for a given letter a is at most 2�− 3.
The total time complexity is linear in the length of u. �	

The extended border array can be represented by an automaton. Given a word
u ∈ A+, we construct the minimal automaton recognizing u. The states are
labelled by prefixes of u. We then define a border link for all prefixes p of u and
all letters a ∈ A by:

BorderLink(p, a) = Border(p · a)

that can be computed using Equation (1). This extended border array shows a
strong similarity with the classical String Matching Automata (SMA) [6,7]. An
adaptation of the SMA construction could be used as an alternative
algorithm.

Example 2. Figure 5 shows this construction for the word u = abab ∈ X .

Failure function. The value f (u, p, a) of the failure function is precomputed
for every word u ∈ X , every proper suffix p of u and every letter a ∈ A using
Algorithm 2. The total time and space complexities of this operation are linear
in the length of X . Remark that if f (u, p, a) �= i then |δ(f (u, p, a), a)| = 1.

4.4 Determinization Algorithm

Let X = {u1, . . . , um} be a set of m non-empty words whose sum of lengths
is n and let CX = (A, Q, {i}, {ε}, δ) be the co-deterministic automaton recog-
nizing the language A∗X obtained in Section 3. We denote by BX the accessi-
ble part of the automaton (A, IB , QB, FB, δB), where QB = (Q\{ε})m × {ε, ε/},

ε a ab aba ababa b a b

a, b a

b

a

b

a

b

Fig. 5. Automaton u = abab with border links

Building the Minimal Automaton of A∗X in Linear Time 283

Algorithm 2. Failure Function

Inputs: u∈X, p proper suffix of u, a∈A
1 if p[0] = a and |p| > 1 then
2 return p
3 end if
4 j ← border ext[|u| − |p|][a]
5 if j ≤ 1 then
6 return i
7 end if
8 return u[j − 1··|u| − 1]

Let v be the prefix of u such that u = v ·p.
If δ(p, a) is defined and different than ε then
f (u, p, a) = p.
If |Border(v · a)| = 0 then f (u, p, a) = i,
where i is the unique initial state of the co-
deterministic automaton A recognizing A∗X
(see Section 3).
If |Border(v·a)| ≥ 1 then Border(v·a) = w·a,
with w ∈ A∗. If w = ε then f (u, p, a) = i.
Otherwise, f (u, p, a) = q, with Border(v·a) =
w1 ·a and u = w1 ·q.

Fig. 6. Failure function

IB = {(i, . . . , i, ε/)} and for all P ∈ FB, P = (v1, v2, . . . , vm, ε), where vr ∈ Q\{ε}
for all r ∈ {1, . . . , m}. Given a state P ∈ QB and a letter a ∈ A we use Algo-
rithm 3 (see Figure 7) to compute δB(P, a). Note that the automaton BX is
complete.

Theorem 1. BX is the minimal automaton recognizing A∗X.

Proof. (Sketch) The idea of the proof is to show that BX and the automaton
produced by the classical subset construction are isomorphic.

Denote by M = (A, QM, IM, FM, δM) the minimal automaton built by the
subset construction. Given a state P ∈ QB (resp. P ∈ QM) and the smallest
word v (the shortest one, and if there are several words of minimal length, we
use the lexicographical order) such that δB(IB, v) = P (resp. δM(IM, v) = P) we
construct the unique corresponding state R inM (resp. in BX) using the same
idea as in Section 4.2. Notice that i is in every state of M. A word s ∈ A+ is
in R if there exist two words x ∈ X and u ∈ A+ such that x = u · s and either
u = v or u is a non-empty border of v. The state R is final and contains ε if and
only if P is final. In the example of Figure 8 the word v = aa is the smallest
word such that δB(IB, v) = P = (a, baa, bab, ε/), and the corresponding state in
M (see Figure 2) is R = {i, a, aa, baa, bab}. The minimality of the automaton is
guaranteed by Brzozowski’s construction [5]. �	

Example 3. Algorithm 3 produces the automaton depicted in Figure 8 that is
the minimal automaton recognizing A∗X , where X = {aaa, abaa, abab}.

5 Sparse Lists

In this section we present data structures and analyze the complexity of the
construction of the minimal automaton. The co-deterministic automaton CX of
size at most n−m + 2 recognizing A∗X is built in time O(n), where X is a set

284 O. AitMous, F. Bassino, and C. Nicaud

of m words whose sum of lengths is n. As stated before, the analysis is done for
a fixed m, when n tends toward infinity. Minimizing CX produces an automaton
BX whose number of states is linear in n and our determinization process creates
only states labelled with sequences of m + 1 elements. Sparse lists are used to
encode these states.

Let g : {0, . . . , � − 1} → F be a partial function and denote by Dom(g) the
domain of g. A sparse list (see [2][Exercise 2.12 p.71] or [6][Exercise 1.15 p.55])
is a data structure that one can use to implement g and perform the following
operations in constant time: initializing g with Dom(g) = ∅; setting a value g(x)
for a given x ∈ {0, . . . , �− 1}; testing whether g(x) is defined or not; finding the
value for g(x) if it is defined; removing x from Dom(g). The space complexity
of a sparse list is O(�).

As we are interested in storing the states during the determinization, we
illustrate here how to initialize, insert and test the existence of a value g(x).
To represent g, we use two arrays and a list (also represented as an array). The
initialization consists in allocating these three arrays of size � without initializing
them. The number of elements in the list will be stored in an extra variable size.
The values of the image by g are stored in the first array. The second array and
the list are used to discriminate these values due to the random ones coming
from the lack of initialization.

Algorithm 3. Transition Function

Inputs: P =(v1, v2, . . . vm, j) ∈QB, a ∈ A
1 j′ ← ε/
2 for r ∈ {1, . . . m} do
3 v′

r ← i
4 if δ(vr, a) = ε then
5 j′ ← ε
6 end if
7 end for
8 for � = 1 to m do
9 v� ← f (u�, v�, a)

10 if v� �= i then
11 if v′

� = i or |δ(v�, a)| < |v′
�| then

12 v′
� ← δ(v�, a)

13 end if
14 else
15 for r = 1 to s such that xr �= ε do
16 if v′

t = i or |xr| < |v′
t| then

17 v′
t ← xr

18 end if
19 end for
20 end if
21 end for
22 return R = (v′

1, v′
2, . . ., v′

m, j′)

We initialize the first m elements of R
to the unique initial state i in A. The
value of the last term of R is calculated
(marking the state as final or non-final).

For each member v� we check the value
of the failure function f(u�, v�, a).
If f(u�, v�, a) �= i then
|δ(f(u�, v�, a), a)| = 1 and we have
found a potential value for v′

� that is a
suffix of ul ∈ X. It remains to compare
it to the already existing one and store
the smallest in length different than i.

When the initial state i is reached, we
are at the beginning of all the words in
X. We define variables used in lines 15-
17 as follows. From the definition of the
automaton A, δ(i, a) = {x1, x2, . . . , xs}
where 0 ≤ s ≤ m and a · x1 ∈ X, . . . , a ·
xs ∈ X. For every couple of integers
(r1, r2) ∈ {1, . . . , s}2 such that r1 �= r2,
a · xr1 �= a · xr2 . For all r ∈ {1, . . . , s}
there exists a unique t ∈ {1, . . . , m} such
that a · xr = ut ∈ X.

Fig. 7. Transition function

Building the Minimal Automaton of A∗X in Linear Time 285

(i, i, i, ε/)

(aa, baa, bab, ε/)

(a, baa, bab, ε/) (i, aa, ab, ε/)

(a, baa, bab, ε) (aa, a, b, ε/)

(i, aa, ab, ε)

a
b

a
b

a

b

a

b a

b

a

b
a

b

Fig. 8. Minimal automaton recognizing A∗X (by our construction), where X =
{aaa, abaa, abab}

Figure 9 illustrates the sparse list initialization. Inserting an element g(x) = y
requires the following steps: g[x] = y; index[x] = size; list[size] = x and size =
size + 1. The result is shown in Figure 10. A value g(x) is defined if and only if
index[x] < size and list[index[x]] = x.

Since the states we build are labelled by sequences of size m + 1, and each
of the m first elements is either the initial state i of the automaton CX or a
proper suffix of the corresponding word in the pattern, we use a tree of sparse
lists to store our states. Let X = {u1, . . . , um} be the pattern and denote by
Suff(ur) the set of all proper suffixes of ur for 1 ≤ r ≤ m. We define a partial
function g on {0, . . . , |u1| − 1} whose values are partial functions g(|v1|) for
v1 ∈ Suff(u1) ∪ {i}. We consider that |i| = 0. These functions g(v1) are defined
on {0, . . . , |u2 − 1|} and their values are again partial functions, denoted by
g(|v1|, |v2|) for v1 ∈ Suff(u1) ∪ {i} and v2 ∈ Suff(u2) ∪ {i}. By extension we

0 � − 1

· · ·g

0 � − 1

· · ·index

0 � − 1

· · ·list

size = 0

Fig. 9. Sparse list initialization

y

0 x � − 1
g

size

0 x � − 1
index

x

size

· · ·list

size = size + 1

Fig. 10. Sparse list insertion of g(x) = y

286 O. AitMous, F. Bassino, and C. Nicaud

0 1 2

0 1 2 3

0 1 2 3

P0

ε/ ε

Fig. 11. Tree of sparse lists after inserting P0 = {i, i, i, ε/}

0 1 2

0 1 2 3

0 1 2 3

P0

ε/ ε

0 1 2 3

0 1 2 3

P1

ε/ ε

0 1 2 3

P2

ε/ ε

Fig. 12. Tree of sparse lists

build functions g(|v1|, |v2|, . . . , |vm|) : {0, . . . , |u1| − 1}× {0, . . . , |u2| − 1}× . . .×
{0, . . . , |um| − 1} × {ε, ε/} → QB where v1 ∈ Suff(u1) ∪ {i}, v2 ∈ Suff(u2) ∪ {i},
. . ., vm ∈ Suff(um)∪ {i} and QB is the set of states in the automaton BX . Then
for a given state P = (v1, v2, . . . , vm, j) ∈ QB, g(|v1|, |v2|, . . . , |vm|, j) = P .

When inserting a state P = (v1, v2, . . . , vm, j) into our data structure, the
existence of g(|v1|) is tested and, if it does not exist, a sparse list representing
this partial function is created. Then the existence of g(|v1|, |v2|) is checked.
The same process is repeated until a function g(|v1|, |v2|, . . . , |vm|) is found.
Finally we test whether g(|v1|, |v2|, . . . , |vm|, j) is defined, and if not the value
for g(|v1|, |v2|, . . . , |vm|, j) is set to P . If g(|v1|, |v2|, . . . , |vm|, j) is already defined,
then the state P already exists in the tree.

Figure 11 shows the insertion of the initial state P0 = (i, i, i, ε/) for X =
{aaa, abaa, abab} and Figure 12 depicts the tree of sparse lists after inserting
P0 = {i, i, i, ε/}, P1 = {aa, baa, bab, ε/} and P2 = {i, aa, ab, ε/}.

Building the Minimal Automaton of A∗X in Linear Time 287

Testing the existence of a state works in the same way, but if a partial function
is not found then the state is not in the data structure.

Theorem 2. Using sparse lists, the construction of the minimal automaton rec-
ognizing A∗X runs in time O(n) and requires O(n2) space where n is the length
of the pattern X.

Proof. From Aho-Corasick’s result the minimal automaton is of size at most
n+1. As each state requires m+1 sparse lists of size |u1|, |u2|, . . . |um|, 2, the total
space complexity is quadratic in n. The time complexity of the determinization
is linear in n since searching and inserting a state take O(1) time. �	

Remark 1. In practice a hash table can be used to store these states. Under the
hypothesis of a simple uniform hashing the average time and space complexities
of the determinization are linear.

The natural continuation of this work is to investigate constructions based on
Brzozowski’s algorithm when m is not fixed anymore.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Communications of the ACM 18(6), 333–340 (1975)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

3. Béal, M.P., Crochemore, M.: Minimizing local automata. In: Caire, G., Fossorier,
M. (eds.) IEEE International Symposium on Information Theory (ISIT 2007),
07CH37924C, pp. 1376–1380. IEEE Catalog (2007)

4. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 62–72 (1977)

5. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. In: Mathematical theory of Automata. MRI Symposia Series, vol. 12,
pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y (1962)

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, 392 pages. Cam-
bridge University Press, Cambridge (2007)

7. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing
Company, Singapore (2002)

8. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and computations, pp. 189–196. Academic Press, London
(1971)

9. Hopcroft, J.E., Ullman, J.D.: Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)

10. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal of Computing 6(2), 323–350 (1977)

11. Mohri, M.: String-matching with automata. Nordic Journal of Computing 4(2),
217–231 (Summer 1997)

A Compact Representation of Nondeterministic
(Suffix) Automata for the Bit-Parallel Approach

Domenico Cantone, Simone Faro, and Emanuele Giaquinta

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy
{cantone,faro,giaquinta}@dmi.unict.it

Abstract. We present a novel technique, suitable for bit-parallelism,
for representing both the nondeterministic automaton and the nonde-
terministic suffix automaton of a given string in a more compact way.
Our approach is based on a particular factorization of strings which on
the average allows to pack in a machine word of w bits automata state
configurations for strings of length greater than w. We adapted the Shift-
And and BNDM algorithms using our encoding and compared them with
the original algorithms. Experimental results show that the new variants
are generally faster for long patterns.

1 Introduction

The string matching problem consists in finding all the occurrences of a pattern P
of length m in a text T of length n, both defined over an alphabet Σ of size σ. The
Knuth-Morris-Pratt (KMP) algorithm was the first linear-time solution (cf. [5]),
whereas the Boyer-Moore (BM) algorithm provided the first sublinear solution
on average [3]. Subsequently, the BDM algorithm reached the O(n logσ(m)/m)
lower bound time complexity on the average (cf. [4]). Both the KMP and the
BDM algorithms are based on finite automata; in particular, they respectively
simulate a deterministic automaton for the language Σ∗P and a deterministic
suffix automaton for the language of the suffixes of P .

The bit-parallelism technique, introduced in [2], has been used to simulate
efficiently the nondeterministic version of the KMP automaton. The resulting
algorithm, named Shift-Or, runs in O(n�m/w�), where w is the number of bits
in a computer word. Later, a variant of the Shift-Or algorithm, called Shift-And,
and a very fast BDM-like algorithm (BNDM), based on the bit-parallel simulation
of the nondeterministic suffix automaton, were presented in [6].

Bit-parallelism encoding requires one bit per pattern symbol, for a total of
�m/w� computer words. Thus, as long as a pattern fits in a computer word, bit-
parallel algorithms are extremely fast, otherwise their performances degrades
considerably as �m/w� grows. Though there are a few techniques to maintain
good performance in the case of long patterns, such limitation is intrinsic.

In this paper we present an alternative technique, still suitable for bit-
parallelism, to encode both the nondeterministic automaton and the nondeter-
ministic suffix automaton of a given string in a more compact way. Our encoding

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 288–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Compact Representation of Nondeterministic (Suffix) Automata 289

is based on factorizations of strings in which no character occurs more than once
in any factor. This is the key towards separating the nondeterministic part from
the determinstic one of the corresponding automata. It turns out that the nonde-
terministic part can be encoded with k bits, where k is the size of the factorization.
Though in the worst case k = m, on the average k is much smaller than m, making
it possible to encode large automata in a single or few computer words. As a con-
sequence, bit-parallel algorithms based on such approach tend to be faster in the
case of sufficiently long patterns. We will illustrate this point by comparing exper-
imentally different implementations of the Shift-And and the BNDM algorithms.

2 Basic Notions and Definitions

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the collection of strings
of length m over Σ and put Σ∗ =

⋃
m∈N

Σm. We represent a string P ∈ Σm,
also called an m-gram, as an array P [0 .. m − 1] of characters of Σ and write
|P | = m (in particular, for m = 0 we obtain the empty string ε). Thus, P [i] is
the (i + 1)-st character of P , for 0 � i < m, and P [i .. j] is the substring of P
contained between its (i + 1)-st and the (j + 1)-st characters, for 0 � i � j < m.
Also, we put first(P) = P [0] and last(P) = P [|P | − 1]. For any two strings P
and P ′, we say that P ′ is a suffix of P if P ′ = P [i .. m− 1], for some 0 � i < m,
and write Suff (P) for the set of all suffixes of P . Similarly, P ′ is a prefix of P
if P ′ = P [0 .. i], for some 0 � i < m. In addition, we write P.P ′, or more simply
PP ′, for the concatenation of P and P ′, and P r for the reverse of the string P ,
i.e. P r = P [m− 1]P [m− 2] . . . P [0].

Given a string P ∈ Σm, we indicate with A(P) = (Q, Σ, δ, q0, F) the nonde-
terministic automaton for the language Σ∗P of all words in Σ∗ ending with an
occurrence of P , where:

– Q = {q0, q1, . . . , qm} (q0 is the initial state)
– the transition function δ : Q×Σ −→ P(Q) is defined by:

δ(qi, c) =Def

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{q0, q1} if i = 0 and c = P [0]
{q0} if i = 0 and c �= P [0]
{qi+1} if 1 � i < m and c = P [i]
∅ otherwise

– F = {qm} (F is the set of final states).

Likewise, for a string P ∈ Σm, we denote by S(P) = (Q, Σ, δ, I, F) the nonde-
terministic suffix automaton with ε-transitions for the language Suff (P) of the
suffixes of P , where:

– Q = {I, q0, q1, . . . , qm} (I is the initial state)
– the transition function δ : Q× (Σ ∪ {ε}) −→ P(Q) is defined by:

δ(q, c) =Def

⎧⎪⎨
⎪⎩
{qi+1} if q = qi and c = P [i] (0 � i < m)
{q0, q1, . . . , qm} if q = I and c = ε

∅ otherwise

290 D. Cantone, S. Faro, and E. Giaquinta

– F = {qm} (F is the set of final states).

The valid configurations δ∗(q0, S) reachable by the automata A(P) on input
S ∈ Σ∗ are defined recursively as follows:

δ∗(q0, S) =Def

{
{q} if S = ε,⋃

q′∈δ(q0,S′) δ∗(q′, c) if S = S′c, for some c ∈ Σ and S′ ∈ Σ∗.

Much the same definition of reachable configurations holds for the automata
S(P), but in this case one has to use δ(I, ε) = {q0, q1, . . . , qm} for the base case.

Finally, we recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, the left shift “�”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

3 The Bit-Parallelism Technique

Bit-parallelism is a technique introduced by Baeza-Yates and Gonnet in [2] that
takes advantage of the intrinsic parallelism of the bit operations inside a com-
puter word, allowing to cut down the number of operations that an algorithm
performs by a factor up to w, where w is the number of bits in the computer word.
Bit-parallelism is particularly suitable for the efficient simulation of nondeter-
ministic (suffix) automata; the first algorithms based on it are the well-known
Shift-And [2] and BNDM [6]. The Shift-And algorithm simulates the nondeter-
ministic automaton (NFA, for short) that recognizes the language Σ∗P , for a
given string P of length m. Its bit-parallel representation uses an array B of |Σ|
bit-vectors, each of size m, where the i-th bit of B[c] is set iff δ(qi, c) = qi+1
or equivalently iff P [i] = c, for c ∈ Σ, 0 � i < m. Automaton configurations
δ∗(q0, S) on input S ∈ Σ∗ are then encoded as a bit-vector D of m bits (the initial
state does not need to be represented, as it is always active), where the i-th bit
of D is set iff state qi+1 is active, i.e. qi+1 ∈ δ∗(q0, S), for i = 0, . . . , m− 1. For a
configuration D of the NFA, a transition on character c can then be implemented
by the bitwise operations

D ← ((D � 1) | 1) & B[c] .

The bitwise or with 1 (represented as 0m−11) is performed to take into account
the self-loop labeled with all the characters in Σ on the initial state. When a
search starts, the initial configuration D is initialized to 0m. Then, while the
text is read from left to right, the automaton configuration is updated for each
text character, as described before.

The nondeterministic suffix automaton for a given string P is an NFA with
ε-transitions that recognizes the language Suff (P). The BNDM algorithm sim-
ulates the suffix automaton for P r with the bit-parallelism technique, using an
encoding similar to the one described before for the Shift-And algorithm. The i-
th bit of D is set iff state qi+1 is active, for i = 0, 1, . . . , m−1, and D is initialized

A Compact Representation of Nondeterministic (Suffix) Automata 291

to 1m, since after the ε-closure of the initial state I all states qi represented in D
are active. The first transition on character c is implemented as D ← (D & B[c]),
while any subsequent transition on character c can be implemented as

D ← ((D � 1) & B[c]) .

The BNDM algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the
current window backwards and updating the automaton configuration accord-
ingly. Each time a suffix of P r (i.e., a prefix of P) is found, namely when prior
to the left shift the m-th bit of D&B[c] is set, the window position is recorded.
A search ends when either D becomes zero (i.e., when no further prefixes of P
can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper prefix.

When the pattern size m is larger than w, the configuration bit-vector and all
auxiliary bit-vectors need to be splitted over �m/w� multiple words. For this rea-
son the performance of the Shift-And and BNDM algorithms, and of bit-parallel
algorithms more in general, degrades considerably as �m/w� grows. A common
approach to overcome this problem consists in constructing an automaton for a
substring of the pattern fitting in a single computer word, to filter possible can-
didate occurrences of the pattern. When an occurrence of the selected substring
is found, a subsequent naive verification phase allows to establish whether this
belongs to an occurrence of the whole pattern. However, besides the costs of the
additional verification phase, a drawback of this approach is that, in the case
of the BNDM algorithm, the maximum possible shift length cannot exceed w,
which could be much smaller than m.

In the next section we illustrate an alternative encoding for automata config-
urations, which in general requires less than one bit per pattern character and
still is suitable for bit-parallelism.

4 Tighter Packing for Bit-Parallelism

We present a new encoding of the configurations of the nondeterministic (suffix)
automaton for a given pattern P of length m, which on the average requires
less than m bits and is still suitable to be used within the bit-parallel frame-
work. The effect is that bit-parallel string matching algorithms based on such
encoding scale much better as m grows, at the price of a larger space complexity.
We will illustrate such point experimentally with the Shift-And and the BNDM
algorithms, but our proposed encoding can also be applied to other variants of
the BNDM algorithm as well.

Our encoding will have the form (D, a), where D is a k-bit vector, with k � m
(on the average k is much smaller than m), and a is an alphabet symbol (the
last text character read) which will be used as a parameter in the bit-parallel
simulation with the vector D.

292 D. Cantone, S. Faro, and E. Giaquinta

The encoding (D, a) is obtained by suitably factorizing the simple bit-vector
encoding for NFA configurations presented in the previous section. More specif-
ically, it is based on the following pattern factorization.

Definition (1-factorization). Let P ∈ Σm. A 1-factorization of size k of P is a
sequence 〈u1, u2, . . . , uk〉 of nonempty substrings of P such that:

(a) P = u1u2 . . . uk ;
(b) each factor uj contains at most one occurrence for any of the characters in

the alphabet Σ, for j = 1, . . . , k .

A 1-factorization of P is minimal if such is its size.

Remark. It can easily be checked that a 1-factorization 〈u1, u2, . . . , uk〉 of P is
minimal if first(ui+1) occurs in ui, for i = 1, . . . , k − 1.

Observe, also, that �m
σ � � k � m holds, for any 1-factorization of size k of a

string P ∈ Σm, where σ = |Σ|. The worst case occurs when P = am, in which
case P has only the 1-factorization of size m whose factors are all equal to the
single character string a.

A 1-factorization 〈u1, u2, . . . , uk〉 of a given pattern P ∈ Σ∗ induces naturally
a partition {Q1, . . . , Qk} of the set Q\{q0} of nonstarting states of the canonical
automaton A(P) = (Q, Σ, δ, q0, F) for the language Σ∗P , where

Qi =Def

{
q∑ i−1

j=1 |uj |+1, . . . , q
∑

i
j=1 |uj |

}
, for i = 1, . . . , k .

Notice that the labels of the arrows entering the states

q∑ i−1
j=1 |uj |+1, . . . , q

∑ i
j=1 |uj | ,

in that order, form exactly the factor ui, for i = 1, . . . , k. Hence, if for any
alphabet symbol a we denote by Qi,a the collection of states in Qi with an
incoming arrow labeled a, it follows that |Qi,a| � 1, since by condition (b) of
the above definition of 1-factorization no two states in Qi can have an incoming
transition labeled by a same character. When Qi,a is nonempty, we write qi,a

to indicate the unique state q of A(P) for which q ∈ Qi,a, otherwise qi,a is
undefined. On using qi,a in any expression, we will also implicitly assert that qi,a

is defined.
For any valid configuration δ∗(q0, Sa) of the automatonA(P) on some input of

the form Sa ∈ Σ∗, we have that q ∈ δ∗(q0, Sa) only if the state q has an incoming
transition labeled a. Therefore, Qi ∩ δ∗(q0, Sa) ⊆ Qi,a and, consequently, |Qi ∩
δ∗(q0, Sa)| � 1, for each i = 1, . . . , k. The configuration δ∗(q0, Sa) can then be
encoded by the pair (D, a), where D is the bit-vector of size k such that D[i] is
set iff Qi contains an active state, i.e., Qi ∩ δ∗(q0, Sa) �= ∅, iff qi,a ∈ δ∗(q0, Sa).
Indeed, if i1, i2, . . . , il are all the indices i for which D[i] is set, we have that
δ∗(q0, Sa) = {qi1,a, qi2,a, . . . , qil,a} holds, showing that the above encoding (D, a)
can be inverted.

To show how to compute D′ in a transition (D, a) A−→ (D′, c) on character c
using bit-parallelism, it is convenient to give some further definitions.

A Compact Representation of Nondeterministic (Suffix) Automata 293

F-PREPROCESS (P, m)

for c ∈ Σ do S[c] ← L[c] ← 0
for c, c′ ∈ Σ do B[c][c′] ← 0
b ← 0, e ← 0, k ← 0
while e < m do

while e < m and S[P [e]] = 0 do
S[P [e]] ← 1, e ← e + 1

for i ← b to e − 1 do S[P [i]] ← 0
for i ← b + 1 to e − 1 do

B[P [i − 1]][P [i]] ← B[P [i − 1]][P [i]] | (1 � k)
L[P [e − 1]] ← L[P [e − 1]] | (1 � k)
if e < m then

B[P [e − 1]][P [e]] ← B[P [e − 1]][P [e]] | (1 � k)
b ← e
k ← k + 1

M ← (1 � (k − 1))
return (B, L, M, k)

Fig. 1. Preprocessing procedure for the construction of the arrays B and L relative to
a minimal 1-factorization of the pattern

For i = 1, . . . , k− 1, we put ui = ui.first(ui+1). We also put uk = uk and call
each set ui the closure of ui.

Plainly, any 2-gram can occur at most once in the closure ui of any factor of
our 1-factorization 〈u1, u2, . . . , uk〉 of P . We can therefore encode the 2-grams
present in the closure of the factors ui by a |Σ| × |Σ| matrix B of k-bit vectors,
where the i-th bit of B[c1][c2] is set iff the 2-gram c1c2 is present in ui or,
equivalently, iff

(last(ui) �= c1 ∧ qi,c2 ∈ δ(qi,c1 , c2))∨
(i < k ∧ last(ui) = c1 ∧ qi+1,c2 ∈ δ(qi,c1 , c2)) ,

(1)

for every 2-gram c1c2 ∈ Σ2 and i = 1, . . . , k.
To properly take care of transitions from the last state in Qi to the first state

in Qi+1, it is also useful to have an array L, of size |Σ|, of k-bit vectors encoding
for each character c ∈ Σ the collection of factors ending with c. More precisely,
the i-th bit of L[c] is set iff last(ui) = c, for i = 1, . . . , k.

We show next that the matrix B and the array L, which in total require
(|Σ|2 + |Σ|)k bits, are all is needed to compute the transition (D, a) A−→ (D′, c)
on character c. To this purpose, we first state the following basic property, which
can easily be proved by induction.

Transition Lemma. Let (D, a) A−→ (D′, c), where (D, a) is the encoding of the
configuration δ∗(q0, Sa) for some string S ∈ Σ∗, so that (D′, c) is the encoding
of the configuration δ∗(q0, Sac).

Then, for each i = 1, . . . , k, qi,c ∈ δ∗(q0, Sac) if and only if either

(i) last(ui) �= a, qi,a ∈ δ∗(q0, Sa), and qi,c ∈ δ(qi,a, c), or
(ii) i � 1, last(ui−1) = a, qi−1,a ∈ δ∗(q0, Sa), and qi,c ∈ δ(qi−1,a, c). �

294 D. Cantone, S. Faro, and E. Giaquinta

Now observe that, by definition, the i-th bit of D′ is set iff qi,c ∈ δ∗(q0, Sac) or,
equivalently by the Transition Lemma and (1), iff (for i = 1, . . . , k)

(D[i] = 1 ∧B[a][c][i] = 1 ∧ ∼L[a][i] = 1)∨
(i � 1 ∧D[i− 1] = 1 ∧B[a][c][i− 1] = 1 ∧ L[a][i− 1] = 1) iff

((D & B[a][c] & ∼L[a])[i] = 1 ∨ (i � 1 ∧ (D & B[a][c] & L[a])[i− 1] = 1)) iff

((D & B[a][c] & ∼L[a])[i] = 1 ∨ ((D & B[a][c] & L[a]) � 1)[i] = 1) iff

((D & B[a][c] & ∼L[a]) | ((D & B[a][c] & L[a]) � 1))[i] = 1 .

Hence D′ = (D & B[a][c] & ∼L[a]) | ((D & B[a][c] & L[a]) � 1) , so that D′

can be computed by the following bitwise operations:

D ← D & B[a][c]
H ← D & L[a]
D ← (D & ∼H)|(H � 1) .

To check whether the final state qm belongs to a configuration encoded as (D, a),
we have only to verify that qk,a = qm. This test can be broken into two steps:
first, one checks if any of the states in Qk is active, i.e. D[k] = 1; then, one verifies
that the last character read is the last character of uk, i.e. L[a][k] = 1. The whole
test can then be implemented with the bitwise test D & M & L[a] �= 0k , where
M = (1 � (k − 1)).

The same considerations also hold for the suffix automaton S(P). The only
difference is in the handling of the initial state. In the case of the automaton
A(P), state q0 is always active, so we have to activate state q1 when the current
text symbol is equal to P [0]. To do so it is enough to perform a bitwise or of

F-Shift-And (P, m, T, n)

(B, L, M, k) ← F-PREPROCESS(P, m)
D ← 0k

a ← T [0]
for j ← 1 to n − 1

if a = P [0] then D ← D | 0k−11

if (D & M & L[a]) �= 0k

then Output(j − 1)
D ← D & B[a][T [j]]
H ← D & L[a]
D ← (D & ∼ H) | (H � 1)
a ← T [j]

F-BNDM (P, m, T, n)

(B, L, M, k) ← F-PREPROCESS(P r, m)
j ← m − 1
while j < n do

k ← 1, l ← 0
D ← ∼ 0k, a ← T [j]
while D �= 0k do

if (D & M & L[a]) �= 0k then
if k < m then

l ← k
else Output(j)

D ← D & B[a][T [j − k]]
H ← D & L[a]
D ← (D & ∼H) | (H � 1)
a ← T [j − k]
k ← k + 1

j ← j + m − l

(a) (b)

Fig. 2. Variants of Shift-And and BNDM based on the 1-factorization encoding

A Compact Representation of Nondeterministic (Suffix) Automata 295

D with 0k−11 when a = P [0], as q1 ∈ Q1. Instead, in the case of the suffix
automaton S(P), as the initial state has an ε-transition to each state, all the
bits in D must be set, as in the BNDM algorithm.

The preprocessing procedure which builds the arrays B and L described above
and relative to a minimal 1-factorization of the given pattern P ∈ Σm is reported
in Figure 1. Its time complexity is O(|Σ|2 + m). The variants of the Shift-And
and BNDM algorithms based on our encoding of the configurations of the au-
tomata A(P) and S(P) are reported in Figure 2 (algorithms F-Shift-And and
F-BNDM, respectively). Their worst-case time complexities are O(n�k/w�) and
O(nm�k/w�), respectively, while their space complexity is O(|Σ|2�k/w�), where
k is the size of a minimal 1-factorization of the pattern.

5 Experimental Results

In this section we present and comment the experimental results relative to
an extensive comparison of the BNDM and the F-BNDM algorithms and the
Shift-And and F-Shift-And algorithms. In particular, in the BNDM case we have
implemented two variants for each algorithm, named single word and multiple
words, respectively. Single word variants are based on the automaton for a suit-
able substring of the pattern whose configurations can fit in a computer word;
a naive check is then used to verify whether any occurrence of the subpattern
can be extended to an occurrence of the complete pattern: specifically, in the
case of the BNDM algorithm, the prefix pattern of length min(m, w) is cho-
sen, while in the case of the F-BNDM algorithm the longest substring of the
pattern which is a concatenation of at most w consecutive factors is selected.
Multiple words variants are based on the automaton for the complete pattern
whose configurations are splitted, if needed, over multiple machine words. The
resulting implementations are referred to in the tables below as BNDM∗ and
F-BNDM∗.

We have also included in our tests the LBNDM algorithm [8]. When the alpha-
bet is considerably large and the pattern length is at least two times the word
size, the LBNDM algorithm achieves larger shift lengths. However, the time for
its verification phase grows proportionally to m/w, so there is a treshold after
which its performance degrades significantly.

For the Shift-And case, only test results relative to the multiple words variant
have been included in the tables below, since the overhead due to a more complex
bit-parallel simulation in the single word case is not paid off by the reduction of
the number of calls to the verification phase.

The main two factors on which the efficiency of BNDM-like algorithms de-
pends are the maximum shift length and the number of words needed for repre-
senting automata configurations. For the variants of the first case, the shift length
can be at most the length of the longest substring of the pattern that fits in a
computer word. This, for the BNDM algorithm, is plainly equal to min(w, m),
so the word size is an upper bound for the shift length, whereas in the case of
the F-BNDM algorithm it is generally possible to achieve shifts of length larger

296 D. Cantone, S. Faro, and E. Giaquinta

than w, as our encoding allows to pack more state configurations per bit on the
average as shown in a table below. In the multi-word variants, the shift lengths
for both algorithms, denoted BNDM∗ and F-BNDM∗, are always the same, as
they use the very same automaton; however, the 1-factorization based encoding
involves a smaller number of words on the average, especially for long patterns,
thus providing a considerable speedup.

All algorithms have been implemented in the C programming language and
have been compiled with the GNU C Compiler, using the optimization options
-O2 -fno-guess-branch-probability. All tests have been performed on a 2
GHz Intel Core 2 Duo and running times have been measured with a hardware
cycle counter, available on modern CPUs. We used the following input files: (i)
the English King James version of the “Bible” (with σ = 63); (ii) a protein
sequence from the Saccharomyces cerevisiae genome (with σ = 20); and (iii) a
genome sequence of 4, 638, 690 base pairs of Escherichia coli (with σ = 4).

Files (i) and (iii) are from the Canterbury Corpus [1], while file (ii) is from the
Protein Corpus [7]. For each input file, we have generated sets of 200 patterns of
fixed length m randomly extracted from the text, for m ranging over the values
32, 64, 128, 256, 512, 1024, 1536, 2048, 4096. For each set of patterns we reported
the mean over the running times of the 200 runs.

m Shift-And∗ F-Shift-And∗ LBNDM BNDM BNDM∗ F-BNDM F-BNDM∗

32 8.85 22.20 2.95 2.81 2.92 2.92 2.99
64 51.45 22.20 1.83 2.82 3.31 2.00 1.97

128 98.42 22.21 1.82 2.83 3.58 2.35 2.23
256 142.27 92.58 1.38 2.82 2.79 1.91 2.14
512 264.21 147.79 1.09 2.84 2.47 1.81 1.75

1024 508.71 213.70 1.04 2.84 2.67 1.77 1.72
1536 753.02 283.57 1.40 2.84 2.95 1.77 1.73
2048 997.19 354.32 2.24 2.84 3.45 1.75 1.90
4096 1976.09 662.06 10.53 2.83 6.27 1.72 2.92

Experimental results on the King James version of the Bible (σ = 63)

m Shift-And∗ F-Shift-And∗ LBNDM BNDM BNDM∗ F-BNDM F-BNDM∗

32 6.33 15.72 1.50 1.58 1.64 1.43 1.56
64 38.41 15.70 0.99 1.57 1.70 0.89 0.96

128 70.59 40.75 0.70 1.57 1.42 0.64 1.01
256 104.42 73.59 0.52 1.57 1.39 0.59 1.01
512 189.16 108.33 0.41 1.57 1.29 0.56 0.88

1024 362.83 170.52 0.54 1.58 1.46 0.55 0.91
1536 540.25 227.98 2.09 1.57 1.73 0.56 1.04
2048 713.87 290.24 7.45 1.58 2.12 0.56 1.20
4096 1413.76 541.53 32.56 1.58 4.87 0.59 2.33
Experimental results on a protein sequence from the Saccharomyces cerevisiae genome (σ = 20)

m Shift-And∗ F-Shift-And∗ LBNDM BNDM BNDM∗ F-BNDM F-BNDM∗

32 10.19 25.04 4.60 3.66 3.82 5.18 4.88
64 59.00 42.93 3.42 3.64 5.39 2.94 3.69

128 93.97 114.22 3.43 3.65 5.79 2.66 5.37
256 162.79 167.11 11.68 3.64 4.79 2.59 4.11
512 301.55 281.37 82.94 3.66 4.16 2.53 3.54

1024 579.92 460.37 96.13 3.64 4.21 2.50 3.42
1536 860.84 649.88 91.45 3.64 4.54 2.49 3.66
2048 1131.50 839.32 89.45 3.64 4.98 2.48 3.98
4096 2256.37 1728.71 85.87 3.64 7.81 2.48 6.22

Experimental results on a genome sequence of Escherichia coli (σ = 4)

A Compact Representation of Nondeterministic (Suffix) Automata 297

(A) ecoli protein bible
32 32 32 32
64 63 64 64

128 72 122 128
256 74 148 163
512 77 160 169

1024 79 168 173
1536 80 173 176
2048 80 174 178
4096 82 179 182

(B) ecoli protein bible
32 15 8 6
64 29 14 12

128 59 31 26
256 119 60 50
512 236 116 102

1024 472 236 204
1536 705 355 304
2048 944 473 407
4096 1882 951 813

(C) ecoli protein bible
32 2.13 4.00 5.33
64 2.20 4.57 5.33

128 2.16 4.12 4.92
256 2.15 4.26 5.12
512 2.16 4.41 5.01

1024 2.16 4.33 5.01
1536 2.17 4.32 5.05
2048 2.16 4.32 5.03
4096 2.17 4.30 5.03

(A) The length of the longest substring of the pattern fitting in w bits.
(B) The size of the minimal 1-factorization of the pattern.
(C) The ratio between m and the size of the minimal 1-factorization of the pattern.

Concerning the BNDM-like algorithms, the experimental results show that in
the case of long patterns both variants based on the 1-factorization encoding
are considerably faster than their corresponding variants BNDM and BNDM∗.
In the first test suite, with σ = 63, the LBNDM algorithm turns out to be the
fastest one, except for very long patterns, as the treshold on large alphabets is
quite high. In the second test suite, with σ = 20, LBNDM is still competitive
but, in the cases in which it beats the BNDM∗ algorithm, the difference is thin.

Likewise, the F-Shift-And variant is faster than the classical Shift-And algo-
rithm in all cases, for m � 64.

6 Conclusions

We have presented an alternative technique, suitable for bit-parallelism, to repre-
sent the nondeterministic automaton and the nondeterministic suffix automaton
of a given string. On the average, the new encoding allows to pack in a single ma-
chine word of w bits state configurations of (suffix) automata relative to strings
of more than w characters long. When applied to the BNDM algorithm, and for
long enough patterns, our encoding allows larger shifts in the case of the single
word variant and a more compact encoding in the case of the multiple words
variant, resulting in faster implementations.

Further compactness could be achieved with 2-factorizations (with the obvious
meaning), or with hybrid forms of factorizations. Clearly, more involved factor-
izations will also result into more complex bit-parallel simulations and larger
space complexity, thus requiring a careful tuning to identify the best degree of
compactness for the application at hand.

References

1. Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algo-
rithms. In: DCC 1997: Proceedings of the Conference on Data Compression,
Washington, DC, USA, p. 201. IEEE Computer Society, Los Alamitos (1997),
http://corpus.canterbury.ac.nz/

2. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun.
ACM 35(10), 74–82 (1992)

http://corpus.canterbury.ac.nz/

298 D. Cantone, S. Faro, and E. Giaquinta

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 762–772 (1977)

4. Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, Oxford
(1994)

5. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(1), 323–350 (1977)

6. Navarro, G., Raffinot, M.: A bit-parallel approach to suffix automata: Fast extended
string matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 14–33.
Springer, Heidelberg (1998)

7. Nevill-Manning, C.G., Witten, I.H.: Protein is incompressible. In: DCC 1999: Pro-
ceedings of the Conference on Data Compression, Washington, DC, USA, p. 257.
IEEE Computer Society, Los Alamitos (1999),
http://data-compression.info/Corpora/ProteinCorpus/

8. Peltola, H., Tarhio, J.: Alternative algorithms for bit-parallel string matching.
In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS,
vol. 2857, pp. 80–94. Springer, Heidelberg (2003)

http://data-compression.info/Corpora/ProteinCorpus/

Algorithms for Three Versions
of the Shortest Common Superstring Problem

Maxime Crochemore1,3, Marek Cygan2, Costas Iliopoulos1,4,
Marcin Kubica2, Jakub Radoszewski2, Wojciech Rytter2,5, and Tomasz Waleń2

1 King’s College London, London WC2R 2LS, UK
maxime.crochemore@kcl.ac.uk, csi@dcs.kcl.ac.uk

2 Dept. of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

{cygan,kubica,jrad,rytter,walen}@mimuw.edu.pl
3 Université Paris-Est, France

4 Digital Ecosystems & Business Intelligence Institute,
Curtin University of Technology, Perth WA 6845, Australia

5 Dept. of Math. and Informatics,
Copernicus University, Toruń, Poland

Abstract. The input to the Shortest Common Superstring (SCS) prob-
lem is a set S of k words of total length n. In the classical version the
output is an explicit word SCS(S) in which each s ∈ S occurs at least
once. In our paper we consider two versions with multiple occurrences,
in which the input includes additional numbers (multiplicities), given in
binary. Our output is the word SCS(S) given implicitly in a compact
form, since its real size could be exponential. We also consider a case
when all input words are of length two, where our main algorithmic tool
is a compact representation of Eulerian cycles in multigraphs. Due to
exponential multiplicities of edges such cycles can be exponential and
the compact representation is needed. Other tools used in our paper are
a polynomial case of integer linear programming and a min-plus product
of matrices.

1 Introduction

The algorithmic aspects of the SCS problem are thoroughly studied in theoretical
as well as in practical computer science. In this paper we consider two variations
of the SCS problem related to the number of occurrences of input words: Uniform
Multiple Occurrences SCS (SUM-SCS) and Multiple Occurrences SCS Problem
(MULTI-SCS). Our algorithms use several interesting combinatorial tools: Eule-
rian cycles in multigraphs, shortest paths via matrix multiplication and integer
linear programming with a constant number of variables.

The SCS problem and its variations are studied in their own and also from
the point of view of computational biologists. Recent advances, based either on
sequencing by synthesis or on hybridisation and ligation, are producing millions
of short reads overnight. An important problem with these technologies is how

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 299–309, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

300 M. Crochemore et al.

to efficiently and accurately map these short reads to a reference genome [12]
that serves as a framework. The Genome Assembly Problem is as follows: given
a large number of short DNA sequences (often called “fragments”) generated by
a sequencing machine like the ones mentioned above, put them back together
to create a representation of the chromosome that sequences were taken from
(usually a single organism). There are several software tools for this (called
assemblers), to name a few: Celera Assembler [13] (mostly long reads), SSAKE
[16], SHARCGS [5], SHRAP [14], Velvet [17]. When the problem of genome
assembly arisen, computer scientists came up with the above abstraction of the
SCS Problem, which they showed to be NP-hard [8], and developed several
efficient approximation algorithms for it (see for example [1,2,3,7,15]). However,
the SCS problem actually does not address the following issue of the biological
Genome Assembly Problem — multiple occurrences of the fragments in the
assembly. The shortest common superstring algorithms result in a shortest word
but ignore repeated occurrences. In our paper we consider some variations of
the problem in which we deal with multiple occurrences. First we consider a
special case of SCS in which all fragments are of length 2. It happens that
even this simple version is nontrivial in presence of multiplicities. Then a special
case of constant number of words in S is considered. It is also nontrivial: we
use sophisticated polynomial time algorithms for integer linear programs with
constant number of variables.

Definitions of problems
Let S = {s1, s2, . . . , sk} be the set of input words, si ∈ Σ∗. In all the problems
defined below, we assume that S is a factor-free set, i.e. none of the words si is
a factor of any other word from S. Let n denote the total length of all words in
S. Let #occ(u, v) be the number of occurrences (as a factor) of the word u in
the word v. We consider three problems:

SUM-SCS(k):
Given a positive integer m, find a shortest word u such that∑k

i=1 #occ(si, u) ≥ m .

MULTI-SCS(k):
Given a sequence of non-negative integers m1, m2, . . . , mk, find a shortest
word u such that: #occ(si, u) ≥ mi for each i = 1, 2, . . . , k.

MULTI-SCS2(k):
A special case of the MULTI-SCS(k) problem where all input words si are
of length 2.

We assume, for simplicity, that the binary representation of each of the numbers
in the input consists of O(n) bits, i.e. m = O(2n) in SUM-SCS(k) and mi =
O(2n) in MULTI-SCS(k). Moreover, we assume that such numbers fit in a
single memory cell in the RAM model, and thus operations on such numbers
can be performed in constant time (if this is not the case, one would need to
multiply the time complexities of the algorithms presented here by a polynomial

Three Versions of the Shortest Common Superstring Problem 301

of the length of binary representation of numbers). Also, the total size of input
data in each of the problems is O(n).

By finding the SCS in each of the problems we mean computing its length
and its compressed representation which is of size polynomial in n, that can be
used to reconstruct the actual word in a straightforward manner in O(�) time,
where � is the length of the word (this could be a context-free grammar, a regular
expression etc).

2 Preliminaries

Let the overlap ov(s, t) of two non-empty words, s and t, be the longest word y,
such that s = xy and t = yz for some words x �= ε and z. We define ov(s, t) = ε
if s = ε or t = ε. Also, let the prefix pr(s, t) of s, w.r.t. t, be the prefix of s
of length |s| − |ov(s, t)| — therefore s = pr(s, t)ov(s, t). For a given set S =
{s1, s2, . . . , sk} of words, the prefix graph of S is a directed graph with labeled
and weighted edges defined as follows. The set of vertices is {0, 1, 2, . . . , k, k +
1}; vertices 1, 2, . . . , k represent the words s1, s2, . . . , sk and 0, k + 1 are two
additional vertices called source and destination, each of which corresponds to
an empty word s0 = sk+1 = ε. The edges are labeled with words, and their
lengths (weights) are just the lengths of the labels. For all 0 ≤ i, j ≤ k + 1,
i �= k + 1, j �= 0, there is an edge (si, sj) labeled with pr(si, sj). Note that, for
a factor-free set S, the concatenation of labels of all edges in a path of the form
0 = v1, v2, v3, . . . , vp−1, vp = k + 1, i.e.

pr(sv1 , sv2)pr(sv2 , sv3) . . . pr(svp−1 , svp) ,

represents a shortest word containing words sv2 , sv3 , . . . , svp−1 in that order. The
prefix graph can easily be constructed in O(k ·

∑k
i=1 |si|) time, using the prefix

function from the Morris-Pratt algorithm [4]. However, this can also be done in
the optimal time complexity O(

∑k
i=1 |si|+ k2) — see [9].

Let A and B be matrices of size (k + 2) × (k + 2) containing non-negative
numbers. The min-plus product A⊕B of these matrices is defined as:

(A⊕B)[i, j] = min{A[i, q] + B[q, j] : q = 0, 1, . . . , k + 1} .

We assume that the reader is familiar with a basic theory of formal languages
and automata, see [10].

3 MULTI-SCS2(k) Problem

First, let us investigate a variant of the MULTI-SCS(k) problem in which all
input words si are of length 2. Note that in such a case n = 2k. It is a folklore
knowledge that MULTI-SCS2(k) can be solved in polynomial time when all
multiplicities mi are equal to one. We prove a generalization of this result for
the MULTI-SCS2(k) problem:

302 M. Crochemore et al.

Theorem 1. The MULTI-SCS2(k) problem can be solved in O(n2) time. The
length of the shortest common superstring can be computed in O(n) time, and
its compact representation of size O(n2) can be computed in O(n2) time. (The
real size of the output could be exponential.)

Proof. Let us construct a multigraph G = (V, E), such that each vertex corre-
sponds to a letter of the alphabet Σ, and each edge corresponds to some word
si — (u, v) ∈ E if the word uv is an element of S. Each word si has a given
multiplicity mi, therefore we equip each edge e ∈ E corresponding to si with
its multiplicity c(e) = mi. Using this representation the graph G has size O(k)
(|E| = k, and |V | = O(k) if we remove isolated vertices). We refer to such an
encoding as to a compact multigraph representation.

Any solution for the MULTI-SCS2(k) problem can be viewed as a path in
some supergraph G′ = (V, E ∪ E′) of G, passing through each edge e ∈ E at
least c(e) times. We are interested in finding the shortest solution, consequently
we can reduce the problem to finding the smallest cardinality multiset of edges
E′ such that the multigraph (V, E ∪ E′) has an Eulerian path. To simplify the
description, we find the smallest multiset E′ for which the graph (V, E ∪E′) has
an Eulerian cycle, and then reduce the cycle to a path (if E′ �= ∅).

MULTI-SCS2(k) can be solved using the following algorithm:

1: construct the multigraph G = (V, E)
2: find the smallest cardinality multiset of edges E′ such that G′ =

(V, E ∪ E′) has an Eulerian cycle
3: find an Eulerian cycle C in G′

4: if E′ �= ∅ then
5: return path P obtained from C by removing one edge from E′

6: else
7: return C

As a consequence of the following Lemma 1, the smallest cardinality multiset
E′ can be computed in O(|V | + |E|) time. The compact representation of an
Eulerian cycle can be computed, by Lemma 2, in O(|V | · |E|) time. This gives us
an O(|V | · |E|) = O(n2) time algorithm for the MULTI-SCS2(k) problem. �	
Lemma 1. For a given compact representation of a directed multigraph G =
(V, E), there exists an O(|V | + |E|) time algorithm for computing the smallest
cardinality multiset of edges E′, such that the multigraph G′ = (V, E ∪ E′) has
an Eulerian cycle.

Proof. In the trivial case, when G already has an Eulerian cycle, we return
E′ = ∅. Let C1, C2, . . . , Cq (Ci ⊆ V) be connected components in the undirected
version of the multigraph G. For each component we compute its demand Di

defined as follows:

Di =
∑
v∈Ci

max(indeg(v)− outdeg(v), 0)

where indeg(v) (resp. outdeg(v)) is the in (resp. out) degree of a vertex v. Let
the demand of the vertex v be defined as d(v) = |indeg(v) − outdeg(v)|. Let

Three Versions of the Shortest Common Superstring Problem 303

V +(Ci) (resp. V −(Ci)) be the set of vertices v ∈ V (Ci), such that indeg(v) >
outdeg(v) (resp. indeg(v) < outdeg(v)). We describe an algorithm that computes
the smallest cardinality multiset E′ of the size:

|E′| =
q∑

i=1

max(1, Di) .

First, let us observe that an edge e = (u, v) ∈ E′ can have one of the following
contributions:

– if u, v ∈ Ci then e can decrease the demand Di by at most 1,
– if u ∈ Ci and v ∈ Cj (i �= j, with Di > 0 and Dj > 0) then e merges Ci, Cj

into a single component with demand at least Di + Dj − 1,
– if u ∈ Ci and v ∈ Cj (i �= j, with Di = 0 or Dj = 0) then e merges Ci, Cj

into a single component with demand at least Di + Dj .

To construct the optimal set E′, we use the following algorithm (see Fig. 1):

1: E′ = ∅
2: first we connect all components:
3: while number of components > 1 do
4: let Ci, Cj be two different components
5: if Di �= 0 then let u be a vertex from the set V +(Ci), otherwise from V (Ci)
6: if Dj �= 0 then let v be a vertex from the set V −(Cj), otherwise from V (Cj)
7: add to E′ a single edge (u, v) (with c((u, v)) = 1)
8: from now on we have only one component C in G, we reduce its demand to 0:
9: while V +(C) �= ∅ do

10: let v+ ∈ V +(C), v− ∈ V −(C)
11: add to E′ an edge (v+, v−) with multiplicity min(d(v+), d(v−))
12: return E′

Observe that if a component Ci admits Di > 0 it means that both sets V −(Ci)
and V +(Ci) are nonempty. In the first phase we add exactly q − 1 edges to E′.
In the second phase we reduce the total demand to 0, each iteration of the
while loop reduces the demand of at least one vertex to 0. Hence we add at
most O(|V |) different edges in the second phase. If we store E′ using a compact
representation, its size is O(|V | + |E|) and the above algorithm computes it in
such time complexity. �	

Lemma 2. For a given compact representation of a directed Eulerian multi-
graph G = (V, E), there exists an O(|V | · |E|) time algorithm for computing the
representation of an Eulerian cycle in G.

Proof. The Eulerian cycle can be of exponential size, therefore we construct its
compressed representation. Such a representation is an expression of the form

π = wp1
1 wp2

2 . . . wp�

� ,

304 M. Crochemore et al.

b

a c

d

5 110

17 10

3

20

3

(a)

b

a c

d

5 510

20 10

5

20

3

(b)

Fig. 1. (a) Multigraph G = (V, E) for a set of words S = {ad, ac, ba, bb, bc, ca, db, dc}
with a sequence of multiplicities (mi)8i=1 = (17, 3, 5, 3, 1, 20, 10, 10). It consists of a
single component C with V +(C) = {a, b} and V −(C) = {c, d}. (b) Eulerian multigraph
G′ = (V, E ∪ E′) obtained from G by adding the following minimal multiset of edges:
E′ = {(a, d) · 3, (a, c) · 2, (b, c) · 4}.

where wi is a path in G, and pi is a non-negative integer. We say that an occurrence
of v ∈ wi is free if pi = 1. The algorithm is a slight modification of the standard
algorithm for computing Eulerian cycles in graphs, see Fig. 2 and 3.

Function EulerianCycle(G) {assume G is an Eulerian multigraph}
1: find any simple cycle C in G
2: let cmin = min{c(e) : e ∈ C}
3: let π = C1 Ccmin−1 { so that each v ∈ V (C) has a free occurrence }
4: for all e ∈ C do
5: decrease c(e) by cmin, if c(e) = 0 remove e from E(G)
6: for all strongly connected components Wi of G do
7: let vi be any common vertex of V (C) and V (Wi)
8: let πi = EulerianCycle(Wi)
9: insert cycle πi to π after some free occurrence of vertex vi

10: return π

We can find a simple cycle in the Eulerian graph G in O(|V |) time by going
forward until we get to an already visited vertex. Each cycle removes at least
one edge from E, so the algorithm investigates at most |E| cycles. A simple
implementation of lines 6-9 yields O(|V | · |E|) time complexity per recursive
step, however, with a careful approach (G not decomposed to Wi explicitly, π
implemented as a doubly-linked list) one can obtain O(|V |) time complexity of
these lines. Thus the time complexity and the total size of the representation π
is O(|V | · |E|). �	

Three Versions of the Shortest Common Superstring Problem 305

C

viπi

Fig. 2. Construction of an Eulerian cycle by algorithm EulerianCycle(G)

b

a c

d

5 510

20 10

5

20

3

Fig. 3. Eulerian multigraph obtained for a set of words S = {ad, ac, ba, bb, bc, ca, db, dc}
with a sequence of multiplicities (mi)8i=1 = (20, 5, 5, 3, 5, 20, 10, 10). The
compressed representation of an Eulerian cycle can have the following
form:(a→d→b)(b→b)3(b→a)(a→d→b→a)4(a→c→a)5(a→d→b→c→a)5(a→d→c→a)10,
which corresponds to a word adb(b)3a(dba)4(ca)5(dbca)5(dca)10

4 MULTI-SCS(k) Problem for k = O(1)

Let us consider a prefix graph G of S = {s1, s2, . . . , sk}. In order to solve the
general MULTI-SCS(k) problem, it suffices to find the shortest path π from 0
to k + 1 in G that passes through each vertex i ∈ V (G), for 1 ≤ i ≤ k, at least
mi times. We assume that k = O(1).

Let us treat G as a (deterministic) finite automaton A: 0 is its start state,
k + 1 is its accept state, and an edge from i to j in G is identified by a triple
(i, j, |pr(si, sj)|) which represents its starting and ending vertex and its length.
Let Γ ⊆ {0, . . . , k+1}×{0, . . . , k+1}×(Z+∪{0}) be the set of triples identifying
all edges of G. Each path from 0 to k + 1 corresponds to a word (from Γ ∗) in
the language accepted by A.

Let α(A) be a regular expression corresponding to the language accepted by
A — its size is O(1) and it can be computed in O(1) time [10] (recall that
k = O(1)).

Definition 1. We call two words u, v ∈ Γ ∗ commutatively equivalent (notation:
u ≈ v) if for any a ∈ Γ , #occ(a, u) = #occ(a, v). We call two regular languages

306 M. Crochemore et al.

L1, L2 commutatively equivalent (notation: L1 ≈ L2) if for each word u ∈ L1
(u ∈ L2) there exists a word v ∈ L2 (v ∈ L1) such that u ≈ v.

Lemma 3. The regular expression α(A) can be transformed in O(1) time into
a regular expression β(A) such that:

L(β(A)) ⊆ L(α(A)) and L(β(A)) ≈ L(α(A)) (1)

and β(A) is in the following normal form:

β(A) = B1 + B2 + . . . + Bk

where Bi = Ci,1Ci,2 . . . Ci,li and each Ci,j is:

– either a ∈ Γ ,
– or (a1a2 . . . ap)∗, where ar ∈ Γ .

Proof. The proof contains an algorithm for computing β(A) in O(1) time.
In the first step we repetively use the following transformations in every pos-

sible part of α(A) until all Kleene’s stars contain only concatenation of letters
from Γ (all letters in the transformations denote regular expressions):(

γ(δ + σ)ρ
)∗ → (γδρ)∗(γσρ)∗ (2)

(γδ∗σ)∗ →
(
γδ∗σ(γσ)∗

)
+ ε . (3)

Since then, it suffices to repetively use the following transformation to obtain
the required normal form:

γ(δ + σ)ρ → (γδρ) + (γσρ) . (4)

It is easy to check that each of the transformations (2)–(4) changes the regular
expression into another regular expression such that the language defined by the
latter is a commutatively equivalent sublanguage of the language defined by the
former. �	
Let us notice that, due to the conditions (1), from our point of view β(A) may
serve instead of α(A) — for each path generated by the expression α(A) there
exists a path generated by β(A) such that the multisets of edges visited in both
paths are exactly the same (thus the paths are of the same length).

To compute the result for β(A), we process each Bi (see Lemma 3) separately
and return the minimum of values computed. When computing the result (the
shortest path generated by it that visits each vertex an appropriate number of
times) for a given Bi, the only choices we might have are in those Ci,j ’s that are
built using Kleene’s star. For each of them we introduce a single integer variable
xj that is used to denote the number of times we take the given fragment of the
expression in the path we are to construct. For a given set of values of variables
xj , it is easy to compute, for each vertex y of the graph, how many times it is
visited in the word, representing a path, generated by Bi:

#(y, Bi) =
li∑

j=1

#(y, Ci,j)

and what is the total length of the word:

Three Versions of the Shortest Common Superstring Problem 307

len(Bi) =
li∑

j=1

len(Ci,j) .

If Ci,j = a, for a = (v, w, �) ∈ Γ , then

#(y, Ci,j) = δwy len(Ci,j) = �

and if Ci,j = (a1a2 . . . ap)∗, where ar ∈ Γ for 1 ≤ r ≤ p, then

#(y, Ci,j) = xj ·
p∑

r=1

#(y, ar) len(Ci,j) = xj ·
p∑

r=1

len(ar) .

Here δxy denotes the Kronecker delta: δx,x = 1, and δx,y = 0 for x �= y.
If values of the variables are not fixed, we can treat #(y, Bi) and len(Bi) as

(linear) expressions over those variables. Our goal is, therefore, to minimize the
value of len(Bi) under the following constraints on variables xj ∈ Z:

xj ≥ 0
#(y, Bi) ≥ my for y = 1, 2, . . . , k .

But this is exactly an integer linear programming problem (see Example 1). For
a fixed number of variables and constraints it can be solved in polynomial time in
the length of the input, see Lenstra’s paper [11], and even in linear time in terms
of the maximum encoding length of a coefficient, see Eisenbrand’s paper [6].

Example 1. Assume that S = {s1, s2}, m1 = 2010, m2 = 30. Note that the
set of symbols in the regular expressions α(A) and β(A) is Γ ⊆ {0, . . . , 3} ×
{0, . . . , 3} × (Z+ ∪ {0}). Let

Bi = (0, 1, 0)(1, 1, 7)∗(1, 2, 3)
(
(2, 1, 2)(1, 1, 7)(1, 2, 3)

)∗(2, 3, 5)

be a part of the expression β(A) for which we are to compute the shortest path
satisfying the occurrence conditions.

Observe that we can interpret our task as a graph problem. We are given
a directed graph having a form of a directed path (a backbone) with disjoint
cycles attached, in which vertices are labeled with indices from the set {0, . . . , 3}
and edges are labeled with lengths, as in Fig. 3. In this graph we need to find
the length of the shortest path from the vertex labeled 0 to the vertex labeled
k + 1 = 3 visiting at least m1 = 2010 1-labeled vertices and at least m2 = 30
2-labeled vertices.

In the integer program we introduce two variables x1, x2 that uniquely deter-
mine a word generated by Bi:

(0, 1, 0)(1, 1, 7)x1(1, 2, 3)
(
(2, 1, 2)(1, 1, 7)(1, 2, 3)

)x2(2, 3, 5) .

The integer program for this example looks as follows:

x1, x2 ≥ 0
1 + x1 + 2x2 = #(1, Bi) ≥ m1 = 2010

1 + x2 = #(2, Bi) ≥ m2 = 30

308 M. Crochemore et al.

0 1 2 3

1 1

0 3 5

7 7

23

Fig. 4. Labeled graph corresponding to Bi from Example 1. The variables x1 and x2

from the integer program correspond to the number of times the loop (1 → 1) and the
cycle (2 → 1 → 1 → 2) are traversed in the shortest path.

and we are minimizing the expression

len(Bi) = 0 + 7x1 + 3 + 12x2 + 5 .

To recompute the actual SCS, we choose the one Bi that attains the globally
smallest value of len(Bi). Note that solving the integer program gives us the
values of variables xj , from which we can restore the corresponding word v
generated by the regular expression Bi simply by inserting the values of xj

instead of Kleene’s stars, resulting in a polynomial representation of the shortest
common superstring.

Theorem 2. MULTI-SCS(k) can be solved in O(poly(n)) time for k = O(1).

5 SUM-SCS(k) Problem

Let G be the prefix graph of S = {s1, s2, . . . , sk}. We are looking for the shortest
word containing m occurrences of words from S. Recall that such a word corre-
sponds to the shortest path in G from the source to the destination, traversing
m + 1 edges. Let M be the adjacency matrix of G. The length of the shortest
path from the vertex 0 to the vertex k + 1 passing through m + 1 edges equals
Mm+1[0, k + 1], where Mm+1 is the (m + 1)th power of M w.r.t. the min-plus
product. Mm+1 can be computed in O(k3 log m) time by repeated squaring, i.e.
using identities:

M2p = (Mp)2 M2p+1 = M ⊕M2p .

Having computed the described matrices, we can also construct a representa-
tion of SCS of size O(poly(n)) by a context-free grammar. The set of terminals
is Σ. For each of the matrices Mp that we compute, we create an auxiliary ma-
trix Kp containing distinct non-terminals of the grammar. If Mp (for p > 1) is
computed in the above algorithm using Ma and M b then we add the following
production from Kp[i, j]:

Kp[i, j] ⇒ Ka[i, q]Kb[q, j] where Mp[i, j] = Ma[i, q] + M b[q, j] .

Three Versions of the Shortest Common Superstring Problem 309

The production from K1[i, j] is defined as:

K1[i, j] ⇒ pr(si, sj) .

The starting symbol of the grammar is Km+1[0, k + 1].
Clearly, this representation uses O(k2 log m) memory and the only word gen-

erated by this grammar is the requested SCS. Hence, we obtain the following
theorem:
Theorem 3. The SUM-SCS(k) problem can be solved in O(n+k3 log m) time
and O(n + k2 log m) memory.

References

1. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest super-
string problem. In: Hirschberg, D.S., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075,
pp. 87–101. Springer, Heidelberg (1996)

2. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of
shortest superstrings. J. ACM 41(4), 630–647 (1994)

3. Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short super-
strings. Journal of Algorithms 24(2), 340–353 (1997)

4. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing
Company, Singapore (2002)

5. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic sequencing.
Genome research 17(11), 1697–1706 (2007)

6. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 196–207. Springer, Heidelberg
(2003)

7. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J.
Comput. Syst. Sci. 20(1), 50–58 (1980)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

9. Gusfield, D., Landau, G.M., Schieber, B.: An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett. 41(4), 181–185 (1992)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

11. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathe-
matics of Operations Research 8(4), 538–548 (1983)

12. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Research 18(11), 1851–1858 (2008)

13. Myers, E.W., et al.: A whole-genome assembly of drosophila. Science 287(5461),
2196–2204 (2000)

14. Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P., Batzoglou, S.: Whole-genome
sequencing and assembly with high-throughput, short-read technologies. PLoS
ONE 2(5), e484 (2007)

15. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing short-
est common superstrings. Theor. Comput. Sci. 57(1), 131–145 (1988)

16. Warren, R.L., Sutton, G.G., Jones, S.J., Holt, R.A.: Assembling millions of short
DNA sequences using SSAKE. Bioinformatics 23(4), 500–501 (2007)

17. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome research 18(5), 821–829 (2008)

Finding Optimal Alignment and Consensus of
Circular Strings

Taehyung Lee1,�, Joong Chae Na2,��,
Heejin Park3,� � �,†, Kunsoo Park1,�, and Jeong Seop Sim4,‡

1 Seoul National University, Seoul 151-742, South Korea
2 Sejong University, Seoul 143-747, South Korea

3 Hanyang University, Seoul 133-791, South Korea
4 Inha University, Incheon 402-751, South Korea

Abstract. We consider the problem of finding the optimal alignment
and consensus (string) of circular strings. Circular strings are different
from linear strings in that the first (leftmost) symbol of a circular string
is wrapped around next to the last (rightmost) symbol. In nature, for ex-
ample, bacterial and mitochondrial DNAs typically form circular strings.
The consensus string problem is finding a representative string (consen-
sus) of a given set of strings, and it has been studied on linear strings
extensively. However, only a few efforts have been made for the consensus
problem for circular strings, even though circular strings are biologically
important. In this paper, we introduce the consensus problem for circu-
lar strings and present novel algorithms to find the optimal alignment
and consensus of circular strings under the Hamming distance metric.
They are O(n2 log n)-time algorithms for three circular strings and an
O(n3 log n)-time algorithm for four circular strings. Our algorithms are
O(n/ log n) times faster than the näıve algorithm directly using the solu-
tions for the linear consensus problems, which takes O(n3) time for three
circular strings and O(n4) time for four circular strings. We achieved this
speedup by adopting a convolution and a system of linear equations into
our algorithms to reflect the characteristics of circular strings that we
found.

� This work was supported by NAP of Korea Research Council of Fundamental
Science & Technology. The ICT at Seoul National University provides research
facilities for this study.

�� This work was supported by the Korea Research Foundation(KRF) grant funded
by the Korea government(MEST) (No. 2009-0069977).

� � � This work was supported by 21C Frontier Functional Proteomics Project from
Korean Ministry of Education, Science and Technology (FPR08-A1-020).

† Corresponding author, E-mail: hjpark@hanyang.ac.kr
‡ This research was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2009-0090441).

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 310–322, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Finding Optimal Alignment and Consensus of Circular Strings 311

1 Introduction

A circular (or cyclic) string is the string that is constructed by linking the begin-
ning and end of a (linear) string together, which can be often found in nature.
Gusfield emphasized “Bacterial and mitochondrial DNA is typically circular,
both in its genomic DNA and in plasmids, even some true eukaryotes contain
plasmid DNA. Consequently, tools for handling circular strings may someday be
of use in those organisms.” (see [1], page 12)

Finding a representative string of a given set S = {S1, . . . , Sm} of m strings
of equal length, called a consensus string (or closest string or center string), is
a fundamental problem in multiple sequence alignment, which is closely related
to the motif recognition problem. Among the conditions that a string should
satisfy to be accepted as a consensus, the two most important conditions are

1. to minimize the sum of (Hamming) distances from the strings in S to the
consensus, and

2. to minimize the longest distance (or radius) from the strings in S to the
consensus.

In this paper we consider four different types of consensus problems, CS,
CR, CSR, and BSR: Problem CS is finding the optimal consensus minimizing
the distance sum, Problem CR is finding the optimal consensus minimizing the
radius, Problem CSR is finding the optimal consensus minimizing both distance
sum and radius if one exists, and finally Problem BSR is finding a consensus
whose distance sum and radius are smaller than given thresholds.

There has been substantial research to solve the problems for linear strings.
Problem CS is easy to solve. We can find a string that minimizes the distance
sum by selecting the symbol occurring most often in each position of the strings
in S. However, Problem CR is hard in general. Given a parameter r, the problem
of asking the existence of a string X such that max1≤i≤m d(X, Si) ≤ r is NP-
complete for general m, even when the symbols of the strings are drawn from a
binary alphabet [2]. Thus, attention has been restricted to approximation solu-
tions [3,4,5,6,7,8] and fixed-parameter solutions [8,9,10,11]. Furthermore, there
have been some algorithms for a small constant m. Gramm et al. [9] proposed a
direct combinatorial algorithm for Problem CR for three strings. Sze et al. [12]
showed a condition for the existence of a string whose radius is less than or equal
to r. Boucher et al. [13] proposed an algorithm for finding a string X such that
max1≤i≤4 d(X, Si) ≤ r for four binary strings. Problems CSR and BSR were
considered by Amir et al [14]. They considered the problems for three strings.
However, there have been only a few results on multiple alignment of circular
strings, even though circular strings are biologically important. Our algorithms
differ from the existing multiple alignment algorithms for circular strings [15,16],
which use the sum-of-pairs score and some general purpose multiple sequence
alignment techniques, such as clustalW [17].

In this paper, we introduce the consensus problem for circular strings and
present novel algorithms to find the optimal alignment and consensus of circular
strings. The consensus problem for circular strings is different from the consensus

312 T. Lee et al.

problem for linear strings because every alignment of the circular strings should
be considered to find the optimal alignment and a consensus string, which is not
necessary in the case of linear strings. Our contributions are as follows:

– We present an algorithm to solve Problem CS for three circular strings in
O(n2 log n) time. This algorithm uses convolution to compute the minimum
distance sum for each alignment and selects the mininum among them.

– Problems CR, CSR, and BSR for three circular strings can be solved in
O(n2 log n) time. The crux of our algorithms is computing the minimum
radius, which requires both convolution and solving a system of linear equa-
tions. Since those algorithms are similar and due to the page limit, we only
present the algorithm for Problem CSR.

– We present an algorithm to solve Problem CS for four circular strings in
O(n3 log n) time. For four circular strings, it requires both convolution and
solving a system of linear equations to compute the minimum distance sum.

Our algorithms are O(n/ log n) times faster than the näıve algorithm directly
using the solutions for the linear consensus problems, which takes O(n3) time
for three circular strings and O(n4) time for four circular strings.

2 Preliminaries

In this section, we introduce formal definition of consensus problems for circu-
lar strings. We also give a brief overview of a preliminary result on consensus
problems for linear strings, and introduce a discrete convolution, which will be
extensively used to solve the problems for circular strings.

2.1 Problem Definition

A (linear) string s of length n is a sequence of n symbols from a constant-
sized alphabet Σ. Generally, s is represented by s[0]s[1] · · · s[n− 1], where each
s[i], 0 ≤ i < n, denotes the ith symbol of s. A circular string S of length
n is similar to a linear string of length n except that the first symbol S[0] is
wrapped around next to the last symbol S[n − 1]. From a circular string S of
length n, n instances of linear strings can be derived where each instance S(r)
is a linear string S[r]S[(r + 1) mod n] · · ·S[(r + n − 1) mod n]. We call r the
index of the instance. For instance, if S = ababc, S(0) = ababc, S(1) = babca,
S(2) = abcab, and so forth. For two strings x and y, we denote the concatenation
of x and y by xy and a tandem repeat xx by x2.

Let S = {S1, S2, . . . , Sm} be a set of m circular strings of equal length n.
We define an alignment of S as a juxtaposition of their instances. For m integer
indices 0 ≤ ρ1, ρ2, . . . , ρm < n, the alignment ρ = (ρ1, ρ2, . . . , ρm) is a juxta-
position of instances S1(ρ1), S2(ρ2), . . . , Sm(ρm). Because we only consider the
Hamming distance, all alignments (ρ1 + k mod n, ρ2 + k mod n, . . . , ρm + k
mod n) for 0 ≤ k < n are essentially the same. This implies that we can natu-
rally fix one of the indices of instances, and hence we assume that S1 is fixed,
i.e., ρ1 = 0. Therefore, there exist nm−1 distinct alignments instead of nm.

Finding Optimal Alignment and Consensus of Circular Strings 313

For two linear strings x and y, let d(x, y) denote the Hamming distance be-
tween x and y, which is the number of positions i where x[i] �= y[i]. Given an
alignment ρ = (ρ1, ρ2, . . . , ρm) of S = {S1, S2, . . . , Sm} and a string X , the dis-
tance sum of X for ρ, denoted by E(ρ, X), is defined as

∑
1≤i≤m d(X, Si(ρi)). We

also define the radius of X for ρ, denoted by R(ρ, X), as max1≤i≤m d(X, Si(ρi)).
For each alignment ρ, we define Emin(ρ) as the smallest distance sum of any
string X ′ for ρ, i.e., Emin(ρ) = minX′ E(ρ, X ′). Similarly, let Rmin(ρ) be the
smallest radius of any string X ′ for ρ, i.e., Rmin(ρ) = minX′ R(ρ, X ′). For
Emin(ρ) and Rmin(ρ), we will omit the alignment notation ρ if no confusion
arises. For any alignment ρ′ and strings X ′, we define Eopt = minρ′,X′ E(ρ′, X ′)
and Ropt = minρ′,X′ R(ρ′, X ′).

Now we formally define optimal consensus problem and bounded consensus
problem on circular strings as follows.

Problem 1. Optimal consensus
Given a set S = {S1, . . . , Sm} of m circular strings of length n, find an optimal
alignment ρ and a string X (if any) that satisfy:

Problem CS E(ρ, X) = Eopt.
Problem CR R(ρ, X) = Ropt.
Problem CSR E(ρ, X) = Eopt and R(ρ, X) = Ropt.

If such an optimal alignment and consensus string exist, the string can be ac-
cepted as an optimal consensus string of S. However, sometimes such ρ and X
do not exist, and then, an alignment and a string satisfying weaker conditions
may be sought for as follows.

Problem 2. Bounded consensus
Given a set S = {S1, . . . , Sm} of m circular strings of length n and two integers
s > 0 and r > 0, find an alignment ρ and a string X (if any) that satisfy:

Problem BS E(ρ, X) ≤ s.
Problem BR R(ρ, X) ≤ r.
Problem BSR E(ρ, X) ≤ s and R(ρ, X) ≤ r.

2.2 Problem CSR for Three Linear Strings

For three linear strings s1, s2 and s3 of equal length n, a consensus string s min-
imizing both (Hamming) distance sum and radius can be found efficiently [14].
First, each aligned position i is classified into five types as follows:

Type 0 s1[i] = s2[i] = s3[i] (all matches)
Type 1 s1[i] �= s2[i] = s3[i] (s1[i] is the minority)
Type 2 s2[i] �= s1[i] = s3[i] (s2[i] is the minority)
Type 3 s3[i] �= s1[i] = s2[i] (s3[i] is the minority)
Type 4 s1[i] �= s2[i], s1[i] �= s3[i], s2[i] �= s3[i] (all mismatches)

314 T. Lee et al.

Then, we count the number of positions that belong to type i as ci, for
each i = 0, . . . , 4. The crux of [14] is that those counters are used to de-
termine the minimum possible distance sum Emin and radius Rmin. The au-
thors showed that Emin = c1 + c2 + c3 + 2c4 and Rmin = max(L1, L2) where
L1 = �maxi�=j d(si, sj)/2� and L2 = �Emin/3�.

Once the number of each type has been counted, the algorithm in [14] finds
a consensus string s with Emin and Rmin if it exists. Since it scans the whole
strings once and computes the above counters, the algorithm runs in O(n) time.

Lemma 1 (Amir et al. [14]). For three linear strings of length n, if we are
given counters c1 to c4 defined as above,

1. Emin and Rmin are computed in O(1) time.
2. The existence of a consensus minimizing both Emin and Rmin are determined

in O(1) time.
3. We can construct such a consensus in O(n) time.

2.3 Convolution Method for Counting Matches/Mismatches

A discrete convolution is defined as follows.

Definition 1. Let t and p be arrays of integers, whose lengths are n and m,
respectively. The discrete convolution of t and p, denoted by t⊗ p, is defined as
the array of all inner products of p and a sub-array of t, where:

(t⊗ p)[i] =
m−1∑
j=0

t[i + j]p[j] for i = 0, . . . , n−m .

It is obvious that n elements in the array of t ⊗ p can be computed in O(nm)
time. However, the convolution can be computed in O(n log m) time by using
the fast Fourier transform (FFT). The reader may refer, for example, to [18].

The discrete convolution has been widely used in various string matching
problems, where we match a pattern and a text at every text position [19,20,21].
In this paper, we use convolutions to count the number of matches or mismatches
between every pair of instances of two circular strings. For this purpose, we need
some definitions first. Given a string x of length n, we define a bit mask Bx,σ

and an inverse bit mask Bx,σ for each symbol σ ∈ Σ and i = 0, . . . , n− 1,

Bx,σ[i] =

{
1, if x[i] = σ

0, if x[i] �= σ
and Bx,σ[i] =

{
1, if x[i] �= σ

0, if x[i] = σ
.

For two strings x and y of equal length n and σ ∈ Σ, the inner product of Bx,σ and
By,σ,

∑n−1
i=0 Bx,σ[i]By,σ[i], equals the number of positions i where x[i] = y[i] = σ.

Thus, the sum of all the inner products over all σ,
∑

σ

∑n−1
i=0 Bx,σ[i]By,σ[i] gives

the number of matches between x and y. Likewise, we can compute the number of

Finding Optimal Alignment and Consensus of Circular Strings 315

mismatches between x and y, i.e., Hamming distance d(x, y), by summing up all
the inner products of Bx,σ and By,σ over all σ.

We can further generalize this method to compute distance between two
strings with don’t care (or wildcard) symbols. Assume that a don’t care symbol
$ �∈ Σ matches any symbol σ ∈ Σ∪{$}. Then, we can compute d(x, y) by simply
setting Bx,σ[i] = 0 if x[i] = $ and By,σ[i] = 0 if y[i] = $, for i = 0, . . . , n− 1.

We now consider convolution of such bit masks. For two circular strings X and
Y , convolution BX(0)2,σ⊗BY (0),σ is an array where the number in each position
i = 0, . . . , n − 1 is the inner product of BX(i),σ and BY (0),σ (or equivalently,
BX(0),σ and BY (n−i),σ). Thus, if we compute such convolutions for each σ ∈ Σ
and add the results, we get the total number of matches for every alignment of
two circular strings. Since discrete convolution BX2(0),σ ⊗ BY (0),σ can be com-
puted in O(n log n) time by using FFT, the total time for counting all matches
is O(|Σ|n log n).

Lemma 2. Given two circular strings X and Y of equal length n over a constant-
sized alphabet, the numbers of matches or mismatches in all n alignments can be
computed in O(n log n) time, even with the presence of don’t care symbols.

3 Algorithms

In this section, we first describe an O(n2 log n)-time algorithm to solve Problem
CS for three circular strings. Also, we present an O(n2 log n)-time algorithm
that solves Problem CSR for three circular strings. Then, we show how to solve
Problem CS for four circular strings in O(n3 log n) time.

3.1 Problem CS for Three Circular Strings

Assume that we are given a set S = {S1, S2, S3} of three circular strings of
length n. One obvious way to find a consensus minimizing the distance sum of
S is to compute Emin separately for each of n2 alignments of S, and to construct
a consensus from an alignment with the smallest Emin among all n2 values.
Clearly, this näıve approach takes O(n3) time, since it requires O(n) time for
each alignment.

In contrast, our algorithm solves Problem CS for S in overall O(n2 log n) time.
The crux of the algorithm lies in the use of FFT, which enables us to compute
n values of Emin’s for every n alignments together in O(n log n) time, and hence
to achieve a speedup factor of O(n/ log n) over the näıve approach.

Let δ and γ be integer indices ranging from 0 to n−1. Our algorithm consists
of two stages: (a) We first superpose two instances of S1 and S2 into one string
with displacement of δ, and compute convolutions to overlay an instance of S3 at
every position γ of the superposed string. By doing this, we equivalently evaluate
Emin for all alignments of S. (b) Among all n2 alignments, we find the best
alignment with the smallest Emin, and construct a consensus of the alignment
by simply selecting the majority symbol at each aligned position. By definition,
the corresponding circular string becomes the consensus circular string of S.

316 T. Lee et al.

We now describe the algorithm in detail. Consider an n-by-n table E, where
we store the value of Emin(ρ) for each alignment ρ = (0, δ, γ) in entry E[δ, γ].
To compute a row of n entries E[δ, 0 : n − 1] altogether, we define the δth
superposition Zδ of S1 and S2 as follows:

Definition 2 (The δth superposition). For i = 0, . . . , n− 1, we define Zδ ∈
(Σ ×Σ)∗ as Zδ[i] = (σ1, σ2), where σ1 = S1(0)[i] and σ2 = S2(δ)[i].

We also define a bit mask of Z2
δ , the concatenation of two Zδ’s as follows: For

each σ ∈ Σ and i = 0, . . . , 2n− 1,

BZ2
δ ,σ[i] =

{
1, if Zδ[i mod n] = (σ, ∗) or (∗, σ),
0, otherwise.

The following lemma shows correctness of computation of a single row of E[δ, 0 :
n− 1] derived from convolutions.

Lemma 3. Given Zδ and S3, the following equation holds for γ = 0, . . . , n−1:

E[δ, γ] =
∑
σ∈Σ

(BZ2
δ ,σ ⊗BS3(0),σ)[n− γ] . (1)

Proof. By definition of discrete convolution, the right-hand side of (1) is

∑
σ∈Σ

(BZ2
δ ,σ ⊗BS3(0),σ)[n− γ] =

∑
σ∈Σ

n−1∑
j=0

BZ2
δ ,σ[n− γ + j]BS3(0),σ[j] . (2)

Using the relations S3(0)[j] = S3(γ)[(j − γ) mod n] and BZ2
δ
[n + j] = BZ2

δ
[j]

gives

∑
σ∈Σ

n−1∑
j=0

BZ2
δ

,σ[n − γ + j]BS3(0),σ[j] =
∑
σ∈Σ

n−1∑
j=0

BZ2
δ

,σ[n − γ + j]BS3(γ),σ[(j − γ) mod n]

(3)

=
∑
σ∈Σ

n−1∑
j=0

BZ2
δ

,σ[n + j]BS3(γ),σ[j mod n] (4)

=
∑
σ∈Σ

n−1∑
j=0

BZ2
δ

,σ[j]BS3(γ),σ [j] . (5)

It remains to show that the summation of all the inner products over all σ in (5)
yields E[δ, γ]. First, we have

∑
σ∈Σ

n−1∑
j=0

BZ2
δ ,σ[j]BS3(γ),σ[j] =

n−1∑
j=0

∑
σ∈Σ

BZ2
δ ,σ[j]BS3(γ),σ[j] . (6)

Finding Optimal Alignment and Consensus of Circular Strings 317

Algorithm 1. Algorithm for Problem CS for three circular strings
1: for δ = 0 to n − 1 do
2: Compute superposition Zδ and bit mask BZ2

δ
,σ for all σ ∈ Σ. // O(n) time

3: Compute BZ2
δ

,σ⊗BS3(0),σ for all σ ∈ Σ and add element by element the resulting
arrays. // O(n log n) time

4: Take a reverse of the resulting array to compute E[δ, 0 : n − 1]. // O(n) time
5: end for
6: Find δ∗ and γ∗ where E[δ∗, γ∗] is the minimum. // O(n2) time
7: Compute a consensus string of S1(0), S2(δ∗), and S3(γ∗) // O(n) time

Let s1 = S1(0), s2 = S2(δ), and s3 = S3(γ). For each aligned position j and
σ ∈ Σ, it is straightforward to show that

BZ2
δ ,σ[j]BS3(γ),σ[j] =

{
1, if (s1[j] = σ or s2[j] = σ) and s3[j] �= σ,

0, otherwise.

Then, it follows that the sum
∑

σ∈Σ BZ2
δ ,σ[j]BS3(γ),σ[j] becomes zero for each

position of type 0, one for each position of types 1 to 3, and two for each position
of type 4. Therefore, adding up these sums over all j’s gives c1 + c2 + c3 + 2c4,
which equals Emin of three strings s1, s2,and s3, that is in turn E[δ, γ]. �	

Algorithm 1 shows how we solve Problem CS for three circular strings. Since
it requires at most O(n log n) time per iteration (see line 3), Algorithm 1 takes
O(n2 log n) time in total. In terms of space complexity, instead of maintaining
entire table E, we only keep the best alignment (0, δ∗, γ∗) with the smallest
Emin seen so far to accommodate in O(n) space. Therefore, we get the following
theorem.

Theorem 1. Problem CS for three circular strings can be solved in O(n2 log n)
time and O(n) space.

Remark. If the size of alphabet Σ is not constant, the running time in Theorem 1
is multiplied by |Σ|, which is also applied to Theorems 2 and 3.

3.2 Problem CSR for Three Circular Strings

We now proceed to Problem CSR for three circular strings. Recall that Lemma 1
implies that we can determine the existence of an optimal consensus in O(1)
time if we know all counters c1 to c4. Algorithm 1 directly computes Emin for
each alignment, but it does not compute any of counters, c1 to c4, which are
required for applying Lemma 1 to our problem. In this subsection, we propose
an algorithm that explicitly computes all counters for each alignment, which in
turn enables us to solve Problem CSR for three circular strings. The key idea
is that we can count ci’s for every alignment efficiently using the convolution
and the system of linear equations. Then, we can find an optimal alignment by
applying the algorithm in [14] to each alignment.

318 T. Lee et al.

Lemma 4. For three linear strings s1, s2, and s3, given c0 and d(si, sj)’s for
all i �= j ∈ {1, 2, 3}, the following system of linear equations holds for c1, c2, c3,
and c4.

c1 + c2 + c3 + c4 = n− c0,

c1 + c2 + c4 = d(s1, s2), c1 + c3 + c4 = d(s1, s3), c2 + c3 + c4 = d(s2, s3) .

Proof. Since each position belongs to exactly one of five types, c0 +c1 +c2 +c3 +
c4 = n. By definition, d(s1, s2) is the number of positions i where s1[i] �= s2[i],
which occurs in one of the three distinct cases: (i) s1[i] is the minority (Type 1),
(ii) s2[i] is the minority (Type 2), or (iii) all three aligned symbols are distinct
(Type 4). It implies that c1 + c2 + c4 = d(s1, s2), and similar arguments can be
applied to the other cases for d(s1, s3) and d(s2, s3). �	

The solution of the system of linear equations in Lemma 4 leads to the following
corollary.

Corollary 1. Once c0 and the pairwise Hamming distances d(si, sj) for all i <
j ∈ {1, 2, 3} have been computed, we can compute c1 to c4 as follows:

c1 = n− d(s2, s3)− c0, c2 = n− d(s1, s3)− c0, c3 = n− d(s1, s2)− c0,

c4 = d(s1, s2) + d(s1, s3) + d(s2, s3)− 2c0 − 2n .

The above corollary can be easily extended to the case of three circular strings
as follows: We store each counter ci for all i = 0, . . . , 4 into an n-by-n table
Ci[0 : n − 1, 0 : n − 1], in which each entry Ci[δ, γ] contains counter ci for an
alignment (0, δ, γ). Suppose that we have computed table C0 and three arrays of
size n, D12, D23, and D13, which contains pairwise Hamming distances D12[δ] =
d(S1(0), S2(δ)), D23[δ] = d(S2(0), S3(δ)), and D13[δ] = d(S1(0), S3(δ)) for δ =
0, . . . , n− 1. Then, we have the following lemma.

Lemma 5. For 0 ≤ δ < n and 0 ≤ γ < n,

C1[δ, γ] = n− D23[(γ − δ) mod n]− C0[δ, γ],
C2[δ, γ] = n− D13[γ]− C0[δ, γ],
C3[δ, γ] = n− D12[δ]− C0[δ, γ],
C4[δ, γ] = D12[δ] + D23[(γ − δ) mod n] + D13[γ]− 2C0[δ, γ]− 2n .

The basic idea of our algorithm is to compute C0 and Dij ’s for all n2 possible
alignments efficiently. By Lemma 2, all values of Dij ’s can be computed in time
O(n log n) by using FFT. Thus, if we compute C0[δ, γ] for all 0 ≤ δ, γ < n, we
can get C1[δ, γ] to C4[δ, γ] simultaneously by following the above lemma. For
this purpose, we define the δth intersection Iδ of S1 and S2 as follows: Given an
integer index 0 ≤ δ ≤ n− 1,

Definition 3 (The δth intersection). For i = 0, . . . , n − 1, we define Iδ ∈
(Σ ∪ {#})∗ as

Iδ[i] =

{
S1(0)[i], if S1(0)[i] = S2(δ)[i],
#, if S1(0)[i] �= S2(δ)[i],

Finding Optimal Alignment and Consensus of Circular Strings 319

Algorithm 2. Algorithm for Problem CSR for three circular strings
1: Compute D12[0 : n− 1], D23[0 : n− 1], D13[0 : n− 1] using FFT // O(n log n) time
2: for δ = 0 to n − 1 do
3: Compute intersection Iδ of S1(0) and S2(δ) // O(n) time
4: Compute the number of matches between Iδ and S3(γ) for all 0 ≤ γ < n using

FFT // O(n log n) time
5: Take a reverse of the resulting array to compute C0[δ, 0 : n − 1] // O(n) time
6: end for
7: for all (δ, γ) do
8: Compute all Ci[δ, γ]’s by using Lemma 5, and determine Emin and Rmin for

alignment (0, δ, γ).
9: end for

10: Find the optimal alignment (0, δ, γ) minimizing Emin and Rmin of S1(0), S2(δ), and
S3(γ)

where # �∈ Σ denotes a mismatch symbol, which does not match any symbol in
Σ.

Then, the number of matches between Iδ and S3(γ) equals C0[δ, γ]. The first
loop in Algorithm 2 computes C0[δ, γ] for all 0 ≤ γ < n together in O(n log n)
time for given δ by counting the number of matches between Iδ and S3(γ). This
is done by computing convolutions between BI2

δ ,σ and BS3(0),σ for σ ∈ Σ. Hence,
we get the following theorem.

Theorem 2. Problem CSR for three circular strings can be solved in O(n2 log n)
time and O(n) space.

3.3 Problem CS for Four Circular Strings

We now describe how to compute a consensus minimizing distance sum of S =
{S1, S2, S3, S4}.

Basically, we take an approach similar to that for three circular strings, how-
ever we need to account for a more number of types of aligned positions in
the case of four strings. Given four linear strings s1, s2, s3, and s4, we classify
each aligned position i into five types. (We assume that j1, j2, j3, and j4 is a
permutation of {1, 2, 3, 4}.)

Type A s1[i] = s2[i] = s3[i] = s4[i] (All matches)
Type B sj1 [i] = sj2 [i] = sj3 [i] �= sj4 [i] (One of symbols is the minority, while

the others are the same)
Type C sj1 [i] = sj2 [i], sj3 [i] = sj4 [i], sj1 [i] �= sj3 [i] (Two distinct pairs of the

same symbols)
Type D sj1 [i] = sj2 [i], sj1 [i] �= sj3 [i], sj1 [i] �= sj4 [i], sj3 [i] �= sj4 [i] (Two of sym-

bols are the same, while the others are distinct)
Type E sj[i] �= sj′ [i] for all j �= j′ ∈ {1, 2, 3, 4} (All mismatches)

320 T. Lee et al.

Table 1. Types and counters for aligned positions of four strings

Type A Type B Type C Type D Type E
s1 ♣ ♣ ♦ ♦ ♦ ♣ ♦ ♦ ♣ ♣ ♣ ♦ ♦ ♦ ♣
s2 ♣ ♦ ♣ ♦ ♦ ♦ ♣ ♦ ♣ ♦ ♦ ♣ ♣ ♥ ♦
s3 ♣ ♦ ♦ ♣ ♦ ♦ ♦ ♣ ♦ ♣ ♥ ♣ ♥ ♣ ♥
s4 ♣ ♦ ♦ ♦ ♣ ♣ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♠

Counter a b1 b2 b3 b4 c1 c2 c3 d1 d2 d3 d4 d5 d6 e

Table 1 depicts types and counters we consider. Four symbols ♣, ♦, ♥, and ♠
represent distinct symbols in each aligned position, and the same symbols in a
single column represents matches among corresponding strings in that position.
We count each type of position in all n positions as in Table 1. Note that we divide
Types B, C, and D further with respect to combinations of distinct symbols.

For linear strings, we can construct a consensus string with the minimum
distance sum Emin =

∑
i bi + 2(

∑
i ci +

∑
i di) + 3e. This is easily done in O(n)

time by choosing the majority symbol in each aligned position, while we scan
the whole strings. For circular strings, a näıve algorithm takes O(n4) time since
there are n3 possible alignments of four circular strings. However, we can do
better in O(n3 log n) time as in the case of three circular strings.

We basically compute all fifteen counters by setting and solving a system of
linear equations for them. It is quite straightforward to derive twelve equations
from the numbers of pairwise, triple-wise, or quadruple-wise matches among four
strings. Still, we require three more equations to have the solution for fifteen
counters and those equations are derived from distance between two pairs of
strings defined as follows.

For 1 ≤ i < j ≤ 4, we define a string sij from a pair of strings si and sj , in
which, for k = 0, . . . , n − 1, sij [k] = si[k] if si[k] = sj [k]; otherwise, sij [k] = $,
where $ is a don’t care symbol. Then, it is easily shown that Hamming distance
d(s12, s34) equals c3. Likewise, c1 = d(s14, s23) and c2 = d(s13, s24). Now we
finally have the following system of linear equations for all fifteen counters.

Lemma 6. The following system of linear equations holds for the counters of
four strings.

a + b3 + b4 + c3 + d1 = M12, a + b2 + b4 + c2 + d2 = M13,

a + b2 + b3 + c1 + d3 = M14, a + b1 + b4 + c1 + d4 = M23,

a + b1 + b3 + c2 + d5 = M24, a + b1 + b2 + c3 + d6 = M34,

a + b4 = M123, a + b3 = M124, a + b2 = M134, a + b1 = M234,

a = M1234,

c3 = d(s12, s34), c2 = d(s13, s24), c1 = d(s14, s23),
a + b1 + b2 + b3 + b4 + c1 + c2 + c3 + d1 + d2 + d3 + d4 + d5 + d6 + e = n,

where Mij, Mijk, and Mijkl denote the numbers of pairwise, triple-wise, and
quadruple-wise matches, respectively, among Si, Sj, Sk and Sl.

Finding Optimal Alignment and Consensus of Circular Strings 321

All six Mij ’s and four Mijk’s for every alignment can be computed in O(n2)
and O(n3) time, respectively. All M1234’s for every alignment can be computed
in O(n3 log n) time by using the intersection and the convolution in the similar
way as explained in Sect. 3.2. To compute d(sij , skl)’s for each alignment, we
construct sij for each alignment of Si(0) and Sj(δ), and we also compute all
Hamming distances between n possible sij ’s and n possible skl’s in O(n3 log n)
time by using FFTs. Then, using the solutions of the equations in Lemma 6, we
compute all counters and Emin in O(1) time for each of n3 alignments. Finally,
we can find an optimal alignment and consensus in O(n) time.

Theorem 3. Problem CS for four circular strings can be solved in O(n3 log n)
time and O(n) space.

References

1. Gusfield, D.: Algorithms on Strings, Tree, and Sequences. Cambridge University
Press, Cambridge (1997)

2. Frances, M., Litman, A.: On covering problems of codes. Theory of Computing
Systems 30(2), 113–119 (1997)

3. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing bias from consen-
sus sequences. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264,
pp.247–261. Springer, Heidelberg (1997)

4. Gasieniec, L., Jansson, J., Lingas, A.: Approximation algorithms for Hamming
clustering problems. Journal of Discrete Algorithms 2(2), 289–301 (2004)

5. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 633–642 (1999)

6. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proceedings
of the 31st Annual ACM Symposium on Theory of Computing, pp. 473–482 (1999)

7. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal
of the ACM 49(2), 157–171 (2002)

8. Ma, B., Sun, X.: More efficient algorithms for closest string and substring prob-
lems. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955,
pp. 396–409. Springer, Heidelberg (2008)

9. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for closest string and
related problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223,
pp. 441–453. Springer, Heidelberg (2001)

10. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

11. Stojanovic, N., Berman, P., Gumucio, D., Hardison, R., Miller, W.: A linear-time
algorithm for the 1-mismatch problem. In: Rau-Chaplin, A., Dehne, F., Sack, J.-
R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 126–135. Springer,
Heidelberg (1997)

12. Sze, S., Lu, S., Chen, J.: Integrating sample-driven and pattern-driven approaches
in motif finding. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI),
vol. 3240, pp. 438–449. Springer, Heidelberg (2004)

13. Boucher, C., Brown, D., Durocher, S.: On the structure of small motif recognition
instances. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280,
pp. 269–281. Springer, Heidelberg (2008)

322 T. Lee et al.

14. Amir, A., Landau, G.M., Na, J.C., Park, H., Park, K., Sim, J.S.: Consensus opti-
mizing both distance sum and radius. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.)
SPIRE 2009. LNCS, vol. 5721, pp. 234–242. Springer, Heidelberg (2009)

15. Mosig, A., Hofacker, I., Stadler, P.: Comparative analysis of cyclic sequences:
Viroids and other small circular RNAs. Lecture Notes in Informatics, vol. P-83,
pp. 93–102 (2006)

16. Fernandes, F., Pereira, L., Freitas, A.: CSA: An efficient algorithm to improve
circular DNA multiple alignment. BMC Bioinformatics 10(1), 230 (2009)

17. Thompson, J., Higgins, D., Gibson, T.: CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic Acids Research 22,
4673–4680 (1994)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

19. Fischer, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M.
(ed.) Complexity of Computation. SIAM-AMS Proceedings, pp. 113–125 (1974)

20. Abrahamson, K.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051
(1987)

21. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with
k mismatches. In: SODA 2000: Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 794–803. Society
for Industrial and Applied Mathematics (2000)

Optimizing Restriction Site Placement for
Synthetic Genomes

Pablo Montes1,�, Heraldo Memelli1, Charles Ward1,��, Joondong Kim2,� � �,
Joseph S.B. Mitchell2,���, and Steven Skiena1,��

1 Department of Computer Science
Stony Brook University
Stony Brook, NY 11794

{pmontes,hmemelli,charles,skiena}@cs.sunysb.edu
2 Department of Applied Mathematics and Statistics

Stony Brook University
Stony Brook, NY 11794

{jdkim,jsbm}@ams.sunysb.edu

Abstract. Restriction enzymes are the workhorses of molecular biology.
We introduce a new problem that arises in the course of our project to
design virus variants to serve as potential vaccines: we wish to modify
virus-length genomes to introduce large numbers of unique restriction
enzyme recognition sites while preserving wild-type function by substi-
tution of synonymous codons. We show that the resulting problem is
NP-Complete, give an exponential-time algorithm, and propose effec-
tive heuristics, which we show give excellent results for five sample viral
genomes. Our resulting modified genomes have several times more unique
restriction sites and reduce the maximum gap between adjacent sites by
three to nine-fold.

Keywords: Synthetic biology, restriction enyzme placement, genome
refactoring.

1 Introduction

An exciting new field of synthetic biology is emerging with the goal of designing
novel living organisms at the genetic level. DNA sequencing technology can be
thought of as reading DNA molecules, so as to describe them as strings on
{ACGT } for computational analysis. DNA synthesis is the inverse operation,
where one can take any such string and construct DNA molecules to specification
with exactly the given sequence. Indeed, commercial vendors such as GeneArt

� On leave from and supported in part by Politécnico Grancolombiano, Bogotá,
Colombia.

�� Supported in part by NIH Grant 5R01AI07521903, NSF Grant DBI-0444815, and
IC Postdoctoral Fellowship HM1582-07-BAA-0005.

� � � Partially supported by grants from the National Science Foundation (CCF-
0729019), Metron Aviation, and NASA Ames.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 323–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

324 P. Montes et al.

(http://www.geneart.com) and Blue Heron (http://www.blueheronbio.com)
today charge under 60 cents per base to synthesize virus-length sequences, and
prices are rapidly dropping [1,2]. The advent of cheap synthesis will have many
exciting new applications throughout the life sciences: the need to design new
sequences to specification leads to a variety of new algorithmic problems on
sequences.

In this paper, we introduce a new problem that arises in the course of our
project to design virus variants to serve as potential vaccines [3,4]. In particular,
restriction enzymes are laboratory reagents that cut DNA at specific patterns.
For example, the enzyme EcoRI cuts at the pattern GAATTC. Each enzyme
cuts at a particular pattern, and over 3000 restriction enzymes have been studied
in detail, with more than 600 of these being available commercially [5].

Each occurrence of a pattern within a given DNA target sequence is called
a restriction enzyme recognition site or restriction site. Unique restriction sites
within a given target are particularly prized, as they cut the sequence unambigu-
ously in exactly one place. Many techniques for manipulating DNA make use of
unique restriction sites [6,7]. In particular, subcloning is an important method
of inserting a new sequence between two different unique restriction sites.

Thus a genomic sequence which contains unique restriction sites at regular
intervals will be easy to manipulate in the laboratory. Traditionally, DNA se-
quences manipulated in laboratories were from living organisms, so the exper-
imenter had no choice but to work with what they were given. But low-cost,
large-scale DNA synthesis changes this equation.

Refactoring [8] is a software engineering term for redesigning a program to
improve its internal structure for better ease of maintenance while leaving its
external behavior unchanged. Genome synthesis technology enables us to refac-
tor biological organisms: we seek to restructure the genome of an organism into
a sequence which is functionally equivalent (meaning behaves the same in its
natural environment) while being easier to manipulate.

The redundancy of the genetic code (64 three-base codons coding for 20 dis-
tinct amino acids) gives us the freedom to insert new restriction sites at certain
places and remove them from others without changing the protein coded for by
a given gene. Identifying the locations of both current and potential sites can be
done using conventional pattern matching algorithms. Much more challenging is
the problem of finding well-spaced unique placements for many different enzymes
to facilitate laboratory manipulation of synthesized sequences. Our contributions
in this paper are:

– Problem Definition – We abstract a new optimization problem on sequences
to model this sequence design task: the Unique Restriction Site Placement
Problem (URSPP). We show this problem is NP-Complete and give approx-
imability results.

– Algorithm Design – We present a series of algorithms and heuristics for
the Unique Restriction Site Placement Problem. In particular we give an
O(n22r)-time dynamic programming algorithm for URSPP, which is prac-
tical for designs with small number of enzymes. We also give an efficient

http://www.geneart.com
http://www.blueheronbio.com

Optimizing Restriction Site Placement for Synthetic Genomes 325

Polio Virus (Initial) Equine Arteritis Virus (Initial)

Polio Virus (Min Max Gap Algorithm) Equine Arteritis Virus (Min Max Gap Algorithm)

Fig. 1. Visualization of restriction enzymes for Polio Virus and Equine Arteritis Virus.
Images were created using Serial Cloner 2.0 [9].

greedy heuristic for site placement, and a heuristic based on weighted bipar-
tite matching which is polynomial in both n and r, both of which construct
good designs in practice.

– Sequence Design Tool – Our design algorithms have been integrated with
the Aho-Corasick pattern matching algorithm to yield a sequence design
tool we anticipate will be popular within the synthetic biology community.
In particular, we have developed this tool as part of a project underway to
design a candidate vaccine for a particular agricultural pathogen.

– Experimental Results for Synthetic Viruses – The URSPP problem abstrac-
tion to some extent obscures the practical aspects of sequence design. The
critical issue is how regularly unique restriction sites can be inserted into
the genomes of representative viruses. We perform a series of experiments to
demonstrate that impressive numbers of regularly-spaced, unique restriction
sites can be engineered into viral genomes.

Indeed, our system produces genomes with three to four-fold more unique
restriction enzymes than a baseline algorithm (details given in the results
section) and reduces the maximum gap size between restriction sites three
to nine-fold. Figure 1 shows example results for Polio Virus and Equine
Arteritis Virus.

326 P. Montes et al.

This paper is organized as follows. In Section 2 we briefly review related work
on genome refactoring and sequence design. In Section 3 we discuss our algorith-
mic approach to the problem. Finally, in Section 4 we give the results for our
refactored viral genomes.

2 Related Work

Synthetic biology is an exciting new field of growing importance. The synthesis
of virus-length DNA sequences, a difficult task just a decade ago [10], is now a
relatively inexpensive commercialized service. This enables a tremendous number
of applications, notably the manipulation of viral genomes to produce attenuated
viruses for vaccine production [3,4]. This work is in support of genome refactoring
efforts related to this project.

Broadly, the field of genome refactoring seeks to expand our understanding
of genetics through the construction of an engineering toolkit to easily mod-
ify genomes. Chan et al. [11], for example, refactored the bacteriophage T7 so
“that is easier to study, understand, and extend.” A number of different tools for
genome refactoring exist: GeneJAX [12] is a JavaScript web application CAD
tool for genome refactoring. SiteFind is a tool which seeks to introduce a restric-
tion enzyme as part of a point mutation using site-directed mutagenesis [13].
However, SiteFind considers the much more restricted problem of introducing a
single restriction site into a short (< 400b) sequence specifically to serve as a
marker for successful mutagenesis, in contrast with our efforts to place hundreds
of sites in several kilobase genomes.

GeneDesign is a tool which aids the automation of design of synthetic genes [14].
One of its functionalities is the silent insertion of restriction sites. The user can
manually choose the enzymes and the sites from the possible places where they
can be inserted, or the program can automatically do the insertion. The latter is
similar to our tool in trying to automate the creation of restriction sites in the
sequence, but the process is done quite differently. GeneDesign only attempts to
insert restriction sites of enzymes that do not appear anywhere in the sequence.
It follows a simple heuristic to try to space the introduced consecutive sites at an

Fig. 2. Introduction of a restriction site by silent mutation

Optimizing Restriction Site Placement for Synthetic Genomes 327

interval specified by the user, without any attempt or guarantee to optimize the
process.

Other relevant work includes Skiena [15], which gives an algorithm for opti-
mally removing restriction sites from a given coding sequence. The problem here
differs substantially, in that (1) we seek to remove all but one restriction sites
per cutter, and (2) we seek to introduce cut sites of unrepresented enzymes in
the most advantageous manner.

3 Methodology

3.1 Problem Statement

The primary goal of our system is to take a viral plasmid sequence and, through
minimal sequence editing, produce a new plasmid which contains a large number
of evenly spaced unique restriction sites. In order to accomplish this, of course,
we create and remove restriction sites in the sequence. The primary restrictions
on our freedom to edit the sequence are:

– The amino–acid sequence of all genes must be preserved. Each amino–acid
in a gene is encoded by a triplet of nucleotides called a codon; as there
are more triplets than amino–acids, there are between one and six codons
which encode each amino–acid. Codons which encode the same amino–acid
are termed synonymous. Thus, in gene-encoding regions we may only make
nucleotide changes which change a codon into a synonymous codon.

Figure 2 shows an example of this concept. Here a single nucleotide
change introduces the EcoRI restriction site, without modifying the amino–
acid sequence (GAG and GAA both code for the amino–acid glutamic acid).

– Certain regions of the sequence may not be editable at all. Examples of
such regions include known or suspected functional RNA secondary struc-
tures. We also lock overlapping regions of multiple open reading frames; very
few such regions admit useful synonymous codon changes to multiple ORFs
simultaneously.

The problem of finding the optimal placement of the restriction sites is interesting
and difficult at the same time. Its difficulty arises from the fact that there are
many aspects that the program must keep track off at the same time, and many
combinatorial possibilities that have to deal with: the order of considering the
enzymes, the decision on which occurrence of a site to keep, the position of
inserting enzymes. All these should be done while maintaining the amino–acid
sequence and trying to minimize the gaps between consecutive sites.

We define the decision problem version of the Unique Restriction Site Place-
ment Problem (URSPP) as follows:

– Input: a set of m subsets Si of integers, each in the range [1, . . . , n], an
integer K.

– Output: Does there exist a single element si in all Si such that the maximum
gap between adjacent elements of {0, n + 1, s1, . . . , sm} is at most K?

328 P. Montes et al.

Here, each subset consists of the existing or potential recognition sites for a spe-
cific restriction enzyme. The decision problem corresponds to choosing a single
site for each restriction enzyme in such a way that guarantees that adjacent
unique restriction sites are no more than K bases apart. The optimization vari-
ant of the problem simply seeks to minimize K, the largest gap between adjacent
restriction enzymes.

In the following sections, we show that this problem is NP-Complete, and
we give an exponential time and space dynamic programming algorithm for
this problem. Due to the impracticality of running this algorithm, we also give
suboptimal heuristics which do not give optimal results but still give good results
which should prove very useful for our biological purpose.

3.2 NP-Completeness and Approximability

Theorem 1. The decision version of URSPP is NP-complete. Further, the op-
timization version of URSPP cannot be approximated within factor 3/2 unless
P=NP.

Proof. The decision problem is clearly in NP, as one can readily verify if a
specified selection of si’s has gap at most k.

In order to prove NP-hardness, we use a reduction from Set Cover. Our
reduction is illustrated in Figure 3.

Fig. 3. Illustration of the reduction from Set Cover to URSPP. The shaded bar
across the top represents the interval [0, n = 2k(3M + N)]. The vertical dashed lines
correspond to the singleton sets of values at positions 2k, 4k, 6k, The rows below
the shaded bar show the values in the sets Si associated with X1, X2, X3, . . . , in the
order P1, Q1, A1, B1, C1, D1, P2, Q2, A2, The bottom set of rows correspond to the
K copies of the sets {k, 7k, 13k, . . . , (M−1)6k+k}. (Not shown are rows corresponding
to the singleton sets at positions 2k, 4k, 6k,)

Optimizing Restriction Site Placement for Synthetic Genomes 329

Consider an instance of Set Cover, with universe set U = {x1, x2, . . . , xN}
and a collection C = {X1, X2, . . . , XM} of subsets Xi ⊆ U . Also given in the
instance is an integer K, with 1 ≤ K ≤ M . The problem is to decide if there
exists a subset C′ ⊆ C, with |C′| ≤ K, such that C′ forms a cover of U :

⋃
X∈C′ X =

U . We can assume that each Xi ∈ C has four elements (|Xi| = 4); this special
version of Set Cover is also known to be NP-complete [16,17].

Given an instance of Set Cover, we construct an instance of URSPP as
follows. First let k be an even positive integer, and we let n = 2k(3M + N).

We specify singleton sets S1 = {2k}, S2 = {4k}, . . ., S3M+N−1 = {2k(3M +
N − 1)}. Since each of these sets Si are singletons, the single points si ∈ Si will
be selected in any solution of URSPP. The resulting set of si’s, together with the
elements 0 and n = 2k(3M +N), specify a set of 3M +N intervals each of length
2k: 0, 2k, 4k, 6k, . . . , 2k(3M + N − 1), 2k(3M + N). We refer to the first 3M in-
tervals as set-intervals (they will be associated with the sets Xi) and the last N
intervals as element-intervals (they will be associated with the elements xi ∈ U).

Next, for each of the M sets Xi of the Set Cover instance, we specify 6 sets
Si, with each set having some of its elements at values within 3 of the first 3M set-
intervals, and some values within the last N element-intervals. We use the first
three set-intervals for X1, the next three set-intervals for X2, etc. Specifically,
X1 = {xa, xb, xc, xd} corresponds to the sets P1 = {k/2, 3k}, Q1 = {3k/2, 5k},
A1 = {5k/2, �a}, B1 = {7k/2, �b}, C1 = {9k/2, �c}, D1 = {11k/2, �d}, where
�i = 3M · 2k + (i − 1)2k + k is the number (integer) at the midpoint of the
ith element-interval. These sets are set up to allow “propagation” of a choice
to include set X1 in the set cover: If we select an element si = k (using the
“selection-sets” described next), thereby splitting the first set-interval into two
intervals of size k, then we are free to select the right element, 3k, in set P1, which
splits the second set-interval into two intervals of size k, and the right element,
5k, in set Q1; these choices result in the second and third set-intervals being split
into two intervals of size k, freeing up the selections in sets A1, B1, C1, and D1
to be the right elements, �a, �b, �c, �d, each of which splits the element-intervals
corresponding to xa, xb, xc, xd, effectively “covering” these elements. If we do
not select an element si = k, then in order to have gaps of length at most k, we
must select the left choices (k/2 and 3k/2) in sets P1 and Q1, which then implies
that we must also make the left choices in sets A1, B1, C1, D1, implying that we
do not select splitting values in element-intervals corresponding to xa, xb, xc, xd,
thereby not “covering” these elements.

Finally, we specify K sets, each exactly equal to the same set {k, 7k, 13k, . . . ,
(M − 1)6k + k}. We call these the selection-sets. They each have one element
in the middle of the first (of the 3) set-intervals associated with each set Xi.
Selecting element (i − 1)6k + k from one of these selection-sets corresponds to
deciding to use set Xi in the collection C′ of sets that should cover U . Since there
are K selection-sets, we are allowed to use up to K sets Xi.

In total, then, our instance of URSPP has m = (3M + N − 1) + 6M + K
sets Si.

330 P. Montes et al.

Claim. The Set Cover instance has a solution if and only if the URSPP in-
stance has a solution. In other words, there exists a set cover of size K if and
only if there exists a selection of si’s for URSPP with maximum gap k.

Proof. Assume the Set Cover instance has a solution, C′, with |C′| = K. Then,
for the K selection-sets, we select one si corresponding to each X ∈ C′. For each
of these K selected sets, Xi, the corresponding sets Pi and Qi are free to use
the right choices, thereby freeing up sets Ai, Bi, Ci, Di also to use right choices,
effectively “covering” the 4 element-intervals corresponding to the elements of
Xi. Since C′ is a covering, we know that all N element-intervals are covered,
resulting in all element-intervals being split into subintervals of size k. For sets
Xi not in C′, the corresponding sets Pi and Qi use the left choices (in order
that the first set-interval for Xi not have a gap larger than k), and the sets
Ai, Bi, Ci, Di also use the left choices (in order that the second and third set-
intervals for Xi not have a gap larger than k). All gaps are therefore at most k,
so the instance of URSPP has a solution.

Now assume that the instance of URSPP has a solution, with maximum gap
k. Then, every element-interval must be split, by making right choices in several
sets (Ai, Bi, Ci, Di) associated with some of the sets Xi. If such a choice is made
for even one set associated with Xi, then, in order to avoid a gap greater than k
(of size at least 3k/2) in either the second or third set-interval associated with
Xi, at least one of the sets Pi or Qi must also be a right choice. This then implies
that there must be a selection-set that chooses to use the element that splits the
first set-interval associated with Xi; otherwise that interval will have a gap of
size at least 3k/2. Thus, in order that URSPP has a solution, there must be a
way to make selections in the selection-sets in order that the selected sets Xi

form a cover of U . Thus, the instance of Set Cover has a solution.

In fact, our argument above shows that there exists a set cover of size K if and
only if there exists a selection of si’s for URSPP with maximum gap less than
3k/2, since, in any suboptimal solution of the URSPP instance, the gap size is
at least 3k/2. This shows the claimed hardness of approximation.

On the positive side, we are able to give an approximation algorithm for the
URSPP optimization problem:

Theorem 2. The URSPP optimization problem has a polynomial-time
2-approximation.

Proof. We show that in polynomial time we can run an algorithm, for a given
positive integer k, that will report “success” or “failure”. If it reports “success”, it
will provide a set of selections si ∈ Si, one point per Si, such that the maximum
gap is at most 2k−1. If it reports “failure”, then we guarantee that it is impossible
to make selections si ∈ Si such that all gaps are of size at most k. By running this
algorithm for each choice of k, we obtain the claimed approximation algorithm.

The algorithm is simply a bipartite matching algorithm (see [18]). We consider
the bipartite graph whose “red” nodes are the sets Si and whose “blue” nodes

Optimizing Restriction Site Placement for Synthetic Genomes 331

are the k-element integer sets {jk + 1, jk + 2, . . . , jk + k}, for j = 1, 2,
There is an edge in the bipartite graph from red node Si to blue node {jk +
1, jk + 2, . . . , jk + k} if and only if Si contains an integer element in the set
{jk + 1, jk + 2, . . . , jk + k}. If there exists a matching for which every set {jk +
1, jk + 2, . . . , jk + k} is matched to a red node, then we report “success”; the
corresponding elements from the Si’s have the property that no two consecutive
selections si are separated by more than 2k +1, since each interval {jk +1, jk +
2, . . . , jk+k} has an si. On the other hand, if no matching exists for which every
blue node is matched, then it is impossible to select one element si per set Si

with each set {jk + 1, jk + 2, . . . , jk + k} having an element si in it; this implies
that one cannot achieve a selection with all gaps of size at most k.

We note that it is an interesting open problem to close the gap between the
upper and lower bounds on the approximation factor (2 versus 3/2).

3.3 Dynamic Programming Algorithm

Consider a list of events, where each event can be one of (1) a location where
a restriction enzyme is currently cutting or (2) a place where an unused re-
striction enzyme can be inserted, sorted according to their position along the
DNA sequence. Let i be the number of events, S be a set of unused restriction
enzymes, and j be the index of the last event placed in the sequence. Simi-
larly, Position(i) returns the position in the sequence where the event i occurs,
Enzyme(i) returns the actual enzyme that can be inserted at the position given
by event i, and isCurrent(i) returns True if event i is a location where a
restriction enzyme is currently cutting and False otherwise.

Then the length of the minimum maximum gap possible can be found by the
following recurrence relation

C[i, S, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Position(j) i < 0
max{C[i − 1, S, i], Position(j) − Position(i)} isCurrent(i)
min{max{C[i − 1, S \ {Enzyme(i)}, i],

Position(j) − Position(i)}, C[i − 1, S, j]} otherwise

Intuitively, current restriction sites should be kept and they have to be taken
into consideration to find the length of the maximum gap. Now, for each place
where an unused enzyme can be inserted we have two options: either we place
the enzyme in that position or we do not. For each of these options we find the
best placement among the remaining enzymes and the remaining events.

This algorithm runs in time O(n22r) where r is the number of unused enzymes
and n is the total number of events. Given the exponential dependence on the
number of unused enzymes, the algorithm not only takes an exponential amount
of time, but also requires an exponential amount of memory.

Our approach to overcoming this problem was to run the dynamic program-
ming algorithm in blocks. First we run the algorithm to find the optimal place-
ment of a feasibly small set of X enzymes first, then for the following X , and

332 P. Montes et al.

so on until we have covered all enzymes. Moreover, as discussed below, we only
insert enzymes with no initial recognition site, and before this, we apply a heuris-
tic for deleting multiple restriction sites. This approach, thus, will not always
give the exact optimal solution, but we will end with a good approximation. In
Section 4 we give results for this approach using two orderings of enzymes: most
possible insertion points first and fewest possible insertion points first. From
our results, it was not clear that either ordering performed consistently better,
however.

3.4 Practical Considerations

Restriction Map Construction. In our particular problem, we have a fixed
set of patterns, known in advance (the restriction sites), and variable texts (the
DNA sequence being analyzed). This fact justifies preprocessing the set of pat-
terns so as to speed search. Particularly, we want to efficiently search for all
occurrences of all of the restriction sites within a given DNA sequence in order
to build the restriction map. Furthermore, whenever we make a base change we
want to efficiently check that we have not created an occurrence for another
restriction enzyme.

In order to accomplish these two objectives, we use the Aho-Corasick algo-
rithm [19]. This is a dictionary-matching algorithm to efficiently find all occur-
rences of a finite set of patterns P in a given text, which works by constructing
a deterministic finite automaton using a trie of the patterns in P .

Using this algorithm, we compute the main data structure used in the system,
the restriction map (as commonly used in restriction enzyme manipulation tools;
for in example in [20]). This data structure keeps track of the list of restriction
enzymes, each with its name and its recognition site. Additionally, for every
restriction enzyme we store a list of occurrences (start/end locations) in the
DNA sequence that we are processing.

Deleting Recognition Sites. When deleting a restriction site, we do so by
changing a single base whenever possible. If that base is within a gene (which is
true most of the time for the sequences we are interested in), then the program
makes a change that maintains the amino–acid sequence of the gene. We have
some degree of flexibility in choosing the base change, even inside genes; however,
we currently pick a synonymous codon arbitrarily.

It is worth noting that a sufficiently large number of synonymous base changes
could substantially disrupt the codon bias of a gene. The codon bias of a genome
is the statistical over-representation of certain codons over other synonymous
codons. Genes which have codon bias significantly different from those of the host
system (for example, poliovirus replicating in human cells) are known to express
poorly. Thus, altering the codon bias of a viral genome could significantly affect
the phenotype of the virus [21]. Although we do not believe that the number of
codon changes we make is large enough to significantly alter the codon bias for
a relatively large genome, such an issue could, in principle, be dealt with by a
somewhat more clever policy to handle restriction site deletion.

Optimizing Restriction Site Placement for Synthetic Genomes 333

Inserting Recognition Sites. When adding restriction sites, we again seek to
change a minimal number of bases. However, we cannot just modify the bases of
the sequence to create a restriction site for a given enzyme anywhere we want:
we cannot modify locked regions, we have to make sure that we are maintaining
the amino–acid sequence of genes, and we need to ensure that by creating a
recognition site for a given enzyme we are not accidentally creating a recognition
site for another enzyme, etc. A simple O(nm) algorithm was implemented to find
all the possible places where a given restriction enzyme can be inserted, where
n is the length of the sequence and m is the length of the recognition site.

3.5 Program

Our heuristic approach for this problem is:

– First, eliminate all but one restriction site for each enzyme which appear in
the genome initially.

– Second, insert new restriction sites for enzymes which do not appear in the
genome initially.

Recognition Site Deletion Phase. The first phase following preprocessing
seeks to create unique restriction sites from those sites which already appear in
the genome. We are trying to have as many unique enzymes as possible in the
sequence while trying to minimize the amount of work (in terms of total base
changes), and we attempt to do this with a randomized greedy approach. We
sort the enzymes by number of existing restriction sites, and we immediately
lock the enzymes that have only one occurrence (since they are already unique
and thus can be used without any base changes).

Then, for those enzymes that have 2 occurrences, we delete one of them,
and keep the other. In increasing order of n, for enzymes with n occurrences we
delete n−1, and we randomly keep only one. Although it is possible to construct
pathological cases, in practice the randomization of which occurrence to keep
makes the final distribution of sites quite uniform throughout the sequence.
This part of the algorithm also discards enzymes that cannot be used because
they have 2 or more occurrences within locked regions.

Insertion of Unused Enzymes. After modifying our sequence in order to
delete restriction sites so that a subset of restriction enzymes have unique oc-
currences, we are left with gaps : sequences of contiguous bases between these
unique occurrences in which there are no restriction sites. Our objective is to use
the restriction enzymes that do not currently appear in the genome by creating
recognition sites for them in order to reduce the size of these gaps. We do this by
finding the ideal places for insertions (in order to minimize the maximum gap)
and the actual possible places where the enzymes can be inserted. From this,
we consider three approaches to insert the enzymes as close as possible to the
optimal insertion points:

334 P. Montes et al.

– using our exponential time dynamic programming algorithm in X enzyme
phases, as discussed in Section 3.3;

– a greedy heuristic;
– and a maximal bipartite matching method.

Determining the Ideal Insertion Points. Consider the following problem.
We are given a set of n gaps G = {g1, g2, . . . , gn}, where a gap gi has length
�i, and a set of m separators S = {s1, s2, . . . , sm}. A separator can be placed
anywhere within a gap in order to split it in two. If a separator is placed at
position p within a gap of length �, the resulting two gaps will have size p and
�− p.

Our task is to place the separators within the gaps so that the maximum length
of the resulting gaps is minimized. The overall effect is that all the resulting gaps
at the end of the process will be of approximately the same length (and restriction
sites will be evenly distributed among the entire sequence).

Our algorithm to compute these ideal insertion points works as follows. We
say each gap, gi, is composed of ki segments. Initially ki = 1 for 1 ≤ i ≤ n.
Every time we insert a separator sj within a gap gi we increment ki by one.
Note that at this point we are not making a commitment in terms of the exact
position in which sj should be placed, we are just saying that sj should be placed
somewhere within gi.

As long as there are unused separators, the next available separator should be
placed in the gap gi whose ratio between its length and the number of segments
it is composed of (li/ki) is highest.

FindPreferredInsertLocations(G,m)
1 Without lost of generality, assume �1/k1 > �2/k2 > · · · > �n/kn

2 while there are separators available
3 do Place the current separator in the first gap of the list
4 Move the first gap of the list to its new position so that the list remains sorted in

decreasing order of the ratio between its length and the number of segments it is
composed of

The exact location where separators should be placed within a given gap can
be found by evenly dividing the length of the gap by the number of segments
composing the gap. Specifically, if a given gap gi begins at position si of the
sequence, ki−1 separators should be placed at positions si+1×�i/ki, si+2×�i/ki,
. . . , si + (ki − 1)× �i/ki.

The above procedure is used to compute the ideal place where unused enzymes
should be inserted in order to minimize the gaps, where G is a set of n gaps and
m is the total number of unused enzymes whose recognition site can be created
in at least one possible location. G is computed based on the current state of the
restriction map after we have modified the sequence in order to create unique
occurrences for a subset of restriction enzymes.

A Greedy Approach to Insertion. We implemented a simple greedy algo-
rithm to try to insert the unused restriction enzymes on or close to the ideal

Optimizing Restriction Site Placement for Synthetic Genomes 335

locations. At each step the algorithm tries to insert the restriction enzyme with
the least number of potential insertion points, as close to a ideal insertion lo-
cation as possible. Both the selected enzyme and the selected insert location
are removed from their corresponding lists and the algorithm iterates until all
restriction enzymes are inserted.

Weighted Bipartite Matching. An alternate approach to this problem is
that after we have found both the list of ideal places where enzymes should
be inserted and the list of places where each unused enzyme can actually be
inserted, we formulate the problem of deciding which enzyme should be inserted
in which location as a weighted bipartite matching problem.

Let G = (X ∪ Y, E) be a weighted bipartite graph where X is a set of unused
restriction enzymes and Y is a list of ideal places where enzymes should be
inserted. For each x ∈ X we have an edge e ∈ E from x to every y ∈ Y , where
the weight of e is given by the squared distance in the sequence between y and
the location where x can be inserted that is closest to y. We then compute
the minimum weight perfect matching by using the Hungarian Algorithm [22].
This gives us, for each unused enzyme the location where we should create the
recognition site for it.

4 Results

We tested our program on several viral sequences acquired from
the Website of the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov): Equine Arteritis Virus, Polio Virus,
Enterobacteria Phage λ, Measles Virus, and Rubella Virus. For these results

Table 1. Results for varying viruses under different insertion heuristics, including the
baseline algorithm, and the result of only removing duplicate sites, with no site insertion
(“After Removal”)

Virus Metric Initial Baseline After Greedy Weighted Min Max Gap Min Max Gap
Removal Bipartite (Fewest First) (Most First)

Equine # of base changes N/A 90 158 188 196 186 190
Arteritis # of unique enzymes 24 29 80 90 91 88 92

Virus Max. gap length 3575 1866 949 671 714 498 413
of base changes N/A 149 371 383 384 384 384

λ Phage # of unique enzymes 18 28 77 82 82 82 82
Max. gap length 10085 6288 3091 2954 2954 2954 2954

Measles # of base changes N/A 247 358 397 399 395 395
Virus # of unique enzymes 15 42 83 90 89 89 88

Max. gap length 4317 1087 1921 1118 1118 804 977
Polio # of base changes N/A 141 120 207 216 194 189
Virus # of unique enzymes 35 40 81 104 105 104 110

Max. gap length 982 537 685 459 240 269 269
Rubella # of base changes N/A 197 174 219 218 204 215
Virus # of unique enzymes 32 40 84 99 99 94 97

Max. gap length 990 772 658 351 351 314 314

http://www.ncbi.nlm.nih.gov

336 P. Montes et al.

We use a set of 162 restriction enzymes from the REBase restriction enzyme
database [5] with recognition sites at least 6 bases in length (as shorter
recognition sites appear very frequently).

In the tables below we give the number of nucleotides changed, total number
of unique restriction sites, and maximum gap length for each of our insertion
methods, as well as for the removal alone.

We give as a baseline for comparison one final heuristic. In this heuristic,
we first compute a gap-length g which would generate evenly spaced positions
throughout the genome, based on the total number of restriction enzymes which
either appear or can be created in the genome. We then attempt to introduce
a unique restriction site (either by insertion or by deletion) as close to position
g as possible, say at position p. The heuristic then moves to position p + g and
repeats. This algorithm is similar to that used by GeneDesign [14].

5 Conclusion

We consider the problem of manipulating virus-length genomes to insert large
numbers of unique restriction sites, while preserving wild-type phenotype. We
give an abstraction of this problem, show that it is NP-Complete, give a
2−approximation algorithm, and give a dynamic programming algorithm which
solves it in exponential time and space. We also give several practical heuristics,
which create genomes with several times more unique restriction sites, reducing
the largest gap between adjacent sites by three to nine-fold.

Acknowledgments

We would like to thank Estie Arkin, George Hart, and other members of the
Stony Brook Algorithms Reading Group for their contributions to this paper.

References

1. Bugl, H., Danner, J.P., Molinari, R.J., Mulligan, J.T., Park, H.O., Reichert, B.,
Roth, D.A., Wagner, R., Budowle, B., Scripp, R.M., Smith, J.A.L., Steele, S.J.,
Church, G., Endy, D.: Dna synthesis and biological security. Nature Biotechnol-
ogy 25, 627–629 (2007)

2. Czar, M.J., Anderson, J.C., Bader, J.S., Peccoud, J.: Gene synthesis demystified.
Trends in Biotechnology 27(2), 63–72 (2009)

3. Coleman, J.R., Papamichail, D., Skiena, S., Futcher, B., Wimmer, E., Mueller, S.:
Virus attenuation by genome-scale changes in codon pair bias. Science 320(5884),
1784–1787 (2008)

4. Wimmer, E., Mueller, S., Tumpey, T., Taubenberger, J.: Synthetic viruses: a
new opportunity to understand and prevent viral disease. Nature Biotech. 27(12),
1163–1172 (2009)

5. Roberts, R., Vincze, T., Posfai, J., Macelis, D.: Rebase–a database for dna re-
striction and modification: enzymes, genes and genomes. Nucl. Acids Res. 38,
D234–D236 (2010)

Optimizing Restriction Site Placement for Synthetic Genomes 337

6. González-Ballester, D., de Montaigu, A., Galván, A., Fernández, E.: Restriction
enzyme site-directed amplification PCR: a tool to identify regions flanking a marker
DNA. Anal. Biochem. 340(2), 330–335

7. Roberts, R.: How restriction enzymes became the workhorses of molecular biology.
Proc. Natl. Acad. Sci. 102, 5905–5908 (2005)

8. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2), 126–139 (2004)

9. Serial Cloner, http://serialbasics.free.fr/Serial_Cloner.html
10. Cello, J., Paul, A., Wimmer, E.: Chemical synthesis of poliovirus cdna: generation

of infectious virus in the absence of natural template. Science 297(5583), 1016–1018
(2002)

11. Chan, L., Kosuri, S., Endy, D.: Refactoring bacteriophage t7. Mol. Syst. Biol. 1
(2005)

12. Anand, I., Kosuri, S., Endy, D.: Genejax: A prototype cad tool in support of genome
refactoring (2006)

13. Evans, P., Liu, C.: Sitefind: A software tool for introducing a restriction site as a
marker for successful site-directed mutagenesis. BMC Mol. Biol. 6(22)

14. Richardson, S.M., Wheelan, S.J., Yarrington, R.M., Boeke, J.D.: Genedesign:
Rapid, automated design of multikilobase synthetic genes. Genome Res. 16(4),
550–556 (2006)

15. Skiena, S.: Designing better phages. Bioinformatics 17, S253–S261 (2001)
16. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity

classes. In: STOC 1988: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pp. 229–234. ACM, New York (1988)

17. Duh, R.C., Frer, M.: Approximation of k-set cover by semi-local optimization. In:
Proc. 29th STOC, pp. 256–264. ACM, New York (1997)

18. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

19. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search.
Communications of the ACM 18(6), 333–340 (1975)

20. Vincze, T., Posfai, J., Roberts, R.J.: NEBcutter: a program to cleave DNA with
restriction enzymes. Nucl. Acids Res. 31(13), 3688–3691 (2003)

21. Ermolaeva, M.: Synonymous codon usage in bacteria. Curr. Issues Mol. Biol. 3(4),
91–97 (2001)

22. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

http://serialbasics.free.fr/Serial_Cloner.html

Extension and Faster Implementation of the
GRP Transform for Lossless Compression

Hidetoshi Yokoo

Department of Computer Science, Gunma University
Kiryu 376-8515, Japan

yokoo@cs.gunma-u.ac.jp

Abstract. The GRP transform, or the generalized radix permutation
transform was proposed as a parametric generalization of the BWT of
the block-sorting data compression algorithm. This paper develops its
extension that can be applied with any combination of parameters. By
using the technique developed for linear time/space implementation of
the sort transform, we propose an efficient implementation for the inverse
transformation of the GRP transform. It works for arbitrary parameter
values, and can convert the transformed string to the original string in
time linear in the string length.

1 Introduction

The GRP transform, or the generalized radix permutation transform, was pro-
posed by Inagaki, Tomizawa, and the present author in [3] as a parametric gen-
eralization of the BWT of the block-sorting data compression algorithm [1],[2].
The BWT and its variations [6],[7],[8] can be derived from the GRP transform as
its special cases. The GRP transform has two parameters: the block length � and
the context order d, to which we can assign appropriate values so that we can
also realize new transforms. In this sense, the GRP transform is a proper exten-
sion of those existing transforms. Preliminary experiments [4] show that some
files are more efficiently compressed by an appropriate combination of parameter
values with a tuned second-step encoder than by the original BWT.

In spite of its generality, the GRP transform is given concrete procedures
only in the case where its parameters satisfy n = b� and 0 ≤ d ≤ � for the
length n of the string to be compressed and for an integer b. It is conceptually
possible to remove these restrictions and to allow n, � and d to be any natural
numbers. However, it is not obvious whether we can run such a general version
in an efficient way. In our previous paper [3], we have shown that the GRP
transform can be performed in O(n+ bd) = O(n+nd/�) time. This implies that
the transform runs in time linear in the string length, as long as the parameter
d stays in the range of 0 ≤ d ≤ �. However, it may require quadratic time when
we wish to increase d beyond the range.

In the GRP transform, the inverse transformation is more complicated than
the forward transformation. We observe a quite similar situation [5], [6] in the

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 338–347, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Extension and Faster Implementation of the GRP Transform 339

Sort Transform (ST) [7], which has been proposed as a finite-order variant of
the BWT. The ST, which is also a special case of the GRP transform, was
originally developed to speed up the BWT. This aim was achieved in its forward
transformation with a trade-off of a more demanding and complicated inverse
transformation. Nong and Zhang [5] have addressed the problem of developing
an efficient inverse ST transform, and gave a linear time/space algorithm with
Chan in their recent paper [6].

In this paper, we show that the method developed by Nong, Zhang, and
Chan [6] can be applied to the GRP transform so that its inverse transformation
can be performed in linear time for any combination of the parameters. In order
to show this and make clear the relation between the GRP transform and the
BWT, we adopt a completely different description on the GRP transform than
that given in our previous paper [3]. For example, in [3], the original data string
to be compressed is arranged as a column vector of a matrix. In the present
paper, on the other hand, we adopt the convention of the BWT, in which the
original string is arranged as a row vector of a matrix. The BWT gathers those
symbols that occur in the same or similar contexts in a source string, where
the contexts are backward ones in the sense that the string is traversed from
right to left. In this respect, too, we follow the BWT. The introduction of the
conventions of the BWT and the ST to the description here makes it easy to
understand that its inverse transformation runs in linear time.

The rest of the paper is organized as follows: Section 2 gives an extended
version of the GRP transform. We extend the transform to allow arbitrary pa-
rameters. Our main emphasis is on the development of an efficient inverse trans-
formation. For this, we apply the technique by Nong, Zhang, and Chan [5], [6] to
our transform. Its details and other remarks on complexity issues will be given
separately in Section 3.

2 GRP Transform with Arbitrary Parameters

2.1 Preliminaries

We consider lossless compression of strings over an ordered alphabet A of a finite
size |A|. Elements of the alphabet are called symbols. The alphabetically largest
symbol in the alphabet, denoted by $, is a sentinel, which appears exactly once
at the end of a data string. We represent a string of length n by

x[1..n] = x1x2 · · ·xn−1$, (1)

where the ith symbol is denoted by x[i], i.e., x[i] = xi for 1 ≤ i ≤ n − 1 and
x[n] = $. Similarly, a two-dimensional m × n matrix M of symbols is denoted
by M [1..m][1..n]. The purpose of introducing sentinels is twofold. While the first
one is the same as that adopted in the explanation of the BWT, the second one
is specific to the present paper. We append some extra sentinels to the input
string during the transformation in order to make its length an integer multiple
of a parameter.

340 H. Yokoo

The GRP transform, which is an extension of our previous one [3], converts
an input string (1) into another string y[1..n] ∈ An. The transform has two
parameters: the block length � and the (context) order d, where � is an integer
in 1 ≤ � ≤ n and d is an integer in 0 ≤ d ≤ n. The values of these parameters
and the string length n are shared by the forward and inverse transformations
so that the original string (1) can be uniquely recovered from the transformed
string y[1..n].

In the forward transformation, the input string (1) is divided into blocks of
the same length �. We call an integer b = �n/�� the number of blocks of the
string. We first consider a string

x′[1..b�] = x1x2 · · ·xn−1$ · · · $, (2)

which is a concatenation of x[1..n] and extra b�− n sentinels. Let x′[0] = $.
Then, the forward transformation begins with a b×b� matrix M = M [1..b][1..b�]
whose (i, j) element is initialized as

M [i][j] = x′[(i− 1)� + j mod b�], 1 ≤ i ≤ b, 1 ≤ j ≤ b�. (3)

The leftmost d columns and the rightmost � columns of M are called the reference
part and the output part, respectively.
Example: For n = 11, d = 4, � = 3, consider the string:

x[1..11] = bacacabaca$. (4)

Then, b = �11/3� = 4, b� = 12, and x′[1..12] = bacacabaca$$. The initial
configuration of M is given below. Note that the string x′[1..b�] appears as the
first row, and each row is followed by its �-symbol left cyclic shift. Thus, the
concatenation of the rows of the left � symbols forms the string x′[1..b�]. If we
concatenate the rows of any consecutive � columns in an appropriate order, we
can recover x′[1..b�].

M = M [1..4][1..12] =

⎡
⎢⎢⎣
b a c a c a b a c a $ $
a c a b a c a $ $ b a c
b a c a $ $ b a c a c a
a $ $ b a c a c a b a c

⎤
⎥⎥⎦ .

︸ ︷︷ ︸
reference part

︸ ︷︷ ︸
output part

(d columns) (� columns)

The forward and inverse transformations can be described in terms of operations
on the matrix M . The most basic operation is the sorting of the row vectors.
Sorting is performed in a stable manner by using the entire row or its part as a
sorting key.

In our previous paper [3], we defined the GRP transform on a matrix consisting
only of the reference and output parts because other elements have nothing to
do with the transform. In fact, the matrix representation is not essential to the
transform. We simply adopt the above representation so that we can intuitively
understand the relation of the transform with the BWT and the ST.

Extension and Faster Implementation of the GRP Transform 341

2.2 Forward Transformation

The forward transformation comprises sorting of the row vectors of M and out-
put of its column vectors.

1. /∗ Initialization ∗/
Convert the input string into a matrix M = M [1..b][1..b�] using (3);

2. Use the symbols of the reference part (first d columns) of M as a sort key,
and sort the rows of M lexicographically and stably;
/∗ The matrix M is said to be in state “A” immediately after Step 2. ∗/

3. for j := b� downto b�− � + 1 do
(a) Output the symbols of the jth column of the current M according to:

y′[(b�− j)b + i] := M [i][j] for 1 ≤ i ≤ b;

(b) if j = b�− � + 1 then break;
(c) Sort the row vectors of M in a stable manner by the symbols of the jth

column;
end for

When there are more than one sentinels in x′[1..b�], the second and other suc-
ceeding sentinels are outputted from the last row. Therefore, we do not have
to include these sentinels except for the first one in the transformed string. In
this case, the number of symbols outputted from the forward transformation
is equal to n. We represent the output of the corresponding transformation by
y[1..n] = y1y2 . . . yn. The output drawn directly from the above procedure has
been denoted by y′[1..b�]. Both y[1..n] and y′[1..b�] are easily converted to one
another by sharing the parameters d, �, and n.

Example: For the string in (4) and d = 4, � = 3, we have

y′[1..12] = cc$acaa$bbaa, (5)
y[1..11] = cc$acaabbaa. (6)

2.3 Relation with Existing Transforms

Before proceeding to a description of the inverse transformation, we reveal close
relations between the GRP transform and other established transforms.

First, consider the case of � = 1 and d = n. In this case, it is easy to see
that y[1..n] (= y′[1..b�]) is exactly the same as one obtained when we apply the
BWT to x[1..n]. In this sense, the GRP transform can be regarded as a proper
extension of the BWT. Similarly, we can consider the case where we limit the
order d to an integer k < n with � = 1. This is known as the k-order variant of
the BWT, or sometimes called the Sort Transform (ST) [5],[6],[7].

Now, consider an application of the ST to a string over A�. For example,
suppose that we have a string CACB over A3, where A = aca, B = a$$, and

342 H. Yokoo

C = bac. The ST with any k ≥ 1 transforms this string into CCBA. If we apply
the GRP transform with d = 1 and � = 1 to the same string CACB, we have

M =

⎡
⎢⎢⎣
C A C B
A C B C
C B C A
B C A C

⎤
⎥⎥⎦ −→ MA =

⎡
⎢⎢⎣
A C B C
B C A C
C A C B
C B C A

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a c a b a c a $ $ b a c
a $ $ b a c a c a b a c
b a c a c a b a c a $ $
b a c a $ $ b a c a c a

⎤
⎥⎥⎦,

where MA represents the matrix M in state A. With a simple observation, we
can see that, in the case of d = kl, the application of the k-order ST to an
|A�|-ary string is essentially equivalent to obtaining the matrix M in state A
in the GRP transform with parameters � and d for the corresponding |A|-ary
string. The main difference between the k-order ST for an |A�|-ary string and
the GRP transform for the equivalent |A|-ary string lies in Step 3 of the forward
transformation of the GRP transform, in which |A|-ary symbols are outputted
symbolwise and sorted repeatedly according to their right neighbor columns.

In the sequel, we represent a matrix M in state A by MA, which plays a
similar role to a sorted matrix in the BWT and the ST.

2.4 Inverse Transformation

The inverse transformation of the GRP transform consists mainly of two parts:
reconstruction of the output part of MA and restoring the original string.

Let L�[1..b][1..�] denote the output part of MA. That is, L�[i][j] = MA[i][(b−
1)�+j] for 1 ≤ i ≤ b and 1 ≤ j ≤ �. It can be reconstructed from the transformed
string y′[1..b�] in the following way.

/∗ Reconstruction of the output part of MA ∗/
1. Allocate a b× � matrix L�[1..b][1..�] of symbols, and set

L�[i][1] := y′[i + (�− 1)b] for 1 ≤ i ≤ b;

2. for j := 2 to � do
(a) Sort the symbols in y′[1 + (�− j)b..b + (�− j)b] alphabetically, and put

the result into L�[1..b][j];
(b) Rearrange the rows of L�[1..b][1..j] in a stable manner so that its jth

column corresponds to y′[1 + (�− j)b..b + (�− j)b];
end for

The validity of the above procedure was given in [3] as Lemma 1. The output
part L�[1..b][1..�] plays a similar role to the last column of the sorted matrix
of BWT. In BWT, the symbols in the last column are then sorted in order to
obtain the first column of the same matrix.

In the GRP transform, on the other hand, we can use L�[1..b][1..�] to obtain
the first d or � columns of MA, depending on the value of d. Actually, however,
we do not recover explicitly the left columns of MA. Instead, we keep only two
mappings between the left and right ends of MA. To do so, we perform stable sort

Extension and Faster Implementation of the GRP Transform 343

on the set of row vectors of L�[1..b][1..�] in lexicographic order of their prefixes of
length min{d, �}. As a result of sorting, if L�[i][1..�] is the jth one of the sorted
list of the row vectors, then define two column vectors: P [1..b] and Q[1..b] by

P [i] = j and Q[j] = i.

When d = 0, they are defined by P [i] = n for i = 1 and P [i] = i− 1 otherwise,
and Q[j] = 1 for j = n and Q[j] = j + 1 otherwise.

In order to continue our description of the inverse transform, we borrow some
notions from [6], in which Nong, Zhang, and Chan developed a linear time imple-
mentation of the inverse ST. We first introduce a binary vector D[1..b] ∈ {0, 1}b

such that

D[i] =
{

0 for i ≥ 2 and MA[i][1..d] = MA[i− 1][1..d],
1 for i = 1 or MA[i][1..d] �= MA[i− 1][1..d]. (7)

Further, we introduce a counter vector Cd[1..b] and an index vector Td[1..b].
If D[i] = 0, then Cd[i] is also defined to be zero. Otherwise, Cd[i] stores the
number of the same prefixes of the row vectors in MA as MA[i][1..d]. The index
vector Td[1..b] along with Cd[1..b] is computed in the following way, provided
that D[1..b] is given. The computation of D[1..b] will be deferred to the next
section.

/∗ Computation of Td and Cd ∗/
1. Set Cd[1..b] to be a zero vector;
2. for i := 1 to b do

(a) if D[i] = 1 then set j := i;
(b) Set Td[Q[i]] := j;
(c) Set Cd[j] := Cd[j] + 1;
end for

We are now ready to summarize the inverse transformation. We can restore the
original string x′[1..b�] using the following procedure.

/∗ Restoring the original string ∗/
1. Set j := (b− 1)� + 1;
2. Set i := such an index that L�[i][1..�] includes the sentinel $;
3. while j > 0 do

(a) Set x′[j..j + �− 1] := L�[i][1..�];
(b) Set i := Td[i];
(c) Set Cd[i] := Cd[i]− 1;
(d) Set i := i + Cd[i];
(e) Set j := j − �;
end while

Example: First, the transformed string in (6) is converted to its equivalent form
(5) by using n = 11 and � = 3. Then, L�[1..b][1..�] and other auxiliary quantities

344 H. Yokoo

are obtained as shown in the left table. Finally, the original string x′[1..12] is
restored as shown right below.

i L3[i][1..3] Q[i] D[i] T4[i] C4[i]
1 bac 4 1 3 1
2 bac 3 1 3 1
3 a$$ 1 1 2 2
4 aca 2 0 1 0

j L3[i][1..3], i = 3
10 x′[10..12] = a$$, i = 2
7 x′[7..9] = bac, i = 4
4 x′[4..6] = aca, i = 1
1 x′[1..3] = bac

3 Details of the Inverse Transformation

3.1 Computation of Vector D

The inverse transformation above is based on the framework of Nong and
Zhang [5]. A key issue in the framework lies in the computation of D, which
they called the context switch vector. The same authors gave a more efficient
solution to the issue in their recent paper [6]. We here generalize their recent
technique in order to apply it to the computation of the vector D[1..b] in our
case.

As shown in (7), the vector D[1..b] is defined on the matrix in state A, which
is not available when we are about to compute D[1..b]. However, the left d
columns of MA[1..d][1..b�] can be retrieved only by L�[1..b][1..�] and Q[1..b] in
the following way.

/∗ Reconstruction of the ith row of the reference part of MA ∗/
1. Set j := 1 and k := Q[i];
2. while j ≤ d do

(a) Set MA[i][j..j + �− 1] := L�[k][1..�]; /∗ valid only up to d columns ∗/
(b) Set k := Q[k]; j := j + �;
end while

When we wish to have a single value D[i] for a specific i, we may perform the
above procedure for i − 1 and i, and compare the results symbol by symbol.
However, in order to obtain the set D[1..b] of those values more efficiently, we
rather use a new quantity height and the notion of cycles. Thus, the above
reconstruction procedure is no longer used in actual transformation, but should
be remarked as a procedural representation of Property 6 in [6] with being
generalized to our transform. Property 6 in [6] says that a limited (constant)
order context of the ST can be retrieved by the combination of mapping Q and
symbols in the last column.

The vector height [1..b] represents the lengths of the longest common prefixes
(LCPs) between adjacent rows in MA. Let height [i] denote the length of the LCP
between MA[i− 1][1..b�] and MA[i][1..b�]. Obviously, {D[i] = 0} is equivalent to
{height [i] ≥ d} for 2 ≤ i ≤ b. The following theorem is a generalization of
Theorem 1 in [6] to the GRP transform with parameters d and �. The original
theorem in [6] corresponds to the case of � = 1.

Extension and Faster Implementation of the GRP Transform 345

Theorem 1. height [Q[i]] ≥ height [i]− � for 2 ≤ i ≤ b.

Both in the above procedure and in the theorem, the indexes to the row vectors
are retrieved one after another by the use of mapping Q. Starting from an arbi-
trary integer i in [1, b], we eventually return to the same integer after successive
applications of Q. Thus, it is natural to define a set of indexes

α(i) = {i, Q[i], Q2[i], . . . , Qb−1[i]}, (8)

where Qk[i] represents Q[i] for k = 1 and Q[Qk−1[i]] for k ≥ 2. We call α(i) a
cycle, which we may regard as either a set or a linear list of indexes (integers)
depending on the context. Obviously, any two cycles are disjoint. Although our
definition of cycles is slightly different from that in [6], where a cycle is defined as
a list of symbols, we can apply almost the same discussions as those in [6] to the
computation of D in the inverse GRP transformation. The most characteristic
difference arises when we apply Theorem 1 to the computation of heights along
a cycle. A specific procedure follows.

/∗ Computation of the heights for the indexes in a cycle α(i) ∗/
1. Set j := i and h := 0;
2. do

(a) while h < d do
if j = 1 or Diff (j, h) then break else h++;

end while
(b) Set height [j] := h;
(c) Set h := max{h− �, 0};
(d) Set j := Q[j];
while j �= i

In the above procedure, Diff (j, h) is a boolean predicate that indicates whether
the hth symbols (1 ≤ h ≤ d) of the j − 1th and jth row vectors of MA are
different. If we can perform this comparison in O(1) time, the time complexity
of the above procedure becomes O(d+ � · |α(i)|) for the cardinality |α(i)| of cycle
α(i). This comes from the fact that the total number of times we increment h
in Step 2 (a) never exceeds the sum of d and the total number of decrements of
h in Step 2 (c). Since the sum of the cardinalities |α(i)| of all the cycles is equal
to b = �n/��, the essential issues to be addressed when we wish to compute the
vector D in linear time are the development of O(1)-implementation of Diff (j, h)
and the exclusion of d from the complexity of the above procedure for all cycles.
Actually, these two issues are the main focus of Nong, Zhang, and Chan [6].

We can apply their method [6] almost as it is in order to compute D[1..b] in
time linear in the string length. First, to implement Diff (j, h), note that the hth
symbol of the jth row of MA is given by

MA[j][h] = L�[Q�h/�	[j]][(h− 1) mod � + 1] for 1 ≤ j ≤ b, 1 ≤ h ≤ d. (9)

This can be validated by the reconstruction procedure of the reference part of
MA, which was given in the beginning of this subsection. In (9), Q�h/�	[j] can be

346 H. Yokoo

computed in a constant time by the use of a suitable data structure [6]. Thus,
we can compute Diff (j, h) in O(1)-time from L�[1..b][1..�].

As for the exclusion of d from the complexity
∑

cycles O(d + � |α(i)|), we can
completely follow the technique in [6]. As a result, we can compute the vector
D[1..b] in O(�b) = O(n) time without depending on the value of d.

3.2 Summary of Complexity Issues

We summarize the complexity of the inverse transformation.
The inverse transformation begins with the reconstruction of the output part

L�[1..b][1..�] of MA. Assuming that sorting of symbols can be performed in linear
time using bucket sorting, we can reconstruct the output part in time linear in the
string length n. Then, we proceed to the computation of the mappings P [1..b] and
Q[1..b]. These mappings are obtained by the sorting of the set of row vectors of
L�[1..b][1..�]. Since the number of the row vectors is b and the length of the key is
at most � symbols, the mappings are produced by radix sort in O(b�) = O(n) time.

The computation of vectors Td[1..b] and Cd[1..b] can be done obviously in
time linear in b when we already have the vector D, which we can obtain in
O(n) time, as mentioned above. The last operation for restoring the original
string is to simply copy the set of row vectors of L�[1..b][1..�] in a designated
order. Thus, we can now have the following theorem.

Theorem 2. The inverse transformation of the proposed GRP transform can
restore the original string of length n in O(n) time.

Although we have not discussed the space complexity so far, it is obvious
that the space requirement for the inverse transformation is also O(n) because
L�[1..b][1..�] requires O(n) space while other auxiliary vectors P , Q, D, Td, and
Cd require only O(b) space.

To conclude this subsection, we must give a brief comment on the complexity
of the forward transformation. Its time complexity is obviously O(b(d + �)) =
O(bd + n) when we implement it by using simple radix sort. Although it is
desirable to exclude the order d as in the case with the inverse transformation,
O(bd + n) is not so demanding in practice. If we use the same radix sort to
implement the k-order ST, the time complexity of the k-order ST will be O(kn).
By choosing appropriate parameters in the GRP transform, we can make its time
complexity of O(bd+n) significantly smaller than O(kn) of the k-order ST. When
the GRP transform corresponds to the BWT, we can use various techniques
developed for faster construction of a suffix array [1]. However, it does not seem
plausible to be able to generalize those techniques to the GRP transform. On
the other hand, the space requirement of the forward transformation is simply
O(n). An array for the input string with a permutation vector representing the
row order of M will suffice to implement the matrix. We can access its elements
via the relation (3).

Extension and Faster Implementation of the GRP Transform 347

4 Conclusion

We have proposed an extension of the GRP transform and its efficient imple-
mentation for the inverse transformation. The GRP transform is a proper gen-
eralization of the BWT and their typical variations. We can also say that, in an
algorithmic viewpoint, the proposed inverse transformation is a generalization
of the Nong–Zhang–Chan implementation of the inverse ST [6]. The generality
of the GRP transform will result also in the generality of second-step encoders,
which are used after the transform for actual compression. We can extend the
Move-to-Front heuristics, an example of the second-step encoders incorporated
into the block-sorting compression algorithm, so that it accommodates the char-
acteristics of the output of the GRP transform. We will present its details with
compression experiments on another occasion.

Acknowledgement

We thank Kazumasa Inagaki and Yoshihiro Tomizawa for their contribution to
our previous work.

References

1. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching. Springer, Heidelberg (2008)

2. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
SRC Research Report 124, Digital Systems Research Center, Palo Alto (1994)

3. Inagaki, K., Tomizawa, Y., Yokoo, H.: Novel and generalized sort-based transform
for lossless data compression. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE
2009. LNCS, vol. 5721, pp. 102–113. Springer, Heidelberg (2009)

4. Inagaki, K., Tomizawa, Y., Yokoo, H.: Data compression experiment with the GRP
transform (in Japanese). In: 32nd Sympo. on Inform. Theory and its Applications,
SITA 2009, Yamaguchi, Japan, pp. 330–335 (2009)

5. Nong, G., Zhang, S.: Efficient algorithms for the inverse sort transform. IEEE Trans.
Computers 56(11), 1564–1574 (2007)

6. Nong, G., Zhang, S., Chan, W.H.: Computing inverse ST in linear complexity.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 178–190.
Springer, Heidelberg (2008)

7. Schindler, M.: A fast block-sorting algorithm for lossless data compression. In: DCC
1997, Proc. Data Compression Conf, Snowbird, UT, p. 469 (1997)

8. Vo, B.D., Manku, G.S.: RadixZip: Linear time compression of token streams. In:
Very Large Data Bases: Proc. 33rd Intern. Conf. on Very Large Data Bases, Vienna,
pp. 1162–1172 (2007)

Parallel and Distributed Compressed Indexes�

Lúıs M.S. Russo1, Gonzalo Navarro2, and Arlindo L. Oliveira3

1 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia, FCT,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

lsr@di.fct.unl.pt
2 Dept. of Computer Science, University of Chile

gnavarro@dcc.uchile.cl
3 INESC-ID, R. Alves Redol 9, 1000 Lisboa, Portugal

aml@algos.inesc-id.pt

Abstract. We study parallel and distributed compressed indexes. Com-
pressed indexes are a new and functional way to index text strings. They
exploit the compressibility of the text, so that their size is a function of
the compressed text size. Moreover, they support a considerable amount
of functions, more than many classical indexes. We make use of this
extended functionality to obtain, in a shared-memory parallel machine,
near-optimal speedups for solving several stringology problems. We also
show how to distribute compressed indexes across several machines.

1 Introduction and Related Work

Suffix trees are extremely important for a large number of string processing prob-
lems, in particular in bioinformatics, where large DNA and protein sequences are
analyzed. This partnership has produced several important results, but it has
also exposed the main shortcoming of suffix trees. Their large space requirements,
plus their need to operate in main memory to be useful in practice, renders them
inapplicable in the cases where they would be most useful, that is, on large texts.

The space problem is so important that it has originated a plethora of re-
search, ranging from space-engineered suffix tree implementations [1] to novel
data structures to simulate them, most notably suffix arrays [2]. Some of those
space-reduced variants give away some functionality. For example suffix arrays
miss the important suffix link navigational operation. Yet, all these classical ap-
proaches require O(n log n) bits, while the indexed string requires only n logσ
bits1, being n the size of the string and σ the size of the alphabet. For example the
human genome can be represented in 700 Megabytes, while even a space-efficient
suffix tree on it requires at least 40 Gigabytes [3], and the reduced-functionality
suffix array requires more than 10 Gigabytes. This problem is particularly evi-
dent in DNA because log σ = 2 is much smaller than log n.
� Funded in part by Millennium Institute for Cell Dynamics and Biotechnology

(ICDB), Grant ICM P05-001-F, Mideplan, and Fondecyt grant 1-080019, Chile (sec-
ond author).

1 In this paper log stands for log2.

A. Amir and L. Parida (Eds.): CPM 2010, LNCS 6129, pp. 348–360, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel and Distributed Compressed Indexes 349

These representations are also much larger than the size of the compressed
string. Recent approaches [4] combining data compression and succinct data
structures have achieved spectacular results on what we will call generically
compressed suffix arrays (CSAs). These require space close to that of the com-
pressed string and support efficient indexed searches. For example the most
compact member of the so-called FM-Index family [5], which we will simply call
FMI, is a CSA that requires nHk + o(n log σ) bits of space and counts the num-
ber of occurrences of a pattern of length m in time O(m(1+ log σ

log log n)). Here nHk

denotes the k-th order empirical entropy of the string [6], a lower bound on the
space achieved by any compressor using k-th order modeling. Within that space
the FMI represents the text as well, which can thus be dropped.

It turns out that it is possible to add a few extra structures to CSAs and
support all the operations provided by suffix trees. Sadakane was the first to
present such a compressed suffix tree (CST) [3], adding 6n bits to the size of
the CSA. This Θ(n) extra-bits space barrier was recently broken by the so-
called fully-compressed suffix tree (FCST) [7] and by another entropy-bounded
CST [8]. The former is particularly interesting as it achieves nHk + o(n log σ)
bits of space, asymptotically the same as the FMI, its underlying CSA.

Distributing CSAs have been studied, yet focusing only on pattern matching.
For example, Mäkinen et al. [9] achieved optimal speedup in the amortized sense,
that is, when many queries arrive in batch.

In this paper we study parallel and distributed algorithms for several stringology
problems (with well-known applications to bioinformatics) based on compressed
suffix arrays and trees. This is not just applying known parallel algorithms to com-
pressed representations, as the latter have usually richer functionality than clas-
sical ones, and thus offer unique opportunities for parallelization and distributed
representations. InSection4wepresentparallel shared-memoryalgorithms to solve
problems like pattern matching, computing matching statistics, longest common
substrings, and maximal repeats. We obtain near-optimal speedups, by using so-
phisticated operations supported by these compressed indexes, such as generalized
branching. Optimal speedups for some of those problems (and for others, like all-
pairs suffix-prefixmatching)have beenobtained on classical suffix trees aswell [10].
Here we show that one can obtain similar results on those problems and others, over
a compressed representation that handles much larger texts in main memory. In
Section 5 we further mitigate the space problem by introducing distributed com-
pressed indexes. We show how CSAs and CSTs can be split across q machines, at
some price in extra space and reasonable slowdown. The practical effect is that a
much largermain memory is available, and compressionhelps reducing the number
of machines across which the index needs to be distributed.

2 Basic Concepts

Fig. 1 illustrates the concepts in this section. We denote by T a string; by Σ the
alphabet of size σ; by T [i] the symbol at position (i mod n) (so the first symbol
of T is T [0]); by T.T ′ the concatenation; by T = T [..i − 1].T [i..j].T [j + 1..]
respectively a prefix, a subtring, and a suffix of T .

350 L.M.S. Russo, G. Navarro, and A.L. Oliveira

The path-label of a node v, in a tree with edges labeled with strings over
Σ, is the concatenation of the edge-labels from the root down to v. We refer
indifferently to nodes and to their path-labels, also denoted by v. A point in T
corresponds to any substring of T ; this can be a node in T or a position within
an edge label. The i-th letter of the path-label is denoted as Letter(v, i) = v[i].
The string-depth of a node v, denoted SDep(v), is the length of its path-label,
whereas the tree depth in number of edges is denoted TDep(v). SLAQ(v, d) is
the highest ancestor of node v with SDep ≥ d, and TLAQ(v, d) is its ancestor
of tree depth d. Parent(v) is the parent node of v, whereas Child(v, X) is
the node that results of descending from v by the edge whose label starts with
symbol X , if it exists. FChild(v) is the first child of v, and NSib(v) the next
child of the same parent. Ancestor(v, v′) tells whether v is an ancestor of v′,
and LCA(v, v′) is the lowest common ancestor of v and v′.

The suffix tree of T is the deterministic compact labeled tree for which the
path-labels of the leaves are the suffixes of T $, where $ is a terminator symbol
not belonging to Σ. We will assume n is the length of T $. The generalized
suffix tree of T and T ′ is the suffix tree of T $T ′# where # is a new termina-
tor symbol. For a detailed explanation see Gusfield’s book [11]. The suffix-link
of a node v �= Root of a suffix tree, denoted SLink(v), is a pointer to node
v[1..]. Note that SDep(v) of a leaf v identifies the suffix of T $ starting at posi-
tion n − SDep(v) = Locate(v). For example T [Locate(ab$)..] = T [7 − 3..] =
T [4..] = ab$. The suffix array A[0, n−1] stores the Locate values of the leaves
in lexicographical order. The suffix tree nodes can be identified with suffix array
intervals: each node corresponds to the range of leaves that descend from v.
The node b corresponds to the interval [3, 6]. Hence the node v will be repre-
sented by the interval [vl, vr]. Leaves are also represented by their left-to-right
index (starting at 0). For example by vl − 1 we refer to the leaf immediately
before vl, i.e. [vl−1, vl−1]. With this representation we can Count in constant
time the number of leaves that descend from v. The number of leaves below b
is 4 = 6 − 3 + 1. This is precisely the number of times that the string b oc-
curs in the indexed string T . We can also compute Ancestor in O(1) time:
Ancestor(v, v′) ⇔ vl ≤ v′l ≤ v′r ≤ vr. Operation Ranka(T, i) over a string
T counts the number of times that the letter a occurs in T up to position i.
Likewise, Selecta(T, i) gives the position of the i-th occurence of a in T .

2.1 Parallel Computation Models

The parallel algorithms in this paper are studied under the Parallel Random
Access Model (PRAM), which considers a set of independent sequential RAM
processors, which have a private (or local) memory and a global shared memory.
We assume that the RAMs can execute arithmetic and bitwise operations in
constant time. We use the CREW model, where several processors can read the
same shared memory cell simultaneously, but not write it. We call p the number
of processors, and study the time used by the slowest processor.

For uniformity, distributed processing is studied by dividing the processors
into q sites, which have a (fast) local memory and communicate using a (slow)

Parallel and Distributed Compressed Indexes 351

4

0 23546 1

b
a
b

b b
aa

b
a
b

b

b

b

a
b

$ $ $$ $
5 6

$
1 3

$
2

A:

b

a
b

b

b

b

b

$
b
a

#
b

$ # $
b
a

$
b
a

$$ # $
b
a

b
0

0 2 3 4 5 61 187 9 01 11 2

Fig. 1. Suffix tree T of string abbbab (right), with the leaves numbered. The arrow shows
the SLink between node ab and b. Below it we show the suffix array. The portion of
the tree corresponding to node b and respective leaves interval is highlighted with a
dashed rectangle. The sampled nodes have bold outlines. We also show the generalized
suffix tree for abbbab and abbbb (left), using the $ and # terminators respectively.

((0)(1)((2)((3)(4)))((5)(6)(7)((8)(9)(10)(11)(12))))

(0 1 (2 (3 (4))) (5)(6)(7)(8 9 10 11 12))

B : 1 0 0 1 0 1 0 10111 1011011011 0 0 0 0 0 1 1

B0: 1 0 1 0 1 0 1 111 1011 11011 0 0 1 1

B1: 1 0 1 1 10111 1 11011 11 0 0 0 1 1

Fig. 2. A parentheses representation of the generalized suffix tree in Fig. 1 (left),
followed by the parentheses representation of the respective sampled tree SC. We also
show B bitmap for the LSA operation of the sequential FCST and the Bi bitmaps for
the LSAi operations of the distributed FCST.

shared memory. The number of accesses to this slower memory are accounted
for separately, and they can be identified with the amount of communication
carried out on shared-nothing distributed models. We measure the local and
total memory space required by the algorithms.

3 Overview of Sequential Fully-Compressed Suffix Trees

In this section we briefly explain the local FCST [7]. It consists of a compressed
suffix array, a sampled tree S, and mappings between these structures.

Compressed suffix arrays (CSAs) are compact and functional represen-
tations of suffix arrays [4]. Apart from the basic functionality of retrieving
A[i] = Locate(i) (within a time complexity that we will call Φ), state-of-the-art
CSAs support operation SLink(v) for leaves v. This is called ψ(v) in the litera-
ture: A[ψ(v)] = A[v]+1, and thus SLink(v) = ψ(v), let its time complexity be Ψ .
The iterated version of ψ, denoted ψi, can usually be computed faster than O(iΨ)
with CSAs, since ψi(v) = A−1[A[v]+ i]. We assume the CSA also computes A−1

within O(Φ) time. CSAs might also support operation WeinerLink(v, X) [12],

352 L.M.S. Russo, G. Navarro, and A.L. Oliveira

which for a node v gives the suffix tree node with path-label X.v[0..]. This is
called the LF mapping in CSAs, and is a kind of inverse of ψ. Let its time com-
plexity be O(τ). We extend LF to strings, LF(X.Y, v) = LF(X,LF(Y, v)). For
example, consider the interval [3, 6] that represents the leaves whose path-labels
start by b. In this case we have that LF(a, [3, 6]) = [1, 2], i.e. by using the LF

mapping with a we obtain the interval of leaves whose path-labels start by ab.
CSAs also implement Letter(v, i) for leaves v. Letter(v, 0) = T [A[v]] is

v[0], the first letter of the path-label of leaf v. CSAs implement v[0] in O(1)
time, and Letter(v, i) = Letter(SLink

i(v), 0) in O(Φ) time. CSAs are usually
self-indexes, meaning that they replace the text: they can extract any substring
T [i..i+�−1] in time O(Φ+�Ψ) time, since T [i..i+�−1] = Letter(A−1[i], 0..�−1).

We will use a CSA called the FMI [5], which requires nHk + o(n log σ) bits,
for any k ≤ α logσ n and constant 0 < α < 1. It achieves Ψ = τ = O(1+ log σ

log log n)
and Φ = O(log n log log n).2 The instantiation in Table 1 refers to the FMI.

The δ-sampled tree exploits the property that suffix trees are self-similar,
SLink(LCA(v, v′)) = LCA(SLink(v),SLink(v′)). A δ-sampled tree S, from a
suffix tree T of Θ(n) nodes, chooses O(n/δ) nodes such that, for each node v,
node SLink

i(v) is sampled for some i < δ. Such a sampling can be obtained
by choosing nodes with SDep(v) = 0 (mod δ/2) such that there is another
node v′ for which v = SLink

δ/2(v′). Then the following equation holds, where
LCSA(v, v′) is the lowest common sampled ancestor of v and v′:

SDep(LCA(v, v′)) = max
0≤i<δ

{i + SDep(LCSA(SLink
i(v),SLink

i(v′)))} (1)

From this relation the kernel operations are computed as follows. The i in LCA

is the one that maximizes the computation in Eq. (1).

•SDep(v) = SDep(LCA(v, v)) = max0≤i<d{i + SDep(LCSA(ψi(vl), ψi(vr)))},
•LCA(v, v′) = LF(v[0..i− 1],LCSA(ψi(min{vl, v

′
l}), ψi(max{vr, v

′
r}))),

•SLink(v) = LCA(ψ(vl), ψ(vr)).

These operations plus Parent(v), which is easily computed on top of LCA,
take time O((Ψ + t)δ). The exception is SDep, which takes O(Ψδ).

Note that we have to solve LCSA. This requires mapping nodes to their lowest
sampled ancestors in S, an operation called LSA we explain next. In addition,
each sampled node v must store its [vl, vr] interval, its ParentS and TDepT ,
and also compute LCAS queries in constant time. All this takes O((n/δ) log n)
bits. The rest is handled by the CSA.

Computing lowest sampled ancestors. Given a CSA interval [vl, vr] rep-
resenting node v of T , the lowest sampled ancestor LSA(v) gives the lowest
sampled tree node containing v. With LSA we can compute LCSA(v, v′) =
LCAS(LSA(v),LSA(v′)).
2 ψ(i) can be computed as selectT [A[i]](T bwt, T [A[i]]) using the wavelet tree [13]. The

cost for Φ assumes a sampling step of log n log log n, which adds o(n) extra bits.

Parallel and Distributed Compressed Indexes 353

Table 1. Comparing local and distributed FCST representations. The operations are
defined in Section 2. Time complexities, but not space, are big-O expressions. The
dominant terms in the distributed times count slow-memory accesses. We give the
generalized performance and an instantiation using δ = log n log log n, assuming σ =
O(polylog(n)), and using the FMI [5] as the CSA.

Local Distributed

Space in bits |CSA| + O((n/δ) log n)
= nHk + o(n log σ)

|CSA|+O((n/δ) log n+n log(1+q/δ))
= nHk + o(n log σ) + O(n log q)

SDep Ψδ = log n log log n (log q + Ψ + τ)δ
= log q log n log log n

Count 1 = 1 log q = log q

Ancestor 1 = 1 1 = 1
Parent/ FChild/
NSib/ SLink/ LCA

(Ψ + τ)δ = log n log log n (log q + Ψ + τ)δ
= log q log n log log n

SLink
i Φ + (Ψ + τ)δ

= log n log log n
Φ + (log q + Ψ + τ)δ

= log q log n log log n

Letter(v, i) Φ = log n log log n Φ = log n log log n

Child Φ log δ+(Ψ +τ)δ+log(n/δ)
= log n(log log n)2

Φ log δ + (Ψ + τ)δ + log(n/δ)
= log n(log log n)2

TDep (Ψ + τ)δ2

= (log n log log n)2
(log q + Ψ + τ)δ2

= log q (log n log log n)2

TLAQ log n + (Ψ + τ)δ2

= (log n log log n)2
log n + (log q + Ψ + τ)δ2

= log q (log n log log n)2

SLAQ log n + (Ψ + τ)δ
= log n log log n

log n + (log q + Ψ + τ)δ
= log q log n log log n

WeinerLink τ = 1 τ = 1

The key component for these operations is a bitmap B that is obtained by
writing a 1 whenever we find a ’(’ or a ’)’ in the parentheses representation of the
sampled tree S and 0 whenever we find a leaf of T , see Fig. 2. Then the LSA is
computed via Rank/Select on B. As B contains m = O(n/δ) ones and n zeros,
it can be stored in m log(n/m)+O(m+n log log n/ logn) = O((n/δ) log δ)+o(n)
bits [14]. We now present a summary of the FCST representation.

Theorem 1. Using a compressed suffix array (CSA) that supports ψ, ψi, T [A[v]]
and LF in times O(Ψ), O(Φ), O(1), and O(τ), respectively, it is possible to repre-
sent a suffix tree with the properties given in Table 1 (column “local”).

4 Parallel Compressed Indexes

In this section we study the situation where the index resides in main memory
and we want to speed up its main search operations. We start by studying exact
matching, matching statistics and longest common substrings over CSAs and
FCSTs, and finish with maximal repeats (only over FCSTs).

354 L.M.S. Russo, G. Navarro, and A.L. Oliveira

The CSA’s basic operations, such as ψ, LF , A[i] and A−1[i], seem to be intrin-
sically sequential. However using generalized branching we can speed up several
algorithms. The generalized branching Child(v1, v2), for suffix tree points v1 and
v2, is the point with path label v1.v2 if it exists. This operation was first consid-
ered by Huynh et al. [15], who achieved O(Φ log n) time over a CSA. Russo et
al. [16] achieved O((Ψ + τ)δ + Φ log δ + log(n/δ)) time on the FCST. The proce-
dure binary searches the interval of v1 for the subinterval where ψSDep(v1) ∈ v2.
With the information stored at sampled nodes, only an interval of size δ is binary
searched this way; the other O(log(n/δ)) steps require constant-time accesses.

These binary searches can be accelerated using p processors. Instead of divid-
ing the interval into two pieces we divide it into p and assign each comparison to a
different processor. The time complexity becomes Π(p) = O((Ψ +τ)δ+Φ logp δ+
logp(n/δ)). The CSA-based algorithm also improves to Π(p) = O(Φ logp n).

Pattern matching. Assume we want to search for a pattern P of size m. We
divide P into p parts and assign one to each processor. Each piece is searched
for, like in the FMI, with the LF operation. This requires O(mτ/p) time. We
then join the respective intervals with a binary tree of generalized Child oper-
ations. Assume for simplicity that m/p is a power of 2. We show a flow-graph
of this procedure in Fig. 3. We first concatenate the p/2 pairs of leaves, us-
ing 2 processors for the generalized branching operation, using time Π(2). We
then concatenate the p/4 pairs of nodes of height 1, using 4 processors for the
generalized branching, using time Π(4). We continue until merging the two
halves of P using p processors. The overall time of the hierarchical concate-
nation process is O((Ψ + τ)δ log p + (Φ log δ + log(n/δ)) log log p) on the FCST
and O(Φ log n log log p) on the bare FMI. Using the same instantiation as in
Table 1 this result becomes O(m/p + log n log log n(log p + log log n log log p))
time on the FCST and O(m/p + log2 n log log n log log p) on the FMI, both in
nHk + o(n log σ) bits of index space. The speedup is linear in p, except for the
polylogarithmic additive term. On the other hand, there is no point in using
more than m processors; the optimum is achieved using less than m.

Matching statistics. The matching statistics m(i) indicate the size of the
longest prefix of P [i..] that is a substring of T . Consider for example the string
P = abbbbabb, using the running example suffix tree T , right of Fig. 1. The
corresponding matching statistics are 4, 3, 5, 4, 3, 3, 2, 1. To compute these values
we will again resort to the generalized Child operation. As before the idea is
to first compute a generalized branch tree, which is the tree in the flow-graph
of Fig. 3. This tree contains the intervals over CSA that correspond to strings
P [2jk..2j(k+1)−1], where j will indicate the level in the tree and k the position
in the level. The levels and the positions start at 0. Notice that constructing this
tree can be done exactly as for pattern matching, except that we do not stop the
tree at pieces of length m/p but continue up to length 1. Since the subtrees for
pieces of size m/p must be handled sequentially by one processor, they require
additional time O(mτ/p + (m/p)Π(2)). Note each node of this branching tree
stores the suffix tree point (or suffix array interval plus length) that corresponds
to its substring, if it exists, and Null otherwise.

Parallel and Distributed Compressed Indexes 355

a b b b

bbab

abbb

b b ba

ba bb

Null

Null

Fig. 3. The flow-graph for parallel exact matching and matching statistics is a tree of
generalized Child operations for pattern P = abbbbabb and p = 4 processors. Matching
statistics use all the operations in the tree, whereas exact matching performs only the
operations above the line and the search below the line is computed with LF operations.

After building the tree we traverse it m times, once for each P [i..]. For each
such i we find m(i) by traversing the tree path that covers P [i..i + m(i) − 1]
with the maximal nodes. This describes a path that ascends and then descends,
touching O(log m) nodes of the branching tree. We start at the ith leaf x of
the branching tree, which corresponds to the letter P [i], with v = P [i] the
current point of T , and move up to the parent z of x. If x is the right child
of z, we do nothing more than x ← z. If x is the left child of z, we do a
generalized Child(v, u) operation, where u is the point of T that is stored in y,
the right child of z. If the resulting point is not Null we set v to this new point,
v ← Child(v, u), and continue moving up, x ← z. Otherwise we start moving
down on y, x ← y. While we are moving down we compute the generalized Child

operation between v and the point u in the left child y of x. If the resulting point
is still Null we move to the left child of x, x ← y. Otherwise we set v to this
new point, v ← Child(v, u), and move to the right child z of x, x ← z. The
value m(i) is obtained by initializing it at zero and adding 2j to it each time we
update v at level j of the branching tree.

For example, assume we want to compute m(2), i.e. we want to determine the
longest prefix of bbbabb that is a substring of T . We start on the third leaf of the
tree in Fig. 3 and set v = b. Then move up. Since we are moving from a left child
we compute Child(b, b) and obtain v = bb. Again we move up but this time we
are moving from a right child so we do nothing else. We move up again. Since
the interval on the right sibling is Null the Child operation also returns Null.
Therefore we start descending in the right sibling. We now consider the left
child of that sibling, and compute Child(v, ba) = Child(bb, ba) = bbba. Since
this node is not Null we set v to it and move to the node labeled bb. Considering
its left child we compute Child(bbba, b) = bbbab. Since it is not Null we set v to
it and move to rightmost leaf. Finally we check whether Child(bbbab, b) �= Null

since this is that case we know that we should consider the rightmost leaf as part
of the common substring. This means that m(2) = 5 = 20 +20 +21 +20 = 7−2.

Traversing the tree takes O(Π(2) log m) time per traversal, thus with p pro-
cessors the time is O((m/p)Π(2) log m). By considering that only p ≤ m pro-
cessors are useful, we have that the traversal time dominates the branching

356 L.M.S. Russo, G. Navarro, and A.L. Oliveira

tree construction time. Using the instantiation in Table 1 this result becomes
O((m/p) log m log n(log log n)2) on the FCST and O((m/p) log m log2 n log log n)
on the FMI. The total space is O(m log m) + nHk + o(n log σ) bits. This time
the linear speedup is multiplied by a polylogarithmic factor, since the sequential
algorithm can be made O(m) time.

Longest common substring. We can compute the longest common substring
between P and T by taking the maximum matching statistic m(i) in additional
negligible O(m/p + log p) time.

Maximal repeats. For this problem we need a FCST, and cannot simulate it
with a CSA as before. A maximal repeat in T is a substring S, of size �, that
occurs in at least two positions i and i′, i.e. S = T [i..i+ �− 1] = T [i′..i′ + �− 1],
and cannot be extended either way, i.e. T [i−1] �= T [i′−1] and T [i+�] �= T [i′+�].
The solution for this problem consists in identifying the deepest internal nodes v
of T that are left-diverse, i.e. the nodes for which there exist letters X �= Y such
that X.v and Y.v are substrings of T [11]. Assume v = [vl, vr]. Then FMIs allow
one to access Letter(vl,−1) = T [vl − 1] in O(τ) time3. Hence node v is left-
diverse iff Count(LF(Letter(vl,−1), v)) �= Count(v). This can be verified in
O(τ) time, moreover this verification can be performed independently for every
internal node of T . At each step the algorithm chooses p nodes from T and
performs this verification. A simple way to choose all internal nodes (albeit with
repetitions, which does not affect the asymptotic time of this algorithm) is to
compute LCA([i, i], [i + 1, i + 1]) for all 0 ≤ i < n − 1. Hence this procedure
requires O((n/p)(Ψ + τ)δ) time, plus negligible O(n/p + log p) time to find the
longest candidates. Using the same instantiation as in Table 1 the result becomes
O((n/p) log n log log n) time within optimal nHk + o(n logσ) overall bits. This is
an optimal speedup, if we consider the polylogarithmic penalty of using a FCST.

The speedups in this section are similar to the results obtained for “classical”
uncompressed suffix trees by Clifford [10], which do not speed up exact matching
because they do not use a generalized Child operation. Clifford speeds up the
longest common substring problem and the maximal repeats, among others.

5 Distributed Compressed Indexes

In this section we study distributed CSAs and FCSTs, mainly to obtain support
for large string databases. In this case we assume we have a collection C of q texts
of total length n, distributed across q machines. Hence distributed FCSTs are
always generalized suffix trees, and likewise for CSAs. In fact, the local text of
each machine could also be a collection of smaller texts, and the whole database
could be a single string arbitrarily partitioned into q segments: CSAs and CSTs
treat both cases similarly. The only difference is whether the SLink of the last
symbol of a text sends one to the next text or it stays within that text, but either
variant can be handled with minimal changes. We choose the latter option.
3 This is an access to the Burrows-Wheeler transform.

Parallel and Distributed Compressed Indexes 357

Various data layouts have been considered for distributing classical suffix trees
and arrays [17,9,10]. One can distribute the texts and leave each machine index
its own text, or distribute a single global index into lexicographical intervals, or
opt for other combinations. In this paper we consider reducing the time of a single
query, in contrast to previous work [17] where the focus is on speeding up batches
of queries by distributing them across machines. Our approach is essentially that
of indexing each text piece in its own machine, yet we end up distributing some
global information across machines, similarly to the idea storing local indexes
with global identifiers [17].

First we study the case where the local CSAs are used to simulate a global
CSA, which can then be used directly in the FCST representation. This solution
turns out to require extra space due to the need of storing some redundant
information. Then we introduce a new technique to combine FCSTs that removes
some of those redundant storage requirements.

Distributed Compressed Suffix Arrays. Assume we have a collection C =
{Tj}q−1

0 , and the respective local CSAs. We denote their operations with a
subscript j, i.e. as Aj , A−1

j , ψj and LFj . The generalized CSA that results
from this collection is denoted AC . Assume we store the accumulated text sizes,
AccT [i] =

∑i−1
j=0 |Tj |, which need just O(q log n) bits.

We define the sequence IdC of suffix indexes of C, where IdC [i] = j if the
suffix in AC [i] belongs to text Tj. Consider T as T0 and T ′ as T1 in our running
example. The respective generalized suffix tree is shown in the left of Fig. 1. The
Id sequence for this example is obtained by reading the leaves, and replacing $
by 0 and # by 1. The resulting sequence is Id = 0100101010101.

If we process Id for Rank and Select queries we can obtain the oper-
ations of AC from the operations of the Aj ’s. To compute Locate we use
the equation AC [v] = AId[v][RankId[v](v − 1)] + AccT [Id[v]]. For example for
AC [4] we have that A1[Rank1(4 − 1)] + AccT [1] = A1[1] + 7 = 7. To com-
pute A−1

C we use a similar relation, A−1
C [i] = Selectj(A−1

j [i − AccT [j]] + 1),
where j is such that AccT [j] ≤ i < AccT [j + 1]. Likewise ψC is computed as
ψC [v] = SelectId[v](ψId[v][RankId[v](v − 1)] + 1). Computing LFC(X, [vl, vr])
is more complicated: we compute LF in all the CSAs, i.e. LFj(X, [Rankj(vl −
1),Rankj(vr)−1]) for every 0 ≤ j < q. If [xvj,l, xvj,r] are the resulting intervals
then LFC(X, [vl, vr]) = [minq−1

j=0{Selectj(xvj,l + 1)}, maxq−1
j=0{Selectj(xvj,r +

1)}]. Consider for example, how to compute LFC(a, [5, 12]). We compute
LF0(a, [3, 6]) = [1, 2] and LF1(a, [2, 5]) = [1, 1] and use the results to obtain
that LFC(a, [5, 12]) = [min{Select0(1+1),Select1(1+1)}, max{Select0(2+
1),Select1(1 + 1)}] = [min{2, 4}, max{3, 4}] = [2, 4]. This requires O(log q) ac-
cesses to slow memory to compute minima and maxima in parallel.

A problem with this approach is the space necessary to store sequence Id
and support Rank and Select. An efficient approach is to unfold Id into q
bitmaps, BIdj [i] = 1 iff Id[i] = j, and process each one for constant-time binary
Rank and Select queries while storing them in compressed form [14]. Then
since BIdj contains about n/q 1s, it requires (n/q) log q + O(n/q) + o(n) bits of
space. We store each BIdj in the local memory of processor j, which requires

358 L.M.S. Russo, G. Navarro, and A.L. Oliveira

space |CSAj | + (n/q) log q + O(n/q) + o(n) local bits. The total space usage is
|CSAC | + n log q + O(n) + o(qn) bits (if the partitions are not equal it is even
less; n log q bits is the worst case). This essentially lets each machine map its
own local CSA positions to the global suffix array, as done in previous work for
classical suffix arrays (where the global identifiers can be directly stored) [17].

In this setup, most of the accesses are to local memory. One model is that
queries are sent to all processors and the one able of handling it takes the lead.
For AC [v], each processor j looks if BIdj [v] = 1, in which case j = Id[v] and
this is the processor solving the query locally, in O(Φ) accesses to fast memory
(processor j also stores values AccT [j] and AccT [j +1] locally). For A−1

C [i], each
processor j checks if AccT [j] ≤ i < AccT [j +1] and the one answering positively
takes the lead, answering again in O(Φ) local accesses. ψC proceeds similarly to
AC , in O(Ψ) local accesses. LFC is more complex since all the processors must be
involved, each spending O(τ) local accesses, and then computing global minima
and maxima in O(log q) accesses to slow memory. Compare to the alternative of
storing CSAC explicitly and splitting it lexicographically: all the local accesses
in the time complexities become global.

The o(qn) extra memory scales badly with q (as more processors are avail-
able, each needs more local memory). A way to get rid of it is to use bitmap
representations that require n log q + o(n log q) + O(n log log q) = O(n log q) bits
and solve Rank and Select queries within o((log log n)2) time [18]. We will
now present a new technique that directly represents global FCSTs using tuples
of ranges instead of a single suffix array range.

Distributed Fully-Compressed Suffix Trees. Consider the generalized suf-
fix tree TC of a collection of texts C = {Tj}q−1

0 and the respective individ-
ual suffix trees Ti. Assume, also, that we are storing the Ti trees with the
FCST representation and want to obtain a representation for TC . A node of
TC can be represented all the time as a q-tuple of intervals 〈v0, . . . , vq−1〉 =
〈[v0,l, v0,r], . . . , [vq−1,l, vq−1,r]〉 over the corresponding CSAs. For example the
node abbb can be represented as 〈[2, 2], [1, 1]〉. In fact we have just explained,
in the distributed LF operation, how to obtain from these intervals the [vl, vr]
representation of node v of TC (via Select on IdC and distributed minima and
maxima). Thus these intervals are enough to represent v.

To avoid storing the Id sequence we map every interval [vi,l, vi,r] directly to
the sampled tree of FCSTC , instead of mapping it to an interval v over CSAC
and then reducing it to the sampled tree of FCSTC with LSAC(v). We use
the same bitmap-based technique for LSAC , but store q local bitmaps instead
of just a global one. The bitmaps Bj are obtained from the bitmap B of the
FCSTC by removing the zeros that do not correspond to leaves of Tj , see Fig 2.
This means that, in Bj , we are representing the O(n/δ) nodes of the global
sampled tree and the n/q leaves of Tj . As each Bj has n/q 0s and O(n/δ) 1s,
the compressed representation [14] supporting constant-time Rank and Select

requires (n/q) log(1 + q/δ) + O(n/q) + o(n/δ + n/q) bits. This is slightly better
than the extra space of CSAs, totalling O(n log(1 + q/δ)) + o(nq/δ) bits. As
before, the o(. . .) term can be removed by using the representation by Gupta et

Parallel and Distributed Compressed Indexes 359

al. [18] at the price of o((log log n)2) accesses to fast local memory. Now the same
computation for LSA carried out on Bj gives a global interval.

We then compute LSAC(v) = LCASC(LSA0(v0), . . . ,LSAq−1(vq−1)), where
LCASC is the LCA operation over the sampled tree of TC and LSAj(vj) is the
global LSA value obtained by processor j. This operation is computed in parallel
in O(log q) accesses to slow memory (which replaces the global minima/maxima
of the CSA). The sampled tree S and its extra data (e.g., to compute LCA in
constant time) is stored in the shared memory. Hence accesses to S are always
slow, which does not change the stated complexities. This mechanism supports
the usual representation of the global FCST.

Consider, for example, that we want to compute the SDep of node abbb. Note
that the SDep of [2, 2] in T0 is 7 and that the SDep of [1, 1] in T1 is 6. However
the SDep of abbb in TC is 4. In this example we do not have to use ψ to obtain
the result, altough in general it is necessary. By reducing the [2, 2] and [1, 1]
intervals to the sampled tree of FCSTC we obtain the node abbb and the leaf
abbbb#, see Fig. 1. The node we want is the LCA of these nodes, i.e. abbb.

Theorem 2. Given a collection of q texts C = {Tj}q−1
0 represented by com-

pressed suffix arrays (CSAj) that support ψ, ψi, T [A[v]] and LF in times O(Ψ),
O(Φ), O(1), and O(τ), respectively, it is possible to represent a distributed suffix
tree with the properties given in Table 1 (column “distributed”).

Moreover this technique has the added benefit that we can simulate the general-
ized suffix tree from any subcollection of the q texts, by using only the intervals
of the texts Tj that we want to consider. However in this case we lose the TDep,
TLAQ and SLAQ operations.

6 Conclusions and Future Work

Compressed indexes are a new and functional way to index text strings using
little space, and their parallelization has not been studied yet. We have focused
on parallel (shared RAM) and distributed suffix trees and arrays, which are the
most pervasive compressed text indexes. We obtained almost linear speedups for
the basic pattern search problem, and also for more complex ones such as com-
puting matching statistics, longest common substrings, and maximal matches.
The sequential algorithms for these problems are linear-time and easy to carry
over compressed indexes, but hard to parallelize. Thanks to the stronger func-
tionality of compressed indexes, namely the support of generalized branching,
we achieve parallel versions for all of these. Some of our solutions can do with
a compressed suffix array; others require a compressed suffix tree. We plan to
apply this idea to other problems with applications in bioinformatics [11], such
as all-pairs prefix-suffix queries.

Distributing the index across q machines further alleviates the space problem,
allowing it to run on a larger virtual memory. Our distributed suffix arrays
require O(n log q) + o(n) extra bits, whereas our suffix trees require o(nq/δ)
extra bits. Both simulate a global index with O(log q) slowdown (measured in
communication cost), so they achieve O(q/ log q) speedup on each query.

360 L.M.S. Russo, G. Navarro, and A.L. Oliveira

A challenge for future work is to reduce this extra space, as O(n log q) can
be larger than the compressed suffix array itself. We also plan to consider other
models models such as BSP and batched queries [17]. An exciting direction is to
convert the distributed index into an efficient external-memory representation
for compressed text indexes, which suffer from poor locality of reference.

References

1. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suffix trees.
Softw., Pract. Exper. 33(11), 1035–1049 (2003)

2. Manber, U., Myers, E.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

3. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

4. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
article 2 (2007)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algor. 3(2), article 20 (2007)

6. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3),
407–430 (2001)

7. Russo, L., Navarro, G., Oliveira, A.: Fully-Compressed Suffix Trees. In: Laber,
E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 362–373. Springer, Heidelberg (2008)

8. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comp. Sci. 410(51), 5354–5364 (2009)

9. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching —
efficient secondary memory and distributed implementation of compressed suf-
fix arrays. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341,
pp. 681–692. Springer, Heidelberg (2004)

10. Clifford, R.: Distributed suffix trees. J. Discrete Algorithms 3(2-4), 176–197 (2005)
11. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University

Press, Cambridge (1997)
12. Weiner, P.: Linear pattern matching algorithms. In: IEEE Symp. on Switching and

Automata Theory, pp. 1–11 (1973)
13. Lee, S., Park, K.: Dynamic rank-select structures with applications to run-length

encoded texts. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 95–106.
Springer, Heidelberg (2007)

14. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc 13th SODA, pp. 233–242 (2002)

15. Huynh, T.N.D., Hon, W.K., Lam, T.W., Sung, W.K.: Approximate string matching
using compressed suffix arrays. Theor. Comput. Sci. 352(1-3), 240–249 (2006)

16. Russo, L., Navarro, G., Oliveira, A.: Dynamic Fully-Compressed Suffix Trees. In:
Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 191–203.
Springer, Heidelberg (2008)

17. Maŕın, M., Navarro, G.: Distributed query processing using suffix arrays. In: Nasci-
mento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857,
pp. 311–325. Springer, Heidelberg (2003)

18. Gupta, A., Hon, W.K., Shah, R., Vitter, J.: Compressed data structures: dictionar-
ies and data-aware measures. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS,
vol. 4007, pp. 158–169. Springer, Heidelberg (2006)

Author Index

AitMous, Omar 275
Asano, Tetsuo 190

Bannai, Hideo 238
Bassino, Frédérique 275
Belazzougui, Djamal 88
Blelloch, Guy E. 138
Brejová, Broňa 164

Cantone, Domenico 288
Charlat, Sylvain 202
Chauve, Cedric 112
Clifford, Raphaël 101
Crochemore, Maxime 251, 299
Cygan, Marek 299

Duron, Olivier 202

Elberfeld, Michael 177
Engelstadter, Jan 202

Faro, Simone 288
Farzan, Arash 138
Fleischer, Rudolf 214

Galil, Zvi 26
Giaquinta, Emanuele 288
Gog, Simon 40
Guo, Jiong 214

Hermelin, Danny 202
Hon, Wing-Kai 260
Hundt, Christian 13

Iliopoulos, Costas S. 251, 299
Inenaga, Shunsuke 238
I, Tomohiro 238

Jansson, Jesper 190
Jiang, Haitao 112
Jiang, Minghui 125

Karp, Richard M. 151
Kim, Joondong 323
Kopelowitz, Tsvi 63
Kubica, Marcin 299

Ladra, Susana 76
Lee, Taehyung 310

Mäkinen, Veli 76
Memelli, Heraldo 323
Mitchell, Joseph S.B. 323
Montes, Pablo 323

Na, Joong Chae 310
Nánási, Michal 164
Navarro, Gonzalo 348
Neuburger, Shoshana 27
Nicaud, Cyril 275
Niedermeier, Rolf 214
Nor, Igor 202

Ohlebusch, Enno 40
Oliveira, Arlindo L. 348

Park, Heejin 310
Park, Kunsoo 310
Pissis, Solon P. 251

Radoszewski, Jakub 299
Reuter, Max 202
Russo, Lúıs M.S. 348
Rytter, Wojciech 299

Sach, Benjamin 101
Sadakane, Kunihiko 190
Sagot, Marie-France 202
Schnattinger, Thomas 40
Shah, Rahul 260
Sim, Jeong Seop 310
Sirén, Jouni 227
Skiena, Steven 323
Sokol, Dina 27

Takeda, Masayuki 238
Tantau, Till 177
Tischler, German 251

Uehara, Ryuhei 190
Uhlmann, Johannes 214

362 Author Index

Valiente, Gabriel 190
Välimäki, Niko 76
Vinař, Tomáš 164
Vitter, Jeffrey Scott 260

Waleń, Tomasz 299
Wang, Yihui 214
Ward, Charles 323
Weller, Mathias 214

Wu, Xi 214
Wu, Yufeng 152

Xu, Zhi 51

Yokoo, Hidetoshi 338

Zhang, Kaizhong 1
Zhu, Binhai 112
Zhu, Yunkun 1

	Title page
	Preface
	Organization
	Table of Contents
	Algorithms for Forest Pattern Matching
	Introduction
	Preliminaries
	Forest Edit Distance
	Sub-forest Definitions
	Previous Work and Our Results

	Algorithms for the Forest Pattern Matching Problem
	An Algorithm for Finding a Most Similar Closed Subforest
	An Algorithm for Finding a Most Similar Closed Substructure

	Conclusion
	References

	Affine Image Matching Is Uniform TC0-Complete
	Introduction
	Technical Preliminaries
	PreviousResults
	MembershipinTC0
	Completeness in TC0
	Conclusions
	References

	Old and New in Stringology
	Small-Space 2D Compressed Dictionary Matching
	Introduction
	Overview
	Pattern Preprocessing
	Lyndon Word Naming
	Witness Tree
	Preprocessing the 1D Patterns

	Text Scanning
	Offset Tree

	Conclusion
	References

	Bidirectional Search in a String with Wavelet Trees
	Introduction
	Preliminaries
	Bidirectional Search
	Experimental Results
	References

	A Minimal Periods Algorithm with Applications
	Introduction
	Preliminary
	The Algorithm for Computing $rmp^α_s (w) and lmp^α_s (w)$
	Applications — Detecting Special Pseudo-Powers
	Conclusion
	References

	The Property Suffix Tree with Dynamic Properties
	Introduction
	Preliminaries and Definitions
	The Property Suffix Tree

	The Incremental Version
	The PST Update Traversal
	Multiple Interactions

	The Decremental Version
	Multiple Interactions

	The Fully Dynamic Version
	The Batched Insert Version and the Static Case
	The (New) Static Version

	References

	Approximate All-Pairs Suffix/Prefix Overlaps
	Introduction
	Background
	All-Pairs Suffix/Prefix Matching
	Backward Backtracking
	Suffix Filters

	Experiments
	Discussion
	References

	Succinct Dictionary Matching with No Slowdown
	Introduction
	Basic Components
	Compressed Integer Arrays
	Succinctly Encoded Ordinal Trees
	Succinct Indexable Dictionary

	The Data Structure
	State Representation
	Representation of Next Transitions
	Representation of Failure Transitions
	Representation of Report Transitions
	Occurence Representation
	Putting Things Together
	Queries
	Construction

	Compressed Representation
	Concluding Remarks
	References

	Pseudo-realtime Pattern Matching: Closing the Gap
	Introduction
	Pseudo-realtime k-Differences
	Pseudo-realtime k-Mismatches
	References

	Breakpoint Distance and PQ-Trees
	Introduction
	Preliminaries
	MBP-PQ Is NP-Complete
	An FPT Algorithm for One-Sided MBP-PQ and p-MBM-PQ
	Application to Real Datasets
	Conclusion
	References

	On the Parameterized Complexity of Some Optimization Problems Related to Multiple-Interval Graphs
	Introduction
	k-Independent Set
	k-Dominating Set
	k-Clique
	Maximal Strip Recovery
	References

	Succinct Representations of Separable Graphs
	Introduction
	Related Work

	Preliminaries
	Succinct Representation
	Neighborhood Queries
	Adjacency Queries

	Representing Planar Maps: Encoding the Combinatorial Embedding
	Conclusion and Discussion
	References

	Implicit Hitting Set Problems and Multi-genome Alignment
	Bounds on the Minimum Mosaic of Population Sequences under Recombination
	Introduction
	The C Bound: A New Lower Bound
	Breakpoint Placement
	Improving the C Bound
	Application in Finding the Exact Minimum Mosaic Using Branch and Bound

	An Analytical Upper Bound
	Simulation Results
	References

	The Highest Expected Reward Decoding for HMMs with Application to Recombination Detection
	Introduction
	HERD: The Highest Expected Reward Decoding
	Application to Viral Recombination Detection
	Experiments
	Conclusion
	References

	Phylogeny- and Parsimony-Based Haplotype Inference with Constraints
	Introduction
	Haplotyping Problems and Constraints
	Constrained Perfect Phylogeny Haplotyping
	Constrained Maximum Parsimony Haplotyping
	Constrained Maximum Parsimony Perfect Phylogeny Haplotyping
	Conclusion
	References

	Faster Computation of the Robinson-Foulds Distance between Phylogenetic Networks
	Introduction
	Preliminaries
	More Efficient Cluster Representation
	Characteristic Vector Representation
	Compressed Characteristic Vector Representation
	Interval List Representation

	An Algorithm for Computing the Robinson-Foulds Distance
	Conclusion
	References

	Mod/Resc Parsimony Inference
	Introduction
	Problem Definition and Notation
	Equivalence to Bipartite Biclique Edge Cover
	Fixed-Parameter Tractability
	The Kernelization
	Bipartite Biclique Edge Cover and Clique Edge Cover
	Algorithms

	Experimental Results
	References

	Extended Islands of Tractability for Parsimony Haplotyping
	Introduction
	Preliminaries and Definitions
	Induced Haplotype Inference by Parsimony
	General Haplotype Inference by Parsimony
	Conclusion
	References

	Sampled Longest Common Prefix Array
	Introduction
	Background
	Previous Compressed LCP Representations
	Building the PLCP Array from a CSA
	Sampled LCP Array
	Implementation and Experiments
	Discussion
	References

	Verifying a Parameterized Border Array in $O(n^1.5)$ Time
	Introduction
	Preliminaries
	Properties on Parameterized Border Arrays
	Algorithm
	Z-Pattern Representation
	Pruning Techniques
	Complexity Analysis

	Conclusions and Open Problems
	References

	Cover Array String Reconstruction
	Introduction
	Definitions and Problems
	Properties of the Minimal-Cover Array
	Reverse Engineering a Cover Array
	Experiments and Numerical Results
	Conclusion
	References

	Compression, Indexing, and Retrieval for Massive String Data
	Introduction
	Key Themes in This Presentation
	Background
	Text Indexing for Pattern Matching
	String B-Trees

	Compressed Data Structures
	Wavelet Trees
	Compressed Text Indexes

	Geometric Burrows-Wheeler Transform (GBWT)
	Experimental Results for GBWT
	Parallel Sparse Index for Genome Read Alignments

	Top-k Queries for Relevance
	Conclusions
	References

	Building the Minimal Automaton of $A*X$ in Linear Time, When X Is of Bounded Cardinality
	Introduction
	Preliminary
	A Co-deterministic Automaton Recognizing $A*X%
	Computing the Minimal Automaton
	Cost of the Naive Subset Construction
	Outline of the Construction
	Precomputation of the Failure Function
	Determinization Algorithm
	References

	A Compact Representation of Nondeterministic (Suffix) Automata for the Bit-Parallel Approach
	Introduction
	Basic Notions and Definitions
	The Bit-Parallelism Technique
	Tighter Packing for Bit-Parallelism
	Experimental Results
	Conclusions
	References

	Algorithms for Three Versions of the Shortest Common Superstring Problem
	Introduction
	Preliminaries
	MULTI-SCS$_2(k)$ Problem
	MULTI-SCS(k) Problem for $k = O$(1)
	SUM-SCS(k) Problem
	References

	Finding Optimal Alignment and Consensus of Circular Strings
	Introduction
	Preliminaries
	Problem Definition
	Problem CSR for Three Linear Strings
	Convolution Method for Counting Matches/Mismatches

	Algorithms
	Problem CS for Three Circular Strings
	Problem CSR for Three Circular Strings
	Problem CS for Four Circular Strings

	References

	Optimizing Restriction Site Placement for Synthetic Genomes
	Introduction
	Related Work
	Methodology
	Problem Statement
	NP-Completeness and Approximability
	Dynamic Programming Algorithm
	Practical Considerations
	Program

	Results
	Conclusion
	References

	Extension and Faster Implementation of the GRP Transform for Lossless Compression
	Introduction
	GRP Transform with Arbitrary Parameters
	Preliminaries
	Forward Transformation
	Relation with Existing Transforms
	Inverse Transformation

	Details of the Inverse Transformation
	Computation of Vector D
	Summary of Complexity Issues

	Conclusion
	References

	Parallel and Distributed Compressed Indexes
	Introduction and Related Work
	BasicConcepts
	Parallel Computation Models

	Overview of Sequential Fully-Compressed Suffix Trees
	Parallel Compressed Indexes
	Distributed Compressed Indexes
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

