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Preface

This book and its companion volume, LNCS vols. 6145 and 6146, constitute the
proceedings of the International Conference on Swarm Intelligence (ICSI 2010)
held in Beijing, the capital of China, during June 12-15, 2010. ICSI 2010 was
the first gathering in the world for researchers working on all aspects of swarm
intelligence, and provided an academic forum for the participants to disseminate
their new research findings and discuss emerging areas of research. It also created
a stimulating environment for the participants to interact and exchange infor-
mation on future challenges and opportunities of swarm intelligence research.

ICSI 2010 received 394 submissions from about 1241 authors in 22 countries
and regions (Australia, Belgium, Brazil, Canada, China, Cyprus, Hong Kong,
Hungary, India, Islamic Republic of Iran, Japan, Jordan, Republic of Korea,
Malaysia, Mexico, Norway, Pakistan, South Africa, Chinese Taiwan, UK, USA,
Vietnam) across six continents (Asia, Europe, North America, South America,
Africa, and Oceania). Each submission was reviewed by at least three reviewers.
Based on rigorous reviews by the Program Committee members and reviewers,
185 high-quality papers were selected for publication in the proceedings with
the acceptance rate of 46.9%. The papers are organized in 25 cohesive sections
covering all major topics of swarm intelligence research and development.

In addition to the contributed papers, the ICSI 2010 technical program in-
cluded four plenary speeches by Russell C. Eberhart (Indiana University Pur-
due University Indianapolis, IUPUI, USA), Gary G. Yen (President of IEEE
Computational Intelligence Society, CIS, Oklahoma State University, USA), Erol
Gelenbe (London Imperial College, UK), Nikola Kasabov (President of Interna-
tional Neural Network Soceity, INNS, Auckland University of Technology, New
Zealand). Besides the regular parallel oral sessions, ICSI 2010 also had several
poster sessions focusing on wide areas.

As organizers of ICSI 2010, we would like to express sincere thanks to Peking
University and Xi’an Jiaotong-Liverpool University for their sponsorship, to the
IEEE Beijing Section, International Neural Network Society, World Federation
on Soft Computing, Chinese Association for Artificial Intelligence, and National
Natural Science Foundation of China for their technical co-sponsorship. We ap-
preciate the National Natural Science Foundation of China and K.C. Wong Ed-
ucation Foundation, Hong Kong, for their financial and logistic supports.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the International Program Committee and additional
reviewers for reviewing the papers, and members of the Publications Committee
for checking the accepted papers in a short period of time. Particularly, we are
grateful to the proceedings publisher, Springer, for publishing the proceedings in
the prestigious series of Lecture Notes in Computer Science. Moreover, we wish
to express our heartfelt appreciation to the plenary speakers, session chairs, and
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student helpers. In addition, there are still many more colleagues, associates,
friends, and supporters who helped us in immeasurable ways; we express our
sincere gratitude to them all. Last but not the least, we would like to thank all
the speakers, authors and participants for their great contributions that made
ICSI 2010 successful and all the hard work worthwhile.

June 2010 Ying Tan
Yuhui Shi

Tan Kay Chen
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Stability Problem for a Predator-Prey System

Zvi Retchkiman Konigsberg

Instituto Politecnico Nacional

Abstract. This paper considers the growth rate dynamics of a predator-
prey system as a discrete event dynamical system. Timed Petri nets are
a graphical and mathematical modeling tool applicable to discrete event
systems in order to represent its states evolution. Lyapunov stability the-
ory provides the required tools needed to aboard the stability problem for
the predator-prey system treated as a discrete event system modeled with
timed petri nets. By proving boundedness one confirms a dominant os-
cillating behavior of both populations dynamics performance. However,
the oscillating frequency results to be unknown. This inconvenience is
overcome by considering a specific recurrence equation, in the max-plus
algebra.

Keywords: Predator-Prey System, Discrete Event Dynamical Systems,
Max-Plus Algebra, Lyapunov Method, Timed Petri Nets.

1 Introduction

Consider the interaction of populations, in which there are exactly two species,
one of which the predators eats the other the prey thereby affecting each other,s
growth rates. In the study of this growth rate dynamics Lotka-Volterra models
have been used [5]. This paper proposes a new modeling and analysis method-
ology which consists in considering the predator-prey system as a discrete event
dynamical system. Timed Petri nets are a graphical and mathematical modeling
tool applicable to discrete event systems in order to represent its states evolution
where the timing at which the state changes is taken into consideration. Lya-
punov stability theory provides the required tools needed to aboard the stability
problem for the predator-pray system treated as a discrete event system modeled
with timed petri nets whose mathematical model is given in terms of difference
equations [3]. Employing Lyapunov methods, a sufficient condition for the sta-
bilization problem is also obtained. It is shown that it is possible to restrict
the discrete event systems state space in such a way that boundedness is guar-
anteed. By proving boundedness one confirms a dominant oscillating behavior
of both populations dynamics performance. However, the oscillating frequency
results to be unknown. This inconvenience is overcome by considering a specific
recurrence equation, in the max-plus algebra, which is assigned to the the timed
Petri net graphical model. The main contribution of the paper consists in com-
bining Lyapunov theory with max-plus algebra to study the stability problem
for predator-pray systems treated as discrete event dynamical systems modeled
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c© Springer-Verlag Berlin Heidelberg 2010



2 Z. Retchkiman Konigsberg

with timed Petri nets. This results in a qualitative approach vs the quantitative
approach obtained by solving the Lotka-Volterra differential equations system
that models it. The paper is organized as follows. In section 2, Lyapunov theory
for discrete event modeled with Petri nets is addressed. Section 3, presents Max-
Plus algebra. In section 4, the stability for discrete event dynamical systems
modeled with timed Petri nets is given. Section 5, discusses the predator-prey
dynamical system,s stability. Finally, the paper ends with some conclusions.

2 Lyapunov Stability and Stabilization of Discrete Event
Systems Modeled with Petri Nets [3]

NOTATION:N = {0, 1, 2, ...}, R+ = [0,∞),N+
n0

= {n0, n0 + 1, ..., n0 + k, ...} ,
n0 ≥ 0. Given x, y ∈ Rn, x ≤ y is equivalent to xi ≤ yi, ∀i. A function f(n, x),
f : N+

n0
× Rn → Rn is called nondecreasing in x if given x, y ∈ Rn such that

x ≥ y and n ∈ N+
n0

then, f(n, x) ≥ f(n, y). Consider systems of first ordinary
difference equations given by

x(n+ 1) = f [n, x(n)], x(no) = x0, n ∈ N+
n0

(1)

where n ∈ N+
n0

, x(n) ∈ Rn and f : N+
n0

×Rn → Rn is continuous in x(n).

Definition 1. The n vector valued function Φ(n, n0, x0) is said to be a solution
of (1) if Φ(n0, n0, x0) = x0 and Φ(n + 1, n0, x0) = f(n, Φ(n, n0, x0)) for all
n ∈ N+

n0
.

Definition 2. The system (1) is said to be i). Practically stable, if given (λ,A)
with 0 < λ < A, then

|x0| < λ⇒ |x(n, n0, x0)| < A, ∀n ∈ N+
n0
, n0 ≥ 0;

ii). Uniformly practically stable, if it is practically stable for every n0 ≥ 0.

Definition 3. A continuous function α : [0,∞) → [0,∞) is said to belong to
class K if α(0) = 0 and it is strictly increasing.

Consider a vector Lyapunov function v(n, x(n)), v : N+
n0

×Rn → Rp
+ and define

the variation of v relative to (1) by

Δv = v(n+ 1, x(n+ 1)) − v(n, x(n)) (2)

Then, the following result concerns the practical stability of (1).

Theorem 1. Let v : N+
n0

×Rn → Rp
+ be a continuous function in x, define the

function v0(n, x(n)) =
∑p

i=1 vi(n, x(n)) such that satisfies the estimates

b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|); a, b ∈ K, Δv(n, x(n)) ≤ w(n, v(n, x(n))) (3)

for n ∈ N+
n0

, x(n) ∈ Rn , where w : N+
n0

×Rp
+ → Rp is a continuous function in

the second argument. Assume that : g(n, e) � e+ w(n, e) is nondecreasing in e,
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0 < λ < A are given and finally that a(λ) < b(A) is satisfied. Then, the practical
stability properties of

e(n+ 1) = g(n, e(n)), e(n0) = e0 ≥ 0. (4)

imply the practical stability properties of system (1).

Corollary 1. In Theorem (1): i). If w(n, e) ≡ 0 we get uniform practical sta-
bility of (1) which implies structural stability. ii). If w(n, e) = −c(e), for c ∈ K,
we get uniform practical asymptotic stability of (1).

Definition 4. A Petri net is a 5-tuple, PN = {P, T, F,W,M0} where: P =
{p1, p2, ..., pm}is a finite set of places, T = {t1, t2, ..., tn} is a finite set of transi-
tions, F ⊂ (P ×T )∪ (T ×P ) is a set of arcs, W : F → N+

1 is a weight function,
M0: P → N is the initial marking, P ∩ T = ∅ and P ∪ T = ∅.

Definition 5. The clock structure associated with a place pi ∈ P is a set V =
{Vi : pi ∈ P } of clock sequences Vi = {vi,1, vi,2, ...}, vi,k ∈ R+, k = 1, 2, ...

The positive number vi,k, associated to pi ∈ P , called holding time, represents
the time that a token must spend in this place until its outputs enabled tran-
sitions ti,1, ti,2, ..., fire. We partition P into subsets P0 and Ph, where P0 is the
set of places with zero holding time, and Ph is the set of places that have some
holding time.

Definition 6. A timed Petri net is a 6-tuple TPN = {P, T, F,W,M0,V} where
{P, T, F,W,M0} are as before, and V = {Vi : pi ∈ P } is a clock structure. A
timed Petri net is a timed event petri net when every pi ∈ P has one input and
one output transition, in which case the associated clock structure set of a place
pi ∈ P reduces to one element Vi = {vi}
Notice that if W (p, t) = α (or W (t, p) = β) then, this is often represented
graphically by α, (β) arcs from p to t (t to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at
time k and let Mk = [Mk(p1), ...,Mk(pm)]T denote the marking (state) of PN at
time k. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W (pi, tj)
for all pi ∈ P such that (pi,tj) ∈ F . It is assumed that at each time k there
exists at least one transition to fire. If a transition is enabled then, it can fire. If
an enabled transition tj ∈ T fires at time k then, the next marking for pi ∈ P is
given by

Mk+1(pi) = Mk(pi) +W (tj , pi) −W (pi, tj). (5)

Let A = [aij ] denote an n ×m matrix of integers (the incidence matrix) where
aij = a+

ij − a−ij with a+
ij = W (ti, pj) and a−ij = W (pj , ti)L̇et uk ∈ {0, 1}n denote

a firing vector where if tj ∈ T is fired then, its corresponding firing vector
is uk = [0, ..., 0, 1, 0, ..., 0]T with the one in the jth position in the vector and
zeros everywhere else. The nonlinear difference matrix equation describing the
dynamical behavior represented by a PN is:
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Mk+1 = Mk +ATuk (6)

where if at step k, a−ij < Mk(pj) for all pi ∈ P then, ti ∈ T is enabled and
if this ti ∈ T fires then, its corresponding firing vector uk is utilized in the
difference equation to generate the next step. Notice that if M´can be reached
from some other marking M and, if we fire some sequence of d transitions with
corresponding firing vectors u0, u1, ..., ud−1 we obtain that

M´= M +ATu, u =
d−1∑
k=0

uk. (7)

Let (Nm
n0
, d) be a metric space where d : Nm

n0
×Nm

n0
→ R+ is defined by

d(M1,M2) =
m∑

i=1

ζi |M1(pi) −M2(pi) |; ζi > 0

and consider the matrix difference equation which describes the dynamical be-
havior of the discrete event system modeled by a PN , see (7).

Proposition 1. Let PN be a Petri net. PN is uniform practical stable if there
exists a Φ strictly positive m vector such that

Δv = uTAΦ ≤ 0 (8)

Moreover, PN is uniform practical asymptotic stable if the following equation
holds

Δv = uTAΦ ≤ −c(e), c ∈ K (9)

Lemma 1. Let suppose that Proposition (1) holds then,

Δv = uTAΦ ≤ 0 ⇔ AΦ ≤ 0 (10)

Remark 1. Notice that since the state space of a TPN is contained in the state
space of the same now not timed PN, stability of PN implies stability of the
TPN.

2.1 Lyapunov Stabilization

Definition 7. Let PN be a Petri net. PN is said to be stabilizable if there exists
a firing transition sequence with transition count vector u such that system (7)
remains bounded.

Proposition 2. Let PN be a Petri net. PN is stabilizable if there exists a
firing transition sequence with transition count vector u such that the following
equation holds

Δv = ATu ≤ 0 (11)

Remark 2. By fixing a particular u, which satisfies (11), the state space is re-
stricted to those markings that are finite.
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3 Max-Plus Algebra [1,2,4]

3.1 Basic Definitions

NOTATION: ε = −∞, e = 0, Rmax = R ∪ {ε}, n = 1, 2, ..., n. Let a, b ∈ Rmax

and define the operations ⊕ and ⊗ by: a⊕ b = max(a, b) and a⊗ b = a+ b.

Definition 8. The set Rmax with the two operations ⊕ and ⊗ is called a max-
plus algebra and is denoted by �max = (Rmax,⊕,⊗, ε, e).
Definition 9. A semiring is a nonempty set R endowed with two operations
⊕R, ⊗R, and two elements εR and eR such that: ⊕R is associative and commu-
tative with zero element εR, ⊗R is associative, distributes over ⊕R, and has unit
element eR, ∈Ris absorbing for ⊗R i.e., a⊗R ε = εR ⊗ a = a, ∀a ∈ R.

In addition if ⊗R is commutative then R is called a commutative semiring , and
if ⊕R is such that a⊕R a = a, ∀a ∈ R then it is called idempotent.

Theorem 2. The max-plus algebra �max = (Rmax,⊕,⊗, ε, e) has the algebraic
structure of a commutative and idempotent semiring.

3.2 Matrices and Graphs

Let R
n×n
max be the set of n× nmatrices with coefficients in Rmax with the following

operations: The sum of matrices A,B ∈ R
n×n
max, denoted A ⊕ B is defined by:

(A ⊕ B)ij = aij ⊕ bij = max(aij , bij) for i and j ∈ n. The product of matrices

A ∈ R
n×l
max, B ∈ R

l×n
max, denoted A⊗ B is defined by: (A ⊗ B)ik =

l⊗
j=1

(aij ⊗ bjk)

for i and k ∈ n. Let E ∈ R
n×n
max denote the matrix with all its elements equal to ε

and denote by E ∈ R
n×n
max the matrix which has its diagonal elements equal to e

and all the other elements equal to ε. Then, the following result can be stated.

Theorem 3. The 5-tuple �n×n
max = (Rn×n

max,⊕,⊗, E , E) has the algebraic structure
of a noncommutative idempotent semiring.

Definition 10. Let A ∈ R
n×n
max and k ∈ N then the k-th power of A denoted by

A⊗k is defined by: A⊗k = A⊗A⊗ · · · ⊗ A, (k times), where A⊗0 is set equal
to E.

Definition 11. A matrix A ∈ R
n×n
max is said to be regular if A contains at least

one element distinct from ε in each row.

Definition 12. Let N be a finite and non-empty set and consider D ⊆ N ×N .
The pair G = (N ,D) is called a directed graph, where N is the set of elements
called nodes and D is the set of ordered pairs of nodes called arcs. A directed
graph G = (N ,D) is called a weighted graph if a weight w(i, j) ∈ R is associated
with any arc (i, j) ∈ D.
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Let A ∈ R
n×n
max be any matrix, a graph G(A), called the communication graph of

A, can be associated as follows. Define N (A) = n and a pair (i, j) ∈ n × n will
be a member of D(A) ⇔ aji = ε, where D(A) denotes the set of arcs of G(A).

Definition 13. A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈
D(A)}k∈m such that i = i1, jk = ik+1, for k < m and jm = j. The path p consists
of the nodes i = i1, i2, ..., im, jm = j with length m denoted by | p |1= m. In the
case when i = j the path is said to be a circuit. A circuit is said to be elementary
if nodes ik and il are different for k = l. A circuit consisting of one arc is called
a self-loop.

Let us denote by P (i, j;m) the set of all paths from node i to node j of length
m ≥ 1 and for any arc (i, j) ∈ D(A) let its weight be given by aij then the weight
of a path p ∈ P (i, j;m) denoted by | p |w is defined to be the sum of the weights
of all the arcs that belong to the path. The average weight of a path p is given
by | p |w / | p |1. Given two paths, as for example, p = ((i1, i2), (i2, i3)) and
q = ((i3, i4), ((i4, i5) in G(A) the concatenation of paths ◦ : G(A)×G(A) → G(A)
is defined as p ◦ q = ((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph
G(A) and powers of matrix A are closely related as it is shown in the next
theorem.

Theorem 4. Let A ∈ R
n×n
max, then ∀k ≥ 1: [A⊗k]ji = max{| p |w: p ∈ P (i, j; k)},

where [A⊗k]ji = ε in the case when P (i, j; k) is empty i.e., no path of length k
from node i to node j exists in G(A).

Definition 14. Let A ∈ R
n×n
max then define the matrix A+ ∈ R

n×n
max as: A+ =

∞⊕
k=1

A⊗k. Where the element [A+]ji gives the maximal weight of any path from j

to i. If in addition one wants to add the possibility of staying at a node then one
must include matrix E in the definition of matrix A+ giving rise to its Kleene

star representation defined by: A∗ =
∞⊕

k=0
A⊗k.

Lemma 2. Let A ∈ R
n×n
max be such that any circuit in G(A) has average circuit

weight less than or equal to ε. Then it holds that: A∗ =
n−1⊕
k=0

A⊗k.

Definition 15. Let G = (N ,D) be a graph and i, j ∈ N , node j is reachable
from node i, denoted as iRj, if there exists a path from i to j. A graph G is
said to be strongly connected if ∀i, j ∈ N , jRi. A matrix A ∈ R

n×n
max is called

irreducible if its communication graph is strongly connected, when this is not the
case matrix A is called reducible.

Definition 16. Let G = (N ,D) be a not strongly connected graph and i, j ∈ N ,
node j communicates with node i, denoted as iCj, if either i = j or iRj and
jRi.
The relation iCj defines an equivalence relation in the set of nodes, and there-
fore a partition of N into a disjoint union of subsets, the equivalence classes,
N1,N2, ...,Nq such that N = N1∪N2∪...∪Nq or N =

⋃
i∈N

[i]; [i] = {j ∈ N : iCj}.
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Given the above partition, it is possible to focus on subgraphs of G denoted by
Gr = (Nr,Dr); r ∈ q where Dr denotes the subset of arcs, which belong to D,
that have both the begin node and end node in Nr. If Dr = ∅ , the subgraph
Gr = (Nr,Dr) is known as a maximal strongly connected subgraph of G.

Definition 17. The reduced graph G̃ = (Ñ , D̃) of G is defined by setting Ñ =
{[i1] , [i2] , ... [iq]} and ([ir], [is]) ∈ D̃ if r = s and there exists an arc (k, l) ∈ D
for some k ∈ [ir] and l ∈ [is].

let Arr denote the matrix by restricting A to the nodes in [ir] ∀r ∈ q i.e.,
[Arr]kl = akl ∀k, l ∈ [ir]. Then ∀r ∈ q either Arr is irreducible or is equal to ε.
Therefore since by construction the reduced graph does not contain any circuits,
the original reducible matrix A after a possible relabeling of the nodes in G(A),
can be written as:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33
...

...
...

. . . . . .
...

E E · · · E Aqq

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

with matrices Asr 1 ≤ s < r ≤ q, where each finite entry in Asr corresponds to
an arc from a node in [ir] to a node in [is].

Definition 18. Let A ∈ R
n×n
max be a reducible matrix then, the block upper tri-

angular given by (12) is said to be a normal form of matrix A.

Spectral Theory and Linear Equations

Definition 19. Let A ∈ R
n×n
max be a matrix. If μ ∈ Rmax is a scalar and v ∈

Rn
max is a vector that contains at least one finite element such that: A⊗v = μ⊗v

then, μ is called an eigenvalue and v an eigenvector.

Let C(A) denote the set of all elementary circuits in G(A) and write: λ =
max

p∈C(A)

|p|w
|p|1 for the maximal average circuit weight. Notice that since C(A) is

a finite set, the maximum is attained (which is always the case when matrix A
is irreducible). In case C(A) = ∅ define λ = ε.

Definition 20. A circuit p ∈ G(A) is said to be critical if its average weight is
maximal. The critical graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the
graph consisting of those nodes and arcs that belong to critical circuits in G(A).

Theorem 5. If A ∈ R
n×n
max is irreducible, then there exists one and only one

finite eigenvalue (with possible several eigenvectors). This eigenvalue is equal to
the maximal average weight of circuits in G(A) λ(A) = max

p∈C(A)

|p|w
|p|1 .

Theorem 6. Let A ∈ R
n×n
max and b ∈ R

n
max. If the communication graph G(A)

has maximal average circuit weight less than or equal to e, then x = A∗ ⊗ b
solves the equation x = (A⊗ x)⊕ b. Moreover, if the circuit weights in G(a) are
negative then, the solution is unique.
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3.3 Max-Plus Recurrence Equations for Timed Event Petri Nets

Definition 21. Let Am ∈ R
n×n
max for 0 ≤ m ≤ M and x(m) ∈ R

n
max for −M ≤

m ≤ −1; M ≥ 0. Then, the recurrence equation: x(k) =
M⊕

m=0
Am⊗x(k−m); k ≥

0 is called an M th order recurrence equation.

Theorem 7. The M th order recurrence equation, given by equation x(k) =
M⊕

m=0
Am ⊗ x(k − m); k ≥ 0, can be transformed into a first order recurrence

equation x(k + 1) = A ⊗ x(k); k ≥ 0 provided that A0 has circuit weights less
than or equal to zero.

With any timed event Petri net, matricesA0, A1, ..., AM ∈ N
n×N

n can be defined
by setting [Am]jl = ajl, where ajl is the largest of the holding times with respect
to all places between transitions tl and tj with m tokens, for m = 0, 1, ...,M ,
with M equal to the maximum number of tokens with respect to all places.
Let xi(k) denote the kth time that transition ti fires, then the vector x(k) =
(x1(k), x2(k), ...xm(k))T , called the state of the system, satisfies the Mth order

recurrence equation: x(k) =
M⊕

m=0
Am ⊗ x(k −m); k ≥ 0 Now, assuming that all

the hypothesis of theorem (7) are satisfied, and setting x̂(k) = (xT (k), xT (k −
1), ..., xT (k − M + 1))T , equation x(k) =

M⊕
m=0

Am ⊗ x(k − m); k ≥ 0 can be

expressed as: x̂(k + 1) = Â ⊗ x̂(k); k ≥ 0, which is known as the standard
autonomous equation.

4 The Solution to the Stability Problem for Discrete
Event Dynamical Systems Modeled with Timed Petri
Nets

Definition 22. A TPN is said to be stable if all the transitions fire with the
same proportion i.e., if there exists q ∈ N such that

lim
k→∞

xi(k)
k

= q, ∀i = 1, ..., n (13)

This means that in order to obtain a stable TPN all the transitions have to be
fired q times. It will be desirable to be more precise and know exactly how many
times. The answer to this question is given next.

Lemma 3. Consider the recurrence relation x(k+1) = A⊗x(k), k ≥ 0, x(0) =
x0 ∈ R

n arbitrary. A an irreducible matrix and λ ∈ R its eigenvalue then,

lim
k→∞

xi(k)
k

= λ, ∀i = 1, ..., n (14)
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Proof. Let v be an eigenvector of A such that x0 = v then,

x(k) = λ⊗k ⊗ v ⇒ x(k) = kλ+ v ⇒ x(k)
k

= λ+
v

k
⇒ lim

k→∞
xi(k)
k

= λ

Now starting with an unstable TPN , collecting the results given by: proposition
(2), what has just been discussed about recurrence equations for TPN at the
end of subsection (3.3) and the previous lemma (3) plus theorem (5), the solution
to the problem is obtained.

5 Predator-Prey Dynamical Systems

Consider the growth rate dynamics of a predator-prey system with TPN model
depicted in (Fig.1). Where the events (transitions) that drive the system are: t:
prays at threat , s: the predator starts attacking the prey, d: the predator departs.
The places (that represent the states of the system) are: R: preys resting, P: the
preys are in danger, B: the preys are being eaten, I: the predator is idle. The
holding times associated to the places R and I are Cr and Cd respectively, (with
Cr > Cd). The incidence matrix that represents the PN model is

A =

⎡
⎣0 1 0 0

0 −1 1 −1
0 0 −1 1

⎤
⎦

Therefore since there does not exists a Φ strictly positive m vector such that
AΦ ≤ 0 the sufficient condition for stability is not satisfied. Moreover, the PN
(TPN) is unbounded since by the repeated firing of t, the marking in P grows
indefinitely. However, by taking u = [k, k, k]; k > 0, (with k unknown) we get
that ATu ≤ 0. Therefore, the PN is stabilizable which implies that the TPN is

Fig. 1. Timed Petri net model
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stable. Now, from the TPN model we obtain that matrix Â, which defines the
standard autonomous equation, is equal to:

Â =

⎛
⎝Cr ε ε
Cr ε Cd
ε ε Cd

⎞
⎠ . (15)

Therefore, λ(A) = max
p∈C(A)

|p|w
|p|1 = max{Cr,Cd} = Cr. This tells that in order

for the TPN to be stable and oscillate at a fixed known frequency, all the
transitions must fire at the same speed as the preys arrive, which is consistent
with the observed oscillatory behavior in real life.

6 Conclusions

The main contribution of the paper consists in combining Lyapunov theory
with max-plus algebra to study the stability problem for predator-pray systems
treated as discrete event dynamical systems modeled with timed Petri nets. The
presented methodology is new and results to be innovative. The results obtained
are consistent with how the predator-prey system behaves in real life.
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Abstract. Particle swarm optimization (PSO) has been shown to perform well 
on many optimization problems. However, the PSO algorithm often can not 
find the global optimum, even for unimodal functions. It is necessary to study 
the local search ability of PSO. The interval compression method and the prob-
abilistic characteristic of the searching interval of particles are used to analyze 
the local search ability of PSO in this paper. The conclusion can be obtained 
that the local search ability of a particle is poor when the component of the 
global best position lies in between the component of the individual best posi-
tion and the component of the current position of the particle. In order to im-
prove the local search ability of PSO, a new learning strategy is presented to 
enhance the probability of exploitation of the global best position. The experi-
mental results show that the modified PSO with the new learning strategy can 
improve solution accuracy. 

Keywords: Particle swarm optimization, local search, interval compression. 

1   Introduction 

PSO is a population optimization method based on a simple simulation of bird flock-
ing or fish schooling behavior [1]. Due to the fast convergence speed and easy im-
plementation, it has been successfully applied in many areas such as neural network, 
image processing, power systems and mountain clustering. 

In the standard PSO (SPSO), the search points are known as particles, each particle 
adjusts its velocity according to its own flight experience and the flight experience of 
other particles in the swarm in such a way that it accelerates towards positions that 
have had high objective (fitness) values in previous iterations. The position vector and 
velocity vector of the particle i in D-dimensional space can be indicated as xi =(xi1,

…, 
xid , 

…, xiD) and vi=(vi1,
…, vid , 

… ,viD) respectively. The updating velocities and posi-
tions of the particles are calculated using the following two equations: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( )).i i bi i b iV t wV t c r P t X t c r G t X t+ = + − + −  (1)
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( 1) ( ) ( 1) .i iX t X t V t+ = + +  (2)

where, Pbi is the personal best position achieved up to the current iteration for i-th 
particle (pbest); Gb is the global best position obtained so far by all particles (gbest); 
wis the inertia weight; c1 and c2 are positive constants known as acceleration coeffi-
cients; r1 and r2 are uniform random numbers in the range [0,1]. The first part of (1) 
represents the previous velocity, which provides the necessary momentum for parti-
cles to roam across the search space. The second part, known as the individual cogni-
tion, represents the personal thinking of each particle. The third part is known as the 
social cognition, which represents the collaborative effect of the particles. 

Though SPSO has been shown to perform well on many optimization problems, it 
can easily get trapped in the local optima when solving complex problems. Therefore, 
avoiding the local optima has become one of the most important goals in PSO re-
search, thereby deriving many variants. Shi and Eberhart [2] introduced inertia weight 
into PSO to balance the global exploration and the local exploitation; Ratnaweera et 
al. [3] developed PSO with time-varying acceleration coefficients to modify the local 
and the global search ability, and take advantage of the mutation to increase the diver-
sity; Kennedy [4] constructed neighborhood topologies to restrict the information 
interaction between the particles ; Arumugam et al. [5] took advantage of extrapola-
tion technique to update the current position without velocity equations of particles . 
Liang et al. [6] proposed a comprehensive learning strategy to preserve the diversity 
and discourage the premature convergence; Zhan et al. [7] presented the adaptive PSO 
that can improve global search ability by evaluating the evolution states of population 
distribution. The mentioned methods improved the performance of SPSO. But form 
the results of above methods, the improved PSO algorithms can not find the optimal 
solution for unimodal functions. SPSO needs try to avoid the local optima, but it does 
not mean that SPSO has the high local search ability. It is obvious the algorithm can 
not reach the optimum without the global exploration. But the local search ability is 
same important to improve accuracy of the algorithm. In this paper, the interval com-
pression method and the probabilistic characteristic of the searching interval of parti-
cles are used to analyze the local search ability of SPSO. To increase the local search 
ability of particles, a new learning strategy is presented to enhance the probability of 
exploitation of the global best position.  

The remainder of this paper is organized as follows. An analysis of the searching 
interval of PSO is introduced in section 2. The Modified PSO with new learning strat-
egy is presented in section 3. Simulation experiment results on some benchmark op-
timization problems are discussed in section 4. Conclusions are drawn in section 5. 

2   Analysis of the Searching Interval of SPSO 

In the latter evolution of SPSO, the algorithm can find the better solution, but it often 
can not go on searching the global optimum. Much work has been done to analyze the 
reasons causing this case. The major reasons include diversity loss, the high speed of 
sharing information and fit parameters selection. Besides the mentioned reasons, the 
poor local search ability of SPSO may lead to can not find the global optimum or the 
local optimum. In this section, the interval compression method and the probabilistic 
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characteristic of the searching interval of particles are used to analyze the searching 
interval of SPSO. 

2.1   The Interval Compression Method 

Each particle updates its position according to its own velocity, pbest and gbest. If the 
pbest and gbest of the particle can not be updated for a while, then the velocity of the 
particle should become small, and the particle should circle around pbest and gbest. In 
this case, the fit searching interval is important for the particle to find the better position. 

From equation (1), a particle searches the new position by tracking the each dimen-
sion of pbest and gbest. In other words, a particle makes use of each component of 
pbest and gbest to search in one dimension. Therefore, it is a question how to deter-
mine a fit searching interval in one dimension. The interval compression method is 
introduced to discuss how to select the searching interval.  

Assume that f(x) is unimodal in the interval [a, b], where exists a minimum x*. a1 
and a2 are any two points on this close interval. If f(a1)<f(a2), then x*should lie in the 
left of a2, x

*
∈[a, a2]. Therefore, the searching interval [a, b] can be compressed into a 

new searching interval [a, a2]. If f(a1)≥f(a2), then x*should lie in the right of a1, 
x*
∈[a1, b]. Therefore, the searching interval [a, b] can be compressed into a new 

searching interval [a1, b]. The interval compression method can be used to determine 
searching area to improve the precision of SPSO. 

2.2   The Searching Interval of One Dimension for SPSO  

The SPSO model can be reduced to the one-dimensional case. The following discus-
sion needs a precondition that the position of a particle is nearby around an optimum 
solution and the pbest and gbest can not be updated for a while. The hypothesis is that 
the pb and gb locate in the interval [a, b] of quadratic function and pb≠gb, where exists 
a global optimum or local optimum. The pb and gb are the component of pbest and 
gbest. The above hypothesis is reasonable because that any complex function can be 
locally approximated by a quadratic Taylor polynomial, which makes a complex 
function reduce a quadratic function. The analysis of the searching interval for quad-
ratic function can extend other functions. Assume that the component of the current 
position of the particle x lie in the left of the pb and gb, where exists two cases: (1) 
(pb–x)>(gb–x) ; (2) (pb–x)<(gb–x), as shown in Fig.1. 

For (pb–x)>(gb–x), the searching interval can be compressed into the new interval 
[pg, pb] or [a, pg] by the compression method of the searching interval. Then the prob-
abilistic characteristic is analyzed for different intervals. The searching interval de-
pendents on the second component and third component of equation (1) because the 
velocity of the particle is small in context of the above hypothesis. Let c1r1(pb-x)+ 
c2r2(gb-x)=U, where the value range of U is the searching interval of one dimention 
for a particle. The graphical method is used to analyze the probability of the value 
range of U. Set c1= c2=2, and let c1r1(pb-x)=Z, the value of Z ranges from 0 to 2(pb-

x);Let c2r2(gb-x)=Y, the value of Y ranges from 0 to 2(gb-x); Then Z+Y=U, the value of 
U is the interception of Y-coordinate axis. When x lies in the left of the pb and gb and 
(pb –x)>(gb–x), the value range of U is form 0 to 2(pb+gb-2x), i.e. point A to point G, 
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x pb gbx pbgb
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Fig. 1. The position of the particle  
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Fig. 2. The searching interval of SPSO  

as shown in Fig.2(a). But the probability of the different ranges of U is different. 
From Fig.2(a), when 2(pb–x) ≤U≤2(gb–x), the probability of U lied in this interval is 
same and lager than that of U lied in other interval. If gb≥2x, then gb can lie in [2(pb –
x),2(gb –x)]. When 0≤U≤2(pb–x), the probability of U lied in this interval increases 
with increase of the value of U, while 2(gb–x)≤U≤2(pb+gb-2x), the probability of U 
lied in this interval decreases with increase of the value of U. From probability analy-
sis, the particle locates the right of pb with lager probability, while the particle locates 
in interval [x, gb] with very small probability. This case is unfavorable to the local 
search and may lead to lose opportunity to find the better solution. 

For (pb–x)<(gb–x), the searching interval should be the new interval [pb, pg] or [pg, 
b] by the interval compression method. The value range of U is form 0 to 2(pb+gb-2x), 
i.e. point A to point G, as shown in Fig.2(b). When 2(pb–x)≤U≤2(gb–x), the 
probability of U lied in this interval is same and lager than that of U lied in other 
interval. If pb≤(0.5gb+x), then gb can lie in [2(pb –x),2(gb –x)]. From probability analy-
sis, the particle locates the right of gb with lager probability, which makes full use of 
gbest. 

When the component of the current position of the particle x lies in the right of the pb 
and gb, the conclusion can be obtained that the particle can not make full use of gbest 
when (pb–x)>(gb–x). Therefore, the conclusion can be obtained that the local search 
ability of particles is poor when the component of the global best position lies in be-
tween the component of the individual best position and the component of the current 
position of the particle through above analysis. When the component of the current 
position of the particle x lies between pb and gb, which means that the pb and gb can not 
locate in the interval [a, b] of quadratic function. This paper does not discuss this case. 
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3   Modified PSO (MPSO) 

Form above analysis, the searching mechanism of SPSO is unfavorable to the local 
search when gb lies between x and pb. Then the probability of the position of the parti-
cle located in [gb x] or [x gb] should be increased to improve the local search ability of 
particle. 

The modified PSO (MPSO) is presented, where particles adopt the modification of 
the learning example to improve the probability of exploitation of gb. The updating 
velocities of particles are calculated using the following equations in MPSO. 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( ( ) ( ))
( ( ) ( ))( ( ) ( )) 0.

( ) ( ) ( ( ) ( ))

i i bi i b i

bi bi b bi
bi b bi b

b b b bi

V t wV t c r P t X t c r G t X t

P t P t z G t P t
if P t G t X t G t

G t G t z G t P t

+ = + − + −
= + −⎧

− − <⎨ = + −⎩

 
(3)

Where z is learning parameter, z∈[0 1]. The increase of the value of z can enhance 
the probability of exploitation of gb. The searching interval of MPSO is analyzed for x 
lied in the left of the pb and gb and (pb–x)>(gb–x),as shown in Fig.1(a). In MPSO, the 
value range of U is form 0 to 4(gb-x), i.e. point A to point G, as shown in Fig.3, where 
let z=0.5. When (3gb–pb–2x) ≤U≤(gb+pb–2x), the probability of U lied in this interval 
is same and lager than that of U lied in other interval. If pb≥2x, then gb can lie in [3gb-
pb–2x, gb+pb–2x]. In SPSO, gb can lie in [2(pb–x),2(gb–x)] when gb≥2x. The probabil-
ity of pb≥2x is larger than that of gb≥2x because (pb–x)>(gb–x). Therefore, MPSO  
improves the probability of exploitation of gb and enhances the local search ability of 
particles. 

A

B
(3gb-pb-2x)

C (gb+pb-2x)E
(3gb-pb-2x)

D
F

Z

Y

G

 

Fig. 3.The searching interval of MPSO 

4   Experiments  

In order to test the effectiveness of MPSO, four famous benchmark functions were 
optimized by PSO with linearly decreased inertial weight (PSO-LDIW), PSO with 
time-varying acceleration coefficients (PSO-TVAC) and MPSO.  
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4.1   Test Functions 

All test functions have to be minimized. Functions f1, f2 and f3 are unimodal, while f4 
is multimodal function with the global optima enclosed by many local optima. The 
properties and the formulas of functions are presented below. 
Sphere’s function  

∑
=

=
D

i
ixxf

1

2
1 )( ,x∈[-100,100] , D=30,min(f1)= f1(0,0,…,0)=0. 

Quadric’s function  
2

2
1 1

( ) ( )
jD

k
j k

f x x
= =

=∑ ∑  x∈[-100,100], D=30,min(f2)= f2(0,0,…,0)=0. 

Rosenbrock’s function 

2 2 2
3 1

1

( ) 100( ) ( 1)
D

i i i
i

f x x x x+
=

= − + −∑ , x∈[-10,10], D=30, min(f3)= f3(1,1,…,1)=0. 

Griewank’s function  
2

4
11

( ) cos( ) 1
4000

D D
i i

ii

x x
f x

i==
= − ∏ +∑ , x∈[-600,600], D=30,min(f4)= f4(0,0,…,0)=0. 

4.2   Parameters Setting for PSO Algorithms  

Parameters setting for PSO-LDIW and PSO-TVAC come form Refs. [2], [3]. In PSO-
LDIW, PSO-TVAC and MPSO the inertia weight w is decreased linearly from 0.9 to 
0.3; Let c1= c2=2 for PSO-LDIW and MPSO, while the cognitive coefficient de-
creases linearly from 2.5 to 0.5, while the social coefficient increased linearly from 
0.5 to 2.5 in PSO-TVAC. The number of iterations is set as 100000. The population 
size is set 20. All results reported are minimums, averages and standard deviations 
over 20 simulations. 

4.3   Experiment Results and Discussions  

Table 1 presents the means and variances of the 20 runs of the three algorithms on the 
four test functions and other improved PSO algorithms from Ref.[6],[7]. From  
Table 1, MPSO achieved better results than the PSO-LDIW and PSO-TVAC for four 
functions and can find global optimum for Sphere’s function. Compared with other 
improved PSO in Ref.[6],[7], MPSO can increase the precision of solutions for uni-
modal functions, but can not effectively improve the quality of solutions for multimo-
dal functions, which have many local optima for multimodal functions. Therefore, it 
is not enough for searching global optimum to only enhance the local search ability of 
particles.  

Fig.4 presents the convergence characteristics in terms of the mean best fitness 
value of each algorithm for each function. As can been seen form Fig.4, MPSO con-
verges slower than PSO-LDIW and PSO-TVAC because of the high local search 
ability of MPSO.  

 
 
 



 Study on the Local Search Ability of Particle Swarm Optimization 17 

Table 1. The results of different PSO algorithms 

Functions PSO-LDIW PSO-TVAC MPSO APSO(Ref.[7]) CLPSO(Ref.[6]) 
Mean 1.36e-320 1.51e-35 0 1.45e-150 1.89e-19 

f 1 Std. 3.45e-300 2.06e-34 0 5.73e-150 1.73e-14 
Mean 3.24e-60 2.01e-8 8.56e-78 1.00e-10 3.95e+2 

f2 Std. 8.46e-62 2.51e-7 5.58e-79 2.13e-10 1.42e+2 
Mean 2.13e+1 3.10e+1 2.34e-6 2.84e-0 2.10e+1 

f3 Std. 5.02e+1 2.57e+1 6.41e-5 3.27e-0 2.98e+0 
Mean 8.42e-1 5.03e-2 8.23e-3 1.67e-2 6.45e-13 

f4 Std. 4.12e-1 3.72e-2 7.19e-2 2.41e-2 2.07e-12 
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Fig. 4. The convergence curve of test function for different function. (a) Sphere function. (b) 
Quadric function (c) Bosenbrock function (d) Griewank function.  

5   Conclusion 

This paper makes an analysis for the local search ability of SPSO. The conclusion can 
be obtained that the local search ability of the particle is poor when the component of 
the global best position lies in between the component of the individual best position 
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and the component of the current position of the particle through the analysis. A new 
learning strategy is presented to improve the local search ability of particles in this 
paper. The experimental results show that MPSO can improve the accuracy of solu-
tion, especially for unimodal functions. It is obvious that the high local search ability 
is not enough for searching global optimum. Future work will enhance exploration 
ability of particles for MPSO. 
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Abstract. For improving the search performance of a canonical particle
swarm optimizer (CPSO), we propose a newly canonical particle swarm
optimizer with diversive curiosity (CPSO/DC). A crucial idea here is to
introduce diversive curiosity into the CPSO to comprehensively manage
the trade-off between exploitation and exploration for alleviating stagna-
tion. To demonstrate the effectiveness of the proposed method, computer
experiments on a suite of five-dimensional benchmark problems are car-
ried out. We investigate the characteristics of the CPSO/DC, and com-
pare the search performance with other methods. The obtained results
indicate that the search performance of the CPSO/DC is superior to that
by EPSO, ECPSO and RGA/E, but is inferior to that by PSO/DC for
the Griewank and Rastrigin problems.

Keywords: canonical particle swarm optimizer, evolutionary particle
swarm optimization, real-coded genetic algorithm, exploitation and ex-
ploration, model selection, specific and diversive curiosity.

1 Introduction

As generally known, canonical particle swarm optimizer (CPSO) [2] is a con-
striction version of particle swarm optimization (PSO) [4,7]. Since it is based on
a rigorous analysis of the dynamics of a simplified particle swarm optimizer, the
CPSO has broad implications for optimization and applications [9,11,12].

Despite the good convergence in the CPSO search [8], it is likely to get stuck
in local minimum for dealing with multimodal optimization problems. For allevi-
ating the phenomenon, Zhang et al. proposed an evolutionary canonical particle
swarm optimizer (ECPSO) [16] which estimates appropriate values of param-
eters in the CPSO by genetic computation. Although the ECPSO successfully
provides a framework of model selection for the CPSO, and improves its search
performance, stagnation cannot be exhaustively prevented.

Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 19–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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To overcome the above difficulty, this paper proposes a newly canonical particle
swarm optimizer with diversive curiosity (CPSO/DC). This is an extension of the
existing method, particle swarm optimization with diversive curiosity (PSO/DC)
[15]. It has the following outstanding features: (1) Introducing diversive curiosity
into the CPSO search for managing the trade-off between exploitation and ex-
ploration, (2) Adopting the optimized CPSO to search for ensuring higher search
performance. Owing to the combination of strengthening swarm intelligence and
meta-optimization technique, effective performance improvement for the CPSO
and the ECPSO even is fulfilled.

2 Basic Algorithms

Let the search space be N -dimensional, S ∈ �N , the number of particles
of a swarm be P , and the position and velocity of ith particle be xi =
(xi

1, x
i
2, · · · , xi

N )T and v i = (vi
1, v

i
2, · · · , vi

N )T , respectively.

The CPSO: The update rule of the CPSO is formulated as{
x i

k+1 = x i
k + v i

k+1

v i
k+1 = χ

(
v i

k+c1r1⊗(p i
k−xi

k)+c2r2⊗(qk − xi
k)
) (1)

where χ is a constriction coefficient, c1 is a coefficient for individual confidence,
and c2 is a coefficient for swarm confidence. r1, r2 ∈ �N are two random vec-
tors, each component of which is uniformly distributed on [0, 1], and ⊗ is an
element-by-element vector multiplication operator. pi

k (= arg max
j=1,···,k

{g(xi
j)},

where g(xi
k) is the fitness value of ith particle at time-step k) is the local best

position of ith particle up to now, qk(= arg max
i=1,2,···

{g(p i
k)}) is the global best

position among the whole particles at time-step k.
According to Clerc’s constriction method, c1 and c2 are set to 2.05, and χ is

approximately 0.7298 in the CPSO.

The ECPSO: It is a meta-optimization method which optimizes the values of
parameters in the CPSO. The ECPSO is composed of two loops: an inner loop
running the CPSO and an outer loop running a real-coded genetic algorithm
with elitism strategy (RGA/E) [16]. The former solves a given real-coded op-
timization problem with a selected set of parameter values in the CPSO. The
latter simulates the survival of the fittest among individuals (individual being a
set of parameter values) over generations for finding the best parameter values.

The genetic operations adopted in the RGA/E are roulette wheel selection,
BLX-α crossover, random mutation, elitism strategy, non-redundant search, rank
operation, and mixing operation for efficiently obtaining the optimized CPSO
to a given optimization problem.

A criterion value which evaluates the search performance of each CPSO in
estimation is under stochastic fluctuation. To reduce stochastic fluctuation, the
following temporally cumulative fitness function is used.
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F (χ, c1, c2)=
K∑

k=1

g(qk)
∣∣
χ,c1,c2

(2)

where K is the maximum number in the CPSO runs.

The CPSO/DC: Curiosity is a concept in psychology seeking of stimulus/
sensation in humans and animals [13]. Berlyne categorized it into two types: di-
versive and specific [1]. As to the former, Loewenstein insisted that “diversive cu-
riosity occupies a critical position at the crossroad of cognition and motivation”
[10]. According to the assumption that “cognition” is the act of exploitation,
and “motivation” is the intention to exploration, the following internal indicator
is proposed for presenting the above two patterns [14].

yk(L, ε) = max
(
ε−

L∑
l=1

∣∣g(qk)−g(qk−l)
∣∣

L
, 0
)

(3)

where L is duration of judgment, ε is the positive tolerance parameter.
It is clear from Fig. 1 that based on the output of the internal indicator, yk,

the behaviors of the CPSO search are switched from one situation (exploitation)
to another (exploration). The active behavior of continually finding solutions,
which directly expresses the intrinsic and spontaneous property of a particle
swarm itself, is interpreted as a mechanism of diversive curiosity.

It is to be noted that the repeat of initialization decided by the signal dk in
Fig. 1 is a mere represented form which concretely realizes diversive curiosity
to explore. By reducing boredom behavior and managing the trade-off between
exploitation and exploration in the CPSO search, the efficiency finding the best
solution will be drastically improved in a fixed period, K.

Fig. 1. A flowchart of the CPSO/DC
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In addition, the CPSO optimized by the ECPSO as CPSO∗, which is used in
the CPSO/DC for ensuring higher search performance.

3 Computer Experiments

To facilitate comparison and analysis of the performance of the proposed method,
we use a suite of benchmark problems in Table 1 [17]. And Table 2 shows the
major parameters emplored for the next experiments.

Therefore, Table 3 gives the resulting values of parameters in the CPSO by the
ECPSO for each 5-dimensional (5D) benchmark problem. They are quite differ-
ent from the parameter values in the original CPSO. These optimized CPSO as
CPSO∗ are used in the CPSO∗/DC for handling the given benchmark problems.

Performance Measurement: Fig. 2 illustrates the resulting performance in-
dexes of the CPSO∗/DC. The following characteristics of the CPSO∗/DC with
tuning the parameters, L and ε, are observed.

– The number of re-initializations increases with increment of the parameter
ε, and decrement of the parameter L, for each problem.

– To obtain higher search performance of the CPSO∗/DC, the recommended
range of Lo

Sp ∈ (30, · · ·, 90) and εo
Sp ∈ (10−6, · · ·, 10−2) for the Sphere

problem; Lo
Gr ∈ (30, 40) and εo

Gr ∈ (10−3, 10−2) for the Griewank problem;

Table 1. Functions and criteria in the suite of benchmark problems. The search space
for each benchmark problem is limited to S ∈ (−5.12, 5.12)N .

Function Equation Criterion

Sphere fSp(x)=
N∑

d=1

x2
d gSp(x)=

1
fSp(x) + 1

Griewank fGr(x)=
1

4000

N∑
d=1

x2
d −

N∏
d=1

cos
( xd√

d

)
+ 1 gGr(x)=

1
fGr(x) + 1

Rastrigin fRa(x)=
N∑

d=1

(
x2

d − 10 cos (2πxd) + 10
)

gRa(x)=
1

fRa(x) + 1

Rosenbrock fRo(x)=
N−1∑
d=1

[(
100
(
xd+1 − x2

d

))2

+
(
xd − 1

)2]
gRo(x)=

1
fRo(x) + 1

Table 2. The major parameters used in the ECPSO and the CPSO/DC

Parameters Values Parameters Values
the number of individuals, M 10 the number of generation, G 20
the number of iterations, K 400 probability of BLX-2.0 crossover, pc 0.5
the number of particles, P 10 probability of random mutation, pm 0.5
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Table 3. The resulting values of parameters in the CPSO and the appearance frequency
for each 5D benchmark problem with 20 trials

Parameters Fitness
Problem

χ c1 c2 F
Freq.

Sphere 0.6528±0.1760 4.3175±0.7283 2.1319±1.1178 397.3±0.689 95.0%
Griewank 0.7354±0.1723 1.6764±1.3422 1.1250±0.7046 397.2±0.812 100.0%
Rastrigin 0.8158±0.2396 1.6761±1.1867 1.5339±0.7950 158.0±26.20 95.0%

Rocenbrock 0.9397±0.1333 0.9694±0.4533 1.7525±0.4529 365.8±19.86 90.0%

Lo
Ra � 60 and εo

Ra � 10−3 for the Rastrigin problem; Lo
Ro � 80 and εo

Ro �
10−3 for the Rosenbrock problem are available, respectively.

– The distributions of the average of criterion values in Fig.2(b.Ra) and (b.Ro)
basically reflect the fundamental finding, “the zone of curiosity” and “the
zone of anxiety”, in psychology [3].

Fig. 3 shows the resulting difference, Δ = ḡ∗− ḡ, of the average of criterion
values between the CPSO∗/DC and the CPSO/DC for each problem. We can
see that the results on their differences are almost positive for the Rastrigin and
Rocenbrock problems. This indicates that the optimized CPSO play an important
role in efficiently solving these problems. Nevertheless, if the given problem is
such simple or complex as the Sphere or Rastrigin problem, the effect of the
CPSO∗/DC is little and unremarkable by the limits of search ability.

Comparison with Other Methods: Table 4 gives the experimental results
of implementing the CPSO, CPSO∗, CPSO∗/DC, PSO∗/DC, and RGA/E with
20 trials. It indicates that the search performance of the CPSO∗/DC is superior
to that by the CPSO or the CPSO∗ based on comparison with the average
of criterion values, and diversive curiosity plays an essential role in finding an
optimal solution or near-optimal solutions.

Discussions: The search performance of the CPSO∗/DC is superior to that
by the RGA/E (except for the Rastrigin problem). However, why the search
performance of the RGA/E is so better than that by the CPSO∗/DC for the
Rastrigin problem, the reason directly correlates with the intrinsic convergence
of the CPSO and the CPSO∗ even specially for dealing with multimodal opti-
mization problems.

Table 4. The mean and standard deviation of criterion values for each benchmark
problem with 20 trials. The values in bold signify the best results for each problem.

Problem CPSO CPSO∗ CPSO∗/DC PSO∗/DC RGA/E
Sphere 1.0000±0.000 1.0000±0.000 1.0000±0.000 1.0000±0.000 0.9990±0.0005

Griewank 0.8688±0.0916 0.9901±0.0050 0.9959±0.0048 1.0000±0.000 0.9452±0.0784
Rastrigin 0.1828±0.1154 0.2710±0.1300 0.2926±0.3402 1.0000±0.000 0.9064±0.2257

Rosenbrock 0.6206±0.2583 0.7008±0.3557 0.8076±0.283 0.7841±0.1471 0.3898±0.2273
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Fig. 2. The search performance of the CPSO∗/DC for each problem with 20 trials. (a)
Best criterion value, (b) Average of criterion values, (c) Number of re-initializations.

On the other hand, even though diversive curiosity takes an active part in
search, there is not any change in the intrinsic character and search capacity of
the CPSO itself. Namely, it just applies diversive curiosity to the CPSO search
for alleviating stagnation in optimization without other technical supports such
as hybrid genetic algorithm and particle swarm optimization [6] which imple-
ments the GA and the PSO to explore owing to a mixed operation. This is the
shortcoming of the CPSO/DC in search strategy.

Comparison with the results of the PSO∗/DC in Table 4 [14,15], we can
see that the search performance of the CPSO∗/DC is better than that by the
PSO∗/DC for the Rosenbrock problem, but is worse for the Griewank and Ras-
trigin problems. Accordingly, it is also verified that both of the PSO and the
CPSO have the property of problem-dependence in search.
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Fig. 3. The average difference of criterion values between the CPSO∗/DC and the
CPSO/DC with tuning the parameters, L and ε, for each problem

4 Conclusions

A new canonical particle swarm optimizer with diversive curiosity has been pro-
posed in this paper. Owing to the function of the used internal indicator, it
constantly makes a particle swarm active in search for efficiently solving a given
optimization problem. Theoretically, the CPSO/DC has good capability which
alleviates stagnation by comprehensively managing the trade-off between ex-
ploitation and exploration.

Applications of the CPSO/DC to a suite of 5Dbenchmark problems well demon-
strated its effectiveness. The experimental results verified that the combination of
strengthening swarm intelligence and meta-optimization technique is successful
and effective manner for acquiring more efficiency to optimization search.

It is left for further study to apply the CPSO/DC to complex problems in the
real-world and dynamic environments, and to apply the mechanism of diversive
curiosity to cooperative particle swarm optimization for developing the swarm
intelligence [5].
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entific Research(C)(22500132) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
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Abstract. Bee-Swarm genetic algorithm based on reproducing of swarm is a 
novel improved genetic algorithm. Comparing to GA, there are two populations, 
one for global search, and another for local search. Only best one can crossover. 
The genetic operators include order crossover operator, adaptive mutation op-
erator and restrain operator. The simulated annealing is also introduced to help 
local optimization. The method sufficiently takes the advantage of genetic algo-
rithm such as group search and global convergence, and quick parallel search can 
efficiently overcome the problems of local optimization. Theoretically, the ca-
pability of finding the global optimum is proved, and a necessary and sufficient 
condition is obtained namely. The convergence and effective of BSGA is proved 
by Markov chain and genetic mechanism. Finally, several testing experiments 
show that the Bee-Swarm genetic algorithm is good.  

Keywords: absolute mating, adaptive crossover, simulated annealing algorithm, 
effective. 

1   Introduction 

Genetic algorithm based on “evolution” and “genetics” biology theory is proposed by 
Holland from United States in 1970s. According to the accumulation of knowledge, it 
is an effective non-numerical parallel optimization method, so it has been widely used 
in various fields. However, the genetic algorithm still has premature convergence and 
slow convergence shortcomings, causing by the contradiction between population 
diversity and pressure of selection. So some improved genetic algorithms combine with 
other algorithms like chaos theory[1], simulated annealing algorithm[2,3] and fuzzy the-
ory[4] to deal with uncertain information. Others simulate the natural phenomena to 
improve the performance, like gender-specific genetic algorithm[5,6], monkey king 
genetic algorithm[7] and niche genetic algorithm[8] also has achieved good results. 

This paper proposed the bee-swarm genetic algorithm based on reproducing of 
swarm and combining with annealing algorithm[9,10]. The BSGA is introduced briefly in 
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second part, the convergence and mechanism are analyzed in third part, and the simu-
lation results about the optimization of classic function and knapsack problem are 
shown in the last part. 

2   BSGA 

The BSGA population is composed of queen bee(one number), drones(N numbers) and 
worker bees(M numbers), the main operators of BSGA include the absolute mating 
right between queen bee and drones, the simulated suppression between queen bee and 
worker bees, local optimization of queen bee based on simulated annealing, adaptive 
crossover between drones and queen bee, adaptive mutation of worker bee[11-14]. The 
theory of BSGA is as below: 

2.1   Drones Operations 

According to adaptive crossover rate, stronger drone has greater chance to crossover 
with queen, but less crossover frequency, on the contrary of weaker drone, so the good 
model can easily been saved. According to schema theorem, this method guides the 
direction of the algorithm, and high convergence speed is maintained initially. How-
ever, as the algorithm progressing, cross-deceptive problem are easily caused by two 
high-fitness individuals of high similarity. So the crossover number operator is added, 
through queen and low fitness drone crossover several times. It can reduce the ran-
domness of search and promote uniform distribution of the individuals, so the low 
fitness but potential ones get more chances to survival.  

2.2   Worker Population Operation 

Queen and the workers are restrained in accordance with the similarity degree of 
similarity. For the binary-coded genetic algorithm bees, the Hamming distance is used 
to calculate the similarity between two individuals. Specific method is, if the Hamming 
distance D between worker individual and queen less than or equal to T, the individual 
mutates. The other individuals who have not been suppressed determine their mutation 
rate and the location of dynamic mutation in accordance with the relationship of fitness. 
Principle is that the greater the fitness of individuals, the lower the mutation rate, 
variation in the chromosomal location of the back of genes, on the other hand, the 
smaller the fitness, the higher the mutation rate, variation in the chromosomal location 
of the initial gene. The worker population mainly maintains the population diversity 
and avoids premature convergence.  

2.3   Description of BSGA 

Step 1: in the function definition domain, two populations are generated randomly. 
Drones have N individuals, and the worker population has M individuals. 

Step 2: the best one as queen is selected from worker population. 
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Step 3: Drones select ones through roulette wheel selection, crossover in adaptive rate 
and crossover frequency, then mutate. 

Step 4: In the method of League selection, the female offspring and the original worker 
population reorganize, and then the queen is reselected again. 

Step 5: the queen optimizes in neighborhood by simulated annealing. 

Step 6: the queen restrains the new worker population.  

Step 7: the other individuals determine the mutation rate and location according to 
fitness. The queen is selected again. 

Step 8: If the algorithm termination conditions are not met, go to Step2, otherwise, 
queen is output as a global optimal solution, and algorithm terminates. 

3   Mechanism Analyzing 

Relative to the biological basis of genetic algorithm, its mathematical theoretical[15] 
foundation is far behind the actual development of the algorithm. Schema theorem and 
the implicit parallelism[16] is seen as the cornerstone of the theory of genetic algorithms, 
then there are the building block hypothesis. Schema theorem and building block hy-
pothesis describes the genetic algorithm optimization possibilities and capabilities, but 
the phenomenon of premature convergence of genetic algorithms, models and genetic 
algorithm for the measurement of fraud problems, and so are unable to explain. Based 
on the theory of genetic algorithm, BSGA search procession will be proved limited 
traverse homogeneous Markov chain, with a global convergence, meanwhile, the se-
lection of the best crossover and adaptive mutation operator are discussed. 

3.1   Convergence Analyzing 

Theorem 1: BSGA is convergent. 

Prove: the queen as the best individual in each generation is preserved. The various 
states of probability matrix P are in descending order, the first state is the global op-
timal solution; the second state is the global sub-optimal solution, …. , the N state is the 
global worst. So P can become: 
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From the analysis of P, we can see that BSGA is reducible stochastic matrix, ]1[=C  
is a first-order strictly positive stochastic matrix. Then 
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Because of 1=∞C , BSGA is not only finding the best solution, but also preserving 
the best one. So BSGA is global convergence. 

3.2   Crossover Operator Analyzing 

Although BSGA can converge to global optimal solution, but the results are achieved in 
an infinite algebraic theory of evolution, the actual operation is not feasible. Therefore, 
algorithms must be completed within a limited generation. 

Theorem 2: (1)if ℘ is a pattern, then )(2 ℘−=℘ OL . 

(2) if [ ]11 );,( Kai
kik=℘  and [ ]22 );,( Kai

kik=℘  are two patterns，and satisfy the 

condition )( kkji jiba
kk

==  then: 

[ ] [ ]2211 );,();,( KaiKai
kk ikik ℘℘=℘ ∩  is also a pattern. 

In the crossover process, we can see that the randomly selected individuals of matching 
is more difficult to control, hybrid offspring is produced by different models, not only 
easily lead to genetic algorithms deceptive problem, but also influence the convergence 
speed. So the crossover operation is adapted between queen and other individuals in the 
BSGA. The better model is achieved through the best models and the other model’s 
matching, according to building blocks hypothesis.  

3.3   Mutation Operator Analyzing 

GA mutation probability is fixed, single-point mutation location is random, although 
the mutation operator of the search scope is global, but mutation probability is low, and 
random changes in a very strong need to maintain the diversity of population. Once a 
local optimal solution is caught, relying on simple mutation operator is difficult to jump 
out. But BSGA worker population can increase population diversity, and enhance its 
global search capability. 

The worker individual adaptive adjusts the mutation rate, increasing the diversity of 
population. High gene from the front of the individual has the larger weight to deter-
mine the position in the solution space. Low gene from the rear of the individual has the 
small weight to determine the local position in the nearby of high gene individual. 
Adaptive adjustment of the gap varies according to the intention to enhance the ex-
pected value occurred at a certain unknown probability. 
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4   Experiments 

In order to verify BSGA convergence speed and the ability of convergence to the global 
optimal solution, a classical test function and knapsack problem is selected.  

Example 1 (Schaffer F6 function): 

2 2 2
1 2

1 2 22 2
1 2

sin 0.5
max ( , ) 0.5

1 0.001( )

5 5, ( 1,2)i

x x
f x x

x x

x i

⎧ + −
⎪ = −⎪

⎡ ⎤⎨ + +⎣ ⎦⎪
− ≤ ≤ =⎪⎩

 (3)

The function maxima of (0,0), maximum value is 1. However, the global maximum is 
around of local minimum points like a circle, and leading to a general algorithm is very 
difficult to converge to the optimal solution. 

In the same parameter settings, 100-300 times iteration, using method from pa-
per[17], solution results were shown as follows in Table 1 comparing to BSGA. 

Table 1. Compared result of calculation 

 New Hybrid GA BSGA 
100 0.99944277008649 0.99999038159228 
200 0.99998879898559 0.99999999544797 
300 0.99999957113885 0.99999999544797 

Example 2: Knapsack problem 

Example 2 selects knaps number is 50 from paper[18].  

The goods value ={220, 208, 198, 192, 180, 180, 165, 162, 160, 158, 155, 130, 125, l22, 
120, 118, 115, 110, 105, 101, 100, 100, 98, 96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 
66, 65, 63, 60, 58, 56, 50, 30, 20, 15, 10, 8, 5, 3, 1}, the volume of goods ={80, 82, 85, 70, 
72, 70, 66, 50, 55, 25, 50, 55, 40, 48, 50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28,30, 22, 
25, 30, 45, 30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, l0, 10, 10, 4, 4, 2, 1},maximum 
volume backpack is l000, size is 50. 

The optimal value is 3095 from paper[19] using the greedy algorithm, 3077 from 
paper[20] using simple genetic algorithm, and 3103 from paper[18] using hybrid ge-
netic algorithm. In the same parameters of paper[18], BSGA runs independently 50 
times, the objective function optimal value was 3103, with an average of 170 genera-
tions. From the above comparison we can see that the optimal value of this algorithm is 
superior to simple genetic algorithm and greedy algorithm, and hybrid genetic algo-
rithm for the same, and this algorithm has good results in speed and stability.  

5   Conclusion 

In this paper, through the introduction of the concept of gender, BSGA is conscious 
control of the crossover between the different chromosomes to speed up the convergence 
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rate, so that populations remain the most likely to succeed state. Through similar inhibi-
tion and self-adaptive mutation rate, adaptive mutation, the population has a good global 
search capability. Then the algorithm was proved from a theoretical point of view the 
effectiveness and convergence, the final test results from a simulation point of view, the 
algorithm is compared with other classical genetic algorithm and improved algorithm, 
population size is small, fast convergence, failure rate is low, the average convergence 
algebra less. 

Of course, the drones in this paper and the relationship between the proportion of 
worker bees and produce random number and sex of the individual issues are beyond 
the need for further research. 
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Abstract. Artificial Searching Swarm Algorithm (ASSA) is an intelligent opti-
mization algorithm, and its performance has been analyzed and compared with 
some famous algorithms. For farther understanding the running principle of 
ASSA, this work discusses the functions of three behavior rules which decide 
the moves of searching swarm. Some typical functions are selected to do the 
simulation tests. The function simulation tests showed that the three behavior 
rules are indispensability and endow the ASSA with powerful global optimiza-
tion ability together. 

Keywords: artificial searching swarm algorithm, bionic intelligent optimization 
algorithm, optimization, evolutionary computation, swarm intelligence. 

1   Introduction 

Most animals and insects show the amazing abilities of completing complex behav-
iors. Since the 1940s, the optimization design problems in the engineering fields have 
been solved by using the inspiration of the biological systems, and some of algorithms 
were found and called Bionic Intelligent Optimization Algorithm (BIOA). At present, 
the popular BIOAs are genetic algorithm [1], ant colony algorithm [2], particle swarm 
optimization [3], artificial fish-swarm algorithm [4], and shuffled frog leaping algo-
rithm [5], etc. These bionic algorithms have become a hot research focus in the fields 
of intelligent optimization. 

Artificial Searching Swarm Algorithm (ASSA) is an abstract BIOA. It bases on the 
simulation of the running principle of BIOA and the process of finding the optimal 
goal by a troop of soldiers [6]. For farther understanding the principle of ASSA, this 
work discusses the functions of three behavior rules which decide the moves of 
searching swarm. Some typical functions are selected to do the simulation tests. The 
function simulation showed that the three behavior rules are indispensability, and to-
gether endow the ASSA with powerful global optimization ability. 

2   Artificial Searching Swarm Algorithm 

According to the principle of BIOA, ASSA uses the searching swarm (simulate a 
troop of soldiers) composed of searching individuals (simulates a soldier) as the main 
executive to implement the searching task, and utilizes the vested rules to change the 
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searching individual’s position. With the algorithm iteration the searching swarm 
moves in the searching region continuously, and finds the optimal solution finally. 

So whether the searching swarm moves forward to the optimal solution is the key 
to the success of algorithm, the rules become the important problem which decides 
the searching swarm’s movement mechanism directly, and affects the efficiency of 
the algorithm. 

Three rules are defined to restrict the searching individual’s behavior: 

1) Communication: the basic communication relation is kept between searching 
individuals. If an individual receives a call sent by his companions, it moves 
forward to the called companion’s position by a step with a certain probability; 

2) Reconnaissance: If the individual does not receive the call of his companions, it 
implements reconnaissance according to his and swarm’s historical experience. 
If finds a better goal, moves forward to the position by a step; 

3) Move: If the searching individual does not receive a signal of his companions, 
and does not find a better goal, it moves a step randomly. 

If finds a better goal during above moves, sends a call to his companions. 

The running flow of ASSA is shown as follows: 

1) Set the parameters, initialize the swarm randomly and evaluate the fitness value; 
2) Iteration counter add 1, deal with the individuals in turn as follows: 

a) If receive his companion’s call, then move forward to the called companion by 
a step with a certain probability; 

b) Otherwise, according to its own and swarm’s historical experience implement the 
reconnaissance. If find a better goal, move forward to the better goal by a step; 

c) Or move by a step randomly. 

If find the better goal during above moves, send a call to his companions. 

3) Calculate the fitness value. Compare with the best fitness of swarm and each in-
dividual respectively, if better, log on the bulletin board; 

4) Determine whether or not to meet the conditions of termination, if so, end the it-
eration; otherwise, return to 2). 

According to the searching individual’s behaviors above, the searching swarm moves 
constantly in the searching area, and approaches to the optimal solution through the 
continuous iteration of the algorithm, and obtains the optimal solution finally. 

3   The Function Analysis of Behavior Rules of ASSA 

3.1   The Simulation Functions 

To analyze the functions of the three behavior rules of ASSA, the following typical 
functions are chosen for simulation experiment: 
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Function F1 has a global maximum 1 at point [0, 0], and a lot of local maximums dis-
tributed around it.  

F2 is a general Rosenbrock function. It has the global minimum value 0 at the 
points [1, 1,…,1].  

F3 has a global minimum value 3 at point [20,20,20], and a lot of local minimum 
value around it, it is a multi-variable problem. 

F4 is Schaffer function and has a global minimum 0 at point [0, 0]. 
F5 is Goldstein-Price function and has global minimum 0 at point [0, 0]. 

3.2   The Function Analysis of Communication Rule 

According to the communication rule, the basic communication relation is kept be-
tween the searching individuals. If an individual finds a better goal, it sends a call to 
his companions. At next iteration the individual checks the communication record 
firstly, if receives a signal sent by his companions, it moves forward to the called com-
panion’s position by a step with a certain probability. 

It is important to limit an individual to respond the call of his companions with a 
certain probability. Therefore the value of the probability is a key factor that influences 
the function of communication rule and the performance of ASSA. 
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Fig. 1. Comparative results with different value of Pc (1 : Pc=0.002, 2 : Pc=0.02, 3 : Pc=0.2, 4 : 
Pc=1.0) 

For verifying the analysis above, function F1 is selected to do the simulation tests. It 
is a maximum optimization problem. The swarm size is 10, searching step is 0.3, itera-
tive number is 100, and the value of probability is signed by Pc ( 10 ≤≤ Pc , generate 
a stochastic number r by randomizer, if r<Pc, then perform communication rule). The 
results are shown as Figure 1. 

In order to achieve the same purpose, function F2 is selected to do simulation tests. 
It is a minimum optimization problem. The swarm size is 10, n is 3, searching step is 
0.2, iterative number is 100, and the value of probability is signed by Pc. The results 
are shown as Table 1 (the figure does not show distinctly). 

Table 1. The Testing Results of Function F2 

The Optimal Value 
Pc 

10 30 50 70 90 100 

0.002 1.429595 0.190104 0.001533 0.000961 0.000264 0.000264 

0.02 1.429595 0.190104 0.001533 0.000961 0.000049 0.000049 

0.2 0.719591 0.040261 0.005819 0.001653 0.000560 0.000560 

1.0 3.276597 0.167835 0.007813 0.007813 0.007621 0.001392 

       Here the numbers 10, 30, ┅, 100 denote the iterative number. 

From results ASSA gets optimal value 0.0015 at 50-th generation while Pc is 0.002, 
gets 0.0015 at same generation while Pc is 0.02, gets 0.0058 at same generation while 
Pc is 0.2, and gets 0.0078 at same generation while Pc is 1.0. 
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Communication rule can influence the performance of ASSA obviously; the value 
of probability which limits the use of communication rule is a key factor to perform 
this rule; selecting the value of probability properly can enhance the performance of 
ASSA. 

3.3   The Function Analysis of Reconnaissance Rule 

According to the reconnaissance rule, if an individual does not receive the calls of his 
companions, it implements reconnaissance according to his and swarm’s historical 
experience. If finds a better goal, moves forward to the position by a step. 

Suppose the 1r , 2r are two random real numbers, 1,0 21 ≤≤ rr , the current individ-

ual’s position is Xi , the historical best solution of the individual is Xs, the historical 

best solution of the swarm is Xg, and the absolute value function is ⋅ , then the indi-

vidual decides the reconnaissance goal X by the formula (6) as follows. 

igis XXrXXr −+−+= **XX 21i  (6)

Reconnaissance rule plays a main role to find the better goals and prevent the local 
convergence. 

How to define the “better goal” is a key problem to perform the reconnaissance rule. 
There are three definitions to be selected in practice. The first is better than the current 
value of objective function of the individual; the second is better than the historic value 
of the objective function of individual; the third is better than the historic value of ob-
jective function of the swarm. The different definitions are related to different per-
formance of ASSA. 

For verifying the influence of the different definition of the better goal, function F3 
is selected to do simulation tests. The swarm size is 50, Pc is 0.002, searching step is 
2.6, and iterative number is 100. The simulation results are shown as Figure 2. 

From the results this rule is a main rule of ASSA to find the better goal, and to keep 
a good performance. The first definition endows the algorithm the best performance 
than the otherwise definitions. 

Without reconnaissance rule the performance of ASSA is very low. The results are 
shown as table 2. 

Table 2. The Testing Results without reconnaissance rule 

The Optimal Value 
 

10 30 50 70 90 100 

With rule 8.341815 6.179004 3.169186 3.087715 3.009977 3.004805 

Without tule 10.452804 10.452804 10.452804 10.452804 10.452804 10.452804 

(10, 30, ┅, 100 denote the iterative number) 
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Fig. 2. Comparative results with different definition of the better goal (1 : with the first defini-
tion, 2: with the second definition, 3: with the third definition) 

3.4   The Function Analysis of Move Rule 

According to the move rule, if the searching individual does not receive a call of his 
companions, and does not find a better goal, it moves a step randomly. 

 

Fig. 3. Performance Comparison with (without) move rule 
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Obviously the move rule only has the assistant function to find the better goals, bit it 
is necessary. For analyzing the efficiency of move rule, function F4 is used to do the 
simulation tests. The swarm size is 100, searching step is 2.6, Pc is 0.2, iterative num-
ber is 100. With and without the move rule, Figure 3 shows the simulation results. Al-
though the influence is not so strong, as an assistance rule, the efficiency is obvious. 

Actually move rule can be used more than one times to improve the opportunity to 
find the better goal and performance of ASSA. If an individual does not find the better 
goal during the first random move, it will try three times totally to perform move rule. 

It is clear that the more times the move rule be executed the more chances the algo-
rithm can finds the better solution. But the trying times is restricted to decrease the 
running time of the algorithm.  

The results show that performing the move rule three times in the iteration can im-
prove the searching ability and accelerate the convergent speed of ASSA. 

3.5   Analysis of Running Example of ASSA 

For analyzing the functions of the behavior rule in the running examples, function F5 is 
selected to do simulation tests. The size of the searching swarm is 10, searching step is 
0.3, Pc is 0.2, and the iteration number is 100. The results are shown as table 3.  

Table 3. The Testing Results of Function F5 

Experiment Times 
 

1  2   3       4        5       6        7        8 

Rule 1 16  40  13      29      42     22      25      15 

Rule 2 863 798 945    852    917   901    947    896 

Rule 3    121   162      42 119    41 77  28  89 

Optimal 
Value 

3.007613 3.177619 3.000190 3.000589 3.001296 3.001130 3.000584 3.000039 
 

Here the numbers 1, 2, ┅, 8 denote the experiment times, the third row numbers are the execut-
ing times of rule 1 during the one experiment, and so on. For example rule 1 is executed 16 times 
in first experiment while rule 2 is executed 863 times; rule 3 is executed 121 times. 

 
From the results reconnaissance rule plays a leading role, the smaller the Pc value 

and more times of this rule, the more accurate optimal value. But the supplementary 
role of communication rule and move rule can not be neglected. 

4   Conclusion 

Swarm intelligence is a research branch that models the population of interacting agents 
or swarms that are able to self-organize. The Bionic Intelligent Optimization Algorithms 
(BIOAs) have become a hot research focus in the fields of intelligent optimization. For 
almost all the BIOAs the behavior rules are the key factor that influences the algorithm 
performances, and decides the biology mechanism of algorithms. Artificial Searching 
Swarm Algorithm (ASSA) is an abstract BIOA, it has no direct simulation foundation, 
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and just simulates a troop of soldiers (searching individuals) to search for the vested 
goal. So its behavior rules have special characteristics. 

Reconnaissance rule plays a leading role to find the better goals and influence the 
performance of ASSA among three rules of ASSA; communication rule and move rule 
have an assistant function. But the three behavior rules are indispensability, and endow 
the ASSA with powerful global optimization ability together. The more works will be 
done to analyze the running principle of ASSA deeply in the future. 
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Orthogonality and Optimality in Non-Pheromone
Mediated Foraging
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Abstract. We describe the general foraging task, breaking it into two
different subtasks: map-making and collection. Map-making is a task in
which a map is constructed which contains the location(s) of an item
or of items in the search area. Collection is the task in which an item
is picked up and carried back to a central known location. We theoret-
ically examine these tasks, generating minimal conditions for each one
to be accomplished. We then build a swarm made up of two castes to
accomplish this, theoretically motivating the design of the swarm. Fi-
nally, we demonstrate that the swarm is optimal in the class of swarms
utilizing line-of-sight communication, and give performance measures for
open and closed search spaces.

1 Introduction

Foraging is a task required of virtually every animal on earth. Generally speaking,
the task consists of two phases: the items being foraged need to be located, and
the items need to be carried back to a central location. These two phases of the
overall task are combined into a single goal which must be achieved in order for
the group to function.

In the insect world, the goals are achieved in a variety of ways. Bees use a
combination of map making[11], communication, and random search to find,
mark, and communicate the position of food being foraged. Ants either move
their central location to the food or move the food to their home by marking
the environment and using it as a map to recruit collection of the food.

Many groups have investigated foraging from numerous different angles. Evo-
lution of foraging in which foraging behaviors evolve generally center around
the development of a foraging behavior using evolutionary processes [6]. These
studies conclude with the evolutionary algorithm generating successful forag-
ing behavior. However, the agents and their potential instantiations are broadly
outlined by the studies’ computational set-ups. Others have examined the de-
velopment of swarms and their functions to their agent’s limited capabilities.

These studies mostly followed the ant model in which wandering agents en-
counter the target, form a “map”, which might be via wireless communication,
a GPS-like locator [4], deposit pheromones [5], and collect the target with the
aid of other agents. This approach works quite well when a map or a method
of marking the environment is available. However, remote missions to distant
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locations may preclude the use of GPS, limit wireless communication, and occur
where pheromones are limited. All of these might hinder the ability to gener-
ate and update a map a with garnered information. Agents might be limited to
sight-only communication, and not have access to global positional information
or a map. Moreover, with the current ability of agents to employ dead-reckoning,
which is significantly limited when compared to the insect world, such environ-
ments may prove challenging.

A prospective solution to such issues is the bucket brigading method. Bucket
brigading involves agents from home being sent out to locate pucks. Once an
agent has located a cluster, it alerts the swarm and consequently the swarm
forms a line from home to the puck, with the agent closest to the cluster takes
one and passes it down the line until the puck is deposited at home. However,
a key obstacle they encounter is spatial interference. Spatial interference refers
to disruptive interference between robots to perform work in a system [6]. Shell
and Mataric’s robots productivity decreased as the number of robots increased,
due to interaction and collisions.

To reduce spatial interference, we turn to a simulation by Lein and Vaughan in
[8]. What separates their simulation from Shell and Mataric’s is that the search
radius of each robot would decrease when it entered another robot’s search ra-
dius, effectively reducing spatial interference. They recorded an increased num-
ber of pucks collected as the number of robots increased at the cost of search
efficiency.

We examine the foraging problem from the point of view that three tasks
must be achieved. We constrain the method to the use of line of sight commu-
nication, precluding global communication or map-making. We develop a model
that breaks the task into three categories (search, mapping, and collection), and
accomplishes these using two different castes of agents. We demonstrate that
the solution is optimal in the spaces that require line of sight communication.
We further examine the use of this method in closed and open spaces, generat-
ing performance measures for closed spaces as a function of the position of the
agents’ “home”.

2 Engineering Foraging without Stigmergy, Gps, or Dead
Reckoning

We are interested in generating model independent design requirements for the
foraging task. Moreover, we would like to include one which requires the use of
localized technologies:

1. Agents must use technologies that are entirely independent of an existing
external infrastructure.

This requirement limits our likelihood to generate a foraging strategy that works
in a vast subset of interesting environments. Such environments include under-
ground, underwater, physically hostile (radioactive, chemically polluted, or oth-
erwise hostile environments), and remote areas with little built in infrastructure.
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These environments are very likely to escape coverage from GPS, and normal
communication networks. As a result, the swarm must be expected to bring with
it all hardware one might require to accomplish the task.

This and available technologies requirement limits the technologies and the
strategies we can use. As an example, dead reckoning in robotics today is cur-
rently incapable of providing the kind of positional knowledge that ants exhibit.
In general, if err (t) = |xest (t) − xact (t)| then t ↗⇒ err ↗. After some time,
the error in the estimate of the position is so great that no reliable measure of
the position of the robot can be made.

We must utilize things that the foraging agents can reliably measure and
information that is readily and locally available. Given the state of localization
technologies today, we can make the assumption that agents can localize objects
within their field of “vision” along with other agents. That is, each agent is
capable of determining the distances −−−−→

x− xj where −→x is the position of the
agent and −→xj is the position of the jth neighbor. Agents can communicate, and
therefore can share information. As a result, we may assume that each agent has
the ability to know the location of some subset of the other agents in the same
continuous group1, including the possibility that each agent knows the positions
of all other agents. We assume that the agents have a sensor range ds > 0 for
targets defined by the maximum distance from an agent to a target that it can
sense. We also assume that the agents have a maximum communication and
sensor range dc > 0 for other agents defined analgously.

The question is, how does one arrive at a design method for foraging which
is not dependent on the agent model?

2.1 General Considerations

We can start by defining a position for every agent and every target. Let {−→xi}NA

i=1

be the set of positions of agents. Let {−→yi}NT

i=1 be the set of positions of all the
targets. Let {si}NT

i=1 represent the set of all states of targets. Let us assume
that each target can take on one of two values which we can represent by the set
T = {0, 1}. The state 0 represents a target whose position is not currently known
by any agent. State 1 represents a target whose position is currently known by
an agent. Note that it is possible for an agent to find a target and “lose” it again.
Let us define the home position as −→xh. We can also define the amount of energy
required by each of the agents per unit time in motion and in computation as
{ei}NA

i=1. Of course, in homogeneous swarms, each of these ei’s are identical.
Using these definitions, we can define the global properties [1]

−→
X =∑NT

i=1 (−→yi −−→xh) and S =
∑NT

i=1 si. These represent the aggregate position and
state of the targets. What then must happen is that

dS

dt
≥ 0 (1)

1 We define a continuous group to be a group of individuals in which, given any pair
of agents, a set of agents can be found which “connects” the agents in the pair.
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and that
d
∣∣∣−→X ∣∣∣
dt

≤ 0. (2)

In order for this to happen, the first condition tells us that any agents must have
a behavior that leads them to find a continually increasing number of targets,
losing fewer than are found in any given time period. This must eventually lead
to either stagnation in the number found or the number found converging to the
total number, when the total number is finite. The second condition requires that
the targets’ positions become closer to that of the home. If we further require
that ∫ t=tf

t=0

d |X |
dt

dt = − |X (t = 0)| (3)

and ∫ t=tf

t=0
dS = NT (4)

then conditions (2) and (3) give us that the final position of the targets should
be at home. Also, the conditions (1) and (4) require that all targets are found.

Since we do not know initially where the targets are, we must define a search
area A and a behavior of the agents that satisfies conditions (1), (2), (3) and
(4). There is no restriction on the method that achieves this.

2.2 Foraging without Dead Reckoning, GPS, Existing Maps, and
Stigmergic Communication

As our restrictions are that there is no GPS nor adaptive mapping, we must use
either a form of stigmergic communication or direct communication to map the
region. It is possible to dig trenches or otherwise change the characteristics of
the environment in which the search is progressing. In sandy and windy areas,
digging trenches would be non-permanent. However, in the absence of wind, the
agents themselves and the trenches might produce a confusing set of tracks to
and from a source that yields little in the way of information communication.

Other methods such as imprinting a small magnetic signature in the soil or
leaving short-lived imprint on the environment depends very much on the kind
environment. It is unlikely that utilizing a magnetic field would leave an imprint.
In contrast, utilizing a high temperature heater on dry land might heat the local
area in a way that is relatively short-lived. Such a device would be useless in an
underwater or submerged environment, and have limited use in the presence of
significant wind.

These considerations lead us to search for a system which is capable of carrying
out the search with the following requirements.

1. The agents are capable of obtaining objects whose physical distance is well
beyond the ability of an individual agent to sense or to reliably retrieve;
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2. The system is optimal in the sense that the physical distance traveled is
minimized;

3. Any mapping is achieved using either the physical positions of the agents
or communicated positions that have been calculated and communicated to
allow for retrieval.

These requirements are subject to the following restrictions

1. The agents have a decreasing probability of knowing the direction and range
to their “home” as they move further away from direct contact with it either
through direct sensing or through a network of other agents;

2. The agents have a limited sensor range, where the sensors are searching for
the target; and

3. The agents have a limited communication and sensor range, where the sen-
sors can determine range and bearing to other agents.

The modality we are looking for, which will be robust in many different sit-
uations must come from the very limited set of line-of-sight or line-of-sound
sensory modalities. These include sound transceivers and/or sight or with light
transceivers. These might also include touch sensors [2] which would require
physical contact between the agents.

These restrictions leave us with the requirement that ∀i ∃j

|−→xi −−→xj | ≤ dc (5)

where dc represents the sensor range of the agents. This is a requirement of the
behavior as well.

Given these requirements, it is easy to see that, given a single home location−→xh, the swarm will have the longest reach if the agents form a linear structure.
I.e. it must be that ∀i < Ns − 1, renumbering if necessary,

|−→xi −−−→xi−1| = dc (6)

and
x̂i · x̂j = 1. (7)

These requirements indicate that the optimal solution occurs when the agents
are arranged linearly and each agent is located at the edge of their neighbors’
sensor ranges. Therefore, the solution that we are looking for is one which covers
the largest search space by creating a line of agents whose positions are at their
neighbor’s sensory edge. Given this, together with the requirements (1) and
(4), we must have a behavior that touches every point in the covered area A.
Behaviors which achieve this have been discussed elsewhere [2,3,9], though these
discussions were not motivated by optimizing the agent’s behaviors. Note that
the useful sensory distance ds may be very much less than that of the sensors
designed to facilitate inter-agent communication and coordination. As a result,
it is quite possible for the agents to be arranged so as to have no overlap between
these sensory regions.
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2.3 Castes

Now that we have determined that the agents must generate physical orga-
nizations linking the agents together, we must examine what behaviors the
agents can employ to find targets within range of the home location −→xh. We
start by referring back to our global goals. The first is the change of state
goal (1). This goal can be achieved by bringing one or more of the agents
within sensor distance of the target, while connected to the linear structure.
This means that the linear structure must be either constructed near a tar-
get or brought to the target once constructed. The latter is more energetically
favorable.

Once the map has been made, it can be left in place so as to facilitate recovery
of the targets or can communicate the precise distance and direction. As the
agents cannot maintain an accurate direction for long distances, the line must
be held in place while the target is retrieved. The retrieval task can occur using
agents already in the line, or using a reserve waiting at the home location. It
can be demonstrated that using agents in the line is energetically unfavorable
when compared to using agents in reserve. As a result, two castes of agents - one
which carries out the search and one which retrieves identified targets - emerge
as the most energetically favorable solution. Improvements in technology may
serve to alleviate the requirement2.

Our swarm requirements then are that the agents are capable of commu-
nication, movement, and sensing. We require that the agents be capable of
generating and moving a linear structure in a coherent way around a home.
We also require that the agents are capable of moving from the home loca-
tion to the targets and carrying them back to home. All which are dependent
on the platform, its capabilities, and its usage. From the point of view of the
engineer, this represents a model-independent set of requirements, and must
now be applied to produce a specific behavioral, sensory, and computational
model.

3 Implementing the Swarm Requirements

We developed a linear two-caste swarm based on these requirements. One caste
generates a linear structure, while the other waits for targets to be identified.
Those agents in the linear structure employ behaviors which result in the coher-
ent counterclockwise sweep of the structure, which eventually covers the entire
searchable area. If the targets are identified, the second caste is deployed from
the “nest” and individuals pick up and transport targets to the “nest”. Typical
situations are depicted in Figure 1.

2 In the presence of a truly workable dead reckoning capability, it is possible to utilize
coordinated space-filling curves to identify targets, with all agents working in tandem
and without overlaps. Agents would be capable, as in the natural world, of retrieving
the target, returning to the home, and recruiting assistance from the home.
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(a)

(b)

Fig. 1. Two simulations containing seven (a) and ten (b) agents in caste one and three
in caste two

By calculating the theoretically minimal distance travelled to locate and re-
treive the targets, we can estimate the efficiency of the model as a function of
the actual distance travelled. We define the efficiency as

e =
dt

da
(8)

where da is the actual total travel distance and dt is the theoretical total travel
distance. Optimal swarms achieve an efficiency of 1.0, while very inefficient
swarms achieve an efficiency of nearly 0.
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Fig. 2. The efficiencies of the search caste over various swarm sizes are quite high and
relatively constant. As expected, the simple reactive agents have very good efficiencies.
Surprisingly, the efficiencies tend to increase somewhat as the search caste increases in
size.
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The two caste swarm has extremely high performance efficiencies, as illus-
trated in Figures 2 and 3. Figure 2 graphs the efficiencies of the search caste for
several different swarm sizes.

The distance calculations for the carrier robots are based on a single carrier
robot vacillating between each puck and a home. The theoretical model for

the total collecting distance traveled is
x∑

n=1

2pn units where pn is the distance

between the nthpuck and home, and x is the total number of pucks. We measure
efficiency as above, and graph, in Figure 3, the collection efficiencies of the agents
for various swarms.
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Fig. 3. The efficiencies of the collection cast are somewhat lower than their respective
efficiencies for the search caste, though they are still quite high. The collectors tend to
have decreasing efficiencies with increasing total distance traveled, though they tend
to level off at a relatively high efficiency.
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Fig. 4. This gives the search spaces and paths taken by agents during the searches of
various closed paths. The efficiencies of the searches are 0.95 (a), 0.79 (b), 0.60 (c), and
0.58 (d).
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Overall, these represent very good performances for swarms of autonomous in-
dividuals with relatively noisy sensors and distance limited peer-to-peer
communication.

Similar techniques may be applied to closed spaces even when the “nest” is
not near the center. If the initial caste is adaptive in the sense that the linear
structure reaches from “nest” to boundary of the closed space and can lengthen
or shorten when needed, the situation becomes as illustrated in Figure 4. Despite
these unknown and restricted spaces, the efficiencies can still be quite high.

One interesting feature is that the number of agents in use at each moment is
adaptive, and this leads to tight packing of pathways near the “nest”. Far from
the “nest”, however, the path distribution is indistinguishable from the optimum.

4 Discussion and Conclusions

The majority of work in swarm engineering has bypassed questions regarding
optimality of the algorithms or the use of multiple types of agents in the swarm.
Indeed, some [10] have specifically stated that one of the design requirements for
swarms, particularly for swarm robotics, is that the agents be identical or have
a small number of groups of large numbers of individuals which are individually
homogeneous. However, in stark contrast to this, the natural world seems to
have evolved a multitude of caste systems which allow swarms to accomplish
tasks far more efficiently than a single agent system might.

Our paper discusses just such a system in which a caste system is more effi-
cient than the same system with the absence of separate castes. The motivation
in this paper was to provide a framework for generating a swarm in which the
agents are unable to utilize stigmergic communication or any type of GPS or
dead reckoning. In our current technological state, and in a variety of realistic
environments, these potential tools would be impractical or impossible to use.
Therefore, a robust and general purpose swarm must not depend on them. The
system we generated is optimally energetically efficient (or nearly so) with ob-
served deviations from theoretical optima being less than 10%. Imperfections
in the actual behaviors of the agents, caused by their relatively uncoordinated
actions, lower, but do not significantly degrade the swarm behavior.

The two-caste swarm is useful in a variety of domains. Certainly, search and
retrieval tasks are obvious areas, including underwater mining and coordinated
search in hazardous terrain. However, other tasks such as coordinated surveil-
lance and deployment of resources to needed areas might also fit the bill. Finally,
off-world development could benefit from surface-based mining, despite the un-
availability of basic mapping technologies. It is clear that improvements in au-
tonomous mapping capabilities may obviate the need for the such a swarm. Until
these improvements are achieved, this swarm represents a generally applicable
robust and optimally efficient swarm.

Very few natural swarms with sophisticated activities are made up of iden-
tical agents. Indeed, our own natural human swarm originally bifurcated into
two castes, and from there into literally tens of thousands. This paper takes a
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step in this direction for the field of swarm engineering. We have demonstrated
that it is possible to develop an optimally efficient swarm of more than one
caste. Moreover, the fact that this approach is more efficient than a single caste
swarm indicates the existence of problems that are properly handled by multi-
caste swarms. Development of theoretical and engineering tools to handle these
situations and, indeed, to be able to identify these situations, is an open and
interesting problem in swarm engineering.

Future work in this area must begin to address how problems best solved by
multi-caste swarms can be identified. Once such a problem has been identified,
it is important to begin examining how one might go about designing a swarm of
this type. Finally, developing a general methodology for validating swarm design
in the multi-caste system is an important step that needs to be addressed.
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Abstract. This study proposes an adaptive staged particle swarm optimization
(ASPSO) algorithm based on analyses of particles’ search capabilities. First, the
search processes of the standard PSO (SPSO) and the linear decreasing inertia
weight PSO (LDWPSO) are analyzed based on our previous definition of ex-
ploitation. Second, three stages of the search process in PSO are defined. Each
stage has its own search preference, which is represented by the exploitation ca-
pability of swarm. Third, the mapping between inertia weight, learning factor
(w-c) and the exploitation capability is given. At last, the ASPSO is proposed.
By setting different values of w-c in three stages, one can make swarm search
the space with particular strategy in each stage, and the particles can be directed
to find the solution more effectively. The experimental results show that the pro-
posed ASPSO has better performance than SPSO and LDWPSO on most of test
functions.

Keywords: Particle Swarm Optimization, Exploitation and Exploration, Staged
Search Strategy, Performances.

1 Introduction

Particle swarm optimization (PSO) algorithm [1] comprises a very simple concept and
can be implemented easily on various optimization problems. A review of the applica-
tions of PSO is presented in [2] by identifying and analyzing around 700 PSO applica-
tion papers stored in the IEEE Xplore database. Researchers keep working on improving
the performance of PSO by introducing various mechanisms into the model.

The inertia weight w and the learning constant c are the most important parameters
in PSO. w is usually considered as the knob of the PSO’s exploration and exploitation
capabilities. Many variants of PSO focus on better setting strategy of w. One of the
classical variants is the linearly decreasing inertia weight PSO (LDWPSO) [3]. More
variants on the settings of w for PSO have been made, such as a nonlinear decreasing
inertia weight PSO [4] and chaotic inertia weight PSO [5], to name a few. In most of
the existing studies, the idea that biggerw leads to stronger exploration capability while
smallerw will facility exploitation capability of the swarm is unanimous. However, with
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different settings of the learning factor c, even the same value of w can lead to different
search strategies of the swarm.

In this study, we learn that the search process of PSO can be divided into three stages,
and each stage should be treated separately. The analysis to the search process is based
on the statistical results of the records about our previous definitions of exploitation
capability in SPSO and LDWPSO. Furthermore, The mapping betweenw-c and the ex-
ploitation can be drawn, which can help users set differentw-c in each stage to improve
the performances of PSO. This new variant of PSO is called adaptive staged particle
swarm optimization (ASPSO).

The remainder of this paper is organized as follows. Section 2 describes a standard
PSO algorithm. Section 3 elaborates the mathematical analyses about the PSO’s search
process based on the particles’ search capabilities. In Section 4, the ASPSO is proposed
and compared among SPSO and LDWPSO. Finally, the concluding remarks are drawn
in Section 5.

2 Particle Swarm Optimization

Bratton and Kennedy defined a standard PSO (SPSO) as a baseline for performance
testing of improvements to the technique [6]. SPSO includes a local ring topology, 50
particles, non-uniform swarm initialization, and boundary conditions wherein a par-
ticle is not evaluated when it exits the feasible search space. The constricted update
rules suggested in [6] can be altered by the rules with inertia weight as shown in (1)
and (2) [7].

V̂id(t+ 1) = wVid(t) + c1r1(PiBd(t) −Xid(t))
+c2r2(PnBd(t) −Xid(t)), (1)

Xid(t+ 1) = Xid(t) + V̂id(t+ 1). (2)

where i = 1, 2, · · · , n, n is the number of particles in the swarm, d = 1, 2, · · · , D,
and D is the dimension of solution space. The learning factors c1 and c2 are nonnega-
tive constants, r1 and r2 are random numbers uniformly drawn from the interval [0, 1],
which are all scalar quantities for each particle in each dimension. PiBd and PnBd are
the best positions found so far by particle i and its neighbors in the d-th dimension .

The suggested values of the inertia weight and the constants are: w = 0.72984 and
c = c1 = c2 = 1.496172. The termination criterion for SPSO depends on whether
it reaches the designated value of fitness or the fixed maximum number of fitness
evaluations.

3 Analysis of PSO’s Search Process

All the variants of PSO actually tried to make a more delicate trade-off between ex-
ploitation and exploration capabilities of the swarm. In [8], the authors gave quantitative
definitions of the two capabilities, and offered a way to accurately analyze the PSO’s
search process. In the following, P (ita) will be used to represent the exploitation prob-
ability for the swarm.
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3.1 P(ita) Analysis for Standard PSO

In this part, we will analyze the search process of SPSO with different settings of w-c
on 14 benchmark test functions [9]. The names of the functions are listed in Table 2,
dimensionality of the functions is 30. For detailed information of the test functions,
please refer to [9]. We choose 41 values of w in −1 : 0.05 : 1, and 25 values of c
in 0.1 : 0.1 : 2.5. With each set of w-c, SPSO independently run 30 times on each
function.

The averaged P (ita) sequences are recorded over 50 particles, 30 dimensions and
30 runs. The maximum iteration is set to be 1000, because most of the optimization
processes enter the stagnation phase or reach convergence in about 1,000 iterations on
the selected functions. As a result, we get 14 ∗ 41 ∗ 25 = 14, 350 P (ita) sequences, and
the size of the P (ita) matrix is 14350 ∗ 1000.

The principal component analysis is used to analyze the P (ita) matrix. Fig. 1(a)
shows the four eigenvectors for the first four principal components. The accumulated
contribution rate of the four principal components is 99.79%, which means they can
represent most information content of the P (ita) sequences. The eigenvectors are ac-
tually the weights of the pita sequences for computing the principal components.
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Fig. 1. The Eigenvectors and The contour of the Mapping

From Fig. 1(a), we can see that the contribution rate of the first principal component
(FPC) is 97.97%. The eigenvector is positive, and the curve is monotonically increasing
and tend towards stability at later stages. This curve represents the major search trend of
SPSO. In the beginning, the exploitation capability of the swarm is small, and particles
randomly explore the search space. As the search proceeds, exploitation job becomes
more important, and particles focus on digging more precise solutions in some local
spaces. The exploration job is still going on because of the random mechanism in SPSO,
but it is not the dominant force anymore. In other words, the weight sequence of FPC
represents the general convergence process of the swarm.

The second principal component (SPC) comprises 1.46% of the information in the
P (ita) matrix. At first, the weight for SPC is less than zero and still decreases.
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After about 100 iterations, it begins to increase and becomes greater than zero after
400 iterations. Then it keeps increasing to the end. The trend of this curve means that,
in the early stage of the search, SPC restrains exploitation. The constraining force first
enhances and then declines. After about 400 iterations, SPC becomes to facilitate ex-
ploitation. Since FPC means the general trend of the search process, the SPC can rep-
resent the random factors that cause the exploration work. In fact, the other principal
components can be also considered as random factors, but the effects are very weak.
SPC is the most powerful of them, which can be representative. Furthermore, the eigen-
vector curves of the other principal components are more and more complicated, which
can be considered as random noises.

In general, Fig. 1(a) tells us that even though the general trend of the search looks
smooth, there exist different stages hidden in the search process. According to the eigen-
vector of SPC, the search process of SPSO can be divided into three stages. In the first
10% part of the search process, the random search of particles is very active and the
exploration capability is strong. In the next 30% of the iterations, particles become to
adjust their search to do more exploitation work, while their exploration capability gets
weaker. After 40% of the iterations, exploitation becomes the dominant power to facil-
itate the convergence.

3.2 P(ita) Analysis for LDWPSO

In the linear decreasing inertia weight PSO (LDWPSO), the swarm has the fully con-
nected topology, and PgB is the best position found by the entire swarm. Here c =
c1 = c2 = 2 and w decreases linearly from 1 to 0 along with the iteration. The P (ita)
sequences are recorded in Fig. 2.
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Fig. 2. The averaged P (ita) sequences of the LDWPSO

In Fig. 2, the curves show the average P (ita) sequences over 30 independent runs
of the LDWPSO. Five particles evolve in five dimensions for 2,000 iterations (10,000
fitness evaluations (FEs)) in each run. Figs. 2(a) and 2(b) are taken during stagnation
phases, the initial velocity and position of each particle are set as -3 and 10, respectively.
In Fig. 2(a), The personal best position PpB and the global best position PgB are both
held at 1, while in Fig. 2(b), PpB and PgB are held at ±1, respectively. Fig. 2(c) records
the P (ita) sequence when optimizing the shifted sphere function from Table 2.
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Along with the decreasing inertia weight, the P (ita) shows a tendency to decrease
first and almost fade away after about 200 iterations. Then it begins to increase quickly
after 800 iterations and becomes stable since. Fig. 2(a) shows that the P (ita) becomes
equal to 1 when PSO converges since 800 iterations. In Figs. 2(b) and 2(c), the P (ita)
remains stable around a certain value after about 800 iterations. However, PSO retains
some exploration capability because PpB andPgB are not the same and the convergence
is unreachable.

Fig. 2 shows that the trend of the P (ita) sequence is not simply decreasing or in-
creasing along with the linear decrease of w, and there exist different stages during
the search process. In the previous 10% part of iterations, the P (ita) decreases from
an initial value (around 0.5) to almost 0. Most particles are considered to be doing the
exploration job. During the next 30% part of iterations, particles are adjusted to gradu-
ally focus on the exploitation job. After 40% of the iterations, the particles’ exploration
capabilities are stably small, and the swarm becomes to converge to a stable point.

4 Adaptive Staged Particle Swarm Optimization (ASPSO)

The analyses about the search processes of SPSO and LDWPSO both show that the
process can be divided into three stages. The search preferences during the three stages
are different, so the setting of parameters in each stage should be considered more
precisely so that the effectiveness of PSO can be improved.

4.1 The Proposal of ASPSO

Three stages of PSO’s search process are defined as follows:

Definition 1. Three stages of the search process of PSO:
Stage 1 (Free Search Stage): Particles have their own preference to search the space

freely (First 10% of the iterations).
Stage 2 (Adjustment Stage): Particles find certain ways to improve their own search

capabilities (10% to 40% of the iterations).
Stage 3 (Convergence Stage): Particles are absorbed by several points and the

swarm tends to converge (40% to 100% of the iterations).

The mapping between w-c and the FPC can be the guideline to parameter settings for
search preferences in the three stages. Fig. 1(b) shows the contour of the mapping. The
w-c with bigger value of FPC on the contour can facilitate the exploitation more. On the
other hand, settings with small values of FPC will restrict the exploitation and enhance
the exploration capability of the swarm. As can be seen, the relationship between w-c
and exploitation capability of swarm is complicated, and it is not wise to use only w or
c to adjust the local or global search.

Furthermore, in (1), the inertia velocity represents the current knowledge of a parti-
cle, while the cognition and the social parts give a particle new information about the
environments. The parameters w and c control the balance of these two forces, and
should be considered more delicately.



An Adaptive Staged PSO Based on Particles’ Search Capabilities 57

Table 1. Setups of ASPSO in three stages

Stages Iterations(%) w-c FPC
1 0%–10% 0.2-2 24.01
2 10%–40% 0.75-1.5 21.05
3 40%–100% 0.8-1 20.49

Based on above analyses, we can summarize the ASPSO, which only set staged
values of w-c on the basis of standard PSO. Theoretically, the setting of w-c in each
stage depends on specific problems. Here in Table 1, we suggest a compromise strategy.

According to Table 1, in the first stage, the value of FPC is big.w is small and c is big,
so the particles learn fast from cognition and social connections. In the second stage, a
medial value of FPC is used, and w-c are set nearly as the same as suggested in [6]. The
purpose is to balance the exploitation and exploration in this adjustment stage, since
this settings of w-c is delicate according to the paper. The last stage is designed to help
swarm find more precise solutions. The value of FPC is small. Since the swarm will
converge or run into stagnation in this stage, particles need a bigger chance to fly out
again rather than just refine the current solutions in a small space. This is even more
crucial when the problem is complex with many local optima. As a result, the ASPSO
tends to find more accurate solutions even faster.

4.2 Experimental Results

To make comparisons among ASPSO, SPSO and LDWPSO, the same 14 test functions
that are used above are used as the objective functions. F1 to F5 are simple unimodal
functions, F6 to F12 are basic multimodal functions, F13 and F14 are extended multi-
modal functions. The dimensionality of test functions is set to be 30. Each of the three
PSO algorithms contains 50 particles. The averaged results over 30 runs for each model

Table 2. Statistical means (M) and standard deviations (SD) of the solutions over 30 independent
runs, (Sh=Shifted, Rt=Rotated, GB=Global on Bounds, Ep=Expanded)

No. Name ASPSO’s M (SD) SPSO’s M (SD) LDWPSO’s M (SD)
F1 Sh Sphere -450 (3.7e-08) (–) -449.999 (0.0012) -450 (3.77e-06)
F2 Sh Schwefel 1.2 -436.29 (37.52) -445.85 (3.1167) -446.25 (2.49) (–)
F3 Sh Rt Elliptic 2.20e+05 (1.88e+05) (+) 2.75e+05 (1.17e+05) 6.43e+05 (3.64e+05)
F4 f2 with Noise -155.1012(164.02) (+) -9.17 (332.44) 1.85e+03 (994.06)
F5 Schwefel 2.6 GB 4.03e+03 (1.07e+03) (+) 5.62e+03 (1.16e+03) 4.88e+03 (1.18e+03)
F6 Sh Rosenbrock 403.87 (8.31) (+) 423.36 (75.65 ) 417.64(26.30)
F7 Sh Rt Griewank -179.99 (0.0013) (–) -179.99 (0.0054 ) -179.98 (0.01)
F8 Sh Rt Ackley GB -119.10 (0.0741) (–) -119.03 (0.0771) -119.03 (0.05)
F9 Sh Rastrigin -258.03 (11.12)(+) -229.71 (21.55) -247.74 (21.84)
F10 Sh Rt Rastrigin -238.95 (15.20) (+) -203.14 (31.58) -211.75 (37.25)
F11 Sh Rt Weierstrass 112.26 (1.28) (+) 121.70 (2.34) 122.10 (1.47)
F12 Schwefel 2.13 4.55e+04 (3.33e+04) 3.07e+03 (2.86e+03) (+) 9.12e+03 (7.69e+03)
F13 Sh Ep F8F2 -122.69 (1.55) (+) 6.86e+03 (1.11e+04) 1.41e+04 (2.37e+04)
F14 Sh Rt Scaffer F6 -287.52 (0.27) (–) -287.43 (0.26) -287.21 (0.23)



58 K. Liu, Y. Tan, and X. He

0 200 400 600 800 1000
−5

0

5

10

15
x 10

4

Iteration

B
es

t F
itn

es
s 

V
al

ue

 

 

SPSO
LDWPSO
ASPSO
Real Solution

(a) F1

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5
x 10

4

Iteration

B
es

t F
itn

es
s 

V
al

ue

 

 

SPSO
LDWPSO
ASPSO
Real Solution

(b) F5

0 2000 4000 6000 8000 10000
−400

−200

0

200

400

Iteration

B
es

t F
itn

es
s 

V
al

ue

 

 

SPSO
LDWPSO
ASPSO
Real Solution

(c) F9

0 2000 4000 6000 8000 10000
−400

−200

0

200

400

600

800

Iteration

B
es

t F
itn

es
s 

V
al

ue

 

 

SPSO
LDWPSO
ASPSO
Real Solution

(d) F10

0 1000 2000 3000 4000 5000
80

90

100

110

120

130

140

150

Iteration

B
es

t F
itn

es
s 

V
al

ue

 

 

SPSO
LDWPSO
ASPSO
Real Solution

(e) F11

0 1000 2000 3000 4000 5000
−1

0

1

2

3

4
x 10

4

Iteration

B
es

t F
itn

es
s 

V
al

ue

 

 

SPSO
LDWPSO
ASPSO
Real Solution

(f) F13

Fig. 3. The convergence curves of three PSOs

will be recorded. In LDWPSO, w linearly decreases from 0.9 to 0.4 along with the
iteration [3].

Table 2 shows the statistical results of the three models. As can be seen, ASPSO
achieves the best performance on most of the functions, especially on multimodal prob-
lems. We implement the variance analysis to verify the performance improvements. The
symbol (+) means the performance improvement is statistical significant at 5% signif-
icance level, while (–) represents not statistical significant. ASPSO is beaten only on
F12 by SPSO, but gets significant improvements on other eight functions. Fig. 3 shows
the convergence curves on six of the functions. As can be seen, ASPSO has faster con-
vergence speed.

The better performance of ASPSO is expected. For unimodal functions, in the first
stage, the exploitation is facilitated, which speeds up local search like in hill-climbing
method. In the last stage, the exploration capability is enhanced to refine the solution,
especially when the bottom of the search space is relatively flat. For multimodal func-
tions, in the first stage, local search can be speeded too, although it is not enough to find
the best solution, particles can locate some local optima quickly. In the second stage,
particles are helped explore wider space, under certain directions found so far. In the
third stage, the global search is facilitated again and the solutions can be refined. In
each stage, the swarm has its own preference, and the staged search strategy plays an
important role when solving different problems.

5 Conclusion

In this paper, we proposed an adaptive staged particle swarm optimization algorithm
based on the analysis about the exploitation capability of the swarm during the search
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process. The P (ita) sequences of SPSO and LDWPSO were analyzed to conclude that
the search process of PSO can be divided into three stages. The mapping between w-
c and the first principal component of the P (ita) sequences was given, which can be
used to guide the settings of the parameters in different stages. Finally, an ASPSO was
proposed, which outperformed SPSO and LDWPSO according to experimental results.
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Abstract. The speed equation of particle swarm optimization is improved by 
using a convex combination of the current best position of a particle and the 
current best position which the whole particle swarm as well as the current posi-
tion of the particle, so as to enhance global search capability of basic particle 
swarm optimization. Thus a new particle swarm optimization algorithm is pro-
posed. Numerical experiments show that its computing time is short and its 
global search capability is powerful as well as its computing accuracy is high in 
compared with the basic PSO. 

Keywords: particle swarm optimization, velocity equation, numerical analysis. 

1   Introduction 

Particle swarm optimization (PSO) was proposed by Eberhart and Kennedy in 1995, it 
is a kind of swarm intelligence-based computational method [1], which comes from 
the study of birds foraging behavior. Since the convergence speed is fast and the set-
ting parameters is less and the implementation is easy, PSO has been widespread 
attention in recent years. PSO have been widely applied in function optimization, 
neural network, pattern classification, fuzzy system control, and other engineering 
fields [2-4]. Currently, the research on PSO is mainly improving its shortcomings for 
being easy to fall into premature convergence. The main method to overcome the 
defect is to increase population diversity and to merge with other methods [5-6]. But 
the methods improved itself from PSO are limited. 

Taking better account the impact on the current particles with the other particles, 
the speed equation of the basic PSO is improved by using a convex combination of 
the current best position of a particle and the current best position which the whole 
particle swarm as well as the current position of the particle, so as to enhance global 
search capability of basic particle swarm optimization. Thus a new particle swarm 
optimization algorithm is proposed. It was shown by using ten classical test functions 
that the proposed new PSO algorithm is better than the basic PSO in computational 
time and global optimization and computational accuracy. 
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2   Basic PSO 

Like other evolution algorithms, Particle swarm optimization (PSO) [7] is able to 
obtain global optimal solution in complex space via collaboration and competition of 
individual particle. Firstly, PSO initializes particles to produce original particle swam, 
each particle corresponds with a feasible solution of the optimization problem and a 
fitness value given by the objective function. Each particle moves in solution space at 
a velocity to decide its distance and direction. Usually, each particle tracks current 
best particle to move and obtains optimal solution by each generation search finally. 
In each generation, the particle will track two extreme values: one is the best solution 
of each particle gained so far, which represents the cognition level of each particle; 
the other is the overall best solution gained so far by any particle in the population, 
which represents society cognition level. 

Let n  be the dimension of search space, ),,,( 21 iniii xxxx = denotes the current 

position of the thi particle in swarm, and 1 2( , , , )i i i inp p p p=  denotes the best posi-

tion that it has ever visited. The index of the best particle among the particles in the 

population is represented by the symbol g ,i.e ),,,( 21 ngggg pppp =  denotes the best 

position that the swarm have ever visited. The rate of the velocity for the thi  particle 

in the swarm is represented as ),,( 21 iniii vvvv = . In simple PSO model, the par-

ticles are manipulated according to the equations 

1 1 2 2
( 1) ( ) ( ( ) ( )) (( ( ) ( )),

                                ( 1) ( ) ( ),

id id id id gd id

id id id

v t wv t c r p t x t c r p t x t

x t x t v t

+ = + − + −

+ = +
 

(1)

(2)

where the superscript t  denotes the tht  iteration; 
1

c and 
2

c are positive constants, 

called the cognitive and social parameter respectively, 
1
r and 2r  are random numbers 

uniformly distributed in the range (0,1) ; 1, ,d n= . Let the upper limit of the rate of 

the velocity maxv . When 
maxid

v V> , then 
maxid

v V= , and w is called inertia weight which 

has the ability of balancing global search and local search. 
For inertia weigh, Shi Y. [8] adopt the linearly decreasing strategy ,  i.e. 

max max
( ) ( )( ) / ,

ini end end
w t w w T t T w= − − +  (3)

where the superscript t denotes the tht  iteration, 
max

T denotes the most iteration, 
ini

w  

denotes the original inertia weigh;
end

w  denotes the inertia weigh value when the algo-

rithm process has been run the most iterations. The experiments indicate that w  will 
impact on global search ability and local search ability, when w  is higher, the global 

search ability is strong, but the local search ability is low; whereas the local search 

ability is strong, but global search ability is low. The linearly decreasing inertia 
weight can make PSO adjust global search and local search, but it has two defects: the 

first of them is that local search ability is lower in iteration forepart, even if particles 

have been closed to the global optimization point, they sometimes miss it, and get in 
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local extremum. However, global search ability is lower in iteration anaphase; the 

second of them is that the most iteration
max

T  of equation (3) is forecasted hardly, 

thereby impacting on adjusting ability of PSO. 

3   Improved PSO and Numerical Analysis 

3.1   Improved PSO 

In order to improve PSO's global search capabilities and make particle swarm have 

diversity, we improve the basic PSO as 

1 2 3
( 1) ( ) [ ( ( ) ( ) ( )) ( )],          

                                  ( 1) ( ) ( 1),                        

id id id gd jd id

id id id

v t wv t cr p t p t x t x t

x t x t v t

ϕ λ λ λ+ = + + + −

+ = + +
 

(4)

(5)

where
1 2 3
, , [0,1]λ λ λ ∈ and

1 2 3
1λ λ λ+ + = , In this paper ,we set 

1 2 3
1
3λ λ λ= = =  i.e. 

take ( ) ( ) ( )
id gd jd

p t p t x t， ， position of the center of gravity. c is non-negative constant, 

r  is random number in [0,1] ;ϕ  is the control factor, ( )
jd

x t ,which is a different par-

ticle with ( )ix t , is a randomly generated the tht generation of particles in the thd di-

mensional coordinates of the thj . The improved PSO is denoted as IPSO. 

In the formula (4) , ( )jx t is a randomly generated groups of different particles with 

( )ix t , Therefore, the formula (4) takes more consideration to the group the position of 

other particles search performance of the algorithm, which can further enhance the 
PSO's global search capabilities. 

As ( )jdx t  is a randomly generated particle from the particle swarm which does not 

contain thi  particle, Equation (4) gives more consideration to the impact of the current 
particle movement on other particles. It is seen that the formula (4) is more simply 
than the formula (1). 

3.2   Numerical Analysis 

3.2.1   Test Function 
The following 10 test functions come from [9]: 

Ten test functions were used to test PSO and IPSO, Iterations
max 1000T = , population 

size 60N = ,the inertia weight w  is taken to be a linear decline, 
max min0.9, 0.4w w= = . 

Numerical test shows that the optimization performance of PSO is best at 

1 2 2.0c c= = and the optimization performance of IPSO is best at 2.5c = . 
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Table 1. Characteristics of the various functions and parameter settings 

Function Name Charac. Dim. Range Min 
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ii
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2 1 1
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2
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1
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π
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1 2 2 2
10 11

( ) [100( ) (1 ) ]
D

i i ii
f x x x x

−
+=

= − + −∑  Rosenbrock 
Uni-

modal 
30 30ix ≤  0  

3.2.2   The Test on Control Factorϕ  

It is studied how the control factor ϕ  affects the global optimization performance of 

IPSO. The value range of ϕ  is set to [0.1,1]，the step size is 0.1. For each fixed 

control factors, IPSO runs independently 20 times, we record the average optimal 
fitness value, the average running time, variance for each test function. The test re-
sults are seen in Table 2 - Table 6. 
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Table 2. Control Factor analysis on the examples F1 and F2 

Function
CF

F1 F2

Mean Var CPU(s) Mean Var CPU(s)

0.1 0 0 1.7375 28.8330 0.0069 1.7422
0.2 0 0 1.8086 57.6724 0.0081 1.7859
0.3 0 0 1.7992 86.5024 0.0071 1.7805
0.4 0 0 1.7852 115.3576 0.0069 1.7797
0.5 0 0 1.7820 144.2090 0.0069 1.8148
0.6 0 0 1.7703 173.0364 0.0073 1.8078
0.7 0 0 1.7656 201.8428 0.0077 1.7906
0.8 0 0 1.7547 230.5661 0.0109 1.7742
0.9 0 0 1.7406 259.1726 0.0163 1.8062
1.0 0.0101 2.894E-05 1.7375 297.5437 70.1936 1.8445

 

Table 3. Control Factor analysis on the examples F3 and F4 

Function
CF

F3 F4
Mean Var CPU(s) Mean Var CPU(s)

0.1 0 0 2.0332 0 0 3.0266
0.2 0 0 2.0625 0 0 3.0375
0.3 0 0 2.0336 0 0 3.0453
0.4 0 0 2.0844 0 0 3.1250
0.5 0 0 2.0938 0 0 3.1133
0.6 0 0 2.0922 0 0 3.1656
0.7 0 0 2.1437 0 0 3.1773
0.8 0.0047 0.0001 2.1367 0 0 3.2211
0.9 2.5140 2.7198 2.1867 0.0919 0.0023  3.2539
1.0 19.7320 30.6687 2.3672 0.1706 0.0029 3.3477

 

Table 4. Control Factor analysis on the examples F5 and F6 

Function
FC

F5 F6
Mean Var CPU(s) Mean Var CPU(s)

0.1 0 0 2.1938 0 0 2.1031
0.2 0 0 2.1852 0 0 2.0758
0.3 0 0 2.1945 0 0 2.1039
0.4 0 0 2.1992 0 0 2.0383
0.5 0 0 2.1914 0 0 2.0273
0.6 0 0 2.2211 0 0 2.0438
0.7 0 0 2.2141 0 0 2.0063
0.8 0 0 2.2008 41.3350 1.059E+03 1.9883
0.9 0 0 2.1922 102.5982 2.242+E03 1.9398
1.0 0.0320 1.750E-04 2.1930 251.3467 5.574E+03 1.9266
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Table 5. Control Factor analysis on the examples F7 and F8 

Function
FC

F7 F8
Mean Var CPU(s) Mean Var CPU(s)

0.1 0 0 1.0891 0.7190 0.0062 2.8289
0.2 0 0 1.1875 1.3791 0.0069 2.8289
0.3 0 0 1.1242 1.9471 0.0090 2.8312
0.4 0 0 1.1203 2.4281 0.0128 2.8547
0.5 2.00E-06 0 1.1305 2.8334 0.0174 2.8242
0.6 1.30E-05 0 1.1211 3.1142 0.0264 2.8602

0.7 4.00E-05 3.0e-11 1.1461
3.339

1
0.0335 2.9438

0.8 1.760E-04 3.700e-10 1.1398 3.4895 0.0411 2.8297
0.9 5.280E-04 2.270e-09 1.1383 3.5483 0.0507 2.8992
1.0 1.750E-04 2.939e-09 1.1289 3.5536 0.0593 2.9992

 

Table 6. Control Factor analysis on the examples F9 and F10 

Function
FC

F9 F10
Mean Var CPU(s) Mean Var CPU(s)

0.1 2.8768 0.0032 2.3641 0 0 3.5430
0.2 5.7603 0.0048 2.4688 0 0 3.4930
0.3 8.4710 0.0167 2.4531 0 0 3.4789
0.4 10.9601 0.0380 2.5133 0 0 3.4531
0.5 13.2250 0.0773 2.5703 0 0 3.4258
0.6 15.2416 0.1226 2.6008 0 0 3.3977
0.7 16.7837 0.2310 2.6578 0 0 3.3641
0.8 17.9838 0.3611 2.7039 0 0 3.3289
0.9 18.6531 0.5692 2.7398 2.1E+05 0 3.3156
1.0 18.6551 0.8998 2.8531 2.284E+03 6.311E+05 3.2969

 
 
By Table 2 - Table 6, we can see that the optimal value of each function as the con-

trol factor ϕ decreases. When 0.1ϕ = , the average optimal value of each function is 

best, the average variance is smallest, and the average run time is shortest. Therefore, 
we let 0.1ϕ = after using IPSO. 

3.2.3   Comparison of IPSO with PSO 
PSO and IPSO are tested by using above ten test functions. For each test function, 
each algorithm is run independently 20 times, we record the average optimal fitness 
value, the variance of the best fitness, and the running time. The result is seen in  
Table 7. 

Form Table7, the average global optimal value obtained by using IPSO is better 

than the one obtained by using PSO for each test function in 1f ~ 7f and
10f ，the aver-

age global optimal value obtained by using IPSO is not better than the one obtained 
by using PSO for each test function in

8 9,f f . For each test function, the variance ob-

tained by using IPSO and the computing time is less than the variance obtained by 
using PSO and computing time. 
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Table 7. Two kinds of algorithms seek optimal fitness value, time and var 

Algorithm
Function

PSO IPSO
Mean Var CPU(s) Mean Var CPU(s)

1f 1.6888E-06 6.5883E-12 1.8766 2.8726E-62 9.5527E-123 1.7391

2f 54.0371 2.2173E+03 1.7867 28.8088 0.0069 1.7625

3f 29.7990 50.4843 2.3508 0 0 2.0305

4f 0.0200 5.1690E-04 3.2656 0 0 3.0133

5f 2.2335E-04 1.0796E-08 2.2817 8.8818E-16 0 2.2719

6f 96.5792 2.9249E+04 1.9773 6.9815E31 6.4159E-60 2.1484

7f 0 0 1.0555 0 0 0.9172

8f 0.0052 5.3737E-04 2.9375 0.7386 0.0055 2.8445

9f 0.0011 1.1437E-05 2.8484 2.8768 0.0032 2.3641

10f 4.5335E+03 1.6537E+06 4.5523 2.1497E-60 8.0085E-120 3.7531
 

4   Conclusion and Remarks 

The speed equation of particle swarm optimization is improved by using a convex 
combination of the current best position of a particle and the current best position 
which the whole particle swarm as well as the current position of the particle, so as to 
enhance global search capability of basic particle swarm optimization. Thus a new 
particle swarm optimization algorithm is proposed. It was shown by using ten classi-
cal test functions that the new IPSO algorithm is better than the basic PSO algorithm 
in computational time and global optimization and computational accuracy. 
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Abstract. Based on the analysis of biological symbiotic relationship, the 
mechanism of facultative parasitic behaviour is embedded into the particle 
swarm optimization (PSO) to construct a two-population PSO model called 
PSOPB, composed of the host and the parasites population. In this model, the 
two populations exchange particles according to the fitness sorted in a certain 
number of iterations. In order to embody the law of "survival of the fittest" in 
biological evolution, the poor fitness particles in the host population are elimi-
nated, replaced by the re-initialization of the particles in order to maintain  
constant population size. The results of experiments of a set of 6 benchmark 
functions show that presented algorithm model has faster convergence rate and 
higher search accuracy compared with CPSO, PSOPC and PSO-LIW. 

Keywords: Swarm Intelligence, Particle Swarm Optimization, Parasitic behav-
iour, PSOPB. 

1   Introduction 

Particle swarm optimization (PSO) is a kind of stochastic optimization algorithm, 
originally motivated from the sociological behaviors associated with birds flocking  
[1, 2]. In the original version of PSO algorithm, the trajectory of each particle in the 
search space is adjusted by dynamically altering its velocity, according to two factors: 
each individual’s best position ever found and its informants’ best position ever 
found. [3]. Comparing with other stochastic optimization methods, the PSO has com-
parable or superior search performance for many hard optimization problems with 
faster convergence rate. It has already been widely used as a problem-solving method 
in many areas, such as power systems [4], artificial neural network training [5], fuzzy 
system control [6] and computational finance [7]. However, Angeline [8] showed that 
the PSO has difficulties in keeping balance between exploration and exploitation. 
This indicates that PSO algorithm sharply converges in the early stages of the search 
process, but saturates or even stagnates in the later stages. In the past decades, numer-
ous researches provided some improved methods to overcome the drawback of  
trapping in the local optima. The most part of improved methods can be summarized 
into the following categories: tuning the parameters in the velocity and position up-
date equations of PSO [9], designing different population topologies [10], combining 
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PSO with other evolutionary optimization operators [11] and adopting new learning 
strategies [12]. 

As PSO algorithm is derived from mimicking sociological behaviors of animals, 
incorporating the bio-inspired mechanisms into the canonical PSO may be a viable 
way to increase the algorithm’s performance. There are some related papers concern-
ing this topic. Based on the life cycle of biological phenomenon, Krink [13] proposed 
a new PSO algorithm, in which each iteration is considered as a complete life-cycle 
process of evolutionary individual. Inspired by co-evolutionary process between 
predator and prey, Silva [14] constructed a predator-prey PSO model, in which parti-
cles are divided into two categories: predator and prey, the former are to force local 
optima of the particles to escape in the search process, whereas the latter are subject 
to predator exclusion and gradually close to the global optimal solution. He [15] pro-
vided a new type of PSO (PSOPC) according to passive congregation behavior in 
animals. In PSOPC, information can be transferred among individuals of the whole 
swarm. In accordance with the bacterial chemotactic behavior, Niu [16] presents an 
improved PSO. In the algorithm each particle is not only attracted by its personal best 
position and the group’s best position, but also repulsed by the worst position of itself 
and the whole group. From the existing literatures, incorporating the biological 
mechanism into PSO model has showed its efficacy and is worth studying deeply. 

This paper proposed a two-population PSO Algorithm, which mimicked the bio-
parasitic behavior between the host and the parasitic organism. In the present paper, 
we called the proposed algorithm as PSOPB. Through some benchmarks, the experi-
mental results show that the proposed PSO model has faster convergence rate and 
increase the search accuracy significantly. 

The rest of this paper is organized as follows. Section 2 introduces the canonical 
PSO models. In section 3, the bio-parasitic behavior and PSOPB model are presented. 
We describe the experimental settings and results in section 4. The paper is concluded 
in section 5. 

2   Canonical PSO 

In PSO, a swarm of particles are represented as potential solutions, and each particle 
i in the tth iterations is associated with two factors, i.e., the velocity vector 

[ ]1 2, , ,t
i i i iDV v v v= and the position vector 1 2, , ,t t t t

i i i iDX x x x⎡ ⎤= ⎣ ⎦ , where D stands for 

the dimensions of the solution space. [ , ]id d dx l u∈ , 1, 2,d D= , where ,d dl u are the 

lower and upper bounds of the dth dimension, respectively. The velocity and the posi-
tion of each particle are initialized by random vectors within corresponding ranges. 
During the evolutionary process, the swarm is manipulated according to the following 
equations: 

( ) ( )1
1 1 2 2

t t t t t t
id id i id i idv v c r pB x c r nB xω+ = + − + −                            (1) 

1 1t t t
id id idx x v+ += +                                                    (2) 
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where ω , called inertia weight, is to assist with the balance between exploration and 
exploitation, 1r  and 2r  are random numbers, uniformly distributed with the inter-

val [0,1] , and 1c  and 2c , usually set to 2.0, which determine the balance between the 

influence of the individual’s experience and that of the swarm, are acceleration coef-

ficients. In (1), t
ipB , denoted as 1 2, , ,t t t t

i i i idpB pB pB pB⎡ ⎤= ⎣ ⎦ , is the best previous 

position with best fitness found so far by the ith particle, and t
inB .is the best position 

in the neighborhood. In the previous literatures, instead of using t
inB , tgB may be 

used in the global-version PSO, whereas lB in the local version PSO. Generally, a 
maximum velocity, maxV , is specified to control excessive roaming of particles outside 

the user defined search space. 
The value of ω  is linearly decreasing with the iterative generations as 

( ) max

max

iter iter

start end enditer
ω ω ω ω

⎛ ⎞−
⎜ ⎟= − × +
⎜ ⎟
⎝ ⎠

                            (3) 

where maxiter  is the maximum number of allowable iterations, and iter is the current 

iteration number, and startω  and endω , usually are set to 0.9 and 0.4 [17], denote the 

initial and final values of the inertia weight, respectively. Hereafter, in this paper, this 
version of PSO is referred to as linearly decreasing inertia weigh method (PSO-LIW). 

Another important variant of PSO is proposed in form of "constriction fac-
tor"(CPSO), which is an alternative method for controlling the behavior of particles in 
the swarm [9]. In CPSO, the velocity is updated by the following equation: 

( ) ( )( )1
1 1 1 2

t t t t t t
id id i id i idv v c r pB x c r nB xλ+ = + − + −                                  (4) 

Where λ  is called a constriction factor, given by: 

2

2

2 4
λ

ϕ ϕ ϕ
=

− − −
                                                    (5) 

Usually the value of λ  is set to 0.729 with 1 2 4.1c cϕ = + = . 1c  and 2c  are usually 

both set to 2.05 . In this paper, the global-version PSO is used. Therefore, t
inB  is 

replaced by t
igB  in (1) and (4). 

3   A Two – Population PSO Mimicking Bio-parasitic Behavior 

3.1   Bio-parasitic Behavior  

The term symbiosis, first proposed in 1879 by the German mycologist Anton de 
Bary [18], commonly describes close and often long-lasting physical relationships 
between different biological species. There are three different categories of  
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symbiotic relationships: mutualism, commensalism and parasitism [19]. Mutualism 
describes a kind of symbiotic relationship that is actually beneficial to both species 
involved. Commensalism describes a relationship between two living organisms 
where one benefits and the other is not significantly harmed. Parasitism is a relation-
ship in which one organism, known as the parasite, lives in or on another organism, 
known as the host, from which it derives nourishment and the host is harmed [19]. 
Some organisms which mostly live independent of a host but seldom hold the charge 
of a parasite are referred to as facultative parasites. By contrast, obligate parasites are 
that cannot live elsewhere except on the living protoplasm of its host.  

In nature, once hosts are infected by parasites, it will deploy a set of immune 
mechanisms. Vertebrates infected by parasites will produce a strong immune response 
in the case of subjecting to the second same parasitic infection. Plants and inferior 
animals also can improve their immunity after infected. The co-evolutionary process 
between parasites and hosts commonly reduce the “negative effect” of the parasitic 
harm behavior, or even parasitism evolves into mutualism [20]. 

3.2   PSOPB Model 

In the proposed PSO model (PSOPB), particles are divided into two populations: the 
parasites population ( )PSwarm , in which the number of particles denoted as PN ,   

and the host population ( )HSwarm , the size of which denoted as HN . We believe that 

facultative parasitism relationship between two populations is suitable to be incorpo-
rated into PSO. It means that PSwarm  obtains nourishment from HSwarm in a certain 
number of iterations, denoted as k . Simulation of the parasitic relationship between 
the two populations is described as the exchange of particles. All particles in the two 
populations are sorted according to their fitness value. The particles with fitness are 
greater than or equal to the particle with fitness of the order of 0.5( )P HN N+  are 

classified into PSwarm , and the remaining particles belong to HSwarm . When 
HSwarm  is infected by PSwarm , it will produce immune response, which embodied 

in the proposed model is as follows: when the best particle’s fitness in HSwarm  is 

worse than that in PSwarm , the ith particles in HSwarm  fly in accordance with three 

directions: H
ipB , HgB and PgB , where H

ipB  is the best previous position in 
HSwarm , HgB and PgB represent the best position in HSwarm  and PSwarm , respec-

tively. Otherwise, each particle in HSwarm  evolves according the canonical PSO. 

The HSwarm  is harmed after parasitic behavior. In order to embody the law of 
“survival of the fittest” in biological evolution, the poor fitness particles with the 
number is set to equate * HNγ , are removed and replaced by the re-initialization of 

the particles in order to maintain constant population size in . HSwarm . 
In this paper, PSOPB adopts the form of “constriction factor”. Through the analy-

sis above, the velocity of PSwarm  is updated by the equation (4) and the velocity of 
HSwarm is set to update the following equations: 
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( ) ( ) ( )( )
( ) ( )( )

11 1 12 2 13 3
1

1 1 2 2

           

                                          

t t t H t P t H P
id i id id id

t
id

t t t H t H P
id i id id

v c r pB x c r gB x c r gB x fgB fgB
v

v c r pB x c r gB x fgB fgB

λ

λ
+

⎧ + − + − + − <⎪= ⎨
+ − + − ≥⎪⎩

       (6) 

where 11 12 13, 1, ,c c c c and 2c are acceleration coefficients,  and  H PfgB fgB are the best 

particle’s fitness in HSwarm  and PSwarm , respectively, 1 2 3,  and  r r r .are random 

numbers uniformly distributed with range [0, 1], the meaning of other parameters in 
(6) is the same as (4). The pseudocode for PSOPB is listed in Table 1. 

Table 1. Pseudocode for the PSOPB algorithm 

Algorithm PSOPB 
Begin 

Randomly initialize positions and velocities of all particles 
Parameter initialization 
Set t =0 
While (the termination conditions are not met) 

Do in parallel 
For each population ( ,H PSwarm Swarm ) 
Evaluate the fitness value of each particle 
Update the velocity of each population 

min maxmin(max( , ), )t t
id idV V V V=  

Update the position of each population 
Update t

idpB  of each population 

Update , ,H P HgB gB fgB and PfgB  

End Do in parallel 
If mod( , ) 0t k =  & 0t ≠  

Regroup the particles according to their fitness 

Remove ( )* HNγ  particles of HSwarm  with poor fitness 

Re-initialization of particles to substitute for the removed in HSwarm  
End If 

Set t=t+1 
End While 
End 

4   Experimental Studies 

4.1   Benchmark Functions 

A set of 6 benchmark functions are used to evaluate the performance of PSOPB with 
others. All benchmarks used and their parameters setting are given in Table 2. 
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Table 2. Benchmarks for simulation and parameter setting 

Function Mathematical representat ion 
Search 
range 

Range of 
Ini tialization 
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Schwefel’s 
Problem 

2

2
1 1

( )
n i

j
i j

f x x
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⎛ ⎞
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⎝ ⎠
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3 1
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100 1
n

i i i
i

f x x x x+
=

= − + −∑ ( 30,30)n−  (10,30)n  
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2
4

1

1

1
( ) 20exp 0.2

1
exp cos 2 20

n

i
i

n

i
i

f x x
n

x e
n

π

=

=

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ + +⎜ ⎟
⎝ ⎠

∑

∑
 ( 32,32)n−  (10,20)n  

Rastr igin ( ) ( )( )2
5

1

10cos 2 10
n

i i
i

f x x xπ
=

= − +∑  ( 10,10)n−  (2.56,5.12)n  

Griewank ( ) 2
6

1 1

1
cos 1

4000

nn
i

i
i i

x
f x x

i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏  ( 600,600)n− (300,600)n  

4.2   Experimental Settings 

To evaluate the performance of PSOPB, three PSO variants were used for compari-
sons: PSO-LIW, CPSO and PSOPC. In all PSO variants, asymmetric initialization 
method is adopted here, in which the population is initialized only in a portion of the 
search space. This is to prevent a center-seeking optimizer from ‘‘accidentally’’ find-
ing the global optimum [11].  

The parameters used for PSO-LIW, CPSO and PSOPC were recommended in 
[17,21,22,15].The maximum velocity maxV  and minimum velocity minV  for all algo-

rithms were set the upper bound and lower bound, respectively. The acceleration 
coefficients 1c  and 2c  for PSO-LIW were both 2.0. For CPSO, 1 2 2.05c c= =  was 

used. 1 2 0.5c c= = , 3 0.4 0.6c = −  were adopted in PSOPC. For PSOPB, 

11 12 13 1 21.367, 2.05c c c c c= = = = =  in (6) were used. The inertia weight is critical for 

the convergence behavior of PSO-LIW and PSOPC. It is varied to follow (3), but for  
PSO-LIW, 0.9startω = , 0.4endω =  is used and whereas for PSOPC, 0.9startω = ,  
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0.7endω = . For CPSO and PSOPB, the constriction factor 0.729λ = was adopted. In 

PSOPB, after the parasitic behavior occurs, the half particles of the host population 
were removed, that is 0.5γ = . The population size for all algorithms was set to 80. 

As for PSOPB, 40H PN N= = were employed. Dimensions of all benchmark func-
tions were set to 30. In order to prevent particles moving out the bounds, the method 
was used in this paper is derived from the reference [23]. To be specific, after particle 
i updates its position, its velocity is set zero and the position is limited to the bounds 
if the updated position is out of the search range. 

In order to investigate the performance of PSOPB is sensitive to the number of 
iterations, k , or not, we test PSOPB with different value of k . on 3f  and 5f . 

The maxim iteration is set at 3,000. The average and standard deviation of the 
optimum solution for 20 trials are presented in Table 3. From the results; it is easy 
to find that the value of k  counts much for the performance of POSPB. When k  
was equal 20, a typical unimodal function, 3f , get good performance. While 

100k =  was used, 5f  obtain good results. In the following experiments, 

20 and 100k k= =  were adopted to optimize the unimodal and multimodal func-
tions, respectively. 

Table 3. Results achieved with different value of k   

Function PSOPB 

k  20 50 100 150 

3f  
3.8933 

(4.1803) 
5.0825

(5.5621) 
5.3037

(4.2131) 
7.5096 

(4.9382) 

5f  
39.8859 
(8.7009) 

37.5434 
(9.9023) 

20.2368 
(7.0445) 

20.9635 
(7.4685) 

4.3   Numerical Results and Comparisons 

The experiment runs 30 times independently for all PSO variants on the set of 6 
benchmark functions and the maximum iteration is set at 6,000. The mean values and 
standard deviation of the results are presented in the Table 4, in which numbers in 
bold represent are the comparatively best values. The graphs of the average best fit-
ness value of the base-10 logarithm with the evolution of iterations are presented in 
Figs. 1–6. From Table 4 and Figs 1-6, we can observe that PSOPB obtains the re-
markable performance. It is clear that PSOPB has a faster convergence rate and 
higher search accuracy than CPSO, PSO-LIW and PSOPC for both unimodal and 
multimodal problems. The most concerning thing is that PSOPB has sustainable 
searching ability for 3f  and 5f  which is prone to lead to canonical PSO trap in the 
local optima. 
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Table 4. Numerical results of all PSO algorithms 

variants of PSO compared 
`Function Indicators 

PSO-LIW CPSO PSOPB PSOPC 
Mean 2.0797e-045 2.5647e-145 1.1543e-147 9.9896e-101 

1f  

Std 7.2323e-045 3.8777e-145 3.5598e-147 2.2337e-100 
Mean 0.58971 1.0991e-017 6.4512e-020 0.66863 

2f  

Std 0.44475 1.8367e-017 1.0711e-019 0.53359 
Mean 30.7252 6.1971 0.4785 23.5664 

3f  

Std 26.1358 3.8022 1.2452 4.4037 
Mean 6.2172e-015 0.4765 5.8624e-015 3.1086e-014 

4f  

Std 5.4153e-015 0.7744 1.1235e-015 4.8643e-014 
Mean 19.8333 43.6796 11.7372 27.6621 

5f  

Std 5.3515 11.4073 7.9732 6.7261 
Mean 0.0150 0.0118 0.0049 0.0098   6f  
Std 0.0221 0.0107 0.0059 0.0071 

 

                      Fig. 1.  f1 Sphere function                         Fig. 2.  f2 Schwefel’s Problem 

  

                   Fig. 3. f3 Rosenbrock function                          Fig. 4. f4 Ackley function 
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                 Fig. 5. f5 Rastrigin function                          Fig. 6. f6 Griewank function 

5   Conclusions 

In this paper, a novel PSO mimicking bio-parasitic behaviour was proposed. By mim-
icking facultative parasitic behaviour between the host population and the parasites 
population, the two populations exchange particles according to fitness. On the basis 
of analysis parasitic mechanism, the immune react of the host population infected is 
embedded into the PSO model. The law of "survival of the fittest" in biological evolu-
tion is also demonstrated in the host population.  

A set of 6 benchmark functions have been tested PSOPB in comparison with PSO-
LIW, CPSO and PSOPC. The experimental results show that PSOPB has a faster 
convergence rate and higher search accuracy for all the benchmark functions. 
Through simulating the co-evolutionary process between the host and the parasites 
population, the results demonstrate the efficacy of incorporating the parasitic behavior 
into the canonical PSO model. In the future, we will study how to use PSOPB to op-
timize practical engineering optimization problems.  
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Abstract. It is not trivial to tune the swarm behavior just by parameter setting
because of the randomness, complexity and dynamic involved in particle swarm
optimizer (PSO). Hundreds of variants in the literature of last decade, brought
various mechanism or ideas, sometimes also from outside of the traditional meta-
heuristics field, to tune the swarm behavior. While, in the same time, additional
parameters have to be afforded. This paper proposes a new mechanism, named
KNOB, to directly tune the swarm behavior through parameter setting of PSO.
KNOB is defined as the first principal component of the statistical probability
sequence of exploration and exploitation allocation along the search process. The
using of the KNOB to tune PSO by parameter setting is realized through a sta-
tistical mapping, between the parameter set and the KNOB, learned by a radial
basis function neural network (RBFNN) simulation model. In this way, KNOB
provides an easy way to tune PSO directly by its parameter setting. A simple
application of KNOB to promote is presented to verify the mechanism of KNOB.

Keywords: Particle Swarm Optimizer, Exploitation, Exploration, search
Strategy, KNOB.

1 Introduction

Particle swarm optimizer is a stochastic global optimization technique based on a social
interaction metaphor [1,2]. Because of the complexity, dynamic nature and randomness
involved in the PSO, it is hard to directly balance exploitation and exploration by pa-
rameter selection. Many heuristic methods are introduced into PSO to tune the balance
of search strategy. However, more parameters are usually led into PSO simultaneously
with the introduction of the heuristic methods.

This paper proposes a novel KNOB PSO (KPSO) to directly tune the balance be-
tween exploitation and exploration in particle swarm just by parameter selection.
KNOB is defined as the first principal component of the statistical probability sequence
of exploration and exploitation allocation along the search process. The using of the
KNOB to tune PSO by parameter setting is realized by a statistical mapping, between
the parameter set and the KNOB, learned by a radial basis function neural network
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(RBFNN) simulation model. In this way, KNOB provides an easy way to tune PSO di-
rectly by its parameter setting, which is verified through a simple application of KNOB.

The remainder of this paper is organized as follows. Section 2 briefly review the
PSO. Section 3 defines the KONB. Section 4 elaborates the radial basis function neural
network (RBFNN) simulation model to learn the statistical mapping between the pa-
rameter set and the KNOB. A simple use of KNOB is verified in Section 5. Concluding
remarks are drawn in Section 6.

2 PSO

In each iteration, the velocity V and the position X of each particle are updated accord-
ing to its own previous best position and the best position of its neighbors in the swarm
so far. The constricted update rules are

Vid(t+ 1) = χ(Vid(t) + c1r1(PiBd(t) −Xid(t))
+c2r2(PgBd(t) −Xid(t))), (1)

Xid(t+ 1) = Xid(t) + Vid(t+ 1). (2)

where i = 1, 2, · · · , n, i is the number of particles in the swarm, d = 1, 2, · · · , D, and d
is the dimension of solution space. The learning factors c1 and c2 are nonnegative con-
stants, r1 and r2 are random numbers uniformly drawn from the interval [0, 1], which
are all scalar quantities for each particle in each dimension. PiBd and PgBd are the lo-
cations of the best positions found so far by particle i and its neighbors in dimension d,
respectively. The constriction coefficient χ is defined as

χ =
2

|2 − ϕ−
√
ϕ2 − 4ϕ| , ϕ = c1 + c2. (3)

It is suggested by Bratton and Kennedy that the values of these constants should be
set as: c1 = c2 = 2.05, ϕ = 4.1 and χ ≈ 0.72984, so that the convergence of the
model can be ensured. Our analyses are based on this standard model, except we have
substituted the update rules as in Eqs. (4) and (5) for convenience. This is because a
PSO with constriction [3] is algebraically equivalent to a PSO with inertia weight [4].

Vid(t+ 1) = wVid(t) + c1r1(PiBd(t) −Xid(t))
+c2r2(PgBd(t) −Xid(t)), (4)

Xid(t+ 1) = Xid(t) + Vid(t+ 1). (5)

In Eq. (4), the parameter w ∈ [−1, 1] is the inertia weight for the velocity Vid(t). Set
w ≈ 0.72984 and c1 = c2 = 1.496172. The other denotations are with the same
meanings as in Eq. (1).

3 KNOB

In this section, the KNOB is defined based on the definitions of the probabilities of the
exploitation and exploration allocated in particle swarm. To quantify the search strategy
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in Particle Swam, in [5], we give the following intuitive definition of the exploitation
probability where fX is the probability density of the particle position sampling and
A(ita) is the exploitation area.

Definition 1 (Exploitation Probability). The probability lying in A(ita) in the next
iteration is defined as

P (ita) =
∫

A(ita)
fX(x)dx. (6)

Based on the definition of P (ita), one has the probability of exploration P (ra)

P (ra) = 1 − P (ita) (7)

which enables our calculations to concentrate only on the P (ita) sequences as the
search strategy in particle swarm in the following analyses and discussions. In order
to further show how the parameter sets of PSO affect the search strategy, we use the
P (ita) sequence which will be defined in Definition 2 to elaborate how PSO allocate
exploitation and exploration along the search process with different parameter sets.

Definition 2 (P (ita) sequence). P (ita) sequence is a set of statistical P (ita)s along
the search process. Each statistical P (ita) is calculated based on all P (ita)s in every
dimensions of all particles in the swarm at each iteration, where the P (ita) is defined
in Definition 1.

We attempt to seek a simple and feasible statistic value which can represent the
P (ita) sequence with different parameter sets to the utmost extent. We speculate on
that the first principal component [6] of a P (ita) sequence may be help. In fact, we find
in the experiments that the contribution rate of first principal component is 98.17%,
which represents almost all the information content of the P (ita) sequences. Besides,
it provides a simple statistical value to represent the P (ita) sequences with different
parameter sets. Therefore, we give the following definition. Under this definition, the
KNOB could be used as a balance mechanism for the search strategy in particle swarm
by parameter selection.

Definition 3 (KNOB). The first principal component of a P (ita) sequence is defined
as a KNOB to indicate the search strategy in PSO by the synthesis of the exploitation
capability along the whole search process.

4 RBFNN Model

In the PSO model conceptualized in Fig. 1(a), the inertia weight (w) and the accelera-
tion coefficient (c, set c = c1 = c2) are two input factors, each parameter set derives a
P (ita) sequence along search process according to the unknown inner search strategy.
In order to directly use parameter selection to tune the KNOB, we propose a simulation
model based on RBFNN shown in Fig. 1(b). The RBFNN aims to discover the unknown
inner search strategy of the PSO model and results in a mapping from the parametersw
and c to the KNOB by statistical learning. This simulation model can then guide users
to tune the KNOB straight forward by parameter selection.
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(a) PSO Model (b) RBFNN Simulation Model

Fig. 1. PSO model (a) and our proposed RBFNN simulation model (b)

Table 1. Setup of parameters for samples

Parameters Values
p 50
d 30
w −1 : 0.05 : 1
c 0.1 : 0.1 : 2.5

In the following, first, we run constricted PSO with different parameter setups of w-c
on serval typical benchmark functions. The results of corresponding P (ita) sequences
are saved. Then, we employ the principal component analysis (PCA) [6] method to
extract the first principal component (KNOB) from each P (ita) sequence. Finally,
the RBFNN learns from the samples composed by these parameter setups and their
corresponding KNOBs to simulate the PSO search strategy in Fig. 1(a) and gives the
predictive results.

According to [7], we set p = 50 for the PSO and d = 30 for every function. In order
to have enough samples to train the RBFNN in Figure 1(b), we choose four bench-
mark functions from the CEC′05 [8], which are Shifted Schwefel’s Problem 1.2 with
Noise in Fitness, Shifted Rastrigin’s Function, Shifted Rotated Rastrigin, Shifted Ro-
tated Expanded Scaffer’s F6. Different w and c values are chosen. The parameter se-
tups for samples are shown in Table 1. There are 4,100 samples in total, each of which
is the averaged value over 20 independent runs. The results of the P (ita) sequences
are recorded for 1,000 iterations, because most searches enter the stagnation phase or
reached convergence in about 1,000 iterations on the selected benchmark functions.
The data samples are divided into two parts, Cross − V alidation and test data sets.
Cross − V alidation data is further divided into a training set and a validation set to
train the RBFNN through cross validation with 2,575 training samples and 500 vali-
dation samples randomly drawn from these 3,075 samples each time. The Test data
derived from Shifted Rotated Rastrigin, which is not used in the cross validation, is
chosen to test the generalization performance of the trained RBFNN.

As a result, we can use the trained RBFNN to predict the mapping of KNOB in
w-c plane. This will give users a straight-forward guide to choose suitable parameter
setups that correspond to an appropriate balance between exploitation and exploration
for a specific problem, and allow for a dramatic improvement on the performance of
PSO. In order to obtain this landscape, parameter samples are set as: p = 50, d = 30,
c ∈ (0, 2.5] and w ∈ [−1, 1]. The averaged prediction results of 30 trained RBFNNs
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Fig. 2. The KNOB for w-c plane when p = 50 and d = 30

are shown in Fig. 2, which shows the surface of the KNOB over different w and c, and
gives the overall effect of the parameter setups.

5 A Simple Application of KNOB

In this application, we aim at using the proposed KPSO to search for a parameter set
that performs better than the constriction based parameter set suggested by Clerc [3])
(denoted as SPSO) on the benchmark functions Shifted Schwefel’s Problem 1.2 with
Noise in Fitness, Shifted Rastrigin’s Function, Shifted Rotated Rastrigin, Shifted Ro-
tated Expanded Scaffer’s F6.

We first select the constriction based parameter set suggested by Clerc [3]) as the pa-
rameter set whose KNOB equal to 21.55 predicted by the mapping shown in Fig. 2 and
is used as the current KNOB. The KNOB granularity is set as 1. Given the KNOB and
the KNOB granularity, six KNOBs are evenly chosen around 21.55 as shown in Table 2.
The parameter set 4 is the constriction based parameter set suggested by Clerc [3]).

Table 2. The mapped parameter sets according to the tuned KNOBs and their KNOB

ParameterSets w c KNOB
1 0.15 1.8 24.55
2 0.61 1.79 23.55
3 0.47 1.42 22.55
4 0.72984 1.496172 21.55
5 0.84 1 20.55
6 0.885 0.9 19.55
7 0.93 0.66 18.55
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(a) Shifted Schwefel’s Problem 1.2 with
Noise in Fitness
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(b) Shifted Rastrigin’s Function
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(c) Shifted Rotated Rastrigin
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(d) Shifted Rotated Expanded Scaffer’s F6

Fig. 3. The averaged best fitness sequences of the PSO with fifty particles in thirty dimensions
using the parameter sets listed in Table 2. when optimizing the Shifted Schwefel’s Problem 1.2
with Noise in Fitness, Shifted Rastrigin’s Function, Shifted Rotated Rastrigin and Shifted Rotated
Expanded Scaffer’s F6 over 50 independent runs. The swarm evolves for 1000 iterations in each
run.

The learned mapping in Fig. 2 is then used to select the corresponding parameter sets
of selected KNOBs.

The results of the averaged convergence curves using the parameter sets in Table 2
are recorded in 1,000 iterations over 50 runs on the benchmark test functions and shown
in Fig. 3. These functions are all minimization problems and a lower value represents a
better solution.

As shown in Fig. 3, the PSO with parameter sets 1, 3 and 5 converge fastest on all
of the benchmark functions. The PSO with parameter set 3 converges faster than the
parameter set 4 used in the SPSO on all the benchmark functions. Therefore, parameter
set 3 is selected as the parameters of the KPSO.

Furthermore, in order to verify the effectiveness and efficiency of the KPSO, the
statistical means and standard deviations of the obtained solutions of the benchmark
functions are provided in Table 3 for the comparison between the KPSO and SPSO
over 50 independent runs. It can be seen from the averaged solutions that the proposed
KPSO outperforms the SPSO on all of the benchmark functions.

It can be concluded from the comparisons that the parameter set 3 not only has faster
convergence speed, but also has more accurate optimal solutions on all of the bench-
mark functions than the SPSO. Because we have found a parameter set that performs
significantly better than the constriction based parameter set suggested by Clerc [3]) on
all benchmark functions, the KPSO algorithm terminates.
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Table 3. Statistical means and standard deviations of the solutions of benchmark functions given
by the KPSO and the SPSO over 50 independent runs

Func. KPSO’s M ± S SPSO’s M ± S
Shifted Schwefel’s Problem 1.2 with
Noise in Fitness with Noise in Fitness 1.9659e+004± 6.5447e+003 8.7721e+004± 6.6138e+004
Shifted Rastrigin’s Function -207.9337 ± 30.8512 -153.5789± 131.6026
Shifted Rotated Rastrigin -135.4692± 47.2030 -20.0018± 215.6167
Shifted Rotated Expanded Scaffer’s F6 -286.8861± 0.4103 -285.9057 ± 0.4530

6 Conclusion

This paper proposed a new mechanism, named KNOB, to directly tune the swarm be-
havior through parameter setting of PSO. First, the KNOB was defined as the first prin-
cipal component of the statistical probability sequence of exploration and exploitation
allocation along the search process. The using of the KNOB to tune PSO by parameter
setting has been realized by a statistical mapping, between the parameter set and the
KNOB, learned by a radial basis function neural network (RBFNN) simulation model.
In this way, KNOB provided a simple statistical value to represent the P (ita) sequences
with different parameter sets. A simple use of KNOB verified that the KNOB could be
used as a easy balance mechanism for the search strategy in particle swarm through its
parameter setting.
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Abstract. This paper proposes a novel population-based evolution algorithm 
named grouping-shuffling particle swarm optimization (GSPSO) by hybridizing 
particle swarm optimization (PSO) and shuffled frog leaping algorithm (SFLA) 
for continuous optimization problems. In the proposed algorithm, each particle 
automatically and periodically executes grouping and shuffling operations in its 
flight learning evolutionary process. By testing on 4 benchmark functions, the 
numerical results demonstrate that, the optimization performance of the proposed 
GSPSO is much better than PSO and SFLA. The GSPSO can both avoid the 
PSO’s shortage that easy to get rid of the local optimal solution and has faster 
convergence speed and higher convergence precision than the PSO and SFLA.  

Keywords: Particle swarm optimization, Shuffled frog leaping algorithm, Evolution 
strategy, Continuous optimization. 

1   Introduction 

In the past two decades, with the development of optimization technology, swarm 
intelligence meta-heuristics are proved to be successful approaches to solve complex 
continuous global optimization problems [1]. As a typical swarm intelligence algo-
rithm, particle swarm optimization algorithm (PSO) has been widely research an 
application in the academia and engineering [2,3]. In the algorithm, the individual 
adjusts its flight path efficiently and flexibly according to both its own and the popu-
lation historical best position. However, PSO has the shortages of premature conver-
gence, poor accuracy and easy to fall into local optimal solution, which prompt us to 
explore methods to weaken or avoid the shortcomings and improve its performance.  

Shuffled Frog Leaping Algorithm (SFLA) is a newly proposed meta-heuristic com-
puting technology based on the memetic algorithm which is firstly used to solve the 
water distribution system design problem [4] and has been verified that efficient to 
many global optimization problems [5,6]. SFLA is based on grouping evolution of 
memes carried by individuals and global exchange of information within the popula-
tion. The grouping evolution allows individuals to deep search in different direction in 
the feasible space and the shuffling process allows the full exchange of information 
                                                           
* Corresponding author. 
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between individuals to avoid the algorithm fall into a local optimum. Emphasis on both 
global and local search strategies, which is one of the SFLA’s major advantages [7]. 

Inspired by the grouping-shuffling evolution mechanism of SFLA greatly help to 
improve individual’s convergence and global search abilities, we combine the group-
ing-shuffling evolution mechanism with PSO’s efficient and flexible individual flight 
learning strategy to develop a novel grouping-shuffling particle swarm optimization 
algorithm (GSPSO). In the proposed algorithm, the whole particles repeated carry out 
grouping evolution and shuffling operation. In each group, the worst particle is  
evolution with the PSO’s flight learning strategy. The grouping-shuffling evolution 
mechanism can prevent the particle’s search process from falling into the local opti-
mal solution and becoming premature convergence.  

The rest of this paper is organized as follows: In Section 2, we briefly explain the 
basic principles of PSO and SFLA. In Section 3, we propose the new modified PSO 
based on SFLA evolution framework. In Section 4, through numerical experiments 
and comparison, we verify the performance of the proposed GSPSO. Finally, we 
conclude this paper in Section 5. 

2   The Standard PSO and SFLA Algorithms 

Before actually proposing the improved particle swarm optimization based on SFLA 
evolution framework, to make the paper self-explanatory, the principle of standard 
PSO and SFLA are briefly explained in the following. 

2.1   Standard Particle Swarm Optimization 

The PSO algorithm, proposed by James Kennedy and Russell Eberhart in 1995, is a 
swarm intelligent algorithm inspired by the social behavior of a flock of birds find 
food [2,3]. PSO has been originally used to handle continuous optimization problems, 
with the advantages of simple concept, high performance and easy programming.  

In PSO, each solution is a ‘bird’, which is referred to as a ‘particle’. Suppose in the 
D-dimensional search space, the population of particle is P, the i-th particle’s current 
position vector and velocity vector are respectively expressed as 

1 2( , , , )i i i iDX x x x= and 1 2( , , , )i i i iDV v v v= , the best historical positions of itself and 

swarm are expressed as 1 2( , , , )i i i iDP p p p=  and 1 2( , , , )g g g gDP p p p= . The veloc-

ity Vi and the position Xi of the i-th particle are updated according to the experience of 
itself and neighboring particles as the following equations(1)(2). At the end of defined 
iterations, the best particle Pg in swarm is the best solution of the problem. 

1 1 2 1( 1) ( ) [ ( ) ( )] [ ( ) ( )]id id id id gd idv g w v g c r p g x g c r p g x g+ = × + × × − + × × −  (1)

( 1) ( ) ( 1)id id idx g x g v g+ = + +  (2)

Where c1 and c2 are the two positive constants, called acceleration coefficients, r1 and 
r2 are the two random numbers in the range [0,1], w is called inertia weight which can 
be automatically adjusted according to the iteration number such as 

( ) 0.9 ( / ) / 2w g g G= − , g is the iteration number, G is the max iteration number. 
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2.2   Standard Shuffled Frog Leaping Algorithm 

The SFLA algorithm, proposed by Eusuff and Lansey in 2000, is a memetic intelli-
gent algorithm inspired by natural memetics [8]. The SFLA consists of a population 
of frogs partitioned into different group which called memeplexes. The frogs act as 
hosts of memes where a meme is a unit of cultural evolution. The algorithm performs 
simultaneously an independent local search in each memeplex [9]. To ensure global 
exploration, the frogs are periodically shuffled and regrouped into new memplexes. 
The local search and the shuffling processes continue until defined convergence crite-
ria or iterations are satisfied. As a novel bio-evolutionary algorithm, the SFLA  
combines the benefits of the genetic-based algorithms and the social behavior-based 
algorithms which have the advantages of few parameters(less than PSO) and empha-
sis on both wide scan of a large solution space and deep search of promising locations 
for a global optimum [5].  

In SFLA, each solution is a “frog”, an initial population of P frogs is created ran-
domly within the D-dimensional feasible space. The i-th frog’s position is expressed 
as 1 2( , , , )i i i iDX x x x= . After that, the frogs are sorted in descending order by their 

fitness. Then, the entire population is grouped into m memeplexes with the special 
strategy: the first frog goes to the first memeplex, the second frog goes to the second 
memeplex, m-th frog goes to the m-th memeplex, and 1m + -th frog goes back to the 
first memeplex, etc. Each memeplex containing n frogs, which satisfy P m n= × . The 
strategy of grouping is as follows:  

( 1){ [ ] | [ ] , 1, , , 1, , }k k k
k m jM y j y j X k m j n+ −= = = =  (3)

In each memeplex, record the frogs’s position with the best and the worst fitness as 
Xb and Xw respectively. Also, record the frog’s postion with the global best fitness as 
Xg. Then, the position of the frog with the worst fitness is adjusted as follows: 

( )d d dD rand Xb Xw= × −  (4)

max max( )d d d d d dnew Xw old Xw D D D D= + ≥ ≥ −  (5)

Where rand is a random number in the range [0,1], maxiD is the maximum step size 

allowed for a frog in the i-th dimensional. If the evolution produces a better solution, 
it replaces the worst frog. Otherwise, the calculations in (4) and (5) are repeated but 
with Xb replaced by Xg. If no improvement becomes possible in this case, a new solu-
tion within the feasible space is randomly generated to replace the worst frog. The 
calculations then continue for a specific number of iterations [7]. 

3   The Proposed Grouping-Shuffling Particle Swarm Optimization  

The PSO and SFLA algorithms have their own distinct characteristics. PSO has highly 
efficient and flexible individual flight learning strategy. SFLA can balance the grouping 
evolution and global information exchange. By Combining the advantages of two algo-
rithms, embed the individual flight strategy of PSO into SFLA’s grouping-shuffling 
evolution framework, we proposes a simple and efficient global search algorithm: 
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grouping-shuffling particle swarm optimization(GSPSO). In the algorithm, the whole 
particles periodically carry out grouping evolution and shuffling operation. In each 
group, the worst particle is continuously updated its flight velocity and position accord-
ing to its own velocity inertia and the optimal positions of its located group and the 
swarm. The basic framework of the GSPSO is as the following fig.1. 

 

Fig. 1. Framework of GSPSO 

For the maximum optimization function f(x), the procedures of GSPSO can be de-
scribed as follows: 

Step1:Initialize algorithm parameters, including: population of particles P, meme-
plexes number m, number of evolution generation in each memeplex Gmeme, max 
number of shuffling iterations Gshuf; 

Step2:Randomly initialize all particles’ positions and velocities within the feasible 
space, and calculate their fitness; 

Step3:Sort all particles in order of descending fitness, then divided them into m 
memeplexes according to(3), each containing n particles(n=P/m); 

Step4:Within each memeplex, the particles experience PSO’s individual flight evo-
lution strategy: 

1) lg=1, set Xbk and Xwk as the first paricle yk[1] and last paricle yk[n] of k-th 
memplex respectively, also set xg as the particle with global best fitness; 

2) Adjust the position and velocity of the worst particle Xwk according to PSO’s 
individual flight learning strategy as (6)(7), where use Xbk to replace the indi-
vidual history best position; 

1 1 2 2new [ ] [ ]k k

k k k
d d d dXw d Xw d

v w v c r Xb Xw c r Xg Xw= × + × × − + × × −  (6)

new new k

k k
d d xw d

Xw Xw v= +  (7)

3) Calculate the fitness of new Xwk and compare the relationship between new 
Xwk and yk[n]: 
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I If f(new Xwk)>f(yk[n]), let yk[n]= new Xwk and update the yk[n]’s velocity as 
new kXw

V ; 

II If f(new Xwk)<f(yk[n]), update yk[n]’s position by implementing the crossover 
operation between Xbk and Xwk with a probability of 50%, and calculate the 
yk[n]’s velocity according to it’s new position. The crossover operation is as 
(8), where λ  randomly choose as 0 or 1. 

[ ] * (1 )*k k k
d d dy n Xb Xwλ λ= + −  (8)

4) After change for the worst particle, resort the k-th memeplex in order of de-
creasing fitness. 

5) lg=lg+1, Repeat 1)-4) for a desired number of iterations lg= Gmeme. 

Step5:Re-shuffling the entire swarm after each memeplex complete evolution; 
Step6:Repeat step3-step5 until satisfy the desired number of shuffling iterations 

Gshuf. 

4   Numerical Experiments and Results 

The optimization performance of algorithm, not only depends on its intrinsic charac-
teristics, but also closely related to the complexity of the optimization problems. In 
this study, we use four well-known continuous benchmark functions (the Ackley 
function, Rosenbrock function, Griewangk function and Schaffer's f7 function) for 
numerical experiment to test the effect of proposed GSPSO algorithm and compared 
it with standard PSO and SFLA algorithms. The global optimum solution of all func-
tions is known to be zero when all variables equal zero. These benchmark functions 
have different characteristics: Ackley and Rosenbrock functions are single-modal, 
Griewangk and Schaffer's f7 functions are multi-modal.  

In order to obtain the best optimization performance for three algorithms, accord-
ing to experiences and through repeat testing, PSO parameters are set as [10]: popula-
tion P=100, acceleration coefficients c1=c2=2, inertia weight w(g)=0.9-(g/G)/2; SFLA 
Parameters are set as [5]: population P=100, number of memeplexes m=10, memetic 
evolution iterations Gmeme=10; GSPSO parameters are set as: population P=100, num-
ber of memeplexes m=10, memetic evolution iterations Gmeme=10, acceleration coeffi-
cients c1=c2=1, inertia weight w(g)=0.9-(g/Gshuf)/2. For different variable dimension, 
the global iterations (or shuffling iterations) are set as 500 and 2000 respectively. In 
order to eliminate the influence of randomicity, 20 runs are performed for each func-
tion. The test results are shown in table1. Where Opt and Ave mean the optimal and 
average solution of 20 runs respectively, Var means the variance. 

From table1 we can see that, with the finite global evolution iterations, PSO and 
SFLA are difficult to find the optimal solution area in solving the single-modal func-
tion Rosenbrock and the multi-modal function Schaffer's f7. However, GSPSO can 
easily find the optimal solution area and solve these two functions better. By compar-
ing with PSO and SFLA in the aspects of optimal and average solution, results show 
that GSPSO has much better optimizing accuracy and stability then PSO and SFLA. 
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Table 1. Results of the benchmark functions tests 

20 variables,500 global iterations 50 variables, 2000 global iterations 
Function Algorithm 

Opt Ave Var Opt Ave Var 

PSO 2.142E-04 7.587E-04 2.300E-07 5.599E-04 2.841E-03 5.800E-06 

SFLA 1.407E-01 1.487E+00 6.900E-01 9.060E-01 1.929E+00 3.964E-01 Ackley 

GSPSO 0.000E-08 0.000E-08 0.000E-08 0.000E-08 0.000E-08 0.000E-08 

PSO 5.855E+00 2.449E+01 4.413E+02 4.126E+01 7.854E+01 8.790E+02 

SFLA 1.781E+01 1.979E+01 1.669E+00 4.705E+01 4.936E+01 2.903E+00 Rosenbrock 

GSPSO 0.000E-08 4.000E-08 0.000E-08 0.000E-08 3.980E-01 1.026E+00 

PSO 1.369E-04 2.914E-02 6.475E-04 9.460E-06 6.839E-03 1.679E-04 

SFLA 1.458E-01 6.972E-01 7.171E-02 1.395E-01 4.317E-01 3.699E-02 Griewangk 

GSPSO 0.000E-08 1.489E-02 1.516E-04 0.000E-08 3.529E-03 2.051E-05 

PSO 3.751E+00 8.461E+00 2.527E+01 4.407E+01 8.299E+01 8.671E+02 

SFLA 1.495E+00 6.834E+00 1.282E+01 5.964E+01 8.510E+01 1.012E+02 Schaffer's 
f7 

GSPSO 0.000E-08 6.987E-02 7.046E-04 3.030E-02 6.994E-01 9.255E-01 
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Fig. 2. Typical convergence curves of four functions: (a)Ackley, (b)Rosenbrock, (c) 
Griewangk, (d)Schaffer's f7 
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We further compare and analyze the convergence of these three algorithms. In the 
experiment, the parameters of three algorithms are as above. Fig 2 shows the typical 
convergence curves of these functions. The benchmark functions are all 20 dimen-
sions. The figures illustrate that, the convergence speed of PSO is relatively slower 
but the convergence precision is slightly better than SFLA. The proposed GSPSO not 
only inherits the advantage of SFLA with fast convergence speed, but also has higher 
convergence precision than the PSO and SFLA. Therefore, according to the above 
two kinds of tests, it can be demonstrated that the GSPSO can easily escape the local 
optimal and avoid individual’s premature convergence, and outperforms standard 
PSO and SFLA in solving all these test functions. 

5   Conclusions 

This paper proposes an improved PSO algorithm named GSPSO and uses it as a 
search engine to solve continuous optimization problem. By embedding the individual 
learning strategy of PSO into the grouping and shuffling evolution framework of 
SFLA, the GSPSO combines the advantages of two algorithms. Numerical experi-
ments have shown that: in the one hand, GSPSO can avoid the PSO’s shortage that 
easy to get rid of the local optimal solution; in the other hand, GSPSO have faster 
convergence speed and higher convergence precision than the PSO and SFLA. The 
results indicate that the GSPSO outperforms standard PSO and SFLA and is an effi-
cient approach for solving the complex continuous optimization problems. 
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Abstract. The paper presents a novel particle swarm optimizer (PSO),
called gender-hierarchy particle swarm optimizer based on punishment
(GH-PSO). In the proposed algorithm, the social part and recognition
part of PSO both are modified in order to accelerate the convergence and
improve the accuracy of the optimal solution. Especially, a novel recog-
nition approach, called general recognition, is presented to furthermore
improve the performance of PSO. Experimental results show that the
proposed algorithm shows better behaviors as compared to the standard
PSO, tribes-based PSO and GH-PSO with tribes.

Keywords: gender, hierarchy, recognition, particle swarm optimizer.

1 Introduction

In 1995, a new optimizer, particle swarm optimizer (PSO), was introduced by
Kennedy and Eberhart, which was inspired by bird flocking, fish schooling, bee
swarm, etc. [1]. As one of excellent paradigms of swarm intelligence (SI), PSO
shows its excellent ability in continuous none-linear function optimization, and
has more less parameters involved as compared to other evolutionary algorithms
(EAs). Hence, it has been used in many practical applications, such as pattern
recognition, image match, medical image process, and so on. Especially, when
applied to function optimization, most of PSO was designed to accelerate the
convergence and improve the accuracy of optima, such as LBEST PSO, GBEST
PSO [1], linear decreasing weight PSO [2], constricted PSO [3], tribe PSO [4],
[5], et al. The GBSET PSO performed better in terms of convergence, but it was
at cost of loss of diversity comparing with LBEST PSO. Therefore, the GBEST
PSO has less possibility to obtain optima in problem space than LBEST PSO.
For improving the convergence and the accuracy of the optimal solution, recently,
it is found that the hybrid versions of PSO, such as tribe PSO etc., shows good
performance.

In this paper, a new hybrid version of PSO was proposed. In the proposed
algorithm, the particle has two attributes, gender and hierarchy. With the two
� The research is funded by National Natural Science Foundation of China (10926198).
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attributes, the particles show the ability of the exploitation and exploration in
search space, respectively. In addition, besides modifying the social part and
recognition part of PSO, a novel recognition approach, called general recogni-
tion, is presented to accelerate the convergence and improve the accuracy of the
optimal solution. Our proposed algorithm is tested on five benchmark problems,
and compared with the standard PSO, tribes-based PSO and GH-PSO with
tribes.

2 Gender-Hierarchy Particle Swarm Optimizer Based on
Punishment

2.1 A Standard GBEST Model of Particle Swarm Optimizer

The GBEST PSO was proposed by Kennedy and Eberhart with the following
equations:

vk+1
i = ω ∗ vk

i + φ1 ∗ (gk − xk
i ) + φ2 ∗ (lki − xk

i ) (1)

xk+1
i = xk

i + vk+1
i (2)

where φ1 = γ1∗ag, φ2 = γ2∗at, γ1, γ2 → U(0, 1) ∈ R and V = [ν1, ν2, . . . , νn],X =
[x1, x2, . . . , xn]. X and V denote a vector of a particle’s position and velocity
on n dimensions, respectively. vk

i and xk
i respectively stand for the velocity and

position of a particle on the ith dimension in the kth iteration step.ω is an inertia
weight introduced firstly by Shi and Eberhart [6]. gk represents the global best
position among all swarm particles until the kth iteration step. The best position
of the ith particle before the kth iteration is denoted by lki . γ1 and γ2 are two
random numbers with a uniform distribution at the interval [0,1]. agand at are
two positive constant values. Usually, they both are set to 2.

For GBEST PSO, it can be obviously seen that it is consisted of two compo-
nents: social part (gk − xk

i ) and recognition part (lki −xk
i ). In the social part, all

particles learn from the best particle, and thus shift to a fittest position, which
is a metaphor as human beings do. However, it is a self-study procedure in the
recognition part. That is, each particle learns from its previous experienced best
particle, and furthermore is moved to a fittest position.

2.2 The Proposed Algorithm

Before presenting our algorithm, some concepts or terms are firstly introduced.

– Gender: Gender usually is used to describe the sexual character, which is
easily found in human beings and mammal animals. Generally, male is ad-
vantageous over female in exploring the unknown world. Hence, inspired by
this natural character, the gender concept is introduced to particle agents.
In the initial phase, each particle is randomly assigned a sexual character. If
a particle is male, it will be helpful to facilitate the exploration of the search
space. On the contrary, the female particle can improve the exploitation of
the search space.
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– Hierarchy: In human being and other sophisticated societies, they all have
a hierarchy. if an individual is in relative high hierarchical level, he will
has more powerful in society. Inspired by this concept, the hierarchy is also
introduced to particle agents. Each particle agent has a hierarchical level,
also called grade attribute, which is formulated as follows:

ωgrade i k � {fitness(xi k) − fitness(gi k)}/fitness(gi k) (3)

where ωgrade i k represents the ith particle’s grade value in kth iteration.
The fitness value of objective functions is denoted by fitness. gi kdescribes
the global best position among all swarm particles before the kth iteration.
xi k denotes the position of the ith particle in the kth iteration. From the
definition of grade mentioned in (3), we can observe that for a particle, the
smaller its value of grade is, the better its position is.

Next, based on the above definitions and concepts, our proposed algorithm, GH-
PSO, is listed as follows:

vk+1
i = ω ∗ vk

i + φ1 ∗ (gk − ωparticle i ∗ xk
i ) + φ2 ∗ (lki − ωparticle i ∗ xk

i )+

ωsi ∗ (Xaverage i − xk
i ) (4)

xk+1
i = xk

i + ω ∗ vk+1
i (5)

with φ1 = γ1 ∗ag, φ2 = γ2 ∗at, γ1, γ2 → U(0, 1) ∈ R and V = [ν1, ν2, . . . , νn],X =
[x1, x2, . . . , xn]. Where ω, φ1, φ2, g

k, xk
i , and lki have the same definitions as in

Sect. 2.1. The parameters ωsi, Xaverage i, ωparticle i are defined as ωsi � (
∑i=N

i=1

fitness(xi))/(
∑i=N

i=1 fitness(xoptima)), Xaverage i �
∑j=N

j=i xij/N and ωparticle i

� (c1 ∗ ωgrade i k + c2 ∗ ωgender i k)/(c1 + c2), where xi is the position of the ith
particle, the number of particles is denoted as N . xoptima represents the best
position of all particles. fitness(xi) and fitness(xoptima) is the fitness value of
the ith particle and the optimal solution, respectively. The mean value of position
of all particles on the ith dimension is described as Xaverage i. ωparticle i is the
weight of the ith particle, which is constructed with two parts: gender’s weight
and grade’s weight. Thereby, we can choose the different values of c1 and c2 to
keep the balance between the impact of gender and the impact of grade. ωsi is
a recognition weight.

In our proposed algorithm, it can be observed that the social part and the
recognition part both are modified in order to accelerate the convergence by
multiplying a new coefficient ωparticle i. From (gk−xk

i ), (lki −xk
i ) and (1), we can

observe that the velocity of a particle is not only directly proportional to distance
between current position and the best position, but is also directly proportional
to distance between its current position and its previous best position. Therefore,
by amplifying the distances, the particles will fly faster towards the best position
so that the convergence of the proposed algorithm is accelerated. The third term
of (4) is called ”general recognition” because each particle can adjust itself to
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behaviors of most particles based on it, and thus improve the diversity of the
population. After the definitions and concepts mentioned above are given, the
pseudo-code of GH-PSO algorithm is listed as follows:

1. Initialize the agents of particles with gender randomly
2. While not finished
3. For each particle in swarm
4. Calculate the fitness value.
5. Update the optimal value, best particle gk and local best particle lki .
6. End of For loop
7. Calculate the grade of each particle, ωparticle i.
8. Calculate the weight of swarm, ωsi.
9. Calculate Xaverage.

10. Update the velocity and position of particle , xk
i and vk

i .
11. Compute the punishment, Vmax.
12. If the terminal conditions are satisfied, then terminate the procedure, and

output the optimal solution.
13. End of While.

2.3 Parameter Selection of GH-PSO

In [3,7], the analysis on trajectory of simplified PSO was described, and some
guidelines of parameter selection have also been given. It have proved that the
trajectory of a particle agent does not ”fly” in its search space but ”surfs” it on
sine waves. At early stage of PSO, Shi and Eberhart have drawn a conclusion
that it will be better if the inertia weight is within the range of [0.9,1.2] by
some numerical experiments [2]. Generally, the PSO algorithms will take the
least iterations to obtain the optima with a inertia weight in this range. In
addition, the two parameters, ag and at, are usually set to 2. In order to avoid
the problem that the particles fly out of the search space, the upper limitation
of positions and velocities of particles is respectively set, and denote them by
Xmax and Vmax, respectively. For each particle, its position must be within
the interval [−Xmax, Xmax], and its velocity cannot also be out of the interval
[−Vmax,Vmax]. Also, it is observed that it is a good choice if Xmax is equal to
Vmax. In our experiments, we will use the same scheme of parameter selection
as in the above literature. Especially, the parameter ωparticle i is confined within
the interval [1.09, 2.89].

2.4 Punishment Policy in GH-PSO

For PSO, the particles are often out of control and fly out of the search space,
which will result in a bad convergence. Therefore, in order to avoid the difficulty,
an approach is suggested with setting the upper limitation of velocities of parti-
cles [8,9]. Furthermore, in the literature [10], Braendler and Hendtlass present a
different approach. the velocity of particles is adjusted using hyperbolic tangent
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function rather than their upper limitation as compared to the previous method
in runs. In GH-PSO, besides adopting Braendler and Hendtlass’s method, a new
punishment policy is proposed to better control the particles’ behaviors. The
policy is described as follows:

Step 1: Calculate the velocity of particles on each dimension. For each particle,
it will be punished if its velocity is out of the interval [−Vmax, Vmax]. A
stochastic number at the interval [0,1] is generated. Then, the velocity is
multiplied by the stochastic number as a punishment.

Step 2: Calculate the new velocity of particles. For each particle, If its new
velocity is still out of the interval [−Vmax, Vmax], we set the velocity of particle
to Vmax (-Vmax) if its new velocity is more than Vmax (less than −Vmax).

Step 3: End the punishment procedure.

In fact, this punishment policy is similar to the selection operator and mutation
operator, which are used in genetic algorithms (GAs). Here, the test operation
described in Step 1 is identical to GAs’ selection operation, and the punishment
operation described in Step 2 is similar to GAs’ mutation operation. The two
operations will be helpful to facilitate the diversity of the population.

3 Experiments and Discussions

3.1 Experimental Settings

For showing the performance of GH-PSO, GH-PSO is compared with the stan-
dard PSO [1,6], tribes-based POS [5]. Especially, GH-PSO is also compared with
GH-PSO with tribes in order to investigate the effect of the tribes. The test prob-
lems are selected from the benchmark functions, which include Sphere function,
Rosenbrock function, Rastrigin function, Griewank function and Schaffer’s f6
function [7].

The boundaries of velocity of particles, Vmax, are set to 100, 30, 5.12, 600, 100
corresponding to each function mentioned above, respectively. For each function,
all algorithms will be conducted on the following three different dimension sizes:
30, 20 and 10. For the three dimension sizes, the population of particles is respec-
tively set to 160 ,100, 60 and the maximum number of generations is set to 2000,
1500, 100 for each algorithm. The inertia weight ω is decreased linearly from 0.9
to 0.4 with the increasing generation number, and its cut-off is set to 1 × 10−8.

All algorithms are implemented under FreeBSD 7.0 system platform with
GCC 4.2.1 compiler in C++.

3.2 Experimental Results

All algorithms are randomly run 50 times, and the change curve of the mean
value of the optimal solution is shown in Figs. 1- 3 with the increasing generation
number for each algorithm, respectively. The mean value of the optimal solution
obtained by all algorithms on three different dimension sizes is respectively shown
in Tables 1-3.
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Fig. 1. Convergence diagram of Sphere and Rosenbrock
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Fig. 2. Convergence diagram of Rastrigin and Griewank
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Fig. 3. Convergence diagram of Schaffer’s f6

From Figs. 1 to 3, we can observe that GH-PSO has a better convergence
than all other algorithms. In fact by analyzing the values in Tables 1-3, our
observation is affirmed. GH-PSO has a smaller optimal value than all other
algorithms. Therefore, a conclusion can be drawn that our algorithm GH-PSO
outperforms all other algorithms for each test problem.
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Table 1. The mean value of optima on 30 dimensions

Function gBest-PSO Tribes-PSO GH-PSO GH-Tribes PSO
Sphere (f0) 9.250000 × 10−8 1.131000 × 10−7 8.650000 × 10−8 8.420000 × 10−8

Rosenbrock (f1) 1.211339 × 102 1.462742 × 102 2.748598 × 101 2.795591 × 101

Rastrigin (f2) 3.200599 × 101 4.565054 × 101 1.335908 × 101 1.373763 × 101

Griewank (f3) 1.210836 × 10−2 2.680860 × 10−2 1.012459 × 10−2 1.180661 × 10−2

Schaffer f6 (f6) 2.455858 × 10−3 2.455858 × 10−3 2.455858 × 10−3 2.455858 × 10−3

Table 2. The mean value of optima on 20 dimensions

Function gBest-PSO Tribes-PSO GH-PSO GH-Tribes PSO
Sphere (f0) 8.730000 × 10−8 8.730000 × 10−8 7.840000 × 10−8 8.220000 × 10−8

Rosenbrock (f1) 5.706853 × 101 6.654097 × 101 1.773444 × 101 1.800886 × 101

Rastrigin (f2) 1.767705 × 101 2.228704 × 101 1.335908 × 101 1.373763 × 101

Griewank (f3) 1.210836 × 10−2 2.680860 × 10−2 1.012459 × 10−2 1.180661 × 10−2

Schaffer f6 (f6) 2.455858 × 10−3 2.455858 × 10−3 2.455858 × 10−3 2.455858 × 10−3

Table 3. The mean value of optima on 10 dimensions

Function gBest-PSO Tribes-PSO GH-PSO GH-Tribes PSO
Sphere (f0) 8.090000 × 10−8 8.630000 × 10−8 7.840000 × 10−8 7.960000 × 10−8

Rosenbrock (f1) 3.687350 × 101 3.031101 × 101 0.602891 × 101 0.782953 × 101

Rastrigin (f2) 0.292719 × 101 1.134251 × 101 0.936522 × 101 1.096791 × 101

Griewank (f3) 1.010836 × 10−2 1.680860 × 10−2 0.812459 × 10−2 1.000661 × 10−2

Schaffer f6 (f6) 2.455858 × 10−3 2.455858 × 10−3 2.455858 × 10−3 2.455858 × 10−3

3.3 Discussions

For GH-PSO, two concepts, gender and hierarchy, are introduced to particle
agents. At the initial stage of runs, each particle is accelerated by its inertia
weight, ωparticle i, and thus the agents fly faster towards the better positions
than those without the inertia weight. When the particle agents are closer to
the optimal solution, they slow down the search and fine-tune to the optima by
applying the lower particle’s weight. Through employing the general recognition,
the particle agents can adjust its position by learning from the popular behaviors.

From (4), we know that if a particle’s weight, ωparticle i, and the general
recognition weight, ωsi, are set to 1 and 0, respectively, then GH-PSO becomes
GBEST PSO. And, from the definition of ωsi, the value of general recognition
weight is inclined to 1. Therefore, this tendency is used as an indication to iden-
tify whether the particle agents are close to optimal solution or not.

The experimental results verify that the performance of GH-PSO is improved
by employing gender and hierarchy (see Figs. 1- 3 and Tables 1-3).

4 Conclusions

In this paper, we propose a novel algorithm, called GH-PSO. By revising the
original version of PSO with particles’ inertia weights and general recognition,



Gender-Hierarchy Particle Swarm Optimizer 101

the performance of PSO is improved. The experimental results show that GH-
PSO is an effective approach as compared to the standard PSO, tribes-based
PSO and GH-PSO with tribes.

The further works will focus on the multiobjective function optimization, and
the experiments are already underway.
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Abstract. This paper deals with the problem of unconstrained opti-
mization. An improved probability particle swarm optimization algo-
rithm is proposed. Firstly, two normal distributions are used to describe
the distributions of particle positions, respectively. One is the normal dis-
tribution with the global best position as mean value and the difference
between the current fitness and the global best fitness as standard devi-
ation while another is the distribution with the previous best position as
mean value and the difference between the current fitness and the pre-
vious best fitness as standard deviation. Secondly, a disturbance on the
mean values is introduced into the proposed algorithm. Thirdly, the final
position of particles is determined by employing a linear weighted method
to cope with the sampled information from the two normal distributions.
Finally, benchmark functions are used to illustrate the effectiveness of
the proposed algorithm.

Keywords: Normal distribution, probability particle swarm optimiza-
tion, evolutionary computation.

1 Introduction

The particle swarm optimization (PSO) algorithm, originally proposed by
Kennedy and Eberhart (1995) [1,2], has become one of the fascinating branches
of evolutionary computation. The underlying motivation for the development of
the PSO algorithm is the social behavior of animals such as bird flocking and fish
schooling. In the last decade, the PSO algorithm has been well studied [3,4,5].
For example, in [3], a quantum-behaved particle swarm optimization algorithm
was proposed for a class of unconstrained functions by introducing several simple
quantum concepts. In [4,5], the authors designed a class of hybrid optimization
approaches by combining the PSO algorithm with other methods such as an ant
colony algorithm in order to improve the efficiency of the PSO algorithm. These
improved PSO algorithms [3,4,5] have a common feature, i.e., the particle’s ve-
locity part is considered. However, in 2003, Kennedy [6] (2003) proposed a bare
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bones particle swarm algorithm where the particle’s velocity part is dropped
and the position of any particle on each dimension satisfies a normal distribu-
tion with mean pid+pgd

2 and standard deviation |pid − pgd| where pgd and pid are
the global best position and the previous best position, respectively. From the
bare bones particle swarm algorithm, one can see that this algorithm provides
another way, i.e., probability method to improve the search performance of the
PSO algorithm. Recently, the study on probability particle swarm algorithm has
received increasing interest from scholars [7,8,9,10,11]. For instance, in [7,8], a
particle swarm optimization algorithm based on pheromone mechanism was pro-
posed for unconstrained functions by introducing an information-shared matrix,
which is used to store useful information. In [9,10], based on Gaussian or Cauchy
method, the bare bones particle swarm algorithm was further improved. More-
over, in order to correct the weakness of the PSO algorithm such as linearization
of the curve attained in steady-state, Secrest [11] (2003) presented a Gaussian
particle swarm optimization algorithm. However, only a few results on the study
of the probability particle swarm algorithm are reported. Therefore, how to fur-
ther improve the search performance of the probability particle swarm algorithm
for the problem of unconstrained optimization is the motivation of the current
study.

In this paper, in order to deal with the problem of unconstrained optimization,
we will propose an improved probability particle swarm optimization (IPPSO)
algorithm. The proposed algorithm uses two normal distributions to update
the position of each particle. The means of two normal distributions are the
global best position and the previous best positions, respectively. Moreover, we
will introduce a disturbance to the means of two normal distributions. And
the information about fitness will be used as the standard deviation of the two
normal distributions. We will use twelve benchmark unconstrained functions to
illustrate the effectiveness of the proposed algorithm.

2 An Improved Probability Particle Swarm Optimization
Algorithm

2.1 Algorithm Details

By sampling two normal distributions N((randn()η + 1)pgd(k), u1(k + 1)) and
N((randn()η+1)pid(k), u2(k+1)) , two temporal positions ξg

id(k+1) and ξi
id(k+

1) are obtained by using (1) and (2), respectively.

ξg
id(k + 1) =

randn()
u1(k + 1)

+ (randn()η + 1)pgd(k) (1)

ξi
id(k + 1) =

randn()
u2(k + 1)

+ (randn()η + 1)pid(k) (2)

where randn() is a random number satisfying a normal distribution with mean 0
and variance 1; η is a heuristic parameter; pid denotes the previous best position
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of the ith particle; pgd is the global best position among particles; u1(k+ 1) and
u2(k + 1) are adjustment parameters, which can be calculated by

u1(k + 1) = u1(k) + f(xi(k)) − f(pg(k)) (3)
u2(k + 1) = u2(k) + f(xi(k)) − f(pj(k)) (4)

where xi(k) denotes the position of the ith particle; f : Rn → R denotes the
fitness function; u1(k) and u2(k) can be evaporated as

u1(k) = evp · u1(k) (5)
u2(k) = evp · u2(k) (6)

A threshold lth is defined. If one random number in [0,1] is less than the threshold
lth, the position of the particle will be updated based on (8). Otherwise, it will
be adjusted according to (7).

xid(k + 1) = c1ξ
g
id(k + 1) + c2ξ

i
id(k + 1) (7)

xid(k + 1) = rand() (8)

where rand() denotes a random value in the search range; c1 and c2 are adjust-
ment parameters and satisfy c1 + c2 = 1; xid(k + 1) is a new position of the ith

particle.

2.2 Algorithm Procedure

The procedure of the IPPSO algorithm is summarized as

Algorithm 1 (IPPSO Algorithm)

1. Initialization.
(a) Initialize the threshold lth, adjustment parameters c1 and c2, and

heuristic parameter η.
(b) Initialize the adjustment parameters u1 and u2 with 0.

2. Repeat until a given maximal number of iteration is achieved.
(a) Evaluate the fitness of each particle.
(b) Store the global best particle and fitness.
(c) Store the previous best particle of the ith (i = 1, 2, · · ·n) particle and its

fitness.
(d) Perform (5) and (6).
(e) Each particle performs the following steps.

i. Perform (3) and (4).
ii. Perform (1) and (2).
iii. If a random number is lesser than the threshold lth, perform (8) and

(7) otherwise.
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Table 1. Parameters of the IPPSO algorithm

Population lth c1 c2 (η, evp)d < 10 (η, evp)10 ≤ d < 600 Max iteration

20 0.01 0.8 0.2 (0,0.01) (0.5,0.9) 2000

3 Simulated Experiments

In order to evaluate the performance of the IPPSO algorithm, the experiments
will be conducted from two aspects: the fixed number of function evaluations
and the fixed convergence precision of functions. Several algorithms published in
recent years such as BBPSO [6], BBPSO-GJ1 [9], BBPSO-CJ2 [10] and GPSO
[11] are used as comparison examples. The parameters of the IPPSO algorithm
are listed in Table 1. Moreover, twelve benchmark unconstrained functions can
be seen in [5].

3.1 Fixed Number of Function Evaluations

The objective of this subsection is to evaluate the performance of the IPPSO
algorithm based on the fixed number of function evaluations, which is set as
40000. The average objective function values of the BBPSO, GPSO, BBPSO-GJ1
and BBPSO-GJ2 algorithms over 50 runs on each benchmark function (f1−f12)
are shown in Table 2 and 3.

From Table 2 and 3, one can see that the better average values on functions
f1, f2, f3, f4, f8 and f9 are obtained by using the IPPSO algorithm in contrast
to other algorithms. Moreover, for functions f5 and f6, the BBPSO algorithm
can obtain better function values while the BBPSO-GJ2 algorithm can gain the
better function values for functions f7, f10, f11 and f12.

3.2 Fixed Convergence Precision of Functions

In this subsection, success rate, the number of function evaluations and standard
deviation are used as indexes to evaluate the performance of the IPPSO algo-
rithm under the fixed convergence precision of functions. The results of these
algorithms on functions f1−f12 (each algorithm runs 50 times on each function)
are reported in Table 4 and 5.

From Table 4 and 5, one can see that on functions f1−f8 and f12, 100% success
rate is gained by the IPPSO algorithm while on functions f9 − f10 100% success
rate is only obtained by the BBPSO-GJ2 algorithm. For functions f8 and f11,
function values obtained by the BBPSO, BBPSO-GJ1 and GPSO algorithms
cannot reach the given convergence precision within the max iteration. For the
number of function evaluations, compared with other algorithms, the IPPSO
algorithm also gains the less number of function evaluations on all functions
except for f3, f10, f11 and f12.
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Table 2. Results of the IPPSO, GPSO and BBPSO algorithms based on the fixed
number of function evaluations

Function
Average objective function value (Std.)

IPPSO GPSO BBPSO

f1 3.0000(0) 4.08(5.3446) 3.0000(2.57E-15)

f2 0.3979(0) 0.3979(4.59E-16) 0.3979(3.36E-16)

f3 -2.0000(0) -1.9128(6.94E-2) -1.9976(1.71E-2)

f4 -186.7309(0) -186.7309(1.02E-13) -186.7309(1.785E-13)

f5 -3.8627(3.94E-5) -3.8628(2.57E-15) -3.8628(4.93E-15)

f6 -3.2798(5.60E-2) -3.2651(6.02E-2) -3.2842(5.62E-2)

f7 8.44E-11(3.37E-11) 2.4632E+4(6.87E+3) 3.69E-24(7.31E-24)

f8 2.22E-12(5.67E-13) 3.4661(2.1744) 174.805(147.1863)

f9 8.824(0.99) 40.0857(92.2618) 100.557(318.9685)

f10 3.4E-3(6.8E-3) 9.9E-3(9.8E-3) 1.22E-2(1.64E-2)

f11 1.67(6.22) 124.1306(27.52) 73.6069(23.6241)

f12 5.41E-7(4.33E-7) 2.71E-2(2.14E-2) 1.4E-2(2.06E-2)

Table 3. Results of the IPPSO, BBPSO-GJ1 and BBPSO-GJ2 algorithms based on
the fixed number of function evaluations

Function
Average objective function value (Std.)

IPPSO BBPSO − GJ2 BBPSO − GJ1

f1 3.0000(0) 3.0000(2.68E-15) 3.0136(5.12E-2)

f2 0.3979(0) 1.2059(1.0143) 0.3979(6.08E-5)

f3 -2.0000(0) -2.0000(0) -1.9882(2.23E-2)

f4 -186.7309(0) -186.5531(2.08E-1) -186.6962(1.538E-1)

f5 -3.8627(3.94E-5) -3.8595(3.2E-3) -3.8413(2.92E-2)

f6 -3.2798(5.60E-2) -3.0103(7.18E-2) -2.9864(1.55E-1)

f7 8.44E-11(3.37E-11) 0(0) 6.52E+4(5.49E+4)

f8 2.22E-12(5.67E-13) 2.2614E-6(1.01E-5) 1.25E+4(4.78E+3)

f9 8.824(0.99) 9.5279(0.6023) 1.44E+5(4.14E+5)

f10 3.4E-3(6.8E-3) 0(6.34E-3) 2.63E-2(3E-2)

f11 1.67(6.22) 1.1689(4.006) 27.343(8.288)

f12 5.41E-7(4.33E-7) 0(0) 5.2E-3(1.6E-2)
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Table 4. Results of the IPPSO, GPSO and BBPSO algorithms based on the fixed
convergence precision of functions

Function Required
Success rate Function evaluations(Std.)

accuracy IPPSO GPSO BBPSO IPPSO GPSO BBPSO

f1
1E-3 100 100 100 329 304 329

(136.91) (87.27) (71.85)

f2
1E-3 100 100 100 152 287 275

(76.45) (133.75) (126.07)

f3
1E-3 100 46 94 1028 21842 3026

(632.75) (1.98E+4) (9.45E+3)

f4
1E-2 100 100 98 373 668 2368

(148.87) (262.14) (6.45E+3)

f5
1E-4 100 100 100 538 1736 356.8

(342.27) (1352) (86.125)

f6
1E-3 100 44 68 402 22709 1317

(79.61) (1.97E+4) (1.85E+4)

f7
1E-5 100 0 100 1810 40000 14172

(101.67) (0) (897.80)

f8
1E-5 100 0 0 9077 40000 40000

(3.11E+3) (0) (0)

f9
10 98 0 62 1614 40000 19488

(5.54E+3) (0) (1.77E+4))

f10
1E-2 84 56 58 11043 26188 22424

(1.56E+4) (1.25E+4) (1.51E+4)

f11
1E-2 90 0 0 14362 40000 40000

(1.25E+4) (0) (0)

f12
1E-5 100 30 74 5156 30137 13479

(6.32E+3) (1.57E+4) (1.7E+4)
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Table 5. Results of the IPPSO, BBPSO-GJ1 and BBPSO-GJ2 algorithms based on
the fixed convergence precision of functions

Function Required
Success rate Function evaluations

BBPSO BBPSO BBPSO BBPSO
accuracy IPPSO -GJ1 -GJ2 IPPSO -GJ1 -GJ2

f1
1E-3 100 82 100 329 8845 698

(136.91) (1.57E+4) (349.44)

f2
1E-3 100 100 96 152 457 4795

(76.45) (708.70) (9.12E+3)

f3
1E-3 100 36 100 1028 25980 628

(632.75) (1.89E+4) (182.23)

f4
1E-2 100 82 18 373 8936 37066

(148.87) (1.55E+4) (7.86E+3)

f5
1E-4 100 10 0 538 36027 40000

(342.27) (1.2E+4) (0)

f6
1E-3 100 0 0 402 40000 40000

(79.61) (0) (0)

f7
1E-5 100 0 100 1810 40000 11498

(101.67) (0) (604.88)

f8
1E-5 100 0 86 9077 40000 32108

(3.11E+3) (0) (5.98E+3)

f9
10 98 0 100 1614 40000 4523

(5.54E+3) (0) (528.48)

f10
1E-2 84 0 100 11043 40000 9103

(1.56E+4) (0) (804.56)

f11
1E-2 90 0 100 14362 40000 9041

(1.25E+4) (0) (925.17)

f12
1E-5 100 10 100 5156 36495 1554

(6.32E+3) (1.07E+4) (412.36)

4 Conclusion

An improved probability particle swarm optimization (IPPSO) algorithm has
been proposed. We have also illustrated the effectiveness of the proposed algo-
rithm through twelve benchmark functions from two aspects: the fixed number of
function evaluations and the fixed convergence precision of functions. It is worth
mentioning that BBPSO-GJ2 can also generate much better results, especially
for functions with many local maxima.
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Abstract. Niching is an important technique for mutlimodal optimization. This
paper proposed an improved niching technique based on particle swarm optimizer
to locate multiple optima. In the proposed algorithm, the algorithm inspired from
natural ecosystem form niches automatically without any prespecified problem
dependent parameters. Experiment results demonstrated that the proposed nich-
ing method is superior to the classic niching methods which are with or without
niching parameters.

1 Introduction

Particle swarm optimization [1,2] like evolutionary algorithms (EAs) is effective and
robust to solve difficult optimization problems. However, the original algorithm as well
as most of variants were designed to obtain only one global optimum. Those variants
can only locate a single optimum, because they were designed to converge to only one
optimum by the information sharing mechanism. However, there are many real world
problems which have multiple optimum solutions. Those solutions are equally good
and the practitioner may need several solutions to provide several options. Optimization
methods which can get more than one optimum solutions are desired to satisfy those
needs. At the same time, locating multiple optima can reduce the chance of getting
trapped in local optima.

Mutlimodal Function is the functions which have many optima, or exist one global
optimum and several useful local optima in the feasible solution space. There are many
such problems in the real world, such as rule discovery in Data Mining, neural network
ensemble and so on. Mutlimodal Optimization (MMO) is used to handle mutlimodal
problems, and can obtain several solutions. Evolutionary Algorithm (EA) and Swarm
Intelligence (SI) based on population search have a great potential to locate multiple
optima simultaneously in the search space.

In recent years, numerous techniques have been proposed to handle mutlimodal op-
timization problems. These methods are referred as niching techniques. Niching tech-
niques are incorporated into the traditional EA to locate multiple solutions, and some-
times, they also incorporated into EA aiming to avoid trapping in local optima as well
as multi-objective optimization to maintain diversity. Recently, there are several clas-
sic niching techniques which have been proposed, such as, deterministic crowding [3],

Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 110–119, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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fitness sharing [4], clustering [5], clearing [6] and speciation [7]. Those techniques are
proposed in the literature of EAs, some of which were introduced to PSO to enable PSO
to handle mutlimodal optimization problems, such as SPSO [7] and MSPSO [8], [9].
Those methods have some deficiencies, such as some methods need optima distribution
to set the radius to a optimal value.

To overcome the existing deficiencies especially the prespecified problem depen-
dent parameters, in this paper, an algorithm based on PSO without any parameters was
proposed. This method was inspired from the natural ecosystem, the mechanism that
can form niches automatically. Under this natural ecosystem mechanism, every particle
learns from its nearest neighbor and impacts its neighbor.

2 Related Works

2.1 Particle Swarm Optimization

PSO was proposed by emulating the social behavior. Each individual represents a point
in the feasible solution space. The individual also called particle represents a potential
solution. This kind of information sharing mechanism guides the population moving
toward the optimum area. In the original PSO, the velocity V d

i ad position Xd
i of the

dth dimension of the ith particle are updated as equation 1, 2.

V d
i =V d

i + c1 × rand1d
i × (pbestdi −Xd

i

)
+ c2 × rand2d

i × (gbestd −Xd
i

)
(1)

Xd
i =Xd

i + V d
i (2)

Where Xi =
(
X1

i , X
2
i , . . . , X

d
i

)
is the position of the ith particle; Vi =(

V 1
i , V

2
i , . . . , V

d
i

)
represents velocity of the ith particle. pbesti is the best postion that

the ith particle experienced; gbest is the best position that the whole population ex-
perienced. c1 and c2 are two acceleration constants representing the attraction weight
of pbest and gbest. rand1d

i and rand2d
i are two random numbers between 0 and 1. In

those two equations, we can find that each particle was guided by the pbest and gbest.
PSO has attracted a high level of interest, and many variants were proposed. One

of the most famous variants called constriction-factor variant [10]. It is basically the
same as the original version, except that the velocity is updated by equation 3 instead
of equation 1.

V d
i =χ

(
V d

i + c1 × rand1d
i × (pbestdi −Xd

i

)
+c2 × rand2d

i × (gbestd −Xd
i

))
(3)

Where

χ =
2

2 − ϕ−
√
ϕ2 − 4ϕ

and ϕ = c1 + c2, ϕ > 4.0.

There are many variants based on choosing gbest, two well-known of which are gbest
and lbest model. The methods above are global PSO, which are a fully connected and
informed topology, every particle communicates with the whole population. While in
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lbest model, particles only interact with the particles in their neighborhood. The best
one in their neighborhood called lbest is chosen to take the place of gbest in global
model. PSOs with various population topologies [11] were studied. In the lbest model,
the velocity is updated by the equation 4 instead of 1.

V d
i =χ

(
V d

i + c1 × rand1d
i × (pbestdi −Xd

i

)
+c2 × rand2d

i × (lbestd −Xd
i

))
(4)

In this equation, lbest is the best particle in the i-th neighborhood. In this version, par-
ticles can do a local search rather than converge to a area quickly which may lead to
premature. This can somehow avoid premature and maintain population diversity.

In fact, niching is a technique used to form some species, which is essentially a local
model of neighborhood. To some degree, neighborhood topologies can lead to niching
methods.

2.2 Automatic Niching Particle Swarm (ANPSO)

Elite strategy was used to keep diversity when dealing with multi-objective optimiza-
tion [12]. When dealing with mutlimodal optimization, diversity is also important. In
this paper, elite was introduced to cooperate with PSO to handle multimodal optimiza-
tion problems. Roulette Wheel Selection algorithm was used to choose the individual
into elite. In this method, the individual with high fitness is more likely to be selected
into the elites.

When dealing with mutlimodal optimization problems, many variants divide the
swarm into some small subswarms aiming to search for different optima. In our re-
search, individual and its closest neighbor are more likely to be in the same group.
Figure.1 and 2 give an example of 30 indiviual distribute in the landscape of Himmel-
blau function [13]. It can be concluded that individual and its closest neighbor are more
likely to locate in the same subswarm, we call it mechnism nearest neighbor. In this pa-
per, elite an nearest neighbor was introduced to cooperate with PSO. Elite individuals
were chosen from pbests, the pbests with high fitness were more likely to be chosen into
elites, and they were considered as exemplar to be learned from. When diciding which
individual in elite to be learned from, nearest neighbor mechanism was implimented.
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In Figure.3 and 4, we can see that individual and its nearest neighbor in elite are more
likely to be in the same subswarm. The proposed method is given in Algorithm 1.

The mechanism can also be viewed in the aspect of natural ecosystems and social
system as PSO. In natural ecosystems or social system, individuals get information and
learn from elite individuals around as well as from their experience. Every individual
can be elited, but the individuals with high fitness are more likely to be treated as elite.
This mechnism is emulated by Roulette Wheel Selection algorithm. After identifying
the elite, individuals are more likely to learn from the elite that share most common
with itself. Since the characteristic of particle in swarm is identified by its location,
it can be considered that the closer two particle, the more common they share. This
can be emulated by learning from the closest elite. Roulette Wheel Selection algorithm
was used to simulate the chosen elites. In this algorithm, pbests have high fitness are
more likely to be chosen into elite. After choosing the elite, the nearest elite of i-th was
chosen as lbest to be learned from.

Algorithm 1. Pseudo Code of ANPSO
for iteration ≤ maxGeneration do

for all particle in the swarm do
Calculate the elite using Roulette Wheel Selection algorithm;
Choose the nearest one of elite as the lbest for i-th particle;
Update velocity and position by equation 4 and 2;

end for
end for

3 Experiment

Some widely used classic functions were used to evaluate the ability of our proposed
algorithm, including simple one dimensional and complex two dimensional functions.
The primary aims of our experiments are to demonstrate that the proposed algorithm
can form niches automatically without any prespecified parameters, to demonstrate that
our method can locate multiple solutions, to compare with the niching algorithms with
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and without parameters, and to demonstrate that our niching method without parameter
superior to the classic niching method without parameters.

The proposed algorithm were compared with two classic PSO based niching
algorithms.

– SPSO: This algorithm was a classic niching algorithm, which came from the clas-
sical GA based on niching algorithm (SCGA) [7] and relied on a prespecified
speciation radius. It was proved superior to species conserving genetic algorithm
(SCGA) [14].

– RPSO [15]: This algorithm was recently proposed classical niching algorithm with-
out any niching parameters.

In the following of this section, we will describe the test functions used to conduct those
experiments and the performance measurements used to estimate the performance of
those algorithms.

3.1 Test Functions

The test functions used in those experiments were showed in the Table 1, those functions
were categorized to 2 groups including simple and single dimensional functions and
more complex two dimensional functions. Those classic functions are widely used.

3.2 Parameters

For function f1 to f8, we used 50 particles which are enough to handle those problem.
All the mutlimodal algorithms run for 10000 function evaluations.

Table 1. Test Functions

Name Test Function

Central Two-Peak Trap [16] f1 (x) =

⎧⎨
⎩

16x for 0 ≤ x < 10,
32 (15 − x) for 10 ≤ x < 15,
40 (x − 15) for 15 ≤ x ≤ 20.

Five-Uneven-Peak Trap [7] f2 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

80 (2.5 − x) for 0 ≤ x < 2.5,
64 (x − 2.5) for 2.5 ≤ x < 5.0,
64 (7.5 − x) for 5.0 ≤ x < 7.5,
28 (x − 7.5) for 7.5 ≤ x < 12.5,
28 (17.5 − x) for 12.5 ≤ x < 17.5,
32 (x − 17.5) for 17.5 ≤ x < 22.5,
32 (27.5 − x) for 22.5 ≤ x < 27.5,
80 (x − 27.5) for 27.5 ≤ x ≤ 30.

Equal Maxima [13] f3 (x) = sin6 (5πx)

Decreasing Maxima [13] f4(x) =
(
e−2 log(2)×( x−0.1

0.8 )2
)
× sin6 (5πx)

Uneven Maxima [13] f5(x) = sin6
(
5π
(
x3/4 − 0.05

))
Uneven Decreasing Maxima [13] f6(x) =

(
e−2 log(2)×( x−0.08

0.854 )2
)
× sin6

(
5π
(
x3/4 − 0.05

))
Himmelblau function [13] f7(x, y) = (x2 + y − 11)2 − (x + y2 − 7)2

Six-Hump Camel Back [17] f8 (x, y) =
(
4 − 2.1x2 + x4

3

)
x2 + xy +

(−4 + 4y2
)
y2
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All the variants of PSO were compared in this paper by using the standard constricted
version. If any particle with a position xi exceeding the boundary of the variable range,
its position is reset to a value that is twice of the boundary subtracting xi, this method
is also be used by RPSO [15]. For SPSO, we set the species radius r to a value that is
less than the distance between the two closest particles.

3.3 Performance Measure

The performance of the algorithms is estimated in two aspects, the success probability
of a run and the computation each method spent to locate all the optima.

To identify a located optimum, we prespecify a accept value ε (typically ε > 0),
representing how close the fitness of the computed solution to that of the known global
optima that the solution can be accepted as a optimum. It can be formally presented in
equation 5.

|f(solution)− goal| ≤ ε (5)

In equation 5, the solution is the fitness of located optimum and the goal is the fitness of
global optimum. If the difference between fitness of the solution and goal is not larger
than ε, then the solution was acceptted as a optimum.

The success probability in this paper is also called success rate in other papers.
which is the percentage of runs in which all the global optima are successfully lo-
cated. The success rate relies on the prespecified ε, for a large value of ε, which means
relaxed acceptted condition lead to a higher success rate, while low value means harsh
acceptted condition lead to a lower success rate.

In this paper, evaluation is considered to be the only source of computation, so com-
putation is represented by the number of evaluations spent to reach the goal. In this
paper, it was represented by the average number of evaluations of all the runs.

4 Result

4.1 Ability to form Niching Automatiocally

Fig.5(a)-(c) shows a simulation run of the ANPSO on Himmelblau function using 50
particles. In those figures, red circle represent the optimum solution, red ’*’ represent
current position, green circle represent pbest, the blue lines connect the current position
and pbest togother.We can see in the figure that, at the beginning, all the distribute in the
search space randomly, and after 10 generation, they begin to cluster into subswarms.
At the time of generation 20, there are subswarms in the area of global optima. This
shows ANPSO having the ability to forming niches automatically.

4.2 1-Dimensional Function

For f1, when ε set to 1, all of the three methods are able to locate all of the global
optima with a success rate 100%. However, when raise the threshold, such as set ε to
0.001, only ANPSO have a success rate of 100%, and ANPSO is also faster than the
other two methods.
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Fig. 5. A simulation run of the ANPSO on Himmelblau function using 50 particles: (a) Genera-
tion 1 (b) Generation 10 (c) Generation 20

There are 2 global optima, and 3 local optima in f2, those give some challenges to the
optimization algorithms. All of the three methods are unable to locate all optima with
high success rate, while ANPSO have the highest success rate and lowest computation.
f3, f4, f5 and f6 were classic one dimensional test functions, introduced by Deb [13].

Both of f3 and f5 have five global optima, but the optima of f3 are evenly distributed,
while optima of f5 are unevenly distributed. This gives a great challenge to the prespec-
ified radius needed method to specify optimal radius. A too large or too small radius
will either unable to distinguish two niches, or to create too many niches, and lead to
lose some optima or cost large computation. f4 and f6 are functions with a single global
optimum with 4 local optima. Those two functions are used to test whether the optimiza-
tion algorithms can avoid local optima or not. SPSO and ANPSO have an equivalent
performance superior to RPSO, while SPSO need a specified radius.

4.3 2-Dimensional Function

Most of existing methods have good performance on single-dimensional functions,
2-dimensional functions are challenges to the mutlimodal optimization algorithms. f7
named Himmelblau have 4 equally global optima, RPSO missed some optima in some
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runs, have a lower success rate of 56%, ANPSO is superior to RPSO the one also
doesn’t need any parameters. However, thanks to the prespecified radius, SPSO also
gets a 100% success rate and the computation is as low as ANPSO.

4.4 Success Probability and Computation

Table 2 summarizes the success rates on function f1 to f8, A population size of 50 was
used. The PSO niching algorithms were run until all known global optima were found,
or reach the maximum of 10000 evaluations were reached. Both of ANPSO and RPSO
do not need any parameters, while SPSO needs r as radius of niche. Those parameters
are used for measuring performance. In all of the run, ANPSO have a highest success
rate, though SPSO takes the advantage of radius. Compared with the RPSO, which
doesn’t need any parameters, ANPSO have a much better performance.

Table 2. Success Rates

Function ε r ANPSO RPSO SPSO
f1 0.1 5 100% 98% 46%
f2 0.1 10 96% 46% 44%
f3 0.001 0.05 100% 100% 100%
f4 0.001 0.05 100% 100% 100%
f5 0.001 0.05 100% 88% 100%
f6 0.001 0.05 100% 100% 100%
f7 0.001 2 100% 56% 100%
f8 0.00025 0.5 100% 100% 100%

Table 3. Averaged Evaluation times Over 50 Runs (Mean and One Standard Error) for Results
Presented in Table 2

Function ANPSO RPSO SPSO
f1 896 1450 6461

(361.10) (1409) (4222.1)
f2 2628 6737 7285

(2124.4) (3813.9) (3833.6)
f3 670 1424 446

(325.45) (1202.9) (190.82)
f4 282 285 248

(158.04) (168.80) (144.26)
f5 637 2334 467

(235.56) (3154.4) (170.12)
f6 346 367 338

(214.24) (181.72) (277.85)
f7 2635 6076 2598

(994.9) (3594.20) (447.32)
f8 1238 1319 1199

(211.54) (246.38) (289)
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Table 3 gives the number of evaluations for each experiment to achieve the success
rates presented in Table 2. From the table, we can see that, thanks to the prespecified
radius, the computation of ANPSO is a little larger than SPSO, while compared the
parameter independent RPSO, the computation is much lower, while SPSO needs a
prespecified and problem dependent radius.

5 Conclusion and Future

This paper proposed a new niching method inspired from natural ecosystem, and incor-
porating with Particle Swarm Optimization, implement ANPSO. The proposed method
does not rely on any prespecified parameters, and can form niches automatically. Com-
pared with the other classic niching methods, it is superior to those methods in terms of
success rate and computation time without any prespecified parameters. It have a high
success rate and low computation as SPSO, and parameters independent as RPSO.
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Abstract. A major challenge in task scheduling is the availability of resources. 
In a heterogeneous environment, where processors operate at different speeds 
and are not continuously available for computation, achieving a better make-span 
is a key issue. The existing algorithm SSAC has proved to be a good trade-off 
between availability and responsiveness while maintaining a good performance 
in the average response time of multiclass tasks. But the makespan may be influ-
enced due to load imbalance. In this paper we proposed approach try to further 
optimize this scheduling strategy by using quantum-behaved particle swarm  
optimization. And compared with SSAC and MINMIN in the simulation ex-
periment; results indicate that our proposed technique is a better solution for re-
ducing the makespan considerably. 

Keywords: Quantum-behaved Particle Swarm Optimization, Task Scheduling, 
Heterogeneous Systems. 

1   Introduction 

P2P networks, Clusters and grids are a popular paradigm for parallel and distributed 
computing [1]. In a grid environment, the resources are geographically distributed, 
managed and owned by different organizations with their own policies and intercon-
nected via the Internet [2]. This introduces a number of resource management issues 
and scheduling strategies in the domain of security, resources and heterogeneity [3]. 
The resource management and scheduling systems for grid computing need to manage 
resources depending on several factors like consumers or the owners and hence con-
tinuously adapt to changes in resource availability [4]. A major challenge in task 
scheduling is the availability of resources. In a heterogeneous environment, where 
processors operate at different speeds and are not continuously available for computa-
tion, achieving a better make-span is a key issue [5,6].  

Quantum Particle Swarm Optimization algorithm [7,8] (QPSO) is a new optimum 
method that combines quantum computation with Particle Swarm Optimization (PSO). It 
appears strong life-force and be valuable for research. Quantum computation absorbed 
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many essential characters of quantum mechanics, which improved the computation effi-
ciency, and become a brand new model of computation. Hence, QPSO has greatly  
enhanced the efficiency of search and can compensate for the lack of PSO and it has a 
wide research foreground. 

The existing algorithm SSAC has proved to be a good trade-off between availabil-
ity and responsiveness while maintaining a good performance in the average response 
time of multiclass tasks. But the makespan may be influenced due to load imbalance 
[9]. In this paper we proposed approach try to further optimize this scheduling strat-
egy by using quantum-behaved particle swarm optimization. And compared with 
SSAC and MINMIN in the simulation experiment; results indicate that our proposed 
technique is a better solution for reducing the makespan considerably. 

The rest of this paper is organized as follows: section 2 describes the background of 
QPSO and model of task scheduling in heterogeneous systems; in section 3, QPSO for 
task scheduling in heterogeneous systems is introduced; in section 4, Experimental results 
and analyses are given. At last, the conclusions and future work are given in section 5.1 

2   Background 

2.1   Quantum-behaved Particle Swarm Optimization 

PSO was originally developed by Kennedy and Eberhart [10]. In PSO, a swarm con-
sists of a set of particles, where each particle represents a potential solution. Cur-
rently, Jun sun [7,8] etc proposed quantum-behaved particle swarm optimization 
(QPSO) based on quantum delta potential well. The basic idea is assumed that all 
particles moving in quantum field will converge to a minimal area where potential 
power is infinite. The QPSO framework presented as follows. 

The QPSO eliminate velocity’s notion, because particles’ state is represented by 
wave function ),( txψ  in the quantum time-space framework. Example, in 3-

dimensional wave function denoted as [11]  

        Qdxdydzdxdydz|ψ =2|                                          (1)  

Where Qdxdydz the probability that measurement of the particle's position at the time 
t finds it in the volume element about the point (x, y, z). Particles have not fixed posi-
tion in quantum time space. We can consider that particle may appear in anywhere 
simultaneously, and it collapses to an assured position as soon as macroscopically 

measuring by corresponding probability. 2||ψ is the probability density function 

satisfying 

                 ∫∫
+∞

∞−

+∞

∞−
== 1|| 2 Qdxdydzdxdydzψ                                   (2)  
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Namely, any particle’s probability of appearing in whole space is 1.  
At first, algorithm generate a position vector P which locate between Pi and Pg, and P 
denoted as  

)/()( 2121 ϕϕϕϕ ++= gi PPP                                        (3)  

Then update position vector according to probability density function [14]. 

[ ] PxPx −××±=+ )()/1ln()/1()1( tugt ii       
                     (4)  

Where parameter g is the variable needs to be adjusted in algorithm，constrained by 

2ln>g . Another parameter u is a random number which range between (0, 1) 

and showed normal distribution. The probability of plus and minus in equation (4) is 
50% respectively. 

2.2   Model of Task Scheduling for Heterogeneous Systems 

Now, we formulate the scheduling problem as a trade-off problem between availabil-
ity and the mean response time. Thus, the proposed scheduling algorithm aims at 
improving system availability and maintaining an ideal response time of submitted 
tasks [12]. More formally, the problem of maximizing the availability of a heteroge-
neous system can be formulated as follows [13]: 

Maximize A = ∑ ∑
= = ⎪⎭

⎪
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exp
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                          (5)  

Subject to the following response time constraints: 

                              :,1,1 jianjmi ξ≤≤≤≤≤∀  Miminize TCi                                          (6)  

The above constraint is the response time constraints, each of which means that, 
among nodes whose availability shortage factor for class i equals zero, a node is cho-
sen for the ith class in such a way as to minimize the mean response time of class i. 
Notice that the response time constraints can be satisfied by estimating the mean re-
sponse times of class i on all candidate nodes whose availability shortage factor for 
class i is zero. 

Computational heterogeneity captures the nature of heterogeneous computing plat-
forms where the execution times of each task on different nodes are distinctive. Al-
though each multiclass task has an availability requirement, computational nodes 
exhibit a variety of availability levels. For simplicity and without loss of generality, 
the availability levels and availability requirements are normalized in the range from 
0 to 1.0. We introduce the concepts of computational heterogeneity and availability 
heterogeneity. The computational weight of class i on node j is defined as the ratio 
between its service rate on node j and the fastest service rate in the system. That is, 
the computational weight is expressed by: 

       wij = ( )ik
n
kij μμ 1max/ =                                            (7)  
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The computational heterogeneity of the ith class, that is, HCi, can be measured by the 
standard deviation of the computational weights. Thus, we have: 

         HCi = ( )
2

1

1∑
=

−
n

j

iji ww
n

                                           (8)  

The computational heterogeneity can be expressed as follows: 

  HC = ∑
=

m

i

iHC
m 1

1
                                               (9)  

The heterogeneity of availability HA in a heterogeneous system is measured by the 
standard deviation of the availability offered by all the nodes in the system. Hence, 
HA is written as: 

HA = ( ) where
n

n

j

j ,
1

1
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=
ξξ             (10)  

3   Task Scheduling for Heterogeneous Systems Based on QPSO 

If the model is m-jobs and n-machines, suppose that the searching space is m-
dimensional and S particles form the colony. The ith particle represents an m-
dimensional vector Xi (i =1,2, ..., s). It means that the ith particle locates at Xi which 
is one sequence in the searching space. The position of each particle is a potential 
result. We could calculate the particle’s fitness by putting its position into a desig-
nated objective function. When the fitness is lower, the corresponding Xi is better. 
The ith particle’s “flying” velocity is also an m-dimensional vector, denoted as Vi. 
Denote the best position of the ith particle as pi, and the best position of the colony as 
pg, respectively. In QPSO, each particle of the swarm shares mutual information 
globally and benefits from discoveries and previous experiences of all other col-
leagues during the search process. 

Steps of QPSO to minimizing the makespan: 
Step 1: Let population size be psize, the termination generation number Maxgen. 

Iterative number be k = 0, Give birth to psize initializing particles. Calculate each 
particle’s fitness value of initialization population, and let first generation pi be ini-
tialization particles, and choose the particle with the best fitness value of all the parti-
cles as the pg(gBest). 

Step 2: The parameter gbests and pbests are evaluated on functions. Choose the 
current nondominated from these variables and the solutions in archive file. Then 
update the archive set by deleting the solutions which dominated by new solutions 
and insert the nondominated into the archive file. On this step, if the capacity of A is 
overflowing, the solution will be deleted where in the densest area, which is imple-
mented by Partition algorithm with O(nlogn) time complexity in this paper. If the 
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fitness value is better than the best fitness value pi(pBest) in history, let the current 
value be the new pi(pBest). Choose the particle with the best fitness value of all the 
particles as the pg(gBest). If k = = Maxgen, go to Step 3, or else let k = k + 1, go to 
Step 2. 

Step 3: Put out the pg. We see that there are two key steps when applying QPSO to 
the algorithm: the representation of the solution and the fitness function. The stop 
condition depends on the problem to be optimized. 

Step 4: According to gbest and pbest generated by step 4 update the particle’s posi-
tion by formulae (3) and (4) 

Step 5: Repeat from step 2, and add the parameter t to t + 1. 

4   Experimental Results and Analysis 

We compare our strategy with SSAC and MINMIN. The parameters used in experi-
ment are shown in Table 1. These parameters are selected based on those used in the 
literature or represent real world heterogeneous systems. The performance metrics 
used to evaluate the performance of algorithm are described as: 

(1)Makespan: It is the time difference between the start and finish of a sequence of 
jobs or tasks.  

(2)Availability. It is the probability that the system is continuously performing at 
any random period of time. 

Table 1. Parameters 

Parameter Values 
Number of nodes 20 
Number of tasks 32(32,48,64,128) 
Mean task arrival rate 1.0 
Node availability 0.1-1.0 
Population size 50 
Max. Generations  350 
Intertia (w) 0.6 
Constants (c1, c2) 2.5 

 

(1)Experimental I 
In this experiment, we study the behavior of our algorithm against the arrival rate of 
tasks in the ith class. We vary the mean arrival rate from 0.2 to 1.0 with an increment 
of 0.2 as in SSAC algorithm. Figure 1 and Figure 2 shows the results of three  
algorithms. 

From Figure 1 it can be seen that our algorithm provides a better makespan than 
the other two algorithms. It is considerably a lesser than SSAC and is a bit higher than 
MINMIN. The reason is MINMIN algorithm schedules its tasks depending on those 
nodes that provide the earliest completion time. Whereas our new algorithm takes the 
nodes availability into account. 
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Fig. 2. Performance impact of arrival rate-Availability 

(2)Experimental II 
In this experiment the number of nodes was varied. This part focuses on the scalabil-
ity of the algorithm. We vary the number of nodes in the simulated heterogeneous 
environment from 32 to 128. Figure 3 and Figure 4 are the resulting performance 
graphs. In Figure 3, it could be observed that as the number of nodes is increased the 
makespan also improves as now our algorithm can schedule the tasks appropriately. 
With more nodes in the environment, the nodes tend to get less workload to execute. 
Hence a noticeable improvement against SSAC. 

MINMIN algorithm performs badly as opposed to SSAC and our algorithm. This 
result can be depicted in Figure 4. Since the algorithm proposed in availability-aware 
it makes best use of its resources. 
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5   Conclusions 

In this paper we proposed approach try to further optimize this scheduling strategy by 
using quantum-behaved particle swarm optimization. And compared with SSAC and 
MINMIN in the simulation experiment; results indicate that our proposed technique is 
a better solution for reducing the makespan considerably. 
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Abstract. This paper investigates the two-machine flow shop group scheduling 
problem with the transportation times and sequence-dependent setup times con-
siderations. The objective is to minimize the total completion time. In this  
paper, a novel encoding scheme of PSO for flow shop group scheduling is pro-
posed to effectively solve various instances with group numbers up to 15.  Note 
that the proposed encoding scheme simultaneously determines the sequence of 
jobs in each group and the sequence of groups. Three different lower bounds 
are developed to evaluate the performance of the proposed PSO algorithm. 
Limited numerical results show that the proposed PSO algorithm performs well 
for all test problems.  

Keywords: Group scheduling, Transportation times, Sequence-dependent, 
Setup times, PSO. 

1   Introduction 

Production Scheduling based on the group technology concept is called group sched-
uling (GS) in which those parts requiring a similar production process are grouped in 
the same group. The objective of GS problem (GSP) is to identify the sequence of 
groups as well as the sequence of jobs in each group such that the total completion 
time is minimized. Unlike the other classic scheduling problems, GSP must simulta-
neously determine the sequence of jobs in each group and the sequence of groups. As 
jobs that belong to the same group are similar, changing from one job to another in 
the same group requires negligible setup time or it can be included along with the 
processing time. However, a change from one group to another would require spend-
ing a significant amount of time that cannot be ignored. Moreover, the required setup 
time for a machine to process a group depends on the group previously processed on 
that machine. Such a GSP is known as a flow shop sequence- dependent group 
scheduling problem (FSDGSP). Garey et al. [1] proved that the multi-stage flow shop 
job scheduling problem with minimized total flow time is an NP-hard problem. A 
two-machine GSP belongs to a multi-stage flow shop scheduling problem. Therefore, 
the two-machine GSP is an NP-hard problem. Because two-machine FSDGSP gener-
alizes two-machine GSP, it is also an NP-hard problem. 
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In practice, there are several FSDGSP applications, e.g. the automobile manufac-
turing paint shop. Recent studies also show another application for electronic manu-
facturing. Schaller et al. [2] discussed a printed circuit board industrial problem in 
which a major setup is required to switch from one group of printed circuit boards to 
another. References in Logendran et al. [3] are relative studies to this field.  

Particle swarm optimization (PSO) algorithm was developed by Kennedy and 
Eberhart in 1995 [4]. It was used to simulate the social behavior of organisms in a 
flock of birds or a school of fish and was introduced as a population-based searching 
technique.  As an evolutionary algorithm, PSO conducts a search through updating a 
population (called a swarm) of individuals (called particles). The relationship between 
the swarm and particles in PSO is like the relationship between a population and 
chromosomes in GA (Genetic Algorithm). In PSO, the problem solution space is 
described as a search space and each position in the search space is a possible solution 
for the problem. When PSO is applied to an optimization problem with m variables, 
the solution space can be formulated as an m-dimensional search space and the value 
of the jth variable is formulated as the position on jth dimension.  All particles coop-
erate to discover the best position (solution) in the search space. 

The main advantages of PSO are that it contains a simple structure and is immedi-
ately accessible for practical applications, ease of implementation, robustness and 
speed in acquiring solutions.  Therefore, the PSO algorithm has high potential for 
solving this two-machine FSDGSP. 

The purposes of this paper are as follows: 

(1) To first consider the two-machine FSDGSP with job transportation times be-
tween machines, and sequence-dependent setup times. Clearly, the studied two-
machine FSDGSP generalizes the typical two-machine flow shop GSPs.   

(2) To propose an encoding scheme of PSO for solving the two-machine FSDGSP.  
Numerical results for various instances, with group numbers up to 15, are re-
ported and discussed. 

(3) To develop three lower bounds for the two-machine FSDGSP.  

2   Problem Description 

2.1   Notations  

The following notations are introduced to characterize the problem. 
Mk the kth machine, k ∈{1, 2} 
n the number of groups  
Gi the set of jobs in group i, i = 1, 2,…, n 
ni the number of jobs in group Gi, i = 1, 2,…, n 
Jij the jth job in group Gi, j = 1, 2,…, ni 
aij the processing time of job Jij in group Gi on M1 1, j = 1, 2,…, ni 

bij the processing time of job Jij in group Gi on M2, j = 1, 2,…, ni 
tij the transportation time of moving job Jij in group Gi from M1 to M2, j = 1, 

2,…, ni 
spjm the setup time of group Gj on Mm, if group Gj is processed immediately 

after group Gp, m=1, 2 
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Ti the minimum time length for processing jobs in group Gi determined by 
Maggu and Das’s algorithm [5] 

The assumptions for the studied two-machine FSDGSP are the same with those in 
Logendran et al. [3]. 

2.2   Objective Function 

Yang et al. [6] proposed a polynomial time algorithm to solve two-machine flow shop 
GSP with sequence-independent setup and removal times and a transportation time 
between machines was also considered. We extend their algorithm to solve the two-
machine FSDGSP with sequence-dependent setup times and the transportation time 
between machines.   

In the following, we define each group as a composition job, which is similar to the 
one presented in Yang et al. [6]. The composition job is defined such that there is no 
intermediate idle time among these operations on each machine. For a group Gi , 
which is processed after group Gk, the associated composition job is defined as a 
processing vector (αi, βi, δi), where 

 αi = Ti −∑ =
in

j ijb
1

+ ski1 − ski2 (1) 

 βi = Ti −∑ =
in

j ija
1

 (2) 

 δi = Ti + ski1 − max {αi, 0} − max {βi, 0} (3) 

Note that αi and βi may be negative.  |αi| and |βi| are the lengths of time periods when 
exactly one of the machines is busy and δi is the length of the time period when both 
machines are busy.  For a group sequence S, let Cij be the completion time of group Gi 
on machine j, j =1, 2, with group Gk being processed immediately before Gi. Then the 
completion time of group Gi can be obtained as follows. 

 Ci1 = Ck1+ max {αi, 0} + δi − min {0, βi}  (4) 

 Ci2 = max {Ck1+ max {αi, 0}, Ck2 − min {0, αi}} + δi + max {βi, 0} (5) 

Therefore, we can evaluate the total completion time for a group sequence S using 
Eqs. (4) and (5). 

3   Novel PSO Encoding Scheme 

It is generally believed that the major difficulty in applying a PSO algorithm to combi-
natorial optimization problems is its continuous nature. To remedy this disadvantage, 
the smallest-position-value (SPV) rule borrowed from the random key representation 
[7] and ranked-order-value (ROV) [8] are usually utilized in the PSO algorithm to 
convert the continuous position values into a discrete job permutation.  According to 
Liu et al, the ROV encoding scheme has better performance than the SPV encoding 
scheme for flow shop scheduling problems [8]. However, their coding scheme cannot 
directly apply to the group scheduling problems. 
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Our coding scheme is based upon the permutation of {1, 2,…, N}, where N = 
n1+n2+…+nn.  The following steps will transform any permutation of {1, 2,…, N} 
into a feasible group job permutation.  The main steps are shown as follows. 

Step 1. Generate N continuous random values from (0, 1) in a vector, say R, and 
rank R by ROV encoding scheme, shown in Liu et al. [8], in a vector, say 
R_rank.   

Step 2. Generate a group vector GV as [

nnnnn

nnn ,...,,...3,...,3,3,2,...,2,2,1,...,1,1
321

]. 

Step 3. Compute group value, G_value, by G_value(i) = GV(R_rank(i)), i = 1, 2,…, N. 
Step 4. G_order = ∅.  For i = 1, 2,…, N, if G_value(i) = k, then  

 (1) append R_rank(i) to Gk, k = 1, 2, …, n. 
 (2) append k to G_order if k∉G_order. 
Step 5. The order of groups is G_order and the order of jobs in group k is Gk, k = 1, 

2,…, n. 

4   Three Lower Bounds for the Two-Machine FSDGSP 

In this paper, three different lower bounds for two-machine FSDGSP are developed. 
Our lower bounds, borrowed the concept from Logendran et al. [3], are based upon 
the FSDGSP with a single group.  

4.1   FSDGSP with a Single Group  

For a single group i, the right-shifted optimal schedule without setup times of groups 
can be divided into three different parts, namely head (Hi), body (Bi), and tail (TLi) 
for this group, as shown in Fig. 1. We may compute the lengths of Hi, Bi and TLi for 
group Gi using the following equations. 

 Hi = min ( iT −∑ =
in

j ijb
1

,∑ =
in

j ija
1

) (6) 

 Bi = max (∑ =
in

j ija
1

− Hi, 0) (7) 

 TLi = min ( iT −∑ =
in

j ija
1

,∑ =
in

j ijb
1

) (8) 

In Eqs. (6)-(8), the last term are utilized to deal with the situation when Ti is greater 
than the sums of ∑ =

in

j ija
1

and∑ =
in

j ijb
1

. Adding the setup times to the right-shifted 

schedule, then the lower bounds can be evaluated. 

H ead

B od y

Tail

C i

H i B i TL i

M 1

M 2

 

Fig. 1. Hi, Bi and TLi for group Gi. 
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4.2   Three Lower Bounds  

Following a process similar to that of Logendran et al. [3], we develop the following 
M1-based lower bound for the studied two-machine FSDGSPs. 

 LB1 = 1SMC′ + ∑∑ ==
++ n

i ii

n

i i BHs
11

min
1 )(  (9) 

where  

1SMC′  can be computed using the similar procedure in Logendran et al. [3],  

1
min
1    min ik

ik
i ss

≠
= , i=1, 2,….,n, Hi and Bi are computed using Eqs. (6) and (7). 

The M2-based lower bound is evaluated by using the similar concept of M1-based, 
except that the head (Hi) is replaced by tail (TLi) for each group Gi.  The M2-based 
lower bound is: 

  LB2 = 2SMC′ +∑ =

n

i is
1

min
2 +∑ =

+n

i ii TLB
1

)(  (10) 

If the algorithm of Yang et al. [6] is replaced Si1 and Si2 with min
1is and min

2is , then its 

optimal makespan is a valid lower bound, LB3, for the FSDGSPs. Therefore, the 
solution quality of PSO solution can be evaluated by  

  The PSO algorithm solution / max {LB1, LB2, LB3} (11) 

5   Computational Results and Conclusions 

To test the performance of the proposed PSO algorithm for more two-machine 
FSDGSPs, we tested various instances based upon a combination of n, ni, the ratio of 
setup times, and the range of transportation times as below: 

(1)  Number of groups (n). The number of groups is generated from a uniform discrete 
distribution DU [2, 15]. Note that Schaller et al. [2] tested their experiments with 
largest n =10. 

(2)  Number of jobs in a group (ni). The number of jobs in a group is generated based 
on DU [2, 10]  Note that Schaller et al. [2] and Nasser et al. [9] set 2≤ ni ≤10 

(3)  The setup times. Two classes (intervals) of uniform setup times, namely, DU [1, 
10] and DU [11, 20], are tested. Note that, if setup times for M1 and M2 are gener-
ated based on DU [1, 10] and DU [11, 20] respectively, then the average ratio of 
setup times, i.e.

21 SS , is less than 1 ([(1+10)2]/[(11+20)/2] = 0.3548). 

(4)  The transportation times (tij).  Two classes (intervals) of uniform transportation 
times, namely, DU [1, 15] and DU [16, 30], are tested. 

(5)  The processing times. We adopt random integers from DU [1, 20], which is simi-
lar to the one in Nasser et al. [9].  

For each of the instances, we set the swarm size = 30× N, maximal iterations = 15×N, 
w = 1.0, c1 = 3.14, c2 = 3.14, Vmax = 4.0, where N is the sum of jobs in all groups. The 
PSO algorithm was coded in MATLAB 7.0 and all results were computed using Intel-
Pentium 2.4GHz PC with 1.97GB RAM.  Tables 1 shows the numerical results for the 
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instances using the PSO algorithm.  Note that, for the convenience of comparison, we 
let z be the PSO solution and z = max (LB1, LB2, LB3).  In addition, we let: 

avg z / z = the average ratio of z / z  for all three types of tests,  

max z / z = the maximum ratio of z / z  among 20 experiments, 
min z / z = the minimum ratio of z /z among 20 experiments. 
From Table 1, we observe and draw conclusions as follows: 

(1) the avg z /z values vary from 1.0067-1.0330 for all instances. This implies that 
the proposed PSO is robust for all test instances. 

(2) the ratios of (max z /z)/(min z /z) vary from 1.000-1.011, 1.000-1.012, and 1.000-
1.009, for instances of S1/S2 < 1.0, S1/S2 = 1.0 and S1/S2 > 1.0, respectively. This 
implies that the range of solutions of PSO is pretty small. 

(3) the CPU times for solutions of experiments in Table 1 are 62.83s, and 17650s for 
16 and 120 jobs, respectively. It implies that the proposed PSO is efficient for the 
test instances.  

Table 1. The numerical results for various instances 

NoJ NoG 
From To 

TJ T L1 L2 L3 avg z /z CPUtimes 

T1 1.000 1.014 1.005 1.0130 388.3 6 2 9 30 
T2 1.000 1.000 1.007 1.0173 388.3 
T1 1.002 1.010 1.005 1.0187 1260.5 8 3 10 46 
T2 1.000 1.012 1.000 1.0217 1268.0 
T1 1.011 1.006 1.006 1.0090 2374.8 11 2 9 56 
T2 1.006 1.008 1.005 1.0203 2360.1 
T1 1.000 1.001 1.004 1.0153 1295.0 7 4 10 48 
T2 1.006 1.000 1.005 1.0190 1307.9 
T1 1.000 1.000 1.000 1.0330 62.95 3 2 9 16 
T2 1.000 1.000 1.000 1.0067 62.83 
T1 1.003 1.005 1.001 1.0077 6278.1 12 2 10 82 
T2 1.007 1.006 1.006 1.0113 6327.8 
T1 1.003 1.004 1.005 1.0132 17426.2 14 5 10 120 
T2 1.003 1.003 1.004 1.0179 17650.3 
T1 1.005 1.003 1.009 1.0267 2152.2 10 2 10 55 
T2 1.006 1.002 1.004 1.0143 2182.9 
T1 1.006 1.003 1.003 1.0157 9578.9 15 2 10 93 
T2 1.004 1.009 1.004 1.0203 9586.3 
T1 1.000 1.009 1.000 1.0233 276.1 5 2 9 27 
T2 1.000 1.000 1.000 1.0130 287.15 

Note: 1. The ratio is (max z /z)/ (min z /z). T1=DU [1, 15], T2=DU [16, 30] 

2. NoG: Number of Groups, NoJ: Number of Jobs, TJ: Total Jobs. T: Type  

3. L1: S1/S2 < 1.0, L2: S1/S2 = 1.0, L3: S1/S2 > 1.0 
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Abstract. Quantum Particle Swarm Optimization (QPSO) is a global conver-
gence guaranteed search method which introduces the Quantum theory into the 
basic Particle Swarm Optimization (PSO). QPSO performs better than normal 
PSO on several benchmark problems. However, QPSO’s quantum bit(Qubit) is 
still in Hilbert space’s unit circle with only one variable, so the quantum proper-
ties have been undermined to a large extent. In this paper, the Bloch Sphere  
encoding mechanism is adopted into QPSO, which can vividly describe the dy-
namic behavior of the quantum. In this way, the diversity of the swarm can be 
increased, and the local minima can be effectively avoided. The proposed algo-
rithm, named Bloch QPSO (BQPSO), is tested with PID controller parameters 
optimization problem. Experimental results demonstrate that BQPSO has both 
stronger global search capability and faster convergence speed, and it is feasible 
and effective in solving some complex optimization problems. 

Keywords: Quantum Particle Swarm Optimization (QPSO), Bloch Sphere, 
Bloch QPSO(BQPSO), global search. 

1   Introduction 

Particle Swarm Optimization (PSO)[1], is a population based stochastic optimization 
technique proposed by Kennedy and Eberhart. As an emerging intelligent technology, 
PSO proves to be comparable in performance with other evolutionary algorithms such 
as Simulated Annealing (SA) and Genetic Algorithm (GA)[2]-[4]. However, as dem-
onstrated by F. Van Den Bergh[5], the particle in PSO is restricted to a finite sam-
pling space for each iteration of the swarm. This restriction weakens the global search 
capability and its optimization efficiency and may lead to premature convergence. 

To overcome the above shortcomings of the PSO, a Quantum Particle Swarm Op-
timization (QPSO)[6], which takes into account the global optimization capability and 
accelerated calculation characteristic of quantum computing, was proposed recently. 
However, QPSO uses qubits that are in the Hilbert space’s unit circle with only one 
variable[7], therefore the quantum properties have been undermined to a large extent. 
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In order to improve the global search capability, a novel Bloch Sphere encoding 
mechanism was proposed in this paper. 

2   Basic QPSO 

In order to improve search ability and optimization efficiency and to avoid premature 
convergence for particle swarm optimization, a novel Quantum Particle Swarm Opti-
mization for continuous space optimization is proposed. The positions of particles are 
encoded by the probability amplitudes of qubits, and the movements of particles are 
performed by quantum rotation gates, which achieve particles searching. The muta-
tions of particles are performed by quantum non-gate to increase particles diversity. 
As each qubit contains two probability amplitudes, and each particle occupies two 
positions in space, therefore it accelerates the searching process.  

Similar to PSO, QPSO is also a probabilistic search algorithm. A qubit position 
vector as a string of n qubits can be defined as follows: 
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where ndrij a2 ×= πθ ; rand is the random number between 0 and 1, 

;,,2,1 mi = nj ,,3,2,1= , m is the population size and n is the space dimension. 

This shows that each particle of the populations occupies the following two posi-
tions, corresponding to the probability amplitudes of state ‘0’ and ‘1’. 

))cos(),cos(),(cos( 21 iniiicP θθθ= , ))sin(),sin(),(sin( 21 iniiisP θθθ=  

In QPSO, the particle position movement is realized by quantum rotation gates.  
Therefore, particle velocity update in standard PSO is converted to qubit rotation 
angles update in quantum rotation gates, while particle movement update is converted 
to qubit probability amplitudes update. 

Qubit rotation angle is updated as: )()()()1( 2211 glijij rcrctwt θθθθ Δ+Δ+Δ⋅=+Δ  

where
lθΔ  is determined by individual optimal position and 

gθΔ  is determined by 

global optimal position. Reference[8]-[9] gives a query table to find out the right
lθΔ  

and 
gθΔ . 

Directed by the current individual and global optimal position, the movements of 
particles are performed by quantum rotation gates )(θU , then 
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where ;,,3,2,1;,,2,1 njmi == Then updated two new locations of particle
iP  are: 

)))1()(cos(,)),1()((cos( 11 +Δ++Δ+= ttttP ininiiic θθθθ            

)))1()(sin(,)),1()((sin( 11 +Δ++Δ+= ttttP ininiiis θθθθ  
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As each qubit contains two probability amplitudes, each particle occupies two posi-
tions in space, therefore it accelerates the searching process. 

Mutation operator was proposed in the QPSO to help increase the particles diver-
sity and global search capability. Quantum non-gate V is used here as a mutation 
operator. To randomly select a number of qubits based on pre-determined mutation 
probability and impose the quantum non-gate to interchange two probability ampli-
tudes on the same bit. Such a mutation is in fact a kind of qubit rotation update: sup-
pose a qubit has an angle t , after the mutation, the angle turns to be t−2π , which 

means it rotates forward at an angle of t22 −π .

 The specific mutation operation is as follows: 
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This kind of uniform forward rotation can increase the diversity of particles and re-
duce the premature convergence probability. 

3   The Proposed Bloch QPSO with Bloch Sphere 

As the evolvement method in QPSO is a probability operation, individuals will inevi-
tably produce degradation phenomenon during population evolution. And the determi-
nation of rotation angle orientation by far is almost based on the look-up table[8]-[9], 
which involves multi-conditional judgments, thus reduces the algorithm efficiency. 
Therefore, we propose a novel Bloch Sphere encoding mechanism and take a simple 
angle orientation determination method to solve the above problems. 

3.1   The Bloch Sphere Encoding Mechanism 

In quantum computing, the smallest information units are quantum bits, or qubits. In 
three-dimensional Bloch Sphere, a qubit can be written in the form as: 
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can be determined by two angles θ  and ϕ , as it is shown in Figure 1 below. 

Figure 1 tells us that every qubit corresponds to a point in the Bloch Sphere, thus 
we can directly use the Bloch Sphere coordinates to encode the particles positions. 
Suppose that 

iP  is the i th particle in the population. Then Bloch Sphere encoding 

process is described as follows:
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where randrand ijij ×=×= πθπϕ ,2 , rand is the random number in ]1,0[ ，

;,,2,1 mi =  ;,,3,2,1 nj = m is the population size and n is the space dimension. 
Then each qubit is encoded as follows: ))sin()cos(,),sin()(cos( 11 ininiiixP θϕθϕ= , 

))sin()sin(,),sin()(sin( 11 ininiiiyP θϕθϕ= , ))cos(,),(cos( 1 iniizP θθ= . 
To facilitate the presentation, we defined 

iziyix PPP ,, as position X , Y , Z . 

 

Fig. 1. Qubit Bloch Sphere 

In the encoding mechanism above, each Bloch Sphere coordinate is treated as a 
particle position, thus each qubit contains three probability amplitudes and each parti-
cle occupies three positions in space. As a result, the Bloch QPSO has expanded solu-
tion numbers and enhanced the probability of obtaining global optimal solution. 

3.2   Bloch Qubit Update and Mutation 

Similar to QPSO，the particle position movement in BQPSO is realized by quantum 
rotation gates. Suppose that particle 

iP  gets current individual optimal position X , 

namely ))sin()cos(,),sin()(cos( lnln1111 iiiiilP θϕθϕ= . While current global optimal 

position is ))sin()cos(,),sin()(cos( 11 gngngggP θϕθϕ= . 

Based on the above assumption, the Bloch Qubit probability amplitude is updated 
as follow. Derived from the matrix equation (3)[10], we get the rotation gate U: 
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It is obvious that the qubit phase rotate )1( +Δ tijϕ and )1( +Δ tijθ respectively  

    under the rotation gate action. )1( +Δ tijϕ and )1( +Δ tijθ  are updated as follows: 

)()()()1( 2211 glijij rcrctwt ϕϕϕϕ Δ+Δ+Δ⋅=+Δ  
)()()()1( 2211 glijij rcrctwt θθθθ Δ+Δ+Δ⋅=+Δ                

Both )1( +Δ tijϕ and )1( +Δ tijθ are crucial to the convergence quality, in that the angle 

sign decides the convergence orientation while the angle size decides the convergence 
speed. From the update rule we know that )1( +Δ tijϕ and )1( +Δ tijθ are determined 

on lϕΔ ,
gϕΔ ,

lθΔ and 
gθΔ . By far lϕΔ ,

gϕΔ ,
lθΔ and

gθΔ are determined by a look-up 

table[8]-[9] containing all various possible conditions. However, as it involves multi-
conditional judgments, this method reduces the efficiency of this algorithm to a large 
extent. To solve this problem, we use the following simple method to determine the 
related increment angle[10]: 
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The calculation method for lϕΔ ,
gϕΔ is the same as that for

lθΔ , 
gθΔ . 

To generalize the effect of quantum non-gate from the Hilbert space’s unit circle to 
three-dimensional Bloch Sphere, we give a three-dimensional mutation operator, 
which satisfy the following matrix equation[10]: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅
))(2cos(

))(2sin())(2sin(

))(2sin())(2cos(

)(cos

)(sin)(sin

)(cos)(cos

t

tt

tt

t

tt

tt

V

ij

ijij

ijij

ij

ijij

ijij

θπ
θπϕπ
θπϕπ

θ
θϕ
θϕ

                        

(4) 

Derived from )4( , we get three-dimensional mutation operatorV as follows: 
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Specific mutation process of BQPSO is similar to that of QPSO.  
The process of our proposed BQPSO for solving complex optimization problems 

can be described as follows: 

Step 1: Initialization of particle populations. Bring a random angle ϕ in [0, π2 ], a 

random angle θ in [ 0 ,π ], then qubits are produced by Bloch Sphere encoding. Ini-
tialize the size of angle increment 

0ϕϕ =Δ and 
0θθ =Δ . Set other parameters: max 

circulation generation- ，maxger mutation probability- Pm , population size- m , space 

dimension- n , and optimization problem solution scope: ),( jj ba  ),,2,1( nj = . 
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Step 2: Solution Space Transformation.  Map three approximate positions for each 
particle form unit space [ ]nI 1,1n −=  to optimization problem solution space Ω , then 

we get approximate solution )(tX .  

Step 3: Evaluate fitness of each particle. If the particle’s current position is superior to 
its own-memory optimal position, then replace the latter with current position. If the 
current global optimal position is superior to the optimal global position ever 
searched, then replace the latter with the current global optimal position. 

Step 4: Use rotation gates to update the population according to formula )3( . 

Step 5:Use the three-dimensional mutation operator V under the mutation probability 
to mutate the quantum population according to formula )4( .Then a new particle popu-

lation was produced. 

Step 6: Evaluate all the new fitness of each particle after the update operation and 
mutation operation. Update individual optimal position and global optimal position by 
the same methods that are used in Step 3. 

Step 7: If the stopping criterion is satisfied, the proposed BQPSO algorithm stops, 
then output the best solution, else return to Step 3. 

The above-mentioned procedures of the proposed BQPSO process can also be de-
scribed in the Figure 2. 

 

Fig. 2. The flowchart of the proposed BQPSO 
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4   Experimental Result 

In order to investigate the feasibility and effectiveness of the proposed BQPSO, a 
series of experiments are conducted on a PID controller parameters optimization 
problem: to find the optimal parameters configuration (proportional coefficient, inte-
gral coefficient and derivative coefficient) for a second-order control system, of 
which the closed-loop transfer function is 

ss
sG

50

400
)(

2 +
= . 

In order to obtain satisfactory dynamic characteristics, we use the time integration 
of absolute error as the minimum objective function J , which has taken overshoot, 
adjustment time and static error altogether into account. The minimum objective func-
tion J  is defined as follows: ∫

∞
⋅+Δ++=

0 34
2

21 ))()(( utwdtywtuwtewJ
                      

where )1()()(,14 −−=Δ>> tytytyww , )(te  is static error， )(tu is PID controller output, 

ut is adjustment time, )(ty is the output of the controlled system, 4321 ,,, wwww are 

weights. We take the fitness function as: Jf 1= . In the three conducted experiments, 

the first experiment uses standard PSO, the second experiment uses QPSO, while the 
third experiment uses the proposed BQPSO. 

The three algorithms have been encoded and run the simulation in Matlab. Parame-
ters were set to the following values: Sampling time is ms1 , simulation time 
is s15.0 , maxger =100, Pm =0.05, m=30, n=3, 999.01 =w , 

001.02 =w , 0.23 =w  
, 1004 =w ,weighting factor 5.0=w , self-factor 0.21 =c , 

global-factor 0.22 =c . Draw the minimum objective function convergence curve and 

optimized system step response curve respectively on PSO, QPSO, and BQPSO. The 
results are shown in Figure 3 and Figure 4. 

   

  Fig. 3. Objective Function Convergence Curves                     Fig. 4. Step Response 

The Objective Function Convergence Curve in Figure 3 shows that, in the first ex-
periment, it’s easy to get into premature convergence with standard PSO. QPSO has 
more superior global search capability, while BQPSO performs best in the global 
search process. Also BQPSO has a faster convergence speed, compared with QPSO. 
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The Step Response in Figure 4 reflects that the control system optimized by BQPSO 
has smallest overshoot and transition time, while its stability, accuracy and rapidity of 
the system have been greatly improved, which indicates that BQPSO has strong ro-
bustness when applied to solve complex optimization problems. 

It is obvious that our proposed BQPSO can find better solutions than standard PSO 
and QPSO in solving continuous optimization problems, for the reason that it has a 
more excellent performance with strong ability to find optimal solution and quick 
convergence speed. 

5   Conclusions 

This paper has presented an improved QPSO with Bloch Sphere for solving the  
continuous optimization problems. The serial experimental results verify that our 
proposed BQPSO is a practical and effective algorithm in solving some complex 
optimization problems, and also a feasible method for other complex real-world opti-
mization problems. 

Our future work will focus on applying the newly proposed BQPSO approach in 
this paper to other combinatorial optimization problems and combine it with other 
optimization methods. Furthermore, we will make a greater effort to give a complete 
theoretical analysis on the proposed BQPSO model. 
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Abstract. This paper deals with the m-machine permutation flowshop schedul-
ing problem to minimize the total flowtime, an NP-complete problem, and pro-
poses an improved particle swarm optimization (PSO) algorithm. To enhance 
the exploitation ability of PSO, a stochastic iterated local search is incorporated. 
To improve the exploration ability of PSO, a population update method is ap-
plied to replace non-promising particles.  In addition, a solution pool that stores 
elite solutions found in the search history is adopted, and in the evolution proc-
ess each particle learns from this solution pool besides its personal best solution 
and the global best solution so as to improve the learning capability of the parti-
cles.  Experimental results on benchmark instances show that the proposed PSO 
algorithm is competitive with other metaheuristics. 

Keywords: Permutation flowshop, particle swarm optimization. 

1   Introduction 

As one of the best known production scheduling problems, the permutation flowshop 
scheduling problem (PFSP) has always attracted considerable attentions of research-
ers due to its strong industrial background.  In the PFSP, there is a set of jobs J={1, 2, 
…, n} and a set of machines M={1, 2, …, m}.  Each job i∈J must be processed on 
these m (m≥2) machines in the same machine order of 1, 2, …, m.  That is, the proc-
essing of each job should start from machine 1, then machine 2, and finish on ma-
chine m.  The processing time of job i∈J on machine j∈M is denoted as pij, which is 
fixed and nonnegative.  The jobs are available at time zero, and the processing of each 
job cannot be interrupted.  At any time, each job can be processed on at most one 
machine, and each machine can process at most one job.  A job cannot start to be 
processed on machine j until this job has been completed on machine j–1 and machine 
j is available.  The objective of PFSP considered in this paper is to sequence these n 
jobs on m machines so that the total flowtime (TFT) can be minimized.  Let π=(π(1), 
π(2), …, π(n)) denote a job permutation (i.e. a job processing order), in which π(k) 
represents the index of the job arranged at the k-th position of π, then the completion 
time of job π(k) on each machine j can be calculated as follows: Cπ(1), 1 = pπ(1),1; Cπ(1), j 
= Cπ(1), j–1 + pπ(1), j, j=2, 3, …, m; Cπ(k), 1 = Cπ(k–1), 1 + pπ(k),1, k=2, 3, …, n; Cπ(k), j = 
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max{Cπ(k), j–1, Cπ(k–1), j}+ pπ(k), j, k=2, 3, …, n; j=2, 3, …, m.  Then the total flowtime 

can be defined as the sum of completion times of all jobs TFT(π) = ∑ =

n

k mkC
1  ),(π . 

The PFSP was first introduced by [1] and proven to be NP-complete in the strong 
sense even when m=2 ([2]), and since then it has obtained considerable attentions and 
many methods have been proposed.  As reviewed by [3], these solution methods can 
be classified into three categories: exact methods ([4-5]), constructive methods  
([6-11]), and metaheuristics ([12-15]). These methods generally use the benchmark 
problems of [16] to evaluate their performance. 

In this paper, we propose an improved particle swarm optimization (PSO) for the 
PFSP. To enhance the exploration ability, a stochastic iterated local search is adopted. 
To improve the search diversification, a population update method is used to replace 
non-promising particles. In addition, a solution pool that stores elite solutions found 
in the search history is adopted to guide each particle’s flight, besides its personal best 
solution and the global best solution. The rest of this paper is organized as follows. 
Section 2 describes the proposed PSO.  Computational results on benchmarks are 
presented in Section 3. Finally, Section 4 concludes the paper. 

2   Proposed PSO Algorithm 

In the PSO algorithm introduced by [17-18], a swarm consists of m individuals (called 
particles) flying around in an n-dimensional search space.  The position of the ith 
particle at the tth iteration is used to evaluate the particle and represent the candidate 
solution for the optimization problem.  It can be represented as ],...,,[ 21

t
in

t
i

t
i

t
i xxxX = , 

where t
ijx  is position value of the ith particle with respect to the jth dimension (j=1, 2, 

…, n).  During the search process, the position of a particle i is influenced by two 
factors: the best position visited by itself (pbest) denoted as ],...,,[ 21

t
in

t
i

t
i

t
i pppP = , and 

the position of the best particle found so far in the swarm (gbest) denoted as 
],...,,[ 21

t
n

ttt gggG = . The new velocity ( ],...,,[ 21
t
in

t
i

t
i

t
i vvvV = ) and position of particle i 

at the next iteration are calculated according to: 

)()( 2211
1 t

ij
t
j

t
ij

t
ij

t
ij

t
ij xgrcxprcvwv −⋅+−⋅+⋅=+  (1)

11 ++ += t
ij

t
ij

t
ij vxx  (2)

where w is the inertia parameter, c1 and c2 are respectively cognitive and social learn-
ing parameter, and r1, r2 are random numbers in (0,1). 

2.1   Solution Representation 

In the PSO, we use each dimension to represent a job and consequently a particle 
],...,,[ 21

t
in

t
i

t
i

t
i xxxX =  corresponds to the continuous position values for n jobs in the 

PFSP.  Then the smallest position value (SPV) rule proposed by [14] is adopted to 
transform a particle with continuous position values into a job permutation.  A simple 
example is provided in Table 1 to illustrate the SPV rule. 
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Table 1. Solution representation and the corresponding job permutation using SPV rule 

Dimension j 1 2 3 4 5 6 7 8 
t
ijx  0.54 –0.75 –1.02 –0.41 0.92 –1.20 0.23 0.12 

Job, t
iπ  6 3 2 4 8 7 1 5 

2.2   Particle Learning Strategy 

In the evolution process of standard PSO, each particle only learns the personal best it 
has found so far, and the global best the whole swarm has found so far. However, this 
stipulation may rigidly limit the learning capacity of particles.  In the multi-objective 
PSO (MOPSO) proposed by [19], a so-called external repository was used to store the 
nondominated solutions found so far, and in the evolution process each particle also 
learns from a randomly selected solution from the external repository. Such a learning 
strategy results in a good improvement on the performance of the MOPSO.  There-
fore, based on the idea of the external repository, in our PSO algorithm a solution 
pool (denoted as R) is introduced to store the elite solutions found in the search his-
tory, and each particle also learn from an elite solution randomly selected from R.  
Using this strategy, the velocity update equation becomes: 

)()()( 332211
1 t

ij
t
j

t
ij

t
j

t
ij

t
ij

t
ij

t
ij xercxgrcxprcvwv −⋅+−⋅+−⋅+⋅=+      (3)

where c3 is the learning parameter for the guiding solution et combined from a number 
of randomly selected elite solutions from R and r3 is a random number in (0,1). 

2.3   Update of the Elite Solution Pool 

In our PSO, the solutions in the elite solution pool R is sequenced in the non-
decreasing order of their objective value, that is, the first solution in R is the best one 
while the last solution in R is the worst one.  At each iteration of our PSO, we use the 
newly updated personal best solutions to update the elite solution pool R.  That is, if a 
newly updated personal best solution of a certain particle (i.e., xi) is better than the 
worst one stored in R (i.e., y|R|) and at the same time the minimum distance of xi to the 
first |R|-1 solutions in R is not smaller than that of y|R|, then this worst solution y|R| is 
replaced by the newly updated personal best solution xi. 

To define the distance between two solutions x1 and x2, we first use the SPV rule to 
transform them into two discrete job permutations π1={π1(1), π1(2), …, π1(n)}, and 
π2={π2(1), π2(2), …, π2(n)}, and then the distance between x1 and x2 can be calculated 
as =) ,( 21 xxd  ∑ =

−n

i
iisign

1 21 ))()( ( ππ , in which sign(s)=1 if s ≠ 0 (i.e, these two 

solutions have different jobs arranged in their i-th position); otherwise sign(s)=0.  The 
minimum distance of xi to the first |R|-1 solutions in R is the minimum one among 
d(xi, yk) for k=1, 2, …, |R|-1. 

We adopt this strategy because it can maintain the diversity of the elite solution 
pool R, which in turn will help to improve the search diversity of our PSO algorithm. 
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2.4   Population Initialization 

The population with npop solutions is initialized by two kinds of heuristic procedures 
so that both the solution quality and the solution diversity can be considered.  The 
first solution is obtained by a deterministic rule that first sequences jobs in the non-
decreasing order of the total processing time of each job and then based on this se-
quence determines the final job permutation using the NEH method proposed by [20].  
Since this solution is a discrete job permutation, we should convert it into a particle 
with continuous position values.  For this job permutation, the position value of the 
job arranged in the jth position is calculated by xmin + j×(xmax – xmin) / n, where xmin = –
1.0 and xmax = 1.0.  The other solutions are generated are randomly generated accord-
ing to: randxxxxij ×−+= )( minmaxmin

0 , where rand denotes a random number uniformly 

distributed in [0, 1].  The initial velocities for the PSO particles are also generated by 
a randomly scheme that is similar to the position value formula: 

randvvvvij ×−+= )( minmaxmin
0 , where vmin = –1.0 and vmax = 1.0. 

2.5   Stochastic Iterated Local Search 

The iterated local search (ILS) algorithm is a well known metaheuristics for NP-hard 
combinatorial optimization problems such as the TSP for its effectiveness and sim-
plicity in practice ([21]). Each iteration of the ILS algorithm mainly consists of two 
steps: local search and kick. Given a starting solution s, the local search procedure 
first finds a local optimum solution s* from s.  If s* can go through the acceptance 
criterion, then the kick procedure will generate a new intermediate solution s′ from s*.  
Subsequently s′ will be taken as the new starting solution for the next iteration.  The 
iteration of ILS repeats until the stop criterion is reached. 

To accelerate the local search speed of the proposed ILS algorithm, we prefer to 
use a stochastic local search, which is based on the insertion neighborhood.  For a 
given discrete job permutation πt, let w and z denote two different random integer 
numbers generated in [1, n], and then the insertion neighborhood move used in the 
stochastic local search to generate a neighbor solution πt' is denoted as πt' =insert(πt, 
w, z) that removes the job at the w-th position and then inserts it in the z-th position.  
The kick used in the proposed ILS algorithm consists of two steps and can be de-
scribed as follows.  First, randomly delete three jobs from the job permutation.  Sec-
ond, insert the three jobs into the job permutation at their best positions according to 
their deletion sequence.  The detailed procedure of the proposed stochastic ILS algo-
rithm is illustrated in Figure 1.  Different from other metaheuristics such as the PSO 
of [14] that applied the local search on only the global best particle or solution at each 
iteration, we prefer to apply the stochastic ILS on both the global best particle and the 
best particle in the current population. 

Different from the adjustment method used in [14], we do not adjust the position 
values whenever an insertion move is applied, but adjust the position values for one 
time.  That is, the position values are adjusted only after the local optimum is ob-
tained.  For example, let πt = (6, 3, 2, 4, 8, 7, 1, 5) and the obtained local optimum πt' 
= (6, 7, 2, 5, 4, 8, 3, 1).  Then we just reassign the position values in the non-
decreasing order to each job according to πt'.  Table 2 illustrates the position value 
adjustment method for this example. 
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Fig. 1. The main procedure of the proposed stochastic ILS algorithm 

Table 2. Position value adjustment according to the obtained local optimum 

Dimension j 1 2 3 4 5 6 7 8 
t
ijx  0.54 –0.75 –1.02 –0.41 0.92 –1.20 0.23 0.12 

Before ILS 
Job, t

iπ  6 3 2 4 8 7 1 5 
t
ijx  0.92 –0.75 0.54 0.12 –0.41 –1.20 –1.02 0.23 

After ILS 
Job, t

iπ  6 7 2 5 4 8 3 1 

2.6   Population Update Method 

As the evolution process of the PSO continues, some particles may always fly around 
low quality regions, or may be trapped in local optimum.  To break through these 
obstacles for finding better solutions, a population update method is developed to 
improve the search diversification of the PSO.  To determine the particles with low 
probability of finding better solutions, we track the consecutive iterations without 
improvement on the personal best pbest for each particle Xi (denoted as NOPBi) and the 
global best gbest (denoted as NOGB).  If NOPBi reaches a limit (e.g., 10 consecutive 
iterations), then particle Xi will be reinitialized by combining three elite solutions that 
are randomly selected from the elite solution pool R.  If NOGB reaches a limit (e.g., 
20 consecutive iterations), then the whole population will be reinitialized, but the 
solution pool R keeps unchanged. 

Begin: 
  Initialization: 

Let 0 be the input initial solution. Set π= π0, the acceptance threshold T = 0.05, and 
the number of consecutive iterations that the best solution π0 has not been improved 
to be ncounter = 0. 

  while (ncounter ≤ 2) do 
1. Apply the kick procedure to π, and denote the obtained job permutation as 
π'=kick (π). 

2. Set loop_counter=0, and then apply stochastic local search to π'. 
while (loop_counter<n×(n–1)/2) 

2.1 Generate a random number r in [0, 1], and two random integer numbers 
w and z. 

2.2 Generate π'' = insert(π', w, z). If f(π'') < f(π'), then set π' = π''. 
2.3 Set loop_counter=loop_counter+1. 

        end while 
3. If f(π') < f(π0), set π0 = π', π = π, and ncounter = 0; otherwise set ncounter = ncounter +1. 
4. If f(π') ≥ f(π0) but (f(π') – f(π0)) / f(π0) ≤ T, set π = π'. 
5. Set T=T×0.95. 

  end while 
  Report the improved solution π0. 
End 
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The combination method for the three randomly selected solutions from R, i.e., 
y1={y11, y12, …, y1n}, y2={ y21, y22, …, y2n}, y3={y31, y32, …, y3n}, can be described as fol-
lows: each position value of the new combined solution Xi ={xi1, xi2, …, xin} is calcu-
lated as xij = (y1j+y2j+y3j)/3. 

3   Computational Experiments 

To test the performance of our PSO algorithm, computational experiments were car-
ried out on the well-known standard benchmark set of [16] that is composed of 90 
instances ranging from 20 jobs and 5 machines to 100 jobs and 20 machines.  In this 
benchmark set there are 10 instances for each problem size.  Our PSO algorithm was 
implemented using C++, and tested on a personal PC with Pentium IV 3.0 GHz CPU 
and 512 MB memory.  To make a fairly comparison with the PSOVNS, we use the 
same parameter setting proposed by [14].  That is, the population size is taken as 
npop=2n; the initial inertia weight is set to w=0.9 and never less than 0.4; the decre-
ment factor  for w is taken as 0.975; the acceleration coefficients are set to c1 = c2 =2; 
the maximum iteration number Tmax is taken as 500.  Furthermore, we set a maximum 
runtime limit for our PSO to be m×n×0.09 seconds. 

To evaluate the performance, our PSO algorithm (denoted as PSO*) was compared 
with other powerful methods, e.g. the constructive heuristics of [10], the ant colony 
algorithm of [13], and the PSOVNS of [14]. The solution quality was measured by the 
relative percent deviation (denoted as RPD) of the best solution found among R (R=5) 
replicated runs for each instance with respect to the best known results.  That is, RPD 

is calculated as 
⎭
⎬
⎫

⎩
⎨
⎧

∈×−= Ri
U

UH
RPD

i

ii ,
100)(

min , in which Hi is the total flow-

time value obtained by a certain algorithm whereas Ui is the best result obtained 
among the algorithms of [10] and [13] (this best result is denoted as LR&RZ). 

Table 3. Performance comparison of PSOVNS and PSO* for total flowtime criterion 

PSOVNS PSO* 
Problem 

RPD CPU RPD CPU 

20*5 -0.175 3.18 -0.17 9.03 

20*10 -0.037 7.21 -0.04 18.05 

20*20 2.758 11.93 -0.07 36.05 

50*5 -0.603 41.71 -0.29 23.04 

50*10 -0.819 74.49 -0.90 45.57 

50*20 0.857 143.32 -0.94 90.70 

100*5 -0.570 222.28 -0.05 60.35 

100*10 -0.692 407.88 -0.38 96.71 

100*20 -0.104 824.41 -0.87 187.15 

Average 0.068 192.93 -0.412 62.96 
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Since the PSOVNS algorithm proposed by [14] improved 57 out of 90 best known 
solutions reported by [10] and [13] for the total flowtime criterion, we compare our 
PSO* algorithm with it.  The comparison results are given in Table 3, in which the 
values are the average performance of the 10 instances for each problem size and the 
CPU is measured in seconds.  From this table, it can be seen that our PSO* algorithm 
performs much better than the PSOVNS algorithm since the average RPD of our PSO* 
algorithm is -0.412% while the average RPD of the PSOVNS algorithm is 0.068%.  
Furthermore, our PSO* algorithm can obtain better results for instances of 20×20, 
50×20 and 100×20, which are more difficult to solve than other instances.  Based on 
the assumption that our CPU with 3.0 GHz is 1.15 times faster than the CPU with 2.6 
GHz in [14], the computation time of PSO algorithm can be treated as 
62.96×1.15=72.44 seconds, which is much shorter than that of [14]. 

4   Conclusion 

This paper proposes an improved PSO for the permutation flowshop problem with the 
total flowtime minimization.  The search intensification of PSO is enhanced by incor-
porating a stochastic iterated local search, while the search diversification of PSO is 
improved by a population update method.  Different from traditional PSO, a solution 
pool that stores elite solutions found in the search history is adopted to improve the 
learning ability of particles. Computational experiments on benchmark instances 
show that our algorithm outperforms the previous PSO algorithm. 
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Abstract. In this paper, a broadband MVDR(minimum variance distortionless 
response) beamforming method based on time-domain (TMVDR) is presented. 
Using TMVDR beamformer, stable sample matrix estimation could be obtained 
in short time period. To obtain the stable optimum solution of TMVDR, a nu-
merical searching method optimized by PSO algorithm with constrain condition 
is introduced. Out-sea experiment show the performance of TMVDR beam-
former applying PSO algorithm proposed in this paper. 

Keywords: DOA estimation, adaptive beamforming, PSO algorithm. 

1   Introduction 

The MVDR beamformer has superior performance on DOA(direction of arrival) es-
timation in low SNR (Signal to Noise Ratio) condition, and has been widely used in 
areas like sonar, radar and communication etc. In applying MVDR adaptive beam-
forming to passive detection of broadband signals two principal concerns arise. The 
first is snapshot deficient in the present of fast-moving targets. Broadband MVDR 
beamforming was usually implemented in frequency domain [1],[2], which firstly 
decomposes the time-domain data into certain sub-bands by Fourier Transform and 
then processes on each sub band. This method requires multiple snapshots in order to 
get stable correlation matrix estimation. Snapshot deficient causes distortion of beam 
pattern, loss of SINR, and related effects [3]. The second concern is unstable inverse 
when the eigenvalue dispersion of sample matrix is large since MVDR beamforming 
method currently adapt SMI (Sample Matrix Invert) algorithm [4]. That means tiny 
disturbance of sample matrix estimation will cause tremendous compute error when 
existing strong interference. Although diagonal loading [5] method could improve the 
robustness of the correlation matrix and obtain stable solution with fewer snapshots, 
but correspondingly the array gain and azimuth resolution ability decreases obviously 
because extra noise is introduced. 

In this paper, we discussed a TMVDR (Time-domain MVDR) beamformer apply-
ing PSO (Particle Swarm Optimization) algorithm [6]. The array weights of TMVDR 
beamformer are designed to be a complex vector by treating two-channel orthogonal 
signals as one complex analytical signal, which minimize the power at its output 
while providing, at the same time, a fixed response toward the direction of arrival of 
the signal of interest. Different with frequency domain MVDR, TMVDR doesn’t need 
block processing since it needn’t FFT transform, thus we can obtain relative stable 
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sample matrix estimation in short time period. To obtain the optimum solution of 
TMVDR, numerical search method optimized by PSO algorithm is proposed to re-
place the SMI algorithm. Numerical search algorithm can solve the problem of unsta-
ble inverse by searching a group of optimum solution in the weight vector space 
without diagonal loading. That is, we can always find a set of optimum weight vector 
to minimize the power of interference and noise by numerical searching method. 

The paper is organized as follows. In Sec II, a TMVDR beamformer based on 
time-domain analytical signal is formatted. Sec III proposes a numerical searching 
method optimized by PSO algorithm to obtain the stable solution of TMVDR. Sec IV 
investigates the performance of TMVDR beamformer applying PSO algorithm via 
out-sea experiment. Sec V contains a brief synopsis of this paper and results of our 
work. 

2   TMVDR Beamformer 

Supposing the broadband passive signal is received by uniform line array composed 
of M elements, after delayed time of (1 )i i MΔ ≤ ≤ , the signal vector received by array 

is 

1 2[ , , ]T
Ms s s=S  (1)

The array output is: 

= +X S N  (2)

where 1 2[ , , ]T
Mn n n=N  is the additive noise vector, T denotes transpose. 

Eq. (2) is Hilbert transformed to    

= +X S N  (3)

where ( )H=X X , ( )H=S S , ( )H=N N . 

Time domain analytical signal can be constructed as         

s n j= + + ⋅Y Y Y = X X  (4)

where sY denotes the signal part of time-domain analytical signal , nY denotes the 

noise part .Thus the adaptive array output is: 

H H H

s nC = = +W Y W Y W Y  (5)

where superscript H means transpose and conjugate , 
1 2[    ]T

Mw w w=W .  

When the scanning direction is aimed to the incoming signal , there is 

1 1 2 2 M Ms j s s j s s j s+ ⋅ = + ⋅ = + ⋅ s j s= + ⋅  (6)

where is is the thi interested signal received on array .Under the constrain condition  
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1

1
M

i
i

w
=

=∑  (7)

Eq. (5) can be written as: 

H
nC s j s= + ⋅ +W Y  (8)

When the interested signal, interference and noise are cross uncorrelated, because the 
real part and the imaginary part of analytical signal are orthogonal, then the array 
output power comes to:  

*{ } HP E CC= = W RW 2 2( ) H
ns s= + +W R W  (9)

where    

{ }E= HR YY  (10)

{ }H
n n nE=R Y Y  (11)

Hilbert transformation can’t change the power of the signal of interest, making 
2 2( )s s=  a constant. From Eq.(9), a minimum H

nW R W  means a minimum total output 

power. Therefore, TMVDR can be expressed as a constrained optimum problem : 

1

min{ }  

. .   1

W

M

i
i

P

s t w
=

=∑
 

(12)

Using Eq. (10), exact sample matrix can be estimated in few snapshots period if the 
noise and interference is short time stable since TMVDR doesn’t need split the data to 
blocks for Fourier transform. 

3   Numerical Search Method 

Using TMVDR beamformer, the total output power of array tends to be stable in short 
time period.  The disturbance of sample matrix has little effect on output power. Thus 
we can obtain the optimum solution of Eq.(12) by numerical search algorithm. How-
ever, the computational complexity is huge by Numerical search algorithm than SMI 
algorithm. In this paper we adapt PSO algorithm to accelerate the convergence speed. 

3.1   PSO Algorithm 

Supposing a particle swarm composed of N particles, the position vector of the ith 
particle in the M dimension weights space is 

1 2[    ]T
i Mz z z=Z  (13)
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and the moving velocity vector is 

1 2[    ]T
i Mv v v=V  (14)

Then the current position of each particle in the swarm is updated as follows: 

1
1

2

1 1

(0,1) ( )

(0,1) ( )

l l l
i i i i

l
g i

l l l
i i i

a c rand

c rand

+

+ +

⎧ = ⋅ + ⋅ ⋅ −
⎪

+ ⋅ ⋅ −⎨
⎪

= +⎩

V V p Z

p Z

Z Z V
 

(15)

where a  is the inertia weight, 1c is the own experience weight and 2c is the global 

experience weight, (0,1)rand is uniform random number distributing in the range 

[0,1], ip is the best previous position, gp is the global best position. The iteration 

terminates when gp remains invariant and then gp is the global optimum solution. 

PSO algorithm introduces own experience weight and companion’s experience 
weight, making the particle at the local extreme value easily out of the local optimum 
position. Hence PSO algorithm is efficient for searching problem and has rapid con-
vergence velocity. 

3.2   Range of Search Space 

Supposing the optimum solution of (12) is  

1 2[ , , ]T
opt Mw w w= =W C D

 (16)

where   

1 2[ , , , ]T
MC C C=C  (17)

1 2[ , , , ]Mj j j Te e eϕ ϕ ϕ=D  
(18)

C stands for the mode vector of optimum weight , Mϕϕϕ ,,, 21  the phase of the 

optimum weight vector.  
Defining ][max

,,2,1
max i

Mi

CC
=

= ，from Eq. (11), the minimum output power of array 

is 

2
min

1 1

( )
l

K M

i i
l i

P w x
= =

=∑ ∑
 

(19)

where K is the number of sampling time points. According to constrain condition 

1
1

=∑
=

M

i
iw ，make identity transformation to Eq.(19) 
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min

1 1 1 1 1 1
max

1 1 1

/
( ) [ ] [ ]

/

l

K M K M K M
i i i i i i

M M M
l i l i l i

i i i
i l l

w x w x C w x
P

w w C w= = = = = =

= = =

= = =∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑

 
(20)

where  

max/i iw w C=  (21)

the solution of MVDR is unique under ideal conditions, Hence, 

opt=W W
 (22)

where， 1 2[ , , ]T
Mw w w=W . 

Form Eq.(20) and Eq.(21), the maximum mode of optW  is 1. Therefore we can ob-

tain the range of searching weight vector is 

[0,1]iC ∈ 和 [0,2 ]iD π∈ , 1, 2, ,i M= . 

3.3   Introduce of Constrain Condition 

Supposing the complex weight vector of ith particle is 1 2[ , , ]T
Mw w w=W . 

Constrain condition can be represented as 

1

1

Re( ) 1

Im( ) 0

M

i
i

M

i
i

w

w

=

=

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

∑

∑
 

(23)

making 

1

1
Re( )

1
[Re( ) ]

i

i M

i
i

w
Ma

w
M=

+
=

+∑
 

(24)

1

1
Im( ) Im( )

M

i i i
i

b w w
M =

= − ∑
 

(25)

Where 
1

M
 is introduced to ensure 1ia ≤ . Constructing the vector as follows, 

1 1 2 2[ , , ]T
c M Ma jb a jb a jb= + + +W  (26)

Eq. (26) is just the complex weight vector with constrain condition. Hence the steps 
of PSO algorithm can be described as follows: 
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1). Set the initial position vector of particle as Eq.(16),where (0,1)iC rand= ，

2 (0,1)j rand
iD e π= . 

2). Using Eq.(24)and (25), respectively process the real part and imaginary part of 
the initial position vector, and then obtain the complex weight vector as  
Eq. (26). 

3). Calculate the objective function P in Eq.(9). Find the minimum objective func-
tion minP  and record the best previous position ip  and the best global  

position gp . 

4). Update the position of particle according to Eq. (13).  
5). The iteration terminates when min ( )P n  (n is the iteration times) remains invari-

ant( min min( ) ( )P n k P n ε+ − < ) .The best global position gp  at this time is the 

optimum solution of TMVDR. 

4   Result of Sea Experiment 

4.1   Sea Experiment Description 

In order to investigate the performance of TMVDR beamformer applying PSO algo-
rithm, the data of out-sea experiment was processed. The array in experiment was 
uniform line array composed of 32 sensors; the interval between each unit is 1m; the 
band width is 300-700Hz, the total time period for data processing is 100 seconds, 
within which the target were near 40º，70º，90º，140º ,150º and a strong interfer-
ence source was around 0º~20º. Data sampling frequency was 6 KHz. 

4.2   Signal Processing 

The data was respectively processed by TMVDR method applying PSO algorithm and 
FMVDR (frequency domain MVDR) using diagonal loading algorithm.  

FMVDR’s covariance matrix estimation follow the next steps: Split the data into 
many blocks, each block has 512 sampling time points. There are 256 points over-
lap with two adjacent block, which is also the data length of each snapshot. After 
DFT, the cross-spectral density matrix was estimated on each frequency. The num-
ber of snapshots for each estimation is 64.That is ,the number of sampling time 
points for each processing is (64+1)×256=16640. Diagonal loading adapted the 
optimum factor[5]. 

TMVDR chooses 300-700Hz band width through band-pass filter, and only uses 
1000 sampling time points to estimate the output power for each processing. 

4.3   Comparison 

Figure 1 displays energy level for 0°~180°azimuth angle v.s. time respectively processed 
by TMVDR and FMVDR. In Figure 1, as we have expected, TMVDR method has far 
better signal detection ability than FMVDR method. Tracks of sources are bright in the 
TMVDR result. Especially for the weak targets near 140°and 150°，FMVDR almost  
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Fig. 1. Output of TMVDR method and FMVDR method 

cannot detect the signal because the diagonal loading cause the degradation of array gain. 
In addition, the period of TMVDR for each processing is 1000/6000≈0.16s，far shorter 
than FMVDR ，which period for each processing  is 16640/6000≈2.77s.That makes 
TMVDR has better performance than FMVDR in signal detection for the fast moving 
targets. 

5   Conclusion 

A time domain broadband MVDR beamforming method is presented in this paper. On 
the basis of constructing time domain analytical signal, TMVDR introduces complex 
weights and could obtain stable sample matrix estimation in short time period. To 
obtain the stable optimum solution of TMVDR, a numerical searching method opti-
mized by PSO algorithm with constrain conditions is proposed to replace the SMI 
algorithm. Using PSO algorithm, stable optimum weights vector can be searched with 
rapid convergence velocity. 

The performance of TMVDR method applying PSO algorithm is put into test via 
out-sea experiment. Compared with FMVDR method applying diagonal loading algo-
rithm, TMVDR method has better performance than FMVDR method for the prob-
lems of passive detection and azimuth estimation on broadband sound sources.  
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Abstract. The medical image registration algorithm uses the mutual information 
measure function that has many local extremes. Therefore, we propose our 
medical image registration algorithm that combines generalized mutual informa-
tion with PSO-Powell hybrid algorithm and uses the objective measure function 
based on Renyi entropy. The Renyi entropy can remove the local extremes. We 
use the particle swarm optimization (PSO) algorithm to locate the measure func-
tion near the local extremes. Then we take the local extremes as initial point and 
use the Powell optimization algorithm to search for the global optimal solution. 
Section 2.2 of the paper presents the six-step procedure of our registration algo-
rithm. We simulate medical image data with the registration algorithm; the 
simulation results, given in Table. 2 and 3, show preliminarily that the registration 
algorithm can eliminate the local extremes of objective measure function and 
accelerate the convergence rate, thus obtaining accurate and better registration 
results. 

Keywords: Medical image registration, Generalized mutual information,  
Measure function, Optimization algorithm. 

1   Introduction 

Image registration is the process of overlaying two or more images of the same scene 
taken at different times, from different viewpoints, and/or by different sensors. It 
geometrically aligns two images—the reference and sensed images [1]. Ever since the 
concept of mutual information was introduced into the region of image registration has 
the validity of this new approach been widely accepted. Recently the registration based 
on mutual information has been widely used in occasions of  image registration[2-4]. 
The registration algorithm based on maximization of mutual information(MMI) only 
uses statistical performance of gray values whereas neglects the image anatomical 
characteristics, so it is more robust and accuracy than traditional based on feature [5]. 
However, a few shortcomings still exist in the MMI registration algorithm, the objec-
tive measure function based on mutual information will lead to produce some local 
optimum in searching process, it would lead that the optimization process end in local 
optimum rather than global optimum [6].  

Through the analysis of Renyi entropy [7], we found that mutual information based 
on Renyi entropy can not only remove unwanted local optimum but also has the depth of 
the basin of attraction. A new generalized mutual information measure function based 
on Renyi entropy has been given in this paper on the basis of the two characteristics of 
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Renyi entropy. At first，the PSO algorithm was used to find the local extreme of this 
measure function, which is use of the feature removing unwanted local optimum and 
smoothing out optimal curve. Then，the Powell optimization algorithm was used to 
locate the global optimal solution，which is use of the characteristic that has the depth 
of the basin of attraction, make the registration function easier to be optimized. The 
objective function can be located fast and accuracy through the mixed optimization 
algorithm and measure function. 

The registration tests proven that this algorithm and measure function can overcome 
the local extreme of the mutual information measure function, make registration results 
up to a sub-pixel level, and also have better robust and accuracy.   

2   Methods 

2.1   Generalized Mutual Information Based on Renyi Entropy 

According to Renyi entropy’s definition, the Renyi entropy of an image is defined as: 

1,),ln()1()(
1

1 ≠∈−= ∑
=

− qRqPqXR
N

i

q
iq

 . 
(1)

It is important that the Renyi entropy tends to the Shannon entropy as q→1. In analogy 
to Shannon entropy normalized mutual information, the generalized normalized mutual 
information of the two images based on Renyi entropy is given by 

R(A,B)

R(B)R(A)
I(A,B)

+=
 . 

(2)

An image is selected as reference image. The floating image can be get by translating 
the reference image along x axis. The normalized mutual information of the two images 
can be computed, which is based on Renyi entropy and Shannon entropy, when Pa-
rameter q of the Renyi entropy is 2, 1.5, 1.25, 1.1, 0.9, 0.5, 0.25 respectively. The 
results are shown in Fig.1[7]. 

 

Fig. 1. They are the translation curves of normalized MI based on different entropy 
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According to Fig.1, Renyi entropy is more approximate to the Shannon entropy 
when q is more near one. The normalized mutual information curve based on Renyi 
entropy is most approximate to normalized mutual information curve based on Shan-
non entropy as q is 1.1. But at the same time the normalized mutual information curve 
based on Renyi entropy remove unwanted local optimum, smooth out optimal curve 
than curve based on Shannon entropy. 

2.2   Hybrid Optimization Algorithm Based on PSO and Powell 

PSO [8] is a stochastic population based optimization algorithm, firstly introduced by 
Kennedy and Eberhart in 1995. It is a global optimization algorithm. But in the end it is 
difficult to decide whether the solution we got is global optimum value in solution 
space, furthermore, whether it is located next to global optimization value. However, 
the Powell algorithm has a good performance in finding out local extreme. Thus the 
Powell algorithm could combine with the PSO Algorithm, and different optimization 
algorithms are used in different searching process. At first，the PSO global optimiza-
tion algorithm was used to find the local extreme of generalized mutual information 
measure based on Renyi entropy as q is equal to 1.1, which is use of the feature that 
remove unwanted local optimum, smooth out optimal curve. Then，the Powell local 
optimization algorithm was used to locate the global optimal solution by searching the 
current local optimal extreme，which is use of the characteristic that has the depth of 
the basin of attraction as q is 0.99, make the registration function easier to be optimized. 
The PSO-Powell hybrid optimization algorithm in this paper solved searching the 
registration parameters process described as follows. 

(1)  Select a point T in three-dimensional solution space randomly, and Initialize a 
particle swarm in the solution space with the center of point. As a 
three-dimensional vector, the displacement of x, y and the rotational angle z. 

(2)  Do a certain number of iteration using PSO algorithm, then we can get the 
current local optimal solution T1, when parameter q in objective measure 
function is equal to 1.1 in this process. 

(3)  Calculate the objective measure functional value MI and MI1 in point T and T1 
respectively. If MI is less than MI1, go to (4), otherwise go to (6). 

(4)  Taking T1 as initial point and use Powell optimization algorithm to get the op-
timal point in the neighbor region, when parameter q in objective measure 
function is equal to 0.99 in this process. 

(5)  Initialized the Particle Swarm with the initial point T=T2, then go to (2). 
(6)  Output the optimal solution and corresponding objective measure functional 

value as the optimal transformation parameters. 

The initial strategy of PSO algorithm are improved in the searching process after the 
first search, in short the last searching result of the Powell optimization algorithm is as 
the current initial optimal point of PSO algorithm. Thus the algorithm performance 
would be improved because it not only makes full used of the previous calculated 
results but also decreases possibility falling into the local extreme. 
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3   Experimental Results 

The generalized mutual information measure function and mixed optimization algo-
rithm are used in single-modality and multi-modality image registration. Sin-
gle-modality image registration is using three different medical images and three 
floating images which are got form the former after a certain degree of rotation and 
translation transformation. Multi-modality image registration is using two different 
modality medical images, at the same time the performances of PSO algorithm, Powell 
algorithm and mixed algorithm are compared in the same computer. 

3.1   Single-Modality Medical Image Registration 

Selecting two medical images as reference images, the first image is translated 9 pixels 
to the right along x axis, 4 pixels downward along y axis and rotated 7.5 degrees along 
counter-clockwise. The second image is translated 6 pixels to the right along x axis, 8 
pixels downward along y axis and rotated 4.7 degrees along counter-clockwise. Then 
we can get two floating images. Using the two reference images and two floating im-
ages, single-modality image registration experiments are made with the algorithm in 
this paper. The results are shown in Table.1. 

Table 1. They are the results of the single-modality medical image registration experiment. The 
RMS is Root-mean-square of the 50 registration results. The mean is average of the 50 registra-
tion results. 

  x y z △x △y △z GMI T 

15th 9.0012 4.0051 7.4982 0.0012 0.0051 -0.0018 1.4450 74.810 
30th 9.0061 4.0031 7.4988 0.0061 0.0031 -0.0012 1.4450 100.386 
45th 9.0109 3.9972 7.5012 0.0109 -0.0028 0.0012 1.4450 69.277 

mean 9.0040 4.0009 7.5008 0.0040 0.0009 0.0008 1.4450 103.692 

Image 

A 

RMS 9.0040 4.0009 7.5008 0.0000 0.0000 0.0000 1.4450 109.386 
15th 6.0169 8.0006 4.6976 0.0169 0.0006 -0.0024 1.4212 146.793 
30th 6.0086 7.9986 4.7014 0.0086 -0.0014 0.0014 1.4213 139.386 
45th 6.0147 7.9892 4.7009 0.0147 -0.0108 0.0009 1.4212 146.776 
mean 6.0170 8.0039 4.7026 0.0170 0.0039 0.0026 1.4212 110.338 

Image 

B 

RMS 6.0170 8.0039 4.7026 0.0001 0.0001 0.0000 1.4212 117.120 

 
According to the table, in the registration results of image A the horizontal offset 

error of the 45th results between theoretical value and registration result is 0.0109, it is 
more than 0.01. And the other parameters selected are all less than 0.01. While in the 
registration results of image B it is only that the parameter errors of the 30th registration 
results are all less than 0.01, and the others are not all less than 0.01. So the registration 
results of image B are slightly inferior to image A. However, the single-modality image 
registration results are all a high accuracy. 

At last, using the 15th registration results as registration parameters, and with bi-
linear transformation, image A is used for registration simulation. The Fig.2 could get 
form the simulation. The effect of the methods adopted in this paper is proved to be 
effective and better precision. 
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Fig. 2. It is the simulation experiment of the single-modality medical image registration 

3.2   Multi-modality Medical Image Registration 

We choose two groups of CT/MRI images. The two groups of CT/MRI images are used 
for multi-modality medical image registration, the registration optimization algorithm 
are Powell algorithm, PSO algorithm and PSO-Powell mixed algorithm 

Respectively, and the objective measure function is adopted generalized mutual 
information measure function based on Renyi entropy. The results of multi-modality 
medical image registration are shown in Table.2. 

According to the table, in the three algorithms the experimental time of the Powell 
algorithm and PSO algorithm are less than the hybrid optimization algorithm. While 
not only the average measure function values got by hybrid algorithm are the largest, 
but also that measure function values and registration parameters in every time got by 
hybrid algorithm are more concentrated in distribution than the other algorithm. Gen-
eral speaking, the registration results are up to a good precision by this hybrid algorithm 
and generalized measure function measure function in this paper. 

Table 2. They are the results of the Multi-modality medical image registration experiment. The 
mean is average of the 50 registration results. 

  First group images Second group images 

  x y z GMI T x y z GMI T 

15th 11.302 -5.695 4.807 1.1202 56.124 31.026 -11.380 -7.704 1.0941 72.812 

30th 10.332 -6.548 7.066 1.1205 44.017 34.250 -12.906 -2.980 1.0947 16.618 
45th 11.531 -5.888 3.575 1.1207 37.875 32.395 -13.228 -6.330 1.0944 35.333 

Powell 
method 

mean 10.797 -6.123 5.701 1.1206 34.896 32.306 -12.646 -5.715 1.0943 37.629 

15th 10.614 -5.320 6.738 1.1253 23.189 33.804 -11.779 -4.736 1.0956 36.313 

30th 8.904 -5.091 6.682 1.1251 49.801 33.791 -11.769 -4.750 1.0957 42.225 
45th 9.142 -5.471 4.472 1.1247 23.768 33.548 -11.482 -4.801 1.0954 31.145 

 

PSO 
method 

mean 9.977 -5.607 5.632 1.1248 25.213 33.041 -11.874 -5.863 1.0953 32.807 

15th 11.253 -5.618 4.757 1.1256 42.168 33.873 -11.432 -4.672 1.0959 97.020 

30th 11.136 -5.533 4.711 1.1257 131.71 33.815 -11.332 -4.741 1.0959 84.559 
45th 11.134 -5.672 4.709 1.1255 116.30 32.636 -11.145 -4.233 1.0958 68.079 

Powell 
+PSO 

method 
mean 11.169 -5.586 4.708 1.1256 101.46 33.574 -11.394 -4.652 1.0958 65.669 
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Fig. 3. It is the simulation experiment of the multi-modality medical image registration 

At last, we choose one group of CT/MRI images to make registration experiment. 
Method used for registration is the method adopted in this paper. Then we can get the 
Fig. 3. The effect of the methods adopted in this paper is proved to be better. 

4   Conclusions 

Though registration results of MMI have the advantages of high accuracy and inde-
pendence from any image pretreatments，there are still a few shortcomings. The reg-
istration images would exist better local matching, the interpolation algorithm would 
bring in errors. Thus objective measure function will produce a lot of local extreme, 
which has a large influence on optimization. The generalized mutual information 
measure function based on Renyi entropy and PSO-Powell mixed optimization algo-
rithm have been adopted in this paper. At first，the PSO optimization algorithm was 
used to find the local extreme of generalized mutual information measure based on 
Renyi entropy. Then，the Powell optimization algorithm was used to locate the global 
optimal solution by searching the current local optimal extreme. The registration results 
have proven that this algorithm and measure function can make them up to a sub-pixel 
level, and also have better robust and accuracy. 
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Abstract. Relevance feedback (RF) is an iterative process which refines the re-
trievals by utilizing user’s feedback marked on retrieved results. Recent re-
search has focused on the optimization for RF heuristic selection. In this paper, 
we propose an automatic RF heuristic selection framework which automatically 
chooses the best RF heuristic for the given query. The proposed method per-
forms two learning tasks: query optimization and heuristic-selection optimiza-
tion. The particle swarm optimization (PSO) paradigm is applied to assist the 
learning tasks. Experimental results tested on a content-based retrieval system 
with a real-world image database reveal that the proposed method outperforms 
several existing RF approaches using different techniques. The convergence 
behavior of the proposed method is empirically analyzed. 

Keywords: information retrieval, relevance feedback, long-term learning, heu-
ristic selection, particle swarm optimization. 

1   Introduction 

Information retrieval techniques [1] have been intensively applied to many areas such 
as library dialog systems, database retrieval, web-based multimedia archiving, knowl-
edge management, to name a few. The most popular abstraction for realizing the in-
formation retrieval tasks is the vector space model proposed by Salton in 1970’s [2]. 
The vector space model represents each document by a set of numerical attributes 
(categorical attributes can be also used by defining an appropriate metric). Given a 
query document, the most relevant documents can be retrieved by selecting the closest 
documents to the query by reference to a distance norm such as the Euclidean Dis-
tance or Cosine Distance. 

However, the retrieval precision obtained by using the vector space model may be 
unsatisfactory due to imperfect selection of attributes, noisy values, or null data. This 
problem has been regarded as the existence of semantic gap between the human per-
ception model and the vector space model. A remedy to this problem is to treat the 
retrieval session as repetitive query reformulations. Through successive human-
computer interactions, the query descriptive information (attributes, matching models, 
metrics or any meta-knowledge) is re-modified as a response to the user’s relevance 
feedback (RF) on previously retrieved results. Therefore, a near-optimal query model 
is eventually produced and is able to attain high retrieval precision.  
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The major RF heuristics can be classified into three categories, namely, query vec-
tor modification (QVM) [3-4], feature relevance estimation (FRE) [5-6], and classifi-
cation-based (CB) methods [7-9]. The QVM method reformulates the query vector 
through user’s feedback so as to move the query toward relevant documents and away 
from irrelevant ones. The FRE approach learns the relevance weight for each attribute 
and incorporates the weights into the metric norm. As such, more relevant attributes 
have larger impacts on the retrieval results. While the CB method trains a classifier 
(by using Bayes theory, a support vector machine, or boosting technique) from the 
prior history of user’s feedbacks for classifying the test data. 

Although the RF heuristics can improve the precision of retrievals, each RF heuris-
tic has its own bias and weakness. To maximize the precision improvement, recent 
approaches strive to find an optimal strategy that selects the best RF heuristic for a 
particular query. Minka and Picard [10] proposes the four-eye system which selects 
and combines groupings of the data, where groupings can be reduced by highly spe-
cialized attributes. Automatic selection are facilitated by analyzing relevant and ir-
relevant examples from the user. Yin et al. [11] presents a reinforcement learning 
method for integrating existing RF heuristics in one system. Various integration 
schemes are proposed to maximize the synergism and a long-term memory is used to 
exploit the meta-knowledge across multiple sessions. This research trend shares a 
synergy with another field named hyperheuristic [12]. Hyperheuristic can be thought 
of a heuristic for choosing heuristics. It works in the heuristics space instead of the 
solution space. In light of this, we propose in this paper a particle swarm optimization 
(PSO) method [13] for facilitating the automatic selection of multiple RF heuristics. 
The PSO paradigm is applied to perform two learning tasks, namely, the query refor-
mulation and heuristic selection. 

The remainder of this paper is organized as follows. Section 2 reviews the related 
RF heuristics and the particle swarm optimization. Section 3 describes the proposed 
method. Section 4 presents the experimental results and provides comparative per-
formance evaluation. Finally, conclusions are given in Section 5. 

2   Related Work 

2.1   Vector Space RF Heuristics 

Assume that there are n documents stored in a repository. Each document D is de-
scribed by r attributes, D  = ),...,,( 21 rddd . Let Q be the query vector, denoted by Q  

= ),...,,( 21 rqqq . The Euclidean distance, distEuclidean, can be used for estimating the 

dissimilarity between Q and D. However, the closest documents according to Euclid-
ean distance may not be considered as relevant by the user due to the semantic gap 
previously mentioned. The following RF heuristics can be applied to improve the 
user’s satisfaction. 

 Query vector modification (QVM). Let R and N denote the subsets of the retrieved 
result that are marked relevant and irrelevant, respectively, by the user in the  
incumbent feedback iteration. QVM reproduces a new query vector by the following 
formula. 
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where Dj is a document in R or N; α, β and γ are the relative weights contributed by 
the current query, relevance experience and irrelevance experience, respectively. The 
newly produced query vector is then used for searching the next retrievals. QVM has 
the effect of guiding the reformulation of the query towards relevant documents and 
away from irrelevant ones, and the moving velocity is accelerated by an inertia term 
considering previous query. 

 Feature relevance estimation (FRE). The approach assumes that each attribute can 
have a different weight when judging the relevance between Q and D. A simple no-
tion for estimating the relevance weight wi of individual attribute is the attribute pro-
jection scheme that assesses the retrieval ability using each attribute alone. Finally, 
the relevance weights are incorporated into the dissimilarity metric to express the 
degree of emphasis on the corresponding attribute, viz., 

distFRE = ( ) ( )T
W

DQWDQDQ −−=−                                              (2) 

where W is a diagonal attribute weight matrix whose diagonal entries are equal to wi 
and off-diagonal entries are zero. Therefore, distEuclidean can be viewed as a special 
case of distFRE where W is equal to the identity matrix. Note that the relevance weights 
are query-dependent and are re-evaluated in each feedback iteration. These weights 
are used as constants within a given iteration when comparing the similarity between 
the query and each of the stored documents. 

2.2   Particle Swarm Optimization  

Particle swarm optimization (PSO) mimicking the swarming behavior of flocking 
birds and schooling fish was first introduced by Kennedy and Eberhart [13]. Etholo-
gists observe that swarming birds/fish flock synchronously, change direction sud-
denly, scatter and regroup iteratively, and finally stagnate at a target. This form of 
social interactions increases the likelihood for finding food. The PSO algorithm 
emerges as a good option among others for solving nonlinear optimization. 

One of the best forms of PSO is the Type 1 constriction factor model [14] which 
guarantees the convergence of the particles trajectories. To illustrate, the procedure is 
summarized in Fig. 1. A swarm of S particles are initialized at random where each 
particle is a vector of r parameter values for targeting the optimum solution. A veloc-
ity vector is also initialized at random for each particle to conduct the search trajecto-
ries. The swarm enriches its intelligence by storing the best solutions seen by every 
particle. In particular, particle i remembers the best position it visited so far, referred 
to as pbesti, and the best position (gbest) observed by this particle’s neighbors. The 
algorithm operates in an iterative manner. At each iteration, particle i adjusts its ve-
locity vij and position pij through each dimension j by referring to pbestij and gbestj, 
while still explores new regions by random multipliers to escape from local optima. 
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Fig. 1. Summary of the PSO algorithm 

 

Fig. 2. Conception of the system diagram 

3   Proposed Method  

Fig. 2 depicts the diagram of the proposed information retrieval system. The user 
starts a new query session by submitting a query attribute vector Q(0), the number in 
the parenthesis indicates the number of experienced iterations. Q(0) is used to retrieve 
a model from the RF model base. The model cluster whose centroid is the closest to 
Q(0) is selected and the corresponding RF heuristic is returned for conducting query 
reformulation. Then the reformulated query is matched to each of the stored docu-
ments using the selected RF heuristic and the top ranked documents Σ(t) are retrieved. 
If the user is not satisfied with the result, he/she can start another round of RF by 
labeling at least one retrieved document as either relevant or irrelevant. Otherwise, the 
best RF heuristic is employed to update the model base. In contrast to the traditional 
RF process which executes a single RF heuristic, our system selects adaptively the 
best RF heuristic for the given query to achieve the maximum retrieval precision. 
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PSO is thus employed to optimize the heuristic selection by reference to the user’s 
relevance feedback as the performance index. The principal components of our sys-
tem are elaborated in the following subsections.  

3.1   RF Model Base  

The RF model base comprises multiple RF heuristics learned by PSO. For illustration, 
our model base is implemented with various combinations of QVM and FRE; how-
ever, the system framework given in Fig. 2 does not invite this limitation. In this con-
text, each RF heuristic is determined by QVM weights (α, β, γ) and FRE weights (wi). 
The RF model base is initialized with m RF heuristics by taking random values for (α, 
β, γ; wi, i = 1, 2, …, r). 

One extreme implementation of this method is to create a separate heuristic for 
each query and then optimize this heuristic according to the subsequent feedbacks 
(obviously, the traditional fashion using a single RF heuristic for all queries lies on 
the other extremity). However, this would require the establishment of a huge model 
base that accounts for any given query. As an alternative, the queries can be parti-
tioned into clusters in the attribute space, and those queries belonging to the same 
cluster would be processed using the same RF heuristic. The determination of the 
number of clusters is a tradeoff between retrieval precision and computational effi-
ciency. We have found empirically that the precision improvement is negligible when 
the number of clusters (m) exceeds 10% of the number of documents (M). 

3.2   Query Reformulation  

Now we describe the optimization of RF heuristic selection and the query reformula-
tion (see the left loop in Fig. 2). Let us denote the query and the RF heuristic derived 
at feedback iteration t by Q(t) and (α(t), β(t), γ(t); wi(t), i = 1, 2, …, r). We describe 
the processes for t = 0 and t > 0, separately, as follows. For the iteration with t = 0, the 
initial query Q(0) is reformulated according to the retrieved RF heuristic and is then 
used for similarity matching. The similarity matching is conducted according to  
Eq. (2) and the list Σ(0) of the top v most similar documents is returned for the user’s 
inspection. If the user is satisfied with Σ(0), the session is terminated without  
performing the model cluster update. Otherwise, the user activates a new RF iteration 
(t = t + 1) by marking relevant and irrelevant images in Σ(0). 

Now we describe the operations performed in the feedback iterations with t > 0. 
The PSO optimization mechanism is initialized when t = 1, and a swarm of S particles 
are created. Instead of creating the particles at random, the particles are initialized by 
perturbing the RF heuristic (α(0), β(0), γ(0), w1(0), w2(0), …, wr(0)) to expedite the 
optimizing speed. Let us denote the initial swarm by (αi(0), βi(0), γi(0), ( )01

iw , ( )02
iw , 

…, ( )0i
rw ), i = 1, 2, …, S. These particles are then modified using the particle move-

ment formulas, and the new positions of the S particles are obtained. At the query 
reformulation stage, S queries are produced (i.e., the query Q(0) is expanded to S 
queries for t > 0). The ith query Qi(t) is reformulated using the following equation, 
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where R i(t-1) and N i(t-1) denote the sets of relevant and irrelevant documents, respec-
tively, from the retrieved result Σi(t-1) in the (t-1)th feedback iteration. 

The swarm of particles Qi(t), i = 1, 2, …, S, compete to generate Σ(t) of the top v 
most similar documents. The list Σ(t) is returned for display and requests the user for 
another round of relevance feedback. To monitor the retrieval performance using the 
RF heuristic carried by a given particle, for each member in Σ(t), the source particle(s) 
that generates this member should be tallied. Hence, we have 

( ) ( )∪
Si

i tt
,...,1=

∑=∑ ,                                                          (4) 

where Σi(t) consists of those members in Σ(t) that are retrieved by Qi(t). 
By examining the feedback information in Σi(t), we are able to perform two impor-

tant learning tasks. (1) RF heuristic selection optimization: The fitness of the ith parti-
cle can be evaluated by counting the number of members in Σi(t) that are marked as 
relevant by the user. In particular, the fitness of particle i is defined as the precision 
rate (PR) of Σi(t) which is calculated by PR = ( ) ( )ttR ii ∑ . As such, the historical 

best particles, pbest and gbest, can be determined by reference to fitness values and 
they are then employed to guide the optimization for the RF heuristic selection. (2) 
Query optimization: With Ri(t) and N i(t), the relevant and irrelevant documents from 
Σi(t), we are able to reformulate (optimize) the next query Qi(t+1). 

If the user is satisfied with Σi(t) and decides to terminate the RF process, the gbest 
particle is responsible for model base update. Let Q* be the query vector reformulated 
by the RF heuristic contained in gbest. The Euclidean distance between Q* and each 
of the cluster centroids in the model base is computed, and the model base entry with 
the minimum Euclidean distance is replaced by a linear combination of the old entry 
values and the optimal query Q* and the RF heuristic (α*, β*, γ*, *

1w , *
2w , …, *

rw ). 

4   Experimental Results  

To illustrate the feasibility of the proposed method, we chose the application for con-
tent-based image retrieval which advocates active queries that retrieve relevant im-
ages by visual information attributes (color, shape, texture, etc.) The existing RF 
heuristics that we have implemented for comparison include QVM [4], FRE [6], 
SVM-active [8], and Log-based [15]. A large real-world image repository (the UCR 
database) is used for simulations.  

UCR database is a real-world image repository containing 10,038 images. The col-
lection of these images is classified into 56 topics including mountains, oceans, for-
ests, buildings, cars, humans, animals, flowers, and others. In our experiments on 
performance evaluation, the images from the same topic are considered relevant while 
the images from different topics are deemed irrelevant. Each image in the database is 
described by 22 visual attributes, namely, 16 Gabor attributes (mean and standard 
deviation of filtered images at 4 orientation and 2 scales) and 6 color attributes (mean 
and standard deviation from the HSV color domain). 

We compare the performance of the proposed PSO-based automatic heuristic se-
lection method with that of the existing RF heuristics. Fig. 3(a) shows the average 
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precision rate performance, by presenting each database image as a query, with the 
number of feedback iterations (t) obtained using the competing methods. Among all 
the methods, QVM and FRE seem to perform worst by improving the precision rate 
with 10% after consuming nine iterations of feedback. The SVM-active method en-
hances the retrieval performance for about 20% for the same number of feedback 
iterations, but the major improvement is observed after the third iteration of feedback. 
It is noteworthy that none of the three methods exploits long-term information 
through multiple query sessions, so the retrieval performance is significantly sur-
passed by the Log-based and the PSO-based methods. 

The performance of the PSO-based and Log-based methods is comparable after the 
third iteration of feedback, but the PSO-based method clearly outperforms the Log-
based technique in the first display and those in the first two feedback iterations. In 
fact, the Log-based method accumulates incrementally the users’ feedback informa-
tion in a log and utilizes them as the training samples, so the retrieval performance 
starts improving from the first feedback iteration, but not in the first display. By con-
trast, the proposed PSO-based method accesses the RF model base and applies the 
optimal RF heuristic for the given query to determine the first display, thus yielding 
significant improvement in the precision rate at the beginning. 
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Fig. 3. Performance evaluation 

It is desirable to know whether the proposed method exhibits a convergence behav-
ior as the system experiences more query sessions. The convergence can be analyzed 
by monitoring the particles’ velocities. As previously noted, the particle encodes RF 
heuristics by (α, β, γ; wi, i = 1, 2, …, r) in the context of our learning task. We meas-
ure the difference of an RF heuristic when it is learned at successive query sessions to 
note the momentum of particles’ velocities. Fig. 3(b) shows the average parameter 
variations of an RF heuristic during the evolution. The proposed method gradually 
learns the target RF heuristic for each of the clusters stored in the model base because 
the parameter variations do not change a lot after 6000 query sessions. From the 
PSO’s point of view, the move velocities of particles are decreased as the number of 
query sessions increases, manifesting a trajectory convergence behavior. 
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5   Conclusions  

Our survey on previous relevance feedback (RF) research discloses an emerging trend 
that the approaches based on heuristic selection optimization have prevailing advan-
tages compared to other works. In this paper, we have proposed an automatic RF 
heuristic selection framework which conducts two optimization tasks, the query opti-
mization and heuristic-selection optimization. The optimization task is accomplished 
using the PSO technique. Experimental results on the UCR database manifest that the 
proposed method outperforms several existing RF methods. 
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Abstract. The purpose of the paper is to compare the performance of various 
fuzzy edge detectors which have been optimized by Particle Swarm Optimization 
(PSO). Three different type edge detectors Classical fuzzy Heuristic (CFH), 
Gaussian rule based (GRBF) and Robust Fuzzy Complement (RFC) are used. 
These edge detectors are effective in detecting edges, however the edges are thick. 
This paper proposes the used of particle swarm optimization algorithm as a 
method of producing thin and measurable edges. The fuzzy edge detectors are 
used in the initial swarm population and the objective function. The performance 
is based on the consistency of the visual appearance, fuzzy membership threshold 
and the number of complete edges detected. All three optimized edge detector 
performs reasonably well but CFHPSO outperform the rest. 

Keywords: Fuzzy edge detection, Particle swarm optimization, Stochastic, Hybrid. 

1   Introduction 

Medical images are difficult to segment due to grainy image regions and complexity 
of the anatomical features [1]. This is due to gray level inconsistency and the lack of 
strong edges at its border. Image segmentation techniques can be categorized such 
edge-based methods, region-based methods and mixed contour-region-based methods 
[2]. Most edge and boundary detection method encounter problem such as broken 
contour due to noise or blurring [3], [4]. 

Fuzzy techniques in edge detection have becoming more imperative in digital im-
age processing. Tizhoosh [5] introduced heuristic memberships function, simple fuzzy 
rules and fuzzy complements in his edge detector system.   

PSO is a stochastic optimization population-based evolutionary computation  
technique, inspired by the social behavior of birds [6]. This paper compares the per-
formance of the fusion of Particle swarm optimization with three types of fuzzy edge 
detectors. The fuzzy edge detection method are incorporated into the particle swarm 
algorithm in two stages; the initial population and as the objective function. This algo-
rithm is tested on hand radiographs images [7]. 
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2   Approach and Methods 

The main challenge is to detect the outer cortical (OC) the strong edges and the inner 
cortical (IC) weak edges. Radiographs used in this research are retrospective images 
of non-dominant hand radiographs from the Hospital University Sains Malaysia 
(HUSM) [8]. The methodology consists of three phases which are the preprocessing 
phase where smoothing filters are used to reduce noise, followed by the fuzzy edge 
detection phase and the optimization stage. Radiograph images are often fuzzy and 
noisy [9]. The preprocessing stage uses mean 3x3 as smoothing filters. The second 
stage is the implementation of the fuzzy edge detection algorithms that results in the 
detection of thick edges [7]. These results are used as search space in the particle 
swarm optimization algorithm. This stage significantly reduced the search spaces.  

2.1   Fuzzy Edge Detection 

The initial stage of implementing the fuzzy edge detectors is the representation of 
images that are in spatial domain into the fuzzy domain. The image of M x N dimen-
sion and L levels are taken as an array of fuzzy singleton sets. The edges are detected 
as in Equation (1). m= 1,2…M; n=1,2…N; 0 ≤ μ ≤ 1.  

                                   
1 1

M N
mn

m n mn

X
g

μ
= =
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The membership function μmn is obtained through (2); 
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The image X′ containing all edges is calculated as (3); 
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Where μmn = degree of edginess and gmn = center of pixel 
Three types of fuzzy edge detection techniques, Gaussian rule based fuzzy 

(GRBF)[10], robust fuzzy complement (RFC) and classical fuzzy heuristics (CFH). 
RFC and CFH method are fast fuzzy edge detection algorithms by [5].  
 
1. Gaussian Rule Based Fuzzy Edge Detection (GRBF) 
GRBF is a modification of the RBF algorithm. Edge is characterized as relatively high 
difference between maximum and minimum gray levels. The RBF algorithm rules 
used in the algorithm are stated below: 

 

If  W is a ω x ω neighborhood pixels,  
and difference between the minimum gray level in W(gmin) and the maximum gray level 

in W(gmax) is normalized by global image intensity range is high 
and the center pixel(gmn) is equal to mean value,  
then the edginess is high.  
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The edginess membership functions for the above rules are defined as Equation (4) 
and Equation (5):- 
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Where ∆1= (maxG-MinG)/2 and ∆2= (maxG-MinG)/4 
The edge map is then calculated using the T-norm in equation (6): 
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The Gaussian membership functions are modification from Equation (4) and Equation 
(5). The equations are defined as in Equation (7) and Equation (8):- 
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Where ∆1 = maxG - minG /1.5 and ∆2 = maxG – minG. 
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 Where mean  is the  local mean gray level, Gxy  is the pixel gray level, maxG is the 
maximum graylevel value in Global area, minG  is the minimum gray level value in 
Global area, maxL  is the maximum gray level value in local area and minL is the 
minimum graylevel value in local area. 

Both of the global and local maximum and minimum values are considered. 
 
2. Robust Fuzzy Complement (RFC) 
Robust Fuzzy complement based on fuzzy complement algorithm based on Equation 
(3). The degree of fuzziness is the fuzzy complement algorithm takes the complement 

values of X’ as shown in Equation (9). Let 
Λ
x  be the complement of image X': 
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The degree of fuzziness γ of an edgy image X' can be calculated with Equation (10). 
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In an optimal edge the fuzziness of complement membership matrix is only high for 
the row/column containing the gray level transition. An edginess measure is defined 
as a w x w neighborhood. Equation (11) and Equation (12) is the proposed T-norm. 
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   (11) 

 
where T is t-norm such as minimum operator 
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To make the (11) more robust and less sensitive to noise the equation is extended as in 
(12) and (13). 
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The extension is a difference of the local maximum gray level value with the local 
minimum gray level divided with the global maximum. The global maximum implies 
the contrast of the image. 
 

3. Classical Fuzzy Heuristics (CFH) 
The membership is based on the gray level difference of center pixel value gmn and the 
surrounding neighboring pixels within a window of size WxW as show in Equation 
(14) [9]. 
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The lower ∆, the more edges are detected.  

2.2   Particle Swarm Optimization 

In 1995, Kennedy and Eberhart introduced an algorithm inspired by social interactions 
of individuals within a swarm and named it particle swarm Optimization (PSO) [11]. 
Each particle in the swarm represents a candidate solution to the optimization prob-
lem. PSO consists of two main components that is the cognitive and social compo-
nent. The cognitive component quantifies the performance of particle i relative to past 
performances [12],[6]. The social component on the other hand quantifies the per-
formance of particle relative to a group of particles, or neighbors. 

The PSO can be design as full model, the Social-only model and the Cognitive-
only model. Research has shown that the social-only model is faster and more effi-
cient than the full and cognitive-only models [13], [14]. This research focuses more 
on the social components only.  

2.3   The Fuzzy Particle Swarm Optimization Algorithm (FPSO) 

Fuzzy edge detection are used to find the IC and OC edges. These edges are thick and 
are unsuitable for measuring the cortical thickness CT, the internal diameter (ID) and 
the outer diameter (OD) of the metacarpal [7]. 

The parameters play an important role in determining the success rate of any evolu-
tionary algorithm. In this research we only consider two parameters, the swarm size 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

∧

i j
ijijwmn μμμ 1,min

2
,1min



 Performance of Optimized Fuzzy Edge Detectors Using Particle Swarm Algorithm 179 

[15] and neighbourhood size [16]. The proposed technique uses a swarm size, n ob-
tained from the fuzzy edge detector. FPSO consists of four steps that is the dynamic 
population selection, Edge test or the velocity to determine the lbest pixels, the con-
nectivity test or the objective function to determine the final IC or OC edges which is 
the Gbest pixels and the stopping function. 

Step 1. Dynamic Population Selection: The thick edges detected by fuzzy edge 
detector algorithm are used as the initial particle selection for FPSO. The population 
is dynamic because neighborhood pixels that are not selected as optimum will 
automatically be killed thus the size of the swarm dwindles down very fast. 
 
Step2. Social Network Structure-Edge test or the velocity to determine the lbest 
pixels: Particles in the neighbourhood communicates among one another through 
information exchange and moving towards optimum position. The neighbourhood 
structure that is used in this project is a 3X3 neighbourhood as shown in Figure 2. The 
image is scanned from the leftmost selected edge pixels population Pxy. Then the 
membership value of pixel Px'y' are tested against  pixels Px1y1, Px2y2 and Px3y3 shown in 
Figure 1. Px'y' is considered as lbest if its fuzzy membership value of is greater than the 
other the tested pixels. This pixel replaces Pxy as center of the neighborhood and the 
process is iterated. 

    

Pxy 

Px'y' 

P x1y1

P x2y2 

Px3y3

 

 

 

 Px'y'

Pxy 

 

 

P x 2y2 

Px3y3 

P x1y1 

 

 

 

Fig. 1. Edge test pixels in 3x3 neighborhoods 

Step3. The connectivity test or the objective function to determine the final IC or 
OC edges which is the Gbest pixels: This test is to eliminate noise and ensure that 
the pixel is truly the object edge. The elimination process uses connectivity rule is 
based on a minimum of five neighboring lbest pixels are connected within a 
neighborhood of size 3x8 shown in Figure 2. The lbest pixels will be considered as 
the gbest if more than 5 of the pixels in are selected as lbest. The process is iterated  
ten times using the neighborhood structure.  

 

Fig. 2. The neighborhood connectivity test 
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Step 4. Stopping function: The iteration will only end when the entire particles in the 
swarm are processed.  

3   Results and Discussion 

Visually it can be seen that the FPSO is successful in finding a thin edge of the IC and 
OC. The result of implementing this algorithm can be observed in Table 1. 

Table 1. The original image and optimized edge detected image using RFCPSO, GRBFPSO 
and CFHPSO 

Original  RFCPSO GRBFPSO CFHPSO 

C
2 

    

C
3 

    

C
4 

    

 
Samples of images processed with the various FPSO techniques are presented in 

Table1. GRBFPSO produces the worst results in most cases. The edges detected with 
the RFCPSO and CFHPSO shows significantly high optimum edge detected where all 
four complete edges are detected.  

3.1   Performance Measure from the Percentage of Complete Edges 

The most suitable threshold is selected based on the performance of the various fuzzy 
edge detectors. This is determined by the most number of complete edges is the detec-
tion of all four edges of the left OC, left IC, right IC and the right OC based on a line 
scan across the bones that are detected by the FPSO algorithm. Summary of the num-
bers of complete edges are presented in Table 2.  
 



 Performance of Optimized Fuzzy Edge Detectors Using Particle Swarm Algorithm 181 

Table 2. Summary of the number of complete LP, LE, RE and RP edges  

  MEAN SD 

FPSORFC 70 13.266 

FPSOGRBF 28 19.55677 C2 

FPSOCFH 76 9.959622 

FPSORFC 85 10.98201 

FPSOGRBF 66 20.7724 C3 

FPSOCFH 78 16.62275 

FPSORFC 62 28.83825 

FPSOGRBF 50 28.03634 C4 

FPSOCFH 67 24.22007 

 
FPSOGRBF detects the least number of edges. Even though PSORFC detects the 

most outlines, it is more susceptible to noise. This leaves the most suitable cortical 
edge detection algorithm to be FPSOCFH.   

4   Conclusion 

In this paper we have presented three edge detection methods that is a hybrid of fuzzy 
edge detection and particle swarm optimization. The hybrid method proves to be quite 
efficient in finding the boundary of both the weak and strong edges. It is observed that 
the boundary for all the three hybrid edge detectors; GRBFPSO; RFCPSO and 
CFHPSO are quite efficient for the strong edges. RFCPSO and CFHPSO also per-
forms well in detecting the weak edges however boundary obtained for GRBFPSO are 
very inconsistent and highly disconnected. This is easily quantified by the average 
number of complete edges detected where GRBFPSO shows a very low average for 
number of complete edges as compared to RFCPSO and CFHPSO. CFHPSO shows 
the highest number of complete edges thus indicating it as the most promising algo-
rithm in edge detection for this kind of images.  
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Abstract. One of the most studied problems in the financial is the intractability 
of the portfolios. Some practical formulations of the problem include various 
kinds of nonlinear constraints and objectives and can be efficiently solved by 
approximate algorithms. In this paper, we present a meta-heuristic algorithm 
named Particle Swarm Optimization (PSO) to the construction of optimal risky 
portfolios for financial investments. The PSO algorithm is tested on two portfo-
lio optimization models and a comparative study with Genetic Algorithm has 
been implemented. The PSO model demonstrates high computational efficiency 
in constructing optimal risky portfolios. Preliminary results show that the ap-
proach is very promising and achieves results comparable or superior with the 
state of the art solvers.  

Keywords: Swarm Intelligence (SI), Particle Swarm Optimization (PSO), Port-
folio Management (PM), Sharp Ratio (SR), Efficient Frontier (EF). 

1   Introduction 

Portfolio management is one of the most studied topics in finance. The problem is 
concerned with managing the portfolio of assets that minimizes the risk objectives 
subjected to the constraint for guaranteeing a given level of returns. In this paper, we 
deal with the so-called Mean-Variance portfolio selection, which is formulated in the 
similar way done by Markowitz [1]. His theory has revolutionized the way people 
think about portfolio of assets, and has gained widespread acceptance as a practical 
tool for portfolio optimization. But in some cases, the characteristics of the problem, 
such as its size, real-world requirements [2], very limited computation time, and lim-
ited precision in estimating instance parameters, may make analytical methods not 
particularly suitable for tackling large instances of the constrained Mean-Variance 
Model. Therefore researchers and practitioners have to resort to heuristic techniques, 
in which we can found state-of-the-art solvers for the problem. 

There are some literatures of solving PO problem using heuristic methods, these 
methods consist of Genetic Algorithms (GA), tabu search and Simulated Annealing 
(SA) [3], local search and quadratic programming procedure [4], Ant Colony Optimi-
zation (ACO) [5], neural network model [6] and others. 
                                                           
*  This research is supported by the Shanghai key scientific and technological project (Grant 

No. 08DZ1120500). 
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This study presents the PSO algorithm to solve the portfolio optimization problem. 
PSO is a population based stochastic optimization technique developed in 1995 [7]. 
Asset allocation in the selected assets is optimized using a PSO based on Markowitz’s 
theory. The rest of the paper is organized as follows. Section 2 describes models for 
portfolio optimization. In section 3, Back ground of PSO and previous work are 
summarized. PSO model for optimal portfolio is also discussed. In order to test the 
efficiency of the proposed PSO solver, a simulation and comparative study with GA 
heuristics is performed in Section 4. Final conclusions and future research are drawn 
in Section 5. 

2   Models for Portfolio Optimization (PO) 

One of the fundamental principles of financial investment is diversification where 
investors diversify their investments into different types of assets. Portfolio diversifi-
cation minimizes investors’ exposure to risks, and maximizes returns on portfolios. It 
can be referred to as a multi-objective optimization problem. 

There are many methods to solve the multi-objectives optimization problems. One 
basic method is to transfer the multi-objective optimization problems into a single-
objective optimization problem. We can divide these methods into two different 
types: (1). We can select one important objective function as the objective function to 
optimize. The rest of objective function can be defined as constraints conditions. (2). 
We construction an evaluation function which is used as the only objective function. 
This paper used the second method. 

Markowitz Mean-Variance Model 

The Markowitz Mean-Variance model [1] for security selection of risky portfolio 
construction is described as: 
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where N is the number of different assets, ijσ  is the covariance between returns of 

assets i and j, iw  is the weight of each stock in the portfolio, ir  is the mean return of 

stock i and *R  is the desired mean return of the portfolio. We also use the second 
method to model portfolio optimization problem as the following two models: 

2.1   Efficient Frontier Model 

We can find the different objective function values by varying desired mean return 
*R , so a new named risk aversion parameter ]1,0[∈λ  has been introduced, the  
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sensitivity of the investor to the risk increase as λ  increasing from zero to unity. 

With the λ , the model can be described as: 
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In the model included parameter λ , we can draw a continuous curve that is called an 
efficient frontier according the Markowitz theory[1], the curve composed of mean 
return and variance according different λ , and every point on an efficient frontier 
curve indicates an optimum, and this indicates the portfolio optimization problem is a 
multi-objective optimization. 

2.2   Sharpe Ratio Model 

Instead of focusing on the mean variance efficient frontier, we seek to optimize the 
portfolio Sharpe Ratio ( SR ) [8]. The Sharpe ratio is quite simple and it is a risk-
adjusted measure of return that is often used to evaluate the performance of a portfo-
lio. It is described as the following equation: 

)( pStdDev

RR
SR fp −

=
 

(8)

where p is the portfolio, pR  is the mean return of the portfolio p, fR  is the test avail-

able rate of return of a risk-free security. StdDev(p) is the standard deviation of pR . 

Adjusting the portfolio weights iw , we can maximizing the portfolio Sharpe Ratio in 

effect balancing the trade-off between maximizing the expected return and at the same 
time minimizing the risk. In this study, the PSO optimization can find the most valu-
able portfolio with good stock combinations. 

3   PSO Algorithm for Portfolio Optimization 

3.1   Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based stochastic optimization 
technique developed by Kennedy and Eberhart in 1995 [7], inspired by social behav-
ior of bird flocking. It belongs to Swarm Intelligence (SI), which originates from the 
study of natural creatures living in a group. Each individual possess little or no wis-
dom, but by interacting with each other or the surrounding environment, they can 
perform very complex tasks as a group.  
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PSO could be explained well in an imagined scenario: a group of birds are flying in 
an area to look for food, and there’s only one piece of food in this area. the easiest 
way to find the food is to follow the one who is closest to the food.  

The basic concept of PSO lies in accelerating each particle toward its pbest which 
was achieved so far by that particle, and the gbest which is the best value obtained so 
far by any particle in the neighborhood of the particle, with a random weighted accel-
eration at each time step. 

Each particle tries to modify its position using the following information: 

 The current positions ( )(tX ), 

 The current velocities ( )(tV ), 

 The distance between the pbest and the current position ( )(tXPi − ), 

 The distance between the gbest and the current position ( )(tXPG − ). 

In this paper, we will apply PSO algorithm to solve the portfolio optimization problem. 

3.2   Fitness function 

Fitness function is a critical factor in the PSO method. Every particle in the PSO’s 
population has a fitness value, and it moves in solution space with respect to its previ-
ous position where it has met the best fitness value. In this paper, the sharpe ratio 
(according equation 8) and the effect frontier model (according equation 5) will be 
used as objective functions and which are defined as: 
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Where pf  is the fitness value of particle p. At every step, a particle’s personal best 
position and the best neighbor in the swarm are updated if an improvement in any of 
the best fitness values is observed. 

3.3   Particles Movement 

In the algorithm of PSO, each solution is called a “particle”, and every particle has its 
position, velocity, and fitness value. At each iteration, every particle moves towards 
its personal best position and towards the best particle of the swarm found so far. The 
velocity changes according to formulation (11): 

)1( +tvi = )(tvw i + )]()([11 txtprc ii − + )]()([22 txtprc ig −  (11)

where t is the iteration sequence of the particle i, 1c  and 2c  are positive constant 

parameters called acceleration coefficients which are responsible for controlling the 
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maximum step size, 1r  and 2r  are random numbers between (0, 1), w is a constant. 

and  )1( +tvi  is particle i’s velocity at iteration t + 1. )(tvi  is particle i’s velocity at 

iteration t. )(txi  is particle i’s position at iteration t. )(tpi  is the historical individ-

ual best position of the swarm. Finally, the new position of particle i, )1( +txi , is 

calculated as shown in (12) 

)1( +txi = )(txi +  )1( +tvi  (12)

The details about PSO algorithm can be referred to the paper[9]. To improve the per-
formance of PSO, the parameter can be adjusted. For example, the constant w can be 
replaced by formulation (13), and also the constant 1c  and 2c  by function (14) and 
(15). But in the experiment, the result of large scale portfolio (i.e. 40 stocks) didn’t 
significantly improved. 
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4   Experiments and Discussion 

The PSO experiments for the portfolio optimization has been performed on two re-
stricted risky portfolio of 8 stocks and 15 stocks based on two portfolio optimization 
models. Table 1 and table 2 have shown the results from PSO algorithm and genetic 
algorithm (GA) about the two portfolios. All stocks are selected from the Shanghai 
Stock Exchange 50 Index (the SSE 50 Index). Individual stock’s historical daily re-
turns are selected from 1 January 2009 to 3 April 2009. 

In order to evaluate the performance of PSO algorithm, we compare PSO with an-
other heuristic Algorithm, named GA. In the experiments, PSO algorithm has been 
developed using Matlab as software development tool. GA has been developed using 
the software named GeneHunter [11]. 

Base on the efficient frontier model, the results of the optimal risky portfolios de-
veloped by PSO and GA algorithms for the two portfolios are shown in the Table 1. 
In the portfolio of 8 stocks and 15 stocks, The fitness values obtained by PSO are all 
better than those of the GA algorithms. 

Base on the Sharpe Ratio model, the results of the optimal risky portfolios devel-
oped by PSO and GA algorithms for the two portfolios are shown in the Table 2. In 
the portfolio of 8 and 15 stocks, when the risk free is 0 and 0.3%, the Sharpe Ratio 
value obtained by PSO are all better than those of the GA algorithms. 

Taking the sets of optimal portfolios obtained with PSO and GA algorithms, we 
trace out their efficient frontiers in Figure 1 (a)-(d). In situation of the different portfo-
lio optimization models and different portfolios, the PSO efficient frontier is always 
upon those of the GA algorithm. It means that we can get higher mean return under 
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the same risk, or lower risk under the same mean return from the PSO portfolio than 
GA portfolios. So PSO portfolio is the best solution. 

At the same time, we take the sets of optimal portfolios obtained with PSO on 
Sharpe Ratio (SR) model and Efficient Frontier (EF) model, we trace out their effi-
cient frontiers in figure 2.(a) and (b). In the portfolio of 8 stocks, when the standard 
deviation is lower (about 0.03), the efficient frontier based on the SR model is upon 
those of the EF model. But when the standard deviation increasing, the efficient fron-
tier based on the EF model will be upon those of the SR model. But in the portfolio of  
 

Table 1. Two portfolios’ results of PSO and GA algorithms based on the efficient frontier model 

StdDev ER Fitness Value λ  
 

PSO/GA 
8 15 8 15 8 15 

PSO 0.05% 0.09% 0.57% 0.98% -0.05% 0.98% 
1 

GA 0.06% 0.07% 0.74% 0.81% -0.06% 0.81% 

PSO 0.08% 0.09% 0.90% 0.97% 0.12% 0.76% 
0.8 

GA 0.05% 0.07% 0.74% 0.84% 0.11% 0.66% 

PSO 0.11% 0.10% 0.97% 0.97% 0.32% 0.54% 
0.6 

GA 0.07% 0.07% 0.74% 0.84% 0.25% 0.48% 

PSO 0.10% 0.09% 0.96% 0.97% 0.53% 0.34% 
0.4 

GA 0.05% 0.07% 0.74% 0.83% 0.42% 0.29% 

PSO 0.10% 0.08% 0.94% 0.95% 0.74% 0.13% 
0.2 

GA 0.06% 0.06% 0.74% 0.82% 0.58% 0.11% 

PSO 0.11% 0.04% 0.96% 0.50% 0.96% -0.04% 
0 

GA 0.06% 0.05% 0.74% 0.64% 0.74% -0.05% 

Table 2. Two portfolios’ results of PSO and GA algorithms based on the sharpe ratio model 

Stocks RiskFree PSO/GA ER StdDev Sharpe Ratio 

GA 0.66% 2.42% 27.27% 
0 

PSO 0.86% 2.61% 32.75% 

GA 0.53% 2.63% 12.42% 
8 

0.3% 
PSO 0.72% 2.90% 17.83% 

GA 0.69% 2.69% 25.63% 
0 

PSO 0.89% 2.58% 34.50% 

GA 0.57% 2.47% 18.96% 
15 

0.3% 
PSO 0.84% 2.76% 26.73% 

Data has been download from the web: http://finance.yahoo.com. The Risk Free has been 
selected subjectively. ER is ‘expected return’, StdDev is ‘standard deviation’, λ is the risk 
aversion parameter in the efficient frontier model. 
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Fig. 1. The Efficient frontier of the portfolio gotten from PSO and GA heuristics 
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Fig. 2. The efficient frontier of the portfolio gotten from PSO on SR model and EF model 

15 stocks, the efficient frontier obtained based on SR model is always upon those of 
EF model. So we can come to conclude that portfolio optimization model is very 
important for the portfolio optimization. 
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To sum up, from the experiments on different portfolios and different portfolio 
optimization models, we can conclude that the PSO approach is better than the GA 
algorithm in this case. PSO algorithm clearly shows the efficiency and effectiveness 
of solving high-dimensional constrained optimization problems. 

5   Conclusion 

The paper focuses on solving the portfolio optimization problem in finance invest-
ment management. A meta-heuristic Particle Swarm Optimization method has been 
developed to optimize investment portfolios, in which the objective functions and 
constraints are based on the Markowitz model, the Sharp Ratio (SR) model and the 
Efficient Frontier (EF) model. In order to make a valid comparison with other meth-
ods, different test problems were solved and the results obtained when compared with 
the results of Genetic Algorithms (GA) demonstrated the superiority of the PSO  
algorithm. At the same time, the portfolio optimization model is a key factor for the 
portfolio management. Future research may be conducted to further investigate the 
application of some derived models or hybrid models of PSO to other investment 
strategy problems. 
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Abstract. This paper presents an optimal economic dispatch for power plants by 
using modified particle swarm optimization (PSO) algorithm. The economic dis-
patch problem in power systems is to determine the optimal combination of power 
outputs for all generating units in order that the total fuel cost can be minimized, 
furthermore, all practical constraints can be satisfied. Several key factors in terms 
of valve-point effects of coal cost functions, unit operation constraints and power 
balance are considered in the computation models. Consequently, a new adaptive 
PSO technique is utilized for solving economic dispatch problems. The proposed 
algorithm is compared with other PSO algorithms. Simulation results show that 
the proposed method is feasible and efficient. 

Keywords: Economic dispatch, Particle swarm optimization. 

1   Introduction 

Economic load dispatch problem is allocating loads to available generation units for 
minimum cost while meeting the constraints. It can be formulated as an optimization 
problem of minimizing the total fuel cost of all committed plant while meeting the 
demand and losses. Modern power system is experiencing increased demand for elec-
tricity with related expansions in system size, which has resulted in higher number of 
generators and lower reserve margins making the economic dispatch (ED) problem 
more challenging and complicated.  

There have been many algorithms proposed for economic dispatch. In the literature 
dedicated to the optimization of cost objective function, many researchers proposed 
different solutions [1]. Due to the nature of large scale, valve-point loadings, nonlinear 
generation cost and multiple constraints, ED problem combines a highly nonlinear, non-
convex and computationally difficult environment with a need for optimality [2]. In the 
traditional ED problem, the cost function for each generator has been approximately 
represented by a single quadratic function and solved by using mathematical program-
ming, such as, nonlinear programming [3], linear programming, homogenous linear 
programming [4], dynamic programming [5], quadratic programming [6] and so on. 

The basic ED considers the power balance constraint apart from the generating ca-
pacity limits, a practical ED must take ramp rate limits, prohibited operating zones 
and valve-point effects options into consideration so as to provide the completeness 
for the ED formulation. The resulting ED is a challenging problem. PSO is one of the 
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modern heuristic algorithms, which can be used to solve nonlinear and non-
continuous optimization problems [7]. PSO can be easily applied to nonlinear and 
non-continuous optimization problems. There are some modified particle swarm op-
timization algorithms, for example, learning factor is linearly decreased in velocity 
update relaxed (VUR) PSO so as to have a linear transition of search ability from 
global to local search.  

This paper introduces a new adaptive PSO (APSO) applied to non-convex ED 
problems. Compared with the conventional PSO and VURPSO approaches, APSO 
has a better dynamic balance between global and local search abilities due to nonlin-
ear and dynamic change in the inertia weight during the iterations. 

2   The Economic Dispatch Model 

2.1   Objective Function 

The optimal ED problem can be modeled as an optimization problem. The objective 
of the ED problem is to minimize the total generation costs of a power system with 
the operating constraints of a power system. In all practical cases, the fuel cost of 
generator i  with power output iP  can be formulated as a quadratic function of real 
power generation.  

2( ) ( )
n

i i i
i

f P a P b P c= + +∑  . (1)

Wire drawing effects occurs when each steam admission valve in a turbine starts to 
open, and at the same time a rippling effect on the unit curve is produced. Ignoring 
valve point effects, some inaccuracy would be introduced into the resulting dispatch. 
To model the effects of “valve-points”, a recurring rectified sinusoid contribution is 
added to the above cost function. Since the valve point results in the ripples, a cost 
function contains higher order nonlinearity. Therefore, the cost function (1) should be 
replaced by (2) in order to consider the valve-point effects as follows: 

2( ) ( )
n n

i i i i
i i

f P aP bP c E= + + +∑ ∑   (2)

minsin( ( ))i i i i iE g h P P= −  (3)

where ig  and ih  are the valve-points coefficients. miniP  is the lower generation limit of 
unit i .  

2.2   Operational Limitations and Constraint 

In general, the operational limitations and constraints considered in this paper are 
listed below: 

(1) Unit operation constraints 
Generation output of each generator should be laid between maximum and minimum 
limits. The corresponding inequality constraints for each generator are: 
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min maxiP P P≤ ≤  (4)

where 
minP and 

maxP  are minimum and maximum output of generator i , respectively. 

(2) Power balance 
For power balance, an equality constraint should be satisfied. The total generated 
power should be the same as total load demand plus the total line loss 

n

i L D
i

P P P= +∑  (5)

where 
DP  is the total system demand and 

LP  the total line loss. Nevertheless, the 

transmission loss is not considered in this paper for simplicity. 

2.3   Optimization of the Objective Function 

Considering the above condition, the mathematical model of the economic dispatch 
for n  units can be established as follows 

min ( ) [ ( ) ]
n n

i i i i i
i i

F F P f P E= = +∑ ∑  (6)

St  min maxiP P P≤ ≤  
n

i D
i

P P=∑  

Therefore, the objective function is selected as follow: 

( )
n n n

i i i i LD
i i

f f P E k P P= + + −∑ ∑ ∑
  1, 2,i n=  

(7)

where k  is penalty function coefficient. 

3   Particle Swam Optimization Algorithm 

3.1   Conventional Standard PSO  

Particle swam optimization is an intelligent optimization algorithm. It is similar to 
other intelligent optimization algorithms in that the algorithm is initialized with a 
population of random solutions. In the original form of PSO, each particle in a swarm 
population adjusts its position in the search space by tracking two extreme values, 
which are the best position ( Pbest ) found so far, and the position of the known best-
fit particle (Gbest ) in the entire population. Unlike other population-based evolution-
ary algorithms, i.e., genetic algorithms, instead of using genetic operators such as 
crossover and mutation, PSO each candidate solution is associated with a velocity. 
The candidate solutions, called particles, then “fly” through the search space. The 
velocity is constantly adjusted according to the corresponding particle’s flying experi-
ence and its companions’ flying experience. The updating formula for each particle’s 

velocity ijv  and position ijx in conventional standard PSO is written as: 
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1 2( 1) ( ) ( ( ) ( )) ( ( ) ( )))ij ij i ij i ijv t v t c Pbest t x t c Gbest t x t+ = − + −（  (8)

( 1) ( ) ( 1)ij ij ijx t x t v t+ = + +  (9)

In. (8) and (9), the learning factors 1c and 2c are nonnegative constants, 1c  and 2c  are 

random numbers uniformly distributed in the interval [0, 1], 
max max[ , ]ijv v v∈ − , where 

m xav  is a designated maximum velocity which is a constant preset by users according 

to the objective optimization function.  
It has been found that the “flying” particles velocities are only determined by their 

current positions and their best positions in history. The velocity itself is memoryless, 
it leads to the final solution is heavily dependent on the initial seeds (population). In 
this case, by adding the first term in Eq. (10), the particles obtain the ability to expand 
the search space, that is, they have a tendency to explore the new area. So that PSO 
more likely has global search ability by adding the first term. The updating formula 
for each particle’s velocity and position in conventional standard PSO is expressed as 
follows: 

1 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))ij ij i ij i ijv t wv t c rand Pbest t x t c rand Gbest t x t+ = + − + −  (10)

where rand  is a random number uniformly distributed in [0,1]. w  plays the role of 
balancing the global search and local search. 

3.2   Relaxed PSO  

The concept of a varying inertia weight has been introduced to balance the global 
wide range exploitation and local nearby exploration abilities of the swarm, which 
performs much better than fixed inertia weight. The weight is updated as follows： 

max max min max*( ) /w w gen w w gen= − −  (11)

where 
m xag en is the maximum iterations set by the user. maxw  and minw  are the 

maximum and minimum inertia weight respectively, which can be set by the user, for 
example, 

m a xw =0.9, 
m inw =0.4. 

3.3   Adaptive PSO  

In our work, an adaptive PSO algorithm is proposed to improve its performance. Dif-
ferent particles are allocated with different tasks. The particles with better perform-
ance have larger inertia weight, which are in charge of searching better area. The 
particles with poor performance are weighted by smaller inertia, allowing them to 
quickly converge to a better area for detailed search. Moreover, a large inertia weight 
facilitates a global search while a small inertia weight facilitates a local search. The 
particles are sorted according to their individual optimal location from excellent to 
poor. The inertia weight and positive constant of the particle, which is in i  place, are 
expressed as follows: 
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min max min( )( ) / ( 1)iw w w w m i m= + − − −  (12)

1 2 ( 1 2 ) / 2i i i ic c w w= = + +   (13)

m  is the population size, the inertia weight iw  is adjusted adaptively.  

4   Case Study 

In this section, some numerical examples are provided to highlight the main features 
of the proposed APSO approach.  

4.1   Case 1  

The test system is composed of 5 generating units and the registered capacity of units 
is 

maxP =600MW, 
minP =240MW [8]. The parameter of inertia weight associated with 

PSO is 0.9 and VURPSO linearly decreasing inertia weight from 1.0 to 0.5 with itera-
tion cycle. The APSO inertia weight values are between 0.4 and 1.0. Maximum al-
lowed iteration cycles are taken as 350 with swarm size of 50 particles for all the PSO 
versions.  

In this case, the fuel cost of the generating units are given as follows: 
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The fitness curves of four different algorithms are shown in Fig. 1. It is clear that the 
APSO and VURPSO are almost similar in convergence and show their superiority 
over the PSO algorithm. APSO is slightly better than VURPSO, because APSO has 
better information sharing and conveying mechanism than the others.   

The best power outputs obtained by three PSO strategies are compared with im-
proved mutative scale chaotic optimization [8], the final results are shown in Table 1. 
It can be shown that APSO has the highest probability of achieving better solutions. 

4.2   Case 2  

This system consists of 3 generating units and the input data of 3-generator system are 
given in Table 2 [9]. The total demand for the system is set to 850MW. The simula-
tion results compared with conventional PSO and modified PSO are shown in Table3. 
It is clear that the APSO has succeeded in finding a global optimal solution. 
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Fig. 1. Comparative results among three PSO strategies 

Table 1. The comparison of statistical test results 

Algorithm Total 
power 
(MW) 

1P  

(MW) 
2P  

(MW) 
3P  

(MW) 
4P  

(MW) 
5P  

(MW) 

Fuel cost 
($) 

PSO 462.12 547.15 448.34 425.82 516.78 4792.9 
VURPSO 560.84 466.73 600.00 600.00 241.42 2672.0 
APSO 456.14 572.85 600.00 600.00 240.00 2659.9 
Literature[8] 

 
 
2469.64 

396.16 512.96 450.00 598.24 512.56 4039.3 
PSO 510.65 430.10 324.30 452.92 430.34 5941.6 
VURPSO 600.00 600.00 388.08 546.54 240.00 2684.8 
APSO 467.82 554.71 512.06 600.00 240.00 2663.4 
Literature[8] 

 
 
2374.63 

350.49 544.06 499.23 450.63 530.40 4169.1 
PSO 355.93 468.25 600.00 600.00 493.96 5884.5 
VURPSO 600.00 600.00 600.00 600.00 318.88 3052.8 
APSO 600.00 600.00 600.00 600.00 318.88 3052.8 
Literature[8] 

 
 
2718.88 

418.85 600.00 583.20 575.35 539.66 4171.4 

Table 2. Data for test case 2(3-unit system) 

S.no a  b  c  
ig  ih  miniP

 
(MW) 

maxiP
 

(MW) 

1 0.001562 7.92 561 300 0.0315 100 600 
2 0.00194 7.85 310 200 0.042 100 400 
3 0.00482 7.97 78 150 0.063 50 200 
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Table 3. Best simulation results from 3 kinds of PSO strategies  

Best result Output 
powers 
(MW) 

PSO VURPSO APSO 

P1(MW) 243.00 270.42 365.52 
P2(MW) 357.48 331.94 319.26 
P3(MW) 167.03 70.94 138.21 

Fuel 
cost(MW) 

8569.2 8385.1 8209.7 

5   Conclusions 

In this paper, a new modified PSO algorithm is presented for building the optimal 
economic dispatch strategy for generation companies in power markets. Economic 
dispatch is a multi-objective problem. To prove the ability of the proposed APSO in 
solving non-convex optimization problems, ED problems with non-convex solution 
spaces are considered and solved by three different PSO strategies (PSO, VURPSO, 
and APSO). The results show that the proposed APSO has obtained satisfactory solu-
tion for generation companies. 
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Abstract. This paper proposes a novel approach to optimal placement
of wind turbines in the continuous space of a wind farm. The control
objective is to maximize the power produced by a farm with a fixed
number of turbines while guaranteeing the distance between turbines no
less than the allowed minimal distance for turbine operation safety. The
problem of wind farm micro-siting with space constraints is formulated
to a constrained optimization problem and solved by a particle swarm
optimization (PSO) algorithm based on penalty functions. Simulation
results demonstrate that the PSO approach is more suitable and effec-
tive for micro-siting than the classical binary-coded genetic algorithms.

Keywords: wind farm micro-siting, particle swarm optimization,
penalty function.

1 Introduction

Micro-siting is one of the most fundamental problems of wind farm design. Un-
fortunately, only few studies were carried out. The most commonly adopted
scheme, also known as the empirical method, was the staggered siting scheme,
which is mainly suitable for a relatively flat wind farm with a dominant wind
direction [1]. Mosetti, Poloni and Diviacco first systematically optimized tur-
bine positions in a wind farm by a genetic algorithm (GA) [2]. Their work was
further improved by Grady, Hussaini and Abdullah [3], Marmidis, Lazarou and
Pyrgioti [4], and Wan, Wang, Yang, et al. [5].

In the above studies, a wind farm was partitioned into square cells, the width
of which is usually five times of the diameter of the turbine rotor for operation
safety. The turbines could only be placed in the center of each cell. Although
this kind of “discret” siting is convenient for the realization of optimal methods,
some freedom was lost so was the performance of the wind farm. Wan et al. [6]
proposed an algorithm to allow each turbine to be freely adjusted inside its cell
in order to increase the energy generated by the wind farm. Unfortunately, as
the constraints on turbine-minimum-distance were not considered, the turbines
could be placed quite closely especially when the wind direction was dominant.
� Corresponding author.
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The particle swarm optimization (PSO) algorithm is easy to implement and
converges quickly. Furthermore, the PSO algorithm is especially suitable for
real-valued optimization problem [7,8]. In this paper, a PSO algorithm based on
penalty functions is proposed for the optimal micro-siting of a wind farm in a
spatially-continuous manner.

2 Formulation of Wind and Turbine Models

For completeness and clarity, this section presents the models of wind direc-
tions and speeds, the wake effects among turbines and the power evaluation of
turbines.

2.1 Models of Wind Direction and Speed

The wind energy rose map is used to describe the characteristics of wind direction
and speed variations of a wind farm. The length of each segment of the rose map
represents the frequency of the corresponding wind speed in a certain direction.

2.2 Models of Wake Effects

In a wind farm, wake effects among turbines could be approximated by a linear
wake model [9]. According to the momentum balance theorem and the Betz
theory, the wake speed at a given downstream distance d is [9,10]
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where u0 is the freedom wind speed, CT is the turbine thrust coefficient, D is
the turbine rotor diameter, and α is the wake spreading constant.

For a wind farm with N turbines, the wind speed of the ith turbine, ui, can
be computed according to the theory of kinetic energy balance [9,10].

2.3 Models of Turbine Power

The different wind directions and speeds are not considered in the above wake
models for clarity. Suppose a wind farm has N turbines and the wind has M
directions. Moreover, each wind direction is partitioned to P speeds. The total
power of the wind farm could be calculated by [2]
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where fi,j is the percentage of the jth wind speed in the ith wind direction,
ui,j,k is the actual wind speed on the kth wind turbine under condition of the
jth wind speed in the ith wind direction.
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3 Optimization Methods

Suppose the allowed minimum distance between turbines is dmin. The optimal
micro-siting problem is to maximize the power produced by the wind farm, i.e.

maxP(Z) (3)

subject to the constraints on turbine positions⎧⎨
⎩
gk (Z) = (xm − xn)2 + (ym − yn)2 − d2

min ≥ 0

0 ≤ xm ≤ Xmax, 0 ≤ ym ≤ Ymax

(k ∈ {1, 2, ..., C} , ∀m = n, m, n ∈ {1, 2, ..., N})

(4)

where (xm, ym) represents the the Cartesian coordinates of themth wind turbine,
gk(Z) represents the position constraint between the mth and the nth turbines,
C = N (N − 1) /2 is the number of constraints.

The wind farm micro-siting problem is a constrained optimization problem
with a large number of constraints.

3.1 Penalty Function Method

The penalty function method is most commonly utilized to handle constraints
in optimization problems. It transforms a constrained optimization problem into
an unconstrained one by penalizing the infeasible solution based on the amount
of constraint violations [11].

According to Equations (3) and (4), the present optimization problem is a
maximization problem. The fitness of a potential solution can be evaluated by

F(Z) = P(Z) − γφ(Z) (5)

where γ is the penalty coefficient. φ(Z) is the constraint violation value of the
solution Z and can be evaluated by

φ (Z) =

√√√√ C∑
k=1

| min {0, gk (Z)} | (6)

It represents the distance between the infeasible solution and the feasible region.
φ(Z) = 0 indicates that the solution is feasible, while φ(Z) > 0 infeasible.

In this paper, the penalty function method transforms the constrained opti-
mization problem into an unconstrained one so that the computational complex-
ity is reduced.

3.2 Particle Swarm Optimization

The PSO algorithm is a population-based, global and stochastic optimization
algorithm. It was inspired by social behavior of fish schooling and bird flocking,
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and developed by Kennedy and Eberhart in 1995 [12]. It is easier to imple-
ment and has a faster convergence rate than the traditional evolutionary algo-
rithms [7,8]. Additionally, it is computational inexpensive and especially suitable
for the present complex continuous problem.

The PSO algorithm starts with a population of particles whose positions Z

and velocities V are randomly initialized in the search space. In the present
study, Z = [ZT

1 ZT
2 · · · ZT

PS ]T represents the position matrix of turbines for all
the potential solutions in the swarm, “PS” represents the population size, and
V = [V T

1 V T
2 · · · V T

PS ]T represents the modification to the position Z. The search
for optimal position is carried out by updating the velocities and positions of the
particles iteratively. The search of particles is focused toward promising regions
by biasing the particles’ velocities vector toward both their own historical best
positions Z

p and the swarm’s historical best position Z
g. Here, the best position

of a particle or the swarm is corresponding to the smallest fitness value defined
in Equation (5) .

The velocities and positions of particles are usually updated by the following
equations [7,8,13]:

V(t+ 1) = wV(t) + c1R1. ∗ (Zp(t) − Z(t)) + c2R2. ∗ (Zg(t) − Z(t)) (7)
Z(t+ 1) = Z(t) + V(t+ 1) (8)

where t is the generation index, w is the inertial weight which balances the
global and local search ability, c1 and c2 are cognitive and social parameters
respectively, R1 and R2 are random matrices of a dimension PS × 2N whose
elements are uniformly distributed within [0, 1], and “.∗” represents the element-
by-element product.

In order to improve the convergence ability of the PSO, a constriction factorK
can be added to the velocity update rule. The effect of the constriction factor is to
reduce the velocity of the particles as the search progresses and thereby contract
the overall swarm diameter. This in turn results in a progressively smaller domain
being searched. In this case, the velocities of particles are updated as follows [14]:

V(t+ 1) = K(V(t) + c1R1. ∗ (Zp(t) − Z(t)) + c2R2. ∗ (Zg(t) − Z(t))) (9)

where K = 2
|2−c−√

c2−4c| , c = c1 + c2 > 4. Experimental results pointed out that
c1 = 2.8 and c2 = 1.3 yielded good results for the test problems [8,15]. In this
paper, this type of PSO algorithm is used to solve the present problem.

The maximum velocity Vmax of the particle is limited to the dynamic range of
the search space [14]. The convergent criterion is that the relative improvement in
consecutive 100 generations is less than 0.01% and the algorithm has proceeded
at least 1000 generations.

4 Results and Discussions

In this paper, computer simulations are carried out by MATLAB. The allowed
minimum distance between turbines is set as dmin = 4D, where D = 50m is the
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turbine diameter [10]. As the Grady’s results [3] are the most classical ones, the
present optimal results are compared with Grady’s under the same wind farm
conditions in order to demonstrate the effectiveness of the proposed approach.

In Grady’s study [3], a square wind farm was partitioned into a 10× 10 grid.
The turbines were only allowed to be installed in the center of each cell with the
objective of minimizing the cost per unit energy. Genetic algorithms were used
to solve the optimization problem.

The characteristics of the wind turbines in Grady’s paper are as follows: The
hub height of the turbines is 60m, rotor diameter 40m, thrust coefficient 0.88.
The turbine thrust coefficient is considered constant throughout the process.
The farm is a 2000m× 2000m site and the ground roughness is z0 = 0.3m.

In Grady’s study, three cases with different complexities were investigated: (a)
uniform wind direction with a speed 12m/s; (b) 36-direction evenly distributed
wind with a speed 12m/s; (c) 36-direction distributed wind with varied probability
of the speeds 8, 12, and 17m/s. The wind roses for three cases are shown in Fig. 1.
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Fig. 1. The wind roses for the three cases in Grady’s paper

The optimal wind farm configurations of Grady’s study for the three cases
are shown in Fig. 2 and the numbers of installed turbines are 30, 39 and 39,
respectively. The limitation of Grady’s study is that the positions of turbines
could not been adjusted freely in the continuous space.

In the present study, the PSO algorithm with penalty functions is applied to
the same cases. The wind farm model and parameters are the same as given
in [3] while the objective function is to maximize the total power extracted from
the wind farm. The same type of wind turbines as in [3] are used. The numbers
of turbines for all three cases are set to be the same as those of Grady’s. In
Grady’s study, the wind farm is a square of 2000m × 2000m and the width of
each cell is 200m. Since the turbines are only installed in the center of each cell,
the effective domain of the wind farm in Grady’s study is 1800m×1800m. Thus,
the computational domain of the present study is set as 1800m×1800m so that
the optimal results could be fairly compared with Grady’s study.

The population size for the optimization is set to the twice of the total tur-
bine number. The penalty coefficients γ for the Cases a, b and c are chosen to
be 500, 500 and 1000 respectively by trial-and-error tunings. The wind farm
configurations are shown in Fig. 3.
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(a) Case a (b) Case b (c) Case c

Fig. 2. Optimal wind farm configurations of Grady’s study [3]

(a) Case a (b) Case b (c) Case c

Fig. 3. Optimal wind farm configurations of the present study

In Fig. 3, the area in the black thick square represents the effective domain
of the wind farm. The turbine positions in the present study have been adjusted
within the boundary of the wind farm effective domain. Since there are position
constraints in the optimization, the turbines have been positioned to satisfy the
constraints on minimum distances. In Case a, the turbines assemble on the upper
and lower boundary of the wind farm, which is in coincidence with the uniform
wind condition. In Case b and Case c, since the wind is distributed among 36
wind directions, the turbines “scatter” around the outer perimeter of the site.

Table 1 compares the wind farm performances by the two methods. Since
the positions of turbines of the present study could be adjusted more freely, the
wind speed loss has been further reduced. The total power output P and the
wind farm efficiency η are respectively improved by 6.34%, 4.13% and 4.02% in
three cases. It is obvious that wake effects in the wind farm, as well as energy
loss, have been greatly reduced by optimizing the positions of turbines in the
continuous space, and the wind resource could be more effectively exploited.
However, since the number of turbines of the latter two cases are larger than
that of the first case and the wind conditions are more complex, their relative
free space to adjust is lower than that of the first case. As a result of that, the
relative improvement is also lower than the first case.
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Table 1. Comparison of optimal results

Caes a Caes b Caes c

P (kW) η (%) P (kW) η (%) P (kW) η (%)
Grady’s study 14312 92.03 17241 85.28 31649 85.54
Present study 15220 97.87 17953 88.80 32921 88.98
Improvement 6.34% 4.13% 4.02%

5 Conclusions

This paper introduces a novel approach to optimize the positions of turbines in
the continuous space. The goal is to extract the maximal energy when the wind
resource, topography and the number and types of turbines are given. The key
question to solve the formulated problem is the large number of constraints and
the high complexity of the optimization problem. A particle swarm optimization
algorithm based on a penalty-function method is employed to solve the present
problem. Simulation results demonstrate that more energy could be extracted
from the wind farm by the proposed approach under the same conditions.

In the application of the penalty-function method, the selection of penalty
coefficient is problem dependent and time consuming. Determining an appropri-
ate value of penalty coefficients is itself a difficult optimization problem. It will
be of importance to propose an adaptive fitness-evaluation method in the future
work.

Acknowledgements

This work was supported in part by the National High Technology Research and
Development Program of China (863 Program) under Grant No. 2007AA05Z426
and the Natural Science Foundation of China under Grant No. 60674096.

References

1. Ammara, I., Leclerc, C., Masson, C.: A viscous three-dimensional
differential/actuator-disk method for the aerodynamic analysis of wind farms.
Solar Energy Engineering 124, 345–356 (2002)

2. Mosetti, G., Poloni, C., Diviacco, B.: Optimization of wind turbine positioning in
large wind farms by means of a genetic algorithm. Wind Engineering Industrial
Aerodynamic 51(1), 105–116 (1994)

3. Grady, S.A., Hussaini, M.Y., Abdullah, M.M.: Placement of wind turbines using
genetic algorithms. Renewable Energy 30(2), 259–270 (2005)

4. Marmidis, G., Lazarou, S., Pyrgioti, E.: Optimal placement of wind turbines in
a wind park using monte carlo simulation. Renewable Energy 33(7), 1455–1460
(2008)



Optimal Micro-siting of Wind Farms by Particle Swarm Optimization 205

5. Wan, C., Wang, J., Yang, G., Li, X., Zhang, X.: Optimal micro-siting of wind
turbines by genetic algorithms based on improved wind and turbine models. In:
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference, Shanghai, P.R. China, pp. 5092–5096 (2009)

6. Wan, C., Wang, J., Yang, G., Zhang, X.: Optimal siting of wind turbines using real-
coded genetic algorithms. In: Proceedings of European Wind Energy Association
Conference and Exhibition. Marseille, France (2009)

7. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications
and resources. In: Congress on Evolutionary Computation 2001, Kennedy (2001)

8. Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle
swarms. Global Optimization 31(1), 93–108 (2005)

9. Jensen, N.O.: A note on wind turbine interaction. Tech. rep. Riso National Labo-
ratory, Denmark (1983)

10. Katic, I., Hojstrup, J., Jensen, N.: A simple model for cluster efficiency. In: Pro-
ceedings of European Wind Energy Association Conference and Exhibition, Rome,
Italy, pp. 407–410 (1986)

11. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
1995 IEEE International Conference on Neural Networks, Perth, Australia, vol. 4,
pp. 1942–1948 (1995)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Conference on
Evolutionary Computation, Anchorage, USA, pp. 69–73 (1998)

14. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in
particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary
Computation, California, USA, vol. 1, pp. 85–88 (2000)

15. Charlisle, A., Dozier, G.: An off-the-shelf pso. In: Proceedings of the Workshop
on Particle Swarm Optimization. Purdue School of Engineering and Technology,
Indianapolis, USA (2001)



PSO Applied to Table Allocation Problems

David A. Braude1,2 and Anton van Wyk2

1 Information Security, Modeling and Digital Sciences, CSIR, Pretoria, South Africa
david.braude@students.ee.wits.ac.za

2 School of Electrical and Information Engineering, University of the Witwatersrand,
Johannesburg, South Africa
anton.vanwyk@wits.ac.za

Abstract. Table allocation is a type of assignment problem. The aim
of table allocation is to assign multiple people to a single table in such a
way that it minimizes a cost function. While particle swarm optimization
(PSO) is normally used for continuous variables it has been adapted to
solve this problem. Each particle represents an entire seating arrange-
ment, and the velocity is the amount of times people swap tables during
each iteration. In an example application PSO shows a significant im-
provement in fitness compared to the initial conditions, and has a low
runtime. It also performs better in fitness improvement and runtime com-
pared to choosing as many random samples as PSO generated. The use
of PSO allows for generalized cost functions, and is simple to implement.

1 Introduction

At many functions or events it is necessary to seat people at a table according to
certain constraints. These may include keeping apart certain people, or ensuring
that certain people are together. Another important consideration is the maxi-
mum and minimum size of a table. For instance at a wedding it is desirable to
keep family members together and to keep people who dislike one another apart.
Other examples as to what may be taken into consideration are the gender ratios,
the age of the people, and the languages that the guests speak.

Table allocation as a separate problem has not been formally defined. How-
ever, it is very similar to the assignment problem[1]. The analogy would be that
a table is a task and that a person would be the agent. The difference in the
two problems is that inherently multiple agents are assigned to one task, and
it is the nature of the interaction of the agents that creates the cost. For the
purposes of this paper, the definition of the table allocation problem will be: To
assign all people to tables in such a way as to minimize costs and satisfy rules.
To accommodate cases where people can be unassigned the creation of a no table
allocation could be used.

It is clear that as the amount of types of costs rise the difficulty of assigning
people to tables becomes increasingly more complicated. In this paper, Particle
Swarm Optimization(PSO)[2] is used to deal with the table allocation problem.
The primary purpose of this methodology is to decouple the process from the
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calculation of the ’goodness’ or fitness of a table. Thus if more cost types are
added then the rest of the optimization is not affected in terms of computational
efficiency. It also becomes easier to modify or add constraints.

Neither linear nor quadratic programming can be used to solve the table
allocation problem in general because the cost function can assume any form.
Population based methods are applicable because of the general structure of
the fitness function. This study focuses on PSO, however, a Genetic Algorithm
(GA) can also be applied[2]. The most appropriate crossover function is not
readily apparent, thus PSO is easier to adapt to the problem. GA, unlike PSO,
is memoryless. It is theorized that in this problem memory will enhance the final
solution.

The No Free Lunch Theorem[3] is a general heuristic which implies that some
search methods are better suited to certain problems. To test if PSO is an efficient
solution for the table allocation problem, the example will be compared to the
process of randomizing a valid seating arrangement and then calculating the
cost. Each iteration represents generating as many new seating plans as the PSO
swarm size and keeping the best arrangement. Both methods are averaged over
100 trials. The PSO has higher computational costs and thus to be considered
a viable solution to the table allocation problem it should have a large increase
in performance. If PSO cannot exceed the performance of the random approach
then its computational costs are not justified, and hence it cannot be considered
a reasonable methodology.

The rest of the paper is structured as follows: The general algorithm is defined;
an example is used to test performance; the key points are summarized in the
conclusion.

2 General Algorithm

PSO was first introduced by James Kennedy and Russell Eberhart in 1995[4].
In this technique, each particle at each iteration moves in three different ways,
referred to as speeds - towards the global optimum; towards its personal opti-
mum; and randomly. Speed is defined relative to the application. Each speed is
determined by previous states - it will increase the movement toward the global
optimum if the current iteration is highly dissimilar; movement toward its own
optimum is determined the same way; and its random movement is proportional
to the total speed of the previous iteration. Each speed is also scaled by a con-
stant. The speeds due to the global optimum and the personal optimum are also
multiplied by a uniform random number on the unit range[2].

There is a modification where the particles will work within neighborhoods[2].
This will only add to the complexity and not the comprehension of the proposed
solution to the problem. Hence it was not used for this study.

In the case of table allocation each particle represents a possible way of seating
the people. The movement is done by moving people from one table to another.
In the table allocation problem movement towards optima means moving people
to the table they are assigned to in the optimum. Through experimentation (an
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Fig. 1. PSO Table Allocation Algorithm
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example is shown in Section3) it was found that the best order was to move
towards the global optimum, then the personal optimum, and then randomly.
An important constraint on the movement is that a table does not get overfilled
or have too few people. To counter this problem if moving an person to a new
table causes the table capacity to be exceeded, or causes the source table to hold
too few people, a random person at the destination table is moved to the source
table. In this way, table capacity constraints are preserved through updating
scenarios. The PSO algorithm for table allocation is shown in Fig. 1.

Fail thresholds were introduced to stop the update process from going into
an infinite loop. The speed is initialized randomly with a normal distribution.
In the example application, in 3% of the trails, the swarm converged on a local
optimum, within five iterations, when using uniform random numbers. The use
of the normal distribution stopped this problem by ensuring that most parti-
cles did not have near zero initial speeds. Details of the advantages of various
distributions are given in[5]. An acceptable range of the speed was empirically
determined by running the algorithm once with arbitrary values and setting the
range to be approximately double the mean speed. In the example application
the range was 0 to 40 movements.

2.1 Parallel Processing

PSO has many components that can be processed in parallel[6]. The initialization
of the particles is embarrassingly parallel. The update is almost also embarrass-
ingly parallel, with the exception that after each update the global solution must
be shared. To accommodate this sharing, when implementing the optimization,
it was efficiently achieved by flagging particles that improve on the global op-
timum as candidates. The fitness of the candidates is then bubble sorted with
only one iteration so the fittest is known[6]. This also makes it easy to use the
multi-elitist modification to PSO proposed in[7]. Because the example is to be
used as a benchmark the modification was not implemented.

3 Example Application

In South Africa there are a number of conventions for Role Playing Games
(RPGs). At these conventions there are two categories of participants: players
and Game Masters (GM). Participants may enter in teams of up to seven people,
or individually.

During the course of the convention the ideal would be that participants are:

1. Never seated with each other twice
2. Team mates and family members are kept apart
3. There is mix of experience at a table
4. There is an ideal ratio of gender
5. There is an ideal ratio of players to GM’s
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Table 1. Cost Table

Description Cost

Rejoining of the players with each other 15 per Round
Rejoining of the players with a GM 35 per Round
Family members at the same table 100 per violation
Team mates players at the same table 300 per violation
Players at the same table as a team GM 1000 per violation
Incorrect ratios of players to a GM 15 per Player
Incorrect ratio of genders 5 per Player
Experience variation 0.05

The importance of each criterion is different and all of the above may be changed
between games. A typical cost matrix is given in Table 1. The experience costs
represent a multiplier for the standard deviation. A negative multiplier then
favors grouping players together which have similar experience.

3.1 Test Conditions

The test conditions for the example are as follows (the complete data set is
available on request):

1. There are 65 participants
2. 9 participants are registered as GM’s, 8 male, 1 female
3. 12 participants have registered to either play or be a GM, 8 male, 4 female.

During the allocation process their role becomes fixed, there are no players
that are concurrently GM’s.

4. There are 10 female players and 34 male players
5. There are 4 full teams of 7
6. There have been 2 previous rounds (which were allocated at random)
7. There are 4 families the sizes are 2, 3, 4, and 5
8. The size of the table must be between 4 to 6 players, and there must be a

single GM
9. Ideally there are 6 players, 2 female, 4 male at each table

10. The experience was uniformly randomized for each player between 0 and 100

3.2 PSO Implementation Details

The PSO has a swarm size of 30 and was run to 50 iterations, these are typical of
PSO[2] and kept it to a reasonable run time. The global optimum scaling factor
was 0.9, the personal optimal scaling factor was 0.3, and the random speed
scaling factor is 0.1. The scaling factors where chosen using[8] as a guide and
finalized empirically. The initial speed was a uniform random number between 0
and 50. And the failure threshold was 50. The initial speed and failure threshold
was found empirically.
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4 Results

Using Stackless Python2.5.4 on Intel 2GHz Core2 Duo a notebook computer, the
time it took to initialize the swarm was 5.8s. The time per iteration was 4.15s.
Thus the total run time for PSO was 213.3s. The random approach described in
the introduction took 5.8s for initialization and per iteration, as it is the same
process as initializing the PSO. Thus the total run time was 290s which is longer
than the PSO. Per iteration it takes the random approach 1.39 times longer than
PSO.

In the following, lower fitness values are better. Fig. 2 shows the mean fitness
per iteration of both approaches. While both tend towards convergence, PSO
converges faster to a usually better fitness.

Fig. 2. Fitness v. iteration

The important statistics are given in Table 2. While they both start with the
same fitness, the PSO outperforms the random approach by a relatively large
margin, in both mean and minimum measures. The mean final fitness of PSO
is in fact lower than the minimum final fitness of the random approach, which
implies that on average the PSO will do better than the best that the random
approach is capable of, however, this is theorized to be an anomaly as the random
approach could generate the same table.

Table 2. Fitness Comparisons

Cost PSO

Mean Initial Fitness 3498.2 3465.43
Minimum Initial Fitness 2088 2011
Mean Final Fitness 1903.93 2243.36
Minimum Final Fitness 1201 1925
Time per iteration 4.15s 5.8s
Total run time 213.3s 290s
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Fig. 3. Histogram of final fitness

The histogram in Fig. 3 shows the bulk of the PSO results are the same
or better than 90% of the random approach results. Less than 5% of the PSO
results were worse than the bulk of the random approach results. Which shows
that PSO will reliably outperform the random selection

5 Conclusion

The table allocation problem and the assignment problem are very similar. The
Particle Swarm Optimization(PSO) approach developed here could be adapted
for the assignment problem.

Unlike other approaches PSO is simple to implement and can handle gener-
alized fitness functions. Movement within this application of the PSO is repre-
sentative of swapping allocations.

In the example PSO outperforms randomized results in every criteria. Thus
PSO is considered to be a valid approach to solving the table allocation problem.
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Abstract. After the theorem which is used to determine whether all roots of a 
polynomial are in unit circle is given, and two particle swarm optimizations for 
finding the maximum module of the roots of a polynomial based on the theorem 
are proposed. Finally, several computer simulation results show that using these 
algorithms to find the maximum module of roots of a polynomial are more effi-
cient and feasible, the convergent speed is much faster and the accuracy of re-
sults is much higher. 

Keywords: polynomial, the maximum module, unit circle, particle swarm  
optimization, parallel. 

1   Introduction 

In many theories and practical engineering applications, we often need to estimate the 
maximum module of the roots of polynomials, such as analyzing the stability of control 
system. The traditional estimation methods are mainly Cauchy estimate, Carmichael-
Mason estimate [1], Farmer-Loizou estimate [2], Kittaneh estimate [3] and so on. How-
ever their accuracy is not high. In [4], a new type of iterative algorithm is given, the accu-
racy has increased, but not only more complicated calculation, but also not has parallel. 

Particle swarm optimization (PSO) [5] is a population-based, self-adaptive search op-
timization method motivated by the observation of simplified animal social behaviors 
such as fish schooling, bird flocking, etc. It is becoming very popular due to its simplicity 
of implementation and ability to quickly converge to a reasonably good solution [6, 7]. 

This paper presents two particle swarm optimizations for finding the maximum 
module of the roots of a polynomial. These algorithms can actualize parallel in the 
feasible space and converge to the global optimal solution, which efficiently over-
come the defect that the traditional methods can not parallelly compute in engineering 
technique. Several computer results show that they are more efficient and feasible. 

2   The Basic Theories of Polynomial 

2.1   Polynomial Deformation 

Suppose that ( ) [ ]f x C x∈  with deg( ( ))f x n= ) as follows: 

 1

0 1 1( ) n n

n nf x a x a x a x a−
−= + + + + , 0 0a ≠  (1) 
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Suppose that r is a real number. Let x ry= . Then, polynomial (1) can be deformed 

as follows: 

 1

0 1 1( ) ( ) ( ) ( ) ( ) ( )n n

n nf x f ry g y a a a ary ry ry−
−= = = + + + +   (2) 

Let n k

k ka r b− =  ( 0,1, ,k n= ). Then, polynomial (1) can be deformed as follows:  

 1

0 1 1( ) ( ) n n

n nf x g y b b b by y y−
−= = + + + +   (3) 

If let max{| ( ) 0, 1, 2, , }|k kr x f x k n= = = . Then, the maximum module of the 

roots of the deformed polynomial (3) is 1, i.e., for polynomial (3), its roots are all in the 
unit circle (where in the unit circle included on the circle). Therefore, as long as find-
ing the minimum parameter r makes the roots of polynomial (3) are all in the unit 
circle, and then we can find the maximum module of the roots of polynomial (1). 

2.2   Module Bounds Selection 

Now suppose that ( 0 )

low er
r and ( 0 )

u p p e r
r are two real numbers. They are the lower and 

upper bounds of the maximum module of roots of polynomials (1), respectively. Let 

the lower bound ( 0 ) 0
lo w er

r = . For the upper bound of the selection, there are many 

ways [8], here we choose ( 0 ) 1
upper

r = + 0max{| | / | | | 1,2, , }ka a k n= . 

2.3   Decision Theorem 

Let *

1 0( ) n

ng y b y b y b= + + + .                                                                             (4) 

Easy to know that the roots of polynomial (3) and polynomials (4) are inverse points 
on the unit circle each other. We first introduce the following lemmas: 

Lemma 1. [9]: If the roots of polynomial (3) are all in the unit circle, then 0nb b< . 

By Lemma 1, we can get Lemma 2: 

Lemma 2. If 0nb b≥ , then the roots of polynomial (3) are incomplete in the unit 

circle.  
Let 

0 0 1( ) ( ) n

n ng y g y b y b y b−= = + + + , 

* *

0 1 0( ) ( ) n

ng y g y b y b y b= = + + + , 

,0 , 1 ,( ) n k

k k k n k k n kg y b y b y b−
− − −= + + + , 

*

, ,1 ,0( ) n k

k k n k k kg y b y b y b−
−= + + +  
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⎪
⎪
⎨
⎪
⎪⎩

                                     (5) 

where 0,1, , 1,k m m n= − ≤ . Obviously, when 0k = , there 0, j jb b=  

( 0,1, ,j n= ). From (5), we can construct ( )kg y . 

Lemma 3. deg( ( )) ,( 0,1, , )kg y n k k m m n= − = ≤ . 

Lemma 4. Suppose that 
k

N is the number of the roots of the polynomial 

( )kg y ( 0,1, , )k m= in the unit circle. Then, 0 mN N m= + , 1 1k kN N+ = − . 

Where 0,1, , 1k m= − . 

Theorem (decision theorem). For a given polynomial (3), constructed sequence (5), 
then for polynomial (3), its roots are all in the unit circle if and only if m n= . 

3   Particle Swarm Optimization 

Particle swarm optimization provides a method for finding the global optimum of a 
function of several real variables. As in the case of genetic algorithms it starts with a 
population of potential solutions. The population is called a swarm and the members 
are called particles. The particles belong to a group which may be the population as a 
whole or may be a subpopulation. The particles change (evolve, learn) over time in 
response to their own experience and the experience of the other particles in their 
group. As this interpretation suggests, the principles underlying the algorithm can be 
applied not only to the solution of optimization problems, but also to the representa-
tion of social behavior, including economic behavior. 

A swarm consists of Np  particles moving around in an n-dimensional search 

space. The ith particle at the tth iteration has a position ( )
1 2( , , , )t

i i i inx x x x= , a 

velocity ( )
1 2( , , , )t

i i i inv v v v= , the best solution achieved so far by itself (pbest) 

1 2( , , , )i i i inpb pb pb pb= . The best solution achieved so far by the whole swarm 

(gbest) is represented by 1 2( , , , )npg pg pg pg= . The position of the ith particle 

at the next iteration will be calculated according to the following equations: 

 ( 1) ( ) ( ) ( )
1 1 2 2( ) ( )t t t t

i i i i iv w v c r pb x c r pg x+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ − ,                         (6) 

 ( 1) ( ) ( 1)t t t
i i ix x v+ += + ,                                               (7) 
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where 1c and 2c  are two positive constants, called cognitive learning rate and social 

learning rate, respectively; 1r  and 2r  are two separately generated uniformly distrib-

uted random numbers in the range [0,1]; w is inertia weight factor. Empirical results 
showed the linearly decreased setting of inertia weight can give a better performance, 
such as linearly decreases from 1.4 to 0, and 0.9 to 0.4 through the search process 
(LDPSO) [10]. In addition, the velocities of the particles are confined 

within max max[ , ]v v− . If an element of velocities exceeds the threshold maxv−  or 

maxv , it is set equal to the corresponding threshold. 

4   The Algorithms for Finding the Maximum Module of the Roots 
of a Polynomial by PSO 

4.1   The Principle of Finding the Maximum Module of the Roots of a Polynomial 
by PSO 

Because finding the maximum module of the roots of polynomial (1) can be con-
verted finding the minimum parameter r  makes the roots of polynomial (3) are all in 
the unit circle, this is an optimization problem, and we can use PSO. 

4.2   Fitness Function Design 

In PSO, fitness function plays an important role. It is used to evaluate the advantages 
and disadvantages of particles. In this particular problem on finding the maximum 
module of the roots of polynomial (1), we evaluate the advantages and disadvantages 

of two particles 1r  and 2r  are following: 

Suppose that 1 2r r≤ . Then, 

(i) If both 1r  and 2r  make that the roots of polynomial (3) are all in the unit cir-

cle, and then 1r  is superior to 2r . 

(ii) If both 1r  and 2r  make that the roots of polynomial (3) are incomplete in the 

unit circle, and then 2r  is superior to 1r . 

(iii) If both (i) and (ii) can not be satisfied, then if 1 2( / 2)r r+  make that the roots 

of polynomial (3) are all in the unit circle, then, 1r  is superior to 2r , other-

wise, 2r  is superior to 1r . 

4.3   The Process of Finding the Maximum Module of the Roots of a Polynomial 
by PSO 

Here, we present two methods for finding the maximum module of the roots of a 
polynomial by PSO: one is using LDPSO directly and the other is improved LDPSO 
(ILDPSO). Their steps are illustrated as follows: 
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4.3.1   Finding the Maximum Module by LDPSO 
Step1. Setting evolution parameters; 

Step2. Initializing search space (0) (0)[ , ]lower upperr r  based on sectionⅡ 

Step3. Initializing the position vector and velocity vector of each component of each 

particle in (0) (0)[ , ]lower upperr r , determining the personal best location and the best location 

among the entire swarm; 
Step4. Calculate the weight value in current iteration according to Eq. (8):  

 max min
max

w w
w w iter

maxiter

−= − ⋅ ,  (8) 

where maxw  and minw  are the maximum value and minimum value for weights, 

respectively, iter  is the current iteration, and maxiter  is the maximum iteration; 
Step5. Evaluate all particles according to subsection 2 in Section 4, and derive the 
best particle of current iteration, and the best position that every particle has reached 
so far. 
Step6. Update velocity and position of every particle according to Eq. (6) and (7). 
Step7. If the stop criteria are satisfied, output the obtained best solution and the algo-
rithm is ended; otherwise, go to Step 4. 

4.3.2   Finding the Maximum Module by ILDPSO 
In the method of the above, we only improve Eq. (7) in Step6 as follows:  

If ( )t

ix  make that the roots of polynomial (3) are all in the unit circle, then 
( 1) ( ) ( 1)| |t t

i i

t
ix x v+ += − , 

otherwise  
( 1) ( ) ( 1)| |t t

i i

t
ix x v+ += + . 

These make particles searching direction is much clearer. Its convergence speed is 
much faster than LDPSO. 

5   Simulation Experiments 

Several experiments have been conducted to evaluate the performance of the pro-
posed algorithms. In the algorithms, the number of particles of the swarm Np was set 

at 50 and the maximum number of iterations maxiter  was set at 100. Other parame-

ters were set at max 1.4w = , min 0w = , 1 2c = , 2 2c =  and max 2v = . The ex-

periment conditions are: Intel(R) Core (TM) 2 Duo 2.20GHz CPU, 1G Memory, and 
Windows XP operation system. The programs are realized in Matlab7. 

Example 1: Let find the maximum module of the roots of the polyno-

mial
6 5 4 3( ) 9 16 8 5 7f x x x x x x= − − − − − . Its exact solution is 

10.58363864836489. Using basic line decreases PSO (LDPSO), the result is 
10.583638648408163, and using improved line decreases PSO (ILDPSO), the result  
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Table 1. Experimental results for Example 1 

Methods 
the Maximum 

Module r  

Error 
*| |r r−  

Carmichael-Mason 21.81 11.226361351635109 

Kittaneh 21.7 11.116361351635110 

Farmer-Loizou 18 7.416361351635111 

Cauchy 17 6.416361351635111 

Method 1 in  
Literature[11] 

15.4 4.816361351635111 

Method 2 in  
Literature[11] 

14.554 3.970361351635111 

Method 1 in  
Literature[12] 

12 1.416361351635111 

Method 2 in  
Literature[12] 

11.045 0.461361351635110 

Literature[4] 10.58353 1.086483648897740e-004 

LDPSO 10.583638648408163 4.327382896462950e-011 

ILDPSO 10.583638648364893 3.552713678800501e-015 

 

is 10.583638648364893. In Table1, the results of several methods were given. From 
Table1, We can see that using the two proposed methods in this paper, the accuracy of 
results is very high. 

In order to more intuitively see convergence process of the maximum module of 
the roots of Example 1 by PSOs, we gave the error evolution curve in Fig.1. In Fig.1, 
the horizontal axis is the number of iterations; the vertical axis is the common loga-
rithm value of the error. From Fig.1, we can see that the algorithms for finding the 
maximum module of the roots of a polynomial convergence speeds are very fast. 
ILDPSO is superior to LDPSO. 

 

Fig. 1. Error evolution curve for Exmple 1 
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Example 2: Let find the maximum module of the roots of the polyno-

mial
100( ) 1f x x= + . Its exact solution is 1. Table2 and Fig.2 show the results by 

LDPSO and ILDPSO. 

Table 2. Experimental results for Example 2 

Methods the Maximum Module r  Error 
*| |r r−  

LDPSO 0.999999999986375 1.362499002510731e-011 

ILDPSO 0.999999999999994 5.773159728050814e-015 

 

Fig. 2. Error evolution curve for Exmple 2 

From Table2 and Fig.2, we can see that for high-order polynomial, LDPSO and 
ILDPSO convergence speed quickly and the accuracy is also very high. 

6   Conclusions 

In this paper, we present two PSOs for finding the maximum module of the roots of a 
polynomial such as group search and global convergence. The algorithms avoid the 
trivial deviate operation in finding the maximum module by traditional methods and 
overcome the defect that the convergence of traditional methods has much relation-
ship with the selection of initial values, whose parallelism satisfies the need of paral-
lel finding the maximum module in engineering technique. Experimental results show 
that the algorithms can converge to the best solution, and they have high accuracy, 
high convergence speed and parallelism. 
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Abstract. The ant colony algorithm (ACA) is a novel simulated evolutionary al-
gorithm which is based on observations to behavior of some ant species. Because 
of the use of positive feedback mechanism, ACA has stronger robustness, better 
distributed computer system and easier to combine with other algorithms. How-
ever, it also has the flaws, for example mature and halting. This paper presents an 
optimization algorithm by used of multi-population hierarchy evolution. Each 
sub-population that is entrusted to different control achieves respectively a differ-
ent search independently. Then, for the purpose of sharing information, the  
outstanding individuals are migrated regularly between the populations. The algo-
rithm improves the parallelism and the ability of global optimization by the 
method. At the same time, according to the convex hull theory in geometry, the 
crossing point of the path is eliminated. Taking advantage of the common 
TSPLIB in international databases, lots of experiments are carried out. It is veri-
fied that the optimization algorithm effectively improves the convergence rate and 
the accuracy of reconciliation. 

Keywords: Traveling Salesman Problem (TSP), ACOA, Multi-population  
Hierarchy, Individual Migration, Eliminating-cross. 

1   Introduction 

Complexity science has risen in the mid-80s. And the main research is about the  
theory of complex system, such as natural phenomena, engineering, biology, man-
agement, social, etc.. Many problems need to be processed with the natural character-
istics of combinatorial optimization in the complex social system. For instance, how 
to guide vehicles to find way, how to effectively allocate radio frequency link, and so 
on. It is shown that the scale of mathematical model of these practical problems is so 
large that the accurate solution can not be completed within an acceptable time. How-
ever, these problems still must be effectively solved. Therefore, the sub-optimal solu-
tion need to be studied, which is an acceptable solution should be searched within an 
acceptable period of time. 

It is found that a series of bionic algorithm belong to the scope of computational in-
telligence. According to the calculating process and outcome, it can spontaneously ad-
just algorithm parameters to achieve optimal results for solving the problem. As the 
swarm intelligence can accomplish the task which is so hard that a number of individual 
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insects can not independently complete. This algorithm has no special requirements to 
the objective function, so it is especially applied to solve the optimization problems of 
large-scale complex structure. And ACA is a novel bionic algorithm which is based on 
observations to foraging behavior of the ant species. It has already demonstrated excel-
lent performance in resolving the optimization of complex systems. It is widely applied 
in vehicle scheduling, traveling salesman problem, job-shop scheduling, route planning, 
power systems, wireless networks, data mining, image processing, and so on. For in-
stance, multicast routing is solved with multi-constraints QoS in the ad hoc network [1]. 
Network bandwidth resources can be saved and network overload can be reduced in 
point-to-multipoint network communications. [2] proposed a novel team algorithm 
approach based on ACA for the resolution of a set of multi-objective optimization prob-
lems. And robustness and balance are achieved. And the test points are optimally se-
lected in analog circuit design [3]. This can greatly reduce the test cost by eliminating 
redundant measurements. Moreover, [4-5] introduced the application in power forecast-
ing and robot control. At present, ACA has become an international research focus and 
cutting-edge topics in the field of intelligent computing. 

However, ACA also has the defects, such as trapped in a local optimal solution, 
searched for a long time, etc.. In response to these shortcomings, in recent years, 
many scholars at home and abroad have done a lot of research work to improve the 
performance of ACA. Dorigo M firstly proposed an improved ant colony system (AS) 
[6], which only updated the pheromone of the shortest path in each cycle. Thus the 
feedback of optimal pheromone is strengthened. And German scholars Stutzle T and 
Hoos H proposed the max-min ant system (MMAS) [7]. Through the limit of the 
value of the upper and lower of pheromone, pheromone in all paths is approximation 
and the divergence of the algorithm can be avoided. A new approach to update the 
pheromone trails, denominated learning levels, is presented and used to solve the 
vehicle routing problem [8]. [9] proposed a novel cloud-based fuzzy self-adaptive ant 
colony system (CFSACS), in which cloud model is used as the fuzzy membership 
function and a self-adaptive mechanism is constructed. According to the advantages 
of the combination with other algorithms, the hybrid algorithms are presented with 
particle swarm optimization (PSO) and genetic algorithm (GA) [10-11]. 

Meanwhile, this paper presents an optimization algorithm with multi-population 
hierarchy evolution (MHEACA). Each sub-population, which is entrusted to different 
control parameters, carries out respectively a different search independently. In view 
of the purpose of sharing information, the outstanding individuals are migrated regu-
larly between the populations. Through the method, the parallelism and the ability of 
global optimization should be improved. 

2   Ant Colony Algorithm [12-13] 

Italian scientist Dorigo M. etc. firstly presented the heuristic algorithm – ACA in 
1991, which is inspired by real ants foraging in natural world. One of the problems 
studied by ethologists was to understand how almost blind animals like ants could 
manage to establish shortest route paths from their colony to feeding sources and 
back. It was found that the medium used to communicate information among indi-
viduals regarding paths, and used to decide where to go, consists of pheromone trails. 



224 X. Wang, J. Ni, and W. Wan 

 

Through the pheromone, the entire ant colony finally finds the optimal path. Mean-
while, the colony can also adapt to changes in the environment. And the ants can 
quickly skip the obstacles on the path and find the shortest path again. 

ACA is the model derived from the study of real ant colonies. It is not interested in 
simulation of ant colonies, but in the use of artificial ant colonies as an optimization 
tool. The basic formula is as follows. 

[ ] [ ]
[ ] [ ]
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Where, )(tp k
ij  is the probability from city i  to city j ; )(tijτ  is the intensity of 

pheromone trail; )(tijη  is the visibility of edge ),( ji ; kallowed  is the set of cities 

to be visited by ant k  positioned on city i ; α  and β  are two parameters that tunes the 

relative importance of trail versus visibility. Ants routing tendency can be adjusted by 
choosing the value of α  and β . And n  is the city amount. Meanwhile, in order to 

satisfy the constraint that an ant visits all the n  different towns, each ant is associated 
with a data structure called the tabu list, that saves the towns already visited up to time 
t  and forbids the ant to visit them again before n  iterations have been completed. 

3   The Multi-population Optimization Algorithm 

If swarm intelligence is effective, it should have the capability of local and global 
exploration. ACA has demonstrated its own advantages and disadvantages. In general, 
for improving the convergence rate, the role of positive feedback should be necessar-
ily enhanced, so that the pheromones of a few superior paths rapidly increase.  
Moreover, for improving halting, it is important that the role of positive feedback is 
reduced. At the same time, this encourages ants to explore new paths and expands the 
scope of the choose path. So it is obvious that improvement of convergence speed and 
reduction of halting influence each other. Therefore, it is necessarily that the balance 
between convergence speed and the exploration of solution space is discovered. 

And symbiotic evolution, which refers to biological phenomenon is living together 
and interdependent, is a beneficial way of life. Moreover, the information of exchanging 
and sharing between individual and individual, or between individuals and groups, often 
exist in nature. Thus, based on the symbiotic strategy, this paper proposes the assump-
tions of optimization model - multi-population hierarchy evolution. The MHEACA is 
composed of several separate sub-populations which can independently evolve in paral-
lel. After the evolution in several generations, the information will be migrated between 
sub-populations. And all sub-populations can share optimal information. 

The researchers have been paid more and more attention to collaborative work be-
tween populations. And the idea has been applied in GA [14-15]. Here, through the 
interaction between multiple ant colony, it can further enhance time performance and 
effectively improve the stagnation. 
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Fig. 1. Framework of information exchange between sub-populations 

According to the different parameter settings, each sub-population can separately 
search by different movement pattern. It will be as much as possible to explore the 
solution space in the evolutionary process, so that the algorithm escapes from local 
optimum to global search. Through the selection pool, which is used to save the opti-
mal individuals, all populations exchange information and improve the performance. 

In order to effectively expand search space of populations, the size of selection 
pool is determined according to the scale of sub-populations. Through specific ex-
change mechanism, the change of information within a sub-population can rapidly 
lead to the response of other sub-populations. Thus the optimal information is selected 
and the performance of algorithm is ensured. 

3.1   Information Exchange Mechanism 

It is shown that the mechanism of information exchange is a key in the MHEACA. 
According to the analysis about the principle of ACA, how to properly deal with posi-
tive feedback is the focus of improvement of the performance. From the above, it is 
interaction between the convergence speed and local optimal solution by the change 
of positive feedback. Moreover, the idea of multi-population hierarchy evolution is 
just a reference to solve this problem. Firstly, the definition of optimal solution should 
be accurately understood. For different specific problems, the answer is different. In 
order to get rid of the phenomena of early-maturing and stagnation, it is necessarily 
that the influence of local optimal value must be reduced in ACA. Therefore, a simple 
method, which is weighted average method, is adopted as the mechanism of exchange 
between populations. That is to say, the local optimal individual of each sub-
population is took out, and then the weighted average of these values is again as-
signed to original sub-population. Thus the algorithm can expand the scope of search 
and it will not be trapped into local optimal solution. The formula is as follows: 

N

KSubKSubKSubKSub
F NNNN

selection

*112211 +∗++∗+∗
= −−  (2)

Where selectionF  is the final average result in selection pool; NSub  

),,2,1( nN =  is the value of optimal individuals in each sub-population; NK  

),,2,1( nN =  is the weight; N  is the number of sub-populations. 
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3.2   Parameters Selection 

So the information is exchanged by pheromone and the convergence should be a dy-
namic process. It is extremely important that the parameters are properly selected, 
which will directly affect the final performance of algorithm. At present, the optimal 
selection of parameters is yet not a theoretical basis. The values are set based on ex-
perience in most conditions. 

Given the specific issues for the traveling salesman problem (TSP), ( )ij tη  is com-

puted from distance ijD  between cities, that is 

ij
ij D

t
1

)( =η  
(3)

Obviously, the smaller the distance, the greater the expectation ( )ij tη . Secondly, the 

trail levels are updated as follows. Through analysis to nature, part of the pheromone 
trail evaporates, i.e. existing trails are reduced before new trails are laid. This is regu-
lated by a parameter ρ . On basis of these updated trail levels，the next iteration 

1+t  can be started. The updating equation of track pheromone concentration as 
follows: 
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where, ρ  is the parameter to regulate the reduction of ijτ ; ρ−1  is used to stand for 

the information eclipse degree; ijτΔ  is the total increase of trail level on edge ),( ji ; 

Q  is the quantity of pheromone laid by per-tour; kL  is the total length of the paths in 

current tour by ant k . 
From above, it is very important that the scale of populations and migration cycle 

are properly set in MHEACA. If the scale is too large, the data are so much that the 
step of calculation becomes more intricacy and the speed of computation will drop. 
Meanwhile, if the migration cycle is smaller, it is favor to make the integration of sub-
populations and spread best individual. But it can also increase the communication 
and reduce the diversity of individual. So the proper intervals should be considered. 
These values may not only draw lessons from the existing results of other scholars, 
but also be determined by the continuous adjustment of experiments. 
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3.3   Execution Steps 

In order to prove the feasibility of the MHEACA, the algorithm is appropriately sim-
plified about the number of populations. So there are only two sub-populations in this 
paper, A and B. The sub-population A is defined as elite colony which focuses on 
improving of the convergence speed. Only the pheromones of a few optimal paths are 
allowed to update in each iteration. And the more outstanding ants, the more phero-
mone releases. Thus the positive feedback of algorithm is enhanced so as to improve 
execution speed. The other sub-population B, which is defined as detection colony, is 
used to expand the scale of search space and provide new super-plane and the diver-
sity of individual. 

Firstly, at the 1st level, two sub-populations of MHEACA independently parallel 
compute by the implementation steps of ACA. After several iterations, the more ex-
cellent individual can be searched out and saved. Secondly, at the 2nd level, the  
information is shared and migrated in the selection pool at the same interval. The 
selected outstanding individuals are deal with by weighted average method. And the 
result is again assigned to original sub-population. Thus the local optimal can be bal-
anced and the performance of algorithm can be improved. Finally, if the precision 
requirement or the number of iteration is met, the global optimal solution is get. The 
specific flowchart of MHEACA is as follows. 

 

Fig. 2. The software flowchart of MHEACA 

3.4   Eliminate Cross Point 

It is inevitable that the experimental results may be cross. Therefore, it is necessary 
that the cross point must be eliminated between cities in order to form a regular closed 
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curve. Convex hull vertex, which is one of the basic theories in geometry, is used to 
optimize the path. Here, the points of curve are pre-processed in TSP. 

Suppose S  is a non-empty set of points in a plane, 1z  and 2z  are any two points 

in S , t  is an arbitrary real number between 0 and 1. If the formula (7) is satisfied, 

then the point z  belongs S  and S  is convex. 

21 )1( zttzz −+=           10 ≤≤ t  (7)

Where convex hull, which contains S , is the smallest convex polygon perimeter in 

convex set S . And convex hull must contain convex set. In the pre-processing algo-
rithm for TSP, from the beginning of a vertex of convex hull to the next adjacent vertex, 
the two points need to be determined in the same straight line. If it is not, then this line 
will be eliminated. And so the vertices else of convex hull are similar treatment. 

4   Experiment results 

TSP is a typical combinatorial optimization problem in mathematics field. As ACA is 
very suitable for NP - problem, it has been applied to solve TSP [16]. The objective is 
to determine a minimum distance of a tour passing through each city once and only 
once. For some classic urban data in TSPLIB, such as berlin52, smith70 and so on, 
from the accuracy, robustness and execution time, MHEACA is compared with ACA. 

The specific data of parameter in MHEACA are as follows: 1Aα = , 3Aβ = , 

0.2Aρ = , 200AQ = , 2.1=AK , 1Bα = , 3Bβ = , 0.2Bρ = , 200BQ = , 

9.0=BK . Because of the same work, the number of ants is 30 in two sub-

populations. In addition, the interval of communication is 10 and the total number of 
iterations is 100. Table 1 shows the optimal results of two algorithms. It is obvious 
that MHEACA has better performance, especially in the execution time. 

Table 1. Comparison between MHEACA and ACA 

Smith70 churritz150 
Algorithm Shortest 

Distance 
Convergence 
Number 

Time 
Shortest 
Distance 

Convergence 
Number 

Time 

ACA 728.85 45 1.436s 6967.8 30 6.551s 
MHEACA 713.83 65 0.722s 6834.5 56 2.226s 

 
At the same time, the ability of planning routes is also compared. When the scale 

of cities is relatively smaller, the route of ACA is well. However, as the increase in 
the number of cities, the route of ACA gradually has some cross point and becomes 
non-standard. Through the cross pre- processing, the redundant cross points are effec-
tively eliminated. Fig.3 (a) and Fig.4 (a), which are the results by ACA, have more 
cross points. However, through eliminating cross, the result is standard closed curve 
in Fig.3 (b) and Fig.4 (b). 
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(a)   Result by ACA                  (b)   Result by MHEACA 

Fig. 3. The path curve with smith70 

  

(a)   Result by ACA       (b)   Result by MHEACA 

Fig. 4. The path curve with churritz150 

5   Conclusion 

In summary, this paper proposes a MHEACA based on the social division and symbi-
otic evolution in natural world. According to the different search purpose, many sub-
populations respectively parallel search optimal individual. And through migration 
strategy, the useful information is transmitted at regular intervals. So these individuals 
of next generation can inherit more information from the ancestors and the neighboring 
sub-populations by sharing. Moreover, because of the adoption of migration operator, 
the performance of algorithm is improved. At the same time, through lots of experi-
ments in TSPLIB, it is verified that the MHEACA has better parallelism, stability and 
global optimization. Compared with single population, this method can effectively im-
prove the convergence speed, maintain the local characteristics of sub-populations and 
avoid the premature phenomenon. According to the actual need, the number of sub-
population may be appropriately expanded and the information exchange mechanism of 
selection pool can be changed. It is obvious that the MHEACA has good prospects for 
engineering applications. It is better able to solve the engineering optimum design and 
provide a new idea for the optimal solution of complex structure. 
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Abstract. Parallel computing, network partitioning, and VLSI circuit placement 
are fundamental challenges in computer science. These problems can be mod-
eled as graph partitioning problems. A new Similarity carrying Ant Model 
(SCAM) is used in the ant-based clustering algorithm to solve graph partition-
ing problem. In the proposed model, the ant will be able to collect similar items 
while it moves around. The flexible template mechanism had been used inte-
grated with the proposed model to obtain the partitioning constrains. Random 
graph has been used to compare the new model with the original ant model and 
the model with short-term memory. The result of the experiments proves the 
impact of the SCAM compared with other models. This performance improve-
ment for ant clustering algorithm makes it is feasible to be used in graph por-
tioning problem.  

Keywords: graph portioning, ant-based clustering, similarity, template. 

1   Introduction  

Clustering data sets into disjoint groups is a problem arising in many domains. From a 
general point of view, the goal of clustering is to find groups that are both homogene-
ous and well separated, that is, entities within the same group should be similar and 
entities in different groups dissimilar. These data sets can represent graphs, where 
nodes correspond to the entities to be clustered and edges correspond to a similarity 
measure between those entities. The partitioning problem arises in many areas of 
computer science, like parallel computing, network partitioning, and VLSI circuit 
placement. In particular, the partitioning problem models the placement of data onto a 
multiprocessor computer with distributed memory, where the computation load has to 
be balanced among the processors and the amount of communication has to be mini-
mized [1], [2] and [3]. 

The graph partitioning problem is NP-hard for general graphs, as well as for bipar-
tite graphs, and even finding good approximation solutions for general graphs or arbi-
trary planar graphs is NP-hard [4]and [5]. Using traditional methods, it may not result 
in an optimum solution of practical problems. There exist many variations of this ap-
proach aimed at improving its performance. However, these techniques do not present 
a universal solution to partitioning problems since there are certain graphs for which 
each version of these methods performs poorly [6]. Heuristic algorithms can help us 
to find a better optimum solution with reasonable computation. 
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Ant-based clustering is a heuristic clustering method that draws its inspiration from 
the behavior of ants in nature [7]. In particular, it models the clustering and sorting 
that can be observed in some ant species: where real ants gather corpses to clean up 
their nest, or transport larvae to order them by size, artificial ants transport data items 
that are laid out in an artificial environment, and arrange them in a sorted fashion.  

2   Graph Partitioning Problem Statement  

Let { }EVG ,=  be a graph, where },,1,{ NivV i ==  is the set of N  vertices and 

E  the set of edges. We assume that G is non-directed, that is, E  is symmetric. Let 

the adjacency matrix be denoted by 0];[ ≠= ijij aaA  if and only if Evv ji ∈),( . 

We shall only treat the cases where 1     0 oraij = , which correspond to 

Evv ji ∉),(  and Evv ji ∈),( , respectively. 

The graph partitioning problem on a graph G consists of dividing the vertices into 
disjoint subsets such that the number of edges whose endpoints are in different sub-
sets is minimized. We consider the balanced partitioning problem, where the differ-
ence of cardinalities between the largest and the smallest subset is at most one.  

The precise formulation of the usual problem of graph partitioning is to find 
k nonempty components such that the total inter-component weight is minimized. For 

arbitrary k , the decision problem is NP-complete, and for fixed k , a solution can be 

found in )(
2k

VO steps, where V denotes the number of elements inV . If the addi-

tional constraint of having the same number of vertices in every cluster is added, the 
problem is NP-complete for fixed k  [8]. 

3   Basic KLS Algorithm for Graph Partition Problem 

The first ant-based clustering algorithm was introduced by Deneubourg et al. [9], to 
produce clustering behavior in simple groups of robots. Then, Kuntz, Layzell, and 
Snyers [10] and [11] (hereafter KLS) have proposed an interesting application of 
Lumer and Faieta’s idea [10] to use ant clustering in graph partitioning. The advan-
tage of using KLS instead of classical methods is handling for the most complex 
graphs without any more computation. For simplicity of the application we choose to 
use two- dimensions space. In this space the dissimilarity between two nodes in the 

graph ),( ji vvδ  can be calculated by equation: 
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The original algorithm begins with an initial random placement of objects on the grid. 

Next, each ant picks up an object; the ant randomly selects an object iv  that is not 
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being carried by another ant. The ant then computes a measure of similarity between 

iv  and its neighbor objects )( ivf , and a pick-up probability )( ipick vP  based on the 

measure of similarity. The ant generates a random number ]1,0[∈R . 

If )( ipick vpR <  the ant moves to the location of object iv and picks up the object. 

Otherwise, the ant repeats the process. The measure of similarity or local den-

sity )( ivf is the summation of the difference between object iv
 and all other objects 

in iv ’s neighborhood L, it calculated as 
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Object dissimilarity is scaled by the constantα , which is data dependent, and pro-
vides a threshold that separates similar objects from dissimilar objects. The neighbor-

hood consists of the grid cells residing in a square centered on object iv ’s current  

location. The probability of picking up an object, )( ipick vP  is given by 
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where the parameter ]1,0[1 ∈k  controls the pick-up sensitivity. Once each ant is 

holding an object, the main loop of the algorithm begins. Each iteration of the main 
loop proceeds as follows. For all ants, using its current position on the grid, the ant 

computes the similarity measure, )( ivf for the object it is holding iv , using equation 

(2). The ant generates a random number ]1,0[∈R and drops its object if 

)( idrop vpR < ,where )( idrop vp  is calculated as 

2
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If the cell is empty, the ant drops the object in its current cell. Otherwise, the ant does 
no thing. The drop probability proposed in [9] provides a smooth response similar to 

the probability of picking up an object. The drop probability )( idrop vp  is higher when 

the carried object is similar to those in the ant’s neighborhood and lowers when dis-

similar. The constant 2k  governs the drop sensitivity. If the ant dropped its object, the 

ant goes through the process of picking up another object. If the object was not 
dropped, then the ant randomly moves to another cell in the grid. Only a single agent 
and/or a single item are allowed to occupy any one cell at a time. Once all time steps 
are complete or some other termination condition has been met, the main loop ends 
and all ants drop their objects at their current locations. 
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The algorithm suffers from convergence problems and an unfavorable runtime be-
havior, and several attempts to overcome these limitations have therefore been pro-
posed [12]. This ends the basic ant clustering algorithm that is the starting point for 
our enhancements in the next section. 

4   Proposed Algorithm 

In this section, we build upon the work of [12] to develop a general and robust version 
of ant-based clustering. In particular, we describe how template construction for the 
algorithm can be simply derived from the clustering constrains, and we introduce new 
model for the ant agents that improve the quality of the clustering. 

By adding a template mechanism to the KLS algorithm particular problems can be 
solved. Inclusion of the template is straightforward. Equations (3) and (4) in section 3 
are transformed into: 
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(6)

Where ii yx ,  represent the location coordinates of vertex iv  on the grid. The tem-

plate function -will be discussed later - allows us to solve the problem of partitioning 
the graph into known number of clusters. The proposed algorithm consists of setup 
phase and free-running phase. The setup phase represents 1% of the total number of 
iterations. At the setup phase, to make sure that the ants can discover the entire cluster 
regions; the dropping probability should be more affected with the template function. 
So the dropping probability will be as equation (7) at the beginning and then it will be 
change in the second phase to the original form as equation (6). 
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4.1   The Template Function Construction  

Some species of the ants which are found in nature, they utilize the information re-
lated to the temperature and humidity in their surroundings to build their nests and to 
distribute their brood. This concept of self-organizing with templates has been used in 
[7] for data analysis and graph partitioning. With such mechanisms, the result is that 
the final structures would closely follow the configuration defined by the templates. 
The template we have used in [13], in the form of a Gaussian Probability Surface 
(GPS) guides the multi-agents to form clusters within a plane working space. 

We propose a universal template structure.  The centroid of clusters is defined 
based on the user requirements and not dependent on the feature space. In order to 
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achieve focal points for the   template; a circle shape is chosen to be the working area. 

A circle can be easily partitioned into equal circular sector by dividing its π2  angle 
over the number of desired clusters. Then after getting a circular sector simply find 
the centroid for them. Using the geometric centroid  for each sector as the center for 
the cluster; the probability function can be constructing for the whole templates using 

the GPS equation, ),( yxPt as shown in equation (8). 
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where, 1),(0 ≤≤ yxPt . maxP is the maximum value of probability, 

10 max ≤≤ P . δ   is offset value.
oi

y
oi

x ,  are coordinates of the geometric cen-

troid for each cluster. yx, are coordinates on any single point in the workspace. n  is 

the  number of clusters, n<1 . 
Fig. 1 shows 5050×  grid example of the GPS model with four humps.  As the 

value of the probability surface increases, the probability of dropping the item by the 
ant is higher. The balanced and pre-configured clusters has a importance  for some 
applications of graph partitioning problem, such as  design of VLSI circuits and  dy-
namic load balancing for distributed systems. 

 

Fig. 1. Template functions 

4.2   Similarity Carrying Ant Model (SCAM) 

The ants clustering algorithm has been inspired from the biological life of ants, so the 
modification of it should be also inspired form their life. One of the well-known facts 
about ants, that an ant can lift 20-50 times its own body weight. So this fact has been 
used to enhance the performance of the ant clustering. In the proposed model for the 
ant, it will be able to carry more than one item while it moves around. The group  
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Algorithm 1. High-level algorithm for KLS-SCAM  

/* Initialization */ 
Compute distance matrix ),( ji vvδ  for all vertexes in the graph  
Compute tP  equations (8-12) 

For every vertex iv  Place iv  randomly on grid End For 
For all agents Place agent at randomly selected site End For 

/* Main loop */ 

For t = 1 to maxt do 
For all agents do 

If ((agent can carry more) and (site occupied by vertex iv )) then 
Compute )( ivf using equation (2), )( ipick vP  using equation 

(5) and )( ivs using equation (12) 

Draw random real number R between 0 and 1 

If ( )( ipick vPR < ) then 
If (agent is empty   or (agent already carries items and  

)( ivs ≤ similarity threshold)) then  
                        Pick up item iv  

  End if  

End If 
Else If ((agent carrying items) and (site empty)) then 

For every carried item jv  do 

Compute )( ivf using equation (2)  

If ( max01.0 tt ×< )   //setup phase 

 Compute )( idrop vP using equation (7)  

Else 
 Compute )( idrop vP using equation (6) 

End If 

End for  
Draw random real number R between 0 and 1 

 If ( ))(( idrop vPMaxR < ) then 

Drop item iv  where ))(()( idropidrop vPMaxvP =   

End If 
End If 

Move to randomly selected neighboring site not occupied by other agent 

End For 
End For 

For all agents Drop all carried items in agent location or nearest free location  End For 
Mask clusters with the constructed template to get the final clusters 

 Reconstruct the graph from the clusters of vertexes 
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picking and dropping behavior reduces the number of ant moves, with the purpose of 
reducing the time for the complete clustering process. Under SCAM, an ant has some 
probability of carrying more items. The decision is governed by the similarity of car-
ried items and the candidate item. The similarity can be measured by the average dis-
tances between the candidate item and the carried items as 

c

Cv
k

N

vv

vS k

∑
∈=

),(

)(

δ
. (9)

where C  is the carried items set and cN  is the number of carried items by the ant.  

If the similarity value )(vS  is less than similarity threshold, then the ant carries 
the nominated item with other items. The maximum number of elements that ant can 
carry simultaneously should be selected with realistic value based on the total num-
ber of the items. Also the similarity threshold should be extracted from the items 
intra-distances. The value of similarity threshold can be calculated by sorting the 
intra-distances between all items, then select the value of the item with index equal 
to 25% of the total number of the elements. In this paper, we compare the perform-
ance of the similarity carrying ant model to original ant model and the ant model 
having memory. 

The proposed algorithm shown in Algorithm 1 is the basic ant clustering algorithm 
with our SCAM and template system extensions.  

5   Experiment  

Random graphs ),,,( ei ppcnF  have been used in the context of VLSI to test itera-

tive improvement partitioning algorithms. [14]. The KLS algorithm was tested on 
these random graphs [7]. So, we will use the same graph in our experiments. Such 

graphs are composed of c clusters of n  vertices, ip  is the probability that two 

vertices within a cluster are connected, and ep  is the probability that two vertices 

that belong to different clusters be connected. The proposed algorithm has been 
tested for different instance of random graphs and the results constantly insure its  
superiority. Due to the limited space we will include only one example. Fig. 2 (a) 
shows the initial random distribution of vertices on the plane for a random graph of 
the type RG (25, 4, 0.8, 0.01). Fig. 2 (b) illustrates the fact that the proposed algo-
rithm is able to find "natural" clusters in a graph RG. It shows that, after 

5102×=T  iterations, vertices distribute themselves in space in such a way that 
exactly 4 clusters of vertices appear, which correspond to the four clusters of the 
graph. The original KLS can reach this result within 6102×=T according to [7]. 
KLS algorithm suffer from unfeasibility in the time needed to complete clustering. 
The new model takes only 10% of this time compared with the original KLS and 
achieves the same result.  
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 (a) (b) 

Fig. 2. (a)random graph of type F (25, 4, 0.8, 0.01),(b) the result after clustering  

In order to evaluate the performance of the proposed SCAM model, as the com-
parison objects, other KLS algorithms, including the original KLS algorithm and the 
modified version with memory, were also used to portioning the same random graph 
RG. With the purpose to compare the quality of our clustering algorithm, two metrics 
are used to judge the clustering quality. These metrics are F-measure and The Ad-
justed Rand index. The same metrics has been used in [15]. The F-measure represents 
the reasonable balance between the precision and recall of the clustering for all 
classes. The F-measure is bound by the interval [0, 1], with higher values indicating a 
better clustering [16]. Also the Adjusted Rand Index (ARI) became one of the most 
successful cluster validation indices and in [17] it is recommended as the index of 
choice for measuring agreement between two partitions in clustering analysis. ARI is 
bound by the interval [0, 1] such as F-measure.  

5.1   SCAM Model Performance Evaluation  

For the all experiments, the same template been used. For all algorithms, the cluster-
ing is executed for 30 times for the same random graph RG and the clustering results 
are averaged for each of the metrics used. The average performance is created by cal-
culating the mean of each metric every 500 iteration. All algorithms were executed 

using 10 agents within  5050×  grid space.  The main algorithm parameters 1k , 2k ,α  

and 2s  have values 0.3 ,0.1,1 and 9 respectively . These parameters are commonly 
used for KLS algorithm. The maximum number of items that ant can carry (for 
SCAM model) is three. The maximum memory length (for ants with memory model) 
is four. All simulations are implemented using Matlab 7.4.0 (R2007a).  

The affect of merging the new model with other modification of KLS is experi-
enced. We decide to examine the ants with memory because it seems to be the best 
modification for this KLS and it is one of the most attractive to be studied [24].  

Fig. 3 shows the average for both metrics F-measure and ARI. It is clear that the 
new SCAM model for ants has a great effect on the performance of the KLS. Both 
metrics confirm that the clustering operation using the proposed model can achieve 
better clusters within less time. The effect of the memory feature on the performance 
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of the original KLS is not so clear. The reason of limited improvement is nature of 
that effect; the role of the sort-term memory is to reduce the number of equivalent 
clusters which is constant in our case.  In other hand, the SCAM feature is more effec-
tive; because it can reduce the number of tours which ants need to transport items. By 
merging SCAM with memory feature the result of clustering becomes better; which 
means that SCAM has no side effects on other KLS modification. . This performance 
improvement for KLS makes it is feasible to be used in graph portioning problem and 
its applications. 

The template used also as has a role for the improvement of the clustering by fix-
ing the number of clusters and separate them with sufficient distance. The most im-
portant effect of the template is the load balance insurance, which has importance 
mainly for graph partitioning problem. 

 

  

(a) (b) 

Fig. 3. The average values of (a) F-measure and (b) ARI 

6   Conclusions 

The graph partitioning problem is very important for such application as designing of 
VLSI circuits and dynamic load balancing for distributed systems. The need for find-
ing good approximation solutions for it is NP-hard. One of the methods that had been 
used to solve this problem using ants is the KLS algorithm .The original KLS algo-
rithm and its modification is not very efficient in terms of computation time. The new 
SCAM ant model is capable to achieve excellent result in acceptable computing  
time. The F-measure and ARI metrics demonstrate the performance enhancement that 
the new model is able to get compared with original model and its memory feature 
modification. 

The new template construction method had very flexible features. It used minimal 
information about the involved clusters to construct the full template. The integration 
of the new model and the template has been done. This integration allowed the pro-
posed algorithm to realize separated and balanced portions for the graph in practical 
computation time.     
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Abstract. Service-oriented grid environment enables a new way of service pro-
visioning based on utility computing models, where users consume services 
based on their QoS (Quality of Service) requirements. In such “pay-per-use” 
Grids, workflow execution cost must be considered during scheduling based on 
users’ QoS constraints. In this paper, we propose a knowledge-based ant colony 
optimization algorithm (KBACO) for grid workflow scheduling with considera-
tion of two QoS constraints, deadline and budget. The objective of this algo-
rithm is to find a solution that minimizes execution cost while meeting the 
deadline in terms of users’ QoS requirements. Based on the characteristics of 
workflow scheduling, we define pheromone in terms of cost and design a heu-
ristic in terms of latest start time of tasks in workflow applications. Moreover, a 
knowledge matrix is defined for the ACO approach to integrate the ACO model 
with knowledge model. Experimental results show that our algorithm achieves 
solutions effectively and efficiently. 

Keywords: grid workflow scheduling, quality of service, ant colony optimiza-
tion, knowledge model. 

1   Introduction 

Service-oriented grid computing enables users to consume services transparently over 
world-wide network environment based on their QoS requirements. Many grid appli-
cations require workflow processing in which interdependent tasks are executed based 
on their control or data dependencies. One of the most challenging problems in ser-
vice-oriented grid computing is to map service instances to tasks in workflow applica-
tions to achieve users’ various QoS requirements. 

A workflow application consists of a collection of tasks that are processed in a spe-
cific order to accomplish a complicated goal. A workflow application is usually repre-
sented as a Directed Acyclic Graph (DAG), in which the nodes represent individual 
tasks and the directed arcs stand for precedence relations between the tasks. As 
scheduling in a DAG is NP-hard in general[1], approaches to grid workflow schedul-
ing are proposed based on different heuristics[2-4], which are applicable to a set of 
parallel independent tasks based on the performance estimation for task execution. 
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Moreover, meta-heuristic approaches have been applied for solving workflow sched-
uling problems[5-7]. Since meta-heuristics provide both a general structure and strat-
egy guidelines for developing a heuristic for solving computational problems, they are 
generally applied to a large and complicated problem, and provide an efficient way to 
achieve better performance. Recently, ant colony optimization (ACO) [8], a meta-
heuristic in the light of the foraging behavior of ants, has been proposed to solve vari-
ous intractable combinatorial optimization problems. With the advantage of making 
full use of instance-based heuristic information for scheduling problems, some grid 
workflow scheduling algorithms based on ACO have been proposed. However, most 
of them can only tackle the problems with a single QoS parameter or with small scale 
workflows. 

Among various QoS requirements arising in practice, makespan and cost of work-
flow applications are of particular concern to users. Although traditional scheduling 
algorithms achieved some interesting results, most approaches figure out grid work-
flow scheduling by minimizing makespan. In “pay-per-use” grids, workflow execu-
tion cost must be considered during scheduling based on users’ QoS constraints. In 
fact, approaches that minimize execution cost while meeting the deadline of workflow 
applications are of users’ interests.  

In this paper, a knowledge-based ant colony optimization (KBACO) algorithm for 
grid workflow scheduling is proposed with consideration of two QoS constraints, 
deadline and budget. Our proposed approach aims to find solutions that minimize 
execution cost while meeting the deadline of workflow applications.  

This paper is organized as follows. In Section 2, the framework of knowledge-
based ant colony optimization approach for grid workflow scheduling is proposed, 
and the KBACO algorithm is described. In Section 3, computational experiments are 
reported. Some concluding remarks are made in Section 4. 

2   A Knowledge-Based ACO Approach for a Grid Workflow 
Scheduling Problem 

In this section we first give the formal definition of a grid workflow scheduling prob-
lem. Second, we propose a framework of knowledge-based ant colony optimization 
approach. Next the implementation of KBACO algorithm for grid workflow schedul-
ing is described. We then illustrate how to improve solutions effectively. Finally, 
rules are designed for knowledge learning for scheduling. 

2.1   Problem Formulation 

We model a workflow application as a DAG G=(V, E) as follows. 

(1) Let V be the finite set of tasks Ti (1≤i≤n) of a workflow application, and E the 
set of directed arcs of the form (Ti, Tj), where Ti is called a parent task of Tj, and 
Tj is called a child task of Ti. We denoted by Pred(Ti) and Succ(Ti) the set of 
parent tasks and the set of child tasks of Ti, respectively. 

(2) Let Si be the service set consisting of service instances 1 2{ , , , }im
i i is s s  available for 

implementing task Ti. Each service instance j
is  is associated with a label 
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( . , . , . )j j j
i i is id s t s c , where .j

is id is the unique id indicating the service instance j
is , 

.j
is t  and .j

is c  indicates the capacity and the cost per unit of j
is , respectively. 

(3) Let D be the time constraint (deadline) specified by users for workflow execu-
tion. That is, the total execution time of the workflow must not be larger than D. 

We assume wlog that setting up time in the scheduling is negligible. In a feasible 

solution each task Ti must be allocated to one available service instance j
is in Si.  

2.2   Framework of KBACO for Grid Workflow Scheduling Problem 

Based on the knowledge-based heuristic searching architecture[9], we proposed a 
knowledge-based ACO algorithm as shown in Fig. 1, which can be briefly sketched as 
follows. 

(1) The genotypic knowledge was initialized; 
(2) A group of feasible solutions were constructed using ACO algorithm guided by 

the existing knowledge; 
(3) The genotypic knowledge was updated by the optimization of current iteration. 
(4) These processes were repeated till the stopping criterion is satisfied. 

 

Fig. 1. The framework of the Knowledge-Based Ant Colony Optimization for Grid Workflow 
Scheduling 

In KBACO, an ACO algorithm is applied to solve workflow scheduling with assis-
tance of accumulated knowledge of scheduling. 

(1) Elite solution knowledge. It consists of a fixed number of selected best solu-
tions. In the initialization phase, the elite solution knowledge will be initialized 
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as null. In the knowledge learning phrase, the elite solution knowledge will be 
updated by the best solution in each iteration. 

(2) Task scheduling knowledge (TSK). It is the accumulative knowledge of map-
ping service instances to tasks in workflow applications. A knowledge matrix 
TSK with size | | | | | |V V S× ×  is defined for the TSK, where |V| is the cardinal-

ity of the set of tasks, and |S| is the maximum value of | |iS . Each element of the 

TSK matrix is initialized using formula (1). 

i

i

0,  T  
( , , )

. / . ,  T  

k
j

k k k
j j j

task cannot be processed on service instance s
TSK i j k

s t s c task can be processed on service instance s

⎧⎪=⎨
⎪⎩

                  (1) 

Elite solution and task scheduling knowledge are extracted from the global best solu-
tions of workflow scheduling. 

2.3   Solution Construction 

In the schedule construction phase, each artificial ant a will choose service instances 
for tasks and constructs a feasible solution. More specifically, the steps for ant a is as 
follows. 

Step 1. Determine the allowed processing task set, referred to as allowed, consisting 
of all tasks whose predecessors have been scheduled. 

Step 2. At each step ant a maps some service instance j
is  to task Ti in terms of a 

probability a
ijp  and ( , , )TSK i i j . 

   ( , , )a
ijp TSK i i j×                                                        (2) 

where a
ijp  denotes the probability of mapping the service instance j

is  to task Ti in 

terms of  pheromone and heuristic information, as will be elaborated shortly, 
( , , )TSK i i j denotes the task scheduling knowledge of mapping the service instance 

j
is  to task Ti. 

Step 3. Repeat step 1 to step 2 till all the tasks are mapped to the appropriate service 
instances. 

The probability of mapping service instances to tasks is computed in terms of 
pheromone and heuristic information as shown by the formula (3). 

[ ] [ ]
,

[ ] [ ]

0,

k
i i

ij ij k
i ia

ik ikij s S

if s S
p

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪

= ⎨
⎪
⎩

∑                                 (3) 

where ijτ  is the pheromone value, and ijη the heuristic information value for evaluat-

ing the possible decisions. 
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At the beginning of the algorithm, a pheromone value ijτ is initialized using the 

cost for service instance j
is  to accomplish task Ti, i.e.,  

( )
. , 1 ,1

.
ji

ij i ij
i

t T
s c i n j m

s t
τ = × ≤ ≤ ≤ ≤                                  (4) 

where t(Ti) is the processing units of task Ti. 
To minimize the cost while meeting the time constraint, we define a heuristic in 

terms of the latest start time (LST) of tasks. More specifically, the heuristic values ijη  

is computed for available service instances in terms of the absolute differences to the 
maximum latest start time of an eligible task, that is, 

1 1(max )
k
i i

ij
ik ij

s S
LST LSTη

∈

= +−                                        (5) 

After each ant has completed a schedule, the best solution found so far is then used 
to update the local scheduling pheromone in each generation. More specifically, if 

mapping service instance j
is  to task Ti in the best solution found so far, some amount 

of pheromone is added to the pheromone ijτ , that is, ijτ  is incremented by ijτ . 

(1 )ij ij ijτ ρ τ ρ τ= − +                                             (6) 

where 
*

1
ij C

τ = , C∗ is the cost of the best found schedule so far, and parameter ρ 

denotes the evaporation rate (0≤ρ<1). 

The workflow scheduling will be based on the mappings of ant a. M artificial ants 
build M solutions to the problem. Each ant maintains a building process and all ants 
construct their solutions in parallel. The best solution is one which minimizes the cost 
while meeting the deadline. 

For global scheduling pheromone updating, only the global best ant, which con-
structed the global optimal schedule from beginning, is allowed to deposit knowledge 
to its corresponding solution. When the global optimal schedule is improved, the 
knowledge matrix TSK is updated correspondingly. 

2.4   Knowledge Learning 

(1) The elite solution knowledge will be updated by the predefined numbers of best 
solutions of every iteration. 
(2) Adopts the concepts of the Max-Min Ant System (MMAS)[10], knowledge on 
each solution component is limited to an interval min max[ , ]τ τ  to avoid stagnation state. 

The TSK matrix will be updated by following rules. 

• Knowledge depositing rule 

1( , , ) ( , , )TSK i i j TSK i i j Q= ×                                      (7) 

where Q1 denotes the incremental coefficient of TSK. 
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• Knowledge evaporating rule 

max min( , , ) min{ ,max{ , (1 ) ( , , )}}TSK i i j TSK i i jτ τ ρ= −                         (8) 

where ρ is the evaporation rate. 

Note that the knowledge depositing rule is only applied to the optimal schedule 
found so far, and the knowledge evaporating rule is performed after every trial. 

3   Experimental Analysis 

In this section we experimentally evaluated the performance of KBACO algorithm, 
and implemented comparison study of KBACO and published ACO algorithms for 
grid workflow scheduling. 

3.1   Test Instances and Parameters Setting 

We evaluate the KBACO algorithm in ten workflow applications (see Table 1). The first 
two workflows, including the neuroscience application [functionalMRI (fMRI)] with 15 
tasks[11], and the e-protein workflow with 15 tasks[12], are derived from real-life ap-
plications. The other eight workflows are generated based on the networks in the project 
scheduling problem library (PSPLIB) [13], which is a library for project scheduling 
problems. These networks include j301_1 and j301_2 with 30 tasks, j601_1 and j601_2 
with 60 tasks, j901_1 and j901_2 with 90 tasks, and j1201_1 and j1201_2, among which 
120 problem instances are the largest contained in the PSPLIB. 

Table 1. Test Instances 

Workflow Number of Tasks Topology 
fMRI 15 [16] 
e-Protein 15 [17] 
j301_1 30 j301_1(PSPLIB) 
j301_2 30 j301_2(PSPLIB) 
j601_1 60 j601_1(PSPLIB) 
j601_2 60 j601_2(PSPLIB) 
j901_1 90 j901_1(PSPLIB) 
j901_2 90 j901_2(PSPLIB) 
j1201_1 120 j1201_1(PSPLIB) 
j1201_2 120 j1201_2(PSPLIB) 

 
The QoS parameters (execution time and cost) of all service instances are ran-

domly generated, but they follow the rule that for the same task, a service instance 
with higher shorter execution time may cost more money and vice versa. 

There are mainly three parameters in the algorithm: α and β in the probability se-

lection rule [Formula (3)] and ρ in the pheromone updating rule [Formula (6)]. In 
terms of the configuration given by the ACO algorithms for the workflow scheduling 

problem and other general scheduling problems[14-17], we set ρ = 0.1, α=1 and β=1 

in our experiments. 
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3.2   Experiment Results 

Our KBACO was implemented on an IBM XSERIES226 server with an Intel(R) 
XEON(TM) 3.00GHZ processor, and 2.00GB RAM. The KBACO terminates when 
one of the following conditions is satisfied.  

(1) The global best solution is not improved in successive predefined number of  
iterations; 

(2) The maximum preset search iterative is exhausted. 

To these workflow applications, the final experimental results of our KBACO aver-
aged over 100 runs were displayed as Table 2. Three indexes were applied to describe 
the experimental results. 

(1) Best: the best cost among these 100 runs. 
(2) Avg.: the average cost of these 100 runs. 
(3) Avg. time: the average the average computational time of these 100 runs. 

Table 2. Experimental results of kbaco for workflow applications 

Workflow Cost Avg. time (s) 
 Best Avg.  

fMRI 101.5 106.5 210 
e-Protein 123 124 220 
j301_1 197 201 308 
j301_2 213 218 335 
j601_1 342 350 429 
j601_2 458 465 475 
j901_1 731 745 498 
j901_2 796 812 510 
j1201_1 1120 1134 535 
j1201_2 1208 1215 546 

 
The experimental results of Table 2 suggest that KBACO performed well on all 

workflow applications.  It can obtain the near-optimal (optimal) solutions with a quick 
computational speed. 

4   Conclusions 

In this paper we have proposed a KBACO algorithm for grid workflow scheduling 
problem, which integrated the ACO model with knowledge model. In KBACO, 
knowledge was learned from the optimization of ACO by the knowledge model, at 
the same time, the existing knowledge was applied to guide the current heuristic 
searching of ACO. We have experimentally evaluated the KBACO algorithm in 
benchmark workflow applications with the number of tasks varying from 15 to 120. 
Experimental results demonstrate that the KBACO algorithm is capable of achieving 
solutions effectively and efficiently. 
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Abstract. Ant Colony Optimization (ACO) is recently proposed metaheuristic 
approach for solving hard combinatorial optimization problems. Parallel im-
plementation of ACO can reduce the computational time obviously. An im-
proved parallel ACO algorithm is proposed in this paper, which use dynamic 
transition probability to enlarge the search space by stimulating ants choosing 
new path at early stage; use polymorphic ant colony to improve convergence 
speed by local search and global search; use partially asynchronous parallel im-
plementation, interactive multi-colony parallel and new information exchange 
strategy to improve the parallel efficiency. We implement the algorithm on the 
Dawn 4000L parallel computer using MPI and C language. The Numerical re-
sult indicates the algorithm proposed in this paper can improve convergence 
speed effectively with the fine solution quality. 

Keywords: Parallel, Ant colony optimization, Dynamic transition probability, 
Polymorphic ant colony. 

1   Introduction 

Ant Colony Optimization(ACO) is a constructive population based meta-heuristic 
algorithm[1]. It has been applied to traveling salesman problem[2](TSP), quadratic 
assignment problem[3], mesh-partition problem[4], routing algorithm [5] and other 
combinational optimization(CO) problems. ACO has some disadvantages. Its’ con-
vergence speed becomes slow due to the random transition strategy when constructing 
the solution. It is easily premature and fall into local optimization solution due to the 
positive feedback. It needs considerable computational time and resources when the 
complexity of the problem increases. 

Some strategies for parallelization have been reported recently. Buklnheimer[6] pro-
posed two synchronous and asynchronous parallelization strategies. In the synchronous 
strategy, each processor exchanges information every iteration, while in the asynchro-
nous strategy, each processor exchanges information after a certain iteration regularly. 
Talbi[7] presented a synchronous fine grained parallel ant colony algorithm in mas-
ter/slave fashion combined with local tuba search, and applied this algorithm to solve 
quadratic assignment problem(QAP). Piriyakumar DAL[8] introduced an asynchronous 
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parallel Max-Min ant colony algorithm associated with the local search strategy. Randal 
M[9] introduce five parallelization strategies and implement one of them named parallel 
ants. Blum C[10] advanced a parallel ant colony optimization on the hyper-cube archi-
tecture. By modifying the classical ACO, Merkle D[11] proposed a parallel ant colony 
algorithm on reconfigurable processor arrays.  

This paper is organized into 4 sections. In section 1, a brief description of im-
provement and parallel implementation of ACO is introduced. Then, an improved 
parallel ACO algorithm named IPACO is proposed, which improve the ACS algo-
rithm with the characteristic of polymorphic ant colony, dynamic transition probabil-
ity and new parallel strategy in section 2. We evaluate the IPACO algorithm by study 
the convergence speed, parallel size scalability and problem size scalability of it in 
section 3, and draw a conclusion in section 4. 

2   Improved Parallel Ant Colony Optimization (IPACO) 
Algorithm 

2.1   Polymorphic Ant Colony 

The study of real ants indicates the ant colony is complex. Different kind of ants has 
different kind of pheromone. Xu[12] introduce the concept of polymorphic ant colony 
into ACO. We divide the ant colony into scout ant colony and search ant colony 
enlightened by it. 

There are n  scout ants are scattered throughout n cities, one per city. Each scout 

ant explores 1n −  neighbor cities and sorts them by distance from the city located, 

then releases scouting pheromone at the path linked to NN  closest neighbor cities. 
The scouting pheromone is described in formulate (1) as follow: 

/ ,
[ ][ ]

0,
ij ijd d

s i j
otherwise

if city j is NN closest neighbor of city i

 
(1)

ijd  is the shortest distance from city i , NN  is the parameter indicating the closest 

neighbor number. According to the scouting pheromone, initialize the common 
pheromone in formulate (2) as follow: 

* [ ][ ], [ ][ ] 0
(0) ˆ* /

ij

ij ij

C s i j if s i j

C d d ,otherwise
 

(2)

ˆ
ijd  is the longest distance from city i , C is the initial pheromone level of ACS algo-

rithm. It can increase the convergence speed due to modify the initial common 
pheromone level differently. 

Search ant colony is work like the normal ant colony in ACO. It chooses the next 
city not only by the information of common pheromone and distance, but by the scout 
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pheromone. The transition probability of search ant colony is described in formulate 
(3) as follow: 
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(3)

It can reduce the scale of search region when search ant choosing the next city be-
cause of the guide of scout pheromone. The search ants release the common phero-
mone on the path they passed every iteration only if the path’s scout pheromone is not 
zero. 

2.2   Dynamic Transition Probability 

It is reported that the dynamic transition probability can avoid premature effec-
tively[13]. The global optimization solution may be ignored as too strong pheromone 
level produced by the local optimization solution. If we stimulate more ants to attempt 
the new paths which little ants passing before at the early stage, the premature can 
avoid effectively. We proposed a new dynamic transition probability strategy more 
simply but more effective according to the ideal of it[13]. So the transition probability 
is modified as follow in formulate (4): 
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(4)

( , )
c

ij
c c

m N

m N Q i j
δ

μ
=

+
i

i i
,it is the adjust parameter to the transition probability of 

path ( , )i j , m  is the number of ants, cN  is the number of iterations, ( , )cQ i j  is the 

number of ants passed path ( , )i j , and μ  is a weighted parameter. 

At the early stage of the algorithm, cN  is small. ijδ  decreases when ( , )cQ i j  in-

creases. It stimulate more ant to explore new paths by restrain more ant choose the 

path ( , )i j . At the later stage of algorithm, the ( , )cQ i j  of the fine solution is ap-

proximate equal to cN , so ijδ  is approximate equal to 
m

m μ+
, and approximate 

equal 1 because of m  is more larger than μ . Other path’s ijδ  is approximate equal 

to 1 because ( , )cQ i j  is approximate equal to zero. So the algorithm is convergent. 
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2.3   Parallel Strategy 

(1) Coarse-granularity interacting multi ant colonies [14] 
It is reported that coarse-granularity is more suitable for the fine-granularity[6]. We 

adopt the ideal of coarse-granularity interacting multi ant colonies [14], same number 
ants are assigned to each processor. We regard the ants in the same processor as an 
independent colony. The ants in the same processor (sub-colony) can construct the 
solution independently guided by the local information. Different sub-colony interact 
each other by exchanging the information.  

(2) Some results [6] [15] indicate that partially asynchronous parallel imple-
ment(PAPI) is better than synchronous implement. So we adopt the PAPI strategy that 
is the computational nodes (colony) exchange information each other every N iterations. 

(3) Information exchange strategy 
We design a new information exchange strategy, which exchanges the global best so-

lution every N iterations and exchange the pheromone matrix every k Ni  iterations. 
 

   

Fig. 1. The pseudocode of IPACO 

We modify the ACS algorithm by introducing the characteristic of Polymorphic 
and dynamic transition probability discussed in 2.1 and 2.2, and propose an improved  
parallel ant colony optimization (IPACO) following the parallel strategy discussed in 
2.3. The pseudocode of the IPACO is shown in Figure 1. 

3   Numerical Result 

3.1   General Description 

The numerical experiments are performed on the platform of the Dawn 4000L parallel 
computer using the C language and the Message Passing Interface (MPI). A number 
of TSP problem instances from TSPLIB[16] have been selected with which to test the 
algorithm proposed in this paper. The program is running with the parameters as fol-
lows: 1, 5, 25, 0.9, 0.5, 10, 20m NNα β ρ μ λ= = = = = = = . 

We evaluate the IPACO algorithm proposed in this paper by study the convergence 
speed, parallel size scalability and problem size scalability of it. 

Step 1: Receive( , , , seedβ γ ρ ), pheromone, distance matrix and N from  
master; 

Step 2: If termination condition is not met, repeat Step 2 to Step 7, else  
terminate. 

Step 3:  Each node builds solution for N iterations by local information. 
Step 4: Send the local-best-solution to master 
Step 5: Receive the node’s number, which constructs the Iteration-best-cost 

solution from master; 
Step 6: Receive the pheromone matrix from the node, which constructs  

Iteration-best-cost solution; 
Step 7: Receive the termination information signal from the master; 
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3.2   Convergence Speed Analysis of the IPACO Algorithm 

In order to study the convergence speed of the IPACO algorithm, we use the Se-
quence ACS and IPACO (2 nodes) to solve the same TSP instance rl5915 as an ex-
ample. We plot the relationship of solution value to iterations in Figure 2. From the 
Figure 2, we found the IPACO converge faster than the ACS, and the IPACO can find 
a better solution than the ACS at last. 
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Fig. 2. Convergence speed analysis of IPACO algorithm 

3.3   Parallel Size Scalability Analysis of the IPACO Algorithm 

In order to study the parallel size scalability of the IPACO algorithm, we use different 
computational nodes such as 1,2, 4, 8 and 16 to solve the same TSP instance fl1577 as 

an example. We run the experiments 20 times and list the result in the Tab.1. avgsol
 

is average for solution. avgt
 is average time for getting all the best solutions. avge

 is 

the excess from optimal of avgsol .  

Table 1. Experimental results of parallel size scalability analysis of IPACO algorithm 

instance 
Nodes 

num avgsol  

 
avge

 
 (%) 

speedup efficiency 

1 22307.3 251.83 0.2620 1.0000 1.0000 

2 22307.9 146.45 0.2647 1.7196 0.8598 

4 22304.7 101.82 0.2503 2.4733 0.618325 

8 22304.2 85.61 0.2481 2.9416 0.3677 

fl1577 

16 22309.4 78.53 0.2715 3.2068 0.200425 

m
avgt a
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Fig. 3. The relationship of speedup and efficiency to parallel size of IPACO algorithm 

We plot the relationship of speedup to nodes number (left) and efficiency to nodes 
number (right) in Figure 3. From Figure 3, we have found that there is a steady de-
crease in computational time and a steady increase in speedup with the increasing of 
nodes number. It indicates more computing nodes can reduce the computational time 
obviously and obtain significant speedup. 

3.4   Problem Size Scalability Analysis of the IPACO Algorithm 

We use 2 nodes to solve the different scale TSP instances, and compare them with 
sequential algorithms. We run the experiments 20 times using sequence ant colony 
algorithm (SACS) and improved parallel ant colony algorithm (IPACO), then list the 

result in the Table 2. maxt
 is maximum time allowed for running. avgi

 is average it-

erations for getting all the solutions. The avgsol , avgt , avge  are defined in 3.3. 

Table 2. Experimental results of problem size scalability analysis of IPACO algorithm 

instance algorithm avgsol
 maxt

 avgt
 

avge
(%) speedup efficiency 

IPACO 15780.1  20 4.16  0.0006  
D198 

SACS 15780.1  20 3.38  0.0006  
0.8125 0.4063 

IPACO 294685.2 100 38.23 0.1112 
Gr666 

SACS 294620.4 100 56.87 0.0891 
1.487575 0.7438 

IPACO 56901.8 200 67.3 0.0172 
Pcb1173 

SACS 56908.3 200 106.58 0.0287 
1.583655 0.7918 

IPACO 22307.9 400 146.45 0.2647 
fl1577 

SACS 22307.3 400 251.83 0.262 
1.719563 0.8598 

IPACO 379258.7 1000 252.74 0.3245 
pr2392 

SACS 379264.8 1000 504.67 0.3261 
1.877912 0.9390 

IPACO 570874.7 2000 942.09 0.9451 
rl5915 

SACS 571134.6 2000 1803.08 0.991 
1.913915 0.9570 
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Fig. 4. The relationship of speedup and efficiency to problem size of IPACO algorithm 

We calculate speedup  and efficiency and plot them in Figure 4. From Fig. 4, 

we have found that there is a steady increase in speedup and parallel efficiency with 
the increasing of the scale of the instance. The speedup and efficiency are closed to 
the limit 2 and 1 with the large instance of rl5915. It indicates that the parallel ant 
colony optimization algorithm is more efficient for the large scales problem. 

4   Conclusion 

In this paper, we propose an improved parallel ant colony optimization algorithm with 
polymorphic, dynamic transition probability and new parallel strategies. The code is 
written in C and MPI to implement this IPACO algorithm and has been executed on 
the dawn 4000L parallel computer. We evaluate the IPACO algorithm proposed in 
this paper by study the convergence speed, parallel size scalability and problem size 
scalability of it. The numerical results indicate that (1) the IPACO algorithm can con-
struct solution better than the sequential ACO (SACS) algorithm and converge faster 
then SACS; (2) more computing nodes can reduce the computing time obviously and 
obtain significant speedup; (3) the IPACO algorithm is more efficient for the large 
scale traveling salesman problem with fine quality of solution. 
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Abstract. In view of shortcomings of BP neural network, which is slow to 
converge and tends to trap in local optimum when applied in fault diagnosis, an 
approach for fault diagnosis based on BP neural network optimized by chaos ant 
colony algorithm is proposed. Mathematical model of chaos ant colony algo-
rithm is created. Real-coded method is adopted and the weights and thresholds of 
BP neural network are taken as ant space position searched by chaos ant colony 
algorithm to train BP neural network. Training result of chaos ant colony algo-
rithm is compared with that of conventional BP algorithm and from both results it 
is can be seen that chaos ant colony algorithm can overcome the shortcomings of 
BP algorithm. It is proved that mathematical model of chaos ant colony algo-
rithm is correct and optimization method is valid through experimental simula-
tion for machinery fault diagnosis of mine ventilator. 

Keywords: chaos ant colony algorithm, fault diagnosis, BP neural network,  
optimization algorithm. 

1   Introduction 

BP neural network, which has functions of self-learning, self-adaptation and nonlinear 
pattern recognition, is applied widely to fault diagnosis. However, shortcomings of BP 
network are that it is slow to converge and tends to trap in local optimum. Ant colony 
algorithm is a new search algorithm in combinatorial optimization field. At initializa-
tion, information element of each path adopts the same value, and this makes ants very 
difficult to find a better path in short time from a mass of disorderly and unsystematic 
paths. So search efficiency and convergence speed of ant colony algorithm are also low 
and algorithm tends to trap in local optimum. In recent years, the biologist Cole has 
found that behavior of the whole ant colony is a kind of periodic behavior and that of 
the single ant is chaos behavior [1-2]. So chaos theory is used to improve ant colony 
algorithm through introducing the chaos perturbation operator into the algorithm and 
then parameters of the algorithm are initialized by use of ergodicity and randomicity of 
chaos theory. This method increases the diversity of the solution and the better path can 
be selected from a mass of paths. So it leads ants to find the fastest and optimum path. 

Chaos ant colony algorithm is applied to fault diagnosis in this paper, and the algo-
rithm is used to train the weights and thresholds of BP neural network. Then the trained 
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neural network is applied to the fault diagnosis of mine ventilator and the better diag-
nosis results are acquired through experiment simulation. 

2   Fault Diagnosis Principle Based on BP Neural Network 

When BP neural network is used to diagnose fault, first of all, the network need to be 
trained through a group of training samples. Input of the samples is fault character, and 
the desired output is corresponding fault type. After BP neural network has been 
trained, it can be tested using test samples and the most possible fault type is informed. 

Suppose BP neural network adopts three-layer structure of input layer, single hidden 
layer and output layer. The input layer has m nodes, and corresponding input vector is 

),,,( 21 mxxx=X , the hidden layer has p nodes, and corresponding output vector is 

),,,( 21 pyyy=Y , and the output layer has n nodes, and corresponding output vector 

is ),,,( 21 nooo=O . Suppose connection weights between any node ix  of the input 

layer and any node ky  of the hidden layer is ikω , thresholds of No. k  neuron of the 

hidden layer is kθ , connection weights between any node ky  of the hidden layer and 

any node jo  of the output layer is kjω , and thresholds of No. j  neuron of the output 

layer is jθ . And then the neuron output of the hidden layer and output layer are as 

following: 
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In formula (1), ( )⋅f  is the activation function of the neuron, and here is an S-type 

function as following:  

( )
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1
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Formula (3) is taken as error output of BP algorithm when BP neural network is trained 
through fault samples. 
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In formula (3), M  is sample quantity of training samples set, n  is quantity of network 

output neurons; d
jio  is the desired output of No. j  output node of No. i  sample; jio  is 

the actual output of No. j  output node of No. i  sample. 

From formula (1) and formula (3), it is can be seen that the error output E  of BP 
algorithm is a function related to the connection weights and thresholds of all layers. 
So, the error output E  can be changed through adjusting the connection weights and 
thresholds.  
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3   Chaos Behavior and Ant Self-organization Behavior 

The first research of chaos phenomenon of insect behavior originated from the ex-
periment result of observing Leptothax allardycei (one kind of ant) [3-7]. Against 
conventional prediction, ants do not work at all times but rest in fact in most time. 
Herbers’s research on two different kinds of ants Leptothrax longispinosus and 
L.Ambiguus shows that ants do nothing in two-thirds life time [8-9]. Further research 
Cole does on Leptothrax longispinosus shows that behavior of ant colony is regular and 
periodic.  

Ant colony consisting of many ants, which behaviors are sample and affect each 
other, can self-adaptively find the place where food is abundant. Two consecutive 
dynamics processes happen during looking for food. First is a non-cooperative process 
and in this process ant organization capability is very poor. Single ant will help itself 
and other ants to look for better food path through leaving pheromone. First process 
continues till ant individual behavior is enough affected and here second process, which 
is a cooperative process among ants, starts. In the whole self-organization process, 
every ant exchanges optimum position information with its neighbor and compares the 
information with before and memorizes it. 

4   Mathematical Model of Chaos Ant Colony Algorithm 

Chaos ant colony algorithm will search the optimum resolution in the l  demention real 

number space lR . Suppose that ant quantity of ant colony is n . All ants are put in the 
search space S  and they will minimize a function RSf →: . Each point s  in space 

S  is one feasible solution of the given problem. The algebra variable sign 
( )iliii zzzs ,...,, 21=  denotes the position of No. i  ant, here ni ,...,2,1= . Naturally, each 

variable can be arbitrarily finite dimensional.  
During the movement of the ants, each ant will be influenced by the organization of 

the whole ant colony. On mathematics expression, the movement strategy of single ant 
is a function related to own present position, optimum position found at present be-
tween itself and own accompanier, and organization variable[10]. The function is as 
following: 

( ) ( ) ( ) ( )( )tytptzgtz iididid ,1,1 −−=  (4)

In formula (4), t  is the moment of present step, 1−t  is the moment of last step,  ( )tzid  

is the present status of d  dimension variable of No. i  ant, here ld ,...,2,1= , l is the 

dimension number of the search space, ( )tyi  is the current status of the organization 

variable, ( )1−tpid is optimum position that is found by No. i  ant and its neighboring 

ant in No. 1−t  step, g is a nonlinear function. Through introducing a continu-

ously-changed organization variable ( )tyi  to realize the chaos behavior of ants, the 

system dynamics model of chaos ant colony optimization algorithm is as following: 
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In formula (5), a  is an enough large positive constant, b  is a constant and 

3/20 ≤≤ b , dψ  decides the search range of No. d  element in the search space, ir  is a 

positive constant less than 1 and nominated as the organization factor of No. i  ant, and 
( ) 999.00 =iy . ir  and dψ  are two important parameters of the given optimization 

algorithm. ir  will influence convergence speed of chaos ant colony algorithm, gener-

ally selected as 5.00 ≤≤ ir . dψ  will influence the search range of chaos ant colony 

algorithm. 

5   BP Neural Network Optimized Flow by Chaos Ant Colony 

It is required that a suitable chaos ant colony search pattern should be created and 
fitness function and search spaces should be defined when chaos ant colony algo-
rithm is used to train BP neural network. Here, the weights and thresholds of BP 
learning algorithm are taken as ant space position searched by chaos ant colony 
algorithm. That is, learning process of optimized BP neural network is in nature that 
ant searches optimum position within search space. The detailed flow chaos ant 
colony algorithm optimizes BP neural network is shown in Fig.1. 

Based on BP neural network optimized flow by chaos ant colony algorithm, the 
detailed steps of fault diagnosis are given as follows:  

Step1: Define BP neural network structure according to input and output of fault 
samples of diagnosed object. 

Step2: Initialize parameters of chaos ant colony algorithm, which mainly includes 
defining ant quantity, cycle iterations and search space. Then, randomly generate a ant 
colony. 

Step3: Take fault samples as training samples of BP neural network and start using 
chaos ant colony algorithm to train BP neural network. 

Step4: Compute fitness function value of chaos ant colony algorithm with formula 
(3) and judge it is ant optimum position or not according to the principle that fitness 
function value is minimal. In the procedure of optimization iteration cycles, if com-
puted fitness function value is less than current minimum correspond to optimum po-
sition for any ant then update own optimum fitness function value, and then assign 
current optimum value in ant colony to ( )tpid . 

Step5: Update ( )tyi  and ( )tzid  with formula (5). Then judge whether iteration is 

over. If it is, continue Step6, or else back to Step4 and go on iteration. 
Step6: Use test samples to test fault diagnosis system after BP neural network is 

trained by chaos ant colony algorithm and the most possible fault type is informed.  
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Fig. 1. Flow diagram chaos ant colony algorithm optimizes BP neural network 

6   Experimental Simulation and Result Analysis 

The above-mentioned fault diagnosis method is simulated with MATLAB software 
through taking mine ventilator machinery fault diagnosis for example. It is a precon-
dition to analyze mechanical vibration character of mine ventilator for getting fault 
character and diagnosing fault. Table 1 shows relationship between fault character and 
fault type of mine ventilator, and data in table 1 are taken as training samples of BP 
neural network. In table 1, 1f  is vibration frequency caused by balance fault, 2f  is 

vibration frequency caused by blade fault, of  is bearing outer ring character fre-

quency, if  is bearing inner ring character frequency, bf  is roller character frequency 

and ff  is hold-shelf character frequency. It is to be noted here that ix  in table 1 is a 

normalized value and the normalized formula is as follow: 

821,
minmax

min
'

,,,i
xx

xx
x i

i =
−

−=  (6)

In formula (6): ix  is a normalized fault feature value,
'
ix  is an energy value every kind 

of character frequency has, maxx and minx  are respectively maximum and minimum in 

energy values all kinds of character frequency have. 
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Table 1. Training samples for mine ventilator fault diagnosis 

fault character (sample input)

1f 2f 0f if bf ff1)5~2( f12 f

0.2 0.2 0.4 0.1 00 00

1 0.2 0.4 0.1 00 00

0.2 1 0.4 0.7 00 00disalignment

0.2 0.2 0.4 0.9 00 00

1 0.2 0.9 1 00 00

0.2 0.2 0.4 0.1 01 00

0.2 0.2 0.4 0.1 10 00

0.2 0.2 0.4 0.1 00 01

0.2 0.2 0.4 0.1 00 10

desired output

1o1x 2x 3x 4x 5x 6x 7x 8x 2o 3o 4o 5o 6o 7o 8o 9o

1 00000000

0 00000001

0 00000010

0 00000100

0 00001000

0 00010000

0 00100000

0 01000000

0 10000000

ventilator status

bearing outer ring fault

bearing inner ring fault

roller fault

hold-shelf fault

blade fault

machinery loosen

imbalance

no fault

 

In this fault diagnosis example, 3-layer BP neural network consists of eight input 
neurons, twenty hidden neurons and nine output neurons. Error convergence factor of 
BP algorithm is 0.001 and activation functions of hidden layer and output layer are both 
Sigmoid-function. Parameters of chaos ant colony algorithm are as following: ant 
quantity is 20, 200=a , 3/2=b ， 3=dψ ， ( ) 999.00 =y ， randri 2.01.0 +=  and 

maximum of iterative times is 80. Take data in table 1 as training samples to train BP 
neural network by use of chaos ant colony algorithm and the relationship curve be-
tween training times and training error of BP neural network optimized by chaos ant 
colony algorithm is shown in Fig.2. Using same parameters, training error curve of 
conventional BP neural network is shown in Fig.3. 

From Fig.2 and Fig.3, it can be seen that system error has reached 0.001 when car-
rying out 24th iteration using chaos ant colony algorithm to train neural network and 
however, required accuracy has not reached yet when carrying out last iteration using  
 

 

Fig. 2. Training curve of BP network optimized by chaos ant colony algorithm 
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Fig. 3. Training curve of conventional BP neural network 

Table 2. Fault test samples of mine ventilator 

test samples input

0.289 0.242 0.328 0.107 0.1220.087 0.0030.006

0.986 0.245 0.568 0.096 0.0560.065 0.0020.012
0.146 0.248 0.356 0.867 0.1360 00.058

0.976 0.363 0.923 0.995 0.0160.105 0.0090.112
0.224 0.178 0.443 0.125 0.0450 0.0780.965

ventilator 
status

1x 2x
3x 4x 5x 6x 7x 8x

1.

2.

3.

4.

5.

no fault

imbalance

machinery loosen

blade fault

roller fault
 

Table 3. Network output of test samples and diagnosis results 

network output of test samples

0.9968 0.0032 0.0006 0.0015 00.0009 0.00030.0001

0.0006 0.9957 0.0005 0.0010 0.00050.0008 0.00070.0012

0.0003 0 0.0001 0.9969 0.00020.0001 00.0001

0 0.0002 0.0001 0.0001 0.00110.9964 0.00010.0002
0 0.0001 0.0004 0.0001 0.00010 0.99620.0013

1.

2.

3.

4.
5.

no fault

imbalance

machinery loosen

blade fault

roller fault

1o 2o 3o 4o 5o 6o 7o 8o 9o
diagnosis 

results

0.0007

0.0009

0

0.0001
0.0022

 

BP algorithm and in fact BP algorithm has trapped in local minimum error 0.0617. 
Compare Fig.2 with Fig.3, training curve in Fig.2 is steeper, this shows that chaos ant 
colony algorithm tends to get out of local optimum and search global optimum. 

Data in table 2 are fault test samples, and served as input of trained neural network. 
Output of neural network and fault diagnosis results are shown in table 3. It can be seen 
from diagnosis results that BP neural network optimized by chaos ant colony algorithm 
can discern fault type very well and actual output of network is almost the same as 
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desired output. Even when fault samples are disturbed, the diagnosis system has great 
discerning capability. 

7   Conclusion 

Study effect of conventional BP algorithm is related to initialized weights and the 
algorithm only can deal with differentiable object function. However chaos ant colony 
algorithm can overcome these shortcomings and improve local search capability so that 
it can avoid trapping early in local optimum. If BP neural network optimized by chaos 
ant colony algorithm is used for fault diagnosis, reliability and accuracy of diagnosis 
result will be greatly increased because this diagnosis method not only reflects fault 
diagnosis capability of BP neural network but also enough utilizes search optimum 
capability of chaos ant colony algorithm. 
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Abstract. Laser range imaging is the current priority research areas of airborne 
lidar. And realizing accurate edge detection of laser range image is the key of 
completing the subsequent three-dimensional reconstruction. Based on the 
characteristics of laser range image and the deficiencies of traditional edge de-
tection methods, a new improved fast adaptive ant colony algorithm for edge 
detection of laser range image has been proposed in this paper. Due to the initial 
cluster center and the heuristic guiding function used in the algorithm, the ran-
domness and blindness of ants walking are eliminated thoroughly, and the 
speed of image edge detection is also greatly increased. Meanwhile, thanks to 
the applied ants’ selection mechanism and updating mechanism varying in con-
tents, the error detection rate and omission factor of edge points as well as noise 
interference are all avoided, and the accuracy and adaptability of laser range 
image edge detection are greatly improved as well. Experimental results have 
shown that, this algorithm is more effective than other edge detection methods, 
and can meet the requirements of three-dimensional reconstruction. 

Keywords: Ant Colony Algorithm, Edge Detection, Laser Range Image, 
Three-Dimensional Reconstruction, Contrast Experiment. 

1   Introduction 

Airborne lidar can quickly acquire large-scale, high precision, high spatial resolution 
three-dimensional geography information, which can also resolve thoroughly the 
bottlenecks of constructing three-dimensional city models based on traditional photo-
grammetric methods. Especially, the laser range image from the greyscale quantiza-
tion imaging of laser pin-point elevation data has become the priority research areas 
of LIDAR, which contains plenty of necessary information for constructing three-
dimensional city, such as the plane position, contour and elevation of buildings. 
Therefore, how to accurately detect the edge of laser range image is the key of com-
pleting the subsequent three-dimensional reconstruction (e.g. [1-2]).  
                                                           
*  Supported by the National Natural Science Foundation of China (Grant No.60672154). 
**  Corresponding author. 



266 Y. Wu et al. 

There are a great many traditional image edge detection approaches, which mainly 
use the Gradient extremum property of image edge to detect the partial zero-crossing 
first derivative or second-order derivative as the edge points, such as the Sobel edge 
operator, Roberts edge operator, LoG edge operator, etc. However, owing to the 
large-scale data and serious noise pollution of laser range image, those traditional 
methods could not be well applied (e.g. [3-4]). Besides, based on the classic principle 
of edge detection, some new methods have also been proposed by many researchers 
to deal with laser range image. On the whole, they fall into three main categories: the 
optimal operator, multi-scale method and adaptive method (e.g. [5]). However, they 
still are not effective for edge detection of laser range image. In recent years, with the 
emergence of the ant colony algorithm with the discrete and parallel character, many 
domestic and abroad scholars have obtained abundant research achievements in ap-
plying ant colony algorithm to solve the problem of image segmentation.  

Consequently, based on the characteristics of laser range image and the advantages 
of traditional edge detection methods, a new ant colony optimization algorithm for 
laser range image edge detection has been proposed in this paper. Section 2 states the 
characteristics of laser range image and the principle of the basic ant colony algo-
rithm. Section 3 presents the proposed ant colony optimization algorithm. Section 4 
gives the experimental results of laser range image edge detection. 

2   Laser Range Image and Basic Ant Colony Algorithm  

2.1   Characteristics of Laser Range Image 

Laser range image is the range-grayscale digital image, which is mainly based on 
converting the distance data of scanned discrete laser pin points into the regular digi-
tal distance matrix through grid interpolating, and then executing the grayscale or 
pseudocolor quantization according to different gray levels corresponding to different 
distances. Generally, laser range image contains a wealth of necessary information for 
reconstructing three-dimensional scene, such as the plane position, contour and dis-
tance data of the objects in the scene.  

Compared with the gray image from aerophotogrammetry, the data of laser range 
image measured by airborne lidar is quite huge, and the image quality is also poor. 
Especially, the boundary information of objects on image looks very fuzzy. This is 
mainly caused by interpolating the data of discrete laser pin point based on regular 
grid. Consequently, the fuzzy edges of objects and the boundaries region affected by 
noises on image have brought a great many difficulties to the edge detection and ex-
traction of laser range image (e.g. [6]). 

2.2   Principle of Edge Detection Based on Basic Ant Colony Algorithm 

Ant Colony Algorithm (ACA) is an emerging probabilistic search algorithm in recent 
years. It completes the global optimization search process based on utilizing the ant 
pheromone as the basis of choosing subsequent actions, and combining with coopera-
tion and interaction between ants. (e.g. [7-9]).  



 Edge Detection of Laser Range Image 267 

The principle of edge detection based on ant colony algorithm is regarding the 
original laser range image X  as an undirected graph. And each pixel jX  on image is 

treated as an ant and expressed as a three-dimensional vector characterized by gray-
scale, gradient and the neighbourhood. The edge points on image are the food sought 
by ants, and all the ants walk step by step according to the mechanism in path selec-
tion. Based on the probability obtained from the pheromone quantity ijph  and the 

visibility guiding function ijη  between pixels, the subsequent shift location will be 

chosen from 33×  pixel-neighbourhood. Then most ants will be gathered on the edge 
of the image through multiple circulative iterations, to achieve edge detection.  

Suppose m  is the number of ants, p  is weighted factor (its value is set based on 

the degree of each component of pixel affecting the cluster). The distance between 
arbitrary pixel iX  and jX  is ijd , and is expressed in Euclidean Distance. 

∑
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m
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2
jkikkij )xx(pd . (1)

If r is clustering radius, ijph is pheromone quantity on the path of pixel iX to jX , so 
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Selection mechanism. If the initial pheromone quantities on various paths are the 
same, as C(0)phij =  (constant), so for ants N),1,2,(jj = , the probability ijp of the 

shifting path from pixel iX to jX at the moment t  is shown as follows: 
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Where, { }N,1,2,sr,dXS sjs =≤= is a feasible path selected by ants. α and β  re-

flect the impact of information accumulated and heuristic factor on selecting path. 

Update mechanism. Following a cycle of ants, the pheromone quantity on various 
paths can be adjusted according to the following formula: 

ijijij Δph1)(tρ)ph(11)(tph ++−=+ . (4)
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Where, k
ijΔph  is the pheromone quantity left in the path )X,(X ji  by the ant k  be-

tween the moment t  and 1t + , ρ  is the attenuation of pheromone quantity. 

When the peset iteration times are completed by Loops, the whole algorithm will 
finish, and the target edge will be determined according to comparing ants’ number 
passing each pixel on the image with set prior threshold, then the final result is out 
through thinning the image edge. 

2.3   Shortage of Basic Ant Colony Algorithm 

Through analysis, the following main deficiencies of basic ant colony algorithm can 
be found for the edge detection of laser range image: 

First, a fairly long searching time and very large overall calculation. Due to ran-
domness and blindness of ants’ walk, for a range image with the size of nm × , each 
pixel need calculate its distance and probability of selecting path with other pixels 

1-nm × , thus the algorithm must execute multiple cycles for completing the cluster-
ing process (e.g. [10]).  

Second, the problem of easily emerging error detection or omission edge points. 
The edge detection of laser range image based on basic ant colony algorithm equally 
treats and deals with all the pixels in the image. In other words, both the ants’ selec-
tion mechanism and the update mechanism of pheromone are identical. Thus, the 
accuracy of edge detection will be inevitably reduced, especially the omission detec-
tion of partial edge points or the error detection of partial target and background pix-
els will occur frequently.  

3   Proposed Algorithm 

In order to overcome the above-mentioned deficiencies of basic ant colony algorithm, 
and improve the edge detection accuracy of laser range image. A new ant colony 
optimization algorithm for laser range image edge detection has been proposed in the 
following paper. 

3.1   Setting the Initial Cluster Centers and Guiding Function 

Based on analyzing the characteristics of laser range image, general grayscale, gradi-
ent and neighborhood characteristics corresponding with the target, background, bor-
der, and noise in the image are used as the characteristics of initial cluster center. 
Furthermore, the similarity between ants and cluster center is also taken as a guiding 
function, to make ants search quickly and efficiently for a new cluster center. Suppose 
the initial cluster center can be expressed as L)G,(V,C j (e.g. [11]).  

Calculating the grayscale of the initial cluster center-defining the characteristic 
vector V : Based on the histogram of laser range image, the peak points on the histo-
gram serve as the grayscale characteristic of cluster center (e.g. Eigenvector V ). 
Meanwhile, the number of initial cluster center is also determined by n . Thus, each 
pixel only needs to be compared with a few peak points, greatly improving the search-
ing efficiency.  
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Calculating the gradient of the initial cluster center-defining the feature vector G : 
Generally, the gradient of pixels on the background and objective is relatively small, 
but the gradient of boundary points and noise points is larger. So the gradient of the 
initial cluster center of the background or objective can be set to zero, but for the rest 
of the cluster center, their gradient usually is the mean of the maximum gradient col-
umn on gradient image.  

Calculating the neighborhood characteristics of the initial cluster center-defining 
the feature vector L : The neighborhood characteristics of the cluster center can be set 
according to the characteristics of pixel-neighborhood corresponding to different 
contents of laser range image. For example, those neighborhood characteristics of the 
cluster center owning zero gradients may be set to 8. And the cluster center of the 
boundary usually has a high gradient and a more pixel number corresponding to the 
gray. However, for the cluster center of the noise, the gradient is high but the pixel 
number is less. 

Setting guiding function ijη : After one cyclic process, the guiding function can re-

flect the similarity between pixels and cluster center, and is shown as follows:  
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Where, r is the clustering radius, and if it is greater, the clustering radius is also 
greater, and ants will be more likely to choose the cluster center. 

3.2   Principle of Processing Different Regions 

Processing principles of background and objective points: In order to make ants go 
away from the background and objectives as soon as possible and gather at the edge, 
based on the principle of ants’ actual movement (e.g. [12]), the conversion rules of 
ants in this region is revised to random selection, to make ants move to the edge zone 
of image along a fixed direction having chosen. And because the pixels in this region 
have little effect on the edge detection, those pixels’ pheromone quantity also has no 
influence on ants’ transfer. Therefore the value of pheromone needs not to be updated. 

Processing principles of noise points: The grayscale at the noise points usually mu-
tates, and its gradient is also high. So we can distinguish them through using pixel-
neighborhood. Those pixels in the 33× neighborhood whose grayscale value is close 
to these points in this region are generally considered to be noise points. Conse-
quently, these points should be deleted during ants’ transfer, and the selection mecha-
nism should also be changed as follows:  

Suppose that M  is the collection of these pixels, and the transition probability:      
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Meanwhile, in order to reduce the probability of re-transferring to these noise points 
for other ants, the pheromone quantity of these noise points should be rapidly attenu-
ated out after being visited by the first ant, and it no longer is released again. So the 
update mechanism is changed as follows: 

(t)ρ)ph(11)(tph ijij −=+ . (8) 

Processing principles of edge points: Reference [13] shows that, for the purpose of 
improving the ants’ Search capability at the edge point, the selection mechanism can 
be modified as following:  

The grey value mutation at the boundary point is very obvious, and the gradient is 
also higher, the number of 33×  neighbourhood pixels which have the similar gray 
level with the boundary point generally is greater than or equal to 6 
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Where, q is an random variable evenly distributing on ]1,0[ , 0q is an adjustable pa-

rameter, S is the same with the former values.  
If 0qq > , this selection mechanism is the same with the traditional method, the 

randomly selecting feature of probability can expand the ant’s search space, and de-
tect some minor edge effectively on the image. 

If 0qq ≤ , there is no influence from the random factors of probability, so the 

search speed of ants can be greatly accelerated, and the efficiency of the algorithm 
can also be improved.  

Therefore, through adjusting to affect the search, it not only can enhance the algo-
rithm’s execution efficiency, but also obtain more accurate edge.  
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4   Preliminary Experimental Result 

In order to prove the practicability of this algorithm, the contrast experiment for edge 
detection of laser range image has been done. For simplicity a laser range image of 
real forest scene was selected as the experiment object, which has been photographed 
in Zhengzhou on December 2009. And the experiment results are shown as follows. 

According to this experiment, the following conclusion can be reached: Firstly, the 
consuming-time of the ant colony optimization algorithm is shorter, which takes only 
0.356s to detect the edge of image. However, the basic ant colony algorithm takes 
1.403s and the Prewitt operator takes even longer. Secondly, the edge detection preci-
sion of this optimization algorithm is higher. Clearly, the continuity of edge detection 
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in Fig.4 is better than that in Fig.2 and Fig.3. Thirdly, the error detection and omission 
factor of this algorithm are lower. In particular, the omission factor of Prewitt opera-
tor in Fig.2 is so high that the edges of trunks can not be presented. On the contrary, 
the profile of trunks is more clear and distinctive in Fig.4. Finally, the asperity of edge 
image detected by ant colony optimization algorithm is higher. Instead, the edge im-
ages in Fig.2 and Fig.3 are fuzzier and dimmer.  

Generally speaking, Compared to the Prewitt operator and basic ant colony algo-
rithm, the ant colony optimization algorithm has the advantages of short consuming-
time, high detection accuracy, and low error detection and omission factor. In addi-
tion, different detection strategies can be applied based on different aspects of laser 
range imaging, so the adaptability of detecting edge can be enhanced and the sensitiv-
ity of noise can also be cut down. 

 

 
 

Fig. 1. Laser range image of real forest scene     Fig. 2. Edge detection result of Prewitt operator 

 

Fig. 3. Result of the basic ant colony algorithm   Fig. 4. Result of ant colony optimization  
algorithm 

5   Conclusions 

In this paper, according to the principles of basic ant colony algorithm, a fast adaptive 
ant colony algorithm for the edge detection of laser range image has been proposed, 
which is based on introducing the initial cluster center and heuristic guiding function, 
and applying ants’ selection mechanism and update mechanism varying in contents. 
The contrast experiment has shown that, not only the algorithm’s execution efficiency 
has been improved, but also its detection accuracy is greatly enhanced. In addition, 
this algorithm has good self-adaptability as well. In a word, the edge detection results 
of this algorithm can meet the requirements of three-dimensional reconstruction well.  
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A Real-Time Moving Ant Estimator  
for Bearings-Only Tracking 
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Abstract. A real-time moving ant estimator (RMAE) is developed for the bear-
ings-only target tracking, in which ants located at their individual current state 
utilize the normalized weight and pheromone value to select the one-step pre-
diction state and the dynamic moving velocity of each ant is depended directly on 
the normalized weights between two states. Besides this, two pheromone update 
strategy is implemented. Numerical simulations indicate that the RMAE could 
estimate adaptively the state of maneuvering or non-maneuvering target, and 
real-time requirement is superior to the moving ant estimator (MAE).  

Keywords: Bearings-only, Ant colony optimization, Parameter estimation, 
Target tracking. 

1   Introduction 

Recursive state estimation of dynamic stochastic systems plays an important role in 
target tracking and many other engineering applications. As we know, Bayesian 
multi-target tracking propagates the multi-target posterior density recursively in time, 
but it involves the evaluation of multiple integrals. Fortunately, the particle filter (PF) 
[1-4], known as Sequential Monte Carlo (SMC) method, attracted more attentions in 
recent years over a wide range of applications. In PF, the target state variable distribu-
tion is approximated by a weighted set of samples. These samples are propagated and 
updated once new measurements are available. Using these samples, the targets state 
can be estimated by standard Monte Carlo integration techniques.  

Ant Colony Optimization (ACO) utilizes artificial ants that cooperate to find good 
solutions for discrete or continuous optimization problems [5-6]. So far, there are few 
reports on the ACO algorithm employed into the parameter estimate field except [7-9]. 
The [9] proposed a moving ant estimator (MAE) to determine the parameter state. Four 
types of moving behaviors of ants are formulated, and the pheromone update process 
based on the current available measurement is also defined. However, the MAE shows 
computational burden due to the complex behaviors of moving ants and the strategy of 
pheromone update. To overcome this drawback, a real-time moving ant estimator 
(RMAE) based on the ACO is proposed. In this work, both pheromone value and heu-
ristic value are considered and two case of the behavior of moving ants are formulated. 
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The remainder of this paper is organized as follows. Section 2 presents in detail the 
real-time moving ant estimator. In Section 3, numerical simulations are conducted and 
corresponding results are also analyzed. Finally, conclusions and future research di-
rections are given in Section 4. 

2   Real-Time Moving Ant Estimator (RMAE) 

The general nonlinear non-Gaussian system model is considered and formulated as  

                        ( ) ( ( 1), ( ))t f t t= −x x w                                              (1) 
                        ( ) ( ( ), ( ))t h t t=z x v                                                  (2) 

where ( )tx  denotes the state of the system at time t ; ( )tz  is the observation of the 

interested state; ( )tw  and ( )tv  are defined as the process noise and measurement 

noise with constant covariances ( )Q t  and ( )R t , respectively; and notations ( )f ⋅  and 

( )h ⋅  represent the system and measurement models. 

Similar to the PF, four estimate process phases are considered. The number of ants is 
fixed and equal to N . Without loss of generality, the moving behavior of a given ant k  
is considered, and other ants could follow the same manner. For the sake of discussion, 
the case of one dimensional parameter estimation such as in the x  direction is con-

sidered，so the state vector ( ) ( 1)k t −x  of ant k  at time 1t −  can be represented by the 

position ( ) ( 1)kx t −  and the velocity ( ) ( 1)kx t −  as ( ) ( ) ( )( 1) [ ( 1), ( 1)]k k kt x t x t ′− = − −x , 

and its corresponding one-step prediction state vector ( ) ( | 1)k t t −x  is defined as 
( ) ( ) ( )( | 1) [ ( | 1), ( | 1)]k k kt t x t t x t t ′− = − −x . 

In the first phase, assume that the state of ant k  at time 1t −  is known, the corre-
sponding one-step prediction state is calculated according to Eq. (1), which constitutes 
a reference state at time t  to be visited by itself or other ants at time 1t − . 

In the second phase, the weighted step is also kept. For all reference states are ob-
tained in the first phase, the importance weights are normalized as 
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−

=
                     (4)  

where ( ) ( )kw t  is Gaussian assumption of measurement noise, and ( , , )x a b  denotes 

the Gaussian distribution of x  with mean a  and variance b . 
In the third phase, the moving velocity of each ant is determined. As mentioned 

above, the first and second phases construct the search space of all ants, as shown in 
Fig.1, the ant k  will select the predicted state of ant j  as its further moving direction 

based on the following defined probabilistic decision 
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where ( )kj tτ  is the pheromone value between state vector ( ) ( 1)k t −x  and ( ) ( | 1)j t t −x . 

The difference between Eq.(5) and that in MAE is introduction of pheromone, which 
will avoid the degeneracy phenomenon, i.e., the ant will not always select the predicted 
state with the biggest weight. It is obvious that such a selection process is a stochastic 
one, and for those one-step predicted states with larger normalized weights and higher 
pheromone value will have more chances to be selected. The state is selected by ant 
constitute an approximation of posterior probability density of the current interested 
state. 

(1) ( 1)x t − ( ) ( 1)kx t − ( ) ( 1)Nx t −

(1) ( | 1)x t t − ( ) ( | 1)kx t t − ( ) ( | 1)Nx t t −( ) ( | 1)jx t t −

time  t-1

time  t

 

Fig. 1. Moving behavior of ant from one time to another 

If the position ( ) ( | 1)jx t t −  is chosen as the destination direction of ant k  starting 

from time 1t − , two types of moving behavior models are investigated. 

 ( ) ( )( ) ( )j kw t w t>  

It means that the weight value of the state to be selected is bigger than that of current 
state, so ant is preferred to move toward. When ant arrives at its destination, the current 
state is updated based on the moving velocity of ant. In order to describe this phe-
nomenon, the corresponding ant behavior is modeled by 

               
( ) ( )

( ) ( | 1) ( 1)
( )

j k
k x t t x t

x t
T

− − −=                                      (6) 

               ( ) ( ) ( )( ) ( 1) ( )k k kx t x t x t T= − + ⋅                                         (7) 

where T  is the sampling interval. The Eq. (6) denotes that the ant k  moves from state 
( ) ( 1)kx t −  to ( ) ( | 1)jx t t −  with maximum velocity. Moreover ( ) ( )kx t  is a vector, for 

example, if the state ( ) ( | 1)jx t t −  is smaller than the state ( ) ( 1)kx t − , the value of 
( ) ( )kx t  will be a negative, i.e., ( ) ( ) 0kx t < . That is to say the update state will be located 

at the left of the current state in x  direction. 

 ( ) ( )( ) ( )j kw t w t≤  

In this model, the ant k will not move from state ( ) ( 1)kx t −  to ( ) ( | 1)jx t t −  with 

maximum velocity. The corresponding ant behavior is modeled by 
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( ) ( )

( ) ( ) ( | 1) ( 1)
( ) ( 1) ( ) ( )

j k
k k

kj

x t t x t
x t x t G t

T

− − −= − − ⋅                      (8) 

              ( ) ( ) ( )( ) ( 1) ( )k k kx t x t x t T= − − ⋅                                         (9) 

where ( )kjG t  is velocity adjusting coefficient, which depends on the weight ( ) ( )kw t  

and ( ) ( )jw t . The ( )kjG t  is defined as 

( ) ( ) 2( ) 1 exp( ( ( ) ( )) )j k
kjG t w t w tλ= − − ⋅ −                               (10) 

where λ  is a constant value. It can be seen that if the weight ( ) ( )jw t of selected state is 

much larger than the weight ( ) ( )kw t , the value of ( )kjG t  will be close to 1 , i.e., the 

velocity of ant k  is close to the maximum velocity, so the update position of ant k  has 
a significant change according to the Eq. (8). And the update of position of ant k  will 
change a little, and vice versa. 

In the fourth phase, the pheromone update process is executed and modeled by 

                    
( )

( 1) ( ) ( )kj
kj kj kj

G t
t t tτ τ τ

ε
+ = − ⋅                                       (11) 

                    
1

( 1) ( ) ( )kj kj kjt t tτ τ τ
ε

+ = + ⋅                                          (12) 

where ( )kjk j
G tε

≠
=∑  denotes the total pheromone value deposited on the trail be-

tween state ( ) ( 1)kx t −  and state ( ) ( | 1)jx t t − . It is observed that Eq. (11) represents the 

indirect pheromone evaporate, which means that the pheromone value on the trail 
between state ( ) ( 1)kx t −  and state ( ) ( | 1)jx t t −  will decrease, if the state ( ) ( | 1)jx t t −  is 

selected by ant k . And Eq. (12) shows the increase of pheromone value with amount of 
1

ε
. Note that the pheromone update strategy is only depended on the velocity adjusting 

coefficient, which is different with that in MAE. 

3   Numerical Simulations and Comparisons 

Two stationary observers are located at ( )0,0  and ( )2000,0−  respectively in a sur-

veillance region. The standard deviation of the bearing measurements for each observer 
is taken as 0.02 , and the sampling interval is set to 1T =  s. Other parameters are 
selected as follows: 100N = , 10λ = , 0 (1000,100,1000,100)P diag= , 

2 2 2 2
1( ) (0.02 ,0.01 ,0.02 ,0.01 )Q t diag= , 2 2 2 2

2 ( ) (0.04 ,0.02 ,0.04 ,0.02 )Q t diag= . 

Two scenarios are presented to demonstrate the performance of the proposed RMAE. In 
the first we provide an example of tracking non-maneuvering target, and performance  
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          (d) Velocity RMSE in X axis                           (e) Velocity RMSE in Y axis 

Fig. 2. Performance comparison with PF and MAE in scenario 1 
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comparisons are conducted with PF and MAE. In the second scenario we give an exam-
ple of maneuvering target tracking, and present the comparative simulations with a 
standard interacting multiple model particle filter (IMMPF) and MAE. 

Scenario 1: The target makes a uniform rectilinear motion with a given initial state 
(0) [0 ,45 / ,14816 ,0 / ]x m m s m m s ′= . 

Fig.2 shows the performance comparison with PF and MAE after 50 Monte Carlo 
runs. It is observed that the trajectory estimated by the RMAE fits well close to the true 
one in Fig.2 (a). The velocity root mean squared errors (RMSEs) of the RMAE are 
closed to the MAE in Fig.2 (d) and (e), but are worse than that of the PF, and the related 
position RMSEs are closed to the MAE and competitive with that of PF in Fig.2 (b) and 
(c). Therefore, for scenario 1 we can conclude that the RMAE works well in contrast to 
the PF and MAE.  

Table 1 shows the comparison of maximum execution time with PF and MAE under 
different particles or ants number. It can be seen that the biggest maximum execution 
time of RMAE (0.3639 s) has a significant improvement compared with that of MAE.  

Table 1. Comparison of Maximum execution time with different techniques in scenario 1 

N PF MAE RMAE 

50 0.0331 0.5402 0.1667 

100 0.0554 1.4597 0.2130 

200 0.1579 5.1901 0.3639 

Scenario 2: Firstly, the target makes a uniform rectilinear motion with an initial state 
(0) [100 , 45 / ,14816 , 30 / ]x m m s m m s ′= −  during the first 50 samples phase, and then 

the target executes a constant rate turn with 27 /na m s= , which lasts 50 samples. After 

the maneuver the target maintains a constant velocity lasting about 50 samples, and 
then the target turns with a constant rate turn with 27 /na m s= −  for another 50 sam-

ples. Finally, the target resumes a nearly constant velocity motion, with the velocity it 
had attained at the end of the previous phase for another 50 samples. 

The Fig.3 shows the performance comparison with the IMMPF and MAE. It is ob-
viously that the trajectory estimated by the RMAE fits well close to the true one in 
Fig.3(a), the velocity RMSEs in X axis of the RMAE are closed to that of the IMMFP 
and MAE in Fig.3 (d) and that in Y axis is higher than IMMPF in Fig.3 (e), and the 
related position RMSEs are closed to the IMMPF and MAE in Fig.3 (b) and (c). 
Therefore, for scenario 2 we can conclude that the RMAE works well in contrast to the 
PF and IMMPF. 

Table 2 shows the comparison of maximum execution time with IMMPF and MAE 
under different particles or ants number after 50 Monte Carlo runs. It is observed that 
the biggest maximum execution time of RMAE is smaller than the IMMPF, when the 
number of ants is set to be 50 and 100. But when the number of ants is set to be 200, the 
biggest maximum execution time of RMAE (81.4886s) is bigger than that of IMMPF, 
but it is still much less than that of MAE. 
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Fig. 3. Performance comparison with IMMPF and MAE in scenario 2 
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Table 2. Comparison of Maximum execution time with different techniques in scenario 2 

N IMMPF MAE RMAE 

50 17.2922 89.7135 11.2465 

100 33.3986 319.1860 26.3822 

200 65.9872 1031.3842 81.4886 

4   Conclusions 

A real-time moving ant estimator is proposed in this paper, which is implemented by 
regulating moving behavior of a set of ants with dynamic moving velocity. Numerical 
simulation results show that the proposed RMAE is capable of tracking not only the 
non-maneuvering target but also the maneuvering one. Meanwhile, the maximum 
execution time is compared among different techniques, and the comparison results 
indicate that the proposed RMAE could satisfy the real-time requirement.  
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Abstract. Facility layout planning plays an important role in the manufacturing 
process and seriously impacts a company’s profitability. A well-planned layout 
can significantly reduce the total material handling cost. The purpose of this 
paper is to develop a two-stage inter-cell layout optimization approach by using 
one of the popular meta-heuristics — the Ant Colony Optimization algorithm. At 
the first stage, the cells are formed based on the part-machine clustering results 
obtained through the ant system algorithm. In other words, we get the initial in-
ter-cell layout after this stage. The work at the second stage uses a hybrid ant 
system algorithm to improve the solution obtained at previous stage. Different 
performance measures are also employed in this paper to evaluate the results. 

Keywords: cellular manufacturing (CM), cell formation (CF), inter-cell layout 
(ICL), ant colony optimization (ACO), quadratic assignment problem (QAP), 
material handling cost. 

1   Introduction 

Cellular manufacturing (CM) has been recognized as an efficient and effective way to 
improve productivity in a factory. In recent years, there have been continuous research 
efforts to study different facets of CM systems. Among them, inter-cell layout (ICL) is 
one of the most frequently used representations of the CM system design. The ICL 
problem, in the context of CM, is the allocation of the manufacturing cells to areas 
within a shop-floor.  

Currently, there are many methodologies available in the literature dealing with the 
ICL problem. Among them, ant colony optimization (ACO) is a relatively recently 
developed method for the solution of combinatorial optimization problems. According 
to Dorigo [1], ACO takes inspirations from the foraging behavior of some real ant 
species. These ants deposit a substance called pheromone on the ground in order to 
mark some favorable path that could be followed by other members of the colony. Up 
to date, there are a series of successful ACO variants that exist such as ant system (AS) 
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[2], Ant-Q [3], MAX-MIN ant system (MMAS) [4], and ant colony system (ACS) [5]. 
In this paper, two different ACO algorithms are investigated and employed for de-
signing and optimizing the ICL. 

The structure of this paper is as follows: Section 2 elaborates two-stage ICL design 
for CM. First we use AS algorithm to do the cell formation (CF) task which will gen-
erate the initial ICL; and then, a hybrid AS algorithm is used to address the inter-cell 
re-layout (ICRL) issues; Section 3 summaries the conclusions of this paper. 

2   Description of the Proposed Two-Stage Approach 

2.1   Stage I: Generating Initial Inter-Cell Layout through Cell Formation 

Cellular manufacturing (CM) is the application of group technology to manufacturing. 
The basic idea behind group technology is to group parts which have similar processing 
requirements or similar design features into part-families; while the corresponding 
machines are assigned to machine-groups. This process is often referred to as 
part-machine clustering or cell formation (CF) in the literature. In this paper, we 
translate part-machine incidence matrix (PMIM) to distance matrix so that CF problem 
can be modeled as traveling salesman problem (TSP) and as a result AS is the first 
option at this stage.  

2.1.1   Ant System (AS) Algorithm and Its Application to Cell Formation 
Ant system (AS) is the first ACO algorithm and it was initially proposed in the early 
1990s [2]. Its main success was in solving the classical TSP. In general, the application 
of AS to CF problem can be done through the following steps: 

Step 1: Input the PMIM. For example we have a 15×15 input matrix (see Fig. 1). 

 

Fig. 1. PMIM (size 15×15) 

Step 2: Generating the distance matrix between all the parts and machines included in 
the PMIM by using dissimilarity coefficient [6]. 

Step 3: Input the machine or part distance matrix to the AS module and start looking 
for the shortest Hamiltonian path for machines or parts.  

In this step, during the construction of a solution, ants select the following machine 
or part to be visited through a stochastic mechanism. The transition probability of going 
from machine i to machine j (or part i to part j) for the k-th ant is calculated as follows: 
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versus the heuristic information, which is given by ijη . 

In AS algorithm, the pheromone values are updated when all the m ants have built 
solutions after their iteration. The pheromone intensity associated with the edge joining 
machines i and j (or parts i and j) is updated as follows: 
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Step 4: Repeat Step 3 for obtaining the best machine or part sequence which can 
minimize the sum of dissimilarities between machines or parts. 

Step 5: Rearrange the initial matrix according to the best machine and part sequence. In 
our example, the final clustering result is illustrated below. 

 P07 P11 P05 P08 P09 P13 P01 P02 P12 P10 P03 P14 P04 P06 P15 
M08 1               
M10  1 1 1 1  1 1  1     1 
M09  1  1            

M11   1  1 1          
M03 1    1  1         

M13        1        
M15 1    1  1 1        

M12          1      
M04  1       1 1 1 1    
M02         1  1     

M14             1   
M05  1          1 1   

M06              1  
M07  1             1 
M01              1 1 

{
{
{

{
{
{

 

Fig. 2. Final Clustering Result 
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2.1.2   Cell Formation Performance Measure 
Although grouping efficiency [7] is the most widely used CF performance measure, it 
has been reported with a lower discriminating power. Even an extremely bad solution 
with large number of exceptional elements has a grouping efficiency value as high as 
77% [8]. In order to overcome the drawbacks of grouping efficiency, in this paper we 
adopt another performance measure called group efficacy which was proposed by 
Kumar and Chandrasekharan [9]. It can be formulated as the following: 

Group Efficacy (1- ) (1+ )ϕ φ=  . (3)

whereϕ is the ratio of the number of exceptional elements to the total number of ele-

ments;φ is the ratio of the number of zeros in the region of diagonal blocks to the total 

number of elements. In our case, the value of group efficacy is about 88.29%. 

2.2   Stage II: Inter-Cell Re-Layout (ICRL) Design  

The ICRL design problem with equal size of cells can be formulated as a quadratic 
assignment problem (QAP). The QAP, introduced by Koopmans and Beckman [10] in 
1957, is always considered as one of the hardest optimization problems. Normally, the 
QAP can be described as follows: given m×m matrices A = [aij] and B = [bij], find a 
permutation *π minimizing 
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1 1

min  ( )=
i j

m m

ij
m
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f a bπ ππ
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∈∏ = =
∑∑ i  . (4)

where ( )m∏ is the set of permutation of m elements. Shani and Gozelez [11] proved 

that the QAP problem is NP-hard. Even instances of relatively small size of n ≥ 25 
cannot be solved exactly [12].   

Normally, the QAP-based ICRL problem can be formulated as follows: 
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The Equation (5) is used to minimize the total material handling cost among cells; 
while constraint set (6) ensures that one location is assigned to each cell; and constraint 
set (7) ensures that exactly one cell is assigned to each location. 

2.2.1   Hybrid Ant System and Its Application to Inter-Cell Re-layout Problem 
Hybrid Ant System for the QAP (HAS-QAP for short) algorithm was developed by 
Gambardella et al. [13]. HAS-QAP algorithm departs radically from the previously 
described AS algorithm in Section 2.1.1. Basically, there are two main novelties of 
HAS-QAP algorithm: (i) Ants modify solutions as opposed to building them; (ii) 
Pheromone trails are used to guide the modifications of solutions, and not as an aid to 
direct their construction.  

Since we have already got an initial ICL solution after Stage I, so at this stage, 
HAS-QAP algorithm is the most appropriate approach to improve this solution. In 
other words, the main characteristics of HAS-QAP make it suitable for solving the 
QAP-based ICRL problem. Overall, the implementation of HAS-QAP algorithm to 
ICRL design can be divided into the following steps: 

Step 1: Solution Initialization. At this step, m (m = total number of ants) random initial 
permutations 1

(1) (1),..., mπ π will be generated and each one of these permutations will be 

associated to an ant.  
In this paper ten ants (m = 10) are chosen and the initial ICL is shown in Fig. 3, 

where cells 1, 2, 3, 4, 5, and 6 are assigned to locations A, B, C, D, E, and F respec-
tively. So for any k-th ant, we have the following: (1)

kπ =(Cell 1, Cell 2, Cell 3, Cell 4, 

Cell 5, and Cell 6).  

 

Fig. 3. Initial ICL for Six Cells 
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According to the obtained CF result (see Fig. 2), we can get a total material flow data 
matrix which is shown in Fig. 4. Meanwhile the distances between the locations are 
also given in Fig. 5. Based on these, the total material handling cost (distance-based) 
for the initial ICL can be calculated. By using equation (5), the initial total material 
handling cost for the initial ICL is TCi =44.  

 

Fig. 4. Material Flow Data Matrix 

 

Fig. 5. Distance Matrix 

Step 2: Improving 1
(1) (1),..., mπ π with the Local Search Procedure. Let *π be the best 

solution. The purpose of this step is to improve the initial solution so that the best 
solution *π can be used in the next step for the pheromone trail matrix initialization. 

In this research, we use pair-wise exchange heuristics to improve the initial ICL plan 
for each ant and let *π represent the best solution. This step needs to be repeated for 
6×6=36 iterations in our case. 

Step 3: Pheromone Trail Matrix Initialization. The pheromone trail matrix T=[ ijτ ] is 

initialized through the following equation: 

*
0 =1 ( )Q TCτ πi  . (9)

where Q is the pheromone initialization parameter, and *( )TC π is the current best total 

material handling cost found. Note no information is contained in the pheromone trail 
matrix, so all pheromone trails ijτ are set to the same value 0τ . 

Step 4: Starting the Main Loop. Define Imax, which represents the total number of 
iterations performed and initialize all the other parameters (i.e., Q, R, S, m, q, 1α and 

2α ). See [13] for more details about the parameters’ setting. After Imax iterations have 

been performed, the stopping criterion will terminate the algorithm. 
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Step 5: Pheromone Trail Based Modification. In this step, a new solution ˆ kπ is gener-
ated for each ant by considering R pheromone trail swaps. Swaps are performed as 
follows: first, a location index r is chosen randomly between 1 to n; next, the second 
location index s ( s r≠ ) is chosen between 1 to n as well; and then the 

elements k
rπ and k

sπ are swapped in each ant’s current solution kπ . The second index is 

selected using one of the two policies presented below:  

Policy I: Max +

Policy II: + +

s r

s r j r

k k
r s

k k k k
r s r j

j r

π π

π π π π

τ τ

τ τ τ τ
≠
∑  . 

(10)

Note for the first iteration, elements k
rπ and k

sπ are randomly selected, since all the 

entries in the pheromone trail matrix are the same. 

Step 6: Improving the Current Solution using Local Search. The solution ˆ kπ generated 
in Step 5 is improved using the pair-wise heuristics. The improved solution is denoted 
as kπ . This step will be repeated for 6×6=36 iterations in this instance. 

Step 7: Performing Intensification Mechanism. This step is used to explore the 
neighborhood of good solutions more thoroughly. If the best solution has been im-
proved, the intensification mechanism will be activated and the ant will compare the 
solutions between kπ and kπ before it starts the next iteration; otherwise the intensifi-
cation strategy will not be activated and the ant starts the next iteration with the solu-
tion kπ . The intensification strategy remains active while at least one ant improves its 
solution during an iteration.  

Step 8: Updating the Pheromone Trail Matrix. To speed-up the convergence, the 
pheromone trail matrix is updated by considering only the best solution found so far. 
First, all the pheromone trails are evaporated by setting: 

1(1 )ij ijτ α τ= − i  . (11)

where1 , i j n≤ ≤ and 10< 1α < . Here 1α is a parameter that controls the evaporation of 

pheromone trails. A value of 1α close to 0 implies that the pheromone trails remain 

active for a long time; while a value close to 1 implies a high degree of evaporation and 
a shorter memory of the system. 

Then, the pheromone trails contained in the best solution *π are reinforced by setting: 

* *

*
2 ( )

i ii i
TCπ πτ τ α π= +  . (12)

where 2α is a parameter that controls the reinforcement of the pheromone trails. 

Step 9: Performing Diversification Mechanism. The diversification mechanism is 
activated after S consecutive iterations with no improvement to the best solution ob-
tained. Once this mechanism is activated, all the information such as pheromone trail 
matrix and solutions are deleted and the algorithm is started from the beginning, in 
which only the best solution obtained from an ant is used in the next iteration.  
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After the execution of the algorithm, we get an optimized layout solution where cells 
2, 3, 5, 6, 1, and 4 have been re-assigned to locations A, B, C, D, E, and F respectively 
(see Fig. 6). Under this new ICL plan, the total material handling cost TC f is further 

reduced to 18. 

 

Fig. 6. Optimized ICL for Six Cells 

2.2.2   ICRL Performance Measure  
Often, there are some requirements or constraints that have to be satisfied during the 
process of layout design, and the layouts generated need to be evaluated by a prese-
lected function which indicates their efficiency. In a layout design, material handling 
cost is one of the most commonly used criterion to determine the efficiency and effec-
tiveness of ICRL. According to Shang [14], the material handling cost can comprise 
between 30 and 70 percent of the total manufacturing cost. So reducing the total ma-
terial handling cost is the main objective of the ICRL design. 

In order to provide some means of quantifying the efficiency of the final layout, the 
following criterion [15] is used in this paper: 

TC
GT Efficiency= 1- 100%

TC
f

i

⎛ ⎞
⎜ ⎟
⎝ ⎠

i  . (13)

where TC f is the final inter-cell material handling cost and TCi is the initial inter-cell 

material handling cost.  
This measure reflects the percentage of savings in material handling that resulted 

from the cell re-layout. The higher the value of this criterion, the better the solution is. 
For the instance in this paper, we have TC f =18 and TCi =44, so the final GT efficiency 

is 59.09%. 

3   Conclusions 

One of the major contributions of this work is to use two-stage approach for designing 
and optimizing ICL design. At Stage I, the PMIM is clustered and rearranged. Cells are 
formed and the initial ICL is generated after this stage. And then, at Stage II, the ICL is 
refined (i.e., ICRL design). Once we get the final optimized layout plan at the end of 
this stage, the total material handling cost can be further reduced.  



 Two-Stage Inter-Cell Layout Design for CM by Using ACO Algorithms 289 

 

Another contribution of this paper is the HAS-QAP algorithm has been employed to 
improve the performance of AS algorithm in layout design. First, by interpreting the 
part-machine clustering problem as a TSP, we find the shortest distance between ma-
chines and parts through AS algorithm. Although a layout is available now, the per-
mutation of cells does not give a guarantee of the optimal total material handling cost, 
so we then use the HAS-QAP algorithm to modify this initial solution and to get an 
improved solution.  

At last, group efficacy and GT efficiency are exploited as the performance measures 
in this research. Group efficacy evaluates the goodness of the CF result; and the ef-
fectiveness of the ICRL plan is measured by GT efficiency. According to the evaluation 
values, both results are good and meet our design purpose. 
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Abstract. A new boundary contour extraction algorithm based on curve evolu-
tion model and ant colony algorithm is proposed in this paper. Firstly, ant col-
ony algorithm is used to find the optima of snake points for rapidly converging 
near image edge. Then the interpolation algorithm is applied to gaining the ob-
ject’s rough contour that is used as the initial zero level set. The accurate con-
tour can be obtained by the curve evolution method. Experimental results are 
given to demonstrate the feasibility of the proposed method in extracting con-
tour from the blurred edge and high-noise images. 

Keywords: Boundary extraction, Ant colony algorithm, Curve evolution, 
Mean-shift. 

1   Introduction 

Curve evolution is more accurate image processing method, widely used in medical 
image processing, computer vision and other fields. A great deal of research is made 
on curve evolution model and it’s numerical, a number of representative methods are 
proposed. For example, Kass and Witkin, based least energy, give a parameters curve 
method (snake) [1]; Caselles proposed deformation geometry (geometric active con-
tour) and geodesic (Geodesic Active Contours) curve evolution model [2] [3]; Osher 
and Sethian raised the level of set theory [4]. Mumford-Shah variation model [5] 
(referred to as the model for MS) is from 1989 proposed by Mumford and Shah, and 
the model has adaptive capacity for evolution curve topology analysis. The model, 
adopting the variations method, turns the problem of image contour extraction into a 
functional extreme value problem. Its energy function included in the border region 
and outline description of the image. As the MS is a model of modern mathematics in 
a freedom and not continuous issues, the function easily fall into the local minimum, 
which difficult to get numerical value in practical applications. CV model is a simpli-
fied model of MS give by Chan and Vese [6], based on the method in literature [5]. 
The energy evolution function does not rely on images gradient, but on the region. 
This method is suitable for gradient meaningful or meaningless contour extraction, 
also for the fuzzy or not continuous edge. The literature [6] define the energy function 
based on the level set, solving the evolution of partial differential equations (PDE) by 
Euler method, and get  the image contour by repeated iterative. In order to meet the 
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stability and convergence requirements, whether adopt explicit or implicit iterative 
method, the step size must be small enough. After each updated, it need to re-initialize 
the function (SDF) in order to maintain the stability of the calculation. Because of 
large calculation and the slower evolution speed, there are many restrictions in their 
actual application. Literature [7] improves the partial differential equations’ solve of 
Euler-Lagrange, and constructs a rapid SDF structure. 

In literature [8], a curve and layered evolution model and multi-level set equations 
are given. Jingfeng Han [9] gives a border matching algorithm combining contour 
extraction and registration. Using MS model and its automatic coupling function to 
express border characteristics, curve evolution is divided into two parts, linear and 
nonlinear, and by computer by the finite element method and the gradient descent 
iterative respectively. Using high-frequency filter component as the coupling function 
of curves evolution, Xaiojun Du improved the MS model [10], and speed up the solu-
tion of evolution function by single-variable PDE and high-frequency deconvolution 
filtering. 

Ant algorithms have generated significant research interest within the search/ op-
timisation community in recent years. Ant algorithm has been successfully used to 
solve many NT’ problems, such as TSP, assignment problem, job-shop scheduling 
and graph coloring. The algorithm has inherent parallelism, and we can validate its 
scalability. A colony of ants begins with no solutions. Each ant constructs a solution 
by making decisions stochastically, using existing problem constraints and heuristics 
combined with experience (which is analogous to a substance called pheromone).  
The colony then reinforces decisions in the construction process according to their 
successes by adding pheromone, which also decays to mitigate against poorer deci-
sions[11][12]. 

In this paper, MR images’ boundary is extracted by ant colony algorithm and curve 
evolution method. It can lower the jitter of evolution curve caused by fuzzy edge and 
uneven gray. 

2   Ant Colony Algorithm 

Ant algorithm is a method to solve combinatorial optimization problems by using 
principles of communicative behavior occurring in ant colonies. Ants can communi-
cate information about the paths they found to food sources by marking these paths 
with pheromone. The pheromone trails can lead other ants to the food sources. Ant 
algorithm is an evolutionary approach where several generations of artificial ants 
search for good solutions. Every ant of a generation builds up a solution step by step 
thereby going through several decisions until a solution is found. Ants that found a 
good solution mark their paths through the decision space by putting some amount of 
pheromone on the edges of the path. The following ants are attracted by the phero-
mone so that they will search in the solution space near good solutions. 

Let m  be the number of ants; ijη  be the visibility of edge ( ji, ); ijτ  be trail de-

gree of edge ( ji, ); k
ijτΔ  be pheromone of per length on edge ( ji, ) leaved by ant 

k ; k
ijP  be transition probability of ant k ; α  be relative importance of trail 
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( 0≥α ); β  be relative importance of visibility( 0≥β ); ρ  be the permanence of 

trail( 10 <≤ ρ ), and ρ−1  be the attenuation degree of trail. 

State transition rule the probability of selecting j  as next point to visit, taking sto-

chastic proportion, when ant k  at point i . The probability can be calculated by the 
formula as follows. 
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(1)

where q  is a random number( 10 << q ), and 0q  is a given valve value, kA  is the 

reachable point set of ant k  at point i . 
Trail updating may be done after each successive move of the ant (termed local 

updating) or after all ants have completed one cycle (global updating). In local updat-
ing, pheromone values are updated on edge ( ji, ) every time an ant moves from point 

i  to point j . The new quantity of pheromone deposited on an edge is inversely  

proportional to the edge length; thus, over time, shorter edges will receive more 
pheromone, which leads to a positive feedback loop of increased use and further rein-
forcement. During global updating, only one ant is allowed to update the trail values. 
This elitist strategy requires that only the ant with the iteration-best tour be allowed to 
deposit additional pheromone. Similar to local updating, the new quantity of phero-
mone deposited is inversely proportional to a certain value; this time, the value in 
question is tour length, not edge length. Thus, edges which constitute shorter tours are 
reinforced more which leads to another positive feedback loop of more use and 
greater reinforcement. Trail updating rule can be expressed as follows. 

ijijij τατατ Δ+−= )1(  (2)

3   Curve Evolution 

In [6] T.F Chan and L.A. Vese proposed an active contour model using an energy 
minimization technique. Assume that the image 0u is formed by two regions of ap-

proximately piecewise constant intensities iu0  and ou0 , and the object to be detected is 

represented by the region with value iu0 . If the boundary is given by 0c ,then 
iuu 00 ≈ inside 0c  and ouu 00 ≈  outside 0c . 
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The energy F defined by: 

∫ −+∫ −=+= )(
2

20)(
2

1021 )()( CoutsideCinside dxcudxcuCFCFF  (3)

where c  is any variable curve, 1c and 2c are constants depending on c .Therefore, The 

energy F is minimized when 0cc = : 
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Using the standard definition for the Heaviside function H . 
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Minimizing the energy function with respect to 1C and 2C  gives 
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In the classical explicit snake model [1] the parametric curve is embedded into an 
energy minimization framework. However, the parametrization of the curve causes 
difficulties with respect to topological changes and numerical implementations. Thus, 
to prevent these difficulties, implicit active contour models have been developed. The 
basic ides is to represent the initial curve implicitly within a higher dimensional func-
tion, and to evolve this function under a partial differential equation. 

Our model is the minimization of an energy based on segmentation. In our implicit 
scheme the energy minimization parameter is embedded into the diffusion equation. 
The evolving contour model is given by the following evolution equation: 

Fu
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In order to reduce smoothing at edges, the diffusivity g is chosen as a decreasing 

function of the edge detector uG ∗∇ σ . Here, uG ∗∇ σ is the gradient of a smoothed 

version of u  which is obtained by convolving u with a Gaussian of standard  
deviationσ . 

4   Boundary Extraction Model 

During boundary extraction, the traditional curve evolution model is easy to make a 
curve points converge on individual noise points, so noise has a significant influence 
to evolution model. In this paper, Ant colony algorithm based active contour model is 
used to quick search and optimize the control points, and it can make quickly con-
verge to the edge of the image. And then using interpolation algorithm, we get the 
rather rough outline of goals. In next step, taking the outline as the initial object con-
tour of zero level set curve. 

The mean-shift algorithm is a nonparametric statistical method for seeking the 
nearest mode of a point sample distribution. Mean shift is a simple iterative procedure 
that shifts each data point to the average of data points in its neighborhood. Given a 

set of data point ix , the mean shift vector in a simple one-dimensional case can be 

expressed as[13]: 
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where x  is an arbitrary point in the data space (it can even be one of the ix  points), 

h  is a positive value called the analysis bandwidth and ( )g u  is a special function 

with bounded support; ( )g u  is defined as the first derivative of another bounded-

support function. 

When ( )m x  is applied to the original point, x , it results in anew position, 1x ; 

this process can be repeated and an iterative procedure defined in this way: 

1 ( )l l lx m x x+ = +  (12)

Here is the process of boundary extraction method by ant colony algorithm based 
active contour model: 

(1) Given the initial position of ant swarm, 1 2, ,..., ix x x ; 

(2) Set every parameter of ant algorithms; 
(3) In general, guide function is taken as 1 / ijdη = . In our method, η  is defined 

as: 

1 1
| / / |

k k

ij i ji j

r

d h k h k
η

= =

=
+ −∑ ∑

. r  is clustering radius; 
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(4) k
ijP  According to equation (1), calculation the probability k

ijP  that integrated 

jx  into ix . If 0
k

ijP q≥ , jx  class will be integrated into ix  class;  

(5) Adjust the amount of permanence on the path; 

(6) Recalculate the initial position ix′ . 
1

1 N

i k
k

x x
N =

′ = ∑ kx class∈  of ix ; 

(7) When iterative finished, the algorithm is end, and the points of initial zero level 

set curve is ix′ ; 

(8) Using interpolation algorithm to get the object’s rough contour; 
(9) Using curve evolution method to get the accurate contour. 

5   Experiments 

All algorithms were coded in Microsoft Visual C++ version 6.0 and all experiments 
were run on a PC Pentium IV 1.8GHz with 256MB RAM running under Microsoft  

 

   

                                   (a)                                (b)                               (c) 

  

      (d)                                 (e) 

Fig. 1. (a) Original image (b) initial position (c) initial evolution curve (d) traditional curve 
evolution method  (e) Ours 
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Windows 2000. The parameters of ant colony algorithm are: 3, 1, 0.3α β ρ= = = . In 

order to validate the actual results, in this paper, we select brain MR image. MR im-
ages are well classified into grey matter, white matter, cerebrospinal fluid, scalpbone, 
and background. Here, we present numerical results using our model. Figure 1(a) is 
the original image. Figure 1(b) is the initial position of ant swarm. Figure 1(c) is the 
initial evolution curve. Figure 1(d) is extraction result by traditional curve evolution 
method; with the initial curve that interpolation by figure 1(b), which takes 50th itera-
tion. Figure 1(e) is used ours method, which takes 50th iteration. According to the 
results, our proposed model can be effectively extracted the border of brain tissue, 
outlining the objectives boundary for the fuzzy part and the gradual change. 

6   Conclusion 

According to the curve evolution theory and ant colony algorithm, a new boundary 
contour extraction algorithm is proposed. There are many problem in MR images, 
such as the border region fuzzy, gray uneven, difficult positing the border. Using ant 
colony algorithm, the initial evolution is get, and then the boundary is extraction by 
curve evolution. The approach automatically detect smooth boundaries, and change of 
topology. Experiments show that ours method can effectively lays out the fuzzy im-
age and discontinuous marginal. 
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Abstract. Ant Colony Optimization (ACO) is a heuristic bionic evolutive algo-
rithm. In ACO algorithm, every ant has simple function, works with simple 
principle, which suits the characteristic of Wireless Sensor Networks (WSNs) 
and the request of its routing design. An ACO based Energy-Balance Routing 
Algorithm(ABEBR) was presented to balance the energy consumption in 
WSNs. Furthermore, a new pheromone update operator was designed to inte-
grate energy consumption and hops into routing choice. This paper compares 
ABEBR with some classic routing algorithms (LEACH, DD and Flooding). 
Simulation results show that the presented algorithm can avoid energy working 
out too early on the less hops path, obviously balance the energy consumption 
and prolong the lifetime of WSNs. 

Keywords: Ant Colony Optimization, WSNs routing algorithm, Energy  
Balance, Pheromone. 

1   Introduction 

Due to the fast development of the microprocessor, sensor and transceiver, there is 
great applications foreground abort WSNs. IN WSNs, once the sensors were disposed 
to the area of sense, every sensor only depends on the cell to provide energy. The 
limit energy is the key issue influencing WSNs performance. So, how to use the limit 
energy of WSNs to maximize the life of WSNs becomes the all-important problem of 
routing design. 

In order to optimize of the routing quality and the energy consumption, it is 
need to achieve the tradeoff between route hops and the energy consumption. 
ZWang[1] proved that it is a NP-complete problem when there are up two more 
routing measurements in routing design. It is hard for traditional algorithm to 
solve NP-complete problem. The Ant Colony Optimization is a heuristic bionic 
evolutive algorithm, which has good positive feedback and parallel computing. 
So, it shows good performance on solving NP-complete problem. In this paper, 
we present an ACO based Energy-Balance Routing Algorithm (ABEBR), which 
optimizes the consumption of WSNs and prolongs the lifetime of nets obviously. 
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The simulation results show that this algorithm has better energy consumption 
radio and longer lifetime compared with some classic routing algorithms (such as 
DD, LEACH). 

This paper is organized as follows. In Section II, we introduce recent routing 
researches about ACO. In Section III, we briefly recall the relevant foundation of 
ACO. In Section IV, we present an ACO based Energy-Balance Routing Algo-
rithm(ABEBR)to balance the energy consumption in WSNs; And a new phero-
mone update operator is designed to integrate energy consumption and hops into 
routing choice. In Section V, we compare the presented method with other  
methods, such as LEACH, DD, Flooding by numerical examples. We conclude in 
Section VI. 

2   Related Work 

ACO routing algorithms are first designed for wired networks as in AntNet [4], 
ABC (Ant Based Control) [5]. The main concept of both AntNet and ABC is to 
deploy small ant packets to discover forwarding paths from source to destination. 
These algorithms exhibit a number of interesting properties such as working in a 
fully distributed way, being highly adaptive to network and traffic changes, and 
automatically taking care of data load spreading. But using periodic unicast ants to 
discover routers would incur a large delay and the adaptability to topology changes 
would be unacceptably slow. There are some ACO routing schemes for Mobile  
Ad-hoc Networks (MANETs) such as GPS/Ant-like routing algorithm for mobile 
ad-hoc networks [6], Ant-AODV [7], and ARA (Ant-Colony-Based Routing Algo-
rithm) [8]. However, none of these algorithms is satisfied for special characteristics 
of WSNs. 

3   Basic Principle of Ant Colony Optimization 

The Ant Colony Optimization was presented by M. Dorig during the early 1990s. It’s 
a heuristic bionic evolutive algorithm which simulates the behavior of the ants’ 
searching road in nature. This algorithm has been applied successfully with many 
combinatorial optimization problems. Compared with classic intelligent algorithms 
(such as GA, GP, ES), the ant colony optimization has such advantages: positive 
feedback which can induct good solution quickly; parallel computing that can prevent 
the early convergence; strong method of elicitation which can find suitable solution 
during the early stage of optimization. 

First of all, the main procedures problem solving by basic ant colony algorithm[2] 
is briefly described in the following. 

According to the characteristics of the problem to be solved, the solution space of 

the problem is transformed into a searching graph ( ),G V E= , where 

{ }1 2, ,..., mV v v v=  is the set of nodes in the graph G , and { }1 2, ,..., rE e e e=  is the set 

of oriented arcs among those nodes. A path, connecting an initiative node and a  
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terminal node through a series of interim nodes by oriented arcs, is denoted by ω  
which corresponds to a feasible solution candidate. A colony of n ants are denoted by 

{ }1 2, ,..., nA a a a= . In each searching period, an ant ka  chooses a path kω  in the graph 

G  randomly according to a predetermined path selection possibility. A searching 
period ends up in the algorithm when all the n  ants finish the path seeking respec-

tively. The path selection possibility ( ),i jp t  for a searching from iv  to jv  the search-

ing period t  is defined by 

[ ( )] [ ( )]
,

[ ( )] [ ( )]( )

0,
k

ij ij
k

k
is is

ij
s tabu

k

t t
j tabu

t tp t

j tabu

α β

α β

τ η
τ η

∉

⎧
∉⎪⎪= ⎨

⎪
∈⎪⎩

∑  . (1)

where ktabu  is the partial path that has been searched by ants in the period t ; ( ),i j tτ  

is the density of pheromone accumulated on the path segment ( ),i jv v  by ants in the 

period t ; ( ),i j tη  is the information of searching for that path segment, and ( ),i j tη  is 

defined by ( ), ,1/i j i jt dη = , ,i jd  is the distance of the arc from iv  to jv ; and , 0α β >  

are called the pheromone index and cost index, respectively. The pheromone ( ),i j tτ  

will be update at the end of each searching period in the way of 

( ) (1 ) ( ) ( )ij ij ijt n t tτ ρ τ ρ τ+ = − + Δ  . (2)

Where ( )0,1ρ ∈  is called the evaporation factor; ,i jτΔ  is a pheromone increment as 

a node increasing function of objective values, e.g. , 

1

( ) ( )
m

k
ij ij

k

t tτ τ
=

Δ = Δ∑  . (3)

In the model of Ant-Cycle, ( )k
ij tτΔ is defined by 

( ),
( )

0

k i jk
kij

Q
if a chooses v v

Lt

otherwise

τ
⎧
⎪Δ = ⎨
⎪⎩

 . (4)

where Q  is the density of pheromone, and Q  influences the computing time in some 

degree; kL  is the accumulated length by ant ka  in the period t . 
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4   ACO Based Energy-Balance Routing Algorithm 

When designing the routing algorithm in wired networks, we only need to search the 
least hops path in networks. However, in WSNs, where the energy is limit, there is 
special request on designing routing algorithm. Low energy consumption and long 
lifetime are the most basic conditions for good performance of WSNs. Therefore, it is 
very necessary to put the factor of energy consumption into routing design. We design 
the ACO based Energy-Balance Routing Algorithm, through which, the energy con-
sumption and hops are integrated into routing choice. Through this algorithm, the 
energy consumption in WSNs is balanced distinctly. 

4.1   WSNs Model for Algorithm 

Our algorithm is suitable to the model as follows: 

(1) The bi-direction link is used in networks. That is to say, if sensor A can com-
municate with sensor B, then sensor B can communicate with sensor A. 

(2) The initial energy in sensors is equal. During the early period of networks life, 
there is enough energy in sensor to communicate with border sensors. 

(3) The sensor has all-direction antenna. 

4.2    ACO Based Energy-Balance Routing Algorithm Description 

In ABEBR, two kinds of ant are inducted to optimize the routing, that is forward ant 
and backward ant. The forward ant is launched by the source in order to find multiple 
paths to the sink. And the backward ant returns to the source to set up the paths. Ac-
cording to the common practice in ACO algorithms, the paths are set up in the form of 
pheromone tables indicating their respective quality. 

At the route setup phase, source node doesn’t have routing information for sink 
available, it broadcasts a forward ant. If the forward ant arrives to the sink, a path 
between source and sink is set up. The routing information of source is represented 
in its pheromone table. The neighbors of source, which are on the path from source 
to sink, are recorded in source node’s pheromone table. The entry ( , )k i jτ  of 
pheromone table is the pheromone value indicating the estimated goodness of for-
ward ant k going from i over neighbor j to reach sink. Through this strategy, source 
node obtains multiple paths to the sink. Then the source nodes launch forward ants 
respectively at each iteration. The forward ant chooses node j in pheromone table Ni 
as next hop stochastically with the transfer probability ( , )kP i j  which is described 
as follows: 

[ ( , )] [ ( )]
,
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In this formula, α is pheromone heuristic factor which is used to figure the weight of 
pheromone; β  is expectation heuristic factor that is used to figure the weight  

of heuristic information; ( )jη  is heuristic information which can be evaluated by 

formula(6). 

1
( )

( )residual

j
c e j

η =
−

 

. (6)

( )residuale j  is the residual energy of node j; c is the initial energy of nodes which is a 

constant. tabuk is a list of forward ant k which records the node ID traversed by for-
ward ant.  

After one iteration, ant will update the pheromone on formed path. Every ant 
records the average energy level of the sensor (eavgk) and the minimum energy 
level (emink) on its path. eavgk and emink are figured out by sensors on path and 
record in ant at last. At the end of searching path, ant arrives at the aim  
node (sink), and then the sink figures out the pheromone of every path which is 
used to update through the data in ant. The more details about pheromone update 
as follows: 

( , ) (1 ) ( , )k k ki j i jτ ρ τ τ= − + Δ
 

. (7)

kτΔ in formula (7) is the key to pheromone update in our algorithm. In order to bal-

ance the energy consumption, the update of kτΔ is figured considering both the hops 

of path and energy level. A few hops path with low energy level may lose its function 
quickly, consequently reducing the WSNs performance. In the same, a high energy 
level path with many hops may increase the energy consumption and shorten the 
lifetime of WSNs. In our model, eavgk and emink are used to compare the energy 
level among paths and hopk describes the path’s length. We bring these three factors 
into the evaluation of kτΔ . The details are as follows: 

min
k

k avgk k

Q
hop e e

ϕ γ μτ
⎛ ⎞

Δ = + +⎜ ⎟⎜ ⎟
⎝ ⎠  

. (8)

ϕ , γ , μ are weight coefficients which are set according to the importance of hops and 

energy level in WSNs. 

4.3    Algorithm Flow Chart 

The algorithm is started to optimize when sensors are disposed into monitor area and 
self-organize to be networks. Considering the characteristic of dynamic about WSNs, 
the algorithm should be started at regular intervals to adapt to the topology change of 
WSNs. After Nmax iterations, optimized paths between source node and sink are set 
up. The flow chart is described in Fig. 1.: 
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Fig. 1. Flow Chart 

5   Simulations and Analysis 

To test performance of algorithm, this paper simulates and compares ABEBR with 
LEACH, DD, Flooding based on NS2. On the assumption that, m sensor nodes are 
randomly laid in the monitor area of the simulation model and the value of m is 
among 50 to 250. The initialization energy of every sensor node is the same, but the 
initialization energy of sink node is higher than normal nodes. The simulation com-
pares ABEBR with LEACH, DD, Flooding according to two energy efficiency vari-
ables: energy consumed rate and lifetime of network. The energy consumed rate of 
network means that the average consumed energy of whole network when sink node 
receives a data package. It can well estimate the influence to consumed energy of 
whole network by different algorithm. This paper compares the energy consumed rate 
of 4 algorithms in different network scales, the details are shown in Fig. 2. 

As shown in Fig.2, the energy consumed rate is higher as the scale of network is 
bigger. The energy consumed rate of Flooding is distinctly higher than others, be-
cause there are a lot of broadcast transmissions. The line of LEACH is flat, that is the 
result of cluster. The ABEBR algorithm can find optimization fast. It gives the opti-
mal path from every node to sink in a short time. So it reduces the energy consumed 
rate than other algorithms.  
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Fig. 2. Energy Consumed Rate in Different Network Scales 

Fig. 3. shows the influence to lifetime of whole network by different algorithm in 
different scales. This paper defines the time that sink can’t receive data package from 
source nodes as lifetime of network. When sink can’t receive any data package, the 
network can’t work. That is to say, the network can’t transmit any data. The trend of 
natural life is shown in Figure 3. The trend of ABEBR is flatter. So the algorithm 
ABEBR can be applied in different scale networks. 

 

Fig. 3. Lifetime in Different Network Scales 
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6   Conclusion 

In this paper, we present a new WSNs routing algorithm (ABEBR) which is based on 
modified ant colony optimization. In this algorithm, a new pheromone update  
operator is designed, through which the energy state of routings are considered during 
routing choosing. As the simulations results shown, the ABEBR algorithm has good 
performance on energy balance and prolongs the lifetime distinctly. So, the ABEBR 
provides a good method for balancing energy consumption during routing choosing, 
which can keep the connectivity of WSNs considerably. 
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Abstract. Swarm Intelligence (SI) is a relatively new technology that takes its 
inspiration from the behavior of social insects and flocking animals. In this pa-
per, we focus on two main SI algorithms: Ant Colony Optimization (ACO) and 
Particle Swarm Optimization (PSO).  An extension of ACO algorithm and a 
PSO algorithm has been implemented to solve the portfolio optimization prob-
lem, which is a continuous multi-objective optimization problem.. The portfolio 
optimization model considered in this paper is based on the classical Markowitz 
mean-variance theory. The results show ACO performs better than PSO in the 
case of small-scale and large-scale portfolio, but in the case of medium-scale 
portfolio, PSO performs a better than ACO technique. 

Keywords: Swarm Intelligence (SI), Ant Colony Optimization (ACO), Particle 
Swarm Optimization (PSO), Portfolio Optimization (PO), Sharpe Ratio (SR). 

1   Introduction 

Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are two 
major techniques within Swarm Intelligence (SI) [1, 2]. There are much studies on 
ACO and PSO in the literatures, but none of them deals with comparison of ACO and 
PSO in their performance of portfolio optimization. This paper presents an empirical 
study to compare the performance of both algorithms to the portfolio optimization. 

Portfolio Optimization (PO) is one of the most studied topics in finance field. The 
major problem in PO is concerned with managing the portfolio of assets that minimizes 
the risk objectives subjected to the constraint for guaranteeing a given level of returns 
[3]. In this paper, we deal with the so-called Mean-Variance portfolio selection, which is 
formulated in the similar way done by Markowitz [4]. His theory has revolutionized the 
common understanding about portfolio of assets, and has gained widespread acceptance 
as a practical tool for portfolio optimization. But in some cases, researchers face other 
problems, such as its size, real-world requirements [5], very limited computation time, 
and limited precision in estimating instance parameters, which will make analytical 
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methods not particularly suitable for tackling large instances of the constrained Mean-
Variance Model. Therefore researchers and practitioners have to resort to other  
enhancements such as SI optimization techniques. In the last decade or so, there is a 
growing trend to apply swarm intelligence to portfolio optimization. There are some 
reports of solving the portfolio optimization problem using swarm intelligence optimi-
zation techniques. Ahmed and Sajjad [6] have compared AIS with PSO for constrained 
portfolio optimization. Kendall and Su [7] compared PSO with Excel Solver. Their 
results showed that PSO performed better in constrained portfolio optimization. The 
results of this study are compared between ACO and PSO.  

We arrange the rest part of the paper as the following, in section 2, a general prin-
ciple of portfolio optimization problems are described. An extension of ACO algo-
rithm and a PSO algorithm are presented in sections 3. The results and discussions are 
mentioned in section 4. The conclusion is drawn in Section 5.  

2   The Portfolio Optimization Problem 

Portfolio management is a trade-off between the return and risk of an investment. We 
want to maximize the return while minimizing the risk. We will use the Mean-
Variance portfolio selection model [4]. The Mean-Variance model is described as: 
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where N is the number of different assets, ijσ  is the covariance between returns of 
assets i and j, iw  is the weight of each stock in the portfolio, ir  is the mean return of 
stock i and *R  is the desired mean return of the portfolio. We also use the second 
method to model portfolio optimization problem as the following: 

2.1   Efficient Frontier 

We can find the different objective function values by varying desired mean return *R , 
so a new named risk aversion parameter ]1,0[∈λ  has been introduced, the sensitivity 
of the investor to the risk increase as λ  increasing from zero to unity. With the λ , the 
model can be described as: 
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.,,1  10 Niwi =≤≤  (7)

In the model included parameter λ , we can draw a continuous curve that is called an 
efficient frontier according the Markowitz theory[4], the curve composed of mean 
return and variance according different λ , and every point on an efficient frontier 
curve indicates an optimum. 

2.2   Sharpe Ratio Model 

Instead of focusing on the mean variance efficient frontier, we seek to optimize the 
portfolio Sharpe Ratio ( SR ) [8]. The Sharpe ratio is quite simple and it is a risk-
adjusted measure of return that is often used to evaluate the performance of a portfo-
lio. It is described as the following equation: 

)( pStdDev

RR
SR fp −

=
 

(8)

Where p is the portfolio, pR  is the mean return of the portfolio p, fR  is the test avail-
able rate of return of a risk-free security. StdDev(p) is the standard deviation of pR . 

Adjusting the portfolio weights iw , we can maximize the portfolio SR in effect bal-

ancing the trade-off between maximizing the expected return and at the same time 
minimizing the risk. 

3   Swarm Intelligence for Portfolio Optimization 

Swarm Intelligence is the emergent collective intelligence of groups of simple agents 
acting almost independently. Algorithms following this paradigm have many desir-
able properties: flexibility, decentralized control, robustness and fault tolerance. The 
list of SI includes ant colony optimization (ACO) and particle swarm optimization 
(PSO). The optimization algorithms have been used in several financial applications 
ranging from the prediction of stock markets, foreign exchange rates, and risk man-
agement.[9] This paper will study the comparison of the two SI optimization algo-
rithms, namely ACO and PSO, for portfolio optimization. Both concepts are briefly 
described in the following subsections. 

3.1   ACO 

The ACO algorithm is based on the foraging behavior of real ants. The idea was ex-
ploited for the first time by Dorigo[1]. The ACO algorithm starts with setting up some 
parameters and initializing the pheromone trails. Then follows the main body of the 
algorithm, which consists of two important steps: solution construction and phero-
mone update. This part of the algorithm is repeated until some termination condition 
is met. Solutions are built incrementally based on the pheromone and possibly based 
on some knowledge of the problem. In each step of the solution construction the next 
component j from the set of all components that are still possible, N, with the follow-
ing probability when we are in component i: 
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where τ  is the pheromone, η  is problem specific information and α and β  are pa-

rameters of the algorithm. α and β  are generally chosen α =1 and β  between 2 and 

5. the pheromone update depends on the specific ACO algorithm you would choose 
but in general the existing pheromone is decreased and then some extra pheromone is 
added based on the solutions constructed in that iteration. So it looks like  

ijijij ττρτ Δ+−= )1(  (10)

where 
ijτΔ  is the pheromone added if the path ij is part of a solution used for the 

update. The standard ACO algorithm uses each constructed solution and the amount 
of pheromone dropped on the solutions components is higher for good solutions. 

Unfortunately, we can’t use the normal ACO algorithm for the portfolio selection 
problem since it only works for discrete problems. We will follow the extended ACO 
algorithm as it was described by Socha[10]. The main problem in the original ACO 
algorithm is its continuous nature. We can’t use a table to store the pheromone, since 
we would need an infinite amount of values inside the table. These problems are both 
in the pheromone update and in the construction of solutions. Instead of the phero-
mone table we will keep the solution in a list. Each solution will have some phero-
mone value associated with it, so the pheromone update stays the some. The solutions 
will still be build incrementally but there are some new part to assign a value to each 
component of a solution. The idea of the algorithm in general is still the same, as you 
can see in the reference[10].  

3.2   PSO 

Particle Swarm Optimization (PSO) [2] is a population swarm intelligence optimiza-
tion technique inspired by the natural behavior of bird flocking ad fish schooling. The 
algorithm is initialized with a population of potential solutions, called particles, which 
“fly” through the search space by following the current optimum particles. All parti-
cles have fitness values which are evaluated by the fitness function to be optimized, 
and have velocities which directed the flying of the particles. Each particle keeps 
track of its coordinates in the problem space which are associated with the best solu-
tion (fitness) it has achieved so far. In this paper, we set the Sharpe Ratio (equation 8) 
as the fitness function. This value is called pbest. Another “best” value that is tacked 
by the particle swarm optimizer is the best value, obtained so far by any particle in the 
neighbors of the particle. This location is called lbest when a particle takes all the 
population as its topological neighbors, the best value is a global best and is called 
gbest. At each time stamp, each particle updates its velocity and position with the 
following equations. 

)1( +tvi
= )(tvw i

+ )]()([11 txtprc ii − + )]()([22 txtprc ig −  (12)

where t is the iteration sequence of the particle i, 1c  and 2c  are positive constant 

parameters called acceleration coefficients which are responsible for controlling the 
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maximum step size, 1r  and 2r  are random numbers between (0, 1), w is a constant. 

and  )1( +tvi  is particle i’s velocity at iteration t + 1. )(tvi  is particle i’s velocity at 

iteration t. )(txi  is particle i’s position at iteration t. )(tpi  is the historical individual 

best position of the swarm. Finally, the new position of particle i, )1( +txi , is calcu-

lated as shown in (13). The detail algorithm is as below algorithm1. 

)1( +txi = )(txi + )1( +tvi  (13)

 

Algorithm 1. The PSO algorithm 

4   Experiment and Discussion  

For the experiments, real data from companies listed on the Shanghai stock exchange 
50 Index (SSE50 Index) is used. The corresponding rate of return is computed from 
the daily values during the period from January to April 2009. After computing the 
average return and variance/covariance matrix, ACO, and PSO algorithms are applied 
to optimize the expected return (ER), stand variance (StdDev) and Sharpe Ratio (SR) 
of the different portfolios.  

During the experiments, the population size of PSO and ACO is set to 100 while 
the number of generations is set to 500. Each algorithm is run 10 times (with different 
starting points) to computed the average and maximums value of the ER, StdDev and 
SR. The results are shown in the table1. 

In Table 1, in terms of average Sharpe Ratio, when the number of the stocks is 5, 
15, 20 and 35, ACO and PSO produced the same results.When the number is 8 and 
30, ACO produced a little better results, and when the number is 10, 25 and 40, PSO 
produced a little better results. In terms of Maximum Sharpe Ratio, when the stocks 
number is 5, 30, 35 and 40, ACO produce a better result than PSO, and when the 
number is 8 and 20, ACO and PSO produce the same results, and when the number is 
10, 15 and 25, PSO produced a little better results. 

Randomly initialize particles (solutions)
Do until a stopping criterion is met 
  For each particle 
    Calculate fitness value 
    If the fitness value is better than its personal 
best 
     Set current value as the new pBest 
  End 
  Choose the particle with the best fitness value in 
the neighbourhood as gBest 
  For each particle 
    Calculate particle velocity according equation (12) 
    Update particle position according equation (13) 
  End 



 Swarm Intelligence Algorithms for Portfolio Optimization 311 

Table 1. Results by ACO and PSO when Risk-free is 0  

Avg SharpeRatio Max SharpeRatio 
Stocks 

ACO PSO ACO PSO 

5 25.945% 25.945% 25.947% 25.945% 

8 32.132% 32.123% 32.132% 32.132% 

10 32.986% 32.991% 32.986% 33.033% 

15 32.597% 34.597% 34.597% 34.598% 

20 32.692% 34.692% 34.692% 34.692% 

25 32.936% 34.942% 34.936% 34.991% 

30 34.947% 34.946% 34.948% 34.947% 

35 34.947% 34.947% 34.949% 34.947% 

40 34.948% 34.949% 34.955% 34.950% 

Table 2. Random Results gotten by ACO and PSO when Risk-free is 0 and 0.03% 

Mean StdVar SharptRatio 
Stocks fR  

ACO PSO ACO PSO ACO PSO 

0 0.772% 0.775% 2.976% 2.986% 25.945% 25.944% 
5 

0.03% 0.811% 0.812% 3.137% 3.141% 16.296% 16.290% 

0 0.855% 0.855% 2.611% 2.608% 32.754% 32.769% 
8 

0.03% 0.918% 0.917% 2.905% 2.901% 21.273% 21.271% 

0 0.828% 0.828% 2.510% 2.511% 32.986% 32.984% 
10 

0.03% 0.883% 0.882% 2.722% 2.721% 21.416% 21.405% 

0 0.871% 0.874% 2.517% 2.528% 34.597% 34.577% 
15 

0.03% 0.938% 0.938% 2.760% 2.769% 23.107% 23.055% 

0 0.890% 0.883% 2.565% 2.554% 34.692% 34.567% 
20 

0.03% 1.003% 1.005% 2.971% 2.994% 23.649% 23.562% 

0 0.930% 0.907% 2.661% 2.610% 34.936% 34.749% 
25 

0.03% 1.079% 1.087% 3.179% 3.222% 24.515% 24.418% 

0 0.934% 0.920% 2.672% 2.649% 34.947% 34.711% 
30 

0.03% 1.083% 1.079% 3.185% 3.206% 24.577% 24.303% 

0 0.934% 0.935% 2.672% 2.696% 34.947% 34.679% 
35 

0.03% 1.082% 1.060% 3.183% 3.153% 24.577% 24.091% 

0 0.934% 0.911% 2.672% 2.652% 34.947% 34.330% 
40 

0.03% 1.083% 1.046% 3.188% 3.245% 24.571% 22.990% 
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In the Table 2, there are random results generated by PSO and ACO techniques 
when the riskfree is 0 and 0.3%. Taking the sets of optimal portfolios in the Table 2, 
we trace out their efficient frontiers in Fig.1. Fig.1(a), (b), (c) ,(d), (e), (f) ,(g) ,(h) , 
and (i) are the efficient frontier curves for the portfolio of 5, 8, 10, 15, 20, 25, 30, 35, 
and 40 stocks. When the number of the stocks is few (5 and 8) or very many (30, 35 
and 40), the upper part of the efficient frontier by ACO technique is above the effi-
cient frontier by PSO. And when the portfolio is medium-sized (10, 15, 20 and 25), 
the two efficient frontier curves obtained by ACO and PSO almost overlap.  

To sum up, we conclude that when the number is very fewer ( ≤ 10) or the number 
is very much ( ≥ 30), ACO performs better than PSO for the portfolio optimization, 
and when the portfolio is medium-sized, PSO performs a little better than ACO in the 
portfolio optimization problem. 
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Fig. 1. The Efficient frontier of the portfolios gotten from the ACO and PSO algorithms 
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5   Conclusion 

This paper presents an empirical study to compare the performance of two swarm 
intelligence optimization techniques, named ACO and PSO, for constrained portfolio 
optimization. They are all drawn from a swarm metaphor, and exhibit flexibility, 
robustness, self-organization and communication between individual members of the 
population. In many cases, however, ACO ends up with slightly better results than 
PSO especially in the case of small-scale and large-scale portfolio. But in the case of 
medium-scale portfolio, the PSO performs a little better than the ACO techniques. 
The future work would focus on comparing these and other optimization techniques. 
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Abstract. Automatic document classification is helpful in both organizing and 
finding information on huge resources. A novel multi-layered immune based 
document classification algorithm is presented. First, we represent the definition 
of the immune cells, antibody, antigen, and discuss the architecture of  
multi-layered immune system. Second, we evolve the dynamic models of im-
mune response, immune regulation and immune memory, and establish the cor-
responding equations. Finally, we implement the simulation experiments, and 
compare the results with those obtained using the best methods for this applica-
tion. Experiments show that the algorithm has higher classification accuracy 
than other document classification methods, and the attractive features such as 
diversity, self-learning, adaptive and robust etc. It provides a novel solution for 
document classification. 

Keywords: document classification, immune, artificial intelligence. 

1   Introduction 

Artificial immune is a new research focus following the neural networks, fuzzy sys-
tems, and evolutionary computation etc. Especially, the artificial immune system has 
the attractive features such as diversity, adaptive and robust etc. In recent years, these 
inviting features caused researchers’ widespread concern and heating discuss. 

In related research, P. Wang & C. Domeniconi [1] presented an algorithm of building 
semantic kernels for text classification using Wikipedia. The algorithm overcomes the 
shortages of the word-based vector approach by embedding background knowledge 
derived from Wikipedia into a semantic kernel, which is then used to enrich the repre-
sentation of documents. Ifrim G. et al. [2] presented an algorithm for both classification 
and retrieval of natural language text documents. The algorithm maps every word onto a 
concept, and adopts the WordNet thesaurus as a background knowledge base to classify 
and search documents. Wang Z. & Qian X. [3] presented a novel document classifica-
tion algorithm based on kernel discriminant analysis (KDA) and SVM. The algorithm 
firstly reduces the high dimensional Web document space in the training sets to the 
lower dimensional space with KDA algorithm, then the classification and predication in 
                                                           
 * Corresponding author. 
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the lower dimensional feature space are implemented with the multiplicative update-
based optimal SVM. Overall, theses algorithms that are mentioned above all have a long 
learning time. The implement of algorithms are complicated fairly. The accuracy of 
document classification still has possibility for improvement. 

In order to improve the accuracy of document classification and the convergence 
time of algorithm, a multi-layered immune based document classification algorithm, 
referred to as MIDC, is presented. Experiments show that the algorithm has higher 
classification accuracy than other document classification methods, and the attractive 
features such as diversity, self-learning, adaptive, and robust, etc. 

2   Proposed Algorithm Model 

MIDC references the part mechanism that the adaptive biological immune system 
responses antigens. When the antigen enters the immune system, it first contacts with 
free antibodies that the B-cells secret on the surface. Then, some of free antibodies 
attempt to recognize the antigen. When the amount reaches a pre-set threshold, which 
free antibodies can recognize the antigen, the corresponding B-cells are activated. The 
activated B-cells are cloned and mutated. The process produces many new B-cells that 
have higher affinity with the antigen. Finally, the new B-cells will clear the antigens, 
and the highest affinity B-cell will evolve into memory cell by competing, which can 
enhance the speed of secondary immune response.  

Before the presenting of MIDC, we represent firstly the terminologies, symbols, as 
well as formulas. 

Let the antigen represent an unlabeled document. The antigenic determinant is 
from extracting the features of document. The process is as same as antigen present-
ing cells in immune system. 

Ag is defined as antigens set. Ag ⊂ D, D=Sl ⊆ Rl, where S is the shape space of an-
tigens, l is the dimensionality of shape space of antigen, and R is the real space. Let 
ag represents an antigen, such that ag∈Ag. 

Ab is defined as B-cells set. Ab= {<d, t, c>|d∈D, t, c∈N}, where t is the life cycle 
of B-cell, c is the class of B-cell, and N is the set of natural numbers. Let ab represents 
a B-cell, such that ab∈Ab. 

Mc is defined as memory cells set, Mc ⊆Ab. Let mc represents a memory cell, such 
that mc∈Mc. 

Let f(x,y) represents the affinity function of x with y, where x or y may be an anti-
gen, B-cell, memory cell etc. f(x,y) is defined as Eq.(1).Where dk is the k attribute 
value of d. 

2( , ) 1/(1 ( . . ) / )
1

l
f x y x d y d lk kk

= + −∑
=

 (1)

Let sAb represents a subset of B-cells. sAb ⊂ Ab, and |sAb|=η*|Ab|, where η is a coef-
ficient, such that 0<η<1. 
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2.1   The Initialization 

In order to simplify the calculation and improve the efficiency, MIDC is divided into 
three layers, which are named as the freedom antibodies layer, the B-cells layer, and 
the memory cells layer, respectively. The cell competes internally with each other in 
layers. The layer has a feedback with interrelationship with each other. 

The algorithm initialization is to establish the freedom antibodies layer, the B-cells 
layer, and the memory cells layer of immune system, respectively. First, MIDC se-
lects randomly n learning samples to build the B-cells layer from the antigens set. Ab 
represents the antibodies set of the B-cells layer. The initial life cycle of B-cell is zero. 
Then, MIDC selects m randomly B-cells to secrete freedom antibodies from the B-
cells layer. The freedom antibodies compose the freedom antibodies layer. Fa repre-
sents the freedom antibodies set, and is defined as Eq.(2), such that m=| Fa |. 

{ }| , ( ( , ) )Fa x x Ab y Ab Dist x y x yβ= ∈ ∃ ∈ > ∧ ≠  (2)

Where Dist(x,y) is the function of distance between x and y, β is the mean distance of 
Ab. Dist(x,y) and β are defined as Eq.(3) and Eq.(4), respectively. 

( , ) | . . | /
1

l
Dist x y x d y d lk kk

= −∑
=

 (3)

1
( , )

1 1

( 1)

2

n n
Dist ab abi ji j i

n n
β

−
∑ ∑
= = +=

−
 (4)

Finally, MIDC selects antibodies to build the memory cells layer from Ab. Mc repre-
sents the antibodies set of the memory cells layer, which is defined as Eq.(5). 

1
{ | , ( ( , ) . . )}

1
Mc x x Ab y Ab f y x x c y c x y

β
= ∈ ∃ ∈ > ∧ = ∧ ≠

+
 (5)

After the multi-layered immune system established, MIDC begins to learn each one of 
the sample antigens for immunization. This process is as following. 

2.2   The Immune Learning 

In this process, the sample antigens contact firstly with the freedom antibodies, and 
then enter the B-cells layer. Finally, the activated B-cells are cloned and mutated. 
Some of the new B-cells become memory cells into the memory cell layer. 

2.2.1   The Immune Response 
The response can be divided into primary response and secondary response. Firstly, 
MIDC selects randomly a subset to contact with the antigen from Fa. φFa is defined 
to represent the subset. Rec is defined as the result of the freedom antibody contacting 
with the antigen. If the affinity of the freedom antibody with the antigen is more than 
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a computing threshold δ, the freedom antibody recognizes the antigen, and the value 
of Rec is 1. Otherwise the value of Rec is 0. δ and Rec is defined as Eq.(6) and Eq.(7). 

1
( , )

1 | |
( 1)

n
f ab abii iff ab Fa and n Fa
n

δ

−
∑
==  ∈ =

−
 (6)

{1 ( , )
( , )

0

iff f ab ag
Rec ab ag ab Fa

δ
ϕ

≥
= ∈  (7)

MIDC needs to sum up the number of freedom antibodies that can identify antigen. If 
the sum exceeds a pre-set threshold, the activated B-cells respond the antigen secon-
darily. Otherwise, they do primary one. Sum is defined as Eq.(8). 

( , )
1

n
Sum Rec ab ag ab Fai ii

ϕ= ∈∑
=

 (8)

At the same time, if none of freedom antibodies can recognize the antigen, it is a new 
antigen. MIDC executes the similar primary response, and clone the antigen to the B-
cells layer and the freedom antibodies layer. However, if few of freedom antibodies 
can recognize the antigen, it will not trigger the immune response; the corresponding 
B-cells will secrete some antibodies to the freedom antibodies layer. The process is 
repeated continuously. The immune response will eventually trigger.  

2.2.2   The Immune Regulation 
MIDC first selects the activated B-cells from Ab in accordance with Eq.(9). Where the 
activated B-cells can recognize the antigen, and have the same class with the antigen. 
The activated B-cell is referred as abstim, such that abstim∈Abstim. 

{ }| , ( , ) . .Ab ab ab Fa ab Ab f ab ag ab c ag cstim ϕ δ= ∈ ∈ ∧ ≥ ∧ =  (9)

Then, abstim will be cloned and mutated. The clone amount of abstim, referred to as 
Count, is based on the affinity of abstim with the antigen. The higher the affinity, the 
greater stimulation abstim has, and the more the amount. The mutation probability of 
abstim, referred to as Rate, is based on the affinity of abstim with the antigen. The higher 
the affinity, the fewer stimulation abstim has, and the lower the probability. Count and 
Rate are calculated by Eq.(10) and Eq.(11), respectively. 

( , )Count Sum f ab agstimλ= × ×  (10)

1

( , )
Rate

Sum f ab agstim
ζ=

+
 (11)

λ is the cloning constant, which is used to ensure that the new B-cells can be gener-
ated enough. ζ is the mutating constant, which is used to preserver the antibody diver-
sity in the B-cells layer. 
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After each abstim is cloned and mutated, the scale of the B-cells expands rapidly. In 
order to suppress the concentration of certain class of B-cells, MIDC needs to elimi-
nate some of B-cells. If the B-cells have not been activated during the threshold of the 
life cycle, MIDC would eliminate the B-cells from Ab, and the corresponding freedom 
antibodies from the freedom antibodies layer. 

Finally, Abstim secrete freedom antibodies to the freedom antibodies layer. The 
number of freedom antibodies secreted is defined as Eq.(13), referred to as Num. 

( ( , )) ( ( , )S Max Dist ab ab Min Dist ab abi jMax k l= −  (12)

( ( , ))Num S Dist ab agstimMaxγ= −  (13)

SMax is the farthest distance difference between B-cell antibodies in Ab. abi, abj, abk, 
and abl. represent different antibodies, respectively. It shows that the more specific of 
a B-cell, the greater freedom antibodies that it need to ensure to be triggered during 
the next response. γ is a constant to ensure the concentration of freedom antibodies. 

2.2.3   The Immune Memory 
After immune regulation, MIDC selects a B-cell as candidate memory cell from Ab, 
referred to as abcand. abcand has the highest affinity and the same class with the antigen. 
Before abcand enters the memory cell layer, it must compete with mc. First, MIDC 
selects a memory cell as candidate cell from Mc, referred to as mccand. mccand has the 
highest affinity and the same class with the abcand. If the affinity of abcand with mccand 
is more than a computing threshold, referred to as θ, and the affinity of abcand with the 
antigen is the highest, abcand enters the memory cell layer to replace mccand. Otherwise, 
abcand enters the memory cells layer. θ is calculated by the Eq.(14). 

( , )
1 . .

n
f ab mcicandi iff mc c ab ci candn

θ
∑
==   =  

(14)

2.3   The Document Classification 

After the immune learning, the memory cell layer’s evolvement is finished. MIDC 
classifies unlabeled documents according to Mc. The class of unlabeled document is 
determined by mc, which has the highest the affinity with it. First of all, MIDC calcu-
lates the affinity of the unlabeled document with each mc according to Eq.(1). Then, 
MIDC selects the highest affinity mc. The class of the unlabeled document is the same 
as selected mc. 

3   The Simulation Experiments 

3.1   The Experimental Dataset 

The experiment uses the document classification dataset, referred to as OHSCAL, 
which is a subset of OHSUMED [4]. OHSUMED is from the medical information 
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database as MEDLINE10, contains 270 pharmaceutical journal title and / or summary 
from 1987 to 1991, and includes 348,566 documents. OHSCAL is from ten classes of 
OHSUMED, and includes 11,162 documents. In experiment, MIDC remove the com-
mon words of documents using Porter’s suffix-stripping algorithm [5].  

The experiment selects randomly 9,000 learning item as the training set from the 
data set, the other 2162 learning items as a test set. The experimental parameters 
λ=1.80, ζ=96, and γ=3, respectively. 

3.2   The Results and Discussion 

The results of experiment are shown in Fig. 1 and Fig. 2. Such as Fig. 1, MIDC 
achieves 14.2% documents classification error rate, with the increase of the size of 
memory cells layer, the error rate of documents classification is decreased. However, 
when the size of memory cells layer is over a certain value, the error rate is stable to 
14.2%, because the memory cells layer is convergent. 
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In the Fig. 2, the experiments shows the different, when the size of memory cells 
layer is changed to 5000, 6000, 7000, and 9000, respectively. With the size of  
memory cells layer increased, the error rate of documents classification is decreased. 
However, when the size of memory cells layer is a certain value about 9000, with the 
increase of training antigens, the error rate of documents classification results is sta-
ble, because the memory cells layer is already convergent. 

In order to prove that MIDC decreases the error rate of documents classification, 
Table 2. shows the comparison of classification accuracy, compared with the different 
document classification algorithms. The accuracy of other document classification 
algorithms is from the literature [6]. MIDC shows that the classification accuracy is 
the highest on OHSCAL dataset.  

Table 1. The error rate of documents classification on OHSCAL dataset 

Algorithm Classification Accuracy (%) 
NB 74.6 

C4.5 71.5 
kNN 62.5 
Cntr 75.4 

MIDC 85.8 

4   Conclusion 

In this paper, a novel document classification algorithm based on multi-layered im-
mune, referred as MIDC, is presented. Experiments show that MIDC has higher clas-
sification accuracy than other traditional document classification algorithms, which 
provides a new solution for document classification. Finally, if the immune cell re-
gard as a given pattern, and the antigens set is reasonable adjusted, MIDC can also be 
applied to areas such as virus detection, pattern recognition, and etc. 
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Abstract. The study presents a novel quantum immune algorithm
(QIA) for solving the parallel machine scheduling in the textile
manufacturing industry. In this proposed algorithm, there are distinct
characteristics as follows. First, the encoding method is based on Q-bit
representation. Second, a novel mutation operator with a chaos-based
rotation gate is proposed. Most importantly, two diversity schemes, sup-
pression algorithm and similarity-based truncation algorithm, are em-
ployed to preserve the diversity of the population, and a new selection
scheme is proposed to create the new population. Simulation results show
that QIA is better than two quantum-inspired evolutionary algorithms.

Keywords: immune algorithm, multiobjective optimization, quantum
computing, knapsack problem.

1 Introduction

For the multiobjective scheduling problems in the textile manufacturing industry,
there are the following characteristics: (1) parallel machines are nonidentical, and
(2) the type of jobs processed on each machine can be restricted. In 2008, Gao et
al. [1] studied them and presented a multiobjective scheduling model subjected
to special process constraint on parallel machines with the following objectives:
makespan, total earliness, and total tardiness, and proposed a vector genetic
algorithm (VGA) to solve it effectively. Furthermore, based on VGA and immune
theory, Gao et al. presented an immune vector genetic algorithm [2]. An immune
operator was adopted to guarantee the diversity of the population, and a local
search algorithm was applied to improve the quality of the population. However,
all approaches suggested by Gao et al. transform the multiobjective problem into
a single objective one through a linear combination of objectives and weights.
Here, we study the scheduling of the textile manufacturing industry with the
following two objectives: total completion time and total tardiness. However,
different from the literature [2], we will not find a single optimal solution but
Pareto-optimal solutions.

Quantum computing is a research area that includes concepts like quantum-
mechanical computers and quantum algorithms, and research on merging evolu-
tionary algorithms (EAs) with quantum computing has been started since late
1990s [3,4,5]. Recently, quantum computing was combined with other intelligent
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algorithms such as neural network [6], ant algorithm [7] et al, and some people
proposed some quantum-inspired EAs [4,5]. However, there has been relatively
little work done in merging immune algorithm and quantum computing.

In this paper, the multiobjective scheduling problems in the textile manu-
facturing industry will continue to be studied and a novel quantum-inspired
immune algorithm (QIA) based on immune system and quantum computing
is presented. In this proposed algorithm, the encoding method is based on Q-
bit representation, and a novel mutation operator with a chaos-based rotation
gate is proposed. Especially, two diversity schemes, suppression algorithm and
similarity-based truncation algorithm, are employed to preserve the diversity
of the population, and a new selection scheme is proposed to create the new
population.

2 The Proposed Algorithm

In this section, we will present a novel quantum-inspired immune algorithm
(QIA) based on immune system and quantum computing. The detailed proce-
dures are listed as follows.

(1) A random initial population P0 of size Npop is created and set the memory
Nmem = ∅. Set a counter t = 0.

(2) For each cell in the population, reproduce the cell Nclones times and mutate
each clone by a chaos-based rotation gate.

(3) Combine the population Pt and the offspring as Rt.
(4) Evaluate Rt, and perform trimming operation for Rt. Compute all nondom-

inated cells in Rt, and store them to Nmem, and then delete all dominated
cells in Nmem.

(5) Select new population Pt+1 from Rt by using the selection scheme based on
a similarity-based truncation algorithm.

(6) Randomly select a cell from Nmem, and use it to update the new population
Pt+1 by a rotation gate.

(7) if t > T (the maximum number of generations) or another termination condi-
tion is satisfied, then terminate the algorithm and output the nondominated
cells in Nmem. Otherwise, let t = t+ 1 and return to (2).

In this proposed algorithm, we only introduce the encoding and decoding tech-
nique, the method of initiating the population, a mutation operator with a chaos-
based rotation gate, and the update scheme with a rotation gate. For the other
aspects, please refer to the literature[8,9].

2.1 Encoding and Decoding Technique

For QIA, the encoding technique based on Q-bit is utilized. Each bit for a cell
with size n is represented as a string of m Q-bits in the following:[

α1 α2 · · · αm

β1 β2 · · · βm

]
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where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , n. For the Q-bit string, it can be ob-
viously seen that it can not be directly used to calculate the objective val-
ues. Thus, a random key decoding technique is applied. According to [4], a
Q-bit string is first converted to a binary string. In particular, for the jth
(j = 1, 2, · · · ,m) bit of Q-bit string, a random number τ is generated at in-
terval [0,1]. If |βj |2 > τ , then let the corresponding bit νj of the binary string
be 1; otherwise let νj be 0. For the parallel scheduling problems, such a binary
string should be further converted to a random-key representation. For exam-
ple, considering a seven-job three-machine problem (general,we let m = number
of machines, and n = number of jobs). Suppose the resultant binary string is
[0 1 1| 1 0 0| 1 1 1| 1 0 1| 1 1 0| 1 1 1| 0 1 0]; thus its random-key representation
is [2 1 3 2 2 3 1]. Obviously, a scheduling scheme can be easily obtained by such
a random-key representation.

2.2 Initializing the Population

Here a chaos-based method initializing the population is used in order to obtain
the population with a better characteristic of diversity. Chaos is an universal
natural phenomenon, and can be generated by the following mathematic model
(Logistic mapping):

xk+1 = μxk(1 − xk), (1)

where μ = 4. From (1), the chaos variable xk (k = 1, 2, · · · ) will be obtained,
and xk ∈ [0, 1]. Compared to randomicity, chaos has better universality of search
space.

In the following, we list the method initializing the population on the basis
of (1).

(1) i = 1.
(2) Generate n×m different random numbers x0

j (j = 1, · · · , n×m) at interval
[0,1].

(3) Using the following equation to calculate xi
j .

xi
j = μxi−1

j (1 − xi−1
j ), (2)

(4) Let αi
j = cos(2xi

jπ) and βi
j = sin(2xi

jπ), and then αi
j and βi

j form a Q-bit[
αi

j

βi
j

]
, j = 1, 2, · · · , n×m,

(5) A cell is made of n×m Q-bits and can be expressed as
[
αi

1 α
i
2 · · · αi

n×m

βi
1 β

i
2 · · · βi

n×m

]
.

(6) i = i+ 1.
(7) If i > Npop, then Npop cells are obtained and the procedure is terminated.

Otherwise, return to (3).
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2.3 Mutation Operator

For QIA, a chaos rotation Q-gate is utilized to perform mutation for each cell.
Every Q-bit is mutated with a predefined probability pm. Assume that a parent

cell is
[
α1 α2 · · · αn×m

β1 β2 · · · βn×m

]
, its mutation procedure is listed as follows.

(1) j = 1
(2) Generate a random number η at interval [0, 1].
(3) If η < pm, (αj ,βj) of the jth Q-bit is updated as follows.

[
α

′
j

β
′
j

]
=
[
cos(Δθj) − sin(Δθj)
sin(Δθj) cos(Δθj)

] [
αj

βj

]
(3)

where Δθj is the angle parameter of rotation Q-gate, and Δθj = λxj
k. xj

k is
a chaos variable, and be calculated by the following equation:

xj
k = 8xj

k−1(1 − xj
k−1) − 1. (4)

From (4), it can be observed that Δθj is within the range [−λ, λ].
(4) j = j + 1.
(5) If j > n×m, then terminate the procedure. Otherwise, return to (2).

In the above procedure, λ is an amplitude, and its value depends on the rank
of the parent cell in the population. Assume that the number of nondominated
fronts in the population is K, for a parent cell, if it is on the ith front (i =
1, 2, · · · ,K),

λ = λ0 exp((i− |K|)/|K|), (5)

where λ0 is a control parameter. From(3)-(5), we can see that for a parent cell,
the better its rank is, the smaller the chaos disturb is. And vice versa.

2.4 Rotation Gate for Q-Bit in QIA

The rotation gate is only used in QIA to adjust the probability amplitudes of
each Q-bit. According to the rotation gate in (3), a quantum-gate U(θi) is a
function of θi = s(αi, βi) ·Δθi, where s(αi, βi) is the sign of θi that determines
the direction and Δθi is the magnitude of rotation angle. Like the literature [3,4],
the angle parameters used for the rotation gate are selected from the lookup table
(see Table 1). In Table 1, ri and bi are the ith bits of a binary solution r and
a nondominated solution b randomly selected from the memory , respectively.
Because b comes from the nondominated set in QIA, the use of Q-gate is to
emphasize the searching direction toward b, which will be helpful for enhancing
the quality of the population.
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Table 1. Lookup table of rotation angle

ri bi f(r) < f(b) Δθi
s(αi, βi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0
0 0 true 0 0 0 0 0
0 0 false 0 0 0 0 0
0 1 true 0.05π +1 -1 0 ±1
0 1 false 0 0 0 0 0
1 0 true 0.01π -1 +1 ±1 0
1 0 false 0.025π +1 -1 0 ±1
1 1 true 0.005π +1 -1 0 ±1
1 1 false 0.025π +1 -1 0 ±1

3 Simulation Experiments

In this section, we apply QIA to parallel machine scheduling in the textile manu-
facturing industry, and compare the performance of QIA with and HQGA [3] and
WBMOIGA [10]. All experiments are conducted on an IBM computer, which is
equipped with a Pentium IV 2.8G processor and 2 GB of internal memory. The
operating system is Windows XP and the programming language is C++. The
compiler is Borland C++ 6.0.

3.1 Test Problems and Performance Measure

We use the following two objective scheduling problem subjected to special pro-
cess constraint on parallel machines with fifteen jobs and four machines as our
test problem.

Test Problem:
min f1(x)= 2 × (total completion time)
min f2(x)= 8 × (total tardiness)

In this experiment, We use two test data (denoted by I and II), which come
from the literature [10], and the two metrics (Coverage and Ratio)[11] to inves-
tigate the performance of QIA.

3.2 Experimental Results

For a given test problem, each algorithm is randomly run 20 times. We show the
average of the ratio metrics of the 20 trials for each algorithm for Test Problems
I and II in Tables 2 and 3, respectively. The average of the coverage metrics of
the 20 trials for each algorithm for Test Problems I and II is shown in Tables 4
and 5, respectively. From Tables 2 and 3, we can observe that QIA obtains more
solutions than WBMOIGA and HQGA, and the ratio is also bigger than them.
Moreover, From Tables 4 and 5, it can be seen that the set coverage metrics
C(QIA,WBMOIGA) and C(QIA,HQGA) are bigger than C(WBMOIGA,QIA)
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Table 2. Average ration for Test Problem I

Algorithm QIA WBMOIGA HQGA
|Bi| 8.55 6.45 5.65
|Ai| 8.15 4.65 2.85

Ratio (Ratioi = |Ai|
|Bi| ) 95.3% 72.0% 50.4%

Table 3. Average ration for Test Problem II

Algorithm QIA WBMOIGA HQGA
|Bi| 9.57 6.95 5.75
|Ai| 9.25 3.20 2.05

Ratio (Ratioi = |Ai|
|Bi| ) 96.6% 46.0% 35.6%

Table 4. Average coverage for Test Problem I

Algorithm QIA WBMOIGA HQGA
QIA 0.89513317 0.94626893

WBMOIGA 0.51436313 0.64650325
HQGA 0.31475521 0.44727468

Table 5. Average coverage for Test Problem II

Algorithm QIA WBMOIGA HQGA
QIA 0.88122923 0.92123281

WBMOIGA 0.41764625 0.66332017
HQGA 0.30311923 0.41729368

and C(HQGA,QIA), respectively. According to the definitions of metrics, we
can draw a conclusion that QIA has higher performance than WBMOIGA and
HQGA.

4 Conclusion

In this study, we present a quantum immune algorithm. By applying to the
parallel machine scheduling, we show that QIA has higher performance than
WBMOIGA and HQGA. However, how to select the parameters of QIA can not
be considered in this paper. It will be researched in the future work.
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Abstract. A resource limited immune approach (RLIA) was developed to 
evolve architecture and initial connection weights of multilayer neural  
networks. Then, with Back-Propagation (BP) algorithm, the appropriate con-
nection weights can be found. The RLIA-BP classifier, which is derived from 
hybrid algorithm mentioned above, is demonstrated on SPOT multi-spectral 
image data, vowel data and Iris data effectively. The simulation results demon-
strate that RLIA-BP classifier possesses better performance comparing with 
Bayes maximum-likelihood classifier, k-nearest neighbor classifier (k-NN), BP 
neural network (BP-MLP) classifier and Resource limited artificial immune 
classifier (AIRS) in pattern classification. 

Keywords: resource limited immune approach (RLIA), evolutionary artificial 
neural network (EANN), pattern classification. 

1   Introduction 

Pattern classification is an important problem in the multi-spectral remote sensing 
image research, phonetics, handwriting, etc. So far, besides conventional classifiers 
such as Bayes classifier, k-NN classifier[1], several pattern recognition classifiers has 
been adopted, for example, Genetic classifier[2], neural network classifier[3], evolu-
tionary neural network classifier[4],AIRS classifier[5]. 

The most widely used neural network model is the multilayer perceptron (MLP), in 
which the connection weights training is normally completed by a BP learning algo-
rithm. The essential character of the BP algorithm is gradient descent. Because the 
gradient descent algorithm is strictly dependent on the shape of the error surface, the 
error surface may have some local minimum and multimodal. This results in falling 
into some local minimum and appearing premature convergence [7]. 

Genetic Algorithms (GAs) [8], the optimization techniques guided by the princi-
ples of evolution and natural genetics, are efficient, adaptive and robust searching 
processes, producing near-optimal solution and handling large, highly complex and 
multimode spaces. Of course, it is not surprise to evolve the neural network with 
GA, and to study pattern classification using GA evolving neural networks [4, 6]. 
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However, crossover and mutation operators, the two main genetic operators of GA, 
are searched randomly and iteratively in a certain probability so that premature may 
be appeared and community diversity is reduced while an individual in population is 
being evolved [9]. 

Artificial immune systems (AIS) [9-10] are an intelligent algorithm inspired by 
human immune system. They possess several properties such as noise tolerance, un-
supervised learning, self-organization and immune memory etc. Resource limited 
artificial immune classifier (AIRS) [5] based on clonal selection theory adopts the 
conception of artificial recognition balls (ARBs). The training of an antigen (Ag) and 
the processing of each ARB are conducted through a resource allocated mechanism 
according to the simulation level between the ARB and Ag. If the total resource allo-
cated across the ARB population exceeds the allowed limit, the weakest ARBs are 
removed until the totality of allocated resources is under the limit. The ARBs further 
produce offspring through clonal mutation until the average stimulation value for all 
the existing ARBs reaches the pre-set threshold. Once the training process for current 
Ag is fulfilled, the best matching ARB will become a long-lived memory cell if it 
matches the Ag better than the mcmatch does. The algorithm continues until all training 
Ag have been presented and trained. Finally, the evolved memory cells will be used 
for classification through k-nearest neighbor approach. AIRS has got better result for 
classification of multi-spectral remote sensing image [11]. 

In this paper, a resource limited immune approach (RLIA) was developed to 
evolve an appropriate architecture and initial connection weights of multilayer neural 
networks. The optimal connection weights can be further trained by BP algorithm. 

2   Method 

2.1   The Three-Layer Neural Network 

Assuming a three-layer neural network with m inputs (features), q outputs (catego-
ries), and l hidden nodes, see Fig 1. The relations of input and output can be formu-
lated as follows: 

 

∑
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Fig. 1. Three layers neural network structure 

where Wji is the connection weight between the jth hidden node and the ith  input 
node ,vj0 is its bias; the netj is the input of the jth hidden node; Vkj is the connection 
weight between the jth hidden node and the kth output node, vk0  is its bias. netk is the 
input of the k output node. f(net) is a sigmoid activation function, which is defined as: 

)(1

1
)(

nete
netf −+

=  
 

(5) 

where net∈[-∞,+∞]. 
Suppose we have a set of training patterns X={X1, X2, …, Xn }, where n is the num-

ber of training patterns, each training pattern Xi in set X is an m-dimensional feature 
vector. Let T= {T1, T2,…, Tn} as set X’s corresponding output classes, Ti={t1,t2,…, tq} 
is a q-dimensional class vector. If the target class for a specific pattern is k (1≤k≤q), 
then tk=1; otherwise, tk=0. Let’s denote Oik as the ith actual neuron output for input 
training pattern xi at the output node k while tik as its desired response. The mean 
square error function (MSE) for this neural network is defined as: 
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(6) 

where W represents all the weights in the network. Thus, this error is some scalar 
function of the weights and is minimized when the network output matches the  
desired outputs. 



 A RLIA for Evolving Architecture and Weights of Multilayer Neural Network 331 

2.2   RLIA-BP Classifier 

RLIA-BP algorithm includes the following five steps: 
1. Normalization of the training samples and initialization of ARBs and memory 

cells. 
2. ARB generation 
3. Competition for resources and selection of candidate memory cells. 
4. Promoting candidate cells to memory cell pool. Do the step 2 to 4 repeatedly 

until some stopping criterion is met. 
5. Continue BP training and classification. 

These steps are detailed as followings: 

2.2.1 Normalization and Initialization 
1. Normalization all samples 
A simple method can be adopted so that the average over the training set of each 

feature is zero and the variance is 1.0. Naturally, the testing data must be subjected to 
the same transformation. 

2. Calculating affinity and stimulation 
In RLIA algorithm, an antibody cell (ARB) represents a neural network with a cer-

tain architecture and connection weight values, let AB represent the set of ARBs and 
ab is single ARB, ab∈AB. 

                                     ),,,,( 21 pi ababababAB =
                                   

(7) 

                                                  
),,( ii

ii VWlab =
                                                

(8) 

where il is the number of hidden nodes of the thi ARB. iW and iV represent input 

and output connection weights respectively. The affinity between a set of training 
samples (ags) and an antibody (ab) can be described by the mean square error func-
tion (MSE) for this neural network. 

Define: affinity (ags,ab)=MSE           (9) 
  Stimulation (ags,ab) =1-affinity(ags,ab) 
      =1-MSE        (10) 

Thus, the stimulation of an ARB represents the fitness of the neural network for the 
training set. 

3. Initialization 
In initialization, the connection weights (W and V) values are randomly chosen 

from range[-1,+1] and the number of hidden nodes(l) are randomly chosen from 

range[ maxmin ,ll ]. We can obtain a set of ARBs for initial set. The highest stimulation 

ARB with the same architecture from AB sets is selected as a memory cell. These 
memory cells with different architectures constitute the initial set of memory cells 
(MC). 

By convenient rule of thumbs [12], the number of hidden nodes is chosen such that 
the total number of weights in network is roughly n/10, or more than this number, but 
it should not be more than the total number of samples, n. For the three-layer neural 
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network, the total number of weights (exception bias) is )/( qml + , so the maximum 

and minimum number of hidden nodes will be )/(max qmnl +≤ , 10/maxmin ll = . 

2.2.2 ARBs Generation 
First, find the memory cell, mcmatch, which has highest stimulation in MC.  

                                mcmatch=argmax MCmc ∈ stimulation(ags, mc)                         (11) 

Once the memory cell with highest stimulation, mcmatch, is identified, it generates new 
ARBs to place into the population of pre-existing ARBs through mcmatch clone. The 
clones are defined as: 

          NClones=hyper_clonal_rate*clonal_rate*stimulation(ags,mcmatch)             (12) 

where hyper_clonal_rate and clonal_rate are pre-set values by user. The hy-
per_clonal_rate is a multiplier which ensures that a hyper-mutating memory cell pro-
duce more new cells than a standard ARB. It will increase the AB population diversity. 

2.2.3 Competition for Resources and Selection of Candidate Memory Cells 
The detailed training procedure is described as followings: 

1. Normalizing ARBs stimulation level and calculating the resources 
For each ABab∈ , normalize its stimulation according to equation (13) 

                              stimstim

stimstimab
stimab

minmax
min.

.
−

−=
                                

(13) 

                      rateclonalstimabresourcesab _*.. =                           (14) 

The resAlloc, total resources allocated across AB population, is defined as: 

                                   
∑

=

⋅=
||

1

AB

i
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(15) 

If the resAlloc exceeds the allowed values (TotalNumRes), the weakest ARBs 
will be removed until the totality of allocated resources is under the limit. 

2. Stopping criterion for the training procedure 
Calculate the average stimulation level. If the average stimulation value of all 

ARBs is less than a given stimulation threshold (ST), the process moves to step 3; 
otherwise, jump to step 4. 

3. Clonal reproduction and ARBs mutation 
For each ABab ∈ , it has the opportunity to produce mutated offspring. The 

number of clones is in proportion to its stimulation level, and is defined as: 

                        NClones=clonal_rate *stimulation (ags,ab)                            (16) 

Each ab represents a neural network so that ARBs mutation refers to their archi-
tecture l, connection weights W and V. The mutation procedure and the corre-
sponding function mutate (ab) are defined in figure 2. 

 
In Fig 2, the function random() returns a random value within the range[0,1], ran-
dom1() returns a random value within the range[-1,+1], random2() returns a random 
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value within the range[
maxmin , ll ], and random3(n) returns a random value within the 

range[1,n]. The mutation operation uses the non-uniform operator, which is able to 
achieve fine tuning [13]. The mutation function ),( ytΔ is defined as followings: 

                                      
λ)/1(1(),( Ttryyt −−=Δ                                         (17) 

where t is the iteration number, T is the maximum of iteration number, r is a random 
value in range[0,1], λ  is a parameter to decide the nonconforming degree. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
    

Fig. 2. Mutation function 

mutate(ab) 

{ 

 for each(ab.w, ab.v) 

 do 

  a= jiWmin      b= jiWmax  

  c= kjVmin      d= kjVmax  

  e=flase        f=random()     g=random1() 

  j=random2()   i=random3(m)        k=random3(q) 

  if (f<mutation_rate) 

   e=true 

   if(g ≥ 0) 

    ),( jijiji WbtWW −Δ+=  

    ),( kjkjkj VdtVV −Δ+=  

   else 

        

   ),( aWtWW jijiji −Δ−=  

    ),( cVtVV kjkjkj −Δ−=  

 Done 

If(e ≡ true) 

     f=random() 

     If(f<mutation_rate) 

     ab.l=random2() 

 return ab 

} 
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After mutation procedure, the architecture l may be changed. Suppose the architec-
ture of abi, li changed to lj, the three phases are described as following: 

 

1) li= lj, the architecture of abi not be changed; 
2) li> lj, the weights W and V items connect with the nodes of li> lj must be 

deleted. 
3) li< lj ,then some weights W and V items connect with the nodes of lj> li 

must be joined, their values can be randomly chosen from range[-1,+1]. 
 

4. Selection of candidate memory cells 
The highest stimulation ARB with the same architecture (l) from last AB set is se-

lected as a candidate memory cell of the architecture (mccandidate). All kinds of mccandi-

date constitute a set of candidate memory cells. 

2.2.4   Promoting Candidate Cells to Memory Cell Pool 
Comparing mccandidate with mc of the same architecture in MC set, if the stimulation of 
mccandidate is more than the stimulation of mc, the mccandidate will replace the mc, into 
memory cell pool. 

Once the candidate memory cells have been evaluated and added into the set of 
memory cells, one training cycle is completed. The next training process proceeds 
from step 2.2.2 to step 2.2.4. This process continues until the average stimulation 
value of all ARBs is higher than a given stimulation threshold ST or reaches the 
maximum of iteration number T. 

2.2.5   Continue BP Training and Classification  
Continue BP training based on the mcmatch in order to find the optimal connection 
weights. Then, the testing data can be classified by the optimal neural networks. 

3   Experiments and Discussion 

3.1   Dataset 

Vowel data are come from MIT Lincoln Laboratory [14]. The data has two dimen-
sional features (frequencies). The total vowel samples 383 are divided into the 10 
English classes. 

The SPOT image of Calcutta in India used for classification is come from literature 
[2]. The set has three bands, i.e. green band (0.50—0.59μm), red band (0.61—
0.68μm) and infrared band (0.79—0.89μm), and comprises 932 points belonging to 
seven classes: turbid water (TW), pond water (PW), concrete (concr), vegetation 
(Veg), habitation (Hab), open space (OS), and roads (including bridges) (B/R).  

Iris data are come from personal website of A. Watkins. The set, in which total 150 
samples are divided into three classes, has four dimensional features,. 

There are five types of supervised classifiers: Bayes classifier, k-NN classifier, 
AIRS classifier, BP-MLP classifier and RLIA-BP classifier. 

In experiments, the 30% data are randomly chosen from total samples for training, 
and 70% for testing. For any given run, the results are an average of three runs on 
each of the 30% training–70% test set combinations. 
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3.2 Implementation Parameters of Classifiers 

In Bayes algorithm, assuming the conditional densities are the normal densities, and 
the prior probabilities can be got from training patterns. In k-NN algorithm, k=3~7 for 
different data. In AIRS algorithm, hyper_colnal_rate=2.0, clonal_rate=10, muta-
tion_rate=0.1, ST=0.9, TotalNumRes=200, ATS=0.1~0.3 and k=3~7 (depended on 
classifying data). In BP-MLP algorithm, the learning rate is 0.02, the learning rate 
increment is set to 1.001 and the momentum rate is 0.9. The algorithm ends if perform-
ance (MSE) is less than 0.012. Otherwise, the algorithm is executed for 2000 epochs. 

In the RLIA-BP algorithm, hyper_clonal_rate=4.0, clonal_rate=10, muta-
tion_rate=0.1, ST=0.90~0.95(depended on classifying data), TotalNumRes=100, the 
maximum of iteration number T=1200. BP parameters are set to the same as BP-MLP. 

3.3   Performance Comparison of Classifiers 

Table 1, 2 and 3 are the performance comparison of classifiers for vowel, SPOT and 
Iris data respectively. 

As seen from Table 1, 2 and 3, for vowel and SPOT data, the overall classification 
accuracy of the RLIA-BP classifier is better than other classifiers, about 1.5%~ 7%. 
For Iris dataset, the performance of RLIA-BP classifier is the same as BP-MLP and 
Bayes, but better than k-NN and AIRS. 

Table 1. The performance comparison of classifiers for vowel data 

Classifier Accuracy 
Bayes k-NN AIRS BP-MLP RLIA-BP 

Overall 
accuracy (%) 

68.49 63.43 65.55 71.01 73.53 

Kappa  
coefficient 

0.634 0.598 0.619 0.678 0.708 

Table 2. The performance comparison of classifiers for SPOT data 

Classifier Accuracy 
Bayes k-NN AIRS BP-MLP RLIA-BP 

Overall 
accuracy (%) 

80.37 83.74 82.67 86.04 87.58 

Kappa  
coefficient 

0.656 0.734 0.730 0.755 0.785 

Table 3. The performance comparison of classifiers for Iris data 

Classifier Accuracy 
Bayes k-NN AIRS BP-MLP RLIA-BP 

Overall 
accuracy (%) 

97.14 91.43 93.33 97.14 97.14 

Kappa  
coefficient 

0.957 0.888 0.900 0.958 0.958 
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4   Conclusions 

In this paper, we have described an evolving neural network classifier based on  
resource limited immune approach (RLIA) in detail. RLIA made it feasible to auto-
matically evolve the appropriate architecture of neural networks and to globally find 
near-optimal connection weights. Then, with BP algorithm, the optimal connection 
weights can be found. The RLIA-BP classifier, which is derived from hybrid algo-
rithm mentioned above, is demonstrated on vowel data, SPOT multi-spectral image 
data and Iris data effectively. The simulation results show that RLIA-BP classifier 
processes better performance than other classifiers, such as Bayes classifier, k-NN 
classifier, AIRS classifier, and BP-MLP classifier. 

The feature of the proposed algorithm is that the neural network structure is 
evolved automatically while connection weights are being evolved. 

RLIA , which does not use crossover operator that would destroy the structure of 
neural network in EANN based on GA [4], has a chance to increase the population 
diversity, expand the searching space and promote the probability of getting optimal 
individual through clone, mutation, resources competition and immune memory 
mechanism.  
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Abstract. In this paper, we present a new approach for the cryptanalysis of 
four-rounded Data Encryption Standard (DES) based on Artificial Immune Sys-
tem (AIS). The proposed algorithm is a combination of exploitation and explo-
ration of fitness landscape where it performs local as well as global search. The 
algorithm has the property of automatically determining the population size and 
maintaining the local solutions in generations to generate results close to the 
global results. It is actually a known plaintext attack that aims at deducing op-
timum keys depending upon their fitness values. The set of deduced or optimum 
keys is scanned to extract the valuable bits out by counting all bits from the de-
duced key set. These valuable extracted bits produce a major divergence from 
other observed bits. This results in a 56-bit key deduction without probing the 
whole search space. To the best of our knowledge, the proposed algorithm is the 
first attempt to perform cryptanalysis of four-rounded DES using Artificial  
Immune System. 

Keywords: Cryptanalysis, Four-rounded DES, Artificial Immune System 
(AIS), Fitness measure. 

1   Introduction 

Data Encryption Standard (DES) is an encryption algorithm which differs from the 
conventional cryptographic algorithms that deploy single encryption or decryption 
technique, whereas DES utilizes various techniques in series to make the information 
secure. DES is therefore identified as a product cipher among the cryptographic tech-
niques. The major property of DES algorithm is that encryption and decryption are 
basically identical processes that are comprised of substitution and permutation func-
tions. Only the order of application of these functions to encrypt data is reversed for 
data decryption.  

Recent research done illustrates that most of the conventional ciphers can be bro-
ken by applying evolutionary techniques, but for the modern block ciphers, high-
nonlinearity and low autocorrelation is often used in the cryptographic design which 
makes the cryptanalysis of modern block ciphers hard using these techniques. This 
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paper presents a new approach for the cryptanalysis of four-rounded DES based on 
Artificial Immune System (AIS). First, we adopt a chosen plaintext attack for which 
an efficient fitness measure is deployed for the cryptanalysis. Secondly, a set of opti-
mum keys is generated from a variety of plaintext/ciphertext pairs depending upon 
the fitness measure and then optimal keys with higher fitness values are extracted 
from them. Thirdly, some valuable bits in these optimum key set, which produce an 
evident divergence from the observed bits are deduced. Finally, these valuable bits are 
applied to find other bits without probing the whole key space. The fitness measure is 
flexible and can be deployed to break other Feistel block ciphers. The experi-
mental results indicate that artificial immune system algorithm is successful at 
breaking the four-rounded DES.  

The rest of the paper is organized as follows: The related work is presented in sec-
tion 2. Section 3 explains the artificial immune system. Section 4 discusses the DES 
algorithm and problem formulation. Section 5 explains the proposed technique.  
Section 6 discusses the experiments and results, and section 7 concludes the paper. 

2   Related Work 

A lot of research has been done in the field of cryptanalysis. In 1993, Spillman et al. 
[6] presented a technique using genetic algorithms to attack substitution ciphers. 
Clark [7] investigated optimization algorithms for the purpose of cryptanalysis. Clark 
and Dawson [8] carried research on cipher cryptanalysis to the next level by using 
simulated annealing, tabu search and genetic algorithm [9]. Laskari et al. [10] in 2005, 
used particle swarm optimization for the cryptanalysis of SDES. A lot of research 
further investigated the use of evolutionary techniques to cryptanalyze various algo-
rithms including DES [2, 3, 11, 12, 13, 14, 15, 16]. Matsui [17] introduced linear 
cryptanalysis methods to cryptanalyze DES. Shahzad et al. [18] used binary Particle 
Swarm Optimization (PSO) for the cryptanalysis of four-round DES. The features of 
DES that make its cryptanalysis cumbersome include autocorrelation and nonlinear-
ity. These features make the relation between plaintext and ciphertext ambiguous [5].  
From all the work done so far in this area, it is obvious that many evolutionary tech-
niques have been deployed for the cryptanalysis of DES, but, to the best of our 
knowledge, artificial immune system algorithm has not been used by anyone for the 
cryptanalysis of four-rounded DES.  

Optimized aiNet algorithm [1] was initially designed for data clustering and was 
then optimized for multimodal function optimization. In this paper, we use the opti-
mized aiNet algorithm for the cryptanalysis of four-rounded DES block cipher. It 
basically uses a set of cells that represent the initial population. Each cell represents a 
56-bit key. The fitness of each cell depends on known ciphertext and the ciphertext 
generated using the candidate key. A set of optimum keys is generated after several 
iterations and these optimum keys are then used to extract the original key.  

3   The Artificial Immune System 

Artificial immune systems have cells and use the generation mechanism by creating 
clones of the parent cell population [4]. Selection of the clones from the clone population 
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and affinity maturation principles are used to describe the reaction of the immune system 
to pathogens and the enhancement in its capacity of detecting and eliminating pathogens. 
The clone selection process activates whenever a pathogen attacks the organism; many 
immune cells that identify these pathogens reproduce and some of these immune cells 
become effector cells and some become memory cells.  

The effector cells emit many antibodies whereas the memory cells remain alive for 
a long time to act rapidly and more effectively in future attacks by similar pathogens. 
During the reproduction of the cells, they experience high rate somatic mutations and 
with a selection process, the cells with promising affinity in relation to the attacking 
pathogen distinguish into memory cells. This procedure of somatic mutation and 
selection is known as affinity maturation.  

Both these processes; selection process of clones and maturation of affinity, are 
very much similar to each other with a few differences between these immune proc-
esses and the evolution of species. Within the immune system, somatic cells replicate 
without crossover of genetic material during mitosis, the mutation experienced by an 
immune cell is relative to its affinity with the selective pathogen. This means that with 
high affinity, the mutation rate gets smaller, and the number of offspring of each cell 
is also relative to its affinity with the selective pathogen i.e. with higher affinity, the 
number of offsprings also increases. Evolution in the immune system occurs within 
the organism and thus it can be viewed as a micro-evolutionary process. 

4   Data Encryption Standard (DES) Algorithm 

4.1   The Feistel Ciphers 

A Feistel cipher is a block cipher but with a specific structure. In feistel ciphers, en-
crypt and decrypt operations are used which combine multiple rounds of iterative 
functions. Each round function normally includes bit-shuffling, non-linear functions, 
and XOR operation. The data encryption standard (DES) is also a feistel iterated 
block cipher. The DES algorithm takes a known plaintext P block and the output is 
the ciphertext C block, each of 64 bits. Through a 16-round process, the current 64-bit 
word is divided into two 32-bit parts, the left part L and the right part R and 16 rounds 
i. L and R can be computed as follows: 

Li = Ri-1, 

Ri = Li ⊕ f (Ri-1, Ki) 

Each R block of 32-bit is then expanded to 48-bit block using a table and the ex-
panded Rn-1 is XORed with the key Ki. This 48-bit XOR block with eight blocks of 
each 6 bits is then passed through S blocks to produce an output of eight blocks of 4 
bits each. Where Ki is derived from the cipher key K through the key arrangement 
algorithm, Ki is the 48-bit subkey used in ith round, and  f  is a round function. The round 
function  f  is the major module of DES and consists of three operations: substitution, 
permutation and XOR operations. The S-boxes are nonlinear mappings and the only 
nonlinear part of DES. There are eight S-boxes each of which is a substitution mapping 
of 6 to 4 bits. 
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4.2   Formulating the Problem 

The cryptanalysis using artificial immune system is basically the search of the opti-
mum key in the search space. The difficulty of searching an optimum key depends 
upon the length of the key which is 56 bits long. A cell is used for the representation 
of a key, which consists of a binary bits string. A cell also includes the key fitness and 
its normalized fitness. The cell evolution process is same as the process of a key 
optimization. A bit difference taking place in the key should cause a drastic change in 
the cipher text. Accordingly, initial keys close to the real key, by applying genetic mu-
tation operator, must not generate a better solution than the previous value.  

The selection of a suitable fitness function is a main problem that requires 
careful decision. In general, it is feasible for classical ciphers that the design of the 
fitness measure is modeled on the linear estimated expression or the distribu-
tional properties of the keys. It  is for this reason that the cryptanalysis done 
based on heuristic methods is difficult for block ciphers. However, selection of a suit-
able fitness function does not guarantee that the algorithm will result in deducing the 
real key exactly.   

5   Cryptanalysis of Four-Rounded DES Using Artificial Immune 
System 

5.1   The Initialization Process 

In the initialization process, we define the parent population which is initialized on 
the basis of changes made in the key that we are deducing. The cells in the population 
are initialized by maintaining the bits that are fixed in the deduced key. It can speed 
up the evolution process so as to find the better optimum key as quickly as possible. 
The initialization process needs to maintain the diversity of the clone population.  

5.2   Fitness Function 

As a solution, we define the fitness function in a way that the function should measure 
the connection between initial plaintext/ciphertext and target ciphertext/plaintext 
pairs. We define the plaintext M, original ciphertext CS using real key K, the en-
crypted ciphertext Ct using trial key K', and the fitness function f: 

                                                       f = (S) / 64                                                        (1) 

Where S denotes the number of the same bits in identical positions between CS and Ct. 
It is an approximate expression for cryptanalysis using artificial immune system. 
Many better keys, if adequate plaintext and ciphertext pairs are used, can be success-
fully obtained based on this fitness function in the experiments. Such search solutions 
have better situations as a whole. In some situations, the divergence is comparatively 
evident between the key optimization and the real key. This divergence can be estab-
lished using other plaintext/ciphertext pairs or the fitness function. The parent popula-
tion formation and the fitness of keys are shown in Fig. 1 and Fig. 2 respectively. 
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Fig. 1. Parent population formation using deduced key 

 
Fig. 2. Fitness of keys 

5.3   The Evolution Process 

Given an initial population of parent cells, each one with a fitness value, the algorithm 
progresses by selecting a cell from clone population having the highest fitness value. 
Average error will be calculated for the fitness of parents and clones unless the two 
populations are quite similar, the whole process continues. The two populations are 
then merged and similar cells are removed to overcome the redundancy problem. The 
next step is of search space exploration, which is done by adding a specific amount of 
new cells to the parent population. The parent population and the clone population are 
shown in Fig. 3 and Fig. 4 respectively. 

5.4   Breeding Strategy 

The proposed algorithm is shown below. The algorithm can be elaborated in simple 
steps including steps 1 to 5, where at each iteration; a population of cells is optimized 
locally through affinity comparative mutation. During steps 6 to 8, when this popula-
tion reaches a steady state depending upon the average fitness, the cells interact with  
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Fig. 3. Parent Population 

 
Fig. 4. Clone Population 
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each other and some of the similar cells are eliminated from the population to avoid 
redundancy. Also, a number of randomly generated cells are added to the current 
population and the process of local optimization restarts. Whenever the algorithm is 
run, a key is found and passed to the next run of the algorithm and the new population 
is then initialized by maintaining the fixed bits of the deduced key of the last run. 
Optimum keys are selected from final solutions whose fitness value is the largest. For 
all optimum keys, we count the amount of 1 or 0 for each bit position separately, 
where each count is divided by total Runs. The sum of some bits with 1 or 0 divided 
by Runs has higher value than the threshold alpha. These bits can be deduced as 1 or 
0. The process of mutation is shown in Fig. 5. 

 

Fig. 5. The mutation process 

5.5   Key Deduction Strategy 

The key bits are deduced by comparing the optimum keys obtained from different 
runs. The simple method for deduction is, for example, K1 = 1001011, K2 = 1110010 
and K3 = 1101001 are the three keys from the set of optimum keys; Runs = 3. The 
sum of 1 for each bit position is 3, 2, 1, 2, 0, 2, 2 and the sum of 0 is 0, 1, 2, 1, 3, 1, 1. 
Accordingly, the sum divided by Runs is 1.0, 0.67, 0.33, 0.67, 0, 0.67, 0.67 and 0.0, 
0.33, 0.67, 0.33, 1.0, 0.33, 0.33 respectively. If threshold is 0.8, the first value 1 
and the fifth value 0 are higher than the threshold. Thus, the first bit is 1 and the 
fifth bit is 0 in the real key. 

6   Experimental Setup and Results 

The given table summarizes the performance results and parameters of cryptanalysis 
using artificial immune system for four-rounded DES. The fixed number of genera-
tions N is 1000, and the runs R is 500 times in our experiments. This algorithm is 
implemented in Visual C++ and run on Intel P-M processor.  
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Table 1. Experimental results based on the proposed technique 

Round λ α R 
Optimum 

rate 
 Success 

bits 

Four 0.75 0.60 500 1.0 19 

Four 0.78 0.60 500 1.0 6 

Four 0.80 0.70 500 1.0 11 

Four 0.80 0.75 500 1.0 11 

 
The parameters defined in our results include: 
λ: Fitness threshold, that is, the set of candidate keys.  Include only that key whose 
fitness value is greater than or equal to the specified threshold value. In the experi-
ments, the threshold values are 0.75, 0.78 and 0.80 respectively. 
α: The threshold used to set the values of the deduced key. 
R: It is the number of runs after which the deduced key is obtained. 
Optimum rate: It is the number of keys found during the run having fitness value 
greater than or equal to the defined fitness threshold. 
Success bits: These are the number of bits matched in the deduced key and the origi-
nal known key. 

As Table 1 indicates, the algorithm would find four valuable bits at least for the 
four-rounded DES using the above algorithm. Subsequently, we could fix these 
four bits in the key and repeat the above steps until the whole key is found. In the 
above experiments, the algorithm runs four times and can find the 56-bit key. 

7   Conclusion 

We have presented a new approach for the cryptanalysis of four-rounded Data En-
cryption Standard (DES) based on Artificial Immune System (AIS). The algorithm 
has the property of automatically determining the population size and maintaining the 
local solutions in generations to generate results close to the global results. A known 
plaintext attack is used that aims at deducing the optimum keys depending upon their 
fitness values. The fitness function is an approximate expression for using AIS to 
cryptanalyze the DES algorithm. We can produce adequate optimum keys for all 
plaintext/ciphertext pairs based on this fitness function. However, we also observed 
that the design of actual fitness function should consider the following factors: Firstly, 
fitness function should have a better characteristic of global performance and large 
numbers of optimum keys can be found. Secondly, it is hard to create a high fitness 
value for each search. In some cases, the dissimilarity is comparatively evident be-
tween the current cell and the actual key. This can be solved by using various plain-
text/ciphertext pairs in the experiments. Thirdly, the supporting fitness function can 
be used to improve the evaluation measure. This fitness function does not depend 
upon the cipher’s underlying structure. 
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Abstract. This paper proposes an immune concentration based virus detection
approach which utilizes a two-element concentration vector to construct the fea-
ture. In this approach, ‘self’ and ‘nonself’ concentrations are extracted through
‘self’ and ‘nonself’ detector libraries, respectively, to form a vector with two
elements of concentrations for characterizing the program efficiently and fast.
Several classifiers including k-nearest neighbor (KNN), RBF neural network and
support vector machine (SVM) with this vector as input are then employed to
classify the programs. The selection of detector library determinant and param-
eters associated with a certain classifier is here considered as an optimization
problem aiming at maximizing the accuracy of classification. A clonal particle
swarm optimization (CPSO) algorithm is used for this purpose. Experimental re-
sults demonstrate that the proposed approach not only has a very much fast speed
but also gives around 98% of accuracy under optimum conditions.

Keywords: Immune Concentration, Clonal Particle Swarm Optimization, Virus
Detection.

1 Introduction

Computer virus has been considered as an increasingly serious problem while evolv-
ing with the rapid development of computer environments, such as operating system,
network, etc. There are two main virus detection methods: signature-based method and
malicious activity detection[1]. With novel advanced technologies being widely used
in manufacturing new viruses, polymorphic viruses can change their signatures while
spreading. Heuristic methods which is more sophisticated, like malicious activity detec-
tion, can be used to identity unknown viruses. Among those heuristic methods, AIS as
a dynamic, adaptive and distributed learning system, protects benign files against virus
invasion by distinguishing ‘nonself’ from ‘self’[2]. It is often combined with traditional
classification algorithms to construct a virus detection system, including Naı̈ve Bayes,
Support Vector Machine (SVM), Artificial Neural Network (ANN), k-nearest neighbor
(KNN), and hybrid approaches[3][4].

In this paper, a AIS method is used to generate a two-element concentration vector as
the feature vector for virus detection. ‘Self’ and ‘nonself’ detector libraries contain the
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bit strings which are utmost representative of benign and virus programs, respectively.
Document frequency and information gain of a fixed length fragment are used to decide
whether the fragment can be taken as a detector. ‘Self’ and ‘nonself’ concentrations
are constructed by using ‘self’ and ‘nonself’ detectors in the libraries to traverse a pro-
gram, respectively. Unlike the traditional anti-virus methods, our proposed model helps
reduce the feature dimensionality. The feature with these two elements is the input of
a classifier, and one binary value is the output. As a result, the detector library deter-
minant and parameters associated with the classifier become the vector that we need to
optimize by using a clonal particle swarm optimization (CPSO) algorithm[5]. The op-
timal vector is the one whose cost function associated with classification is minimum,
namely the one make the accuracy of classification maximum.

Comprehensive experiments are conducted on a public virus data set in the pervious
works[6][7]. 10-fold cross validation is used to measure the performance. Comparisons
on performance are also made among different classifiers including k-nearest neighbor
(KNN), RBF neural network and support vector machine (SVM). Experimental results
shows that the proposed approach achieves more than 97% detection rate by just using
a two-element vector, so outperforms current approach.

The paper is organized as follows. In Section II, algorithmic implementations of our
proposed approach are elaborated in detail with CPSO-based optimization process for
detector library determinant and parameters associated with a certain classifier. Several
experimental results are reported in Section III.

2 Immune Concentration Based Virus Detection Approach

2.1 Overview of Our Proposed Approach

Our proposed approach is mainly divided into three parts. (1)Generate ‘self’ and ‘non-
self’ detector libraries. (2)Extract the two-element concentration vector of each training
sample as the input of a classifier and use CPSO to optimize detector library and pa-
rameters associated with the classifier. (3)Several trained classifiers including KNN,
RBF neural network and SVM are used to detect the testing samples characterized by
optimized concentration vectors. The outline of our proposed approach is described in
algorithm 1 and each step in detail is discussed in the following sections.

2.2 Generation of Detector Libraries

The operating principle of generating ‘self’ detector library and ‘nonself’ detector li-
brary is shown in algorithm 2.

One meaningful computer instruction is 8 or 16 bits normally. Here a fixed length
L-bit fragment of binary data which is considered containing appropriate information of
functional behaviors is taken as the detector to discriminate virus from benign program.
The length L is set not too short to discriminate ‘self’ and ‘nonself’ and not too long to
make virus-special data hidden in the binary data of files. Intuitively, the fragment that
appears most in virus programs while seldom in benign programs is a good represen-
tative of a virus. Consequently, a sliding window (size: L bits, the overlap: [L/2] bits)
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Algorithm 1. Algorithm for Virus Detection
Generate ‘self ’ and ‘nonself’ detector libraries from training set
The sizes of the libraries are decided by parameter m which corresponds to proportional selec-
tion of the candidate detectors

for each the sample in training set do
Extract the two-element concentration vector of each training sample through the two de-
tector libraries as the input of a classifier

end for

Use these feature vectors to train a certain classifier
Use CPSO to optimize detector library determinant m and classifier-related parameters

while Algorithm is running do
if a program is detected then

Characterize the sample by concentration vector through trained ‘self ’ and ‘nonself’ de-
tector libraries
Use trained classifier to predict the label of the program

end if
end while

is used to count the fragment’s document frequency in the virus and benign programs,
which can reflect its tendency to be a virus or a benign file. In this paper, L is set to 32.

After counting the document frequency of each fragment, the tendency T (X) of
fragment X is defined in formula 1.

T (X) = P (X = 1|Cv) − P (X = 1|Cs) (1)

P (X = 1|Cv)means document frequency of fragment X appears in virus samples of
training set;
P (X = 1|Cs)means document frequency of fragment X appears in benign samples of
training set.

If each fragment is extracted to form a dictionary, the size of this dictionary would
be very large. The features that appears in most of files are not relevant to separate
these files because all the classes have instances that contain these features. So with
the number growth of features, the cost of computing would be increasing but the ac-
curacy may not be improved and even worse. We reduces the number of fragments
to generate ‘self’ and ‘nonself’ detector libraries based on information gain ratio of
each detectors to make the detectors more representative. The process is described in
Algorithm 2, in which mis a parameters to be adjusted, means proportional selection of
all the fragments. The information gain is defined in formula 2.

IG(X,C) =
∑

x∈{0,1},c∈{Cv,Cs}
P (X = x∧C = c) · log2

P (X = x ∧ C = c)
P (X = x) · P (C = c)

(2)

P (X = 0|Cv)means document frequency of fragment X which doesn’t appear in virus
samples of training set;
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P (X = 0|Cs)means document frequency of fragment X which doesn’t appear in be-
nign samples of training set.

Algorithm 2. Algorithm for Generation of Detector Libraries
Initialize ‘self ’ and ‘nonself’ detector libraries as ∅

while Algorithm is running do
for each fragment X in the sample of training set do

Calculate the tendency of fragment X by formula 1
Calculate the information gain of fragment X by formula 2

end for

for each fragment X in the sample of training set do
if IG(X) > m then

if T (X) < 0 then
add fragment X into ‘self’ detector library

else
add fragment X into ‘nonself’ detector library

end if
end if

end for
end while

Extract Ps% of fragments to form ‘self ’ detector library and Pn% of fragments to form ‘non-
self’ detector library, Ps, Pn are decided by parameter m

2.3 Construction of Feature Vector

For constructing a feature vector, a sliding window with [L/2] bits overlap is used to get
the ‘self’ concentration and ‘nonself’ concentration of a program i, which are defined
in formula 3,4, respectively.

BCi =
BNi

Ni
(3)

V Ci =
V Ni

Ni
(4)

Where BCi and V Ci denotes the ‘self’ and ‘nonself’ concentration, respectively; BNi

is the number of detectors appearing in both program i and ‘self’ detector library; V Ni

is the number of detectors appearing in both program i and ‘nonself’ detector library;
Ni denotes the number of different L-bit fragments in the program.

2.4 Classification Parameters Selection

The feature constructed by two-element concentrations is the input of a classifier, and
one binary value is the output. The generation of ‘self’ and ‘nonself’ detector libraries,
which in turn determine the two-element concentration vector uniquely, here is an op-
timization problem. The optimal vector is the one make the accuracy of classification
maximum.
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Algorithm 3. Algorithm for Feature Construction
For a program to be detected, calculate the number Ni of different L-bit fragments using a
sliding window with [L/2] bits overlap

Initialize BNi = 0, V Ni = 0

for each different L-bit fragment in the program do
if it appears in ‘self ’ detector library then

BNi++;
else if it appears in ‘nonself’ detector library then

V Ni++;
end if

end for

self-concentration=BNi/Ni

nonself-concentration=V Ni/Ni

The vector that we need to optimize P ∗ = {P ∗
s , P

∗
n , P

∗
1 , P

∗
2 , · · · , P ∗

m} is composed
of detector library determinant m, and parameters P ∗

1 , P
∗
2 , · · · , P ∗

m associated with a
certain classifier. When m is set to different values, P ∗

s , P
∗
n would take different values,

different detector libraries are obtained. So for a program to be characterized, a ‘self’
concentration which represents its similarity to benign program and a ‘nonself’ con-
centration which represents its similarity to virus can be constructed. P ∗

1 , P
∗
2 , · · · , P ∗

m

are classifier-related parameters which influence the performance of a certain classifier.
Different classifiers hold different parameters and lead to different performance. For
examples, parameters associated with KNN include number of nearest neighbors and
the ways of distance measures. SVM-related parameters that determine the position of
optimal hyperplane in feature space, include cost parameter C and kernel parameters.
Finally, the trained classifiers are used to classify detecting samples.

The optimal vector is the one whose cost function associated with classification is
minimum, namely the one make the accuracy of classification maximum. The cost func-
tion CF (P ) can be defined as

CF (P ) = Err(P ) (5)

where Err(P ) is the classification error measured by 10-fold cross validation on the
training set.

Input vector include two parts: detector library determinantm, and P ∗
1 , P

∗
2 , · · · , P ∗

m

these classifier-related parameters. Output is to find a P ∗, so that

CF (P ∗) = Err(P ∗) = min
{m,P∗

1 ,P∗
2 ,··· ,P∗

m}
Err(P ) (6)

3 Experimental Results

3.1 Data Set

Experiments are conducted on a public virus data set in the pervious works[6][7].
“Cilpku08” data set, which can get from http://www.cil.pku.edu.cn/malware, includes
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3547 viruses classified to 685 families based on their properties. we select 915 benign
files and 900 virus to test our method. 1815 programs are divided into ten partitions with
approximately equal numbers of virus and benign programs. 10-fold cross validation is
used to measure the performance.

3.2 Experiments on Different Concentrations

Here, m is a parameters to be adjusted, which means proportional selection of all the
fragments. Different ‘self’ and ‘nonself’ concentrations correspond to Ps% of frag-
ments extracted to form ‘self’ library and Pn% of fragments extracted to form ‘nonself’
library. Ps, Pn are decided by parameter m. A linear SVM with default parameters is
used as the classifier. m ranges from 10% to 100% with a step 10%. Figure 1 shows the
accuracy with different m value.

10 20 30 40 50 60 70 80 90 100
0.9

0.95

1

Proportional selection for different concentrations(%)

A
cc

ur
ac

y

Accuracy of classification on detecting set

 

 

All programs
Virus programs
Benign Programs

Fig. 1. Accuracy with different concentrations on detecting set by SVM

It is easy to see that different m gets almost the same result. In order to get a small
detector library, we set m as 10%.

3.3 Classification Parameter Optimization

The selection of detector library determinant m and the classifier-related parameters,
P ∗

1 ,P ∗
2 ,· · · ,P ∗

m, is a dynamic optimization process.
Parameters associated with KNN include number of nearest neighborsK and the ways

of distance measures, K is optimized in the integer number interval [1, 20], the ways of
distance measures are chosen among euclidean, cityblock, cosine, correlation. For
RBF neural network, the spread is optimized in real number interval [1, 5]. For SVM
with linear kernel the cost parameterC is optimized in real number interval [1, 200]. For
SVM with RBF kernel the cost parameterC and γ are optimized in real number interval
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Table 1. Average detection rates on the detecting set under optimum conditions

Empirical classification designs Optimized classification designs
Methods All(%) V irus(%) Benign(%) All(%) V irus(%) Benign(%)

KNN 95.76 94.00 97.50 98.90 98.78 99.02
RBF NN 97.57 97.56 97.59 97.96 97.78 98.14

SVM(Linear) 95.86 99.00 92.79 96.92 99.22 94.66
SVM(RBF) 95.81 99.44 92.22 98.62 98.00 99.24

[1, 200] and [1, 20], respectively.m is optimized in the integer number interval [5, 100].
The maximum number of generations is set to be 200 as the stop criterion, the number
of particles in a swarm is 20.

The randomness of CPSO leads to the performance and obtained parameters vary
slightly, therefore the average results of ten independent classes of experiments are used
to evaluate tests, which is more reasonable. The average performances of empirical and
optimized classification designs are reported in Table 1.

The results show that the optimized classification design resulted in a 2% increase in
detection rate compared with the empirical classification design in average. The CPSO-
based method has got an obvious advantage.

4 Conclusions

The immune concentration based virus detection approach proposed in this paper took
a two-element concentration vector as the virus feature and employed several classical
classifiers to detect virus. When parameters were optimized, the accuracy on detecting
set reached 98%.

Different from traditional binary data mining methods, our method established an
uniform framework for a general and systematical approach of feature construction and
reduced the dimensionality to make the training and detecting faster. Also, the proposed
feature extraction optimization approach attained better comparable results than the
approach with empirical tentative parameters setting. The new method is easier without
sacrificing performance.
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Abstract. Inspired by observing fireworks explosion, a novel swarm in-
telligence algorithm, called Fireworks Algorithm (FA), is proposed for
global optimization of complex functions. In the proposed FA, two types
of explosion (search) processes are employed, and the mechanisms for
keeping diversity of sparks are also well designed. In order to demon-
strate the validation of the FA, a number of experiments were conducted
on nine benchmark test functions to compare the FA with two vari-
ants of particle swarm optimization (PSO) algorithms, namely Standard
PSO and Clonal PSO. It turns out from the results that the proposed FA
clearly outperforms the two variants of the PSOs in both convergence
speed and global solution accuracy.

Keywords: natural computing, swarm intelligence, fireworks algorithm,
particle swarm optimization, function optimization.

1 Introduction

In recent years, Swarm Intelligence (SI) has become popular among researchers
working on optimization problems all over the world [1,2]. SI algorithms, e.g. Par-
ticle Swarm Optimization (PSO) [3], Ant System [4], Clonal Selection Algorithm
[5], and Swarm Robots [6], etc., have advantages in solving many optimization
problems. Among all the SI algorithms, PSO is one of the most popular algorithm
for searching optimal locations in a D-dimensional space. In 1995, Kennedy and
Eberhart proposed PSO as a powerful global optimization algorithm inspired by
the behavior of bird blocks [3]. Since then, the PSO has attracted the attentions
of researchers around the globe, and a number of variants of PSO have been con-
tinually proposed [7,8].

Like PSO, most of swarm intelligence algorithms are inspired by some intelli-
gent colony behaviors in nature. In this paper, inspired by the emergent swarm
behavior of fireworks, a novel swarm intelligence algorithm called Fireworks Al-
gorithm (FA) is proposed for function optimization. The FA is presented and
implemented by simulating the explosion process of fireworks. In the FA, two
explosion (search) processes are employed and mechanisms for keeping diversity
of sparks are also well designed. To validate the performance of the proposed
FA, comparison experiments were conducted on nine benchmark test functions

Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 355–364, 2010.
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among the FA, the Standard PSO (SPSO), and the Clonal PSO (CPSO) [8].
It is shown that the FA clearly outperforms the SPSO and the CPSO in both
optimization accuracy and convergence speed.

The remainder of this paper is organized as follows. Section 2 describes the
framework of the FA and introduces two types of search processes and mecha-
nisms for keeping diversity. In Section 3, experimental results are presented to
validate the performance of the FA. Section 4 concludes the paper.

2 Fireworks Algorithm

2.1 FA Framework

When a firework is set off, a shower of sparks will fill the local space around the
firework. In our opinion, the explosion process of a firework can be viewed as
a search in the local space around a specific point where the firework is set off
through the sparks generated in the explosion. When we are asked to find a point
xj satisfying f(xj) = y, we can continually set off ‘fireworks’ in potential space
until one ‘spark’ targets or is fairly near the point xj . Mimicking the process of
setting off fireworks, a rough framework of the FA is depicted in Fig. 1.

In the FA, for each generation of explosion, we first select n locations, where
n fireworks are set off. Then after explosion, the locations of sparks are obtained
and evaluated. When the optimal location is found, the algorithm stops. Oth-
erwise, n other locations are selected from the current sparks and fireworks for
the next generation of explosion.

From Fig. 1, it can be seen that the success of the FA lies in a good design
of the explosion process and a proper method for selecting locations, which are
respectively elaborated in subsection 2.2 and subsection 2.3.

Select n initial locations

Set off n fireworks at n locations

Obtain the locations of sparks

Evaluate the quality of the locations

Select n locations 

Optimal location 
found

End

No

Yes

Fig. 1. Framework of fireworks algorithm
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2.2 Design of Fireworks Explosion

Through observing fireworks display, we have found two specific behavior of
fireworks explosion. When fireworks are well manufactured, numerous sparks are
generated, and the sparks centralize the explosion center. In this case, we enjoy
the spectacular display of the fireworks. However, for a bad firework explosion,
quite few sparks are generated, and the sparks scatter in the space.

The two manners are depicted in Fig. 2. From the standpoint of a search
algorithm, a good firework denotes that the firework locates in a promising area
which may be close to the optimal location. Thus, it is proper to utilize more
sparks to search the local area around the firework. In the contrast, a bad firework
means the optimal location may be far from where the firework locates. Then,
the search radius should be larger. In the FA, more sparks are generated and
the explosion amplitude is smaller for a good firework, compared to a bad one.

(a) Good explosion (b) Bad explosion

Fig. 2. Two types of fireworks explosion

Number of Sparks. Suppose the FA is designed for the general optimization
problem:

Minimize f(x) ∈ R, xmin � x � xmax , (1)

where x = x1, x2, . . . , xd denotes a location in the potential space, f(x) is an
objective function, and xmin and xmax denote the bounds of the potential space.

Then the number of sparks generated by each firework xi is defined as follows.

si = m · ymax − f(xi) + ξ∑n
i=1 (ymax − f(xi)) + ξ

, (2)

where m is a parameter controlling the total number of sparks generated by
the n fireworks, ymax = max(f(xi)) (i = 1, 2, . . . , n) is the maximum (worst)
value of the objective function among the n fireworks, and ξ, which denotes the
smallest constant in the computer, is utilized to avoid zero-division-error.

To avoid overwhelming effects of splendid fireworks, bounds are defined for
si, which is shown in Eq. 3.
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ŝi =

⎧⎪⎨
⎪⎩
round(a ·m) if si < am

round(b ·m) if si > bm

round(si) otherwise

, a < b < 1 , (3)

where a and b are const parameters.

Amplitude of Explosion. In contrast to the design of sparks number, the am-
plitude of a good firework explosion is smaller than that of a bad one. Amplitude
of explosion for each firework is defined as follows.

Ai = Â · f(xi) − ymin + ξ∑n
i=1 (f(xi) − ymin) + ξ

, (4)

where Â denotes the maximum explosion amplitude,and ymin = min(f(xi)) (i =
1, 2, . . . , n) is the minimum (best) value of the objective function among the n
fireworks.

Generating Sparks. In explosion, sparks may undergo the effects of explosion
from random z directions (dimensions). In the FA, we obtain the number of the
affected directions randomly as follows.

z = round(d · rand(0, 1)) , (5)

where d is the dimensionality of the location x, and rand(0, 1) is an uniform
distribution over [0,1].

The location of a spark of the firework xi is obtained using Algorithm 1.
Mimicking the explosion process, a spark’s location x̃j is first generated. Then
if the obtained location is found to fall out of the potential space, it is mapped
to the potential space according to the algorithm.

Algorithm 1. Obtain the location of a spark
Initialize the location of the spark: x̃j = xi ;
z=round(d · rand(0, 1));
Randomly select z dimensions of x̃j ;
Calculate the displacement: h = Ai · rand(−1, 1);
for each dimension x̃j

k ∈ {pre-selected z dimensions of x̃j} do
x̃j

k = x̃j
k+h;

if x̃j
k < xmin

k or x̃j
k > xmax

k then
map x̃j

k to the potential space: x̃j
k = xmin

k + | x̃j
k | %(xmax

k − xmin
k );

end if
end for

To keep the diversity of sparks, we design another way of generating sparks —
Gaussian explosion, which is show in Algorithm 2. A function Gaussian(1, 1),
which denotes a Gaussian distribution with mean 1 and standard deviation 1, is
utilized to define the coefficient of the explosion. In our experiments, m̂ sparks
of this type are generated in each explosion generation.
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Algorithm 2. Obtain the location of a specific spark
Initialize the location of the spark: x̂j = xi ;
z=round(d · rand(0, 1));
Randomly select z dimensions of x̂j ;
Calculate the coefficient of Gaussian explosion: g = Gaussian(1, 1);
for each dimension x̂j

k ∈ {pre-selected z dimensions of x̂j} do
x̂j

k = x̂j
k · g;

if x̂j
k < xmin

k or x̂j
k > xmax

k then
map x̂j

k to the potential space: x̂j
k = xmin

k + | x̂j
k | %(xmax

k − xmin
k );

end if
end for

2.3 Selection of Locations

At the beginning of each explosion generation, n locations should be selected for
the fireworks explosion. In the FA, the current best location x∗, upon which the
objective function f(x∗) is optimal among current locations, is always kept for
the next explosion generation. After that, n− 1 locations are selected based on
their distance to other locations so as to keep diversity of sparks. The general
distance between a location xi and other locations is defined as follows.

R(xi) =
∑
j∈K

d(xi,xj) =
∑
j∈K

‖ xi − xj ‖ , (6)

where K is the set of all current locations of both fireworks and sparks.
Then the selection probability of a location xi is defined as follows.

p(xi) =
R(xi)∑

j∈K R(xj)
. (7)

When calculating the distance, any distance measure can be utilized including
Manhattan distance, Euclidean distance, Angle-based distance, and so on [9].
When d(xi,xj) is defined as | f(xi) − f(xj) |, the probability is equivalent to
the definition of the immune density based probability in Ref. [10].

2.4 Summary

Algorithm 3 summarizes the framework of the FA. During each explosion genera-
tion, two types of sparks are generated respectively according to Algorithm 1 and
Algorithm 2. For the first type, the number of sparks and explosion amplitude
depend on the quality of the corresponding firework (f(xi)). In the contrast, the
second type is generated using a Gaussian explosion process, which conducts
search in a local Gaussian space around a firework. After obtaining the locations
of the two types of sparks, n locations are selected for the next explosion gener-
ation. In the FA, approximate n+m+ m̂ function evaluations are done in each
generation. Suppose the optimum of a function can be found in T generations,
then we can deduce that the complexity of the FA is O(T ∗ (n+m+ m̂)).
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Algorithm 3. Framework of the FA
Randomly select n locations for fireworks;
while stop criteria=false do

Set off n fireworks respectively at the n locations:
for each firework xi do

Calculate the number of sparks that the firework yields: ŝi, according to Eq. 3;
Obtain locations of ŝi sparks of the firework xi using Algorithm 1;

end for
for k=1:m̂ do

Randomly select a firework xj ;
Generate a specific spark for the firework using Algorithm 2;

end for
Select the best location and keep it for next explosion generation;
Randomly select n − 1 locations from the two types of sparks and the current
fireworks according to the probability given in Eq. 7;

end while

3 Experiments

3.1 Benchmark Functions

To investigate the performance of the proposed FA, we conducted experiments
on nine benchmark functions. The feasible bounds for all functions are set as
[−100, 100]D. The expression of the functions, initialization intervals and di-
mensionalities are listed in Table 1.

Table 1. Nine benchmark functions utilized in our experiments

Function Expression Initialization D
Sphere F1 =

∑D
i=1 x2

i [30, 50]D 30
Rosenbrock F2 =

∑D−1
i=1 (100(xi+1 − x2

i )
2 + (xi − 1)2) [30, 50]D 30

Rastrigrin F3 =
∑D

i=1(x
2
i − 10 cos(2πxi) + 10) [30, 50]D 30

Griewank F4 = 1 +
∑D

i=1

x2
i

4000
−∏D

i=1 cos( xi√
i
) [30, 50]D 30

Ellipse F5 =
∑D

i=1 104 i−1
D−1 x2

i [15, 30]D 30
Cigar F6 = x2

1 +
∑D

i=2 104x2
i [15, 30]D 30

Tablet F7 = 104x2
1 +
∑D

i=2 x2
i [15, 30]D 30

Schwefel F8 =
∑D

i=1((x1 − x2
i )2 + (xi − 1)2) [15, 30]D 30

Ackley
F9 = 20 + e − 20exp

(
−0.2

√
1
D

∑D
i=1 x2

i

)
[15, 30]D 30

−exp
(

1
D

∑D
i=1 cos(2πx2

i )
)

3.2 Comparison Experiments among the FA, the CPSO and the
SPSO

In this section, we compare the performance of the FA with the CPSO and the
SPSO in terms of both convergence speed and optimization accuracy.
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Table 2. Statistical mean and standard deviation of solutions found by the FA, the
CPSO and the SPSO on nine benchmark functions over 20 independent runs

Function
Function FA’s mean CPSO’s mean SPSO’s mean
evluations (StD) (StD) (StD)

Sphere 500000
0.000000 0.000000 1.909960

(0.000000) (0.000000) (2.594634)

Rosenbrock 600000
9.569493 33.403191 410.522552

(12.12829) (42.513450) (529.389139)

Rastrigrin 500000 0.000000 0.053042 167.256119
(0.000000) (0.370687) (42.912873)

Griewank 200000
0.000000 0.632403 2.177754

(0.000000) (0.327648) (0.294225)

Ellipse 500000 0.000000 0.000000 53.718807
(0.000000) (0.000000) (68.480173)

Cigar 600000
0.000000 0.000000 0.002492

(0.000000) (0.000000) (0.005194)

Tablet 500000
0.000000 0.000000 1.462832

(0.000000) (0.000000) (1.157021)

Schwefel 600000 0.000000 0.095099 0.335996
(0.000000) (0.376619) (0.775270)

Ackley 200000
0.000000 1.683649 12.365417

(0.000000) (1.317866) (1.265322)

The parameters of both the CPSO and the SPSO are set as those in Ref. [8].
For the FA, the parameters were selected by some preliminary experiments. We
found that the FA worked quite well at the setting: n = 5, m = 50, a = 0.04,
b = 0.8, Â = 40, and m̂ = 5, which is applied in all the comparison experiments.

Table 2 depicts the optimization accuracy of the three algorithms on nine
benchmark functions, which are averaged over 20 independent runs. It can be
seen that the proposed FA clearly outperforms both the CPSO and SPSO on all
the functions. In addition, the FA can find optimal solutions on most benchmark
functions in less than 10000 function evaluations, as shown in Table 3. However,
the optimization accuracy of the CPSO and the SPSO is unacceptable within
10000 function evaluations.

Besides optimization accuracy, convergence speed is quite essential to an opti-
mizer. To validate the convergence speed of the FA, we conducted more thorough
experiments. Fig. 3 depicts the convergence curves of the FA, the CPSO and the
SPSO on eight benchmark functions averaged over 20 independent runs. From
these results, we can arrive at a conclusion that the proposed FA has a much
faster speed than the CPSO and the SPSO. From Table 3, we can find that the
FA can find excellent solutions with only 10000 times of function evaluations.
This also reflects the fast convergence speed of the proposed FA.



362 Y. Tan and Y.C. Zhu

0 2000 4000 6000 8000 10000

0

1

2

3

4

5x 10
4

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(a) Sphere

0 0.5 1 1.5 2
x 10

4

0

2

4

6

8

x 10
9

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(b) Rosenbrock

0 2000 4000 6000 8000 10000

0

1

2

3

4

5x 10
4

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(c) Rastrigin

0 2000 4000 6000 8000 10000

0

5

10

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(d) Griewank

0 2000 4000 6000 8000

0

5

10

15

20x 10
6

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(e) Ellipse

0 2000 4000 6000 8000

0

5

10

15
x 10

7

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(f) Cigar

0 2000 4000 6000

0

1

2

3x 10
5

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(g) Tablet

0 2 4 6 8 10
x 10

4

0

2

4

6

8

x 10
6

Function evaluations

B
es

t 
fi

tn
es

s

 

 

FWA
CPSO
SPSO

(h) Schwefel

Fig. 3. Convergence curves of the FA, the CPSO and the SPSO on eight benchmark
functions. The function fitness are averaged over 20 independent runs.
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Table 3. Statistical mean and standard deviation of solutions found by the FA, the
CPSO and the SPSO on nine benchmark functions over 20 independent runs of 10000
function evaluations

Function
FA’s mean CPSO’s mean SPSO’s mean

(StD) (StD) (StD)

Sphere
0.000000 11857.425781 24919.099609

(0.000000) (3305.973067) (3383.241523)

Rosenbrock
19.38330 2750997504.000000 5571942400.000000

(11.94373) (1741747548.420642) (960421617.568024)

Rastrigrin 0.000000 10940.148438 24013.001953
(0.000000) (3663.484331) (4246.961530)

Griewank
0.000000 3.457273 7.125976

(0.000000) (0.911027) (0.965788)

Ellipse
0.000000 2493945.500000 5305106.500000

(0.000000) (1199024.648305) (1117954.409340)

Cigar 0.000000 122527168.000000 149600864.000000
(0.000000) (28596381.089661) (13093322.778560)

Tablet
0.000000 15595.107422 42547.488281

(0.000000) (8086.792234) (8232.221882)

Schwefel
4.353733 8775860.000000 6743699.000000

(1.479332) (1217609.288290) (597770.084232)

Ackley 0.000000 15.907665 18.423347
(0.000000) (1.196082) (0.503372)

3.3 Discussion

As shown in the experiments, the FA has a faster convergence speed and a better
optimization accuracy, compared to the PSO. We consider the success of the FA
lies in the following two aspects.

– In the FA, sparks suffer the power of explosion from z dimensions simul-
taneously, and the z dimensions are randomly selected for each spark x̃i.
Thus, there is a probability that the differences between the firework and
the target location happen to lie in these z dimensions. In this scenario, the
sparks of the firework can move towards the target location from z directions
simultaneously, which endues the FA with a fast convergence speed.

– Two types of sparks are generated to keep the diversity of sparks, and the
specific selection process for locations is a mechanism for keeping diversity.
Therefore, the FA has the capability of avoiding premature convergence.

4 Conclusions

Mimicking the explosion process of fireworks, the so-called FA is proposed and
implemented for function optimization. The experiments among the FA, the
CPSO and the SPSO have shown that the proposed FA has a promising per-
formance. It clearly outperforms the CPSO and the SPSO on nine benchmark
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functions in terms of both optimization accuracy and convergence speed, which
endues the FA with a promising prospect of application and extension. In future
work, we will seek a deep theoretical analysis on the FA and try to apply the
FA to some practical engineering applications. Finally, we intend to discuss the
relationship between the FA and other general-purpose optimization algorithms.
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Abstract. Distribution network reconfiguration for loss minimization is a com-
plex, large-scale combinatorial optimization problem. In this paper, a novel 
method called bacterial foraging optimization algorithm with particle swarm 
optimization strategy (BF-PSO) algorithm is applied to solve this problem. To 
verify the effectiveness of the proposed method, the optimization calculations 
of IEEE 69-bus testing system by the presented method are conducted and the 
calculation results are compared with pertinent literatures. Simulation results 
show that the proposed algorithm possesses fast convergence speed while the 
quality of solution and stability is ensured. 

Keywords: power system, distribution network reconfiguration, power loss  
reduction, bacterial foraging optimization algorithm, BF-PSO algorithm. 

1   Introduction 

As an integral part of electric power system, power distribution system plays an im-
portant role in connecting electric power generation and the consumers. The distribu-
tion network is generally designed in closed loop and operated in open loop, and it 
involves large quantity of sectionalizing switches and a small amount of tie switches. 
The distribution network reconfiguration (DNR) is to change the network topology 
through opening and closing these switches in order to optimize network operation 
parameters. 

Theoretically, the reconfiguration of distribution network is a complicated problem 
of multi constraints, high dimensions and large-scale nonlinear combinatorial optimi-
zation which is a NP-hard problem. At present, there are a lot of methods for the recon-
figuration of distribution network, such as the traditional optimal methods [1], the 
heuristic method [2], artificial intelligence method such as genetic algorithm (GA) [3], 
ant swarm algorithm (ASA) [4], particle swarm algorithm (PSO) [5], etc. Although, in 
order to improve the convergence and calculation speed, there appeared a lot of im-
proved and hybrid algorithms [6]-[10], the problem is not fundamentally solved. 

In this paper, a new distribution network reconfiguration method employing bacte-
rial foraging optimization algorithm with particle swarm optimization (BF-PSO) as 
optimal means is proposed. The proposed method is tested on IEEE 69-bus networks. 
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This paper consists of 5 sections. Section 2 formulates the problem of reconfiguration 
for distribution network loss minimization. Section 3 presents bacterial foraging op-
timization algorithm and BF-PSO algorithm. Section 4 provides the BF-PSO algo-
rithm example analysis results for distribution network reconfiguration. Finally, in 
section 5, the main conclusions are addressed. 

2   Formulation of DN Reconfiguration Problem 

2.1   Mathematical Model of DN Reconfiguration Problem 

In a more constrained energy environment, the electric distribution operators are more 
and more interested in the minimization of energy losses. So, this paper considers 
only the losses minimization while satisfying operation constrains. The loss-minimum 
reconfiguration problem generally can be mathematically expressed as: 

2 2 2

1

min ( )
n

i i i i i
i

f k r P Q V
=

= +∑ .      (1)  

Where ir  is the resistance of branch i ; iP  and iQ  are the active power and reactive 

power of branch i  respectively; iV  is the voltage of the end node of branch i ; n  is the 

total number of branches; ik  represents the topological status of the branch i , 1ik =  

if the branch i  is closed, and 0ik =  if the branch i  is open; f  is the system losses. 

The controlling switches depend on the constraints: power flow constraints, network 
voltage constraints, capability constraints and topology constraints in terms of net-
work structure requirements. Subject to the following: 
1) Power flow constraint 

=AP D .      (2) 

Where A  is node-branch associated matrix; P  is the vector of power flow; D  is the 
vector of load requirement. 
2) Voltage constraint 

min maxiV V V≤ ≤ .      (3) 

Where minV  and maxV  are respectively the lower bound and upper bound of nodal 

voltage. 
3) Capability constraint 

maxi iS S≤ .      (4) 

Where maxiS  is the upper bound of the branch capacity. 

4) Radial Structure Constraint 

g G∈ .      (5) 

Where g  is the current network structure, and G  is the set of all allowed radial net-

work structures (i.e. the set excluding loop and island). 
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2.2   Process of DN Reconfiguration Problem 

Fig.1 is the process flow of reconfiguration of distribution network. 

 

Fig. 1. Flow chart of distribution network reconfiguration 

3   Bacterial Foraging Optimization Algorithm with Particle 
Swarm Optimization Strategy 

3.1   The Classical Bacterial Foraging Optimization Algorithm 

In the process of foraging, E. coli bacteria undergo four stages, namely, chemotaxis, 
swarming, reproduction, elimination and dispersal. In search space, BFOA seek opti-
mum value through the chemotaxis of bacteria, and realize quorum sensing via as-
sembling function between bacterial, and satisfy the evolution rule of the survival of 
the fittest make use of reproduction operation, and use elimination-dispersal mecha-
nism to avoid falling into premature convergence [11]. 

1) Chemotaxis 

This process was simulated by two different moving ways: run or tumble. This alter-
nation between the two modes will move the bacterium, which enables it to "search" 
for nutrients. Supposing ( , , )i j k lθ  represents the position of the each member in the 
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population of S bacterial at the jth chemotactic step, kth reproduction step, and lth 
elimination. The movement of bacterium may be presented by: 

( 1, , ) ( , , ) ( ) ( )i ij k l j k l C i jθ θ φ+ = + .      (6) 

Where ( ) 0C i >  is the size of the step taken in the random direction specified by the 

rumble. ( )jφ  indicates a unit length vector in the random direction. 

2) Swarming 

To achieve swarming, function to model the cell-to-cell signaling via an attractant and 
a repellent. The mathematical representation can be represented by: 

1

2

1 1

2

1 1

( , ( , , )) ( , ( , , ))

exp ( )

exp ( )

S
i i

cc cc
i

pS
i

attract attract m m
i m

pS
i

repellent repellent m m
i m

J P j k l J j k l

d

h

θ θ θ

ω θ θ

ω θ θ

=

= =

= =

=

⎡ ⎤⎛ ⎞
= − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

+ − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑

∑ ∑

∑ ∑

.      (7) 

Where ( , ( , , ))ccJ P j k lθ  is the cost function value to be added to the actual cost func-

tion. S  is the total number of bacteria and p  is the number of parameters to be opti-

mized which are presented in each bacterium. attractd  is the depth of the attractant 

released by the cell and attractω  is a measure of the width of the attractant signal. 

repellent attracth d=  is the height of the repellent effect and repellentω  is a measure of the 

width of the repellent. 

3) Reproduction 

According to the rules of evolution, individual will reproduce themselves in appropri-
ate conditions in a certain way. For bacterial, a reproduction step takes place after all 
chemotactic steps. 

1

1

( , , , )
cN

i
health

j

J J i j k l
+

=

= ∑ .      (8) 

Where i
healthJ  is the health of bacterium i . Sort bacteria and chemotactic parameters 

( )C i  in order of ascending cost (higher cost means lower health). To keep a constant 

population size, bacteria with the highest healthJ  values die. The remaining bacteria are 

allowed to split into two bacteria in the same place. 

4) Elimination-Dispersal 

From the evolutionary point of view, elimination and dispersal were used to guarantee 
diversity of individuals and to strengthen the ability of global optimization. In BFOA, 
bacteria are eliminated with a probability of Ped. In order to keep the number of bacteria 
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in the population constant, if a bacterium is eliminated, simply disperse one to a random 
location on the optimization domain. 

3.2   BF-PSO Algorithm 

In 2008, W. Korani proposed the BF-PSO algorithm [12], it combined both  
algorithms BF and PSO. The aim is to make use of PSO ability to exchange social 
information and BF ability to find a new solution by elimination and dispersal. In the 
BF-PSO, the unit length random direction of tumble behavior can be decided by the 
global best position and the best position of each bacterium. During the chemotaxis 
loop, the update of the tumble direction is determined by: 

1 1 2 2( 1) ( ) ( ) ( )lbest current gbest currentj w j C R P P C R P Pφ φ+ = ⋅ + ⋅ − + ⋅ − .      (9) 

Where lbestP  is the best position of each bacterial and gbestP  is the global best bacterial. 

The brief pseudo-code of the BF-PSO has been provided in [12]. 

4   Algorithm Example Analysis for DN Reconfiguration 

In order to study BF-PSO algorithm performance, tests are done on IEEE 69-bus 
system [13] as shown in Fig.2. The system consists of 73 branches, 68 sectionalizing 
switches and 5 tie switches. Prior to reconfiguration, the open switches of power dis-
tribution network are TS11-66, TS13-20, TS15-69, TS27-54 and TS39-48. The rated 
voltage is 12.66 kV and the total load is 3802.2kW+j2694.6kvar, while the initial 
system power loss is 225.0kW. 

  

Fig. 2. IEEE 69-bus test system 

The Article writes a distribution network reconfiguration program in Matlab Lan-
guage. Use a computer of 2.66 GHz CPU and Windows 2002 operating system to do 
calculation. To ensure the accuracy and speed of the solution process as much as 
possible, the parameters of the algorithm are adjusted in this paper on the basis of 
empirical values. Selecting swarm scale is 50, the chemotactic loop number Nc is 4, 
the number of reproduction steps Nre is 4, the number of elimination and dispersal 
events Ned is 2, the probability of elimination and dispersal Ped is 0.25, inertia weight 
is 0.9, C1 and C2 is 1.2, and the maximum iteration number is 100. The power flow is 
calculated through back/forward sweep method, and the convergence condition is the  
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Table 1. Result Before and After Reconfiguration 

 The open switches 
Power 
losses 
(kW) 

The  
minimum 

node  
voltage(pu) 

Before DNR 39-48 54-27 13-20 11-66 15-69 225.00 0.909 
44-45 
45-46 
46-47 

Optimal  
Reconfiguration 

Scheme 
47-48 

50-51 13-20 11-66 14-15 99.670 0.943 

Ditto 50-51 13-20 11-66 13-14 99.766 0.943 Suboptimal 
Scheme Ditto 50-51 13-20 11-66 12-13 99.872 0.943 

The Worst 
Scheme 

Ditto 52-53 13-20 11-66 13-14 100.807 0.941 
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Fig. 3. The convergence curve of the BF-PSO method 

maximum correction value of the voltage magnitude of all the nodes is less than 
610− kV. 

The BF-PSO algorithm program is continuous operated for 100 times based on the 
case. After simulation, the calculated results are shown in Table 1. The convergence 
curve of the BF-PSO method is shown in Fig. 3. 

It is clear that network loss decreased substantially and the minimum node voltage 
rose, after introduction of BF-PSO algorithm for distribution network reconfiguration. 
The active power loss is reduced dramatically from 225 kW to 99.67 kW. The mini-
mum node voltage is improved from 0.909 to 0.943. The statistical analysis of opti-
mization results are shown in Table 2.  
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Table 2. The statistical analysis of optimization results 

 Minimum Maximum Mean Standard deviation 
Power losses(kW) 99.670 100.807 99.887 0.374 

Convergence generations 7 74 14.38 9.31 

As shown in Table 2, the optimal solution is obtained after about an average of  
14-15 iterations. So the convergence rate of the proposed method is very quickly. 
Meanwhile, these results demonstrate the good stability and effectiveness of the pro-
posed method. The optimal topology of distribution network is shown in Fig. 4. 

 

Fig. 4. The optimal topology of distribution network 

The result is compared with the results obtained by other methods as shown in  
Table 3. While the computing environments of running the algorithm vary, but the 
optimization results have reached the optimal results can be considered by the ad-
justment of algorithm parameters. So this also validates the effectiveness of the pro-
posed method. 

Table 3. Comparison of reconfiguration methods 

 BF-PSO IGA[6] ITS[7] BPSO[8] ACS[9] RGA[10] 
The losses after 

DNR(kW) 
99.670 100.697 101.000 101.010 101.098 102.100 

The minimum 
node voltage(pu)

0.943 0.933 0.947 0.942 0.943 0.926 

5   Conclusion 

This study has presented the bacterial foraging optimization algorithm with particle 
swarm optimization strategy (BF-PSO) applied to solve the distribution network  
reconfiguration problem. Through the simulation calculation for reconfiguration op-
timization of IEEE-69 bus system and the comparison with other optimization meth-
ods, the validity and effectiveness of the proposed method have been demonstrated. 
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Abstract. The article concern the influences of the novel flash structure with 
resistance wall on the forming load and die wear during the closed-die forging 
process. If the geometrical parameters of the resistance wall are not properly 
designed, the forming load and die wear may be great; this can affect the life of 
the forging die. Yet, no procedure is known to optimize and decide this flash 
structure at the exit. So, the optimization calculations were carried out using an 
authors optimal strategy, called Kriging-PSO strategy. According to this strat-
egy we got the optimum parameters of the resistance wall. The strategy incor-
porates finite element simulations software Deform and includes particle swarm 
optimization (PSO) with a fast convergence and Kriging interpolation algo-
rithm. The optimization results which represent the best die design were  
realized in industries. 

Keywords: Forging, Kriging, Particle swarm optimization (PSO), Plastic  
deformation, Finite element method. 

1   Introduction 

In the use of conventional forging process, the common forms of flash cave are shown 
in Fig.1 [1].At present, the flash cave with parallel land which shown in Fig.1 (a) is 
the most widely used form in industrial conditions. Because of the generation of resis-
tance by friction mainly depends on the land, this greater force can be obtained only 
in the later stage. It indicates that there is disadvantage for the metal filling in the 
complex cavity. The flash cave with wedged land is shown in Fig.1 (b). Due to the 
slope can exert horizontal forces against billet except friction force; the resistance can 
be obtained enough to fill cavity in the initial phase of forming. However, the follow-
up trimming become difficult because of the metal thickening on the flash transition 
region. V-shaped cave as shown in Fig.1(c) apply only to simple forging parts which 
can be easy filled. 
                                                           
* Corresponding author. 
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(a) Parallel land                        (b) Wedged land                      (c) V-notched land 

Fig. 1. Conventional flash cave in closed-die forging 

 
R1, R2, R3 - fillet    B - land width   H - wall height   n - wall gap   a - wall angle 

Fig. 2. The resistance wall structure 

For the above reasons, the flash cave is replaced by the resistance wall structure as 
shown in Fig.2 which kept the parallel land but changed the gutter part to the wall. The 
resistance wall combines the advantages of the flash cave with parallel land and with 
wedged land: it can provide the horizontal resistance by means of the slope of wall and 
avoid the trimming difficulty with the parallel land instead of the wedged land. 

The practice proves that the resistance wall structure can improve the filling ability 
to a great extent by producing larger horizontal resistance and forcing the billet to fill 
the die cavity in the initial stage of forming. The major advantage of the resistance 
wall is more material utilization compared with the conventional flash caves as shown 
in Fig.1. 

In designing the resistance wall which as a novel flash structure, there are no ready 
data for reference. So, in the practical engineering, the forming load would greatly 
increase when the parameters of resistance wall were improper and the die life would 
be shorted.  

In this research, the parameters of the resistance wall structure were optimized with 
the goal to decrease abrasive wear of die and forming load. First, the latin hypercube 
sampling was carry out; secondly, the sample points were simulated with finite ele-
ment method; thirdly, the Kriging model was established and finally the optimum 
parameters of the resistance wall structure were obtained by using the particle swarm 
algorithm for global optimization. 



Optimization Design of Flash Structure for Forging Die Based on Kriging-PSO Strategy 375 

2   Principle And Model 

2.1   Surrogate Model 

In the current engineering design, the analysis of the metal plastic forming problem is 
done based on the finite element simulation and trial and error method. However, 
since the forging is a complicated three-dimension bulk forming technique, the FEM 
simulation may take a long time and the trial and error method not only consumed 
many hours but also can’t obtain the optimum result. So, the optimization method 
based on surrogate model is an effective approach to solve this problem.  

The process of modeling is divided into three stages: generate sample points, FEM 
simulation and construction surrogate model.  

The most commonly sampling methods include the orthogonal experiment design, 
latin hypercube sampling, etc. The latin hypercube sampling is a space filling design 
and can reflects the characteristics of the whole design space with less sampling 
points, so it is widely applied in computer simulation and experiment. 

The surrogate model can be established taking the simulation result as the response 
and the parameters of the resistance wall as the design variables. The common models 
include the response surface modes (RSM), the artificial neural network (ANN) 
model, the Kriging model, and others. The Kriging model can fit the very complicated 
problem with less uniform sample points. So, the Kriging model is adopted in this 
study. 

2.2   Kriging Model 

The Kriging model is an unbiased estimate model, which is established by minimizing 
the variance with the statistical techniques based on stochastic process. Due to the 
existence of the stochastic part in the structure, this model has the ability for the par-
tial estimation with the action of correlation function. So, it has good fitting perform-
ance for solving the nonlinear problem [2]. 

The Kriging model can be expressed as follows: 

( ) ( ) ( )TY x f x Z xβ= +  (1) 

Where ( )Tf x β  is the regression model, ( )f x =
1[ ( ),..., ( )]T

kf x f x , where k denotes 

the number of the basis function in regression model, 
1[ ,..., ]T

kβ β β= is the coeffi-

cient vector, x is the design variables, ( )Y x  is the objective, and ( )Z x  is the random 

fluctuation with the mean value is 0 and the covariance is given as 

2cov[ ( ), ( )] ( , , )z w z x R w xσ θ=  (2) 

Where ( , , )R w xθ  is correlation function, θ  is the parameter vector of correlation 

function. 
The polynomial coefficients of regression model in the part one of Eq.(1) and the 

variance estimate of random fluctuation in the part two of Eq.(1) can be obtained by 
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solving minimum variance of the forecasting model using the unbiased estimate condi-
tions as the constrained condition. Then the approximated model can be established [3]. 

2.3   Particle Swarm Optimization 

Particle swarm optimization (PSO）algorithm is a computation technique with swarm 
intelligence for global optimization [4-6]. In PSO, the each solution of the optimiza-
tion problem is regarded as a particle in a D-dimensional space.  

The velocity and position of each particle in the solution space can be updated by 
the individual best particle position pbest and the global best particle position gbest. It 
can be described as： 

1
, , 1 1 , , 2 2 ,( ) ( )t t t t

j g j g j g j g g j gV w V c r pbest x c r gbest x+ = × + × × − + × × −  (3) 

1 1
, , , , 1,2,..., 1,2,...,t t t

j g j g j gx x v j n g m+ += + = =  (4) 

where n is the size of swarm, m is the dimension number of the velocity and position, t 
is the iteration number, w is a inertia weight factor, ,

t
j gv  is the gth dimension velocity of 

particle j at iteration t, ,
t
j gx  is the gth dimension position of particle j at iteration t, c1 is a 

cognition weight factor, c2 is a social weight factor, r1 and r2 are two random numbers, 
pbestj,g is the gth dimension of the own best position of particle j, gbestg is the gth di-
mension of the best particle in the swarm.  

The particle search in the solution space and change the velocity according to Eq. 
(3). The new position can be updated using Eq. (4). Putting the new position 

1
,

t
j gx +

 into 
the objective function ( )f x , then the fitness of current particle can be got:  

1
,( ) ( )t

j gF j f x +=  (5) 

3   Optimization Strategy 

In this study, PSO algorithm and Kriging model were coupled by the software 
MATLAB. It was used to optimize the parameters of the resistance wall. 

This methodology applied the latin hypercube sampling （LHS） to generate ini-
tial experiment samples of the resistance wall. Then the Kriging models of forming 
load and die wear were obtained by Kriging interpolation based on numerical simula-
tion results: Load-Kriging model and Wear-Kriging model. These surrogate models 
were converted to single objective function as fitness function by using a weighting 
method. This problem was optimized by particle swarm optimization algorithm. 

As shown in Fig.3, the optimization procedure can be described as three steps. Step 1, 
the Kriging model is established based on the simulation. Step 2, the multi-objective 
problem is transformed into a single objective problem. Step 3, the problem can be opti-
mized using PSO. 
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Fig. 3. Flowchart of the Kriging-PSO strategy 

4   The Application 

In this paper, the finish forging-die of crankshaft was taken as an example. Due to the 
maximum forming load and the die wear appeared in the finish forging phase, only 
the resistance wall structure of the finish forging-die was optimized. 

Because of the forging process was performed on hot die forging press which can 
ensure the height of flash by adjusting the die shut height, the height of flash was set 
at 6 mm in simulations. The R2 in the Fig.2 was set at 4 mm based on practical ex-
periences. Finally, the parameters which need to be optimized were chosen as R1, R3, 
B, H, a, n. The range of these parameters is presented in Table 1. 

The least number of LHS can be obtained according to the equation [7]:  

( 1)( 2) / 2 28n m m= + + =  

Where n is the number of LHS and m is the number of design variables.   
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Table 1. Design Variables 

Variable R1 / mm R3 / mm B / mm H / mm a / deg n / mm 

Range 1~3 2~8 15~25 12~30 5~20 2~4 

 
The plastic forming simulations for the resistance wall with different parameters 

according to the 28 samples were done and the forming load and die wear were calcu-
lated as the responses to construct the surrogate models. 

The FEM simulation was done by using Deform software. The billet material is 
42CrMo which came from the results of pre-forming. The other simulation parameters 
were set as: the forming speed 250mm/s, the die temperature 250℃. Archard’s model 
was selected as wear model of the forging die with the die hardness HRC42 [8]. 

In this paper, the Kriging models were constructed using DACE toolbox for matlab 
[9] with the polynomials as model of regression and the Gaussian function as correla-
tion function. The parameter of correlation function, θ  in the Eq. (2) has an obvious 
influence on the fitting precision. The optimal value of θ  can be calculated using 
maximum likelihood estimation but it is very difficult to solve [10]. The purpose of 
this paper was to obtain the design variables which have the minimum response, and 
only the forecast tendency is needed, so the fitting precision of the model with θ =3 
can meet the needs completely. 

To indicate the Wear-Kriging model with Wmodel and the Load-Kriging model with 
Lmodel, then:  

mod mod ( , )el wW el S Y=  (6) 

mod mod ( , )el lL el S Y=  (7) 

Where S is the design variable, Yl is the forming load and Yw is the die wear accord-
ing to simulation. 

The multi-objective optimization problem was transformed into single-objective by 
using the linear weighted summation method: the weight factors, wi were assigned to 
the each sub-objective functions according to the significance degree. 

According to Eq. (6) and Eq. (7), the objective function was formulated as 

mod modmin ( ) ( ) (1 ) ( )el elf x w W x w L x= + −i i  (8) 

In engineering practice, the value of weight factor w can be decided reasonably by 
comprehensive comparison of the cost for the die wear and the energy consumption of 
load based on the technical economy analysis. In this paper, the w was 0.7 according 
to the practical experience.  

5   Results and Discussion 

The optimization strategy was implemented by Matlab. Due to the order of magnitude of 
the wear (1e-5 mm) and the load (1e+7 N) was different widely, the scale transformation 
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was applied on the Eq. (8) to avoid the small order part was neglected. According to Eq. 
(5) and Eq. (8), the fitness function of PSO was transformed to: 

1 5 1 7
mod , mod ,( ) ( ) 10 (1 ) ( ) 10t t

el j g el j gF j w W x w L x+ + −= × + − ×i i  (9) 

The main parameters of PSO were set as: number of particles was 30, iteration time 
was 200, maximum velocity of the particle was 4, cognition weight factor c1 and 
social weight factor c2 was 2, inertia weight factor w was 0.9. 

The minimum fitness value evolving process is shown as Fig.4 with iteration times 
as the abscissa and fitness according to Eq. (9) as the ordinate. 
 

 

Fig. 4. Search traces for optimum solution by PSO 

It can be seen from the Fig.4 that the convergence is fast and reaches stability after 
50 iterations. The optimum parameters for the resistance wall were obtained with 200 
iterations, as shown in Table 2. The search traces for optimum solution of wear depth 
and forming load by PSO are shown as Fig.5 (a) and Fig.5 (b) respectively.  

Table 2. Optimum parameters for the resistance wall 

Variable R1 / mm R3 / mm B / mm Hq / mm a / deg n / mm 

Optimum value 2.1942 6.5945 22.9326 28.3349 7.3336 3.1843 

 
It can be seen from the figure that the load increases with the decrease of wear after 

50 iteration times. This optimization result was reasonable in consideration of that 
wear was the main factor of affect on die life and the weight of wear was larger than 
that of load according to Eq.(8). 

The parameters in Tab.2 were rounded up to Eq. (10) for the convenience of manu-
facturing for the forging die.  

P=[R1 R3 B Hq a n]=[2.0 6.5 23.0 28.5 7.0 3.0] (10) 
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                                            (a)                                                                        (b) 

Fig. 5. (a) search traces for optimum solution of wear, (b) search traces for optimum solution of 
forming load 

A simulation of the resistance wall with these parameters in Eq. (10) was done to 
test the optimization results. The simulation result is shown in Fig.6 (a) and Fig.6 (b). 
 

     
                                     (a)                                                                         (b) 

Fig. 6. (a) The simulation result of forming load, (b) The simulation result of wear 

The comparison of optimum values and simulations is shown as Tab.3. The devia-
tion of wear and load corresponding the parameters of the resistance wall according to 
Eq. (10) is 5.4% and 2.0% respectively and it is acceptable. 

Table 3. Comparison of responses 

Response PSO Simulation Deviation 

Wear(mm) 1.74e-5 1.84e-5 5.4% 

Load(N) 7.33e+7 7.48e+7 2.0% 

Forming load F / N 

Time T / sec 

Wear depth H / mm  
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6   Conclusions 

Taking the resistance wall of the forging die for crankshaft as the research object, the 
inner relation between load and wear was constructed using Kriging model with  
decreasing forming load and increasing life of die as the objective. The optimum 
parameters of the resistance wall were obtained by applying the particle swarm opti-
mization algorithm for global optimization. It provides a kind of quantitative analysis 
method and basis for the design of the resistance wall. 

In this paper, the Kriging model was coupled with the particle swarm optimization 
algorithm, which was implemented in MATLAB. The proposed method makes full 
use of the advantages of the Kriging model which is suitable for the computer simula-
tion tests and takes advantage of the PSO which is simple and has a fast convergence 
speed than the genetic algorithms. 
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Abstract. Slab Stack Shuffling (SSS) problem is a kind of warehousing opera-
tions management problem abstracted from steel industry. SSS problem is to 
choose appropriate slabs for hot rolling schedule with the objective of minimiz-
ing shuffles during the retrieval process. Different from previous literatures, the 
substitute of slabs is a set of slabs which satisfy the given order demand. The 
problem in this paper considers balancing the shuffles between two sub-yards 
and the measurement of one shuffle is also different. The problem is formulated 
as an integer programming model by considering above practical requirements. 
The complexity of the model motivated us to develop a scatter search algorithm 
to solve the problem approximately. Problem-oriented coding scheme and solu-
tion combination method are proposed in scatter search. The computational  
results tested on real data show that the shuffles are decreased by 36.9% in av-
erage compared with the manual schedule. 

Keywords: Steel industry, The SSS problem, Scatter Search algorithm. 

1   Introduction 

Warehousing operations management problem has been a hot topic with numerous 
innovations in warehouse during recent years. The efficiency and effectiveness of the 
warehouse operation play a vital role in determining a company’s competitiveness.  
SSS problem is a kind of such problem abstracted from slab yard of steel industry.  
The schematic diagram of slab yard is shown as follows: 

Steel production is a multi-stage process. A slab yard serves as a buffer between 
the continuous casting stage and the steel rolling stage. Finished products of continu-
ous-casting are sent to slab yard, waiting for hot-rolling. In the yard, steel slabs are 
stored in stacks. The whole yard is divided into two sub-yards and two cranes in each 
sub-yard for retrieving slabs. Shuffle is needed when picking up a slab for heating and 
rolling, if it is not on the top of a stack. 

Properly selection of slabs can reduce shuffles during the retrieval process, improve 
working efficiency of cranes in the slab yard and decrease the time for feed prepara-
tion of hot-rolling. Reduction in shuffles during the retrieval process can also promote 
the production efficiency of the steel enterprise indirectly. The research can promote 
the management level of production and logistic in steel making enterprises, and de-
crease the logistics operation cost.  
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Fig. 1. Schematic Diagram of the Slab Yard 

Only some attentions have been paid on SSS problem in previous literatures. Assaf 
et al. [1] researched on the integrated problem of production schedule generation and 
slab yard, focusing on the full usage of slab hot energy which did not consider the 
shuffles during retrieval process. Tang et al. [2] proposed a two-phase algorithm. An 
initial feasible solution was generated first and improved using local search. Experi-
mental results show that the proposed algorithm yields significant better solutions 
than the old algorithm with an average improvement of 15%. Singh et al. [3] proposed 
a Parallel GA to solve the SSS problem based on Tang’s model, and shuffles decrease 
by 6%. 

The SSS problem studied in this paper consists of three major differences from the 
previous literatures. (1) The substitute of slabs is a set of slabs which satisfy the 
weight and technological demand of the given order. (2) Differences of shuffles be-
tween two sub-yards are taken into account in order to balance the workload between 
them. (3) The way to measure shuffles is different either. In researches before, mov-
ing a barrier slab aside and replacing it onto the original stack is considered as one 
shuffle. In this paper, moving a barrier slab onto a new stack is called a shuffle. Based 
on the above, the problem is formulated as an integer programming model by consid-
ering above practical requirements. The complexity of the model motivated us to 
develop a scatter search algorithm to solve the problem approximately. 

The paper is organized as follows. Section 2 gives a detailed description of the 
problem and a mixed integer programming model. The scatter search algorithm for 
solving the problem is presented in Section 3. Experimental results of the scatter 
search algorithm tested on real data are reported in Section 4. Section 5 gives  
conclusions. 

2   Problem Description and Mathematical Formulation 

2.1   Problem Statement 

Slabs stacked in the yard are raw materials for hot-rolling. Given an order, planers 
will choose some slabs from the yard which meet the order demand to form a hot-
rolling schedule. If the chosen slab (target slab) stacked in the lower tier of a stack, 
the crane should move away the slabs above it in advance to make the target slab 
expose on the top, then ‘shuffle’ occurs. The increase in shuffles will lead a longer 
time spent on feed preparation which delay hot-rolling production and also disturb the 
coordinate production between continuous-casting and hot-rolling. 
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Considering the total weight of order demands and slab-matching constraints, SSS 
problem is to select the slabs for hot-rolling schedule, aiming at the minimum shuffles 
during retrieval process. There is a low accuracy requirement for shuffles calculation 
in practical production. For convenience of shuffles calculation, two assumptions are 
proposed followed: 

 

Assumption 1: Barrier slabs play one time during the retrieval process. Since stacks in 
slab yard are enough, in this paper we suppose that barrier slabs can be always moved 
onto a stack which has none of target slab in. In other words, barrier slabs only play 
the role of barrier for one time during the whole feed preparing process which we 
called ‘barrier slabs play one time’ assumption.   
 

Assumption 2: For target slabs in a same stack, the slab in higher tier is taken out from 
the yard before the slab in lower tier. 

According to the characteristic of the SSS problem in this paper, the concept of 
‘order family’ in this paper replaces ‘slab family’ which is reported in previous litera-
tures. ‘Slab family’ is a set of slabs which are substitutable for a given slab, and ‘ 
order family’ is a set of slabs which satisfy the technological requirement (width, 
steel-grade and weight of slab) of a given order. Generally, ‘order family’ is larger in 
size than ‘slab family’, which means a larger range of choice for substitute slabs.  
Resulting from this, there will be more chance to gain a better solution by ‘order fam-
ily’ during the optimization process. 

2.2   Mathematical Model for SSS 

A mathematical model is constructed for the problem in this section.   
Parameters: 
Ω Order set, Ω = {1, 2, …, i, …, M} 
Ф Slab set, Ф = {1, 2, …, j, …, N} 
Ci Candidate slab set for the ith order, Ci ∩Ck ⊇ ∅, for any i, k ∈ Ω, i ≠ k 
Wi Total weight of the ith order demand 
φj Initial stack of slab j. 
Dj The number of slabs above slab j in φj 
Rj The region of φj, Rj = {1, 2} 
Hj The weight of slab j 

Decision variable Xij: 
1   if slab  is chosen for the th order in the rolling schedule

0  otherwise

for  , .
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Sij denotes the shuffles occur when slab j is selected for the ith order, N1 and N2 de-
note the shuffles occur in sub-yard 1 and 2 during the whole feed preparation process 
respectively. The objective function is minimizing the sum of four items. The first 
item is the total shuffles during the feed preparation, the second one denotes the aver-
age shuffles per unit weight which can measure the shuffles of schedule more exactly, 
the third one is to measure the differences of shuffles between two sub-yards, and the 
last one denotes the total differences between the total weight of each order demands 
and the total weight of the slabs chosen for it. Constraint (2) ensures each slab can be 
chosen for only one order. Constraint (3) ensures that the total weight of slabs chosen 
for an order should be less than the demands of that order, Constraint (4) ensures the 
slab can not be chosen for order i if it is not in Ci. Constraint (5) defines the range of 
decision variable. 

Based on the description mentioned above, there are mainly two differences be-
tween the model proposed in this paper and the previous one. (1) The objective func-
tion evaluates four factors in this model and there is only one item with total shuffles 
in previous model. (2) Based on assumptions proposed before, there is no interaction 
in calculating shuffles when retrieving different slabs. For the complexity of the 
model, a scatter search algorithm is proposed to solve the problem. 

3   Scatter Search Algorithm for the SSS Problem 

Scatter search algorithm is a population-based meta-heuristic method. Different from 
genetic algorithm, inducement of reference set and designation of solution combination 
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method can keep diversification and intensification of the solutions during the optimi-
zation process. The effectiveness of scatter search has been proved in solving some 
hard optimization problems such as linear ordering problem [5], Graph Coloring [6] 
and so on. Scatter search is designed to operate on a set of good solutions, called refer-
ence set, including some solutions of good objective function value and some of good 
diversity.  The solutions in the reference set are combined to generate new solutions by 
combination method. A typical scatter search algorithm includes five methods: a diver-
sification generation method, an improvement method, a reference set update method, 
a subset generation method, a solution combination method [7]. 

3.1   Coding Scheme 

In the coding scheme, a chromosome was constructed by a sequence of numbers.  
Each position in the sequence corresponds to a slab in the rolling schedule. The value 
at a position in the chromosome indicates the stack information of a chosen slab, 
including the stack and the layer message. The slabs chosen for the same order are 
concentrated in the same order segment. 

3.2   Initial Population Generation Method 

To generate a collection of diverse initial solutions, we propose heuristic algorithm 
together with random generation method based on the analysis of problem property. 

3.2.1   Heuristic Method 
Based on the above, two rules should to be obeyed when selecting slabs for a given 
order. First, the physical properties (width, steel-grade, weight and so on) and chemi-
cal properties of the chosen slab should keep consistent with the technological re-
quirement of the given order completely. Second, for any order, the total weight of 
chosen slabs must be less than the order demands. In the SSS problem, we take orders 
as a series of knapsacks, and slabs are the goods waiting to be packed. Then the SSS 
can be seen as a multiple knapsacks problem subjected to order weight constraints 
aiming at minimum total shuffles. Two cases may occur when choose slabs for a 
given order: 
Case 1: The chosen slabs are stacked in the same stack, and stacked one by one from 
the top of the stack. 
Case 2: The chosen slabs are stacked in different stacks. 
Then we can get the following property. 

Property 1: Case 1 has fewer shuffles than Case 2 during the retrieval process.   

Proof: Obviously shuffle of Case 1 is 0, and shuffle in Case 2 is at least 0. If any 
stack has shuffles, shuffles of Case 2 is more than case 1.                     □ 

For the ith order of the schedule, suppose slabs in Ci are stacked in m stacks. Let WEk 
denotes the total weight of candidate slabs in stack k, and SHk. denotes the shuffles of 
candidate slabs in stack k. Sort m stacks by WEk/SHk in descending order, then a stack list 
{stack1, stack2,…,stackk,…,stackm} is obtained.  Taking stack as unit, add slabs in Ci of 
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Then delete the chosen slabs from Ф and slab selection for order i is complete. Select 
slabs for the next order by the same method, until all the orders are finished. 

Based on different sorting method for stack, we gain some other initial solutions. 

3.2.2   Random Generation Method 
For slab selection of the ith order, stack l is randomly generated.  If exists unselected 
slab set ∏ in stack l , where ∏∈Ci, and the total weight of slabs in ∏ is less than 
permitting weight of order i, then add ∏ to the hot-rolling schedule and update per-
mitting weight of order i. Otherwise generate a new stack index randomly and repeat 
the above process. And order i will finish choosing until a given number of random 
stack index are generated. Then make selections for the next order. 

3.3   Solution Improvement Method 

In the greedy heuristic, choosing slabs as unit for stack can result in differences be-
tween order demands and the total weight of chosen slabs. To reduce such differ-
ences, local search is executed. For weight differences in order i, add any unchosen 
slab in Ci whose weight is less than that differences to the schedule, until there is no 
differences any more or no such slabs left. This strategy can also be used to improve 
the solutions randomly generated. 

3.4   Reference Set Generation and Update Method 

This method is used to create and maintain a set of reference solutions.  The reference 
set (RefSet) consists of b1 high quality solutions and b2 diverse ones. RefSet1={x1, 
x2,..., xb1}, RefSet2={xb1+1, xb1+2,..., xb}, |RefSet|=b=b1+b2.  b1 high quality solutions 
are the best b solutions in P as measured by the objective value, and b2 diverse ones 
are the solutions with the maximum distance from the high quality solutions. In order 
to find diverse solutions from P-RefSet, it is necessary to define a diverse measure for 
solutions. 

Distance from solution A to solution B: For a slab in solution A, if the same slab exists 
in solution B, the distance value stays the same as before, otherwise add one. Check 
each slab, the sum of distance value is the distance from A to B. 

Combination method is used to generate new solutions. If the new solution is better 
than anyone in RefSet, then add it into RefSet to replace the worst one to preserve the 
RefSet size. 

3.5   The Solutions Combination Method 

This method uses 2-element subsets for solutions combination to generate new solu-
tions. In a chromosome, orders with the same technological requirement form an order 
group. For the same order group of parent solutions, the child solutions copy the order 
group with the smaller objective value as their solution segments. For the orders in 
none order group, each child solution copies its parent solution segment respectively. 
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3.6   The Scatter Search Algorithm for the SSS Problem 

Based on the procedures mentioned above, the scatter search algorithm is organized 
as follows: 

 

Step 1: Set initial population P=∅, iteration times IT=0, not improved times NR=0, 
maximal iteration times maxIT=3, maximal not improved times maxNR=2; 
Step 2: Generate initial solutions by initial population generation method, and save 
them in P; 
Step 3: Improve the solutions in P by solution improvement method; 
Step 4: Generate the RefSet including 3 good solutions and 2 diverse ones using ref-
erence set update method; 
Step 5: Use 2-element subset generation method to generate subsets (NewSubsets) of 
RefSet; 
Step 6: Select an element from the NewSubsets to generate a pair of new child solu-
tions by solution combination method until all elements in NewSubsets are used; 
Step 7: Set IT=IT+1 and choose 5 solutions of best objective value among new ob-
tained solutions and solutions in RefSet as new elements in RefSet;   
Step 8: Judge if the RefSet is updated. If the RefSet is not updated, set NR=NR+1;  
Step 9: If IT< maxIT go to Step 5; if IT = maxIT or NR=maxNR, stop.  

4   Computational Experiments 

The scatter search algorithm is implemented using C++ language and tested on a 
Pentium IV PC with 3.00GHz CPU and 512MB memory. To prove the reliability and 
feasibility of the scatter search algorithm, five groups of real data collected from a 
steel enterprise have been tested. The shuffles of real data (manual result in industrial 
actuality) and the shuffles of the optimized solution gained from the scatter search are 
calculated under the same criterion. The comparison results gained from the experi-
ments are shown as follows:  

The results show that the shuffles of the scatter search algorithm are decreased by 
36.9% according to the manual schedule.  Since the SSS is an off-line problem, the 
average runtime 37 seconds of the scatter search algorithm is acceptable.  

Table 1. Computational Experiments 

Shuffles Index 
Manual Scatter Search Improvement Run Time 

1 51 29 0.431 61 
2 59 52 0.119 41 
3 75 43 0.427 11 
4 33 19 0.424 24 
5 63 35 0.444 18 

Average   0.369 37 
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5   Conclusions 

Considering the order demands and slab-matching constraints, SSS problem is to 
select slabs for hot-rolling schedule, aiming at minimizing the shuffles during the 
access and charging operations. We propose an integer mathematical model for the 
SSS problem and adopt scatter search algorithm to solve it.  To guarantee diversity of 
solutions, heuristic and random generation methods are applied to generate initial 
solutions. In scatter search algorithm, a coding scheme based on stack information 
and solution combination method are proposed to ensure the feasibility of the ob-
tained solutions. The experiment results with practical data show that the shuffles of 
solutions obtained by proposed method have been decreased by 36.9% in average 
compared with the manual schedule. 
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Abstract. To meet the requirement and solve the problems in system integra-
tion field, A Federation Structure based Multi-Agent System (FSMAS) model is 
proposed in this paper, with emphasis on the collaboration algorithm. This pa-
per presents the process of partition and collaboration of the Agent tasks, the 
acquaintance first based on CNP algorithm in collaboration. FSMAS is applied 
to the development of agent-based system integration platform and tools. As a 
test case, a simulation system is developed which verifies the stability and effi-
ciency of FSMAS in system integration filed. 

Keyword: System integration, MAS, Task partition, Collaboration algorithm. 

1   Introduction 

With the quick development of Internet, how to integrate systems in the open,  
dynamic and hard-control environment is becoming an important challenge of soft-
ware[1]. It is hoped to solve the universal problems of distributed character, heteroge-
neous nature and autonomy in system integration field. Component-based technique is 
one of the main means for integrated problem, but it can not meet the need of auton-
omy, intelligence, dynamic property and domain-oriented extensibility.  

Agent and MAS (multi-Agent-system) techniques are becoming a new means in 
the field of system integration because of their characteristics of autonomy, initiative, 
intelligence, sociality and mobility[2], which could meet the needs of system integra-
tion well. Collaboration and communication among Agents are key problems of 
MAS. A lot of researches have been made, as an instance, CNP (contract net proto-
col)[3][4] and Blackboard Collaboration[5] are typical works in collaboration. Dis-
tributed Sensing System (DSS) of MIT and expert union system UNIONS of Chinese 
Academy of Science Mathematics were both typical system based-on contract net 
protocol. However, CNP has its problems such as frequent communication, waste of 
system resources and limited scope of application. Jiaopinwen, Shizhongzhi etc at 
home have done some researches about MAS collaboration[6][7].They used the prin-
ciple of “setting post according need, competing for getting post” to collaborate. 
However, the evaluation system which used to evaluate the process of collaboration 
and the unified formal framework were lacked of in their researches. For these situa-
tions, this paper focuses on the collaboration algorithm and communication mecha-
nism for system integration. 
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2   FSMAS Architecture 

Generally, there are three types of MAS, they are centralized, distributed and hybrid 
structure. Centralized structured MAS have the problem of bottleneck controlling. 
And the distributed one is hard to get the behavior consistent overall. Hybrid struc-
ture, which strikes a balance between centralized and distributed, is widely used by 
MAS system[2][8], and FSMAS(federation-structured-based MAS) is the hybrid 
structure.   
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Fig. 1. Framework of FSMAS 

Figure1 shows the framework of FSMAS. Several Agents exists in the frameworks 
and are stored in the Agent base. When an Agent is wrapped, its information would be 
registered to CRC (Capability Register Center) and AMS (Agent Manage Service). 
CMB (Common Message Blackboard) is public information blackboard. It is the 
bidding agency and responsible for maintaining state of tenders, sending bid notice, 
awarding the bid and dealing with the history tenders. There is a joint intention, which 
is which is involved of joint action of Agents to fulfill their common commitment.  

Figure2 shows the federation structure of FSMAS. Agents are divided into Service 
Agent and Function Agent. Service Agent is responsible for organizing a federation,  
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Fig. 2. FSMAS structure  
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which is consist of some other Agents needed, to provide a certain service. Service 
Agent maintains an acquaintance-list, which records the Agents it could organize. 
And in some situations, Service Agent would initiate a bid. Function Agent, as an 
acquaintance, could only provide some capability to help complete a task. It also 
could response a bid to complete a task. 

3   Collaboration and Communication of FSMAS 

3.1   Collaboration Algorithm 

Partition and Cooperating Process of Tasks. To collaborate between agents, the first 
problem to be solved is task partition and allocation. Many scholars have made 
research on it, of which heuristic allocation algorithm[9] and queuing theory 
scheduling algorithm[10] are the typical ones. Heuristic allocation algorithm is suitable 
to large MAS and queuing theory scheduling algorithm are always used when the 
completion of the task submitted by user just need one agent.  
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Fig. 3. Partition and cooperating process 

In the field of system integration, the complexity of the task is uncertain because of 
the uncertainty of the task. Neither of algorithms above is used in FSMAS, instead, a 
more appropriate way is proposed. FSMAS allocates task of high complexity to ser-
vice agents and service agents partition the complicated tasks to simple tasks and 
assigns the simple tasks to an appropriate function agent. Tasks are divided into 
atomic, record as t, and collaborative tasks, record as T. It is defined as T= {Ti, Tk, Tk 
...ti, tj, tk,…}. Function Agent could finish atomic task while Service Agent finishing 
collaborative one.Figure3 shows the flow chart as an instance of partition and collabo-
ration of an overall task. The main steps are as follows. 
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① SerAgenti receive a certain task Ti; 
② Ti is supposed to partitioned into ti, tj and Tj by SerAgenti, and distributed to 

FunAgenti, FunAgenti and SerAgentj; 
③ Tj continues to be partitioned into tk and tp, which will be distributed to FunA-

gentk and FunAgentk; 
④ FunAgentk and FunAgentk provide Capk and Capp to SerAgentj , SerAgentj organ-

izes the capabilities to provide Serj 
 

SerAgenti organizes Capi , Capj and Serj to provide Seri. This organization has been 
able to complete the overall task Ti. 

The specific algorithm for task partition is as follows. 
 

 

Algorithm 1. Task partition Algorithm 

Collaborative Algorithm. As the problems of CNP mentioned in the introduction, a 
new collaborative algorithm “acquaintance first base on CNP” is proposed in this 
paper. Its main idea is: service Agents choose the Agents in their acquaintance base to 
complete tasks first, if the Agents in acquaintance base can not complete the task, the 
service Agent would initiate a bid to get the Agents needed. 

As Algorithm2 shows, after partitioning task, the service Agent gets the informa-
tion of which Agents would be organized according to the definition files. Then, the 
service Agent get Agents’ information in CRC, the information would show which 
Agents are the acquaintances of the Service Agent and which are not. If all the Agents 
involved are acquaintances, the service Agent would organize them and return a ser-
vice; if not, then initiates a bid. When the service Agent gets all the Agents, it would 
organize them and return a service. 

Algorithm3 shows how CMB process a bid when receives it and how the Agents 
wins the bid. When a service Agent initiates a bid, it would send a message about the 
bid to CMB, CMB would analyze the message and get some information about the 
bid after it received the message, then it would query CRC according to the message 
and get an AgentSet, next, it would send Msg which records the bid’s information to 
all the Agents in AgentSet and wait for reply. CMB would send the information 

Queue PartitionTask(Ti){ 
Queue taskqueue; 
Ti →{task1, task2,….taskk}  
taskqueue.pushback({task1, task2,….}); 
for(int i=1; i!=end; i++) { 
 If(∃taski| taski∈T){  

Queue subtaskqueue=PartitionTask(taski);  
   taskqueue.pushback(subtaskqueue);  
}  

} 
return taskqueue;  

} 
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WinMsg of first replying Agent to the initiator Agent. And to every one in AgentSet, 
when they got the message, they would check their stat first and send WinMsg if the 
stat is idle. Then it would be waiting for invoking.  

Using “acquaintance first based on CNP” collaborative algorithm has the advan-
tages as follows: 1. choosing acquaintance to collaborate could greatly enhance the 
efficiency of the collaboration; 2. the bidding mechanism could ensure the completion 
of tasks and the success rate of coordination; 3. adding acquaintance automatically 
after bidding, which prepares for the next collaboration. 

 

 

Algorithm 2. Service Agent execute a task 

 

Algorithm 3. Bidding Algorithm 

SerAgentExeTask(Ti){ 
taskqueue=PartitionTask(Ti); 
taskqueue×CRC→Agentqueue; 
 if((∀ agent| agent∈Agentqueue)→(agent∈Ab)) 
   Ser={Ser1,…Serm, …Cap1, …Capn} 

|Seri∈Serbi, Capi∈Capbi; 
 else { 
 Bidagent| agent∈Agentqueue && agent∉Ab; 
 Bidagent×BidMod→bid; 

Initiate(bid); 
 Wait(); 
 Bidagents=Accept(bid); 

Ser={Ser1,…Serm,…Cap1,…Capn,Bidagent1,…Bidagentk} 
|Seri∈Serbi,Capi∈Capbi,Bidagenti∈Bidagents; 

} 
 return Ser; 
}

Bid(bid) 
{ 
bid×CRC→AgentSet; 
for(Agenti=First(AgentSet);Agenti!=Last(AgentSet); 

i++) 
SendMsg(Agenti, Msg); 
Wait(); 
Send(WinMsg) | WinMsg is sent to initiator;  
} 

WinBid(bid) 
{ 
if(state==idle)   SendMsg(WinMsg); 

} 
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4   Experiment 

We have developed an integration platform based on MAS technology and the col-
laboration algorithm of FSMAS is used. In order to verify the performance of the 
collaboration algorithm, a typical simulation system is integrated in an experiment. 
The main modules of the system are wrapped into Agents and needed to be integrated 
into a running system. In the same computer environment, the system is integrated in 
two different ways. In the first way, MAS is distributed structure and using CNP to 
collaborate; in the second way, MAS is FSMAS and using acquaintance first based on 
CNP algorithm; and FSMAS and acquaintance first based on CNP algorithm are used 
in the last way. Figure4 shows the efficiency of the system integrating process.  
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Fig. 4. Comparison of distributed MAS based on CNP and FSMAS based on “acquaintance 
first” 

As Figure4 shows, the solid lines represents the average time used by distributed 
MAS based on traditional CNP in an integration task, and the dotted lines represents 
FSMAS’. It can been seen that, when there was only one task, the integration effi-
ciency of two type is not far-off, but with the increasing number of tasks, FSMAS 
significantly reflected the advantages of not only high operation efficiency but also 
the much better system stability.  

For distributed MAS, all the tasks are completed by bidding. The time for every 
task used by integration platform is the sum of bidding time, tender dealing time, 
Agents cooperating time and running time. While the FSMAS only bid at first, as 
long as the service Agent has certain acquaintances, following tasks are completed 
through collaboration with acquaintances. The total time for the tasks is the sum for 
getting acquaintance time and running time. The FSMAS’ architecture also helps to 
improve the efficiency. Service Agents are response for tasks partitioning and orga-
nizing. And Function Agents are just response for completing tasks. For distributed 
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MAS, each Agent would partition and complete tasks and use much more time. 
Therefore the average efficiency is improved greatly.  

5   Conclusion 

In order to meet the requirement and to solve the problem of system integration, this 
paper proposed FSMAS, including the MAS structure, and focus on the collaboration 
algorithm. By the comparison of the experiments, we can see that FSMAS has some 
advantages in system integration field, which as follows: (1) system integration is 
simple, good scalability; (2) collaboration algorithm between the Agents reflects the 
intelligence and sociality, it also balances the system load; (3) it also significantly 
reduces system overhead and improves operating efficiency and stability. Of course, 
there are some disadvantages in FSMAS, such as problems about security manage-
ment, strategy to improve the speed of service response and so on. 
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Abstract. GPU (Graphics Processing Unit) technology provides an efficient 
method for parallel computation. This paper will present a GPU-based Line In-
tegral Convolution (LIC) parallel algorithm for visualization of discrete vector 
fields to accelerate LIC algorithm. The algorithm is implemented with parallel 
operations using Compute Unified Device Architecture (CUDA) programming 
model in GPU. The method can provide up to about 50× speed-up without any 
sacrifice on solution quality, compared to conventional sequential computation. 
Experiment results show that it is useful for in-time remote visualization of dis-
crete vector fields. 

Keywords: GPU, parallel computation, LIC, CUDA. 

1   Introduction 

Discrete vector field data visualization is one of the most challenging issues in scien-
tific visualization as well as in animation and special effects. There are broad pros-
pects for development and application areas. Line integral convolution that is a vector 
field visualization method based on texture computes the white noise image by con-
volution filter along the flow line. LIC method shows the direction of streamlines 
clearly, reflects the structure of the entire discrete vector field, and overcomes the 
confusion caused by the arrows or stream lines in the visualization; it is extremely 
important significance for discrete vector field visualization. 

LIC is originally proposed by Brian Cabral and Leith Leedom [1] at the 1993 
SIGGRAPH conference. However, the algorithm is more time-consuming, so people 
made a series of improved algorithm based on LIC: Deflev Stalling [2] put forward 
the Fast LIC method; it employed simple box filter kernels only and minimized the 
total number of stream lines to be computed. So it reduced computational costs by an 
order of magnitude compared to the original algorithm. Lisa Forssell [3] proposed 
Surface LIC. This algorithm extended to the curved grid from the 2D Cartesian grid, 
and also solved issues such as: the calculation stream lines on curved surface, selec-
tion about the input texture, texture mapping etc. Volume LIC proposed by Victoria 
Interrant [4] used 3D visibility-impeding "halos" to intuitively indicate the presence 
of depth discontinuities between contiguous elements in a projection and thereby 
clarify the 3D spatial organization of elements in the flow. Hege [9] extended 
FastLIC from the box-shaped filter kernels to the piecewise polynomial filter ker-
nels. Han-wei Shen [5] raised algorithm that produced time-accurate, highly coherent 
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flow animations to highlight global features in unsteady flow fields. The algorithms 
above mainly focused on using the correlation between adjacent points to improve 
the efficiency, and the result seemed to be well, but there was still more time-
consuming. 

With the development of computer hardware, especially, accessing to the era of 
high-performance computing, LIC was parallel computed by cluster. It can gain high 
solution quality with fast speed, but it concurrently uses a plurality of computers and 
entails significant network bandwidth. However, GPU-based parallelism is much 
more cost-effective. The cost of a GPU card is not expensive and the local parallelism 
obviously causes no overhead on network traffic. 

In this paper, a GPU-based method for visualization in discrete vector fields is pre-
sented. LIC can be implemented with parallel operations using CUDA programming 
model in GPU. The method can provide up to about 50× speed-up, compared to con-
ventional sequential computation. The structure of this paper is as follows: In section 2, 
describe the status of GPU and CUDA. In section 3, introduce the LIC algorithm. The 
implementation process of LIC in GPU is detailed discussed in section 4. In section 5, 
analyze the experimental results. Finally, section 6 some conclusions are given and 
future work is outlined. 

2   GPU and CUDA 

2.1   GPU 

The GPU referring to the commodity off-the-shelf 3D graphics card is specifically 
designed to be rapidly fast at processing large graphics data sets (e.g. polygons and 
pixels) for rendering tasks [6,10]. A GPU is usually made up of a body of multiproc-
essors and each multiprocessor consists of multiple processing units (or ALUs). Each 
ALU get in touch with a band of local registers. A control unit and some shared 
memory are shared by all the ALUs of a multiprocessor. There may be over one hun-
dred ALUs in a typical GPU [7, 12]. 

The kernel function that applied on GPU by the software programs is executed on 
multiple ALUs in the basic unit of thread. A two-level hierarchy is formed in the 
threads [11]. There are multiple threads in a warp and a band of warps constitute a 
block. The global memory for a GPU is usually a DRAM off the GPU chip but on the 
same board as GPU. It is very high for latency of data to access on global memory 
and load kernel function. In order to improve the efficiency of GPU usage, the data 
need to be loaded infrequently and the overall program runtime also need to be domi-
nated by ALUs [7]. 

2.2   CUDA 

CUDA is a software platform for massively parallel high-performance computing on 
powerful GPUs [14]. The initial GPU computing environment was first called CUDA 
in 2006 with the launch of the GeForce 8800. GPU computing with CUDA is a new 
method to transforming the GPU into a massively parallel processor. Hundreds of 
processors simultaneously communicate and cooperate to solve complex computing 
problems in GPU computing [13]. 
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CUDA programming model is one of multi-threaded programming models. Stan-
dard C/C++ are extended by  the CUDA programming model with a minimalist set of 
parallel programming abstractions, namely a hierarchy of threads, shared memories, 
and barrier synchronization [15,17]. A sequential host program and one or more par-
allel kernels which can be executed by the host program on a parallel device consti-
tute a CUDA program. Typically, the host program executes on the CPU and the 
parallel kernels execute on the GPU [16]. 

3   Line Integral Convolution 

3.1   Main Ideas 

It is detailed illustrated this algorithm in Fig.1. Taking a discrete vector field and a 
white noise image as the input, the algorithm uses a low pass filter to perform one-
dimensional convolution on the noise image based on fourth-order Runge-Kutta. The 
convolution kernel follows the paths of streamlines originating from each pixel in both 
positive and negative directions. Color image is generated using the weight of the vec-
tor field. Output texture and color image blending together generate the final picture. 
As a result, the output intensity values of the LIC pixels along each streamline are 
strongly correlated so the global features of the flow field can be easily visualized. 

 

 
Fig. 1. LIC diagram 

Figure 2 shows the visual effects of a two dimensional velocity field using LIC al-
gorithm. Since colors represent different speed, it can clearly see the weight charac-
teristics of data field from the image. 

        

Fig. 2. Flow image generated using LIC algorithm 

Output texture 

Color image 

Output 

Vector field 

+  White nose Vector field 
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3.2   Fourth-Order Runge–Kutta Algorithm 

Runge-Kutta method is a digital Computing method using differential equation com-
putation [8]. It is widely used for curve fitting due to its precision, stability, and easy 
programming. So the streamlines are fitted by the fourth-order Runge-Kutta method. 
The approximate formula as follows (1):  
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The function ),( yxf  is the value of the ),( yx .The h  is the horizontal distance 

between adjacent nodes. βα , and iC  are the parameters. 

When N = 4 in the formula (1), it can get the fourth-order Runge-Kutta  
formula (2): 
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The local truncation error of this formula can reach to )( 5hO . Selecting of the pa-

rameters constants in formula, it can get the precision as high as possible. 

4   Implementation Process 

4.1   Feasibility Analysis 

It is used that four-order Runge-Kutta convolution for each pixel in the LIC algo-
rithm, so the result only contributes to one pixel and is no effect on other pixels. It is 
not difficult to see that the Line Integral Convolution for implementation of the dif-
ferent pixels is independent of each other. Obviously, it can transform the sequential 
algorithm into parallel computing algorithms. Therefore, we can allocate the Line 
Integral Convolution for different pixels into multiple threads without worrying 
interdependency. In GPU-based parallel computing, Line Integral Convolution for  
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different pixels can be processed at the same time because there is no inter-
dependency among their computations. 

4.2   Implementation in GPU 

Figure 3 shows LIC implementation process in GPU. The main idea of the algorithm 
is proposed in chapter 3.1. Now, it focuses on a detailed description implementation 
of the algorithm in GPU. 
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Fig. 3. LIC implementation process graph 

Data is copied from host memory to device memory. The GPU global memory 
provides memory coalescing mechanism for improved access efficiency. The base 
data in the global memory is saved when the application program is running, in order 
to reduce the access latency and have a greater chance to coalesce the global memory 
from different threads in a warp. 

Allocate computing task for each thread using domain decomposition method. As 
shown in Figure 4: here it can be imaged that the block index is i , the thread index 
is j , the total number of blocks is m , the number of treads in each block is n . The 

output image can be split horizontally into m and vertically into n , so the total im-
age-grids size is m × n . Therefore, the task of this thread is the image-grid which 

number is ),( ji . 

The results are copied from device memory to host memory after the kernel func-
tion is called. Loading the kernel function to GPU can be very time-consuming. Since 
the computation operations for all pixels are the same, the computation instructions 
are loaded only once and apply them to all of the pixels. 

To reduce the processing time during the data transformation between host and de-
vice, we assign data to access respectively only once at begin and at end. This ar-
rangement has positive impact on the performance, because the data transformation 
between host and device takes a large portion of the total execution time. 
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Fig. 4. Task of the j th thread in the i th block        Fig. 5. Runtime comparison between GPU                                                  

                                                                                     and CPU 

5   Results 

Experimental PC has one Intel R_Pentium（R）Dual E2140 processor with NVIDIA 
GeForce 9500 GT. The OS was Windows XP Professional with NVIDIA graphics 
driver version 178.28. For CUDA program compilation, Microsoft Visual Studio 
2005 Professional Edition and CUDA 2.0 SDK were used. 

In Figure 5, comparison of the runtimes in between GPU and CPU environment is 
shown. In the case of the same parameters in LIC, the runtimes are tested in two kinds 
of environments by changing the number of pixels. From the figure5, it can find out 
that the runtime increased dramatically in CPU, while the growth of computational 
time is not very clear in GPU. Figure 6 shows the speedup between GPU and CPU. It 
is not difficult to see that this parallel technique provide runtime speedup ration from 
28× to 55× with the increasing of pixel number. It can be seen that the speedup tends 
to be steady when the pixel number grows to a certain level. Therefore, it can get the  
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Fig. 6. The speedup ration between GPU    Fig. 7. Runtime with different streamline  
and CPU                                                                   length on GPU 
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conclusion: the speedup ration of the LIC algorithm running in the GPU is about 50× 
when the calculation is large. 

Figure 7 shows runtime in GPU when streamline length is different in Runge-Kutta 
method. Streamline length is an important factor to determine the sequential LIC 
algorithm execution time. However, it rarely affects the parallel operation. This is 
because that streamline length only increases the processing time for each thread, but 
these threads are concurrently executed. So, it can infer: this parallel algorithm is 
efficient implementation on the GPU. 

6   Conclusions and Future Work 

In this paper, it designed a parallel LIC with GPU computation to solve the discrete 
vector field data visualization problem. Although there is still much future work to go 
related to this study, the results were promising, showing a speedup ration about 50 
times, compared to the Intel R Intel R_ Pentium（R）Dual E2140 processor. For the 
requirement of in-time remote visualization of discrete vector field, it also should 
make some proposals for future GPU configuration as it applies to LIC. Shared mem-
ory would be used and it will greatly improve the performance and the applicability of 
GPU. 
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Abstract. Biogeography-based optimization algorithm(BBO) is a new kind of 
optimization algorithm based on Biogeography. It is designed based on the mi-
gration strategy of animals to solve the problem of optimization. In this paper, a 
new algorithm-Biogeography Migration Algorithm for Traveling Salesman 
Problem(TSPBMA) is presented. Migration operator is designed. It is tested on 
four classical TSP problems. The comparison results with the other nature in-
spired optimization algorithms show that TSPBMA is a very effective for TSP 
combination optimization. It provides a new way for this kinds of problem.  

Keywords: Biogeography, Biogeography-based optimization, Biogeography 
migration algorithm, Traveling salesman problem. 

1   Introduction 

In recent years, we have seen that many algorithms inspired by natural phenomenon 
or mechanisms. In this paper, we mainly focused on such a new kind of algorithm, 
which is called biogeography based optimization, which is inspired by the science of 
biogeography. It is very interesting in that it mimics the migration process of animals 
to design method for solving engineering problems, especially optimization. The 
science of biogeography can be traced to the work of nineteenth century naturalists 
such as Alfred Wallace [1] and Charles Darwin [2]. In the early 1960s, Robert  
MacArthur and Edward Wilson began working together on mathematical models of 
biogeography. Since their distinct work, biogeography has become a major area of 
research[3].Mathematical models of biogeography describe how species migrate from 
one island to another, how new species arise, and how species become extinct. The 
term “island” here is used descriptively rather than literally. That is, an island is any 
habitat that is geographically isolated from other habitats.  

In view of this, Simon presented the first paper on biogeography inspired algorithm 
for engineering[4], which is called biogeography based optimization(BBO). In his 
creative work, he merged the burgeoning field of biogeography with engineering in 
order to see how the two disciplines can be of mutual benefit. Although the idea of 
application of biogeography to engineering is similar to those nature inspired algo-
rithms mentioned above, it has completely different mechanisms and process from 
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those ones. It is again to prove the great power of nature. In the past two years, Simon 
and the other authors had published several papers about BBO. In the first paper on 
BBO, Simon introduced the main idea of how to use biogeography to design an opti-
mization algorithm and gave us the basic definitions, steps of algorithms. The ex-
periments results showed that BBO is indeed effective in solving these problems. 
In[5], Simon simplifies the original BBO in order to analyze its theory. They present a 
simplified version of BBO and then analyze its population using probability theory. 
Their analysis provides approximate values for the expected number of generations 
before the population’s best solution improves. In[6], they develop a Markov analysis 
of BBO, including the option of elitism. Their analysis gives the probability of BBO 
convergence to each possible population distribution for a given problem. Analytical 
comparisons on three simple problems show that with high mutation rates the per-
formance of GAs and BBO is similar, but with low mutation rates BBO outperforms 
GAs. In[7],Simon et al. propose a novel variation to biogeography-based optimization 
(BBO), which employs opposition-based learning (OBL) alongside BBO’s migration 
rates to create oppositional BBO (O B BO). They mathematically prove that it has the 
highest expected probability of being closer to the problem solution among all OBL 
methods. In [8],in order to improve BBO, Du et al. incorporate distinctive features 
from other successful heuristic algorithms into BBO. F-tests and T-tests are used to 
demonstrate the differences between different implementations of BBOs. In[9], Ma et 
al. generalize the equilibrium species count in biogeography theory, explores the 
behavior of six different migration models in BBO. Their study shows that sinusoidal 
migration curves provide the best performance among the six different models. 
In[10], Bhattacharya et al. use BBO to solve the problem of economic load dispatch 
problem. In[11], the BBO is combined with quantum to produce a new kind of hybrid 
algorithm.BBO is not used for TSP problems since it was presented. In this paper, we 
use the idea of BBO to solve TSP. 

The paper is organized as follows. Section II reviews the ideas of biogeography. 
Section III introduces the model and algorithm of TSPBMA. Section IV provides 
some simulation results of TSPBMA compared with other optimization algorithms for 
TSP. Section V presents some concluding remarks and suggestions for further work. 

2   Biogeography and TSPBMA  

2.1   Biogeography 

In geography, geographical areas that are well suited as residences for biological 
species are said to have a high habitat suitability index (HSI). Biogeography is na-
ture’s way of distributing species, and is analogous to general problem solutions. 
Suppose that we are presented with a problem and some candidate solutions. A good 
solution is analogous to an island with a high HSI, and a poor solution represents an 
island with a low HSI. High HSI solutions resist change more than low HSI solutions. 
By the same token, high HSI solutions tend to share their features with low HSI solu-
tions. The shared features remain in the high HSI solutions, while at the same time 
appearing as new features in the low HSI solutions. Poor solutions accept a lot of new 
features from good solutions. This addition of new features to low HSI solutions may 
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raise the quality of those solutions. The immigration and emigration curves shown in 
Fig. 1 as straight lines are a simple model. It illustrates a model of species abundance 
in a single habitat [12]. The immigration rate λ  and the emigration rate μ are func-

tions of the number of species in the habitat. The equilibrium number of species is 

0S , at which point the immigration and emigration rates are equal [3][13]. 

 

Fig. 1. The model of immigration rate and emigration rate of biology[4] 

2.2   TSPBMA Model 

Now, consider the probability sP that the habitat contains exactly S species. sP  

changes from time t  to time tt Δ+  as follows[1]: 

tPtPtttPttP ssssssss Δ+Δ+Δ−Δ−=Δ+ +−− 111)1)(()( μλμλ         (1)  

where sλ and sμ are the immigration and emigration rates when there are S species 

in the habitat. This equation holds because in order to have S  species at time , one of 
the following conditions must hold: 

1) There were S species at time t , and no immigration or emigration occurred be-

tween t and tt Δ+ ; 

2) There were 1−S  species at time t , and one species immigrated; 

3) There were 1+S species at time , and one species emigrated. 

tΔ is small enough so that the probability of more than one immigration or emigra-

tion can be ignored.Taking the limit of (1) as 0→Δt gives equation (2) shown at 
the bottom of the page.   

Define maxSn = and T
nPPPP ]...,[ 10= , for notational simplicity. Now, the 

.

sP equations is  arranged (for ),...1,0 nS = ) into the single matrix equation 
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APP =
.

                                                            (2)  

where the matrix A is given as (6). For the straight line curves shown in Fig. 1, we 
have 
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It is easy to prove that the steady-state value for the probability of the number of each 
species is given by 
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2.3   TSPBMA Algorithm 

In BBO,each individual is considered as a “habitat” with a habitat suitability index 
(HSI), which is similar to the fitness of EAs, to measure the individual. A good solu-
tion is analogous to an island with a high HSI, and a poor solution indicates an island 
with a low HSI. High HSI solutions tend to share their features with low HSI solu-
tions. Low HSI solutions accept a lot of new features from high HSI solutions.In 
TSPBMA, each individual has its own immigration rate λ  and emigration rate μ . A 

good solution has higher μ  and lower λ , vice versa. The immigration rate and the 

emigration rate are functions of the number of species in the habitat. 
They can be calculated as (3) and (4).Note that Eqns. 2 and 3 are just one method 

for calculating λ  and μ . There are other different options to assign them based on 

different specie models [1]. 
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The main steps of TSPBMA are shown as follows: 

Initialize maxm , generation number N, generate the  

initial path habitats 
nH randomly; 

Evaluate the HSI for each path individual in 
nH ; 

Sort the population from best to worst based on cost; 
Initialize the generation counter t = 1; 
While the halting criterion is not satisfied do 
    For each path individual, map the HSI to the number 

of species; 

       Calculate the immigration rate iλ  and the  

emigration rate iμ  for each path )(iH ; 

 Calculate sP  ; 

 If  rand< iλ  and iμ <sum( iμ ); 

Select a habitat )(iH  ; 

         Crossover( )(iH , )1( +iH ); 

        End if; 
    End for 

Calculate mutation rate im ; 

Mutate each habitat in 
nH  with mutation rate im  ; 

Evaluate 
nH ，update HSI; 

Sort 
nH  according to cost; 

Keep the first two best individuals; 
t = t + 1; 
End while; 

It begins by computing the immigration and emigration rates of each path habitat 
Then, path habitat modification is performed on each habitat. The emigration and 
immigration rates of each solution are used to probabilistically share information 
between habitats. In TSPBMA, it is carried out by the operation of selection and 

crossover. According to the model curve of λ and μ in Fig.1, we  suppose that the 

better solution should be with lower λ and higher μ than the other emigration rates 

μ of the other solutions to decide whether )(iH  should be selected or not. If 

its μ value is bigger than the sum of the other habitats, then it must be better solution 

than the other ones. Based on the two selection steps, if )(iH  is selected, it is used to 

crossover with its neighbor )1( +iH to share its good information and produce more 

diverse habitats. The crossover used here is regular cycle crossover. This step is  
different from that of GA because two parents are selected to crossover to produce 
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offspring in the population of GA. And the crossover operation is separated from 
selection operation. In TSPBMA, only one habitat will be selected based on its 
λ and μ . And crossover and selection are in one step, that is, they cannot be sepa-

rated here. This step mimics the migration phenomena happening in biology. During 
the migration process, information will be shared among different habitats when ani-
mals migrate from one habitat to another. We use inversion mutation on both poor 
solutions and good solutions. 

The mutation rate im  is the mutation rate that is calculated as 

)1(
max

max p

p
mm i

i −=                                               (8) 

where maxm  is a user-defined parameter, and maxP = argmax iP , NPi ,...1= . With the 

migration operator, TSPBMA can share the information among solutions. Especially, 

poor solutions tend to accept more useful information from good solutions. This 

makes TSPBMA be good at exploiting the information of the current population. 

Additionally, the mutation operator tends to increase the diversity of the population.  

3   Benchmark Results 

In order to explore the benefits of BBO, we compared its performance on some classi-
cal TSPs with five other population-based optimization methods, including 
ACO,GA,PSO,IA,Fish Swarm(FS)[14]. The benchmarks are Oliver30, Eil50,and 
Eil75 in TSPLIB.  

The parameters of TSPBMA are: habitat modification probability=1, maximum 
immigration and migration rates=1 for each habitat. 

We did some rough tuning on each of the optimization algorithms to get reasonable 
performance, but we did not make any special efforts to fine-tune the algorithms. For 
ACO, we used the following parameters: initial pheromone value 

510 −= Eτ ,pheromone update constant 20=Q , exploration constant 10 =q , global 

pheromone decay rate 9.0=gρ , local pheromone decay rate 5.0=tρ  , pheromone 

sensitivity 2=α , and visibility sensitivity 6=β . For the GA, we used roulette wheel 

selection, single point crossover with a crossover probability of 0.3, and a mutation 
probability of 0.1. For PSO, we used initial and ending inertia weight 0.9 and 0.3 
respectively, and a social constant 0.7 for swarm interaction. For IA, we used single 
point crossover with a crossover probability of 0.7, and a mutation probability of 0.07. 
We use try number 100, sense distance 6, crowd factor σ =0.5 for FS.  

In our test, the distance is considered only as the cost, to find the best path 
),...,,( 21 ntttT =  is the same as to make following targeting function minimum 
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it  is the numbering of the city which is a natural number between 1 and 

N , ),( ji ttd denotes the distance from city i to city j and for symmetrical  TSP 

),(),( ijji ttdttd = .In our TSPBBO, we sort the habitats according to the cost 

)(Tf ,and recalculate their immigration rate λ  and emigration rate μ . 

Each algorithm had a population size of 50, an elitism parameter of 2, and ran 1000 
generations and 20 times to get average results. Fig. 2 to Fig. 5 show the results of the 
simulations. For the space limited, we only give the results of TSPBMA on the 
KroA100 cities and also the comparison results with the other algorithms. 

 

Fig. 2. The comparison results of TSPBMA with the other algorithms on KroA 130 cities 

In Fig 2, the comparison results of TSPBMA with the other five algorithms are 
shown. We can see that TSPBMA is much better than classical GA, IA,PSO and FS 
both in solution quality and converging speed. It can find the best result at 400 gen-
eration. But it is worse than ACO in the converging speed.  

 

Fig. 3. The average and minimum length of TSPBMA for KroA100  
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In Fig 3, we give the average and min length gained by TSPBMA for KroA100 cit-
ies. In fact, for the other several problems, it has similar performance. The average 
results changed slowly with generations. It means that TSPBMA is stable in the 
searching process and can find the relative good path in each generation without too 
many trials in population.  

 

Fig. 4. The performance with the change of mutation rate of TSPBMA 

The only parameter defined by user is the mutation rate( maxm ). And we get good re-

sults for maxm =0.3-0.9. So it is not sensitive to this parameter. It can be seen in Fig. 4.  

This is a good performance that many other nature inspired algorithms do not own. 

 

Fig. 5. The best path found by TSPBMA for KroA100 cities 

In Fig 5, the best path of KroA100 cities is shown.  
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Table 1. TSPBMA results compared with other methods 

Benchmark TSPBMA ACO  GA IA        FS PSO  Best 
Result 

Oliver30 420  
422         

420 
422 

425 
426         

442 
453 

430 
442       

520 
552 

420 
 

Eil50 425 
425 

425 
424 

N/A 
428 

453 
464 

442 
451 

530 
554 

425 
 

Eil75 535 
536 

535 
535 

N/A 
545 

576 
583 

561 
572 

675 
684 

535 
 

KroA100 21282 
21282 

21282 
21282 

N/A  
21761     

22322 
22435 

21923 
22067 

64919 
66635 

21282 
 

The problems provided in TSPLIB for algorithm testing are in two expression 
forms. One is integer distance and another is real number distance between two cities. 
We use integer one here. The results in the parenthesis refer to average generations of 
20 times running. N/A means the result cannot be gained. 

In Table1, the comparison results of TSPBMA with the ACO, GA, IA,PSO and FS 
are shown. We report the best integer tour length. Results using GA are from[15]. The 
best results for these problems are included in TSPLIB. In total, the behavior of 
TSPBMA with respect to stability, convergence, equilibria, and other issues are better 
than the other nature inspired algorithms. 

4   Conclusion 

We have shown how biogeography, the study of the geographical distribution of bio-
logical species, can be used to derive algorithms for TSP combination optimization. 
This new algorithms is called TSPBMA. We have applied TSPBMA to benchmarks 
oliver30,eil50,eil75, KroA130 cities. And the results showed that it has better per-
formance than most other classical nature-inspired methods, including converging 
speed, less parameters and robust to parameters. The results show that TSPBMA is  a 
good method and has great potential in solving combination optimization problems 
including TSP. It provides a new way for researchers to solve similar problems in 
future. And it also proves that the idea of biogeography can be used to solve real en-
gineering problem, such as TSP. But when compared with the proposed method, ACO 
was as successful as it in terms of solution quality and significantly better than it in 
terms of speed of convergence. In future, we will focus on improving our algorithm’s 
performance including converging speed and solution quality on combination optimi-
zation problems and solving more complex ones in further.   
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Abstract. Redistricting is a Clustering Problem in optimization. The optimum 
redistricting is a convincing argument to voters that this solution is fair. In this 
paper, we set up a kind of model basing on the multi-factor model of clustering 
of the population pots by adopting the theory of optimization and the tools of 
stochastic simulation. Through this method, we solve the problem of how to 
realize the redistribution and the judging problem. Using the statistical data and 
practical model, we can get the districts of the state of New York satisfied with 
the rules of all principles.  

Keywords: simple, compactness, recursion, partisan swing, stochastic. 

1   Introduction 

Gerrymandering, which was coin in 1812, is the drawing of election district boundary 
lines for partisan advantage, to favor the majority party and incumbent politicians of 
all political parties [1]. In order to avoid the phenomenon and preserve the one voter-
one vote fairness principle, districts should be reapportioned after the decennial 
census. Although the starting point of redistrcting is to protect the principle of 
fairness, but we cannot ensure that a party’s proportion of the seats is according with 
its proportion of the votes. If there is a systematic tendency for a party’s voters to 
reside in overpopulated districts(malapportionment) or in districts where their votes 
go “wasted” (gerrymandering), then the party will win less than its “fair” share of 
seats [13]. The partisan seat division should be symmetrical: that is, if one party wins 
y seats for x percent of the vote, the other party should also win approximately y seats 
for x percent of the vote. The above constraint factors are ideal partitioning, but in 
really partitioning districts, it is impossible to achieve the ideal phase, any state can be 
affected by geographical location, climate or some social aspects, things like military, 
prisons and so on. However reapportionment, made necessary by fidelity to 
democratic principles, still will bring with it gerrymandering [13]. 

Over the last four decades, in order to avoid the phenomenon fo gerrymandering 
and protect electoral fairness, many academics and politicians have put forward some 
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algorithms, methods, models and arguments for redistricting to be automated [2]. 
Lijphart [3] put the 16 standard principles to regulate the principle of redistricting. In 
literature [4]-[8], several authors have argued that gerrymandering can eliminated by 
drawing districts which are maximally compact, and they consider that redistricting 
can be performed best by automatically optimizing a pre-specified representation 
function. Gary King buildes a stochastic model of the representation and bias in 
congressional and state legislative elections, and demonstrates that redistricting has 
effects in predicted directions in the short run: partisan gerrymandering biases the 
system in favor of the party in control, and by freeing up seats held by opposition 
party incumbents, increases the system’s responsiveness [9]. An unified statistical 
method, provided by Andrew Gelman and Gary King, enables one to calculate more 
efficient estimates, with more trustworthy assessments of their uncertainty, than each 
of the separate multifarious existing measures of partisan bias [10]. We hope 
automated redistricting can offer a general-purpose and unbiased method for 
partitioning districts. However, most of the existing models of redistricting are unable 
to well satisfy these optimistic expectations. That is , they fail to give satisfactory 
results on certain types of geographical configurations.  Such methods can in principle 
eliminate Gerrymandering by providing well defined steps and constraints.  

In this paper, the Districting Problem is a geographical problem which is present in 
a number of geographical tasks such as school districting, design of sales territories, 
etc. The constraints of the Districting Problem are very similar to that of the 
Clustering Problem in optimization. In order to protect the principle of fairness, we 
need to deal with these questions below: Each district in the state must contain the 
same population. Drawing congressional districts with a purely baseline exercise to 
create the “simplest” shapes. Under the rule of “simple”, we need to make a 
convincing argument to voters in the state that the solution is fair. 

This paper is organized as follows. In section two, we put forward the definitions 
of “compactness” and “simple”, and we design some partition models from different 
aspects. In section three, we design estimate model, including partisan model and 
compactness model. In section four, we apply partition model to New York State, and 
get the final figure. In section five, we do a conclusion. 

2   Design of Model 

Redistricting is a large mathematical problem. We can mathematize redistricting to 
think of it as a set partitioning problem. In this paper, the rules we complied only 
include that the method of redistricting is simple and each district in the state contains 
the same population. Each district elects only one representation, the number of 
districts which are partitioned is equal to the number of representations.  

2.1   Relative Definations 

Two basic principals govern all redistricting in the United States: all parts of a district 
must be contiguous and a district must be reasonably compact in shape. While 
contiguity is an objective criterion, compactness is subjective, and there are many 
ways to define it (Niemi et al.1990) [12]. But the existing definition of simple may 
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appeal to our intuition, it does not provide a rigorous or precise standard that can be 
used to determine whether a districting plan is or is not simple [12], [14]. In order to 
understand below models and algorithm, we provide the definations of “simple” and 
constraint of simplest. 

Defination 1. We define our “simple” in two different aspects. First, in our model, the 
shape of districts is the simplest. The more compact of the district is partitioned, the 
simpler the shape is. Secondly, the manipulation of partition is another aspect of 
“simple”. So, we respect the geographical integrity of any city, county, or 
geographical region to the best of our abilities to reduce the trouble of partition. 

Defination 2. When two figures have the same area, the simpler the shape is, the 
shorter the perimeter is. To ensure the drawing of the congressional districts to be 
simple enough, the perimeter of districts is the shortest. A constrained function can be 
given:  

σ = Ai
i

C∑ , (i=1,2,3,…) .     (1) 

Where Ci = The boundary length of an election district, 
A = The area of the district. 

We can use the value of σ to control the shape of districts. When the value is small 
enough, the shape which we got is simple enough.  

2.2   Ideal Model 

Now, we begin to discuss the model in general conditions, and provide a method of 
redistricting for any state of the United States. With regard to a certain state, we can 
get the information of whole population and how many representatives this state will 
have. For each district elects only one representative, we can compute the population 
of each district. With the amount of population of each county, the area of each 
district can be confirmed by us. 

2.2.1   The Voter Population of Each District 
In real life, it is totally impossible that every people votes to elect representative. We 
assume that the proportion of voter population in general population is constant in all 
districts. We can get the conclusion that the voter population of each state is pr/s. 
Where p = the whole population of a state, 

r = the proportion of voter population, 
s = the number of districts. 

2.2.2   Partition Districts and Partition Algorithm 
Abiding by the principle of simple, we use the original boundary of counties as the 
boundary of districts as far as possible. It is more reasonable that people vote in their 
hometown. Of course, it is impossible that all boundaries of districts are the new 
boundary of county’s. Under this condition, when the population of counties is not 
suitable to the requirements of the districts, we begin to utilize the boundary of 
villages which are smaller than counties to be the boundary of districts. To respect the 
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integrity of any village as far as possible, people who live in one village should vote 
together. Otherwise, even if the population is equal in all districts, it will not happen 
in reality. Hence, when we are partitioning districts, the villages are thought as the 
smallest unit. At the same time, counties are considered as the basic units to partition 
districts. Firstly, we combine several counties and compute the amount of their 
population. Next, we estimate that whether the number of population is satisfied with 
the requirement of the number of population in one district. That means we change 
one state into a Graph Structure [11], like in fig. 1, each county is as a node. This 
method can be thought as a point cluster.  

 

Fig. 1. Change one state into a Graph Structure 

Next, we take one state as an example, and give the algorithm of method. 

Algorithm 1. partition algorithm  
step 0  choose one of the downmost counties as the 
Current County (C.C) as the starting position of 
partitioning, x is the population of the county; 
step 1  compare x with pr/s: 
  step 1.1  if x<pr/s, search counties which is abutting 
the C.C, then goto step2;  
step 1.2  if x>pr/s, choose a county which lies left 

underneath of the C.C; 
step 1.3  if x=pr/s, choose this county ,C.C, as a 

district; 
step 2  it means that the population of the town yj: sum 
= sum+ yj; 
step 3  compare the sum with pr/s: 

step 3.1  if sum<pr/s, then go to step 1.1; 
step 3.2  if sum=pr/s, then go to step 4; 
step 3.3  if sum>pr/s, choose the nearest town in the 

counties which are abutting C.C , it means that the 
population of the town yk : sum = sum+ yk, then goto step 3; 
step 4  compare the sum with pr/s ，xi is the population 
of the ith district which has been chosen: 

step 4.1  0.95< isum x <1.05;   

step 4.2  if not, then goto step 2; 
step 5  print parallelism the counties and towns into 
array A which surrounded by the boundary, then print the 
length of the boundary into array B; 
step 6  execute the steps above as recurrences; 



 An Approach of Redistricting Based on Simple and Compactness 419 

 

step 7  get several methods of redistricting ,the 
boundaries and length of that is recorded in the two 
kinds of arrays above; 
step 8  for any methods of redistricting, sumC = i

i

C∑ can 

be calculated; 
step 9  choose the Best Method with the smallest sumC in 
the ideal model.  
After the process of our algorithm, we get a result of drawing districts. 

3   Design of Estimate Model: Convincing Argument 

Next, we will build up Partisan Model. Considering over the competition among 
different parties in reality, it is obvious that whether our partisan model can show out 
the principle of fairness, and whether voter population can show out the number of 
representatives.  

For the other, it turns to test the shape of practical districts. When the shape which 
is given by Partition Model is compact enough, we get a result that the 
gerrymandering exists less possible in this redistricting. With this rule, we can build 
up a compactness model to estimate. 

3.1   Analysis of Partisan Model 

If the election is fair enough, it will reflect the wishes of the most people. That is, the 
proportion of the seats or the representatives which a party won in the state is equal to 
the proportion of the voters which a party has. We assume the party called 
Democratic, of course, it is suitable to any other parties. As a matter of fact, there is a 
balance between the statistical number of seats and the academic number. This 
situation can be used by us to define a differences function. The function will be 
showed if the election is fair. When we consider a particular area: 

( )E s V
f

m K
= −  .     (2) 

Where V = The number of voters who favor the Democratic in this area. 
K =The whole number of voters in this area. 
m =The number of representatives in this area 
E(s)=The number of seats of Democratic.  

We can conclude that the smaller the value of f is, the fairer the election is. It is 
especially that E(s)=g(V, parameters). In the ideal condition, there is a systematic 
tendency for the Democratic voters to reside in districts, that is the partisan seat 
division should be symmetrical. Hence, we can determine the relative parameter β, 
and and grants the prescribed error parameter α. From the above, we can come to the 
conclusion that E(s) is linear :  

E(s) = α + β•V.     (3) 
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However, the linear function is not exact in reality. There is no vote preference in 
this equation. Considering the vote preference, the situation is totally different. The 
most important factor is that there are always partisan swings in polity. We build up 
seats-votes coordinates to reflect this problem. There is a new function which called 
The Uniform Partisan Swing function. 

The most widely assumption to derive a seats-votes curve from distract-level 
electoral votes in the literature is called “uniform partisan swing” and was introduces 
by Butler in 1951(for recent application, see Niemi and Deegan 1978, Gudgin and 
Taylor 1979, Niemi 1985, Niemi and Fett 1986,and many others). The assumption is 
that vote proportions in every distract all move in lockstep, swinging back and forth in 
response to national or statewide electoral forces and without any random error or 
local factors to make them behave differently. 

Fig. 2 presents an example of a seats-votes curve drawn with the uniform partisan 
swing. The small square denotes the actual statewide election result, and the rest of 
the line was drawn with the assumption. 

Although this approach does provide a reasonable starting point, permitting some 
estimates to be made that would otherwise be impossible, it also has several severe 
weaknesses. First, the assumption is empirically false. Tracking real districts from 
election to election reveals approximate uniform shifting, but always with some 
variability. Fig. 3 provides an example of this interelection variability; graphs for 
other pairs of elections look similar, although some have more and some less 
variability. If the uniform partisan swing assumption held exactly, all of the points in 
Fig. 3 would fall on a straight line. They do fall somewhat near a straight line, but the 
evidence for variability around this line is unambiguous. A more reasonable model 
should explicitly take this variability into account. 

 

Fig. 2. Seat-Votes curve New York 1972           Fig. 3. Distract-Level electoral swing, New 
                                                                                  York State assembly, 1972-1974 

Furthermore, by assuming the absence of variability, all estimates of variation 
across repeated hypothetical elections, including standard errors, are zero. Since 
politics is hardly deterministic, this assumption should obviously be changed. 
Incorporating this variability will yield estimators with more desirable statistical 
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properties, but it also will enable analysts to distinguish observed changes that are 
unique from those that reflect significant changes in the underlying electoral system. 

Although this approach does provide a reasonable starting point, permitting some 
estimates to be made that would otherwise be impossible, it also has several severe 
weaknesses. First, the assumption is empirically false. Tracking real districts from 
election to election reveals approximate uniform shifting, but always with some 
variability. Fig. 3 provides an example of this interelection variability; graphs for 
other pairs of elections look similar, although some have more and some less 
variability. If the uniform partisan swing assumption held exactly, all of the points in 
Fig. 3 would fall on a straight line. They do fall somewhat near a straight line, but the 
evidence for variability around this line is unambiguous. A more reasonable model 
should explicitly take this variability into account. 

Considering partisan swings and according to the theory of Doctor Gary King, we 
can get the graph of seats-votes.  

( )
1

1 exp ln
1

V
E s

V
λ ρ

−
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= + − −⎨ ⎬⎜ ⎟⎢ ⎥−⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 .     (4) 

Where λ reveals partisan bias. λ=0 means that there is no partisan bias, λ>0 means 
that the swings favor Democratic, and λ<0 means that the swings favor other parties. 

ρ indexes the form of Democratic representation. 

 

Fig. 4. Mean voter preference distributions 

Fig. 4 shows the situation of election existed partisan swings. 

3.2   Analysis of Compactness Model 

In literature [4]-[8], several authors have argued that gerrymandering can eliminated 
by drawing districts which are maximally compact, and they consider that 
redistricting can be performed best by automatically optimizing a pre-specified 
representation function. Politicians have too many opportunities to manipulate district 
boundaries by selectively following odd-shaped city, county, and region boundary 
lines. In common, the most obvious district which is gerrymandered looks unnatural. 
In other words, an election district lacks compactness and is likely to be 
gerrymandered. One approach to deriving a Compactness Metric is to compare an 
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election district shape with a compact reference shape. In addition, a useful 
Compactness Metric should yield the same numeric result for the same shape with 
different areas. It has the desired property that two districts with the same shape and 
(approximately) the same number of voters will have the same (or nearly identical) 
Thus, the Compactness Metric should be normalized to remove differences in 
population density. 

We derive the Compactness Metric formula as follows. The ratio of the boundary 
to the area ( B/A ) of a square is four times the length of a side (4s) divided by the 
square of the length of a side (s2), or:  

( )
( )

**
2

4 sqrt AB 4 s 4

A s A sqrt A
= = =  .     (5) 

Where sqrt(A) is the square root of A, or s. Then for any election district, the 
Compactness Metric (CM ) is the ratio of the B/A ratio of the district to the B/A ratio 
of the equivalent area square, which is  

( ) ( ( )) ( * ) ( )1CM = B/A 4/sqrt A B sqrt A4=  .     (6) 

For simplicity, we can simply omit the 1
4  coefficient and adjust the valid range of 

CM values used for comparison accordingly, by multiplying them by 4:  

CM = B/sqrt(A) .     (7) 

An equivalent but more useful Compactness Metric is obtained by squaring the value 
of the B/sqrt(A) Compactness Metric to provide a greater range of values and greater 
differences between the values to be compared:  

CM = B2/A .     (8) 

4   An Application of Partition Model to Districts of New York 
State 

We use Partition Model to draw the boundary of districts of New York. This state 
should get 29 seats in the House of Representatives of the Unite States. Put the map of 
New York into a quadrate table which consists of panes like this. Each pane expresses 
an element of a matrix. The value of each element indicates the number of population. 
Obviously, the value of every pane located outside the state map is equal to zero. 
Therefore, the whole population of New York is the sum of all elements in the 
quadrate matrix. According to the ideal model of Partition Model and actual data of 
New York, we partition the whole map. In each time of the partition, we can get a 
matrix element of a district. After packing them up, the ideal figure can be showed up: 
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Fig. 5. Result of the ideal model 

Arabic numerals (1,2,3,4,……,29) in this map show the order of the districts. 
Because there are too many people in New York city, it is not partitioned in this map. 
Of course the constraint of population 0.95<xi/xj<1.05 must be used in each step. We 
can adjust the boundary of the districts entirely. The practical districts are showed as 
follow: 

 

Fig. 6. The final map 

5   Conclusion 

In order to satisfy with the rules of redistricting and the principle fo fairness at one 
time, we develop models in different aspects. While achieving the requirement of 
population and simple, we supply another model to give a convincing argument to the 
voters. By eliminating the influence of parties in population, we assume that the 
distribution of each party is stochastic. We define the notion of “simple”, and induce 
the concept of partisan swings which bring a precise result to our model. 

However, our models still exist its weaknesses. Although compactness is a 
reasonable constraint to prevent more extreme cases of election manipulation through 
gerrymandering, but it is not the sufficient criterion. It is possible to have different 
redistricting maps with equally compact districts that yield different results in balance 
of power between the parties and in whether the districts are safe or competitive. 
Redistricting is a large mathematical problem, the size of the solution set can be 
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enormous, We don’t give the proveness of the complex of our algorithm. The above 
problems are our next advanced work.  
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Abstract. Genetic algorithm is an evolutionary algorithm. It is particularly 
suitable for solving NP-complete optimization problems. In this paper, we 
propose a rapid genetic algorithm based on chaos mechanism. We introduce the 
chaos mechanism into the genetic algorithm. Using the ergodic property of the 
chaos movement, this method can remedy the defect of premature convergence 
in the genetic algorithm. In the search, this method continuously compresses the 
searching intervals of the optimization variable for increasing convergence 
speed. Experiments indicate that this method is a rapid and effective evolutionary 
algorithm.  

Keywords: chaos mechanism, genetic algorithm, NP-complete, premature 
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1   Introduction 

The genetic algorithm (GA) is a random search method. It simulates the rules of the 
survival fittest in the process of biological evolution and the random exchange 
mechanism of the chromosome information within the population. The genetic 
algorithm possesses outstanding global search ability and a strong robustness; therefore, 
it is widely used in many fields. The genetic algorithm is an evolutionary algorithm. It is 
particularly suitable for solving NP-complete optimization problems, which cannot be 
solved using the traditional optimization methods.  

Comparing with the traditional optimization methods, the genetic algorithm has the 
following characteristics [1,2,3]: 1) The genetic algorithm has strong adaptability. It 
only requires that the optimization problem is computable, and this requirement has no 
connection with the essence of the problem. At the same time, GA uses the probability 
search method, and guides the search direction by the fitness function. So, GA has 
strong adaptability. 2) The genetic algorithm has global optimization ability. Using 
multi-point and multi-track search and exchanging information in the search, GA can 
effectively searches the solution space. 3) The genetic algorithm has implicit 

                                                           
* Corresponding author. 
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parallelism. It controls n feature strings in the population to respond to o(n3) order 
patterns. But GA has a defect of premature convergence.  

Chaos is a kind of common movement in the nonlinear systems. Chaotic 
characteristics can be summarized: randomness and ergodic. Taking advantage of these 
characteristics, chaotic optimization search can avoid falling into local extreme value. 
But there is an obvious relationship between the optimization result and the search 
space. When the search space is extremely large, the chaotic optimization search can’t 
obtain satisfying solution. To this end, people introduce the chaos mechanism into the 
genetic algorithm to remedy the defect of premature convergence [4,5,6,7]. But this 
advantage is based on a large calculation quantity required by the random relaxation 
process of the optimization variable. It greatly decreases the convergence speed of the 
methods; in some optimization problems, it even can’t reach the convergence speed of 
the traditional optimization methods. 

In this paper, we propose a rapid chaos genetic algorithm (RCGA). Firstly, we 
introduce the chaos mechanism into the genetic algorithm. Using the ergodic property 
of the chaos movement, the defect of premature convergence can be remedied in GA. 
Then, using the current optimal solution as the center, the search intervals of the 
optimization variable are continuously compressed for increasing the convergence 
speed. In this way, RCGA not only can remedy the defect of premature convergence in 
GA, but also can solve the problem of decelerated convergence in GA after the chaos is 
introduced. So RCGA can reach the optimal solution (or approximate optimal solution) 
rapidly and effectively.  

2   The Rapid Chaos Genetic Algorithm 

2.1   The Chaos Mechanism 

The Logisic mapping is a simple and convenient dynamic system that produces chaos 

variables. The formula is  

( )zzz kkk
A −=+ 14

1 .                                                         (1)  

The fork profile of this system is shown in figure 1. 

Obviously, when A≤0.75, the system has stable-point attractor; when 

0.75<A≤0.89, the system shows some periodicity, when 0.89<A≤1.0, the system 

shows a chaos state.  

Using the formula (1), we can produce the chaos sequence. Then, the chaos sequence 

can be introduced into the genetic algorithm for remedying the defect of premature 

convergence in the genetic algorithm.  
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Fig. 1. Fork profile 

2.2   The Rapid Chaos Genetic Algorithm 

We assume the mathematical model of NP-complete optimization problems as follows:   
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Step 1. Initialization: the population size is defined as L. Let A=1, t=1 (t is the control 

parameter which is used for adjusting the search interval.). The initial values are 

randomly given: zzz m,,, 21 ( ]1,0[∈z j ), each of them has small difference with 

each other. Using the formula (1), chaos variables are produced for each initial value: 

zzz Ljjj ,2,1, ,,, ( ,,,2,1 mj =  total: m×L), each of them has different track. All 

these chaos variables compose the initial population of the evolution: 

( ){ }Lizzz imii ,,2,1,,2,1 ,,, = . The initial interval of the optimization variables is 
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Step 3.  Let ( ) ( ) ( )ff
L

fpfpG t
i

t
i minmaxmin

)()( 1 −+−= . ( )pG t
i

)(  is used as the 

individual fitness in the current population (in this way, the scope of the fitness is 
extended and the speed of the convergence will be increased).  maxf expresses the 

maximum of the individual fitness in the current population, f min  expresses the 

minimum. The population evolves several generations (10~20). The evolution ends if 

the terminal condition is met, otherwise, goes to step 4. 

Step 4. The evolution goes on until the requirement of the initial search is met.  The 

current optimal solution is defined as ( )pppp t
m

ttt )*()*(
2

)*(
1

)*( ,,,= . 

Step 5. 1+← tt . Using ),,2,1(  )*( mjp t
j =  as the centers of the intervals, the 

search intervals are compressed. 
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Step 6. According to the formula: ),,2,1(
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mapped into the interval [0,1]. Using formula（1）, chaos variables are produced for 

each z t
j

)1( +  (total: m×L). Return to step 2. 

Algorithm Explication:  

(1) We define the average fitness of q-generation population as  
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The requirement of the initial search: δ<− − )()( 1 pGpG qq
. δ  is a pre-given small 

positive number. 

(2) We define the maximum of the individual fitness in q-generation population 

as )}(,),(),(max{)( )()(
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The termination condition: ( ) ( ) ε<− −pGpG qq
*

1
* . ε  is a pre-given small positive 

number.  

2.3   The Convergence of the Rapid Chaos Genetic Algorithm 

Theorem: The probability that the rapid chaos genetic algorithm converges to the 

global optimal solution is one.  

Proof: In section 2.2, some closed interval sets have been obtained.  
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measure theory, we assume that N ε  expresses the neighborhood of the global optimal 

solution p * . The event is At that the vectors ( )tp*
 produced by RCGA drop in N ε . 
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APAP .  That is, the 

probability that the rapid genetic algorithm converges to the global optimal solution is one. 

3    Simulation Experiments 

We use four traditional functions to test RCGA performance, and compare RCGA 

performance with OGA/Q’s [3]. F1 is single apex function, F2∼F4 are multi-apex 

functions. In these experiments, pc=0.9(crossover probability), pv=0.01(variance 

probability), δ=10-2, ε=10-4 . For F1∼F3, L=80，and L=100 for F4. In Table 1, the 

results are the average values of twenty times experiments. 
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Table 1. Comparing the performance of RCGA with OGA/Q’s 

Average value Standard square error 
f 

RCGA OGA/Q RCGA OGA/Q 

F1 4.512E-05 6.896E-03 1.836E-04 1.952E-03 

F2 -12569.49 -125769.42 8.746E-8 6.468E-04 

F3 1.033E-09 6.012E-06 5.898E-10 1.161E-06 

F4 -99.5313 -92.86 2.702E-04 2.628E-02 

4   Conclusion  

In this paper, we propose a rapid chaos genetic algorithm (RCGA). Using the ergodic 

property of chaos movement, the defect of the premature convergence can be remedied 

in GA. Using the current optimal solution as the center, the search intervals of the 

optimization variable are continuously compressed for increasing convergence speed. 

In this way, RCGA not only can remedy the defect of premature convergence in GA, 

but also can solve the problem of decelerated convergence in GA after the chaos is 

introduced. Experiments indicate that this method is a rapid and effective evolutionary 

algorithm.  It can be seen from table 1, this method is especially suitable for the 

optimization problem of multi-apex function. 
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Abstract. The mathematics models of Reliability-based Structural Optimization 
(RBSO) were presented in this paper, then how to handle the constraint become 
sixty-four-dollar question of establishing the fitness function. Based on exterior 
penalty function method, penalty gene is made adaptively according to 
population’s evolution, then the fitness function is established, which is 
mapping formula of objective function and constraints. Subsequently laxity 
variable is introduced in primary mathematic model, based on Lagrange 
multiplier method, a new fitness function mapping formula is made, this 
method can avoid penalty function morbidity by means of adding a Lagrange 
multiplier, and has a more quick and stable convergence. Then, using GA 
successfully solved a numerical constrained optimization issue by this two 
mapping functions. The calculation shows that the two equations are reasonable 
and efficient, and Lagrange multiplier method has better global optimal 
capability. 

Keywords: genetic algorithm(GA), constraint optimization, fitness function, 
exterior penalty function method, Lagrange multiplier method. 

1   Introduction 

Genetic Algorithm is part of evolutionary computation techniques that employ the 
stochastic search techniques based on principles of natural genetics [1,2]. Import 
parallel algorithm into GA can be more manageable in structural optimization [3]. In 
the most case of real structural optimization design, there are constraint conditions, 
but standard GA only fit for maximum search without constraints. So, how to handle 
the constraints and objective function, and then establish a tractable fitness mapping 
function becomes the most important matter of this algorithm. 

Contrast the traditional optimization design, reliability-based structural 
optimization can enhance design quality markedly, and RBSO become an important 
international scientific research question for discussion. In this paper, system 
reliability index was treated as design constraints, based on exterior penalty function 
method and Lagrange multiplier method, fitness functions was made, respectively. 
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2   Exterior Penalty Function Method 

Exterior penalty function method is prevalent in GA, Michalewicz [4] has presented 
penalty function-based linear constraint optimization method, according to that, this 
paper established the mapping function of objective function and constraint. 

The mathematics model of RBSO is as follows: 
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where UL AA , are upper limit and lower limit of design variables, respectively; sβ  

is system reliability index; 
a

sβ is admit system reliability index. 

Set up a new function g  as follow: 
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Then the new fitness mapping function is 

( )gkWCF 11+−=  (3) 

where C is a big enough constant; 1k  is penalty operator, in different optimum issues, 

the value of 1k  has to be consulted experience, in this paper, it has an adaptive 

equation value: 

⎪⎩
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,
0.1
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(4) 

where minmax ,CC =maximum and minimum values of the corresponding normalized 

constraint violations in the current population [4]. So, we get an integrated fitness 
function like Equation (3). 

3   Lagrange Multiplier Method 

Lagrange multiplier method is an improvement of penalty function method, and at the 
present time, it is one of the most efficient constraint optimizations.  
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Flabby variable 2z was introduced into the model Equation (1), then inequation 
constraint turn to equation constraint, and mathematics model turn to: 
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Its aggrandized Lagrange function is  

( ) ( ) ( ) ( )222

2
,,, z

r
zAWrzA a

ss
a

ss −−+−−+=Φ ββββλλ  
(6) 

where, r is a constant bigger than 0; λ  is Lagrange multiplier, and 

( ){ }a
sskk r ββλλ −+=+ ,0max1  (7) 

where k  is iterative times. 
And take into account 

( )[ ]{ }a
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r
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(8) 

We obtain new fitness function as follow:  

( ) ( )[ ]{ }22
,0max

2
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ssr

r
AWCF  

(9) 

where,  C is also a big enough constant; ( )AW  is the weight of system. In Equation 

(9), flabby variable 2z  has disappeared; the value of Lagrange multiplier λ should be 
bigger than zero. 

4   Numeral Example 

A classical 25-bar truss RBSO problem is present as an illustrative example by using 
these two methods. 

The details of the truss geometry and loading are shown in Fig. 1, 
where 2/6.27 cmkNC Y = , 05.0=Cov . 2/6895 cmkNE = , 33 /107.2 cmkg−×=ρ . 

loads kNP 9.881 = , kNP 6.222 = , 2.0=Cov . The admit system reliability index 

is 5.3=a
sβ . bars’ cross-sectional areas are iA （0.5~15） 2cm . 
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Fig. 1. 25-bar truss structure 

Member grouping details are I ( 1A ) , II ( 52 AA = ) , III ( 43 AA = ) , IV  

( 96 AA = ) , V ( 87 AA = ) , VI ( 1110 AA = ) , VII ( 1312 AA = ) , VIII  

( 1714 AA = ) , IX ( 1615 AA = ) , X ( 2118 AA = ) , XI ( 2019 AA = ) , XII  

( 2522 AA = ) , XIII ( 2423 AA = ). 

The mathematics model of RBSO is as follows: 
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Where C in Equation (3) and (9) can not be too big, otherwise the fitness evolution 
will be insignificant. So, ×= 25.1C structure system weight when all 

iA  equal the 

maximal value, then 84.416=C [5].  

1. Exterior penalty function method  
Fitness mapping function is 

( )gkWF 1184.416 +−=  
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2. Lagrange multiplier method 
Fitness mapping function is 

( )[ ]{ }22
,0max

2

1
84.416 λββλ −−+⋅−−= a

ssr
r

WF  

where λ  is Lagrange multiplier, and ( ){ }a
sskk r ββλλ −+=+ ,0max1 ; r is a 

constant bigger than 0. 
Algorithm adopts binary codes, and the termination criterion is iterative times 

equal 110. The control parameters are shown in Table 1, and the result is given in 
Table 2. 

Table 1. Control parameters of AIGA 

Control  parameters of AIGA  

Population size n  30 

Bit string length sl  10 

Individual bit string length l  130 ( 1013× ) 

Crossover probability cp  0.8 

Mutation probability mp  0.05 

Table 2. Optimization result of 25-bar truss 

Element 

group 

Cross-sectional 

areas（ 2cm ） 

Element 

group 

Cross-sectional 

areas（ 2cm ） 

I 5.618 II 5.240 

III 4.649 IV 4.944 

V 9.732 VI 5.236 

VII 4.156 VIII 4.156 

IX 4.156 X 4.156 

XI 4.156 XII 4.643 

XIII 4.640   

Weight  

( kg ) 

111.158 sβ  3.500 
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In order to analysis the algorithm’s capability and convergence efficiency, the 
statistic of every generation optimum are shown in Fig. 2. It’s clear that both mapping 
functions can get steady convergence result, but Lagrange multiplier method’s 
iterative process is more quickly, that is to say, adopt this method to handle the 
constraint and construct fitness function, can improve GA’s searching capability 
availably. 
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Fig. 2. Maximum fitness of every generation 

5   Conclusions 

Focus on RBSO issue, this paper adopts exterior penalty function method and 
Lagrange multiplier method construct fitness functions, respectively. Under the same 
conditions, 25-bar truss has been calculated. From the maximum fitness of every 
generation, it is clear that both mapping functions can get the same steady 
convergence result, the functions are reasonable and efficient. Especially, Lagrange 
multiplier method’s iterative process is more quickly, and has better global optimal 
capability. 
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Abstract. This paper proposed a new algorithm of face recognition using 
genetic algorithm for classification. After initialization, selection and 
recombination are executed in a loop until fitness criterion is reached. The 
fitness function is calculated by an information theoretical measure. 
Experimental results presented here show that the proposed face recognition 
algorithm is effective.  

Keywords: face recognition, genetic algorithm, region selection algorithm. 

1   Introduction 

Face recognition compliments face detection. Face detection is the process of finding 
a 'face' within images or videos and Face Recognition is the process of matching the 
detected 'face' to one of many the faces known to the file system. Human faces are 
complex, changeful and high dimensional patterns. Although it is toil for human 
beings to recognize familiar faces, face recognition is a formidable task for machines. 
Even so, because of the vast potential applications, face recognition has become an 
active research area of computer vision and pattern recognition for decades. 

Sander Koelstra et al. [1] proposed a dynamic-texture-based approach to the 
recognition of facial Action Units (AUs, atomic facial gestures) and their temporal 
models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-
frontal-view face videos. Two approaches to model the dynamics and the appearance 
in the face region of an input video are compared: an extended version of Motion 
History Images and a novel method based on Non-rigid Registration using Free-Form 
Deformations (FFDs). The extracted motion representation is used to derive motion 
orientation histogram descriptors in both the spatial and temporal domain. Per AU, a 
combination of discriminative, frame-based Gentle Boost ensemble learners and 
dynamic, generative Hidden Markov Models detects the presence of the AU in 
question and its temporal segments in an input image sequence. When tested for 
recognition of all 27 lower and upper face AUs, occurring alone or in combination in 
264 sequences from the MMI facial expression database, the proposed method 
achieved recognition accuracy of 89.2% for the MHI method and of 94.3% for the 
FFD method. The generalization performance of the FFD method has been tested 
using the Cohn-Kanade database.  
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Stefano Berretti et al. [2] presented a novel approach to 3D face matching that 
shows high effectiveness in distinguishing facial differences between distinct 
individuals from differences induced by non-neutral expressions within the same 
individual. The approach takes into account geometrical information of the 3D face 
and encodes the relevant information into a compact representation in the form of a 
graph. Nodes of the graph represent equal width facial stripes. Arcs between pairs of 
nodes are labeled with descriptors, referred to as 3D Weighted Walkthroughs, that 
capture the mutual relative spatial displacement between all the pairs of points of the 
corresponding stripes. Face partitioning into iso-geodesic stripes and 3DWWs 
together provide an approximate representation of local morphology of faces that 
exhibits smooth variations for changes induced by facial expressions. The graph 
based representation permits very efficient matching for face recognition and is also 
suited to be employed for face identification in very large datasets with the support of 
appropriate index structures. The method obtained the best ranking at the SHREC 
2008 contest for 3D face recognition.  

Tobias Rehrl et al. [3] presented a real-time capable framework that recognizes 
traditional visual human communication signals in order to establish a more intuitive 
human-machine interaction. Humans rely on the interaction partner’s face for 
identification, which helps them to adapt to the interaction partner and utilize context 
information. Head gestures (head nodding and head shaking) are a convenient way to 
show agreement or disagreement. Facial expressions give evidence about the 
interaction partners’ emotional state and hand gestures are a fast way of passing 
simple commands. The recognition of all interaction queues is performed in parallel, 
enabled by a shared memory implementation.  

Yangfeng Ji et al. [4] proposed an improved sparse representation based 
classification algorithm. Firstly, for a discriminative representation, a non-negative 
constraint of sparse coefficient is added to sparse representation problem. Secondly, 
Mahalanobis distance is employed instead of Euclidean distance to measure the 
similarity between original data and reconstructed data. Their classification algorithm 
for face recognition has been evaluated under several illuminations and poses using 
standard face databases. The experimental results demonstrate that the performance of 
their algorithm is better than that of the up-to-date face recognition algorithm based 
on sparse representation. 

Fulong Wang et al. [5] proposed a method not only extracts nonlinear feature for 
faces effectively, but also reconstructs between-class and within-class scatter matrix 
by weighted schemes. So it can modify the kernel maximum scatter difference 
discriminate criterion function. Considering this method sensitive to the change of 
illumination, a pretreatment strategy that can reduce image gradation is used. Finally 
experiments performed on ORL and Yale face database verify the effectiveness of 
their method.  

 Pengzhang Liu et al. [6] proposed a novel method, named Modular Locality 
Preserving Projection (Modular LPP). Their method is derived from the LPP methods, 
and is designed to handle face images with various illuminations and facial 
expressions. In their method, the face images are divided into smaller sub-images and 
the LPP approach is applied to each of these sub-images. As some of the local facial 
features of an individual do not vary even when the lighting directions and facial 
expressions vary, the proposed method is expected to cope with these variations. The 
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Modular LPP and its variant are compared with LPP, based on the Yale face database. 
Experimental results show the significant improvement of their algorithm.  

Fulong Wang et al. [7] proposed a fusion of facial symmetry information method is 
developed for improving two-dimensional principal component analysis. Their 
method uses the characteristic of facial symmetry to generate odd-even symmetry 
images, by weighting odd-even symmetry matrix to replace original image matrix 
extracting features, and at last minimum distance classifier is used for classification. 
The predominance of this method is that it takes full advantages of facial symmetry 
information and considers the impact of odd symmetry matrix which reflects the non-
symmetric in Face Recognition. The experiment results on the YALE and ORL face 
database show that this method has better performance and robustness than the 
classical PCA and 2DPCA.  

Each feature is in fact a region in the face image. For the convenience of analysis 
and computing, the region is often defined as a rectangle in the image. For instance, 
eigenface uses the whole face image as global feature, and eigenfeature uses the 
rectangular region around a certain facial feature, such as eye, nose or mouth, as local 
feature. However, the extension and position of the local feature are empirically 
determined by operators. Moreover, there is no reliable criterion to determine which 
facial feature and how many of them should be used. Thus the performance of those 
local-feature-based methods greatly depends on the experience of the operators. From 
this point of view, face recognition can be realized in two steps: the first step is to 
select one or more features from all possible feature candidates; the second step is to 
train a classifier for face recognition based on the selected features. It is up to the 
operators to determine which regions and how many of them should be used. Based 
on the common sense that facial features, such as eyes, nose and mouth, are crucial in 
face recognition, most algorithm designers choose to use the image regions around 
those salient facial features. Similarly, in order to select suitable regions for face 
recognition, attention should be focused on those accurate and diverse ones.  

 In this paper, we will adopt region selection algorithm which proposed by Xin 
Geng et al. [8]. We proposed a new face recognition algorithm using genetic 
algorithm for classification. After initialization, selection and recombination are 
executed in a loop until fitness criterion is reached. The fitness function is calculated 
by an information theoretical measure. Given an unknown face image, its similarities 
to all the face images stored in the database are computed. Then the most similar one 
in the database is regarded as matching with the unknown face image. 

The rest of the paper is organized as follows. Section 2 is the description of using 
genetic algorithm for classification. Section 3 focuses on experiments and 
evaluations. Finally, we end this paper with a conclusion and the future work. 

2   Using Genetic Algorithm for Classification 

The module of using genetic algorithm for classification is the kernel of our method. 
Classification has been studied for many decades by machine learning and statistics 
communities. 

Genetic algorithm  is a search technique used in computing to find exact or 
approximate solutions to optimization and search problems. Genetic algorithms are 
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categorized as global search heuristics. Genetic Algorithms have shown their 
advantages in dealing with the highly non-linear search spaces that result from noisy 
and multimodal functions. 

The genetic algorithm works by randomly selecting pairs of individual 
chromosomes to reproduce for the next generation. The probability of a chromosome 
being selected is proportional to its fitness function value relative to the other 
chromosomes in the same generation. To reproduce, a crossover procedure is defined. 
In the classical GA, two chromosome strings reproduce by selecting a random bit for 
the crossing site, the strings are sliced at the site, and the two tail pieces are swapped 
and rejoined with the head pieces to produce two progenies.  

At each steps of such algorithm a set of N potential solutions is chosen in an 
attempt to describe as good as possible solution of the optimization problem. This 

population 1 2{ , ,..., }Np I I I=  is modified according to the natural evolutionary 

process. After initialization, selection and recombination are executed in a loop until 
fitness criterion is reached. Each run of the loop is called a generation and P(t) 
denotes the population at generation t. 

Let us see how encoding scheme is used to represent both categorical and 
continuous attributes present in the dataset. In the categorical case, if a given attribute 
can take on k-discrete values then we can encode this attribute by using k-bits. The 
i th value of the attribute’s domain is a part of the rule if and only if i th bit is 1. 

This encoding scheme can be implemented using bits to represent the value of a 
continuous attribute in binary notation. For instance the binary string 00001101 
represents the value 13 of a given integer-value attributes. 

The computation of the degree of interestingness of a rule, in turn, consists of two 
terms. The degree of interestingness of the rule antecedent is calculated by an 
information theoretical measure. The information gain is given by these following 
formulas: 

( ) ( ) ( | )i iInfoGain A Info G Info G A= −                               (1) 

2
1

( ) ( ( )*log ( ( )))
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i

Info G p g p g
=
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= −∑ ∑                       (3) 

Where, m is the number of possible values of the goal attribute G, n is the number of 

possible values of the attribute A, p(g) denotes the probability of g and ( | )ijp g v  

denotes the conditional probability of g given ijv . 

The fitness function is computed as follows:  
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Where, n is the number of attributes in the antecedent and ( )dom G  is the domain 

cardinality of the goal attribute G occurring in the consequent. 
The similarities between the corresponding features of two images are calculated 

according to their projections, and the similarities of all corresponding features are 
used to form a global similarity score of the two images. Face recognition is then 
performed based on the similarity score. The similarity between two images is defined 
as the sum of similarities on all the selected regions. Given an unknown face image, 
its similarities to all the face images stored in the database are computed. Then the 
most similar one in the database is regarded as matching with the unknown face 
image.  

3   Experiments and Evaluations 

The growing number of face recognition (FR) methods has imposed the development 
of standard evaluation protocols and the creation of large evaluation databases. Based 
on that, a series of public tests evaluating face recognition algorithms and examining 
their limitations have been performed. The most recent one is the Facial Recognition 
Vendor Test of 2006 (FRVT2006), in which several state of the art commercial FR 
systems were tested using a database of  images of Mexican VISA applicants 
collected by the US Department of State. The verification performance was measured 
using the false acceptance rate (FAR) and false rejection rate (FRR). FAR is defined 
as the percentage of instances that a non-authorized individual is falsely accepted by 
the system, while FRR is defined as the percentage of instances an authorized 
individual is falsely rejected by the system.  

We used 6000 images to experiment, including 10 clusters, every cluster included 
600 images. 

We compared three face recognition algorithms: Method1 is a standard PCA 
algorithm. Method2 is a combination of PCA and LDA algorithm. Method3 is Face 
Recognition Algorithm Using Genetic Algorithm for Classification. 

We compared the results of above three algorithms, the evaluate result of above 
three algorithms as Table 1 shows: 

Table 1. The false acceptance rate and the false rejection rate 

The False Acceptance Rate The False Rejection Rate  

Method1 Method2 Method3 Method1 Method2 Method3 
Cluster1 17.6% 16.7% 14.5% 24.7% 19.9% 18.6% 

Cluster2 19.4% 18.1% 17.7% 23.2% 23.6% 20.3% 

Cluster3 18.5% 17.1% 16.4% 22.8% 21.9% 19.3% 

Cluster4 16.1% 15.6% 13.4% 23.5% 21.7% 19.8% 

Cluster5 17.6% 16.3% 16.7% 21.7% 20.9% 20.5% 

Cluster6 16.4% 15.8% 15.2% 19.3% 17.8% 17.2% 

Cluster7 15.4% 14.6% 12.8% 23.7% 21.9% 20.3% 

Cluster8 17.6% 16.3% 15.9% 20.8% 20.1% 18.7% 

Cluster9 16.5% 15.2% 14.6% 21.4% 20.8% 19.5% 

Cluster10 18.6% 17.4% 16.9% 22.5% 21.3% 18.7% 
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The data in table1 shows, face recognition algorithm using genetic algorithm for 
classification is better than other two algorithms. Face recognition algorithm using 
genetic algorithm for classification can reduce the false acceptance rate and the false 
rejection rate. 

Experimental result shows that the proposed face recognition algorithm using 
genetic algorithm for classification is effective. 

4   Conclusions and Future Work 

We proposed a new face recognition algorithm using genetic algorithm for 
classification. After initialization, selection and recombination are executed in a loop 
until fitness criterion is reached. The fitness function is calculated by an information 
theoretical measure. Given an unknown face image, its similarities to all the face 
images stored in the database are computed. Then the most similar one in the database 
is regarded as matching with the unknown face image. Experimental results show that 
the proposed face recognition algorithm is effective. 

Also, there is a lot of room for improvement. For example, we need to speed up 
genetic algorithm for classification. Many features can be used to face recognition 
algorithm, we need to find the appropriate features fit different condition. 
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Abstract. An efficient search algorithm, which have to take into account the 
time and cost on emergency transport, the hierarchical Genetic Algorithm was 
proposed. Local optimization is achieved by Bottom GA in Subnet, global 
optimization is achieved by top GA in the whole network. The Contradiction of 
Global search capability and search efficiency is solved by maintaining a 
balance between GA Random search and this method is narrow search. The 
results of calculation show that this method can satisfy the demands of practical 
engineering of dynamic path selection in a wide range and quick fix of failure 
path on Emergency transport.  

Keywords: Genetic Algorithm, Emergency Transport, Constrained Multi-
objective Optimization, Hierarchical. 

1   Introduction 

The emergency logistics system is a special logistic activity in order to provide the 
emergency supplies to deal with incidents. The main features of Emergency 
transportation, which is the core issue of emergency logistics are: 1) The goal of 
Emergency transport is to achieve the minimizing transportation cost under the 
premise of the relief supplies and personnel transport to the destination as soon as 
possible. 2) Each sudden of natural disaster and public emergencies has uncertainty 
dimensions and type, there are many types of relief supplies, and the supply points of 
each materials may be inconsistent with the demand points. 3) Emergency 
transportation needs to use different modes of transport. 

In recent years, various sudden-onset disasters becomes an important research 
subject for the scholars at home and aboard that how to use advanced technology 
means to solve these diverse crises quickly and effectively, and improve the ability of 
the  transportation in the emergency.  

According to its characteristics, the problems of the emergency transportation and 
distribution can be modeled and processed under the constraints of the multi-
objectives. If only consider one vehicle which transports emergency supplies, how to  
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pass the necessary emergency supplies for loading and unloading points from the 
starting point and  arrive at the  distribution points as quickly as possible, it will be the 
problem of  the shortest path. 

For solving the problem of the shortest path for the vehicles, there are already 
many scholars conducting a large number of deep research. A new real time dynamic 
optimum route has been presented which approach the true optimum route and put 
forward improved Dijkstra algorithm and improved A*algorithm to calculate this 
route, the former suit multi-vehicles navigation and the latter suit solo-vehicle 
navigation in paper [2]. A directional multi-phase labeling algorithm is proposed to 
deal with the shortest path cost problem in container motorrail multimodal 
transportation, with reference to the Dijkstra labeling algorithm in paper [3]. An 
improved genetic algorithm for path planning is designed. It provides a new approach 
for solving the optimum path planning problems in practical vehicle guidance systems 
in paper [4]. A hybrid genetic algorithm with 2-OPT sub-routes optimization was 
presented for Capacitated Vehicle Routing Problem (CVRP) in the logistics 
distribution optimization area. In this method, a Double Layers Chromosome (DLC) 
coding scheme was proposed in paper [5].  

Aiming at the characteristics of emergency transports, a new hierarchical genetic 
algorithms is applied in this paper which has reduced the scale of the solving of the 
problems. For the fault section, mutation operator is used to repair the local network, 
to avoid repeated counting; the crossover and mutation of the hierarchical genetic 
algorithm is limited in different layers, to avoid a wide range of useless search and the 
impact of the hanging and dead points on  the computational efficiency. 

2   Analysis of the Shortest Path Problem of the Transportation of 
Emergency Supplies 

The shortest path of the transportation of the emergency supplies, it could be 
described as follows: for the road network G=(N,E), N is the set of nodes and E is the 
set of directional edges between nodes, with the condition |N|=n ,|E|=m. for any 
directional edge eij

k
∈E , there are he  kinds of transport modes, he≤H , H stands for 

the number of all transport modes. And k≤K, k stands for the number of paths 
between node i and node j. If supposed c(i,j,eij

k,u,h) is the transportation cost that the 
transport modes h consumes starting to through the path eij

k between node i and node  
j  at time u ,thus c(i,j,eij

k,u,h) is a non-negative real number; t(i,j,eij
k,h) is the time that 

the transport modes h pass the path eij
k between node i and node j; p(i,h1,h2) is the 

transportation cost that the transport modes h1 and h2 transit between node i and node 
j; w(i,h1,h2) is the transit time that the transport modes h1 and h2 exhaust. 

The problem of the shortest path of the emergency transportation which is at time 

T through the path R={ eij
k | i,j∈N, eij

k
∈E｝from the starting point O to the ending 

point D could be converted into the following functions: 
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The grades of the sudden-onset disasters are generally divided into four: grade I 
(particularly severe), grade II(severe), grade III(serious) and grade IV(common). 
Thus, the objective function of the emergency transportation could be set into grade 1, 
2, 3 and 4 for a priority. The priority grade 1 is the primary objective, under the same 
conditions, the objective function (2) will be considered. But another priority grades 
of emergency supplies transportation should be an appropriate balance between 
minimize of the cost. 

If u is set to be the quantity of  the current emergency supplies, qij is the capability 
through the path eij

k between node i and node j, then the transportation must satisfy 
the following constraints: 

uq
k

k
ij ≥∑  (3) 

If supposed  Z={ eij
k | i,j∈N, eij

k
∈E } is the set of the loading and unloading points 

of the emergency supplies, then the set Z is contained in the transit path R. At the 
same time, the changes of the paths will deal with the following constraints (4): The 
transit path R must pass from the starting point O to the ending point D, and the path 
can not circulate. 

RZ ⊆  . (4) 

3   The Two-Layer Multi-objective Genetic Algorithm 

For the road network shown in figure 1,when the road network G=(N,E) is partially in 
trouble, it will take a lot of computing time to re-globally search when the road 
network is great using the means in paper [2,3,4,5].  

3.1   Partition of the Road Network 

The road network G could be divided into many sub-network Gi which has the same 
size subnet. When face to the different problems, the ways of network segmentation 
will change as well. For instance, in Figure 1, if it is required to start from the starting 
point 1 to the destination node 15, the path could be divided into three sub-networks 
1-3,3-10,10-15. This kind of segmentation way does not only satisfy the constraints 
(4), but also avoid the appearance of hanging points when the upper genetic algorithm 
optimizes the results in the entire network. 

3.2   The Design of The Bottom Genetic Algorithm 

The effect of the bottom genetic algorithms is to improve the efficiency with the 
genetic algorithm parallel computing to optimize in partial network. 
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Fig. 1. Structure of the emergency logistics network 

1) Genetic Encoding: As to the problem of the shortest path, its feasible solution is 
generally in the form of the number strings connected by the subscript of the nodes. 
Thus, the way of the individual coding in genetic algorithm is generally symbol 
coding. The natural encoding scheme is adopted in this paper. Taking the existence of 
variable length of the path into account, the natural coding is designed with the 
method of the variable-length chromosomes way. If the needed path is from the node 
2 to the node 4 , the encoding string is (2,16,18,4), (2,3,4) and so on.  

2) Initial Population: Our path growth method is following: a node directs 
connecting the starting point is randomly selected as the next node from the starting 
point, and this is repeated to the ending node. This ensures there will not be any open 
circuit. At the same time, in order to avoid the loops, in the generating process of the 
path, it is provided that in a path, if a path node is selected, then this node will be 
marked. Thus, another nodes which have not been marked will be selected as the new 
nodes. After every path being selected, all the marks will be refreshed. The encoded 
individuals will be stored in the collection of the initial individual. 

3) Crossover Operator: When the crossover operator is applied to the parent 
individual V1 and V2, the  procedure is following: 1) The assemble Nc which is the 
assemble of nodes both in V1 and V2 (excepting the starting node and the objective 
node) is selected as the position of crossover; 2) The node i∈Nc is selected randomly 
from Nc as the intersection point; 3) The content of V1 and V2 before the node i or 
after is checked , if it is same ,the crossover is given up; otherwise, the next step is 
continued; 4) All the nodes after crossover points are exchanged and then there will 
be new offspring. And the length of the offspring may be inconsistent with the parent. 
For example, if supposed a pair of parent individuals are V1 (1,2,3,4,13) and V2 

(1,16,18,3,4,21,13), there will be two potential crossing nodes 3,4, it is Nc = {3 , 4 }. 
And then if the node 4 is selected as the crossing position ,the offspring individuals 
V1 and V2  are respectively V1 (1,2,3, 4,21,13) and V2 (1,16,18,3,4, 13). 

4) Mutation Operator: The re-election of the path mutation is applied. That is two 
mutated nodes i and j are randomly selected from the parent individuals; a new path is 
selected to take place of the former from the node i to the node j, and form a new 
offspring individuals. If the mutation generate the loop, the mutation is abolished. 
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5) Individuals Ranking: Owing to the problems is multi-objectives constrained 
optimization, the target (1), and (2) are generally conflicted each other. Therefore, the 
method of Pareto is adopted which is based on the minimum in paper [6]. 

Table 1. Results of The Network 

the best path of subnet Object function 
TASK constraints 

1-21 21-25 
The global 
best path time cost 

1-2-3-21 
21-13-14-

25 
1-2-3-21-13-

14-25 
410 325 

1-2-19-3-21 
21-10-11-

12-25 
1-2-3-21-10-

11-12-25 
440 335 

1-16-2-3-21 
21-10-13-

14-25 
1-16-2-3-21-

13-14-25 
460 385 

1-16-18-4-21 
21-4-13-

14-25 
1-2-3-21-10-

24-25 
515 340 

1-25 
21must be 

past 

1-16-18-3-21 
21-10-24-

25 
1-16-18-3-

21-13-14-25 
475 390 

1-16-18-4-21 
21-13-14-

25 
1-16-18-4-

21-13-14-25 
470 380 

1-16-18-3-21 
21-10-11-

12- 25 
1-16-18-3-

21-13-14-25 
475 390 

1-16-18-5-26-4 
-21 

21-10-13-
14-25 

1-16-18-5-
26-4-21-13-

14-25 
545 400 

1-16-18-5-4-21 
21-4-13-

14-25 

1-16-18-4-
21-10-13-14-

25 
540 415 

1-25 

21must be 
past and  
2-3 is 

invalid 

1-2-19-7-21 
21-10-24-

25 

1-16-18-4-
21-4-13-14-

25 
565 410 

If supposed )r,...,2,1k( }0),X(gmax{s kk == ,for the rector with n-

dimensional  f(X)= (f1(X), f2(X), … , fn(X)), in the Solution Space Rn, where X =(x1 , 
…,xm)∈D is a variate with m-dimensional in decision space Rm, D ⊆ Rm is search 
space, f: Rm→Rn is the objective function, gi(X) is the Constraints conditions. 
Function is defined as follows: 
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where, i=1,2,…,n; k=1,2,…,r. The individual populations of the generation t ranked 
according to the following rules: 

}pop,...,1j,i;DX,X;ji;XX|X{N)X(Rank ijijji =∈≠= ≺ . (6) 

Where, N{·} is the number of elements in the set, X1 ≺ X2 is the X1 dominant 
constraint on the X2. In this sense, the value of Rank of the optimal Pareto solution is 
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necessarily 0, and the value of Rank the worst individual in each generation is the 
certain maximum. 

6) Selection: In order to avoid offspring atavism, for the offspring individual after 
crossover and mutation, if it already exists in the parent, then it is abandoned. In order 
to guarantee fast convergence of the algorithm, (μ+λ) evolution strategy is applied to 
achieve the maintaining of the elite, and to avoid the degradation of offspring. The 
parent and offspring individuals are combined, the individuals with a smaller Rank 
value are selected to be into the next generation. 

7) Stopping Rule: If the algorithm reaches its maximum GMAX -the most maximal 
Evolution Algebra, or without any new individuals appear in consecutive generations, 
then the algorithm is stop. The obtained best solution set is set as the optimal solution 
set of sub-network. 

3.3   Design of the Upper Genetic Algorithm 

The upper genetic algorithm in the global optimization mainly base on the bottom 
genetic algorithm which optimizes in the local, and generate an optimal path and a 
number of alternative paths: 1) Initial population: The way of arbitrary choices of 
paths to connected together in sub-networks generates initial population. 2) Crossover 
encoding: Since each individual is the shortest path, it does not need to mutate, but 
crossover. Simultaneously, it need not to judge the handing points as with the same 
points between subnets. 3) Selection and ranking: The approach of chapter 3.2 is 
applied to select and rank. 4) Partial failure of a path re-election: The shortest path 
obtained from above calculation due to the follow-up impact of the unexpected events 
in the course of the usage might lead to a partial failure. when the fault enlarge in 
scope, the subnet could be started by the  corresponding underlying genetic algorithm 
for local search; when the fault range is smaller, the mutation operator of  chapter 
3.2.4 can be used for the  re-election of paths, to achieve repairing of the partial 
failure paths .  

4   The Shortest Path of the Transport of Emergency Supplies 

4.1   The Steps of the Shortest Paths Based on Hierarchical Genetic Algorithm 

1) Steps of the bottom Genetic Algorithm a) To take population size pop=30, 
crossover probability pc=0.8, mutation probability pm = 0.4, maximum number of 
iterations GMAX=200. In order to simplify the calculation, assumed that Figure 1 is 
an undirected graph, and emergency transportation priority of grade 1, and there is 
only a mode of transport, the path eij

k marked on the (t(i,j,eij
k,h), c(i,j, eij

k,u,h) ). b) For 
the road network shown in fig .1,the Adjacency matrix An×n of the road network 
G=(N,E) as follows (7): Then, initial population is formatted under the method in 
chapter 3.2.2. 

⎪
⎩
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∈∈
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a ij

 
(7) 
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c) According to the method the chapter 3.2.3-3.2.7 , by mutating, crossovering, 
selecting, the local optimal path of the bottom genetic algorithm can be obtained. 

2) Steps of the Upper Genetic Algorithm: Pick up Population size pop=50, 
Crossover probability pc = 0.8, Maximum number of iterations GMAX=100, Using 
the Section 3.3 method for global optimization. 

4.2   The Shortest Path Based on Hierarchical Genetic Algorithm 

The Steps of The Solving of The Underlying Genetic Algorithm is following: For 
example, in Figure 1, if starting from the starting node 1 to the destination node 25, 
which must pass the node 21, then the paths can be divided into two sub-networks  
1-21 and 21-25, which does not only satisfy the constraints (4), but also avoid the 
appearance of hanging points of the upper genetic algorithm searching the global to get 
the optimum. Table 1 shows the optimum paths from node 1 to node 25, as the 
constraints are "node 21 must be past" and "21 must be past and Node 3 is invalid ", 
four suboptimal paths. Fig. 2 shows the curve of the target time and cost on tasks 1-25. 

 

 

Fig. 2. Performance curve 
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5   Results and Discussion 

In this paper, Hierarchical genetic algorithm is used to solve constrained multi-
objective optimization problems, from Table 1 and Figure 2 can be seen: 1) Subnet 
segmentation method is used for handling of partial constraints. Since the genetic 
algorithm method limits the global random search into the subnet, compared with the 
global search in the paper [2-5], it greatly reduces the scope and strength of the 
search, and improves the search efficiency. 2) The elitism strategy is used to make  
the individuals which have entered the optimal solution set participate in genetic until 
the existence of a far better one to replace the individual, thus avoiding the loss of the 
optimal solution. The results of repeated calculation show that the optimal solution 
can always be found each time, indicating a strong stability of the algorithm. 3) Since 
it is independent among subnets, several sub-networks can take the parallel search 
with the underlying genetic algorithm. When the local node fails, just start the bottom 
genetic algorithm of the subnet where the invalid node is and repair it through the 
local search without the need for global search. So it largely improves the speed of the 
formation and the restoration of the dynamic path of the emergency transport. 4) 
Lower search can only get the local optimal path, but not necessarily the global 
optimum. Using the upper search, the global optimization can be achieved based on 
the lower optimization. 

The results show the good performance of hierarchical genetic algorithms in the 
aspect of selecting dynamic path of emergency transportation in larger road network.  
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Abstract. This paper proposed a new fault diagnosis method based on the 
extension genetic algorithm (EGA) for analog circuits. Analog circuits were 
difference at some node with the normal and failure conditions. However, the 
identification of the faulted location was not easily task due to the variability of 
circuit components. So this paper presented a novel EGA method for fault 
diagnosis of analog circuits, EGA is a combination of extension theory (ET) and 
genetic algorithm (GA). In the past, ET had to depend on experiences to set the 
classical domain and weight, but setting classical domain and weight were 
tedious and complicated steps in classified process. In order to improve this 
defect, this paper proposes an EGA to find the best parameter of classical domain 
and increase accuracy of the classification. The proposed method has been tested 
on a practical analog circuit, and compared with other classified method. The 
application of this new method to some testing cases has given promising results. 

Keywords: Analog circuit, Fault diagnosis, Extension genetic algorithm (EGA). 

1   Introduction 

With the more complex of analog circuits and developed, test in analog circuits 
becoming an urgent task. The faults of Analog circuit are usually divided into two 
categories: hard faults and soft faults [1]. The hard faults are due to break of circuit 
component, and soft faults are due to a variation of one (or more) circuit component 
values over the tolerance range and deviation of about 50% of the faulty element from 
their nominal value [2-3]. The deviation of the component condition is complex, the 
poor fault models, component tolerances, nonlinear effects make the automatic fault 
diagnosis of analog circuits very complex[4-5], because soft faults do not change the 
circuit topology, but cause the circuit to operate outside its specifications. Hence, there 
were many fault diagnosis methods using artificial intelligence (AI) techniques to solve 
the problems in the past [6-7]. 

Cai originally created the concept of ET to solve contradictions and incompatibility 
problems in 1983 [8]. In recent years, ET has proposed practical applications on 
different applications for fault diagnosis [9-12]. The concept of an extension set is to 
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extend the fuzzy logic value from [0,1] to (-∞,∞), which allows us to define any data in 
the domain and has given promising results in many fields. Extension clustering 
methods had depend on experiences to set the classical domain and weight, but setting 
classical domain and weight were tedious and complicated steps in clustering process. 
In order to overcome the defect of extension classified method, this paper using EGA 
searching characteristic of genetic algorithms to find the best parameter of classical 
domain in the Extension classified method. The fault diagnosis problem of an analog 
circuit is used to show the accuracy of the proposed method. 

2   Extension Genetic Algorithm (EGA) 

This paper proposed classifying method involves the combination of extension theory 
and genetic algorithm. Extension theory provides a means of distance measurement for 
classification process, and genetic algorithm has the ability to search for an optimal 
solution in a wide space. EGA is a kind of supervised learning that finds out the best 
classical domain and gets better accuracy without adjusting weight [11]. 

2.1   Outline of Extension Theory 

In the standard set, an element either belongs to or, so the range of the standard set is  
{0, 1}, which can be used to solve a two-valued problem. In contrast to the standard set, 
the fuzzy set allows for the description of concepts in which the boundary is not 
explicit. It concerns not only whether an element belongs to the set but also to what 
degree it belongs to. The range of a fuzzy set is [0, 1]. The extension set extends the 
fuzzy set from [0, 1] to (-∞, ∞). As a result, it allows us to define a set that includes any 
data in the domain. Extension theory tries to solve the incompatibility or contradiction 
problems by the transformation of the matter element. 

2.2   Basic of Genetic Algorithm 

The genetic algorithm (GA) is the most well-known, and it is always to combine with 
other algorithm for optimized problems. Genetic algorithm is transposed the notions of 
evolution in nature to computers and imitate natural evolution [13]. Basically, they find 
solution to a problem by maintaining a population of possible solutions according to the 
“survival of the fittest” principle. Genetic algorithm constitutes a class of search 
algorithms especially suited to solving complex optimization problems. In addition to 
parameter optimization, genetic algorithm is also suggested for solving problems in 
creative design, such as combining components in a novel creative way. In general, the 
major advantage of using the GA is that the optimal solution is obtained globally [14]. 
The genetic algorithm generally includes the following five parts: (1) gene coding, (2) 
fitness function, (3) selection mechanism, and (4) crossover and mutation mechanism.  

2.3   The Computing Method of EGA 

This section will present the mathematical description of EGA. The extension method 
would be found out at the paper of the author [9], so it isn’t necessary to be explained 
here. Before using the algorithm, we define several variables. First, the training patterns 
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are set to be patterns = [X1,X2,…,Xn], where the total number of training patterns is Nn. 
The i-th pattern is Xi

k = {X1,X2,…,XNc}, where the total number of features is Nc, and k is 
the category of i-th pattern. To evaluate the objectives of convergence, Nm is the total 
mistake number, then the total mistake rate ET, it can be defined by: 

n

m
T N

N
E =  (1) 

The learning algorithm of the proposed EGA is shown as follows: 

Step1: Choose values of the classical domains. The range of classical domains can be 
directly obtained from previous experience, or determined from training data as 
follows: 

}Xmin{V k
j

L
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}Xmax{V k
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U
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cN,...,2,1j =  (4) 

The k is the category of patterns. 

Step2: Calculate the initial cluster centers for every classical domain. 
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In which U
kj

L
kjk V,VV = , j is the total number of a matter element model’s features. The 

L
kjV is the upper limits of VP , and L

kjV is the lower limits of VP. 

Step3: Classical domain of the upper and lower limits of the length of the gene is  

( ) 1mL
k

c
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1n 2dVV2 ≤×−<  (7) 

( ) 2mc
k

U
k

2n 2dVV2 ≤×−<  (8) 

1mGene L
k =   (bits) (9) 

2mGeneU
k =   (bits) (10) 

In the Eq. (15) and (16), d is the resolution by user defined, and is set to 10000 in this 
paper. The m1 and m2 is the length of the gene. 

Step4: Combine all the genes to the chromosome of sequence 0 and 1.  
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Step5: Result in a population from binary coding randomly to be the parents that 
include N groups of chromosome and then turn it into decimal. 

km
kk

210
r)

12

rs
(chromosomechrom +

−
−×=  (11) 

In which N is the number by user defined, and it is set to 20 in this paper. 

Step6: Build the pro-generation model. 
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Step7: Read the first training patterns. 

Step8: Calculate the correlation of matter-element. 
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Where |Vij| is obtained from sp-rp. 
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If ( kλ′ =1) THEN (the fault type is k) (16) 

Step9: Repeat step7-step8 until the entire pattern is completed and then goes to next 
step. 

Step10: Calculate the accuracy rate of the chromosome (individual). 

Step11: Repeat step7-step10 until the all chromosomes have been processed, and then 
go to next step. 

Step12: Calculate the fitness of every chromosome. 

Fitness = 
H

S  (17) 

The S is the total correct number. H is the total number of training patterns. 
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Step13: Choose parental chromosome to execute crossover by roulette wheel selection. 
The rate of the chosen parents is: 

∑
=

=
N

1i
i

k
k

F

F
P

 
(18) 

The Fk is the fitness of an individual. Pk is the percentage of the selected 

Step14: Set the chosen filial generation which is obtained from step13 into the mating 
pool, and makes mutation. 

Step15: Repeat step7-step14 until the propagation of the last generation or 
convergence, then the training epoch is finished. 

3   Experiment Results and Discuss 

The circuit under test (CUT) was used to illustrate our method as shown in Fig. 1, it is a 
low-pass filter that passes low-signals but attenuates signals with frequencies higher 
than the cutoff frequency. In this paper, the DC gain of the filter is set to 1 and the cutoff 
frequency is set to 1 kHz. Node 1 and 2 are the testing node where voltage can be 
measured or simulated. The nominal values and the tolerances of the components are 
summarized in Table 1. 

 

Fig. 1. The second-order low-pass filter 

Table 1. The nominal value of low-pass filter 

Components Nominal values Tolerance (%) 
R1 100KΩ ± 5 
R2 85KΩ ± 5 
Ri 2.2MΩ ± 5 
Rf 0.1KΩ ± 5 
C1 5nF ± 5 
C2 2nF ± 5 
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3.1   Testing the Ability to Training 

The CUT was simulated both at normal and all faulty conditions by using PSPICE 
software, the tolerance rang of normal was selected deviation of about ±5% of the 
nominal values, and soft fault was deviation of about ±20%. By analyzing sensitivity of 
the CUT, R1, R2, C1 and C2 are selected to be the fault components, consequently, 13 
fault classes are definite, and Table 2 shows the typical circuit signal for 9 kinds of 
faults. In this research was discovered that the transient voltage (V1, V2) and phase 
spectrum (P1, P2) were different between normal and other faults condition at nodes, 
the RMS value of transient voltage and phase spectrum can made the pattern of CUT in 
the training stage, every fault is produced 50 sets with the Monte-Carlo method, there 
are total 450 sets of training data. In addition, this paper is produced another 30 sets for 
each fault to test the stability of the fault diagnostic system, hence there are total 270 
sets of testing data. 

In the paper, the parameter of EGA is setting the tolerance of error rate to be 0.01, 
the crossover rate is 0.8, and the mutation rate is 0.1. The learning times are set to 100 
epochs that can give convergence result. In the training stage, the rate of highest 
accuracy is 98.4%. Fig. 2 shows the training curve of the rate of highest accuracy for 
each epoch. When the training stage of the EGA has been completed, then the 
identifying stages of the proposed method can be started for fault diagnosis, so this 
paper design a user interface of fault diagnosis window for this analog circuit by the 
Microsoft Visual Basic (VB), it can diagnose fault quickly by analyzing 4 circuit 
signals and to show what kind of fault in the analog circuit. For example, Fig. 3 shows a 
diagnostic fault in R2 and also shown in the fault displayed window by a twinkling red 
light to alert user which one circuit element was happening fault.   

Table 2. The typical circuit data with different fault types (Partial samples) 

Cases V1
 V2 P1 P2 Faults no. Actual fault type 

20 7.749 14.434 -93.204 -151.301 1 Normal 

70 9.923 16.691 -97.915 -156.404 2 R1 over nominal 

120 9.924 16.691 -88.829 -147.318 3 R1 below nominal 

187 7.531 16.560 -91.174 -156.134 4 R2 over nominal 

236 7.685 11.709 -96.250 -143.379 5 R2 below nominal 

285 7.143 13.658 -101.683 -159.625 6 C1 over nominal 

335 7.5005 13.853 -84.7055 -142.6476 7 C1 below nominal 

383 7.527 14.353 -87.139 -152.612 8 C2 over nominal 

429 7.983 13.980 -102.364 -149.876 9 C2 below nominal 
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Fig. 2. The minimum error rate of training 
curve 

 

Fig. 3. User interface of fault diagnosis system 

3.2   Testing Results 

Table 3 shows the accuracy by using the multilayer neural network (MNN), k-means, 
ET, and the proposed EGA based method to diagnosis the soft fault of tested circuit. 
The maximum testing accuracy is 92.3% in the MNN, 84.67% in the k-means based 
method and 92% in the traditional extension method. The testing accuracy of proposed 
method is 96.2%. It is clearly to show the proposed EGA-based diagnosis method to be 
better than other methods in the both training and testing stages. Moreover, the training 
times of proposed method is also less than the MNN. 

Table 3. Diagnosis performances of different methods 

Methods Training times 
(Epochs) 

Training 
accuracy (%) 

Testing 
accuracy (%) 

Proposed method 100 98.6% 96.2% 
Extension method N/A N/A 92% 
K-means N/A N/A 84.67% 
MNN(4-7-9) 1000 86.2% 84.6% 
MNN(4-8-9) 1000 87.6% 85.7% 
MNN(4-9-9) 1000 95.8% 92.3% 

4   Conclusions 

This paper presents a novel fault diagnosis method based on EGA for analog circuits. 
Compared with other traditional AI methods, the proposed EGA-based method can 
achieve the higher accuracy. The calculation of the proposed diagnosis algorithm is 
also fast and simple. It is feasible to implement the proposed method in a 
Microcomputer for portable fault detecting devices. This new approach merits more 
attention, because EGA deserves serious consideration as a tool in diagnosis or 
classified problems. We hope this paper will lead to further investigation for industrial 
applications. 
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Abstract. Collision detection is very important to enhance the sense of reality 
and immersion in virtual environment. Most of the traditional collision 
detection algorithms have been analyzed, but there is no algorithm that is 
applicable to all situations, and with the scene complexity increases, the 
efficiency of the algorithm tends to decline rapidly. In this paper, a new method 
is proposed to solve the problems: converting the problem of collision detection 
to the nonlinear programming problem with constraint conditions, and then 
using the adaptive genetic algorithm to solve it. The experiment results show 
that this method is efficient, especially in large-scale scenes.  

Keywords: collision detection, genetic algorithm, non-linear programming. 

1   Introduction 

Collision detection is a very important problem in Virtual Reality (VR), robotics, 
computer-animation, geometry algorithm, CAD/CAM, and so on[1]. Collision 
detection is based on a ubiquitous factor in real life, which is that two objects can not 
share the same space [2]. 

The hierarchical bounding box is a very popular method in collision detection. The 
method is presented by Clark in 1976. The method uses boxes with a bigger and 
simpler volume bounds the object. We use the bounding boxes to detect the collision 
when the collision detection is needed in a scene. This method is very effective when 
the objects in the scene are not intersected with each other. However we should think 
about the simplicity and tightness when we choose the bounding box, because the 
intersection of the bounding box does not mean that the objects are intersected  
with each other. The simplicity and tightness of the bounding box is a pair of 
contradiction. The simpler the bounding box is, the worse the tightness of bounding 
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box is. The bounding box can be divided into AABB[4], OBB[5], DOPs[6] and so on 
by the. These algorithms are used in different situation respectively and no algorithm 
is applicable to all situations. On the other side, the efficiency of most collision 
detection algorithms is declining when the scenes become complicated and massive, 
which makes the real-time and stability of collision detection uncertain. 

In allusion to the problems mentioned above, the paper presents a collision 
detection algorithm based on adaptive genetic method (CDAG) and the result of the 
experiments shows that this algorithm is feasible, and it is much more effective in the 
larger scene than the bounding box. 

2   Algorithmic Model 

The CDAG algorithm converts the problem of the collision detection to the non-linear 
programming problem with constraint conditions. And use the adaptive genetic 
algorithm to solve the problem. There are many traditional methods to resolve the 
non-linear programming problem, such as quadratic programming, sequence 
quadratic programming, penalty function method, gradient projection method and so 
on. But all these methods have limitations and they have they own scope of 
application. There is no method which can be used to all situations up to now. 
However, the robustness of genetic algorithm and the ability of adaptive search are 
very good. The algorithm can find optimal solution in space which is complex, 
uncertain and with multi-extreme point. Firstly, the following definition is given. 

2.1   Related Definitions 

Definition 1: give m points x1,x2,…xm∈Rm and real number λ1,λ2,…λm, we call 
λ1x1+λ2x2+…λmxm is the linear combination of points x1,x2,…xm, especially when 
λ1+λ2+…+λm=1, and λ1,λ2…λm≥0. We call the λ1x1+λ2x2+…λmxm  is the convex 
combination of points x1, x2, … xm. The Rm  means  n dimensions.  

Definition 2: Supposed that s∈Rm, a convex hull which is combined with random 
finite points in s signed as H(s), it is formula (1). 

1

( )= 0, 1,2,... , 1,
m

i i
i

H s i m m Nλ λ +

=
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The N+ means positive integer set. 

Definition 3: defined that Min dA,B=‖x-y‖presents the shortest distance between two 
convex polyhedrons. x is a point on object A. y is a point on object B. On account to 
the theory described above, we can formulate the shortest distance between two 
objects as formula (2). 
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and σj satisfies the conditions as formula (3) and (4). 

1

1, 0, 1,2...
m

i i
i

and i mλ λ
=

= ≥ =∑  (3) 

1

1, 0, 1,2...
n

i i
i

and i nσ σ
=

= ≥ =∑  (4) 

So by using the convex hull of the vertex to represent the convex polyhedron, the 
shortest distance problem between objects with the constraint condition is 
transformed into a nonlinear programming problem. Find the points with the 
minimum value in MindA,B which meet the conditions of inequality and equality 
constraints. Supposed that the points is λi and σj . If  MindA,B=0, the object A and B 
are collided with each other; if MindA,B >0 , object A and B are not collided. This 
problem can be converted to the optimization problem with constraint conditions. We 
use Collision (A, B) to present the collision between two objects. 0 means that A and 
B are collided. 1 means that A and B are separated. We use an equation (5) , (6) and 
(7) to describe this situation. 
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The planning problem has two equations independently. Therefore, we can eliminate 
two variables which are λn and σm. According to the equality constraint elimination 
method, the problem can be converted to the problem as formula (8),(9) and (10) 
described. 
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2.2   Algorithm Description 

In this paper, the problem of collision detection is converted to the non-linear 
programming problem with restricted conditions. The adaptive genetic algorithm is 
adopted to solve this problem. 

2.2.1   Initial Population Generation 
The algorithm uses real-number encoding, supposed that the number of the entity in 
the population is n, and the xt

i means the entity i in generation t ,  i={1, 2,…, n}. The 
number of gene of each entity L=m, which was composed with m real-number. The 
entity xt

i
∈Rm, xt

i can presets m dimension row vector, that is xt
i =( xt

i (1), xt
i (2)…xt

i 

(m)), thus the t generation can be presents as n×m matrix, Xt=（xt
1, xt

2 …xt
n)T. 

Supposed that the number of the entities in the generation is Pop_Size. Generate 
Pop_Size entities freely in the filed of the feasible solution.  

2.2.2   Selection Strategy 
The first step of the selection procedure is count the fitness. The fitness function is 
very important to the genetic algorithm search. The inappropriate fitness function may 
leads to premature convergence or generates the locally optimal solution but not the 
globally optimal solution. For the problem of collision detection the target function is 
the problem of minimum value, hence the fitness function is formula (11). 

2 ( ) ( ) 2
( ( ))

0

f x iff f x
Fit fit x

else

− <⎧
= ⎨
⎩

 (11) 

2 is the estimation of the maximum value of f(x). 

Each entity in the population has a selective probability, which is determined by 
the fitness and the distribution of the fitness. 

The CDAG algorithm uses proportional fitness assignment, in order that the entity 
with higher fitness has higher survival probability.  

The specific steps are as follows. 
 

1)   Calculate the fitness of each entity as the fitness function (11) and supposed 
that the fitness of entity i is singed as fi.  

2)   Calculate the selective probability and cumulative odds of every entity. 
3)   Divided the extent of [0, 1] according to the cumulative odds.  
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4)   Generate a random number between 0 and 1. If the number meets the 
condition of formula (12), choose entity i to copy.  
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5)   Repeat the step (4) until the number of entity meets the demand. 

2.2.3   Crossover and Mutation Strategy 
The crossover strategy crosses the number bit-by-bit according to the crossover 
probability named Pc. First, choose two entities in the population randomly to 
combine into a pair. Second, choose a position randomly. And then generate a random 
number in [0, 1]. If the random number is greater than Pc, cross the number at the 
selected position, otherwise keep the original state. 

Mutation is a local random search method. Combined with the crossover, it can 
satisfy the efficiency of the genetic algorithm It also makes genetic algorithm have the 
ability of random search. At the same time, mutation can make the genetic algorithm 
maintain the diversity to prevent premature convergence. First of all, select an entity 
and the position to mutate. Secondly, generate a random number in [0. 1]. If the 
random number is greater than Pm make the operation of mutation at the selected 
position, otherwise keep the original state. 

The operation of mutation is very simple because of the real-number encoding. 
Checking a point X(x1, x2) in the search space, keep the x2 unchanged, and then 
change the value of x1 , the variation range of x1 is [0，1-x2]. On considering of 
crossover, supposed that there are two points x=(x1,x2) and x’=(x1’,x2’). The random 
linear combination of the λx+(1-λ)x’ (0≤λ≤1) is also a point of the search space, and 
which meets the constraint condition. Thus we finish the operation of crossover. 
Because the search space is convex, this genetic manipulation makes the solution 
vector in the set of the feasible solution.  

The crossover probability Pc and the mutation probability Pm can be adjusted as 
formulas (13) and (14). 
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The Pc1=0.9， Pc2=0.6，Pm1=0.1，Pm2=0.001. f’ means the larger fitness of the two 
entity crossed. fmax means the largest fitness in the population. favg means the average 
fitness in the population. 
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3   Simulation Experiment 

The experiment uses two three-dimensional scenes. The scene 1 includes two ring 
cycles. It is composed of 5000 triangles. The scene 2 includes two ring cycles too, but 
it is composed of 22000 triangles. According to the distance function between objects, 
the problem-solving model is as equation (15). The xi, yi are the coordinate 
information of the points which have been known. 

2 2 2
1 1 2 2 3 3

1 1 1 1 1 1

( , ) ( ) ( ) ( )
n m n m n m

i i j j i i j j i i j j
i j i j i j

f x y x y x y x yλ σ λ σ λ σ
= = = = = =

= − + − −∑ ∑ ∑ ∑ ∑ ∑  (15) 

For the CDAG algorithm, the point coordinate information of object A and B are 
known. Hence the main problem to resolve the optimization problem is the time 
complexity. In the algorithm simulation, the number of the entity in the population is 
set as 50, the max generation set as 500, the fitness function uses the formula (11), the 
selection strategy uses the formula (12), the crossover probability and mutation 
probability are calculated as formula (13) and (14). 

The traditional collision detection algorithms are bounding box, the CDAG 
algorithm model converts the collision detection problem to the non-linear 
programming problem. And there are many traditional methods to resolve the non-
linear programming problem, such as the penalty function method, gradient projection 
method quadratic programming method and so on. In order to check the efficiency of 
the CDAG algorithm, the CDAG algorithm is compared with the AABB algorithm 
and gradient projection method which are used broadly in the experiment. The 
experiment environments are described as following: the basic frequency of the PC is 
P4.6G, the tool is Visual C++6.0. Every algorithm has been run 10 times. The average 
time of the algorithms is compared to each other. The result is presented in figure 1 
and figure 2.  
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Fig. 1. The performance comparison in a simpler scene 
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Fig. 2. The performance comparison in a more complex scene 

From the two figures we can draw a conclusion that in the simpler scene 1 the 
efficiency of CDAG algorithm increased by 8.1% and 34.8% compared to the AABB 
algorithm and the gradient projection method respectively. In the more complex scene 
2, CDAG algorithm increased by 40.3% and 52% compared to the AABB algorithm 
and the gradient projection method respectively. The result of the experiment shows 
that the adaptive genetic algorithm is superior to the gradient projection method and 
the AABB algorithm. The superiority is not so distinct in simple scene, but when the 
scene is becoming more and more complex, the advantage is much more distinct.  

4   Conclusion 

In this paper, we convert the collision detection problem to the problem of finding the 
shortest distance between two objects and use the adaptive genetic algorithm to solve 
this problem. From the simulation model we can draw a conclusion that the speed of 
the CDAG is faster than AABB method and the GPM. The result of the experiment 
shows that the CDAG is feasible, and this model is much more efficient when used in 
complex scenes than traditional algorithms. 
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Abstract. Cooperative caching and relaying content in ISPs can de-
crease the bandwidth costs and distribution time. The relay resources
installed at ISP are limited and the upload rates of relay servers are
various. After formulating the optimization problem, we design a Non-
dominated Sorting Bit matrix Genetic Algorithm (NSBGA) to solve it.
Constraint-satisfied population is initialized according to resource ratio
dynamically; improved alone point crossover and symmetric mutation
is designed; population is non-dominated sorted. The experiments show
that NSBGA is better than NSGAII and it can support P2P relay opti-
mization very well. The relations between performances and parameters
as the numbers of ISPs, source channels and relay servers are analyzed.
As a general optimization algorithm, NSBGA also can be used in other
application fields.

Keywords: Genetic Algorithm, Peer-to-Peer, Non-dominated Sorting,
Bit Matrix, Cooperative Relay.

1 Introduction

The fundamental advantage of peer-to-peer (P2P) content distribution is to allow
peers to contribute their upload bandwidth, such that bandwidth costs may be
saved on dedicated streaming servers. Server bandwidth cost savings and the
speedup of distribution are more substantial when the data deliver among the
end peers and their Internet Service Providers (ISPs). However, the heavy P2P
traffic has affected the whole network performance—congestion, for example [1].
How to decrease the costs of P2P distribution becomes a very important problem
for ISPs, and some ISPs have started to restrict the P2P traffic.

Genetic Algorithm (GA) is a powerful tool to solve combinatorial optimizing
problems [2]. GA is based on the concepts of natural selection and reproduc-
tion and do not guarantee to obtain the optimal solution, however they provide
appropriate solutions to a wide range of optimization problems which other de-
terministic methods find difficult or impossible to solve. Furthermore, GA, at
least in most implementations, has the advantage that they do not require any
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gradient information and have intrinsic parallelism in searching the design space,
thus making them robust and scalable optimization techniques.

The caching and relaying strategy can affect the performance of P2P content
distribution significantly [3-5]. In real networks, the relay recourses are limited
and the upload rates of ISPs’ relaying servers are various. As an ISP, it is use-
ful to ensure high quality of services of global networks through an appropriate
relay strategy. Because the problem of how to allocate resources effectively is
highly nonlinear, the methods as Gauss Newton and Simplex are not suitable.
This paper proposes the application of GA for the optimal relay strategy to
solve the limitation of relay recourses and to reach the P2P distribution growth
requirements. The original and corporate servers’ bandwidth costs are decreased
as little as possible by using a special peers’ fetching mechanism in which peers
assist to distribute and fetch the content as near as possible. The optimal model
of relaying strategy aims to minimize the average distribution time and the dis-
tribution time of the slowest content channel, which can represent networks’
global and fair distribution performance. To solve this multi-objective optimiza-
tion involves two types of difficulties: multiple conflicting objectives and a highly
complex search space. In these cases instead of a single optimal solution com-
peting goals give rise to a set of compromise solutions, generally denoted as
Pareto-optimal [6]. NSGAII [6], which is an improved non-dominated sorting
genetic algorithm, has been successfully applied to solving many real problems
[7-9]. In this paper, we developed a Non-dominated Sorting Bit matrix Genetic
Algorithm (NSBGA) based on NSGA-II to obtain optimal relaying strategy.

The rest of this paper is organized as follows. Section 2 presents the relay-
ing architecture and the constrained model. In Section 3, NSBGA is designed.
Section 4 evaluates NSBGA. Finally, we conclude the whole works in Section 5.

2 Approximate Relaying Model

The architecture we considered is built on relay nodes deployed at ISPs. There
are a lot of original channel sources providing media for customers. Each ISP
has a finite number of relay servers, and each relay server (RS) can be used to
relay one steaming channel to an arbitrary number of peers in a p2p fashion.
The control server collects the architecture’s information including the number
of relaying servers, the upload rate of different RSes with respect to various ISPs,
and the popularity of channels; then, it allocates the relaying strategy of RSes
periodically. In this architecture, the end nodes can download from the local,
neighbors or source. If a requested object is not available in the local RS, the
customer will try to fetch from the neighboring RSes. When the neighboring
RSes also don’t have the object, the peer will access the original servers directly.
The special peers’ fetching mechanism, in which peers access the surrogate server
as nearer as possible, can decrease the original and corporate servers’ bandwidth
costs effectively. The relaying networks architecture is shown in Fig. 1.

Because the relay resources are limited, we should design a method to allocate
them in ISPs for caching and relaying channels more effectively. Our method
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Fig. 1. Relaying networks architecture

aims to minimize the average distribution time and the distribution time of the
slowest channel. The allocation strategy can be updated timely through running
an optimization algorithm periodically on the control server. If the allocation
policy should be changed in a RS, it will be notified by the control server.

Each RS of ISP i has an upload bandwidth ui,j to ISP j and each leecher has
a download bandwidth di. T

j
min is the minimum distribution time of channel

j. The minimum di is denoted as dmin, the sum of upload bandwidth of seeds
is denoted as U(S), and the sum of upload bandwidth of seeds and leechers is
denoted as U(I) .

Theorem 1. The minimum distribution time for the general heterogeneous
peer-assisted file distribution system is [10]

T j
min = F/min{dmin, U(I)/L, U(S)} (1)

Table 1. Main notations

Variable Description
P The set of ISPs
|P | The number of ISPs
H The set of channels
|H | The number of channels
rj The rank of channel j
Tj The distribution time of channel j to the end nodes
T

(i,j)
min The minimum distribution time of channel j in ISP i

ui,j The element of upload rate matrix U

Ni Number of relaying resources in ISP i

ki,j The element of relaying matrix
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In local networks the upload rate and download rate are normally so fast that
dmin is greater than U(S) obviously. In addition, as a networks designer, the
upload capacity of seeds is our main considered problem. We can get:

T j
min = F/U(S) (2)

Since the main objectives are to minimize the average distribution time (g1)
and the distribution time of the slowest channel’s (g2), the formal constrained
optimization problem can be described as:

min : g = (g1, g2)

g1 =
∑

j

∑
irj∗T

(i,j)
min

|H|·|P |
g2 = max({∀i, ∀j, rj ∗ T (i,j)

min })
(3)

According to Eq.2, the distribution time is decreasing with the increasing of
the upload bandwidth of seeds and T

(i,j)
min should be minimized when the sum of

upload bandwidth of seeds for channel j in ISP i is maximized. Thus, the main
objectives become to maximize the average upload bandwidth and the slowest
upload bandwidth. If the matrix of the upload rate between various ISPs (U)
is known, the sum of one cannel’s upload bandwidth of seeds in one ISP is
decided by the relaying matrix (K). Since u0 is the sum of upload rate of source
channel which is not affected by the relaying matrix, it can be ignored. The new
constrained optimization model can be described as:

min : f(k) = (f1(k), f2(k))

f1(k) = −
∑

j

∑
prj ·V (p,j)

s

|H|·|P |
f2(k) = −min({∀j, ∀p, rj ∗ V (p,j)

s })
V

(p,j)
s =

∑
i
=pδ · ki,j · ui,p + kp,j · up,p

s.t.∑
jki,j ≤ Ni

δ = 0, if kp,j> 0
ki,j = 0 or ki,j = 1

(4)

In the Eq.4, δ implies that when there is local RS, the leecher will not fetch
content from the neighboring RSes. If the ranks rj are equal for all channels, it
can be erased in the objective function. We assume that the number of RSes in
each ISP is less than the number of channels. Otherwise, it is best obviously to
relay every channel in ISPs.

To find the optimal ki,j is very difficult for the problem is multi-objective,
nonlinear and non-differentiable with constraints. To deal with this problem,
we propose a heuristic search algorithm using Genetic Algorithm based on non-
dominated sorting.

3 Non-dominated Sorting Bit Matrix Genetic Algorithm

The capabilities of multi-objective genetic algorithms (MOGAs) to explore and
discover Pareto-optimal fronts on multi-objective optimization problems have
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been well recognized. Since the element of relaying matrix ki,j is zero or one so
that it can be represented by bit directly. We implement a multi-objective opti-
mization algorithm for bit matrix based on NSGAII [6]: NSBGA. The flowchart
of which is shown in Fig 2.

Step 1: Generate a uniformly distributed parent population of size in the initial
generation; individuals are generated with respect to the number of resources.

Step 2: Evaluate the individuals and obtain the fitness of each individual.
Step 3: Sort the population based on non-domination and crowding-distance.

This returns two columns for each individual which are the rank and the crowding
distance corresponding to their position in the front they belong.

Step 4: Fill new population of size with the individuals from the sorted
fronts starting from the best after non-domination sorting. If a front can only
partially fill the next generation, the crowding-distance method to ensure di-
versity is invoked. The crowding-distance method maintains diversity in the
population and prevents convergence in one direction. This procedure is shown
in Fig 3.

Step 5: Check the stopping criteria. If the stopping criterion is reached, we
will stop the program and then go to Step 9.

Step 6: Generate offspring. Use the usual binary tournament selection. The
individual with better fitness is selected as a parent. Tournament selection is
carried out until the pool size is filled.

Step 7: Combine the offspring and parents to form new population.
Step 8: Update the number of generations and repeat the steps 2-8 until a

stopping criterion is met.
Step 9: The best individual will be sent to the control server. If the refresh

cycle is reached, the relaying allocation will be updated timely.

Fig. 2. Flowchart of NSBGA Fig. 3. Filling new population procedure



474 Q. He et al.

3.1 Initial Population Policy

During the evolution, the initial population is the basis for genetic algorithm to
obtain better fitness. It has an important influence on the final fitness. Hence,
an optimized initial population can effectively overcome the situation of ”pre-
maturity” and accelerate convergence. The following is the proposed policy.

Firstly, the constraint of optimization should be satisfied when the population
is generated randomly in the initialization. Some rubbish individuals which will
be weeded out soon are avoided.

Secondly, the distribution of relaying matrix should be sensitive to the sum-
mation relaying resources in every ISP.

The relaying matrix element is created by a dynamic probability with respect
to the ratio between resources and channels. The special initial population be-
comes the basis to get higher fitness during the later evolution. The pseudo-code
of initialization is illustrated in Algorithm 1.

Algorithm 1. Initialize (pop, popSize,relayResources)
//pop is the initial population
//popSize is the size of population
//relayResources is the vector of relaying resources in ISPs
(1) For i=1:popSize (2) For j=1 : |P | (3) tSum=0; (4) For jj=1:|H |
(5) initProb=relayResources (j)/ |H | ;
(6) if(rand(1)¡ initProb && tSum¡relayResources (j))
(7) pop[i][j,jj]=1; (8) tSum++; (9) else (10) pop[i][j,jj]=0; (11) endif
(12) End For (13) End For (14) End For

3.2 Special Genetic Operator

In NSBGA, special crossover and mutation operators are designed to improve the
performance of GA. The crossover is designed based on the classical alone point
crossover (APC) algorithm. In order to avoid breaking constraints, we choose
entire row of relay matrix to exchange between two parents. Since considering
constrained condition is unnecessary, it can simplify the non-dominated sorting
and ensure the offspring has good properties. The improved crossover is described
in Algorithm 2.

In the mutation operator, we always choose two symmetric positions to change
simultaneously. Firstly, a position in each row is selected randomly, and then a
position where the value is opposite to that in the first position is selected.
This special mutation operator can ensure the offspring will not break the con-
straint:

∑
jki,j ≤ Ni. Algorithm 3 gives the pseudo-code of symmetric mutation.

Algorithm 2. Crossover (p1, p2,c1, c2)
//p1, p2 are the selected in tournament
//c1, c2 are the offspring individuals
(1) c1=p1; (2) c2=p2; (3) V=|P |*|H |;
(4) Choose site1 and site2 randomly in [1,V]; site1<site2;
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(5)row1=floor(site1/|H |)+1;
(6) row2=floor(site2/|H |)+1; (7) For i=row1:row2 (8) For j=1:|H |
(9) c1[row1,j]=p2[row1,j]; (10) c2[row2,j]=p1[row2,j];
(11)End For (12) End For

Algorithm 3. SymMutation (p, c)
//p is the selected individuals using tournament
//c is the offspring individuals after crossover.
(1) c=p; (2) For i=1 : |P | (3) Choose j randomly
(4) Choose j1 randomly, where p[i, j1] =p[i, j];
//Update the value of position (i,j) and (i,j1) (6)c[i, j] =p[i, j] ;
(7) c[i, j1] =p[i, j1];
(8) End For

4 Performance Evaluations

To verify the efficient of the proposed cooperative relay strategy, numerous sim-
ulations had been performed on several relaying networks topologies. All exper-
iments were taken on same software and hardware, which were Pentium Dual
1.8 GHz processor (E2160), 2 GB of RAM, Windows XP Pro SP2, and MAT-
LAB 2008a. We construct the network topologies for ISPs where there are links
between each others. If ISP i can’t communicate with j directly, ui,j and uj,i

are zero in the matrix of the upload rate. We assume the numbers of relaying
resources in every ISP are same (N) and N can be different in various experi-
ments.

4.1 Process of NSBGA-Based Solution

In the first experiment, we set |P | = 8, |H | = 6 and N = 3, then generate
the upload matrix U randomly in the range [0, 0.1, 0.2, ..., 1] Mbps. Because the
upload rate of local RS is faster than others, ui,i always equals to 1. Generally, the
upload rates are symmetrical between two ISPs, so U is equal to its transpose
UT . In the experiment, the crossover probability is set to Pc = 0.9 and the
mutation probability Pm equals to 2/|H |. In this experiment Pc is the same as
that suggested in [6], but Pm is bigger than that in [6] (where Pm = 1/(|P |∗|H |)).
Fig 4 shows the running process of NSBGA. The program converges in the 61st
generation and gets the individual.

4.2 Experiments on Initial Population and Mutation Policies

The special initialization and genetic operations are tested in our experiments.
The parameters of NSBGA are similar to the first experiment, and we assume
that the local upload rates are 0.5 Mbps, the neighbor upload rates are 0.1 Mbps
and the relaying resources on each ISP are N. We found that the original algo-
rithm as NSGAII [6] may often break constraints and bring some bad individuals
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Fig .4. Running process of NSBGA

but NSBGA doesn’t. If N is small, the original initialization generates so much
bad individuals that GA often can’t obtain solutions successfully. In the case of
|P | = 16, |H | = 54 and N = 18, the original NSGAII can’t get effective schema,
the average speed (−f1(k)) and the slowest speed (−f2(k)) are always zero.
Since the elitism is used in NSGAII which can preserve the excellent individu-
als, the affection of bad offspring caused by original genetic operations is limited.
Fig. 5 compares the performance of NSGAII and NSBGA. The original NSGAII
randomly generate initial individuals and the finesses are normally zero (which
means too poor), so we replace its initiate policy by ours in experiments. We use
our improvement initialization algorithm in NSGAII (NSGAII+CI) to compare
NSBGA. The experiments show that NSBGA is better than NSGAII and the
special initial and genetic algorithms are effective.
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4.3 Experiments on Initial Population and Mutation Policies

The relations between these parameters of network topology and the perfor-
mance of NSBGA are studied. Fig. 6 gives the elapsed time of NSBGA in various
ISPs’ number (|P |), the channels’ number (|H |) and N . Under various exper-
iments, the optimization value is obtained and the elapsed time is acceptable.
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Fig. 7. Fitness value for various |P |, |H | and N

When N is increased, the elapsed time decreases little but the effect is not ob-
vious. The elapsed time increases rapidly with increased |P | and |H |, and the
effects of these two factors on elapsed time are nearly similar. It shows that larger
network and more source channels means longer processing time but increasing
the relaying resources on ISPs will not prolong the completing time.

The objective fitness value under different network topology is illustrated
in Fig. 7. Firstly, |H | and K are fixed, and then |P | is varied from 8 to 64.
The average speed (−f1(k)) almost increases linearly with the increasing of the
number of ISPs. The slowest speed (−f2(k)) increases at the beginning and
then converges in the local upload rate (0.5). It means that the NSBGA can
be effective to utilize the cooperative resources to speed up distribution. This
result is shown in Fig. 7a. Secondly, |P | and K are fixed, and then |H | is varied
from 6 to 48. The average speed and the slowest speed normally decrease with
the increasing of the number of source channels. Notably, when |H | = 12, the
average speed is larger than before. It is because that in the case of |H | = 6, we
can get a schema by which all the data can be fetch from local relaying server.
Thirdly, |P | and |H | are fixed, and then N is varied from 2 to 16. The average
speed increases lower than linear with the increasing of N . The slowest speed
increases at first and then converges in the local upload rate (0.5). Fig. 7b and
Fig. 7c tell us if we want to ensure the system performance after |H | is increased,
we must increase the relaying resources correspondingly.
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5 Conclusion

In this paper, we design NSBGA to solve the optimization of utilizing relaying
resources to speedup p2p content distribution. Experiments tell us the number of
ISPs and relayed channels can affect the elapse time obviously and the number
relaying resources should be proper to the number of relayed channels. Our
results show that the average time and slowest time can be optimized effectively
by the resource allocation based on NSBGA. There is important actually guide
meaning on this NSBGA relay strategy for ISP-aided P2P designers and NSBGA
can also be used in lots of other multi-objective optimization fields.
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Abstract. A novel parallel memetic algorithm (MA) architecture for
the design of vector quantizers is presented in this paper. The archi-
tecture contains a number of modules operating memetic optimization
concurrently. Each module uses steady-state genetic algorithm (GA) for
global search, and K-means algorithm for local refinement. A shift regis-
ter based circuit for accelerating mutation and crossover operations for
steady state GA operations is adopted in the design. A pipeline architec-
ture for the hardware implementation of K-means algorithm is also used.
The proposed architecture is embedded in a softcore CPU, and imple-
mented on a field programmable logic array (FPGA) device for physical
performance measurement.

1 Introduction

Memetic algorithms (MA) have been found to be effective for evolutionary com-
putation. It can be viewed as the hybrid genetic algorithms (GA) consisting of
local refinement to genetic search results. Because the algorithms involve both
the global and local searches, one challenging issue of the MAs is to reduce the
computational complexity. One way for lowering the computational time is to
employ the parallel MA. There are multiple populations in the parallel MA.
Each population evolves independently. With smaller population size, the par-
allel MA may be able to converge at faster rate while finding good solutions.
However, long computational time may still be required when computational
intensive problems are considered for optimization.

The objective of this paper is to present a VLSI architecture for parallel MA.
The architecture is able to accelerate the MA for both global and local searches.
The application considered in this paper is vector quantization (VQ) [1]. The
VQ codeword training is computational intensive. It requires long training time
even for small number of codewords. Therefore, the VQ design is a good example
for verifying the effectiveness of the proposed MA architecture.
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In the proposed architecture, each population of the parallel MA is associ-
ated with a hardware module for independent memetic evolutions. Each hard-
ware module consists of population memory unit, mutation and crossover unit,
K-means [1] unit, and survival test and update unit. The mutation and crossover
unit is used for global search, while the K-means unit is used for local refine-
ment. Note that each hardware module contains only one population memory
for reducing the area cost [5]. Both the mutation and crossover operations are
performed concurrently for accelerating the MA. In addition, a pipeline archi-
tecture with direct memory access (DMA) operation is adopted for the K-means
operation. A hardware sorting structure [3] is adopted for survival test.

The K-means unit of different modules will request for the delivery of training
vectors for local refinement of MA. When the delivery for each K-means unit is
performed independently, the resulting memory bandwidth will be high, limiting
the speed of the proposed architecture. To solve this problem, the K-means unit
of all the modules operate synchronously. The training vectors delivered by he
DMA operation will be broadcasted to all the modules. The reduction in band-
width for transmission of training vectors is beneficial for further accelerating
the speed of the proposed architecture for parallel MA.

The proposed architecture has been implemented on field programmable gate
array (FPGA) devices [2] so that it can operate in conjunction with a softcore
CPU [6]. Using the reconfigurable hardware, we are then able to construct a
system on programmable chip (SOPC) system for the genetic VQ design. As
compared with its hardware and software counterparts, numerical results reveal
that the proposed FPGA-based MA architecture attains higher performance
with significantly lower training time for VQ design.

2 The Proposed MA Architecture

Before presenting the proposed architecture, a brief description of the VQ is
presented. The goal of a VQ is to partition a large data set X = {x1, ..., xt} into
N non-overlapping clusters C1, ..., CN , where N � t. The partitioning process is
based on a set of codewords {y1, ..., yN}, where the codewords and the vectors
in X are of the same dimension w. Given a vector x ∈ X , the x will be assigned
to the cluster Ci when i = α(x) = arg min1≤j≤N d(x, yj),where d(u, v) denotes
a distance measure between two vectors u and v. In this paper, the squared
distance is adopted as the distance measure. When applied for data reduction
applications such as data compression, a vector x will be represented by the
codeword yi when i = α(x). One cost function for the data reduction is the
average distortion for representing x by yi, as shown below

D =
1
wt

t∑
i=1

d(xi, yα(xi)). (1)

Given a data set X , the objective of the VQ design is to find a set of codewords
{y1, ..., yN} minimizing D in eq.(1).
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In this paper, a parallel MA is proposed for the VQ design. There are M
islands in the parallel MA. Each island evolves independently. In each island,
the steady-state GA is used for global search, and the K-means algorithm is
adopted for local refinement. As compared with the usual generational GA, the
steady-state GA has been found to be more suitable for hardware implementation
because of consuming less hardware resource. In each island, there are P genetic
strings for the memetic operations. Each string r represents a set of N codewords
{y1, ..., yN}r.

Let Si be the set of P genetic strings in the island i, which are called the
parent strings. Initially, the P strings in Si are randomly generated. Two strings
(denoted by r1 and r2) in S will be selected for mutation and crossover for
creating a new child string (denoted by c). The new string then is used as the
initial codebook to the K-means algorithm for local refinement. As the MA of
all the islands are terminated, the fitness of best strings from every island are
compared. The string with highest fitness is selected as the codebook of the VQ.

Note that because each string for the VQ design is actually a codebook, the
memory access time for string retrieval may be long. Consequently, the retrieval
process for r1 and r2 may be time-consuming. To reduce the memory access
time, in the algorithm, the previous r1 becomes the new r2 and then the new
r1 is chosen randomly from S. This selection scheme reduces the memory access
time by half.

The hardware architecture of the parallel MA can be viewed as a user logic in
the NIOS-based SOPC system [6]. Because the proposed architecture is used for
the VQ design, the training data is required. The goal of using the SOPC is to
provide the training data for the hardware architecture. The training data can
be stored in a SDRAM, and delivered to our architecture via the Avalon bus.
The DMA can be used to speed up the delivery of training vectors.

Figure 1 shows the hardware architecture of the parallel MA. It contains M
modules, where each module is used for the memetic operations of one island.
Each module consists of population memory, crossover & mutation unit, K-
means unit, and survival test & update unit. Each unit will be described in
detailed as shown below.

Population Memory Unit. The population memory contains a 2-port RAM
and a RNG unit. The 2-port RAM contains S, the set of P genetic strings. In
our design, the implementation of the RAM is based on the embedded memory,
which is provided by some FPGA devices such as Altera Stratix II. The goal of
RNG unit in the population memory unit is to select randomly a string r1 for
the subsequent crossover and mutation operations. In our design, the cellular
automata (CA) is adopted for the VLSI implementation of random number
generator due to its simplicity and regularity of the design.

Mutation and Crossover Unit. Figure 2 shows the basic structure of the
mutation and crossover unit, which contains three shift registers for storing the
strings r1, r2 and c, respectively. A number of RNGs, comparators, multiplexers
and counters are then used for crossover and mutation. The major advantage of
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(a)

(b)

Fig. 1. The architecture of the parallel MA: (a)The overall architecture, (b)The archi-
tecture of each module

Fig. 2. The architecture of crossover and mutation unit

this architecture is that the crossover and mutation can be performed concur-
rently with low area cost.

As shown in Figure 2, SHIFT REGISTER 1 and SHIFT REGISTER 2 con-
tain strings r1 and r2, respectively. Note that the architecture does not randomly
select new r1 and r2 from the population memory. In fact, only new r1 is chosen
from population memory. The new r2 is actually the previous r1. The memory
access time and routing overhead can then be significantly reduced. In the ar-
chitecture, The SHIFT REGISTER 1 obtains r1 from the population memory
unit. The SHIFT REGISTER 2 obtains r2 from SHIFT REGISTER 1.
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Fig. 3. The architecture of mutation unit

The crossover operations are accomplished by concurrently shifting the strings
in SHIFT REGISTER 1 and SHIFT REGISTER 2 to MUX 1. Each shift register
will shift one codeword at a time. As shown in Figure 3, MUX 1 is a switch
selecting the codewords of either r1 or r2, and route them to SHIFT REGISTER
3, which contains the resulting child string c. The control line of MUX 1 is
connected to a comparator, which compares the value of RNG 1 to that of a
counter. The counter records the number of shifts made by the shift registers.
The value of RNG 1 serves as a threshold here. When the counter value is less
than the threshold, codewords of SHIFT REGISTER 1 (i.e., r1) goes to SHIFT
REGISTER 3. Otherwise, codewords of r2 will be selected. Consequently, the
value of RNG 1 determines the crossover point. The value will be randomly
generated prior to the shifting operations.

We also observe from Figure 2 that the output codeword of MUX 1 will pass
through the mutation unit before arriving the SHIFT REGISTER 3. Figure 3
shows the architecture of the mutation unit. As shown in the figure, all w com-
ponents of the output codeword mutate concurrently. The mutation circuit for
each component i consists of 2 RNGs (termed RNG ia and RNG ib), one regis-
ter (termed register i), one comparator (termed comparator i), one multiplexer
(termed mux i).

The probability for mutation Pb is stored in a separate register, and is broad-
casted to all the mutation circuits. In the mutation circuit for each component
i, the value of RNG ia is first compared with the Pb. The component i will be
mutated when the value of RNG ia is less than Pb. The mutated value is then
determined by RNG ib.

K-Means Unit. The goal of the K-means unit is to locally refine the mu-
tated child string stored in SHIFT REGISTER 3 using the K-means algorithm.
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Fig. 4. The architecture of the C-means unit

Fig. 5. The architecture of the partitioning unit

As shown in Figure 4, the K-means architecture can be decomposed into two
units: the partitioning unit and the centroid computation unit. These two units
will operate concurrently for the local refinement process. The partitioning unit
uses the codewords stored in the register to partition the training vectors into
N clusters. The centroid computation unit concurrently updates the centroid of
clusters. Note that, both the partitioning process and centroid computation pro-
cess should operate iteratively in software. However, by adopting a novel pipeline
architecture, our hardware design allows these two processes operate in parallel
for reducing the computational time. In fact, our design allows the concurrent
computation of N+2 training vectors for the K-means operations.

Figure 5 shows the architecture of the partitioning unit, which is a N -stage
pipeline, where N is the number of codewords (i.e., clusters). The pipeline fetch
one training vector per clock from the input port. The i-th stage of the pipeline
compute the squared distance between the training vector at that stage and the
i-th codeword of the codebook. The squared distance is then compared with
the current minimum distance up to the (i − 1)-th stage (denoted by Din in
Figure 5). If distance is smaller than the current minimum distance, then the i-
th codeword becomes the new current optimal codeword, and the corresponding
distance becomes the new current minimum distance, denoted by Dout. After
the computation at the N -th stage is completed, the current optimal codeword
and current minimum distance are the actual optimal codeword and the actual
minimum distance, respectively. The index of the actual optimal codeword and
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Fig. 6. The architecture of the centroid computation unit

its distance will be delivered to the centroid computation unit for computing the
centroid and overall distortion.

Figure 6 depicts the architecture of the centroid computation unit, which
can be viewed as a two-stage pipeline. In this paper, we call these two stages,
the accumulation stage and division stage, respectively. Therefore, there are
N +2 pipeline stages in the K-means unit. The concurrent computation of N+2
training vectors therefore is allowed for the local refinement operations.

There are N accumulators and N counters in the accumulation stage. The i-th
accumulator records the current sum of the training vectors assigned to cluster
i. The i-th counter contains the current number of training vectors mapped to
cluster i. The training vector out, D out and index out in Figure 6 are actually
the outputs of the N -th pipeline stage of the partitioning unit. The index out is
used as control line for assigning the training vector (i.e. training vector out) to
the optimal cluster found by the partitioning unit.

The goal of division stage is to compute the centroid. There is only one divider
in the unit because one centroid computation is necessary at a time. Assume the
j-th training vector is now entering the stage, and the i-th codeword is the best
matching codeword for the j-th training vector. The output of the i-th accumu-
lator and i-th counter of the accumulation stage will then be delivered to the
divider for centroid computation. The divider is implemented by a table lookup
based technique so that it can be embedded in a pipeline. Detailed discussion of
the K-Means architecture can be found in our earlier work [4].

Survival Test and Update Unit. This unit contains a hardware sorting cir-
cuit [3], which sorts the N parent strings in a descending order according to
their fitness values. After the fitness evaluation operation is completed, the fit-
ness value of the child string is used as the input to the sorting circuit. When the
distortion of the string is larger than the parent string with lowest fitness value,
the child string is not survival, and no updating operation is necessary. Other-
wise, the parent string with highest distortion is replaced by the child string.
The sorting circuit is then activated to determine the new parent string with the
highest distortion.
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Table 1. Area cost of the SOPC system for parallel MA

Items Values
ALMs of parallel MA Circuit (M = 3) 19281
Embedded Memory Bits of parallel MA Circuit 12288
DSP Blocks of parallel MA Circuit 288
ALMs of Entire SOPC System 22895
Embedded Memory Bits of Entire SOPC System 609024
DSP Blocks of Entire SOPC System 288

Synchronous Memetic Operations Among Islands. Although the genetic
strings in different islands evolve independently, they all need the same set of
training vectors for K-means algorithm and fitness evaluation. Independent re-
quests for training vector delivery from different islands demand very high mem-
ory bandwidth. This may become the bottleneck of the architecture. To solve the
problem, the K-means operation of all the architectures operate synchronously.
Therefore, training vectors from main memory can be broadcasted to all the is-
lands for K-means training. In addition, the DMA is used for further accelerating
the data delivery. To implement synchronous K-means operations among differ-
ent modules, we first note that all the string selection, mutation & crossover, and
survival test operations take fixed number of clock cycles. The same operation
will take the same number of clocks in different modules. Consequently, when all
the modules start MA operations at the same time, the synchronization among
the modules can be achieved.

3 Experimental Results

This section presents some physical performance measurements of the proposed
FPGA implementation. In the experiments, there are 16 codewords (i.e.,N = 16)
in the VQ. The vector dimension of codewords is w = 2 × 2. The target FPGA
device for the hardware design is Altera Stratix II 2S60ES. Table 1 shows the
hardware resource consumption of the NIOS-based SOPC system [6] using the
proposed MA architecture as the custom user logic. There are 3 islands in the
architectures (M = 3). The number of genetic strings in each island is P = 8.
Therefore, the total number of genetic strings of the architecture is 24 strings.

As shown in the Table 1, the proposed MA circuit consumes only 19281 adap-
tive logic modules (ALMs). The population memory of the architecture is im-
plemented by the embedded memory of the FPGA. The consumption of the
population memory bits for the parallel MA circuit is 12288 bits. Moreover, our
circuit also uses 288 digital signal processing (DSP) blocks of the FPGA device
for the implementation of squared distance computation in the K-means unit.
The NIOS softcore CPU [6] itself also consumes hardware resources. The whole
SOPC system uses 22895 ALMs, which is 95 % of the ALMs of the target FPGA
device. The operating speed of the system is 50 MHz.
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Table 2. Comparisons of the performance of various MA implementations

Algorithms ALMs Embedded Memory DSP Blocks Average CPU Average
Bits Time Distortion

Parallel MA 19281 12288 288 0.47 (sec) 54.62
(M = 3)

Parallel MA 7203 12288 96 1.07 (sec) 55.27
(M = 1)
Software 34.55(sec) 55.23

Table 2 compares the performance of the proposed architecture with M = 1
and M = 3, and their software counterparts with M = 1. The CPU time and
average distortion measurements are based on the average values of 100 inde-
pendent runs. The area cost of the hardware implementations are also included
in the table for comparison purpose. The proposed architecture with M = 1
can be viewed as the implementation of basic memetic algorithm. To achieve
meaningful comparisons, both the architectures have the same number of total
genetic strings P = 24. They are also implemented on the same target FPGA
device. The software counterpart executes on the processor 4GHz Intel I7.

It can be observed from Table 2 that the proposed architecture with M = 3
has lowest average CPU time and lowest average distortion. The average CPU
time of the proposed architecture with M = 3 is 0.47 second, which is only
43.93% and 1.36% of the CPU time of the architecture with M = 1 and the
software counterpart with M = 3, respectively. Note that, each island for M = 3
has only 8 genetic strings. By contrast, the island for M = 1 has 24 genetic
strings. Therefore, because each island for M = 3 has smaller population, its
memetic operations are able to achieve faster convergence. In addition, the best
string is selected from multiple islands. Its average distortion is lower than that
of the basic memetic algorithm containing only one island, as shown in Table 2.

Although each island has smaller population for M = 3, the total number of
genetic strings of the proposed architecture with M = 3 is identical to that of
the architecture with M = 1. As a result, we can see from Table 2 that both
the hardware architectures consume the same number of embedded memory
bits. On the other hand, the architecture with M = 3 uses more ALMs and
DSP blocks for hardware implementation. This is because the architecture with
M = 3 consists of 3 islands. Therefore, when both the area cost and speed are
the important concerns, the proposed architecture with M = 1 can be used.

Figure 7 shows the distribution of distortion for 100 independent executions of
the proposed architectures with M = 1 and M = 3, and the K-means architec-
ture [4]. It can be observed from the figure that the proposed architectures with
M = 1 and M = 3 have similar distributions. In addition, their distributions
have higher concentration as compared with that of the K-Means architecture
[4]. Therefore, the performance of the proposed architecture is insensitive to the
initial populations. All these facts demonstrate the effectiveness of the proposed
architecture.
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Fig. 7. The distortion distribution of various VQ implementations

4 Concluding Remarks

The proposed parallel MA architecture has been found to be effective for VQ
design. As compared with the K-means architecture, the proposed MA archi-
tectures are less sensitive to the selection of initial codewords. In addition, by
the employment of parallel MA architectures, the average distortion of the VQ
design can be further improved while accelerating the computational speed. The
proposed architecture therefore is an effective alternative for applications where
both the performance of speed are important concerns.
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Abstract. In order to solve traveling salesman problems that employed comple-
tion- time- shortest as the evaluating rule, an encoding method and improved 
differential evolution algorithm were proposed. In these methods, real number 
encoding and roulette wheel selection were adopted for improved differential 
evolution and neighborhood search operator was devised. It was fit for solving 
symmetric and asymmetric multiple traveling salesman problem. Asymmetric 
multiple traveling salesman problems were simulated. By comparison with the 
results of genetic algorithm and standard differential evolution, it is shown that 
the improved differential evolution algorithm proposed in this paper is efficient 
to solve the discrete combinatorial problem, such as optimization of multiple 
traveling salesman problems. 

Keywords: differential evolution algorithm, multiple traveling salesman  
problem, discrete combinatorial problem, optimization. 

1   Introduction 

As a typical NP-hard combinatorial optimization, TSP (Traveling Salesman Problem) 
is widely used in various application areas [1]. Usually, MTSP (Multiple Traveling 
Salesman Problems) involves M salesmen departing from the same city (or different 
cities) by their specific routes. For each of the cities, exactly one salesman will pay a 
visit (with an exception of departure cities) with minimum total travel distance. The 
TSP-related research has a great significance in the real world in that many applica-
tions such as traffic, pipe laying, route selection, computer network topology, and 
traveling postman can be formulated as TSP/MTSP models. A number of Bionic 
Evolution Algorithms including GA [2], AC [3], SA [4] and TS [5] have been devised 
to solve the TSP and MTSP models. 

The study of the total completion time of all salesmen is of operational significance 
because the speed of each traveling salesman may vary in practical problems. Refer-
ence [6] proposed a genetic algorithm to minimize the total traveling time of the 
MTSP model. However, little research has been done in this area. 

DEA (Differential Evolution Algorithm), a real-coded evolutionary computing 
technique, was proposed by Storn and Price in 1995 [7]. Initially, it was devised to 
compute Chebyshev polynomial. Afterwards, it proved to be an effective method in 
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optimizing complex problems. As a new intelligent optimization based on evolved 
population, DEA has the merits of desirable effectiveness, convergence, and robust-
ness. Although DEA has drawn a wider attention of research, little intensive and  
systematic research findings have been published compared with those of other evolu-
tionary algorithms. Theoretical breakthrough of DEA is expected [8]. In particular, 
little efforts have been made in using DEA to solve discrete combinatorial  
optimizations. In this paper, the completion time of MTSP is optimized with an im-
proved DEA. 

To optimize the symmetric or asymmetric MTSP with minimum completion time, 
an improved DEA together with a new coding method is proposed in this paper. The 
optimization consists of defining the cities visited by and the route of a specific 
salesman, namely, defining the allocation of salesmen and the routes. At the comple-
tion of travel, minimize the maximum traveling time consumed by certain salesman. 
The simulation indicates that the proposed Improved DEA is valid. 

2   Mathematical Model of MTSP 

Define point 0 (origin point) as the departure city of a salesman; points 1, …, l de-
notes the cities to be visited by m traveling salesmen. 

Define variables: 

⎩
⎨
⎧

=
otherwise

arcpassesksalesman
xijk 0

)j,i(1
 

⎩
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=
otherwise

s
yki 0

icity  k visitsalesman 1
 

ijc —the distance of arc ),( ji  passed by salesman 

kv —the speed of the k th salesman 

kh —the completion time of the k th salesman 

The following model is formulated: 
Objective function is 
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Of which， ;,,1,0 lj =  mk ,,2,1=  

∑
=

=
l

j
kiijk yx

0

                                                    (5) 

Of which， ;,,1,0 li =  mk ,,2,1=  

SxX ijk ∈= )(                                                     (6) 

Of which, S is branch eliminating constraint. Namely, discard the solution of branch 
tracks unable to form a complete route. See [9] for details of S. 

In the model, Equation (1) minimizes the completion time of the one among m 
salesmen consuming the maximum traveling time. Equation (2) computes the travel-
ing time of each salesman. Equation (3) means that departing from city 0, each of the 
cities will have exactly one salesman passed. Exactly one city is connected with the 
terminal city of any arc, as described in equation (4). For the departure city of any arc, 
exactly one terminal city shall be connected with it (see Equation (5)). Finally, Equa-
tion (6) indicates that any solutions of branch tracks unable to form a complete route 
shall be rejected. 

3   Design of Improved DEA 

DEA, short for differential evolution algorithm, was proposed by Storn and Price in 
1995 to solve continuous global optimization problems [10]. Similar to PSO (Particle 
Swarm Optimization) and GA (Genetic Algorithm), DEA is an optimization method 
utilizing swarm intelligence theory, in which swarm intelligence derived from the 
cooperation and competition between individuals within the swarm is used to guide 
the searching process. To improve the standard DEA, we propose new selection op-
eration and neighborhood operation methods according to features of the combinato-
rial optimization problem. 

3.1   Individual Encoding 

In respect that the DEA is fit for solving continuous function optimization, rational 
individual encoding method shall be devised for the discrete function optimization of 
TSP. Each individual generated shall correspond to a feasible route and no infeasible 
solutions may produce during the mutation and crossover processes. 

Consider a MTSP involving N + 1 cities (including the departure city 0) and m 
traveling salesmen. The individual generated is represented by [ Nxxxx ,,,, 321 ].  

The individual consists of N real numbers, and each real number ix  respects the 

following condition: 11 +<≤ mxi , Ni ,2,1= . 
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3.2   Individual Decoding 

For decoding, rounding operation for each real number in the code is conducted. Sup-
pose ix  represents that the traveling salesman )( ixInt  visits city i, where )( ixInt  is 

the rounding operation for real number x . It is possible that 
for kj ≠ , )( jxInt )( kxInt= , which means a salesman visits more than one cities. In 

this case, sequence real numbers jx and kx  in an ascending order so as to determine 

the sequence of cities to be visited by the salesman. In specific, the salesman visits the 
city with the smallest number first. In case real numbers jx = kx , the city that to be 

visited first is determined by the appearance sequence of the number jx , kx , and the 

first visited city appears first in the individual. 
For instance, consider the MTSP containing 10 cities (including the departure city 0) 

and 3 traveling salesmen. One possible individual could be described as [1.2 2.3 3.9 
2.1 1.8 3.3 1.2 2.4 3.7]. From the individual we see, the sequences of cities to be vis-
ited shall be Salesman 1: 0—1—7—5—0; Salesman 2: 0—4—2—8—0;Salesman 3: 
0—6—9—3—0. 

To eliminate trivial sub-routes, it is important to assume C00=M, where M is an in-
finite positive number and C00 is the distance between departure cities. Consider the 
following individual:[1.2 1.3 3.9 1.1 1.8 3.3 1.2 3.4 3.7]. From the above we see, the 
sequences of cities to be visited shall be Salesman 1: 0—4—1—7—2—5—0; Sales-
man 2: 0—0—0; Salesman 3:   0—6—8—9—3—0. 

Taking the assumption C00=M into consideration, the traveling distance of 
salesman 2 is infinite. Accordingly, the traveling time is infinite. No trivial sub-
routes may produce because such an individual will be rejected in the iteration 
process of DEA. 

3.3   Mutation Operation 

The basic mutation element of DEA is the differential vector of the parent generation. 

Each vector consists of two different individuals ( t
rx 1 , t

rx 2 ) of parent. Depending on 

the generation methods of mutated individuals, diversified DEA schemes will be 
obtained. Among them, one possible individual mutation is given as follows: 

)()( 12
t
r

t
r

t
i

t
best

t
imi xxxxxx −+−+= βλ                                 (7) 

In which, Ni ,,2,1= ; t
bestx  is the individual with the optimal fitness value of the 

current population; t
rx 1  and t

rx 2  are random individuals different from t
ix ; λ  is an 

additional control variable used to improve the expectation by introducing the optimal 
individual; and β  is a scaling factor. 

In the paper, parameters λ  and β  are assigned the same value: and set 

λ = β =0.5. 
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3.4   Boundary Conditions Dealing 

The value of new elements generated from mutation may exceed the boundary. There-
fore, it is necessary to replace the element values failing to meet the boundary condi-
tions with values randomly-generated from the feasible domain. 

3.5   Crossover Operation 

DEA uses crossover operation to maintain the diversity of population. Crossover will 

conduct between the ith individual t
ix  and mix  to generate a trial individual Tix . To 

guarantee the evolution of t
ix , random selection enables that at least one bit of Tix  

comes from mix . For other bits of Tix , a crossover factor determines the bits coming 

from mix  and t
ix , respectively. The crossover equation is described as follows: 

.,,2,1 Dj
Crandx

Crandx
x

rj
t
ij

rjmij
Tij =

⎪⎩

⎪
⎨
⎧

>
≤

=                         (8) 

In which, Ni ,,2,1= ; rand is a random number at the interval of [0,1]; and ∈rC  

[0,1]. 

3.6   Selection Operation 

Using “greedy search” strategy, the standard DEA generates trial individual Tx  

through mutation and crossover. By competing with t
ix , Tx  will be selected as the 

next generation only if the fitness value of it outperforms that of t
ix . Otherwise, t

ix  is 

selected as the next generation. The selection equation is described as follows: 

⎪⎩

⎪
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⎧

>
≤=+
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i
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iTiTit

i
xfxfx

xfxfx
x                                           (9) 

To avoid possible stagnation during the standard DEA evolution process, the propor-
tional selection method on the roulette wheel basis of GA is borrowed [11]. Select N 
individuals from parent and trial populations containing N individuals respectively to 
generate the next generation population. According to the roulette wheel selection in 
GA, the individual with the largest fitness value remains competitive. Therefore, the 
reciprocal of the fitness value obtained in Equation (1) will be used as the fitness 
value of roulette wheel selection. To ensure that the individual with the largest fitness 
value remains in next generation population, the optimal reservation strategy in GA 
will be used [11]. 

3.7   Neighborhood Operation Method 

Neighborhood operation involves randomly selecting two bits of an individual, ex-
changing the values of the two bits. Namely, exchange randomly two nodes in feasi-
ble route. Considering the following parent individuals V: [2.2  1.4  3.9  0.6  5.7]. 
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By exchanging 1.4 and 5.7, the following individual of the next generation will be 
obtained V’: [2.2  5.7  3.9  0.6  1.4]. 

3.8   Procedures of Improved DEA 

The procedures of Improved DEA are as follows:  
Step 1: As per the optimization problem to define the range of values; and as per 

the population scale to generate the initial population X with a pop-size N. 
Step 2: Perform mutation operation as per Equation (7) and apply the boundary 

conditions. 
Step 3: Generate new population XT by crossover as per Equation (8). 
Step 4: For populations X and XT, apply roulette wheel and optimal conservation 

strategy to generate population XS containing N individuals. 
Step 5: Perform neighborhood operation for population XS to generate Xn. 
Step 6: The individuals in population XS compete with those in Xn. Namely, select 

individuals as per Equation (9) to generate new generation of population Xt. 
Step 7: Repeat Step 2 to Step 7 until the specified termination condition is satisfied. 

In the paper, the termination condition refers to the maximum number of iterations. 

4   Instance Simulations 

The above introduced Procedures of using Improved DEA to optimize the minimum 
completion time multiple traveling salesman problems. In this section, simulations are 
conducted using the data of asymmetric TSPLIB as a benchmark (http://www.iwr.uni-
heidelberg.de/groups/comopt/software/ TSPLIB95/). The simulation results will then 
be compared with those of GA in [6], and standard DEA. 

4.1   MTSP Problems in 17 Cities (br17.atsp) 

The simulation benchmark br17.atsp involves 17 cities and the distance between each 
two cities are asymmetric. The distances in the matrix is in Km. Suppose the number 
of salesmen is 3 with the traveling speed 4 km/h, 5 km/h and 6 km/h, respectively.  

Reference [6] performed CX crossover, OX crossover and PMX crossover at a rate 
of 0.55 for chromosomes. Adopt exchange mutation and the exchange mutation rate is 
0.25; the pop-size is 100; maximum iterations are 100. Program with Matlab and run 
randomly 10 times. The results are given in Table 1. 

In the paper, let 5.0== λF and 05.0=rC ; pop-size is 100; number of iterations is 

50. For the Improved DEA, program it with Matlab. Run randomly 10 times and the 
results are given in Table 1. 

And the simulation with Improved DEA is given in Figures 1. 

Table 1. Simulation results of br17.atsp 

 Optimal Worst Average 
OX 4.6667 7 5.3833 
CX 4.6667 7.75 5.9400 

PMX 4.6667 7.75 5.9117 
Improved DEA 4.6667 5.6 4.86 
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          Fig. 1. Simulation of br17.atsp with Improved DEA 

The instance is a small-scale MTSP. As can be seen from Table 1, the results with 
Improved DEA devised in the paper outperform those obtained with GA, and less 
iteration is needed. 

4.2   MTSP Problems in 100 Cities (kro124p) 

The simulation benchmark br124p involves 100 cities and the distance between each 
two cities are asymmetric. The distances in the matrix is in Km. Suppose the number 
of salesmen is 4 and 8. The traveling speed is 24, 35, 52, and 28, respectively. For 
MTSP with 8 salesmen, the speeds are 24, 35, 52, 28, 32, 41, 39 and 50. 

Reference [6] performed CX crossover, OX crossover and PMX crossover at a rate 
of 0.55 for chromosomes. Adopt exchange mutation and the exchange mutation rate is 
0.25; the pop-size is 100; the number of maximum iteration is 800. Program with 
Matlab and run randomly 10 times for the number of salesmen of 4 and 8, respec-
tively. The results are given in Table 2. 

Table 2. Simulation results of GA 

No. of 
salesmen 

Crossover  
operator 

Optimal Worst Average 

CX 641.3714 732.2143 667.1155 
OX 611.6000 700.5714 656.3961 4 

PMX 584.4167 644.500 617.1515 
CX 372.4000 410.2439 390.3927 
OX 369.6410 416.2571 393.3918 8 

PMX 342.2800 389.9268 372.0015 

Table 3. Simulation results of Improved DEA 

No. of salesmen Optimal Worst Average 
4 553.1714 572.2143 563.4521 
8 292.5641 328.5938 314.2036 
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        Fig. 2. Simulation of kro124p with Improved DEA 

In the paper, let 5.0== λF and 05.0=rC ; pop-size is 100; number of iterations is 

800. Program the Improved DEA with Matlab. Run randomly 10 times for the number 
of salesmen 4 and 8, respectively. The results are given in Table 3. 

In which, the simulation figures of one of optimal results using Improved DEA by 
8 travelling salesmen are shown in Figures 2. 

The instance is a medium-scale MTSP. As can be seen from Tables 2 and 3, the re-
sults with Improved DEA devised in the paper outperforms those obtained with GA in 
the aspects of optimal, worst, and average. 

4.3   MTSP Problems in 403 Cities (rbg403.atsp) 

The benchmark rbg403 involves 403 cities and the distance between each two cities is 
asymmetric. Suppose the distance unit in the matrix is km. Suppose the number of 
salesmen is 8 and 12. For 8-salesman, the traveling speeds are 24, 35, 52, 28, 32, 41, 
39 and 50km/h, respectively. For 12- salesman, the speeds are 20, 35, 42, 18, 32, 11, 
39, 50, 62, 28, 12 and 8km/h. 

Simulate it with standard DEA and Improved DEA 10 times, respectively. Here, 
let 5.0== λF , 1.0=rC ; pop-size =100; maximum iterations = 1000. For 8-salesman 

simulation, the results at the iteration number of 500, 800, and 1000 are given in Ta-
ble 4. For 12-salesman simulation, the results are given in Table 5. 

The simulation of 8 salesmen at the iteration number of 1000 with standard DEA 
and Improved DEA is given in Figures 3 and 4, respectively. 

Table 4. Simulation results of rbg403 with 8 salesmen 

Standard DEA Improved DEA Iterations 
Optimal Worst Average Optimal Worst Average 

500 35.9091 36 35.764 21.8974 23.5 22.709 
800 34.2619 35.0625 34.715 20.5 23.5 21.8 
1000 33.7692 34.2619 33.99 19.9444 22.2 20.964 
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Table 5. Simulation results of rbg403 with 12 salesmen 

Standard DEA Improved DEA Iterations 
Optimal Worst Average Optimal Worst Average 

500 26.6563 28.4545 27.6184 16.5 17 16.6964 
800 25.875 27.25 26.4757 15.5 16.5 15.8742 

1000 25.2727 26.6667 25.7349 15 16.5 15.5289 

 

 

Fig. 3. Simulation with standard DEA 

 

Fig. 4. Simulations with Improved DEA 

The instance is a large-scale MTSP. As can be seen from Tables 4 and 5, the re-
sults with Improved DEA devised in the paper outperforms those obtained with stan-
dard DEA in the aspects of optimal, worst, and average, which shows that the rate of 
convergence of the Improved DEA is much fast. 
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5   Conclusions 

For discrete combinatorial optimization problems such as MTSP with minimum com-
pletion time, a encoding method and improved differential evolution algorithm are 
proposed in this paper. Through simulation and comparison of examples, the instance 
simulation indicates that the proposed methods are fit for the optimization of symmet-
ric and asymmetric MTSP and have gained better effects. 

Acknowledgements. Sponsored by China Postdoctoral Science Foundation funded 
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Differential Evolution for Optimization of Land Use  
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Abstract. With rapid economic growth of Henan province, it is necessary to 
optimize all types of land resource allocation. Differential evolution algorithm 
is an evolutionary algorithm based on groups, which utilizes the differential  
information of individuals in the current population of solutions to guide its fur-
ther search. There are three operators in Differential Evolution, mutation, cross-
over and selection. It applies that improved method to the optimization of land 
resource allocation. A model of land use allocation is put forward. The model 
can attain the optimal solution under multi-constraints such as economic bene-
fit, coordinated and balanced program of development, the total population, ag-
ricultural acreage and environment. Results show that differential Evolution is 
effective and has robust character in dealing with multi-constraint and multi-
dimensional optimization problems by cooperation and evolution of swarm. 

Keywords: Differential Evolution, Constraints, Optimization. 

1   Introduction 

High-speed economic growth brings enormous pressure of land resources in Henan 
province. Land for construction is increasing, agricultural land is decreasing. With the 
economy continuing increase, supply of land resources gradually becomes the impor-
tant factor that restricts the growth and economic sustainable development of the 
national economy. The limitation of land resources supply and unlimitedness of the 
resources demand determine the land resource allocation should be optimized. 

Differential Evolution (DE) Algorithm [1] is put forward by Storn R and Price K in 
1995; it is a kind random search algorithm with real vector coded. Its principle is 
simple, and few control parameters and easy coding. Recently, with its usability, 
robustness and real powerful optimal capacity, successful application in several fields 
causes wide attention of scholars [2-3].  

The optimized allocation of land resource is constrained by several factors, such as 
the land area, economic benefit, coordinated and balanced program of development, 
the total population, agricultural acreage, environment and actual situation. The allo-
cation of land resources in Henan province is put forward and optimized. 

2   Differential Evolution Algorithm 

Differential Evolution Algorithm is based on group with the optimal solution and 
individual memory within populations of information sharing. Optimization problem 
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solving is achieved by cooperation and competition of populations among individual. 
Its essence is a greed genetic algorithm with a real number coding. Random initialized 

population is 0 0 0 0
1 2, , ,

PNX x x x⎡ ⎤= ⋅⋅ ⋅⎣ ⎦ , PN is the population scale. Individual 

0 0 0 0
,1 ,2 ,, , ,i i i i Dx x x x⎡ ⎤= ⋅⋅ ⋅⎣ ⎦  is used to characterize solution for the optimization problem, 

D is the dimension. Another new population is produced by Mutation and crossover 
operations of current population. The new generation of population is generated by 
selecting operation from the two populations based on the greed genetic algorithm. 

2.1   Initialization 

DE uses the dimension of D real-valued vector parameters as each generation of 

population, each individual: ( ), 1, 2, ,i G px i N= ⋅⋅ ⋅  , i am sequence of individuals in a 

population; G is evolutionary algebra, PN  is population scale and remains unchanged 

at during the minimizing process.  
In order to establish initial points of optimization search, population must be ini-

tialized. Usually a method for the initial population is random selection from the con-
straints of the given boundary value [4]. Generally DE assumption of all randomly 
initialized population with uniform probability distribution. The limit of parameter 
variable is L U

j j jx x x< <  , 

[ ] ( ),0 0,1 U L L
ij j j jx rand x x x= ⋅ − +  ( 1,2, , ; 1,2, , )Pi N j D= ⋅⋅⋅ = ⋅⋅ ⋅                (1) 

In expressions, rand[0,1] say generating an even rand number in [0,1].If the prelimi-
nary solution exists in advance, the initial population is produced by the solution with 
random deviation of the normal distribution. It enhances reconstruction result. 

2.2   Mutation 

For each objective vector ( ), 1, 2, ,i G Px i N= ⋅⋅⋅  , the variation vector of DE Algorithm 

is as follows:  

, 1 1, 2, 3,( )i G r G r G r Gv x F x x+ = + ⋅ −                                             (2) 

In expressions, 1, 2, 3r r r serial number of random selection are different each other. It 

is also different between objective vector i and 1, 2, 3r r r . Also 4PN ≥ is needful. 

Mutation operator [0,2]F ∈  is a real constant factor and controls the amplification of 

deviation variable. 

2.3   Crossover 

In order to increase the diversity of interference parameter vector, crossover operation 
is introduced. The test vector changes to: 

, 1 1 , 1 2 , 1 , 1( , , , )i G i G i G Di Gu u u u+ + + += ⋅⋅ ⋅                                                 (3) 
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, 1

, 1

 ( ( ) )   ( )
, 1  ( ( ) )   ( ){ ji G

ji G

v if randb j CR or j rnbr i

ji G x if randb j CR and j rnbr iu +

+

≤ =
+ > ≠= ( 1,2, , ; 1, 2, , )Pi N j D= ⋅⋅ ⋅ = ⋅⋅ ⋅    (4) 

In expressions，randb(j) is a uniform distribution random number within [0,1] , j is 
on behalf of the jth variable; rnbr(i) is a sequence of random selection and used to 
ensure , 1i Gu + getting at least one parameter from , 1i Gv + , CR is crossover operator and its 

scope is [0, 1].  

2.4   Selection 

Whether the vector , 1i Gu + will become the next generation member, according to the 

greedy rule DE will compare the vector with object vector of current population. If 
the objective function will be minimized, the vector with minor value of objective 
function will accept in the next generation population. All individuals of the next 
generation population are better or at least as well. 

, 1 , 1 ,

,

,   ( ) ( )
, 1 ,  { i G i G i G

i G

u if f u f x
i G x otherwisex + + ≤

+ =                                             (5) 

2.5   Manipulation of Boundary Conditions 

It is necessary to ensure new individual parameters value in feasible domain for the 
problem with boundary constraints. A simple method is to replace the new individual 
mismatched boundary constraints by the parameter vector randomly generated in the 
feasible domain.  

, 1 , 1

, 1

   ,  

[0,1] ( ) ;    ( 1, 2, , ; 1,2, , )

L U
ji G j ji G j

U L L
ji G j j j j P

if u x or u x then

u rand x x x i N j D

+ +

+

< >

= ⋅ − + = ⋅⋅ ⋅ = ⋅⋅ ⋅
               (6) 

3   Model of Land Use Allocation 

3.1   Variable Settings 

According to classification of general plan of land utilization in Henan province, the 
variable settings are respectively cultivated land ( 1x ), garden ( 2x ), woodland ( 3x ), 

grassland ( 4x ),water surface( 5x ), residential areas and mining areas ( 6x ),Lands used 

for transportation( 7x ), land for water facilities ( 8x ) and unused land ( 9x ). In Henan 

province, the total land area S = farmland ( 1 2 3 4 5x x x x x+ + + + ) +construction land 

( 6 7 8x x x+ + ) +unused land ( 9x ). 

3.2   Objective Function 

From the standpoint of optimized resource utilization, we should pay attention to 
social returns and ecological environment in pursuit of economic efficiency. Area of 
utilized land is an important evaluation index of land carrying capacity. Therefore, in 
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the model of land resource optimization Allocation, the minimum area of land used is 
chosen as major objective, i.e. the maximum area of unused land ( 9x ), ( )f X is used 

to express it. 
18 8 18

9
1 1 1

( ) min maxij j
j i j

f X x x
= = =

= =∑∑ ∑                                           (7) 

In expressions: 

X——Area of various types of land in each district； 
i——Various types of land； 
j——Each district in Henan province.  

3.3   Constraints 

(1)Land area constraint. All kinds of land area should be equal to total land area of 
Henan province. 

S=1655.36（million hectares） 

(2)Economic benefit constraint. The GDP should be no less than the current level 
through the optimized allocation of land resources. 

18 9

1 1

19724i ij
j i

w kx
= =

≥∑∑ （billion Yuan） 

In expressions: 

iw ——Relative weight coefficients about the benefits of various types of land; 

k ——Profit Coefficients. 

(3)Coordinate development constraint [5]. The social and economic development area 
in resources and environment should be allowed limits, its development speed and 
scale of land resources, environment and the bearing capacity of adaptation. Coordi-
nated development index is used to measure coordination of resource, economics and 
environment. At the same time, the coordinated development should satisfy the mini-
mum requirements. 

/ 15%ij ijx xμ = Δ ≤                                                (8) 

In expressions: 

μ ——Coordinate development index； 

/ij ijx xΔ ——Change scope of various types of land areas in each district. 

(4)Total population constraint. According to the total population of the population 
prediction results. Population size is the main factor of structural adjustment of land 
use, its changes determines the future demand of various types of land. Load bearing 
population of agricultural land and urban land should be controlled in 2015 and 2030 
population planning. 
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18 5 18 5

1 2
1 1 1 1

ij ij
j i j i

D x D x P
= = = =

+ ≤∑∑ ∑∑                                         (9) 

In expressions， 

1D ——The average prediction density of farmland; 

2D ——The average prediction density of urban land; 

P ——The population of regional planning. 

(5)Arable land constraint. According to the general plans for land use in Henan prov-
ince (1997-2010), cultivated land area keeps dynamic balance. By 2010, the total 
amount of cultivated land retains more than 812.03 million hectares. Stable Cultivated 
area and High Quality improved overall grain production capacity. Therefore, in the 
planning of arable land in goal by 2010.   

18

1
1

812.03j
j

X
=

≥∑ （million hectares） 

(6)Ecological Environment Constraint. In order to satisfy ecological requirements, 
garden plot and woodland should not be lower than current level. 

Garden plot: 
18

2
1

36.36j
j

X
=

≥∑ （million hectares） 

Woodland: 
18

3
1

297.27j
j

X
=

≥∑ （million hectares） 

(7)Constraint of actual situation. Residential areas and mining areas are less then 
current areas; Land area of traffic facilities and water facilities generally exceeds. 

Residential areas and mining areas: 
18

6
1

175.22j
j

X
=

≤∑ （million hectares） 

Lands used for transportation: 
18

7
1

40.61j
j

X
=

≥∑ （million hectares） 

Land for water facilities: 
18

8
1

31.80j
j

X
=

≥∑ （million hectares） 

(8)Variable non-negative constraints. 
0ijx ≥  

4   Optimization Calculation and Analysis 

According to relevant data from the general land use planning (1997-2010) of Henan 
province, various types of land utilization are used as optimization variables, land use 
area as optimal objective, while the value of PN is twenty and the value of D is nine. 

After optimizing and computing the data, two planning annual allocation schemes are 
obtained by 2015, 2030 (Table 1, S=1655.36).The optimization structure of land use 
planning is more reasonable and sustainable than current situation. 
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Table 1. Results of optimization (million hectares) 

year 
1x  2x  3x  4x  5x  6x  7x  8x  9x  total 

area 812.03 36.36 297.27 6.45 61.38 175.22 40.61 31.80 194.24 S 2010 
percent 49.05 2.196 17.96 0.39 3.71 10.58 2.45 1.92 11.73 100 

            
area 818.53 45.82 320.50 14.35 64.79 162.10 44.19 34.18 150.90 S 2015 
percent 49.44 2.77 19.36 0.87 3.91 9.79 2.67 2.06 9.11 100 

            
area 830.00 60.54 358.76 24.25 70.47 131.89 50.65 40.53 88.27 S 2030 
percent 50.14 3.66 21.67 1.46 4.26 7.97 3.06 2.45 5.33 100 

   

 
In Table 1，the 2015 optimum solution: The total amount of cultivated land keeps 

stable growth. The increase of garden plot and woodland contributes to improving the 
environment; the decrease of residential areas and mining areas is because of reduc-
tion of rural residential area. From the 2030 optimization results, the total amount of 
arable land basically meets the growing population peak demand. Land-use structure 
and layout tend to be more reasonable. Benefit of land utilization becomes maximiza-
tion. Calculated results can provide the reasonable planning and utilization about land 
resources of Henan province for reference. 
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Abstract. A hybrid Differential Evolution algorithm with double population 
was proposed for 0-1 knapsack problem. The two populations play different 
roles during the process of evolution with the floating-point population as an 
engine while the binary population guiding the search direction. Each gene of 
every chromosome in the floating-point encoding population is restricted to the 
range [-1, 1], while each gene of every chromosome in the binary encoding 
population is zero or one. A new mapping operation based on sign function was 
proposed to generate the binary population from the floating-point population. 
And a local refining operation called discarding operation was employed in the 
new algorithm to fix up the solutions which are infeasible. Three benchmarks of 
0-1 knapsack problem with different sizes were used to verify the new algo-
rithm and the performance of the new algorithm was also compared with that of 
other evolutionary algorithms. The simulation results show it is an effective and 
efficient way for the 0-1 Knapsack problem. 

Keywords: Knapsack Problem, Hybrid Differential Evolution, sign function, 
discarding operation. 

1   Introduction 

Differential Evolution (DE), proposed by Storn and Price [1], is a simple yet powerful 
algorithm for global optimization over continuous spaces, which use the greedy crite-
rion to make decision. Under the greedy criterion, a new parameters vector is ac-
cepted if and only if it reduces the value of the objective. Since its invention, DE has 
been successfully used in many numerical optimization problems. Chiou (2007) use 
DE to optimize the large scale economic dispatch problems [2]. Abbass (2002) [3] 
used DE to train artificial neural network for breast cancer diagnosis. Aydin and Te-
meltas (2004) [4] applied fuzzy DE to solve the optimal problem of the trajectories of 
a unicycle mobile robot on a predefined path. Cruz and Willigenburg and 
Straten(2003) [5] used DE to solve the problem of optimal control. Kaelo and 
Ali(2006) [6] proposed modifications in mutation and selection rules resulting in two 
new versions of the original algorithm. Numerical experiments over multiple bench-
mark test problems showed that the new version of DE algorithms is better than the 
original DE. 
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Despite the improvement of DE and successful applications in many engineering 
fields, its application in solving combinational optimization problems with binary 
decision variables is still unusual. One of the possible reasons for this lack is that DE 
cannot keep the closure of result of the original DE mutation operation when it is used 
in binary domain, for the operations designed in the original DE are designed only for 
continuous domain.  

A new version of DE was proposed in this paper to extend the continuous applica-
tion field of DE to the binary field. In the new DE, two populations were used to 
search the solution space in coordination. One population is called floating point 
population in which each gene of every chromosome was constricted in the 
range ]1,1[− . And a local search is called discarding operation was proposed to deal 
with the infeasible solutions. 

The remainder of the paper is constructed as follows. Section 2 gives a brief intro-
duction of the 0-1 knapsack problem. Hybrid DE (HDE) for Knapsack Problems is 
presented in section 3. Three commonly used benchmarks were used to verify the 
Hybrid DE and results of the experiments are also reported in section 4. Section 5 
concludes this paper. 

2   Model of 0-1 Knapsack Problem 

The typical 0-1 knapsack problem (KP) is that there are n  given items has to be 
packed in a knapsack of capacity V . Each item has a profit ip  and a weight iw . The 
problem is to select a subset of the items whose total profit is a maximized, while 
whose total weight does not exceed the capacity V . Then the 0-1 knapsack problem 
can be formulated as (1). 

),2,1(}1,0{

..
1

1

nix

Vxwts

wpfMaximize
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n

i
ii

n
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=∈

≤

=

∑

∑

=

=

 
(1)

where 1=ix  denotes that the item i  is chosen,  otherwise 0=ix . 

3   Hybrid DE for 0-1 Knapsack Problem 

3.1   Differential Evolution 

The DE is a class of direct search algorithm and the greedy search converges fast but 
can be trapped by local minima. Running several vectors simultaneously can elimi-
nate this disadvantage. This is the main idea of DE algorithm. DE algorithm is a kind 
of floating-point encoding evolutionary optimization algorithm. AT present, there 
have been several variants of DE [1]. One of the most promising schemes, 
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DE/RAND/1/BIN scheme of Storn & Price, is presented in great detail. It is supposed 
that we are going to find the minimization of the objective function )(xf . 

3.1.1   Generation of Initial Population  
The DE Algorithm starts with the initial target population nmijxX ×= )(  with the size m  

and the dimension n , which is generated by the following way. 

))(1,0()0( l
j

u
j

l
jji xxrandxx −+= . (2)

where mi ,,2,1= , nj ,,2,1= , u
jx  denotes the upper constraints, and l

jx  denotes the lower 

constraints. 

3.1.2   Mutation Operation 
For each target vector ),,2,1( mixi = , a mutant vector is produced by 

)()1( 321 rrri xxFxth −+=+ . (3)

where },,2,1{,, 21 mrri …∈  are randomly chosen and must be different from each other. And 
F  is the scaling factor which has an effect on the difference between the individual 

1rx  and 2rx . 

3.1.3   Crossover Operation 
DE employs the crossover operation to add the diversity of the population. The ap-
proach is given below. 

⎪⎩

⎪
⎨
⎧ =≤+

=+
otherwisetx

irandjorCRrandifth
tu

i

i
i ),(

)(),1(
)1( . (4)

where mi ,,2,1= , nj ,,2,1= , ]1,0[∈CR  is crossover constant and ),2,1()( nirand ∈  is the 
randomly selected index. In other words, the trial individual is made up with some of 
some components of the mutant individual, or at least one of the parameters randomly 
selected, and some of other parameters of the target individual. 

3.1.4   Selection Operation 
To decide whether the trial individual )1( +tui  should be a member of the next genera-
tion, it is compared to the corresponding )1( +thi . The selection operation is based on 
the survival of the fitness among the trial individual and the corresponding one such 
that: 

⎪⎩

⎪
⎨
⎧ <++

=+
otherwisetx

txftuftu
tx

i

iii
i ),(

))(())1((),1(
)1( . (5)

DE can adapt itself during the search process and find the optimum efficiently and 
effectively. However, the mutation operation as formula (2) can only keep closure of 
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the search set in the continuous domain. When DE is employed in the discreet do-
main, this closure of the mutation results must be concerned. 

3.2   Hybrid DE for Knapsack Problem 

In this section, a hybrid DE for the 0-1 knapsack problems will be discussed. Two popu-
lations were used in this hybrid DE. The first population was floating-point encoding 
with each gene restricted to the interval ]1,1[− , which as an engine to drive the evolution 
process in the hybrid DE. The other population is binary encoding which is generated 
from the first population with a new defined mapping operation. This binary population 
guided the direction of the evolution during the searching process.  

3.2.1   Mapping Operation 
A very simple mapping operation was defined with sign function to generate the bi-
nary population from the floating-point encoding population. It is as formula (6). 

2/])),,,([1(],,,[ 2121 nn xxxsignyyy …… += . (6)

An example of mapping results of four individuals where each chromosome has five 
genes is given in Table 1. 

Table 1. Results of mapping operation 

floating-point encoding  Binary encoding

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

-0.1627 0.69244 0.050305 -0.59471 0.34427 0 1 1 0 1
0.67624 -0.96072 0.36255 -0.24104 0.66359 1 0 1 0 1

0.0056258 0.41894 -0.14222 -0.39077 -0.62069 1 1 0 0 0  

3.2.2   Local Discarding Operation 
During the evolution of searching the best solution of the knapsack problem, infeasi-
ble solutions may appear. A local discarding operation is defined to handle this  
problem. Firstly, all the items are sorted in profit density ascending order. Then one 
solution is infeasible, the items are discarded in order of the sorted ascending order 
until it is feasible.  

3.2.3   Coordination between the Two Populations 
During the evolution of the hybrid of DE, the floating-point population generated the 
binary population using the mapping operation, while the selection operation on  
the binary population with the local discarding operation guides the evolution of the 
hybrid DE. 

3.2.4   Flowchart of the Hybrid DE 
The flowchart of the Hybrid DE is illustrated as Fig. 1. 
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Selection on binary population

Update the floating-point 
population

 

Fig. 1. The flowchart of hybrid DE 

4   Numerical Experiments 

In this section, the hybrid DE was used to solve the three 0-1 knapsack problems 
which are used as benchmark problems in [7]. The knapsack problems are with size of 
20, 50 and 100 respectively.  For the details about the data, refer [7] please. 
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The parameters of the hybrid DE is presented in Table 2. 

Table 2. Parameters for the three KPs 

Examples Population size  F CR Maxgen 
Kp1 20 0.5 0.5 30 
Kp2 20 0.5 0.5 300 
Kp3 20 0.5 0.5 2000 

 
For each of the three knapsack problems, 100  trials have been conducted and the 

best results (Best), average results (Avg), worst results (Worst) and  standard devia-
tions (Dev) are shown in Table 3. 

Table 3. The statistical results of the three knapsack problems 

Examples Best Avg Worst Dev 
Kp1 1042 1041.3 1037 1.7944 
Kp2 3119 3116.8 3110 2.1569 
Kp3 26559 26552 26535 8.7952 

 
The optimums of the three Knapsack Problems and its solutions are shown in  

Table 4. 

Table 4. Optimums and solutions 

Examples Optimum Solutions 
Kp1 1042 10111111010111111101 

Kp2 3119 
1101010111101001101101111 
1111100001011011000000010 

Kp3 26559 

1111111111111111111111111 
1111111111111111111110111 
1111101000101101101111111 
0001110111000000000000001 

 
The results in Table 4 show us that hybrid DE can find the optimums of the three 

Knapsack Problems with comparable small size of population. 
The compared best results with that of several versions of GA are also given in  

Table 5. The results of  the GAs are cited from [7] directly. 
Table 5 shows that for each Knapsack Problem, the HDE can find the best known 

optimum. Particularly, for KP2, the best result got by HDE is the best one in the five 
different algorithms. And the time that HDE needed is also comparable to other 
methods. 
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Table 5. Compared Results with other Algorithms 

Algorithm KP1 KP2 KP3 
TGA 1042 3077 25848 
GGA 1042 3112 26559 
HGA 1037 3103 26487 
SEGA 1042 3116 26559 
HDE 1042 3119 26559 

5   Conclusions 

DE is a recently developed heuristic algorithm that has empirically proven to be very 
efficient for global optimization over continuous spaces. In order to extend the field 
of DE from the continuous domain to the binary domain, a HDE is proposed. In the 
HDE, two populations were used to search the best solution coordinately. The float-
ing-point encoding population was use as an engine to drive the search process while 
the binary encoding population was used to guide the search direction. Two new op-
erations were defined to connect the two populations. One is the mapping operation 
which was used to generate the binary encoding population from the floating-point 
encoding population. The other operation is a local discarding operation which was 
used to refine the infeasible solution. Initial experiments on the three different sizes of 
Knapsack Problems show it is an effective and efficient way to solve the 0-1 knap-
sack problem. The mechanism of using two different encoding populations in the 
HDE can also be imported into other floating-point encoding efficient evolutionary 
algorithms, such as Evolution Strategy etc. to be applied in the resolving the binary 
optimization problem. 
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Abstract. In tree-based genetic programming (GP) performance opti-
mization, the primary optimization target is the process of fitness eval-
uation. This is because fitness evaluation takes most of execution time
in GP. Standard fitness evaluation uses the top-down tree evaluation al-
gorithm. Top-down tree evaluation evaluates program tree from the root
to the leaf of the tree. The algorithm reflects the nature of computer
program execution and hence it is the most widely used tree evaluation
algorithm. In this paper, we identify a scenario in tree evaluation where
top-down evaluation is costly and less effective. We then propose a new
tree evaluation algorithm called bottom-up tree evaluation explicitly ad-
dressing the problem identified. Both theoretical analysis and practical
experiments are performed to compare the performance of bottom-up
tree evaluation and top-down tree evaluation. It is found that bottom-up
tree evaluation algorithm outperforms standard top-down tree evaluation
when the program tree depth is small.

Keywords: Genetic Programming, Tree Evaluation, Top-down
Evaluation, Bottom-up Evaluation.

1 Introduction

Genetic programming (GP) [1] is an optimization technique inspired by Dar-
win’s natural selection principle. Genetic programming applies the methodology
of genetic algorithm into the domain of computer programs. Both genetic algo-
rithm and genetic programming belong to optimization algorithms in artificial
intelligence. Unlike optimization algorithms such as hill climbing or gradient
based algorithms, genetic algorithm and genetic programming are population
based searching algorithms. Algorithms like hill climbing and gradient based al-
gorithms evolve a single candidate solution, while genetic algorithm and genetic
programming search for optimal solution by evolving a population of candidate
solutions based on nature. Inspired by nature, GP has been successfully applied
to solve a number of problems in a “novel and unexpected way” [2].

But, while applying genetic algorithm and genetic programming to solve prac-
tical problems, they have been widely criticized because they are “very slow”.

Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 513–522, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This is mainly due to the fact that genetic algorithm and GP concurrently evolve
a population of candidate solutions. Due to the phenomenon of bloating [2], the
performance issue is more serious in GP compared with genetic algorithm. Hence,
in order to maintain the feasibility of GP, it is essential to improve GP runtime
performance.

In GP workflow, the most computation extensive phase is fitness evaluation.
As a result, fitness evaluation is the primary target in optimization and a number
of optimization methods have been developed. For example, Keijzer [3] exam-
ined a number of subtree caching mechanisms to improve the runtime efficiency
of fitness evaluation. Teckett [4] developed brood recombination crossover, in
which only a small fraction of test cases are evaluated to best estimate off-
spring’s fitness. Jackson [5] introduced fitness-preserving crossover and used it
to avoid evaluation of offspring produced by fitness-preserving crossover. In [6],
a statistical method was developed to select a fraction of test cases to evaluate
rather than using all test cases. In [7], a genetic programming population clus-
tering method was proposed to decrease the total number of fitness evaluation
performed.

The most widely used tree evaluation algorithm is top-down evaluation. Top-
down tree evaluation evaluates program tree from the root to the leaf of the tree.
In this paper, we identify a scenario when standard top-down tree evaluation fails
to perform well. Then a new bottom-up tree evaluation algorithm is developed
to explicitly address the problem identified. The rest of the paper is organised
as follows. In the next section, we firstly introduce the motivation of developing
bottom-up tree evaluation and then discuss the algorithm implementation. Then,
we perform a theoretical analysis of bottom-up evaluation. In section 4, we use
Multiplexer 11 domain to compare the performance of top-down and bottom-
up evaluation. We conclude this paper with a discussion of when bottom-up
evaluation outperforms top-down evaluation and further works.

2 Bottom-Up Tree Evaluation

In fitness evaluation, we typically have got a number of test cases. Each individ-
ual program in the population needs to execute with inputs from each test case.
Then the output is compared with expected result. The raw fitness usually is
how many times the program produces “correct” output. Standard tree evalua-
tion works top-down recursively starting from the root node (see Figure 1). The
sequence that nodes evaluate is the same as a depth-first traverse of the tree.

In some problems, for example Multiplexer problem, the test cases are permu-
tation of input values (or semi permutation of input values). For example, in 11
Multiplexer problem, there are 11 inputs. Since each input is binary (can either
be 0 or 1), the permutation of inputs has 211 = 2048 different cases. Although
every value in this permutation is distinct, if we iterate through this permuta-
tion, we can find that not every input changes every time. For example, for the
permutation in Figure 2, from Case 1 to Case 2, only input D7 is changed. From
Case 2 to Case 3 only D6 and D7 changes. If we let C(x) be the number of
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def TopdownEval(node) ->

if node is Terminal ->

return value of Terminal input

if node is Function ->

foreach input in node’s inputs ->

TopdownEval(input)

return evaluatedResult

TopdownEval(root)

Fig. 1. Pseudo Code for Top-down Evaluation of Program Tree

Inputs: A0 A1 A2 D0 D1 D2 D3 D4 D5 D6 D7

Values: 0 0 0 0 0 0 0 0 0 0 0 Case 1

0 0 0 0 0 0 0 0 0 0 1 Case 2

0 0 0 0 0 0 0 0 0 1 0 Case 3

0 0 0 0 0 0 0 0 0 1 1 Case 4

0 0 0 0 0 0 0 0 1 0 0 Case 5

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

1 1 1 1 1 1 1 1 1 0 0 Case 2045

1 1 1 1 1 1 1 1 1 0 1 Case 2046

1 1 1 1 1 1 1 1 1 1 0 Case 2047

1 1 1 1 1 1 1 1 1 1 1 Case 2048

Fig. 2. Viewing test case inputs as permutation in Multiplexer 11 problem

changes in a permutation for an input x, then for a given input x whose index
is n (index starts 1 from left to right) and the total number of inputs is N, then:

C(x) =
2N

2N−n
= 2n (1)

For example, for the permutation in Figure 2:

C(D7) =
2048
20 = 2048, C(A0) =

2048
210 = 2.

Given the above fact, now let’s consider evaluating the following program tree
using the above permutation as test case inputs:

Not(And(Or(A0, A1), D7))

And’s left subtree Or(A0, A1)’s value changes at maximum 4 times (C(A1) = 4),
while the right subtree D7’s value changes 2048 times. Using Top-down evalua-
tion algorithm, the left subtree evaluates 2048 times while most of the evaluations
give the same result. In fact, since the left subtree only changes at maximum 4
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times, 4 evaluations are enough. Thus, for this subtree, 2048 − 4 = 2044 evalu-
ations are wasted. In Multiplexer 11 problem, this may not be a very big issue
since functions like And, Or, Not, If are very fast to execute. But for problems
whose function set consists of very complex functions, the top-down evaluation
algorithm is not very efficient.

The above scenario gives an example when top-down evaluation fails to per-
form good. Going back to the example, if the node And has a single cache which
stores the previous result of left subtree, then when And evaluates, it takes the
new value of D7 and then compute output using value stored in cache. In this
way, then the left subtree of And does not need to be re-evaluated when both
A0 and A1 are not changed, i.e. the above problem of top-down evaluation is
solved.

But how does node And know if A0 or A1 is changed or not without checking
them explicitly? The bottom-up tree evaluation solves this problem. In bottom-
up tree evaluation, each node in the tree has a single cache which stores the
previous result of this node. The value in the cache can be accessed by other
nodes. There is also a queue needed for evaluation process. The tree evaluation
has two phases. In the first phase, every terminal node is checked if the new value
equals previous value stored in cache or not. If two values are not equal, then the
cache is updated and the parent of the node is enqueued into the central queue. In
the second phase, every node stored in the central queue is dequeued. The node is
re-evaluated and if the output of the node changes, the node’s parent is enqueued.
This process repeats until the queue is empty. Then the output of this evaluation
is stored in the root node’s cache. The bottom-up evaluation can be viewed as
the pseudo code in Figure 3. Intuitively, bottom-up evaluation outperforms top-
down evaluation because in bottom-up evaluation, only “necessary” evaluations
are performed, redundant unnecessary evaluations in top-down evaluations are
eliminated. In addition, the percentage of saving also depends on the particular
permutation of test cases. This is because for a given tree, the performance of
bottom-up evaluation varies for different permutation of test cases. In the rest

def BottomupEval(root) ->

// Phase 1

foreach terminal node ->

if terminal node’s value changes ->

update local cache

enqueue parent

// Phase 2

while queue is not empty ->

node = queue dequeue

evaluates node

if node’s value changes ->

update local cache

enqueue parent

return root cache value

Fig. 3. Pseudo Code for Bottom-up Evaluation of Program Tree
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of this paper, we perform detailed analysis of the performance of bottom-up
evaluation algorithm.

3 Theoretical Analysis

The bottom-up evaluation adds a central queue and local cache for each node
into tree evaluation process in order to eliminate wasted function evaluation in
top-down evaluation. It is assumed that function node evaluation is complex
and the overheads introduced by queue operations can be neglected compared
with savings. Based on this assumption, the performance of both top-down and
bottom-up evaluation links to the number of function calls on non-terminal nodes
in a tree. Using number of function calls as comparison criteria, the performance
of both algorithms can be theoretically analyzed.

Assuming each function’s arity is two (each function has two inputs) and there
are N different inputs (terminals). Considering a Full tree T of depth d. Since
in a full tree, all nodes of depth smaller than d are function nodes, the total
number of nodes in T is:

Num(T ) = 2d − 1

The number of non-terminal nodes is:

NonNum(T ) = 2d−1 − 1

Let the total number of test cases be Ntestcases, so the number of function calls
for Top-down evaluation (i.e. the performance of top-down evaluation) is:

PTopdown(T ) = (2d−1 − 1) ·Ntestcases (2)

The equation 2 only works for some problem domains. Equation 2 assumes that
the tree is traversed (every node is evaluated) while using top-down evaluation.
This is true for problem domains such as symbolic regression. In symbolic re-
gression problem, all functions in function set are mathematical operators. In
this case, all children nodes of the function node needs to be evaluated.

But in problem domains such as Multiplexer, the tree is not traversed in top-
down evaluation. In Multiplexer domain, there are four functions: And, Or, If
and Not. For function Not, the child node of Not always evaluates. For function
If, only two children nodes evaluate every time (the condition and the according
action node). And and Or function can be implemented in two different ways:
bitwise or short-circuit. In short-circuit implementation of And, the first child
of And always evaluates, the second child evaluates only when the first child
evaluates true. Similarly, in short-circuit Or, the second child evaluates only
when the first child is false. Because this nature of Multiplexer function set,
when tree is top-down evaluated, only a fraction of nodes are actually evaluated,
and hence equation 2 does not hold in Multiplexer domain.

To calculate the number of function calls in domains like Multiplexer, we need
an explicit measurement of the above feature of function set. This feature can
be studied using the concept of activation rate. This concept is formally defined
and studied in [8]. The following is a brief introduction of activation rate.
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Definition 1 (Activation). Let x be a node in a tree T, in Top-down evalu-
ation, an Activation of x is when x is evaluated. The number of activations of
node x for a set of test cases Tcs is denoted as ΛTcs(x).

We can further define the Rate of Activation:

Definition 2 (Activation Rate of Node). Let x be a node in a tree T, Tcs
be a test cases set which contains N test cases, the Activation Rate of node x,
ΘTcs(x) is:

ΘTcs(x) =
ΛTcs(x)

N

With both definition above, we can define the Activation Rate of Tree:

Definition 3 (Activation Rate of Tree). Let x be a node in a tree T, N(T)
be the number of nodes in T, Tcs be a test cases set which contains N test cases,
the Activation Rate of tree T, ΘTcs(T ) is:

ΘTcs(T ) =
∑x∈T

x ΘTcs(x)
N(T )

Using the concept of activation rate, the true function call counts of top-down
evaluation in any domain CTrue and the function call counts using top-down
traverse evaluation CTraverse has the following relationship:

CTrue = Θ · CTraverse (3)

where Θ is the average activation rate of all non-leaf nodes in a program tree.
Clearly, we can see that equation 2 implicitly assume that Θ = 1. In problem
domains like symbolic regression, program tree’s activation rate Θ ≡ 1, while in
problem domains like Multiplexer, Θ ≤ 1. So, for a full tree T, equation 2 can
be generalized using equation 3:

PTopdown(T ) = CTrue

= Θ · CTraverse

= Θ · PTraverse

= Θ · (2d−1 − 1) ·Ntestcases

(4)

In Bottom-up evaluation, let X(T) be the set of terminals in a tree T, then:

PBottomup(T ) =
x∈X∑

x

C(x)E(X) (5)

Where C(x) is defined in Equation 1, and E(X) is the average number of nodes
affected when some x ∈ X changes. The exact form of E(X) is very hard to
deduct because it is related to not only which terminal is in X but also how
those terminals are connected in the tree. Without further assuming the tree
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structure, which leads to loss of generality of analysis, it is impossible to estimate
E(X). Similarly, since the value of Θ in (4) also depends on the shape of tree,
without further assuming the tree structure, it is impossible to estimate Ptopdown

for problem domain like Multiplexer.
But we can perform worst case scenario analysis for problem domains whose

tree’s activation rate Θ ≡ 1. Worst case scenario happens when every terminal x
in X has index n = N . In this case, the cache has no effect because every input
changes every time.

E(X) = 2d−1 − 1 (6)

Substituting C(x) and E(X) in (5) with (1) and (6), we get:

PBottomup(T ) = 2n · (2d−1 − 1)

Since n = N and 2n = Ntestcases, so we get:

PBottomup(T ) = Ntestcases · (2d−1 − 1)

Which is the same as PTopdown(T ). So bottom-up evaluation performs the same
as top-down evaluation in the worst case for problem domains in which Θ ≡ 1,
i.e.

PBottomup(T ) ≤ PTopdown(T ).

Now considering the probability that worst case scenario happens. For a full tree
T of depth d, the probability p:

p = (
1
N

)2
d−1

,

Which is very small.

4 Experiments in Multiplexer 11 Domain

Theoretical analysis in previous section qualitatively shows bottom-up evalua-
tion is better than top-down evaluation for problem domains in which Θ ≡ 1.
A quantitative analysis of how much better the bottom-up evaluation cannot
be theoretically deducted. In addition, the performance of bottom-up evaluation
for domains in which Θ ≤ 1 cannot be theoretically analyzed without further
assuming the structure of tree evaluated. To fill both gaps, this section uses
experiments in Multiplexer 11 problem domain to quantitatively compare per-
formance of bottom-up evaluation and top-down evaluation.

In the first experiment, we compare performance of bottom-up and top-down
evaluation for problem domain in which Θ ≡ 1. Although in Multiplexer 11
domain, the average activation rate of non-leaf nodes are generally smaller than
1, we can artificially converts it to 1. This is done by converting short-circuit
And and Or to bitwise And and Or. For If, both true subtree and false subtree
are evaluated. Using this approach, when a program tree is evaluated, every node
is traversed. We call this traversing evaluation top-down full evaluation.
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Table 1. Top-down Full and Bottom-up Evaluation Performance (7000-trees)

Depth Size Top-down Full Bottom-up Performance Enhance (%)
2 3.4571 2048 373 81.79
3 6.9253 5960 1062 82.18
4 13.7057 12935 2643 79.57
5 26.9746 26545 5748 78.35
6 53.4802 53880 12127 77.49
7 103.3013 104852 24029 77.08
8 195.7506 199130 47073 76.36
9 373.1875 380656 88593 76.73
10 258.6831 263774 65297 75.25
11 441.6177 450245 110474 75.46
12 683.4360 698935 172932 75.26
13 1102.4485 1127861 278861 75.28

In this experiment, we compare top-down full evaluation and bottom-up eval-
uation. The experiment is designed as follows. 7000 trees are randomly gener-
ated using ramp-half-and-half method [1]. The depth of generated tree ranges
from 2 to 13. Duplicated trees are removed. we evaluate it twice firstly using
top-down full approach and then bottom-up approach. Then we compare the
number of non-leaf node calls using each method. The experiment result can
be found in table 1. From the experiment data, we can find that a substantial
amount of function calls (≥ 75%) is saved using bottom-up tree evaluation. This
experiment result verifies the theoretical conclusion we deducted in the previous
section: bottom-up tree evaluation outperforms top-down evaluation for problem
domains in which Θ ≡ 1.

In the second experiment, we compare performance of bottom-up and top-
down evaluation for domain in which Θ ≤ 1. The experiment is designed as
follows. Using the same 7000 trees generated in the first experiment, we evaluate
each tree twice firstly using top-down and then bottom-up evaluation algorithm.
We also record the average activation rate of non-leaf nodes in top-down evalu-
ation. The experiment result is summarized in table 2.

From experiment data in table 2, we can find that bottom-up evaluation
outperforms top-down evaluation when tree depth is small. But as the depth
of the tree increases, the performance enhancement becomes smaller. For very
deep trees (depth bigger than 8 in table 2), top-down tree evaluation outperforms
bottom-up evaluation. This is mainly because as the depth of the tree increases,
the average activation rate of non-leaf nodes (Θ) decreases.

Let P1 be the performance enhance of bottom-up evaluation compared with
top-down full evaluation and P2 be the performance enhance of top-down eval-
uation compared with top-down full evaluation. From the first experiment, we
know that in Multiplexer 11 domain, P1 ≈ 0.75. Since from (4), we know that:

PTopdown = Θ · PTopdownFull
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Table 2. Top-down and Bottom-up Evaluation Performance (7000-trees)

Depth Size Top-down Bottom-up Performance Enhance (%) Θ

2 3.4571 2048 373 81.79 1.0000
3 6.9253 4964 1062 78.61 0.8482
4 13.7057 8908 2643 70.33 0.7249
5 26.9746 14797 5748 61.15 0.6014
6 53.4802 23583 12127 48.58 0.4832
7 103.3013 35437 24029 32.19 0.3834
8 195.7506 51861 47073 9.23 0.3063
9 373.1875 77173 88593 -14.80 0.2341
10 258.6831 48792 65297 -33.83 0.2214
11 441.6177 62075 110474 -77.97 0.1633
12 683.4360 75248 172932 -129.82 0.1248
13 1102.4485 95206 278861 -192.90 0.0979

So:
P2 =

PTopdownFull − PTopdown

PTopdownFull

= 1 −Θ

When the tree depth is small (smaller than 8 in table 2), Θ > 0.25. So, P1 > P2.
When the tree depth is bigger than 8 in table 2, the Θ < 0.25, then P1 < P2. So,
in general, the performance of bottom-up evaluation compared with top-down
evaluation P:

P =
PTopdown − PBottomup

PTopdown

=
(PTopdownFull − PBottomup) − (PTopdownFull − PTopdown)

Θ · PTopDownFull

=
1
Θ

· (PTopdownFull − PBottomup

PTopdownFull
− PTopdownFull − PTopdown

PTopdownFull
)

=
1
Θ

· (P1 − P2)

=
P1 − 1 +Θ

Θ

Because, Θ negatively relates to the depth of the tree [8], bottom-up tree eval-
uation outperforms the top-down evaluation algorithm when the depth of the
tree is small.

5 Conclusion and Further Work

In this paper, we introduce a new tree evaluation method, bottom-up evaluation.
Bottom-up evaluation is suitable for problem domains, in which the number of
inputs are large and not all inputs changes in each test case. We also experi-
ment the performance of bottom-up evaluation and top-down evaluation using
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Multiplexer 11 problem domain. Experiments show that bottom-up evaluation
outperforms top-down evaluation when the tree depth is not very big. We also
develop theoretical explanation of this phenomenon using the concept of activa-
tion rate.

Based on experiment data, we know that top-down tree evaluation performs
well when tree is large while bottom-up evaluation performs well when tree is
small. As a result, bottom-up evaluation is suitable for early generations in GP
runs. In addition, although two evaluation methods are very different, this does
not mean they are mutually exclusive. In fact, two methods can be combined:
we can develop a hybrid evaluation method in which, some portion of trees are
evaluated Top-down while other parts are evaluated Bottom-up. In this way, we
can combine the strength of both approach. This is a good direction for further
investigation of bottom-up evaluation.
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Abstract. This paper examines the use of evolutionary computation (EC)  
to find optimal solution in vehicle assignment problem (VAP). The VAP refers 
to the allocation of the expected number of people in a potentially flooded area 
to various types of available vehicles in evacuation process. A novel discrete 
particle swarm optimization (DPSO) algorithm and genetic algorithm (GA) are 
presented to solve this problem. Both of these algorithms employed a discrete 
solution representation and incorporated a min-max approach for a random  
initialization of discrete particle position. A min-max approach is based on 
minimum capacity and maximum capacity of vehicles. We analyzed the per-
formance of the algorithms using evacuation datasets. The quality of solutions 
were measured based on the objective function which is to find a maximum 
number of assigned people to vehicles in the potentially flooded areas and cen-
tral processing unit (CPU) processing time of the algorithms. Overall, DPSO 
provides an optimal solutions and successfully achieved the objective function 
whereas GA gives sub optimal solution for the VAP. 

Keywords: Discrete Particle Swarm Optimization, Evacuation Process,  
Evolutionary Computation, Genetic Algorithm, Vehicle Assignment Problem. 

1   Introduction 

Manual process of vehicle assignment adopted by the National Security Council 
(NSC) of Malaysia had reported uneven distribution of transport, non-timely assis-
tance, and poor coordination at operational  level [1]. The above is evident during one 
of the worst flash floods in Kota Tinggi district in Johor State of Malaysia where 
more than ten thousand flood victims need to be evacuated to the relief centers. A 
solution to the above problem is vital to assist the NSC and other related agencies in 
managing and monitoring the evacuation process. This paper addresses the solution 
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for the assignment of vehicle to the expected number of people at the potentially 
flooded areas using datasets from selected flash flood events. 

Evolutionary computation (EC) algorithms for solving a combinatorial problem 
have been reported in various types of assignment problem [2][3]. Most of them com-
pare discrete particle swarm optimization (DPSO) and genetic algorithm (GA) to 
obtain solution. In most cases DPSO provides better solution in comparison to genetic 
algorithm (GA). Limited research was found related to vehicle assignment problem 
(VAP) in emergency evacuation processes [4]. In previous investigations several 
approaches; mathematical method, exact algorithms, and heuristic algorithms [5] have 
been used to solve only evacuation process but fail to consider assignment of vehicles 
in solving evacuation processes. Nevertheless, DPSO has given near optimal solution 
to VAP using min-max approach based on minimum capacity of vehicles and average 
capacity of vehicles using small data sets [6]. This paper would however introduces 
the use of min-max approach with emphasis on the minimum capacity of vehicles and 
maximum capacity of vehicles.  

It was discovered that GA is very much competitive to that of particle swarm opti-
mization (PSO) [3]. Two evolutionary computation (EC) algorithms namely DPSO 
and GA are addressed to seek for VAP solution. Solutions obtained through DPSO 
and GA with respect to their fitness value and CPU processing time will be discussed. 
Fitness value refers to the maximum number of people that were assigned to vehicles 
divided by the number of expected people at each potentially flooded area. Details of 
the calculation of the fitness value are explained in Section 3.  

The organizational structure of this paper is as follows. Section 2 presents PSO and 
the novel DPSO is discussed in Section 3. Discussion on the computational results are 
made in Section 4. In Section 5 we discuss the analysis of results of the algorithms. 
Section 6 presents conclusion and recommended future work.  

2   Particle Swarm Optimization 

PSO is a population-based stochastic approach grouped under swarm intelligence [7] 
to solve continuous and discrete problems. It was introduced by Kennedy and Eber-
hart [8]. PSO indicates the velocity and position of particles in multi-dimensional 
space. PSO is able to explore regions of the search space and exploit the search to 
refine a feasible solution. Many researchers have demonstrated the advantages of 
using PSO to solve several types of problems [2][9][10][11]. 

Improvements for PSO have been developed to measure the performance of PSO for 
various types of problems [12][13] and across standard benchmark datasets 
[10][12][14]. For example, the canonical PSO applies inertia weight in updating veloc-
ity to simulate the social behavior of birds. After two years of the PSO development, a 
discrete problem had concentrated on the initial work involving discrete binary PSO 
introduced by [15]. They proposed a new way of updating the position of particles to 
accommodate a discrete binary problem. This approach was then improved in several 
studies based on a benchmark dataset [16][17] and a real-world situation [2][18] of the 
discrete problem. When compared to other optimization methods, the performance of 
PSO is competitive to the genetic algorithm [2]. This demonstrates that PSO, with its 
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global search capability and local exploitation, is a promising approach to finding the 
optimum solution and, therefore, it should be further investigated.  

3   A Novel Discrete Particle Swarm Optimization 

Discrete particle position from [6] is adopted to represent the number of vehicles for 
each potentially flooded area. The initialization of these values is randomly generated 
based on the expected number of vehicles allocated for the flood victims from the 
potential flooded areas. We introduced min-max approach for the discrete particle 
position generation as demonstrated in Equation 1, Equation 2, and Equation 3. The 
minimum discrete position values were initialized taken into account the minimum 
capacity whereas the maximum discrete position value refers to the maximum capac-
ity of vehicles as shown in Equation 1 and Equation 2, respectively. Equation 3 shows 
the calculation of the initial discrete particle position.  

Pmin = T / Cmin                                                   (1)

Pmax = T / Cmax                                                   (2)

where, Pmin is the minimum position value, Pmax is the maximum position value, T is 
the total number of people in the potentially flooded area, Cmin is the minimum capac-
ity of vehicle, and Cmax is the maximum capacity of vehicle. 

D = Pmin + r (Pmax - Pmin)                                       (3)

where D is the initial discrete position value for DPSO (genes in GA), and parameter 
r is the random value in the range of [0,1]. DPSO algorithm as illustrated in Figure 1,  
starts with the initialization of the number of particles. Particles are represented in the 
form of matrices, Xij, where i is the number of dimension of particle or the size of 
swarm and j is the number of the potentially flooded area. Step 3 declares parameters; 
W is the inertia weight and C1 and C2 are the acceleration constant parameters. Step 4 
initializes velocity, V, using minimum velocity (Vmin) and maximum velocity (Vmax) of 
each particle using Equation 4. Step 5 involves the initialization of discrete position 
value using Equation 3 as mentioned in Section 2.3. The calculation of Pbest  is shown 
in step 8  and it is referring to Equation 5. 

V= Vmin + r (Vmax - Vmin )  (4)

Pbest = ta / tl                                                     (5)

where, ta is the number of people assigned to the respective vehicles, meanwhile tl is 
the total number of people in all potentially flooded area. Pbest is the personal best of 
the ith particle, and Gbest  is the fitness value from the best position derived from all 
particles in the swarm. Line number 11 and 12 are the calculation of new velocity 
value and new discrete particle position using Equation 6 and Equation 7, respectively 
[19]. 

Vij(new) = W x Vij(old) + C1 x r (Pbest - Xij(old)) + C2 x r x (Gbest -Xij(old)) (6)



526 M. Yusoff, J. Ariffin, and A. Mohamed 

 

Xij(new) =Xij(old) + Vij(new)   (7)

The next three lines, tries to find discrete particle positions that will lead to the best 
value of Gbest. Lines17 to 20 are steps for the decision of the assignment of people to 
vehicles depending on the selected discrete particle position. Line 20, involves assign 
and re-assigned people until all the discrete particle position are allocated to vehicles.  
Finally, Pbest (new) and Gbest (new) are determined. The number of iteration of these algo-
rithm starts from line 9 until line 23 and stop upon satisfying the stopping condition.  

1.Begin
2. Initialize number of particles
3. Declare W, C1 and C2
4. Initialize Vmin and Vmax and calculate Velocity, V using a

random initialization
5. Initialize the available vehicles with a random capacity
6. Initialize D using min-max approach
7. Assign vehicle according to the initialize discrete 

particle position, D
8. Calculate Pbest and Gbest value for each particle
9. Do
10. For each particle
11. Calculate V(new)
12. Calculate D(new)
13. If  Gbest (new) is more than or equal Gbest (old)
14. employ discrete particle position, D
15. else
16. employ discrete particle position, D (new)
17. If (D is equals or less than the available vehicles)
18. Assign people to vehicles according to the number of 

the employed discrete position, D
19. else
20. Assign and re-assigned people until all the employed 

discrete particle position are allocated to 
vehicles

21. Calculate Pbest (new)
22. Calculate Gbest (new)
23. While (stopping condition is reached)
24.End

 

Fig. 1. A Novel DPSO Algorithm 

4   Computational Results 

This section presents the computational results to examine the quality of solution of 
the DPSO algorithm and GA in VAP. The quality of solution on two aspects were 
evaluated; fitness value and CPU processing time. The following sub sections discuss 
the experiment setup and results of DPSO and GA according to the aspect of the  
quality of solutions.  
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4.1   Experimental Setup 

Table 1 shows the list of parameter for this experiment. The inertia weight of 0.9 was 
selected based on the recommendation of [20]. Statistical analysis were used to con-
firm the result inclusive of descriptive measurement; average, standard deviation, 
minimum and maximum. A paired t-tests were used to analyze the relationship be-
tween DPSO algorithm and GA based on 95 percents of confidence level (α=0.05). 
The dataset was gathered from the major flooded areas in Kota Tinggi district in Johor 
state that were badly affected in the December 2006 and January, 2007. Table 2 de-
picts the number of flooded areas and its total number of flood victims. Various types 
of vehicles of different standard capacities were used in the evacuation operation. 
Sixty seven of the available vehicles with a total of 650 in capacity were identified to 
be used before and during flash flood in this district.    

Table 1. List of parameters 

Parameter Value 
W 0.9  
C1 2.5 
C2 1.5 
Available vehicles 67 
Initial Vmin -4 
Initial Vmax 4 
Sequence of vehicle capacity Random 
Stopping condition while (Gbest  < 0.6) 

Table 2. List of flooded areas and its flood victims’ number 

Flash flood event Number of flood victims Number of flooded areas 

December , 2006 13112 26 

January, 2007 5352 35 

4.2   Performance of DPSO and GA According to Its Fitness Values 

Figure 2 shows the fitness values tabulated from a different number of populations 
tested for DPSO and GA using dataset of December, 2006. It involves 26 flooded 
areas with a total of 13,112 flood victims. Generally, the scatter graph in Figure 2(a) 
and 2(b) present a similar pattern in fitness value for both GA and DPSO. It is appar-
ent that the GA has resulted in the lowest value of fitness compared to DPSO. As can 
be seen in figures 2(a), 2(b), and 2(c) the fitness values are in the range of 0.82 to 
0.94. This confirms that GA gives sub optimal solution for the VAP. Contrary to 
expectations, the fitness values generated using DPSO, in figure 2(a), 2(b), and 2(c) 
indicate that the performance of DPSO is better compared to GA for the three popula-
tions. This result is significant with a significant value equals to 0.00 on paired  
t-test performance. A strong evidence of good solution to DPSO was found in both 
figures, 2(b) and 2(c). These figures demonstrate that the fitness values remained 
steady between 0.96 and 1.00. In summary, DPSO had given optimal solution with all  
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(a) 

     
(b) 

 
(c) 

Fig. 3. Performance of DPSO and GA based on the generated fitness value (a) 10 populations, 
(b) 20 populations, (c)30 populations 

people successfully assigned to the vehicles at the potential flooded. An indication of 
the above is illustrated at the fitness value or Gbest equals to one as can be seen in 
figure 2(b) and 2(c). Based on the above results, it is recommended for DPSO to use 
30 populations for optimal solution. Other results are shown in Table 3 to confirm this 
argument. 

Table 3 demonstrates that the fitness value for DPSO gave similar results for the 
both datasets on all experiments. DPSO gives higher average of fitness value com-
pared to GA The maximum value of GA obtained is 0.92 for December, 2006 and 
0.91 for January, 2007. The good performance of DPSO to GA is supported by the 
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results of a paired t-test with a significant value equal to 0.00 (α < 0.05). The overall 
performance of DPSO concludes that the objective function is achieved. The result 
from [6] had reported less than 0.95 for the average of fitness value. Thus, the use of 
min-max approach using minimum capacity and maximum capacity of vehicles in the 
initialization of discrete particle position gives better results with the assignment of 
larger number of people.  

Table 3. Performance of DPSO and GA according to its fitness value 

DPSO GA Dataset 

Min Max Avg Std. 
dev 

Min Max Avg Std. 
dev 

December,  
2006  

0.97 1.00 0.99 0.01 0.83 0.92 0.86 0.03 

January, 
 2007 

0.97 1.00 0.99 0.01 0.82 0.91 0.87 0.02 

4.3   Performance of DPSO and GA According to Its CPU Processing Time 

This section presents the second aspect of quality solution which is CPU processing 
time. Both algorithms were tested to see its performance using the same data set as 
used in the previous section. There is an increase of CPU processing time for both GA 
and DPSO as shown in Table 4. This indicates that the number of people influences 
the CPU processing time. It can be seen from the table that the average score of CPU 
processing time for GA is fewer than DPSO for December, 2006. The minimum proc-
essing time for DPSO is about 18 seconds while the minimum processing time for GA 
is about 12 seconds. However, DPSO gives better CPU processing time for January, 
2007 in about 12 seconds.  

Table 4. Performance of DPSO and GA according to its CPU processing time  

DPSO with CPU processing time 
(milliseconds) 

GA with CPU processing time  
(milliseconds) 

Data set 

Min Max Avg Std. 
dev 

Min Max Avg Std. 
dev 

December, 
2006  

18794 65328 55188.40 10632.76 12090 72195 40522.66 16651.44 

January, 
 2007 

8949 77248 12827.26 9792.59 10424 35370 27341.96 5533.78 

5   Analysis of Results 

This section discusses the analysis of the results demonstrated in the previous section. 
We divide the discussion into two perspectives; DPSO perspective and GA perspective.  
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5.1   DPSO Perspective 

The introduction of min-max approach establishes the initialization of minimum dis-
crete particle position and maximum discrete position vehicles for each potentially 
flooded area yields a limitation in search space for each particle. This approach starts 
with the random initialization of discrete particle position as shown in equation 3. 
Prior to this initialization, the minimum discrete particle position and the maximum 
discrete position are calculated (see equation 1 and equation 2) for each potentially 
flooded area. Thus, the assignment of the expected number of people at each potential 
flooded area is within the range of the required number of vehicles. To obtain optimal 
solution (Gbest equals to 1), the generated discrete particle position must be able to 
accommodate the number of people with different capacity of vehicles. Re-
assignment of the same vehicles is carried out with the aim to accommodate the dis-
crete particle position. As illustrated in the above results, optimal solution can be 
obtained using 30 populations, but improvement is required for CPU processing time 
in conjunction with velocity clamping procedure. 

The use of inertia weight equals to 0.9 proposed by [20], confirms to be suitable 
for the DPSO in solving the VAP for optimal solution. Inertia weight and random 
value in the range of [0,1] are used in the calculation of new velocity for each particle 
lead to a small range of the new generation of velocity. In addition, the initialization 
of random velocity also has an implication to the calculation of a new velocity value.  
A small range of velocity between 0.4 and -0.4, inertia weight, and random value (r) 
contributes to a small difference for the new generation of discrete particle position 
when compared to the discrete particle position generated in [6]. 

5.2   GA Perspective 

Analyses have proven that GA produced sub optimal solution for vehicle assignment 
problem (VAP). The above is however contrary to the report by [3] that GA is able to 
give competitive results in comparison to DPSO in benchmark problems. The evi-
dence is as demonstrated in Table 3 where the average of fitness values are 0.87 and 
0.86 for December, 2006 and January, 2007, respectively.  

Although GA applied the same solution representation as DPSO, GA theoretically 
has difficulty to obtain good solution. The crossover process has shown that the dis-
crete particle position is not updated to a small range, and depends on the crossover 
point with changing range of discrete values. This can be illustrated in the following 
example, in an incident where gene is supposedly to be 6, where 6 vehicles are ex-
pected to accommodate 40 people at the potential flooded area. During a crossover, 
this value may change to 2. With 2 vehicles, the new gene value will not be able to 
accommodate this people. However, this problem can be improvised with a hybrid of 
GA and DPSO to improve the results.  

6   Conclusion and Future Works 

This paper introduces a novel DSPO in solving the VAP. With the adoption of a  
min-max approach the DPSO provides an optimal solution for the VAP. Assignment 
of people at the potential flooded areas can be made possible using this approach.  
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The findings show that the novel DSPO gives better solution compared to DPSO with 
average capacity [6] and GA. In general the proposed DPSO has shown significant 
performance while GA yields sub optimal solution. Nevertheless, CPU processing 
time needs to be improved to obtain a much faster results. This could be made possi-
ble with the introduction of velocity clamping. Different parameter values should be 
considered in future research, and to be experimented on a large evacuation datasets. 
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Abstract. The models of the evolution researchers are focused on the
origin and the multiplication of organisms. This paper introduces a pos-
sible approach of the evolution of organisms being concerned in the ap-
pearance of the intelligence. This process is self developing and adaptive,
producing the knowledge graph, which is the result of a lifelong data cap-
turing and acquisition task of an artificial digital organism. This article
tries to outline the appearance of the intelligence based on the principles
of the creation process of a knowledge graph and its functions. The result
is a non linear network of knowledge snippets, consisting of atoms, and
their combinations, called contexts. Finally we introduce a startup in-
formation system1, which is the realization of digital evolution machines
and their ensemble in the artificial world. This special world is the world
wide web.

Keywords: digital evolution, knowledge graph, artificial world.

1 Introduction

The evolution modeling works focus on the multiplication and the competitive
exclusion theory, which is one of the most famous low after Darwin in the evo-
lution biology. The competitive exclusion theory ( [2, Gause], 1932) comes from
Georgii Frantsevich Gause, who was a Russian biologist in the 20th century.
The next important low of the evolution process is the irreversibility, which was
revealed by [1, Dollo], and expounded by [3, Gould], 1970. The key moment of
the evolution is the appearance of the intelligence. The early intelligence was
really low level, but it could help to survive the fluctuating environment. The
changing Earth and its climate were the most remarkable challenge of the ancient
organisms.

Many papers [7, Adami], 2002, [8, Adami], 2003, [9, Ofria at al], 2004, Os-
trowski at al [11], 2007, dealing with artificial organisms emphasized the impor-
tance of the complexity. Not only life shows serious complexity. There are human
1 Sponsored by ELTE-Soft, KMOP.
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made constructions as well, such as the topology of the Internet, that have in-
creasing complex structures with fractal properties (Barabasi [5, Barabasi], 2002
[4, Barabasi], 2003, [10, Barabasi–Newman], 2006).

The multiplication and the competition are in the center of works mentioned
above. The evolution of organisms’ body and their intelligence can not be in-
dependent. While we are going to model the organisms’ evolution, we need to
model the development of their intelligence too.

There is no right definition of intelligence of the organisms (Turing’s definition
can not be translated to DEMs’ case). Instead of making useless definitions, it
is more promising to set up some essential principles, which adjust the process
of collecting and interpreting data from the surrounding world. There are many
research papers and books that describe machines which collect data from the
surroundings, and they have some kind of remembrance [6, Russel], 2002 (for
example the wumpus world). Their ability of interpretation of the environment
is restricted. The limits of these constructions are obvious: their intelligence
never becomes similar to that of mammals or octopuses.

This paper is about a computerized approach of the digital evolution ma-
chines. The principles were established in [12, Elek], 2008 and [13, Elek], 2009.

1.1 Evolution and Knowledge

Paleontology and geology serve many exciting examples of the one way evolution.
The time flows in one direction, forward. Life always tries to adapt itself to
the circumstances, mainly to the weather (temperature, seasons, climate). If the
climate has changed, adaptive organisms also change their right properties, skills
and manners. If one million years later the climate changed back, the evolution
did not remember the previous stage of the environment. The adaptivity also
produces new properties that help to survive the changes. The evolution seems
to be recursive. It means the regulation is a kind of recursion, like a feedback.
The current stage is the basis of the next step. Evolution never gets back. There
are no general physical laws in the background, where the processes can be
computed from.

If an organism did not recognize the enemy, the food and the environment,
it had died soon or immediately. Consequently, organisms had to collect data
from their surroundings (perception) and interpret them (understanding). The
remembrance is probably one of the most important components of understand-
ing the world. The unreversable time, i.e. the serial recording of events and data
of the environment produces a huge database. It contains everything that hap-
pened to an organism in its lifetime. The key of surviving is the interpretation
of the surrounding world and the action.

The weather and climate were the most effective factors of the evolution of
organisms. Every organism needs to interpret the measured and stored data of
the environment if they wanted to survive. This ability required a huge database
containing everything that ever happened to the organism. This is the experience
based knowledge base.



A Computerized Approach of the Knowledge Representation of DEMs 535

2 Experience vs. Knowledge

Biologists say there is a kind of self organization among protein molecules in
vitro. Even if we assume it was the first step toward a real organism, it is
evident there is no huge knowledge database and complicated interpretation
logic in it. Protein molecules seem to be inclined to form combinations. Their
data collection logic also has to be simple. Consequently a knowledge database
can be constructed from simple steps of data collection. The searching algorithm
of the knowledge has to be simple.

Let us construct the knowledge graph. It consists of atoms and their connec-
tions. Atoms are the nodes, and connections are the edges of knowledge graph.
Let us define a context that includes arbitrary atoms of the graph; consequently,
the structure of the graph is not predefined. It depends on the atomic connec-
tions, which depend on a time series, when events took place in time order one
after the other. The general principles declared the equality of atoms and con-
texts. In other worlds a context can contain simple atoms or other contexts as
well.

Let aij denote the i-th atom in the j-th context which contains N atoms. Let
the quantity of the knowledge of a context (kj ) be the sum of the quantity of
the knowledge of every atom in it:

kj =
N∑

i=1

aj
i (1)

The knowledge-base has two basic functions: receiving a question and answering.
The key of the problem is to find the path from the questioning node to the
answering node in the knowledge base.

Let lij denote the strength of the connection between ai and aj . Let lij =
lij + 1 if the tour produces good result and lij = lij − 1 if the result is bad.
This logic makes good paths stronger and bad ones weaker. Look at the u and
f nodes in the knowledge graph. The right distance definition depends on the
length of the path along branches, so it is graph tour based.

Let ai and aj be two nodes of the knowledge graph where the path includes
m = j − i atoms between them. Let dij be the distance of these two nodes, let
the strength of their connection be denoted by lij , which is the reciprocal of
the sum of the strength of the connections between ai and aj . The stronger the
connection between two nodes, the closer they are.

dij = 1/

( j−1∑
k=i

lk(k+1)

m

)
(2)

The goal of the knowledge graph is to answer a question arising from the circum-
stance. How to find the rigth path from the questioning node to the answering
one? The fastest (nearest) is the right path, probably. This logic produces very
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fast reaction in well known problems and may result fail in unknown cases. The
fail means unsuccessful escape, capture or something important for the organism.
If it survived the situation, i.e. the reaction was successful, and the path, which
produced the success, became stronger. If it did not survive the situation or the
result of the action was failed, i.e. the result of the action was unsuccessful, the
organism was knocked out or a path in the knowledge graph became weaker.

2.1 Knowledge Graph – Knowledge Matrix

Let K denote the knowledge base which consists of n atoms ai, aj ∈ K. Let us
name it the knowledge matrix.

K =

⎛
⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
an1 an2 . . . ann

⎞
⎟⎟⎟⎠ (3)

Some of the atoms are in touch with other atoms in K. Let us describe the links
of ai and aj atoms with lij , where

lij =

⎧⎨
⎩

1 if i = j
0 if i = j and no link between them
u− v else where u successful and v unsuccessful

Let us organize the atomic links into a matrix form, name it the link matrix, and
denote it by L. The elements of the link matrix are lij , which describes the link
of the atomic point pairs. L is diagonal (lii = 1) and describes the relationships
of the atoms in the knowledge matrix:

L =

⎛
⎜⎜⎜⎝

1 l12 . . . l1n

l21 1 . . . l2n

...
...

. . .
ln1 ln2 . . . 1

⎞
⎟⎟⎟⎠ (4)

Look at the atomic relationships point by point.

1. Every atom has one link at least.
2. Let C be a context. C ⊆ K, i.e. C consist of any atoms of K.
3. Any atoms can be the member of any context.
4. Any contexts can be a member of any contexts. In this case, the knowledge

matrix (K) is a hyper matrix where matrix elements can be matrices.

In summary an atom can be

– a simple atom, which is really elementary and belongs to one context.
– a multi-member atom, which is also elementary, but belongs to more than

one context.
– an aggregated atom, which is a kind of simple atom, but its value is a rep-

resentation of a context. In other words, its value is a determinant or a spur
of the knowledge matrix of a certain context.

– a complex atom, which is a context including any kinds of atoms above.
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2.2 Constructional Snippets

1. The knowledge base is a continuously increasing database which stores ev-
erything that happened to it. This is a one way process. The knowledge base
is different from entity to entity.

2. There is no changing or erasing function for existing nodes in the knowledge
base.

3. Let the data collection be extensive while a DEM entity perceives the cir-
cumstance and stores data. There are some important consequences of the
extensive mode:
(a) Every individual knowledge base is different. It depends on the career of

a certain DEM entity. There are as many DEM entities as many kinds
of knowledge base exist.

(b) If some changes happened, which certainly produced the same circum-
stance in the past, the previously recorded atoms has not been changed,
but simply a new atom appended to the knowledge base.

4. Let us have another mode that was named intensive, when there is no per-
ception. It is a ,,meditative” stage when the knowledge base acquires the
data came from the extensive stage. In intensive mode the result of the data
acquisition may produce new contexts, faster path, more reliable work. This
stage is extremely important for learning the circumstance.

5. The feedback is a process, when a DEM entity is informed about the result of
its reaction. The result of this process is success or fail. As mentioned previ-
ously, the success/fail makes stronger/weaker a certain path in the knowledge
base. A certain DEM entity’s knowledge base becomes more reliable if the
feedback such as rewarding or punishment comes from an external intelligent
entity, because its knowledge base can be considered as an included context.

6. In the Earth history there was never only one organism. There were always
ensembles. Ensembles make organisms competitive. Competition results dif-
ferent skills i.e. different knowledge bases.

7. Various circumstances cause various experiences for the organisms.

The evolution is a process in time and in space dimensions. Regarding the results
of the paleontology it is known, that the evolution is recursive, i.e. an evolution
step depends on the previous step only, and it is a one way process. It can not be
turned back. This is known as Dollo’s law [1] in paleontology. This law was first
stated by Dollo in this way: ,,An organism is unable to return, even partially,
to a previous stage already realized in the ranks of its ancestors”. According to
this hypothesis, a structure or organ that has been lost or discarded through the
process of evolution will not reappear in that line of organisms.

The development means not only physical but mental changes as well in an or-
ganism. Mental means intelligence in this context. The adaptivity comes from its
knowledge base. The quality of the knowledge base has to influence the physical
properties also. Consequently the physical and mental evolution work collater-
ally, since organisms live in various climate, in many challenges, having different
experiences with different chances with various knowledge but in many, different
places at the same time.
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3 The Artificial World

If we are willing to create experienced DEM entities there is no wizard unfortu-
nately. There is no a recipe to install them from little pieces. How to construct
a DEM entity? Probably, it is impossible to construct only one of it. First we
should create an ensemble from many initial DEM entities and leave them to
live in their own world.

We have two access points to this problem. The first one is to construct an
artificial circumstance where DEM entities live in. The second one is to construct
many initial DEM entities with simple perception and interpretation functions.
Leave them alone and always watch them. Look at some details:

1. The artificial world (AW) has some essential properties that define the frame
of this world.
(a) Let AW be huge, where circumstances have spatial dependencies. Re-

garding the size of this world, environmental parameters are obviously
different. If we leave DEM entities alone in this world, they will have
different experiences and different knowledge bases because of climatic
differences.

(b) If the AW is huge enough, the survival strategies will be different. One
of the DEM entities escapes from unfriendly circumstances, but others
try to adapt. Different strategies result different knowledge -bases.

2. If there are many DEM entities on the same territories, what is the conse-
quence?
(a) There are many DEM entities who try to get better strategy in order to

be more successful than others. Someone gets advantages but someone
gets disadvantages since it fails to answer a certain question.

(b) Regarding the different DEM entities and unique knowledge-bases, many
different strategies can coexist in the AW. Consequently, many different
strategies can be successful at the same time. Someone prefers the es-
cape, but someone the competition. Many DEM entities will have many
different knowledge-bases.

The question is how to construct the prototype of a DEM entity? Before the
construction of the prototype, let us create the artificial world, which will be
the space for DEM’s life. If AW has been created already many DEM entities
should be available to start up in it. Properties and abilities of DEM entities
were introduced previously, so the task is to make their software representation.
Regarding the quantity of DEMs and the huge sized world with different spa-
tial properties may result many formed DEMs, and these entities have different
knowledge bases as it was proved above.

An intelligent DEM entity can exist in ensemble only. There is no lonely
intelligence, because it is a collective product, which is appeared and realized in
some successful DEM entities.
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4 The Computerized Approach

Finally focus on the appearance of the intelligence, and its properties in a digital
representation. Digital evolution machines and the Internet, which is an artificial
world, where they ,,live in”, are in interaction. The purpose of the work is to
model this interaction. The task is to store everything sequentially that happened
to DEMs, and to construct the knowledge graph, where their nodes are the
pointers for sequentially stored events. Briefly the system works as follows:

1. There are a lot of DEMs in the Internet. An individual DEM starts his career
in a starting URL.

2. This DEM investigates the certain URL, what kind of files are linked to this.
Some tags point to another URL-s (< a ref = http://...>) in this file. Some
of the pointed files are considered as resources which are needed to DEM’s
life (for instance doc, pdf, txt, jpg, gif files can be considered resources with
various energy content, but exe, bat files are considered poison, and so on).

3. A successful step, when a DEM reached a resource, produces energy input
for a certain DEM, makes path stronger. If the reached node (file) is neutral
or contains poison, the path becomes weaker.

4. If a DEM has visited a resource, the node (file) runs out of its energy for
a short period (it needs time for recover itself), so DEM has to move to
another URL for further resources (for instances, it follows an < a ref =
http://...> html tag).

5. go to 2

Last but not least, in order to find the rigth URL for the next move, a DEM
needs an ’adviser ’, which is one of the most remarkable component of the system.
’Adviser ’ uses the knowledge graph, and give the most promising URL for a
DEM. Summarily sequentially stored events and ’adviser ’ functionality figure
out a certain DEM’s intelligence.

For the technical implementation, there is a server, where a MySql database
management system stores sequentially the every day events, (the table name is
’logbook ’). The table ’dems register ’, stores data for the identification of individ-
ual DEMs. This table contains the resource requirements also of a certain DEM.
The visited web nodes are stored in the table ’artiworld nodes ’. A related ta-
ble, named ’urls content ’ stores the link of an URL (resource files, and potential
URLs for further moves). The DEMs’ web site is http://dem.elte.hu.

DEMs will affect the artificial world, and AW influences DEMs life. This
interaction is the target of our research. The system is working, but not finished
yet, of course, because this is a changing database.
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Abstract. In this paper, an improved thermodynamics evolutionary algorithm 
(ITEA) is proposed. The purpose of the new algorithm is to systematically har-
monize the conflict between selective pressure and population diversity while 
searching for the optimal solutions. ITEA conforms to the principle of minimal 
free energy in simulating the competitive mechanism between energy and en-
tropy in annealing process, in which population diversity is measured by simi-
larity entropy and the minimum free energy is simulated with an efficient and 
effective competition by free energy component. Through solving some typical 
numerical optimization problems, satisfactory results were achieved, which 
showed that ITEA was a preferable algorithm to avoid the premature conver-
gence effectively and reduce the cost in search to some extent.  

Keywords: evolutionary algorithm, free energy component, similarity entropy. 

1   Introduction 

The evolutionary algorithm is wildly used in searching, optimization, and machine 
learning [1], in which connotative parallel character and efficiency of using global 
information are two prominent characteristics. However, it often suffers from a con-
tradiction that premature convergence and low rate in searching, which is a tunable 
contradiction between exploration and exploitation in evolutionary algorithm.  

There are a wide variety of improvements in evolutionary algorithms focused on 
harmonize the contradiction such as scaling the fitness, sharing the fitness, and driv-
ing all individuals moving as the most possible [2] etc. Kirkpatric has proposed an-
other general optimization algorithm called the simulated annealing (SA) [3] which 
controlled the process of searching systematically by the cooling temperature and the 
Metropolis rule. NDEA [5] is an algorithm based on information entropy defined in 
search space VSP divided to some grids while it can not be used to real-number opti-
mization problem with high-dimension. Mori and his fellows have proposed the ther-
modynamics genetic algorithm (TDGA) [6] combined SA and GA. They introduced a 
greedy thermodynamics selection rule based on the principle of minimal free energy 
in TDGA and attempted control to control population diversity systematically through 
tuning to temperature and entropy in annealing. Although TDGA was effective to 
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solve some problems, the satisfied performance and extremely high cost in computa-
tion were still unstable. To improve the stability and decrease the computational cost 
of TDGA, an improved thermodynamics evolutionary algorithm (ITEA) is proposed.  

2   Description of ITEA    

The second law of thermodynamics describes an isolated system that is always evolv-
ing towards the direction of increasing entropy and its formula can be described in 
algebra as the express dS≥0, which means that the isolated system will evolve to-
wards the stable status with the continually increasing of the entropy. 

There is a useful connection between annealing in solids and convergence in GA. 
The population and the individuals in GA may be regarded as a thermodynamics 
system and particles, and the energy, entropy and temperature is served as the fitness, 
measurement of population diversity and controllable parameter respectively. This 
analogy provides an approach for ITEA to simulate the competitive mechanism be-
tween energy and entropy in annealing to systematically harmonize the conflict be-
tween selective pressure and population diversity in GA.  

2.1   Similarity Entropy and Measurement of Population Diversity 

It is a critical part how to measure population diversity when introducing the competi-
tive mechanism into GA. Therefore, in order to measure population diversity more 
effectively, similarity entropy defined in search space is introduced. 

Definition 1: Let Xo be the best individual in population P＝{X1, X2, …, Xn} ⊆ HD, Xi = 
( xi1, xi2, …, xiD)T, and set = /i i iX X X  when 0iX ≠ , The directional similarity 

degree be defined as the express Si =1-Xi
TXo∈[0,1].  

Definition 2: Let R=max{di|i=1, 2,…,n} be the maximal distance between the Xo and Xi 

in population P＝{X1, X2, …, Xn} ⊆ HD and ( )/l D I D popsizeδ ⎡ ⎤= + +⎢ ⎥ , the variable I be 

the longest span of boundary in decision-making space and δ be a parameter, set a parti-
tion π={Lj|1≤j≤kΛj∈N } on field [0,1], kl =1 and L1ΛL2…ΛLk=Φ. The individual Xi 
belong to the partition Lj when (di/R+Si)/2∈[l(j-1)，lj). If the number that the individu-
als in population P belonged to Lj is nj, the similarity entropy be defined as S(P).  

1

( ) log
k

j j
k

j

n n
S P

n n=

= −∑ .  (1)

The higher degree the individuals in population P congregate, the easier convergence 
the optimization problem is. According to definition 1 and definition 2, the more near 
to zero Si is, the more similar the individual Xi and Xo in their directions and Si = 0 
when Xi and Xo is the same completely in direction. In addition, di = 0 when Xi and Xo 
is in the same position. So the smaller the value of the express di/2R+Si/2 is, the indi-
vidual Xi and Xo is more similar in direction and position and the more high the simi-
lar degree of that two individuals. Since the variable nj(i=1, 2,…,k) is the number 
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belonged to partition Lj for those individual in population P, the sum 
1

k

j
i

n
=
∑ is n. Simi-

larly, since the probability pj can be get by the formula nj/n., (j=1,2,…,k), the sum 

1

k

j
j

p
=
∑ is 1. Any change for the probability to be close to the same value will contribute 

the similarity entropy to increase. If all value of the probability pj is i/k, (j=1,2,…,k), 
the similarity entropy S(P) is 1 that is its maximum. If only one value of the probabil-
ity is 1 and the others is 0, the similarity entropy S(P) is 0 that is it’s the minimum.  

By similarity entropy, the process in calculating is simplified greatly and the diversity 
of population can be measured effectively. The calculation of similarity entropy on 
similarity degree and distance has avoided the complicated calculation on every gene.  

2.2   Minimization of Free Energy at Each Temperature 

In order to apply the principle of minimal free energy in thermodynamics to ITEA, 
the method of free energy of population is presented as follow. 

Definition 3: For Pt＝{X1,X2,…,Xn}∈ nH , the energy of population Pt be defined as 

E(Pt).  

1

( ) ( )
n

t i
i

E P f X
n

μ
=

= ∑ .  (2)

The value of variable μ will be set -1 if the optimized problem is minimum max (f(X)) 
or the value of variable μ will be set -1. 

Definition 4: For Pt＝{X1,X2,…,Xn}∈ nH , π={Lj|1≤j≤kΛj∈N }, F(π ,T, Pt) be called 

the free energy of population Pt at temperature T for partition π . 

F(π,T,Pt)=E(Pt)-TS(π,Pt) (3)

The aim of algorithm is to minimize the free energy of population at each temperature 
during the process of evolution so as to drive the thermodynamic system towards 
equilibrium state. 

In order to minimize the free energy rapidly at each temperature, a thermodynam-
ics selection rule to descend the free energy of the next generation most steeply 
should be designed. Its mission is to select n individuals from n parent individuals and 
m offspring individuals as the next generation with the minimum free energy. How-
ever, It is infeasible to exactly minimize the free energy for each generation because 
of the extremely high complexity O(nC n+m

n) . Hence, TDGA uses a greedy thermo-
dynamics selection (GTS) rule with the complexity O(mn2). But its reliability can’t be 
guaranteed. In this section, a competition of free energy components (CFC) by assign-
ing the free energy of the population to its individuals will be proposed. 

Definition 5: Let P＝{X1,X2,…,Xn}∈HD, π={Lj|1≤j≤kΛj∈N }. For an individual Xi 
belong to the partition Ld, the free energy of the individual Xi in P at temperature T for 
π is defined as Fc(π, T, P, Xi). 
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( , , , ) ( ) log ( / )c i i k dF T P X f X T n nπ μ= +  (4)

It is clear that the time complexity is lowed to O((n+m)m). The procedure of competi-
tion by free energy component CFC(π, T, Pt ) is as follows: 

1. Produce an interim population Pt
n+m of size n+m by appending the offspring popu-

lation Ot to the parent population Pt
n, calculate a partition according to definition 1 

and definition 2 and count particles in each partition. 
2. Calculate the free energy Fc(π, T, Pt

n+m, Xi) according to the formula (4).  
3. Select individuals with the minimum free energy to serve as a next population Pt+1

n 
from population Pt

n+m . 

2.3   Procedure of ITEA 

Procedure of ITEA is as follows: 

1. Initial parameters. i.e., population size n, T0, MAXGENS, offspring population size 
m, randomly generate P0;  

2. Calculate the number of field partition k; 
3. t=0; 
4. while Termination_test(Pt) < > true do 

5.   Generate offspring population Ot with m individuals by crossover and mutation; 
6.   Pt+1= CFC(π, T, Pt); 
7.   t++, Tt=T0 /(1+t/100); 
8. endwhile 
9. Output the final results. 

3   Experiments and Results Analysis 

The significance of a new optimization strategy is applied to solve practical problems 
depends effectively. Here chose two functions as test examples, which are often used 
for optimization of the test by many scholars at home and abroad.  

Schaffer: 

( )
( )

2 2 2
1 2

2
2 2
1 2

sin 0.5
max  ( ) 0.5

1 0.001

x x
f x

x x

+ −
= −

⎡ ⎤+ +⎣ ⎦  

-100 x 100≤ ≤  

Schaffer [10] function is a strong oscillatory behavior function with multiple local 
maximization and a global maximization is maxf(x)=1  when X=(0, 0).  

Needle in haystack (NiH): 

2

2 2 2
1 2 2 2

1 2

3.0
max  ( ) ( )

0.05 ( )
f x x x

x x

⎛ ⎞
= + + ⎜ ⎟+ +⎝ ⎠  

-5.12 x 5.12≤ ≤  
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NiH is a typical kind of strong deceptive problem with the global maximization is 
maxf(x)=3600 in central point and multiple local maximization near the point 
X=(±5.12,±5.12).  

In this experiment, the individual was expressed in vector X = ( x1, x2, …, xD) with 
real-number encode and four algorithms included simple genetic algorithm (SGA), 
niche genetic algorithms (NGA), greedy thermodynamic evolutionary algorithm 
(GTEA) and ITEA were applied. In order to compare rationally, a uniform circum-
stance were adopted in every algorithm, which include the same machine, the same 
arithmetic crossover operator with probability Pc=0.8, mutation operator with prob-
ability Pm=0.02, population size n=30, were utilized. The other parameters were set 
as follow: the niche radius on NGA r=4, the offspring population size m=4 and the 
length of Markov under the temperature Tk is Lk=2000 for GTEA and ITEA. The 
worst results, the mean results, the best results and first hitting time respectively for 
30 times were gotten through four algorithms carried out on functions Schaffer and 
NiH. The compare of statistic results are given as table 1. 

Table 1. Statistic results on Schaffer and NiH for four algorithms 

Instance Algorithm Worst  Mean  Best First hitting 
time 

SGA 0.962776005 0.987615296 1.0000000000 >4.464 
NGA 0.999999821 0.999999961 1.0000000000 =5.626 
GTEA 0.990284144 0.996599451 1.0000000000 >665.248 Schaffer 

ITEA 1.000000000 1.000000000 1.0000000000 =1.491 
SGA 2748.782226562 3344.634667969 3600.0000000000 >1.415 
NGA 2748.782226562 3004.147558594 3600.0000000000 >17.298 
GTEA 2748.782226562 3131.830224609 3600.0000000000 >696.211 NiH 

ITEA 3600.000000000 3600.000000000 3600.0000000000 =0.807 
 

There were some statistic results included the worst results, the mean results, the 
best results and first hitting time respectively for 30 times in table I. The first hitting 
time implies that the first time to achieve f(x)≥0.999 for Schaffer and f(x)≥3599.9 for 
NiH. According to the count s for every individual being taken part to evaluate re-
spectively before the best solution were get at the first time on four algorithms carried 
on Schaffer and NiH every time, the performance can be evaluated on four ranks 
contained that excellent (s≤8.0×104), good (8.0×104<s≤ 3.2×105), weak 
(3.2×105<s≤1.28×106) and bad (s>1.28×106) and the distribution of algorithm per-
formance on Schaffer and NiH were described as fig.1, in which the vertical axes 
represent the performance ratio and the level axes represent the ranks. The average 
convergence curves on Schaffer and NiH were described as fig.2. 

In addition, the effect caused by offspring population size on ITEA was tested as 
table 2 and fig.3.  

Viewing from results of the experiment, some conclusion can be drawn that ITEA 
could obtain very good accuracy, stability and faster rate to converge comparing other 
three algorithms for its strong search capabilities in every generation, reliability to main-
tain the right search direction and ability to avoid premature convergence effectively. So 
it is regarded as a very important algorithm for some engineering optimization problems.  
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Fig. 1.  Distribution of algorithm performance on Schaffer (a) and NiH (b) 
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Fig. 2. Convergence curves on Schaffer (a) and NiH (b) 

Table 2. Statistic results on Schaffer and NiH for ITEA with various offspring population sizes 

Instance size Worst  Mean  Best First hitting 
time 

4 1.0000000000 1.0000000000 1.0000000000 =1.491 
8 0.9999999404 0.9999999970 1.0000000000 =0.202 Schaffer 
16 0.9626941681 0.9908478171 1.0000000000 >4.445 
4 3600.0000000000 3600.0000000000 3600.0000000000 =0.807 
8 2748.7822265625 3514.8782226563 3600.0000000000 >1.597 NiH 
16 2748.7822265625 2958.2632568359 3600.0000000000 >4.208 

The main reason why the outstanding performance could be archived for ITEA lies 
in its adaptive capability to maintain the dynamic balance between “selective pres-
sure” and “species diversity” by adjusting the temperature. Generally, in competition 
between “selective pressure” and “species diversity”, the entropy occupies the pre-
dominance for high temperature in the early stages of evolution which lows level of 
aggregation and energy plays main function for low temperature in the latter evolu-
tion which allows a higher degree of aggregation contributing to converge to the op-
timization solution set. 



 An ITEA Based on the Minimal Free Energy 547 

 

0 2 4 6 8 10 12

x 10
5

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Evaluations

Fi
tn

es
s

M=4
M=8
M=16

(a)

0 2 4 6 8 10 12

x 10
5

2800

2900

3000

3100

3200

3300

3400

3500

3600

Evaluations

Fi
tn

es
s M=4

M=8
M=16

(b)  

Fig. 3. Convergence curves on Schaffer (a) and NiH (b) for ITEA with various offspring popu-
lation sizes 

4   Conclusion 

In order to systematically harmonize the conflict between selective pressure and 
population diversity, an improvement of thermodynamics evolutionary algorithm was 
proposed. In ITEA, the definition of similarity entropy and the application of free 
energy component thermodynamic selection strategy were given. ITEA simulates the 
competitive mechanism between energy and entropy in annealing to harmonize the 
conflict between selective pressure and population diversity effectively by tempera-
ture and reduced the complexity of the algorithm to some extent. By solving some 
typical numerical optimization problems, the efficiency and good performance of the 
ITEA were achieved. Therefore, ITEA avoids premature convergence successfully 
and obtains faster rate, good accuracy and stability.  
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Abstract. Alopex is a correlation-based algorithm, which shares characteristics 
of both gradient descent approach and simulated annealing. It has been suc-
cessfully applied to continuous and combinatorial optimization problems for 
years. Estimation of Distribution Algorithms (EDAs) is a class of novel evolu-
tionary algorithms (EAs) proposed in recent years. Compared with the traditional 
EAs, it possesses unique evolutionary characteristics. In this paper, a hybrid 
evolutionary algorithm (EDA-Alopex) is proposed, which integrates the merits 
of both Alopex and EDA, and obtains more evolutionary information than these 
two approaches. The new algorithm is tested with several benchmark functions; 
numerical case study results demonstrate that EDA-Alopex outperforms both 
EDA and AEA, especially for the complex multi-modal functions. Finally, the 
proposed algorithm is investigated on high-dimensional and multi-peaks 
benchmark functions, and it also achieves satisfactory results. 

Keywords: Alopex, Estimation of distribution algorithm, Meta-heuristics,  
Evolutionary algorithm. 

1   Introduction 

Alopex (Harth and Tzanakou, 1974) [1-3] was first proposed to solve combinatorial 
optimization and pattern match problems. Inspired by the Alopex algorithm, a new 
evolutionary algorithm (EA) was proposed by the author in [2], called as Apolex-based 
evolutionary algorithm (AEA). In the AEA, the correlation calculation and Boltz-
mann-type probability in Alopex algorithm are introduced to evolve swarms, and an 
adaptive annealing schedule is adopted instead of the one used in the original Alopex 
algorithm. These are the two major differences between the AEA and the Alopex. 
Moreover, during the iterative progress of the AEA, two populations need to be generated 
to calculate the correlation which is used for heuristic information. Therefore, to some 
extent, the information contained in the two populations determines the convergence 
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Development(Grant No.2007AA04Z171) and National Natural Science Foundation of 
China(Grant No.20976048). 
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speed and solution quality. Comprehensive comparisons had been carried out between 
the AEA and genetic algorithm (GA) [4], particle swarm optimization (PSO) [5], as well 
as differential evolution (DE) [6]. The results show that the performance of AEA is su-
perior to these EAs[2]. 

Estimation of Distribution Algorithm (EDA) [7-9] was proposed by Mühlenbein and 
Paaß (1996) as an extended version of GA, which is a novel kind of EAs. The solutions 
of EDA are generated by sampling from probability model derived from the promising 
individual set instead of crossover, mutation or differential operations implemented in 
the traditional EAs [8]. In EDAs, the global probability information is used as heuristic 
information. 

Inspired by the search information extracted by both EDA and AEA is fundamen-
tally distinct, in this paper, EDA is embedded into AEA to form a hybrid algorithm [10, 
11] EDA-Alopex, for the purpose of improving the population diversity and acquiring 
more heuristic information from searching process. In EDA-Alopex, EDA is used to 
generate two populations, which are then passed to AEA for correlation calculation, 
providing more information for the evolution of AEA and in favor of an evolving 
towards to the promising domain. Due to the EDA is computation inexpensive, there is 
no significant increase of runtime of AEA, however, a relatively substantial im-
provement of performance is achieved, especially for the convergence rate. 

The outline of the paper is organized as follows. In section 2, the basic principles of 
AEA and EDA will be illustrated for completeness. In section 3, the detailed steps of 
the EDA-Alopex are listed. In section 4, ten benchmark functions and different test 
methods are used to investigate the performance of the hybrid algorithm. Conclusions 
are given in the last section. 

2   Principles of AEA and EDA  

AEA is a new swarm intelligence evolutionary algorithm based on Alopex algorithm. 
With regard to the basic Alopex algorithm [3], the temperature ‘T’ for the first  
annealing cycle is preset subjectively. It is a great blindness of setting an initial tem-
perature empirically, especially for the optimization problem, of which no priori do-
main knowledge is obtained. In AEA, adaptive annealing strategy is adopted. There is 
no need to set the initial temperature. From the beginning, the process of annealing is 
self-regulation, which not only improves the performance of the algorithm but also 
makes the algorithm simpler. The schedule of annealing applied in AEA is described by 
the following Eq.5. 

The main process of the population-based AEA is expressed as follows [2, 3]: con-
sider a minimization for the functions ( )1 2, NF x x x⋅ ⋅ ⋅ , where, 1 2, Nx x x⋅ ⋅ ⋅  are variables. 

Suppose there are two populations 1, 2X X , the population size is L and variable di-
mension is N . Randomly select two individuals from 1X and 2X , which represent two 
state-vector at moment 1t −  and 2t − , respectively. And then the product C x F= Δ Δ be-
tween vector difference xΔ  and corresponding function value FΔ is calculated, which 
describes the correlation between different individuals in the population. And then the 
probability is used to determine walk direction of each variable of individual, aiming at 
making each variable walk towards to the direction that can reduce the function value 
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and enhancing the climbing ability. Then each individual in population 1X  is renewed 
according to Eq.1 to form new individuals. Determine whether the function value of the 
new individuals get improvement, the lesser one is retained as the individual for the 
next generation. The formula is as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )'1 , 1 , 2 , 1 , , 0,1k k k kX i j X i j X i j X i j i j randδ= + − ⋅ ⋅
 

 (1) 

( ) ( )
( )

1 ,
,

1 1 ,

k

k

with probability p i j
i j

with probability p i j
δ

⎧⎪= ⎨
− −⎪⎩

    (2) 

( )
( )

1
,

,
1 ex p

k

k

k

p i j
C i j

T

=
⎛ ⎞±

+ ⎜ ⎟⎜ ⎟
⎝ ⎠

      (3) 

( ) ( ) ( ) ( )( ) ( )( ), 1 , 2 , 1 ,: 2 ,:k k k k kC i j X i j X i j F X i F X i⎡ ⎤⎡ ⎤= − × −⎣ ⎦ ⎣ ⎦    (4) 

( )
1 1

1
,

L N
k k

i j

T C i j
LN = =

= ∑∑       (5) 

Where, ( )1 ,kX i j  denotes the j-th variable of i-th individual in population 1X at the k-th 

iteration. ( )0,1rand is a random number which subjects to uniform distribution between 

0 and 1. ( ),i jδ  is walk direction of j-th variable of i-th individual. The selection of 

positive and negative sign in the Eq.3 depends on the purpose of optimization. The 
positive or negative sign minimize or maximize the object to be optimized, respec-
tively. In Eq.4, ( )( )1 ,:kF X i  denotes function value of i-th individual in population 1X . In 

Eq.5, kT is the annealing temperature during the k-th iteration. 
According to the dependence between variables, there are several kinds of EDAs have 

been proposed. In this paper, UMDAc [12] (Univariate Marginal Distribution Algorithm 
for Continuous Domains) is employed, in which interdependence between variables are 
not considered. In UMDAc, the n-dimensional joint probability distribution is factorized 
as a product of n independent normal distributions [13]. Suppose the k-th iteration, the 
joint density function of n-dimensional variable is computed as follows: 
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In Eq.6, the mean k
iμ and the standard deviation k

iσ  need to be estimated. In this chap-

ter, maximum likelihood estimation is adopted for the estimation of parameters.  
Overall speaking, process of EDA can be divided into four parts: selection, modeling, 

sampling and replacement. Firstly, best individuals are selected from the initial popula-
tion to form a promising individual set. There are two problems for selection need to be 
determined: Selection ratio and selection method. The number of selected individuals 
divided by total population denoted the selection ratio ω. As for selection method, trun-
cation selection [14] or tournament selection [12] can be applied. Secondly, the prob-
ability can be established by estimating the mean μ and the standard deviation σ . The 
third step is sampling, which guarantees the descendents sampled from the probability 
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model to scatter on the most favorable search area. Finally, whether the new population 
replaces the old one totally or not is determined by the scheme of replacement in which 
the replacement ratio ν within the range of 0 to 1 is put up. 

3   EDA-Alopex Algorithm 

EDA and AEA evolve in different ways. In EDA, there is no operation of individuals 
and the probability model is used to guide the evolution of population, which is the 
largest distinction compared with the traditional swarm intelligent algorithm. In EDA, 
evolutionary information is obtained through the probability model which characterizes 
the global statistical information [13]. On the contrary, the most parts of information 
acquired by AEA are local correlation information [3]. On the foundation of AEA and 
EDA, a hybrid evolutionary algorithm called EDA-Alopex is proposed in this chapter. 
In the new algorithm, EDA is embedded into AEA to expect to provide more search 
information for the evolution of AEA and enhance the diversity of the population. 

From the main process of AEA described in section 2, we can know that two 
populations 1X  and 2X  is produced for the computation of the correlation C , which is 
the main driving force for the evolution of population. Therefore, the more evolution 
information contained in the two populations, the greater probability owned to find the 
optimal solution. Inspired by the unique evolutionary model adopted by EDA and only 
need to allocate less time for the implementation of EDA, EDA is embedded into AEA 
to generate the two populations, which brings a richer population and improves the 
convergence speed of AEA. 

The step size of original AEA expressed in section 2 is fixed, but varied step length 
changing with search process is more reasonable in the perspective of evolution. In 
order to complete AEA, a varied step size changing with iterations is applied in this 
paper. In the early stage of search process, a relatively lager step size promotes the 
swarm skim over an extensive search area. As for the later period of search process, due 
to the difference between individuals is little; the population is easier to be trapped at a 
local optimum, which can be alleviated through using of a relatively larger step size. 
The scheme of step size varying with iterations is given as follows:  

( ) ( ) ( ) ( )( ) ( ) ( )'1 , 1 , 2 , 1 , , 0,1k k k k kX i j X i j X i j X i j i j randδ γ= + − ⋅ ⋅ ×     (7) 
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α

γ
ββ
β

⎧ × ≤⎪⎪= ⎨ ⎛ ⎞⎪ × >⎜ ⎟⎪ ⎝ ⎠⎩

    (8) 

Where: kγ  is an shrinkage factor, decreasing or increasing exponentially with the it-
erations, M denotes the total number of iterations, 0α , 1α , 0β and 1β are constant. 

Here, the iterative steps for EDA-Alopex are described as follows: also a minimi-
zation for the functions ( )1 2, NF x x x⋅ ⋅ ⋅ is used as an example for explanation. 

Step 1. Initialize the parameters for EDA-Alopex. A given maximum generation or 
optimization target for objective function is preset, initialize population randomly and 
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calculate the objective function value of every individual in population, set the number 
of iteration : 0k =  

Step2. According to the objective function value, select the promising solutions to form 
the promising solutions set. Truncation selection is applied in this chapter.  

Step3. Based on the promising solutions set, compute the mean μ and the standard 

deviation σ of every variable, and then establish a probability model described by Eq.6. 

Step4. Generate new solutions by sampling from the constructed probabilistic model; 
in according with the replace ratio ν, replace the old population totally or in part to form 
a new population 1X . 

Step5. Re-arrange the order of the individuals in population 1X  to form a second 
population 2X , according to Eq. 3-5 given above, the probability p , the correla-
tion C and annealing temperature T  are calculated respectively. 

Step6. Each individual in population 1X  is renewed according to Eq.7 expressed above 
to form an intermediate population '1X , value of objective function ( )'1F X  for popula-

tion '1X  and the corresponding function value ( )1F X  for population 1X  is compared, 

the lesser one is retained as the individual for the next generation. 

Step7. If the given termination criterion is met, yes, go to step 8, else 1k k= + , go to 
step2. 

Step8. Output the best individual and the best value. 

As can be seen from the above steps, from step 1 to step 4, an EDA is implemented. The 
step 5 and 6 are steps for AEA. Each generation, the excellent solutions of population 
are used to construct probability model; then the population retaining the promising 
individuals of previous generation and the best individuals sampled from the prob-
ability model are passed to AEA for the correlation calculation. Therefore, compared 
with the single EDA or AEA, EDA-Alopex obtains a more diversity population. 

In EDA-Alopex, for the existence of replacement ratio ν, part of population comes 
from the offspring generated by EDA and the other part of population stems from 
descendents yielded by AEA for every generation. Therefore, two different evolu-
tionary strategies are applied to drive the population moving towards the optimal so-
lution. Actually, some individuals in population evolve in EDA way, while the other 
individuals evolve in AEA way. So offspring generated by EDA-Alopex include not 
only probability information which describes evolution from the macro level but also 
an Alopex heuristic information which is similar to gradient descent. For this reason, 
the hybrid algorithm can integrate the advantage of both AEA and EDA, guiding the 
population towards a more promising search space. 

4   Simulation Results and Analysis 

To verify the performance of EDA-Alopex, several benchmark functions, listed in 
table1, are used in the test. The comparisons between PSO, DE, AEA, and 
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EDA-Alopex are carried out. The parameters of PSO are given as follows: the initial 
inertia weight, w_start=0.95, the final inertia weight, w_end=0.4, the percentage of 
maximum iteration for a linearly changing weight, w_for=0.7, acceleration factor, 
c1=c2=2, constriction factor Chi=1 and the maximum velocity is fixed at one-tenth of 
variable interval. The parameters involved in DE are listed as follows: the mutation 
operator, F=0.8, DE strategy is DE/rand-to-best/1/bin, crossover probability, CR=0.5. 
In the EDA-Alopex, the value of 0α , 1α , 0β and 1β are fixed at 1.2, 0.8, 0.8, 1.2, re-
spectively. The value of ω and ν is set as 0.5, 0.9, separately. 

In order to make a fair comparison, a total of 50 runs for each algorithm are im-
plemented and the population size for the first two problems f1-f2 and the remaining 
eight functions f3- f10 are fixed at 50 and 100, respectively. The maximum generations 
for all the four algorithms is set as 3000. At the same time, for the purpose of examining 
the performance of algorithms from another point of view, the target values of each test 
function is preset. The global minimum of the test functions f1- f4 is -1,-1.03, 0, and 
-4189.82, respectively. All the other test functions own a global minimum of 0.A trial is 
considered to be succeeded if the value obtained is less than or equal to the target within 
the maximum iterations, otherwise it is believed the current search is failed. The target 
for every test function is also listed in table 1.  

Table 1. Test functions 

No Name Function D Target Bounds 
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To make a fair comparison, the average best functions value (ABFV); standard de-
viations (SD) over 50 runs of the total ten problems for the four algorithms are quoted 
in table 2.  

Table 2. Comparative average best function value and standard deviation over 50 runs 

No EDA-Alopex AEA PSO DE 

f1 -1±0 -1±0 -1±0 -0.98±1.41E-01 

f2 -1.03±0 -1.03±0 -1.03±2.24E-16 -1.03±0 

f3 0±0 0±0   8.00E-02±2.74E-01 0±0 

f4 -4.19E+03±1.84E-12 -4.19E+03±1.84E-12 -3.40E+03±2.26E+02 -4.15E+03±7.42E+01

f5 0±0 2.42E-16±4.86E-17 1.04E-16±2.66E-17 1.11E-16±0 

f6 0±0 5.61E-03±8.31E-03 1.51E-02±1.60E-02 .34E-07±6.85E-07 

f7 1.80E+01±1.96E+01 7.53E+00±6.03E+00  4.21E+01±1.07E+01 1.19E+02±8.16E+00 

f8 1.83E+01±1.21E-01  2.37E+01±2.54E-01  2.38E+01±7.68E+00 1.35E+01±4.63E-01 

f9 1.25E-239±0 8.07E-52±9.83E-52 8.13E-31±2.38E-30 2.00E-32±1.31E-32 

f10 4.00E-15±0 2.10E-14±4.00E-15 1.50E-14±4.00E-15 8.85E-15±2.22E-15 

In table 2, the best values obtained by four algorithms are marked by bold. The 
number of no worse solutions compared to the other three algorithms given by 
EDA-Alopex is 8, by AEA is 5, by PSO is 2, by DE is 3. Totally, most of solutions 
given by EDA-Alopex is superior to the one obtained by other algorithms. In table 3, 
rate of successful minimizations (RS)，average generations(AG),average objective 
function evaluation numbers(AFEN) over 50 runs are listed to investigate the con-
vergence and efficiency of algorithms. '-' denotes that the algorithm can not reach the 
target within the maximum iteration. 

Table 3. Comparison of convergence and efficiency of four algorithms over 50 runs 

No
EDA-Alopex AEA PSO DE 

RS AG AFEN RS AG AFEN RS AG AFEN RS AG AFEN

f1 50 12 1321 50 55 2882 50 335 16810 50 58 2964

f2 50 7 778 50 17 892 50 62 3147 50 21 1106

f3 50 32 6520 50 97 9786 43 880 88112 50 95 9574

f4 50 193 38796 50 501 50244 - 0 0 38 891 89161

f5 50 33 6696 50 100 10092 50 1149 114992 50 304 30518

f6 50 60 12116 50 244 24540 50 1559 156016 50 634 63544

f7 50 770 154108 50 773 77448 50 848 84886 2 2650 265050

f8 50 16 3380 50 35 3568 50 343 34440 50 228 22852

f9 50 51 10288 50 195 19642 50 1454 145522 50 454 45538

f10 50 40 8192 50 130 13132 50 1330 133106 50 392 39250
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In table 3, it can be clearly observed that 100% success for all the test problems 
given by EDA-Alopex and AEA. However, EDA-Alopex needs less iteration to reach 
the target value compared with AEA, especially for the number of objective function 
calls; a substantial decline is witnessed except function 7.  

On the whole, EDA-Alopex achieves a balance between convergence speed and 
convergence precision. With regard to test function 7, the current parameter settings of 
EDA-Alopex are not recommended. We have confirmed that the new algorithm can 
achieve a better optimization result compared with the result given by AEA via using 
other parameters combination. To further validate the performance of the algorithms, 
three multi-apices and high-dimensional functions are employed for a scalability study. 
The test functions are Ackley (F1), Schwefel (F2) and Griewank (F3), the dimension is 
fixed at 100, 30 and 100 respectively and the global optimum of three test functions is 
0, -12569.48 and 0, respectively. Number of maximum iterations is still fixed at 3000. 
The average best functions value (ABFV), standard deviations (SD) over 50 runs are 
listed in table 4. 

Table 4. Optimization results for high-dimension test functions  

No EDA-Alopex AEA PSO DE 
  F1  4.20E-14±7.00E-15 2.65E+00±2.17E-01 1.55E-01±2.90E-01 7.65E-02±1.04E-02 

F2 -1.24E+04±2.59E+02 -1.17E+04±5.38E+02 -7.88E+03±5.63E+02-9.18E+03±8.96E+02 
 F3 5.42E-04±2.24E-03 1.13E-03±2.87E-03 1.28E-02±3.60E-02 9.53E-02±2.39E-02 

As can be seen from table 4, in terms of Ackley function, ABFV and SD obtained by 
EDA-Alopex are significantly better than the other three algorithms. In terms of the 
difficulty level of optimization, Schwefel function is a difficult test problem for opti-
mizing. However, ABFV obtained by EDA-Alopex is closest to the global optimal 
solution .With regard to the function of Griwank, EDA-Alopex obtains the best results 
compared with other three algorithms. Consequently, EDA-Alopex also demonstrates 
a good performance for the optimization of the function of the high-dimensional and 
multiple local minimum. Overall speaking, EDA-Alopex outperforms others, consid-
ering in a comprehensive point of view. 

5   Conclusion 

In this paper, a new hybrid algorithm EDA-Alopex is proposed, which combines the 
Alopex with the EDA. In the EDA-Alopex, EDA is embedded into AEA, aiming at 
improving the performance of AEA. As a global optimization algorithm, AEA shows 
better performance compared with the basic EAs, such as GA, POS, and DE, and it also 
has a high potential of parallelism. In the EDA-Alopex, two populations used for cor-
relation calculation in AEA are generated by EDA, for the purpose of improving the 
population diversity. Therefore, with a higher possibility, the offspring generated by 
the EDA-Alopex can contain not only the global probability information but also the 
local correlation information. Furthermore, an adaptive variation scheme for step size 
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with iterations is introduced in the EDA-Alopex, which improves the convergence 
speed of the EDA-Alopex. 

Ten widely used benchmark functions with different dimensions are utilized to in-
vestigate the performance of the EDA-Alopex. Each test problem possesses different 
characteristics, which examines the performance of the EDA-Alopex in a comprehen-
sive way. Also different test methods are employed for comparison. The case study 
results show that the EDA-Aloepx can achieve faster speed and better solution, how-
ever, without a substantial cost in the execution time compared with AEA. Conse-
quently, based on the analysis above, it can be concluded that the proposed algorithm 
can achieve better performance than traditional EAs. 
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Abstract. By integrating artificial bee colony and genetic algorithm, a novel 
hybrid swarm intelligent approach is proposed in this paper. The main idea of 
the approach is to obtain the parallel computation merit of GA and the speed 
and self-improvement merits of ABC by sharing information between GA 
population and bee colony. To exam the proposed method, it is applied to 4 
benchmark functions for different dimensions. For comparison, simple GA and 
ABC methods are also executed. Numerical results show that the proposed hy-
brid swarm intelligent method is effective, and the precision could be improved.  

Keywords: Swarm intelligence, artificial bee colony, genetic algorithm,  
optimization problem. 

1   Introduction 

Swarm Intelligence (SI) has become an exciting development in computer science. It 
amounts to designing any algorithms inspired by the collective behavior of social 
insect colonies and other animal societies [1]. However, some researchers consider 
the collection of any interacting agents or individuals as “swarm”. So, those former 
developed population-based algorithms such as Genetic Algorithm (GA) are consid-
ered as SI methods as well. The most popular SI method is Particle Swarm Optimiza-
tion (PSO), which is developed by Eberhart and Kennedy in 1995 [2]. It models the 
social behavior of bird flocking or fish schooling. Another classic SI is Ant Colony 
Optimization (ACO), of which the swarm refers to the searching food ant colony[3]. 

Artificial bee colony (ABC) algorithm is an interesting SI algorithm originally de-
veloped by Karaboga in 2005 [4]. It is a method for optimization on metaphor of the 
foraging behavior of bee colony. Because ABC has a lot of advantages on memory, 
                                                           
* Corresponding author. 
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local search, solution improvement mechanism, and so on, it is able to get excellent 
performance on optimization problems [5-8]. Presently, ABC has attracted much 
attention in the related research fields. For example, Karaboga and Basturk extended 
ABC from unconstrained optimization to constrained optimization problems by intro-
ducing a constrained handling method [9], Wong and Chong developed an efficient 
ABC-based method for traveling salesman problem[10], Chong et. al. proposed a bee 
colony optimization algorithm for job shop schedule problem [11], Fathian et. al. 
developed a honey-bee mating optimization algorithm for clustering [12], Kang et. al. 
applied ABC method to structural inverse analysis [13]. One can refer to Ref.[14] for 
a comprehensive review of ABC-based methods.  

In this paper, a novel hybrid swarm intelligent approach is proposed by integrating 
artificial bee colony and genetic algorithm. The algorithm executes the two systems 
simultaneously and exchanges information between bee colony and chromosome 
population. Therefore the hybrid approach possesses both the parallel computation 
merit of GA and the speed and self-improvement merits of ABC. To test the effec-
tiveness of our proposed method, it is applied to a series of benchmark test functions, 
for comparison, the simple GA and ABC are executed on the same set as well. Nu-
merical results show that the proposed hybrid approach is effective, and is superior to 
both of simple GA and ABC methods. 

2   Background 

2.1    Simple Genetic Algorithm (SGA) 

Genetic algorithms (GAs) are a family of computational models developed by Hol-
land [15,16], which is based on the principles of natural biological evolution. For a 
specific problem, GA codes a solution candidate as an individual chromosome. The 
approach begins with an initial chromosome population which represent the set of 
initial search points in the solution space of the problem. Then the genetic operators 
such as selection, crossover and mutation are applied to obtain a new generation of 
chromosomes. Since the operators are under the principle of “survival of the fittest, 
extinction of the unfitness”, it is expected that over all the quality the chromosomes 
will be improved with the generation increasing. This process is executed iteratively 
until the termination criterion is met, and the best chromosome of the last generation 
is reported as the final solution.  

2.2   Artificial Bee Colony (ABC) 

Bee colony is one of the populations with thinnest social division in nature. Different 
tasks are performed by different individuals. The goal of the whole population is to 
maximize the nectar amount stored in the hive by performing efficient division of 
labor and self-organization. There are three essential components among a bee col-
ony: food sources, employed foragers and unemployed foragers [7]. Each food source 
is companied with a value which represents the “profitability” of the source. Em-
ployed bees are those associated with a particular food source for exploring currently. 
They can carry the information of the food sources they are “employed” at and share 
the information with a certain probability. There are two kinds of unemployed bees, 
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one is onlooker, and the other is scout. Onlookers wait in the nest and find a food 
source through the information shared with employed foragers, while scouts randomly 
search the environment for new valuable food sources [7]. 

In ABC algorithm, a food source represents a possible solution to the optimization 
problem and the nectar amount corresponds to the fitness of the solution. There are 
three main groups of bees, namely, employed bees, onlookers and scouts. Both the 
numbers of employed bees and onlookers are equal to that of food sources. Denote the 
food source number as SN, the position of the ith food source as xi (i=1,2,…,SN). So 
SN food sources are randomly produced and assigned to SN employed bees corre-
spondingly at the beginning of the approach. And then employed bee associated to the 
ith food source searches for new solution according to Eq.(1) 

vij=xij +φij (xij - xkj), (1) 

where j=1,2,…,D, and D is the dimension of the optimized problem, φij is a random 
generalized real number within the range [-1, 1], k is a randomly selected index num-
ber in the colony. Then vi is compared with its original position xi, and the better one 
should be remained. Next, each onlooker chooses a food source with the probability 
(Eq.(2)) and produces a new source in selected food source site by Eq.(1). 

∑
=

=
SN

j
jii fitfitp

1

 (2) 

where fiti is the fitness of the solution xi. 
After onlookers are all allocated a food source, if a source is found that its fitness 

hasn’t been improved for a given number (this number is called limit) steps, it should 
be abandoned, and the employed bee associated with which becomes a scout and 
makes a random search by Eq.(3). 

xij=xj
min +r(xj

max
 - xj

min), (3) 

where r is a random real number within the range [0, 1], and xj
min and xj

max are the 
lower and upper borders in the jth dimension of the problem space. 

The main steps of the algorithm could be summarized as below: 

1. Initialize Population 
2. Place the employed bees on their food sources 
3. Place the onlookers on the food sources depending on their nectar amounts 
4. Send the scouts to the search area for discovering new food sources 
5. Memorize the best food source found so far 
6. If requirements are met, output the best solution, otherwise go to step (2). 

3   Hybrid Method Based on GA and ABC 

After GA was developed 35 years ago, it has become one of the most highlight algo-
rithms in the related research field. The key of its success is the inherent parallel char-
acteristics, which guarantees the approach could find the global optimization with 
large probability. ABC is also parallel inherently, while its most significant features 
are the solution’s self-improvement and local search ability. In this paper, we would 
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like to obtain both of their excellent features by synthesizing the two algorithms. So, a 
novel approach called hybrid swarm intelligent method based on GA and ABC 
(HSIGA) is proposed.  

The main idea of HSIGA is to exchange information between GA population and 
bee colony. At beginning, the approach executes GA and ABC simultaneously, and 
then two information exchange processes will be introduced. Firstly, bee colony 
shares the information from GA population through scouts. During each iteration, the 
scouts, if we have, will obtain GA information with a given probability. The informa-
tion randomly comes from GA population, while those individuals with high fitness 
are prefered to be selected. In the second process, a small given number of individuals 
will be randomly selected from GA population and bee colony simultaneously. With 
the same schedule as above, those individuals with high fitness have more opportuni-
ties to be choosen. Then the selected individuals will be matched in pair, and crossov-
ered. The obtained offspring will be added into GA population. We define these two 
processes as Information Exchange Process1 and Information Exchange Process2, 
respectively. The main steps of the algorithm could be described as follows:  

Initialization of GA
Population

Initialization of Bee
Colony

G
A

 O
p

er
at

or
s Selection

CrossOver

Mutation

Employed bees' search

Onlookers' search

Probability
Condition Sat isfied? Scouts' random search

Information Exchange
Process1

Yes No

Information Exchange Process2

Termination
Critera Met?

Output Final Solution

Yes

No

 

Fig. 1. Flow chart of HSIGA 

 



562 H. Zhao et al. 

 

1. Initialize GA and ABC sub-systems respectively.   
2. Execute selection, crossover and mutation operators on GA population. 
3. Execute employed bees’ search and onlookers’ selection and search processes on 

bee colony. 
4. Execute employed scouts’ search process. The start search points should be deter-

mined according to a given probability, whether they are randomly produced by 
Eq.(3) or they are obtained through the Information Exchange Process1. 

5. Execute Information Exchange Process2. 
6. Memorize the best solution as the final solution and stop if the best individual in 

one of the two sub-systems satisfies the termination criterion.  
The flow chart of the HSIGA is shown in Fig 1. 

4   Numerical Results 

The proposed HSIGA is tested using 4 benchmark functions. For comparison, SGA 
and ABC are also executed on these 4 functions. Table. 1 shows the details of test 
functions. Simulations are performed in C++ with a 2.53GHz Pentium PC. In SGA, 
the population is set as 60 and the rate of mutation is 0.02. The parameters of ABC 
are as follows: colony size is 40, limit is 100. In HSIGA, the population of GA and 
the size of bee colony are both set as 60, the rate of GA mutation is 0.02, the limit in 
ABC subsystem is 100, and the probability of Information Exchange Processs1 is 0.5, 
respectively.  

Table 1. Test functions used in the experiments 
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+ −+−=

1

1

222
1 )1(100)(

n

i
iii xxxXf  [-30,30] f(1)=0 

Griewank 1cos
4000

1
)(

11

2 +⎟
⎠
⎞

⎜
⎝
⎛−= ∏∑

=−

n

i

i
n

i
i

i

x
xXf  

[-600,600] f(0)=0 

Rastrgin [ ]∑
−

+−=
n

i
ii xxXf

1

2 10)2cos(10)( π  [-5.12,5.12] f(0)=0 

 
Table. 2 to Table. 5 list the comparison results of these 3 methods for 4 benchmark 

functions of 5 different dimensions. Each of experiments was repeated 50 times, and 
the mean values and standard deviations are listed in the tables, of which the bold 
mean values are the best results among the 3 methods. From the tables it can be seen 
that with the dimension increasing, the precisions of all the 3 methods are decreased. 
For Sphere function, HSIGA is better than the other two approaches in all of the 5 
dimensions. For the Rastrgin function, only ABC shares the best results with HSIGA at 
dimension 10. HSIGA monopolizes the best results of the other 4 dimensions. HSIGA 
also obtains the best results of 4 dimensions for both of the other two functions, while  
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Table 2. Comparison Results for Sphere function 

Dimension 10 30 50 100 200 

Mean 2.18E-14 6.51E-14 1.08E-13 2.17E-13 5.86E+00 
SGA 

Std 3.19E-30 5.10E-29 5.10E-29 7.65E-29 3.60E+01 

Mean 6.41E-17 6.46E-16 1.67E-15 9.88E-15 1.13E-13 
ABC 

Std 1.48E-17 8.528E-17 3.03E-16 4.49E-15 1.06E-13 

Mean 4.80E-17 5.38E-16 1.34E-15 4.41E-15 2.23E-14 
HSIGA 

Std 1.11E-17 6.48E-17 1.79E-16 8.84E-16 9.04E-15 

Table 3. Comparison Results for Rosenbrock function 

Dimension 10 30 50 100 200 

Mean 3.48E+02 1.47E+03 2.11E+03 3.72E+03 6.42E+03 
SGA 

Std 520.6786 1972.145 1925.509 2535.072 4981.866 

Mean 8.45E-02 1.06E-01 2.68E-01 1.21E+00 3.34E+00 
ABC 

Std 0.078007 0.141269 0.379678 2.493321 4.379442 

Mean 8.00E-02 1.14E-01 1.17E-01 1.44E-01 4.10E-01 
HSIGA 

Std 0.078156 0.214262 0.199364 0.247321 0.472663 

Table 4. Comparison Results for Griewank function 

Dimension 10 30 50 100 200 

Mean 2.62E-16 7.47E-09 3.41E-15 2.19E-15 3.56E-05SGA 
Std 8.62E-17 5.28E-08 1.69E-14 1.88E-16 0.000197

Mean 8.88E-17 6.57E-16 1.76E-15 9.69E-15 1.19E-13
ABC 

Std 4.49E-17 1.42E-16 2.85E-16 4.91E-15 1.23E-13

Mean 3.11E-17 4.73E-16 9.99E-16 2.22E-15 3.42E-14HSIGA 
Std 5.04E-17 4.92E-17 1.96E-16 3.17E-16 2.19E-14

ABC possesses the best results at dimension 30 for Rosonbrock function, and SGA is 
executed best at dimension 100 for Griewank function, respectively. Fig. 2 gives a 
comparison of the error evolution curves of a typical run on Griewank function at 
dimension 200. From the tables and Fig.2, we could find that ABC and HSIGA are 
much better than SGA overall, and HSIGA performs best among all the 3 methods. 
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Table 5. Comparison Results for Rastrgin function 

Dimension 10 30 50 100 200 

Mean 4.51E+00 3.64E+01 7.65E+01 1.94E+02 4.23E+02 
SGA 

Std 2.292706 7.88172 13.5188 23.39157 33.16444 

Mean 0.00E+00 3.69E-15 1.19E-11 2.00E-02 1.12E+00 
ABC 

Std 0 4.72E-15 4.17E-11 0.140701 1.020167 

Mean 0.00E+00 1.42E-16 3.43E-14 3.90E-10 1.63E-01 
HSIGA 

Std 0 4.87E-16 4.66E-14 1.6E-09 0.346746 

0 5000 10000 15000 20000
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Fig. 2. The error evolution curves of a typical run on Griewank function of dimension 200 

5   Conclusions 

A novel hybrid swarm intelligent approach is proposed based on artificial bee colony 
and genetic algorithm in this paper. By introducing two information exchange proc-
esses between GA population and bee colony, the hybrid approach could possess both 
merits of GA and ABC methods. To validate our proposed method, it is applied to 4 
benchmark functions for different dimensions together with simple GA and ABC 
methods. Numerical results show that the proposed method is much better than SGA, 
and is also superior to ABC approach. 
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Abstract. The job shop scheduling problem is a well-known NP hard problem, 
on which genetic algorithm is widely used. However, due to the lack of the ma-
jor evolution direction, the effectiveness of the regular genetic algorithm is re-
stricted. In this paper, we propose a new hybrid genetic algorithm to solve the 
job shop scheduling problem. The particle swarm optimization algorithm is in-
troduced to get the initial population, and evolutionary genetic operations are 
proposed. We validate the new method on seven benchmark datasets, and the 
comparisons with some existing methods verify its effectiveness. 

Keywords: particle swarm optimization algorithm, hybrid genetic algorithm, 
Job shop scheduling problem. 

1   Introduction 

The job shop scheduling problem (JSSP) is a well known NP-HARD problem [1]. 
Only small scale problem can be solved exactly. So, researchers proposed some 
methods to get nearly optimal solutions, such as simulated annealing (SA), taboo 
search (TS), genetic algorithm (GA) and hybrid algorithms [2]-[9] .  

In the last few decades, genetic algorithm has been widely applied to solve JSSP.  
In these researches, genetic algorithms are presented with different encoding schemes 
and different operators. A comprehensive survey on the encoding schemes has been 
given by L. Wang (2003) [10], in which, 9 kinds of encoding schemes are introduced. 
C.G. Wu proposed a genetic algorithm to solve JSSP based on the concepts of opera-
tion template and virtual job shop (2004) [6]. L. Wang and D. Z. Zheng developed a 
general, parallel and easily implemented hybrid optimization framework of GA and 
SA, and applied it to job-shop scheduling problems (2001) [8]. Compared with other 
traditional heuristic search algorithms, genetic algorithm starts with a set of initial 
solutions. Due to its potential parallelism, it can travel the whole problem space 
strongly, so GA is a popular approach for JSSP. However, due to the lack of major 
evolution direction, the relative deviations are not stable. And the particle swarm 
optimization (PSO) is another stochastic approximation algorithm, X. Chen and Y. Li 
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analyzed its convergence [11]-[12]. In this paper, PSO algorithm is adopted to pro-
vide a better induct, and evolutionary genetic operators are proposed.  

This paper is organized as follows. In section 2, combining PSO algorithm and an 
evolutionary genetic algorithm (EGA), a new hybrid algorithm (PSO/GA) is pre-
sented to solve JSSP. In section 3, the computational and comparative results on 
benchmark instances are given. Finally, we conclude the paper with a summary in 
section 4. 

2   The PSO/GA Algorithm for JSSP 

2.1   Description of Job Shop Scheduling Problem  

The JSSP can be described as follows: Given n  jobs 1 2{ , ,..., }nJ J J J=  which must be 

processed on m  machines 1 2{ , ,..., }mM M M M= , each job consists of predetermined 

operations in a specific sequence on a given machine for a fixed duration without 
interruption. Each machine can handle at most one operation at a time. The objective 
is to find a feasible schedule with the shortest makespan. The operation number of job 

iJ  is denoted as in , ( 1, 2,...,i n= ), thereby, the total number of operations 

is
1

n

i
i

s n
=

=∑ .Many algorithms request that each job must pass through all the ma-

chines, this constraint is relaxed in this paper. 

2.2   Encoding and Decoding of the PSO/GA Algorithm 

The PSO/GA algorithm encodes a schedule as a sequence of operations and each gene 
stands for an operation number. For an n-job and m-machine problem, each chromo-

some contains 
1

n

i
i

s n
=

=∑  genes. Each individual chromosome in the population  

represents a schedule, which means a permutation of the operations for all jobs. For 
example, a given 3 3×  JSSP is shown in Table 1. In this table, the i th row, the k th 
column’s content is ( , )j t , which means job i 's operation k is processed on machine 

j  for t  processing time. 

Table 1. 3 3× JSSP 

Job no. Oper. 1 Oper. 2 Oper. 3 
1 2，3 3，7 1，5 
2 1，6 3，9 2，8 
3 3，4 1，3 2，9 
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Continuous numbers are assigned to operations for all jobs, that is, natural numbers 
1 to 9 are assigned to all nine of operations. Each operation can be denoted as a five 
tuple: ( , , , , )p f i k j t , which means job i 's operation k  is processed on machine j  for 

t  processing time, and we called it the f  operation ( 1, 2,...,f s= ). According to the 

definition, each chromosome can be mapped to a 9 5×  matrix, which represents a 
schedule. 

For example, the chromosome is shown in Fig.1 means a schedule’s operation se-
quence. And its corresponding 9 5×  matrix is shown in Fig.2. The first row of the 
matrix is the chromosome in Fig.1. 

 
9 1 3 6 8 2 5 7 4 

Fig. 1. An example of chromosome representation 

9 1 3 6 8 2 5 7 4

3 1 1 2 3 1 2 3 2

3 1 3 3 2 2 2 1 1

2 2 1 2 1 3 3 3 1

9 3 5 8 3 7 9 4 6

T
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

Fig. 2. The information matrix of the Figure 1’s chromosome 

Any individual chromosome in a population can be mapped to a sequence of op-
erations according to the 9 5×  matrix. Such a sequence of operations represents a 
schedule. Recall that the operations in each job have precedence constraints, therefore 
not all the chromosomes are legitimate. To ensure the legitimacy, each chromosome 
is decoded according to the conflict resolution as follows: 

(1) Scan the genes in the chromosomes. 
(2) The first available operation is added to the task queue. 
(3) Repeat the step (1) and (2) till all of the operations are arranged. 

For example, the chromosome in Fig.1 can be decoded a real schedule shown in 
Fig.3. 

 
1 2 7 4 3 8 5 9 6 

Fig. 3. The legitimate chromosome for Fig.1 

According to the legitimate chromosome, the makespan of the schedule can be cal-
culated with the Gantt chat. 
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2.3   PSO Algorithm for Initialization 

The process of initialization often plays an important role in the implementation. 
Because regular genetic algorithm generates initial solutions randomly, so it is lacking 
in the major evolution direction, the relative deviations are not stable, and the effec-
tiveness is restricted. In this work, particle swarm algorithm (PSO) is introduced to 
provide induct to get better initial solutions. 

Defining that the search space of PSO is p-dimensional and then the i th particle of 

the swarm is 1 2( , ,..., )i i i isx x x x= , the velocity of the particle is 1 2( , ,..., )i i i isv v v v= , 

where , [ , ]( 1,2,..., )ij ijx v a b j s∈ = . The local best particle is denoted 

as 1 2( , ,..., )i i i ispbest pbest pbest pbest= , the global best particle is denoted 

as 1 2( , ,..., )sgbest gbest gbest gbest= . Take 3 3×  JSSP as an example, the particle rep-

resentation is as follows.  

Table 2. Particle representation for 3 3×  JSSP 

 1dim. 2dim. 3dim. 4dim. 5dim. 6dim. 7dim. 8dim. 9dim. 

Position ix 6.5 3.2 -4.7 1.0 -1.4 5.1 -3.8 2.3 7.2 

No. 8 6 1 4 3 7 2 5 9 
 

Generate the position ix  randomly, and then in ascending order to get the second 

row in Table 2 , which corresponds to the chromosome in section 2.2. 
From the initial particles, the particle updates its position and velocity by (1), (2) 

and (3) iteratively as follows. 

max min
max

( )*
k

k

M

ω ωω ω −= −  . (1)

1
1 2* * ( ) * ( ) * ( ) *( )k k k k k k

ij k ij ij ij j ijv v c rand pbest x c rand gbest xω+ = + − + − . (2)

1 1k k k
ij ij ijx x v+ += +  . (3)

In (1), ω denotes inertia weight ( min 0.4ω = and max 1.2ω = ), M  denotes the maxi-

mum of iterative generation and k is the current iterative generation. 
By applying PSO algorithm, the process of initialization is performed. 

2.4   Fitness Function 

We cite the fitness function in [6] as follows: 

( )
( )

R
f x

makespan x

α=  . (4)
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Where [0,1]α ∈ , 
9

5
1

1
( )

i

R L i
m =

= ∑  ( 5( )L i  represents the fifth column and the i th row 

of the matrix L shown in Fig.2, ( )makespan x  is the completion time for all opera-
tions, and the value of the fitness function is ranged from 0 to 1. 

2.5   Crossover Operator and Mutation Operator 

In this paper, single linear order crossover is adopted. And to ensure to get the optimal 
solution, the elitist strategy (Goldberg (1089)) is applied. Take 3 3× JSP as an exam-
ple, suppose the randomly selected position is 4, then we get the children 1q  and 2q , 

but 1q  and 2q  are not legitimate. We call the duplicate genes in 1q as superfluous 

genes which are 6 and 7 in Fig.4, and the duplicate genes in 2q as lacking genes which 

are 5 and 1. Then exchange them to get the new legal 1q and 2q . 

1

2

:2  6  4  7  3  5  8  9  1

:4  5  2  1  8  7  6  9  3

p

p →

1

2

:2  6  4  7  8  7  6  9  3

:4  5  2  1  3  5  8  9  1

q

q →

1

2

:2  5  4  1  8  7  6  9  3

:4  6  2  7  3  5  8  9  1

q

q
 

Fig. 4. An example of single linear order crossover 

For the mutation operator, inverse mutation is adopted. By randomly selecting a can-

didate chromosome and then randomly selecting two positions, denote as 1N and 2N , 

and reverse the orders of genes between 1N and 2N . 

2.6   The Flowchart of the PSO/GA Algorithm 

The flowchart of the PSO/GA algorithm is shown in Fig. 5.As can be seen from  
Figure 5 that in hybrid PSO/GA algorithm, PSO algorithm is applied to get initializa-
tion solutions for GA, and evolutionary operations are performed.  

3   Experimental Results 

To illustrate the performance of the introduced PSO/GA for JSSP, we performed tests 
on 7 benchmark instances with different sizes. The population size is set to 100, the 
PSO’s and GA’s maximum of iterative generation 1M  and 2M are set to 20 and 200. 
The crossover rate is 0.65 and the mutation rate is 0.95. 

Compared with the PSO/GA algorithm, the initial solution of the evolution genetic 
algorithm (EGA) is produced randomly. The EGA is an improved algorithm accord-
ing to the GA in [6]. The AGAA algorithm is proposed by S. H. Liu and L. H. Wang 
(2008) [9] which based on the combination of adaptive genetic algorithm and im-
proved ant algorithm. Results for PSO/GA are shown in Table 4 and compare with 
GA, AGAA and EGA. In Table 4, the column “BKS” contains the best known solu-
tion, the column “BS” contains the minimum makespan, the column “RD” contains  
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Fig. 5. The flowchart of the PSO/GA 

the average percent relative increase in makespan with respect to the best known 
solution after 20 respective runs. 

100%avg best

best

C C
RD

C

−
= ×  . (5)

In (5), avgC denotes the average of the 20 times results, and avgC is the best known 

solution. 

Table 3. Results for PSO/GA and GA, AGAA, EGA for benchmark instances  

PSO/GA EGA AGAA GA 
 

   
,n m 

 

 
BKS 

 BS 
RD 
(%) BS 

RD 
(%) BS 

RD 
(%) BS 

RD 
(%) 

FT06 6,6 55 55 0 55 1 55 0 55 0 

FT10 10,10 930 965 4.2 965 5.3 990 6.4 997 11.87 

LA01 10,5 666 666 0 666 0.55 666 0 666 0 

LA06 15,5 926 926 0 926 0 943 0.16 938 0.9 

LA11 20,5 1222 1222 0.09 1222 0.62 1227 0.05 1235 0.98 

LA16 10,10 945 946 1.73 946 3.05 969 2.64 986 4.6 

LA21 15,10 1046 1081 2.56 1081 4.59 1096 4.79 1156 10.56 
  

Mutation and compare with the parent

Initialization 

Calculate ( )f x  

Crossover and compare with the parent

Stopping criterion 

Print best solution 

N 

Y

Initialization

Calculate the ( )f x  of the particles 

Find
ipb est and g b e s t  

Update 
ix and 

iv  

Stopping criterion

The initial solutions of PSO/GA

N 

Y 
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Fig. 6. Relative Deviations for PSO/GA and 
EGA  

Fig. 7. Solutions for Three Algorithms 

As can be seen from Table 4 that, for FT06, LA01, LA06 and LA11 benchmark in-
stances, PSO/GA algorithm can find the best known scheduling solutions. With re-
gard to FT10, LA16, LA21, PSO/GA can find better sub-optimal scheduling solutions 
than other algorithms cited. 

And for all instances, EGA outperforms GA, which indicates the effectiveness of 
the proposed evolutionary genetic operators. Moreover, Fig.6 shows that PSO/GA has 
consistently lower performance Relative Deviations than EGA, which verifies that the 
initialization by PSO can lead to better stability. And PSO/GA can find better sched-
uling solutions and lower relative deviations than other cited algorithms for all seven 
benchmark instances. 

4   Conclusion 

In this paper, a hybrid algorithm (PSO/GA) combining PSO and EGA is proposed to 
solve the job shop scheduling problem. With the induction of the PSO, the PSO/GA 
algorithm has a relatively better stability. And proposed evolutionary genetic opera-
tors lead to better solution than the regular GA. Experimental results verify the effec-
tiveness of our algorithm that it can find the best known solutions or the sub-optimal 
solutions for all cited benchmark instances. 
 
Acknowledgments. The authors are grateful to the support of National Natural Sci-
ence Foundation of China under Grant No. 70971026, and Natural Science Founda-
tion of Guangdong Province under Grant No. 9151009001000040. 
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Abstract. In this paper we construct an integer programming model for the or-
der planning problem. Our model takes into account inventory matching and 
production planning simultaneously, and considers multiple objectives. We de-
sign a hybrid Particle Swarm Optimization, in which new heuristic rules to re-
pair infeasible solutions are proposed, and then compare the results of using 
PSO, Tabu Search and the hybrid algorithm to solve the models of three differ-
ent order quantities. Numerical results show that the hybrid PSO/TS algorithm 
provides more effective solutions. 

Keywords: Order planning, inventory matching, particle swarm optimization 
(PSO), tabu search (TS). 

1   Introduction 

Order planning is a very important part of the management in steel factory, which is 
how to schedule machines and procedures in the production line according to due 
date, type, and quality requirement of the incoming order sequence. The main purpose 
of order planning is to maximize the utilization of the machines and at the same time 
to minimize the penalty due to the discrepancy between the actual delivery time and 
the due time promised in the customer order. Zhang et al [1] proposed a steel factory 
order planning model based on MTO, and corresponding optimization methods. Liu et 
al [2] proposed a multi-objective order planning model for steel manufacturing, which 
includes penalties on delayed orders, machine utilization ratio, inventory costs, etc. 
Zhang et al [3] formulated the order planning problem as a mixed integer program 
while considering order due time and production capacity, and designed an efficient 
genetic algorithm with three mutation operators. 

Order planning problems are generally large scale combinatorial optimization prob-
lems, which are not easily handled by exact method within a satisfactory amount of 
time. However, heuristics are very popular for these problems and are the hot spot in 
recent researches. Among all of the heuristics, Particle Swarm Optimization (PSO)  
and Tabu Search (TS) algorithms are very popular and are widely applied in real large-
scale global optimization problems, especially the scheduling problems in complex 
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production planning. Kennedy and Eberhart [4] applied the improved PSO algorithm in 
the production scheduling problem which is trying to minimize the production cycles. 
Nguyen [5] studied the non-stop flow scheduling problem by using PSO. Rezazadeh et 
al [6] applied PSO in the dynamic machine capacity allocation problem. Liu et al [7] 
applied TS algorithm in solving the work flow problems in the job shops. Ben-Daya and 
Al-Fawzan [8] proposed a new neighbourhood generation method while applying TS 
algorithm in solving work flow scheduling problems. Ganapathy et al [9] proposed a 
hybrid TS and Simulated Annealing method to solve two-machine work flow problems. 
Hence, this paper combines these two algorithms to solve order planning problem. 

2   Mathematical Models 

In steel factories, there exists inventory matching of both finished and unfinished 
products in [10]. However, in this paper we only consider inventory matching for 
finished products. Suppose that there are N  orders due in the planning horizon ],1[ T . 
While making order planning, steel factories usually have three choices: inventory 
matching, workshop production and order cancellation. We only can choose one of 
the above three for each order. The decision variables are two sets of binary variable 

kiY , ’s and tjiX ,, ’s denoting inventory matching and production planning respec-

tively, which are shown as follows, 
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where i  is the order number,  j  denotes the number of working procedures, t  de-

notes the time period, k  denotes the number of the inventory product. All symbols 
and parameters are shown as followings. 

 
N  : the total number of the orders; 
K  : the number of the kinds of inventory; 
J  : the total quantity of the processes; 
T  : the planning horizon; 

],[ ii ba : the delivery time window of order i ; 

iη  : the demand of order i ; 

kQ  : the inventory of product k ; 

jtE  : the production capacity of process j  in period t ; 

jv   : the penalty coefficient of insufficient utilization of production ca-
pacity of process j ;   

iα   : the earliness penalty coefficient of unit weight of order i ; 



576 T. Zhang et al. 

 

iβ   : the delivery time penalty coefficient of unit weight of order i  in 
the time window; 

iγ   : the tardiness penalty coefficient of unit weight of order i ; 

ip   : order cancellation penalty coefficient of unit weight of order i  ; 

λ   : the minimal expected load ratio of each process, a real number 
within ]1,0[ ; 

joI  : the beginning stock of process j ; 

maxjI : the inventory capacity of process j . 

kiC , : the cost of matching order i  with inventory k  

In order to capture most of the features of steel manufacturing, we are considering 
multiple objectives in this study, which are shown as follows: 

The inventory matching cost:  
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Penalties of deliveries within the required time window:  
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Penalties of deliveries outside of the required time window:  
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Penalty of order cancellation:  
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We combine the above five objectives into one objective function as follows,  

Minimize )( 544332211 ffffff ++++= ππππ   (6) 

Subject to: 
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Constraint (7) denotes the quantity constraint of each type of surplus products in in-
ventory, where kih ,  denotes the quantity of inventory of product k  which matches 

order i . Considering that inventory matching might cause the material lost,  kih ,  is 

usually a constant a little greater than order quantity iω . Constraint (8) ensures that 

the same order could not choose both inventory matching and workshop producing at 
the same time; in addition, every order could be matched by only one kind of inven-
tory product. Constraint (9) is the production capacity limitation constraint of each 
process. In a unit period the production quantity of one process could not be larger 
than its production capacity; besides, in order to keep a certain utilization ratio of the 
equipments, production quantity must be larger than a certain proportion of the pro-
duction capacity. Constraint (10.1) makes sure that the order will go through all the 
required processes if it is going to be produced, and constraint (10.2) ensures the 
sequence of the processes. Constraint (11) ensures that, no more than two production 
procedures can be performed in any time period. Constraint (12) is the capacity con-
straint on the inventory of each working procedure.  

3   PSO, TS and Hybrid PSO/TS Algorithms for Order Planning  

PSO algorithm is first introduced by James Kennedy and Russell Eberhartin in 1995 
[4]. Every particle is a vector of m  dimensions, which presents a certain solution in 

the solution space of m  dimensions. For example, ( )r
m

rr
r xxxX ,...,, 21=  represents a 

solution of particle r, and ( )r
m

rr
r vvvV ,...,, 21=  presents the flying speed of particle r, 

and ( )r
m

rr
r xxxX ˆ,...,ˆ,ˆˆ

21=  presents the best position that particle r has ever experi-

enced, X̂  presents the best position that all the particle have ever experienced. The 
trajectory of a particle is determined by the evolution equations defined as follows: 
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where Rr ,...,2,1= , and R represents the size of the particle swarm; n  represents the 

iteration, and nξ  is the inertia coefficient of the iteration n ; 1ρ  and 2ρ  are two ac-

celeration constants; n
1φ   and n

2φ  are random numbers which are normally distributed 

in range [0,1]. Some studies show that a bigger inertia coefficient is good for global 
optimum search and smaller inertia coefficient is good for local optimum search as in 
[11]. So this paper sets a relatively big original inertia coefficient and then attenuates 
it linearly to improve the local search ability. The linear attenuation formula we adopt 
is as follows: 

 ( )minmax
max

max ζζζζ −−=
n

n
n    (17) 

where n  is the current iteration, and maxn  is the maximum number of iterations. 

3.1   Encoding Scheme 

Because ijtx ’s and iky ’s are binary variables, we introduce a integer variable vector 

composed of ic ’s and jip , ’s as follows, ;,...,,[ 21
r
N

rrr cccL = ;,...,, ,12,11,1
r

J
rr ppp  

],...,,...;;...,,...,, ,1,,,22,21,2
r

JN
r
N

r
ji

r
J

rr pppppp to denote the position of particle r . The first 

part, ],...,,[ 21
r
N

rr ccc , denotes the inventory matching, in which ,0( Mrc r
i ≤≤  

)1 Ni ≤≤  represents the index of surplus products matching order i . If 0=r
ic , there 

is no surplus inventory matching for order i . )1(, Jjpr
ji ≤≤  denotes the in-

production time period of order i  through working procedure j , and if 0, =r
jip  for 

any Jj ,...,2,1= , it means that order i  will not go into production.. 

3.2   The PSO Algorithm 

We design the procedure of hybrid particle swarm optimization and tabu search algo-
rithm as below: 

Step 1: Initialize all parameters. 
Step 2: Every swarm contains R  feasible particles randomly, and there are S  

swarms altogether. Compute the value of objective function (6). 
Step 3: For 1=n  to  

For 1=S  to maxS  

For 1=r  to R  
Use evolution equations (15) and (16) to move the particles; 
Repair the infeasible solutions by infeasible solution repairing 

strategy; 
End For 
Tabu search 

On the basis of the objective value computed by function (6), 

update sL̂  (the best solution of swarm s ) and  s
rL̂  (the historical 

best solution of particle r  of swarm s ) 
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End For 
Update gL  (the globally best solution); 

If n 010mod = .  
Randomly pair all swarms; 

For each pair, choose 30% of the particles and exchange the values 

of s
rL ’s. 

End If 
Update inertia coefficient according to function (17); 

End For 
Step 4: Output gL  as the result. 

4   Numerical Results 

We implement them to a real problem based on the order data of a steel factory. All 
codes are finished in MATLAB and run on an Intel Core Duo CPU T7300 (2G EMS 
memory) PC with XP system. We also postulate that the planning horizon 10=T  
(take five days as a period unit), and number of processes 3=J . 

Table 1. Comparison of the three algorithms 

N Algorithm BF AF   WF CPU(s) Iterations 

PSO  12007.4 13031.7 14129.1 43 463 
TS  12786.4 13504.0 14303.9 17 349 

60 

Hybrid 9786.0 11848.8 13072.8 193 385 
PSO  12281.2 12509.8 12851.4 104 468 
TS  14722.6 15271.8 17185.0 38 354 

140 

Hybrid 9216.9 9516.7 9773.0 348 419 
PSO  14680.2 15539.1 16107.9 161 476 
TS  13942.6 18039.1 22140.6 74 328 

220 

Hybrid 12078.0 12206.3 12384.6 563 397 

Table 2. Solutions of the three algorithms 

N Algorithm BF NoM NoP NoE NoD NoC 
PSO  12007.4 21 39 5 3 0 
TS 12786.4 23 37 4 8 0 

60 

Hybrid 9786.0 19 41 3 2 0 
PSO  12281.2 37 103 4 2 0 
TS 14722.6 51 88 5 13 1 

140 

Hybrid 9216.9 42 98 2 1 0 
PSO  14680.2 55 163 8 5 2 
TS 13942.6 92 127 8 24 1 

220 

Hybrid 12078.0 51 168 5 3 1 
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Three sets of numerical experiments with different order size ( 220,140,60=N ) 
are performed by using all of the three algorithms, PSO, TS and hybrid PSO/TS algo-
rithms. The computational results are shown in Table 1 and 2, where NoM , NoP , 
NoE , NoD  and NoC  denote numbers of matching, production, early finished or-
ders, delayed order and canceled orders respectively.  

As we can see from Table 2. Solutions of the three algorithms. 
1, PSO algorithm is fast and always gives stable solutions; TS algorithm runs faster 

but its solutions are usually unstable; the hybrid algorithm is the slowest one and 
needs more iteration, but its solutions are much better than the others. If time allows, 
always choose the hybrid PSO/TS algorithm. As shown in Table 2, the NoM , NoP , 
NoE , NoD  and NoC of hybrid PSO/TS algorithm are smaller than the other two for 
most of the time, which means that the on-time order delivery ratio is improved. 
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Fig. 1. Objective Value vs. Number of Iteration when 60=N  

The convergence curves of the three algorithms for 60=N , 6=K , and 
6000=E  are shown in Fig 1. PSO algorithm improves the solutions very fast within 

50 iterations, and reaches a plateau after that. TS by itself is not a good algorithm 
since in the whole process it only improves the solutions a little bit. In contrast, the 
hybrid PSO/TS algorithm keeps improving for more iterations by diversifying parti-
cles, and gives much better solutions. Even though the hybrid PSO/TS algorithm is 
slower than the other two, we would always use it to handle the order planning prob-
lems for steel plants since it provides better solutions and its computational time is 
satisfactory. 

5   Conclusions 

In this paper we formulate the order planning problem as a mixed integer program, where 
multiple objectives are considered, such as penalties on delivery discrepancy, inventory 
costs, penalties on utilization ratio of machines, production costs, matching costs, and 
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penalties on customer order violations. Based on natural number coding scheme, a hybrid 
PSO/TS algorithm is proposed to solve the order planning problem, where rules to both 
generate initial solutions and repair infeasible solutions are designed. By simulations, the 
best set of PSO parameters is determined. Also we run the three algorithms, PSO, TS, 
and hybrid PSO/TS, on three sets of data with different sizes. The results show that our 
model is valid for order planning problem, and the hybrid PSO/TS algorithm provides 
better solutions while being computationally satisfactory.  
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Abstract. In this work we propose a different particle swarm optimiza-
tion (PSO) algorithm that employs two key features of the conjugate
gradient (CG) method. Namely, adaptive weight factor for each particle
and iteration number (calculated as in the CG approach), and periodic
restart. Experimental results for four well known test problems have
showed the superiority of the new PSO-CG approach, compared with
the classical PSO algorithm, in terms of convergence speed and quality
of obtained solutions.

1 Introduction

Biologically-inspired algorithms such as evolutionary algorithms has been suc-
cessful in solving optimization problems. Recently, a new area called swarm
intelligence [11] has attracted a lot of attention due to its success in solving
optimization and combinatorial problems. The two well known algorithms are
Ant Colony Optimization and Particle Swarm Optimization (PSO) [10]. PSO
is a population-based algorithm and the agents (particles) interact with each
other to adapt to their environment in an iterative manner within a given
neighborhood.

Different attempts have been made to improve the canonical PSO algorithm
by adding options such as charged swarms [2], neighborhood operator [16], dy-
namic neighborhood [7], cluster analysis [9] and niching strategies[3]. Other stud-
ies looked at strategies for updating particle’s velocity such as velocity relaxation
[12] and craziness-based [4]. For a comparison of linear and classical velocity up-
date rules see [17].

On the other hand, the conjugate gradient (CG) method [5] is a highly ef-
ficient direct minimization approach, which is currently the method of choice
in wide areas of science and engineering. In computational solid state physics,
for example, the CG method is used to minimize directly the total energy of
the system of electrons, which is usually a function of a very large number of
variables, in small number of iterations [13]. The key features behind the great
success of the CG approach is the conjugacy property of the search directions,
and periodic restart of the iterative minimization procedure each certain number
of CG steps.

Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 582–588, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this work we will point out first the analogy between the PSO and the CG
methods, and then employ the above two key features of the CG approach to
improve the performance of the PSO. In this hybrid PSO-CG scheme, no explicit
calculations of the true gradients are performed, and hence it is still within
the spirit of the PSO framework. Therefore, the present PSO-CG approach is
different from previously introduced PSO and CG hybridization [8], in which
the CG method is invoked together with numerically calculated gradients at
certain circumstances (trapping in a local minima or when the absolute difference
between successive gradients are larger than a certain value). The proposed PSO-
CG algorithm will be tested on four well known test problems.

2 Background

The PSO method is an evolutionary algorithm that simulates the movement
of flocks of birds [10]. It can be employed to minimize a general function F(x),
where x is a vector in a multidimensional space. In this approach a population of
individuals (potential solutions of F(x), called particles) update their movements
to reach the target point [the global minima of F(x)] by continuously receiving
information from other members of the flock. In the classical 1 PSO [15], the nth
particle velocity and position are updated according to

V n
i+1 = wV n

i + c1r1(Pn
L − xn

i ) + c2r2(Pg − xn
i ), (1)

and
xn

i+1 = xn
i + αV n

i+1. (2)

Here, w is inertial weight factor, Pn
L is the local best vector of the nth particle,

and Pg is the global best vector; c1 and c2 are adjustable social factors; r1 and
r2 are random numbers (between 0 and 1); α is the time step.

On the other hand, the conjugate gradient (CG) method is a highly efficient
direct minimization approach. In this approach, F(x) is minimized by updating
the vector xi according to

xi+1 = xi + bihi, (3)

where, hi is the search direction and bi is chosen such that xi+1 is the minimum
point of F(x) along hi. In the original Fletcher-Reeves CG approach [5], the
search direction hi+1 is constructed (except for the first iteration) as

hi+1 = βihi + gi+1. (4)

Here, gi is the gradient of F(x) at xi, given as

gi = −∂F/∂x|x=xi, (5)

and βi is given as
βi =

gi+1.gi+1

gi.gi
. (6)

1 The classical PSO adopted in this work is a modification of the original PSO by
adding a weight factor for velocity restriction.
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The main idea in the CG scheme is to let each search direction be dependent
on the previously traversed search directions, which dramatically enhances its
efficiency: the learned experience by traversing the previous directions is used
in addition to the gradient of F, at the current position, to find an optimal
new search direction. In practice, it is found that neglecting the dependence on
the quite old search directions increases the efficiency of the CG method. This
is usually done by periodically restarting the iterative minimization procedure
each certain number of CG steps: setting hi = gi as in the first iteration.

3 The Proposed PSO-CG Algorithm

Before introducing our new PSO scheme, we point out the analogy between the
CG and PSO methods, briefly described in Section 2. Such an analogy can be
easily seen by considering one particle (say the nth one) and think of its velocity
V n

i as the search direction hi and the second term in Eq. (1) as a ’pseudo’-
gradient. In this case the weight factor w is analogous to the parameter β in
the CG method, and the time step α corresponds to bi (both are set to 1 in
this work). Thus, what we suggest here, to further improve the efficiency of the
classical PSO, is simply to replace the constant weight factor, w, in Eq. 1, by
an adaptive factor for each particle and iteration number, wn

i , calculated in a
similar way as β [Eq. (6)]. Moreover, we make use of the idea of restart, as
usually done in conjunction with the CG method.

It is worth stressing again that no explicit calculations of the true gradient
are performed, and the main purpose of this work is to provide an improved
PSO method. Thus, ’pseudo’-gradients (Gn

i ) are used in our proposed PSO-CG
approach. One may think that the most logical choice of Gn

i would be the second
term of Eq. (1). However, we found that this is not the case, and a much better
choice is given as

Gn
i = 2(r1Pn

L + r2Pg) − xn
i . (7)

These pseudo’-gradients are used only in the calculation of wn
i and in the case of

restart. For the other PSO-CG steps, we use the usual expression (Eq. 1) with
w is replaced by wn

i .
In the standard CG method, the magnitudes of the true gradients reduce

after each step and hence β is expected to be smaller than one. In our pro-
posed PSO-CG method, this may not be the case and it takes several steps to
reach a significant reduction in magnitude of the pseudo-gradients. Thus, for the
calculation of wn

i we used the formula

wn
i =

Gn
i+1.G

n
i+1

Gn
i−j .G

n
i−j

. (8)

where j can be considered as an adjustable parameter. The other new adjustable
parameter is the number of steps (M) after which the CG steps are restarted.
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4 Experimental Setup, Results and Discussion

To evaluate the proposed method, we used four well known test problems: one
unimodal (Rosenbrock) and three multimodal (Ackley, Griewank and Rastrigin)
[1]. In our present experiments the number of variables (dimension the vector x)
is set to 30, and the number of particles to 20. We use asymmetric initialization
as suggested by [6]. In the classical PSO runs, the constant inertial weight factor
is set to 0.72, and in both PSO and PSO-CG we used c1 = c2 = 1.49. The
maximum number of iterations is set to 2000, for the four test problems. The
results were averaged over 30 independent runs. These parameters are as those
used in similar studies, see for example [1].

We have performed several tests to determine the optimal values for j, in
Eq. 7, and the parameter M of the restart procedure, see section 3. We have
found the j = 4 is a very good value for the four considered test problems. As
for M , the reasonable values in the PSO and PSO-CG methods are of 10 and
7 for Ackley, 5 and 3 for Rosenbrock, 25 and 3 for Rastrigin, and 7 and 3 for
Griewank. These values for both j and M are used throughout this paper. More
tests are required to suggest a reasonable value of M in the PSO-CG scheme for
a wide range of problems.

To test the effects of both new features (adaptive weight factor and restart)
we performed experiments for the following four configurations: (i) classical PSO
with fixed w and no restart, denoted by PSO-NR. (ii) classical PSO with fixed w
and restart, denoted by PSO-RM (where M takes the values described above).
(iii) PSO-CG with adaptive w and no restart, denoted by PSO-CG-NR. (v)
PSO-CG with adaptive w and restart, denoted by PSO-CG-RM. The resulting
averaged best fitness as a function of iteration number are shown in Fig. 1, for
the four test problems considered. The final averaged best fitness obtained after
2000 iterations are listed in Table I, compared with the hybrid Genetic Algorithm
(GA) and PSO approach [14]. It is clear that our approach outperforms the GA-
PSO one.

Let us start our discussion with the effects of restart. Fig. 1 and Table 1 show
that the it leads to a significant improvement in both the classical PSO and
PSO-CG approaches, and that the reasonable value of M depends on the rate
of convergence of the adopted method. This can be understood as follows. The
velocity (or the search direction in the CG method) gets better with increasing
the iteration number. Hence keeping the dependence on old velocities, which
are quite far from the current one, is counter productive. Such a dependence is
removed by restart. This explains both the improvement of the classical PSO
and PSO-CG algorithms by the restart procedure, and the dependence of M on
the rate of convergence.

The high efficiency of CG method when compared to the steepest descent
method (considering only the gradient as the search direction) is due to the
conjugacy property of the search directions. In the PSO method, the inclusion
of the previous velocity in Eq. (1) has somehow similar effect: the classical PSO
is more efficient than the original one. Thus, allowing w to be adaptive and
calculated in a similar way as β in the CG method improves the conjugacy
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Fig. 1. The average best fitness as a function of iteration number for the four PSO
algorithms

Table 1. Summary of mean best value and standard deviation in the last iteration.
NC means not computed. WR means with restart [using the reasonable values of M ].
The best is in bold.

Problem PSO-NR PSO-WR PSO-CG-NR PSO-CG-WR GA-PSO
Mean Best Mean Best Mean Best Mean Best Mean Best

(stdv) (stdv) (stdv) (stdv) (stdv)
Ackley 10.870 6.518 0.888 0.388E-14 NC

(9.900) (8.56) (3.752) (0.638E-15) NC
Rosenbrock 103.152 61.241 76.478 27.197 28.996

(154.501) (64.100) (30.762) (0.619) (0.003)
Rastrigin 97.380 90.508 0.0 0.0 0.0

(30.34) (32.494) (0.0) (0.0) (0.0)
Griewank 0.021 0.018 0.0 0.0 0.005

(0.027) (0.023) (0.0) (0.0) (0.001)
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of the velocities in the PSO method, which explains the large improvement in
performance by going from PSO to PSO-CG algorithms.

5 Summary and Further Work

In this paper, we have pointed out the analogy between the classical PSO and the
conjugate gradient methods. This has allowed us to introduce an improved PSO
algorithm by employing two key features of the CG method: adaptive weight fac-
tors calculated as in the CG method and restart. Preliminary results obtained for
four well known test problems have demonstrated the highly improved perfor-
mance of the proposed PSO-CG algorithm. Further tests, analysis and deeper
understanding of proposed method as will as a detailed comparison with the
state-of-art standard PSO method are currently under consideration.

Acknowledgment. The work in this paper has been funded by Ministry of
Higher Education-Jordan, project number TH/1/01/2008.
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Abstract. The standard PSO has problems with consistently converging to good 
solutions, especially for multimodal functions. The reason for PSO failing to 
find (global) optima is premature convergence. Also, it has been shown in many 
empirical studies that PSO algorithms lack exploitation abilities. In this paper, 
we propose a hybrid of particle swarm optimization and local search, in which a 
standard PSO algorithm incorporates a local search algorithm. The standard 
PSO algorithm and the local search algorithm are devoted to exploration and 
exploitation of solution space, respectively. Particle’s current position is up-
dated using update equation of standard PSO and then is refined by local search 
algorithm. The introduction of a local search improves the capability of  
exploitation of local region of standard PSO and prevents from premature con-
vergence. The hybrid algorithm can locate multiple solutions without use of 
specific niching techniques. The hybrid algorithm showed superior performance 
on a set of multimodal functions. 

Keywords: Particle swarm optimization, Local Search, Exploration,  
Exploitation, Multimodal function. 

1   Introduction 

Particle swarm optimization (PSO) is a population-based search algorithm, originated 
from the simulation of the social behavior of birds within a flock. Since particle 
swarm optimization as a method for optimization of continuous nonlinear problem 
was introduced by James Kennedy and Russell Eberhart in 1995[1][2], it has been 
used across a wide range of applications, such as image and video analysis, design 
and restructuring of electricity networks, control, antenna design, electronics and 
electromagnetics, and so on [3]. 

The original PSO, however, has problems with consistently converging to good solu-
tions, especially for multimodal functions. A number of techniques have been devel-
oped to improve quality of solution to multimodal functions, including introduction of 
new social topologies, e.g. Mendes’s fully informed particle swarm (FIPS)[4], Sugan-
than’s dynamically increasing neighborhood[5]; sub-swarm strategy by which multiple 
sub-swarms behave cooperatively, e.g. Clerc’s parameter-free particle swarm system 
called TRIBES[6], Seo’s multi-grouped particle swarm optimization (MGPSO)[7]; 
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repelling method by which one particle is repelled from another in order to avoid colli-
sion, e.g. Blackwell’s collision-avoiding swarms[8]; hybrid algorithms, e.g. Kao’s hy-
brid genetic algorithm and particle swarm optimization (GA-PSO)[9]. 

In this paper, we propose another hybrid PSO algorithm incorporating a local 
search. Two features distinguish our hybrid PSO algorithm from other hybrids of 
PSO. Firstly, PSO and local search are devoted to different aspects of search i.e. ex-
ploration and exploitation, respectively. Secondly, local search focuses on exploita-
tion of a region which is centered at the current position of a particle, not its personal 
best position. 

2   Standard Particle Swarm Optimization 

Let {1, 2,..., }S N=  denote the swarm of particles. At any time, t , the position of a 
particle, ( )i i S∈ , is denoted as vector in n  dimensions, ( )i tx . In the next time step, 

1t + , particle i  will move to the position 

( 1) ( ) ( 1)i i it t t+ = + +x x v  (1)

where ( 1)i t +v  is the velocity of particle i  at time step 1t + . The velocity of particle 
i  is updated as follow: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i i it t c r t t c r t t+ = + − + −v v p x g x  (2)

where ( )i tp  is the personal best position of particle i  which it has visited with the 
best fitness before, ( )i tg  is the best position with the best fitness found by any of 
particle in 'si  topological neighborhood with respect to some social network, 1c  and 

2c  are positive acceleration constants, and 1 2, ~ (0,1)r r U  are random values in the 
range [0,1] , sampled from a uniform distribution. Without loss of generality, consid-
ering minimization problems, ( )i tp  is calculated as 

( )
( ) arg min{ ( ( )) | 0 }

i

i i
s

t f s s t= ≤ ≤
x

p x  (3)

where : nf R R→  is a fitness function. 
And ( )i tg  is calculated as 

( )
( ) arg min{ ( ( )) | ( ) }

j

i j
t

t f t j Neighbor i S= ∈ ⊂
p

g p  (4)

where ( )Neighbor i  is 'si  topological neighborhood with respect to some social net-
work. 

In the original version of PSO, each component of iv  is kept within the range 

max max[ , ]v v− +  to prevent particle speeds out of control. The use of hard bounds on 
velocity, however, presents some problems since the optimal value of maxv  is prob-
lem-specific. One of the most widely used improvements is the introduction of inertia 
weight by Shi and Eberhart [10][11], which is employed to better control the scope of 
search, reduce the importance of maxv , and perhaps eliminate it altogether. Incorporat-
ing the new parameter, the update equation of velocity is rewritten as 
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1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i i it w t c r t t c r t t+ = + − + −v v p x g x  (5) 

where w  is the so-called inertia weight. 
Another method of balancing global exploration and local exploitation was pro-

posed by Clerc and Kennedy [12]. Similar to the inertia weight method, this method 
introduced a new parameter χ , known as the constriction coefficient. The new pa-
rameter is defined as 

2

2

2 4
χ

φ φ φ
=

− + −
 (6) 

where 1 2 4c cφ = + > . 
The constriction coefficient is applied to the entire update equation of velocity: 

1 1 2 2( 1) ( ( ) ( ( ) ( )) ( ( ) ( )))i i i i i it t c r t t c r t tχ+ = + − + −v v p x g x  (7) 

When the constriction method is used, φ  is commonly set to 4.1, 1 2 2.05c c= =  and 
0.72984χ ≈ . This becomes the so-called canonical/ standard particle swarm optimi-

zation [13]. 

3   Hybrid of Particle Swarm Optimization and Local Search 

The reason for PSO failing to find (global) optima is premature convergence. Formal 
analyses of particle trajectories proved that each particle converges to a stable point, 
which is a weighted average of the particle’s personal best and neighborhood best 
positions. However, the point of stagnation may not necessarily coincide with a local 
minimum. 

Also, it has been shown in many empirical studies that PSO algorithms lack exploi-
tation abilities. PSO algorithms have the ability to quick drill down to good, promis-
ing regions of the search space, but lack the ability to refine solutions. 

The standard PSO is driven by own experience of individual particle which leads it 
to return to the place that most satisfied it in the past and social interaction with other 
particles by which individual particle learns from the best neighbor, in other words, it 
moves close to the best neighbor and to the best itself. 

An observation of particles’ behavior is that a particle which positions at ( )tx  at 
time step t  will directly move to ( 1)t +x  at next time step. Intuitively, the behavior of 
a particle is so discontinuous. A particle leaves a region in which it arrives just a mo-
ment ago without staying for a while to exploit the region. As a result, two disadvan-
tages are introduced. On the one hand, the particle may miss a better solution; on the 
other hand, the swarm may gather together so fast that it converges prematurely.  

Based on above observation, we propose a hybrid PSO algorithm. The basic idea is 
described as follows. A particle stops to exploit the new region for a period of time 
whenever it reaches a new position. A particle exploits a new arriving region through 
a local search. In our hybrid algorithm, a local search focuses on exploitation of the 
region visited by a particle and the movement of a particle aims at exploration of 
promising region. In this way, particles that reach different regions of solution space 
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may find different local optima through a local search, simultaneously. This is very 
important for optimization of multimodal functions. Our hybrid algorithm is depicted 
as Algorithm 1. 

 
Algorithm 1. Hybrid algorithm of PSO and local search 
FOR each particle ∈i S  DO 
Initialize ix , iv ; 

FOR each particle ∈i S  DO 
 ←i ip x ; 

 ← ( )i iy f p ; 
REPEAT 
 FOR each particle ∈i S  DO 
  Determine ig  with respect to given topology; 

  1 1 2 2( ( ) ( )i i i i i ic r c rχ← + − + −v v p x g x ; 

  ← +i i ix x v ; 

  ′ ← ( )i ilocalsearchx x ; 

  IF ′ <( )i if yx  THEN 

′←i ip x ; 

′← ( )i iy f x ; 
UNTIL stopping condition is true; 
 
Here, local search can be any trajectory method, such as steepest descent, Rosen-

brock, Nelder-Mead, Fletcher-Reeves, etc. In the implementation of our hybrid algo-
rithm, we adopt a simplified steepest descent algorithm, depicted in Algorithm 2. 

 
Algorithm 2. Simplified Steepest Descent Algorithm 

′ ←x x ; 
′← ( )y f x ; 

FOR = 1,2,..., iteri n  DO 

λ′ ′← − ∇ ( )new fx x x ; 

← ( )new newy f x ; 

IF <newy y  THEN 

 ′ ← newx x ; 

 ← newy y ; 
ELSE 
 λ λ← / 2; 

 
In Algorithm 2, there are two parameters which are required setting before the al-

gorithm is executed: the number of iterations, itern  and the step size, λ . In the im-
plementation of our algorithm, let ( ) / iterupper lower nλ = − , where upper  and 
lower  are the upper bound and lower bound of values of variables in a given func-
tion, respectively. As a result, the algorithm becomes a one-parameter one. 



 A Hybrid of Particle Swarm Optimization and Local Search for Multimodal Functions 593 

 

4   Experiment and Results 

We compared our hybrid algorithm (hPSO) with Passaro’s kPSO. We adopted the set 
of benchmark functions used in [14] plus two high-dimensional functions ( 30n = ). 
These functions are listed in Table 1. Global optima and optimal solution of each 
function are presented in Table 2. 

Table 1. Benchmark functions 

Name Function Domain 

Branin RCOS 2 2
1 1 2 2 1 1 12

5.1 5 1
( , ) ( 6) 10(1 )cos( ) 10

84
f x x x x x x

π ππ
= − + − + − +  1

2

[ 5,10]
[0,15]

x
x

∈ −
∈  

Six-hump 
camel-back 

2 4 6 2 4
2 1 2 1 1 1 1 2 2 2

1
( , ) 4(4 2.1 4 4 )

3
f x x x x x x x x x= − − + + − +  1

2

[ 1.9,1.9]
[ 1.1,1.1]

x
x

∈ −
∈ −  

Deb’s 1st 
function 

6
3 ( ) sin (5 )f x xπ=  [0,1]x ∈  

Himmelblau 2 2 2 2
4 1 2 1 2 1 2( , ) 200 ( 11) ( 7)f x x x x x x= − + − − + −  1 2, [ 6,6]x x ∈ −  

Shubert 2D 
5 5

5 1 2 1 2
1 1

( , ) cos(( 1) ) cos(( 1) )
i i

f x x i i x i i i x i
= =

= + + + +∑ ∑  
1 2, [ 10,10]x x ∈ −

Griewank 
2

6
1 1

1
( ) cos( ) 1

4000

nn
i

i
i i

x
f x

i= =

= − +∑ ∏x  [ 600,600]ix ∈ −  

Ackley 
2

1 1

1 10.2 cos(2 )

7 ( ) 20 20

n n

i i
i i

x x
n nf e e e

π
= =

− ∑ ∑
= − − + +x  

[ 30,30]ix ∈ −  

The values of parameters in our algorithm are set as in Table 3. We also adopted 
the same experimental settings used in [14]. 50 independent simulation runs on each 
function are conducted for both algorithms. Location of the global optima with an 
accuracy of 0.00001ε =  served as the criterion of termination. In Table 4, we report 
the number of function evaluations required to locate the global optima. For our algo-
rithm, the total number of evaluations is the number of objective function evaluations 
plus the number of gradient evaluations. 

Table 2. Global optima and optimal solutions for all functions 

Function Optimum Solution Description 

1f  1 1 2( , ) 0.397887f x x =  ( ,12.275), ( , 2.275), (9.42478,2.475)π π−  3 global 
minima 

2f  2 1 2( , ) 4.126514f x x =  (0.08983, 0.7126), ( 0.08983,0.7126)− −  

2 global 
maxima, 
several 
deceptive 
local ones 
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Table 2. (Continued) 

3f  3 ( ) 1f x =  0.1,0.3,0.5,0.7,0.9  

5 equally 
spaced 
global 
maxima 

4f  4 1 2( , ) 200f x x =  
(3.0, 2.0), ( 2.80512,3.13131),

( 3.77931, 3.28319), (3.58443, 1.84813)

−
− − −

 4 global 
maxima 

5f  5 1 2( , ) 186.730908f x x = −  ( 7.08350, 7.70831), (5.48286,4.85805),...− −  

18 global 
minima 
surrounded 
by 760 local 
minima 

6f  6 1 2( , ,..., ) 0nf x x x =  (0,0,...,0)  

several local 
minima, one 
global 
minimum 

7f  7 1 2( , ,..., ) 0nf x x x =  (0,0,...,0)  

numerous 
local min-
ima, one 
global 
minimum 

Table 3. Parameters setting of hPSO 

Parameter χ  
1c  2c  itern  

Value 0.72984 2.05 2.05 20 

Table 4. Average and standard deviation of number of evaluations 

Number of evaluations 
Functions Swarm size 

kPSO hPSO 
30 2084±440 2786±2092 

1f  
60 3688±717 4192±2052 
30 1124±216 1727±43 

2f  
60 2127±341 3479±49 
30 1207±688 996±24 

3f  
60 1654±705 1986±31 
30 2259±539 1532±7 

4f  
60 3713±570 3065±9 
30 81194±45646 1330±541 

5f  
60 117503±77451 2506±15 

6f  30 ⎯ 2029969±277461 

7f  30 ⎯ 1287320±151752 

5   Observation and Discussion 

From the computational results presented in Table 4, we can observe that hPSO 
showed a competitive performance over kPSO for the former four benchmarks in 
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terms of computational time. For the fifth benchmark, hPSO significantly outperforms 
kPSO in terms of computational time. For the last two high-dimensional functions, 
hPSO also found the global minima. Additionally, kPSO has extra computational cost 
of clustering procedure. 

For a deep observation of the process that hPSO finds out the global optima of a 
give function, several snapshots of hPSO running on the Branin RCOS function are 
plotted in Figure 1. We can observe that hPSO located all three global minima after 
several thousand function evaluations. Although hPSO has not incorporated a mecha-
nism of clustering, it also showed superior performance in optimization of multimodal 
functions. The inherent reason for this is the separation of exploration and exploita-
tion in hPSO. In hPSO, standard PSO algorithm focuses on searching for promising 
regions of solution space whereas local search algorithm focuses on finding out local 
optima. Moreover, particle’s current position is updated using update equation of PSO 
and then is refined by local search algorithm. In this way, hPSO prevents from prema-
ture convergence and meanwhile locates multiple global/local optima. 
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Fig. 1. Distribution of particles’ personal best positions at different time steps 

6   Conclusion 

In this paper, we proposed a hybrid particle swarm optimization method, called hPSO. 
The basic idea of hPSO is the cooperation of PSO algorithm and local search algo-
rithm. A standard PSO algorithm and a local search algorithm are devoted to explora-
tion and exploitation of solution space, respectively. The introduction of a local 
search improves the capability of exploitation of local region of standard PSO and 
prevents from premature convergence. 
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Experiments on a set of seven benchmark functions were conducted. The computa-
tional results show that hPSO can locate multiple solutions although it doesn’t adopt 
any specific niching techniques. The hPSO is suited for optimization of multimodal 
functions. 

For local search, we have just considered a simplified steepest descent algorithm. 
Further research will investigate the introduction of other local search algorithms, 
such as Rosenbrock, Nelder-Mead, Fletcher-Reeves, etc. 
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Abstract. The travelling salesman problem (TSP) is a classic problem of com-
binatorial optimization and is unlikely to find an efficient algorithm for solving 
TSPs directly. In the last two decades, ant colony optimization (ACO) has been 
successfully used to solve TSPs and their associated applicable problems. De-
spite the success, ACO algorithms have been facing constantly challenges for 
improving the slow convergence and avoiding stagnation at the local optima. In 
this paper, we propose a new hybrid algorithm, cooperative ant colony system 
and genetic algorithm (CoACSGA) to deal with these problems. Unlike the 
previous studies that regarded GA as a sequential part of the whole searching 
process and only used the result from GA as the input to the subsequent ACO 
iteration, this new approach combines both GA and ACS together in a coopera-
tive and concurrent fashion to improve the performance of ACO for solving 
TSPs. The mutual information exchange between ACS and GA at the end of 
each iteration ensures the selection of the best solution for the next round, 
which accelerates the convergence. The cooperative approach also creates a bet-
ter chance for reaching the global optimal solution because the independent 
running of GA will maintain a high level of diversity in producing next genera-
tion of solutions. Compared with the results of other algorithms, our simulation 
demonstrates that CoACSGA is superior to other ACO related algorithms in 
terms of convergence, quality of solution, and consistency of achieving the 
global optimal solution, particularly for small-size TSPs.  

Keywords: Ant colony optimization, Ant colony system, Genetic algorithm, 
Traveling salesman problem, Convergence, Consistency. 

1   Introduction 

The traveling salesman problem (TSP) is a classic problem in combinatorial optimiza-
tion research that can be described as follows: given a list of cities and their pair-wise 
distances, the task of TSP is to find the shortest possible tour that visits each city once 
and returns to its original city [1]. In computational complexity, TSP belongs to the 
class of NP-complete problems, and thus it is unlikely to find an efficient algorithm 
for solving TSPs directly [2]. As a result, various heuristics and approximation algo-
rithms have been devised to quickly produce usable solutions for TSPs [3,4]. 
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In the last two decades, many techniques of modern computational intelligence 
have been successfully adopted as effective tools to produce acceptable solutions for 
TSPs, such as neural networks [5,6], simulated annealing (SA) [7], genetic algorithm 
(GA) [8,9], ant colony optimization (ACO) [10–13], and their modifications and/or 
combinations in various ways [14-23]. 

ACO is a multi-agent system inspired by the foraging behavior of some ant spe-
cies. These ants deposit pheromone on the ground in order to mark some favorable 
path that can be followed by other members of the colony. The shortest path will be 
eventually taken by all ants through which food can be transported from the food 
source to the nest efficiently. In ACO, a number of artificial ants build solutions to the 
considered optimization problem and exchange information on the quality of these so-
lutions via a communication scheme similar to the one adopted by real ants. Although 
different ACO algorithms have been proposed and produced satisfactory outcomes in 
solving various TSPs, these algorithms face constantly challenges for improving the 
slow convergence and avoiding stagnation at the local optima.  

This paper takes on these constant battles by combining both GA and ACS to-
gether in a cooperative fashion to improve the performance of ACS for solving TSPs. 
Unlike the previous studies that regarded GA as a sequential part of the whole search-
ing process and only used the selected result from GA as the input to the subsequent 
ACO iteration or vice versa, our approach is to run both GA and ACS concurrently 
and mutual information exchange in terms of choosing the best solution is made after 
each iteration, which accelerates the convergence. This cooperative approach also 
creates a better chance for reaching the global optimal solution because the independ-
ent running of GA provides the assurance of diversity in population (or solutions) dur-
ing the entire process. 

In the remaining of this paper, we firstly describe some widely used ACO algo-
rithms for TSPs, which should point out where our new approach differs from the 
others. Our proposed algorithm, cooperative ant colony system and genetic algorithm 
(CoACSGA), will then be described, and followed by the presentation of the results 
of using this new algorithm for solving some selected benchmarking cases of TSP. 
Based on these results, comparisons are then made with the outcomes of other 
GA/ACO algorithms for TSPs. Conclusions are drawn at the last.  

2   The Main Ant Algorithms for TSPs 

Ant System (AS) is the first ACO algorithm proposed in the literature [10,11]. Its 
main characteristic is that at each iteration the pheromone values are updated by all 
the m ants that have built a solution at the end of that iteration. The pheromone τij, as-
sociated with the edge joining cities i and j, is updated by. 

∑
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where ρ is the evaporation rate, and k
ijτΔ  is the quantity of pheromone laid on edge 

(i, j) by ant k and expressed as 
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where Q is a constant, and Lk is the length of the tour constructed by ant k. 
In the construction of a solution, ants select the next city to be visited through a 

stochastic mechanism. The probability for ant k in city i to move to city j next is given 
by: 
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where Sk is the intersection of the candidate list of city i and the set of cities that ant k 
has not visited yet; α and β control the relative importance of the pheromone versus 
the heuristic information ηij, which depends on the distance between cities i and j dij 

ijd
ij

1
=η ,     (4) 

Max-Min Ant System (MMAS) [12,13] is an improvement over the original AS. It 
only allows the best ant to update the pheromone trails after each iteration and the 
value of the pheromone is bound between τmin and τmax. This pheromone update can 
be expressed as 
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where best
ijτΔ is defined as 
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where Lbest is the length of the tour of the best ant. This may be either the best tour 
found in the current iteration, or the best solution found since the start of the algo-
rithm, or a combination of both. 

Ant Colony System (ACS) [11] introduces a local pheromone update into 
AS/MMAS, in addition to the pheromone update performed at the end of each con-
struction process. Each ant applies it only to the last edge traversed through 

0)1( τϕτρτ ⋅+⋅−← ijij ,                                       (7) 

where ϕ ∈(0, 1] is the pheromone decay coefficient, and τ0 is the initial value of the 
pheromone. 

The main goal of the local update is to diversify the search performed by subse-
quent ants during an iteration, i.e., by decreasing the pheromone concentration on the 
traversed edges, subsequent ants are encouraged to choose other edges and, hence, to 
produce different solutions. This reduces the likelihood for several ants to produce 
identical solutions during each iteration. 



600 G. Dong and W.W Guo 

 

The local pheromone update is defined as 
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In addition to the differences in the pheromone update procedure, ACS also uses a 
different transition rule [17] for ant k in city i to select its next city j to visit: 
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where q0 is a random constant in [0, 1]. 
Attempts have been made to improve the performance of these ACO algorithms 

since their introduction. The accumulated experience ant colony (AEAC) introduces a 
weighting factor based on the results of the current and/or previous iterations into the 
element selection for the next round [14]. The ACO with multiple ant clans 
(ACOMAC) allows different groups of ant to exchange information at some stages in 
pheromone update, incorporating other search strategies during execution [16]. The 
cunning ant system (cAS) allows an ant to construct a solution according to both the 
pheromone density and part of a solution from a previous iteration so as to reduce 
premature stagnation and thus improve the performance of AS algorithms [18]. In 
minimum spanning tree ant colony optimization (MST-ACO), a dual nearest insertion 
procedure is adopted to initialize the pheromone; the low bound is computed by 1-
minimum spanning tree; the Lin-Kerninghan local search is also utilized for selecting 
the next city to visit [21]. In an improved MMAS (iMMAS) algorithm [22], the 
pheromone concentration of a tour is reinitialized using a modified τmim-τmax scheme 
to speed up the searching process of MMAS.  

The performance of ACO can be much improved by using a pheromone diffusion 
model (PDACO) to facilitate the intercommunication among nearby ants [15]. The 
pheromone diffusion model in PDACO was replaced by an ant-constant pheromone 
diffusion model for ACO (ACPDMACO) that takes the energy consumption of an ant 
during the tour into consideration of pheromone update in each iteration [20], this in-
volving a complex mathematical model. A multi-direction search rule was introduced 
into ACO (MSACO) for conducting local search during iteration, and satisfactory 
outcomes were reported [19]. Pilat and White [24] investigated the performance of 
embedding GA into ACO (ACSGA and MetaACS) for solving TSPs but the trail did 
not yield improved results.  

3   Cooperative ACS-GA (CoACSGA) for TSPs  

Unlike those hybrid intelligent ACO algorithms proposed previously, in which GA, 
EA, or PSO played only a partial role in fine tuning the parameters for accelerating 
ACO convergence, we here propose a new algorithm that is designed to execute both 
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ACS and GA concurrently and cooperatively. This algorithm not only maximizes the 
advantages offered by both ACS and GA independently, but also makes ACS con-
verge to the global optima faster driven by quick convergence and diversity control 
provided by GA. A generic expression of CoACSGA is given in Algorithm 1.  

Although this generic algorithm looks simple, it requires a good understanding on 
some key concepts adopted in this algorithm which differ it from others. Firstly, the 
strategy of selecting the next city for an ant to visit is based on natural ordering and 
selection. At each city, we create a sorted list of a certain number of cities that are the 
closest to it. In a natural selection process, the closest cities have a higher probability 
to be chosen for the next move. To make the use of this list more efficient, this sorted 
list should only contain some closest cities. This constant (C0) depends on the city 
number n of a particular TSP, and a rough guide would be C0 = (5% - 15%) × n.  
 

Set parameters; initialize pheromone trails 
Construct FirstAntSolutions (FAS) by ACS 
Initialize GA using FAS 
while termination condition not met do 

Construct NewAntSolutions (NAS) by ACS 
Get NewAntGeneration (NAG) by GA 
Select NewBestSolution (NBS) from NAS and NAG 
Update Pheromones 

endwhile 
Terminate with NBS as the solution 

Algorithm 1. The cooperative ACS-GA (CoACSGA) algorithm for TSPs 

For ant k at city i to select the next city j to visit, ant k will first consult the sorted 
list c(i) of city i to select the closest city from it. If this city is in set Sk, it will be the 
next city to visit. If c(i) has no intersection with Sk, then the traditional ACS mecha-
nism is used to select a city outside the list. This selection process is summarized as: 

⎪⎩

⎪
⎨
⎧ ∈

=
.      maxarg

,                  )(min

otherwiseητ 

Sjific
j β

ijij

k
   (10) 

Since this natural ordering and selection strategy is adopted for choosing the next city 
to visit after each iteration, local pheromone update is no longer required. 

The solution (sequence of cities visited) of each ant’s first ACS iteration constitutes a 
component of the initial population for GA. Afterwards ACS and GA are executed con-
currently in the while loop. At the end of each iteration, the two best solutions with the 
shortest length of tour from both ACS (Abest) and GA (Gbest) are compared to determine 
the shortest path for the round. Whichever is shorter, it is used to replace the other. This 
keeps the best solution of each round evolving for fast convergence. 

4   Simulation Results and Discussion  

The proposed CoACSGA was used to simulate the following four well-known TSPs: 
Berlin52, Eil51, Eil76, and KroA100. The parameters used for individual problems 
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are given in Table 1, and the maximum iteration number was set to 500 for all four 
cases. The simulation results of running each case 20 times are listed in Table 2.  

Our simulation shows that the optimal solution for each case was achieved at least 
twice in every 20 runs of CoACSGA and each best solution was reached within 120 
iterations at the worst.  

The performance of an algorithm can be evaluated from many aspects associated 
with its design, implementation, parameter setting, running environment, and so forth. 
We here choose the accuracy of the best solutions, computing cost and optimal con-
vergence, and consistency as the major factor to evaluate the performance of CoAC-
SGA, compared with the published results of some other algorithms.  

Table 1. Parameters used in CoACSGA for simulating TSPs  

TSP n m α β q0 τ0 ρ C0 Q pc pm 
Berlin52 52 50 0.1 2 0.5 20 0.1 6 10000 0.4 0.6 
Eil51 51 50 0.1 6 0.5 20 0.1 8 1000 0.4 0.6 
Eil76 76 60 0.1 10 0.5 20 0.1 8 1000 0.4 0.6 
KroA100 100 50 0.1 5 0.5 20 0.1 8 100000 0.4 0.6 

Note: pc is the probability for crossover and pm is the probability for mutation in GA. 

Table 2. Simulation results for TSPs using CoACSGA (20 runs for each case)  

Solution Times 
the best 
reached  

Iterations to reach the 
best 

Optimal 
solution 

[3] 

TSP 

Best Worst  Mean  Best Worst   
Berlin52 7542 7869 7632 8 7 116 7542 
Eil51 426 437 429 4 31 103 426 
Eil76 538 555 544 2 38 64 538 
KroA100 21282 21799 21493 2 2 111 21282 

 
The best solutions for Eil51, Eil76, and KroA100 of eight GA/ACO related algo-

rithms are listed in Table 3. Since the results for Berlin52 have been published by dif-
ferent authors, these best solutions are tabulated in Table 4 separately. It should be 
noted that we exclude a few conference articles reporting some algorithms that 
achieved either the optimal solutions to these selected TSPs even better than the 
known benchmarking optimal solutions, or the known optimal solutions but without 
providing necessary information on how these were reached. 

For Eil51, Eil76, and KroA100, our algorithm is the only one that achieved the op-
timal solutions to all cases among the eight GA/ACO algorithms. The noticeable point 
for these cases is that the algorithms (ACSGA and MetaACS) proposed by Pilat and 
White [24] of combining GA and ACS failed to reach the optimal solutions for Eil51 
and KroA100. This could be attributed to the sequential design between GA and ACS, 
which did not encourage either approach to maximize its advantages independently 
during iteration. Efforts of both GA and ACS might be cancelled out at some stage 
during the process. This potential conflict is avoided in CoACSGA by adopting a 
concurrent model during each iteration and hence the optimal solutions are achieved 
quickly. 
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Table 3. Best solutions resulted from different GA/ACO algorithms for the selected TSPs 

TSP KOS 
[3] 

CoACSGA GA 
[9] 

GCGA 
[9] 

MMAS 
[13] 

ACS 
[16] 

ACOMAC 
[16] 

ACSGA 
[24] 

MetaACS 
[24] 

Eil51 426 426 430 427 427 434 430 432 428 
Eil76 538 538 552 550 N/A 559 555 N/A 542 
KroA100 21282 21282 21554 21292 21320 21684 21457 21544 21513 

For Berlin52, in addition to our algorithm, ACPDMACO [20] also achieved the 
optimal solution to the problem. Among other ACO algorithms, ACS, MSACO, and 
iMMAS are very close to reach the optimal solution (Table 4). 

Table 4. Best solutions resulted from different ACO algorithms for Berlin52  

TSP KOS 
[3] 

CoACSGA AS 
[22] 

MMAS 
[22] 

iMMAS 
[22] 

ACS 
[19] 

MSACO 
[19] 

PDACO 
[20] 

ACPDMACO 
[20] 

Berlin52 7542 7542 7683 7665 7545 7544 7544 7664 7542 

 
In our experiments, the optimal solutions to all four cases have been found at least 

twice in 20 runs (10%), particularly 8 times (40%) for Berlin52 and 4 times (20%) for 
Eil51. Such high repetition rate has not been reported in all the referred publications. 
This indicates that CoACSGA has a high level of consistency in successful searching 
optimal solutions for TSPs, particularly for small-size TSPs, such as Eil51 and Berlin52. 

5   Conclusion  

The proposed new hybrid algorithm, CoACSGA, combines both GA and ACO to-
gether in a cooperative and concurrent fashion to improve the performance of ACO 
for solving TSPs. This is different from the previous studies that regarded GA as a se-
quential part of the entire searching process and only used the selected result from GA 
as the input to the subsequent ACO iteration. The mutual information exchange be-
tween ACS and GA at the end of each iteration ensures the selection of the best solu-
tion for the next round, which accelerates the convergence. The cooperative approach 
also creates a better chance for reaching the global optimal solution because the  
independent running of GA will maintain a high level of diversity in producing next 
generation of solutions. Our simulation not only proves these expectations, but also 
indicates that this approach has a high level of consistency in successful searching op-
timal solutions for TSPs, particularly for small-size TSPs.  
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Abstract. A controller of uncertain DC server motor is presented by using the 
fuzzy system with a real-time genetic algorithm. The parameters of the fuzzy 
system are online adjusted by the real-time genetic algorithm in order to gen-
erate appropriate control input. For the purpose of on-line evaluating the sta-
bility of the closed-loop system, an energy fitness function derived from 
backstepping technique is involved in the genetic algorithm. According to the 
experimental results, the genetic fuzzy control scheme performs on-line track-
ing successfully.  

Keywords: genetic algorithm, DC server motor, control systems. 

1   Introduction 

Genetic algorithms (GAs) utilize the concept of “survival of the fittest”. Based on the 
procedure of the genetic operations, GAs can find an optimal solution for engineering 
problems, such as optimization problems and machine learning. Therefore, GAs, 
which possess the simple implement ability and the capability of escaping from local 
optimum, are often incorporated into the design of the fuzzy systems [1-16] in order 
to search the optimal parameters of the fuzzy systems. In [17], to guarantee the sys-
tem stability for the nonlinear systems, the solution of the Lyapunov condition is 
solved by the genetic algorithm. An optimal genetic fuzzy controller design with 
index function obtained by genetic algorithms has been proposed in [18]. Vehicle 
system control involved in GAs has been proposed in [19-20]. Motor control via GAs 
has been proposed in [21-24].  

Traditionally, GAs require the procedure of off-line learning before they on-line 
control a plant. For the purposes of avoiding the procedure of off-line learning and 
evaluating on-line the stability of the closed-loop systems, an energy fitness function 
derived from backstepping technique is involved in the genetic algorithm. In this 
paper, a simple genetic algorithm with the energy fitness function is used to tune the 
parameters of fuzzy system for the control of uncertain DC server motors. The pa-
rameters of the fuzzy system are online adjusted by the simple genetic algorithm in 
order to generate appropriate control input for uncertain DC server motors. 
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2   Design of Backstepping Controller for DC Server Motors 

The equivalent model of DC server motors is shown in Fig. 1: 

 

Fig. 1. The equivalent model of DC server motors 

where R is the armature resistance, L is the armature inductance, θ  is the angular 
displacement of the motor shaft, B is the friction constant, and J  is the armature 
moment of inertia of the motor.  
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Our control objective is to develop the genetic fuzzy controller so that the uncertain 
DC server motor system output can asymptotically track a bounded command rx . 

Now, the detail design procedure of the backstepping controller for motor systems 
(1) is described as follows. 

Let the tracking error be 1 1 rz x x= − . Then, the derivative of 1z  can be expressed 

as 

1 1 rz x x= −  (2)

Define a virtual control as 

1 1 1rx c zα = −  (3)

where 1 0c >  is a design parameter. By using 2 1 1z x α= − , equation (2) can be  

rewritten as 

1 2 1 1z z c z= −  (4) 

The derivative of 2z  can be expressed as 

2 2 1 2 1 1( )rz x x c z xα= − = − − +  (5)

Define the control law as 
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where 2 0c >  is a design parameter, and ( ) /t bf K K RB JR= + . Then, from (6), equa-

tion (5) can be rewritten as 

2 2 2 1z c z z= − −  (7)

Consider the Lyapunov function as 
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Based on the above discussion, the state trajectory 1x  can asymptotically track the 

bounded reference rx . Since f  is uncertain, the optimal control law (6) cannot be 

obtained. To solve this problem, the fuzzy system is used to approximate the uncer-
tain continuous function f . First, the uncertain continuous function f  in (6) is re-

placed by fuzzy system, i.e., f̂ . The resulting control law is 
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Then, substituting (9) in (1), we obtain the error equation 
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where Uf f≤ < ∞ . In order to instantaneously evaluate the stability of the closed-

loop system, we define an energy fitness function as 

2
ˆF z f=  (12)

Note that a chromosome with the largest energy fitness function denotes the optimal 
solution.  
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3   Genetic Fuzzy Systems 

Generally, the dynamic of DC server motors is uncertain because they suffer from 
structured and unstructured uncertainties such as load variation, friction, external 
disturbances, and so forth. Therefore, in order to acquire favorable performance for 
motor control, it is necessary that a control algorithm should possess robustness to 
uncertainties. In this paper, fuzzy system is used to approximate the uncertainties. A 
simplified genetic algorithm is used to adjust the parameters of the fuzzy system in 
order to instantaneously generate the appropriate control strategy. The simplified 
genetic algorithm has an energy fitness function which is used to evaluate the real-
time stability of the closed-loop systems. 

First, we construct the fuzzy inference engine, and use fuzzy IF-THEN rules to per-
form a mapping from training input data qx ,  1, 2, ,q n= , and the output data y . 

By using product inference, center-averaging, and singleton fuzzification, the output 
of the fuzzy system y  can be expressed as: 

1 1

1 1

( )

( )

i
q

i
q

nh i
qAi q

nh

qAi q

w x
y

x

μ

μ

= =

= =

⎛ ⎞⎜ ⎟
⎝ ⎠=

⎛ ⎞⎜ ⎟
⎝ ⎠

∑ ∏
∑ ∏

 (13)

where ( )i
q

qA
xμ  is the membership function of  i

qA , h is the total number of IF-THEN 

rules, and iw  is the point at which ( ) 1i
i
pB

wμ = . To evolutionarily obtain the adjust-

able parameters iw  of the fuzzy system, we define the chromosomes as  

1 1 11
1 2

2 2 22
1 2

1 2

h

h

k k kk
h

w w ww

w w ww

w w ww

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥Ξ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (14)

where 1 2[ ]hw w w w=  is  the th  chromosome  for 1, 2, ,k…= . The per-

formance of each chromosome is evaluated according to the defined energy fitness 
function (12). After generations of evolution, it is expected that the genetic algorithm 
converges, and a best chromosome with largest fitness representing the optimal solu-
tion to the problem is obtained. The crossover [16] uses the single gene crossover 
operator, where the single gene crossover operator generates new genes, ˆi

jw , only at 

the position j-th for all chromosomes. After sorting, the first chromosome is the best 
one in the population in terms of fitness. As to the operation procedure of the muta-
tion operator, the (k/2+1)-th chromosome is replaced by the sum of the first chromo-
some and a random perturbation according to the mutation rate mp .  
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4   Experimental Results 

In this section, using practical circuits and a microcontroller to control the DC server 
motor system verifies the performance of the proposed method. The block diagram 
of hardware implementation is shown in Fig. 2. The hardware structure is composed 
of a personal computer, a microcontroller (IC 82G516), a switching DC-DC con-
verter, and SEM MT22R2-24 DC server motor system. The proposed method is 
implemented by using the personal computer with 5-ms sampling interval, and the 
DC server motor system is controlled by Pulse-Width Modulation (PWM) method, 
where switch-duty ratio D∈ [-1,1] is varied to adjust the output of the Buck DC-DC 
converter.  

Micro
controller

Buck
DC-DC

Converter

PWM

Servo
Motor

Motor
control
module

Servo Motor System

Feedback signal

 

Fig. 2. The block diagram of hardware implementation 

It is assumed that the design parameters are set as 1 10c = , 2 15c = , 4k = , and 

49h = . The desired reference signal is set as 60 100exp( )rx t= − − . The experimental 

results are shown in Figs. 3-5. The tracking error response is shown in Fig. 3. The 
associated switch duty ratio D and the associated control input voltage av  are shown 

in Figs. 4 and 5, respectively. From the experimental results, it is shown that the state 

1x  of the server motor can track the reference signal rx  well. 

 

           Fig. 3. The tracking error 1 1 rz x x= −
                 

Fig. 4. The switch duty ratio D 
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Fig. 5. The control input voltage av  

5   Conclusions 

The genetic fuzzy control scheme has been proposed for uncertain DC server motor. 
The parameters of the fuzzy controller can be tuned instantaneously via the genetic 
algorithm without the procedure of off-line learning. The experimental results have 
shown that the genetic fuzzy control scheme performs on-line tracking successfully. 
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Abstract. Multi-objective evolutionary algorithms (MOEAs) have been
the mainstream to solve multi-objectives optimization problems. In this
paper we add the static Bayesian game strategy into MOGA and propose
a novel multi-objective genetic algorithm(SBG-MOGA). Conventional
MOGAs use non-dominated sorting methods to push the population to
move toward the real Pareto front. This approach has a good performance
at earlier stages of the evolution, however it becomes hypodynamic at
the later stages. In SBG-MOGA the objectives to be optimized are sim-
ilar to players in a static Bayesian game. A player is a rational person
who has his own strategy space. A player selects a strategy and takes
an action to realize his strategy in order to achieve the maximal income
for the objective he works on. The game strategy will generate a tensile
force over the population and this will obtain a better multi-objective
optimization performance. Moreover, the algorithm is verified by several
simulation experiments and its performance is tested by different bench-
mark functions.

Keyword: Multi-Objective Optimization, Genetic Algorithm, Static
Bayesian Game.

1 Introduction

Many real world problems are multi-objective optimization problems (MOP). A
MOP is a problem which has two or more objectives that need to be optimized
simultaneously, and there might be constraints imposed on these objectives, even
that the objectives of the MOP are in conflict with each other. Generally, the
MOPs could be expressed as follows,

min{z1 = f1(x), z2 = f2(x), . . . , zq = fq(x)} (1)
s.t.gi(x) ≤ 0, i = 1, 2, . . . ,m (2)

Where x ∈ Rnis the vector of the decision variables, fi(x) is one of the q ob-
jective functions, and gi(x) is one of the m inequality constrain functions which
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constitute the feasible solutions space. The Multi-objective optimization (MO)
aims to optimize the vector-valued objective function. Unlike signal objective
optimization, the solution of a MOP is not a signal point, but a set of points
that represent the best trade-offs between the objective functions. At the time
Mathematical programming techniques manifest their limitation to solve Multi-
objective optimization problems (MOP), Evolutionary algorithms (EA) such as
genetic algorithm have more advantages to solve MOPs. For example EAs deal
simultaneously with a set of possible solutions in a single run, and are less sus-
ceptible to the shape or continuity of the Pareto front.

During the past two decades, a large number of MOEAs have been suggested,
among which there are many excellent and representative algorithms, such as
NSGA[4], NPGA[5], MOGA[3], SPEA2[6], PAES[8], NSGA-II[7]. At the begin-
ning, NSGA[4] and NPGA[5] introduced non-dominated sorting method with
MOEAs, which demonstrated the capability of the MOEAs in solving MOP.
However these approaches did not include elitism. After the present of SPEA[6],
elitism mechanism had been an indispensable composition of MOEAs, and in [1]
it has been seen as a landmark of the field by the authors. SPEA2[6] proposed by
Eckart Zitzler et al, has three main differences with SPEA: 1)An improved fitness
assignment scheme was used; 2) A nearest neighbor density estimation technique
was incorporated; 3) A new archive truncation methods guarantee the preser-
vation of boundary solutions was created. These improvements give SPEA2 a
better performance. NSGA-II[7] usually considered as a completely different al-
gorithm with NSGA, this algorithm has proposed a fast non-dominated sorting
approach with O(MN2) computational complexity.

All these mentioned MOEAs are non-dominated sorting based, which generate
force to push the population to move toward Pareto front In this paper we
introduce SBG-MOGA which adds static Bayesian game strategy into MOGA.
So in SBG-MOGA, besides the force generated by the non-dominated sorting,
there will be a tensile force generated by the running game between objectives.
These two kinds of forces together act on the population, which will obtain a
better performance in terms of finding a diverse set of solutions and drawing
near the true Pareto-optimal set.

2 Related Work

Because of the properties of genetic algorithm, it’s very fit to solve the multi-
objective optimization problems (MOP). The main steps of the signal objective
optimization genetic algorithm (GA) are: 1) initialize the original population; 2)
compute the fitness of the individuals in the population; 3) put the crossover and
mutation operators on the parents population and give birth to a new offspring
population; 4) if the algorithm meets the end conditions then stop running, or
else jump to step 2). Unlike the signal objective optimization GA, the MOGA
have many new properties, such as Pareto Optimal Set, non-dominated sorting,
elitism mechanism.
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2.1 Non-dominated Sorting

The solutions of MOPs are a set of points known as Pareto Optimal Set that
cannot be improved. In order to push the population to move toward Pareto
Optimal Set, NSGA[4], NPGA[5] and MOGA[2] introduce the non-dominated
sorting into MOEA. First, the definitions of dominate and non-dominate are as
follows (without loss the generality, and assuming the minimization problem.):
Vector u=(u1,u2,. . . ,un); vector v=(v1,v2,. . . ,vn)

Definition 1. (dominate)
u is dominate v if

ui ≤ vi, ∀i = 1, . . . , n (3)
and ui ≺ vi, ∃i = 1, . . . , n (4)

Definition 2. (non-dominate)
u and v are said to be non-dominate to one another if u is not dominate to v
and v is not dominate to u.

MOGA changes the step 2) of GA as follows: 1) the population is ranked on the
basis of non-domination; 2) The fitness assigned to the individuals from the rank
1 to rank n decrease gradually. In many algorithms, nearest neighbor density es-
timation technique is used with MOGA to allow a more precise guidance of the
search process [6]. Later NSGA-II[7] has proposed a fast non-dominated sort-
ing approach, which improves the computational complexity of non-dominated
sorting from O(MN3) to O(MN2). Firstly, for each individual for example pi

the approach calculates two entities: 1) the domination count ni, which is the
number of solutions that dominates the solution pi, and 2) Si, which is a set of
solutions that the solution pi dominates. Secondly, the approach performs the
following steps: 1) for each individual pi(i=1,,n), if ni=0, put it in a list Qj

(j initialized with 0, then increased by one) and give them fitness; 2) for each
individual pi in Qj, and for each individual pt in Si, decrease nt by one; 3) if
population is not empty, jump to step 1, else stop.

2.2 Elitism Mechanism

The innovation of elitism mechanism enhanced the convergence properties of
a MOEA. SPEA[6] suggested an elitism mechanism with the concept of non-
domination. The elitism mechanism maintains an external population at ev-
ery generation storing all non-dominated solutions discovered so far beginning
from the initial population. This external population participates in all genetic
operations.

3 Proposed Algorithm

In this section, we introduce a novel MOGA based on static Bayesian game
strategy (SBG-MOGA). In SBG-MOGA, each generation of evolution is consid-
ered as a game and each objective to be optimized is considered as a player.
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A player is clever enough to know how to select an appropriate strategy to get
the biggest income in the game. The algorithm contains a sequence of rounds,
in each round players play with each other, which will provide the population
with tensile force to pull them to move toward the true Pareto front. In addition,
elitism mechanism is adopted in our algorithm.

3.1 Game Modeling

The game modeling is adopted to decide how a new population is created. First,
without loss of generality, the following definitions and assumptions apply:
Assumption (Objective Functions & Individual Vector)
Assuming that there is a minimization problem and the number of objectives is
n, and X is the finite search space where the objective function
F = {f1(x), f2(x), . . . , fn(x), x ∈ X}. Also there is a player for each objective,
A = (a1, a2, . . . , an);And at generation t in MOGA (t is not the last one) the
number of individuals is m, the individual vector B(t) = (b1, b2, . . . , bm);

Definition 3. (Fitness Matrix)
The fitness vector of an individual for all the objectives: vft = (t1, t2, . . . , tn),

and the fitness matrix of the population Mft =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vft
1
vft
2
...
vft

m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Definition 4. (Profit Matrix)
After all the players in the game perform their actions, there will be a profit

matrix: Mp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p10 p11 · · · p1n

p20 p21 · · · p2n

...
... · · · ...

pn0 pn1 · · · pnn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

pij indicates that the player i’s action results

a pij profit to player j. To clarify the divergence in Mp, we introduce Mp′,where

pij
′ = pij − 1

n

n∑
t=1

ptj

Definition 5. (Strategy Vector)
All players have a Strategy space, defined as strategy vector vs = (s1, s2, . . . , sc);

Definition 6. (Friendly Degree Matrix)
During the game a player (for example a) perform a strategy to maximize its
profit, however this may damage or increase another player’s (for example b)
profit. So if b’s profit increased because of a’s action, b will increase his friendly
degree to a, also he will have a bigger probability to take a friendly strategy for
a. Thus the friendly degree indicates the extent of reduction or increment of b’s
profit and the probability for b to take a certain strategy (malicious or friendly)
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to a. The friendly degree matrix Mfd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d11 d12 · · · d1n

d21 d22 · · · d2n

...
... · · · ...

dn1 dn2 · · · dnn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Where dii is the

friendly degree player ”i” to himself, thus dii is assigned with a max-value (for
example 100). On the other hand, dij is assigned with a mid-value at first, and
during the algorithm run time it will change based on the p′ji.

The game modeling can be described as follows: each player takes an action to
carry out his best strategy which is selected from vs to maximize his profit. The
selection of the best strategy is affected by friendly degree matrix Mfd, and the
profit matrix Mp, so in order to select the best strategy players must take all the
factors including the effects of other players into account. Then the most impor-
tant is what the action and the strategy exactly are. According to the definitions
and assumptions given above, an action and a strategy vector defined as:

Weight Vector. for player ”i”, there is a weight vector vw
i = (wi1, wi2, · · · , win)

,which reflects the player’s reference on each objective. An individual (for exam-

ple bk) has a fitness mapping on player ”i”, which is calculated by
n∑

j=0
wijtkj .It’s

obvious that wii will be the max-value(100), and wij ,i = j is assigned according
to the strategy that the player adopts.

Strategies. The strategy space in our algorithm defined as vs = (S1 = ”weight
w = 75”, S2 = ”weight w = 25”, SS = ”weight w = 100”); where SS is the
strategy that chosen by the players for themselves. A player also chose a strategy
to each other player. In other words all the strategies chosen by the player ”i”
are (Sx1, Sx2, . . . , Sxn), whereSxi = SS .

Action. After the best strategy has been selected, each player ”i” 1) gets the
weight vector vw

i based on the strategy, and then 2) calculates the fitness of
the population mapped on player ”i”, using vf = Mft • vwT

i ; 3) selects m/n
individuals from the population to build up a subpopulation according to sorted
fitness vf ′, puts the crossover and mutation operators on the subpopulation
independently. And then the algorithm groups n subpopulations together to
build up a new offspring population, then calculates Mp′, and updates friendly
degree matrix Mfd.

Take a simple example: there are 3 players in the game model (use 1, 2, 3 to
represent the three players respectively) and the friendly degree matrix Mfd is
the common knowledge. So in order to maximize his benefit, player ”1” must
consider the strategies chosen by ”2” and ”3”. The strategy (SS , S2, S2) may be
not the final best choice for ”1”, because that will damage the friendship with
the other two players and as a result the other players will consider a bigger
probability to choose a strategy that harm 1’s benefit. Thus ”1” must take a
comprehensive consideration of friendly degree matrix Mfd, profit matrix Mp

and the reflection of other players.
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3.2 Description of SBG-MOGA and Convergence Properties

According to the analysis above, we propose the general flow of our algorithm
as follows:

Step 1. Initialize population B(0) and Mfd, initialize an elitism archive set A(0)
to store all non-dominated solutions discovered in the algorithm, t=0;
Step 2. Evaluate the fitness matrix, and put non-dominated solutions into
elitism archive, of course the elitism mechanism is open, mechanisms such as
crowding distance[7] can be adopted;
Step 3. If terminate condition is satisfied, then stop;
Step 4. Each player publish his strategy, and takes an action as described in
section 3.1.
Step 5. Increase t such that t:=t+1, then return to step 2.

The step 4 is the generation from B(t) to B(t+1). Let F be a set of objective
space of MOGA, the non-dominated set in F is denoted as M(F,≺). Let X be
the finite search space; f:X → F be a mapping from X to F . For some A ⊆ X ,

Mf (A,≺) = {a ∈ A : f(a) ∈M(f(a)),≺}

represents the non-dominated individuals in generation A. So our algorithm
can be described as figure 1. In literature [2] the authors proved the sufficient
convergence condition of multi objective optimization algorithm, and according
to their classification our algorithm belongs to the base algorithm VV.

1: Initialize B(0) random;
2: A(0) = Mf (B(0),≺);
3: t=0;
4: repeat:
5: generate B(t+1) from B(t)
6: A(t + 1) = Mf (B(t + 1) ∪ A(t),≺)
7: t=t+1;
8: until stop condition satisfied

4 Experiment Results

To verify our algorithm, six benchmark functions were used to make a compar-
ison with NSGA-II [7]. All experiments have been executed on a PC (Pentium
IV-3GHz CPU, 512M DDR, WinXP OS, VC++ 6.0). We follow the NSGA-II’s
authors’ suggestion to set the parameters. Population size and generations are
set to 100 and 250 respectively. The probability of crossover is set to 0.9, and
probability of the mutation is 1n. Both ηc and ηm are set to 20. Moreover, We
adopt two variables C(A, B) and ”Δ” to compare the algorithms accurately.
where C(A, B) denote the ratio of solutions in A dominates that in B, and ”Δ”
reflects the performance of solutions’ distributing. A good uniform distribution
can make ”Δ” value be zero.
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All test functions are computed 30 times, and then calculate an average value
of the results for each performance parameter. These test functions listed in the
following formulae are all minimal value problem chosed from a classical study
in MOPs field.

Test case 1

f1(x) = x2

f2(x) = (x− 2)2

Where x ∈ [−103, 103]

Test case 4

f1(x, y) = x
f2(x, y) = (1 + 10y).[1 − ( x

1+10y )a

− x
1+10y . sin(2πqx)]

Where x, y ∈ [0, 1], a = 2, q = 4

Test case 2

f1(x) =

−x if x ≤ 1
−2 + x if 1 < x ≤ 3
4 − x if 3 < x ≤ 4
−4 + x if x > 4

Where x ∈ [−500, 500]

Test case 5

f1(x) = x

f2(x) = g(x)[1 −√x1/g(x)]
g(x) = 1 + 9(

∑n
i=2 xi)/(n− 1)

Where x ∈ [0, 1], n = 30

Test case 3

f1(x) = (x2 + y2)
1
8

f2(x) = ((x− 0.5)2 + (y − 0.5)2)
1
4

Where x, y ∈ [−100, 100]

Test case 6

f1(x) = x1
f2(x) = g(x)[1 − (x1/g(x))2]
g(x) = 1 + 9(

∑n
i=2 xi)/(n− 1)

Where x ∈ [0, 1], n = 30

Table 1. Experiment Comparison

Distribution comparison of different algorithms using Δ
Test function 1 2 3 4 5 6
SBG-MOGA 0.416 0.712 0.513 0.594 0.483 0.368
NSGA-II 0.450 0.830 0.621 0.613 0.593 0.593

Convergence comparison of different algorithms using C
Test function 1 2 3 4 5 6
C(S,N) 0 0 0.08 0.04 0.1 0
C(N,S) 0 0.03 0.11 0.17 0 0

The results in table 1 shows that our new algorithm has a better performance
over NSGA-II for the parameter ”Δ”, and that our method is approximate with
NSGA-II however our proposal has shown a relative disadvantage in convergence
in the obtained non-dominated front.
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5 Conclusions

Currently, all MOEAs are based on non-dominated sorting approaches, which
push the populations to move toward the true Pareto front. The non-dominated
sorting approach has a good performance at earlier stages of the evolution, how-
ever it becomes a hypodynamia at later stages. In this article, based on analyzing
the static Bayesian game model, we proposed a novel multi-objective optimiza-
tion genetic algorithm. The experiments are based on six difficult problems, it
shows that the proposed SBG-MOGA can achieve a better distribution than
NSGA-II, and SBG-MOGA is approximate to NSGA-II in convergence in the
obtained non-dominated set.
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Abstract. In this paper, we propose a Pareto-based tabu search algorithm for 
multi-objective FJSP with Earliness/Tardiness (E/T) penalty. In the hybrid  
algorithm, several neighboring structure based approaches were proposed to 
improve the convergence capability of the algorithm while keep population di-
versity of the last Pareto archive set. In addition, an external Pareto archive was 
developed to record the non-dominated solutions found so far. In the hybrid al-
gorithm, dynamic parameters were introduced to adapt to the searching process. 
Experimental on several well-known benchmark instances show that the  
proposed algorithm is superior to several existing approaches in both solution 
quality and convergence ability.  

Keywords: Flexible job shop scheduling problem, tabu search, Multi-objective 
optimization, Pareto archive set, Earliness/Tardiness penalty. 

1   Introduction 

The flexible job-shop scheduling problem (FJSP), as a branch of the classical job-
shop scheduling problem (JSP), has been researched in very recent years. The re-
search on the multi-objective FJSP is much less than the mono-objective FJSP. 
Kacem et al. (2002a, 2002b) [5,6] developed an effective evolutionary algorithm 
controlled by an assigned model based on the approach of localization (AL). Xia and 
Wu (2005) [7] presented a practical hierarchical solution approach by making use of 
PSO to assign operations on machines and simulated annealing (SA) algorithm to 
schedule operations on each machine. Zhang et al. (2009) [8] introduced a hybrid 
algorithm combining PSO algorithm with TS algorithm for solving the multi-
objective FJSP problems.  

To our best knowledge, the research on the multi-objective FJSP tardiness criterion 
is much less than the other objectives such as the total completion time, the critical 
machine workload, and the total workload of all machines. The total tardiness crite-
rion was mainly considered in the single machine problem (Chu [10] and Souissi et al. 
[11]). Few references studied this criterion in a job-shop configuration. Kanet and 
Hayya [12] developed a priority rule for solving tardiness criterion in job-shop sched-
uling problems, while Vinicius and Cintia [13] developed a heuristic approach based 
on tabu search (TS) for the problem. Zribi [14] is the first researcher to solve the FJSP 
problems with total tardiness constraint. The minimization of the total tardiness on a 
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single machine is an NP-hard problem (Du et al [15]). The FJSP problem is also  
an NP-hard problem. As a consequence, the FJSPs with tardiness constraint are also 
NP-hard. 

2   Problem Formulation 

In this study, we study the FJSP with Earliness/Tardiness (E/T) penalty. The FJSP 
with E/T penalty can be formulated as follows. 

 Let J = { } niiJ ≤≤1 , indexed i, be a set of n jobs to be scheduled. Let in be total 

number of operations of job iJ . 

 Let { } mkkMM ≤≤= 1 , indexed k, be a set of m machines. 

 Each job iJ consists of a predetermined sequence of operations. Let jiO , be 

operation h of iJ . 

 Each operation jiO , can be processed without interruption on one of a set of 

machines )( , jiOM . Let kjip ,, be the processing time of jiO , on ma-

chine kM .  

Let ri and Ci be the release date and the completion date of job Ji. Wk is the workload 
of machine Mk, which is the total processing time of operations that are operated on 
machine Mk. Three objectives are used in this study, namely [3]: 

1) minimization of maximum completion time (makespan): 

},.....,1|max{1 niCF i ==                                                (1) 

2) minimization critical machine workload: 

},.....,1|max{2 mkWF k ==                                               (2) 

Let mj be the number of operations processed on Mj, kji is the ith job number being 
processed on Mj, p(kji) be the processing time of the operation kji, d is the due date, 
then following formulation can be given: 

1) the completion time of operation kji is ∑
=

i

l
ljkp

1
, )( ; 

2) the earliness of operation kji is: 

[ ] 0)(,0max

1
,, ≥

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= ∑
=

i

l
ljij dkpkT                                       (3) 

3) the earliness of operation kji is: 
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In this study, we consider the E/T constraint as an objective for the problem. There-
fore, the E/T penalty in this study can be described as follows: 

{ }∑∑
= =

++=
m

j

m

i
ijij

i

kTkEdF

1 1
,,3 ][][ γβα                                    (5) 

where, β and γ  is the penalty coefficient weight for the earliness and tardiness, re-

spectively. α is the coefficient weight for the due date.  

3   Pareto-Based Tabu Search 

3.1   The Pareto Archive Set AS 

To provide a set of solutions with good diversity, a Pareto archive set (AS) was intro-
duced in this study, which is used to maintain a limited number of non-dominated 
solutions found so far. During the optimization process, the archive set is iteratively 
updated with adding some non-dominated solutions and removing some dominated 
solutions to get closer to the Pareto-optimal front. Once a new non-dominated solu-
tion is found, it will be added to AS and any solution which is dominated by the added 
one will be removed from AS. In case AS becomes overfull, its member which is in 
the crowded domain is eliminated to maintain the diversity of the Pareto archive set. 

3.2   The Storage Structure of AS 

To reduce the computational time complexity consumed on the update process of the 
archive set, the members of the AS firstly sequence in an ascending order according to 
their first objective function value (Pan, 2009) [17]. 

3.3   Population Division 

For the population, we should sequence each solution according to a certain criteria. 
For multi-objective optimization problems, we can not use one objective function 
value to determine the solution quality. In this study, a non-dominated sort algorithm 
(Deb et al., 2002 [16]) was first introduced to the population, which divides the solu-
tions into several levels according to their dominated solutions number. The lower the 
solution level, the better the solution quality. For the solutions in the same level, the 
solution with smaller crowding distance is considered better than the one with larger 
crowding distance value [18].  

3.4   The Update Process of AS 

To identify a new non-dominated solution x, a naïve and direct approach is to com-
pare it with each member in AS. The computational time complexity of this approach 
is about O(wh), where h denotes the total number of the member solutions in AS, w 
represents the objective number of the problem. 
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3.5   The Framework of P-TS 

The details steps of the proposed P-TS algorithm are as follows: 

Step 1: Initialization phase 
Step 2: Evaluate the objective function value of each solution in the population, and 

then record the best solution as the current solution. 
Step 3: If the stopping criterion is satisfied, output the best solution; otherwise, select 

the best solution as the current solution, then perform steps 4-5. 
Step 4: Perturbation in the machine assignment component phase. 

Step 4.1 Produce a population of neighboring solutions by applying the function 
neighboring structure approaches proposed in [18] to the current solution.  

Step 4.2 Applying non-dominated sort algorithm to the current neighboring 
population. 

Step 4.3 Update the tabu list by adding the best neighboring solution and remov-
ing the oldest solution. 

Step 4.4 Update the Pareto archive set by using the speed-up Pareto archive set 
update function to each solution in the Pareto level 1. 

Step 5: Perturbation in the operation scheduling component phase. 

Step 5.1 Produce a population of neighboring solutions by applying the critical 
block neighboring structure [18] to the current solution.  

Step 5.2 Applying non-dominated sort algorithm to the current neighboring 
population. 

Step 5.3 Update the tabu list by adding the best neighboring solution and remov-
ing the oldest solution. 

Step 5.4 Update the Pareto archive set by using the speed-up Pareto archive set 
update function to each solution in the Pareto level 1. 

Step 6: go to step 3. 

4   Experiment Results 

This section describes the computational experiments to evaluate the performance of 
the proposed algorithm. The test samples come from Kacem instances set [5]. The 
current instantiation was implemented in C++ on a Pentium IV 1.8GHz with 512M 
memory.  

4.1   Setting Parameters 

Each instance can be characterized by the following parameters: number of jobs (n), 
number of machines (m), and the number of operations ( numop _ ). Followings are 

the detail parameters value: 

 Population size Psize: 1000; 

 Maximum number of generations maxgen : mn × ;  
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 Maximum number of iteration with no improvement of the best solution during 
the local search maxiter : 2/_ numop ;  

 β =1 and γ =1 

4.2   Results Comparisons 

The five test instances come from Kacem [5], which range from 4 jobs × 5 machines 
to 15 jobs × 10 machines. In the five instances, four ones are total FJSP (T-FJSP) 
while the instance 8×8 is partial FJSP (P-FJSP). Four present algorithms are used to 
make comparison with the proposed algorithm, i.e., AL+CGA from Kacem [5, 6], 
PSO+SA from Xia et al. [7], PSO+TS algorithm from Zhang et al. [8], and XING 
algorithm from Xing et al. [20]. The due date of are 11 for 4 × 5 instance, 14 for 8 × 8 
instance, 11 for 10 × 7 instance, 1 for 10 × 10 instance, and 11 for 15 × 10 instance.  
 

Table 1. Comparison of the instance 4*5 

 Makespan E/T penalty Max Workload 

AL+CGA 16 - 10 

PSO+TS 11 - 10 

XING 12 - 8 

11 1 10 
11 0 11 
11 2 9 

P-TS 

12 4 8 

Table 2. Comparison of the instance 8*8 

 Makespan E/T penalty Max Workload 

AL+CGA 15 - 13 
15 - 12 

PSO+SA 
16 - 13 
14 - 12 

PSO+TS 
15 - 12 
14 - 12 

XING 
15 - 12 

14 9 12 
14 3 13 
14 2 14 
15 3 12 

P-TS 

16 11 11 
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Table 3. Comparison of the instance 10*7 

 Makespan E/T penalty Max Workload 

11 - 11 
XING 

11 - 10 

11 36 11 
11 37 10 
12 26 11 
12 30 10 
12 24 12 
13 17 10 
13 14 11 
14 4 11 
14 3 12 
14 11 10 
15 3 11 

P-TS 

16 10 10 

Table 4. Comparison of the instance 10*10 

 Makespan E/T penalty Max Workload 

AL+CGA 7 - 5 
PSO+SA 7 - 6 
PSO+TS 7 - 6 

7 - 6 
8 - 5 XING 
8 - 6 

7 1 7 

7 2 6 

7 4 5 
P-TS 

8 3 5 

 
To our best knowledge, there not exit any literature which has given the experiment 
results of the above five instances with E/T penalty. Therefore, we list our experimen-
tal results paralleled with the other existing algorithms which have given the results 
with minimization of the total workload instead of the E/T penalty. Table 1 to table 5 
give the comparison results of the above five instances. From these tables, we can see 
that our proposed algorithm can always get the optimal two objective values. In addi-
tion, the proposed P-TS algorithm can also obtain more non-dominated solutions in 
very short time. It can be seen from the above five tables that our proposed P-TS 
algorithm can either obtain rich Pareto optimal solutions or dominated solutions than 
the other existing algorithms. 
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Table 5. Comparison of the instance 15*10 

 Makespan E/T penalty Max Workload 

23 - 11 
AL+CGA 

24 - 11 
PSO+SA 12 - 11 

11 - 11 
XING 

12 - 11 
PSO+TS 11 - 11 

11 9 11 
P-TS 

12 7 11 

5   Conclusion 

In this paper, we propose a Pareto-based TS algorithm for multi-objective FJSP with 
Earliness/Tardiness penalty. In the hybrid algorithm, several neighboring structure 
based approaches were proposed to improve the convergence capability of the algo-
rithm while keep population diversity of the last Pareto archive set. In addition, an 
external Pareto archive was developed to record the non-dominated solutions found so 
far. In the hybrid algorithm, dynamic parameters were introduced to adapt to the 
searching process. Experimental on several well-known benchmark instances show 
that the proposed algorithm is superior to several existing approaches in both solution 
quality and convergence ability.  
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Abstract. The numerical simulation research of the Underwater Unmanned 
Vehicle (UUV) shell shape is carried out by applying the modern fluid dynam-
ics numerical simulation technology. In the numerical simulation process, while 
focusing on the characteristics of the UUV shape, this treatise work properly 
with its computational model, computational domain, computational grid and 
boundary conditions. Based on numerical simulation techniques, the UUV 
shape is multi-objectively optimized by integrated fluid dynamics simulation 
software-fluent on iSIGHT optimization design platform. Multi-island genetic 
algorithm is adopted as the optimization algorithm, and Reynolds-averaged Na-
vier-Stokes equation and turbulence model are as well applied in the optimiza-
tion design process. The results show that by reducing the drag coefficient and 
the flow noise of the UUV shape, the optimized design has made a significant 
improvement in its comprehensive performance, which provides a new way for 
today's optimization design of UUV shape. 

Keywords: Underwater Unmanned Vehicle (UUV) shape, numerical simula-
tion, multi-objective optimization, iSIGHT, optimization design. 

1   Introduction 

Resistance and flow noise are two key technical performance indicators of underwater 
craft. Therefore, drag and noise reduction technology is one of the key technologies in 
underwater vehicles researches [1]. Theoretically, there are many ways to reduce the 
drag and flow noise of UUV, but they have limitations in engineering applications [2]. 
As the resistance and noise are two different mechanical phenomena, comprehensive 
optimal solution is not able to be achieved if we set both as the optimization objective 
at the same time. In traditional research of optimal design of underwater vehicle 
shape, one of them is set as the objective function while the other as the constraint 
condition. In this way, it is difficult to get the UUV shape integrated with best resis-
tance performance and best noise performance. Some scholars have set to study the 
multi-objective optimization design of the UUV shape in these years. However, based 
on empirical calculating formula, the accuracy of calculation can not be guaranteed 
[3]. With the development of computational fluid dynamics, numerical simulation 
software has been widely applied in simulating calculation of fluid dynamics, and its 
accuracy has been verified [4-5]. Fusing optimization techniques and numerical simu-
lation techniques, the optimal design of UUV shell shape based on numerical simula-
tion techniques is the developing trend of the unmanned underwater vehicle (UUV) 
shell shape design. 



 Research on Multi-objective Optimization Design of the UUV Shape 629 

 

In this paper, the numerical simulation technology has been applied in the multi-
objective optimization design of the UUV shape for the first time, which helps to 
improve the dynamics performance and the acoustic performance of the UUV, thus 
extensively enhances its comprehensive performances. And this optimization method 
provides a new way for today's optimization design of UUV shape. 

2   UUV Shell Shape Design 

The outline of the UUV shell is shaped by the bus rotating around the axis. As its bus 
is called linear in geometry, so UUV shape design is linear design. UUV linear is 
generally composed of four sections: head curve segments, parallel middle, tail curve 
segments and caudal segment. The specific geometry and parameters are in Figure 1. 

D

hL

L

tL eLcL

tD eDα

 

Fig. 1. Specific Geometry and Parameters of the UUV Shape 

In this treatise, all of the UUV linear adopt the Granville linear [6]. Its head linear 
adopts the two-parameter square root of polynomial curve segments linear, and the 
linear is expressed as follows: 

3 2 3 4
1 1 2

1
(5 21 35 35) ( 1) 1 ( 1)

16 6s s s

x
y k x k x x x k x x x= + − + − + − + − −

           
(1) 

Parallel middle linear expression as follows: 

/ 2y D=                                                                 (2) 

Using Granville Sharp-tailed linear as its tail curve segments linear, expression is as 
follows: 

( ) ( ) ( )
1 / 23 23 2 2 3

3 46 1 5 1 0 1 1
2 s s

D
y x x x k x x k x x⎡ ⎤= − + − − − −⎣ ⎦

         (3) 

Caudal segment linear can be expressed as follows: 

tan
2

tD
y x α= −                                                       (4) 

3   Numerical Simulations 

3.1   Control Equations 

Taking available computing resources into account, in order to simulate the micro-
flow field on the surface of the UUV shell and improve the accuracy of simulation as 
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well; this paper adopts Reynolds-averaged Navier-Stokes equation and RNG k ε− tur-
bulence model method [7]. The specific mathematical model of the method is as  
follows: 

Continuity equation: 

0i

i

u

x

∂ =
∂

                                                             (5) 

Reynolds-averaged Navier-Stokes equation: 

' '( )i i

j i i j

j i j j

p
f

u u
u u u

x x x x
ρ ρ μ ρ∂ ∂∂ ∂= − + −

∂ ∂ ∂ ∂
                                         (6) 

Turbulent fluctuation kinetic energy equation ( k equation) as follows: 
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(7)
 

Turbulent energy dissipation rate (ε equation) as follows: 
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(8)
 

3.2   Grid Generation 

Considering the symmetry of the UUV, this paper selects a two-dimensional space 
computational domain along the flow direction, the length of the rectangular compu-
tational domain is three times of the shell length, and the width is 20 times of the shell 
radius. In order to avoid the effects of the entrance and the exit, 3.0m space before the 
entrance and 3.21m space before the exit are reserved. The final calculation region is 
shown in Figure 2. 

In this paper, the computational grid is generated by the method of limited volume 
discretion. The UUV shell surface has an influence on the water downstream market 
mainly concentrated in the near wall region. In order to improve the calculation accu-
racy and save computing resources, the defined size function method is applied in the 
near wall region to make the grid around the rotating surface turn intensive and 
gradually become sparse outward. 
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           Fig. 2. Computational Domain                        Fig. 3. Pressure Coefficient Distribution  
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3.3   Conditions of Solution Setting 

The specific calculation conditions are set as follows: 
Solver: steady-state segregated 2D implicit solver, using axial symmetry method. 
Turbulence equations: second-order equation. 

Fluid medium: water, density of 998.2kg/m3, dynamic viscosity coefficient is 
0.001003Pa•s.  

Boundary conditions: the entrance is velocity inlet with flow rate 20m/s, along the x-
axis; the exit is outflow. 

Discrete equation method: pressure-correction method uses Numerical SIMPLEC 
calculation method [8], and the discrete method of parameters uses the second-order 
accuracy upwind scheme. 

Convergence criteria: the continuity equation residual is set to 1e-4, and 1e-5 for 
others. 

3.4   The Numerical Simulation Results 

After 2000-step iterative calculation, the equation convergence. To verify the accu-
racy of this numerical simulation method, this treatise makes a comparison of the 
pressure coefficient distribution calculated by numerical simulation with that of pro-
gram in reference [9], which is shown in Figure 3. 

Table 1. Comparison of Hydrodynamic Performance between Simulation and Program 

Hydrodynamic parameters Program results Simulation results 
Drag coefficient of the largest surface-area  0.00288 0.00282 
Maximum decompression coefficient of the head 
curve  

0.91624 0.91618 

Location of the largest decompression coefficient 
of the head curve 

0.05066 0.05132 

Maximum decompression coefficient of the tail 
curve  

0.15292 0.15701 

Location of the largest decompression coefficient 
of the tail curve 

1.89908 1.89796 

 
From figure 3 and Table 1, we can see that this numerical simulation results are ba-

sically consistent with the theoretical calculations, so numerical simulation results are 
credible. 

4   Multi-objective Optimization Design Model of UUV Shape 

4.1   Design Variables 

There are many design parameters of UUV shell shape, in this article, five design 
parameters are selected for the design variables as follows: adjustable parameters of 



632 B. Song, Q. Zhu, and Z. Liu 

 

the head linear: 
1sk and

2sk , the adjustable parameters of tail linear: 
3sk and

4sk , and, 

half-angle of caudal segment: α .  
Value range of design variables is as follows:

10.001 4.5sk≤ ≤ ,
20.001 12.0sk≤ ≤ , 

30.001 8.0sk≤ ≤ ,  
40.001 2.9sk≤ ≤ , 8 12α≤ ≤ . 

4.2   Constraints 

The optimization design constraints of the UUV shell shape are mainly composed of 
geometric constraints and performance constraints. 

The head shell should have a larger volume in order to meet the needs of ammuni-
tion and other internal devices installment, This requirement can be put forward by 
the head fullness factor, that is: 0.7 1≤ Φ ≤ . 

In order to have a better hydrodynamic characteristic, the linear should not have 
cavitations phenomenon, that is to say

min| |p h kC σ η< , 
kσ is the Vacuole number of 

UUV sailing, η  is 1.2. 

In order to reduce the noise impact on the self-guided system, the largest coeffi-
cient location of the head should enlarge as much as possible, that is: 

min 0 minh hX Xξ ≤ , in which 
min 0hX  is the design required minimum value for the larg-

est coefficient location of the head, ξ  is 1.2. 

4.3   Objective Function 

UUV shape design is an integrated multi-objective optimization design problem. Its 
objectives are: the minimum drag coefficient the UUV shape xC , the maximum de-

compression coefficient in the head curve segment
min| |p hC , the maximum loca-

tion
m in hX of the maximum decompression coefficient in head curve segment, the 

minimum decompression coefficient in the tail curve segment
min| |p tC , and the maxi-

mum location
min tX of the maximum decompression coefficient in head curve segment. 

The solving methods to the optimization problem of multi-objective function in-
clude: unification-object method, main object method, and coordination curve 
method, in this paper, we apply unification-object method to turn it into a single ob-
ject, and use empirical estimation method to determine weighting factors, so that 
every target is in the same magnitude, the obtained objective function is as follows: 

m in m in
m in m in

1 2 0
m in 1 0 0 0 1 0 1 0x p h p t

h t

f C C C
X X

⎧ ⎫
= + + + +⎨ ⎬

⎩ ⎭

                (9) 

5   Optimization 

5.1   Optimization Process 

According to the requirements, we compile the generating program shapecreat.exe of 
the UUV linear coordinates. Then, introduce the file generated from the compiled 
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program into GAMBIT, set the model, generate and output the Grid file. FLUENT 
reads the grid file, gets the solution through the parameter setting, and output the 
hydrodynamics report file. iSIGHT[10] analyzes the hydrodynamics report file gener-
ated, gets the resistance of the UUV shape, wet surface area, the maximum head de-
compression coefficients and their location and the maximum tail decompression 
coefficients and their locations. Then the value of the unified multi - target objective 
function calculate is calculated out and output. iSIGHT is applied to search and opti-
mize the design variable space based on the optimization algorithm. The flow diagram 
is shown in Figure 4. 

 

Fig. 4. Optimization Process 

5.2   Optimal Design 

According to mathematical model of optimal design, the initial conditions are shown 
in Figure 5, and the data transfer process is shown in Figure 6.  

      

  Fig. 5. Initial Design Variable Settings                     Fig. 6. Data Transfer Process 
 

UUV shape optimization design has five design variables, which belongs to the 
high-dimensional design space. Since it is difficult to search the optimal value, ex-
ploring optimization techniques should be adopted in order to facilitate the prelimi-
nary search of the optimal solution in the design space within global scope.  

5.3   Comparative Analysis of the Results 

In this paper, multi-island genetic algorithm is used for multi-objective optimal design 
of UUV shape, and through 1000-step optimization calculating, the optimal solution 
is finally obtained. 

shapeCreat.exe shape.txt 

FLUENT.EXE 

iSIGHT 

shapecan.txt 

GAMBIT.EXE 

torp.msh trans.out 
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Table 2. Comparison of Design Variables and Optimization Objects 

Design variable 
1sk  

2sk  
3sk  

4sk  α  f  

Original  shape 4.2 2.0 6.21 1.60 11.5 43.575 
Optimized shape 3.2 3.8 7.96 2.55 8.2 34.406 

Table 3. Comparison of Hydrodynamic Performance Parameters 

Hydrodynamic parameters Original  shape Optimized  shape 

Drag coefficient of the largest surface-
area  

0.00282 0.00276 

Maximum decompression coefficient of 
the head curve  

0.91618 0.69455 

Location of the largest decompression 
coefficient of the head curve 

0.05132 0.07014 

Maximum decompression coefficient of 
the tail curve  

0.15701 0.17467 

Location of the largest decompression 
coefficient of the tail curve 

1.89796 2.30011 

 
As it can be seen from Table 2 and Table 3, the optimal design of the UUV shape 

has achieved the blow effects: with the drag coefficient significantly reduced, the 
hydrodynamic performance of the UUV is improved; the maximum decompression 
coefficient of the head curve significantly reduces and its location has a certain shift 
backward; in addition, the maximum decompression coefficient of tail curve has very 
slight increase and its location has a evident shift; as a result, the noise performance 
of the UUV is also improved.  

6   Conclusions 

Numerical simulations are carried out on fluid dynamic characteristics of the UUV 
shape, and through theoretical calculations, the accuracy of the numerical simulation 
results has been verified. Focusing on the multi-objective characteristics of UUV 
shape design, this treatise has established the mathematical model for the UUV shape 
multi-objective optimization design aiming at resistance and noise. Based on numeri-
cal simulation technology, the UUV original shape is optimal designed with its  
resistance performance and acoustic performance improved and its comprehensive 
performances remarkably enhanced, which indicates the feasibility of the multi-
objective optimization design method of the UUV shape in this paper. 
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Abstract. Evacuation route planning is one of the most crucial tasks for solving 
massive evacuation problem. In large public places, pedestrians should be 
transferred to safe areas when nature or man-made accidents happen. A 
multi-objective ant colony algorithm for massive pedestrian evacuation is pre-
sented in this paper. In the algorithm, three objectives, total evacuation time of all 
evacuees, total routes risk degree and total crowding degree are minimized  
simultaneously. Ants search routes and converge toward the Pareto optimal so-
lutions in the light of the pheromone. The experimental results show that the 
approach is efficient and effective to solve massive evacuation problem with 
rapid, reasonable and safe plans. 

Keywords: Multi-objective optimization, Evacuation, Ant colony optimization. 

1   Introduction 

In recent years, frequent natural disasters and man-made catastrophic events, such as 
floods, fires, hurricanes or terrorist attacks, have lead to serious results to human be-
ings, especially for those large public places, such as gymnasiums, stations. Thus, 
massive evacuation has been attached great importance for handling emergency situa-
tion. The modeling and simulation of emergency evacuation is attracting widespread 
attention of researchers [1]–[2].  

Evacuation planning is a very complex problem involving both features of indi-
viduals and environment. A series of models [3]–[4] were proposed for evacuation 
simulation. For massive evacuation, several factors need to be taken into account si-
multaneously. Most of relevant research works took single factor as the most important 
objective to achieve and ignored other factors which influence on evacuation results. 
Few studies [5]–[6] on evacuation route planning considered optimizing multiple ob-
jectives. In fact, evacuation route planning is a multi-objective optimization problem 
(MOP) which is a very important research topic due to the multi-objective nature of 
most real-world problems.  
                                                           
∗  Corresponding author. 
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In this paper, a multi-objective ant colony algorithm for massive emergency evacuation 
is presented. In this algorithm, three objectives, total evacuation time of all evacuees, 
total risk degree and total crowding degree of all routes are optimized simultaneously. 
The experimental results show that the proposed approach is efficient and effective to 
solve massive evacuation problem with rapid and safe plans. 

2   Problem Formulation 

2.1   Definition of Variables and Parameters 

An emergency evacuation network is defined as a directed graph ),( ANG , where 

},...,2,1{ nN =  is the set of nodes and NNA ×⊆  is the set of arcs. The number of 

pedestrians is M . Denote k
ijt  as the traveling time through arc ),( ji  of pedestrian k  

under emergency situation. ijr  is the risk degree on ),( ji . k
ijc  is the crowding degree 

when pedestrian k  passes ),( ji . ijl  is the length of ),( ji , and jid  is the distance form 

),( ji  to dangerous spot. kP  is the evacuation path of pedestrian k , and ki  is the 

initial node of pedestrian k , where Nik ∈ . )(tv k
ij  is the passing speed of pedestrian 

k through ),( ji , smvij /1)0( =  is pedestrians’ speed under normal conditions. k
ijN  is 

the number of pedestrians on ),( ji  when pedestrian k  passes. ijC  is the passing ca-

pacity of ),( ji . 

2.2   Mathematical Formulation 

The multi-objective model to solve massive evacuation problem is described below: 
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The objective (1) is to minimize total evacuation time, objective (2) is to minimize total 
risk degree of all routes, objective (3) is to minimize total crowding degree of all routes. 
Constraint (4) is the formula of risk degree along a road segment. Constraint (5) is  
the equation of crowding degree along a road segment. Constraint (6) is the decrease 
function of the evacuation speed on ),( ji  of pedestrian k . Constraint (7) describes the 
relationship between passing speed and length form node i to j . Constraint (8) en-
sures that the number of pedestrians on ),( ji  at time t  will not exceed its capacity. 

3   Multi-objective Optimization for Massive Evacuation 

The ant colony optimization algorithm was first proposed by Dorigo [7]. It is used to 
solve combinatorial optimization problems. The ant colony optimization imitates the 
behavior of real ants when finding food. During the process, ants will collect and store 
information in pheromone. Pheromone will be released by ants while finding shorter 
path. In addition, the pheromone will be evaporated over time. As a result, all the ants 
will be attracted to the shortest path due to the positive feedback mechanism. 

The multi-objective ant colony optimization algorithm for massive pedestrian 
evacuation problem can be described as follows: 

Step 1: Initialization. 

Step 1.1: Set the values of fundamental parameters of the algorithm, including the 

maximum number of iterations max_T , the number of ants M .  

Step 1.2: For every arc set an initial pheromone value Cij =)0(τ  ( C  is a small 
positive number) and set the initial pheromone updating value 0=Δ ijτ . 

Step 1.3: Set non-dominated solutions set Φ=− setND . 

Step 1.4: Randomly select a node as the point at which emergency event occurs. 

Place all the M  ants on initial nodes randomly. 

Step 2: Construct a path for each ant from the initial node to one of any exits. 
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Step 2.1: Determine the current allowed list of the ant k , here kallowed  is denoted 

as the set of nodes that the ant k  can visit. 

Step 2.2: At time t , ant k  move from node i to node j  with the probability: 
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Where βα ,  are parameters that weight the relative importance of pheromone and 

heuristic information. )(tijτ  is the amount of pheromone on arc ),( ji , and )(tijη  is a 

heuristic function, it can be calculated as follows: 

    
ijij

ij
ij rt

C
t

⋅
=)(η                                                         (10) 

Here, ijt  is the required time passing through ),( ji under normal conditions. 

Step 3: Repeat Step 2 until all the M  ants have constructed routes. 

Step 4: ND-set determining.  

Step 4.1: Denote },...,,{ 21 Mt ppps =  as the set of routes for all ants by Step 2, and 

one set represents a feasible solution, here kp  is a path constructed by ant k . 

Step 4.2: For feasible solution ts , calculate its objective functions 1f , 2f , 3f , if ts is 

a non-dominated solution of the current non-dominated set, tsset-NDset-ND ∪= , 

and remove the solutions that dominated by ts . 

Step 5: Pheromone updating.  

The pheromone on each arc is updated as follows: 

ijijij tt τρτρτ Δ+−=+ )()1()1(               (11) 
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Where )10( ≤≤ ρρ  is the evaporation rate of pheromone, Q  is a given constant. 

Step 6: Stopping Criteria. 

If max_TT < , every ant returns to its initial node, TT →+1 ,and go to Step2, else the 

algorithm is terminated. 
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4   Experimental Results 

In order to solve massive evacuation problem, this multi-objective optimization model 
was applied to an area of Wuhan, China. Fig.1 shows the study area in the form of 
network with 476 nodes in total. The center of the area is a stadium which has 42 
bleachers and 157 nodes in total including bleachers, stairs, exits and passages. The 
other 319 nodes represent roads outside. Suppose the emergency event has occurred in 
the node as marked in Fig.1, at beginning all pedestrians are placed in the center area, 
and aim to search their routes to one of the 8 exits. 

Experiments were done to analyze if the presented approach can tackle and optimize 
routes for massive evacuation problem effectively. The multi-objective ant colony 
optimization algorithm was implemented using MATLAB coding and run on a PC with 
3.06GHz, 1 GB RAM. In the algorithm, the parameters used were set as follows: 

1=α , 3=β , 7.0=ρ , 100=Q , 11 =k , 12 =k . 

00

00

00

00

00

Exits

Event point

Exit 1

Exit 2

Exit 3

Exit 4
Exit 5

Exit 6

Exit 7

Exit 8

 

Fig. 1. The road network of study area 

Table 1 lists the results obtained by experiments with different number of ants and 
iterations respectively. It can be seen that with the same number of ants, values of the 
three objective functions are decreased as the number of iteration increases, thus in-
dicating that the algorithm is achieving the approximate global optimums.  

Table 1. Results of the proposed approach 

Ants Iterations f1 f2 f3 Solutions

500 100 1.355e+006 5.2965 2638.7 9

500 200 1.3479e+006 4.7093 2632.7 13

1000 200 3.7835e+006 10.209 11402 20

2000 200 1.2003e+010 16.878 37625 15
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Fig. 2 shows the distribution of non-dominated solutions with 2000 ants for 200 it-
erations. Each non-solution represents an evacuation routing plan. Comparing with 
single objective optimization, a set of non-dominated solutions can be obtained instead 
of single optimal solution. The trade-off among different objectives in Fig.2 can help 
decision makers choose an optimum evacuation routes plan according to different 
evacuation demands. 

Table 2 lists the number of pedestrians evacuated from each exit with different total 
pedestrian number, 500, 1000 and 2000 respectively. The average percentage (AP) of 
total pedestrians for each exit is shown in Table 2. According to Fig. 1, most of pe-
destrians select Exit 1 to evacuate because it is the nearest exit, while only 3.62% pe-
destrians choose Exit 5 due to the long distance from initial positions. For the other 
exits, the percentage ranges from 5.63% to 20.73%, which means all exits are made 
fully use of during the evacuation process. 

Table 2. Distribution of pedestrian number for each exit 

Exits No. Number of people AP (%) 

1 160 271 509 28.18 
2 27 63 234 7.8 
3 35 54 90 5.63 
4 41 93 194 9.07 
5 19 38 65 3.62 
6 53 143 237 12.25 
7 65 123 257 12.72 
8 100 215 414 20.73 

Total number 500 1000 2000 100 
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Fig.3 depicts curves of the varying number of evacuated pedestrians over time with 
different number of evacuees. As the total pedestrian number increase, the evacuation 
time required increases. It is shown that at the first several time periods, there are no 
pedestrian reach exits of the area. There have been pedestrians evacuated after time 
period 15 and then the curves rise rapidly. The results demonstrate that the proposed 
approach is suitable for solving massive evacuation problem. 

5   Conclusions 

Massive pedestrian evacuation is a very complex problem because many aspects need 
to be considered in order to make a proper plan. Thus, different objectives should be 
optimized simultaneously while satisfy some constrains.  

In this paper, an emergency evacuation model and a multi-objective ant colony al-
gorithm for the model are presented. In this model, three objectives, total evacuation 
time of all evacuees, total routes risk degree and total crowding degree are optimized 
simultaneously. The experimental results show that the approach is effective to solve 
massive pedestrian evacuation problem with rapid and safe plans. 
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dation of China under grant no. 40701153, 40971233. 
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Abstract. The study presents a novel weight-based multiobjective im-
mune genetic algorithm(WBMOIGA), which is an improvement of its
first version. In this proposed algorithm, there are distinct characteris-
tics as follows. First, a randomly weighted sum of multiple objectives is
used as a fitness function, and a local search procedure is utilized to facil-
itate the exploitation of the search space. Second, a new mate selection
scheme, called tournament selection algorithm with similar individuals
(TSASI), and a new environmental selection scheme, named truncation
algorithm with similar individuals (TASI), are presented. Third, we also
suggest a new selection scheme to create the new population based on
TASI. Simulation results on three standard problems (ZDT3, VNT, and
BNH) show WBMOIGA can find much better spread of solutions and
better convergence near the true Pareto-optimal front compared to the
elitist non-dominated sorting genetic algorithm (NSGA-II).

Keywords: immune genetic algorithm, multiobjective optimization,
similar individuals.

1 Introduction

For multiobjective optimization problems (MOOPs), evolutionary algorithms
(EAs) seem to be particularly suitable because they process a set of solutions in
parallel, possibly exploiting similarities of solutions by recombination. The first
step towards treating objectives separately in EAs was given by Schaffer(1985)
[1]. His approach is known as the vector evaluation genetic algorithm (VEGA).
Although there are some disadvantages for VEGA, it plays a great role in fa-
cilitating the development of multiobjective evolutionary algorithms (MOEAs).
Many MOEAs have been presented since 1985, such as the weight-based genetic
algorithm (WBGA) proposed by Hajela and Lin [2], Ishibuchi and Murata’s ran-
dom weight genetic algorithm (RWGA) [3], Srinivas and Deb’s non-dominated
sorting genetic algorithm (NSGA) [4], the strength Pareto evolutionary algo-
rithm presented by Zitzler et al. [5], the elitist non-dominated sorting genetic
algorithm (NSGA-II) by Deb et al. [6], and Knowles’s Pareto archived evolu-
tionary strategy (PAES) [7] and so on.

Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 643–650, 2010.
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Among MOEAs, some approaches called the weight-based approaches use the
weighted sum of objective function values as the fitness of a solution. To the
weight-based MOEAs such as WBGA and RWGA, their advantages are low
computation complexity. However, their main disadvantages are as follows: (1)
difficulty in finding Pareto-optimal solutions in nonconvex problems, (2) lack
of elitism for most cases, and (3) difficulty in generating uniformly distributed
Pareto-optimal solutions. At present, we find that the weight-based MOEAs
can alleviate or even overcome their disadvantages by improving their mate
selection and environmental selection schemes. Thus, we present a novel weight-
based MOEA (MOIGA) based on GA and immune theory in the literature[8].
Numerical experimental results show that the proposed algorithm can alleviate
the above difficulty.

In this paper, we furthermore improve the proposed algorithm with the fol-
lowing aspects. (1) For the local search algorithm, the dominated relationship
is added to determine whether the current solution v is replaced by a neigh-
bourhood solution v∗ besides utilizing their fitness. In particular, the dominated
relationship is first considered. (2) TSASI is improved. (3) A new selection opera-
tor is presented to create the new population. Compared to the random selection
approach, the proposed selection operator can better ensure diversity along the
current non-dominated front. (4) The improved algorithm gives an approach to
handle constrained conditions for MOOPs.

2 The Proposed Algorithm

Here, we will present the weight-based MOEA based on an immune operator
and GA, which is an improvement of its first version. The main procedures are
listed as follows.

(1) A random initial population P0 of size N is created. Set the external archived
set Q0 = ∅ and its maximum size is N̄ . Set a counter t = 0.

(2) Combine Pt and Qt and create a set Rt = Pt ∪Qt. Calculate non-dominated
solutions in Rt and then save them to the external archived set Qt+1. If
|Qt+1| > N̄ , then perform TASI to reduce the size of Qt+1 to N̄ . If |Qt+1| <
N̄ , then select N̄ − |Qt+1| solutions from the dominated solutions in Rt by
using the selection scheme based on TASI and add them to Qt+1.

(3) Repeat the following procedures to select N pairs of parent solutions.
(a) Specify the weight values w1, w2, · · · , wm with a random uniform distri-

bution, where w1 + w2 + · · · + wm = 1, and wi ∈ [0, 1], i = 1, 2, · · · ,m.
(b) Use TSASI to select a pair of parent solutions.

(4) Apply the simulated binary crossover operator (SBX) [9] to each of the se-
lected N pairs of parent solutions with the predefined crossover probability.
Two new solutions are generated from each pair of parent solutions. A new
solution is selected from the two generated new solutions as the offspring ac-
cording to their fitness. Then apply the polynomial mutation operator (PB)
[9] to the generated new offspring with the predefined mutation probability,
and add them to the population Pt+1.
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(5) Apply the local search algorithm to all N solutions in the population Pt+1.
The search direction of the local search for each solution is specified by
the weight values in the fitness function by which its parent solutions were
selected. The current population is replaced with the N solutions improved
by the local search.

(6) If t can be exactly divided by Nin (number of inner loops), then apply the
immune operator to the set Rt+1 = Pt+1 ∪Qt+1.

(7) If t > T (the maximum number of generations), then terminate the algorithm
and output non-dominated solutions in the set Rt+1. Otherwise, t = t + 1
and return to (2).

In this improved algorithm, we only introduce the modified local search al-
gorithm, the modified TSASI, the approach of handling constrained conditions,
and a new selection operator. For the other aspects similar to its first version,
please refer to the original literature [8].

2.1 Selection Scheme Based on TASI

A selection operator is important to a MOEA because it is responsible for guiding
the selection process at the various stages of the algorithm toward a uniformly
spread-out Pareto-optimal front. Here we present a new selection scheme based
on TASI in order to preserve diversity of the created external archived set Qt+1.
The detailed procedures are listed as follows.

(1) If |Qt+1| > N̄ , copy cells of Qt+1 to a set φt+1, and use TASI to reduce
the size of φt+1 to N̄ , and then let the external archived set Qt+1 = φt+1.
Terminate the procedure.

(2) If |Qt+1| < N̄ , then let a set Rt be composed of dominated individuals among
the external archived set Qt and the population Pt in the t-th generation.
Next, the set Rt is sorted for non-domination. Let us say that the number
of non-dominated fronts in Rt is K. The maximum number of individuals
allowed in the i-th front (i = 1, 2, . . . ,K) in the new external archived set
Qt+1 of size N̄ is calculated according to the following equation.

Ni = (N̄ − |Qt+1|) 1 − r

1 − rK
ri−1, (1)

where 0 < r < 1.
(3) Assume that N t

i is the number of individuals of the i-th front in Rt. If N t
1 >

N1 (that is, there are more individuals than allowed), we copy individuals
of the first front in Rt to a set φt+1 , and use TASI to truncate φt+1 until
its size is equal to N1, and then add individuals in φt+1 to Qt+1. On the
other hand, if N t

1 � N1 (that is, there are less or equal number of individuals
in Rt than allowed), we choose all N t

1 individuals and count the number of
remaining slots δ1 = N1 −N t

1. The maximum allowed number of individuals
in the second front is now increased to N2+δ1. Thereafter, the actual number
of solutions N t

2 present in the second front is counted and is compared with
N2 as above. This procedure is continued until N̄ − |Qt+1| individuals are
selected.
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2.2 Tournament Selection Algorithm with Similar Individuals

Here we present the tournament selection algorithm with similar individuals
(TSASI). The detailed procedures are listed as follows.

(1) For a given weight vector w = [w1, w2, · · · , wm]T , create two subpopulation
Pop1 = ∅ and Pop2 = ∅. Their maximum sizes are Popsize1 and Popsize2,
respectively.

(2) Use the binary tournament selection procedure to select an individual from
Qt+1 and add it to Pop1.

(3) If |Pop1| < Popsize1, then return to (2). Otherwise, continue.
(4) Similarly, an individual is selected from Qt+1 by using the binary tournament

selection procedure, and is added to Pop2.
(5) If |Pop2| < Popsize2, then return to (4). Otherwise, continue.
(6) The average objective vector in Pop1 is calculated, and then the most dis-

similar solution among Pop1 from the average objective vector is chosen as
Parent A.

(7) Respectively calculate the Euclidean distance in objective space and in de-
cision space from Parent A to any solution in Pop2.

(8) Select the most similar solution from Pop2 as Parent B, whose Euclidean
distance in decision space from Parent A must exceed a given small positive
value δd.

It can be obviously seen that a pair of similar parent individuals, Parent A
and Parent B, are chosen using TSASI, and TSASI can overcome the drawback
that the same two individuals are chosen as a pair of parent individuals. The
similarity in decision space between Parent A and Parent B can be controlled
by modifying the parameter δd.

2.3 Local Search Algorithm

In this section, we discuss a local search algorithm that is adopted in order to
quickly improve the quality of the population. The search direction of the local
search for each solution is specified by the weight values in the fitness function.
The local search algorithm is similar to that mentioned in the literature [3].
Here we modify it, and add the dominated relationship to determine whether the
current solution v is replaced by a neighborhood solution v∗ besides utilizing their
fitness. Specially, the dominated relationship is firstly considered. The detailed
procedure is as follows.

For each solution v in the population, do

(1) Examine a neighborhood solution v∗ of the current solution v.
(2) Calculate objective values of v∗ and v. If v∗ dominates v, then v = v∗.

Otherwise, evaluate the fitness of v∗ and v. If the fitness of v∗ is no worse
than v, then v = v∗.
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(3) If randomly chosen Nneighbor neighborhood solutions of the current solution
v have been already examined (i.e., if there is no better solution among the
examined Nneighbor neighborhood solutions of v), then end this procedure.
Otherwise, return to (1).

A neighborhood solution x∗ of a solution x = (x1, · · · , xn) is defined as
x∗ = (x1 + Δx1, x2 + Δx2, · · · , xn + Δxn), where Δxi (i = 1, 2, · · · , n) is a
random small number in the interval [−(xU

i − xL
i ), (xU

i − xL
i )] (with uniform

probability distribution). xL
i and xU

i are lower and upper bounds of xi, respec-
tively. This algorithm is terminated if no better solution is found amongNneighbor
neighborhood solutions that are randomly selected from the neighborhood of the
current solution.

2.4 Constraint Handling

In this study, we mainly adopt the idea of the constrained tournament method to
handle constraints. The following constrain-domination conditions are utilized
to decide the relationship of domination for any two solutions xp and xq.

Definition 1. (Constrained Domination): A solution xp is said to
‘constrain-dominate’ a solution xq (xp ≺ xq), if any of the following conditions
are true:

(i) Solution xp is feasible and Solution xq is not.
(ii) Solutions xp and xq are both infeasible, but solution xp has a smaller con-

straint violation.
(iii) Solutions xp and xq are both feasible and solution xp dominate solution xq

in the usual sense (see Definition 1).

The effect of using this constrained-domination principle is that any feasible
solution has a better non-domination rank than any infeasible solution. All fea-
sible solutions are ranked according to their non-domination level based on the
objective function values. However, among two infeasible solutions, the solution
with a smaller constraint violation has a better rank.

Based on this constrained-domination principle, the set of non-constrain-
dominated solutions can be obtained. In addition, the constrained-domination
principle can also be applied to TSASI. However, we modify the binary tourna-
ment selection approach used to choose individuals for creating subpopulation
in TSASI as follows.

Definition 2. (Binary Constrained Tournament Selection): Given two
solutions xp and xq, choose solution xp if any of the following conditions are true:

(i) Solution xp belongs to a better non-constrain-dominated set.
(ii) Solutions xp and xq belong to the same non-constrain-dominated set, but

solution xp has a better fitness value than solution xq.

By the above definitions, it can be seen that this constraint handling strategy
does not require any extra computational burden in addition to the constraint
violation computations.
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3 Numerical Experiment

In this section, we compare the performance of WBMOIGA with NSGA-II. All
experiments are conducted on an IBM computer, which is equipped with a Pen-
tium IV 2.8G processor and 512 MB of internal memory. The operating system
is Windows 2000 server and the programming language is C++. The compiler
is Borland C++ 6.0.

3.1 Experimental Setting

The specification of parameters for all two algorithms is listed as follows. For
WBMOIGA, the population size N = 100, the size of external archived set N̄ =
200, Popsize1 = Popsize2 = 15, the crossover possibility pc = 0.9, the mutation
possibility pm = 1/Nvars, where Nvars is the number of decision variables of the
problem, and the reduction rate r = 0.95.

For NSGA-II, we maintain the same parameters reported in its original lit-
erature [6], which include a population size of 100, a crossover rate of 0.9, and
a mutation rate of 1/Nvars, where Nvars = number of decision variables of the
problem.

3.2 Performance Measures and Test Problems

Here two different measures (Spacing (S) and Generational Distance (GD))
are chosen [9]. In addition, we choose three test problems from a number of
significant past studies in this area, which include ZDT3 suggested by Zitzler et
al., Viennet’s VNT, and Binh and Korn’s BNH.

3.3 Experimental Results and Analysis

For all problems, the comparison of the pareto fronts produced by WBMOIGA
and NSGA-II is shown in Figs.1-3, respectively. The values of the two metrics
for all algorithms are respectively presented in Table 1.

For Figs.1-3, we can see that WBMOIGA shows better behavior than NSGA-
II for all test problems. WBMOIGA can not only obtain better Pareto-optimal
front, but also have a much better spread of solutions. All these observations
are also confirmed by analyzing the Table 1. From Table 1, it can be found that
WBMOIGA has a smaller value than NSGA-II for each metric. Therefore, we
can affirm that WBMOIGA outperforms NSGA-II for all test problems.

Table 1. Results for test problems: mean value and standard deviation (σ)

Test problems Algorithms S(mean) S(σ) GD(mean) GD(σ)

ZDT3 WBMOIGA 3.87E-03 1.14E-04 8.27E-05 1.62E-06
NSGA-II 7.83E-03 7.21E-04 1.26E-04 1.03E-05

VNT WBMOIGA 2.91E-03 1.35E-04 7.21E-04 4.16E-05
NSGA-II 4.74E-02 9.63E-03 6.67E-03 5.32E-04

BNH
WBMOIGA 3.66E-01 3.27E-02 3.99E-03 7.00E-04

NSGA-II 6.37E-01 3.29E-02 7.98E-03 1.47E-03
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Fig. 1. Pareto-optimal front generated by WBMOIGA and NSGA-II for ZDT3
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Fig. 2. Pareto-optimal front generated by WBMOIGA and NSGA-II for VNT
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Fig. 3. Pareto-optimal front generated by WBMOIGA and NSGA-II for BNH

4 Conclusion

This study improves an immune genetic algorithm suggested in the literature[8].
Numerical results show that the modified algorithm WBMOIGA shows better
behavior for all two metrics than NSGA-II for the test problems ZDT3, VNT,
and BNH. Therefore, we can affirm that WBMOIGA outperforms NSGA-II, and
can be applied to solve multiobjective optimization problems with constraints
or without constraints.
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Abstract. This paper proposes an enhanced mapping of multi-robot using a 
DSIFT to reduce the mapping calculation time. In this approach, the master 
robot transmits each robot’s mapping information in SLAM by DSIFT, which 
incorporates an additional step on the SIFT. The DSIFT uses a keypoint to 
reduce the distortional information throughout the Gaussian filter after the step 
of the image descriptor. The master robot calculates the slave robot’s pose using 
picture images, and serves the results to all the robots.  Simulation results are 
presented based on DSIFT showing better performance than using the SIFT in 
multi-robot mapping situations.  

Keywords: Multi-robot, SIFT, DSIFT, Mapping. 

1   Introduction 

A multi-robot system can provide redundancy, and can contribute by the robots 
working cooperatively to solve an assigned task in a more reliable, faster or cheaper 
way. Since the cooperation is based upon the interchange of information relating to 
position and force sensing of the robots, the operative systems must integrate several 
characteristics to make this communication easier and effective. Also, the force 
feedback must come from a reliable source, so the sensors should be robust enough to 
provide this information. To enhance its performance, the fusing of the sensor data or 
sensors with high performances need to be employed.  

In mobile robotics, simultaneous localization and mapping (SLAM) is essential for 
navigation, to perform given tasks by observing internal and external states.  Various 
researchers have investigated the navigation of mobile robots based on vision 
systems, which include methods of observation and the recognition of beacons and 
obstacles in the real environment [1]-[4]. As used in this paper, a vision sensor has 
advantages over other sensors for detecting beacons, obstacles and other robots, in 
terms of high performance and low cost.   

In a multi-robot system, each robot should recognize various features in its 
environment, including the other cooperative robots for performing the specified 
tasks.  In this paper the SLAM, based on the scale invariant feature transform (SIFT) 
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approach is utilized for enhancing the mapping performance of the multi-robots, using 
the vision sensor. An independent robot may have a heavy burden for the calculation 
time to perform its navigation based on the SLAM results. However, multi-robot can 
reduce this processing time through one robot serving the mapping information of the 
other robots using a distortion reducing filter based SIFT (DSIFT). In this case, the 
master robot must be equipped with a high performance computing system, but the 
other robots can manage with more minimal systems for performing the localization 
and navigation tasks, along with a communicating device.  One of the most important 
contributions of this paper is the development of an enhanced mapping algorithm for 
multi-robot, which can be used for exploring unknown environments.   

The next section discusses some related works described in the literature where the 
DSIFT method developed in this work is described and this is followed by section 4 
which presents simulation studies and discusses the details of the new proposed 
algorithm. Section 5 presents the conclusions of the paper and what the future work in 
this area is likely to be.  

2   Related Works 

For landmark based navigation of a mobile robot, it is fundamental that the robot can 
recognize the features of the landmarks in its operational environment. In a natural 
environment, the detection of natural landmarks using sensors is very difficult, partly 
because of complicated and possibly indistinguishable features. Vision sensors have 
been most popular for this purpose, although they are subject to noise and variations 
of the light. Se and Lowe (2002) have used high-level image features, which are scale 
invariant, for greatly facilitating the feature correspondence. The features are 
distinctive and therefore their maps allow efficient algorithms to tackle the 
“kidnapped robot” problem [1]. Joo and Lee (2008) attempt object recognition based 
on the SIFT and binary searching tree for reducing the searching time of recognizing 
a required object, since the SIFT has to perform so many iterative operations [3]. Ahn 
et al (2008) have proposed a VR-SLAM (Vision and Range sensor-SLAM) algorithm 
to combine ultrasonic sensors with a stereo camera [5]. Gwak et al (2009) have used 
the SIFT and developed a feature point matching filter for rejecting mismatched 
points in real-time for the inertial navigation system and for the vision based SLAM 
in unstructured environments [6]. Finally, Gao et al (2008) proposed an approach of 
road crossing scene recognition, based on the SIFT and its color features. This method 
can reduce the processing time through cross checking scene images classified by 
threshold. The SIFT features of images in a road crossing image database use the K-D 
trees algorithm and the Bhattacharyya distance for calculating with the color 
histogram [7].  

3   Distortion Reducing Filter Based SIFT 

The SIFT was developed by Lowe for image feature generation in object recognition 
applications This is invariant to image translation, scaling, rotation, and is also 
partially invariant to illumination changes and is affine. Recently, the SIFT has 
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become popular in VSLAM. Landmark detection is very important in the process of 
SLAM because robots navigate under varying environmental conditions using 
landmark detection with different distances, angles and levels of illumination. The 
features are highly distinctive, which allow a single feature to be correctly matched, 
with high probability against a large database of features, providing a basis for object 
and scene recognition [8]-[10]. However, SIFT has drawbacks, including wrong 
keypoints in the complex frames, although it is excellent in scaling and rotating 
images. So, the DSIFT is proposed, with keypoint reduced distortional information 
using Gaussian filters after the image descriptor step. The DSIFT can be used more 
effectively in case of more peculiar matches, and DSIFT method has added a step for 
removing the distortion to enhance the original SIFT method.  

3.1   Detection of Scale Space Extrema 

The first step in the SIFT is the detection of scale space extrema, which search over 
all scales and locations in the image. It is implemented efficiently by using a 
difference of Gaussian (DOG) function which identifies the potential interest points, 
which are invariant to scaling and orientation. This step can be repeatedly assigned 
under different views of the same object. The scale space can present the Gaussian as 
a function, ),,( σyxL  which is produced from the convolution of a variable-scale 

Gaussian, ),,( σyxG , with an input image, ),( yxI , as shown in Eqs. (1) and (2). 

),(*),,(),,( yxIyxGyxL σσ =  (1) 

222 2/)(

22

1
),,( σ

πσ
σ yxeyxG +−=

 
(2) 

 

Fig. 1. For each octave of the scale space, the initial image is repeatedly convolved with 
Gaussians to produce the set of scale space images shown on the left. The adjacent Gaussian 
images are subtracted to produce the DOG images on the right.  

This method is able to efficiently detect stable keypoint locations in the scale 
space, using scale-space extrema with the convolved DOG function and the input 
image, as in Eq. (3).  
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),(*)),,(),,((),,( yxIyxGkyxGyxD σσσ −=  (3) 

The ),,( σyxD  can be computed from the difference of two nearby scales, 

separated by a constant multiplicative factor k, which usually uses a 2  multiplier. It 
searches for maxima and minima, which are the candidate points, from the DOG 
using the scale normalized Laplacian of the Gaussian, G22∇σ .  
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3.2   Keypoint Localization 

A keypoint is chosen by determining a stable point of a location, scale and contrast.  
If keypoints have points with a low contrast they need to be removed because they are 
sensitive to noise. For the origin shift on the sample point, the Taylor series expansion 
is used, as proposed by Lowe [8], and the result is shown in Eq. (5). 
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where D and its derivatives are evaluated at the sample point, and TyxX ),,( σ=  is 

the offset from this point. The extremum location, X̂ is determined by taking the 
derivative of this function with respect to X , and setting it to zero. 
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For the stability of the keypoints, the method needs to remove keypoints with low 
contrast and have poorly defined peaks in the DOG, because the DOG has a strong 
response along its edges, although the location along the edge is poorly determined 
and unstable to small amounts of noise. A calculation of a large principal curvature 
can be used as a 22×  Hessian matrix, H .  

3.3   Orientation Assignment 

For DSIFT, image data is transformed relative to the assigned orientation, the scale, 
and the location of each feature so it needs to make one or more orientations with 
invariable keypoints on any transformation. The scale of the keypoint is used to select 
the Gaussian smoothed image, L , with the closest scale, using each keypoint 
localization based σ  with 1.5 times, so that all the computations are performed in a 
scale invariant manner. Thereby, the gradient magnitude and the orientation can be 
derived as shown in Eqs. (8) and (9).  

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLxLyxLyxm  (7) 

),1(),1(
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yxLyxL
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−−+
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An orientation histogram is formed from the gradient orientations of the sample 
points within a region around a keypoint. In addition, the largest value of an 
orientation histogram indicates the dominant directions of the local gradients. 

3.4   Image Descriptor 

The descriptor is used to divide the keypoints around which the local image gradients 
are measured at the selected scale in the region. A Gaussian weighting function with 
σ  is used to assign a weight to the magnitude of each sample point and this Gaussian 
window is useful to avoid a sudden change in the descriptor, with small changes in 
the position of the window, and to give less emphasis to gradients which are far from 
the center of the descriptor. The keypoint descriptor allows for a significant shift in 
the gradient positions by creating orientation histograms over 4x4 sample regions. A 
gradient sample on the left can shift up to 4 sample positions, while still contributing 
to the same histogram on the right, thereby achieving the objective of allowing for 
larger local positional shifts. The descriptor is formed from a vector containing the 
values of all the orientation histogram entries.  

3.5   Distortion Reduction 

The SIFT contains noise in a complex environment. In order to apply SLAM on  a 
multi-robot, the distortion reducing filter with Dσ  is proposed here. The DSIFT 

search the matched keypoints to select the Gaussian smoothed image, L  after 
finishing the matching step of the SIFT, so that the standard deviation  is calculated as 

n

LyxL
n

k
mean

D

∑
=

−
= 1

2)),((
σ  

(9) 

where n  is the quantity of the matched keypoints, ),( yxL , and meanL  are about the 

pose information of the keypoints in the image L  and the mean of the image L , 
respectively. As a result, the distortions of the matching information are found, which 
have the position information in the L  with a larger value than Dσ2  as in Eq. (11). 

),,(),,(),,( Ddistmatchconp yxLyxLyxL σσσ −=  (10) 

4   Experimental Results  

To show the enhancement of the DSIFT form of the SIFT, the simulation source 
developed by Lowe is modified [8][9]. The simulations are performed for two robots 
under a fluorescent lamp.  In the experiments, we assumed that the master robot only 
maps its environment in the SLAM, and transfers the results to the slave robot. In this 
paper, three images are used; the reference robot image, and two images taken by the 
vision sensor with several seconds of delay. All the images have pixel sizes as 
indicated in Table 1, and Fig. 3 show the SLAM results of the slave robot. 
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Table 1. Standard deviation and the change matched keypoints for each case 

Standard deviation Match 
Case Image Axis 

SIFT DSIFT Enhance SIFT DSIFT 
x 3.029677 3.179746 0.047195 

First 
y 6.100511 1.305966 3.671265 

4 3 

x 4.3277 3.351941 0.291103 
1 

Second 
y 5.406841 1.402692 2.854618 

6 3 

x 46.96441 11.31786 3.149585 
First 

y 96.6231 10.51131 8.192298 
36 34 

x 87.0773 20.31388 3.286593 
2 

Second 
y 129.9269 32.26318 3.027096 

34 30 

x 59.99569 13.11619 3.574171 
First 

y 128.1745 14.04402 8.126625 
51 45 

x 49.36058 16.12468 2.061181 
3 

Second 
y 103.8622 16.96237 5.123096 

77 70 

x 6.974377 2.089724 2.337463 
First 

y 5.802162 4.695387 0.235715 
8 3 

x 7.226168 1.400735 4.158839 
4 

Second 
y 8.180572 3.25509 1.513163 

9 4 

The cases 1 and 4 have similar results in the heading angles, although they have 
different errors of pose as an enhancement of the standard deviations which show that 
each average is 1.72 and 2.06. In contrast, cases 2 and 3 show a higher enhancement 
as each enhanced average of the standard deviation is 4.41 and 4.72, and the result is 
dependent on the number of matched keypoints so that if there are more matched 
keypoints, a more accurate pose of the robots will be obtained.  

The results show better performance using the DSIFT compared with the SIFT in 
terms of the slave robot’s heading angle. In fact the heading angle using the DSIFT is 
very similar to the actual images, as shown Fig. 3. Case 4 shows the experimental  
 

 

Fig. 2. (a)~(d) images are the navigational results for each case of slave robot. The dotted and 
solid lined ellipses are the cases of the SIFT and the DSIFT, respectively where the arrow head 
describes the movement of the slave robot. 
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Fig. 3. (a) is show a movement of the slave robot  and (b) is the result of the pose of the slave 
robot in case 2    

results of the movement of two input images to confirm the effectiveness of the input 
time. According to the results, the master robot using more keypoints show more 
effective components than the input terms of the images taken. In this case, the master 
robot has a very similar result in terms of the heading angle; the first image has a 
2.19% error while the second has a 1.64% error and the reduced errors of the slave 
robot’s pose can be shown to be due to the proposed algorithm. 

The number in Fig. 3(a) states the robot’s position as a pixel unit in each image.  
The robot’s pose in Case 4 is shown in Fig. 3 (b), where the dotted and solid ellipses 
depict the cases of the SIFT and the DSIFT approaches, respectively, and the arrow 
head denotes the motion direction of the robot. When the master robot uses the 
DSIFT, the heading angle of the slave robot is estimated more reliably, and with a 
lower standard deviation compared with the SIFT approach. This shows an 
enhancement of about 79.55% in the standard deviation, which is about 2 times more 
accurate in the heading angle compared with the SIFT approach. In addition, the 
accuracy of the robot’s pose for the DSIFT and the SIFT methods are about 99.30% 
and 96.8%, respectively. 

5   Conclusions 

This paper has proposed an enhanced mapping for a multi-robot team with a vision 
system using a DSIFT to reduce the processing time in performing the mapping task.  
In this approach, the master robot transmits each robot’s mapping in SLAM by the 
DSIFT, which has an additional step from the SIFT. The DSIFT uses a keypoint to 
reduce the distortion throughout the Gaussian filter after the image descriptor step. 
The master robot calculates the slave robot’s pose using picture images, and the 
serves the results. In contrast to the SIFT, the proposed DSIFT incorporates an 
additional step in the SIFT. To verify the effectiveness of the proposed algorithm, 
simulations, based on SIFT and DSIFT robots have been performed for two robots. In 
the proposed algorithm, the master robot calculates the slave’s pose based on the 
vision information that transmits the mapping information to slave robot with which it 
estimates the localization task. The simulation results show higher performance for 
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the DSIFT because of the reduced distorted of the information for the input images. 
This is confirmed in that the master robot can serve lower errors in the other robots’ 
pose and gives a more accurate heading angle to the slave robot, even though only 
two simulations have been carried out. Comparison for an EKF-SLAM, SIFT, and 
DSIFT based cases are underway in real indoor environments.   
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Abstract. A semiconductor fabrication line dynamic scheduling(SFLDS) model 
combining MAS(Multi-Agent System) with multi-intelligence algorithms is 
presented in this paper. The proposed model is based on the improved general-
ized partial global planning(GPGP) and utilizes the advantages of static  
intelligence algorithms with dynamic MAS. A scheduling process from ‘mac-
ro-scheduling to micro-scheduling to repeated- scheduling’ is designed for 
large-scale complex problems to enable to implement an effective and widely 
applicable prototype system for SFLDS. Under this scheme, a set of limitation 
and improvement of GPGP about its structure are proposed. The improved GPGP 
and its model are simulated by using simulation software eM—plant. A case 
study is provided to examine the practicability, flexibility and robustness of the 
proposed scheduling approach. 

Keywords: semiconductor fabrication line dynamic scheduling problem,  
multi-intelligence algorithm, multi-agent system, improved generalized partial 
global planning. 

1   Introduction 

Today semiconductor wafer fabrication is one of the most complex manufacturing 
processes, with uncertainty, can be re-inflow, mix processing, equipment out of load 
balance, etc. Which is significantly different from other industries, is a typical discrete 
event dynamical system(DEDS)[1][2][3]. Because the scheduling problem of semi-
conductor wafer fabrication systems has been proved to be NP complete problems, and 
also has the typical multi-constraint, multi-objective, uncertainties and other features, 
such problems using the traditional methods are often difficult to work. Therefore, a 
tool designed for solving the practical problems for the scheduling, control and per-
formance analysis that will not only change the inaccurate status quo of current manual 
scheduling and control, but also have a great significance to achieve com-
puter-controlled production process. 
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A multi-agent system (MAS) is a system composed of multiple interacting intelli-
gent agents. Multi-agent systems can be used to solve problems which are difficult or 
impossible for an individual agent or monolithic system to solve. Some researchers 
have applied MAS to the SWF problem and obtained some beneficial results[4]. 

Partial global planning (PGP) is a flexible approach to distributed coordination that 
allows agents to respond dynamically to their current situation[5]. In 1995, K.Decker 
and V.Lesser of UMASS made GPGP[6][7] cooperation mechanism in 1995 for co-
operating many agents. In order to facilitate model, the two learners also proposed a 
task analysis, environment modeling and simulation (TAEMS[7][8]) that based on a 
domain independent scheduling model. GPGP mainly composed of five coordination 
mechanisms: exchanges private views of task, transmits communication, avoids re-
dundant, handles hard coordination,and handles soft coordination. So the GPGP ap-
proach consists of an extendable set of modular coordination mechanisms.  

In the semiconductor fabrication line dynamic scheduling, the schedulings of single 
piece equipment and batch processing equipment are existen jointly and couplingly. As 
domain-independent modeling, TAEMS had been unable to give a valid description of 
semiconductor wafer fabrication scheduling, so Zhai Wenbin[9] et al proposed 
ETAEMS(extended TAEMS) to meet the requirements of multi-agent quantitative 
description. Meanwhile, Zhai has also developed four relationships on GPGP corre-
sponding ETAEMS: Delay-enable, Co-batched, Downstream WIP on the lot schedul-
ing to promote, and Upstream WIP on the lot scheduling to promote relations.  

Focused on the complicated characters of emiconductor wafer fabrication, a MAS 
and improved GPGP based SFLDS is developed. in this paper. Muti-intelligent com-
puting methods are also applied in the system. To validate the effectiveness of our 
proposed method, it is simulated by using the eM-plant software, and applied to a real 
problem. Simulation results show that our method is effective and better than the ex-
isting methods. 

2   Limitations and Improvement of GPGP 

Although Zhai et al developed the ability of the Agents and optimized the scheduling 
program by imporving the GPGP in the limitations of the application, GPGP also has 
some limitations in the structure: 1)as for a large-scale Agent composition system, 
GPGP can’t describe all the properties of each Agent in a given team task; 2) TAEMS 
doesn’t provide an explicit way to express objectives of tasks performed. The lack of 
capability to express objectives of all tasks might result that agent trying to complete 
their part in an already achieved task; 3)GPGP mechanisms neither support synchro-
nization of agent nor handle redundant teamwork. As the limitations mentioned above, 
we proposed the improved GPGP coordination mechanism, its double expansion 
mainly reflected in the extension of TAEMS and GPGP mechanism itself. 

2.1   TAEMS Extensions 

The proposed extensions to TAEMS are two: modeling organizational information and 
defining monitoring conditions. 
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Modeling organizational information. We suggest a new TAEMS object—Agent 

class agentClass . agentClass is any TAEMS object defined over a whole team not only 

a single agent, namely: 1 2, , ..., ,agentClass α β χ α α α=< > = ∩  

1 2 1 2... , ... , ... , , , ,n n n i i i iAgentα β β β β χ χ χ χ α β χ∩ ∩ = ∩ ∩ ∩ = ∩ ∩ ∩ =< >
.i n N∈ ⊆ In general, this extension drops the number of objects required 

to agentClass define Which provide possibility for Bid Proposal of task structure’s 

description. 

Defining completeness and Un-completeness. In standard TAEMS, there is only one 
measurement applied to all tasks, namely: _task quality . In a given system, the lack 

of certainty degree for tasks completed and not completed, then reusability of collabo-
rative mechanisms of the system itself will drop substantially. Therefore, we defined a 
variable for monitoring the state: ( ) ( ( ), ( ), ( ))Unachievable T f q T c T dl T= , 

when ( )Unachievable T α>  task T can’t complete the job. 

2.2   GPGP Mechanisms Extensions 

Except for 5 GPGP coordination mechanisms mentioned above, imporved GPGP also 
has three other mechanisms as follows: 

Mechanism1: Synchronization mechanism. 
<coordination methods>: first, differentiate and confirm the role of commit-
ment leader and common ；second, Timing test leader and replacing invalid 

leader .i.e.: 1 2 1if ( , ) PCR and P and T imeout> then r T T T α∈ ∈
 

then replace  by choosing functioning agent  to the set of agentsleader A . 

{ }2| ( ( ))A aa B B T . 

Mechanism2: Monitoring Framework mechanism. 
<coordination methods>: first, timing test ( )Unachievable T ;second, 

if ( ) , then terminate Unachievable T Tα> ; third, executing other assignments. 

Mechanism3: "Communicating results ”mechanism. 

<coordination methods>: first, differentiate and confirm the role of commitment 

leader and common ; second, pass the result to the other Agents who satisfy the 

commitments, namely:{ A and | ( ( ( ))}AA A leader B B C T∈ = . 

3   The MAS-SFLDS Based on Improved GPGP 

The MAS-SFLDS based on improved GPGP is mainly consisted of management 
Agent, Executive Agent, task Agent and resource Agent, all the agents can communi-
cate with each other, as shown in Figure 1: 
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Fig. 1. Improved GPGP-based scheduling model of MAS 

Management Agent. Management Agent is non-entities Agent, which is responsible 
for generating task Agent according to the arrangement from upper-layer; terminates 
the task agent when the piece is completed, supervises system information of all the 
Agents. Upper arrangement used to control the semiconductor manufacturing line, cast 
material, and get the current situation of task agent charged by management agent, then 
control the cast material time.  

Executive Agent. As an intermediary between task side and service side, the objective 
of the Executive Agent is: complete the task Agent’s working efficient in use of re-
sources Agent. Executive Agent maintains a regedit to be scheduling and a regedit of 
available resources. After received the scheduling instructions, it investigates the col-
lection of all tasks to make sure that they have been decomposed at first, and then 
follows a certain rule to sort the decomposed working procedure, and updates the 
procedure-registry and resource-registry, finally, reason out the allocation plan to 
achieve the "macro-scheduling". The module in the Executive Agent achieveing the 
scheduling is inference engine by using of the embedded muti-intelligence algorithm.  

Task Agent. Agent task with the informations of work piece lot. Task Agent will 
modify their own properties in according to the informations that from management 
Agent and resource Agent, and then break down the tasks into sub-tasks or processes 
through task decomposition modules. At the same time, in order to meet the require-
ments of improved GPGP, the task Agent that under the task environment[8] as well as 
the actual situation will construct a global view of the task in use of ETAEMS. 

Resource agent. A resource Agent corresponds to an equipment. Rresource Agent will 
construct a local task view in according to the structural informations; communicate 
with the relevant agents, access to the relationships with the other Agents and establish 
a part-global task view. And then apply the improved GPGP again to accomplish the 
commitments between tasks and form a local virtual task. Then, resource Agent will 
schedule their own methods and tasks in use of scheduling module. After the imple-
mentation of the scheduling program, resource Agent sent the completed informations 
and results to task Agent to achieve the "micro-scheduling" process. For the failure of 
the methods or tasks, resource Agent will select the replaced plan in according to a 
part-global task view, or will send the failure messages to the executive Agent and task 
Agent by the executive Agent for "repeated-scheduling", until the system completed 
the task. 
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4   System Scheduling 

4.1   Macro Scheduling—Intelligence Inference Engine 

The main function of executive Agent is to achieve the "macro scheduling". With the 
muti-objective optimization of the inference engine in the executive Agent, the system 
will choose the appreciated intelligence algorithm of the semiconductor fabrication 
produce scheduling from table 1 as shown below in according to the characteristic and 
occasion of a intelligence algorithm. 

Table 1. List of characteristics and applicable situation for optimization methods 

Algorithmic name Operation 
speed 

Optimized 
efficiency 

Scheduling 
size 

Appropriate 
situation 

Integer programming Slow Perfect Small Small 
NN Middle Middle Large/middle Large 
GA Middle Middle Middle Universal 

local search and GA  Speedier Middle Large/middle Large 
SAGA Speedier Perfect Large/middle Large 

4.2   Micro-scheduling—Improved GPGP Coordination Mechanism 

In this system, the “micro-scheduling” mainly happens in the resource Agent. The 
specific “micro-scheduling” are as follows: 

StepA1. View from the global task, read the local task view; 
StepA2. Exchange relevant views and form local-global task view; 
StepA3. Detect coordination relationships; 
StepA4. To determine whether CR is empty. If it is not，goto StepA1; 
StepA5. Apply improved GPGP, make commitment and accept a virtual task; 
StepA6. Use the scheduling module of the resource Agent for local task scheduling; 
StepA7. Resource equipment executive the scheduling, goto StepB4. 

In StepA3, improved GPGP is divided into two categories: one is the single piece of 
resources Agent coordination mechanism, it gives priority to single piece equipment in 
order to maintain uniform distribution; the other is a batch processing of resource 
Agent coordination mechanism. It should be combined with the same technical 
upstream wafer in an early period of the batch processing. 

4.3   The Overall Scheduling Steps of System 

As mentioned before, the system's scheduling algorithm is as follows: 

StepB1. Update the scheduling procedures registry information and available re-
sources registry information of executive Agent; 

StepB2. Task Agent decomposition process, and construct the global task of view; 
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StepB3. Executive Agent allocated procedures to specific resource device in using 
of the inference engine, to achieve "macro-scheduling"; 

StepB4. Executive improved GPGP coordination control in resource Agent and 
achieve "micro-scheduling", goto StepA1; 

StepB5. Inform the Executive Agent update task sets, goto StepB1. 

4.4   Repeated-rescheduling 

Rescheduling policy is used to determine what caused rescheduling; its key judgments 
are two: The first is the existence of critical equipment failures; the second is the ex-
istence of match point. The specific methods are as follows: 

StepC1. To determine whether there is a critical equipment failure, or else, goto 
StepC3; 

StepC2. Resource Agent reporting to management Agent, management Agent sets 
resource equipment abnormal; 

StepC3. if there is a match point or not, if it is, goto Step C4; 
StepC4. oto Step B1. 

5   System Simulation and Results Comparison 

The paper used eM-plant simulation software, adopted simulation model that based on 
the actual production line, set up the corresponding MAS model, and achieved the Agent 
design and improved GPGP. The actual production data of a semiconductor wafer fab-
rication used for testing. The semiconductor wafer fabrication is composed of 10 bot-
tleneck equipments, there are 28 sets of key equipment in all. Meamwhile, we apply 
GASA algorithm(genetic algorithms-simulated annealing ) to the inference engine. 
Tested data including three kinds of wafer products a,b,c, a total of 79 construction 
sections. Before the "macro-scheduling", the work procedure sorted by the following 
rules: single piece of equipment FCFS, batch processing equipment MBS. Three kinds 
of wafer products’ rate of charge is 1:1:1 per day, each product is expected to batch 
charging according to uniform manner, the simulation system is running 650 days. 

In order to investigate the stability of wafer etch processing, we have collected parts 
quantity (as shown in Figure 2,3,4)of wafer etching subsystem model in 134 days-138 
days, 384 days-389 days and 604 days-608 days respectively, simulation results basi-
cally stable at between 20-30, and cyclical changes. Therefore, tests show that the sys-
tem not only has a lower redundancy but also has a more stable working performance. 

 

Fig. 2. Parts quantity of wafer etching subsystem model in 134 days- 138 days 
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Fig. 3. Parts quantity of wafer etching subsystem model in 384 days- 389 days 

 

Fig. 4. Parts quantity of wafer etching subsystem model in 604 days- 608 days 

At last, to test the performance of the whole SFLDS, the output of the system is 
compared with those of GPGP-CN[9] and FCFS-MBS[10] methods. Table 2 show the 
comparison results. From Table 2, it is easy to draw that the output of SFLDS is about 
19% more than that of GPGP-CN, and 44.6% more than that of FCFS-MBS. So it can 
be concluded that the performance of our proposed method is superior to the existing 
two methods.  

Table 2. The output numbers of different methods 

Day 100 200 300 400 500 600 ave 
SFLDS 50 58 52 49 60 65 55.7 

GPGP-CN 50 48 45 44 46 48 46.8 
FCFS-MBS 50 40 35 31 36 39 38.5 

6   Conclusion 

Focused on the scheduling problem for SFLDS, this paper develops an efficient system 
based on multi-agent system and an improved GPGP, genetic algorithm and simulated 
annealing methods are also applied in the system. Numerical simulation is performed to 
test the effectiveness of the proposed method. The results show that our proposed 
method is effective and robust. The comparisons with other existing results indicate 
that the performance of improved GPGP is better than those of others. 

References 

1. Kim, Y.D., Shim, S.O., Choi, B., et al.: Simplification methods for accelerating simula-
tion-based real-time scheduling in a semiconductor wafer fabrication facility. J. IEEE 
Transactions on Semiconductor Manufacturing 290 (2003) 



666 X. Ma and Y. He 

2. Hsieh, B.W., Chen, C.H., Chang, S.C.: Scheduling semiconductor wafer fabrication by 
using ordinal optimization-based simulation. J. IEEE Transactions on Robotics and Auto-
mation 599 (2001) 

3. Hwang, T.K., Chang, S.C.: Design of a lagrangian relaxation-based hierarchical production 
scheduling environment for semiconductor wafer fabrication. J. IEEE Transactions on 
Robotics and Automation 566 (2003) 

4. Wu, J.W., Xiao, Y.S.: Multi2agent technology in scheduling of semiconductor production 
line. Computer Integrated Manufacturing Systems 9(8), 641–644 (2003) 

5. Durfee, E.H., Lesser, V.R.: Partial global planning: A coordination framework for distrib-
uted hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics 21(5), 
1167–1183 (1991) 

6. Decker, K., Lesser, V.R.: Generalizing the partial global planning algorithm. J. Intelligent 
and Cooperative Information Systems, 319–346 (1992) 

7. Decker, K., Lesser, V.R.: Designing a family of coordination algorithms. In: Proceedings of 
the First International Conference on Multi-Agent Systems, pp. 73–80. AAAI Press, San 
Francisco (1995) 

8. Decker, K., Lesser, V.R., Carver, N., et al.: Evolution of the GPGP/TAEMS domain - in-
dependent coordination framework. J. Autonomous Agents and Multi-Agent Systems, 
87–143 (2004) 

9. Zhai, W.B., Zhang, J., Yan, J.Q., Ma, D.Z.: Research on ETAEMS/GPGP-CN based  
Dynamic Scheduling Technology of Semiconductor Fabrication Line. J. Mechanical En-
gineering, 53–58 (2005) 

10. Gurnani, H., Anupindi, R., Akella, R.: Control of batch processing systems in semicon-
ductor wafer fabrication facilities. IEEE Trans. Semiconduct. Manufact. 5, 319–328 (1992) 



Y. Tan, Y. Shi, and K.C. Tan (Eds.): ICSI 2010, Part I, LNCS 6145, pp. 667–674, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Multi-robot Formation Control Using Reinforcement 
Learning Method 

Guoyu Zuo, Jiatong Han, and Guansheng Han 

School of Electronic Information & Control Engineering, 
Beijing University of Technology, Beijing 100124, China 

hjt925@163.com 

Abstract. Formation is a good example of the research for multi-robot coopera-
tion. Many different ways can be used to accomplish this task, but the main 
drawbacks of most of these methods are that robots can’t self-learn. In Brooks’ 
behavioral opinion, this paper is to verify that the reinforcement learning 
method can be used for robots to select different behaviors in various different 
situations. Experiments are performed to illustrate the team robots’ capability of 
self-learning and autonomy. The results show that the robots can get a self-
formation in a barrier environment after learning. 

Keywords: Multi-robot, Formation control, Reinforcement Learning. 

1   Introduction 

There are different levels of needs in maintaining the robot formation’s completeness 
under various mission requirements. To obtain the goal of the robot formation moving 
to a specified point, motion control should take into accounts the requirements of 
formation, such as avoiding obstacles and other factors. In this paper we mainly use 
Brooks’ behavioral inhibition method, in which, at every moment, the formation task 
is specified to be a series of actions, which are here defined as act l, act 2, ..., act n. 
Using these defined behaviors, multi-robot system can perform the self-formation in 
an obstacle environment. Each robot's control system has a reinforcement learning 
module to achieve the upper behavior control. Our aim is that through learning multi-
robot system can autonomously construct some good pairs from environment to be-
havior. This mapping relation can make robots choose appropriate behaviors at each 
step in the environment to ensure the formation task’s achievement without colliding 
with the obstacles. 

2   The Leader-Follower Control Method 

The Leader-Follower control method is often used in multi-robot formation control, in 
which the team leader decides where the formation moves while avoiding obstacles, 
and the other robots, i.e., the followers, follow the leader with a certain speed and an-
gular velocity [1, 2]. 



668 G. Zuo, J. Han, and G. Han 

Figure 1 is the l ϕ−  control methods. The follower always maintains following its 

leader, ensuring that
12

dl l− and
12

dϕ ϕ− , where l is the distance between two robots, 

ϕ is the angle between them, and d is the distance between the centres of robot’s two 

wheel axes and the robot’s rotation. 

12ϕ

1θ

2θ

12l

d

 

Fig. 1.  Model of l ϕ−  

The kinematics equations of the leader robot are: 
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here
i

v and 
i

ω , i=(1,2) represent the line speed and angular velocity of the two robots, 

respectively. The kinematics equations of the follower robot are shown as follows: 
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For the follower, the control output
2 2

( , )vω is: 
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here, 

1 12 12 1 12

12

1 1

( ) cos

cos cos

da l l v ϕ
ρ

γ γ
−

= +      (4) 

So the l ϕ−  closed-loop control is expressed as: 

12 1 12 12

2 12 1212

( )

( )

d

d

l a l l

a ϕ ϕϕ =

= −

−
 (5) 

where a1 and a2 are the coefficients of the proportional control method.
 
 

3   Behavioral Design of Multi-robot Formation Using  
Reinforcement Learning 

If there are obstacles in the environment, the robot can not pass through the barriers 
while maintaining the original formation. In general, they need to change their forma-
tion in different types. When passing through a narrow obstacle, the formation usually 
converts into a line formation. That is, the followers need to change the following 
angle with the leader in order to pass through the obstacles. After the followers move 
through the obstacles and come to a spacious environment, they change the angle 
again to return to the original formation. Here we use a reinforcement learning 
method to design the behaviors of the followers. 

Q learning is a reinforcement learning algorithm. The main idea of it is not to learn 
each state of the evaluation function, but to learn each state-action pairs’ evaluation 
function Q(s, a). Q(s, a) signifies the state’s cumulative discounted value after per-
forming actions. When the unknown or dynamic enviroment changes, Q learning has 
a great advantage. It does not need to know the next state after actions, but need to 
rely on the current state-action pairs’s Q values to determine the optimal strategy in 
state s [3, 4]. 

1( , ) max ( , )t t t t
a A

Q s a r Q s aγ +
∈

= +  (6) 

Equation (6) is set up only under the conditions of the optimal strategy. In the rein-
forcement learning process, the two ends of equation (6) is not strictly equal, and the 
error is expressed as: 

1 1 1
( , ) max ( , ) ( , )

t t t t t t t t t
a A

Q s a r Q s a Q s aγ − + −
∈

Δ = + −  (7) 

1

1 1 1 1

1 1 1

1 1

( , ) ( , ) ( , )

( , ) [ max ( , ) ( , )]

(1 ) ( , ) [ max ( , )]

(1 ) ( , ) [ ( )]

t t t t t t t t t t

t t t t t t t t t t
a A

t t t t t t t t
a A

t t t t t t t t

Q s a Q s a Q s a

Q s a r Q s a Q s a

Q s a r Q s a

Q s a r V s

α
α γ

α α γ

α α γ

−

− − + −
∈

− − +
∈

− +

= + Δ

= + + −

= − + +

= − + +

 (8) 
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where, 
1 1 1

( ) max ( , )
t t t t

a A

V s Q s a+ − +
∈

=  

t
α : learning rate in the moment of t, 

γ : discount factor for 
1

( )
t

V s
+

, 

t
r : the reinforcement signal at the moment of t to imply the action ta . 

The interactions between the robots and environment are as follows: 

1) The robot perceives the current environment state
t

s , 

2) Obtain a timely reward for the current state of the environment, and perform 
the appropriate action according to a certain strategic selected,  

3) Perform the selected actions, and the environment changes, 

4) Get the next state of the environment
1t

s + , 

5) Calculate the reward 
t

r  timely, 

6) 1t t← + , move to step 7 if the learning objectives have been achieved, other-
wise, turn step 2, 

7) The end of the learning process. 

The reinforcement learning process is as follows: each robot gets the information 
of environment through the by its own sonar information coming from the other ro-
bots. This type of sensor information is sent to the reinforcement learning module  
(Q-learning). The reinforcement learning module decides to select which action to 
behave in accordance with all of the robot's sensor signal: act 1, act 2, ..., act n, and 
the robots take the appropriate actions in the environment. The robot’s environmental 
system will give every action different enhanced signal values based on the role of 
behavior. The system will decide the trend of such actions, i. e., whether they will be 
strengthened or weakened in such an environment. And eventually the system will 
learn the different circumstances to take appropriate actions to achieve a self-
formation in the obstacles space [5, 6]. 

Reinforcement learning is based on the current state and acts a behavior with a ran-
dom value. For the action selection, we use the Boltzmann distribution to realize 
choice of random acts. 

4   Experiment and Analysis 

In the following experiments, two Pioneer3-DX mobile robots are used as the experi-
mental platform to research multi-robot formation. The robot is equipped with 16 
sonar sensors, which can cover the 0 ~ 360 ° range around.  

4.1   Robot's State Space 

The state space of robot is expressed as: 

{ , , }l f rs d d d=   
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dl: The distance between the left side of the robot and the obstacle, 

df: The distance between the front side of the robot and the obstacle, 

dr: The distance between the right side of the robot and the obstacle. 

 

The above three parameters of state space are shown in Figure 2. 

ld

rd

fd

gd

heading

barrier

robot

Object

O

X

Y  

Fig. 2. Position relationships between the robot, the obstacle and the goal 

As the maximum distance detected by the sonar sensors is 5000mm, the minimum 
effective distance is 100mm, so 100 < df, dr, dl < 5000mm, that is, we will not consider 
the distance to obstacles of more than 5000mm or less than 100mm. using following 
formula to calculate the distance-weighted average. 

range = 0.5df+0.25dr+0.25dl (9)

The distances between the robots and the obstacles are divided into three discrete 
states as shown in Table 1: 

Table 1. Division of robot states (mm) 

State Small Middle Large 

range 0<range<500 500<range<2000 range>2000 

Table 2. Q- Table of states-action pairs 

 Small(
1

s ) Middle(
2

s ) Large(
3

s ) 

Action1(
1

a ) 
1 1

( , )Q s a  2 1( , )Q s a  
3 1

( , )Q s a  

Action2(
2

a ) 
1 2

( , )Q s a  2 2( , )Q s a  
3 2

( , )Q s a  

At the same time, we define two kinds of robot behaviors:  

Action1: keeping the original formation (keep the angle between leader and fol-

lower to be 0oθ = );  
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Action2: transforming the original formation into a line formation (adjust the angle 

between leader and follower to be 180oθ = ). 
The state -action pairs are shown in Table 2: 

4.2   Reinforcement Signals  

The reinforcement signal selection is a very important for reinforcement learning 
method. Here, we use both internal and external reinforcement signals to reflect the 
individual's interests and the interests of the whole.  

1) Internal reinforcement signal: The internal reinforcement signal is used to evalu-
ate the individual interests of the robots, which is defined by the distance between the 
robot and obstacles. lmin is the Minimum distance. When l < lmin, we think that the robot 
gets into a dangerous place, so give it a punishment. lmax is considered as a safe dis-
tance. When l < lmax, the robot is relatively safe, we give it awards. 

m in

in m a x

m in m a x

-1 l < l

r = 1 l > l

f( l) l < l < l

⎧
⎪
⎨
⎪⎩

 (10) 

where f(l) is a linear function defined as: 

min

max min

2
( ) ( ) 1

( )
f l l l

l l
= ⋅ − −

−
 (11) 

2) External reinforcement signal: The signal is used to regulate the group action for 
the overall interests. The group actions planned by each robot in each step of rein-
forcement learning may not be the inconsistent. In order to make each follower robot 
keep the same behavior as the leader, an election approach which uses the expected 
behavior of most of the robots as a whole action, and then each robot implements the 
overall team behavior. Here we define the external reinforcement signal for each 
robot as follows. If the robot behavior is consistent with the team behavior, the robot 
will be rewarded for this behavior; otherwise, it will be punished. The external rein-
forcement signal is denoted as: 

the robot's behavior is consistent with the team's ultimately behavior

otherwise
out

1
r =

-1

⎧
⎨
⎩

 (12) 

The overall reinforcement signal is expressed as the weighted sum of internal and 
external reinforcement signal: 

in outr r rα β= ⋅ + ⋅  (13) 

where 1α β+ = . 
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Q function is defined as: 

1
( , ) max ( , )

t t t t
a A

Q s a r Q s aγ
+

∈

= +  (14) 

The update rules are: 

1 1 1
( , ) max ( , ) ( , )

t t t t t t t t t
a A

Q s a r Q s a Q s aγ
− + −

∈

Δ = + −  (15) 

1
( , ) ( , ) ( , )

t t t t t t t t t t
Q s a Q s a Q s aα

−
= + Δ  (16) 

At the beginning of the reinforcement learning, the main task of learning is to ex-
plore the environment, thus the randomness of action selection should be greater, in 
the latter stage of reinforcement learning, learning should converge, so the random-
ness of action selection should be smaller. Boltzmann machine is used here to carry 
out anneal operation. The probability of action

i
a was chosen as follows: 

( , ) /

( , ) /

1 /

0

( )
i

n

n

Q s a T

i Q s a T

a A

e
P a

e

T T t β

∈

−

=

=

∑  (17) 

T0: the initial temperature value, 

t: Time, 
T: the current temperature value, obtained from T0’s decay with time, 

β: Constant, used to control the rate of annealing. 

The ɛ -greedy strategy is used to select action ai. In each action selection, 
use ( )

i
p a ε= to randomly select actions, and use 1-ɛ to select the action which has the 

final largest Q value [7]. 
Figure 3 shows the formation walking conditions after learning.  

   

          (a)        (b)                                    (c) 

Fig. 3. The robots (a) maintain in a formation in spacious environment, (b) get into line forma-
tion when encountering obstacles, and (c) get back to the original formation after moving 
through the obstacles 

In the experiment, the leader plans out a path from the beginning to the end. The 
follower changes the angular with the leader in accordance with the changes of 
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environment and is gradually adapted to a new environment. The robots maintain 
the original formation in a spacious environment. As they go closer to the obstacle, 
they get into linear formation to pass through the obstacles. When the environment 
becomes more spacious again, the robots gradually adjust to form the formation like 
the original in the first stage. 
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Abstract. This paper proposes a robust image stabilization system for a mobile 
robot using Extended Kalman Filter (EKF). Though image information is one 
of the most efficient data for robot navigation, it is subject to noise which re-
sults from internal vibration as well as external factors such as uneven terrain, 
stairs, or marshy surface. The vibration of camera deteriorates the definition of 
image by destroying image sharpness, which seriously prevents mobile robots 
from recognizing their environment for navigation. In this paper, inclinometer 
was used to measure the vibration angle of the camera system mounted on the 
robot to obtain a reliable image by compensating for the angle of the camera 
shake caused by vibration. In addition angle prediction by using the EKF en-
hances responsibility of image analysis for real time performance. The Experi-
mental results show effectiveness of the proposed system to compensate for the 
blurring of the images. 

Keywords: image stabilization, mobile robot, Inclinometer, Extended Kalman 
Filter. 

1   Introduction 

Image stabilization is the process which removes the unwanted fluctuations of image 
sequences captured from the cameras improving, therefore, its visual quality.  Image 
information is one of the most important qualitative features for mobile robot naviga-
tion. In order for the mobile robot to recognize its surrounding environment for  
navigation, acquisition of reliable image from a camera mounted on the robot is  
indispensable. There is much research on image stabilization for military and  
tele-operation utilities, as well as application in commercial palmcorders. The funda-
mental methods for stabilizing image include several different approaches.  In [1], 
they proposed a new digital video stabilization approach based on a 2.5-D motion 
model with inertial filtering using springs and dampers.  In [2] and [3], image stability 
by actuating the camera was proposed and implemented. [4] and [5] proposed image 
stabilization approaches using image compensation for the deteriorated image. The 
stabilization technique using springs and dampers can be used only for small range of 
camera vibration and needs heavy calculation burden which results in time delay of 
the entire processing. Image stabilization by actuating the camera is one of the basic 
methods for image stabilization, since it is compact and consumes low energy. [6] 
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We propose an image stabilization system combines two image stabilization me-
thods. One is stabilizing method by rotating mechanically the camera from the motion 
of the robot. The other stabilizes the image by predicting angle using EKF.  The pro-
posed system is basically a 1-DOF camera system embodied in the robot mechanism, 
where the vibration is measured by using inclinometer.  For image stabilization, EKF 
predicts the vibration using the vibration data.  As shown in both simulation and expe-
rimental results, the proposed system using EKF provides more stable image compar-
ing with conventional approaches. 

2   Review of Image Stabilization Systems 

2.1   Optical Image Stabilization (OIS)  

OIS can be implemented in both still image and motion image. This system some-
times referred to as optoelectronic image stabilization because it uses the optical path 
to compensate for vibration. A moveable lens shifts the optical path in order to avoid 
blurring. The correction element's motion is perpendicular to the optical axis in oppo-
site direction to the handshake. The OIS detects camera shake using two angular ve-
locity sensors for x-axis (pitch) and one for y-axis (yaw). This system is one of most 
common image stabilization. 

2.2   Electromechanical Image Stabilization (EMIS) 

The specific feature of EMIS moves directly image sensor to compensate for hand-
shake. Unlike optical stabilizers, it is possible to use any lens with the camera body 
equipped with EMIS. Angular velocity sensors detect camera movement and relay the 
amount of compensation necessary to the electromagnets that move the sensor to 
compensate for any shake. EMIS provides a crucial advantage when shooting hand-
held with telephoto or tele-zoom lenses, at macro distances, or any other situation that 
magnifies the effects of camera shake. 

2.3   Digital Image Stabilization (DIS) 

DIS is different from the previous techniques.  It is exclusively independent of hard-
ware. DIS is based on electrical technique since information on vibration obtained 
from sensors mounted on the system is used for digital image processing. The system 
stabilizes the image using sensor data saved. It has already shaking information, it 
compensates image by moving image [11].   

However, general DIS consists of two parts.  One estimates several local motion 
vectors from other locations using Block Matching Algorithm [12].  The other decides 
motion vector of the system using the local motion vector obtained in the previous 
case. The motion estimation plays an important role in digital image stabilization. The 
global block matching method is considered as one of the best methods because it 
covers the whole area.  However, it needs heavy calculational burden, processing time 
and complex hardware system.   
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3   The Enhanced Image Stabilizing System 

3.1   Target System 

In this paper, we propose an image stabilization system which can be applied to mo-
bile robot system.  In the system, roll axis vibration which has vibration range of -90 
~ 90 degree and frequencies less than 5 Hz will be considered since roll axis vibration 
is dominant one in real situation.   

3.2   Mechanical Mechanism  

The proposed stabilization system as shown in figure1 consists of a motor, harmonic 
drive which is connected directly to the motor, inclinometer to measure angle and 
controller in the behind of the motor.  The harmonic drive has a reduction ratio of 
50:1 and has speed of 4,810 rpm in unload case and 4,080 in normal operation.  

 

Fig. 1.  Prototype of the proposed system 

3.3   Control Mechanism  

In order to improve the performance of the image stabilization due to vibration, it is 
desirable to predict the states. A novel and real-time stabilization can be obtained by 
using Kalman filters to remove short term image fluctuations with retained smooth 
gross movements. The efficiency of the Kalman filer is then due to the fact that the 
parameters of the resulting Gaussian can be computed in closed form [13]. Unfortu-
nately, state transitions and measurements are rarely linear in practice. It is well 
known that EKF based predictor shows good performance in nonlinear system such as 
vibration which has nonlinear characteristic in this simulation.  The image is stabi-
lized by compensating for angular fluctuation due to vibration based on the current 
and estimated angle.  

The vibration can be expressed as trigonometric function y as in eq. (1)  sin (  (1) 

Where A and (  are amplitude and angular velocity respectively.  
When the measured data are applied to the EKF, the state vector of the system has 

the form of   

(  , , ( ,  (2)
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The state equation of the system can be expressed as  

( ( (  

( ( , ( (  
(3)

( ( ( cos (  ω( (  
(4)

To linearize the above equations, the following Jacobian matrix is used: 

( 1 cos( ( ( sin ( (0 1  (5)

Where T and n are the sampling time and the step number respectively. The function 
can be used to compute the predicted state from the previous estimate and similarly 
the predicted measurement from the predicted state. However, f and h cannot be ap-
plied to the covariance directly.  To apply to the EKF using already explained system 
model, first, the predictions of the state and the covariance are computed by: 

( | ( , 0  

( | ( ( | ( (  
(6)

Once we have the measures of the angle, the innovation and the covariance of the 
innovation can be computed by eq. (7) and (8) 

( | ( ( ( | , 0  (7)

( ( ( | ( (  (8)

Where H is the Jacobian matrix of observation model.  Kalman gain can be computed 
by  

( ( | ( (  (9)

Finally, the estimation of the state and covariance of the system are obtained by: 

( | ( | ( (  (10)

( | ( | ( ( ( (  (11)

4   Simulation 

The efficiency of angle prediction by the proposed method has been verified using  
the MATLAB simulation. The sample input for estimation has sine wave form with  
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    (a)                                              (b) 

      
(c)                                              (d) 

Fig. 2. Simulation result for the each frequency. (a) 0.25Hz, (b) 0.5Hz, (c) 1.0Hz, (d) 5.0Hz 

amplitude of 10 degree. According to the simulation results shown in Fig. 2, the esti-
mated signal traces the input signal, faithfully with little error.  As shown in the fig-
ures, the error is reduced after 2nd period drastically.  

Table 1 shows the result of the average of the error.  The error increases as the fre-
quency is bigger in the range of 5 % of error.  Therefore, the angular estimation is 
acceptable in real applications. 

Table 1. The comparison of simulation results  

 0.25Hz 0.5Hz 2.5Hz 5.0Hz
Error -0.003424 -0.017394 -0.283652 -0.557989 

5   Experimental Results 

5.1   Experiment Apparatus  

In order to evaluate the performance of the proposed system, we built an image cap-
turing system where frequency and amplitude of the applied vibration are adjustable. 
As shown in Fig. 3(a), (b). The experimental apparatus is in cylindrical shape  
connected with DC motor. It generates the vibrating signals with -10 ~ 10 degrees of 
amplitude and five steps of frequency between 0.25 ~ 5 Hz as inputs of the system for 
evaluation. The proposed system receives the target image shown in Fig. 3 (c) as 
input through the camera attached on the end of the system. The number of corners of 
the image is counted by using Harris Corner Detection algorithm.  
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(a)                       (b)                                    (c) 

Fig. 3.  Equipment and target image for the experiment 

5.2   Experimental Results 

The number of corners of the image shown in Fig. 3 (c) is set to 32. The detected 
number of corners of the image when the system is in vibration denotes the stability  
 

  
(a)                                                                      (b) 

  
(c)                                                                  (d) 

 
(e) 

Fig. 4. Experimental result for the each frequency (a) 0.25Hz, (b) 0.5Hz, (c) 1.0Hz, (d) 2.5Hz, 
(e) 5.0Hz 
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index of the captured image. The more closer it is to 32, the more reliable the system 
is. The following figures show the difference in numbers between the number of de-
tected corners and 32.   

Fig 4 (a) shows the experimental result in case of 0.25 Hz of frequency. In case of 
0.5 Hz, the lowest frequency in the experiment, the EKF based method shows slightly 
better stabilization.  As shown in the figures below, the proposed system using EKF is 
especially effective for image stabilization in case of 0.5, 1.0 and 2.5 Hz cases.  How-
ever, for 5.0 Hz case, EKF based algorithm results in better image stabilization but 
slightly out of phase. 

Table 2 describes the experimental results of corner detection rate in case of IS and 
IS+EKF for some different frequencies. According to table 2, EKF based approach 
shows better performance in image stabilization comparing with IS for 5 different 
frequencies. As a result, EKF is helpful for image stabilization.  

Table 2. The comparison of experimental results  

 0.1Hz 0.25Hz 0.5Hz 2.5Hz 5.0Hz
IS Only 98.19% 90.00% 89.38% 84.19% 54.38% 

IS + EKF 99.31% 93.06% 92.88% 89.06% 58.88% 

6   Conclusions 

In this paper, we propose a novel image stabilization system based on EKF. The EKF 
based stabilization enables real-time utilization and provides a successful performance 
for fluctuation cancellation of camera movements. Differently from the conventional 
system based on hardware, the proposed system is designed to enhance stability and 
responsibility by predicting the states using previous states of velocity and angular 
velocity of the system. The experimental results for image stabilization show good 
performance of the proposed system for the input vibrations of 0.25, 0.5, 1, 2.5 and 
5.0Hz. Special performance enhancement was shown in the first four cases comparing 
with the fourth case.   

There are several important issues that need to be addressed in future research in 
this area for real world applications including: 1) performance verification of the 
proposed system in wider range of frequencies and angular, 2) 2-axis image stabiliza-
tion for mobile navigation.   
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Abstract. This paper proposes an algorithm for an efficient navigation and 
building a precise map in multi-robot systems. One of the fundamental prob-
lems in mobile robotics is an effective investigation of unknown environments. 
The basis of navigation algorithm in this paper is Extented Wave Algorithm, 
which is in our point of view, appropriate in getting   accurate.Secondly, parti-
cle filter, which proved its reliability, was considered as localization algorithm. 
Finally, overlapping algorithm is responsible for mapping. The technique has 
been tested extensively in simulation runs. The results given in this paper dem-
onstrate that our algorithm significantly reduces the exploration time compared 
to previous approaches. 

Keywords: navigation, mapping, localization, multi-robot system, wave  
algorithm. 

1   Introduction 

A lot of researches have been done about map-building by autonomous mobile robot 
[2, 3, 4, 5]. An autonomous mobile robot will definitely work well, if it is equipped 
with different kinds of precious sensors. But it may be too expensive and less fault 
tolerance. So there exist some problems such as getting accurate information, enhanc-
ing the system's fault tolerance and reducing system cost. Recently, in order to cope 
with dynamic environment and multiple tasks, a lot of researches have been presented 
in multi-agent and multiple distributed autonomous robotic systems. Multi-robot 
system has some features: distributed control, autonomy, enhanced fault tolerance and 
communication. So we decided to use a team of mobile for building a map in our 
simulation. Each robot has its own task, such as building a map of local position. 
Moreover, they have to combine their data into shared maps, Using shared maps, 
robots coordinate their exploration strategies to maximize the efficiency of explora-
tion. In our multiple simulations we tried to create the system more flexible, robust 
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and efficient. So, multi-robot system will solve the map-building task better. Multiple 
autonomous mobile robots can complete the task through cooperation and give a more 
accurate map by data fusionThe robots coordinate their exploration strategies to 
maximize the efficiency of their exploration using these shared maps. In our multiple 
simulations, we tried to create a more flexible, robust, and efficient system. A multi-
robot system is better able to accomplish the map-building task because the robots 
cooperate and assemble a more accurate map by combining all their data.  

2   Navigation 

2.1   Wave Algorithm and Extended Wave Algorithm 

This part of paper generally describes wave algorithm [8] and more deeply extended 
wave algorithm.  

In this section, we describe the algorithm that we presented in Saitov [8]. In gen-
eral, the wave algorithm uses costs and frontier cells when choosing the best target 
point, just like the uncoordinated algorithm [7]. We explain the strategy in the follow-
ing figure. It provides short trajectories for single robot exploration tasks. First, the 
robot explores the area around itself and then seeks a minimum distance to the next 
point. [4] 

 

Fig. 1. The concept of the extended wave algorithm 

According to improved wave algorithm, the robot will not head for cell number 5, 
as it was in the wave algorithm, because 5 is the smallest number among others which 
contiguous with “unknown” area, but find the largest number, divide it for 2 and takes 
its way to that cell. In case of situation depicted on figure 1, the robot will go to one 
of the cell numbered as 4. 
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Table 1.  Pseudo code of the extended wave algorithm 

wM [ cX, cY ] = 0; 
i = 0; 
a[n]; 
large=a[0]; 
exist = false 
 do 
{ 
   exist = false; 
    for (x = 0; x < width; x ++) 
      for (y = 0; y < width; y ++) 
        if (dM [x, y] is open and free) and 
             wM [x, y] is unassigned and  
          neighbor of wM [x, y] is i) 
        then (wM [x, y] = i +1; exist = true;) 
   i = i + 1; 
 } 
while (exist); 
 

   for(k=1;k<n;n++) 
   { 
    if(large<a[k]) 
   { 
    large=a[k] 
   } 
   } 
 k = large / 2 

 

Fig. 2. Simulation results of WA and EWA 
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Figure 2 shows simulation of wave algorithm (WA) and extended wave algorithm 
(EWA). 

3   Localization 

3.1   Particle Filter 

Localization is one of the significant segments of in mobile robotics. It is indispensa-
ble that a mobile robot estimates its own location for reaching a goal. In this section 
we described self-localization technique based on particle filtering. The main goal of 
partcile filtering is tracking a mobile robot. Multiple samples (particles) of the vari-
able of interest are used, each one assosiated with a weght that signifies the quality of 
that specific particle. The weight sum of all samples guarantees an estimate of the 
variable of interest. There are two main parts in the particle filter algorithm: predic-
tion and update. On the prediction step every single particle is modified according to 
the existing model. After that, on the update step, weight of every particle is re-
evaluated based on latest sensory information available and particles with small 
weights are expeled.This expelling process is called resampling. 

Table 2.  Pseudo code of the particle filter 

Require: A set of particles for robot i at time 0: 

while (exploring) do 
     ; 
     if   then  
         {particle population depleted} 
          Index = Resample  ; 
           
      end  if 
         for (j = 1 to M) do  
                {prediction after action  } 
                 
         end for  
         s= Sense() 
     for (j = 1 to M) do (update the weights) 

    
     end for  
     for (j = 1 to M) do (normalize the weights) 
             
     end for 
end while 

3.1.1   Prediction 
In order to define robot’s position at time 1+t we have to initiate the robot with its 

initial pose Tyx ]ˆ,,[ θ at time t . At the beginning the robot rotates by θθθδ ˆˆˆ −= k , 

where )/arctan(ˆ xyk ΔΔ=θ  to confront the destination position, after that it  
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translates forward by distance 22 yx Δ+Δ=ρ . As stated before the initial position 

is Tyx ]ˆ,,[ θ , the destination position will be  Tyx ]ˆ,,[ θ′′  
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3.1.2   Update 
In the update step, each particle is weighted in proportion to the likelihood of the 
observation at time t, Yt, i.e. 
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Fig. 3. Simulation results of patcile filter 

4   Map Building 

We used map merging, in which we consider each explored part of a map collected by 
a robot to be a separated matrix.[4] Let us assume that A and B are two positive real 
numbers. A * B is a function such that 

RBAm →],0[*],0[:                                           (3) 

In Eq. (3), A and B represent rows and columns of the matrix, respectively. The 
next step is the definition of a transformation used to try different relative placements 
of two maps to find a good merge. We assume that the location of a point in the plane 
is expressed in homogeneous coordinates; that is, the point (x, y) is represented by the 
vector [x y 1]T, where the trailing superscript T indicates the transpose operation. 
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Let tx, ty, and φ be three real numbers. The transformation associated with tx, ty and 
φ is the function 

22:),(, RRyxttT yx →ϕ                                           (4) 

defined as follows: 
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Here, the transformation corresponds to a rotation about the origin of the point (x, y) 
of φ, followed by a translation by (tx, ty). In the following sections, we see in the re-
sults that the mapping algorithms produce occupancy grids in which the rotation and 
translation transformations are apparently sufficient for merging real-world data. 

Building a shared map using two small maps requires the best possible overlap be-
tween these two maps.[7, 8, 10] Let m1 and m2 be two maps in IA*B. The overlap be-
tween the maps can be described in the following equation: 

∑ ∑−
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=
= 1
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1
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i

B

j
jimjimEqmmω                          (6) 

where Eq (a;b) is 1 when a = b, and 0 otherwise. The overlapping function ω meas-
ures how much the two maps agree. 

 

Fig. 4. Map mergiing 

Figure 4 illustrates the moment when two robots meet and share their local maps 
into one synchronized map. 
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5   Simulation Results 

Figure 5 represents total exploration time versus number of steps for group of 4 ro-
bots.The upper (red) line figures extended wave algorithm, the lower (green) line 
figures wave algorithm. It can be seen that at the same number of steps time values 
are significantly different.Thus we conlude that the developed navigation algorithm 
significantly decreases total exploration time. 

 

Fig. 5. Time vs Number of steps 

6   Conclusions 

We presented a distributed approach to mobile robot mapping and exploration. This 
system enables teams of robots explore environment more efficiently from either 
unknown or know locations. The robots explore independently from each other until 
they can communicate with other robots. When they meet each other, they can ex-
change sensor information with other robots, share explored maps and build one 
shared map. According to our simulation results this approach might be very useful 
for map building in multi-robot systems in real world and compared with [10].  

Acknowledgment. This work was supported by the Korea Research Founda-
tion(KRF) grant funded by the Korea government(MEST)(2009-0074464). 

References 

1. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: BA solution to 
the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. 
Autom. 17(3), 229–241 (2001) 



690 D. Saitov, K.J. Han, and S.G. Lee 

 

2. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: BA practical, decision-theoretic 
approach to multi-robot mapping and exploration. In: Proc. IEEE/RSJ Int. Conf. Intelligent 
Robots and Systems (IROS), pp. 3232–3238 (2003) 

3. Pulford, G.W., LA Scala, B.F.: Map estimation of target manoeuvre sequence with expec-
tation-maximization algorithm. IEEE Trans. On aerospace and electronic systems 38(2) 
(April 2002) 

4. Williams, S., Dissanayake, G., Durrant-Whyte, H.: Towards multi-vehicle simultaneous 
localization and mapping. In: Proc. 2002 IEEE Int. Conf. Robotics and Automation 
(ICRA), pp. 2743–2748 (2002) 

5. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. of the Second In-
ternational Conference on Autonomous Agents (1998) 

6. Birk, A., Carpin, S.: Merging Occupancy Grid Maps From Multiple Robots. IEEE Trans. 
Robot. Autom. 94, 1384–1397 (2006) 

7. Roumeliotis, S., Bekey, G.: BDistributed multirobot localization. IEEE Trans. Robot. 
Autom. 18(5), 781–795 (2002) 

8. Burgard, W., Moors, M., Schneider, F.: BCollaborative exploration of unknown environ-
ments with teams of mobile robots. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002) 

9. Stachniss, C., Mozos, O.M., Burgard, W.: Speeding-up multi-robot exploration by consid-
ering semantic place information. IEEE Trans. Robot. Autom. 18(5), 581–587 (2006) 

10. Stachniss, C., Mozos, O.M., Burgard, W.: Coordinated multi-robot exploration. IEEE 
Trans. Robot. 21(3), 376–386 (2005) 

11. Saitov, D., Umirov, U., Lee, S.G., Park, J.I.: International Symposium on Mechatronics 
and Automatic Control Section. In: (ISMA), pp. 116–122 (October 2007) 



Impulsive Consensus Seeking in Delayed
Networks of Multi-agents

Quanjun Wu1, Lan Xiang2, and Jin Zhou1,�

1 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University,
Shanghai 200072, China
jinzhousu@yahoo.com.cn

2 Department of Physics, School of Science, Shanghai University,
Shanghai 200444, China

Abstract. This present paper addresses impulsive consensus problem
in directed networks of dynamic agents having communication delays.
Based on impulsive control theory on delayed dynamical systems, a sim-
ple impulsive consensus protocol for such networks is proposed, and a
generic criterion for solving average consensus problem is analytically
derived. It is shown that global average consensus of a directed delayed
networked multi-agent systems can be achieved by a suitable design of
the impulsive gain and impulsive interval. Simulations are presented that
are consistent with the theoretical results.

Keywords: average consensus, impulsive consensus protocol, directed
delayed networks, multi-agent systems, communication delays.

1 Introduction

The distributed coordination and cooperative control in dynamic networks of
multiple agents have attracted increasing attention from various fields of sci-
ence and engineering in recent years. This problem arises in several application
domains, ranging from cooperative control of unmanned air vehicles (UAVs),
formation control of autonomous vehicles, design of distributed sensor networks,
congestion control in communication networks, etc., [1,2,3,4]. A critical prob-
lem in distributed coordinated control of multi-agents is to design appropriate
protocols and algorithms such that all agents can reach an agreement regard-
ing a certain quantity of interest that depends on the states of all agents. This
problem is usually called the consensus problem. It has been paid attention for
a long time by computer scientists, particularly in the field of automata theory
and distributed computation [1,2,3,4,5,6,7,8,9].

To achieve cooperative consensus, a series of works have been performed
recently [1,2,3,4,5,6,7,8,9]. For example, with a proposed simple model and
neighbor-based rules, flocking and schooling were successfully simulated and an-
alyzed for self-propelled particles by Vicsek et al. [1]. Jadbabaie et al. provided
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a theoretical explanation of the consensus behavior of the Vicsek model using
graph theory [2]. Fax et al. emphasized the role of information flow and graph
Laplacians, and derived Nyquist-like criterion for stabilizing vehicle formations
[3]. Olfati-Saber et al. investigated the consensus problems under a variety of as-
sumptions on the network topology with respect to fixed or switching, presence
or lack of communication delays, and directed or undirected network informa-
tion flow [4]. Moreau studied the nonlinear discrete-time multi-agent systems
with time-dependent communication channels and introduced a novel method
based on the notion of convexity [5].

On the other hand, many biological and physical systems existing in the
real world, such as biological neural networks, ecosystem management, auto-
matic control systems, distributed computer networks and artificial intelligence
robotics, usually undergo sudden and abrupt changes of states at certain mo-
ments. Such system can be well characterized by the form of impulses [10,11,12].
Consequently, there exist impulsive effects naturally in dynamic networks of mul-
tiple agents due to various instantaneous perturbations, including node and link
failures/creations, packet-loss, asynchronous consensus, switching phenomenon
and among many others [10,11,12]. However, so far, just few works considered
consensus problems when network communication is affected by impulsive ef-
fects. Therefore, it is necessary to study consensus issue in dynamic networks of
multi-agents associated with impulsive effects. This paper is an attempt toward
this goal.

The primary contribution of this paper is to propose a simple distributed
impulsive consensus protocol for a directed networks of dynamic agents having
communication delays. The paper is organized as follows. In Section 2, some
mathematical preliminaries are presented. In Section 3, a simple impulsive con-
sensus protocol is proposed, and then a generic criterion for solving average
consensus problem is analytically derived. Some simulation results are provided
in Section 4. The conclusion is finally given in Section 5.

2 Preliminaries

Throughout this paper, the following notations and definitions will be used.
Let R = (−∞,+∞) be the set of real numbers, and N = {1, 2, · · · } be the set

of positive integer numbers. Rn be the n-dimensional real space equipped with
Euclideam norm ‖ · ‖. For the vector x = (x1, x2, · · · , xn)� ∈ Rn, x� denotes
its transpose. Rn×n stands for the set of n × n real matrixes, for the matrix
A = (aij)n×n ∈ Rn×n, A� denotes its transpose, As = (A + A�)/2 stands for
the symmetric part of A. λmax(·) denotes the maximum eigenvalue of the matrix.
The spectral norm of A is defined as ‖A‖ = [λmax(AA�)]1/2. E is the identity
matrix of order n. Matrix dimensions, if not explicitly stated, are assumed to be
compatible for algebraic operations.

Let PC([−τ, 0], Rn) = {ϕ : [−τ, 0] → Rn, ϕ(t) is continuous everywhere ex-
cept a finite number of points t̂ at which ϕ(t̂+) and ϕ(t̂−) exist and ϕ(t̂+) =
ϕ(t̂)}. Given a constant τ > 0, we equip the linear space PC([−τ, 0], Rn) with
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the norm ‖ · ‖τ = sup−τ≤s≤0 ‖ψ(s)‖, and for ϕ : R → R, denote ϕ(t+) =
lims→0+ ϕ(t + s), ϕ(t−) = lims→0− ϕ(t + s), [ϕ(t)]τ = sup−τ≤s≤0{ϕ(t + s)},
[ϕ(t)]τ− = sup−τ≤s<0{ϕ(t+ s)}.
Lemma 1. Suppose β ≥ 0, and v(t) satisfies the scalar impulsive differential
inequality: ⎧⎪⎨

⎪⎩
D+v(t) ≤ −αv(t) + β[v(t)]τ , t = tm, t ≥ t0,
v(t+m) ≤ bmv(t−m) + dm[v(tm)]τ− , m ∈ N,

v(t) = ϕ(t), t ∈ [t0 − τ, t0],
(1)

where v(t) is continuous at t = tm, t ≥ t0, v(tm) = v(t+m) and v(t−m) exists,
ϕ ∈ PC([t0 − τ, t0], R). Assume that there exist constants λ > 0 and σ > 0, such
that for all m ∈ N , the following conditions are satisfied:

(i) 0 < bm−1 + dm−1e
λτ ≤ 1;

(ii) σ − λ− (−α+
βeλτ

bm−1 + dm−1eλτ
) ≥ 0;

(iii) (σ + λ)(tm − tm−1) < − ln(bm−1 + dm−1e
λτ ).

Then there exists a constant M ≥ 1 such that

v(t) ≤ ‖ϕ‖τMe−λ(t−t0), t ≥ t0.

The proof of Lemma 1 is partly similar to that of Theorem 1 in [12], and is
omitted from this paper due to the limitation of space.

3 Impulsive Consensus Protocol

Suppose that the network system under consideration consists of n agents. Each
agent is regarded as a node in a directed graph G. Here we assume that the
communication topology of G is balanced and has a spanning tree. Let xi be the
state of the ith agent. Suppose each agent has the dynamics as follows:

ẋi(t) = ui(t), (2)

where ui(t) is the control input (or protocol) with topology at time t if they only
depend on the state of agent i and its neighors.

In this paper, we are interested in discussing average consensus problem in
directed networks of dynamic agents having time-delays as well as fixed topology
with impulsive effects, where the information (from vi to vj) passes through edge
(vi, vj) with time-varying communication delays 0 < τ(t) ≤ τ . To solve such a
problem, we use the following impulsive consensus protocol:

ui(t) =
∑

vj∈Ni

aij

(
xj(t− τ(t)) − xi(t− τ(t))

)
Dwij(t), (3)

where D denotes the distributional derivative, wij : J = [t0,+∞) → R are func-
tions of bounded variations which are right-continuous on any compact subin-
terval of J . Dwij represents the effects of sudden changes in the states of the
system at the discontinuity points of wij .
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Under the consensus protocol (3), the system (2) has the following form:

Dxi(t) =
∑

vj∈Ni

aij

(
xj(t− τ(t)) − xi(t− τ(t))

)
Dwij(t). (4)

Without loss of generality, we therefore assume that

Dwij = 1 +
∞∑

m=1

μ
(m)
ij δ(t− tm), (5)

where δ(t) is the Dirac impulsive function, which means that the states of sys-
tem (4) has jumps at tm. For the measure differential equation (4), their initial
condition is given by xi(t) = φi(t) ∈ PC([t0−τ, t0], Rn). We always assume that
Eq. (4) has at least one solution with respect to initial conditions [10,11,12].

Remark 1. If μ(m)
ij = 0, then the model (4) becomes continuous consensus scheme

with time-delays:

ẋi(t) =
∑

vj∈Ni

aij

(
xj(t− τ(t)) − xi(t− τ(t))

)
. (6)

System (6) has been studied by many authors [4,8,9]. Therefore, the impulsive
consensus protocol (3) is a generalization of the existing general consensus pro-
tocols.

Rewrite Eq. (4) in matrix form as:

Dx(t) = −(L(G) �Dw(t))x(t − τ(t)), (7)

where L(G) = [lij ]n×n is called graph Laplacian (Laplacian matrix) induced by
the information flow G and is defined by

lij =

⎧⎪⎨
⎪⎩

n∑
k=1,k 
=i

aik, j = i,

−aij , j = i.

As L is a balanced matrix, we have 1�
nL = 0, which implies

∑
i ẋi = 0. Thus,

α =
∑

i xi(0)/n = Ave(x) is an invariant quantity. The invariance of Ave(x)
allows decomposition of x according to the following equation:

x = α1 + η, (8)

where α = Ave(x) and η = (η1, · · · , ηn)� ∈ Rn satisfies 1�η = 0. Here, we refer
to η as the (group) disagreement vector. The vector η is orthogonal to 1 and
belongs to an (n − 1)-dimensional subspace. Moreover, η evolves according to
the (group) disagreement dynamics given by

Dη(t) = −(L(G) �Dw(t))η(t − τ(t)). (9)

For convenience, denote L(m) = [lijμ
(m)
ij ]n×n, the following sufficient conditions

for average consensus of the system (7) are established based on stability theory
on impulsive delayed dynamical systems.
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Theorem 1. Consider the impulsive delayed dynamical networks (7). Assume
there exist constants λ > 0, σ > 0 and ε > 0, such that for all m ∈ N , the
following conditions are satisfied:

(A1) bm + dme
2λτ ≤ 1;

(A2) σ − λ− (−α+
βe2λτ

bm + dme2λτ
) ≥ 0;

(A3) (σ + λ)(tm+1 − tm) < − ln(bm + dme
2λτ );

where

bm =
1 + ετp+ εςq

1 + 2λ2(L(m)s) + λ2(L(m)�L(m))
,

dm =
ε−1τp+ ε−1ςq + τ2p2 + (ετ2 + ε−1ς2)p · q + ς2q2

1 + 2λ2(L(m)s) + λ2(L(m)�L(m))
,

α = 2λ2(Ls) − ετ‖L‖2 − εςr, β = ε−1τ‖L‖2 + ε−1ςr,

and p = ‖L‖·‖L(m)‖, q = ‖L(m)‖·max1≤p≤ς ‖L(sp)‖, r = ‖L‖·max1≤p≤ς ‖L(sp)‖.
Then the dynamical networks (7) achieve average consensus globally

exponentially.

Proof. Suppose that the frequency of impulses is ς at most in the time interval
[t− τ, t], that is, ς =

[ τ

minm∈N{tm − tm−1}
]

+ 1, and [ξ] denotes the maximum

integer no larger than ξ, the states of system have jump at ts1 , ts2 , · · · , tsς .
Since the graph G has a spanning tree, then its Laplacian L has exactly one
zero eigenvalue and the rest n − 1 eigenvalues all have positive real-parts (see
[6], Lemma 3.3). Furthermore, Ls is a symmetric matrix and has zero row sums.
Thus, the eigenvalues of matrix Ls can be ordered as

0 = λ1(Ls) < λ2(Ls) ≤ · · · ≤ λn(Ls).

Since Ls is symmetric, by the basic theory of Linear Algebra we know

η�(t)Lsη(t) ≥ λ2(Ls)η�(t)η(t), if 1�η = 0.

Without loss of generality, suppose that the frequency of information exchange
is ς in the time interval [tm − τ, tm], now we rewrite the Eq. (9) as

Dη(t) = −(L�Dw(t))η(t) + (L �Dw(t))
( ∫ t−s1

t−τ(t)
η̇(s)ds+

∫ t−s2

ts1

η̇(s)ds

+ · · · +
∫ t

tsς

η̇(s)ds
)
− (L�Dw(t))

ς∑
p=1

L(sp)η(tsp − τ(tsp )). (10)

Let us construct the Lyapunov function as the following:

V (t) =
1
2
η�(t)η(t). (11)
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For t = tm, by calculating the upper right-hand derivative of (11) along the
solutions of (10), we have

D+V (t) ≤ −
[
2λ2(Ls) − ετ‖L‖2 − ες‖L‖ · max

1≤p≤ς
‖L(sp)‖

]
V (t)

+
[
ε−1τ‖L‖2 + ε−1ς‖L‖ · max

1≤p≤ς
‖L(sp)‖

]
sup

t−2τ≤s≤t
V (s). (12)

Therefore, from the conditions (A1) − (A3) of Theorem 1 and (12), we get

D+D(t) ≤ −αV (t) + β[V (t)]2τ . (13)

On the other hand, by using the properties of Dirac measure, we have(
E + L(m)

)
η(tm) = η(t−m) − L(m)

[ ∫ t−s1

tm−τ(tm)
Lη(s− τ(s))ds +

∫ t−s2

ts1

L

×η(s− τ(s))ds + · · · +
∫ t−m

tsς

Lη(s− τ(s))ds
]
− L(m)

ς∑
p=1

L(sp)η(tsp − τ(tsp)).

We can select μ(m)
ij such that L(m) is Laplacian matrix. Therefore, we obtain

0 = λ1

(
L(m)s

)
< λ2

(
L(m)s

)
≤ · · · ≤ λn

(
L(m)s

)
, (14)

and

0 = λ1

(
L(m)�L(m)

)
< λ2

(
L(m)�L(m)

)
≤ · · · ≤ λn

(
L(m)�L(m)

)
. (15)

It then follows from (14) and (15) that

2
[
1 + 2λ2

(
L(m)s

)
+ λ2

(
L(m)�L(m)

)]
V (tm)

≤ η�(tm)(E + L(m)�)(E + L(m))η(tm)

≤ 2
[
1 + ετ‖L‖ · ‖L(m)‖ + ες‖L(m)‖ · max

1≤p≤ς
‖L(sp)‖

]
V (t−m)

+2
[
ε−1τ‖L‖ · ‖L(m)‖ + ε−1ς‖L(m)‖ · max

1≤p≤ς
‖L(sp)‖

+τ2‖L‖2 · ‖L(m)‖2 + (ετ2 + ε−1ς2) · ‖L‖ · ‖L(m)‖2 · max
1≤p≤ς

‖L(sp)‖

+ς2‖L(m)‖2 max
1≤p≤ς

‖L(sp)‖2
]

sup
tm−2τ≤s≤tm

V (s) (16)

Hence, from the conditions (A1) − (A3) of Theorem 1 and (16), we have

V (tm) ≤ bmV (tm) + dm[V (tm)]2τ− . (17)

Thus, in view of (13) and (17), all the conditions of Lemma 1 are satisfied.
Theorem 1 is proven.

Remark 2. The conditions given in Theorem 1 are all sufficient conditions but
not necessary, i.e., the dynamical networks achieve average consensus globally
exponentially, although one of the conditions in Theorem 1 may fail. This is also
illustrated through numerical examples in the next section.
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Fig. 1. An example of directed graph
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Fig. 2. Consensus process of the state variables in the delayed dynamical networks (7)
with different impulsive gain μ. (a) μ = 0.003; (b) μ = 0.3.

4 Simulations

Here we consider a directed network with fixed topology G having 10 agents
as in Fig.1. It is easy to see that G has a spanning tree. For simplicity, take
the equidistant impulsive interval tm − tm−1 ≡ Δt = 0.02, time-delay τ = 0.01,
λ = 1. And randomly choose initial value in [−10, 10]. Consider the impulsive
gain μ

(m)
ij = μ for i, j = 1, 2, · · · , 10, m ∈ N , and ε = 1. Fig. 2 (a) is the

simulation result corresponding to change process of the state variables of the
delayed dynamical network (7) with impulsive gain μ = 0.003, which satisfies the
conditions of Theorem 1. And Fig. 2 (b) indicates the simulation corresponding
to change process of the state variables of the delayed dynamical networks (7)
with impulsive gain μ = 0.3, which reveals that the conditions of Theorem 1 are
sufficient conditions but not necessary, as discussed in Remark 2.

5 Conclusions

In this paper, a simple impulsive consensus protocol in directed delayed net-
works of dynamic agents with fixed topology has been proposed. A simple but
less conservative sufficient condition under which all the nodes in the network
achieve average consensus globally exponentially is analytically derived by em-
ploying impulsive control theory on delayed dynamical systems. It is shown that
the consensus of the system not only depends on the topology of the entire net-
works and the communication time-delay, but also is heavily determined by the
impulsive gain and impulsive interval.
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Abstract. The basic theory of level of repair analysis (LORA) has been dis-
cussed. The route to apply multi-agent technology to accomplish the computer 
aided analysis for LORA has been investigated. A LORA system based on 
multi-agent system has been presented, the structure, the non-economic analysis 
agent has been researched. It can overcome the problem of information sharing 
and the cooperation between analysts effectively, and provide a new route to 
accomplish the computer aided analysis for LORA. 

Keywords: Maintenance Management, Level of Repair Analysis, Multi-Agent 
System. 

1   Introduction 

The determination of the repair level within the Army maintenance system is an es-
sential element of the logistics management information (LMI). LMI will include a 
LORA or other analyses. A LORA shall be performed on all materiel [1]. 

LORA is an integral part of Logistic Support Analysis, and is a prescribed proce-
dure for defense logistics planning. According to the factors of economic and non- 
economic, LORA is used to make sure whether the product needs repair and the best 
level to be repaired if needed, and it is the optimal balance decision plan between the 
design characters, support program and support resource requirements. The product in 
LORA may be equipment, a component, an assembly, or a part, etc.  

With the launching of the Computer-Aided Logistic Support (CALS) initiative, lots 
of models and computer programs for logistic support analysis have been developed 
worldwide. LORA model is one of an important model of logistic support analysis 
(LSA) software. LORA program may be single software, e.g. Compass (LOGSA, 
U.S.), or just a part of a LSA software, e.g. RAM Commander (A.L.D., Israel), 
OPUS10 (Systecon, Sweden), CARMES (CEPREI, China), etc.  

The LORA model (Program) is designed to assist the analyst in conducting a Level 
of Repair Analysis. The main functions of it include (1) Cost and allocation of man-
power and equipment required to repair the item, (2) Repair and discard decision, (3) 
Economic and non-economic analysis, (4) Cost of initial and replenishment spares 
over system life, (5) Overall costs associated with transportation, cataloging, training, 
technical manuals, etc. 



700 X. Liu et al. 

 

LORA is a rather complex procedure, even though a programming LORA pro-
gram is available, the requirement of the analyst is rather strict, he (she) must be a 
specialist who owns lots of field knowledge, familiars with the structure, operation, 
and maintenance of the product analyzed, and has plenty of experiences. This prob-
lem has limited the application or reduced the effectiveness of LORA to a certain 
extent. How to decrease the requirement of analyst is an important problem for cur-
rent LORA software.  

Considering that a powerful built-in knowledge and model database system, which 
can improve the effectiveness of analysis procedure significantly, has been an essen-
tial part of a LORA program. In this paper, we will not discuss them, and the main 
study will focus on the route and technique for the application of multi-agent to a 
LORA system, and try to get an effective way to solve the difficulty, so as to provide 
technique support for a new kind of LORA system. 

2   The Theory of LORA 

LORA is one of the most important supportability analyses during acquisition of a 
system. LORA is performed in two steps:  

a) Using non-economic decision criteria to make the initial support decisions. 
b) Using an economic model to determine the most cost effective alternative to 

provide support for the system.  

2.1   The Process of LORA 

The LORA program should be integrated developed, and conjunction with other cost 
effective achievement of overall system objectives. 

The input of LORA is very wide, such as the system specification, contract, regula-
tions, reliability allocation report, maintainability prediction report, the level of repair 
and their task distributed, etc. The output is a final repair scheme for the system. The 
basic analysis object of LORA is a product (an item of the system). For each product, 
first of all, non-economic analysis should be carried out to make sure the reasonable 
Repair Level. When non-economic analysis can't make sure the maintenance level, 
then economic analysis should be carried out. After the optimization, the optimized 
final repair scheme will be gained. The repair scheme includes repair or discard deci-
sion, the maintenance allocation.  

To accomplish LORA, a great deal of data should be collected, such as the man-
power and device required, the breakdown tree and expected time etc. 

2.2   Non-Economical Level of Repair Analysis (NELORA) 

NELORA decision criteria are a list of rules or guidelines that are used to determine if 
there is an overriding reason why maintenance should be performed. Some organiza-
tions have policies that any item costing less than a predetermined price level will be 
discarded and replaced rather than be repaired.  

When determining if an item or sub-item should be replaced and/or repaired at cer-
tain level of repair, consideration must be given to all aspects of the maintenance task.  
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Table 1. Non economic analysis 

Non economic factors O I D 
reason for 
restriction 

High Voltage         

Radiation         

Temperature 
Extremes 

        
Safety 

Do hazardous conditions exist 
which preclude the item from 
being repaired at any specified 
maintenance level? 

…         

Security 

Do security conditions exist 
which preclude the item from 
being repaired at a specific 
maintenance level? 

          

policy/exist 
maintenance 
concepts 

are there specifications, stan-
dards or regulations pertaining to 
the level of maintenance at 
which a particular item can or 
cannot be repaired? 

          

… … …         

other factors           

These include fault diagnostic techniques, accessibility requirements, task verifica-
tion, elapsed task times, disruption to the operational environment etc. 

2.3   Economical Level of Repair Analysis (ELORA) 

The objective of the ELORA, when performed correctly, is to determine the optimum 
cost of repair of an end item/equipment, by taking into consideration all associated 
support cost drivers (e.g., manpower, support equipment, training, transportation, etc.) 
that would be required at each line of maintenance. There is an element in the LORA 
process that must not be overlooked, that is the Sensitivity Analysis. Varying different 
LCC cost drivers will determine their impact on the model's repair decisions. 

Following the LORA, the ELORA provides a recommended repair strategy based 
upon economic rational. Consideration is also given to an item's maintainability and 
physical characteristics. 

There are many ELORA models available that can be used for simple and complex 
applications[2],[3]. In these models, there are six major cost drivers as following: 

a) Inventory. Includes inventory administration, attrition, repair material, scrap 
material, and transportation, etc.  

b) Support Equipment (SE). The cost of providing the necessary SE (other than 
standard tools and SE) for completing a particular CM(corrective maintenance) 
task at a given level of maintenance.  

c) Space. required for inventory storage, repair work, and support equipment. 
d) Labor. The associated cost for personnel to complete each repair task.  
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e) Training cost. The cost for upgrading and providing the necessary training to per-
sonnel performing a maintenance task at a given maintenance site and/ or shop.  

f) Documentation. The cost for developing the required documentation for each of 
the maintenance options. 

3   The LORA System Based on Multi-Agent System 

The agent technology started from the 1970s, belonging to the research area of Dis-
tributed Artificial Intelligence (DAI). It has many significant advantages, such as 
good flexibility and stability. It can be applied for complex and collaborative problem 
solving[4]. Multi-agent system is a loose coupled network architecture made up of 
several agents, and each agent is a software or hardware entity that has the ability of 
autonomy, self-maintenance, self-learning and artificial intelligence. In the process of 
problem solving, a number of agents cooperate to get a comprehensive solution by 
communication between each others[5]. In multi-agent system, the activity of each 
agent is autonomous, the goal and behavior is not limited by other agent members, 
and each agent has its own knowledge store system which can be helpful to use and 
acquire knowledge. The scalable and open architecture of multi-agent agent can be 
adapted to the situation that current equipments update more and more quickly. 

Now, multi-agent systems have been applied widely in decision support systems 
[6]. Recently, it has been widely used in maintenance support field [7],[8],[9],[10].  

3.1   The Structure of System 

Fig. 1 shows the structure of the LORA based on multi-agent system. The system 
consists of many LORA system distributed at various positions, and they are linked 
by network. Each LORA system has the same structure, and it is consists of several 
agents. Each agent (module) inside has its individual beliefs and local state, its local 
knowledge and basic data. They can communicate with each other by coordinate 
agent, and can accomplish distributed problem-solving (DPS). The agents inside a 
LORA system are as the following:  

a) The Interactive Agent. It is the unique human-machine interface of the system. It 
can communicate with current analyst (user), and other Agent inside. The analyst 
can input a analysis task( usually, is a product, such as a device, a system, a com-
ponent, or a part), and get a desirable decision through a serious of procedures. 

b) The Coordination Agent. It is the most important Agent in the system. It can an-
ticipate problem-solving actively/passively, such as take charge of the informa-
tion exchanging with each Agent and the Coordinate Agent from other systems, 
communication and conflict control, monitors the actions of each agent. Cer-
tainly, the basic tasks of it are accepting the analysis request from the Interactive 
Agent, and outputting the analysis results to the Interactive Agent. 

c) The Case Agent. It has its own case database and case management system. The 
main function of it is to search the applicable cases in local case database, and to 
search the applicable cases from other LORA systems(if applicable) through the 
Coordinate Agent. If there are some applicable cases, the analyst can select to direct  
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Local LORA System

Other LORA System

Select an applicable 
case

Are there  some 
applicable cases for this 

item?

Yes         

            No

Is the selected case OK?

Is the ELORA needed?

        Yes

Coordinate  Agent

NELORA  Agent

ELORA  Agent

Interactive  Agent

     No

        Yes

Csae  Agent

Scheme 
optimization  Agent

 No

Network

Coordinate  Agent

Analyst

 

Fig. 1. The structure of the LORA based on multi-agent technology 

accept the decision by the cases, modify the cases for a more desirable decision, 
or reject the cases. It also has the ability to active/interactive knowledge learning. 

d) Non-economic Analysis Agent. It is in charge of non-economic analysis of 
LORA, such as determine whether the NELORA should be carried out for a cer-
tain product, if necessary, apply its local rules and reasoning methods to accom-
plish the task, or publish an analysis request to Coordinate Agent, or transfer the 
analysis results to Coordinate Agent. 
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Can the tools meets the needs
of O repair?

Is the time enough for
the O repair?

Can the tools meets the needs
of I repair?

Is the time enough
for the I repair?

O Repair I Repair D Repair

Yes

Yes

No

Yes

Yes

No No

No

Can be repaired on-site?

Yes

Direct discard and change
with a new one?

No

No

Discard and change

Yes

Can direct identify for O Repair?

Yes

Coordinate Agent

No

Is the decision OK?

Formal NELORA
 

Fig. 2. The process of the NELORA agent 

e) Economic Analysis Agent. The role of it is similar to NELORA, the main dif-
ference is the inter process and analysis results. 

f) Scheme Optimization Agent. Optimize the repair scheme. 

3.2   The Process of NELORA Agent 

NELORA addresses preempting factors which override the considerations or existing 
LORA decisions on similar systems to determine the maintenance level where repair 
or discard can be performed. Preempting factors are normally a restraint, stipulation, 
or a special requirement which forces the repair or discard decision to a specific main-
tenance level or limits the support alternatives available.  
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In fact, in order to reduce the analysis workload, we can perform a non-formal 
analysis before the formal analysis. The process is briefly shows in Fig. 2. 

In the system, the basic process is same as traditional analysis method, the key and 
significant different is that the users can share the information with each other by the 
Cooperate Agent. 

When a user is prepared to make a decision, he can apply several methods to ac-
complish it: 

a) Make a decision by himself. 
b) Look for a successful case in local site or other systems. 
c) Publish a decision making requirement or direct to ask for help to other LORA 

systems. 

When a user has made a decision, he can apply several same methods to optimize and 
evaluate it. 

4   Discussion 

The proposed LORA system is different from traditional LORA system both in the 
structure and the work mode. The system can solve the information sharing and the 
cooperation between analysts more effectively, and provide a new route to accom-
plish the computer aided analysis for LORA. 

Certainly, in this paper, only the basic structure and flow of the system has been 
discussed, there will a long way to realize it. Thorough research should be carried out 
in the future. 
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Abstract. The basic content and procedure of Battlefield Damage Assess-
ment(BDA) has been discussed and researched. The structure, the disposal 
strategy, the cooperation between agents, and the data flow of an Intelligent 
Battlefield Damage Assessment System(IBDAS) based on multi-agent  
system(MAS) has been studied. This system can solve the difficulty of BDA 
under the complicated and changing battlefield environment, and lay the theo-
retical foundation for the realization of a practical IBDAS based on multi-agent 
system. 

Keywords: Battlefield damage assessment, Repair, Multi-agent system,  
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1   Introduction 

The purpose of BDAR (battlefield damage assessment and repair) is to return disabled 
equipment rapidly to combat or to enable the equipment to self recover [1]. The repair 
works may be temporary and may not restore full performance capability. For exam-
ple, the repair environment is complicated, the repair time may be strictly limited, the 
repair goal and method are not unique, the required repair personnel and materiel are 
uncertain. 

The BDA (battlefield damage assessment) is a procedure to quickly identify dam-
age area and extent, whether it can be field repaired, predict the repair time, and the 
expected capacity after repair, the repair position, method and process, and the sup-
port resources needed [2]. It is a key factor for the accomplishment of the BDAR 
tasks. Under the complicated and changing battlefield environment, there are many 
difficult problems that BDA faces, such as how to quickly identify the damage area 
and the influence of the damage on current task, which emergency method should be 
applied, whether local repair or rear fix is needed, and if local repair is needed, what 
emergency repair method should be applied, how many resources are needed, etc,. 

The agent theory and technique originated from the Distributed Artificial Intelli-
gence (DAI), and in the 1980s agent theory separated from DAI. It has been com-
bined with many other technologies and obtained many applications different from 
DAI [3],[4],[5]. Now, multi-agent systems have been applied widely in decision sup-
port systems [6],[7],[8].  

There are some disadvantages in current Battlefield Damage Assessment Sys-
tems(BDAS), for example, most systems are some types of decision support systems 
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based on the data model and conventional numerical methods, which can not simulate 
complex situation under actual battlefield conditions. With the development of the 
Artificial Intelligence Technology, knowledge disposal method and knowledge base 
system have been brought into BDAS, and the Intelligent Battlefield Damage As-
sessment System (IBDAS) has been a new trend of BDAS[9],[10]. 

2   The Content and Procedure of BDA 

BDA should solve the problems quickly as the following [11]: 

a) The damage location and extent, the effect to current task which the equip-
ment is carrying out. 

b) Whether local repair or rear fix is needed. 
c) The repair sequences. 
d) The repair level. 
e) Repair method and repair procedure. 
f) Support resources required. 
g) The status and operating limit of the equipment after repair. 

Equipment damaged

Can be emergency used?

Have repair value ?

Can be fixed on
certain time ?

Assessed repair time

Decide resource, repair method
and order.

Scrapped, exit from
Battle

Local repair

N

N

Y

Y

Have effect to current task ?

Y

Y

Use with damage

Derating use

Use by risking

Changing operation
mode

N

Rear repair N

 

Fig. 1. The general procedure of BDA 

In Fig.1, the procedure of BDA is a logic decision process. After the logic decision, 
the damaged equipment will be charged as the following: 
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a) Continue to use, including use with damage, de-rating use, use by risking, and 
changing operation mode. 

b) Local repair, repair by maintenance team in the front. 
c) Rare repair, the equipment will exit from the battlefield temperately, may 

be dragged to the rear areas, and repaired by the rear maintenance groups or 
factories. 

d) Scrapped, after necessary charge of it, the equipment will be abandoned and 
exit from the battlefield permanently. 

3   IBDAS Based on Multi-Agent System 

3.1   The Framework of IBDAS Based on MAS 

In an IBDAS based on MAS, there are many different agents, each agent has its own 
purpose and function, and many agents cooperate to solve complex practical prob-
lems. The framework of IBDAS based on MAS has been established, see Fig. 2.  

Other IBDAS Systems

Equipment structure
agent

Interface
agent

BDA data management
agent

Integration
agent

Problem allocation
agent

Coordination
agent

Repair method agent

Repair decision agentDamage effectiveness
analysis agent

Damage extent
analysis agent

Repair level agent Repair resource agent Repair time agent Emergency charge agent

Blackboard

The Database
for BDA

User

 

Fig. 2. The structure of IBDAS based on MAS 

It is a layered and dynamic model and includes the information-sharing and the 
common task disposal models. Obviously, each question can be resolved by each 
problem resolve agent, and all agents can be managed by management agent. They 
can accomplish each sub-task through information sharing and cooperation. 

a) The interface agent. Can communicate with the user, the user in anywhere can 
input the damage status of equipments, and get the assessment results. 

b) The problem allocation agent. Distributes the complex problem to several sub-
problems which can be comprehended and finished by each agent. 
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c) The coordination agent. Takes charge of the information exchanging and com-
munication, and is also monitors the actions of each agent and distributes the 
sub-problem to each problem agent. 

d) The blackboard. Is a data-store area of local agents in which the agents make 
the communication and talk with each other. The blackboard stores the infor-
mation the agents shared and passes the success case to the data-management 
agent, so the data-management can decide whether or not to add the case to the 
BDA database system. 

e) The BDA database system. Is a data storage system which interacts with the 
expert and the data management agent. The basic function of the BDA database 
system is to store and collect the data and give the other agent data backup. 

f) The integration agent: Is in charge of the integration and the judgment of the 
result from the problem allocation agent and coordination agent, and gives the 
final result. 

g) Equipment structure agent. Manages the hierarchy structure data and provide 
basic data of equipment to other agents.  

h) Damage extent agent. Dedicates the extent and severity of damaged equipment. 
i) Damage effectiveness agent. Determines the capacity and task effectiveness to 

the equipment. 
j) Repair decision agent. Is the core agent in this system, it can determine the re-

pair level and method, evaluate the repair time, predict the repair resources, etc. 

3.2   The Disposal Strategy of IBDAS 

The disposal strategy of IBDAS can be expressed as the followings: 

a) The beginning of disposal. The Interface Agent accepts the task through man- 
machine interactive. 

b) Problem breakdown. The Problem Allocation Agent breakdown the complex 
damage to sub problems. 

c) Dispatch sub problem. The Coordination Agent dispatch sub problem to corre-
sponding problem Agent. If a sub problem can not be solved efficiently, the 
Coordination Agent will transfer it to the blackboard and delivering it to Prob-
lem Allocation Agent, then return to (b). 

d) Get the results of sub problem. Damage analysis agent and repair decision 
agent make out the results. The results may include the damage extent, the ca-
pacity remained, the damage level, the repair position, the repair method, the 
estimated repair time, repair personnel and resources required, etc. 

e) Get the results of problem. When all of the sub problem have been solved, The 
Integration Agent integrate problem of each sub-problem, forming all results 
and output to the user through the interface Agent. 

In the process of problem solving, if the data of damage and repair analysis agent 
can not satisfy the requirement. We can obtain data from Battlefield Damage database 
through BDA Data-Management Agent. If there is a new success case, we can also 
add it to the Battlefield Damage database through Data-Management Agent. 
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3.3   The Cooperation between Agents 

In this system, each agent is an autonomous and independent module. During the 
problem solving process, each agent can work by its own objectives, knowledge and 
ability. Some contradictions and conflicts will occur in this system. So the coopera-
tion between each agent is a key problem that the system must face. 

Now, there are many methods to solve cooperation problem, such as alliance solv-
ing method based on cooperative game theory, BDI model, symbolic logic method, 
neural network method and algebraic model method [12].  

In order to improve the efficiency of BDAS and solve complex social interaction 
between agents, algebraic model method will be applied to solve the cooperation 
problem between agents. 

3.4   The Data Flow of the System 

In the process of damage assessment, each repair unit can input equipment damage 
data, and make the final decision. The basic data flow of system is as fig. 3.  

 

Fig. 3. The basic data flow of system 

In this system, the data sources are mainly from three areas. 

a) The first data source is the damage data from current repair unit. The damage 
data include the damage parts, the damage mode, and the damage phenomenon, 
etc. Typically, the damage data is complicated and consists of several damaged 
parts, and each damaged part may have multiple damage modes. The personnel 
(usually a assessor) of repair units can input the damage data to the interface 
agent through man-machine interface. The problem allocation agent can break-
down the damage data to simple data. Through a series of damage analysis, re-
pair decision, and result evaluation, the preliminary assessment results and the 
evaluation of the results are passed to the coordinate agent. If the assessment 
result is feasible, the damage assessment process is over. If the damage assess-
ment result is not feasible, the repair unit can take two ways to solve the prob-
lem: 1) Seek a compromise scheme through the interaction with the system, 
which often require that assessment persons have some expertise. 2) Seek help 
to other units. 
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Optimize repair scheme
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Fig. 4. The basic process flow of repair decision 

b) The second data source is from other repair units. They can provide problem 
solving schemes for current unit. 

c) Another important data source is from equipment support system, these data 
may be battlefield situation, reserves, personnel, support task and other mission 
information. 

There are several main procedures in this system. The following is the simple de-
scriptions of them: 

a) Problem allocation. Transfer the intention of user to recognizable information 
for system, and breakdown the complex problem to sub problems. Generally, 
the problem is how to get an optimal repair scheme for the damaged equipment, 
which multi systems/components/parts may be damaged. Suppose there are n 
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damages, the problem allocation model will breakdown them to m(m≤n) sub 
problems by the knowledge. A sub problem should be solved by damage and 
repair agent easily, and each sub problem will consist of one or more damages. 
If there is a successful case for a problem or sub problem, the problem alloca-
tion, damage and repair analysis will be rather simple, the final or intermediate 
result will be got directly from the case database. 

b) Damage extent analysis. Identify the equipment’s damage extent and level by 
the damage parts and damage modes. It will get the damage extent of every 
item, and determine the whole equipment’s damage extent through integrated 
analysis. The damage extent of each item can be defined by specialist, and can 
be input into BDA database as some kind of knowledge.  

c) Damage effectiveness analysis. Determine the equipment’s capacity remained 
and whether the current task can be accomplished. This analysis can be carried 
out by a series of techniques, such as the basic capacity and capacity degraded 
status(DS) analysis, capacity and task analysis(C&TA), the basic item(BI) 
analysis, the mathematical damage tree(MDT) analysis, damage mode, effec-
tiveness analysis (DMEA), etc.  

d) Repair decision. Is the most important and complicated module in this system. 
The basic process flow is as fig. 4. 

4   Conclusions 

The suggested system can make up the weaknesses of current battlefield damage 
assessment system. It is more flexible, and can timely resolve problems through 
multi-expert cooperation and satisfy the requirement of BDA under complicated and 
changing battlefield environment. Also the accomplishment of it will need lots of hard 
works, the framework, the software architecture and other method or model will pro-
vide a good basis for the development of a practical system. 
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Abstract. In this paper, an adaptive system is proposed which attempts
to combine together the approaches of studies of historical data and re-
searches of multi-agent artificial market by evolving a double auction
market model with diversity of different traders. The purpose of this re-
search is to construct an artificial market which is more close to realistic
one and more practical for future researches. The model with heteroge-
neous agents and the environment with which agents and market interact
is complicated but controllable by data mining the optimal proportion of
the different agents at the input to the market that generates an output
which can fit historical data curve. The simulation results suggest that
the system performance is close to the expecting values in the testing
with adequate training in advance.

1 Introduction

Computational economics researchers use computational tools both for compu-
tational economic modeling and for the computational solution of analytically
and statistically formulated economic problems. Agent-based computational eco-
nomics (ACE) is the computational study of economic processes modeled as
dynamic systems of interacting agents. ACE seeks to break down aggregate
macroeconomic relationships into microeconomic decisions of individual agents,
defines the set of agent that make up the economy, and specifies the types of
interactions individual agents can have with each other or with the market as
a whole. The models built by ACE approach specify the strategies instead of
defining preferences of the agents [1]. Large numbers of individual agents who
are very heterogenous can be simulated. The aggregate, macroeconomic rela-
tionships that arise from those individual actions can be studied.

The researches in financial market simulation area split into two branches:
one is to forecast the market outcome in the future from historical data without
considering the traders activities, and the other branch carefully investigates the
behaviors of traders, constrains the market rules, and generates market dynam-
ics of volatile of price and trading volumes. The weakness of these two branches
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is obvious: the first one is always vulnerable to Lucas critique which declares
that it is naive to try to predict the effects of a change in economic policy en-
tirely on the basis of relationships observed in historical data, especially highly
aggregated historical data. The second one is easily affected by a butterfly effect
of the simple errors in processes which accumulate to carry out an unexpected
market performance [3]. The purpose of the project is attempting to combine
the two branches together for forecasting the outcome of market with carefully
implemented artificial market model. In our project, the agent-based computa-
tional economic model is chosen to implement the models of trader and market,
for the ability to study local interactions between individual agents. For over-
coming the weaknesses such as exaggeration of errors carried out in individual
ACE model decision-making, some machine learning methods are applied to the
model trying to optimize a choice from different strategies.

2 Methodology

2.1 Agent

Although in the real market, there exists variety of different investors who keep
common belief to gain money from the market, in our project, only three kinds
of agents are invoked to represent all kinds of market participants, long term
investors, inside traders and momentum day traders.

Each agent should have four parameters to show whether the trading order
is to buy, to sell, or to hold. Since the agents are working in a double auction
market, the orders should be classified into market order, which meets the market
trading price and the transaction is executed immediately, and limit order, which
is placed into the order book with a limit offering price for sell or buy. The
quantity of security that the agent would transact should also be informed to
the system, and the offering price by the agent for a particular security should
also be recorded in the order book. The demand from each agent can be defined
as the vector of desire d:

d = (sidet, typet, amountt, pricet) (1)

in which sidet is the decision of an agent whether to buy or to sell or to hold
at certain time point t, typet indicates whether the order is a market order or a
limit one, amoundt is the intended purchase quantity, and pricet is the biding
price.

The long term investors apply buy and hold strategy in the market. They
would like to decline each day price volatility in the market and obtain a good
return by gaining from the the up moving trend of the market price curve, which
is supported by the efficient market hypothesis (EMH) of macroeconomics theory
[2]. On the contrary, the day traders try to short on the curve peaks and buy
at the valleys for making more money in greater price volatilities. In the reality,
there are also inside traders who are not big in amount in the market but their
purchase and sell off carry out huge effects to market price trend.
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In previous analysis of the individual price predictions, the researchers re-
vealed that the participants in the market were able to coordinate on a common
prediction strategy, and the estimation of the individual predictions showed that
participants had a tendency to use simple, linear forecasting rules [1]. The model
of long term investor can use moving average as the trading strategy, by evalu-
ating market price in a long period of time frame, such that the volatility of the
price can be smoothed and only the moving trend remains. The autoregressive
(AR) is applied, while a real stock market index is set up as the given expected
time series value, and the conditional sum-of-squared errors are used to optimize
the output by fitting the expected time series curve.

Yt = constant+
p∑

i=1

ωiYt−i + et (2)

in which, p is the order of the autoregressive time series, ωi is weight of historical
data, and et is the sum-of-squared error between actual output and the expected
value.

The inside traders are those agents who really have the acknowledgement of
market moving trend, so their prediction of the market price should be very
accurate. Usually, such traders are difficult to model, since a perfect forecast
to a market is a task impossible. In our project, the trader is implemented as
similar as to the model of long term investor, while the genetic algorithm (GA) is
applied to choose a better combination of weights so that the agent can generate
a curve perfectly matching the expected time series. The fitness function for GA
selection can be described as:

ê = min

(
1
p

p∑
t=1

e2t

)
. (3)

In the system, the momentum day traders are not rational agents, and their
trading strategies can be simulated by a random decision making scheme. The
model for such trader is build as so called zero-intelligence trader, and the price
forecast made are random numbers with a ceiled limit close to max value in the
historical data.

2.2 Market

Some assumptions are made for setting up the market that individual decisions
depend upon expectations or beliefs about future developments, so the financial
market is an expectations feedback system, where the market history shapes in-
dividual expectations, and the individual expectations determine current aggre-
gate market behavior. In an efficient multi-agent double auction market (MDA),
the buyers and sellers submit to an order book the bids or asks about how many
security they are purchasing or selling and at which prices, i.e. limit prices. Ac-
cording to the information, the exchange mechanism in the market compares the
prices from each side in the order book, and tries to find out matches between
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the buy side and the sell side. The optimization should be approached by deter-
mining the amount that each agent should purchase or sell and at what price to
maximize the total profit of the market [2]. In a MDA market with m buyers and
n sellers, each buyer i wants to purchase Zi unit items and each seller j has Yj

unit items to sell. Assuming both Zi and Yj are known to every agent. The limit
prices, which are private, for buyer i and seller j are bi and sj . Also assuming
that the limit price for each agent is static. Let qij denote the amount buyer i
buys from seller j. If all information is public, the maximum total market value
can be obtained by solving the following linear programming problem:

max
m∑

i=1

n∑
j=1

qij(bi − sj), (4)

where
m∑

i=1

qij ≤ Yj ∀j (5)

and
n∑

j=1

≤ Zi ∀i (6)

with
qij ≥ 0 for every i,j . (7)

The market has a mechanism to observe the prices according to the desire
information from agents at each time t. The prices represent the most infor-
mative prices given all information available at that particular time point. In
the market only single security is traded, and the agents generate trading sig-
nals, bid or ask or hold, to the market. No crossing orders among traders are
allowed in the market, and the security traded liquidates into cash immediately
after the transaction which means no inventory risk exists for each trader in the
market. The market executes all orders, and after execution, the market gives
back knowledge of past transactions to the agents, and adjusts the proportion
of different agents. The market is continuous in which the orders are executed
at the moment when they arrive.

Besides the functionality of regulating the market, another important role to
play is to generate the security price of the artificial market by comparing the
limit order prices from different traders.

Pm
t =

{
max(pb

t) or min(ps
t ) if match with buy and sell in limit order book

1
2

(
max(pb

t) + min(ps
t )
)

elsewise
(8)

in which, pb
t is the buying price in limit order book, and ps

t is the selling price
in the limit order book, at particular time point t.

The market framework scheme is shown in figure 2. Engine gives speak to
agents who are allowed to speak at current time. Agents acquire information
about current state of the market (best offers, current stock price, demand or
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Fig. 1. Market structure

Fig. 2. Market environment

supply imbalance, etc.) before making the decision, as well as the exogenous
information from the world. Agents emit to the market a desire which is stored
in an accumulator who keeps tracking of agents desires. Market informs emitter
about its validity when a desire is received. Engine notifies the market to take
the agent desire into account when it gives speak to the particular agent. It
means “enter in a clearing phase and compute a new price”. Engine gives the
possibility to the world to update itself.

3 Simulation and Results

In our proposed model, the inside traders is trained to forecast accurately the
Hong Kong Hang Seng Index (HSI), while the long term investor is trained to
be able to generate the trend of the index. The significance of the existence of
the inside traders is to make the artificial market attempt to obtain the level of
equilibrium adaptively, so the goal of keeping the market efficient can be achieved
no matter how many momentum day traders generate noise like price volatility
in the market. The performance of inside trader and long term trader is shown
in Figure 3 and 4.

Initially, 10 inside traders, 30 long term investors, and 50 momentum day
traders compose the initial population in the double auction market, while
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Fig. 3. Inside trader forecast performance

Fig. 4. Long term investor forecast performance

Fig. 5. Proportion of different investor in the market
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output price from the market is evaluated with the historical data and back-
propagates to control the input proportion of different agents to the system.
Figure 5 shows the changing population of the market during 25 iterations of
GA optimization.

The changing trend of existence of different traders can indicate that more
although the number of day traders is larger than the other two kinds agent, it in-
creases during the simulation, while the other two decreases. It can be explained
the fact that when more rational agents, especially more similar type traders
in the market, the transaction of trade should be suppressed. On the contrary,
when more day traders in the market, the volatility of the market becomes more
obvious.

4 Conclusion and Discussion

When people use the artificial market to research on economic phenomena of
financial market, although the volatility of market price and trade volumes can be
generated, it always exists a problem that how to explain the noise-like volatility
from the artificial market. No matter how many features had been added into the
artificial market, it always difficult for a researcher to declare what is the distance
that the artificial model is from a real market. This paper presents a framework
for construction of an adaptive system, which composes of heterogeneous multi-
agent investors who trade in an artificial evolutionary double auction market.
This framework combines the study of historical data and traders behaviors
together to attempt to implement the artificial market more practical and close
to a real market. The mechanism for the interactive activities between agents and
market environment makes the model controllable, and the historical data curve
fitting function prevents the model from butterfly effect of error accumulation.
GA is applied for the rational agent models to optimize their forecasts, and for
the double auction market to generate rational price output.

The individual agents that constitute an economy do not necessarily move at
the same time or in the same direction, and this is the reason why the moves
being executed are quite complex with a collection of relatively autonomous
entities with no central control but a great deal of interaction. The goal of
quantitatively replicating the important features in an actual financial market
has been achieved, while the reality of the market can be maintained in high level.
The simulation of market generates favorable market price dynamics, and the
composition of different agents varies during the simulation. With this proposed
system architecture and simulation platform, the typical events in the financial
market can be simulated in the future researches.
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Abstract. The average consensus in directed network of multi-agent
with both switching topology and time-varying delay is studied. An or-
thogonal matrix is introduced to change the initial system into a re-
duced dimensional system. Based on linear matrix inequalities (LMIs)
technique, a sufficient condition about average consensus problem is pro-
posed. A novel form in terms of LMIs is obtained via taking the rela-
tionship between the terms in the Newton-Leibniz formula into account.
Because some free weighted matrices are employed in the analysis pro-
cessing and are selected through solving LMIs appropriately, our method
is less conservative and more general. Finally, simulation examples are
given to demonstrate the effectiveness of the theoretical results.

Keywords: Average consensus, Directed networks, Time-varying delay,
LMIs.

1 Introduction

In recent decades, distributed coordinated control of networks of dynamic agents
has received a great deal of attention within the control community. That can
be attributed to its broad applications in many areas.

A critical problem for coordinated control is to design appropriate protocols
and algorithms such that all agents can reach agreement on a certain quantity
of interest. Such problem is called consensus problem. In [1], a simple but in-
teresting model of autonomous agents all moving in the plane with the same
speed but with different headings was proposed. Simulation results provided in
[1] showed that all agents can eventually move in the same direction without
centralized coordination. The first paper on a theoretical explanation for this
model was provided in [2]. In [3], theoretical results were extended to the case
of directed graph. A set-valued Lyapunov approach was used to study consen-
sus problem with undirected time-dependent communication links in [4]. In [5],
average consensus problem in network of multi-agent with switching topology
was discussed. When network communication was affected by time-delay, the
consensus problem was investigated in [5] and [6]. Weighted average consensus
in directed networks and undirected networks with time-delay was proposed in
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[7]. In [8], multi-vehicle consensus problem with a time-varying reference state
was discussed.

Recently, a multitude of works on consensus problem in network of agents were
studied using LMIs method in [9], [10], [11] and [12]. In the delay system, the
network topology is a key factor in the analysis of stability of multi-agent system.
Some issues about network topology in solving average consensus problem had
been considered in [11] and [12].

In this paper, we study the average consensus problem for directed networks
of multi-agent with both switching topology and time-varying delay. Because the
system matrix is singular, the traditional LMI-based control theory is invalid.
Compared to [9] and [10], a new method is proposed in our work. It deals with
the system models indirectly by introducing an orthogonal matrix. In addition,
it does not use the improved inequality to estimate the upper bound of 2aT b,
so this reduces the conservatism in the derivation of the stability conditions.
Especially, some free weighted matrices are employed to express the influence
of the terms in the Newton-Leibniz formula. This is the main advantage of our
method, which is less conservative and more general than the existing ones.

2 Problem Statement and Preliminaries

2.1 Algebraic Graph Theory

Let G(V , E ,A) be a weighted directed graph of order n (n ≥ 2), where V =
{v1, v2, . . . , vn} is the set of nodes, E ⊆ V×V is the set of edges, A = [aij ] ∈ R

n×n

is a weighted adjacency matrix and aij are selected from a finite set of nonnega-
tive elements. The node indexes belong to a finite index set I = {1, 2, · · · , n}. A
directed edge from agent i to agent j is denoted by εij = (vi, vj), which repre-
sents a directed information exchange link from agent i to agent j, that is, agent
i can receive or obtain information from agent j. εij ∈ E if and only if aij > 0.
Moreover, we assume aii = 0 for all i ∈ I. The set of neighbors of nodes vi is
denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}. A directed path in graph G(V , E ,A)
is a sequence of ordered edges (vi1 , vi2), (vi2 , vi3), (vi3 , vi4), · · ·, where vij ∈ V .
Graph G is called strongly connected if there is a directed path between any tow
distinct nodes.

The in-degree and out-degree of node vi are respectively defined as follows:

din(vi) =
n∑

j=1
aji, dout(vi) =

n∑
j=1

aij . The degree matrix of graph G is a diagonal

matrix D = [dij ], where dij = 0 for all i = j and dii = dout(vi). The Laplacian
matrix associated with the graph is defined as L = D−A. An important fact of
L is that all the row sums of L are zero and thus 1n = [1, 1, · · · , 1]T ∈ R

n is an
eigenvector of L associated with the eigenvalue λ = 0.

Definition 1. (Balanced graph [5]). The ith node of a directed graph G(V , E ,A)
is balanced if and only if din(vi) = dout(vi). A graph G(V , E ,A) is called bal-
anced if and only if all of its nodes are balanced.
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Definition 2. (Balanced matrix [10]). A square matrix M ∈ R
n×n is said to be

a balanced matrix if and only if 1T
nM = 0 and M1n = 0.

Lemma 1. [5]. If the graph G is strongly connected, then its Laplacian matrix
L satisfies: (1) rank(L)= n − 1; (2) zero is one eigenvalue of L, and 1n is the
corresponding eigenvector, then, L1n = 0; (3) the rest n− 1 eigenvalue all have
positive real-parts. In particular, if the graph G is undirected, they are all positive
and real.

2.2 Consensus Problems in Networks

Consider a group of n agents with dynamics given by

ẋi(t) = ui(t), i ∈ I (1)

where xi ∈ R
n is the state of the ith agent at time t, and ui(t) ∈ R is the control

input (or protocol) at time t.
We say that protocol ui asymptotically solves the consensus problems, if and

only if the states of agents satisfy lim
t→∞ ‖xi(t) − xj(t)‖ = 0, for all i, j ∈ I.

Furthermore, if lim
t→∞ xi(t) = 1

n

n∑
i=1

xi(0) = Ave(x(0)), We say that protocol ui

asymptotically solves the average consensus problem.
In this paper, we are interested in discussing the average consensus problem

in network of dynamic agents with both switching topology and time-varying
delay, where the information (from vi to vj) passes through edge (vi, vj) with
time-varying delay. To solve such a problem, we use the following protocol:

ui =
∑

vj∈Ni

aij [xj(t− τ(t)) − xi(t− τ(t))], i ∈ I (2)

With (2), (1) can be written in matrix form as:

ẋi = −Lkx(t− τ(t)), k = s(t) (3)

where x(t) = (x1(t), x2(t), · · · , xn(t))T , and the map s(t) : [0,∞] −→ IΓ =
{1, 2, · · · , N} (N ∈ Z

+ denotes the total number of all possible directed graphs)
is a switching signal that determines the network topology, and Lk = L(Gk) is
the Laplacian matrix of the graph Gk that belongs to a set Γ = {Gk : k ∈ IΓ },
which is obviously finite due to the weights aij are selected from a finite set of
nonnegative elements.

Lemma 2. (Schur complement [13]). Let M,P,Q be given symmetric matrixes

such that Q > 0, then
[
P M
MT −Q

]
< 0 ⇔ P +MQ−1MT < 0.

Lemma 3. For any balanced matrix A ∈ R
n×n, there exists an orthogonal

matrix W such that WTAW =
[

Ā 0(n−1)×1
01×(n−1) 0

]
, where the last column of

matrix W is 1n√
n
, Ā ∈ R

(n−1)×(n−1).
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3 Main Results

In this section, we provide the convergence analysis of the average consensus
problem in directed network with switching topology and time-varying delay.

If the communication topology G(V , E ,A) keeps strongly connected and bal-

anced, we have 1T
nLk = 0, which imply

n∑
i=1

ẋi =
n∑

i=1
ui = 0. Then, α = Ave(x(0))

is an invariant quantity. Thus we have the decomposed equation x(t) = α1n +
δ(t), where δ = (δ1, δ2, · · · , δn)T ∈ R

n, satisfies
∑

i δi(t) = 0, i.e., 1T
nδ = 0. Then

(3) is equivalent to the following equation:

δ̇(t) = −Lkδ(t− τ(t)). (4)

Suppose that the directed graph G with Laplacian matrix L is balanced. By

Lemma 3, we have WTLkW =
[

L̄k 0(n−1)×1
01×(n−1) 0

]
, where L̄k ∈ R

(n−1)×(n−1),

and W is defined in Lemma 3.
The matrix W is an orthogonal one, so δ̇(t) = −WWTLkWWT δ(t − τ(t)),

then WT δ̇(t) = −WTLkWWT δ(t − τ(t)). Let WT δ(t) = [ΔT (t), 0]T , then (4)
can be transformed into the following equation:

Δ̇(t) = −L̄kΔ(t− τ(t)), (5)

where Δ(t) ∈ R
(n−1), L̄k ∈ R

(n−1)×(n−1).

Lemma 4. If lim
t→∞ ‖Δ(t)‖ = 0, then lim

t→∞ ‖δ(t)‖ = 0.

Proof. From WT δ(t) = [ΔT (t), 0]T , we have δ(t) = W [ΔT (t), 0]T . Therefore,
when lim

t→∞ ‖Δ(t)‖ = 0, we have lim
t→∞ ‖δ(t)‖ = 0. This completes the proof.

In the following section, we will discuss the convergence of dynamical system
(5), that is lim

t→∞Δ(t) = 0.

Theorem 1. Consider a directed network of multi-agent with both switching
topology and time-varying delay τ(t) satisfying τ(t) ≤ d and τ̇ (t) ≤ h < 1.
Suppose that the communication topology Gk(k ∈ IΓ ) keeps strongly connected
and balanced. Protocol (1) asymptotically solves the average consensus problem,
if there exists positive definite matrices P,Q,R ∈ R

(n−1)×(n−1), positive semi-

definite matrix X =
[
X11 X12
XT

12 X22

]
≥ 0, and appropriate dimensions free weighted

matrices H , U , such that the following LMIs are true:

Ξ =

⎡
⎣Φ11 Φ12 0
ΦT

12 Φ22 −dL̄T
kR

0 −dRT L̄k −dR

⎤
⎦ < 0, Θ =

⎡
⎣X11 X12 H
XT

12 X22 U
HT UT R

⎤
⎦ ≥ 0, (6)

where Φ11 = H + HT + Q + dX11, Φ12 = −PL̄k − H + UT + dX12, Φ22 =
−U − UT − (1 − h)Q+ dX22.
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Proof. Define a common Lyapunov-Krasovskii function for system (5) as follows:

V (t) = ΔT (t)PΔ(t) +
∫ t

t−τ(t)
ΔT (s)QΔ(s)ds+

∫ 0

−d

∫ t

t+θ

Δ̇T (s)RΔ̇(s)dsdθ,

where P , Q and R ∈ R
(n−1)×(n−1) are positive definite matrices. Along the

trajectory of system (5), we have

V̇ (t)= −2ΔT (t)PL̄kΔ(t− τ(t))−(1 − τ̇(t))ΔT (t− τ(t))QΔ(t − τ(t))
+ΔT (t)QΔ(t)+dΔT (t− τ(t))L̄T

k RL̄kΔ(t− τ(t))−∫ t

t−d
Δ̇T (s)RΔ̇(s)ds

≤ −2ΔT (t)PL̄kΔ(t− τ(t))−(1 − h)ΔT (t− τ(t))QΔ(t − τ(t))
+ ΔT (t)QΔ(t)+dΔT (t− τ(t))L̄T

k RL̄kΔ(t− τ(t))−∫ t

t−τ(t) Δ̇
T (s)RΔ̇(s)ds.

By Newton-Leibniz formula Δ(t − τ(t)) = Δ(t) − ∫ t

t−τ(t) Δ̇(s)ds, then Υ =

Δ(t) − ∫ t

t−τ(t) Δ̇(s)ds−Δ(t− τ(t)) = 0. So we have

2[xT (t)H + xT (t− τ(t))U ]Υ = 0, (7)

where the free weighted matrices H and U are appropriately dimensioned ma-
trices, which indicate the relationship betwteen the terms in Newton-Leibniz
and can easily determined by solving LMIs. Furthermore, for any positive semi-
definite matrix X ≥ 0, we have

dηT (t)Xη(t) −
∫ t

t−τ(t)
ηT (t)Xη(t)ds ≥ 0, (8)

where η(t) = [xT (t), xT (t− τ(t)]. Therefore, using (7) and (8), we have

V̇ = V̇1 + V̇2 + V̇3 ≤ V̇1 + V̇2 + V̇3+2[xT (t)H + xT (t− τ(t))U ]Υ
+dηT (t)Xη(t)−∫ t

t−τ(t) η
T (t)Xη(t)ds := ηT (t)Λη(t) − ∫ t

t−τ(t) η
T (t, s)Θη(t, s)ds,

where η(t, s) = [xT (t), xT (t − τ(t)), ẋT (s)]T , Λ =
[
Φ11 Φ12
ΦT

12 Φ22 + dL̄T
k RL̄k

]
, η(t)

and Θ are defined in (8) and (6), respectively. Then, a sufficient condition for
V̇ (t) < 0 is Λ < 0 and Θ ≥ 0 for any η(t) = 0.

Therefore, from Lemma 2 and Lemma 4, average consensus can be achieved
if the matrix inequalities (6) hold. This completes the proof.

When the information of τ̇ (t) is unknown, i.e., h is unknown, we have the
following theorem.

Theorem 2. Consider a directed network of multi-agent with both switching
topology and time-varying delay τ(t) satisfying τ(t) ≤ d, and τ̇ (t) is unknown.
Suppose that the communication topology Gk(k ∈ IΓ ) keeps strongly connected
and balanced. Protocol (1) asymptotically solves the average consensus problem,
if there exists positive definite matrices P,R ∈ R

(n−1)×(n−1), positive semi-

definite matrix X =
[
X11 X12
XT

12 X22

]
≥ 0, and appropriate dimensions free weighted

matrices H , U , such that the following LMIs satisfy:
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Ω =

⎡
⎣Ψ11 Ψ12 0
ΨT

12 Ψ22 −dL̄T
kR

0 −dRT L̄k −dR

⎤
⎦ < 0, Θ =

⎡
⎣X11 X12 H
XT

12 X22 U
HT UT R

⎤
⎦ ≥ 0, (9)

where Ψ11 = H+HT + dX11, Ψ12 = −PL̄k −H+UT + dX12, Ψ22 = −U −UT +
dX22.

Proof. The proof of the theorem 2 is similar to that of theorem 1, therefore, it
is omitted here.

4 Simulation

Consider a group of 10 agents labeled 1 through 10. Fig. 1 shows four examples
of directed graph, which are strongly connected and balanced, and the corre-
sponding adjacency matrices are limited to 0 − 1 matrices. A finite automation
with set of states {G1, G2, G3, G4} is shown in Fig. 2. According to the state
machine in Fig. 2, it starts at the discrete state G1 and switches to the next
state every simulation time step.

Let the orthogonal matrix

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0275 −0.0303 0.3594 −0.1500 −0.4082 0.7071 −0.0809 0.1749 −0.2062 0.3162
0.0275 −0.0303 0.3594 −0.1500 −0.4082 0.7071 −0.0809 0.1749 −0.2062 0.3162
0.0275 −0.0303 0.3594 −0.1500 −0.8165 0.0000 −0.0809 0.1749 −0.2062 0.3162
0.0594 −0.0294 0.3782 −0.1390 −0.0000 0.0000 −0.1310 0.6023 −0.5946 0.3162
0.0594 −0.0294 −0.2404 −0.1390 −0.0000 0.0000 −0.1310 0.6694 −0.5946 0.3162

−0.1323 −0.5742 0.2482 −0.5742 −0.0000 0.0000 −0.2061 −0.1207 −0.3231 0.3162
0.4914 0.6506 −0.2653 −0.2557 −0.0000 0.0000 −0.1511 −0.1290 −0.2450 0.3162

−0.8162 0.3793 −0.2234 −0.1447 −0.0000 0.0000 −0.0820 −0.1087 −0.0230 0.3162
0.2559 −0.3149 −0.4793 −0.6714 −0.0000 0.0000 −0.0090 −0.2331 −0.0206 0.3162
0.0000 0.0000 −0.0000 −0.1615 −0.0000 0.0000 −0.9348 −0.0000 −0.0000 0.3162

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where the last column of matrix W is 110√
10

. According to Theorem 1 and Theorem
2, simulations can be conducted in the following cases:

(1) when h = 0, i.e., τ(t) = 0, and the time delay is constant, the maximal
allowable time-delay d ≤ 0.32;

(2) when h = 0.3, the maximal allowable time-delay d ≤ 0.31;
(3) when h is unknown, we can obtain the maximal allowable time-delay

d ≤ 0.29.

G1

21 3 4 5

678910

G2

21 3 4 5

678910

G3

21 3 4 5

678910

G4

21 3 4 5

678910

Fig. 1. Examples of strongly connected and balanced directed graph
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G1 G2

G3G4

t=0

Fig. 2. A finite automation with four states

Fig. 3 shows the corresponding error system with switching topology con-
verges zero asymptotically when h is know. when h is unknown, we can gain the
corresponding simulation figure, too. The corresponding feasible solution P , Q,
R, X , H and U can be obtained by employing the LMI Toolbox in Matlab.
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(a)   Time−delay=0.32 
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(b)  Time−delay=0.31|cos1.222t| 

Fig. 3. Error system with switching topology converges zero asymptotically. (a) con-
stant time-delay τ = 0.32s; (b) time-varying delay τ (t) = 0.31| cos 1.222t|s.

Remark 1. For the examples of Lin et al. [10], the maximal allowable upper
bounds on the time-delay can be easily gained using our method. For comparison,
the simulation results are listed in the following Table 1.

Table 1. A Comparison with Lin et al. [10] with regard to the maximal allowable
upper bounds of time-delay

methods Lin et al. [10] our results

d(h = 0) 0.21 0.31
d(h = 0.3) 0.15 0.29

d(h is unknown) - 0.27
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5 Conclusion

This paper addresses an average consensus problem of multi-agent systems. Di-
rected switching network topology and time-varying communication delay are
considered in this paper. By utilizing LMIs techniques and taking the relation-
ship between the terms in the Newton-Leibniz formula into account, a novel
method is proposed. Some free weighted matrices are employed in the analysis
processing and are selected through solving LMIs appropriately, so this approach
is less conservative and more general than the existing results.
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Abstract. A virtual world is an online community in the form of a computer-
based simulated environment, through which users can interact with one an-
other and use and create objects. The non-player characters (NPC) in virtual 
world are following a fixed set of pre-programmed behaviors and lack the abil-
ity to adapt with the changing surrounding. Reinforcement learning agent is a 
way to deal with this problem. However, in a cooperative social environment, 
NPC should learn not only by trial and error, but also through cooperation by 
sharing information. The key investigation of this paper is: modeling the NPCs 
as multi-agent, and enable them to conduct cooperative learning, then speeding 
up the learning process. By using a fire fighting scenario in Robocup Rescue, 
our research shows that sharing information between cooperative agents will 
outperform independent agents who do not communicate during learning. The 
further work and some important issues of multi-agent reinforcement learning 
in virtual world will also be discussed in this paper.  

Keywords: Multi-Agent Reinforcement Learning, Cooperative, 3D Virtual 
World, Robocup Rescue. 

1   Introduction 

A virtual world is an online community in the form of a computer-based simulated 
environment, through which multi-users can interact with one another and use and 
create objects [1]. Lots of virtual worlds depict a world very similar to the real world, 
with real world rules and real-time actions, and communication. To support the run-
ning of a virtual world, there need some non-player characters (NPC) play some roles. 
To make the world more real, NPCs need be smart. And reinforcement learning agent 
is a way to improve NPCs’ intelligence.  

Reinforcement learning agents identify the new events of environment change, 
then they can incrementally learn an efficient decision policy over a sate space by 
trial-and error [2]. However, when a task is too big for a single agent to handle, the 
agents may cooperate to accomplish the task, which is common in human society, 
such as a disaster rescue，there need the firefighters, ambulance and polices cooper-
ate with each other. In such a cooperative social environment, agents should learn not 
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only by trial and error, but also through cooperation such as sharing information. 
They together will outperform any single agent as matter of the fact that the more 
information, the more better chance of receiving rewards [3].  

There are quite a few studies on Reinforcement Learning in Theory. M. Lauer and 
M. Riedmiller adopts The Distributed Q-learning algorithm [4], it solves the coopera-
tive task without assuming coordination, but it is only valid in the deterministic set-
ting [5]. Ming Tan address the multi-agent reinforcement learning by cooperative is a 
better way in theory, and the study is mainly focus on homogeneous agents [6].  
Kathryn Merrick is a pioneer of using virtual world to research agent learning. 
Merrick introduced a motivated reinforcement learning [7], which is able to help 
agents continually identify new events on which to focus their attention and learn 
about. The work is mainly about single agent learning. 

However, most works on reinforcement learning has focused on the single agents, 
and many research of multi-agent learning are still at the theoretical level. Virtual 
world is very similar to the real world and it is the best test bed to take multi agent 
learning theory into practice, and it provides a visual environment that we can observe 
the whole agent learning process directly as well.  

The key investigation of this paper is: if cooperation is done intelligently among 
agents, each of them will benefit from others. So we model the NPCs as agents, and 
design cooperation mechanisms to enable them to conduct cooperative learning, then 
speeding up the learning process. By using a fire fighting scenario in Robocup Rescue 
implemented in Second Life Virtual World. We set up three experiments, the first one 
we want to show the advantage of reinforcement learning and study the effect of 
agents’ sense field of depth, and second, we study the effect of two cooperation 
mechanisms we designed, last, we will show homogeneous and heterogeneous agents 
can both benefit from cooperation for a multi targets task. Through a series of ex-
periments, we make an evaluation at the performance of multi-agent cooperative 
reinforcement learning and draw a conclusion. 

This paper is organized as follows. Section 2 gives a brief introduction of the rein-
forcement learning and cooperation mechanisms we designed. Section 3 describes the 
experiment scene Section 4 describes the content of experiment and shows the result. 
Section 5 concludes. 

2   Multi-Agent Cooperative Reinforcement Learning 

Reinforcement learning is an on-line technique used by an agent for learning behavior 
through trial and error interactions with a dynamic environment. The aim of rein-
forcement learning is to maximize the long-term discounted reward per action [2]. 

In this study, each agent uses the basic Q-learning algorithm. Q-learning is one of 
the reinforcement learning technique that works by learning an action-value function 
that gives the expected utility of taking a given action in a given state[8].This algo-
rithm is guaranteed to converge to an optimal decision policy for a finite Markov 
decision process[8]. Q-learning algorithm need not be given a model of its environ-
ment and can be used on-line and it is easy to implement. The algorithm’s process as 
follows: 
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(a)First, from the current state s, select an action a. This will cause a receipt 
of an immediate payoff R(s,a), and arrival at the next state s'. R is the 
payoff function. 

(b)Second, update Q(s,a) based upon this formula:  
)],()},'(max{*),([*),( asQbsQasRasQ −+= γβ          (1) 

where β is the learning rate and 0 <γ< 1 is the discount factor  
(c)Final Go to (a) until enough iteration  

 
Our study wants to show cooperative agents will outperform independent agents 

who do not communicate during learning. So we design two ways to let these agents 
to cooperate with each other by sharing information. First, agents can communicate 
the instant information, such as sensation, action, and reward. The method is like this: 

 
(a)Instant information is mainly impact the payoff function R  
(b)So an agent will use its sensation first, and CR is the cooperation function 

that give the additional information from its partners 

∑+= )(),(),( sCRasRasR                  (2) 

(c)Use (1) to update Q(s,a) 
 
Second, agents can tell each other their decision policies which are the action-value 

function of Q learning. The method is like this: 
 

(a)After update its Q(s,a),an agent will ask its partners’ Q(s,a), and then 
choose the best one  

)},(),,(max{),( asQasQasQ p=           (3) 

 
These cooperation mechanisms can be applied into the homogeneous agents. For 
heterogeneous agents, as they have different goal, we just apply the first one, and 
through experiments, we also find that the cooperative agents perform better than 
independent ones. As a result, if agents can cooperate with each other, they will bene-
fit a lot. The detail of these cooperation mechanisms will show in the section 4. 

3   Experiment Scenario  

In order to make our experiments more convincing, all the experiments in this study 
involve a Robocup Rescue scene implemented in the Second Life virtual world. At 
this scene, as shown by Figure 1, there are two kinds of agents: the ball represents the 
firefighter while the cube represents the ambulance, a grid world represents a city, 
each block is a building, among them, a red one is a building on fire, a blue one is a 
rescue point. On each time step, each agent has five possible actions to choose from 
moving up/down/left/right and extinguish fire/rescue people within the boundary. At 
the very beginning, agents make random moves as a result of equal Q-values. Two 
agents can stay at the same block. And a fire is extinguished or the people are rescued 
when the agent has arrived at the fire block/rescue point and do the extinguish/rescue 
action. Agents will receive reward from environment for each move. 
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Every agent in our experiments has a limited sense field of depth, which is adjusted 
to different number for different experiment. The sense field of depth is shown at 
Figure 2. See Figure 2, the depth of the agent is 2, that is to say, agent can sense all 
the information from a field whose center is the agent’s location and radius is 2. With 
the sensation’s help, agent can speed up the whole learning process: firstly, agent will 
choose the action which has the highest Q-value, and then if there are two maximum 
Q-values and the fire building is in the sensation field, the agent will choose the ac-
tion at the fire building’s direction. Each agent’s sensation is represented by a vector 
(x, y) which is relative distance of the closest disaster place to the agent’s location.  

Each run of each experiment will consist of 100 trails. For every trial, all agents 
will begin with in random locations. Agents will choose the actions by the highest  
Q-value. Each trial ended when all the fire is extinguished and all the people are res-
cue. All experiments measure the total number of step per run. The Q-value will be 
convergence.  

The Q-learning parameters were set at β=0.8�γ=0.9. These values are reasonable 
for these experiments. Experiment’s parameters also include the number of fire place, 
the number of firefighter/ambulance agent and agent’s the sense field of depth.  

For each experiment, we set up a comparison group. The real question we want to 
discuss is at the virtual world environment, whether or not cooperation among homo-
geneous/heterogeneous agents can further improve the learning performance, whether 
or not multi agent learning can be applied to the virtual world. 

  

Fig. 1. The Experiment World Fig. 2. The sense field of depth is 2 

4   Experiment Evaluation 

4.1   CASE 1: Single Agent Reinforcement Learning 

In order to show the advantage of reinforcement learning and study the effect of 
agents’ sense field of depth, we study the single agent reinforcement learning at first. 
So we choose the one firefighter/one fire building task. At the first experiment of this 
case, we set the agent’s sense field of depth to 1, we want to test the performances of 
basic independently learning agent which has no help from sensation in the learning 
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process. Later we extend the sense field of depth to 2 and 3, and then we demonstrate 
that the deeper sense field of depth is, the better the performance of agent learning 
shows. 

Table 1 shows the average numbers of steps and average time of different kind of 
agent to extinguish a fire in training after 100 trails. The random one is the agent 
without learning, its average step is 92.482, when the learning was introduced to the 
agent, the result has improved a lot, even without sense, the number of average steps 
is 18.364. From this table we can conclude, (a) Reinforcement learning surely can 
improve the agent’s ability. (b) The more information the agent collect, the better 
result will receive.  As the agent’s sense field of depth increases, the fewer steps it 
takes. And time spent is reduced too. 

Table 1. Average Steps/Time to Extinguish a Fire: Random versus Learning Agent 

Agent 
Type 

Sense Field of 
Depth  

Average Steps To  
Extinguish a Fire 

Average Time To Extinguish 
a Fire(second) 

Random 1 92.482 22.534 
Learning  1 18.364 4.747 
Learning 2 14.494 3.916 
Learning 3 10.352 2.773 

4.2   CASE 2: Multi Cooperative Agent Reinforcement Learning 

After the single learning experiment, now we proof the sharing information between 
cooperative agents will outperform independent agents’ learning. The cooperative of 
agent in our study will be sharing and exchanging information. And the ways of shar-
ing information are sharing sensation information and sharing policies. 

First, we study the effect of sharing sensation information among agents, we 
choose a two firefighters/one fire building task. To serve as a partner, a firefighter 
agent takes searching and fire extinguishing jobs. At this experiment, agent’s sense 
field of depth is 2. When each agent takes a step in a learning trail, as a searcher, one 
agent will send its all sensation information to each other. Therefore, an agent can 
incrementally compute the location of the fire building sensed by its partner. We want 
to demonstrate that more sense information will help improve agent’s learning. 

Second, we study the effect of sharing policies between agents in a two firefight-
ers/one fire building task. As in a learning trail, agents use Q value to choose action at 
every step. So we consider letting agents exchange their individual decision policies. 
We will show that such cooperative agents can speed up learning greatly, measured 
by the average number of steps in learning trails. If agents execute the same task, their 
decision policies can be different during the learning period as they may have ex-
plored the different place of this virtual world. So, the two agents can complement 
each other by exchanging their individual decision policies and they can benefit from 
the other’s experience. We can assume that each agent can send its current policy to 
each other simultaneously, then for each Q value, agent can choose the better one. 
This method helps an agent adopt another agent’s decision policy and improve the 
learning. Also, at this experiment, agents’ sense field of depth is 2. 
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In order to demonstrate the benefits from cooperate�we set a comparison experi-
ment which is also a two firefighter/one fire building task, but there is no cooperate 
between agents. Two agents will find the fire building independently. Once one of 
them extinguishes the fire, one learning trail is over. 

From Table 2 we can see:(a) Both cooperative and independent agents take fewer 
steps than one agent to extinguish a fire; (b) Cooperative agents outperform inde-
pendent agents: the average number of independent agents’ cumulative steps is 
22.136 while the this number of cooperative ones are 18.16 and 15.319 respectively 
(c) Sharing policies agents have a faster learning speed than sharing sensation agents: 
the average steps of Sharing Policy is 15% less than Sharing Sensation Information. 
Also we can see Figure 3, cooperative agents converged much quicker than independ-
ent agents did and Sharing Policy is quicker than Sharing Sensation Information. In 
our case, it seems that exchanging knowledge (decision policies) is better than ex-
changing information (sensation). However, although the exchanging decision policy 
is better, it takes more communicating time than exchanging sensation. If the policy 
exchanging is too frequency, the more communication time will be taken. Generally 
speaking, during the experiment, cooperative learning outperforms independent learn-
ing. Their differences in performance are statistically significant according to the 
average steps in a learning trail.  

Table 2. Average Steps to Extinguish a Fire: Independent versus Cooperative Agent 

Agent Type Agent A: Average Steps to 
Extinguish a Fire 

Agent B: Average Steps to 
Extinguish a Fire 

Independent 10.958 11.178 
Sharing Information 9.068 9.092 
Sharing Policy 7.631 7.688 
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Fig. 3. Independent versus Cooperative Agent 
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4.3   Case 3: Multi Cooperative Agent Reinforcement Learning: Homogeneous 
and Heterogeneous 

In the previous two case studies, there only one fire building and the agents are ho-
mogeneous. In this case we will demonstrate that cooperative agents can learn to 
perform the multi-target task better than independent agents, both for homogeneous 
and heterogeneous agents. 

Assume that the agents’ sense field of depth is 2. Let’s first consider the homoge-
neous agents, that is a two firefighters/two fire building task. Only the two fires are 
extinguished, one learning is end. When two independent firefighters are given the 
job, each of them tends to find a fire building directly. It may cause that two fire-
fighter come to a same fire building, which wastes lots of time than one firefighter 
extinguishing one fire at the same time. 

The problem with independent agents is that they ignore each other. They cannot 
distinguish the situation whether one is nearby a fire or not. If each agent can cooper-
ate with each other, the problem will be solved. To address it, we can extend the 
method of sharing information that exchanging not only the relative location between 
a fire building and the firefighter, but also the relative location between the firefighter 
and its partner. So if one agent knows its partner is closer to a fire building, than it 
will choose to find another fire building. That will improve the learning process than 
the independent one. Although this kind of cooperative brings more communication 
cost, it will eventually overtake the independent one. 

The result from Table 3 and Figure 4 shows that the independent agents perform-
ance fluctuated and on the average they need 36.412 steps to finish the job. This is 
proof the problem between the two independent agents. While after 20 trails, coopera-
tive agents soon outperform the independent agents. The average cumulative steps of 
cooperative agents are 36.05% less than independent one. 

Table 3. Average Steps to Extinguish a Fire: Independent versus Cooperative Agent  
(cumulative) 

Agent Type Average Step to Extinguish a Fire (cumulative) 
Independent 36.412 

Sharing Information 23.284 

Next we will consider the heterogeneous situation, that is a one firefighter, one am-
bulance/one fire building, one rescue point task. At this scene, firefighter should find 
the fire building and ambulance should get to the rescue point to save people. Each of 
them can do it own task independently. A learning trail is over, if and only if two tasks 
are all finished, that is to say, although one has finished its job, it should wait to start a 
new job until the other has finished. It may also cause a waste of time. However, if 
they can cooperative, things will be different. For example, when a firefighter is 
searching for the fire building, it may pass the rescue point while the ambulance has no 
idea about where the rescue point is. So if firefighter can send a message to tell  
the ambulance that the relative location between it and the rescue point as well as the 
relative location between it and its partner. (So does the ambulance) The learning  
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Fig. 4. Independent versus Cooperative Agent for homogeneous agents 

Table 4. Average Steps/Time to Extinguish a Fire and Rescue: Independent versus Cooperative 

Agent Type Average Step 
to Extinguish a 
Fire 

Average 
Step to 
Rescue 

Average Time 
to Extinguish a 
Fire (second) 

Average Step to 
Rescue(second) 

Independent 20.948 20.404 9.332 9.343 
Sharing  
Information 

15.391 15.882 7.122 7.137 
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Fig. 5 and Fig. 6. Independent versus Cooperative Agent for heterogeneous agents 

will speed up. The result measured by average step of learning trail proves this point. 
From Table 4 we can see, the performance of cooperative agents is much better than 
independent ones. Figure 5&6 show a much clear difference between the two experi-
ment group, not only in average step, but also in average time. 

As a result, in our study, homogeneous and heterogeneous agents can both benefit 
from cooperation for a multi targets task. 
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5   Conclusion 

This paper shows that sharing information and knowledge between cooperative agents 
will outperform independent agents who do not communicate during learning. This 
paper also identifies that homogeneous and heterogeneous agents can both benefit 
from cooperation. And our results are base on a scene implemented in the Second Life 
virtual world, we believe the conclusions can be applied to the other cooperative 
scene in a virtual world and it is one way to solve the NPCs learning problem. On the 
other hand, sharing information and knowledge comes with a communication cost and 
larger state space. These tradeoffs must be taken into consideration for learning agents 
to cooperate with each other. These problems will be studied in our future work. 
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