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Foreword

In 2010 the international federated conferences on Distributed Computing Tech-
niques (DisCoTec) took place in Amsterdam, during June 7-9. It was hosted and
organized by the Centrum voor Wiskunde & Informatica.

DisCoTec conferences jointly cover the complete spectrum of distributed
computing subjects ranging from theoretical foundations to formal specifica-
tion techniques to practical considerations. The 12th International Conference
on Coordination Models and Languages (Coordination) focused on the design
and implementation of models that allow compositional construction of large-
scale concurrent and distributed systems, including both practical and founda-
tional models, run-time systems, and related verification and analysis techniques.
The 10th IFIP International Conference on Distributed Applications and Inter-
operable Systems in particular elicited contributions on architectures, models,
technologies and platforms for large-scale and complex distributed applications
and services that are related to the latest trends in bridging the physical/virtual
worlds based on flexible and versatile service architectures and platforms. The
12th Formal Methods for Open Object-Based Distributed Systems and 30th
Formal Techniques for Networked and Distributed Systems together emphasized
distributed computing models and formal specification, testing and verification
methods.

Each of the three days of the federated event began with a plenary speaker
nominated by one of the conferences. The first day Joe Armstrong (Ericsson
Telecom AB) gave a keynote speech on Erlang-style concurrency, the second
day Gerard Holzmann (Jet Propulsion Laboratory, USA) discussed the question
“Formal Software Verification: How Close Are We?”. The third and last day
Joost Roelands (Director of Development Netlog) presented the problem area of
distributed social data. In addition, there was a joint technical session consisting
of one paper from each of the conferences and an industrial session with presen-
tations by A. Stam (Almende B.V., Information Communication Technologies)
and M. Verhoef (CHESS, Computer Hardware & System Software) followed by
a panel discussion.

There were four satellite events: the Third DisCoTec Workshop on Context-
Aware Adaptation Mechanisms for Pervasive and Ubiquitous Services (CAM-
PUS), the First International Workshop on Interactions Between Computer Sci-
ence and Biology (CS2BIO) with keynote lectures by Luca Cardelli (Microsoft
Research - Cambridge, UK) and Jérôme Feret (INRIA and École Normale Su-
prieure - Paris, France), the First Workshop on Decentralized Coordination of
Distributed Processes (DCDP) with a keynote lecture by Tyler Close (Google),
and the Third Interaction and Concurrency Experience Workshop with keynote
lectures by T. Henzinger (IST, Austria) and J.-P. Katoen (RWTH Aachen Uni-
versity, Germany).



VI Foreword

I hope this rich program offered every participant interesting and stimulating
events. It was only possible thanks to the dedicated work of the Publicity Chair
Gianluigi Zavattaro (University of Bologna, Italy), the Workshop Chair Marcello
Bonsangue (University of Leiden, The Netherlands) and the members of the
Organizing Committee, Susanne van Dam, Immo Grabe, Stephanie Kemper and
Alexandra Silva. To conclude I want to thank the sponsorship of the International
Federation for Information processing (IFIP), the Centrum voor Wiskunde &
Informatica and the Netherlands Organization for Scientific Research (NWO).

June 2010 Frank S. de Boer



Preface

This volume contains the proceedings of the IFIP International Conference on
Formal Techniques for Distributed Systems. The conference was organized as the
joint activity of two conferences: FMOODS (Formal Methods for Open Object-
Based Distributed Systems) and FORTE (Formal Techniques for Networked and
Distributed Systems). FMOODS/FORTE was part of the federated conference
event DisCoTec (Distributed Computing Techniques) 2010, which also included
the 12th International Conference on Coordination Models and Languages (CO-
ORDINATION) and the 10th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS).

The goal of FMOODS/FORTE is to provide a forum for fundamental research
on theory and applications of distributed systems. The conference emphasizes
the use of a variety of techniques for development of concurrent and distributed
systems including model-based design, component and object technology, type
systems, formal specification and verification, and formal approaches to testing.

The conference encourages contributions that combine theory and practice
in application areas of telecommunication services, Internet, embedded and real-
time systems, networking and communication security and reliability, sensor
networks, service-oriented architecture, and Web services.

The FMOODS/FORTE 2010 program consisted of 13 regular and 6 short pa-
pers. These papers were selected by a 30-member Program Committee (PC) from
among 38 submissions. Each paper was assigned to at least four PC members
for a detailed review. Additional expert reviews were solicited if the reviews of a
paper had diversified assessments or the reviewers indicated low confidence. The
final decision of acceptance was based on a 10-day online discussion of the PC.
The selected papers constituted a strong program of stimulating and timely top-
ics in the areas of formal verification, algorithms and implementations, modeling
and testing, process algebra and calculus, and analysis of distributed systems.

FORTE traces its heritage back to the Protocol Specification, Testing and
Verification (PSTV) conference first held in 1981 in Teddington, UK. Since that
first meeting, PSTV has evolved into FORTE and now into FMOODS/FORTE
and this year’s conference in Amsterdam was the 30th meeting in the conference
series. To highlight this milestone, this year’s DisCoTec plans to include a spe-
cial celebration reflecting on the progress of the community since 1981 and on
challenges for the future.

In the first PSTV meeting in 1981, Gerard Holzmann published a paper
containing his early views of what would become the SPIN model checker. We
were pleased to note this special work in the history of FORTE by featuring
Dr. Holzmann as the keynote speaker of FMOODS/FORTE 2010 as part of this
special celebration of PSTV - FORTE - FMOODS history.



VIII Preface

We are deeply indebted to the PC members and external reviewers for their
hard and conscientious work in preparing 154 reviews. We thank Frank de Boer,
the DisCoTec General Chair, for his support, and the Steering Committees of
FMOODS and FORTE for their guidance. Our gratitude goes to the authors for
their support of the conference by submitting their high-quality research works.
We thank the providers of the conference tool EasyChair that was a great help
in organizing the submission and reviewing process.

June 2010 John Hatcliff
Elena Zucca
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Formal Software Verification:
How Close Are We?

Gerard J. Holzmann

Laboratory for Reliable Software
Jet Propulsion Laboratory, California Institute of Technology
M/S 301-230, 4800 Oak Grove Drive, Pasadena, CA 91109

gholzmann@acm.org

Abstract. Spin and its immediate predecessors were originally designed
for the verification of data communication protocols. It didn’t take long,
though, for us to realize that a data communications protocol is just a
special case of a general distributed process system, with asynchronously
executing and interacting concurrent processes. This covers both multi-
threaded software systems with shared memory, and physically distri-
buted systems, interacting via network channels.

The tool tries to provide a generic capability to prove (or as the case
may be, to disprove) the correctness of interactions in complex software
systems. This means a reliable and easy-to-use method to discover the
types of things that are virtually impossible to detect reliably with tra-
ditional software test methods, such as race conditions and deadlocks.

As initially primarily a research tool, Spin has been remarkably suc-
cessful, with well over one million downloads since it was first made
available by Bell Labs in 1989. But our goal is te development of a tool
that is not only grounded in foundational theory, but also usable by all
developers of multi-threaded software, not requiring specialized knowl-
edge of formal methods.

In this talk we try to answer the question how close we have come to
reach these goals, and where especially we are still lacking. We will see
that our understanding has changed of what a verification tool can do –
and what it should do.

Keywords: Software verification, software analysis, concurrency, model
checking, software testing, static source code analysis.

J. Hatcliff and E. Zucca (Eds.): FMOODS/FORTE 2010, LNCS 6117, p. 1, 2010.
c© IFIP International Federation for Information Processing 2010



Exploiting the Hierarchical Structure of
Rule-Based Specifications for Decision Planning

Artur Boronat1, Roberto Bruni2, Alberto Lluch Lafuente3,
Ugo Montanari2, and Generoso Paolillo4

1 Department of Computer Science, University of Leicester, UK
2 Department of Computer Science, University of Pisa, Italy

3 IMT Institute for Advanced Studies Lucca, Italy
4 Laboratorio CINI-ITEM Carlo Savy, Naples, Italy

Abstract. Rule-based specifications have been very successful as a declar-
ative approach in many domains, due to the handy yet solid foundations
offered by rule-based machineries like term and graph rewriting. Realis-
tic problems, however, call for suitable techniques to guarantee scalability.
For instance, many domains exhibit a hierarchical structure that can be
exploited conveniently. This is particularly evident for composition associ-
ations of models. We propose an explicit representation of such structured
models and a methodology that exploits it for the description and analysis
of model- and rule-based systems. The approach is presented in the frame-
work of rewriting logic and its efficient implementation in the rewrite en-
gine Maude and is illustrated with a case study.

1 Introduction

Rule-based specifications have been very successful as a declarative approach in
many domains. Prominent examples from the software engineering field are archi-
tectural reconfiguration, model transformation and software refactoring. One of
the key success factors are the solid foundations offered by rule-based machiner-
ies like term and graph rewriting. Still, the complexity of realistic problems re-
quires suitable techniques to guarantee the scalability of rule-based approaches.
Indeed, the high number of entities involved in realistic problems and the inher-
ently non-deterministic nature of rule-based specifications leads to large state
spaces, which are often intractable.

Fortunately, many domains exhibit an inherently hierarchical structure that
can be exploited conveniently. We mention among others nested components in
software architectures, nested sessions and transactions in business processes,
nested membranes in computational biology, and so on. In this paper we focus
on the structure of model-based specifications due to various motivations. First,
it is widely accepted that models enhance software comprehension [19]. Second,
many model-driven development and analysis activities demand efficient and
scalable approaches. Our approach aims at enhancing software comprehension
by making explicit some of the structure of models, and at improving rule-based
analysis techniques by exploiting such structure. For instance, the Meta-Object

J. Hatcliff and E. Zucca (Eds.): FMOODS/FORTE 2010, LNCS 6117, pp. 2–16, 2010.
c© IFIP International Federation for Information Processing 2010



Exploiting the Hierarchical Structure of Rule-Based Specifications 3

Facility (MOF) standard defines a metamodelling paradigm by providing a set
of UML-like structural modelling primitives including composition associations.
Such associations impose a hierarchical structure on models. However, models
are usually formalised as flat configurations (e.g. graphs) and their manipulation
is studied with tools and techniques based on term rewriting or graph transfor-
mation theories [7] that do not exploit the hierarchical structure. For instance,
in the MOF, models are collections of objects that may refer to other objects
through references, corresponding to flat graphs in the traditional sense. In ad-
dition, some of these references are typed with composition associations in a
metamodel and their semantics corresponds to structural containment. In this
way, models have an implicit nested structure since some objects may contain
other objects. To the best of our knowledge, a formalism with an explicit notion
of structural containment has not been used for specifying model-based software
artefacts yet.

In this paper we propose a formal representation of models that makes explicit
the hierarchical structure of containment and a methodology that exploits such in-
formation for the description and analysis of model- and rule-based systems. The
main class of analysis we shall address in this paper are planning problems that
arise in various engineering activities that rely on rule-based declarations, like
devising architectural reconfiguration plans, executing model transformations or
taking refactoring decisions. Such problems have particular characteristics that
make them different from traditional approaches. First, states in traditional
planning tend to be flat, i.e. they typically consist of sets of ground predicates.
Instead, our states are structured models represented by terms, offering rich de-
scriptions that we would like to exploit conveniently. Second, rules in traditional
planning are typically first-order and application conditions do not include rewrites
but are limited to state predicates. Instead, our rules are conditional term rewrite
rules à la Meseguer [14], i.e. variables can be bound to subterms and conditions
can be rewrite rules whose results are used in the right-hand side. Such rules are
needed to exploit structural induction during model manipulations. Third, our
rules are decorated with labels that are used to both coordinate and guide the ma-
nipulation of models, in the spirit of Structural Operational Semantics [16] (SOS)
and its implementation in rewriting logic [20]. We believe that the success of this
discipline in the field of language semantics can be exported to model-driven trans-
formations. Fourth, we consider multi-criteria optimisation where several dimen-
sions can be used to find non-dominated optimal or near-to-optimal solutions and
our approach is independent on the actual choice of quantitative aspects. This
is achieved by using a generic algebraic, compositional formalism for modelling
quantitative criteria, namely some variant of semirings [2], and devising plan opti-
misation methods that are valid for any semiring. In that way we can measure and
accordingly select the most convenient model manipulations when various choices
are possible, e.g. architectural reconfigurations ensuring a good load-balance but
involving a low number of re-bindings, or class diagram refactorings reducing the
number of classes but not requiring too many method pull-ups.
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Fig. 1. Class diagram for the navy missions scenario

For this purpose we define some basic machinery based on rewriting logic
and we devise a methodology to use it in practice with Maude [5], the rewrite
engine tool supporting rewriting logic. In particular this paper presents 1) a
novel representation of models based on nested collections of objects described
with rewriting logic, 2) a methodology for exploiting the nesting structure in the
declaration of rules, 3) a purely declarative presentation of planning problems
with multi-criteria optimisation, i.e. we do not implement any new algorithm in
Maude, but rely on Maude’s reachability capabilities.

Synopsis. § 2 describes a running example, based on an industrial case study.
§ 3 summarises the mathematical machinery we rely on. § 4 presents the core
fundamentals of our approach. § 5 explains how problem domains and instances
are described and analysed. § 6 discusses related work. § 7 concludes the paper
and outlines future research avenues.

2 Running Example: Navy Missions Scenario

Our running example is a naval scenario taken from a case study developed
in a collaboration with the Italian company Selex Sistemi Integrati within the
national project Tocai.It.1 Basically, it consists of a decision support system to
integrated logistic during dynamic planning of navy operations. The considered
scenario consists of a naval fleet that while carrying out its current mission, is
then required to switch mode of operation because some unpredictable events
happened that impose new objectives with higher priority. For example, a patrol
activity for peacekeeping along a coast can be required to switch to a rescue
activity of civil population after a natural disaster. The re-planning requires
the modelling of the new objectives and constraints that characterize the new
mission and the subsequent evaluation of feasible and most convenient logistic
action plan to be exploited for achieving the new goal.
1 http://www.selex-si.com; http://www.dis.uniroma1.it/~tocai

http://www.selex-si.com
http://www.dis.uniroma1.it/~tocai
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Figure 1 depicts a simplified excerpt2 of the class diagram for our running
example, including only ingredients that we shall use throughout the paper. In
particular, we see the classes for locations (Location) and ships (Ship). Two
particular subclasses of locations are distinguished (Base and Gulf) as well as a
particular subclass of ship (Corvette). Locations can contain ships. Ships can have
a reference to their home base (homebase). Most of the classes have attributes,
like a name for ships and locations (name), the fuel remaining in the tank of a
ship (fuelTank) or the weather conditions for a location (weather).

3 Technical Background

Rewriting Logic. Our specifications are theories described by rewriting logic [14].

Definition 1 (rewrite theory). A rewrite theory R is a tuple 〈Σ, E, R〉 where
Σ is a signature, specifying the basic syntax (function symbols) and type machin-
ery (sorts, kinds and subsorting) for terms, e.g. model descriptions; E is a set of
(possibly conditional) equations, which induce equivalence classes of terms, and
(possibly conditional) membership predicates, which refine the typing informa-
tion; R is a set of (possibly conditional) rules, e.g. actions.

The signature Σ and the equations E of a rewrite theory form a membership
equational theory 〈Σ, E〉, whose initial algebra is TΣ/E. Indeed, TΣ/E is the state
space of a rewrite theory, i.e. states are equivalence classes of Σ-terms (denoted
by [t]E or t for short). Usually, one is not interested in considering any term to
be a state: for instance, a term can represent a part of a model like the attributes
of an object. In such cases, a designated sort State is used and the state space
of interest is then TΣ/E,State, i.e. all State-typed terms (modulo E).

Rewrite rules in rewriting logic are of the form t → t′ if c, where t, t′ are
Σ-terms, and c is an application condition (a predicate on the terms involved in
the rewrite, further rewrites whose result can be reused, memberships, etc.).

Semirings. Our specifications will be equipped with quantitative information
such as the value of attributes or non-functional properties associated to rules.
For instance, in our case study we are interested in modelling duration and risk
factor of actions. There are many heterogeneous notions of quantitative features
such as probabilistic, stochastic or time-related aspects, and for each one, spe-
cialised formalisms capturing their essence, e.g. Markovian models. Instead of a
very specialised model, we use a generic, flexible framework for the representa-
tion of quantitative information. More precisely, we consider semirings, algebraic
structures that have been shown to be very useful in various domains, notably in
Soft Constraint Problems [2]. The main idea is that a semiring has a domain of
partially ordered values and two operations: one for choosing the best between
two values (a greatest lower bound), and another one for combining values. We
focus on a particular variant of semirings, namely constraint-semirings (semir-
ings, for short).
2 The full scenario contains further entities, inheritance relations, and composition

associations like fleets being made of ships, ships containing crafts, and so on.
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Definition 2 (semiring). A semiring is a tuple 〈A,�,⊗,0,1〉 such that A is
a (partially ordered) set of values; 0 and 1 are the bottom (worst) and top (best)
values of A; � : A × A → A is an operation to choose values: it is associative,
commutative, and idempotent, has 0 as its unit element and 1 as its absorbing
element; ⊗ : A × A → A is an operation to combine values: it is associative,
commutative, distributes over �, has 1 as its unit element and 0 as its absorbing
element. The choice operation coincides with the join operation of the lattice
induced by a � b iff a � b = b.

Notable examples are the Boolean (〈{true, false},∨,∧, false, true〉), the tropical
(〈R+,min, +, +∞, 0〉), the max/min (〈R+,max,min, 0, +∞〉), the probabilistic
(〈[0, 1],max, ·, 0, 1〉), the fuzzy (〈[0, 1],max,min, 0, 1〉), and the set (〈2N ,∪,∩, ∅,
N〉) semirings. For instance, action duration is modelled in our case study with a
tropical semiring. In that way, time is modelled as a positive real value, choosing
between two actions means choosing the fastest one and combining two actions
means adding their durations (i.e. combining them sequentially). Similarly, the
risk factor is modelled with a fuzzy semiring.

Semiring based methods have a unique advantage when problems with mul-
tiple QoS criteria must be tackled: Cartesian products, exponentials and power
constructions of semirings are semirings. Thus the same concepts and algorithms
can be applied again and again. For instance, given two semirings C1 and C2
their Cartesian product C1×C2 is a semiring. This allows us to deal with multi-
ple criteria at once. Moreover, such meta-operations can be implemented using
Maude’s parameterized modules and module operations. For example, the quan-
titative information regarding duration and risk of actions in our case study is
modelled by the Cartesian product of the corresponding semirings.

Transition systems. The semantics of our rewrite theories are a sort of quan-
titative transition systems (inspired by [13]) based on the ordinary one-step
semantics of rewrite theories [5].

Definition 3 (transition system). A quantitative transition system is a tuple
〈S, =⇒, C〉 such that S is a set of (system) states; C is a semiring 〈A,�,⊗,0,1〉
modelling the quantitative information of the system; =⇒⊆ S × A × S is a
transition relation.

We shall denote a transition (s, q, s′) by s =⇒q s′. We restrict our attention to
finitely branching transition systems (i.e. ∀s ∈ S.|{(s, a, s′) ∈=⇒}| is finite). The
runs of a transition system are the (possibly infinite) paths in the underlying
state transition graph, i.e. sequences s0 =⇒q0 s1 =⇒q1 . . . . A finite run s0 =⇒q0

s1 =⇒q1 . . . sn will be denoted by s0 =⇒∗⊗
qi

sn.

Planning problems. Finally, we formalise some classic planning problems, remark-
ing that many model-driven engineering activities like reconfiguration, refactor-
ing or transformations can be understood as plannning problems.

Definition 4 (planning problem). Let T = 〈S, =⇒, C〉 be a transition system,
I ⊆ S be a set of initial states and G ⊆ S be a set of goal states (typically
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characterised with predicates). A planning problem is given by the tuple 〈T, I, G〉.
A solution to a planning problem 〈T, I, G〉 is a run s =⇒∗

q s′, such that s ∈ I
and s′ ∈ G. An optimal or non-dominated solution is a solution s =⇒∗

q s′ ∈ G
such that there is no other solution s1 =⇒∗

q′ s′1 ∈ G such that q � q′.

4 A Formalism for Structured Model- and Rule-Based
Specifications

We present the formal means for describing model- and rule-based specifications
based on the machinery of §3.

Models as nested objects. In our view, a model is a collection of possibly hierar-
chical objects, i.e. an object of the system may itself be a complex sub-system
composed by various nested objects. The description of models is done with a
signature of nested objects that extends Maude’s object-based signature [5] with
nesting features that allow for objects to contain object collections.

More precisely, our rewrite theories are based on a basic membership equa-
tional theoryMN = {ΣN , EN } that provides the main signature and equations.
Signature ΣN is basically made of sorts KN and operator symbols ON .

Definition 5 (basic sorts). The set of basic sorts of KN contains Conf, i.e.
the sort of model configurations; Obj, i.e. the sort of objects; Att, i.e. the sort
of attributes; a sort Set{T } for each of the above sorts T , i.e. the sort of sets of
T -terms; Oid of object identifiers; sort Cid of object classes.

Sort Conf will be our designated State sort whenever we will be interested in
analysing the space of possible system model configurations. We define now the
symbols of the operators that build terms of the above defined sorts.

Definition 6 (basic operators). The set of basic operator symbols ON con-
tains a constructor [ · ] : Set{Obj} → Conf for configurations, given a set of
objects; a constructor < · : · | · | · > : Oid× Cid× Set{Att} × Set{Obj} → Obj
for objects, such that <o:c|a|s> is an object with identity o, class c, attribute set
a and sub-objects s; a constant none : → Set{T } for each sort Set{T }, i.e. the
empty set; a binary operator · , · : Set{T } × Set{T } → Set{T } for each sort
Set{T }, i.e. set union.

Attribute and identifier constructors are problem-dependent, i.e. they are defined
for the particular domain or instance being described. We just remark that they
typically take the form n:v, where n is the attribute name and v is the attribute
value. Usual attributes include references to object identifiers and quantitative
information (see §3).

Example 1. Consider the diagram of Fig. 2, which illustrates an instance of our
scenario where two corvettes are located at a gulf. More precisely, we see that the
gulf is represented by the object of class Gulf with identifier 2, various attributes
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Fig. 2. A configuration with nested objects

and embedding the vessels within its area, namely objects 3 and 4, both of class
Corvette. Instead, object 1 is the Base to which the corvette named Cassiopea
refers as its home, by means of the reference attribute homebase :· : Oid→ Att.
In our notation the described scenario is denoted by term

[< 1 : Base | name : Livorno , weather : 0.2 | none > ,
< 2 : Gulf | name : Napoli , weather : 0.5 |

< 3 : Corvette | name : Galileo | none > ,
< 4 : Corvette | name : Cassiopea , homebase : 1 | none >>]

The set of equations EN of our basic membership theory essentially axiomatises
sets, i.e. it contains equations to denote the associativity, commutativity and
idempotency of set union and the fact that the empty set is the identity element
for set union.

Definition 7 (basic equations). The set of basic operator symbols EN con-
tains equations x , none = x (identity); x , x = x (idempotency); x , y = y , x
(commutativity); x , (y , z) = (x , y) , z (associativity) for each sort Set{T },
with x, y, z : Set{T }.

Obviously, the designer might introduce new sorts, subsorting declarations or
derived operators (new symbols and appropriate equations) for its own conve-
nience, but the above presented signature is at the core of all specifications.3

Quantitative information. Semirings can be described with membership equa-
tional theories.

Definition 8 (semiring theory). A semiring theory is a membership equa-
tional theory 〈Σ, E〉 such that Σ contains the sort Cost for carrier A, the semir-
ing operator symbols �,⊗,0,1, the sort of Booleans and the usual lattice operator
symbols. E contains the axioms of Def. 2 and the usual equations for lattices.
3 Our incremental presentation does not only facilitate the reading of the paper but

is supported by module importation in Maude which also has a mathematical mean-
ing in rewriting logic, e.g. Set{T} is a parametric module in Maude offering the
mentioned constructors and equations.
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A concrete semiring theory 〈A,�,⊗,0,1〉 is membership equational theory that
can be declared as a view of the semiring theory. For instance, The Boolean
semiring theory is a view of the usual Boolean theory. This allows us to re-use
Maude’s predefined theories (e.g. Floating-point numbers as approximation of
reals).

Conditional, labelled, quantitative rules. We are interested in rules in a particu-
lar format, namely in the style of Structural Operational Semantics [16] (SOS).
SOS rules guarantee us a firm discipline in specifying the dynamics of a model
by structural induction, i.e. by composing the transition of objects exploiting
the structure of the model. In addition, we are interested in rules carrying quan-
titative information. More precisely, one of the rule formats the designer should
follow is4

t1
l1−→q1 t′1 t2

l2−→q2 t′2
t1 , t2

l1�l2−→ q1⊕q2 t′1 , t′2
if c

where a transition for a configuration made of sub-parts t1 and t2 (of sort
Set{Obj}) is inferred from the transitions of each of the parts. More precisely,
if part i of the configuration is in state ti and is ready to perform an li-labelled
transition to go into state t′i with cost qi, then a model configuration with state
t1 , t2 is ready to perform a transition labelled by l1 � l2 to go into state t′1 , t′2
with cost q1 ⊕ q2. Eventually, some additional conditions c might be considered,
but we require them to be predicates and not additional rewrites.

Operations � and ⊕ are used to combine transition labels and costs, respec-
tively. Typically, the combination of labels will follow some classical form. For
instance, in synchronisation rules, l1 and l2 can be complementary actions, in
which case l1 � l2 would be a silent action label τ . However, we will not make
any particular choice of the synchronisation algebra. It is up to the system de-
signer to decide which labels and label synchronisation to apply. We only remark
that it is also possible to use semirings to model classical synchronisation alge-
bras [12]. In the following we assume that our basic signature is enriched with a
sort Lab for action labels. As for the quantitative information, the actual choice
of operation ⊕ in each rule is up to the system designer.

In addition, a designer will be allowed to denote the transition of an object,
provided that its sub-objects t are able to perform some transition:

t
l−→q t′

<o:C|A|t> l�l′−→q⊕q′ <o:C|A′|t′>
if c

Such rules might affect the attributes of the container object and manipulate
the action label but of course are not allowed to change the object’s identifier or
class. More elaborated versions of the above rule are also allowed, for instance

4 Note that we put the rule conclusion on the bottom, the rewrite premises on top
and additional conditions on a side to stick to the usual SOS notation.
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involving more than one object or not requiring any rewrite of contained objects.
We shall see some examples in §5.

Finally, there is a rule that is common to all specifications which allow us to
derive a global step of a configuration made of a set of objects t, removing the
action label, but keeping the transition cost:

t
l−→q t′

[t] −→q [t′]

Rewrite rules in rewriting logic are not equipped with quantitative information
and that rule labels can be used only at the meta-level. This is not a problem,
as there are standard techniques to encode transition annotations into states.
In particular, we follow the encoding of SOS semantics in rewriting logic [20]
and enrich our signature with sorts for action-prefixed states (Act{State}), a
constructor {·, ·}· : Lab×Cost×State→ Act{State} for action and cost prefixed
states and a constructor {·}· : Cost × State → Act{State} for cost prefixed
states. In addition, we enforce rule application at the top-level of terms only (via
Maude’s frozen attribute) so that sub-terms are rewritten only when required in
the premise of a rule (as required by the semantics of SOS rules). However, since
this is basically an implementation issue, in the rest of the paper we shall continue
using our notation of labelled, cost-annotated transitions, leaving implicit the
fact that a rewrite t

l−→q t′ actually denotes a rewrite t −→ {l, q}t′. In other
words, quantitative information is conceptually associated to transitions, but the
actual rewriting logic description constrains us to associate it to states, i.e. to
use terms to represent that ”a state t′ was reached with cost q via an l-labelled
rule”.

Transition system for planning. The built-in tools of Maude allows us to explore
the state space of rewrite theories. Basically, we concentrate on Maude’s reacha-
bility analysis which allows us to find a rewrite sequence from a term t to a term
t′ satisfying some conditions. To be able to use such tools, we have to encode
the analysis problems raised in §3 as rewrite theories. First, we remark that the
one-step semantics of the kind of rewrite theories we are interested in is defined
as follows.

Definition 9 (one-step semantics). Let R be a rewrite theory equipped with
a semiring C and with a designated state sort State. The transition system
associated to R is T (R) = 〈S, =⇒, C〉 such that S = TΣ/E,State, i.e. states
are equivalence classes of terms of sort State; =⇒= {t =⇒q t′ | t −→q

t′ is a one-step rewrite proof in R and t,t’ are State-typed terms}, i.e. system
transitions are formed by one-step rewrites between states.

Non-optimal Planning. Now, we concentrate on finding a solution to a plan-
ning problem 〈T, I, G〉 where T is the transition system of the rewrite theory
R describing our specification, I is a set of initial configurations and G is the
set of goal configurations. This can be done using Maude’s search capabilities.
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However, the presence of quantitative information introduces unnecessary re-
dundancy. Indeed, the state space might contain duplicate states with different
cost annotations. Therefore, we can forget the quantitative information just by
dropping the cost annotation. Technically, this is achieved in an elegant way by
introducing in R the equation {q}t = {1}t . It is obvious to see that reachability
in the resulting theory is enough for finding a solution of the planning problem.

Optimal Planning. Now we explain how to find optimal solutions to a planning
problem via Maude’s reachability analysis. The main idea is to emulate Dijkstra’s
shortest path algorithm, by exploring the state space of sets of non-dominated
configurations. We enrich state annotations with information to explictly record
the path to a state: {q, p}t denotes that state t has been reached through path p
with cost q. In addition, we use path operations like path concatenation (denoted
with ·). Now, we let Set{Conf} be the designated sort State and we enrich our
rewrite theory with the following rule

t −→q′ t′

{q, p}t , S −→ {q, p}t , {q ⊗ q′, p · t =⇒q′ t′}t′ , S
if c

where c forbids the new state t′ to be a dominated duplicate (¬∃{q′′, p′′}t′′ ∈
({q, p}t , S) | t′ = t′′∧{q⊗q′, p·t =⇒q′ t′}t′ � {q′′, p′′}t′′), and the state t selected
for exploration to be dominated (¬∃{q′′, p′′}t′′ ∈ S | {q, p}t � {q′′, p′′}t′′). The
rule basically allows us to enrich the set of discovered configurations so far in
a monotonic way. Of course, we have to discard dominated configurations by
introducing equation {q1}t , {q2}t = {q1}t if q2 � q1.

We denote the resulting rewrite theory byRSet. This provides us with a simple
method for finding optimal solutions to the planning problem, as each rewrite
step roughly emulates an iteration of Dijkstra’s shortest-path algorithm (which
can be generalised to semirings [17]).

Proposition 1 (optimal planning correctness). Let R be a rewrite theory
describing a system, I be the set of initial states and G be the set of goal states.
Then a solution for the planning problem 〈T (RSet), I, G′〉 is an optimal solution
for the planning problem 〈T (R), I, G〉, where G′ = {S′ ⊆ S | S′ ∩G �= ∅}.

5 Domain and Instance Specification

This section provides some hints for describing and analysing model- and rule-
based specifications in our methodology.

System domain description. System descriptions must include actual object
classes and attributes. For each class C the designer must declare a sort C
that represents the class and a constructor C :→ C. Each sort C is declared as a
subsort of Cid. Additional subsorting relations might be added in the same spirit
of class inheritance. The subsorting of classes allows us to declare rules that ap-
ply to certain classes of objects only, in a very convenient way. For instance, in
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our case study we have classes for the different entities involved in the scenario,
like locations (Location, Gulf, Base) and ships (Ship, Corvette). Sorts Gulf
and Base are declared as subsorts of Location, and similarly for Corvette and
Ship.

Next, attribute domains and constructors must be declared. Typically, at-
tributes take the form n:v, where n is the attribute name and v is the attribute
value. Typical attributes include references to object identifiers and quantitative
information. In our example, for instance, we use an attribute homebase with
domain Oid to allow for ships to refer to their home bases and we have an at-
tribute weather with a fuzzy semiring as domain to represent the risk factor
introduced by weather conditions.

Of course, the system designer might introduce additional sorts, subsorting
declarations or operators (new symbols and appropriate equations) for his own
convenience.

System domain rules. The domain description includes the declaration of the
rewrite rules that represent the actions of the system. Some of the rules regard
the actions of individual objects and are of the form:

<o:C|A|t> l−→q <o:C|A′|t>
i.e. the object o is able to perform an action with label l and cost q and the
effect is reflected in its attributes. Note that such rules have no premise, i.e.
they do not require any transition of sub-components. It is also usual to have
unconditional rules involving more than one object (possibly with some nesting
structure). For example, a basic rule of our scenario declares the ability of a ship
to navigate (label nav) with a duration of 1 and a risk factor that depends on
the weather conditions of both locations.

< o1 : Location | weather : q1 , a1 | t1 > ,
< o2 : Location | weather : q2 , a2 | t2

< o3 : Ship | a3 | t3 >>
nav−→〈1,max{q1,q2}〉 < o1 : Location | weather : q1 , a1 | t1 ,

< o3 : Ship | a3 | t3 >> ,
< o2 : Location | weather : q2 , a2 | t2 >

Such individual actions are combined together with rules in the format discussed
in § 4. Recall, that the actual choices of operations � and ⊕ to combine action
labels and quantitative information are crucial for the semantics of the rules.
For instance, assume that our quantitative criteria includes action durations
(which is the case of our case study) modelled with a tropical semiring. Several
options are possible. If we let � be the choice operation of the semiring (i.e.
min) we model the fact that the fastest action is considered (in which case it is
meaningful to replace t′2 with t2 in the conclusion of the rule). If we let � be the
join operation of the lattice underlying the semiring (i.e. max ) we model the fact
that the system has to wait to the slowest component to evolve. If we let � be the
combination operation of the the semiring (i.e. addition) we model the fact that
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system components evolve sequentially. Similar choices are possible for other
quantitative dimensions. It is up to the designer to choose which one is more
suitable in each case. As for label synchronisation, the standard approaches are
possible like Hoare (all agree on the same action label) or Milner (complementary
actions are synchronised) synchronisation. In our case study we tend to use Hoare
synchronisation. For instance, the rule to combine the navigation of ships is

t1
nav−→q1 t′1 t2

nav−→q2 t′2
t1 , t2

nav−→q1(max ,max)q2 t′1 , t′2
i.e. we let two sets of ships navigate together at the slowest pace and considering
the worst risk factor.

System problem description. With a fixed domain description, several instances
are possible. An instance can be just a term of sort Conf (see e.g. Example 1 in
§4) denoting the initial configuration of the system, but might include instance-
dependent rules as well. Usually, a problem description will include a character-
isation of goal configurations. For instance, in our case study, we have specified
a function isGoal that characterises goal configurations, namely those configu-
rations where all ships arrive to Stromboli (to tackle the emergency due to an
increase of the eruptive activity of the vulcan).

Planning activities. In order to solve planning problems the system description
must be imported from one of the planning theories discussed in §4. Then we
can use Maude’s search command to perform the corresponding reachability
analysis. For instance, to find a solution for the rescue problem we can execute
the command

search [1] initialConfiguration =>* reachableConfiguration:Conf

such that isGoal(reachableConfiguration:Conf)

to obtain a goal state and, subsequently, the show path command to obtain a
solution, as a sequence of system transitions, each made of the actions need to
rescue the inhabitants of Stromboli, i.e. we obtain a rescue plan.

Instead, if we want to find optimal rescue plans we have to consider the theory
of configuration sets and use the command

search [1] initialConfiguration =>* reachableConfigurations:Set{Conf}

such that hasGoal(reachableConfigurations)

in which case we might obtain an absolute optimal rescue plan (one that is fastest
and with less risk) or a non-dominated rescue plan (either one that is faster but
involves more risk, or one less risky but slower).

6 Related Work

We offer a brief discussion with related approaches that have influenced or in-
spired our work. A first source of inspiration is our previous work on Architectural
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Design Rewriting (ADR) [4] an approach that conciliates algebraic and graph-
based techniques to offer a flexible model for software systems (e.g. software
architectures) and their dynamics (e.g. architectural reconfiguration). Roughly,
ADR models are rewrite theories interpreted over a particular class of hierar-
chical graphs. Another fundamental source of inspiration is the approach of [3],
which provides a rewriting logic semantics to the Meta-Object Facility (MOF)
and proposes the use of rewrite rules as a declarative description of model trans-
formations. In a way, the present work conciliates both approaches. First, by
enriching the formal model of [3] with explicit hierarchical features: in [3] compo-
sitions are modelled with references, so both models are somewhat homomorphic,
but our explicit representation facilitates definitions (e.g. rules or predicates) by
structural induction. Second, by devising a methodology inspired by our experi-
ence in modelling and analysing with ADR.

Similar approaches can be found in the field of quantitative process algebras
(e.g. with applications to software architectures [1]), rewriting logic based quan-
titive specifications (e.g. timed [15] or probabilistic systems [11]) or quantitative
model checking (see e.g. [10]). As far as we know, the focus has been on time
and probabilistic/stochastic aspects in the tradition of Markovian models. It is
possible to model some of such aspects with semiring as well but in a more ap-
proximated fashion. On the other hand, semirings offer various advantages: they
are compositional, not limited to two aspects and enjoy algebraic properties that
are inherent to many graph exploration algorithms, starting from the well known
Floyd-Warshall’s algorithm to solve the all-pairs shortest path problem. A par-
ticular variant of semirings has been implemented in Maude [9]. However, the
variant of semiring used is slightly different from the one we need.

Our approach is also related to AI planning and in particular action plan-
ning. Due to space constraints we cannot offer a detailed overview of such a
vast research field. However, we mention some prominent approaches. A relevant
planning community centers around the Planning Domain Definition Language5

(PDDL), a meta-language to be used as common problem domain and problem
description language for various planning tools. The main difference with our
to describe systems with inherently hierarchical aspects and does not allow to
specify flexible (e.g. conditional) rules. However, many efforts have been invested
towards expressiveness and performance. Interesting branches we are currently
investigating are Temporal Planning [6] which copes with planning problems
with durative, concurrent actions, and Hierarchical Task Planning [18] where
the execution of a (hierarchical) task might require the execution of a plan of
(sub) tasks.

7 Conclusion

We have presented an approach for the description and analysis of model- and
rule-based specifications with hierarchical structure. Our approach provides sev-
eral benefits. First, it is built over the solid foundation of algebraic approaches
5 http://ipc.icaps-conference.org/

http://ipc.icaps-conference.org/
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like rewriting logic, structural operational semantics and semirings. Second, all
the mathematical machinery is presented in the unifying, tool-supported frame-
work of rewriting logic. Third, the approach fits perfectly with MOF-based tech-
nology as the MOF structure is somewhat homomorphic with our formalism. As a
matter of fact our approach can be understood as a no-harm enhancement of the
algebraic approach to MOF of [3]: one should be able to pass from a composition-
as-relation representation to a composition-as-containment representation in a
bijective manner, to use structural induction there where convenient. Fourth,
the approach imposes a design discipline based on the hierarchical structure
of composition associations, which contributes to the scalability of model- and
rule-based approaches. Indeed, designers can benefit from the layered view in-
troduced by the hierarchical structure and structured rewrite rules can lead to
more efficient analysis activities.

In this regard, we are currently investigating performance comparisons be-
tween flat and structured approaches to model manipulations. In particular, pre-
liminary results comparing classical examples of model transformations are very
promising. Other current efforts regard the automatisation and tool-support for
system descriptions. For instance, it should be possible to automatically derive
the equational part of the theory from an UML class diagram, along the lines
of the technique used in [3], e.g. deriving sorts from classes, subsorting from
inheritance relations, and nesting from composition relations. In such way we
could benefit from high-level front-ends.

We are also investigating more elaborated analysis problems. For instance,
Maude provides a strategy language that we could use to restrict the set of
acceptable plans we are interested in (e.g. by forbidding certain actions), and an
LTL model checker that could be used for characterising plans with Linear-time
Temporal Logic along the lines of planning as model checking approaches [8].

In future work we plan to conduct a comprehensive experimental evaluation
to evaluate the applicability and scalability of our approach, considering auto-
matically generated tests, industrial case studies, other application domains (e.g.
architectural reconfiguration, refactoring) and comparison with state-of-the-art
tools.
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Abstract. We define a reactive semantics for a subset of UML activities
that is suitable as precise design language for reactive software systems.
These semantics identify run-to-completion steps for execution on the
level of UML activities as so-called activity steps. We show that activities
adhering to these semantics and a set of rules lead to event-driven and
bounded specifications that can be implemented automatically by model
transformations and executed efficiently using runtime support systems.
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1 Introduction

UML 2.0 activities essentially denote in which order certain actions have to be
executed to accomplish some task, and are therefore suitable for a wide range of
applications. With their revision for the second major version of the UML stan-
dard [1], they were considerably enhanced with respect to supporting concurrent
flows and hierarchically structured specifications. In the following, we focus on
the application of UML activities on the domain of reactive systems. This class
of systems, characterized by Pnueli as ones that “maintain some interaction
with their environment” [2], is interesting, since with an increasing degree of
connectivity of devices and the ubiquity of sensors that provide data, more and
more applications fall into this category of systems. In general, these reactive
applications and corresponding systems are characterized as follows:

– There is a high degree of concurrency in the applications, since typically sev-
eral connections are simultaneously active and events from different sources
can occur at any time.

– These applications are event-driven, that means they execute their behavior
as reactions on events such as incoming signals from other devices, user
interface interactions or updated sensor inputs.

These characteristics make the development of reactive systems quite demand-
ing, especially with respect to concurrency. Achieving concurrency by processes
executing in parallel is complicated, since synchronizations between them are
difficult to understand and error-prone. In addition, the number of processes
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UML Activity

Runtime Support SystemsCommunication Bus
Components

Transformation, Code Generation

Fig. 1. Execution of components by runtime support systems

that can be executed efficiently in parallel is limited, in particular on mobile or
embedded devices.

One way to deal with the complexity of concurrent executions is the introduc-
tion of runtime support systems [3], illustrated in the lower part of Fig. 1. These
systems contain schedulers that control the execution of a component’s behavior
by dispatching events. Such events are the arrival of signals from other compo-
nents, the expiration of timers, or internal signals that arise from local sensor
data or interrupts. To be executable by a runtime support system, all application
behavior must be expressed as transitions triggered by observable events as de-
fined above. Moreover, communication must be implemented so that the sender
is not blocked, for instance via an asynchronous message bus. These properties
enable an execution with run-to-completion characteristics. The execution of a
run-to-completion step is not preempted, and concludes with a stable state in
which the runtime support system waits to dispatch the next observable event.
This makes it relatively easy to execute also complex and highly concurrent be-
havior with very limited resources and a low number of system processes. There-
fore, we are able to offer code generators different execution platforms, ranging
from resource-constrained embedded systems on Sun SPOTs [4] to systems serv-
ing large numbers of users like Telenor’s Connected Objects platform [5].

Our interest in activities is based on a number of characteristics they have that
are relevant for the development of distributed, reactive systems: In comparison
to state machines (that we have used before) they provide a high degree of con-
currency by default, since activity flows execute independently from each other.
We have also shown that activities can be grouped and abstracted in building
blocks [6], which leads to system designs that are built to high proportions from
reused solutions. Furthermore, since activities have the concept of partitions,
they also describe collaborative behavior, and may encapsulate the behavior of
several components that is necessary to fulfill a certain task, illustrated in Fig. 1.
We therefore built a tool that takes UML activities and implements them au-
tomatically, using first a model transformation to UML components and state
machines [7] and then a code generation step.

In order to use activities for reactive applications that are to be executed
on an event-driven runtime support system as described above, their semantics
need to address several issues:

– Activities should identify the run-to-completion steps executed by the run-
time support system, as well as the observable event triggering a step.
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– It must be clear on which location a run-to-completion step is performed,
i.e., which component is responsible for executing it.

– Activities should make communication explicit, i.e., all necessary communi-
cation between components must be represented by activity flows.

One could argue, of course, that the abstraction level of activities does not need
to deal with the same concepts as lower levels. For instance, non-local behavior
of activities could be allowed, and communication patterns on the level of com-
ponent execution could be synthesized automatically (as done for instance by
Yamaguchi et al. [8]). However, we want the activities to express communication
explicitly, for example to facilitate a security analysis as done in [9]. Further-
more, we want developers working on the level of activities to be still aware of
costly operations such as sending to encourage efficient solutions. For the same
reason we think it is beneficial to be aware of run-to-completion steps, since they
form the temporal behavior of specifications.

In the following, we describe what we call reactive semantics for activities. Our
intention is not to cover all details of the UML standard, but a subset of elements
necessary to describe a wide range of reactive applications. We will present UML
activities with an example and define some syntactic constraints in Sect. 3. Our
semantics is based on run-to-completion steps, which on the activity level we
call activity steps. These are defined in Sect. 4. The execution of activities based
on activity steps is then described in Sect. 5. Section 6 discusses properties of
activities and some additional constraints.

2 Related Work

There exists a variety of approaches that use different techniques to partially
define and discuss semantics of UML 2.0 activities. Conrad Bock, one of the
authors of the UML standard [1], covers the semantics of activities in a series
of articles which informally clarify numerous semantic details. In particular, he
describes the traverse-to-completion principle [10], according to which tokens
pass only when all elements along a path accept the passing. This principle
is implied by our semantics due to the definition of run-to-completion steps.
Eshuis’ work on model checking activity diagrams [11] defines their semantics
by two mappings onto the model checker NuSMV, but in comparison to our work
targets workflow systems, in which an activity is executed by a central workflow
system that coordinates the execution of actions [12]. Störrle uses Coloured
Petri Nets in [13] to define semantics of some UML activity elements. In [14],
Störrle and Hausmann conclude that Petri Nets are probably not suitable to
cover more advanced concepts, and point out the difficulty of combining all the
various target domains. Barros and Gomez explain the semantics of actions with
several input and output pins by “unfolding” these elements into activities with
simpler control nodes [15]. Crane and Dingel [16] cover the detailed semantics of
some specific UML action types, and describe in [17] a virtual machine for their
interpretation. Engels et al. [18] define semantics of activities using Dynamic
Meta Modeling (DMM), which is based on graph transformations. Sarstedt and
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Guttmann [19] use Abstract State Machines (ASMs) for the definitions of activity
semantics. This work treats token passing on a very detailed level, removing
some restrictions present in other approaches. To execute systems described by
activities, they propose the interpretation of models [20].

In contrast to these approaches, we explicitly apply UML activities to the
domain of reactive applications as characterized above, with an emphasis on
execution mechanisms for runtime support systems. For this case, we found the
semantics defined by the approaches mentioned above as not ideal, since they are
either too general or target for example business processes, which pose different
requirements on communication and synchronization. Therefore, we cannot use
them as basis for the construction of executable components.

3 UML Activities

The UML standard uses simple text to explain activities, and characterizes their
semantics as “Petri-like” [1, p. 324]. Some simple activity graphs can indeed
easily mapped to Petri Nets. The mapping of more complex elements of UML
activities, however, turns out to be difficult, especially for termination behavior,
as pointed out by others [14,21,12]. In the following, we will therefore describe
the reactive semantics of activities based on the intuitive token flows as found
in Petri Nets, but use general state-transition systems in which also groups of
tokens of several places can be removed simultaneously.

An activity is a directed graph A with a set of activity nodes VA and a
set of activity edges EA. Function kindA ∈ [VA → K] assigns to each node a
kind, with K = {initial, merge, decision, fork, join, accept, operation, afinal,
ffinal, queue}, as illustrated in Fig. 2. Nodes of kind accept model accept event
actions, which in our semantics represent either internal signal receptions or
timer expirations. Internal signals are used to represent events from lower layers
of a component, such as interrupts or events from user interfaces. Nodes of kind
operation represent method calls. There are two kinds of final nodes, activity
final nodes (afinal) that terminate an entire activity (hence removing tokens
also from other places and preempting other behaviors), and flow final nodes
(ffinal) that just consume tokens to conclude a flow.

An activity has a non-empty set of partitions PA. In general, UML uses parti-
tions to characterize commonalities among nodes. We use them strictly to denote
different locations of executions. Thus, a flow crossing partition borders implies
communication. For this communication, we assume an asynchronous message
bus. This type of communication allows for an increased degree of concurrency,
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but may introduce interleaving behavior that has to be taken care of by corre-
sponding synchronization. Since this behavior is tightly interleaved with appli-
cation logic, the delay of messages must be represented in the activity diagrams
as well. For this reason, we introduce explicit queue places where activity flows
cross partition borders. In Fig. 4, these are nodes q1 to q7.

Function inA ∈ [VA → 2EA ] yields for each node its incoming edges, and
function outA ∈ [VA→2EA ] its outgoing edges. Vice versa, we refer to sourceA(e)
to get the source node of an edge, and targetA(e) for its target. We assume that
only merge and join nodes have more than one incoming edge, and only decision
and fork nodes have more than one outgoing edge. All structural constraints are
summarized by the rules in Fig. 3. Function partA ∈ [VA → PA ∪ (PA × PA)]
assigns partitions to nodes, so that each queue node is mapped to a pair of
partitions modeling the transmission of signals between components (PQ). All
other nodes are assigned to exactly one partition (PN). Rule E1 ensures that
edges do not have the same node as source and target, and P1 ensures that
there are no edges between two queues. These cases do not model useful behavior.
Rules P2 to P4 ensure that edges do not cross partition borders without a queue
node in between. (These rules are listed here for completeness. In practice, they

IN1
v∈VA kindA(v) ∈ {initial}

|inA(v)| = 0
IN2

v∈VA kindA(v) ∈ {merge, join}
|inA(v)| ≥ 2

IN3

v∈VA kindA(v) ∈ {decision, fork,

accept, operation,ffinal, afinal, queue}
|inA(v)| = 1

OUT1

v∈VA kindA(v) ∈ {initial,

merge, join, accept, operation}
|outA(v)| = 1

OUT2

v∈VA

kindA(v) ∈ {ffinal, afinal}
|outA(v)| = 0

OUT3

v∈VA

kindA(v) ∈ {decision, fork}
|outA(v)| ≥ 2

PN
v∈VA kindA(v) �= queue

partA(v) ∈ PA
PQ

q∈VA kindA(q) = queue p1, p2 ∈ PA

partA(q) = 〈p1, p2〉 p1 �= p2

E1
e ∈ EA

sourceA(e) �= targetA(e)
P1

e ∈ EA kindA(sourceA(e)) = queue

kindA(targetA(e)) �= queue

P2
e ∈ EA kindA(sourceA(e)) �= queue kindA(targetA(e)) �= queue

partA(sourceA(e)) = partA(targetA(e))

P3

e ∈ EA p, q ∈ PA

kindA(sourceA(e)) �= queue

kindA(targetA(e)) = queue

partA(targetA((e)) = 〈p, q〉
partA(source(e)) = p

P4

e∈EA p, q ∈ PA

kindA(sourceA(e)) = queue

kindA(targetA(e)) �= queue

partA(sourceA((e)) = 〈p, q〉
partA(target(e)) = q

Fig. 3. Rules for incoming and outgoing edges and partitions
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Fig. 4. Example activity for an SMS-based query system

are ensured by construction, since queue places are added automatically for edges
crossing partitions).

Figure 4 shows a simplified SMS-based query service, in which customers
can request weather and traffic information by SMS. The system consists of
four components with different tasks, represented by separate activity partitions.
The behavior is started by the query control server, which activates the SMS
gateway to listen for incoming SMS messages. These are received via accept node
s: SMS, emitting one token for each SMS that is forwarded to the query control
server. There, a decision is made in d1 whether the cache holds valid traffic and
weather data. If yes, a report is created immediately. If data is not available
locally, queries are sent towards the weather and traffic servers concurrently.
Join j1 then collects their responses, which are used to create the report that is
forwarded to the SMS gateway and sent out.

4 Run-to-Completion Steps in Activities: Activity Steps

As explained in the introduction, the execution of components by runtime sup-
port systems is based on run-to-completion steps that are triggered by discrete,
observable events. On the level of activities, a run-to-completion step is called
activity step. With respect to the formal representation of an activity diagram,
an activity step is a subgraph a with Va ⊆ VA and Ea ⊆ EA. An activity step
covers all nodes and edges that describe behavior executed within one run-to-
completion step. An activity diagram describes with its graph a set of activity
steps. The complete set of activity steps for a diagram can be obtained by con-
sidering all possible subgraphs ai of A, for which the rules in Fig. 5 hold.

– Whenever a node is part of an activity step, then at least one of its incoming
or outgoing edges is part of the step as well (rule V). Vice-versa, for each
edge part of a step, also its source and target nodes are part of the step (E).

– All initial nodes within the same partition release their tokens simultane-
ously, so that also all other initial nodes within the same partition are part
of an activity step (I).
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– For merge nodes, only one incoming edge is part of an activity step (M).
This rules out intricate behavior in which two or more tokens pass the same
edge within the same step, as discussed later.

– For decision nodes, several activity steps are produced. Each contains the
incoming edge, the decision node, and exactly one outgoing edge (D). This
means that an activity step executes exactly one branch of a decision.

– When a fork is part of an activity step, so are its incoming edge and all
outgoing edges, since they are executed in parallel (F).

– When a join is part of an activity step, then there is at least one incoming
edge part of the step as well (J).

– Operations are executed within one run-to-completion step, and thus the
incoming and outgoing edge must be part of the same activity step (O).

– The sending and the reception at partition borders are part of separate
activity steps. Therefore, for each queue place, either the incoming or the
outgoing edge is part of the same activity step (Q).

– When a node of type initial, accept or queue is part of a step and its outgoing
edge as well, then it is triggering the step. Rule T2 ensures that each activity
step has at least one such trigger, and rule T1 ensures that is at most one.

– Accept nodes are covered by the general rules V and E.

Figure 6 shows the complete set of activity steps that can be produced from the
activity in Fig. 4. Steps a1 to a7 are executed within the query control, steps
a9 to a11 by the SMS gateway, and a8 and a12 by the weather resp. the traffic
server. Some steps are especially interesting: Steps a1 and a5 model the arrival

V
v ∈ Va

inA(v) ∩ Ea �= ∅ ∨ outA(v) ∩ Ea �= ∅ E
e ∈ Ea

source(e) ∈ Va target(e) ∈ Va

I
i ∈ Va partA(i) = partA(j) kindA(i) = kindA(j) = initial

j ∈ Va

M
m ∈ Va kindA(m) = merge

outA(m) ⊆ Ea |inA(m) ∩ Ea| = 1
D

d ∈ Va kindA(d) = decision

inA(d) ⊆ Ea |Ea ∩ outA(d)| = 1

F
f ∈ Va kindA(f) = fork

inA(f) ⊆ Ea outA(f) ⊆ Ea
J

j ∈ Va kindA(j) = join

inA(j) ∩ Ea �= ∅

O
o ∈ Va kindA(o) = operation

inA(o) ⊆ Ea outA(o) ⊆ Ea
Q

q ∈ Va kindA(q) = queue

inA(q) ∩ Ea �= ∅ ⇔ outA(q) ∩ Ea = ∅

T1

t, u ∈ Va outA(t) ∩ Ea �= ∅ partA(t) = partA(u)

kindA(t) ∈ {initial, accept, queue} kindA(u) ∈ {accept, queue}
outA(u) ∩ Ea = ∅

T2
True

t ∈ Va outA(t) ∩ Ea �= ∅ kindA(t) ∈ {initial, accept, queue}

Fig. 5. Rules for activity step subgraphs
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Fig. 6. Complete set of activity steps for the example
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Fig. 7. Illegal subgraphs forbidden by rules

of an SMS by the main server from the SMS gateway. Together they cover the
alternative branches introduced by decision node d1, which either creates the
report instantly or starts the query. Steps a2 and a3 represent the arrival of
the results from the traffic server (via q7). Step a2 covers the situation that the
weather information did not yet arrive (and therefore stops at j2), while step a3
can fire through j1 since the weather information already arrived.

Figure 7 shows examples of subgraphs that are not valid activity steps. Sub-
graph g1 results in infinite executions of op1 and is therefore not desired. Sub-
graph g2 executes op2 twice. While this is not necessarily wrong, we think that
this is probably not obvious to and by no means intended by developers, and
should be forbidden. Subgraph g3 shows behavior that simply is never reachable.
The existence of such invalid subgraphs in a diagram are detected by rule con-
tradictions. The subgraph g1 is illegal since rule O and E would force that both
incoming edges of m1 are part of the activity step, which is forbidden by rule
M. Similarly, in g2 rule F would contradict rule M. Subgraph g3 has no trigger,
contradicting rule T2. The existence of rule contradictions signify inconsistent
diagrams that have to be changed.

5 Execution Steps and Execution Semantics

Formally, the behavior of a reactive system A expressed by a UML activity is as
a state transition system in which the states are represented as a placement of
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tokens on the vertices and edges of the activity. For this reason, we define the
type tokensA � 2[VA∪EA→N] of token mappings assigning each node and edge a
natural number. Thus, a token mapping specifies a single system state.

A specific token mapping initA ∈ tokensA refers to the token mapping of
system A in its initial state. This initial mapping assigns one token to each of
the vertices of kind initial while all the other nodes and edges are empty, as
described by the following rules:

INIT1
v ∈ VA kindA(v) = initial

initA(v) = 1
INIT2

v ∈ VA kindA(v) �= initial
initA(v) = 0

INIT3
e ∈ EA

initA(e) = 0

The state transitions are represented by execution steps which correspond to
the activity steps and additional information describing the token settings be-
fore resp. after executing the step. Formally, we specify the execution step of
an activity step represented by a subgraph 〈Va, Ea〉 as the quadruple axa =
〈Va, Ea, prea, posta〉. prea ∈ tokensA describes the token setting of A before ex-
ecuting the activity step, and posta ∈ tokensA denotes the token setting after-
wards. For an axa to be valid, it must fulfill the following properties:

– In general, a token is added to accept and queue nodes when their incoming
edge is part of an activity step (IX).

– In order to execute, the place representing a trigger must hold a token
(AX1). If the trigger place is re-filled within the same step, its token count
stays the same (AX3), otherwise it is reduced by one (AX2).

– For join nodes, two rules exist: Rule JX1 models the firing of a join when
tokens arrive at its incoming edges. All incoming edges not part of the activ-
ity step must already provide a token each. When the join fires, these tokens
are deleted, and the step continues with the outgoing edge of the join. Rule
JX2 handles the arrival of tokens at a join when it is not yet complete. As
consequence, it adds these arriving tokens but does not continue.

– Once a final node is part of an activity step, all tokens within the same parti-
tion are removed (see rule AFX1 for tokens on edges and AFX2 for tokens
on nodes). The latter rule also removes all tokens within queues towards the
partition containing the activity final node. This takes into account that the
component implementing the terminated partition is switched off, and any
remaining signals towards it are discarded. The additional precondition

nofinal(n : 2NA, p : PA) � ∀f : f ∈n ∧ partA(f) = p ⇒ kindA(f) �=afinal

added to rules IX, AX3, JX1 and JX2 ensures that these rules only apply
if no activity final node is part of the activity step, to give rules AFX1 and
AFX2 priority.

– All vertices and edges of A not mentioned by one of the rules explicitly do
not change their token setting in the execution step axa.
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IX

v ∈ Va kindA(v) ∈ {accept, queue}
inA(v) ∩ Ea �= ∅ outA(v) ∩ Ea = ∅ nofinal(Va, part(v))

posta(v) = prea(v) + 1

AX1

v ∈ Va

kindA(v) ∈ {initial, accept, queue}
outA(v) ∩ Ea �= ∅

prea(v) > 0
AX2

v ∈ Va

kindA(v) ∈ {initial, accept, queue}
outA(v) ∩ Ea �= ∅ inA(v) ∩ Ea = ∅

posta(v) = prea(v) − 1

AX3

v ∈ Va kindA(v) = accept inA(v) ∩ Ea �= ∅
outA(v) ∩ Ea �= ∅ nofinal(Va, part(v))

posta(v) = prea(v)

JX1

v ∈ Va kindA(v) = join es = inA(v) ∩ Ea

∀e ∈ inA(v) \ es : prea(e) > 0 nofinal(Va, part(v))
outA(v) ⊆ Ea ∀e ∈ inA(v) \ es : posta(e) = prea(e) − 1

JX2

v ∈ Va kindA(v) = join es = inA(v) ∩ Ea

∃e ∈ inA(v) \ es : prea(e) = 0 nofinal(Va, part(v))
outA(v) ∩ Ea = ∅ ∀e ∈ es : posta(e) = prea(e) + 1

AFX1

e ∈ EA f ∈ Va

kindA(f) = afinal

part(f) = part(targetA(e))
posta(e) = 0

AFX2

f ∈Va v∈VA kindA(f) = afinal

part(v) = part(f)

∨ part(v) = 〈 , part(f)〉
posta(v) = 0

Fig. 8. Execution rules for activity steps

We define the set AXA as the set of execution steps axa each following the
rules mentioned above. This set contains execution steps that are not reachable.
We define the set of reachable execution steps RAXA ⊆ AXA by means of the
following two rules:

R1

a ∈ AXA ∀v ∈ VA : kindA(v) = initial⇔ prea(v) = 1
∀v ∈ VA : kindA(v) �= initial⇔ prea(v) = 0 ∀e ∈ EA : prea(e) = 0

a ∈ RAXA

R2

a, b ∈ AXA ∀v ∈ VA : prea(v) = postb(v)
∀e ∈ EA : prea(e) = postb(e) b ∈ RAXA

a ∈ RAXA

The rules define recursively that the reachable execution steps a are those con-
taining a token setting prea reachable by a finite trace of execution steps from
the initial token setting. The behavior of system SysA is then defined by the state
transition system expressed by the quadruple SysA � 〈VA, EA, initA,RAXA〉.
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6 Properties of Activities with Reactive Semantics

In the following, we will discuss the properties of activities with reactive seman-
tics. The properties in Sect. 6.2 and 6.3 require additional behavioral invariants,
that is, they only hold for a subset of activities. We will assure these by addi-
tional rules that have to hold for any a ∈ RAXA. In practice, these rules are
verified by model checking, as discussed in [22].

6.1 Event-Driven Execution and Run-to-Completion

As described in the introduction, the events observable by a runtime support
system are the expiration of timers, the arrival of internal signals, or the arrival
of signals from other components. On the activity level, these events are modeled
by accept event actions and activity flows that cross partition borders via queues.
The initial startup of a component is also an event, modeled by initial nodes in
activities. Due to rules T1 and T2, we ensure that each execution step declares
exactly one such trigger, meaning that activity steps started by an observable
event. Furthermore, tokens may be only placed according to two properties:

(i) Tokens may rest on a vertex only if it is of kind initial, accept, or queue.
(ii) Tokens may rest on edges if they lead to a join node, but only if the join is

not yet complete, i.e., there is one incoming edge that cannot offer a token.

Property (i) ensures that tokens only wait in places that imply waiting for an
observable event. In initial nodes, this is the start of the system, in queues the
arrival of the signal and for accept nodes the expiration of a timer or the arrival
of an internal signal, resp. Property (ii) is more subtle. Tokens may wait on
edges preceding join nodes. But since join nodes do not declare any observable
events, tokens may only rest before a join if the join is not yet complete. The join
fires through within the same step once the last missing token arrives. Hence, a
token stored in an incomplete join implies waiting for another observable event.
Formally, (i) and (ii) can be expressed as P � E1 ∧ E2 ∧E3 ∧ E4, with

E1 � ∀v ∈ VA : kind(v) ∈ {initial, accept, queue} ∨ initA(v) = 0

E2 � ∀e ∈ EA : kind(targetA(e)) �= join ∧ initA(e) = 0
∨ ∃f ∈ EA : f ∈ in(targetA(e)) ∧ initA(f) = 0

E3 � ∀v ∈ VA∀a ∈ RAXA : kind(v) ∈ {initial, accept, queue} ∨ posta(v) = 0

E4 � ∀e ∈ EA∀a ∈ RAXA : kind(targetA(e)) �= join ∧ posta(e) = 0
∨ ∃f ∈ EA : f ∈ in(targetA(e)) ∧ posta(f) = 0

E1 and E2 describe that (i) and (ii) hold in the initial state of the system while
E3 and E4 guarantee that all execution steps a∈RAXA preserve them as well.
E1 holds due to rules INIT1 and INIT2 and E2 holds due to rule INIT3.

To prove E3, we consider the rules in Fig. 8. The only rule describing that the
token setting of a vertex v after executing an execution step a can be greater
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than before (i.e., posta(v) > prea(v)) is IX. But according to the second premise
of the rule, the token setting may only be increased for tokens of kind accept
and queue. Thus, if a vertex of a type other than initial, accept or queue has no
token placed on it before the execution of the execution step, it will carry none
afterwards as well. In consequence, it will never carry a token at all.

The proof of E4 is quite similar. The only rule in Fig. 8 modeling an increase
of a token setting on an edge in an execution step is JX2. Yet it does not allow
the placement of new tokens on edges leading to a vertex not being of kind join
as expressed by the third premise. So, the first disjunct of E4 holds and in all
system states only edges into a join may have tokens at all. Further, the forth
premise of the rule states that there is an edge leading into the join node to which
no token is assigned. As this edge is not an element of the edges receiving new
tokens (expressed by set es), it will not carry a token after firing the execution
step. Thus, the second disjunct of E4 holds as well and a join node will always
have an incoming edge without a token placed on it.

6.2 Realizability and Distribution

To be executable as one run-to-completion step, an activity step must only have
direct local effects, and only depend on data that is available locally. Rules Q
and P1 to P4 split up activity steps at partition borders. Within one activity
step, all nodes except queues are therefore part of the same partition. For flows
crossing partition borders, we take the unavoidable communication delay into
account by explicit queue nodes, so that they can be implemented using some
communication middleware. For some nodes, the general semantics of UML de-
scribe also non-local dependencies, that motivate some further constraints:

– As an extension to standard UML, we assume that variables, like activity
nodes, are assigned to partitions. Guards and actions are only allowed to
access variables within their own partition.

– Initial nodes are started simultaneously, but only those within the same
partition. This is already ensured by rule I.

– In standard UML, accept event actions without incoming edge denote that
they are activated with the surrounding activity. Instead, we require these
actions to have an incoming edge (rule IN3), to model activation explicitly.

– Activity final nodes terminate in standard UML the entire activity. With
the reactive semantics, they only remove tokens within the same partition
(rules AFX1 and AFX2). Since messages towards a terminated partition
are discarded, queues towards a terminated partition are emptied as well.

To comply with the general semantics of activity nodes in which an activity final
node terminates the behavior in all partitions, the other partitions must not be
able to execute any further activity steps. This is ensured by the additional
rules TRM1 and TRM2. The former states that whenever an activity final
node is reached, there must not be any token in accept nodes of other partitions.
The latter states that all queues not targeting the terminated partition must be
empty as well. Since tokens offered to join nodes cannot trigger any behavior on
their own, they do not have to be removed upon termination.
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TRM1
f ∈Va v∈VA kindA(f) = afinal kindA(v) = accept partA(v) �= partA(f)

prea(v) = posta(v) = 0

TRM2
f ∈Va q∈VA kindA(f)=afinal kindA(q) = queue partA(q) �= 〈 , f 〉

prea(q) = posta(q) = 0

AB
v ∈ Va kindA(v) = accept

posta(v) ≤ 1
JB

v ∈ Va kindA(v) = join e ∈ inA(v)
posta(e) ≤ 1

QB
v ∈ Va kindA(v) = queue

posta(v) ≤ maxqueue

Fig. 9. Additional rules for activities

6.3 Boundedness

Since the number of places needed to describe an activity is limited, the state
space implied by a specification is finite if (and only if) each place only contains
a bounded number of tokens, i.e., |tokensA(x) < N |, with N as a finite boundary.
Rules IX and JX2 are the only rules increasing token places.

– Accept nodes are either enabled or disabled, represented by one or zero
tokens on their corresponding place. We found that adding more than one
token in an accept node is in most cases unintended and an indicator of a
design flaw. We therefore rule out such behavior by rule AB.

– Places before join nodes can hold many tokens which implies buffering of
data or control flow. We found that this makes activities harder to under-
stand, without adding any expressiveness for reactive systems; we rather
recommend to use explicit building blocks to describe buffering and rule out
behaviors in which tokens accumulate before joins by rule JB.

– Queues between partitions need to be bounded as well. That means, they
must not exceed a certain value maxqueue ∈ N, expressed by rule QB.

If the boundedness rules hold, the set of reachable execution steps RAXA will
be finite as it is lower or equal to the product of run-to-completion steps times
possible token markings following the boundedness constraints.

7 Concluding Remarks

We described a reactive semantics for UML activities, in which each execution
step is triggered by an observable event. This is motivated by existing mecha-
nisms present in runtime support systems for efficient but nevertheless simple
scheduling and execution of highly concurrent behavior. As a consequence of the
reactive semantics, the components produced by our model transformation [7]
from activities have the same efficiency as if they would have been produced
manually by an experienced designer, i.e., do not contain any overhead for token
control, and it is not visible that they were generated from UML activities.
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We have implemented comprehensive tool support with Arctis [22], a set of
Eclipse plug-ins. It enables editing, analyzing and automatically implementing
activity-based specifications. The syntactical rules from Fig. 3 are ensured by
the editor, highlighting erroneous parts of the graph. Similarly, the tool can
produce all activity steps implied by a diagram, using the rules from Fig. 5.
Rule contradictions that signify illegal diagrams are detected and explained to
the user. Finally, the additional rules for sound behavior in Fig. 9 are verified by
model checking [22]. Our tool also supports data in activities, which we did not
treat here. Our experience from implementing data shows that their semantics
can be covered by extending the semantics for control flows in a straight-forward
way. Operations with more than one incoming flow, for instance, can be modeled
similar to join nodes. More advanced nodes can be modeled by dedicated building
blocks. Concerning the expressiveness of the chosen reactive semantics we point
to numerous case studies (summarized in [6]) that exemplify their application in
various domains. With an abstraction mechanism described in [6] such solutions
can also be encapsulated by dedicated building blocks from which large system
designs can be produced in a scalable manner.
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Abstract. We propose a new simulation-based technique for verifying
applications running within a large heterogeneous system. Our technique
starts by performing simulations of the system in order to learn the
context in which the application is used. Then, it creates a stochastic
abstraction for the application, which takes the context information into
account. This smaller model can be verified using efficient techniques
such as statistical model checking. We have applied our technique to an
industrial case study: the cabin communication system of an airplane.
We use the BIP toolset to model and simulate the system. We have
conducted experiments to verify the clock synchronization protocol i.e.,
the application used to synchronize the clocks of all computing devices
within the system.

1 Introduction

Systems integrating multiple heterogeneous distributed applications communi-
cating over a shared network are typical in various sensitive domains such as
aeronautic or automotive embedded systems. Verifying the correctness of a par-
ticular application inside such a system is known to be a challenging task, which
is often beyond the scope of existing exhaustive validation techniques. The main
difficulty comes from network communication which makes all applications in-
terfering and therefore forces exploration of the full state-space of the system.

Statistical Model Checking [8,13,15] has recently been proposed as an alterna-
tive to avoid an exhaustive exploration of the state-space of the model. The core
idea of the approach is to conduct some simulations of the system and then use
statistical results in order to decide whether the system satisfies the property
or not. Statistical model checking techniques can also be used to estimate the
probability that a system satisfies a given property [8,7]. Of course, in contrast
with an exhaustive approach, a simulation-based solution does not guarantee
a correct result. However, it is possible to bound the probability of making
an error. Simulation-based methods are known to be far less memory and time
intensive than exhaustive ones, and are sometimes the only option [16,10]. Statis-
tical model checking is widely accepted in various research areas such as systems
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biology [6,11] or software engineering, in particular for industrial applications.
There are several reasons for this success. First, it is very simple to implement,
understand and use. Second, it does not require extra modeling or specification
effort, but simply an operational model of the system, that can be simulated
and checked against state-based properties. Third, it allows model-checking of
properties [5] that cannot be expressed in classical temporal logics. Nevertheless,
statistical-model checking still suffers from the system’s complexity. In particu-
lar, for the case of heterogeneous systems, the number of components and their
interactions are limiting factors on the number and length of simulations that
can be conducted and hence on the accuracy of the statistical estimates.

We propose to exploit the structure of the system in order to increase the
efficiency of the verification process. The idea is conceptually simple: instead
of performing an analysis of the entire system, we propose to analyze each ap-
plication separately, but under some particular context/execution environment.
This context is a stochastic abstraction that represents the interactions with
other applications running within the system and sharing the computation and
communication resources. We propose to build such a context automatically by
simulating the system and learning the probability distributions of key charac-
teristics impacting the functionality of the given application.

The overall contribution of this paper is an application of the above method
on an industrial case study, the heterogeneous communication system (HCS for
short) deployed for cabin communication in a civil airplane. HCS is a heteroge-
neous system providing entertainment services (e.g., audio/video on passengers
demand) as well as administrative services (e.g., cabin illumination, control, au-
dio announcements), which are implemented as distributed applications running
in parallel, across various devices within the plane and communicating through
a common Ethernet-based network. The HCS system has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and syn-
chronization constraints. An important requirement, which will be studied in this
paper, is the accuracy of clock synchronization between different devices. This
latter property states that the difference between the clocks of any two devices
should be bounded by a small constant, which is provided by the user and de-
pends on his needs. Hence, one must be capable of computing the smallest bound
for which synchronization occurs and compare it with the bound expected by the
user. Unfortunately, due to the large number of heterogeneous components that
constitute the system, deriving such a bound manually from the textual speci-
fication is an unfeasible task. In this paper, we propose a formal approach that
consists in building a formal model of the HCS, then applying simulation-based
algorithms to this model in order to deduce the smallest value of the bound
for which synchronization occurs. We start with a fixed value of the bound and
check whether synchronization occurs. If yes, then we make sure that this is the
best one. If no, we restart the experiment with a new value.

At the top of our approach, there should be a tool that is capable of modeling
heterogeneous systems as well as simulating their executions and the interac-
tions between components. In this paper, we propose to use the BIP toolset [2]
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for doing so. BIP (Behaviour-Interaction-Priority) supports a methodology for
building systems from atomic components encapsulating behavior, that commu-
nicate through interactions, and coordinate through priorities. BIP also offers
a powerful engine to simulate the system and can thus be combined with a
statistical model checking algorithm in order to verify properties. Our first con-
tribution is to study all the requirements for the HCS to work properly and
then derive a model in BIP. Our second contribution is to study the accuracy
of clock synchronization between several devices of the HCS. In HCS the clock
synchronization is ensured by the Precision Time Protocol (PTP for short) [1],
and the challenge is to guarantee that PTP maintains the difference between a
master clock (running on a designated server within the system) and all the slave
clocks (running on other devices) under some bound. Since this bound cannot
be pre-computed, we have to verify the system for various values of the bound
until we find a suitable one. Unfortunately, the full system is too big to be an-
alyzed with classical exhaustive verification techniques. A solution could be to
remove all the information that is not related to the devices under consideration.
This is in fact not correct as the behavior of the PTP protocol is influenced by
the other applications running in parallel within the heterogeneous system. Our
solution to this state-space explosion problem is in two steps (1) we will build a
stochastic abstraction for a part of the PTP application between the server and
a given device; the stochastic part will be used to model the general context in
which PTP is used, (2) we will apply statistical model checking on the resulting
model.

Thanks to this approach, we have been able to derive precise bounds that
guarantee proper synchronization for all the devices of the system. We also com-
puted the probability of satisfying the property for smaller values of the bound,
i.e., bounds that do not satisfy the synchronization property with probability 1.
Being able to provide such information is of clear importance, especially when
the best bound is too high with respect to the user’s requirements. We have
observed that the values we obtained strongly depend on the position of the
device in the network. We also estimated the average and worst proportion of
failures per simulation for bounds that are smaller than the one that guarantees
synchronization. Checking this latter property has been made easy because BIP
allows us to reason on one execution at a time. Finally, we have also considered
the influence of clock drift on the synchronisation results. The experiments high-
light the generality of our technique, which could be applied to other versions of
the HCS as well as to other heterogeneous applications.

Due to space limitations, several constructions and algorithms are given in a
technical report [3].

2 An Overview of Statistical Model Checking

Consider a stochastic system S and a property φ. Statistical model checking
refers to a series of simulation-based techniques that can be used to answer two
questions: (1) Qualitative: Is the probability that S satisfies φ greater or equal
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to a certain threshold? and (2) Quantitative: What is the probability that S
satisfies φ? Contrary to numerical approaches, the answer is given up to some
correctness precision. In the rest of the section, we overview several statistical
model checking techniques. Let Bi be a discrete random variable with a Bernoulli
distribution of parameter p. Such a variable can only take 2 values 0 and 1 with
Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our context, each variable Bi is
associated with one simulation of the system. The outcome for Bi, denoted bi,
is 1 if the simulation satisfies φ and 0 otherwise.

2.1 Qualitative Answer Using Statistical Model Checking

The main approaches [15,13] proposed to answer the qualitative question are
based on hypothesis testing. Let p = Pr(φ), to determine whether p ≥ θ, we
can test H : p ≥ θ against K : p < θ. A test-based solution does not guarantee
a correct result but it is possible to bound the probability of making an error.
The strength (α, β) of a test is determined by two parameters, α and β, such
that the probability of accepting K (respectively, H) when H (respectively, K)
holds, called a Type-I error (respectively, a Type-II error ) is less or equal to α
(respectively, β). A test has ideal performance if the probability of the Type-I
error (respectively, Type-II error) is exactly α (respectively, β). However, these
requirements make it impossible to ensure a low probability for both types of
errors simultaneously (see [15] for details). A solution is to use an indifference
region [p1, p0] (with θ in [p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1. We
now sketch two hypothesis testing algorithms.

Single Sampling Plan. To test H0 against H1, we specify a constant c. If
∑n

i=1 bi

is larger than c, then H0 is accepted, else H1 is accepted. The difficult part in this
approach is to find values for the pair (n, c), called a single sampling plan (SSP
in short), such that the two error bounds α and β are respected. In practice, one
tries to work with the smallest value of n possible so as to minimize the number
of simulations performed. Clearly, this number has to be greater if α and β are
smaller but also if the size of the indifference region is smaller. This results in
an optimization problem, which generally does not have a closed-form solution
except for a few special cases [15]. In his thesis [15], Younes proposes a binary
search based algorithm that, given p0, p1, α, β, computes an approximation of
the minimal value for c and n.

Sequential probability ratio test. The sample size for a single sampling plan is
fixed in advance and independent of the observations that are made. However,
taking those observations into account can increase the performance of the test.
As an example, if we use a single plan (n, c) and the m > c first simulations
satisfy the property, then we could (depending on the error bounds) accept
H0 without observing the n −m other simulations. To overcome this problem,
one can use the sequential probability ratio test (SPRT in short) proposed by
Wald [14]. The approach is briefly described below.
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In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A, and H1

if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of m until

either H0 or H1 is satisfied; the algorithm terminates with probability 1[14]. This
has the advantage of minimizing the number of simulations. In his thesis [15],
Younes proposed a logarithmic based algorithm SPRT that given p0, p1, α and
β implements the sequential ratio testing procedure.

2.2 Quantitative Answer Using Statistical Model Checking

In [8,12] Peyronnet et al. propose an estimation procedure to compute the prob-
ability p for S to satisfy φ. Given a precision δ, Peyronnet’s procedure, which
we call PESTIMATION, computes a value for p′ such that |p′ − p|≤δ with con-
fidence 1 − α. The procedure is based on the Chernoff-Hoeffding bound [9]. Let
B1 . . . Bm be m discrete random variables with a Bernoulli distribution of pa-
rameter p associated with m simulations of the system. Recall that the out-
come for each of the Bi, denoted bi, is 1 if the simulation satisfies φ and
0 otherwise. Let p′ = (

∑m
i=1 bi)/m, then Chernoff-Hoeffding bound [9] gives

Pr(|p′ − p| > δ) < 2e−
mδ2

4 . As a consequence, if we take m≥ 4
δ2 log( 2

α ), then
Pr(|p′ − p|≤δ) ≥ 1 − α. Observe that if the value p′ returned by PESTIMA-
TION is such that p′≥θ − δ, then S |= Pr≥θ with confidence 1− α.

2.3 Playing with Statistical Model Checking Algorithms

The efficiency of the above algorithms is characterized by the number of simu-
lations needed to obtain an answer. This number may change from executions
to executions and can only be estimated (see [15] for an explanation). However,
some generalities are known. For the qualitative case, it is known that, except
for some situations, SPRT is always faster than SSP. When θ = 1 (resp. θ = 0)
SPRT degenerates to SSP; this is not problematic since SSP is known to be op-
timal for such values. PESTIMATION can also be used to solve the qualitative
problem, but it is always slower than SSP [15]. If θ is unknown, then a good
strategy is to estimate it using PESTIMATION with a low confidence and then
validate the result with SPRT and a strong confidence.

3 Validation Method and the BIP Toolset

Consider a system consisting of a set of distributed applications running on sev-
eral computers and exchanging messages on a shared network infrastructure.
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Assume also that network communication is subject to given bandwidth restric-
tions as well as to routing and scheduling policies applied on network elements.
Our method attempts to reduce the complexity of validation of a particular ap-
plication of such system by decoupling the timing analysis of the network and
functional analysis of each application.

We start by constructing a model of the whole system. This model must be
executable, i.e., it should be possible to obtain execution traces, annotated with
timing information. For a chosen application, we then learn the probability dis-
tribution laws of its message delays by simulating the entire system. The method
then constructs a reduced stochastic model by combining the application model
where the delays are defined according to the laws identified at the previous step.
Finally, the method applies statistical model-checking on the resulting stochastic
model.

Our models are specified within the BIP framework [2]. BIP is a component-
based framework for construction, implementation and analysis of systems
composed of heterogeneous components. In particular, BIP fulfills all the re-
quirements of the method suggested above, that are, models constructed in BIP
are operational and can be thoroughly simulated. BIP models can easily inte-
grate timing constraints, which are represented with discrete clocks. Probabilistic
behaviour can also be added by using external C functions.

The BIP framework is implemented within the BIP toolset [4], which includes
a rich set of tools for modeling, execution, analysis (both static and on-the-fly)
and static transformations of BIP models. It provides a dedicated programming
language for describing BIP models. The front-end tools allow editing and pars-
ing of BIP programs, and generating an intermediate model, followed by code
generation (in C) for execution and analysis on a dedicated middleware platform.
The platform also offers connections to external analysis tools. A more complete
description of BIP can be found in [3].

4 Case Study: Heterogeneous Communication System

The case study concerns a distributed heterogeneous communication system
(HCS) providing an all electronic communication infrastructure to be deployed,
typically for cabin communication in airplanes or for building automation. The
HCS system contains various devices such as sensors (video camera, smoke de-
tector, temperature, pressure, etc.) and actuators (loudspeakers, light switches,
temperature control, signs, etc.) connected through a wired communication net-
work to a common server. The server runs a set of services to monitor the sensors
and to control the actuators. The devices are connected to the server using net-
work access controllers (NAC) as shown for an example architecture in Figure 1.
An extended star-like HCS architecture with several daisy chains of NACs and
devices is presented in [3].

The system-wide HCS architecture is highly heterogeneous. It includes hard-
ware components and software applications ensuring functions with different
characteristics and degree of criticality e.g., audio streaming, device clock syn-
chronisation, sensor monitoring, video surveillance. It also integrates different
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Fig. 1. HCS Example Model

communication and management protocols between components. The HCS sys-
tem has to guarantee stringent requirements, such as reliable data transmission,
fault tolerance, timings and synchronization constraints. For example, the la-
tency for delivering alarm signals from sensors, or for playing audio announce-
ments should be smaller than certain predefined thresholds. Or, the accuracy of
clock synchronization between different devices, should be guaranteed under the
given physical implementation of the system.

The HCS case study poses challenges that require component-based design
techniques, since it involves heterogeneous components and communication
mechanisms, e.g. streaming based on the data-flow paradigm as well as event
driven computation and interaction. Its modeling needs combination of exe-
cutable and analytic models especially for performance evaluation and analysis
of non-functional properties.

We have modeled an instance of the HCS system in BIP. As shown in Fig-
ure 1, the system consists of one Server connected to a daisy chain of four NACs,
addressed 0 · · · 3, and several devices. Devices are connected in daisy chains with
the NACs, the length of each chain being limited to four in our example. For
simplicity, devices are addressed (i, j), where i is the address of the NAC and j is
the address of the device. The model contains three types of devices, namely Au-
dio Player, Video Camera and Smoke Sensor. The devices connected to NAC(0)
and NAC(2) have similar topology. The first two daisy-chains consist of only
Audio Player devices. The third daisy-chain ends with a Smoke Sensor, and the
fourth daisy-chain consists of just one Video Camera. The devices connected to
NAC(1) and NAC(3) have exactly the same topology, consisting of several Audio
Player and one Smoke Sensor devices.

The system depicted in Figure 1 contains 58 devices in total. The BIP model
contains 297 atomic components, 245 clocks, and its state-space is of order 23000.
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The size of the BIP code for describing the system is 2468 lines, which is trans-
lated to 9018 lines in C. A description of the key components is given in [3].

5 Experiments on the HCS

One of the core applications of the HCS case study is the PTP protocol, which
allows the synchronization of the clocks of the various devices with the one of
the server. It is important that this synchronization occurs properly, i.e., the
difference between the clock of the server and the one of any device is bounded
by a small constant. Studying this problem is the subject of this section. Since
the BIP model for the HCS is extremely large (number of components, size of
the state space, ...), there is no hope to analyse it with an exhaustive verification
technique. Here, we propose to apply our stochastic abstraction. Given a specific
device, we will proceed in two steps. First, we will conduct simulations on the
entire system in order to learn the probability distribution on the communication
delays between this device and the server. Second, we will use this information to
build a stochastic abstraction of the application on which we will apply statistical
model checking. We start with the stochastic abstraction for the PTP.

5.1 The Precision Time Protocol IEEE 1588

The Precision Time Protocol [1] has been defined to synchronize clocks of several
computers interconnected over a network. The protocol relies on multicast com-
munication to distribute a reference time from an accurate clock (the master)
to all other clocks in the network (the slaves) combined with individual offset
correction, for each slave, according to its specific round-trip communication de-
lay to the master. The accuracy of synchronization is negatively impacted by
the jitter (i.e., the variation) and the asymmetry of the communication delay
between the master and the slaves. Obviously, these delay characteristics are
highly dependent on the network architecture as well as on the ongoing network
traffic.

We present below the abstract stochastic model of the PTP protocol between
a device and the server in the HCS case study. The model consists of two (deter-
ministic) application components respectively, the master and the slave clocks,
and two probabilistic components, the media, which are abstraction of the com-
munication network between the master and the slave. The former represent the
behaviour of the protocol and are described by extended timed i/o-automata.
The latter represent a random transport delay and are simply described by prob-
abilistic distributions. Recap that randomization is used to represent the context,
i.e., behaviors of other devices and influence of these behaviors on those of the
master and the device under consideration.

The time of the master process is represented by the clock variable θm. This
is considered the reference time and is used to synchronize the time of the slave
clock, represented by the clock variable θs. The synchronization works as follows.
Periodically, the master broadcast a sync message and immediately after a fol-
lowUp message containing the time t1 at which the sync message has been sent.
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sync, followUp, reply

request

Fig. 2. Abstract stochastic PTP between the server and a device

Time t1 is observed on the master clock θm. The slave records in t2 the reception
time of the sync message. Then, after the reception of the followUp, it sends a
delay request message to the master and records its emission time t3. Both t2
and t3 are observed on the slave clock θs. The master records on t4 the reception
time of the request message and sends it back to the slave on the reply message.
Again, t4 is observed on the master clock θm. Finally, upon reception of reply,
the slave computes the offset between its time and the master time based on
(ti)i=1,4 and updates its clock accordingly. In our model, the offset is computed
differently in two different situations. In the first situation, which is depicted
in Figure 2, the average delays from master to slave and back are supposed to
be equal i.e., μ(ρ1) = μ(ρ2). In the second situation, delays are supposed to be
asymmetric, i.e., μ(ρ1) �= μ(ρ2). In this case, synchronization is improved by
using an extra offset correction which compensate for the difference, more pre-
cisely, o := (t2 + t3 − t1 − t4)/2 + (μ(ρ2)− μ(ρ1))/2. This offset computation is
an extension of the PTP specification and has been considered since it ensures
better precision when delays are not symmetric (see Section 5).

Encoding the abstract model of timed i/o-automata given in Figure 2 in BIP
is quite straightforward and can be done with the method presented in [2]. The
distribution on the delay is implemented as a new C function in the BIP model.
It is worth mentioning that, since the two i/o automata are deterministic, the
full system depicted in Figure 2 is purely stochastic.

The accuracy of the synchronization is defined by the absolute value of the
difference between the master and slave clocks |θm − θs|, during the time. Our
aim is to check the (safety) property of bounded accuracy φΔ, that is, always
|θm − θs| ≤ Δ for arbitrary fixed non-negative real Δ.

Finally, a simpler version of this protocol has been considered (see [3]) and ana-
lyzed. In that study, delay components have been modeled using non-
deterministic timed i/o automata as well and represent arbitrary delays bounded
in some intervals [L, U ]. It has been shown that, if the clock drift is negligible,
the best accuracy Δ� that can be obtained using PTP is respectively U−L

2 in the
symmetric case, and U1+U2−L1−L2

4 in the asymmetric case. That is, the property
of bounded accuracy holds trivially iff Δ ≥ Δ∗.
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5.2 Model Simulations

In this section, we describe our approach to learn the probability distribution
over the delays. Consider the server and a given device. In a first step, we run
simulations on the system and measure the end-to-end delays of all PTP mes-
sages between the selected device and the server. For example, consider the case
of delay request messages and assume that we made 33 measures. The result will
be a series of delay values and, for each value, the number of times it has been
observed. As an example, delay 5 has been observed 3 times, delay 19 has been
observed 30 times. The probability distribution is represented with a table of 33
cells. In our case, 3 cells of the table will contains the value 5 and 30 will contain
the value 19. The BIP engine will select a value in the table following a uniform
probability distribution.

According to our experiments, 2000 delay measurements are enough to obtain
an accurate estimation of the probability distribution. However, for confidence
reasons, we have conducted 4000 measurements. We have also observed that
the value of the distribution clearly depends on the position of the device in
the topology (see [3] for an illustration). It is worth mentioning that running
one single simulation allowing 4000 measurements of the delay of PTP frames
requires running the PTP protocol with an increased frequency i.e., the default
PTP period (2 minutes) being far too big compared with the period for sending
audio/video packets (tens of milliseconds). Therefore, we run simulations where
PTP is executed once every 2 milliseconds and, we obtain 4000 measurements
by simulating approximately 8 seconds of the global system lifetime. Each sim-
ulation uses microsecond time granularity and takes around 40 minutes on a
Pentium 4 running under a Linux distribution.

5.3 Experiments on Precision Estimation for PTP

Three sets of experiments are conducted. The first one is concerned with the
bounded accuracy property (see Section 5.1). In the second one, we study average
failure per execution for a given bound. Finally, we study the influence of drift
on the results.

Property 1: Synchronization. Our objective is to compute the smallest
bound Δ under which synchronization occurs properly for any device. We start
with an experiment that shows that the value of the bound depends on the place
of the device in the topology. For doing so, we use Δ = 50μs as a bound and then
compute the probability for synchronization to occur properly for all the devices.
In the paper, for the sake of presentation, we will only report on a sampled set
of devices: (0, 0), (0, 3), (1, 0), (1, 10), (2, 0), (2, 3), (3, 0), (3, 3), but our global
observations extend to any device. We use PESTIMATION with a confidence
of 0.1. The results, which are reported in Figure 3a, show that the place in the
topology plays a crucial role. Device (3, 3) has the best probability value and
Device (2, 0) has the worst one. All the results in Figure 3a have been conducted
on the model with asymmetric delays. For the symmetric case, the probability
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Fig. 3. Probability of satisfying the bounded accuracy property and average proportion
of failures for a bound Δ = 50μs and the asymmetric version of PTP

values are much smaller. As an example, for Device (0, 0), it decreases from
0.388 to 0.085. The above results have been obtained in less than 4 seconds. As
a second experiment, we have used SPRT and SSP to validate the probability
value found by PESTIMATION with a higher degree of confidence. The results,
which are presented in Table 1 for Device (0, 0), show that SPRT is faster than
SSP and PESTIMATION.

Table 1. Number of simulations / Amount of time required for PESTIMATION, SSP
and SPRT

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION 4883 9488 488243 948760 48824291 94875993
17s 34s 29m 56m > 3h > 3h

SSP 1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h

SPRT 316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31m

Our second step was to estimate the best bound. For doing so, for each device
we have repeated the previous experiments for values of Δ between 10μs and
120μs. Figure 4a gives the results of the probability of satisfying the bounded
accuracy property as a function of the bound Δ for the asymmetric version of
PTP. The figure shows that the smallest bound which ensure synchronization for
any device is 105μs (for Device (3, 0)). However, devices (0, 3) and (3, 3) already
satisfy the property with probability 1 for Δ = 60μs. A comparison between
SSP and PESTIMATION is given in [3].
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Fig. 4. Probability of satisfying the bounded accuracy property and average proportion
of failures as functions of the bound Δ for the asymmetric version of PTP

The above experiments have been conducted assuming simulations of 1000
BIP interactions and 66 rounds of the PTP protocol. Since each round of the
PTP takes two minutes, this also corresponds to 132 minutes of the system’s
life time. We now check whether the results remain the sames if we lengthen
the simulations and hence system’s life time. Figure 5 shows, for Devices (0, 0)
and (3, 0), the probability of synchronization for various values of Δ and various
length of simulations (1000, 4000, 8000 and 10000 (660 minutes of system’s life
time) steps). We used PESTIMATION with a precision and a confidence of 0.1.
The best bounds do not change. However, the longer the simulations are, the
more the probability tends to be either 0 or 1 depending on the bound.

Property 2: Average failure. In the previous experiment, we have computed
the best bound to guarantee the bounded accuracy property. It might be the case
that the bound is too high regarding the user’s requirements. In such case, using
the above results, we can already report on the probability for synchronization
to occur properly for smaller values of the bound. We now give a finer answer
by quantifying the average and worst number of failures in synchronization that
occur per simulation when working with smaller bounds. For a given simulation,
the proportion of failures is obtained by dividing the number of failures by the
number of rounds of PTP. We will now estimate, for a simulation of 1000 steps
(66 rounds of the PTP), the average and worst value for this proportion. To
this purpose, we have measured (for each device) this proportion on 1199 sim-
ulations with a synchronization bound of Δ = 50μs. As an example, we obtain
average proportions of 0.036 and 0.014 for Device (0, 0) using the symmetric and
asymmetric versions of PTP respectively. As a comparison, we obtain average
proportions of 0.964 and 0.075 for Device (3, 0). The average proportion of fail-
ures with the bound Δ = 50μs and the asymmetric version of PTP is given in
Figure 3b. Figure 6a presents, for the sampled devices, the worst proportion of
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failures using the asymmetric version of PTP. The worst value is 0.25, which is
obtained for Device (2, 0). On the other hand, the worst value is only 0.076 for
Device (0, 0). The experiment, which takes about 6 seconds per device, was then
generalized to other values of the bound. Figures 4b and 6b give the average and
worst proportion of failure as a function of the bound.

The above experiment gives, for several value of Δ and each device, the worst
failure proportion with respect to 1199 simulations. We have also used PESTI-
MATION with confidence of 0.1 and precision of 0.1 to verify that this value
remains the same whatever the number of simulations is. The result was then
validated using SSP with precision of 10−3 and confidence of 10−10. Each exper-
iment took approximately two minutes. Finally, we have conducted experiments
to check whether the results remain for longer simulations. Figure 7a shows that
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the simulations for the asymmetric version of PTP

the average proportion does not change and Figure 7b shows that the worst
proportion decreases when the length of the simulation increases.

Clock Drift. We have considered a modified version of the stochastic PTP
model with drifting clocks. Drift is used to model the fact that, due to the
influence of the hardware, clocks of the master and the device may not progress
as the same rate. In our model, drift is incorporated as follows: each time the
clock of the server is increased by 1 time unit, the clock of the device is increased
by 1 + ε time units, with ε ∈ [−10−3, 10−3]. Using this modified model, we
have re-done the experiments of the previous sections and observed that the
result remains almost the same. This is not surprising as the value of the drift
is significantly smaller than the communication jitter, and therefore it has less
influence on the synchronization. A drift of 1 time unit has a much higher impact
on the probability. As an example, for Device (0, 0), it goes from a probability of
0.387 to a probability of 0.007. It is worth mentioning that exhaustive verification
of a model with drifting clocks is not an easy task as it requires to deal with
complex differential equations. When reasoning on one execution at a time, this
problem is avoided.
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Abstract. AADL is a standard for modeling embedded systems that is
widely used in avionics and other safety-critical applications. However,
AADL lacks a formal semantics, and this severely limits both unambigu-
ous communication among model developers, and the development of
simulators and formal analysis tools. In this work we present a formal
object-based real-time concurrent semantics for a behavioral subset of
AADL in rewriting logic, which includes the essential aspects of its be-
havior annex. Our semantics is directly executable in Real-Time Maude
and provides an AADL simulator and LTL model checking tool called
AADL2Maude. AADL2Maude is integrated with OSATE, so that OS-
ATE’s code generation facility is used to automatically transform AADL
models into their corresponding Real-Time Maude specifications. Such
transformed models can then be executed and model checked by Real-
Time Maude. We present our semantics, and two case studies in which
safety-critical properties are analyzed in AADL2Maude.

1 Introduction

AADL [15] is both a modeling language for real-time embedded systems and
an international standard widely used in industry. It has features to model the
real-time aspects of embedded systems and to represent both the software and
hardware architectures of the components making up such systems. It does how-
ever lack a formal semantics. This lack is particularly important for real-time
embedded systems, because many of them —in areas such as avionics, motor
vehicles, and medical systems— are safety-critical systems, whose failures may
cause great damage to persons and/or valuable assets. Furthermore, AADL mod-
els are not executable, which limits not just the possibility of formal analysis of
their safety and liveness properties, but even the possibility of simulating them.

It seems clear that overcoming these limitations of AADL is highly desirable,
but requires in an essential way the use of formal methods, because in the absence
of a precise mathematical semantics any pretense of achieving formal verification
is meaningless. Furthermore, these formal methods should be supported by tools
that are integrated into the AADL tool chain. A further, highly desirable goal
is to have a formal semantics of AADL that can be used to automatically gen-
erate formal executable specifications of AADL models, since the first and most

J. Hatcliff and E. Zucca (Eds.): FMOODS/FORTE 2010, LNCS 6117, pp. 47–62, 2010.
c© IFIP International Federation for Information Processing 2010
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basic way of analyzing AADL models should be the capacity to simulate such
models; and since such formal executable specifications can then also be used
for automatic verification of safety and liveness properties by model checking.

This paper reports on our experience in defining an object-based real-time
concurrent formal semantics for a substantial subset of AADL in the Real-Time
Maude formal specification language [14]; and in directly using this semantics to
simulate and formally analyze AADL models. We have found Real-Time Maude
particularly well suited for this task for the following reasons:

– Support for nested objects. AADL models are structured in nested hierarchies
of components. Much would be lost in translation if such structure were not
preserved. Real-Time Maude’s support for object classes with a “Russian
dolls” nested structure (see [10]), provides an essentially isomorphic formal
counterpart for an AADL model.

– Support for real-time concurrency. All real-time aspects of AADL, as well as
the concurrent interactions between AADL components, can be directly and
naturally formally modeled by means of real-time rewrite theories.

– Wide range of formal analysis capabilities. By automating the AADL for-
mal semantics with the AADL2Maude tool, one can automatically generate
formal executable specifications of AADL models in Real-Time Maude for
simulation, reachability analysis, and LTL model checking purposes.

– Completeness of the formal analysis. In spite of the generality of the AADL
models, their object-based semantics ensures that time-bounded LTL prop-
erties are decidable under very mild checkable conditions [13].

Our Contribution. To the best of our knowledge (see the related work dis-
cussion in Section 4), our work is the first that provides a formal executable
semantics for AADL models with different modes, and whose thread behavior is
specified in AADL’s behavior annex; it is also the first that supports simulation,
reachability, and LTL model checking of such models directly in the semantic
formalism itself through the AADL2Maude tool. AADL2Maude is an OSATE
plug-in that uses OSATE’s code generation facility to automatically generate
Real-Time Maude specifications from AADL models. Furthermore, our seman-
tics directly supports hierarchical objects that communicate asynchronously with
each other in real time and capture the hierarchical nature of AADL components.
This makes the representational distance between the original AADL model and
its rewriting logic semantics quite small, making it easier to understand the re-
sults of formal analysis. User-friendliness is also enhanced by a syntax for state
predicates based on AADL notation to ease the specification of LTL properties.
Finally, we summarize two case studies, one on safe interoperation of medical
devices and one on the safety of avionics systems, demonstrating the usefulness
of this semantics and tool in concrete examples.

The paper is organized as follows. Section 2 gives a brief introduction to AADL
and Real-Time Maude. Section 3 presents the Real-Time Maude semantics of
a behavioral subset of AADL, and shows how AADL models can be formally
analyzed in AADL2Maude. Section 4 discusses related work on the use of formal
methods for AADL, and Section 5 presents some concluding remarks.
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2 Preliminaries on AADL and Real-Time Maude

AADL. The Architecture Analysis & Design Language (AADL) [15] is an in-
dustrial standard used in avionics, aerospace, automotive, medical devices, and
robotics communities to describe a performance-critical embedded real-time sys-
tem as an assembly of software components mapped onto an execution platform.

An AADL model describes a system as a hierarchy of hardware and soft-
ware components. A component is defined by its name, its interface consisting
of input and output ports, its subcomponents and their interaction, and other
type-specific properties. System components are the top-level components, and
can consist of other system components as well as of hardware and software
components. Hardware components include: processor components that sched-
ule and execute threads; memory components; device components representing
devices like sensors and actuators that interface with the environment; and bus
components that interconnect processors, memory, and devices. Software com-
ponents include: thread components modeling the application software to be
executed; process components defining protected memory that can be accessed
by its thread subcomponents; and data components representing data types. In
AADL, thread behavior is typically described using AADL’s behavior annex [6],
which models programs as transition systems with local state variables.

An AADL model specifies how the different components interact and are in-
tegrated to form a complete system. The AADL standard also describes the
runtime mechanisms for handling message and event passing, synchronized ac-
cess to shared resources, thread scheduling when several threads run on the same
processor, and dynamic reconfiguration that are specified by mode transitions.

AADL has a MOF meta-model, and the OSATE modeling environment pro-
vides a set of plug-ins for front-end processing of AADL models on top of Eclipse.

Real-Time Maude. A Real-Time Maude [14] timed module specifies a real-
time rewrite theory of the form (Σ, E, IR,TR), where:

– (Σ, E) is a membership equational logic [5] theory with Σ a signature1 and
E a set of confluent and terminating conditional equations. (Σ, E) speci-
fies the system’s state space as an algebraic data type, and must contain a
specification of a sort Time modeling the (discrete or dense) time domain.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions, written
with syntax rl [l] : t => t′, where l is a label. Such a rule specifies a one-
step transition from an instance of t to the corresponding instance of t′. The
rules are applied modulo the equations E.2

– TR is a set of tick (rewrite) rules, written with syntax

rl [l] : {t} => {t′} in time τ.

1 I.e., Σ is a set of declarations of sorts, subsorts, and function symbols.
2 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.
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that model time elapse. {_} encloses the global state, and τ is a term of sort
Time that denotes the duration of the rewrite.

The Real-Time Maude syntax is fairly intuitive. For example, a function symbol
f is declared with the syntax op f : s1 . . . sn -> s, where s1 . . . sn are the sorts
of its arguments, and s is its (value) sort. Equations are written with syntax
eq t = t′, and ceq t = t′ if cond for conditional equations. The mathematical
variables in such statements are declared with the keywords var and vars. We
refer to [5] for more details on the syntax of Real-Time Maude.

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn.

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort
Object, where O, of sort Oid, is the object’s identifier, and where val1 to valn are
the current values of the attributes att1 to attn. In a concurrent object-oriented
system, the state is a term of sort Configuration. It has the structure of a
multiset made up of objects and messages. Multiset union for configurations is
denoted by a juxtaposition operator (empty syntax) that is declared associative
and commutative, so that rewriting is multiset rewriting supported directly in
Real-Time Maude.

The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : < O : C | a1 : 0, a2 : y, a3 : w, a4 : z > =>

< O : C | a1 : T, a2 : y, a3 : y + w, a4 : z >

defines a parametrized family of transitions which can be applied whenever the
attribute a1 of an object O of class C has the value 0, with the effect of altering the
attributes a1 and a3 of the object. “Irrelevant” attributes (such as a4, and the
right-hand side occurrence of a2) need not be mentioned in a rule (or equation).

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis. A Real-Time Maude specification is executable, and the tool
offers a variety of formal analysis methods. The rewrite command simulates one
fair behavior of the system up to a certain duration. The search command uses a
breadth-first strategy to analyze all possible behaviors of the system, by checking
whether a state matching a pattern and satisfying a condition can be reached
from the initial state. The command which searches for n such states has syntax
(utsearch [n] t =>* pattern such that cond .).

Real-Time Maude also extends Maude’s linear temporal logic model checker
to check whether each behavior, possibly up to a certain time bound, satisfies a
temporal logic formula. State propositions, possibly parametrized, can be predi-
cates characterizing properties of the state and/or properties of the global time
of the system. A temporal logic formula is constructed by state propositions and
temporal logic operators such as True, False, ~ (negation), /\, \/, -> (implica-
tion), [] (“always”), <> (“eventually”), and U (“until”). A time-bounded model
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checking command for initial state t and temporal logic formula formula has
syntax (mc t |=t formula in time <= τ .).

3 Real-Time Maude Semantics for a Subset of AADL

This section gives an overview of the Real-Time Maude semantics for a be-
havioral subset of AADL. Section 3.1 presents the chosen subset of AADL, Sec-
tion 3.2 presents its Real-Time Maude semantics, Section 3.3 explains how AADL
models can be simulated and formally analyzed in Real-Time Maude and illus-
trates such formal analysis with a medical devices example, and Section 3.4 sum-
marizes an avionics safety example. A technical report giving more details, the
entire executable Real-Time Maude semantics, and some AADL models and the
corresponding automatically generated Real-Time Maude models are all avail-
able at http://www.ifi.uio.no/RealTimeMaude/AADL.

3.1 Overview of a Behavioral Subset of AADL

In AADL, a system is modeled as a collection of software and hardware compo-
nents. Since we focus on the software parts of AADL, the following description
only deals with the software components and features.

A component is given by its type and its implementation. A component type
specifies the component’s interface in terms of features and properties. In the
software portion, features are just input and output ports. A component imple-
mentation specifies the internal structure of the component in terms of a set
of subcomponents, a set of connections linking the ports of the subcomponents,
and modes that represent operational states of components. System components
are the top level components. A process component contains a set of thread
components that define the dynamic behavior of the process.

Connections link ports to enable the exchange of data and events among
components. A port is either a data port, an event port, or an event data port.
Buffers associated to event ports and event data ports support queuing of, re-
spectively, “events” and message data, while buffers of data ports only keep the
latest data.

Modes represent the operational states of components. A component can have
mode-specific property values, subcomponents, and connections. Mode transi-
tions are triggered by events.

The dispatch protocol property of a thread determines when the thread is
executed. A periodic thread is activated at time intervals of the specified period
T ; an aperiodic thread is activated when an event arrives at a port of the thread;
a sporadic thread is activated when an event arrives and the interval between
two dispatches is at least T ; and a background thread is always active.

The dynamic behavior of a thread is defined using AADL’s behavior annex [6].
Given finite sets of states and state variables, the behavior of a thread is defined
by a set of state transitions of the form s -[guard]-> s′ {actions}, where s
and s′ are states, and where guard is a Boolean condition on the values of the

http://www.ifi.uio.no/RealTimeMaude/AADL
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state variables and/or the presence of events or data in the thread’s input ports.
The actions that are performed when a transition is applied may update the
state variables, generate new outputs, and/or suspend the thread for a given
amount of time. Actions are built from basic actions using a small set of control
structures allowing sequencing, conditionals, and finite loops. When a thread is
activated, an enabled transition is nondeterministically selected and applied; if
the resulting state s′ is not a complete state, another transition is applied, and
so on, until a complete state is reached (or the thread is suspended).

An AADL Example. As an example of a specification within our subset of AADL,
consider a network of medical devices, consisting of a controller, a ventilator
machine that assists a patient’s breathing during surgery, and an X-ray device.
Whenever a button is pushed to take an X-ray, and the ventilator machine has
not paused in the past 10 minutes, the ventilator machine should pause for two
seconds, starting one second after the button is pushed, and the X-ray should
be taken after two seconds. To execute the system, we add a test activator that
pushes the button every second.

The following AADL model was developed by Min-Young Nam at UIUC.
The entire system Wholesys is a closed system that does not have any features

(i.e., ports) to the outside world. Hence, its type (interface) is empty:

system Wholesys

end Wholesys;

The implementation of the entire system describes the architecture of the system,
with four subcomponents and the connections linking these subcomponents:

system implementation Wholesys.imp

subcomponents TestActivator: system TA.impl; Xray: system XM.impl;

Controller: system CTRL.impl; Ventilator: system VM.impl;

connections

C01: event data port Controller.xmContrOutput -> Xray.ctrlInput;

C02: event data port Controller.vmContrOutput -> Ventilator.ctrlInput;

C03: event data port Ventilator.feedback -> Controller.feedback;

C04: event data port TestActivator.pressEvent -> Controller.commandInput;

end Wholesys.imp;

The test activator, which generates an event every second, is an instance
of a system of type TA, having as interface the output port pressEvent. Its
implementation consists of a process taPr, which again consists of a single thread
taTh that is an instance of the following taThread.impl:

thread taThread

features pressEvent: out event data port Behavior::integer;

properties Dispatch_Protocol => periodic; Period => 1 sec;

end taThread;
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thread implementation taThread.impl

annex behavior_specification {**

states s0: initial complete state;

transitions s0 -[ ]-> s0 {pressEvent!(1);}; **};

end taThread.impl;

The thread taTh is dispatched every second. When the thread is dispatched, the
transition is applied once (since the resulting state s0 is a complete state), and
the action performed is to output the value 1 through the port pressEvent.

3.2 Real-Time Maude Semantics of AADL

This section outlines the object-based real-time rewriting logic semantics for
the behavioral subset of AADL presented in Section 3.1. We first show how
an AADL model is represented in Real-Time Maude, and then formalize the
real-time concurrent semantics of AADL models.

Representing AADL Models in Real-Time Maude. The semantics of a
component-based language can naturally be defined in an object-oriented style,
where each component instance is modeled as an object. The hierarchical struc-
ture of AADL components is reflected in the nested structure of objects, in which
an attribute of an object contains its subcomponents as a multiset of objects.

Any AADL component instance is represented as an object instance of a
subclass of the following class Component, which contains the attributes common
to all kinds of components (systems, processes, threads, etc.):

class Component | features : Configuration, subcomponents : Configuration,

properties : Properties, connections : ConnectionSet,

modes : Modes, inModes : ModeNameSet .

The attribute features denotes the features of a component (i.e., its ports),
represented as a multiset of Port objects (see below); subcomponents denotes
the subcomponents of the object; properties denotes its properties, such as the
dispatch protocol for threads; connections denotes the set of port connections of
the object (see below); modes contains the object’s mode transition system; and
inModes gives the set of modes (of the immediate supercomponent) in which the
component is available (if the component is not a mode-specific subcomponent
of the containing component, then this attribute has the value allModes).

In our AADL subset, the classes System and Process, denoting system and
process components, do not have other attributes than those they inherit from
their Component superclass. The Thread class is declared as follows:

class Thread | behavior : ThreadBehavior, status : ThreadStatus,

deactivated : Bool .

subclass Thread < Component .

The behavior attribute denotes the transition system associated with the thread.
The status indicates the current status of the thread (active, completed,
suspended, etc.). The attribute deactivated indicates whether the thread is
deactivated because it is not in the current “active” modes of the system.
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Ports and connections. A port is modeled as an object instance of a subclass
of the class Port, whose subclasses define outgoing and incoming ports, as well
as data, event, and event data ports. See [12] for details. An immediate level-up
connection, linking an outgoing port P in a subcomponent C to the outgoing
port P ′ in the “current” component, is modeled as a term C.P -->P ′. Immedi-
ate same-level and level-down connections are terms of the forms, respectively,
P1 --> P2 and P -->C.P ′.

Representing Thread Behavior. The transition system associated with a thread
is modeled as a term of the form:

states current: s complete: s1 . . . sk other: sk+1 . . . sn

state variables var1 |-> val1 . . . varm |-> valuem

transitions s -[guard]-> s′ {actions} ; . . . ; s′′ -[guard′]-> s′ {actions′}

We have also defined some additional “syntactic sugar” functions (e.g., allowing
the definition of initial states, omitting the declaration of the store when no
state variables are declared) that reduce to the above form. The sets of transi-
tions, locations, and variable mappings have the structure of a multiset, using a
multiset union operator that is declared to be associative and commutative.

Translating an AADL Model into an Object-Based Real-Time Maude Module.
One main goal of our semantics is to make the “representational distance” be-
tween an AADL model and the corresponding Real-Time Maude module as small
as possible. In particular, this simplifies an automatic translation from an AADL
model to a similar-looking Real-Time Maude module.

Consider a type declaration of a component (System, Process, or Thread):

system typeName [features: ports] [properties: properties] end typeName;

This declaration binds typeName to a set of ports and a set of properties. We can
therefore consider system as a function that, given a name, returns the interface
of that name; hence the above AADL declaration translates to the equation

eq system(typeName) = features portsRTM properties propertiesRTM .

where portsRTM denotes the Real-Time Maude representation of ports.
A component implementation, such as

system implementation typeName.implName
...

end typeName.implName;

defines an component template, which is instantiated to a concrete instance of the
component in AADL declarations of the form (the ’in modes’ part is optional)

instanceName: system typeName.implName [in modes (mode names)]

Therefore, the above implementation declaration translates to an equation
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var INSTANCE-NAME : Oid . var MNS : ModeNameSet .

eq INSTANCE-NAME system typeName . implName in modes MNS =

< INSTANCE-NAME : System | features : features(system(typeName)),
properties : properties(system(typeName)),
inModes : MNS, subcomponents : ..., ... >

In addition, the “generic” equation

var SI : SystemId . var SN : SystemName . var IN : ImplName .

eq SI system SN . IN = SI system SN . IN in modes allModes .

allows us to declare component instances that are not mode-dependent. The
above AADL component instance declaration therefore translates to the term

instanceName system typeName . implName.

Example 1. Consider the AADL model of the medical system in Section 3.1. The
definition of the implementation Wholesys.imp in Section 3.1 is translated to

eq INSTANCE-NAME system Wholesys . imp in modes MNS =

< INSTANCE-NAME : System |

modes : noModes, inModes : MNS,

features : features(system(Wholesys)),

properties : properties(system(Wholesys)),

subcomponents :

(TestActivator system TA . impl) (Xray system XM . impl)

(Controller system Controller . impl) (Ventilator system VM . impl),

connections :

(Controller . xmContrOutput --> Xray . ctrlInput) ;

(Controller . vmContrOutput --> Ventilator . ctrlInput) ;

(Ventilator . feedback --> Controller . feedback) ;

(TestActivator . pressEvent --> Controller . commandInput) > .

The test activator thread taThread and its implementation taThread.impl
are translated as follows:

eq thread(taThread) = features (pressEvent out event data thread port)

properties DispatchProtocol(Periodic); Period(1 Sec).

eq INSTANCE-NAME thread taThread . impl in modes MNS =

< INSTANCE-NAME : Thread |

modes : noModes, inModes : MNS,

features : features(thread(taThread)),

subcomponents : none, connections : none,

properties : properties(thread(taThread)),

behavior : states initial: s0 complete: s0

transitions s0 -[]-> s0 {(pressEvent ! (1))} > .

where pressEvent out event data thread port is defined to be the object
< pressEvent : OutEventDataThreadPort | buffer : nil > .
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Real-Time Concurrent Semantics. This section formalizes the operational
semantics of AADL in Real-Time Maude. The real-time concurrent semantics
is defined by equations and rewrite rules specifying “message” transportation,
mode switches, thread dispatch, thread execution, and timed behavior. We give
only a small sample of our semantic definitions, and refer to [12] for more details.

Thread Dispatch and Execution. The execution status of a thread is either active,
completed, sleeping, or inactive. When a completed thread is dispatched, the
thread enters the active status to perform the computation. Upon successful
completion of the computation, the thread returns to the completed status. Once
an active thread executes a delay action, it enters the sleeping status, suspends
for a period of time, and becomes active after that time period. Finally, a thread
is inactive if it is not part of the “active” mode of the system.

The following rule models the dispatch of a periodic and completed thread
when the “dispatch timer,” i.e., the second parameter to periodic-dispatch is
0. The thread is dispatched, that is, its status is set to active, the “timer” is
reset to the length T of its period, and the input ports are “dispatched” as well:

rl [periodic-dispatch] :

< O : Thread | properties : periodic-dispatch(T, 0 ) PROPS,

status : completed, features : PORTS >

=>

< O : Thread | properties : periodic-dispatch(T, T) PROPS,

status : active , features : dispatchInputPorts(PORTS) > .

The following rewrite rule specifies the execution of an active thread. If the
thread is in state L1, and there is a transition from L1 whose guard evaluates to
true, then the transition is executed. The resulting status is sleeping(...)
if the statement list SL contains delay statements; otherwise, the thread is
completed or inactive if the resulting state L2 is a complete state, and re-
mains active if L2 is not a complete state:

crl [apply-transition] :

< O : Thread | status : active , deactivated : B, features : PORTS,

behavior :

states current: L1 complete: LS1 others: LS2

state variables VAL

transitions (L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS >

=>

< O : Thread | status : (if SLEEP then sleeping(SLEEP-TIME) else

(if (not L2 in LS1) then active else

(if B then inactive else completed fi) fi) fi),

features : NEW-PORTS,

behavior :

states current: L2 complete: LS1 others: LS2

state variables NEW-VALUATION

transitions (L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS >

if evalGuard(GUARD, PORTS, VAL)
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/\ transResult(NEW-PORTS, NEW-VALUATION, SLEEP-TIME) :=

executeTransition( L1 -[GUARD]-> L2 {SL}, PORTS, VAL)

/\ SLEEP := SLEEP-TIME > 0 .

The function executeTransition executes a given transition in a state with a
given set PORTS of ports and assignment VAL of the state variables. The function
returns a triple transResult(p, σ, t), where p is the state of the ports after the
execution, σ denotes the resulting values of the state variables, and t is the sum
of the delays in the transition actions. The transitions are modeled as a multiset
of single transitions; therefore, any enabled transition can be applied in the rule.

Time Behavior. We model time elapse in the system by a single tick rule

crl {SYSTEM} => {delta(SYSTEM, T)} in time T if T <= mte(SYSTEM) .

The function delta defines the effect of time elapse in a system, and the function
mte defines the maximal t ime elapse possible until an action must be taken.
These functions distribute over the elements in a (sub)configuration, propagate
to the subcomponents of system and process components, and must be defined
for single thread objects to define the time behavior of a system.

The following must be taken into account when defining these functions: (i)
periodic threads must dispatch at the correct times; (ii) threads in sleep status
must wake up when their sleep time expires; (iii) time must not elapse when there
are “untreated” messages in the system, since an aperiodic thread is dispatched
when it receives an event; and (iv) time cannot advance when a thread is in
active state, as the thread should execute a transition when it is active.

The function delta modeling the effect of time elapse decreases the “timer”
t in a periodic-dispatch(T,t) property of a thread, and the timer t′ in the
sleeping(t′) status of a thread, according to the elapsed time:

eq delta(< THR : Thread | subcomponents : C, status : TS, properties : PROPS >, T)

= < THR : Thread | subcomponents : delta(C, T), status : delta(TS, T),

properties : delta(PROPS, T) > .

op delta : ThreadStatus Time -> ThreadStatus .

eq delta(sleeping(T), T’) = sleeping(T - T’). eq delta(TS, T’) = TS [owise] .

op delta : Properties Time -> Properties .

eq delta(periodic-dispatch(T,T’) PROPS, T’’) =

periodic-dispatch(T, T’ - T’’) PROPS .

eq delta(PROPS, T) = PROPS [owise] .

The function mte (maximum time elapse) ensures that mte is 0 when an
“untreated” message list, that is, one of the form transfer(ml), is present in
some port buffer; in addition, it ensures that time cannot advance beyond the
wake-up time of a sleeping thread, or beyond the dispatch time of a periodic
thread. In addition, time cannot advance when a thread is active:
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eq mte(< THR : Thread | features : PORTS, subcomponents : C,

status : TS, properties : PROPS >)

= min(mte(PORTS), mte(C), mte(TS), mte(PROPS)) .

eq mte(< P : Port | buffer : ML :: transfer(ML’) :: ML’’ >) = 0 .

eq mte(< P : Port | buffer : ML >) = INF [owise] .

op mte : ThreadStatus -> TimeInf .

eq mte(active) = 0 . eq mte(completed) = INF . eq mte(sleeping(T)) = T .

eq mte(inactive) = INF .

op mte : Properties -> TimeInf .

eq mte(periodic-dispatch(T, T’) PROPS) = T’ . eq mte(PROPS) = INF [owise].

3.3 Formal Analysis of AADL Models: A Medical Devices Example

The Real-Time Maude verification model synthesized from an AADL design
model can be formally analyzed in different ways. This section presents some
functions allowing the user to define system properties in terms of an AADL
model without having to understand its Real-Time Maude representation. We
illustrate the formal analysis features with the plug-and-play interoperation of
medical devices example.

Defining Initial States and Simulation. An AADL system definition declares
a component template. An initial state is an instance of such a template. In
the medical example, if MAIN is a system component name, the initial state is
{MAIN system Wholesys . impl}. In addition, a function initialize is used
to correctly initialize the status and deactivated attributes in the threads,
since a thread may be inactive if a mode-specific component much higher in the
containment hierarchy is not part of the “current” mode.

A first form of formal analysis consists of simulating one of the many possible
system behaviors up to a given duration using timed rewriting:

Maude> (tfrew initialize({MAIN system Wholesys . impl}) in time < 20 .)

Reachability Analysis. Real-Time Maude’s tsearch and utsearch commands
can be used to analyze whether or not a state pattern can be reached from the
initial state. To avoid requiring the user of AADL2Maude to know the Real-
Time Maude representation of AADL models to define his/her state patterns,
our tool defines some useful functions. The term

value of v in component fullComponentName in globalComponent

returns the value of the state variable v in the thread identified by the full
component name fullComponentName in the system in state globalComponent .
The full component name is defined as a ->-separated path of component names,
from the outermost to the innermost. Likewise, the term

location of component fullComponentName in globalComponent

gives the current location/state in the transition system in the given thread.
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In our medical example, MAIN -> Xray -> xmPr -> xmTh denotes the full com-
ponent name of the xmTh thread. The system must ensure that the ventilator
machine is pausing when an X-ray is being taken, so that the X-ray is not blurred.
The following search command analyzes this property by checking whether an
undesired state, where the X-ray thread xmTh is in state xray while the venti-
lator thread vmTh is not in state paused, can be reached from the initial state
(the unexpected result shows a concrete unsafe state that can be reached from
the initial state):

Maude> (utsearch [1]

initialize({MAIN system Wholesys . impl}) =>* {C:Configuration}

such that

((location of component (MAIN -> Xray -> xmPr -> xmTh)

in C:Configuration) == xray

and (location of component (MAIN -> Ventilator -> vmPr -> vmTh)

in C:Configuration) =/= paused) .)

Solution 1 C:Configuration --> ...

LTL Model Checking. For LTL model checking purposes, our tool has pre-defined
useful parametric atomic propositions, such as full thread name @ location, which
holds when the thread is in state location.

We can use time-bounded LTL model checking to verify that an X-ray must
be taken within three seconds of the start of the system (this command returned
a counter-example revealing a subtle and previously unknown design error):

Maude> (mc initialize({MAIN system Wholesys . impl}) |=t

<> ((MAIN -> Xray -> xmPr -> xmTh) @ xray) in time <= 3 .)

Result ModelCheckResult : counterexample( ... )

3.4 An Active Standby Avionics Example

The AADL2Maude tool has been used by Edgar Pek to verify an AADL model
developed by Abdullah Al-Nayeem of an active standby specification by Steve
Miller from Rockwell-Collins for deciding which of two computer systems is
active in an aircraft [11]. The active standby system is a simplified example of a
fault-tolerant avionics system. In integrated modular avionics (IMA), a cabinet is
a chassis with a power supply, internal bus, and general purpose computing, I/O,
and memory cards. Aircraft applications are implemented using the resources in
the cabinets. There are always two or more cabinets that are physically separated
on the aircraft so that physical damage (e.g., an explosion) doesn’t take out the
computer system. The active standby system considers the case of two cabinets
and focuses on the logic of deciding which side is active in a setting where each
side can fail, and where the user/pilot can toggle the active status of these sides.

All the desired system properties have been verified by unbounded LTL model
checking of the synthesized Real-Time Maude verification model. We refer to [12]
for more details on this case study.
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4 Related Work

The applications of formal methods to analyze AADL models can be divided into:
(i) those that handle AADL models without the behavior annex; (ii) those that
add to an AADL model an external behavior specification; and (iii) those that
handle AADL models whose behavior is specified in AADL’s behavior annex.

Work in class (i) includes [16,7]; they focus on analyzing schedulability and/or
behavior of an architectural subset of AADL where thread behavior is only
characterized by dispatch protocol and execution time. Work in class (ii) in-
cludes [9,1,2,8]; they all assume that thread behavior is specified outside AADL,
but differ on how this is done. [9] uses the Lustre synchronous language; [1] uses
communicating timed automata; [2] uses rewrite rules; and [8] uses Ada.

Work in class (iii) includes [3,4,17] and our own work. The main difference
between [3,4] and our work is that we give a formal executable semantics to
an AADL model with a behavior annex specification of its thread behavior,
associating to it a real-time rewrite theory. Instead, both [3] and [4] are based
on translations into imperative languages, which are themselves in need of a
formal semantics. Specifically, [3] maps AADL models into the Fiacre language,
which contains assignments, conditionals, while loops and sequential composition
constructs; and [4] maps AADL models to the BIP language, in which state
transitions are defined using code written in C. The paper [17], like us, proposes
a formal semantics, in their case in the Timed Abstract State Machine (TASM)
formalism; however, they deal with a smaller subset (periodic threads, no modes)
and do not support model checking analysis, for which they suggest using the
Uppaal timed automata-based tool.

In summary, to the best of our knowledge our work is the first that provides
a formal executable semantics for AADL models with modes, and whose thread
behavior is specified in AADL’s behavior annex; and also the first that supports
simulation and LTL model checking of such models in the semantic formalism.

5 Conclusions

AADL’s current lacks of a formal semantics and of executability are two severe
limitations, particularly for certifiable safety-critical embedded systems. In this
work we solve these two problems for a substantial subset of AADL by providing
a formal object-oriented real-time rewriting semantics of it in Real-Time Maude,
and by deriving from this semantics a tool, AADL2Maude, that connects the OS-
ATE AADL tool with Real-Time Maude and supports simulation, reachability,
and LTL model checking analyses of AADL models in this subset. Furthermore,
we have illustrated the use of AADL2Maude with two case studies, one of safe
medical device interoperation, and another on safety of an avionics system.

Our experience is quite encouraging, but much work remains. Increasingly
larger AADL subsets should be given a formal rewriting logic semantics to
achieve the goal of giving a formal semantics to the entire AADL standard and
having simulation and formal analysis tools for AADL based on such a seman-
tics. Also, further experimentation to extend and perfect our approach should
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be carried out. We also plan to make it even easier for users to specify formal
properties of AADL models in an AADL “formal property annex,” so that such
properties can be expressed solely in terms of the given AADL model.
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14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

15. SAE AADL Team: AADL homepage (2009), http://www.aadl.info/
16. Sokolsky, O., Lee, I., Clarke, D.: Process-algebraic interpretation of AADL models.

In: Kordon, F., Kermarrec, Y. (eds.) Reliable Software Technologies – Ada-Europe
2009. LNCS, vol. 5570, pp. 222–236. Springer, Heidelberg (2009)

17. Yang, Z., Hu, K., Ma, D., Pi, L.: Towards a formal semantics for the AADL behavior
annex. In: Proc. DATE 2009. IEEE, Los Alamitos (2009)

http://www.aadl.info/


Testing Probabilistic Distributed Systems�

Robert M. Hierons1 and Manuel Núñez2

1 Department of Information Systems and Computing, Brunel University
Uxbridge, Middlesex, UB8 3PH United Kingdom

rob.hierons@brunel.ac.uk
2 Departamento de Sistemas Informáticos y Computación
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Abstract. There has been much interest in the testing of systems that
have physically distributed interfaces and this has been encouraged by
recent trends towards the use of such systems. Most formal work in this
area has considered the testing of deterministic systems based on deter-
ministic models. However, distributed systems are usually nondetermin-
istic and often can be seen as probabilistic systems in which required
or expected probabilities can be attached to the allowable events. This
paper provides a formal testing framework for systems with physically
distributed interfaces where nondeterministic decisions among alterna-
tives are probabilistically quantified. It first considers testing from sys-
tems where there is a unique type of action. In this setting, a generative
interpretation of probabilities is adequate and a formal framework to test
these systems is provided. However, the observable events of a system are
usually divided into inputs and outputs. In such situations it is necessary
to use the reactive interpretation of probabilities.

1 Introduction

It is widely accepted that testing is an important part of the software develop-
ment process and manual testing is typically expensive and error prone. This
has led to interest in the testing of systems based on specifications or models,
an area usually called model based testing (MBT). Most approaches to MBT use
state-based models such as finite state machines or labelled transition systems
(see, for example, [18,22,4,11,9]). In addition to providing a formal framework
to reason about the correctness of systems, MBT has the enormous advantage
of facilitating the automation of the main testing tasks (see [27] for a review of
some tool-supported theories).

In order to develop and apply MBT techniques it is necessary to formally
define what it means for an implementation to conform to a specification or
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model. Such definitions are usually called implementation relations. For a given
model, an implementation relation defines exactly which implementations are
correct and thus testing is based on both the model and the implementation
relation. Many implementation relations are either trace inclusion or extensions
of this such as ioco [26].

In this paper we assume that the system under test (SUT) has physically
distributed interfaces, called observation ports or just ports, and so that in test-
ing we place one tester at each observation port. We assume that the testers
do not directly communicate with one another during testing and also that this
corresponds to the situation in use: there will be separate users or systems at
the ports and while these may share information later, they do not synchronise
their actions through communicating when using the SUT. The restrictions im-
posed on testing have the benefit of making the test infrastructure easier and
cheaper to implement: there is no need to introduce an external communications
network between the testers. We make one additional assumption, usually made
in this context, which is that the testers do not have access to a global clock.
It is known that this decentralised approach reduces test effectiveness and this
topic has received much attention (see, for example, [24,20,23,16]).

The decentralised approach to testing is simpler to implement since there is no
need to produce an external communications network through which the testers
synchronise their actions. In addition, while we can test individual components
without this (assuming each has at most one interface), there is still a need
to test the entire system. Crucially, if the decentralised approach corresponds
to the expected use of the system then the reduced observational power, and
corresponding implementation relations, capture what it means for the SUT to
be a correct implementation. Thus, even if we can synchronise the testers there is
a need to define implementation relations that capture the observational power
of agents that will interact with the SUT in use. There can be at least two
negative consequences of not doing this. First, our testing may be inefficient:
we might produce test cases that aim to find differences between the behaviour
of the SUT and the specification where these differences cannot be observed
in use and thus are not faults. Second, our testing might not be sound since
we could declare that the SUT fails a test even though the behaviour was not
observationally different from a behaviour in the specification.

Previous research on testing systems with physically distributed interfaces
has not considered models with probabilities. However, distributed systems are
often probabilistic in nature and this has led to significant interest in prob-
abilistic models and to the study of semantic models for probabilistic pro-
cesses. If we consider only probabilistic extensions based on testing we can
mention [6,17,29,25,7,21,19,5,8,12]. Even though there are plenty of proposals
to test a wide variety of probabilistic processes, as far as we are aware there
has been no previous work on the problem of testing with physically distributed
interfaces where nondeterministic decisions are probabilistically quantified.

This paper considers two approaches to adding probabilities. First we consider
testing from labelled transition systems in which we apply a generative approach
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[10]; the probabilities of the transitions leaving a state sum to 1. However, to
properly specify most systems it is necessary to distinguish between inputs and
outputs. The system determines which outputs are produced while the environ-
ment controls the inputs. For such systems the generative approach corresponds
to having probabilistic information about the environment in addition to the
required behaviours of the SUT. Thus, for systems with a distinction between
inputs and outputs we use a combination of the reactive [17] and generative
approaches. Our approach is reactive for inputs: given state s and input ?i, the
sum of the probabilities of the transitions leaving s with input ?i is 1. How-
ever, it is generative for outputs: given state s, the sum of the probabilities of
the transitions leaving s and labelled by an output is 1. Intuitively, this mixed
approach corresponds to having probabilistic requirements for the SUT but not
placing restrictions on the behaviour of the environment. Similar ideas are used
in the probabilistic models considered in [28,2].

In analysing a model we determine the probability of making particular ob-
servations. Interestingly, it transpires that this can be problematic when we
distinguish between inputs and outputs as a result of races. Specifically, obser-
vations are not global traces of the system but sets of global traces that are
indistinguishable when there are independent agents/testers at the ports. There
can be races between events at different ports and where one or more of these
events are inputs the reactive-generative setting does not provide probabilistic
information regarding the outcome of such races. As a result, we outlaw these
types of races and provide a condition under which such races cannot occur.

It is worth mentioning that our implementation relations are conservative
extensions of previous notions for the non-distributed and/or non-probabilistic
framework. For the generative approach we show that if we have only one port
and we forget probabilistic information then our implementation relation is
equivalent to trace inclusion. If we allow probabilities then our implementation
relation is equivalent to the natural extension of trace.

This paper is structured as follows. In Section 2 we give preliminary definitions
regarding observations that can be made when testing distributed systems. Sec-
tion 3 then considers the problem of testing from probabilistic labelled transition
systems. In Section 4 we investigate the problem of testing from a probabilistic
system having a distinction between inputs and outputs. Finally, in Section 5,
we draw conclusions and discuss future work.

2 Preliminaries

Throughout this paper we assume that there are m observation ports and that
we identify these using the integers in O = {1, . . . , m}. If Act denotes the set
of actions then this is partitioned into sets Act1, . . . ,Actm: for all o ∈ O, Acto
denotes the set of actions that can be observed at o. In Section 4 we consider
input output transition systems. When testing from an input output transition
system it is common to assume that we can observe the system being in a stable
(quiescent) state, in which it cannot progress without receiving further input,
and this observation is denoted δ. Quiescence can be observed at all ports.
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When a system interacts with its environment it does so through a sequence
of actions in Act ∪ {δ} and this is called a global trace. Given a global trace
σ ∈ (Act∪ {δ})∗ we can define the projection πo(σ) of σ onto port o, and this is
called a local trace, in the following way (ε represents the empty sequence):

1. πo(ε) = ε.
2. If z ∈ Acto ∪ {δ} then πo(zσ) = zπo(σ).
3. If z �∈ Acto ∪ {δ} then πo(zσ) = πo(σ).

Consider, for example, a global trace a1b2c1 in which a1 and c1 are at port 1
and b2 is at port 2. Then π1(a1b2c1) = a1c1 and π2(a1b2c1) = b2.

As stated above, we partition the set of actions so that each can occur at only
one port. For systems where the same event can occur at two or more ports we
can simply label an event with the port number.

Given global traces σ, σ′ ∈ (Act ∪ {δ})∗ and observation port o we write
σ ∼o σ′ if σ and σ′ cannot be distinguished when only observing the local traces
at o. More formally, σ ∼o σ′ if and only if πo(σ) = πo(σ′). For example, if a1 and
c1 are events at port 1 and b2 is an event at port 2 then we have that a1b2c1 ∼1
a1c1 ∼1 b2a1b2c1b2. However, a1c1 and c1a1 are not related under ∼1. We can
strengthen this to say what it means for two global traces to be indistinguishable
when observing the local traces. Given global traces σ, σ′ ∈ (Act∪{δ})∗ we write
σ ∼ σ′ if σ and σ′ cannot be distinguished when only observing the local traces.
Thus, σ ∼ σ′ if and only if for all o ∈ O we have that πo(σ) = πo(σ′). For
example, we have that a1b2c1 ∼ b2a1c1 since π1(a1b2c1) = a1c1 = π1(b2a1c1)
and π2(a1b2c1) = b2 = π2(b2a1c1).

Relations ∼ and ∼o are equivalence relations and so define equivalence classes.
Given global trace σ and port o we let [σ]o denote the equivalence class of σ with
respect to ∼o and this is the set of global traces that are indistinguishable from
σ when only observing the local trace at o. Thus,

[σ]o = {σ′ ∈ (Act ∪ {δ})∗|πo(σ′) = πo(σ)}

Similarly, given global trace σ we let [σ] denote the equivalence class of σ with
respect to ∼ and this is the set of global traces that are indistinguishable from
σ when only observing the local traces. Thus,

[σ] = {σ′ ∈ (Act ∪ {δ})∗|∀o ∈ O : πo(σ′) = πo(σ)}

Clearly we have that σ′ ∼ σ if and only if for all o ∈ O we have that σ′ ∼o σ. In
addition, for all σ we have that [σ] =

⋂
o∈O[σ]o.

In this paper the set (0, 1] denotes all non-zero probabilities; all real numbers
that are greater than 0 and no larger than 1. In addition, [0, 1] = {0} ∪ (0, 1].
In general, we will use multisets of probabilities, instead of sets, since the same
probability can be associated with different transitions that we are somehow
counting together. We use {| and |} as the delimiters for multisets.
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3 Implementation Relations for Labelled Transition
Systems: A Purely Generative Approach

Labelled transitions systems (LTSs) have states, actions and transitions between
states. Recent work has shown how we can define such systems with multiple
ports1 (see, for example, [14,13]). Under the generative interpretation of prob-
abilities, in a state q there is a set of possible transitions, each transition has a
probability and the probabilities sum to 1.

Definition 1. A probabilistic labelled transition system (PLTS) s is defined by
a tuple s = (Q,Act, T, qin) in which Q is a countable set of states, qin ∈ Q is the
initial state, Act is a countable set of actions, and T ⊆ Q×Act×Q× (0, 1], is
the transition relation. A transition (q, a, q′, p) means that when in state q, with
probability p the next event moves s to state q′ with action a ∈ Act. Naturally,
we cannot have two transitions (q, a, q′, p) ∈ T and (q, a, q′, p′) ∈ T in which
p �= p′. The set Act of actions is partitioned into subsets Act1, . . . ,Actm where
for all o ∈ O we have that Acto denotes the set of actions that can occur at
observation port o. We require that for every state q ∈ Q either

∑
{| p | ∃a, q′ :

(q, a, q′, p) ∈ T |} is equal to 1 or q is a deadlock state and so this sum is equal
to zero. We let PLTS(Act) denote the set of PLTSs with action set Act.

We say that the process s is finitely branching if for every state q ∈ Q there
are only a finite number of transitions with starting state q. In this paper we
only consider processes that are finitely branching.

Any state q ∈ Q induces an LTS derived from s by setting the initial state to
q, that is, abusing the notation we consider q = (Q,Act, T, q).

Let us note that all transitions have non-zero probability. An alternative is to
allow the probability of a transition to be from the set [0, 1] but we can simply
delete any transition with probability 0 since it does not affect the behaviour of
the PLTS. We now introduce notation for PLTSs that we will use in defining
implementation relations. In particular, we define the probability of making a
sequence of observations from a state q of a PLTS s.

Definition 2. Given a PLTS s = (Q,Act, T, qin), a state q of s, and σ ∈ Act∗,
we let prob(q, σ) denote the probability of performing the sequence σ from state q.
Formally,

prob(q, σ) =

⎧⎨
⎩

1 if σ = ε

∑
{| p · prob(q′, σ′) | (q, a, q′, p) ∈ T |} if σ = aσ′

We say that σ ∈ Act∗ is a trace of s if prob(qin, σ) > 0. We denote by L(s)
the set of traces of s.

1 The work actually defines input output transition systems with multiple ports but
it is straightforward to adapt this approach.
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We will define an implementation relation for the generative case in the dis-
tributed setting. Essentially we wish to say that every σ ∈ Act∗ that can be
observed in the specification must have the same probability of occurrence in
the SUT. However, as a result of there being multiple ports, there may be al-
ternative global traces of the specification and of the implementation that are
indistinguishable. We therefore compare the probability of observing elements
of equivalence classes rather than particular global traces.

Definition 3. Let s = (Q, I, O, T, qin) be a PLTS and σ ∈ Act∗. We define
the probability with which s performs the equivalence class [σ], denoted by
prob(s, [σ]), as ∑

{| prob(qin, σ′) |σ′ ∈ [σ] |}

Let s, r be PLTSs. We write r �G s if for all σ ∈ L(s) we have that prob(s, [σ])
= prob(r, [σ]).

In order to show that our relation is a conservative extension of the classical
non-distributed and non-probabilistic framework, we have the following result
where probabilistic information can be reduced to trace containment.

Proposition 1. Let s, r be single-port PLTSs. We have r �G s implies L(r) ⊇
L(s).

Proof. The proof is easy by taking into account that, under the specified con-
ditions, if s = (Q, I, O, T, qin) then for all σ ∈ Act∗ we have prob(s, [σ]) =
prob(qin, σ). �

However, if we retain probabilistic information we find that our relation is equiv-
alent to the natural extension of trace inclusion.

Proposition 2. Let s, r be single-port PLTSs. We have r �G s implies that for
all σ ∈ L(s) we have that prob(r, σ) = prob(s, σ).

Proof. Since r �G s, if σ ∈ L(s) then we have that prob(s, [σ]) = prob(r, [σ]).
However, for all σ ∈ Act∗ we have prob(s, [σ]) = prob(s, σ) and prob(r, [σ]) =
prob(r, σ) and so the result follows. �

We would now like to comment on a limitation of �G. Even though it seems to be
an appropriate adaptation of the generative approach to the distributed setting,
it has a main drawback: it does not properly capture the notion of complete
trace. This problem is not related to the additional complexity introduced by
distributed ports. Therefore, we will illustrate it with two single-port systems.
Let us consider the following two processes shown in Figure 1:

1. Process s initially produces a with two different transitions. The first tran-
sition, with probability 1

2 , reaches a deadlock state while the second transi-
tion, also with probability 1

2 , reaches a state that can perform b and reaches
a deadlock state.
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Fig. 1. Processes s and r

2. Process r initially produces a with two different transitions. The first tran-
sition, with probability 1

2 , reaches a state that can perform c followed by
deadlock while the second transition, also with probability 1

2 , reaches a states
that can perform b and then is also followed by deadlock.

We certainly have that r �G s since we only check the probabilities associated
with the traces a (equal to 1 in both processes) and ab (equal to 1

2 in both
processes). However, we might consider that s is offering a behaviour that r
cannot simulate. Specifically, s can perform a to reach a deadlock state while r
cannot. In order to capture this type of behaviour, we can extend the alphabet
of actions with a special action that will be associated with deadlock states. We
will add self-loops labelled by this special action and probability 1 in deadlock
states. This is exactly the idea of quiescence that we will use in the next section.

Definition 4. Let s = (Q,Act, T, qin) be a PLTS. We can extend the set of
transitions T to a new set Tδ by adding the transition (q, δ, q, 1) for each state
q ∈ Q such that

∑
{| p | ∃a, q′ : (q, a, q′, p) ∈ T |} = 0. The augmented PLTS is

given by sδ = (Q,Act ∪ {δ}, Tδ, qin).
Let s, r be PLTSs and sδ, rδ be the corresponding augmented PLTSs. We write

r �G
δ s if for all σ ∈ L(sδ) we have that prob(sδ, [σ]) = prob(rδ , [σ]).

This new implementation relation properly captures complete traces since a
trace σ reaching a deadlock state is transformed into the traces σδn, for n ≥ 0.
For example, if we consider the processes r and s that we used to motivate the
new relation we have that they are not related under �G

δ . In addition to cope
with complete traces, the new implementation relation has a very interesting
property. We have that the asymmetry in its definition, since only traces of s
are considered, is not real since this order relation masks an equivalence relation
as the following result shows.

Proposition 3. Let s, r be PLTSs. We have that r �G
δ s implies s �G

δ r.

Proof. We use proof by contradiction, assuming that r �G
δ s but that s �G

δ r
does not hold. Let σ be a shortest element of L(r) such that prob(r, [σ]) �=
prob(s, [σ]). If prob(s, σ) > 0 then, since prob(r, [σ]) �= prob(s, [σ]), we know that
r �G

δ s does not hold, providing a contradiction. We therefore must have that
prob(s, σ) = 0 and therefore σ /∈ L(s).
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Let k denote the length of σ ∈ Act∗ and assume that in s we have l distinct
equivalence classes [σ1], . . . , [σl] of sequences that have length k. Let us remark
that traces σ reaching a deadlock state and having a length kσ < k will contribute
to this set of classes with the class [σδk−kσ ].

Since probabilities are generative, it is easy to check that
∑

1≤i≤l prob(s, [σi]) =
1. Further, since r �G

δ s,
∑

1≤i≤l prob(r, [σi]) ≥
∑

1≤i≤l prob(s, [σi]) and so∑
1≤i≤l prob(r, [σi]) = 1.
Let us note that prob(r, [σ]) �= prob(s, [σ]) and prob(s, σ) = 0 and so we have∑
1≤i≤l prob(r, [σi]) + prob(r, [σ]) > 1. However, for all 1 ≤ i ≤ l we have that

σ �∼ σi and the sequences σ, σ1, . . . , σl all have length k and so we must have
that

∑
1≤i≤l prob(r, [σi])+ prob(r, [σ]) ≤ 1. This provides a contradiction and so

the result follows. �

Thus, �G
δ is an equivalence relation. Normally, an implementation relation is a

preorder but not an equivalence relation since it allows a range of implementation
decisions. Future work will consider whether there are suitable implementation
relations for the generative case that are not equivalence relations.

4 Implementation Relations for Input Output Transition
Systems: A Reactive-Generative Approach

Many systems interact with their environment through inputs and outputs and
in this section we consider such systems and the observations that can be made,
which are sequences of inputs and output (input output sequences).

When a system interacts with its environment through inputs and outputs
there is often an asymmetry between these since the environment controls the
inputs while the system controls the outputs. This has led to the use of input
output transition systems (IOTSs), which essentially are LTSs where we distin-
guish between input and output. We now define a probabilistic IOTS that has
multiple ports. We use the reactive scenario for inputs and the generative for
outputs. However, we do attach probabilities to inputs since there may be more
than one transition leaving a state q with a given input ?x: the environment
chooses the input to supply but the system determines which transition to take.

Definition 5. A probabilistic input-output transition system (PIOTS) s is de-
fined by a tuple s = (Q, I, O, T, qin) in which Q is a countable set of states,
qin ∈ Q is the initial state, I is a countable set of inputs, O is a countable
set of outputs, and T ⊆ Q × (I ∪ O) × Q × (0, 1] is the transition relation. A
transition (q, a, q′, p) means that from state q it is possible to move to state q′

with action a ∈ I ∪O with probability p. Again, we cannot have two transitions
(q, a, q′, p) ∈ T and (q, a, q′, p′) ∈ T in which p �= p′. If a ∈ O then we should in-
terpret the probability p of (q, a, q′, p) as meaning that if an output occurs in state
q before input is provided then with probability p this transition occurs. There-
fore, for every state q we must have that

∑
{| p | ∃q′, a : (q, a, q′, p) ∈ T ∧a ∈ O |}

is either 1 or 0 (if the state cannot produce any output). Further, if a ∈ I then
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we must have that the sum of the probabilities of transitions leaving q with in-
put a, that is

∑
{| p | ∃q′ : (q, a, q′, p) ∈ T |}, is either 1 or 0 (if the input is not

available at that state). This means that once an available input is chosen by
the environment, we can forget the other available inputs and concentrate on the
probability distribution function governing the transitions labelled by a.

A state q ∈ Q is quiescent if all transitions from q involve input. We can
extend the set of transitions T to a new set Tδ by adding the transition (q, δ, q, 1)
for each quiescent state q. We let Act = I ∪O ∪ {δ} denote the set of actions.

We partition the set I of inputs into I1, . . . , Im in which for port o ∈ O we
have that Io is the set of inputs that can be received at port o. Similarly, we
partition the set O of outputs into sets O1, . . . , Om. We let PIOTS(I, O) denote
the set of PIOTSs with input set I and output set O.

We say that the process s is input-enabled if for all q ∈ Q and all ?i ∈ I
there exists q′ ∈ Q and probability p ∈ (0, 1] such that (q, ?i, q′, p) ∈ T . We say
that the process s is output-divergent if it can reach a state in which there is an
infinite path that contains outputs only. We say that s is finitely branching if
for every state q ∈ Q there are only a finite number of transitions with starting
state q. In this paper we only consider processes that are finitely branching and
are not output-divergent.

Let us remark that if we consider δ as a regular output action, then we can say
that the sum of the probabilities associated with a state is always equal to 1, that
is,

∑
{| p | ∃q′, a : (q, a, q′, p) ∈ Tδ ∧a �∈ I |} = 1. In addition, as usual, we precede

the name of an input by ? and we precede the name of an output by !. We will
often label inputs and outputs in order to make their port clear. For example,
?ip denotes an input at p and !op denotes an output at p. An alternative, used
in [14], to this notion of (probabilistic) input output transition systems is to
allow outputs to be tuples of values but the formalism used in this paper has
the advantage of simplifying the notation and analysis.

Traces are sequences of actions, possibly including quiescence, and are usually
called suspension traces. In this paper we simply call them global traces. The
following is standard notation in the context of ioco: the implementation relation
usually used in testing from a single-port IOTS [26].

Definition 6. Let s = (Q, I, O, T, qin) be a PIOTS. We use the following
notation.

1. If (q, a, q′, p) ∈ Tδ, for a ∈ Act, then we write q a−−→ q′ and q a−−→ .
2. We write q

σ==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm, q = q0,
q′ = qm such that for all 0 ≤ i < m we have that qi

ai+1−−−−→ qi+1.
3. If there exists q′ such that qin

σ==⇒ q′ we say that σ is a trace of s. We let
T r∗(s) denote the set of traces of s.

4. Let q ∈ Q be a state and σ ∈ T r∗(s) be a trace. We introduce the following
concepts.
(a) s after σ = {q ∈ Q|qin

σ==⇒ q}.
(b) out(q) = {!o ∈ O|q !o==⇒}.
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Fig. 2. Process s1, s2, and s3

5. Given an input output sequence σ, we let in(σ) denote the input sequence
formed by removing all of elements of σ that are not inputs.

Let us note that we have initially abstracted probabilistic information in the
definition of trace. This information will be incorporated when defining our im-
plementation relations.

Next we recall the definition of ioco [26] and its adaption to systems with
multiple ports that we call dioco [14].

Definition 7. Let s, r ∈ PIOTS(I, O). We write r ioco s if for every trace
σ ∈ T r∗(s) we have that out(r after σ) ⊆ out(s after σ).

We write r dioco s if for every trace σ such that r
σ==⇒ r′ for some r′ that is in

a quiescent state, if there is a global trace σ1 ∈ T r∗(s) such that in(σ1) ∼ in(σ)

then there exists a trace σ′ ∈ T r∗(s) such that s
σ′

==⇒ and σ′ ∼ σ.

As expected, the previous implementation relation discarded probabilistic infor-
mation. It is important to explain why we restrict attention to traces that end
in quiescent states. Let us consider the following processes:

1. Process s that can produce output !o1 at port 1, then output !o2 at port 2
and then deadlocks; and

2. Process r that can produce output !o2 at port 2, then output !o1 at port 1
and then deadlocks.

If we can observe just !o2 in r then we can distinguish between r and s but the
environment cannot block the following !o1. This is because the agents/testers
at the ports can only exchange information in quiescent states as a result of not
being able to synchronise their actions during testing.

An interesting, but more complicated, alternative has been recently defined
in [15] where only infinite traces are used to define dioco. Since a finite trace
is a prefixes of an infinite one (since we can always extend a trace with either
an output or with δ), this notion captures the nature of dioco. For example,
the infinite traces that the previous processes can perform are !o1!o2δδ · · · and
!o2!o1δδ · · · , respectively, and these are related by ∼.

In order to define an appropriate probabilistic extension of dioco, we need to
restrict our attention to a class of systems without pathological behaviours. Let
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us consider the process s1 in Figure 2 left, in which ?x1 is input at port 1 and
?x2 is input at port 2. All transitions have probability 1. We might ask what
probability we should associate with global traces that are indistinguishable from
?x1?x2. We cannot simply sum the probabilities of the two global traces that
are equivalent to ?x1?x2 under ∼ since we obtain the result 2.

Now let us consider process s2 in Figure 2 centre, in which !o1 is at port 1 and
!o2 is at port 2. We might ask what probability we should associate with global
traces that are indistinguishable from ?x1?x2!o1. However, whether we observe
?x1?x2!o1 depends on the outcome of a race between ?x1 and ?x2 and we have
no probabilistic information regarding this race. Thus, we cannot give such a
probability. However, for a model to be useful it should define the probability
of an observation. Thus, we either need to use a generative approach, which
provides the probabilities for the outcomes of a race, or we restrict attention to
PIOTSs without such races. We now discuss how the latter can be done.

Previous work on using IOTSs for distributed systems has defined the mioco
implementation relation where we make global observations but there are mul-
tiple ports [3]. This does not require that an IOTS is input-enabled but does
insist that if no transition is defined for input ?io ∈ Io in state q then there are
no transitions from q with an input from Io. This corresponds to the SUT being
able to block input at an interface. We make a similar assumption, which is that
for any state q we cannot have transitions from q for inputs from different ports.
This corresponds to a design that avoids races by restricting input to one port
at a time. This restriction is motivated by the observation that, as seen in Fig-
ure 2 left and centre, we need to avoid such races if we wish to be able to assign
probabilities to observations. Interestingly, work on Message Sequence Charts
(MSCs) [1] has defined a pathology in which the next events after branching are
on different processes: our restriction is similar to outlawing this pathology.

It is not sufficient to outlaw races between inputs since we can have a race
between an input and an output at different ports. An example of this is given
in s3 from Figure 2 right. Here we cannot assign a probability to there being a
global trace indistinguishable from ?x1!o2!o2 since there is a race between ?x1
and !o2. However, having different possible outputs at different ports or inputs
and outputs at the same port, from a state q, causes no problem since PIOTSs
do contain probabilistic information regarding these choices. Thus, a PIOTS in
which there can be races between inputs or between inputs and outputs should
not be allowed since we cannot assign probabilities to traces. We will require
any PIOTS to be consistent, as defined below.

Definition 8. Let s = (Q, I, O, T, qin) be a PIOTS. We say that s is consistent
if for every state q ∈ Q if there exist a1, a2 ∈ I ∪ O such that q

a1−−→ and q
a2−−→

then either both of them are outputs or they are at the same port.

Throughout the rest of this paper we only consider PIOTSs that are consistent,
in addition to being finitely branching and not output-divergent. We can adapt
notation defined for PLTSs; we consider a PIOTS to be a PLTS and so reuse
concepts such as the probability prob(q, σ) of performing a given sequence of
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actions σ from a state q. We assume that observations are made in quiescent
states and restrict attention to paths that end in quiescent states and adapt the
dioco implementation relation to the probabilistic framework.

Definition 9. Let s, r ∈ PIOTS(I, O). We write r �R s if for every global
trace σ such that s

σ==⇒ s′ for some s′ that is in a quiescent state, we have that
prob(s, [σδ]) = prob(r, [σδ]).

In the above we include δ in the global traces over which we sum probabilities
to ensure that we are considering quiescent traces in each process. The notation
prob(s, [σδ]) is given in Definition 3. Let us remark that, in contrast with �G

δ

but similar to �G, the relation �R is not symmetric.

Proposition 4. There exist PIOTSs r and s such that r �R s but we do not
have that s �R r.

Proof. It is sufficient to consider processes r and s such that:

1. Process s has only one transition which is a self-loop with label δ.
2. Process r has a self-loop with label δ and a transition with input ?x to a

state r′ that has only one transition, which is a self-loop with label δ.

Then r �R s since the quiescent traces of s contain only δ and these are also
traces of r and have the same probabilities. However, to see that s �R r does
not hold it is sufficient to consider the quiescent trace ?xδ of r. �

If we consider single-port systems and we also forget probabilistic information
then we have that our relation reduces to ioco. Let us remark that ioco is
only defined for input-enabled implementations and so we have to make this
restriction. However, input-enabled single-port PIOTSs can be still consistent
since, obviously, they cannot perform actions at different ports.

Proposition 5. Let s, r be single-port PIOTSs such that r is input-enabled and
r �R s. If σ ∈ T r∗(s) and either a ∈ out(r after σ) or a ∈ out(s after σ) then
prob(r, σa) = prob(s, σa).

Proof. We will use proof by induction on the length of σ. The base case is σ = ε.
First, since s is not output-divergent, the sum of the probabilities of quiescent
traces of s that contain only output and exactly one δ is 1. In addition, there
are a finite number of such sequences in s (since s is finitely-branching and is
not output-divergent), and since r �R s and there is only one port we have that
these are also quiescent sequences of r and in r they have the same probabilities.
It is now sufficient, for each element a ∈ out(r after ε) ∪ out(s after ε), to
consider such traces that start with output a and sum the probabilities of the
corresponding traces. The result thus holds for the base case.

Now we assume that the result holds for all traces of length less than that of
σ ∈ T r∗(s). By the inductive hypothesis, since every prefix of σ is a trace of s
we have that prob(s, σ) = prob(r, σ). Since s is finitely-branching we have that
out(s after σ) is finite and let us suppose that out(s after σ) = {a1, . . . , ak}.
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Since s is not output-divergent, for each 1 ≤ i ≤ k we have that there is a
finite set Ai of (minimal) traces of s that extend σ with only outputs and δ and
that contain exactly one extra δ (at the end). Thus, σ′ is in Ai if and only if σ′ ∈
T r∗(s), σ′ extends σ with outputs and exactly one δ, ends in δ, and σai is a prefix
of σ′. Since outputs are generative, prob(s, σai) =

∑
σ′∈Ai

prob(s, σ′). Since r �R

s and there is only one port, for all σ′′ ∈ Ai we must have that prob(r, σ′′) =
prob(s, σ′′) and so for all 1 ≤ i ≤ k we have that prob(r, σai) ≥ prob(s, σai). Now
let us note that we have prob(s, σ) = prob(r, σ), prob(s, σ) =

∑
1≤i≤k prob(s, σai)

and prob(r, σ) ≥
∑

1≤i≤k prob(r, σai) =
∑

1≤i≤k prob(s, σai). Thus, for all 1 ≤
i ≤ k we have prob(r, σai) = prob(s, σai) and out(r after σ) = {a1, . . . .ak}. �

The following is an immediate consequence.

Proposition 6. Let s, r be single-port PIOTSs. If r is input-enabled then we
have r �R s implies that r ioco s.

Our last result relates the implementation relations presented in this paper. If the
set of inputs is empty then the relations should coincide. Under this assumption
we do not have r �R s if and only if r �G s due to the inadequate treatment
of complete traces under �G. Fortunately, the expected result holds with the
variant of �G.

Proposition 7. Let s, r be single-port PIOTSs with empty sets of inputs. We
have r �R s if and only if r �G

δ s.

5 Conclusions

This paper has investigated the problem of testing a probabilistic system that
has distributed interfaces, called ports. This is a significant problem since dis-
tributed systems are becoming increasingly important and are often probabilistic
in nature. Interestingly, while there has been much separate work on testing prob-
abilistic systems and testing systems with distributed interfaces, this appears to
be the first that considers the combination.

We assume that the system under test (SUT) has physically distributed ports
and we place one local tester at each port. We also assume that the testers do
not communicate with one another during testing and this corresponds to the
situation in use: the separate users/systems at the ports might share information
later but do not synchronise when using the SUT. Each local tester observes a
projection of the global trace that occurs and this is called a local trace.

Initially we considered a generative situation where the probabilities on transi-
tions leaving a state sum to 1. This is similar to a Markov Chain and corresponds
to testing a closed system or one in which we know the probabilities of events
from the environment that affect the SUT. In this context we explored testing
from probabilistic labelled transition systems by defining an implementation re-
lation where the local testers may return their sets of observations and a verdict
can be produced from these (local traces).
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Sometimes we distinguish between input and output: the SUT controls out-
put and the environment controls input. Here, input output transition systems
are more suitable that labelled transition systems and we require a reactive sce-
nario. We investigated the problem of testing from a probabilistic input output
transition system (PIOTS) that has multiple ports. In analysing such a model
we need to determine the probability of observing a trace that is equivalent to a
given trace σ. For some models the presence of races means that this probability
is undefined and so we defined a class of model for which such problems do not
occur and we also defined an implementation relation.

There are several avenues for future work. First, there is the problem of pro-
ducing test generation algorithms that direct testing in order to achieve a given
objective. It is also necessary to consider how tests should be applied and verdicts
assigned but the latter essentially corresponds to estimating the probabilities of
sequences of events in the SUT through sampling and comparing the estimate
with the required probability. In addition, simulation relations have been defined
for distributed systems and there is the problem of extending these to probabilis-
tic distributed systems. Finally, it may be possible to extend the implementation
relation defined for the reactive case by allowing races but using symbolic values
to represent the probabilities of inputs supplied by the environment.
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Abstract. In this paper we expand our work in our specification for-
malism UIOLTSs. We present three implementation relations and pro-
vide alternative characterizations of these relations in terms of the tests
that the implementation under test successfully passes. In addition, we
present the main ideas to obtain an algorithm to derive complete test
suites from specifications.

1 Introduction

During the software development process, it is very usual to apply structured
methodologies, consisting of several phases such as analysis, specification, design,
coding, and testing. Formal methods are a powerful tool that should be used
along all the software development phases because they facilitate the descrition,
analysis, validation and verification of software system. So developer can discover
posible errors at the beginning of the development process.

Although it is very important to use formal methods to specify the behavior of
the system, it is even more important to ensure that the implementation of the
system is correct. In this line, testing is one of the most extended techniques to
critically evaluate the quality of systems. Although testing and formal methods
are considered rival, they are complimentary techniques that can profit from each
other. The idea is that we have a formal model of the system (a specification),
we check the correctness of the system under test by applying experiments and
we match the results of these experiments with what the specification says and
decide whether we have found an error. The formal description of the system
allows to automatize most of the testing phases.

The main theory underlying formal specification and testing can be also ap-
plied to a specific kind of software like e-commerce agents. In this context, it is
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necessary to introduce new features in the formal language in order to express
the high-level requirements of agents, which are usually defined in economic
terms. In the literature, we can find several proposals to use formal methods to
formalize multi-agent systems (see [1]).

The initial point of this paper can be found in one formalism previously de-
veloped within our research group [2]. In that paper we presented a formalism
called utility state machines, which was based on finite state machines with a
strict alternation between inputs and outputs and, where the user’s preferences
are defined by means of utility functions associating a numerical value to each
possible set of resources that the system can trade. The alternation between
inputs and outputs is a ver strong restriction that we wanted avoid in our model
but, this slightly complicates the semantic framework. In particular, we need
to include the notion of quiescence to characterize states that cannot produce
outputs and we have to redefine the notion of test and how to apply tests to
systems. On the contrary, we have reduced some of the complexity associated
with our previous formalism.

Our new formalism, called Utility Input-Output Labeled Transition System (in
short, UIOLTS), was presented in [3]. In this paper we complete our previous
work by defining three implementation relations that can be used to formally
establish the conformance of a system under test with respect to a specifica-
tion. One of them takes into account only the sequences of inputs and outputs
produced by the system and the other two relations consider resources that the
system has after an action is executed. We redefine the notion of test so that we
can obtain more information from the system under test. In order to relate the
application of tests and our implementation relations, we define an algorithm to
derive complete test suites from specifications, that is, an implementation con-
forms to a specification if and only if successfully passes the test suite produced
from the specification.

The rest of the paper is structured as follows. In Section 2 we introduce our
formalism. In Section 3 we define our implementation relations. In Section 4 we
give the notion of test and how to apply tests to implementations under test.
Finally, in Section 5 se present our conclusions and some lines for future work.

2 A Framework to Formally Specify Economic Agents

In this section we present our formalism as defined in [3]. Basically, a UIOLTS
is a labeled transition system where we introduce some new features to define
agent behaviors in an appropriate way. The first new element that we add is
a set of variables, where each variable represents the amount of the resource
that the system owns. In addition, we associate a utility function to each state
of the system. This utility function can be used to decide whether the agent
accepts an exchange of resources proposed by another agent. Intuitively, given a
utility function u we have that u(x) < u(y) means that the basket of resources
represented by y is preferred to x.
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Definition 1. We consider R+ = {x ∈ R |x ≥ 0}. We will usually denote vec-
tors in Rn (for n ≥ 2) by x, y, v . . . Given x ∈ Rn, xi denotes its i-th component.
We extend to vectors some usual arithmetic operations. Let x, y ∈ Rn. We define
the addition of vectors x and y, denoted by x+y, simply as (x1+y1, . . . , xn+yn).
We write x ≤ y if for all 1 ≤ i ≤ n we have xi ≤ yi.

We will suppose that there exist n > 0 different kinds of resources. Baskets
of resources are defined as vectors x ∈ Rn

+. Therefore, xi = r denotes that we
own r units of the i-th resource. A utility function is a function u : Rn

+ −→ R. In
microeconomic theory there are some restrictions that are usually imposed on
utility functions (mainly, strict monotonicity, convexity, and continuity). ��

Our systems can perform two different types of actions. Output actions are ini-
tiated by the system and cannot be refused by the environment. We consider
that the performance of an output action can cost resources to the system. In
addition, the performance of an output action will usually have an associated
condition to decide whether the system performs it or not. Input actions are
initiated by the environment and cannot be refused by the system, that is, we
consider that our systems under test are input-enabled (specifications do not
need to be input-enabled). The performance of an input action can increase the
resources of the agent that performs it. In addition to these two types of actions
we need a third type that we introduce for technical reasons to represent qui-
escence [4]. This special action is denoted by δ, and special transitions labeled
by this same δ action. In the following definition we also introduce the notion of
configuration. Usually, in order to clearly identify where a system is, it is enough
to record the current state. In our setting, in order to record the current situa-
tion of an agent we use pairs where we keep the current state of the system and
the current amount of available resources.

Definition 2. A Utility Input Output Labeled Transition System, in short
UIOLTS, is a tuple M = (S, s0, L, T, U, V ) where

– S is the set of states, being so ∈ S the initial state.
– V is an n-tuple of resources belonging to R+. We denote by v0 the initial

tuple of values associated with these resources.
– L is the set of actions. The set of actions is partitioned into three pairwise

disjoint sets: the set of imputs actions LI which elements are preceded by
?, the set of output actions LO which elements are preceded by ! and a set
with one special ation δ that represents quiescence.

– T is the set of transitions that is partitioned into three pairwise disjoint
sets: the set of input transitions TI which elements are tuples (s, ?i, x̄, s1)
where x̄ ∈ Rn

+ is the increase in the set of resources, the set of output
transitions TO which elements are tuples (s, !o, z̄, C, s1) where z̄ ∈ Rn

+ is
the decrease in the set of resources, and C is a predicate on the set of
resources and the set of quiescence transtions with tuples (s, δ, 0, Cs, s) where
Cs =

∧
(s,!o,z̄,C,s1)∈TO

¬C.
– U : S → (Rn

+ −→ R+) is a function associating a utility function to each
state in S.
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A configuration of M is a pair (s, v̄), where s is the current state and v̄ is the
current value of V . We denote by Conf(M) the set of configurations of M .

We say that M is input-enabled if for all s ∈ S and ?i ∈ LI there exist x̄ and
s1 such that (s, ?i, x̄, s1) ∈ TI . ��
Now we can define the concatenation of several transitions of an agent to capture
the different evolutions, from one configuration to another one, that an agent
can carry out. These evolutions can be produced either by executing an input
or an output action or by offering an exchange of resources. As we will see,
exchanges of resources have low priority and will be allowed only if no output
can be performed. The idea is that if we can perform an output with the existing
resources, then we do not need to exchange resources.

Definition 3. Let M = (S, s0, L, T, U, V ) be a UIOLTS. We consider that M
can evolve from the configuration c = (s, v) to the configuration c′ = (s′, v′) if
one of the following options is possible:

1. If there is an input transition (s, ?i, x̄, s1), then this transition can be exe-
cuted. The new configuration is c′ = (s1, v + x̄).

2. If there is an output transition (s, !o, C, z̄, s1) such that C(v) holds then the
transition can be executed. The new configuration is c′ = (s1, v − z̄).

3. Let us consider the transition associated with quiescence at s: (s, δ, Cs, 0̄, s).
If Cs(v) holds, that is, no output transition is currently available, then this
transition can be executed. The configuration is not altered, that is, c′ =
(s, v).

4. Let us consider again the transition associated with quiescence at s, that is,
(s, δ, Cs, 0̄, s). If Cs(v) holds, then we can offer an exchange. We represent
an exchange by a pair (ξ, ȳ) where ȳ = (y1, y2, . . . yn) ∈ Rn is the variation
of the set of resources. Therefore, yi < 0 indicates a decrease of the resource
i while yi > 0 represents an increase of the resource i. M will be willing
to perform an exchange (ξ, x̄) if U(s, v) < U(s, v + x̄). If another agent is
accepting the exchange, then the new configuration is c′ = (s, v + ȳ).

We denote an evolution from the configuration c to the configuration c′ by the
triple (c, (a, ȳ), c′), where a ∈ L∪{ξ} and ȳ ∈ Rn. We denote by Evolutions(M, c)
the set of evolutions of M from the configuration c and by Evolutions(M) the
set of evolutions of M from (s0, v0), the initial configuration.

A trace of M is a finite sequence of evolutions. Traces(M, c) denotes the set of
traces of M from the configuration c and Traces(M) denotes the set of traces of
M from the initial configuration. Let l = e1, e2, . . . , em be a trace of M where for
all 1 ≤ i ≤ m we have ei = (ci, (ai, x̄i), ci+1). The observable trace associated
to l is a triple (c1, σ, cn+1), where σ is the sequence of actions obtained from
a1, a2, . . . , am by removing all occurrences of ξ. We sometimes represent this
observable trace as c1

σ=⇒ cn+1. ��

3 Implementation Relations for UIOLTSs

In this section we introduce our implementation relations to formally establish
when an implementation is correct with respect to a specification. In our context,
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the notion of correctness has several possible definitions. For example, a user of
our methodology may consider that an implementation I of a specification S is
good if the number of resources that I obtains after performing some actions
is always greater than the one given by S while another user could be happy
with an agent that obtains smaller amounts of resources as long as the utility
returned by them is bigger than the one foreseen by the specification. Let us
remind that implementations must be input-enabled while specifications might
not be.

We have defined three different implementation relations. The first one is close
to the classical ioco implementation relation [5] where an implementation I is
correct with respect to a specification S if the output actions executed by I
after a sequence of actions is performed are a subset of the ones that can be
executed by S. Intuitively, this means that the implementation does not invent
actions that the specification did not contemplate. The formal definition of our
first implementation relation was presented in [3].

In order tu define our two new implementation relation we introduce some
auxiliary notation.

Definition 4. Let M = (S, s0, L, T, U, V ) be a UIOLTS, c = (s, x) ∈ Conf(M)
a configuration of M , and σ ∈ L∗ be a sequence of actions. Then,

c after σ = {c′ ∈ Conf(M)|c σ=⇒ c′}

We use M after σ as a shorthand for c0 after σ, being c0 the initial configu-
ration of M . ��

Intuitively, c after σ returns the configuration reached from the configuration
c by the execution of the trace σ.

Our firts new implementation relation is based on the ioco mechanism but we
take into account both the resources that the system has and the actions that
the system can execute. In order to define the new relation we need to define the
set out of outputs. In this case we have two components: The output action that
can be executed and the set of resources that the system has. We also introduce
an operator to compare sets of pairs (output,resources).

Definition 5. Let M = (S, s0, L, T, U, V ) be a UIOLTS and c = (s, x̄) ∈
Conf(M) be a configuration of M . Then,

out′(c) = {(!o, ȳ) ∈ LO × Rn
+|∃s1, z̄, C : (s, !o, C, z̄, s1) ∈ T ∧ C(x) ∧ ȳ = x̄− z̄}

∪{(δ, x̄)|∃Cs : (s, δ, Cs, 0̄, s) ∈ T ∧ Cs(x)}

We extend this function to deal with sets of configurations in the expected way,
that is, out′(C) =

⋃
c∈C out′(c).

Given two sets A = {(o1, ȳ1), . . . , (on, ȳn)} and B = {(o1, x̄1), . . . , (on, x̄n)},
we write A � B if act(A) ⊆ act(B) and for all output action !o ∈ act(A) we
have min(rec(A, o)) ≥ max(rec(B, o)), where Act(X) = {a|(a, ȳ) ∈ X} and
rec(X, o) = {r|(o, r) ∈ X}. ��
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The set out′(c) contains those actions (outputs or quiescence) that can be per-
formed when the system is in configuration c as well as the set of resources
obtained after their performance. Next, we introduce our new implementation
relation. We consider that an implementation I is correct with respect to a spec-
ification S if the output actions performed by the implementation in a state are
a subset of those that can be performed by the specification in this state and
the set of resources of implementation I is better than the set of resources in the
specification.

Definition 6. Let I, S be two UIOLTSs with the same set of actions L. We
write I iocor S if for all sequence of actions σ ∈ Traces(S) we have that
out′(I after σ) � out′(S after σ). ��

Our new second implementation relation is again based on the ioco approach but
we take into account both the utility value that the available resources provide
and the actions that the system can execute. In order to define the new relation
we need to redefine the set of immediately available outputs. In this case, our
set of outputs has two components: The output action that can be executed and
the value of the utility function after this action is executed. We also introduce
an operator to compare sets of pairs (output,utility).

Definition 7. Let M = (S, s0, L, T, U, V ) be a UIOLTS and c = (s, x̄) ∈
Conf(M) be a configuration of M . Then,

out′′(c) = {(!o, U(s1, x̄− z̄)) ∈ LO × R+|∃s1, z̄, C : (s, !o, C, z̄, s1) ∈ T ∧ C(x)}
∪{(δ, U(s, x̄))|∃Cs : (s, δ, Cs, 0̄, s) ∈ T ∧Cs(x)}

We extend this function to deal with sets of configurations in the expected way,
that is, out′′(C) =

⋃
c∈C out′′(c).

Given two sets A = {(o1, u1), . . . , (on, un)} and B = {(o1, u1), . . . , (on, un)},
we write A �′ B if act(A) ⊆ act(B) and for all output action !o ∈ act(A) we
have min(util(A, o)) ≥ max(util(B, o)), where act(X) = {a|(a, y) ∈ X} and
util(X, o) = {u|(o, u) ∈ X}. ��

The set out′′(c) contains those actions (outputs or quiescence) that can be per-
formed when the system is in configuration c as well as the value of the utility
function obtained after their performance. Next, we introduce our new imple-
mentation relation. We consider that an implementation I is correct with respect
to a specification S if the output actions performed by the implementation in
a state are a subset of those that can be performed by the specification in this
state and the value of the utility function of implementation I is better than the
value of the utility function in the specification.

Definition 8. Let I, S be two UIOLTSs with the same set of actions L. We
write I iocou S if for all sequence of actions σ ∈ Traces(S) we have that
out′′(I after σ) �′ out′′(S after σ). ��
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4 Tests: Definition and Application

A test represents an experiment that will be carried out on an implementation
under test (IUT). Depending on the answers provided by the IUT we may con-
clude that it is behaving in an unexpected way. In our setting, a test can do three
different things: It can accept an output action started by the implementation, it
can provide an input action to the implementation, or it can propose a exchange
of resources. If the test receives an output, then it checks whether the action
belongs to the set of expected ones (according to its description); if the action
does not belong to this set, then the tester will produce a fail signal. In addition,
each state of a test saves information about the set of resources that the tested
system has if the test reaches this state. Therefore, we might also detect errors
if the amounts of resources differ from the ones that the test indicates.

In our framework, a test for a system is modeled by a UIOLTS, where its set
of input actions is the set of output actions of the specification and its set of
output actions is the set of input actions of the specification. Also, we include a
new action θ that represents the observation of quiescence. In order to be able
to accept any output from the tested agent, we consider that tests are input-
enabled, since its inputs correspond to outputs of the tested agent. Let us remark
that the current notion of test is more involved that the one given in [3] since
the latter did not include any mechanism to deal with the amount of resources
available to the implementation under test.

Definition 9. Let M = (S, s0, L, T, U, V ) be and UIOLTS, with L = LI ∪LO ∪
{δ}. A test for M is a UIOLTS t = (St, st

0, L
t, T t, λ, V ) where

– St is the set of states, where st
0 ∈ St is the initial state and there are two

special states called fail and pass, with fail �= pass.
– λ : S → Rn

+ is a function that assigns a tuple of real numbers to a state.
This tuple represents the amount of each resource in this state.

– Lt is the set of actions where LI is the set of outputs of M , LO is the set of
imputs of M , θ is a special action that represents the detection of quiescence
and ξ is an special action that represents the proposal of an exchange.

– T t = Te ∪ Tθ is the set of transitions, where
• Te ⊆ St × LO ∪ LI ∪ {ξ} × Rn × St is the set of regular transitions.
• Tθ ⊆ St × {δ} × St. ��

Our tests can compare the resources that the IUT has and the ones properly
specified in the test. Therefore, it is suitable to test systems according to the
ideas underlying the first two implementation relations. If we are interested only
in the returned utility (regardless of the specific amounts of different resources),
we have to replace the definition of λ by the following: λ : S → (Rn

+ → R) is a
function that assigns a utility function to each state in S.

We define configurations of a test in the same way that we used to define
them for UIOLTSs, and we thus omit the definition.

Given an implementation I and a test t, running t with I is the synchronized
parallel execution of both taking into account the peculiarities of the special
actions δ, θ, and ξ.
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A first notion of passing a test considers only that the actions that the IUT
performs are the expected ones.

Definition 10. A test execution of the test t with an implementation I is a
trace of I|�t leading to one of the states pass or fail of t.

We say that an implementation I passes a test t if all test executions of t with
I go to a pass state of t. ��

Another more complex notion for passing a test, considering the resources ad-
ministered by the system, is the following.

Definition 11. An implementation I passesr a test t if all test execution σ of
t with I reaches a pass state s of t and rec(I after σ) ≥ rec(S after σ). ��

The previous definition can be modified to deal with the alternative notion of
test discussed at the end of Definition 9 where we do not compare resources but
only consider the utility returned by the available resources.

Definition 12. An implementation I passesu a test t if all test execution σ of
t with I reaches a pass state s of t and util(I after σ) ≥ util(S after σ). ��

These three notions can be easily extended to deal with set of tests in the ex-
pected way: If T is a test suite then we say that I passesx T if for all t ∈ T we
have I passesx t.

After definition of test we need to define an algorithm to derive test from
specifications. Due to space limitation we do not show the algorithm.

Our algorithm is non-deterministic in the sense that there exist situations
where different possibilities are available, and we have different tests depend-
ing on the choice that we select. If we consider all the possible choices we will
have a full test suite. We denote the test suite produced by the algorithm for
a specification M by Test(M). Now we can present results that relate, for a
specification S and an implementation I, the application of test suites derived
from the specification and the different implementation relations. we omit the
proof of this theorem due to space-limitations.

Theorem 1. Lets S, I be UIOLTSs. We have I ioco∗ S if and only if I passes∗
tests(S), where ∗ is r or u or nothing .

5 Conclusions and Future Work

We have recently defined a new formalism, called Utility Input Output Labeled
Transition Systems, to specify the behavior of e-commerce agents. In this paper
we have introduced a testing methodology, based on this formalism, to test
whether an implementation of a specified agent behaves as the specification says
that it behaves. We have defined three different implementation relations, a
notion of test, and an algorithm to obtain, from a given specification, a set of
relevant tests.
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Concerning future work, we currently focus on two research lines. The first
one is based on theoretical aspects and we would like to extend our formalism
in order to specify the behavior of agents that are influenced by the passing of
time and would like to define the interaction between agents in order to test
multi-agents systems. The second line is more practical since we would like to
apply our formalism to real complex agents. In order to support this line of work,
we are developing a tool to automatically generate tests from specifications and
apply them to implementations.
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2. Núñez, M., Rodŕıguez, I., Rubio, F.: Specification and testing of autonomous agents
in e-commerce systems. Software Testing, Verification and Reliability 15(4), 211–233
(2005)
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Abstract. We set the basis for a theory of testing for distributed transactions in
service oriented systems where each service definition is decorated with a trans-
actional attribute (inspired by the Java Transaction API). Transaction attributes
discipline how services are executed with respect to the transactional scope of the
invoking party.

We define a language of observers and show that, in general, the choice of dif-
ferent transactional attributes causes different system’s behaviours wrt the testing
equivalences induced by the observers.

1 Introduction

We give an observational theory for transactional behaviours in Service-Oriented Com-
puting (SOC) based on the theory of testing [4]. Transaction in SOC, often referred to as
long-running, feature a mechanism called compensation which is a weaker version1 of
the classic rollback mechanism of ACID transactions in database systems. In SOC, each
activity of a transactional computation can be associated with a compensation installed
as the activity is executed. The run-time failure of an activity is backwardly propagated
and triggers the execution of the compensations installed for the activities completed
earlier. Therefore, compensations have been studied in relation to mechanisms of fail-
ure propagation.

Notably, the key characteristics of SOC are loose-coupling and dynamism: services
can be discovered at run-time relying only on their published interface, and upon service
invocation the system dynamically reconfigures to include the newly created service
instance. System reconfigurations should also consider transactional scopes (or scopes
for short) as they play a fundamental role in failures propagation.

Consider the system 〈〈invoke(s).P〉〉 where the transaction, represented by the angled
brackets, includes a process that invokes a service, which is described by the interface
s, and then behaves like P. Suppose that there exists a provider that implements s as
process Q. Should the system evolve so to include Q in the scope of the invoking process
(i.e., 〈〈P | Q〉〉)? Should Q be running in a fresh scope (i.e., 〈〈P〉〉 | 〈〈Q〉〉)? Or else, should
Q be outside any scope (i.e., 〈〈P〉〉 | Q)? Each alternative is valid and influences failure
propagation and the behaviour of the system (as shown in § 4).

We design an observational theory that yields a formal framework for analysing the
interplay between communication failures and the behaviour of a service-oriented sys-
tem. We use may- and must-testing equivalences to compare transactional behaviours.

1 ACID transactions are implemented by locking resources. Locks can be unfeasible if transac-
tions are long lasting.

J. Hatcliff and E. Zucca (Eds.): FMOODS/FORTE 2010, LNCS 6117, pp. 87–94, 2010.
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Table 1. Informal semantics of EJB attributes. Boxes represent scopes, • represent callers, ◦ rep-
resent callees. Failed activities are denoted by ⊗. Each row shows the behaviour of one attribute;
the first two columns show, respectively, invocations from outside and from within a scope.

invoker outside a scope invoker inside a scope callee supports

(1) • =⇒ • ◦ • =⇒ • ◦ r (Requires)

(2) • =⇒ • ◦ • =⇒ • ◦ rn (Requires New)

(3) • =⇒ • ◦ • =⇒ • ◦ ns (Not Supported)

(4) • =⇒ ⊗ • =⇒ • ◦ m (Mandatory)

(5) • =⇒ • ◦ • =⇒ ⊗ n (Never)

(6) • =⇒ • ◦ • =⇒ • ◦ s (Supported)

A remarkable feature of our framework is that it allows to discipline the reconfigura-
tion of transactional scopes, hence to predict and control the effects of failures in the
reconfigured system.

We build up on ATc (after Attribute-based Transactional calculus) [1], a CCS-like
process calculus designed to model dynamic SOC transactions featuring EJB transac-
tional attributes [7,6]; ATc and EJB attributes are summarised in § 2. § 3 yields the main
contribution of the paper, namely the definition of a class of observers which induces
suitable testing equivalences to compare ATc systems as shown in § 4.

2 Background

The ATc calculus presented in [1] takes inspiration from the Container Managed Trans-
actions (CMT) mechanism of Enterprise Java Beans (EJB). Hereafter, the terms con-
tainer and service provider which refer to the environment where methods and services
are executed, will be used interchangeably.

An ATc container associates each service interface to a transactional attribute (at-
tribute, for short) which specifies (i) the ‘reaction’ of the system upon invocations (e.g.,
“calling the service from outside a scope throws an exception”), and (ii) how scopes dy-
namically reconfigure (e.g., “the invoked service is always executed in a newly created
scope”). On the other hand, also the invoking party can specify which attribute must be
supported by the invoked service. This is natural in SOC where, typically, the service
properties are mutually negotiated between requester and provider.

The set of attributes is

A def
= {m, s, n, ns, r, rn} (attributes)

The intuitive semantics of each a ∈ A (attributes range over a, a1, a2, . . .) is in Table 1.
An ATc process is a CCS-like process with three additional capabilities: service in-

vocations, transactional scoping, and compensation installation. The set P of ATc pro-
cesses is given by the following grammar
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P,Q ::= 0 | νx P | P | Q | !P | s � A.P | 〈〈P〉〉Q | π ↓ Q.P | err (processes)

where s, s′, . . . range over a set of service names S while x, y, z, . . . range over a channel
namesN (assumed to be both countably infinite and disjoint), u ranges over S∪N , and
π is either x or x. We assume x = x. Restriction νx P binds x in P; we denote the sets of
free and bound channels of P ∈ P by fc(P) and bc(P). The standard process algebraic
syntax is adopted for idle process, restriction, parallel composition, and replication.
Process s � A.P invokes a service s required to support one of the attributes in A ⊆ A;
a scope 〈〈P〉〉Q consists of a running process P and a compensation Q (confined in the
scope) to be executed only upon failure (scopes can be nested); π ↓ Q.P executes π and
installs the compensation Q in the enclosing scope (if any), then behaves as P; finally,
err represents a run-time failure (err cannot be used by programmers).

A system

Γ  P with Γ = {γ1, . . . , γn} (systems) γ : S → A×P (containers)

is a process P within an environment Γ, namely within a set of containers. A container is
a finite partial map that assign an attribute and a “body” to service names. When defined,
γ(s) = (a, P) ensures that, if invoked in γ, s supports the attribute a and activates an
end-point that executes as P. Environments may offer different implementations of s
and support different attributes. Henceforth we write P ∈ Γ(s, A) for ∃γ ∈ Γ ∃a ∈ A :
γ(s) = (a, P) and P ∈ Γ(s, a) for P ∈ Γ(s, {a}).

The semantics of communications is given in terms of contexts; C[◊] is scope-
avoiding (s-a, for short) if there are no P,Q ∈ P and C′[◊] s.t. C[◊] = C′[〈〈◊ | P〉〉Q].

C[◊] ::= ◊ ∣∣∣ 〈〈C[◊] | P〉〉Q
∣
∣
∣ P | C[◊]

∣
∣
∣ C[◊] | P (contexts)

The reduction relation of ATc processes (i.e.,→) is the smallest relation→⊆ P × P
closed under the following axioms and rules:

C[〈〈π ↓ Q.P〉〉R] | C′[〈〈π̄ ↓ Q′.P′〉〉R′ ] → C[〈〈P〉〉R|Q] | C′[〈〈P′〉〉R′ |Q′ ] (p1)

C[〈〈π ↓ Q.P〉〉R] | C′[π̄ ↓ Q′.P′] → C[〈〈P〉〉R|Q] | C′[P′], if C′[◊] is s-a (p2)

C[π ↓ Q.P] | C′[π̄ ↓ Q′.P′] → C[P] | C′[P′], if C[◊] and C′[◊] are s-a (p3)

P→ P′

P | R→ P′ | R
P→ P′

νx P→ νx P′
P ≡ P′ → Q′ ≡ Q

P→ Q
(p4÷ p6)

The → relation is defined up-to a standard structural congruence relation ≡ (which is
extended to contexts). In (p1÷ p3), sender and receiver synchronise regardless the
relative nesting of their scopes. Upon synchronisation, compensations are installed in
parallel to the other compensations of the enclosing scope; if C[◊] is s.a. then compen-
sations are discarded.
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The reduction relation of ATc systems (i.e., �) is defined below, assuming C[◊] � 0.

P→ P′

Γ  P � Γ  P′
m ∈ A C[◊] is s-a

Γ  C[s � A.P] � Γ  C[err]
(s1/s2)

R ∈ Γ(s, {s, n, ns} ∩ A) C[◊] is s-a

Γ  C[s � A.P] � Γ  C[P] | R
R ∈ Γ(s, {r, rn} ∩ A) C[◊] is s-a

Γ  C[s � A.P] � Γ  C[P] | 〈〈R〉〉 (s3/s4)

P = C[〈〈s � A.P1 | P2〉〉Q] bc(P) ∩ fc(R) = ∅ R ∈ Γ(s, {m, s, r} ∩ A)

Γ  P � Γ  C[〈〈P1 | P2 | R〉〉Q]
(s5)

n ∈ A

Γ  C[〈〈s � A.P1 | P2〉〉Q] � Γ  C[Q]
(s6)

rn ∈ A ∧ R ∈ Γ(s, rn)

Γ  C[〈〈s � A.P1 | P2〉〉Q] � Γ  C[〈〈P1 | P2〉〉Q] | 〈〈R〉〉 (s7)

The rules above correspond to the informal presentation in Table 1: (s2÷ s4) model
the first column and (s5÷ s7)model the second one. Failures trigger the compensation
when occurring inside a scope (s6) and lead to an error otherwise (s2).

ATc systems do not model communication failures2 and do not provide an explicit
notion of commit for transactions. These aspects are modelled in § 3.

3 Observers for ATc

In this section we provide a theory of testing by defining a notion of observers suitable
for ATcthat interact with systems and possibly cause communication failures. Two sys-
tems are equivalent if they cannot be distinguished by an observers (they “pass the same
tests”).

In § 3.1 we define observers and observed systems, in § 3.2. we give an observational
semantics of ATc, in § 4 we show some motivating examples.

3.1 Observed Systems

The class of observers defined in this section is used to model communication failures
and define successful computations. An observer is derived by the following grammar:

O ::= 0
∣
∣
∣ �

∣
∣
∣ π.O

∣
∣
∣ Eπ.O

∣
∣
∣ O + O

∣
∣
∣ rec X.O

∣
∣
∣ X (observers)

The structural congruence for observers is the smallest equivalence relation closed
under the monoidal axioms of + and it is denoted as ≡o.

We consider sequential observers. Failing and successful tests are represented by 0
and�, respectively; prefix π.O allows observers to communicate with the system, while
prefix Eπ.O causes the failure of π in the system and continues as O; observers can be
composed with the (external) choice operator + and recursively defined as rec X.O
(where the occurrences of X in O are supposed guarded by prefixes). An observer is a
process that can interact with a system over its (free) channels and trigger failures in
the communications (e.g., to check that failures are correctly handled). Since observers

2 The relation � only considers errors due to misuse of attributes.
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cannot be composed in parallel, they do not communicate among themselves. This,
and the absence of name passing in ATc, allow us to avoid using name restriction in ob-
servers. Moreover, observers do not run in transactional scopes and they are not allowed
to invoke services; they are used to model communication failures so to scrutinize the
transactional behaviour of ATc systems.

Let systems be ranged over by S , S ′, . . .; the set States of observed systems is the set
of pairs made of a system S and an observer O, written as S ‖ O.

The reduction relation of ATc observed systems (i.e., �) is the smallest relation
satisfying the following axioms (where C[◊] is s-a in (os1/os2)):

Γ � C[π ↓ Q.P] ‖ π.O� Γ � C[P] ‖ O Γ � C[〈〈π ↓ Q.P〉〉R] ‖ π.O� Γ � C[〈〈P〉〉Q|R] ‖ O (os1/os2)

Γ � C[π.P] ‖ Eπ.O� Γ � C[err] ‖ O Γ � C[〈〈π.P | R〉〉Q] ‖ Eπ.O� Γ � C[Q] ‖ O (os3/os4)

S ‖ � � S ‖ � O ≡o O1 S ‖ O1 � S ′ ‖ O2 O2 ≡o O′

S ‖ O� S ′ ‖ O′
(os5/os6)

S S ′

S ‖ O� S ′ ‖ O
S ‖ O� S ′ ‖ O′

S ‖ O + O′′ � S ′ ‖ O′
(os7/os8)

Rules (os1/os2)model a communication step involving the system and the observer.
Communication failures occurring outside a scope yield an error (os3); failures oc-
curring inside a scope trigger the compensations associated with the enclosing scope
(os4). Rule (os5) signals when a test is passed, and (os6) is the usual rule for con-
gruence. Rule (os7) models a step due to transitions of the system that do not involve
the observer. The interactions of the system with non-deterministic observers are de-
fined by rule (os8); notice that, by (os5), if O = � and O′ = 0, then O′′ is discarded.

Example 1. Consider a scenario where process P acts as a proxy of a shared resource
for a client (which are not explicitly represented):

R = lock ↓ unlock.(quit.unlock).

R interacts with the resource to acquire a lock. This action is associated to compensation
unlock whose aim is to release the resource if an error interrupts the normal execution
flow. The client is granted to use of the resource until she sends message quit. Finally
the resource is released (unlock). Consider the observer

O = lock.(Equit.unlock.�)

that checks if the resource, after having been acquired, is released in case of failure
of the clients’ request to quit (action Equit). Notably, for any Γ, the observed system
Γ  R ‖ O does not pass the test since the compensation is discarded by rule (os1) and
O never reaches state �. Observed system Γ  〈〈R〉〉 ‖ O instead is satisfactory since the
compensation, installed by (os2), can release the resource. �
The set Comp of computations (ranged over by c) is the set of (possibly infinite) se-
quences of states S 0 ‖ O0, · · · , S n ‖ On, · · · such that S i ‖ Oi � S i+1 ‖ Oi+1 for
each i.
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3.2 Testing Equivalences for ATc

The basic elements of the testing theory are the notions of successful and non-divergent
computation. Intuitively, a computation is successful if the test is passed (i.e., the cor-
responding observer halts with �). Non-divergent computations are successful compu-
tations that reach � before the occurrence of an error. We now cast the basic notions of
the testing theory to ATc observed systems.

Definition 1. Let O � � stand for O = � + O′ for some observer O′.

– S ‖ O ∈ States is successful if O � �;
– Γ  P ‖ O ∈ States is diverging if P = C[err] for a context C[◊];
– c ∈ Comp is successful if it contains a successful state, unsuccessful otherwise;
– c = S 0 ‖ O0, S 1 ‖ O1, . . . , S n ‖ On, . . . diverges if either c is unsuccessful or there

is i ≥ 0 such that S i ‖ Oi is diverging and O j �� � for j < i.

As customary in testing theory, the possible outcomes of computations are defined in
terms of result sets, namely (non-empty) subsets of {�,⊥} where ⊥ and � denote diver-
gence and non-divergence, respectively.

Definition 2. The result set of S ‖ O ∈ States,�(S ‖ O) ⊆ {�,⊥}, is defined by

– � ∈ �(S ‖ O) ⇐⇒ there is a successful c ∈ Comp that starts from S ‖ O,
– ⊥ ∈ �(S ‖ O) ⇐⇒ there is c ∈ Comp starting from S ‖ O such that c is diverging.

As in [4], we consider may- and must-preorders and the corresponding induced
equivalences.

Definition 3. Given a system S and an observer O, we say that

S may O ⇐⇒ � ∈ �(S ‖ O) and S must O ⇐⇒ {�} = �(S ‖ O)

We define the preorders �m (may preorder) and �M (must preorder) on systems:

– S �m S ′ ⇐⇒ (S may O =⇒ S ′ may O), for all observers
– S �M S ′ ⇐⇒ (S must O =⇒ S ′ must O), for all observers.

The two equivalences�m and�M corresponding to �m and �M are defined as expected:
�m = �m ∩ �−1

m and �M = �M ∩ �−1
M .

Recall that (i) may-testing enforces some fairness ensuring that divergence is not “catas-
trophic” provided that there is a chance of success and (ii) that must-testing corresponds
to liveness as it requires all possible computations to be successful.

4 Testing Theory for ATc at Work

The following examples show how attributes influence the reconfiguration of transac-
tional scopes and how this is captured by our testing framework.
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Example 2. Consider the service s with body R defined in Example 1. Let Γ be an
environment such that R ∈ Γ(s, r) and R ∈ Γ(s, rn), namely in Γ there are (at least) two
providers for s with the same body R but supporting different attributes. Consider the
two possible clients, both invoking s and then releasing the resource:

P1 = 〈〈s � {r}.quit〉〉 and P2 = 〈〈s � {rn}.quit〉〉.
The different attributes associated to s generate two different behaviours from P1 and
P2 upon invocation (i.e., activation of endpoint R = lock ↓ unlock.quit.unlock):

S 1 = Γ  〈〈quit | lock ↓ unlock.quit.unlock〉〉 by rule (s5)

S 2 = Γ  〈〈quit〉〉 | 〈〈lock ↓ unlock.quit.unlock〉〉 by rule (s7).

Remarkably, R runs in the same transactional scope of the invoker in S 1 (due to the
attribute r), while it runs in a different scope in S 2 (due to the attribute rn). Now take
observer O = lock.unlock.� + Equit.unlock.� that checks that the resource is unlocked
both in case of normal execution and failure.

Running S 1 in parallel with O, and S 2 in parallel with O would results, after the
synchronisation on channel lock, respectively in the system

S ′1 = Γ  〈〈quit | quit.unlock〉〉unlock and S ′2 = Γ  〈〈quit〉〉 | 〈〈quit.unlock〉〉unlock

running in parallel with the continuation unlock.� + Equit.unlock.� of O. �
In Example 2 both S 1 may O and S 2 may O hold true. In fact, there is at least a suc-
cessful computation in both scenarios, namely the one in which the client manages to
send quit so that there is no failure. In this case of normal execution both systems pass
the test. On the other hand, an observer can tell apart systems S 1 and S 2 if it causes the
failure of quit. In fact, S ′1 the failure would trigger the compensation unlock whereas
in system S ′2 the observer would remain blocked after the failure since the compensa-
tion is installed in a different scope. It is immediate from the definitions in § 3.2 that
S 1 must O holds and ⊥ ∈ �(S 2 ‖ O), therefore S 2 must O does not hold.

Example 2 shows that, by specifying different transactional attributes we obtain dif-
ferent reconfiguration semantics (i.e., the scopes of the resulting systems are differently
configured) which may lead to different behaviours when failures have to be handled
and propagated. In general the behaviour of a system changes depending on how its
processes are nested in transactional scopes, as shown in Example 3.

Example 3. Given any environmentΓ, it is possible to find P,R,Q ∈ P such that (omit-
ting Γ for simplicity):

〈〈P | R〉〉Q �M 〈〈P〉〉Q | 〈〈R〉〉 e.g., 〈〈a | b〉〉c �M 〈〈a〉〉c | 〈〈b〉〉 with O = Eb.c.�
〈〈P〉〉Q | 〈〈R〉〉 �M 〈〈P | R〉〉Q e.g., 〈〈a〉〉c | 〈〈b〉〉 �M 〈〈a | b〉〉c with O = Ea.b.�
〈〈P〉〉Q | 〈〈R〉〉Q �M 〈〈P | R〉〉Q e.g., 〈〈a〉〉c | 〈〈b〉〉c �M 〈〈a | b〉〉c with O = Ea.b.�
〈〈P | R〉〉Q �M 〈〈P〉〉Q | R e.g., 〈〈a | b〉〉c �M 〈〈a〉〉c | b with O = Eb.c.�
〈〈P〉〉Q | R �M 〈〈P | R〉〉Q e.g., 〈〈a〉〉c | b �M 〈〈a | b〉〉c with O = Ea.b.�
〈〈P | R〉〉Q �M 〈〈P〉〉Q | 〈〈R〉〉Q e.g., 〈〈a ↓ e.d | d.b〉〉c �M 〈〈a ↓ e.d〉〉c | 〈〈d.b〉〉c with O = Eb.e.�.
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On the left-hand side of each case above we present a counter-example for that case,
where the observer is satisfied for the first process and not for the second one. In words,
transactional scopes do not commute with or distribute over parallel composition. �

5 Concluding Remarks and Related Work

Building on ATc [1], we define a theory of testing to study reconfigurable SOC trans-
actions in presence of failures. The proposed framework captures the interplay between
the semantics of processes and their compensations, and the dynamic reconfiguration
of transactional scopes due to the run-time invocation of new services.

Transactional attributes of EJB have been adapted to SOC transitions in [1] where
ATc has been introduced. The primitives of ATc allow one to determine and control
the dynamic reconfiguration of distributed transactions so to have consistent and pre-
dictable failure propagation. Also, in [1] it has been given a type system for ATc that
guarantees absence of failures due to misuse of transactional attributes.

A comparison of the linguistic features of ATc wrt other calculi featuring distributed
transactions has been given in [1]; StAC [3] and CJoin [2] possibly are the closest cal-
culi to ATc as they feature arbitrarily nested transactions and separate process commu-
nication from error/compensation. CJoin offers a mechanism to merge different scopes
but it is not offering the flexibility of the transactional attributes of ATc. To the best of
our knowledge, none of the calculi proposed in literature has given a testing semantics
(in [5] testing equivalence is given for the Join calculus but not adapted to Cjoin).

One of the limitations of our approach is the lack of link mobility à la π-calculus;
the extension of our approach to a name passing calculus is left as future work. Other
interesting extensions would be to allow the communication of attributes and a prim-
itive enabling a service s to make a parametrized invocation of a service s′ using the
same attribute supported by s (recall that attributes are when services are published in
containers). Also, the interplay of attributes with the behaviour of observed systems de-
serves further investigation as in some contexts it could be possible to inter-change the
attributes obtaining the same observed behaviour.

References

1. Bocchi, L., Tuosto, E.: A Java inspired semantics for transactions in SOC. In: TGC 2010.
LNCS. Springer, Heidelberg (2010) (to appear)

2. Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: extending Join.
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Abstract. Wireless sensor networks are typically ad-hoc networks of
resource-constrained nodes; in particular, the nodes are limited in power
resources. It can be difficult and costly to replace sensor nodes, for in-
stance when implanted in the human body. Data transmission is the
major consumer of power, so it is important to have power-efficient pro-
tocols. In order to reduce the total power consumption in the network,
we consider nodes which cooperate to transmit data. Nodes which co-
operate, form a group. A mobile node may at some point be without
a group, in which case it is desirable for the node to be able to join a
group. In this paper we propose a modification of the AODV protocol to
decide whether a node should join a given group, using coalitional game
theory to determine what is beneficial in terms of power consumption.
The protocol is formalized in rewriting logic, implemented in the Maude
tool, and validated by means of Maude’s model exploration facilities.

1 Introduction

A wireless sensor network (WSN) often contains hundreds or thousands of sen-
sor nodes equipped with sensing, computing, and communication devices such
as short-range communication devices over wireless channels. These nodes may
be distributed over a large area; e.g., WSNs can do area monitoring for some
phenomenon of interest. In such an application, the main goal of the WSN is to
collect data from the environment and send it to a sink node. In many cases,
WSNs are ad-hoc networks with mobile nodes which need to self-configure.

Sensor nodes are very small and often difficult to replace. This size limitation
introduces challenges for the design and management of WSNs; in particular,
restrictions in memory, power, and communication capacity need to be consid-
ered in order to improve the longevity of the nodes. Power restriction is the
most remarkable of these constraints: The range of data transmission depends
on the power used by the node. Reduced power consumption is an important
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goal in the design of WSN protocols. Because data transmission is expensive, the
management of communication between nodes plays a vital role for the power
efficiency of these networks. Cooperation between sensor nodes can potentially
reduce the total power consumed for data transmission in the whole network.

Grouping is a method to organize node cooperation in a WSN. A group of
nodes has a leader which receives data from the group members and communi-
cates with the outside of the group. Nodes which are close to each other, may
in principle communicate using less power. By cooperating inside a group, the
group’s members can decrease their transmission power to a minimum and still
reach the leader. However, if nodes do not have fixed locations, the network
topology can change. Nodes should compute the most efficient way to communi-
cate in the network. Consequently, the group structure of the network may need
to evolve. In a self-organizing network, a new node may want to join a group
and the group needs to decide whether to accept the node.

This paper proposes a protocol to decide whether a node should join a group.
We assume that a group leader forms and manages its group in a way that is
beneficial for the group’s members, and that a node can transmit directly to the
group leader using maximum transmission power. Our protocol uses coalitional
game theory to decide on group extensions. Adapting the AODV routing protocol
for ad-hoc networks [21], a utility function over the dynamically determined route
from the new node to the leader decides whether it is beneficial in terms of power
consumption that the new node joins the group. We develop a formal, executable
model of the proposed protocol in rewriting logic [16]. The resulting model is
validated using Maude [3], some initial results are presented here.

Related work. WSNs present interesting challenges for formal methods, due to
their resource restrictions and radio communication. This has led to research
on how to develop modeling languages or extensions which faithfully capture
typical features of sensors; e.g., mobility, location, radio communication, message
collisions. In addition, WSNs need communication protocols which take resource
usage into account. There is a very active field of research on protocol design for
WSNs. However, protocol validation is mostly done with simulation-based tools,
using NS-2, OMNeT+, and extensions such as Castalia [22] and SensorSim [20].

Formal techniques are much less explored in the development and analysis
of WSNs, but start to appear. Among automata-based techniques, the TinyOS
operating system has been modeled as a hybrid automaton [5] and UPPAAL
has been applied to the LMAC protocol [7] and to the temporal configuration
parameters of radio communication [25]. The CaVi tool combines simulation in
Castalia with probabilistic model checking [6]. A recent process algebra for active
sensor processes includes primitives for, e.g., sensing [4]. A Creol extension for
heterogeneous environments includes radio communication [12]. The Temporal
Logic of Actions has been used for routing tree diffusion protocols [18].

Ölveczky and Thorvaldsen have shown how a rich specification language like
Maude is well-suited to model WSNs, using Real-Time Maude to analyze the
performance of the OGCD protocol [19]. Their approach has also been combined
with probabilistic model-checking to analyze the LMST protocol [13]. We follow
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this line of research and use Maude as a tool to develop a grouping protocol [14]
for WSNs, applying coalitional game theory to estimate power consumption.
Noncooperational game theory has been used to reduce the power consumption
of sensor nodes, applying a utility function to find the Nash equilibrium [17,
24, 11]. Coalitional game theory is applied to reduce the power consumption in
WSNs by [23], who propose a merge and split approach for coalition formation.
They calculate the value of the utility function for every possible permutation
of nodes and find groups with the best utility value. This is as far as we know
the only previous work that uses coalitional game theory for grouping the sensor
networks. In contrast, we develop and formalize a protocol which considers nodes
which may need to join a new group without reorganizing the entire WSN.

Paper overview. Section 2 introduces WSNs and grouping and Section 3 presents
coalitional game theory. Section 4 proposes a group membership protocol based
on coalitional game theory. Section 5 briefly summarizes rewriting logic and
Maude, used to develop a formal model of the protocol in Section 6 and for
analysis of an example topology in Section 7. Section 8 concludes the paper.

2 Grouping the Sensor Nodes

A sensor network is typically a wireless ad-hoc network, in which the sensor nodes
support a multi-hop routing algorithm. In these networks, communication be-
tween nodes is generally performed by direct connection (single-hop) or through
multiple hop relays (multi-hop). Multi-hop ad-hoc wireless networks use more
than one wireless hop to transmit information from a source to a destination.

When a large number of sensor nodes are placed in the environment, neighbor
nodes may be very close to each other. In this case, the transmission power level
for communication with a neighbor can be kept low. Since nodes can cooperate
with each other to transmit data, multi-hop communication in sensor networks
is expected to consume less power than the traditional single-hop communica-
tion [1]. Furthermore, multi-hop communication can effectively overcome some
signal propagation effects experienced in long-distance wireless communication.

Wireless sensor nodes use routing protocols to communicate with each other
and to find the path to the designated sink node (or nodes) in order to transmit
the data that is sensed from the environment. In most of these protocols, the
nodes broadcast their data to all nodes that are within their data transmission
range. This range is determined by the power used for transmission. In general,
sensor nodes use their maximum data transmission power to cover a larger area
and reach more nodes, both for data transmission and for routing. For example,
in the standard AODV protocol [21], a node that moves or enters the network
broadcasts a routing request package (hello) with maximum power to find
neighbors. Due to node mobility, a node may need a new routing path, so it
rebroadcasts a routing request to its neighbors using maximum power.

Grouping is a method for cooperation between nodes, in which nodes belong to
distinct groups [14]. When nodes form a group, they help each other to transfer
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data in a more organized way. Each group has a group leader ; i.e., a designated
member which receives data from the group members and communicates with
other group leaders in order to route the data to its destination. Inside the group,
it is not always necessary for a node to use its maximum transmission power.
Instead, the group members can decrease the power consumed for communica-
tion and use their minimum transmission power to reach the group leader. The
leader should be chosen carefully and this role can be exchanged between group
members at specific time intervals. In this paper we do not focus on the leader
selection issue but rather on the group management.

Sensor nodes in the real world are not designed to directly support grouping.
We therefore assume that nodes know nothing about the grouping process. In
contrast, the group leaders are special nodes that process the information of the
newly entered sensor nodes and decide about their possible group membership.
The group formation could be done by using different techniques. In general, the
grouping of nodes can be done based on special characteristics or distance. In the
first case, a special correlation among the sensors should be found by using vector
quantization [9]. For example, all the sensor nodes that have similar sensed data
could be placed in one group. In the second case, the sensor nodes are formed in
different groups based on the distance. With this technique, a node’s location is
the important factor for group formation, but to have a better grouping, other
factors such as interference could also be considered for group formation. The
location of the nodes can be determined using different methods, such as GPS.

The AODV Routing protocol. The Ad-hoc On-Demand Distance Vector (AODV)
routing protocol [21] is a reactive protocol; i.e., routes are created at need. It
uses traditional routing tables, one entry per destination, and sequence numbers
to decide if the routing information is up-to-date and to avoid loops. Note that
AODV maintains time-based states in each node; if a routing entry has not been
used recently, it expires and the node’s neighbors are notified. Route discovery
is based on query and reply cycles, and route information is stored in all nodes
along the route as routing table entries. The AODV protocol works as follows:

1. Nodes broadcast hello messages to detect and monitor links to neighbors.
2. The route discovery process starts when a node which requires a route to

another node, broadcasts a rreq message.
3. If the neighbor which receives this message has no route entry for the desti-

nation, or this entry is not up-to-date, the rreq is re-broadcasted with an
incremented hop count which shows the length of the path.

4. While the rreq message is broadcasting through the network, each node
remembers the reverse path to the source node.

5. If the receiver node is the destination or it has a routing path to the des-
tination with a sequence number larger or equal to that of rreq, a rrep
message is sent back to the source. The route to the destination is established
when a rrep message is received by the original source node.

6. A source node may receive multiple rrep messages with different routes. It
then updates its routing entries if the information is new in the sense that
the rrep has a greater sequence number.
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3 Coalitional Game Theory

Game theory [8] can be used to analyze behavior in decentralized and self-
organizing networks. Game theory models the actions and choice of strategies
of self-interested players, in order to capture the interaction of players in an
environment such as a communication network. A game consists of

– a set of players N = {1, 2, ..., n}.
– an indexed set of possible actions A = A1 × A2 × ... × An, where Ai is the

set of actions of player i (for 0 < i ≤ n).
– a set of utility functions, one for each player. The utility function u assigns

a numerical value to the elements of the action set A; for actions x, y ∈ A if
u(x) ≥ u(y) then x must be at least as preferred as y.

Game theory can be divided into noncooperative [2] and cooperative game the-
ory [8]. Noncooperative game theory studies the interaction between competing
players, where each player chooses its strategy independently and each player’s
goal is to improve its utility or reduce its cost [23]. In contrast, cooperative (or
coalitional) game theory considers the benefit of all the players. In coalitional
games, players choose the strategies to maximize the utility for all players. In
these games, cooperating groups of players are formed, called coalitions. Coali-
tional games are useful to design fair, robust, and efficient cooperation strategies
in communication networks [23].

In a coalitional game (N, v) with N players, the utility of a coalition is de-
termined by a characteristic function v : 2N → R which applies to coalitions of
players. For a coalition S ⊆ N , v(S) depends on the members of S, but not on the
structure of the players. Most coalitional games have transferable utility (TU);
i.e., the utility of a coalition can be distributed between the coalition members
according to some notion of fairness. However, for many scenarios a coalition’s
utility cannot be captured by a single real value, or rigid restrictions are needed
on the distribution of the utility. These games are known as coalitional games
with nontransferable utility (NTU). In an NTU game, the payoff for each player
in a coalition S depends on the actions selected by the players in S. The core of
the coalitional game (N, v) is the set of payoff allocations that guarantees that
no player has an incentive to leave N to form another coalition [23].

4 A Protocol for Deciding Group Membership

Consider the grouping problem for wireless sensor networks as a coalitional game.
The sensor nodes are the players and the game is concerned with whether a node
should join a group or not. The goal is to reduce the total power consumption
in the network, so we need a utility function which reflects the power consumed
for data transmission and signal interference. The utility function proposed by
Goodman et al. [10] appears to be a suitable choice when power consumption is
an important factor of the model [15]:

u(Pj , δj) = (
R

Pj
)(1− e−0.5δj )L. (1)
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When applying u to a node j, Pj is the power used for message transfer by j and
δj is the signal to interference and noise ratio (SINR) for j. In addition, R is the
rate of information transmission in L bit packets in the WSN. For simplicity, we
assume that the SINR is fixed and the same for all the nodes.

Wireless sensor nodes can transfer data with different amounts of power. Let
Pmax denote the maximum transmission power and Pmin

j the minimum power
for each node j, such that 0 ≤ Pmin

j ≤ Pmax. When a node j cooperates in a
group, it uses Pmin

j for message transmission, and otherwise Pmax. Consider a
network of nodes N = {1, . . . , n}. When there is no coalition between nodes in
N , we have

n∑
j=1

u(Pj , δ) =
n∑

j=1

uj(Pmax, δ).

In contrast, if all the nodes in N cooperate, we have:
n∑

j=1

u(Pj , δ) =
n∑

j=1

u(Pmin
j , δ).

Observe that if this utility function were applied naively, it would always be
beneficial for nodes to form a coalition, as the result of decision making is the
same for every topology of the network and every group:

n∑
j=1

u(Pmin
j , δ) >

n∑
j=1

u(Pmax, δ).

However, in reality all the cooperating nodes use power in order to transmit data
to the group leader, so it is not sufficient to only consider the power consumption
of the original sender of data in the utility function. Although each node uses its
minimum power to transmit data, the node’s total power usage depends on the
number of messages it needs to transmit. Each node on the route between the
original sender and the leader, needs to send its own data as well as the data that
it has received from the previous node. In general, the power consumption for
the intermediate nodes will increase. We modify the utility function (Formula 1)
to capture the overall power usage needed to transmit the data from the node
to the leader following a given path:

u(Pj , δj) = (
R∑

n∈RPj,Leader
Pmin

n

)(1− e−0.5δj )L, (2)

where the set RPj,Leader contains all nodes in the routing path between node
j and the leader. This utility function is similar to Formula 1 except that the
power that is applied is the sum of the powers consumed by all the nodes in the
routing path through which data is transmitted from the sender to the leader.

Using this utility function, the leader can decide about the membership of a
new node more precisely and with more realistic estimations. The result of this
utility function depends on the specific topology, so coalition is not always ben-
eficial. Depending on the value calculated using Formula 2, node j will become
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a member of the group or not. According to the utility function it is more ben-
eficial for the node to follow a path through the group than to act individually,
if the following formula holds:

u(Pmax, δ) < u(Pj , δj) = (
R∑

n∈RPj,Leader
Pmin

n

)(1 − e−0.5δj)L.

We adapt the AODV protocol to find the cheapest routing path between the
new node and the leader in terms of power usage. In AODV, each node uses its
maximum power to send all its messages, including hello, rreq, and rrep
messages. In order to faithfully capture the real environment, the leader and
the node should be in the signal range of each other. Consequently, the node
can communicate directly with the leader by using its maximum transmission
power. However, inside the group it is sufficient to use the minimum power for
data transmission. Consequently, we let nodes transmit messages with minimum
power when running the AODV routing protocol. In this situation, AODV can
only find the routing path between the new node and the group leader in the
case where coalition is possible. However, the shortest path in terms of hops
is not necessarily the cheapest path when the minimum transmission power of
nodes may vary. Therefore, we modify the AODV protocol to accumulate the
needed power consumption along the path instead of the number of hops. The
details are given in Section 6.

5 Rewriting Logic and Maude

The formal model of the protocol is defined in rewriting logic (RL) [16] and can
be analyzed using Maude [3]. A rewrite theory is a 4-tuple (Σ, E, L, R) where the
signature Σ defines the function symbols, E defines equations between terms,
L is a set of labels, and R is a set of labeled rewrite rules. Rewrite rules apply
to terms of given sorts. Sorts are specified in (membership) equational logic
(Σ, E). When modeling computational systems, different system components
are typically modeled by terms of suitable sorts defined in the equational logic.
The global state configuration is defined as a multiset of these terms. RL extends
algebraic specification techniques with transition rules: The dynamic behavior of
a system is captured by rewrite rules supplementing the equations which define
the term language. From a computational viewpoint, a rewrite rule t −→ t′

may be interpreted as a local transition rule allowing an instance of the pattern
t to evolve into the corresponding instance of the pattern t′. When auxiliary
functions are needed in the semantics, these are defined in equational logic, and
are evaluated in between the state transitions [16]. If rewrite rules apply to non-
overlapping sub-configurations, the transitions may be performed in parallel.
Consequently, concurrency is implicit in RL. Conditional rewrite rules t −→
t′ if cond are allowed, where the condition cond is a conjunction of rewrites
and equations that must hold for the main rule to apply. In Maude, equations are
denoted by eq, labeled rules by rl [name], conditional ones by ceq and crl,
respectively, and variable names are capitalized. Given an initial state of a model,
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Maude supports simulation as well as breadth-first search through reachable
states and model checking of finite reachable states for desired properties.

6 Modeling and Validation

In this section, we define a formal model of the group membership protocol in
rewriting logic. In the model, we assume that there is no message loss in the
protocol and that the topology of the network consists of a fixed number of
nodes, but nodes can move and messages do not expire.

A system configuration is a multiset of objects and messages inside curly
brackets. Following RL conventions, whitespace denotes the associative and com-
mutative constructor for configurations. The term 〈O : Node | Attributes〉
denotes a Node object, where O is the identifier and Attributes is a set of
attributes of the form Attr : X. Here, Attr is an attribute name and X the asso-
ciated value. Node objects have the following attributes: the Boolean leader?
indicates if the node is a leader, leader is a list that stores the information of
the node’s leader, the set neighbors contains the neighbor nodes, and the set
members contains the group members of a leader node. The natural numbers
xLoc and yLoc contain the horizontal and vertical position of the node, respec-
tively. The natural number power stores the current sending power level of the
node. The routes is a list of routes; i.e., of lists consisting of a destination ID,
the next node in the path to the destination and the accumulated power that is
required to send data to the destination. The natural number reqid stores the
identifier of the last received message and pred the identity of the last neighbor
that communicated with the node (the predecessor in the protocol).

We now explain the rules and equations modeling wireless message passing,
node movement, the routing protocol, and the evaluation of the utility function.

6.1 Unicast and Broadcast

Unicast messages have the form (M from O X Y P to O’) where M is the
messages body (possibly with parameters), O the source with current location
(X,Y), O’ the destination, and P the sending power used. A message will not
reach its destination unless it is within the range. This is modeled by the equation
ceq (M from O X Y P to O´) 〈O´: Node | xLoc: X´, xLoc: Y´, A 〉

= 〈O´: Node | xLoc: X´, xLoc: Y´, A 〉 if not inrange(X,Y,X´,Y´,P).

where inrange is a Boolean function checking that the two locations (X,Y)
and (X’,Y’) are in range of each other with power P (using the calculated
distance and the network parameters including the interference level). Note that
this equation removes a message which cannot reach its destination, depending
on the location values at sending time.

Transmission is modeled by a rule which creates a message, the equation above
(if enabled) and a rule consuming the message if it is in range. This reflects the
time when a message is queued for sending, the transmission time (immediate
for wireless communication) and the queued at the destination, and the time the



Grouping Nodes in WSNs Using Coalitional Game Theory 103

message is taken out of the destination queue. Thus it models the immediate
transmission mode of wireless communication, and it allows several nodes to
move around at the same time.

Multicasting is modeled by allowing a multiset of destinations and the follow-
ing equations which expand the destination list:
eq (M from O X Y P to noneOids) = none .
eq (M from O X Y P to O’; Os) =

(M from O X Y P to O’) (M from O X Y P to Os).

Here, Os denotes a multiset of object identities (with “;” as multiset constructor).
Wireless broadcasting uses messages (M from O X Y P to all) where

all is a constructor indicating that it is sent to all nodes within range. The use
of all is defined by the equation
eq {C (M from O X Y P to all)} = {C (M from O X Y P to nodes(C)-O)} .

Here, nodes(C) gives the multiset of all node identities in the configuration C.
Thus broadcasting is reduced to multicasting. Due to the first equation above
only nodes in the range can receive the message. This equation models the un-
derlying network and therefore applies to the whole system.

6.2 Node Movements

In most WSNs, nodes can move and change their location. Therefore, a WSN
model should provide suitable rules for changing the position of nodes. We have
modeled three different methods for node movement. In the first method, the
node can move freely everywhere, captured by rules that non-deterministically
change the location of the node. In the second one, a node can move directly to a
desired location. A rule will change the location of the node in one step. In the last
method, a node can move to a desired location through a non-deterministic path,
there are rules that determine the final destination and do non-deterministic but
finite steps toward it. In each step, the vertical or horizontal location of the node
is decreased or increased by one unit, but rules always check that the new location
is closer to the desired location before the node moves.

6.3 The Regrouping

Each node should inform neighboring leader nodes about its movements. This
is done by broadcasting a hello message with maximum power when it has
changed position. The following rule represents the hello broadcasting:
rl [moving-done] :(movemsg Xn Yn from O X Y P to O)
〈O :Node | xLoc: Xn, yLoc: Yn, neighbors: N, power: P, A 〉
−→ 〈O :Node | xLoc: Xn, yLoc: Yn, neighbors: N, power: P, A 〉
(hello from O X Y Pmax to all) .

When a neighboring group leader receives this hello message, a new node has
entered the group’s signal range. The leader will then start the process to decide
whether the new node should be accepted as a group member based on the power
information in the result path. The leader first runs the modified AODV protocol
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(presented below in Section 6.4) with minimum power to find the cheapest path
to the new node. If a path is found, the modified AODV protocol ends by letting
the leader send a message membershipMsg to itself. This message starts the
decision making process about the node’s membership, which is captured by the
following rules:
crl [Membershipdecision] :(membershipMsg Oc from O’ X’ Y’ P’ to O)
〈O :Node | leader?: true, members: Os, xLoc: X, yLoc: Y, routes: RT,

power: P, A 〉 −→
〈O :Node | leader?: true, members: (Oc ; Os), xLoc: X, yLoc: Y,

routes: RT, power: P, A 〉 (join from O X Y P to Oc)
if joinGroup(findPower(RT)).

rl [Join] :(join from O X Y P to Oc) 〈Oc: Node | leader: [ O’ X’ Y’ ], A 〉
−→ 〈Oc: Node | leader: [ O X Y ], A 〉 .

where the function findPower extracts the value of required power for data
transmission from the routing table, and the function joinGroup represents
the computation of the utility function (Formula 2), formalized as follows:
op joinGroup : Nat → Bool .
eq joinGroup (P) = (RATE quo P ∗ ((1 - 2.71 ^ (0.5 ∗ I)) ^ PACK)

> (RATE quo Pmax) ∗ ((1 - 2.71 ^ (0.5 ∗ I)) ^ PACK).

Here, P is the total power consumed in the routing path, and Pmax, I, RATE,
and PACK, are constants reflecting the maximum sending power, the signal in-
terference level, the transmission rate, and the packet size, respectively. These
constants can be seen as network parameters, and suitable values given as pa-
rameters to the initial configuration. The output of joinGroup is a Boolean
value. The leader uses this function to decide if a new node should be added as
a member. The Join rule may be adjusted to enable optimal selection in case
of multiple group membership offers.

6.4 The Routing Protocol

The routing protocol discussed in Section 4 is now formalized. The main differ-
ence between our protocol and AODV is that we find the cheapest path instead
of the shortest one. In the model, each node has its own routing table that stores
the path to each destination. For each destination, the routing table stores the
following information: the next node on the path to the destination and the re-
quired power to send data to the destination. When the node finds a cheaper
path to a destination (a path which requires less power), it updates its routing
table and replaces the old path with the cheaper one. The neighbors of a node
are stored in a list neighbors. Fig. 2 shows a simplified graph of our model.

All the messages in the routing protocol are modeled as messages in Maude
and behave as explained in Section 6.1. The rules in Fig. 1 control the mes-
sage propagation in the model by receiving a route request or a route reply
message and sending a new message which is either a reply or a request. The
rule dest-rec-rreq is enabled when the node that has received the request
is the final destination. The next two rules, both named rec-rreq, are related
and require that the receiver of the request message is not the destination. In



Grouping Nodes in WSNs Using Coalitional Game Theory 105

crl [dest-rec-rreq] :(singlerreq SID DID ID P from O X Y Pj to O’)
〈O’ :Node | reqid: I, power: POW, xLoc: X’, yLoc: Y’, A 〉
−→ 〈O’ :Node | reqid: ID, power: POW, xLoc: X’, yLoc: Y’, A 〉
(rrep SID DID ID POW from O’ X’ Y’ POW to O) if O’ = DID .

crl [rec-rreq1] :(singlerreq SID DID ID P from O X Y Pj to O’)
〈O’ :Node | pred: O1, neighbors: N, reqid: I, power: POW, xLoc: X’,

yLoc: Y’, A 〉
−→ 〈O’ :Node | pred: O, neighbors: N, reqid: ID, power: POW, xLoc: X’,

yLoc: Y’, A 〉 (rreq SID DID ID (P +POW) from O’ X’ Y’ POW to N)
if (O’ �= DID) ∧ (I < ID) .

crl [rec-rreq2] :(singlerreq SID DID ID P from O X Y Pj to O’)
〈O’ :Node | pred: O1, neighbors: N, reqid: I, A 〉
−→ 〈O’ :Node | pred: O, neighbors: N, reqid: ID, A 〉
if (O’ �= DID) ∧ (I ≥ID) .

crl [rec-rrep1] :(rrep SID DID ID P from O X Y Pj to O’)
〈O’ :Node | routes: RT, pred: O1, neighbors: N, power: POW,

xLoc: X’, yLoc: Y’, A 〉
−→ 〈O’ :Node | routes: RT, pred: O1, neighbors: N, power: POW, xLoc: X’,

yLoc: Y’, A 〉 (rrep SID DID ID (P +POW) from O’ X’ Y’ POW to O1)
if (O’ �= SID) ∧ (findPower(RT, DID) > P) .

crl [rec-rrep2] :(rrep SID DID ID P from O X Y Pj to O’)
〈O’ :Node | routes: (RT [ DID X Y ] RT’), pred: O1, neighbors: N,

power: POW, xLoc: X’, yLoc: Y’, A 〉
−→ 〈O’ :Node | routes: (RT [ DID O P ] RT’), pred: O1,

neighbors: N, power: POW, xLoc: X’, yLoc: Y’, A 〉
(rrep SID DID ID (P +POW) from O’ X’ Y’ POW to O1) if (O’ �= SID)
∧ (findPower((RT [ DID X Y ] RT’), DID) < P)∧(findPower(RT, DID) �= 0).

crl [rec-rrep3] :(rrep SID DID ID P from O X Y Pj to O’)
〈O’ :Node | routes: RT, pred: O1, neighbors: N, power: POW,

xLoc: X’, yLoc: Y’, A 〉
−→ (rrep SID DID ID (P +POW) from O’ X’ Y’ POW to O1)
〈O’ :Node | routes: (RT [ DID O P ]), pred: O1,

neighbors: N, power: POW, xLoc: X’, yLoc: Y’, A 〉
if (O’ �= SID) ∧ (findPower(RT, DID) < P) ∧ (findPower(RT, DID) = 0) .

crl [src-rec-rrep] :(rrep SID DID ID P from O X Y Pj to O’)
〈O’ :Node | routes: RT, pred: O1, neighbors: N, power: POW,

xLoc: X’, yLoc: Y’, A 〉
−→ (membershipMsg DID from O’ X’ Y’ POW to O’)
〈O’ :Node | routes: (RT [ DID O P ]), pred: O1, neighbors: N,

power: POW, xLoc: X’, yLoc: Y’, A 〉 if (O’ = SID) .

Fig. 1. Rules for message propagation

the first rule, the request message’s ID is greater than previously seen by the
receiver so the message is fresh. In the second rule the message has been seen
before because the ID of the request message is less than the current message
ID, so the message will be ignored. The three following rules represent the sit-
uation that the receiver of the reply message is not the original sender of the
request. Note that in these rules the estimated power consumption is accumu-
lated in the request messages by P + POW. In rule rec-rrep1, the routing table
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Fig. 2. The graph of the model Fig. 3. The topology of the case study

remains unchanged because the current route to the destination is cheaper (the
smaller power value in the table). Rule rec-rrep2 changes the existing row in
the routing table because the new path to the destination is cheaper than the
the current one. In rule rec-rrep3, no previous path to the destination exists.
Therefore, a new row is added to the routing table. The rule src-rec-rrep is
enabled when the original sender of the request message has received the reply
message. This rule sends a message membershipMsg that enables a rule that
make decisions about node’s membership in the group (see Section 6.3).

7 Analysis of the Case Study

Maude provides different tools for testing and validation of the model. It can run
the model through just one path of the state space like a simulator (using the
rewrite command rew), which gives us the result of a single run of the model. As
a case study, we consider a topology with six nodes such that one of the nodes
moves to the range of a group. The topology is shown in Fig. 3. In this topology,
the nodes b and f are leaders of different groups. Nodes a, d, and e are the
members of the group with leader a, and node c is the member of the group
with leader f. We consider the scenario in which node c changes its location such
that it comes within the range of the leader b. As group leader, node b decides
about the membership of c in the group. The property that we expect from the
system is beneficial membership; i.e., the membership of the node in the group is
accepted by the leader b only when this membership is beneficial for the group.
We first use Maude to check this property by simulating the model. The result
of the simulation is given in Fig. 4. By inspecting the members attributes of
leaders b and f, we see that node c now is a member of b’s group, while that
of f is empty.

Simulation can not prove the correctness of the model because it just checks
one path in the system’s state space, to prove the validity of the model all the
possible paths of the state space should be checked for failure. To prove the valid-
ity of the model, we search for all possible final states of our model using Maude’s
search command. The syntax search initState =>! C:Configuration



Grouping Nodes in WSNs Using Coalitional Game Theory 107

{〈 "a" :Node | leader?: false, leader: [2 1 1], neighbors:
("b" ; "c" ; "d"), members: noneOids, xLoc: 1, yLoc: 1,
routes: ([0 0 0] [3 3 1]), reqid: 1, pred: "d", power: 2 〉

〈"b" :Node | leader?: true, leader: [2 1 1], neighbors:
("a" ; "c" ; "d"), members: ("a" ; "c" ; "d" ; "e"), xLoc: 2,
yLoc: 2, routes: ([0 0 0] [3 1 2]), reqid: 1, pred: "d", power: 2 〉

〈"c" :Node | leader?: false, leader: [2 2 2], neighbors:
("a" ; "e"), members: noneOids, xLoc: 6, yLoc: 8, routes:
[0 0 0], reqid: 1, pred: "a", power: 2 〉

〈"d" :Node | leader?: false, leader: [2 1 1], neighbors:
("a" ; "b"), members: noneOids, xLoc: 4, yLoc: 3, routes:
[0 0 0], reqid: 1, pred: "b", power: 1 〉

〈"e" :Node | leader?: false, leader: [2 1 1], neighbors:
"c", members: noneOids, xLoc: 9, yLoc: 11, routes: [0 0 0],
reqid: 0, pred: "a", power: 2 〉

〈"f" :Node | leader?: true, leader: [6 20 20], neighbors:
"c", members: noneOids, xLoc: 9, yLoc: 11, routes: [0 0 0],
reqid: 0, pred: "a", power: 2 〉 }

Fig. 4. Final state of the protocol for the case study

indicates that we search through all final states C reachable from the initial con-
figuration initState. The result of this search is the same as for the simulation
(cf. Fig. 4). Furthermore, the search shows that there is no other solution.

In order to validate the model, we use a correctness function. This is the
function joinGroup that we used in the model to decide about membership
of a node. We now search for a final state of the model such that node c is a
member of the group of leader b, but such that the membership of this node
is not beneficial for the group. In this case the function joinGroup should
decide not to add the node to the group. We define a function findCheapest
which statically finds the cheapest path from a node j to the leader in a given
configuration C. Thus we compare the statically identified cheapest route with
the result of running the protocol. If this search finds a state, it means that the
model is not correct because a violation of the desired property has occurred.
We do this analysis by a search command using a such that clause to specify the
desired property.
search initState −→ ! {C:Configuration 〈"b" :Node | routes: RT:ListListNat,
members: ("c" ; ML:OidSet), ATTS:AttributeSet 〉 } such that
joinGroup (findCheapest (c,b, C:Configuration 〈"b" :Node | routes:
RT:ListListNat, members: ("c" ; ML:OidSet), ATTS:AttributeSet 〉 ))

= false .

Maude checks all final states, but finds no solution to this search. This analysis
demonstrates how Maude can be used to check the correctness of the protocol,
limited to one initial state at the time. For a more in-depth analysis of the
correctness of the protocol, we need to generate a set of initial states reflecting
representative scenarios. However, how to generate such a set is beyond the scope
of this paper and isleft for future work.
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8 Conclusion

In this paper, we propose a protocol to decide on group membership for WSNs
with mobile nodes. This work is done in the context of a cooperation project
with the national hospital of Norway, where wireless technology is developed
for medical applications. This paper addresses a subproblem which is common
to several grouping protocols. Group members cooperate with each other to
transmit data, in order to decrease the total power consumption of the group.
When a node moves, it may need to join a new group and coalitional game theory
is applied to find the best groups with respect to the total power consumption.
The protocol we propose combines a modified version of the AODV protocol
with coalitional game theory in order to find the cheapest route in a group with
respect to power consumption. We have formalized the protocol in rewriting
logic and used Maude to analyze its behavior for an example scenario.

In future work, we intend to refine the utility function used in this paper, in
particular to capture the interference of the transmission signals. Other interest-
ing extensions of our current work are criteria for the dynamic merging of groups
and topologies in which the leader may change. For these problems, we intend to
build on our current Maude model and to extend the model to capture real-time
aspects of WSNs. Orthogonally to these extensions, we plan to strengthen our
analysis by developing a broader base of representative WSN scenarios.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

2. Başar, T., Olsder, G.J.: Dynamic non-cooperative game theory. SIAM, Philadelphia
(1999)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285, 187–243 (2002)

4. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and verifying sensor
networks: An experiment of formal methods. In: Liu, S., Maibaum, T.S.E., Araki,
K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 318–337. Springer, Heidelberg (2008)

5. Ergen, S.C., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with
hybrid automata modelling. In: Raghavendra, C.S., Sivalingam, K.M. (eds.) Proc.
First ACM Intl. Workshop on Wireless Sensor Networks and Applications (WSNA
2002), pp. 98–104. ACM, New York (2002)

6. Fehnker, A., Fruth, M., McIver, A.: Graphical modelling for simulation and formal
analysis of wireless network protocols. In: Butler, M., Jones, C.B., Romanovsky,
A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Tolerance. LNCS,
vol. 5454, pp. 1–24. Springer, Heidelberg (2009)

7. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

8. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)
9. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer

Academic Publishers, Norwell (1992)



Grouping Nodes in WSNs Using Coalitional Game Theory 109

10. Goodman, D., Mandayam, N.: Power control for wireless data. IEEE Personal
Communications 7, 48–54 (2000)

11. Inaltekin, H., Wicker, S.B.: The analysis of nash equilibria of the one-shot random-
access game for wireless networks and the behavior of selfish nodes. IEEE/ACM
Trans. Netw. 16(5), 1094–1107 (2008)

12. Johnsen, E.B., Owe, O., Bjørk, J., Kyas, M.: An object-oriented component model
for heterogeneous nets. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 257–279. Springer, Heidelberg
(2008)

13. Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the lmst wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G., de
Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidel-
berg (2008)

14. Lloret, J., Palau, C.E., Boronat, F., Tomás, J.: Improving networks using group-
based topologies. Computer Communications 31(14), 3438–3450 (2008)

15. Mackenzie, A.B., Wicker, S.B.: Game theory and the design of self-configuring,
adaptive wireless networks. IEEE Communications Magazine 39(11), 126–131
(2001)

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

17. Miller, D.A., Tilak, S., Fountain, T.: Token equilibria in sensor networks with
multiple sponsors. In: CollaborateCom. IEEE, Los Alamitos (2005)

18. Nair, S., Cardell-Oliver, R.: Formal specification and analysis of performance vari-
ation in sensor network diffusion protocols. In: Balsamo, S., Chiasserini, C.-F.,
Donatiello, L. (eds.) Proc. 7th Intl. Symp. on Modeling Analysis and Simulation
of Wireless and Mobile Systems (MSWiM 2004), pp. 170–173. ACM, New York
(2004)

19. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theor.
Comput. Sci. 410(2-3), 254–280 (2009)

20. Park, S., Savvides, A., Srivastava, M.B.: SensorSim: a simulation framework for
sensor networks. In: Boukerche, A., Meo, M., Tropper, C. (eds.) Proc. 3rd Intl.
Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems
(MSWiM 2000), pp. 104–111. ACM, New York (2000)

21. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing.
In: WMCSA, pp. 90–100. IEEE Computer Society, Los Alamitos (1999)

22. Pham, H.N., Pediaditakis, D., Boulis, A.: From simulation to real deployments in
WSN and back. In: Intl. Symp. on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM 2007), pp. 1–6. IEEE, Los Alamitos (2007)

23. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Başar, T.: Coalitional game theory
for communication networks: A tutorial. IEEE Signal Processing Magazine 26(5),
77–97 (2009); Special Issue on Game Theory

24. Strauss, R., Abedi, A.: Game theoretic power allocation in sparsely distributed
clusters of wireless sensors (gpas). In: Guizani, M., Mueller, P., Fähnrich, K.-P.,
Vasilakos, A.V., Zhang, Y., Zhang, J. (eds.) IWCMC, pp. 1454–1458. ACM, New
York (2009)

25. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of
biomedical sensor networks. In: de Alfaro, L., Palsberg, J. (eds.) Proc. 8th Intl.
Conf. on Embedded Software (EMSOFT 2008), pp. 69–78. ACM, New York (2008)



Forgetting the Time in Timed Process Algebra
Timeless Behaviour in a Timestamped World

Anton Wijs

Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
A.J.Wijs@tue.nl

Abstract. In this paper, we propose the notion of partial time abstrac-
tion for timed process algebras, which introduces the possibility to ab-
stract away parts of the timing of system behaviour. Adding this notion
leads to so-called partially timed process algebras and partially timed
labelled transition systems. We describe these notions, and generalise
timed branching bisimilarity to partially timed branching bisimilarity,
allowing the comparison of systems with partial timing. Finally, with
several examples and a case study, we demonstrate how partial time ab-
straction can be a useful modelling technique for timed models, which
can lead to rigorous minimisations of state spaces.

1 Introduction

For many systems, correct and relevant verification involves timing aspects. In
order to specify such systems, timed versions of existing modelling paradigms
such as process algebras, automata, and Petri nets have been developed. How-
ever, timing aspects can be very demanding; when comparing two timed systems,
they are only deemed equal in behaviour if both can perform the same actions
at the same time. Checking timed temporal properties can often only practically
be done if we partition system behaviour into time regions [1,2]. In order to do
so, [17] defined several time-abstracting bisimilarities, and [12] defined strong
and weak time-abstracted equivalences. Little research has been done to consider
relaxation of the timing aspects by partially removing timing from timed systems
where it is not relevant for either the verification of a temporal property, or a
comparison with another system.

Where time is concerned, modelling languages either incorporate it com-
pletely, or they do not incorporate it at all. If time is present in the language,
it means that either all actions are supplied with a time stamp, or that there
are additional timing actions, which implement some relative notion of time.
In process algebras, the inclusion of timing has naturally led to timed labelled
transition systems, and subsequently to timed bisimilarities. The overall experi-
ence in this field is that these notions are very complex; for instance, in [10], it
turned out that the definition of a specific notion of timed branching bisimilar-
ity was not an equivalence when considering an absolute continuous (or dense)
time domain. This was fixed by changing the definition. One of the conclusions,
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however, was that the new notion was very demanding of the state spaces to be
compared. In practice, this may result in too few equalities of state spaces.

Another complication was raised in [16]. There, it is argued that the abstrac-
tion of parts of a system specification does not lead to a sufficient decrease of the
size of the resulting state space. Action abstraction is a powerful tool in explicit
model checking, which can be used to hide action labels which are not interesting
considering the system property to check. The main advantage is that this hiding
of actions, which results in so-called ‘silent steps’, often leads to a reduced state
space, which can be analysed more practically. The solution offered in [16] is to
use untimed, instead of timed, silent steps. Surely, this means that the results of
action abstraction in untimed and timed process algebras are indistinguishable,
and therefore timed state spaces can be reduced more effectively.

However, this introduces complications. E.g. in an absolute time setting, im-
plicit deadlocks due to ill-timedness may be removed, thereby introducing erro-
neous traces. Reniers and Van Weerdenburg [16] recognise this, but accept it.
Another observation is that in general, there is no reason to inseparably connect
action abstraction with time abstraction.

In this paper, we work out the notion of partial time abstraction, indepen-
dently from action abstraction for an absolute time setting. Our choice for this
setting, however, does not imply that the proposed notions cannot be applied
to relative timing. We present a partially timed branching (Ptb) bisimulation
relation, which is general enough to minimise both internal behaviour and time-
hidden behaviour.1 It should be stressed that, whereas we stick to explicit state
model checking in this paper, the described notions can be adapted to a sym-
bolic model checking setting. In Section 2, we start by describing a basic timed
process algebra, timed labelled transition systems, and timed branching bisimi-
larity, after which we move to a more general setting, giving rise to the notions of
a partially timed labelled transition system and Ptb bisimilarity in Section 3. In
this Section, we also define several time abstraction operators for a timed process
algebra. We illustrate the use of the new notions with examples, and Section 4
presents a case study. Alternative approaches and other time settings are con-
sidered in Section 5. Finally, Section 6 discusses related work, and Section 7
contains the conclusions.

2 Preliminaries

Timed Labelled Transition Systems. Let A be a non-empty set of visible actions,
and τ a special action to represent internal events, with τ �∈ A. We use Aτ to
denote A∪{τ}. The time domain � is a totally ordered set with a least element

1 Throughout the text, we use both the terms untimed and time-hidden, the difference
between them being that an untimed action is literally not timed, while a time-hidden
action is an action where the timing cannot be observed, but it is still there. When
reasoning about time-hidden behaviour, though, we often state that a time-hidden
action can in principle be fired at any time, since we do not know its timing.
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0. We say that � is discrete if for each pair u, v ∈ � there are only finitely many
w ∈ � such that u < w < v.

We use the notion of timed labelled transition systems from [19], in which
labelled transitions are provided with a time stamp. A transition (s, �, u, s′) ex-
presses that state s evolves into state s′ by the execution of action � at (absolute)
time u. Such a transition is presented as s


−→us′. It is assumed that execution of
transitions does not consume any time. To keep the definition of timed labelled
transition systems clean, consecutive transitions are allowed to have decreasing
time stamps (i.e. ill-timedness); in the semantics, decreasing time stamps sim-
ply give rise to an (immediate) deadlock (see Definitions 2 and 4). To express
time deadlocks, the predicate U(s, u) denotes that state s can let time pass until
time u. A special state

√
represents successful termination, expressed by the

predicate
√ ↓. For the remainder of this paper, variables u, v, etc. range over �.

Definition 1 (Timed labelled transition system). A timed labelled tran-
sition system (Tlts) [15] is a triple (S, T ,U), where:

1. S is a set of states, including a state
√

to represent successful termination;
2. T ⊆ S ×Aτ ×�× S is a set of transitions;
3. U ⊆ S ×� is a delay relation, which satisfies:

– U(s, 0);
– For u > 0, U(s, u) iff there exist v ≥ u ∈ �, � ∈ A, s′ ∈ S such that
T (s, �, v, s′).

Timed Branching Bisimulation. Van Glabbeek and Weijland [11] introduced the
notion of a branching bisimulation relation for untimed Ltss. Intuitively, a τ -
transition s

τ−→s′ is invisible if it does not lose possible behaviour (i.e., if s and s′

can be related by a branching bisimulation relation). Van der Zwaag [19] defined
a timed version of branching bisimulation, adding time stamps of transitions and
ultimate delays U(s, u). Fokkink, Pang, and Wijs [10] showed that it was not an
equivalence in a dense time domain, and improved the definition.

For u ∈ �, the reflexive transitive closure of τ−→u is =⇒u . With s =⇒u s′ we
express that s′ is reachable from s by a number of τ -transitions at time u.

Definition 2 (Timed branching bisimulation). Assume a Tlts (S, T ,U).
A collection B of binary relations Bu ⊆ S × S for u ∈ � is a timed branching
bisimulation [10] if s Bu t implies:

1. if s

−→u s′, then

i. either � = τ and s′ Bu t,
ii. or t =⇒u t̂


−→u t′ with s Bu t̂ and s′ Bu t′;
2. if t


−→u t′, then vice versa;
3. if s ↓, then t =⇒u t′ ↓ with s Bu t′;
4. if t ↓, then vice versa;
5. if u ≤ v and U(s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0

and U(tn, v), and u0 < · · · < un ∈ � with u = u0 and v = un, such that for
i < n, ti =⇒ui ti+1 and s Bw ti+1 for ui ≤ w ≤ ui+1;

6. if u ≤ v and U(t, v), then vice versa;
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Two states s and t are timed branching bisimilar at u, i.e. s↔u
tb t, if there is a

timed branching bisimulation B with s Bu t. States s and t are timed branching
bisimilar, i.e. s↔tb t, if they are timed branching bisimilar at all u ∈ �.

Transitions can be executed at the same time consecutively. By case 1 (and 2)
in Definition 2, the behaviour of a state at some point in time is treated like
untimed behaviour. Case 3 (and 4) deals with successful termination. By case 5
(and 6), time passing in a state s is matched by a related state t with a “τ -path”
where all intermediate states are related to s at all times during the delay.2 For
a more detailed treatment of timed branching bisimilarity, see [10].

A Basic Process Algebra. In the following, x, y are variables and s, t are process
terms or

√
, with

√
a special state representing successful termination.

We present a basic process algebra with alternative (‘+’), sequential (‘·’) and
parallel (‘||’) composition, and action abstraction (‘τI ’), which we will use in this
paper. It is based on the process algebras BPAρδU [3] and timed μCRL [15]. With
a@u, we express that action a can be fired at time u. We consider the following
transition rules, where the synchronisation of two actions a, b ∈ Aτ resulting in
an action c is denoted by a | b = c. The deadlock process is δ, which cannot
fire any action, nor terminate successfully. If two actions a and b should never
synchronise, we define that a | b = δ. Usually, there are no synchronisations of τ
actions defined, hence ∀a.τ | a = δ ∧ a | τ = δ. The process term τI(x) behaves
as x with all action labels appearing in I ⊆ A rewritten to τ . Finally, the process
term u! x limits x to those alternatives with a first action timed at least at u.

√↓ a@u a−→u
√

x
a−→ux′

x+y
a−→ux′

y+x
a−→ux′

x
a−→u

√

x+y
a−→u

√

y+x
a−→u

√

x
a−→ux′

x·y a−→ux′·y
x

a−→u
√

x·y a−→uu�y

x
a−→u

√
v≤u

v�x
a−→u

√
x

a−→ux′ v≤u

v�x
a−→ux′

x
a−→ux′ U(y,u)

x||y a−→ux′||y
y||x a−→uy||x′

x
a−→u

√ U(y,u)

x||y a−→uy

y||x a−→uy

x
a−→ux′ y

b−→uy′ a|b=c �=δ

x||y c−→ux′||y′
x

a−→u
√

y
b−→uy′ a|b=c �=δ

x||y c−→uy′

y||x c−→uy′

x
a−→u

√
y

b−→u
√

a|b=c �=δ

x||y c−→u
√

y||x c−→u
√

x
a−→ux′ a∈I

τI(x) τ−→uτI(x′)

x
a−→ux′ a/∈I

τI(x) a−→uτI(x′)

x
a−→u

√
a/∈I

τI(x) a−→u
√

x
a−→u

√
a∈I

τI(x) τ−→u
√

U(
√

,0) U(a@u,v) if v≤u U(x+y,v)⇔U(x,v)∨U(y,v) U(x·y,v)⇔U(x,v) U(v�x,v)⇔U(x,v)

U(δ@u,v) if v≤u U(x||y,v)⇔U(x,v)∧U(y,v) U(τI(x),v)⇔U(x,v) U(u�x,v) if v≤u

We note that with this process algebra and absolute timing, recursion is possible
if we parameterise recursion variables with the current time (see Section 4).
2 Clearly, this last case is very demanding in a dense time domain, since the states

need to be relatable at all times during the delay. One of the main reasons for
introducing partial timing, as introduced later in this paper, is therefore to alleviate
this requirement in specific situations (see Example 1).
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3 Towards Partial Timing

The main idea of partial timing is the ability to ignore exact timing of parts of
a system if only action orderings are important in those parts for a verification
task or comparison of systems. It is, therefore, similar to action abstraction, by
which it is possible to hide action labels not important for a verification task. We
prefer the possibility to hide timing aspects independently from hiding action
labels, unlike [16], because first of all, timed τ -steps may be useful in practice,
and second of all, likewise, time-hidden labelled actions can be very practical.

Next, we define a partially timed labelled transition system (Ptlts), i.e. an
Lts which can incorporate timing information in specific parts. One issue is what
the delayability of a state should be if it has time-hidden outgoing transitions.
Time-hidden transitions cannot introduce time deadlocks, since time is irrelevant
for them. However, from a process term, we do not wish to derive ill-timed traces
(see Example 3). For this reason, we define a process term ultimate delay relation
U and a state ultimate delay relation Ū . U is defined at the end of this Section,
and Ū is defined here. U in Def. 1 is extended to Ū by expressing that time-
hidden transitions have no influence on the delayability of the source state. In
the following, � is the boolean domain, with elements T (true) and F (false).

Definition 3 (Partially timed labelled transition system). A partially
timed labelled transition system (Ptlts) is a triple (S, T , Ū), where:

1. S is a set of states, including a state
√

to represent successful termination;
2. T ⊆ S ×Aτ ×�×�× S is a set of transitions;
3. Ū ⊆ S ×� is a delay relation, which satisfies:

– Ū(s, 0);
– For u > 0, Ū(s, u) iff there exist v ≥ u ∈ �, � ∈ A, s′ ∈ S such that
T (s, �, v, T, s′).

Transitions (s, �, u, T, s′) express that state s evolves into state s′ by execution
of action � at (absolute) time u. Transitions (s, �, u, F, s′) express that state s
evolves into state s′ by the execution of action � at some unobservable time.3

It is assumed that the execution of transitions does not consume any time.
A transition (s, �, u, T, s′) is denoted by s


−→u s′, (s, �, u, F, s′) is denoted by
s


−→[u] s
′. We write s


−→ s′ as a short-hand for ∃v ∈ �.s

−→[v] s

′ in case we are

not interested in the time stamp. With 
−→(u), we denote the possibility to either

perform 
−→u or 
−→, and =⇒(u) denotes the reflexive transitive closure of τ−→(u),
i.e. time-hidden and timed τ -steps can succeed each other. Finally, s =⇒(v)

(u) s′

denotes that there exist s0, . . . , sn ∈ S, for some n ∈ �, with sn = s′ and u0 <

3 Although the exact time of execution is given in (s, �, u, F, s′), it will not be observable
by the partially timed branching bisimilarity relation given later. We still keep the
time stamp though, because we reason the timing is in fact still there and should
have an influence on the (interaction of) system behaviour.
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· · · < un ∈ � with u0 = u and un = v, such that s =⇒(u0) s0 =⇒(u1) · · · =⇒(un) sn.
If Ū(s, u), then state s can let time pass until time u.

Now, we define a Ptb bisimulation, which intuitively combines untimed and
timed branching bisimilarity.

Definition 4 (Partially timed branching bisimulation). Assume a Ptlts
(S, T , Ū). A collection B of binary relations Bu ⊆ S×S for u ∈ � is a partially
timed branching bisimulation if s Bu t implies:

1. if s

−→u s′, then

i. either � = τ and s′ Bu t,
ii. or t =⇒(u) t̂


−→(u) t′ with s Bu t̂ and s′ Bu t′;

2. if t

−→u t′, then vice versa;

3. if s

−→ s′, then

i. either � = τ and s′ Bu t,
ii. or for some v ≥ u, t =⇒(v)

(u) t̂

−→ t′ with s Bv t̂ and s′ Bv t′;

4. if t

−→ t′, then vice versa;

5. if s ↓, then t =⇒(u) t′ ↓ with s Bu t′;
6. if t ↓, then vice versa;
7. if u ≤ v and Ū(s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0

and either Ū(tn, v) or tn

−→ t′, and u0 < · · · < un ∈ � with u = u0 and

v = un, such that for i < n, ti =⇒(ui) ti+1 with s Bw ti+1 for ui ≤ w ≤ ui+1;
8. if u ≤ v and Ū(t, v), then vice versa.

Two states s and t are Ptb bisimilar at u, denoted by s ↔u
ptb t, if there is a

Ptb bisimulation B with s Bu t. States s and t are Ptb bisimilar, denoted by
s↔ptb t, if they are Ptb bisimilar at all u ∈ �.

Cases 1 and 5 (and 2 and 6) directly relate to cases 1 and 3 (and 2 and 4) of
Def. 2, respectively, the only difference being that time-hidden τ -steps are taken
into account. Note that in 1.ii, a timed �-step can be matched with a sequence
of τ -steps followed by a time-hidden �-step. We reason that a time-hidden �-step
can simulate a timed �-step, because the first is not observably restricted by
timing, while the latter is. The reverse is not true for the same reason. Besides,
if we defined a timed �-step and a time-hidden �-step to be Ptb bisimilar, then
Ptb bisimilarity would definitely not be an equivalence, which is undesired, since
it would not be transitive. Consider q


−→0 q′, r

−→1 r′, and s


−→ s′ with � �= τ ;
clearly q �↔ptb r, and therefore we either want q �↔ptb s or r �↔ptb s. Case 3.i
(4.i) is similar to 1.i (2.i), but dealing with a time-hidden τ -step. Case 3.ii (4.ii)
states that a time-hidden �-step can be matched by a sequence of τ -steps in
which time may pass, leading to a state where a time-hidden �-step is enabled.
Case 7 (8) differs from case 5 (6) of Def. 2 in taking time-hidden τ -steps into
account. Also, besides the possibility to match a delay by a τ -sequence to a state
which can delay to the same moment in time, this latter state may just have
the possibility to perform a time-hidden step (see Example 2). The idea behind
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cases 3.ii (4.ii) and 7 (8) is that time-hidden steps are not observably subject
to delays, i.e. the progress of time does not disable a time-hidden step. Consider
the Ptltss s

τ−→2 s′ a−→ s′′ and t
a−→ t′. Here, s ↔0

ptb t, since a delay of s to
time 2 can be matched by t since it can perform a time-hidden step (case 7 (8)
of Def. 4). Note that case 3 (4) is less demanding than 7 (8) concerning time;
the first demands that states are related at the transition times, while the latter
demands relations at all times. This is because in 3, a time-hidden step is fired,
while in 7, s performs a delay, and is therefore time constrained.

Note that the union of Ptb bisimulations is again a Ptb bisimulation.

Theorem 1. Timed branching bisimilar process terms P and Q are also Ptb
bisimilar, i.e. ↔tb ⊂ ↔ptb.

Proof. A timed branching bisimulation relation Bu is a Ptb bisimulation relation
B′

u, since case 1.i (2.i) for Bu matches 1.i (2.i) for B′
u, 1.ii (2.ii) for Bu matches

1.ii (2.ii) for B′
u since t =⇒(u) t̂


−→(u) t′ may consist of only timed steps. Cases
3 and 4 for B′

u are not applicable, since they concern time-hidden transitions.
Case 3 (4) for Bu matches 5 (6) for B′

u since t =⇒(u) t′ may consist of only timed
τ -steps. Finally, case 5 (6) for Bu matches 7 (8) for B′

u since Ū(s, v)⇔ U(s, v) in
the absence of time-hidden steps, and Ū(tn, v) is the only applicable condition
for tn. Furthermore, ti =⇒(ui) ti+1 may only concern timed τ -steps. ��

Similarly, we can prove that branching bisimilar terms are also Ptb bisimilar.
Furthermore, in [18], we prove that Ptb bisimilarity is an equivalence relation.

In the following examples, �≥0 ⊆ �.

Example 1. Consider the Tltss s0
a−→ 1

3
s1

b−→1 s2 and t0
a−→ 1

3
t1

τ−→ 1
2
t2

b−→1 t3.
According to Def. 2, clearly s0 Bu t0 for u ≥ 0, and we need to determine that
s1 B 1

3
t1. Since U(s1, 1), by case 5 of Def. 2, we must check that we can reach

a state ti from t1 via τ -steps, such that U(ti, 1) and s1 Bu ti for some u ≥ 1
3 .

This means explicitly establishing that s1 Bu t1 for all 1
3 ≤ u ≤ 1

2 and s1 Bu t2
for all 1

2 ≤ u ≤ 1. Moving to Ptltss, U from Def. 1 and Ū coincide, and case 7
of Def. 4 is similarly applicable. However, if we time-hide b, then by definition,
Ū(s1, u) only for u = 0, hence case 7 is no longer a requirement. Note that if we
only time-hide t2

b−→1 t3, the second Ptlts still simulates the first one.

Example 2. Consider the Ptltss s0
a−→0s1

b−→[3]s2 and t0
a−→0t1

τ−→1t2
b−→[2]t3.

We have s0 ↔ptb t0, since s0 Bu t0 for u ≥ 0, s1 Bu t1 for u ≤ 1, s1 Bu t2 for
u ≥ 0, and s2 Bu t3 for u ≥ 0 is a Ptb bisimulation.

In Example 2, the time-hidden b-step from s1 can be matched with the delay
Ū(t1, 1) (note in case 8 (7) of Def. 4 that the delay can simply be matched by s1
by the fact that it can fire a time-hidden step), followed by the timed silent step
from t1 (by case 2.i (1.i)) and the time-hidden b-step from t2 (by case 4 (3)). For
time-hidden steps, there are no delay requirements, which greatly alleviates the
demands of bisimilarity of timed systems when time-hiding is applied to them.
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b[3]

a(1)

c(3)

τ(2)

a(1)

c(3)

b(3)

�↔ptb b(3)

a(1)

c(3)

a(1)

c(3)

a(1)

c(3)

a(1)

c(3)
↔ptbb(3) b(3)

b(3)

b(3)
↔ptb b[3]

b[4]

τ [2] τ [3]

Fig. 1. Minimisation due to time abstraction

Like action abstraction, time abstraction may lead to the minimisation of
Ltss, particularly when delayable actions are time-hidden. To illustrate this,
in an untimed setting, a·(τ ·(x + y) + x) = a·(x + y) is an important axiom
by which Ltss can be minimised using branching bisimilarity. Reniers and Van
Weerdenburg [16] note that for a timed branching bisimilarity, a timed version
of the axiom does not hold, and using untimed τ -steps reintroduces it. We show
that in a partially timed setting, even a more general version of the axiom holds.

On the left of Figure 1, in which transitions 
−→u are written as

(u)−→, the

two Ptltss are not Ptb bisimilar, since concerning the states reached by taking
the a-step, in the left Ptlts, at time 2 the decision can be made to take the
b-step at time 3 by ignoring the τ -step, where in the right one, this cannot be
done. In the middle of Figure 1, the τ -step is time-hidden, hence time does not
influence the possibility to take the step, thus the two Ptltss are Ptb bisimilar,
relatable states being connected with dashed lines. So far, this is similar to [16].
On the right of Figure 1, we have a Ptlts with a delayable action b; depending
on whether the τ -step is performed or not, b may be executed at time 3 or 4.
Such a situation is common in real system models. If we time-hide b, further
reduction is possible. Note that it is not required to time-hide the silent step.

Note that time-hiding can alleviate the delay requirements of a (partially)
timed branching bisimilarity, since time-hidden transitions are enabled immedi-
ately. E.g. at time u, we may fire a transition s


−→v s′ at v ≥ u after a delay to
time v, while a transition s


−→[v] s′ can be fired immediately.

A Partially Timed Process Algebra. Next, we extend the process algebra of
Section 2. With a[@u], we express that a can be fired at some hidden time.
Keeping the exact timing when time-hiding is essential to ensure that additional
system behaviour is not introduced. Consider the term a@2·b@1. Surely b cannot
be executed, since the time has already progressed too far. If we time-hide b, we
do not want to lose this, since an observer might be unable to observe the timing
of b, but in our opinion this does not mean that the timing is not there. The
same argument holds for e.g. interleavings resulting from parallel compositions.

First, we define two versions of time abstraction, one for hiding timing infor-
mation of specific action labels, the other for hiding a certain time interval.

Action-based Time Abstraction Transition Rules. In action-based time abstrac-
tion, timing information of all transitions with an action label in a given set
J ⊆ Aτ is hidden. The process term ιJ(P ) hides timing of all actions of P in J .
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x
a−→ux′ a∈J

ιJ(x) a−→[u]ιJ (x′)

x
a−→u

√
a∈J

ιJ (x) a−→[u]
√

x
a−→ux′ a/∈J

ιJ (x) a−→uιJ (x′)

x
a−→u

√
a/∈J

ιJ(x) a−→u
√

x
a−→[u]x

′

ιJ (x) a−→[u]ιJ (x′)

x
a−→[u]

√

ιJ (x) a−→[u]
√

Time-based Time Abstraction Transition Rules. All timing information between
times u1 and u2 (u1, u2 ∈ �, u2 ≥ u1) are hidden. Such a time abstraction is
useful if you want to hide the timing specifics of a certain time interval. The
process term ῑu1,u2(P ) hides timing of all actions of P if u1 ≤ u ≤ u2.

x
a−→ux′ u1≤u≤u2

ῑu1,u2(x) a−→[u]ῑu1,u2 (x′)

x
a−→u

√
u1≤u≤u2

ῑu1,u2 (x) a−→[u]
√

x
a−→ux′ u1>u∨u2<u

ῑu1,u2 (x) a−→u ῑu1,u2 (x′)

x
a−→u

√
u1>u∨u2<u

ῑu1,u2(x) a−→u
√

x
a−→[u]x

′

ῑu1,u2 (x) a−→[u] ῑu1,u2 (x′)

x
a−→[u]

√

ῑu1,u2 (x) a−→[u]
√

Additional Rules for Existing Operators. Looking back at the basic process alge-
bra of Section 2, all rules except those for parallel composition can also straight-
forwardly be interpreted with @u and 
−→u substituted by [@u] and 
−→[u],
respectively. Action a[@u] can then be seen as the time-hidden action a.

We define the following additional transition rules:

x
a−→[u]x

′ U(y,u)

x||y a−→[u]x
′||y

y||x a−→[u]y||x′

x
a−→[u]

√ U(y,u)

x||y a−→[u]y

y||x a−→[u]y

x
a−→[u]x

′ y
b−→uy′ a|b=c �=δ

x||y c−→ux′||y′

y||x c−→uy′||x′

x
a−→[u]

√
y

b−→uy′ a|b=c �=δ

x||y c−→uy′

y||x c−→uy′

x
a−→[u]x

′ y
b−→u

√
a|b=c �=δ

x||y c−→ux′

y||x c−→ux′

x
a−→[u]

√
y

b−→u
√

a|b=c �=δ

x||y c−→u
√

y||x c−→u
√

x
a−→[u]x

′ y
b−→[u]y

′ a|b=c �=δ

x||y c−→[u]x
′||y′

y||x c−→[u]y
′||x′

x
a−→[u]

√
y

b−→[u]y
′ a|b=c �=δ

x||y c−→[u]y
′

y||x c−→[u]y
′

x
a−→[u]

√
y

b−→[u]
√

a|b=c �=δ

x||y c−→[u]
√

y||x c−→[u]
√

To ensure that the parallel composition operator yields well-timed interleavings,
the (process algebra related) ultimate delay relation U ignores time abstraction.
Therefore, its definition from Section 2 is extended with U(a[@u], v) if v ≤ u,
U(δ[@u], v) if v ≤ u, U(ιJ (x), v)⇔ U(x, v) and U(ῑu1,u2(x), v)⇔ U(x, v).
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Example 3. Consider process terms a[@1] || b@3 and a[@2]·b@3. By definition,
U(a[@1], u) for u ≤ 1. This ensures that only s0

a−→[1] s1
b−→3 s2 can be yielded

from a[@1] || b@3, i.e. the timing of a is not observable, but it is still there. On the
other hand, Ū ensures that s0

a−→[1]s1
b−→3s2 and t0

a−→[2] t1
b−→3t2 (yielded from

a[@2]·b@3) are Ptb bisimilar, since both Ū(s0, u) and Ū(t0, u) only for u = 0.

We use U and Ū for process terms and Ptltss, respectively, since on the one
hand, we do not want to enable extra orderings of actions when time-hiding, but
on the other hand, we want to formalise that when comparing behaviour, delays
do not apply for states from which only time-hidden transitions can be fired.

4 A Case Study: The Sliding Window Protocol

Now, we show the practical use of the techniques with a case study. For this,
we extend the basic timed process algebra with guards, recursion, and data.
Given a boolean condition b and process terms P, Q, a process term P � b � Q
behaves as P iff b = T, and as Q otherwise. Constructs can be parameterised
with data, range over data domains, and incorporate recursion. For example,
a process Pt(d : �) =

∑
e:� a@t+t′(e)·Pt+t′(e), with d a variable of type �,

can execute actions a parameterised with any value of type �, expressed using
choice quantification [13,15], continuously, each time advancing the time by t′

time units, and changing the state of P to the chosen value. Note that if � is an
infinite data domain, this implies an impractical infinite number of alternatives.
However, such a construct often represents receiving a message, and enforced
synchronisation with a send action b then leads to a finite number of alternatives.
Enforced synchronisation can be achieved with the encapsulation operator ∂H ,
with H ⊆ A. It disables firing the actions in the set H individually; only their
synchronisation result can thus be fired. E.g. from ∂{a,b}(

∑
n:� a(n) || b(5)), with

a | b = c, we can only derive a transition labelled c(5), since all options a(n) with
n �= 5 cannot synchronise with b(5) and are therefore blocked. Finally, Pt = p·P ′

t′

is a process which executes the process described by process term p, built using
the operators of the timed process algebra, ending up in process P ′

t′ .
We do not yet have a real implementation of time abstraction and Ptb bisim-

ilarity, but we can obtain similar results for particular cases using the untimed
μCRL [7] and Ltsmin [8] toolsets. We stress, though, that this is far from ideal,
and a real implementation is highly preferable. We model t as a data parameter
of the process equations and actions (with � = �≥0), e.g. we model an action
a@t(d), with d some data parameter, as a(t, d). We have extended the μCRL
Lts generator such that these modelled time stamps are correctly interpreted in
parallel compositions (i.e. ensuring that e.g. a(1, d) || b(2, d′) cannot yield a trace

s0
b(2,d′)−→ s1

a(1,d)−→ s2), and developed a tool to time-hide a given set of actions in
an Lts, i.e. to remove the time parameter from all occurrences of these actions,

e.g.
a(t,d)−→ is rewritten to

a(d)−→ if a should be time-hidden. Furthermore, we use
implementations of untimed strong and branching bisimilarity to minimise the
Ltss. Please note that this approach has a number of limitations, among which:
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1. We cannot use timed τ -steps, because the untimed bisimilarities cannot han-
dle them. Time stamps on other steps are fine; since the time stamps are
incorporated in the data parameters, they will be part of the comparison;

2. Time-hiding is applied on Ltss, hence globally. We cannot use time-hiding
on e.g. specific occurrences of an action a. Furthermore, in practice, having to
generate the full Lts before time-hiding can be applied can be a bottle-neck;

3. The progress of time should be ensured in the specification; time-deadlocks
are not detected by the tools. This makes modelling quite hard;

4. We cannot use continuous time; in this Section, � = �≥0.

Next, we consider a timed Sliding Window (SW) protocol based on [9], which
is a nice example of a complex, timed system. We use it to demonstrate how a
Ptlts can be minimised for specific verification tasks. For a detailed explanation
of the protocol, see [9]. A sender S needs to send a stream of data packets to
a receiver R over an unreliable channel which may reorder, lose, and duplicate
packets. The packets are labelled with sequence numbers modulo a given K, and
they are processed in batches (windows) of size N . S may send new packets in its
current window in the correct order, and resend any old packet in the window at
any time. When R receives a packet for the first time, it is placed in the correct
position in a buffer, and R sends an acknowledgement to S over an equally
unreliable channel. R sorts the received packets on their sequence numbers, and,
whenever possible, delivers some of the packets in the correct order on a channel
as output. When S receives an acknowledgement, he moves his window forward
beyond the acknowledged packet. An important correctness requirement is that
K ≥ 2 ∗ N , and to ensure that sequence numbers are not reused too quickly,
timing constraints are set; when S receives an acknowledgement for packet K−1,
he waits Lmax time units before sending a new packet 0 (constraint CS). R
accepts packets with new numbers Lmax time units after delivering a packet
K − 1 to the output (constraint CR) [9]. The channels nondeterministically
delay the packets sent through them, and this aspect allows us to obtain smaller
Ptltss if we choose to abstract away the related timing. We illustrate this by
providing part of the specification of S, and the entire specification of Fch, the
channel between S and R, with sa | ra = ca:

S(t : �, first : �, ftsend : �, tackmax : �, nrm : �) =

sa(t + t′, ftsend)·S(t + t′, first , (ftsend + 1) mod K, tackmax , nrm − 1)

 (ftsend = 0 =⇒ ((t + t′) > (tackmax + Lmax) ∧ (first = ftsend))) ∧
inmod(ftsend , first, first + N, K) ∧ nrm > 0 � δ +∑

i:�<K

sa(t + t′, i)·S(t + t′, first, ftsend , tackmax , nrm)

 inmod(i, first , ftsend , K) ∧ t < 30 � δ + . . .

Fch(t : �, L : (�,�)list, rbnd : �, sbnd : �) =∑
x:�

∑
t1:�≥t

ra(t1, x)·Fch(t1, ins((x, t1 + (Lmax/2)), L), 3, sbnd) +

∑
x:�

∑
t1:�≥t

ra(t1, x)·Fch(t1, ins((x, t1 + Lmax), L), 3, sbnd)+
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∑
x:�

∑
t1:�≥t

ra(t1, x)·Fch(t1, L, rbnd − 1, sbnd)  rbnd > 0 � δ +

sb(headtime(L), headnr(L))·Fch(headtime(L), tail(L), rbnd , 3)

 nonempty(L) ∧ t ≤ headtime(L) � δ +

sb(headtime(L), headnr(L))·Fch(headtime(L), L, rbnd , sbnd − 1)

 nonempty(L) ∧ t ≤ headtime(L) ∧ sbnd > 0 � δ

In S, t is the current time, first is the first packet in the current window, and
ftsend is the next packet to send; tackmax equals the last time an acknowledge-
ment for packet K − 1 has been received, and nrm is the maximum number of
new packets we want S to send. Special functions are written in boldface: mod
is as usual, and inmod returns whether or not the first value lies between the
second and the third value modulo the fourth value. The two options of S ex-
press sending new packets and resending old packets, respectively, where t′ is a
discrete jump forward in time (in our experiments, t′ = 1) and i ranges over the
old packets. Since sa | ra = ca, packets can be sent to the channel Fch if match-
ing sa and ra are enabled. In Fch, besides the current time, we have a special list
of tuples (x : �, t : �), with functions ins, which inserts a new tuple in the list
ordered by increasing time t, and headtime and headnr, which return t and
x of the head of the list, respectively; finally, nonempty determines whether
the list is empty or not. Note that we use two bounds for receiving and sending
packets, rbnd and sbnd, to ensure that packets are not continuously ignored by
the channel; we reset these bounds to 3 after each successful receive and send.

The key observation can be done in the receive options of Fch: a packet can be
stored in L with two time values: t1 + Lmax/2 and t1 + Lmax (with t1 the time
of receiving the packet, and Lmax the maximum packet lifetime), and it can be
ignored.4 The time chosen here determines when the packet is sent with sb to
R, which can fire action rb to receive packets. If we time-hide sb in the given
specification part,5 then traces can be ‘folded’ together if they concern the same
packet numbers in the same order, i.e. we only care about the order in which the
packets are sent, not at which moments in time. This can lead to rigorous Ptlts

reductions; consider two traces s0
ca(0)−→ 0 s1

ca(1)−→ 1 s2
sb(0)−→Lmax/2 s3

sb(1)−→(Lmax+1)/2 s4

and t0
ca(0)−→0t1

ca(1)−→ 1t2
sb(0)−→Lmax t3

sb(1)−→Lmax+1t4. If we time-hide the sb-steps, these
traces are Ptb bisimilar (since si ↔u

ptb ti for 0 ≤ i ≤ 4, u ≥ 0), and hence can be
reduced to one trace. The benefit of time-hiding here, is that even if we hide time
entirely, time restrictions still apply; e.g. CS and CR still limit the potential
behaviour of S. Note that as we allow more freedom in the packet delays, i.e.
allow more than only two durations, the achieved reduction will increase.

Table 4 presents the size of an Lts generated using the μCRL toolset on
30 workstations in a distributed fashion, where each workstation had a quad-
core Intel Xeon processor E5520 2.27 GHz, 24 GB RAM, and was running
Debian 2.6.26-19. We used the distributed reduction tool of Ltsmin for the
strong (↔s) and branching (↔b) bisimulation reductions. The different rows in
4 In the real protocol, any time between t1 and Lmax is possible.
5 In the full specification, we actually time-hide the cb-transitions, where sb | rb = cb,

and sb and rb are encapsulated.



122 A. Wijs

Table 1. Sizes of Ltss describing the behaviour of a timed SW protocol

Description # States # Transitions

SW 335,236,894 1,940,674,714
↔s red. of ιJ(SW), J = A \ {ca, cack2} 243,912,294 1,371,275,560

↔b red. of τJ (ιJ (SW)), J = A \ {ca, cack2} 7,231,576 48,686,049
↔b red. of τI(ιA(SW)), I = {ca} 234,398,155 1,310,272,020
↔b red. of ιJ (τI(SW )), I = A \ {ca, deliver}, J = {τ, ca} 7,450,689 49,944,368

Table 4 display the results of reductions taylored for checking specific properties:
we get a full finite Lts using specification SW with values N = 2, K = 5,nrm = 7
and Lmax = 2, and bounding the overall time progress to 30 time units. For
verification of constraint CS (row 2), we can time-hide all steps except the ones
labelled ca and cack2 (which represents S receiving an acknowledgement of a
packet with number K − 1). Then, we can also still analyse the action ordering;
if this is not needed, we can action-hide these actions, and get a better reduction
(row 3). Similar reductions can be done for constraint CR. Row 4 represents a
reduction useful for verifying action orderings other than ca; the latter label is
completely hidden, all others are only time-hidden. Finally, hiding all except ca
and deliver (the label denoting that R delivers a packet as output) allows us
to check that the packets are delivered by R in the correct order, which is the
most important property to check. We can also still analyse the timing of packet
delivery. The full specification plus experiment instructions can be found at [18].

5 Some Timing Considerations

In this paper, we focus on absolute time. Here, we remark on applying partial
timing with relative time. Consider the relative time process term a@1·b@2. If
we time-hide a, we lose the information when b actually starts executing, and
the overall execution time. One course of action ([16]) is to maintain the overall
duration, ‘shifting’ the timing of time-hidden actions towards the timed actions.
If we follow this, then in our example, we get a·b@3. We advocate instead to
keep the timing information as in our approach with absolute time, e.g. a[@1]·b@2.
Time shifting first of all does not guarantee that the overall duration is kept, e.g.
if we time-hide b, this is lost anyway, and second of all, it does not seem entirely
correct that time-hiding a has an influence on the duration of the execution of b.
The way in which time progress is described in relative time should be reflected
in Ptb bisimilarity and the time-hiding operators. E.g. a sequence of τ -steps at
time u in absolute time should be expressed as a sequence of τ -steps with time
label 0 in relative time. Time-based time abstraction should be defined such that
the current time is kept track of, to detect which actions should be time-hidden.

In the two-phase model, in which time progress is expressed using additional
delay actions and transitions, partial timing seems to be achievable by action-
hiding the delay actions; then, a branching bisimulation reduction results in their
removal, in the absence of time non-determinism. This approach is straightfor-
ward when removing all timing; partial removal remains to be investigated.
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Our next step is to investigate under which conditions a rooted [5,14] Ptb
bisimilarity is a congruence over our process algebra with time abstraction. In
general this is not the case, because Ptb bisimilar terms may ‘interact’ differently
with other terms, since their timing may be partially ignored, but it is still there.

6 Related Work

In [4], a time free projection operator πtf is used in a relative discrete time
setting. A process πtf (P ) is the process P made time free. In contrast to our
work, they do not consider the possibility to only make certain action labels time
free, or abstract away a specific period of time.

[16] considers untimed τ -steps, which allows better timed rooted branch-
ing bisimulation minimisation. There, ill-timedness of processes can ‘disappear’
when hiding actions. In our system, a time-hidden τ -step can be obtained from
any action a@u, by hiding both action label and timing, e.g. ι{τ}(τ{a}(a@u)).
They do not consider the use of timed τ -steps and time-hidden labelled steps.

Approaches using regions and zones for timed automata [2] and state classes
for Time Petri Nets [6] certainly have something in common with our work.
There, the abstractions work system-wide, using a bisimilarity which fully ig-
nores timing. We, however, abstract away some of the timing in the specification
itself, and use a bisimilarity which does not ignore timing, but can handle time-
hidden behaviour as well. [2] uses a function Untime, which removes the timing
of system behaviour without introducing new action orderings. This is applied
on the state space, though; no definition is given to abstract timing away from
(parts of) the specification. In [17], several time-abstracting bisimilarities are de-
fined for a relative time setting with a two-phase model. Like Ptb bisimilarity,
their strong time-abstracting bisimilarity preserves branching-time properties.
Interestingly, it seems that, as suggested in Section 5, this coincides with un-
timed branching bisimilarity if we action-hide all the delay actions and no other
actions, assuming there is no time non-determinism. They do not consider timed
branching bisimilarity with time abstraction, nor hiding parts of the timing.

7 Conclusions

We proposed a generalisation of timed process algebras, Tltss, and timed branch-
ing bisimilarity, by introducing time abstraction, by which we can hide the timing
of system parts, and Ptb bisimilarity, which is proven to be an equivalence re-
lation. This allows to consider two timed systems equal in functionality, even if
they are (partially) different in their timings. By hiding timing, no functionality
is removed or added, i.e. no new orderings of actions are introduced. We have
discussed how time abstraction, like action abstraction, can lead to minimised
Ltss. The practical use of time-hiding has been demonstrated with a case study.

Future Work. We wish to fully implement the generalisations in a toolset. Ptb
bisimilarity can be analysed to see under which timing conditions it constitutes a
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congruence, and we wish to investigate a complete axiomatisation of the process
algebra and Ptb bisimilarity, plus decidability of the latter.

Acknowledgements. We thank Wan Fokkink for his constructive comments.

References

1. Alur, R., Dill, D.: Automata for Modeling Real-Time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Formal Aspects of Com-
puting 3(2), 142–188 (1991)

4. Baeten, J.C.M., Middelburg, C.A., Reniers, M.: A New Equivalence for Processes
with Timing – With an Application to Protocol Verification. CSR 02-10, Eindhoven
University of Technology (2002)

5. Bergstra, J.A., Klop, J.W.: Algebra of Communicating Processes with Abstraction.
Theoretical Computer Science 37(1), 77–121 (1985)

6. Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. on Softw. Engin. 17(3), 259–273 (1991)

7. Blom, S.C.C., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de
Pol, J.C.: μCRL: A Toolset for Analysing Algebraic Specifications. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer,
Heidelberg (2001)

8. Blom, S.C.C., van de Pol, J.C., Weber, M.: Bridging the Gap between Enumerative
and Symbolic Model Checkers. CTIT Technical Report TR-CTIT-09-30, University
of Twente (2009)

9. Chkliaev, D., Hooman, J., de Vink, E.: Verification and Improvement of the Sliding
Window Protocol. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 113–127. Springer, Heidelberg (2003)

10. Fokkink, W.J., Pang, J., Wijs, A.J.: Is Timed Branching Bisimilarity a Congruence
Indeed? Fundamenta Informaticae 87(3/4), 287–311 (2008)

11. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

12. Larsen, K., Wang, Y.: Time-abstracted bisimulation: Implicit specifications and
decidability. Information and Computation 134(2), 75–101 (1997)

13. Luttik, S.P.: Choice Quantification in Process Algebra. PhD thesis, University of
Amsterdam (2002)

14. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

15. Reniers, M.A., Groote, J.F., van der Zwaag, M.B., van Wamel, J.: Completeness
of Timed μCRL. Fundamenta Informaticae 50(3-4), 361–402 (2002)

16. Reniers, M.A., van Weerdenburg, M.: Action Abstraction in Timed Process Alge-
bra: The Case for an Untimed Silent Step. In: Arbab, F., Sirjani, M. (eds.) FSEN
2007. LNCS, vol. 4767, pp. 287–301. Springer, Heidelberg (2007)

17. Tripakis, S., Yovine, S.: Analysis of Timed Systems using Time-Abstracting Bisim-
ulations. Formal Methods in System Design 18(1), 25–68 (2001)

18. Wijs, A.J.: Forgetting the Time in Timed Process Algebra - Appendix (2010),
http://www.win.tue.nl/~awijs/timeabstraction/timeabs.html

19. van der Zwaag, M.B.: The cones and foci proof technique for timed transition
systems. Information Processing Letters 80(1), 33–40 (2001)

http://www.win.tue.nl/~awijs/timeabstraction/timeabs.html


Theory and Implementation of a Real-Time
Extension to the π-Calculus�

Ernesto Posse and Juergen Dingel

School of Computing – Queen’s University
Kingston, Ontario, Canada

{eposse,dingel}@cs.queensu.ca

Abstract. We present a real-time extension to the π-calculus and use it
to study a notion of time-bounded equivalence. We introduce the notion
of timed compositionality and the associated timed congruence which are
useful to reason about the timed behaviour of processes under hard con-
straints. In addition to this meta-theory we develop an abstract machine
for our calculus based on event-scheduling and establish its soundness
w.r.t. the given operational semantics. We have built an implementation
for a realistic language called kiltera based on this machine.

1 Introduction

The π-calculus [8] has become one of the most recognizable formal models of con-
currency which allows the description of mobile processes. In order to model real-
time mobile systems, a few process algebras have extended the π-calculus with
an explicit notion of time including the TDπ-calculus [11], the πt-calculus [1],
and the πRT -calculus [7]. In general, process algebras have been used to identify
suitable notions of behavioural equivalence between processes to reason about
their behaviour. In the context of real-time systems, time is essential to the
comparison of system behaviours. Nevertheless, to the best of our knowledge,
suprisingly little attention has been given to time-sensitive process equivalences
for timed π-calculi.

Perhaps the most comprehensive study of timed equivalences for timed π-
calculi are found in [3], [1], [6] and [2]. The first three study extensions to the
π-calculus in which actions are associated with timers over discrete time. The
fourth supports dense-time. In [3] and [6] some forms of timed barbed bisimilarity
are studied, while [1] presents asynchronous bisimilarities and [2] explores some
late bisimilarities. Nevertheless, these equivalences are quite stringent, as they
require an exact match in the timing of the transitions of the processes being
compared, for all future behaviours, and as far in the future as the processes can
run. Real-time systems often are under hard constraints which require a system’s
response within a certain amount of time T . In this context all late responses
are failures and therefore we can restrict our equivalence checking to equivalence
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up-to time T . Furthermore, any reasonable equivalence must address the issue
of compositionality: when is it safe to replace one process by another in a timed
context? In this paper we define a time-bounded equivalence and show it to be
compositional in our timed variant of the π-calculus.

The definition of the semantics of our calculus follows the standard approach
and is given in terms of a Plotkin-style structural operational semantics (SOS).
However, the purpose of our work is not only to study the theory of timed, mobile
systems but also to provide a foundation for a realistic, executable, high-level
modelling language for such systems. To this end, we define an abstract machine
which complements the SOS of our calculus by describing execution at a level
of abstraction more suitable for implementation. We prove the soundness of the
machine w.r.t. the SOS. A distinguishing feature of our abstract machine is that
it is based on event-scheduling as used in discrete-event simulation [15]. Event-
scheduling does not iterate over all clock ticks whenever events are far apart
in time, unlike the discrete-time approach used by existing implementations of
timed π-calculi. We have validated the abstract machine via the implementation
of the language kiltera [9] which has been used for teaching (in graduate courses
at Queen’s and McGill universities) and the modelling and analysis of complex
systems such as automobile traffic simulation.

The contributions of this paper are: a process algebra that supports mobil-
ity and real-time with higher-level features such as pattern-matching; a formal
operational semantics, including a new timed observational equivalence, the no-
tion of timed compositionality and timed congruence; a sound abstract machine
based on event-scheduling with a working implementation.

Paper organization: Section 2 introduces our calculus, its syntax, its opera-
tional semantics. Timed equivalence is studied in Section 3. Section 4 develops
the abstract machine. Section 5 concludes. For proofs see [10] and [9].

2 Timed, Mobile Processes: The πklt-Calculus

We define our timed π-calculus, which extends the asynchronous π-calculus
with delays, time-value passing and unlike other variants, time observation and
pattern-matching.

Definition 1. (Syntax) The set P of πklt terms, the set E of expressions
and the set of patterns F are defined by the BNF below. Here P, Pi range
over process terms, x, y, ... range over the set of (channel/event or variable)
names, A ranges over the set of process names, E ranges over expressions,
and F ranges over patterns. Process definitions have the form: A(x1, ..., xn)

def
=

P . n ranges over floating point numbers, s ranges over strings, and f ranges over
function names, with function definitions having the form: f(x1, ..., xn)

def
= E,

and the index set I is a subset {1, ..., n} ⊆ N.

P ::=
√ | x!E |

∑
i∈I xi?Fi@yi.Pi | νx.P

| ΔE.P | P1 ‖ P2 | A(x1, ..., xn)
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E ::= ∅ | n | true | false | “s” | x
| 〈E1, ..., Em〉 | f(E1, ..., Em)

F ::= ∅ | n | true | false | “s” | x | 〈F1, ..., Fm〉

Expressions E are either constants (∅ represents the null constant), variables
(x), tuples of the form 〈E1, ..., Em〉 or function applications f(E1, ..., Em). Pat-
terns F have the same syntax as expressions, except that they do not include
function applications.

The process
√

simply terminates. The process x!E is a trigger ; it triggers an
event x with the value of E. Alternatively, we can say that it sends the value
of E over a channel x. The expression E is optional: x! is shorthand for x!∅.
A process of the form

∑
i∈I βi.Pi is a listener, where each βi is a guard of the

form xi?Fi@yi. This process listens to all channels (or events) xi, and when xi is
triggered with a value v that matches the pattern Fi, the corresponding process
Pi is executed with yi bound to the amount of time the listener waited, and
the alternatives are discarded1. The suffixes Fi and @yi are optional: x?.P is
equivalent to x?y@z.P for some fresh names y and z. The process νx.P hides
the name x from the environment, so that it is private to P . Alternatively, νx.P
can be seen as the creation of a new name, i.e., a new event or channel, whose
scope is P . We write νx1, x2, ..., xn.P for the process term νx1.νx2....νxn.P . The
process ΔE.P is a delay: it delays the execution of process P by an amount of
time equal to the value of the expression E.2 The process P1 ‖ P2 is the parallel
composition of P1 and P2. We write Πi∈IPi for P1 ‖ · · · ‖ Pn. The process
A(y1, ..., yn) creates a new instance of a process defined by A(x1, ..., xn)

def
= P ,

where the ports x1, ..., xn are substituted in the body P by the channels (or
values) y1, ..., yn.

Timeouts are obtained as a derived construct: the process term (
∑

i∈I βi.Pi)
E
�

Q represents a listener process with a timeout. If after an amount of time deter-
mined by the value of the expression E, none of the channels have been triggered,
control passes to Q. We define this term as follows:

(Σi∈Iβi.Pi)
E
� Q

def
= νs.((Σi∈Iβi.Pi + s?.Q) ‖ ΔE.s!)

The local event s can be thought of as the timeout event. Also, as in the asyn-
chronous π-calculus [5], an output with a continuation x!E.P is syntactic sugar
1 Note that to enable an input guard it is not enough for the channel to be trig-

gered: the message must match the guard’s pattern as well. Pattern-matching of
inputs means that the input value must have the same “shape” as the pattern, and
if successful, the free names in the pattern are bound to the corresponding values of
the input. For example, the value 〈3, true, 7〉 matches the pattern 〈3, x, y〉 with the
resulting binding {true/x, 7/y}. The scope of these bindings is the corresponding Pi.

2 The value of E is expected to be a non-negative real number. If the value of E is
negative, ΔE.P cannot perform any action. Similarly, terms with undefined values
(e.g., Δ(1/0).P ) or with incorrectly typed expressions (e.g., Δtrue.P ) cause the
process to stop. Since the language is untyped we do not enforce these constraints
statically.
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for x!E ‖ P . Other useful extensions include the term match E with F1 →
P1 | · · · |Fn → Pn which is syntactic sugar for νx.(x!E ‖ x?F1.P1+· · ·+x?Fn.Pn),
and the conditional term if E then P else Q which is shorthand for match E with
true→ P | false→ Q.

The suffix @yi of input guards is inherited from Timed CSP, but it is absent
in all other timed variants of the π-calculus. This construct gives the calculus
the power to measure the timing of events, and determine future behaviour
accordingly.

An example: testing server response times. We illustrate the language
with a short example. Consider a simple device to measure a server’s response
time to some query. To begin the test, the device (D) waits for a signal b from
some client. The client provides a maximum response time t and four channels
q, a, r, and m. The channels q and a are links to the server, where the device
will send the query (q) and where it will expect the answer (a). The channel r
is where the client expects to observe the response time. After sending a sample
query to the server, the device waits for a response. If the server fails to respond
within t seconds, the device will trigger a timeout event (m). We can model this
testing system as follows:

D(b)
def
= b?〈t, q, a, r, m〉.q!.(a?@e.r!e.D(b))

t
� m!.D(b)

A model of a server, abstracting its internal execution, could be given by S(q, a, u)
def
= q?.Δu.a!.S(q, a, u). A client that uses D to test between two servers succe-
sively and then decides to interact with the fastest is modelled as follows:

C(q1, a1, q2, a2, b)
def
= νr1, m1, r2, m2.(b!〈5, q1, a1, r1, m1〉 ‖ b!〈5, q2, a2, r2, m2〉

‖ r1?e1.r2?e2. if e1 < e2 then C′(q1, a1)

else C′(q2, a2)

‖ m1?.C′(q2, a2) + m2?.C′(q1, a1))

This client asks the testing device to test two servers (whose channels are pa-
rameters to the client). If both servers respond within 5 seconds (r1 and r2) the
client selects the smaller response time and becomes C′ which interacts with
the corresponding server only. If it receives a timeout event for either server, it
selects the other one. The complete system could be modelled as follows:

νq1, a1, q2, a2, b.
(
S(q1, a1, 3.2) ‖ S(q2, a2, 4.1) ‖ D(b) ‖ C(q1, a1, q2, a2, b)

)

Operational semantics. We now define the semantics formally. Let N denote
the set of all possible names (including channel names). Let V denote the universe
of possible values including booleans, real numbers, strings, tuples of values and
channel names, and B ⊆ V is the set of basic constants (i.e., non-tuple values).
We write n(v) for the set of all channel names occurring in the value v. To
simplify the presentation we assume we have a function eval : E → V that
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given an expression returns its value.3 A sequence of names or values x1, ..., xn

is abbreviated as x̃. We denote with fn(P ) the set of free names of P (i.e.,
names not bound by either ν or an input guard). A substitution is a function
σ : N → V . We write {V1/x1, ..., Vn/xn} or {Ṽ/x̃} for the substitution σ where
σ(x1) = V1, ..., σ(xn) = Vn and σ(z) = z for all z �∈ {x1, . . . , xn}. We write
dom(σ) for {x1, ..., xn}. Furthermore, we write σ[V/x] for substitution update4.
Substitution is generalized to processes as a function σ : P → P in the natural
way performing the necessary renamings to avoid capture of free names as usual.
We write Pσ for σ(P ) denoting the process where all free occurrences of each
x in σ have been substituted by σ(x). We denote with M the set of all name
substitutions. We write P ≡α Q if Q can be obtained from P by renaming of
bound names. We use R+

0 to denote the non-negative reals.
Pattern matching is formally defined by a function match : F × V ×M →

M% {⊥} which takes as input a pattern, a datum (i.e., a concrete value) and
a substitution and returns either a new substitution which extends the original
substitution with the appropriate bindings, or ⊥ if the datum does not match the
pattern. The substitution provided as input is used to ensure that all occurrences
of a variable in a tuple match the same data. For a formal definition of this
function see [10].

Any well-defined semantics must ensure that processes which are structurally
equivalent behave in the same way. We now define such an equivalence relation,
called structural congruence.

Definition 2. (Structural congruence over process terms) The relation
≡⊆ P × P is defined to be the smallest congruence over P which satisfies the
following axioms: 1) if P ≡α P ′ then P ≡ P ′; 2) νx.

√ ≡ √; 3) νx.νy.P ≡
νy.νx.P ; 4) (P , ‖,√) is an abelian monoid; 5) if x /∈ fn(P ) then P ‖ νx.Q ≡
νx.(P ‖ Q); and 6) if A(x1, ..., xn)

def
= P then A(y1, ..., yn) ≡ P{y1/x1, ..., yn/xn}.

A timed labelled transition system or TLTS, is a transition system in which we
distinguish between transitions due to actions and evolution (passage of time).
Formally, a TLTS is a tuple (S,L,→, �) where S is a set of states, L is a set of
labels, →⊆ S×L×S is a transition relation and �⊆ S×R+

0 ×S is an evolution
relation. A rooted TLTS (S, s0,L,→, �) is a TLTS with a distinguished initial
state s0. We write s

a→ s′ for (s, a, s′) ∈→ and s
d� s′ for (s, d, s′) ∈�. We write

s
a→ to mean that ∃s′ ∈ S. s

a→ s′.

Definition 3. (Process transitions and evolution) The meaning of a πklt

term P0 is a rooted TLTS (P , P0,A,→, �) where A is the set of action labels
described below and the relations →⊆ P ×A× P and �⊆ P × R+

0 × P are the
smallest relations satisfying the inference rules in Table 1. The elements of A
are actions of the form τ (silent action), x?u (reception), x!u (trigger), or x!νu
(bound trigger) where u is a value. We let α range over A. We write bn(α) for
3 We do not need a name environment, as all expressions will be closed, since the

appropriate substitutions of free names are performed before evaluation takes place.
4 σ[V/x](x)

def
= V and σ[V/x](y)

def
= σ(y) if x �= y.
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Table 1. Process transitions and evolution

(trig) x!E
x!eval(E)−−−−−−→ √

(del) if eval(E) = 0 then ΔE.P
τ−→ P

(ch) if σ = match(Fi, v, ∅) �= ⊥ then
∑

i∈I xi?Fi@yi.Pi
xi?v−−−→ Piσ[0/yi]

(new) if P
α−→ P ′ and x �∈ n(α) then νx.P

α−→ νx.P ′

(par) if P
α−→ P ′ and bn(α) ∩ fn(Q) = ∅ then P ‖ Q

α−→ P ′ ‖ Q

(comm) if P
x!v−−→ P ′ and Q

x?v−−→ Q′ then P ‖ Q
τ−→ P ′ ‖ Q′

(open) if P
x!u−−→ P ′ and x �∈ n(u) then νũ.P

x!νu−−−→ P ′ with ũ = n(u)
(close) if P

x!νu−−−→ P ′ and Q
x?v−−→ Q′ then P ‖ Q

τ−→ νũ.(P ′ ‖ Q′) with ũ = n(u)
(cngr) if P

α−→ P ′, P ≡ Q and P ′ ≡ Q′ then Q
α−→ Q′

(tidle)
√ d� √

(ttrig) x!E d� x!E

(tch)
∑

i∈I xi?Fi@yi.Pi
d�

∑
i∈I xi?Fi@yi.Pi{yi+d/yi}

(tnew) if P
d� P ′ then νx.P

d� νx.P ′

(tdel) if 0 � d � eval(E) then ΔE.P
d� Δ(E − d).P

(tpar) if P
d� P ′ and Q

d� Q′ then P ‖ Q
d� P ′ ‖ Q′

(tcngr) if P
d� P ′, P ≡ Q and P ′ ≡ Q′ then Q

d� Q′

the set of bound names of the action α, namely bn(x?u) = bn(x!νu)
def
= n(u),

bn(x!u) = bn(τ)
def
= ∅. We impose an additional constraint on the TLTS to

guarantee maximal progress (urgency of internal actions):

if P
τ−→ then P �d� for all d > 0

The rules (ch) and (tch) in Table 1 are of particular interest. The rule (tch)
states that a listener can let time pass by, incrementing the variables yi according
to the elapsed time. The rule (ch) states that when an event xi is triggered with a
value that matches the corresponding pattern, the process Pi is selected with the
appropriate bindings, in particular yi is bound to 0 as any waiting time has already
been taken into account and added by previous applications of the (tch) rule.

Example. Let us revisit the server response time example. Consider the exe-
cution of the device D(b) when it receives a request to test the first server with
links q1 and a1. In the given example this server takes 3.2 seconds to respond.
Then the testing device will have the following execution (in this example we
explicitly expand the timeout construct):

D(b)
b?〈5,q1,a1,r1,m1〉−−−−−−−−−−−→ q1!.(a1?@e.r1!e.D(b))

5
� m1!.D(b)

q1!∅−−−→ (a1?@e.r1!e.D(b))
5
� m1!.D(b)

≡ νs.((a1?@e.r1!e.D(b) + s?.m1!.D(b)) ‖ Δ5.s!)
3.2� νs.((a1?@e.r1!(e + 3.2).D(b) + s?.m1!.D(b)) ‖ Δ(5− 3.2).s!)
a1?∅−−−→ νs.(r1!(0 + 3.2).D(b) ‖ Δ(5 − 3.2).s!)
r1!3.2−−−→ νs.(D(b) ‖ Δ(5− 3.2).s!)
1.8� νs.(D(b) ‖ Δ0.s!)
τ−→ νs.(D(b) ‖ s!) ≡ D(b)
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3 Timed Equivalence

As explained in the introduction, all behaviours that violate hard response-
time constraints of real-time systems are considered failures. Therefore we can
weaken our comparison criteria to behaviours up to a given deadline. Consider
the following processes: A1

def
= (a?.P )

3
� Q and A2

def
= (a?.P )

5
� Q. Before time 3,

both A1 and A2 have exactly the same transitions (a?) and evolutions. If we
have a hard constraint requiring interaction before 3 time units, we don’t care
about their behaviour beyond time 3, and so it makes sense to identify the two
processes up-to time 3. Nevertheless, these systems cannot be identified under
standard notions of bisimilarity. To see this, recall the definition of timeout. We
can see that A1 has the following execution: A1

3� (a?.P )
0
� Q

τ−→ τ−→ Q but this
cannot be matched by A2: A2

3� (a?.P )
2
� Q �τ−→ . Hence, A1 and A2 cannot be

identified by any of the existing timed bisimilarities for timed π-calculi, such as
those in [3], [1], [6] or [2] or bisimilarities that match evolution directly (i.e.,
P

d� P ′ implies Q
d� Q′ with P ′ bisimilar to Q′).

In [13], Schneider introduced a notion of timed bisimilarity up-to time T to
compare the behaviour of Timed CSP processes. A good notion of observational
equivalence is one which satisfies the property that whenever two processes are
identified, no observer or context can distinguish between them. Such a prop-
erty is satisfied by an equivalence relation which is preserved by all combinators
or operators of the language, in other words, by a congruence relation (com-
positionality). Unfortunately Schneider’s equivalence is not a congruence in the
context of timed π-calculi, because, as ground bisimilarity, it is not preserved by
listeners (input). In the theory of the π-calculus several alternative definitions
of bisimilarity have been explored to ensure compositionality. Sangiorgi’s open
bisimilarity [12] has the desired feature: it is a congruence for all π-calculus op-
erators. This suggests the following equivalence for dense-time π-calculi which
combines Schneider’s timed bisimilarity with Sangiorgi’s open bisimilarity.

Definition 4. (Open timed-bisimulation) Let S be a set of terms in some
language equipped with a notion of substitution, where substitutions are functions
σ : S → S. Let (S,L,→, �) be a TLTS over S. A relation B ⊆ S × R+

0 × S,
is called an open timed-simulation if for all t ∈ R+

0 , whenever (P, t, Q) ∈ B
then, for any substitution σ : S → S and any d ∈ R+

0 such that d < t :

1. ∀α ∈ L. ∀P ′ ∈ S. Pσ
α−→ P ′ ⇒ ∃Q′ ∈ S. Qσ

α−→ Q′ ∧ (P ′, t, Q′) ∈ B

2. ∀P ′ ∈ S. Pσ
d� P ′ ⇒∃Q′ ∈ S. Qσ

d� Q′ ∧ (P ′, t− d, Q′) ∈ B

If B and B−1 are open-timed simulations, then B is called an open-timed-
bisimulation. Let �

def
= {(P, u, Q) ∈ S × R+

0 × S | ∃B. B is an open timed-
bisimulation & (P, u, Q) ∈ B}. For any given t ∈ R+

0 , let �t
def
= {(P, Q) ∈ S ×

S | (P, t, Q) ∈�}.

Remark 1. For any t ∈ R+
0 , �t is an equivalence relation and � is the largest

open timed-bisimulation.
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With this definition we can now establish that A1 �3 A2 for the processes A1
and A2 defined above.

Proposition 1. For any TLTS M = (S,L,→, �), any t, u ∈ R+
0 , and any

P, P ′, P ′′ ∈ S:

1. If P �t P ′ then for any u � t, P �u P ′; and
2. if P �t P ′ and P ′ �u P ′′ then P �min{t,u} P ′′.

Timed compositionality. Now we focus on the compositionality properties of
open timed-bisimilarity. First, we have that it is closed under substitutions:

Lemma 1. For any substitution σ, and any t ∈ R+
0 , if P �t Q then Pσ �t Qσ.

As mentioned above, a good observational equivalence should be a congruence.
However, as we have argued, we only care about the observable behaviour up-to
some time T , which means that the equivalence must be preserved by our opera-
tors only up to that time. Hence we are after a notion of timed-compositionality,
characterized by a timed-congruence, which we now formally define:

Definition 5. (Timed-congruence) Given some set S, and a ternary relation
R ⊆ S × R+

0 × S, we define R’s t-projection to be the binary relation Rt
def
=

{(p, q) ∈ S×S | (p, t, q) ∈ R}. R is called a t-congruence iff Rt is a congruence.
R is called a timed-congruence if it is a t-congruence for all t ∈ R+

0 . R is called
a timed-congruence up-to u iff it is a t-congruence for all 0 � t � u.

Open timed-bisimilarity satisfies the following stronger property which we obtain
using Lemma 1:

Lemma 2. For any P, P ′, Q, Q1, ..., Qn ∈ P, and any t ∈ R+
0 , if P �t P ′ then:

1. ΔE.P �t+e ΔE.P ′ where e = eval(E)
2. νx.P �t νx.P ′

3. P ‖ Q �t P ′ ‖ Q
4. x?F@y.P +

∑n
i=1 βi.Qi �t x?F@y.P ′ +

∑n
i=1 βi.Qi where each βi is of the

form xi?Fi@yi.

The immediate consequence, which follows from Proposition 1 and Lemma 2, is
timed-compositionality:

Theorem 1. �t is a timed-congruence up-to t and � is a timed-congruence.

We also obtain the following properties as a consequence of Lemma 2, which guar-
antees equivalence up to the least upper bound of the pairwise time-equivalences:

Corollary 1. For any families of terms {Pi ∈ P}i∈I and {Qi ∈ P}i∈I, if for
each i ∈ I, Pi �ti Qi then

1.
∏

i∈I Pi �min{ti|i∈I}
∏

i∈I Qi

2.
∑

i∈I xi?Fi@yi.Pi �min{ti|i∈I}
∑

i∈I xi?Fi@yi.Qi
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4 An Abstract Machine for the πklt-Calculus

We now turn our attention to the executable semantics of πklt.

4.1 Abstract Machine Specification

Our abstract machine is similar to Turner’s abstract machine for the π-calculus
[14], but unlike Turner’s, we have to take evolution over real-time and pattern-
matching into account. As mentioned in the introduction, the abstract machine
is based on event-scheduling, which, unlike discrete-time algorithms, does not
require idle iteration cycles at times when no events are scheduled. The key idea
is to treat each πklt term as a simulation event to be executed by an event-
scheduler (and not to be confused with a communication event in the language
itself). Such event scheduler forms the heart of our abstract machine.

The global queue. The event-scheduler contains a queue of simulation events
(terms) to be executed, but rather than store them all in a single linear queue, we
divide them into time-slots, i.e., sequences of all simulation events to be executed
at a given instant in time. Hence the global event queue is a time-ordered queue
of time-slots, each of which is a queue of terms. We describe the operation of
our abstract machine by showing how it evolves in these two “dimensions” of
time: the “vertical dimension” which corresponds to the execution of all terms
in a single time-slot, and the “horizontal dimension”, which corresponds to the
advance in time, i.e., the progress of the global queue.

Definition 6. (Global queue) The set R of global queue states, ranged
over by R, is defined by the following BNF, where T ranges over the set T of
time-slots:

R ::= (t1, T1) · (t2, T2) · · · · · (tn, Tn) | 〈〉
T ::= P1 :: P2 :: · · · :: Pm | ε

where each Pi ∈ P, each ti ∈ R+
0 , and for each i � 1, ti < ti+1.

Event observers and the heap. Multiple processes can trigger and/or listen
to the same channel. Hence we need to keep track of each of these requests in an
observer set5, containing observers, i.e., requests to either send a message over
a channel or listen to it. We also define the heap, which is a map associating
each channel name to its observer set.

Definition 7. (Channel observers and heap) The set of channel
observers, ranged over by O, observer sets, ranged over by Q and the set
H of heaps, ranged over by H, are defined by the following BNFs:

O ::= !v | ?(F, y, P, t, c)
Q ::= {O1, O2, · · · , On} | ∅
H ::= x1 '→ Q1, x2 '→ Q2, ..., xm '→ Qm | ε

5 Analogous to “channel queues” in Turner’s terminology.
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where v ∈ V, F ∈ F , P ∈ P, and t ∈ R+
0 . We denote H{x '→ Q} for the heap

where the entry for x is updated to Q. We extend this notation to indexed sets:
H{xi '→ Qi}i∈I stands for H{x1 '→ Q1} · · · {xn '→ Qn} for I = {1, ..., n}.

Observers of the form !v are output observers, and denote an attempt to send
a value v over the given channel. Observers of the form ?(F, y, P, t, c) denote
input observers, with a pattern F to match, elapsed-time variable y, body P to
execute when a message arrives and which start listening at time t. This tag t is
necessary in order to assign the correct elapsed-time to y once interaction occurs.
Such time-stamp is not present in Turner’s machine, since his is “time agnostic”.
The last item, c, is a tag used to identify the original πklt listener, so that
each branch of a listener

∑
i∈I xi?Fi@yi.Pi will have an observer ?(Fi, yi, Pi, t, c)

sharing the same identifier c. This is also absent from Turner’s machine, since
he does not implement the choice operator.

Unlike Turner’s machine, any given non-empty observer set can contain both
inputs and outputs simultaneously, because it is possible that the value sent over
a channel does not match any of the patterns of the available input observers
and thus the corresponding output observer must be suspended with the existing
inputs on the same observer set. Hence the following auxiliary definitions will
be useful to extract the relevant observers from a set.6

Definition 8. Given an observer set Q, we denote:
inputs(Q)

def
= {O ∈ Q |O is of the form ?(F, y, P, t, c)}

outputs(Q)
def
= {O ∈ Q |O is of the form !v}

patt(?(F, y, P, t, c))
def
= F tag(?(F, y, P, t, c))

def
= c val(!v)

def
= v

inms(v, Q)
def
= {(O, σ) |O ∈ inputs(Q), σ = match(patt(O), v, ∅), σ �= ⊥}

outms(F, Q)
def
= {(O, σ) |O ∈ outputs(Q), σ = match(F, val(O), ∅), σ �= ⊥}

The last two functions give us the set of observers and bindings for successful
matches between a value v (resp. a pattern F ) and the patterns (resp. values)
available as input (resp. output) observers in the set.

We also need the ability to remove input observers from all branches of a
listener once a branch has been triggered. To this end, we define the following
which removes all c tagged inputs from an observer set Q:

withdraw(Q, c)
def
= {O ∈ inputs(Q) | tag(O) �= c}∪ outputs(Q)

which we use to define the following function that removes all such inputs
anywhere in the heap7:

rall(ε, c)
def
= ε and

rall((H, x '→ Q), c)
def
= rall(H, c), x '→ withdraw(Q, c)

6 We assume the standard set theoretical operations for observer sets: e.g., Q ∪ {O}
denotes the observer set that adds O to Q, Q\O is the set that results from removing
O from Q, O ∈ Q tests for membership, etc.

7 This definition is inefficient since it traverses the entire heap. In practice, the in-
put observers contain a list of pointers to the relevant heap entries to remove the
alternatives efficiently.
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Executing time-slots. We now describe the “vertical dimension” of time, i.e.,
the execution of terms within one time-slot.

Definition 9. (Time-slot execution) The behaviour of time-slots at a time
t ∈ R+

0 is defined as the smallest relation →t⊆ (H×T )× (H×T ) satisfying the
rules below:

(nil) (H,
√

:: T )→t (H,T )
(res) (H, νx.P :: T )→t (H{k �→ ∅}, P{k/x} :: T ) with k fresh
(sp1) (H, (P1 ‖ P2) :: T )→t (H,T :: P1 :: P2)
(sp2) (H, (P1 ‖ P2) :: T )→t (H,T :: P2 :: P1)
(out-f) if H(x) = Q and inms(eval(E), Q) = ∅ then

(H,x!E :: T )→t (H{x �→ Q ∪ {!eval(E)}}, T )
(out-s) if H(x) = Q and (?(F, y, P, u, c), σ) ∈ inms(eval(E), Q) 
= ∅ then

(H,x!E :: T )→t (rall(H, c), Pσ[t−u/y] :: T )
(inp-f) if ∀i ∈ I.H(xi) = Qi, outms(Fi, Qi) = ∅ and c fresh, then

(H,
∑
i∈I xi?Fi@yi.Pi :: T )→t (H{xi �→ Qi ∪ {?(Fi, yi, Pi, t, c)}}i∈I , T )

(inp-s) if ∃i ∈ I.H(xi) = Qi and (O, σ) ∈ outms(Fi, Qi) 
= ∅ then
(H,
∑
i∈I xi?Fi@yi.Pi :: T )→t (H{xi �→ Qi\O}, Piσ[0/yi] :: T )

(inst) if A(x̃) def= P then (H,A(ṽ) :: T )→t (H,T :: P{ṽ/x̃})

The rule (nil) simply ignores a terminated process. The (sp) rules break a par-
allel composition into its components and spawn their execution in the current
time-slot in an arbitrary order. Unlike Turner’s machine, this is non-deterministic.
The (res) rule allocates a new spot for the new channel, and initializes its ob-
server set to empty.

The (out-f) rule describes the case when a message is sent over x and there
is no matching listener in x’s observer set (output failure). In this case we simply
add a new trigger observer to x’s observer set and continue. The (out-s) rule
(output success) applies when there is a matching observer O with σ being
the resulting bindings. In this case, we remove all observers belonging to the
matching listener (those tagged with c), and then execute the body P of the
observer, applying the substitution σ extended with the binding of the elapsed
time variable y to the difference between the current time t and the time u
when the receiver started listening. Note that since there might be more than
one successful match, the choice is non-deterministic, contrasting again with
Turner’s machine.

The rules (inp-s) and (inp-f) are the dual of (out-s) and (out-f). In rule
(inp-f), when attempting to execute a listener, if there are no matching triggers
in the relevant observer sets, we simply add the appropriate observers to the
corresponding observer sets. Note that the added observers are tagged with the
current time t, and with the same tag c. On the other hand, in rule (inp-s),
one of the branches succeeds in matching the pattern with an observer O and
binding σ. In this case, we remove the output observer from the event’s observer
set and execute the body of the corresponding branch, applying the substitution
σ and binding yi to 0, since the listener did not have to wait.
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Finally, the rule (inst) deals with process instantiations. This simply assumes
the set of process definitions is available, and schedules the execution of the body
of the definition by replacing its parameters by the arguments provided by the
instantiation.

Note that there is no rule associated with the Δ operator. We specify its
behaviour in the description of the global scheduler below.

Global event scheduler. Now we can define the behaviour of the global event
scheduler. For this purpose we will assume we have a function insort : R+

0 ×
P × R → R (formally defined in [10]) which, given a time, inserts a term in
the appropriate time-slot in the global queue, preserving the order of time-slots
w.r.t. their time-stamps.

Definition 10. (Scheduler) The behaviour of the scheduler is given by the
smallest relations ↪→0, ↪→1, ↪→2⊆ (H × R) × (H × R) which satisfy the rules
below:

(ts) if (H, T )→t (H ′, T ′) and T �= ε then (H, (t, T ) ·R) ↪→0 (H ′, (t, T ′) · R)
(adv) (H, (t, ε) · R) ↪→1 (H, R)
(sch) (H, (t, ΔE.P :: T ) · R) ↪→2 (H, insort(t + eval(E), P, (t, T ) ·R))

The rule (ts) states that as long as there are terms in the current time-slot
then they are executed. The (adv) rule states that when the current time-slot
is empty, execution moves on to the next available time-slot. Finally, the (sch)
rule describes the behaviour of the delay operator: to execute ΔE.P , the value
d of E is computed and P is inserted at time t + d (where t is the current time).
Note that P is inserted in (t, T ) ·R because the value of E may be 0. This may
create a new time-slot, if there was none at time t + d.

Example. We illustrate the abstract machine with a sample execution. Consider
the processes Q

def
= Δ3.2.x!1 and P

def
= x?1@e.P1 where P1

def
= Δ(5 − e).P2 for

some P2. Suppose that the current time is, for example, 7. The execution of the
time-slot containing only νx.(P ‖ Q), assuming the heap is initially empty (just
to simplify notation) is:

(ε, (7, νx.(P ‖ Q)))
↪→0 (k '→ ∅, (7, (P ‖ Q){k/x})) (res)+(ts)
≡ (k '→ ∅, (7, (P{k/x} ‖ Q{k/x})))
↪→0 (k '→ ∅, (7, P{k/x} :: Q{k/x})) (sp1)+(ts)
↪→0 (k '→ {?(1, e, P1{k/x}, 7, c)}, (7, Q{k/x})) (inp-f)+(ts)
≡ (k '→ {?(1, e, P1{k/x}, 7, c)}, (7, Δ3.2.k!1))
↪→2 (k '→ {?(1, e, P1{k/x}, 7, c)}, insort(7 + 3.2, k!1, (7, ε))) (sch)
≡ (k '→ {?(1, e, P1{k/x}, 7, c)}, (7, ε) · (10.2, k!1))
↪→1 (k '→ {?(1, e, P1{k/x}, 7, c)}, (10.2, k!1)) (adv)
↪→0 (k '→ ∅, (10.2, P1{k/x}{10.2−7/e})) (out-s)+(ts)
≡ (k '→ ∅, (10.2, Δ(5− 3.2).P2{3.2/e}{k/x}))
↪→2 (k '→ ∅, (10.2, ε) · (12, P2{3.2/e}{k/x})) (sch)
↪→1 (k '→ ∅, (12, P2{3.2/e}{k/x})) (adv)
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Here we used (sp1) which selected the left process P to be executed first.
This resulted in registering the input observer in k’s observer set. If we had used
(sp2) instead, then Q would have been executed first, resulting in the scheduling
happening first, but P would remain in the time-slot for time 7, and thus it would
be executed before advancing in time.

4.2 Soundness

We now establish that reductions in our abstract machine correspond to valid
πklt executions, following the same approach from [14]. To do this, we first encode
the states of our abstract machine as πklt terms, in particular we need to encode
the heap, its observer sets, time-slots and the global queue. We use x ∈ H to
denote that there is an entry for x in the heap H .

Definition 11. (Encoding the machine state) The set of triggers in the
heap entry for x and the set of all triggers in the heap are given by:

triggers(Q, x)
def
= {x!v | !v ∈ outputs(Q)}

alltriggers(H)
def
=

⋃
x∈H triggers(H(x), x)

The set of branches of a listener with tag c is given by:
branches(H, c, t)

def
=

⋃
x∈H alts(H(x), c, x, t) where

alts(Q, c, x, t)
def
= {x?F@y.P{y+(t−u)/y} | ?(F, y, P, u, c) ∈ inputs(Q)}

The set of all listeners in the heap is given by:
alllisteners(H, t)

def
= {

∑
branches(H, c, t) | c ∈ alltags(H)}

where
alltags(H)

def
=

⋃
x∈H tags(H(x)) and

tags(Q)
def
= {tag(O) |O ∈ inputs(Q)}

The encoding of the heap H at time t, is given by:
�H�t

def
= (

∏
alllisteners(H, t)) ‖ (

∏
alltriggers(H))

The encoding of the time-slot T = P1 :: P2 :: · · · :: Pn is:
�T �

def
= P1 ‖ P2 ‖ · · · ‖ Pn

The encoding of a heap/time-slot pair at time t is:
�(H, T )�t

def
= �H�t ‖ �T �

The encoding of the global queue R = (t1, T1) · (t2, T2) · ... is given by:
�R�

def
= �T1� ‖ Δ(t2 − t1).�T2� ‖ · · · ‖ Δ(tn − t1).�Tn�

The encoding of the machine state (H, R) is defined as:
�(H, R)�

def
= νx1, ..., xk.(�H�curtime(R) ‖ �R�)

where {x1, ..., xk} are the names of entries in the heap H and curtime((t, T ) ·
R)

def
= t is the time-stamp of the first time-slot.

Note that to create a single listener we have to quantify over the possible entries
in the heap. This is because each branch of a listener may listen to different
channels, and therefore, the corresponding input observers may be dispersed over
multiple heap entries. The use of tag c allows us to identify all input observers
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which belong to the same listener. Also, note that the definition alts which gives
us an alternative branch of a listener, substitutes y + (t− u) for y in P , where t
is the current time and u is the time-stamp of the input observer, i.e., when the
listener began listening. This is because the encoding corresponds to taking a
“snapshot” of the machine’s state at time t, but each listener may have registered
at some time u � t so we have to take the already elapsed time into account. The
encoding �R� for the global queue considers the first time-slot to represent the
current one, so all future time-slots are delayed relative to the current time t1.

Now we establish our result (we write =⇒ for ( τ−→ ) ≡ ∪ ≡).

Lemma 3. If (H, T )→t (H ′, T ′) then �(H, T )�t =⇒ �(H ′, T ′)�t

Theorem 2. (Abstract machine soundness)

1. If (H, R) ↪→0 (H ′, R′) then �(H, R)� =⇒ �(H ′, R′)�
2. If (H, R) ↪→1 (H ′, R′) then �(H, R)� d� �(H ′, R′)� with d = t2 − t1 where

R = (t1, T1) · (t2, T2) · ...
3. If (H, R) ↪→2 (H ′, R′) then �(H, R)� ≡ �(H ′, R′)�

5 Conclusions

We have introduced the πklt-calculus, a timed extension to the asynchronous
π-calculus which adds some high-level features such as pattern-matching. We
have given an operational semantics in terms of timed-labelled transition sys-
tems, and developed a basic theory of time-bounded congruence. We developed
an abstract machine for the calculus and established its soundness with re-
spect to the operational semantics. To the best of our knowledge this is the
first use of event-scheduling (as used in simulation) as a language interpreter.
We have implemented the πklt-calculus in a language called kiltera (available at
http://www.kiltera.org) which is based on the described abstract machine.
Moreover, it extends πklt with primitives for distributed computing, allowing
processes to be sent to remote sites and have site-dependent behaviour.

Aside from differences in the particular choice of operators, the most closely
related work, to the best of our knowledge, is found in [3], [1], [6] and [2]. As men-
tioned before the first three consider only discrete-time variants of the π-calculus
and all deal with stringent notions of timed equivalence which do not take into
account time bounds. Furthermore, the equivalences in [3] are not shown to be
congruences. In fact, we suspect that these equivalences are not congruences,
for the same reasons that strong, ground bisimilarity is not a congruence in the
π-calculus, or (non-open) timed-bisimilarity is not a congruence in πklt: they are
insensitive to values over channels. The other papers deal with congruences, but
they are sensitive to behaviours beyond time-bounds, distinguishing processes
that should be identified when considering hard constraints.

In terms of execution, to the best of our knowledge, there is no other abstract
machine for a timed π-calculus, and the only other implementation is that of the
TDπ-calculus [4]. This implementation is quite different from ours, both in terms
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of the execution model and architecture. Firstly, it uses of a clock-tick model rather
than event-scheduling. Secondly, instead of using an abstract machine, it trans-
lates the source language (TiMo) to Java code, and thus depends on the Java
run-time system and additional libraries. There are further differences regarding
distributed execution, but these fall outside the scope of this paper. For a more
detailed comparison with this and other related work, we refer the reader to [10].

There are several possible future lines of research including the development
of a type system, weaker notions of equivalence and refinement relations with ap-
propriate axiomatizations, as well as symbolic methods to help analyze systems.
The mentioned extension of πklt and kiltera to distribution will be described in
a future paper.

References

1. Berger, M.: Basic Theory of Reduction Congruence for Two Timed Asynchronous
π-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 115–130. Springer, Heidelberg (2004)

2. Chen, J.: A proof system for weak congruence in timed π-calculus. Tech. Report
2004-13, LIFO, Université d’Orléans (2004)

3. Ciobanu, G.: Behaviour Equivalences in Timed Distributed π-calculus. In: Wirsing,
M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive Systems.
LNCS, vol. 5380, pp. 190–208. Springer, Heidelberg (2008)

4. Ciobanu, G., Juravle, C.: MCTools: A Software Platform for Mobility and Timed
Interaction. Tech. Report FML-09-01, Formal Methods Laboratory – Romanian
Academy – Iasi Branch (February 2009)

5. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

6. Kuwabara, H., Yuen, S., Agusa, K.: Congruence Properties for a Timed Extension
of the π-Calculus. In: Proc. of DSN 2005 Workshop: Dependable Software, Tools
and Methods, pp. 207–214 (2005)

7. Lee, J.Y., Zic, J.: On modeling real-time mobile processes. In: Proc. of ACSC 2002,
January 2002, pp. 139–147 (2002)

8. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and
II. Reports ECS-LFCS-89-85 and ECS-LFCS-89-86 86, Computer Science Dept.,
University of Edinburgh (March 1989)

9. Posse, E.: Modelling and Simulation of dynamic structure, discrete-event systems.
Ph.d. thesis, School of Computer Science. McGill University (August 2008)

10. Posse, E.: A real-time extension to the π-calculus. Tech. Report 2009-557, School
of Computing – Queen’s University (2009), http://www.cs.queensu.ca

11. Prisacariu, C., Ciobanu, G.: Timed Distributed π-Calculus. Tech. Report FML-05-
01, Institute of Computer Science, Romanian Academy (2005)

12. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Tech. Report ECS-LFCS-
93-270, University of Edinburgh (1993)

13. Schneider, S.: An operational semantics for Timed CSP. Information and Compu-
tation (1995)

14. Turner, D.N.: The polymorphic Pi-calculus: Theory and Implementation. Ph.d.
thesis, Univ. of Edinburgh (1996)

15. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation, 2nd
edn. Academic Press, London (2000)

http://www.cs.queensu.ca


Fuzzy-Timed Automata�

F. Javier Crespo, Alberto de la Encina, and Luis Llana

DSIC, Universidad Complutense de Madrid, Spain
javier.crespo@fdi.ucm.es, {albertoe,llana}@sip.ucm.es

Abstract. Timed automata theory is well developed in literature. This
theory provides a formal framework to model and test real-time systems.
This formal framework supplies a way to describe transitions among
states with timing constrains. These constraints are usually expressed
with logic formulas involving the system clocks. The time domain of
these clocks usually is considered dense, that is, the clocks take values
in the real or rational numbers. Dealing with a domain like this can be
hard, specially if we consider end points of intervals.

In this paper, we present a modification of the model that allows
to use real time in an easier, more powerful and reliable approach for
computing systems. Our proposed model exploits the concepts of fuzzy
set theory and related mathematical frameworks to get a more flexible
approach.

Keywords: Conformance Testing, Timed Automata, Fuzzy Set Theory.

1 Introduction

Over the last decades Formal Methods have attracted the attention of researches
all over the world. One of the first, and also one of the most important, enhance-
ments to formal methods was the inclusion of temporal features. Just from the
beginning, one the of the most important issues was the nature of time: whether
the time is a discrete domain [8,16,15] or a dense one [19,3,5]. The authors in
favor of a dense time domain argued that its expressive power is greater than the
one of a discrete time domain. Those in favor of a discrete time domain argued
that it is more realistic since, for instance, you can’t measure

√
2 seconds.

As aforementioned, time can be considered discrete. In this case it is composed
of sequential instants. Mathematically speaking a discrete time domain has a
order relation that is isomorphic to the order relation of the natural numbers.
This model implies the existence of abrupt jumps. Therefore, even the absence
of vagueness, a discrete time model becomes imprecise in the real world.

On the other hand, time can be modeled to be dense. A dense time domain has
an order relation similar to the one of the real numbers or the rational numbers:
between two time instants there is always another time instant. In others words,
there are not any abrupt jumps. When working with a dense time domain it is
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Fig. 1. Fuzzy number 2

usually necessary to discretize it. For instance, in Lazy Hybrid Automata [1], they
consider that infinite precision is not possible so they discretize the continuous
values by considering intervals.

Neither the discrete nor the dense models of time are capable to model prop-
erly the concept of time that humans beings have which it is inherently vague. In
this paper, we propose the use of a structure that wraps the concept itself assum-
ing the uncertainty and vagueness. In this context vagueness is not necessarily
a criticism, but just a fact. The most popular approaches to handling vagueness
and uncertainty as partial ignorance are Bayes theory, Shafer’s evidence theory,
the transferable belief model, and the possibility theory which are completely
related to fuzzy sets.

Fuzzy set theory [20,21,14] provides a formal framework for the representation
of vagueness. Our perception of reality is not perfect, although things can be
true or false; our environment can make us doubt about a truth assessment.
All measurement devices have an intrinsic error: if a thermometer indicates that
the temperature is 35.4oC, we know that the actual temperature is around that
measurement. Something similar happens with time. We can claim that it takes
us an hour to go to work ; if the trip to work lasts 57 minutes in a particular day
we know that the trip has lasted as usual, otherwise if it takes us 81 minutes we
know that the trip has not lasted as usual. We can also be more accurate and
give a degree of confidence of the measurement, which is a number in the interval
[0, 1] with being 1 the maximum degree of confidence and 0 the minimum. In
this way, we can assess that 57 minutes is equal to 1 hour with a confidence
degree close to 1, while 81 minutes has a confidence degree close to 0.

Therefore, a fuzzy number can be seen as a mapping from the set of real
numbers to the interval [0, 1]. In Figure 1 we have depicted the fuzzy number 2,
denoted by 2. In the figure we can observe that 1.95 is relatively close to 2 so it
has a high confidence level 0.83. On the contrary, 2.2 is further from 2 so it has
a lower confidence level 0.3, and 2.5, that is even further, has a confidence level
of 0.

Timed automata theory is well developed in literature [2,3,7,17]. This theory
provides a formal framework to model and test real-time systems. This for-
mal framework supplies a way to describe transitions among states with timing
constraints. The time model usually adopted in this theory is a dense one. Nev-
ertheless, the numbers appearing in the time constraints they introduced always
range over the set of natural numbers IN. Hence, what they are really doing is a
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discretization of time. As aforementioned, we do not think this is the best way to
model time. Hence, we adapt this framework to include fuzzy time constraints.

Once we have defined the fuzzy-timed specifications, it is necessary to check
if the implementations meet them. One of the basic relationships between spec-
ifications and implementations is trace equivalence. But in this point there is a
problem, let us suppose that a specification requires that an action a must be
executed in the time interval [1, 3]. On the one hand, since we are in a fuzzy
environment, we allow an implementation to execute action a at instant 3.0001;
but, on the other hand, we cannot consider incorrect an implementation that
always executes the action a within [1, 3]. This could be solved if the implemen-
tation relation were the trace inclusion. However, this relation is not completely
satisfactory because an implementation that does not make any action at all
is considered correct. Therefore, the implementation relation should be trace
equivalence for the interval [1, 3] and, at the same time, it should have some
tolerance outside that interval.

Another important aspect of a theory is having the proper software tools. We
have not developed any tool yet, but we have expressed our fuzzy implementation
relations in terms of ordinary timed automata. In this way we can use the well
known tools like Uppaal [4].

The relationship between fuzzy set theory and automata theory is not new.
Fuzzy automata have been used to deal with different science fields: imprecise
specifications [11], modeling Learning Systems [18] and many others. Fuzziness
has been introduced in the different components of the automata: states, tran-
sitions, and actions [18,13,6]. A similar work of ours has been made in [7]. They
use a many-valued logic in the transitions of the automata, and although they
do not use fuzzy logic, their approach logic is similar to ours.

Probabilistic and stochastic models [12,9] might be considered related to the
fuzzy model presented in this paper. In these models, the time when an action
is performed follows a given random variable. Before setting a probability or a
random variable in a model, a thorough statistical analysis should be performed.
Unfortunately this requirement is difficult, if not impossible, to achieve. Thus,
the specifier must choose the probability or a random variable based on her own
experience. This experience fits better in a fuzzy environment.

The rest of the paper is organized as follows. Next, in Section 2 we intro-
duce some concepts of fuzzy logic that are used along the paper. After that, in
Section 3 we introduce the concept of fuzzy specifications, implementations and
fuzzy time conformance. In Section 4 we present a case study to show the main
characteristics of our model. Next, in Section 5 we show how to compute our
fuzzy relations in terms of ordinary timed automata. Finally in Section 6 we give
some conclusions and future work guidelines.

2 Preliminaries

In this paper we do not assume that the reader is familiar with fuzzy logic
concepts. Therefore, we present some basic concepts of fuzzy logic.
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2.1 Fuzzy Relations

In ordinary logic, a set or a relation is determined by its characteristic function:
a function that returns true if the element is in the set (or if some elements a
related) and false otherwise. In the fuzzy framework we do not have that clear
distinction between truth and falsehood; instead we have a complete range of
values in the interval [0, 1]; the larger is the value, the more confidence we have
in the assessment. In this paper we consider relations of real numbers IR. So a
fuzzy relation is a mapping from the Cartesian product IRn into the interval [0, 1]

Definition 1. A fuzzy relation A is a function A : IRn '→ [0, 1]. Let x ∈ IRn, we
say that x is not included in A if A = 0; we say that x is fully included in A if
A = 1. The kernel of A is the set of elements that are fully included in A ��
The notion of α-cut is very important in fuzzy logic. Intuitively it establishes a
credibility threshold. If we have a fuzzy relation A, we accept that the relation
is true for x if A(x) is above that threshold.

Definition 2. Let A : IRn '→ [0, 1] be a fuzzy relation and α ∈ [0, 1]. We define
the α-cut of A, written cutα(A), as cutα(A) = {x ∈ IRn | A(x) ≥ α}. ��
Example 1. In this paper we consider the following fuzzy relations. Let us con-
sider a non negative real number λ ≥ 0,

x = yλ =

⎧⎨
⎩

0 if x ≤ y − λ or x > y + λ
1 + x−y

λ if y − λ < x ≤ y
1− x−y

λ if y < x ≤ y + λ
0 1 2

1
x = 20.3

x ≤ y
λ =

⎧⎨
⎩

1 if x < y
0 if x > y + λ
1− x−y

λ if y ≤ x ≤ y + λ
0 1 2

1
x ≤ 20.3

x ≥ y
λ =

⎧⎨
⎩

1 if x > y
0 if x ≤ y − λ
1 + x−y

λ if y − λ < x ≤ y
0 1 2

1
x ≥ 10.3

Note that these fuzzy relations are not order relations. We use these functions
to describe fuzzy-timed automata that we present in Section 3. The only prop-
erty we use, which simplifies the writing, is the commutativity of the equality
x = yλ = y = xλ, viewed as binary operation over IR. ��

2.2 Triangular Norms

A triangular norm (abbreviated t-norm) is a binary operation used in fuzzy logic
to generalize the conjunction in propositional logic. In order to be able to gen-
eralize the conjunction, we have to analyze its basic properties: commutativity
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p ∧ q = q ∧ p, associativity (p ∧ q) ∧ r = p ∧ (q ∧ r), identity true ∧ p = p, and
nilpotency false ∧ p = false.

Therefore, we require a t-norm to satisfy similar properties. We also require
an extra property: monotonicity. Intuitively, the resulting truth value does not
decrease if the truth values of the arguments increase.

Definition 3. A t-norm is a function T : [0, 1] × [0, 1] '→ [0, 1] which satisfies
the following properties:

– Commutativity: T (x, y) = T (y, x).
– Monotonicity: T (x, y) ≤ T (z, u) if x ≤ z and y ≤ u.
– Associativity: T (x, T (y, z)) = T (T (x, y), z).
– Number 1 is the identity element: T (x, 1) = x.
– Number 0 is nilpotent: T (x, 0) = 01. ��

Since t-norms are associative, we can generalize them to lists of numbers:

T (x1, x2, . . . , xn−1, xn) = T (x1, T (x2, . . . , T (xn−1, xn) . . .))

Example 2. The following t-norms are often used:

Łukasiewicz t-norm: T (x, y) = max(0, x + y − 1). We represent this t-norm
with the symbol �.

Gödel t-norm: T (x, y) = min(x, y). We represent this t-norm with the sym-
bol �.

Product t-norm: T (x, y) = x · y (real number multiplication). We represent
this t-norm with the symbol 	.

We assume that any t-norm used has a symbol, we use the symbol( to represent
a generic t-norm. We denote by [[(]] the function associated with the symbol (.
For instance [[�]] is the min function. ��

3 Fuzzy-Timed Automata

In this Section we introduce the basic notions of fuzzy-timed automata. But first,
in order to make the paper self-contained, we first recall some common definitions
of timed automata. Later we use and adapt these definitions to cope with fuzzy-
timed automata. Apart from using these definitions later, we use ordinary timed
automata to represent implementations of the fuzzy specifications.

Definition 4. Actions. We assume that we have a finite alphabet of actions.
The set of actions is denoted by Acts. Actions are ranged over by a, b, c, . . .

Clocks. A clock is a real valued variable. Clocks are ranged over by x, y, z, . . .
We assume that we have a finite set of clocks denoted by Clocks

Clock valuations. A clock valuation u : Clocks '→ IR+ assigns non-negative
real values to the clocks. The valuations of the clocks are denoted by u, v, . . .
We denote by 0 the clock valuation where all clocks are set to 0.
We use the following notation for valuations.

1 As a matter of fact, this property can be easily deduced from the others.
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– Let u be a valuation and let d ∈ IR+. The valuation u + d denotes the
valuation (u + d)(x) = u(x) + d.

– Let u be a valuation and r a set of clocks. We denote the reset of all
clocks of r in u, written as u[r], as a valuation that maps all clocks in r
to 0 and leaves invariant the rest of clocks.

Clock constraints. A clock constraint is a formula consisting of conjunctions
of atomic relations of the form x �� n or x−y �� n where n ∈ IN, x, y ∈ Clocks
and ��∈ {≤, <, =, >,≥}. We denote the set of clock constraints by C.
Let u be a valuation and C ∈ C, we write u 
 C when the valuation u makes
the clock constraint C true.

Timed Automata. A timed automaton is a tuple (L, l0, E, I) where:
– L is a finite set of locations.
– l0 ∈ S is the initial location.
– E ⊆ L × Acts× C × 2Clocks × L is the set of edges; we write l

a,C,r−−−−−→ l′

whenever (l, a, C, r, l′) ∈ E.
– I : L '→ C is a function that assigns invariants to locations. As it is

usual, the invariants of locations consist of conjunctions of atoms of the
form x ≤ n where n ∈ IN.

Operational semantics. The operational semantics of a timed automaton is
a timed labeled transition system whose states are pairs (l, u) where l is a
location, u is a valuation of clocks, and its transitions are:
– (l, u) d−−→ (l, u + d) if d ∈ IR+ and u + d 
 I(l).

– (l, u) a−−→ (l′, u[r]) if l
a,C,r
−−−−−→ l′ and u 
 C and u[r] 
 I(l′).

Automata traces. Let A = (L, l0, E, I) be an automaton. A trace is a sequence
t = (d1, a1)(d2, a2) . . . (dn, an) ∈ (IR+ × Acts)∗, written as t ∈ tr(A), if there
is a sequence of transitions

(l0, 0)
d1−−→ a1−−→ (l1, u1)

d2−−→ a2−−→ (l2, u2) · · ·
dn−−→ an−−→ (ln, un)

Conformance relation. Among the different conformance notions in the timed
automata literature we want to recall the trace inclusion and trace equivalence
relations: A1 ≤tr A2 ⇔ tr(A1) ⊆ tr(A2) and A1 ≡tr A2 ⇔ tr(A1) = tr(A2) ��

As we have indicated, our objective is to define fuzzy-timed automata. In timed
automata theory, time is expressed in the time constraints. Hence, we need to
modify these constraints in order to be able to introduce fuzziness. In ordinary
timed automata theory, the time constraints consist of conjunctions of inequali-
ties. Instead of the ordinary crisp inequalities in Definition 4, we use their fuzzy
counterparts appearing in Example 1. We could have more freedom in allowing
general convex fuzzy sets, but we have preferred to keep our constraints close to
the original ones so we can use the theory developed for timed automata.

The role of a conjunction in Fuzzy Theory is played by t-norms. There is not
a canonical t-norm, in Example 2 we have 3 of the more used t-norms. We have
preferred to allow any of the available t-norms.

The time constraints be divided in two groups: The general fuzzy constraints
that appear as the constraints attached to the actions; and the set of restricted
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constraints attached to location invariants where only inequalities of the form
x ≤ n

λ are allowed.

Definition 5

1. A fuzzy constraint is a formula built from the following B.N.F.:

C ::= True | C1 ( C2 | x �� nλ | x− y �� n
λ

where ( is a t-norm, ��∈ {≤, =,≥}, x, y ∈ Clocks, λ ∈ IR+, and n ∈ IN. We
denote the set of fuzzy constraints by FC.

2. A fuzzy restricted constranint is the subset of fuzzy constraints defined by
the following B.N.F.:

C ::= True | C1 ( C2 | x ≤ n
λ

where ( is a t-norm, x ∈ Clocks, λ ∈ IR+, and n ∈ IN. We denote the set of
restricted fuzzy constraints by RFC. ��

In timed automata theory, the constraints are used to decide if the automata
can stay in a location and to decide if a transition can be executed. All this is
done by checking if a valuation satisfies the corresponding constraint. In fuzzy
theory the notion of satisfaction is not crisp, we do not have a boolean answer
but a range in the interval [0, 1]. Therefore, we do not have if a constraint is true
or false but a satisfaction grade of a constraint.

Definition 6. Let u be a clock valuation and C be a fuzzy constraint, we induc-
tively define the satisfaction grade of C in u, written μC(u), as

μC(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if C = True

u(x) �� n
λ

if C = x �� nλ, ��∈ {≤, =,≥}
u(x)− u(y) ≤ n

λ
if C = x− y ≤ n

λ
, ��∈ {≤, =,≥}

[[(]](μC1(u), μC2(u)) if C = C1 ( C2

Let us remark that μC(u) ∈ [0, 1]. ��

Once the time constraints are defined, the definition of the fuzzy-timed automata
is quite straightforward. It consists of replacing the ordinary time constraints by
fuzzy time constraints.

Definition 7. A fuzzy-timed automaton is a tuple (L, l0, E, I) where:

– L is a finite set of locations.
– l0 ∈ S is the initial location.
– E ⊆ L × Acts × FC × 2Clocks × L is the set of edges; we write l

a,C,r−−−−−→ l′

whenever (l, a, C, r, l′) ∈ E.
– I : L '→ RFC is a function that assigns invariants to locations.
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Let us note that the clock constraints in the edges have the general form as
indicated in Definition 5-1, while the location invariants have the restricted form
as indicated in Definition 5-2. ��

Next we are going to define the operational semantics of fuzzy-timed automata.
We need it to obtain the fuzzy traces that are used for the conformance relations.
This operational semantics is given in terms of transitions, which are enabled
when time constraints hold. Since we do not have crisp time constraints, the tran-
sitions must be decorated with a real number α ∈ [0, 1]. This number indicates
its certainty.

In order to define the operational semantics we need a t-norm. Let us explain
the reason. In the definition of the operational semantics of a ordinary timed
automaton, the action transitions requires the condition “u 
 C and u[r] 
 I(l′)”.
This conjunction must be transformed into its fuzzy version: a t-norm.

Definition 8. Let fA = (L, l0, E, I) be a fuzzy-timed automaton and ( be a t-
norm. The (-operational semantics of fA is the labeled transition system whose
states are (l, u) ∈ L× Clocks, the initial state is (l0, 0), and the transitions are:

1. (l, u) d−−→ α (l, u + d) whenever μI(l)(u + d) = α

2. (l, u) a−−→ α (l′, u[r]) when ever l
a,C,r−−−−−→ l′, α1 = μI(l′)(u[r]), α2 = μC(u)

and α = [[(]](α1, α2). ��

This operational semantics is not a pure timed transition system because the
transitions are decorated with a real number α ∈ [0, 1] indicating the certainty
to be executed. Anyway it is desirable that it has the main properties of timed
transition systems: time determinism and time additivity.

Proposition 1. Let fA = (L, l0, E, I) be a fuzzy-timed automaton and ( be a
t-norm, the (-operational semantics of fA holds the following properties:

Determinism. If (l, u) d−−→ α1 (l1, u1) and (l, u) d−−→ α2 (l2, u2), then α1 = α2,
l1 = l2 and u1 = u2.

Additivity. If (l, u)
d1−−→ α1 (l1, u1)

d2−−→ α2 (l2, u2) then (l, u)
d1+d2−−−−−→ α2 (l2, u2)

Proof. To prove this it is enough to take into account that time transitions do
not change location and the clock valuation is increased with the passing of time.

��

As a further remark let us observe the α2 of the transition (l, u)
d1+d2−−−−−→ α2 (l2, u2)

in the time additivity property. In this case we do not have to combine it with
α1 because the constraints considered in the locations have the form x ≤ n

λ,
therefore α1 ≥ α2. Intuitively if the automaton stays in a location, the likelihood
of remaining in it can only decrease.

This operational semantics allows to define the traces of a fuzzy-timed au-
tomaton. The traces of a timed automaton consist of sequences of pairs, the first
element of the pair expresses how long the automaton has stayed in a location
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and the second one the action that has made a location change. Now all these
transitions are decorated with the certainty of being performed. So whenever the
automaton stays in a location, we have an α ∈ [0, 1] indicating the certainty of
the automaton to stay in the location; and when a action transition is performed,
we need a β ∈ [0, 1] indicating its certainty.

Definition 9. Let fA = (L, l0, E, I) be a fuzzy-timed automaton and let ( be
a t-norm. We say that t = (d1, α1, a1, β1)(d2, α2, a2, β2) . . . (dn, αn, an, βn) ∈
(IR+ × [0, 1] × Acts × [0, 1])∗ is a (-fuzzy trace of fA, written t ∈ ftr�(fA),
if there is a sequence of transitions

(l0, 0)
d1−−→ α1 •

a1−−→ β1 (l1, u1)
d2−−→ α2 •

a2−−→ β2 (l2, u2) · · ·
dn−−→ αn •

an−−→ βn (ln, un)

in the (-operational semantics of fA. In the previous sequence of transitions
we have not specified the bullet states • to simplify the reading; they are always

determined by the previous state: (li, ui)
di+1−−−−→ αi+1 (li, ui + di+1) ��

As aforesaid, we consider implementations are real-time systems. When we check
these systems we obtain real time measurements. We need to check if those mea-
surements meet the fuzzy constraints given by the fuzzy specification. Therefore
we assume that we have traces generated from a (non-fuzzy) timed automaton.
These traces are of the form (d1, a1)(a2, d2) · · · (dn, an). We have to compare
them to the traces of the fuzzy automaton that have the form (d1, α1, a1, β1)(a2,
αn, d2, β2) . . . (dn, αn, an, βn). In order to have a true/false assessment, first we
have to combine the certainty values (α1, β1, α2, β2, . . . , αn, βn) with a t-norm
and to compare the result to a given threshold α ∈ [0, 1].

The conformance relations we want to mimic in our fuzzy framework are trace
inclusion and trace equivalence. The first one is easier and corresponds to part 1
of Definition 10. Trace inclusion requires that all traces in the implementation
are traces of the specification. In our case we do not have a crisp membership
relation, instead we have the certainty values, a t-norm, and a threshold. Hence
we compound the uncertainty values with the t-norm, we accept the trace if the
obtained value is above the given threshold.

The relation corresponding to trace equivalence is in part 2 of Definition 10.
It cannot be just trace equivalence. To understand the reason let us suppose
that the specification allows the execution of action a in a given location with
the fuzzy constraint x ≤ 30.2 and the threshold is 0.9. In this case we allow an
implementation to execute the action a at time 3.01. But we do not want to
force a correct implementation to execute that action at that time. That is, an
implementation that always executes action a in the interval [0, 3] cannot be
considered incorrect. To avoid this problem we require trace equivalence for the
kernel (Definition 1) of the constraints and just trace inclusion for the rest of
elements.

Definition 10. Let A be a timed automaton, fA be a fuzzy-timed automaton,
(1 and (2 be t-norms, and α ∈ [0, 1].
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x ≤ 150.2

q4 Stop
True

Fig. 2. The train automaton

1. A is (1-conformance with respect the (2-operational semantics of fA with
an alpha cut of α, A fconfα�1,�2

fA, if for any trace (d1, a1) . . . (dn, an) ∈
tr(A) there exist a trace (d1, α1, a1, β1) . . . (dn, αn, an, βn) ∈ ftr�2

(fA) such
that [[(1]](α1, β1, α2, β2, . . . , αn, βn) ≥ α.

2. A is maximally (1-conformance with respect the (2-operational semantics
of fA with an alpha cut of α, written A fconfmα

�1,�2
fA, if A fconfα�1,�2

fA
and for any fuzzy trace (d1, 1, a1, 1)(d2, 1, a2, 1) · · · (dn, 1, an, 1) ∈ ftr�2

(fA)
we have (d1, a1)(d2, a2)(dn, an) ∈ tr(A) ��

4 Case study

In this section, we present a case study of an automaton with five states. This au-
tomaton, which is adapted from the Uppaal demo directory, appears in Figure 2.
It represents a train passing through a crossing.

First of all let us show the need of a t-norm to define the operational se-
mantics. Let us suppose that we measure that a train has stayed in state q0
for 101 time units. The credibility of the corresponding transition of the fuzzy-
timed automaton depends on the used t-norm. We have a valuation u where
the value of the clock y is 101, so we have y ≤ 10010 = 0.9 (the constraint in
the transition) and y ≤ 1005 = 0.8 (the constraint in the invariant of state q2).
So we have (101, 1, appr , 0.8) ∈ ftr�(train), (101, 1, appr , 0.72) ∈ ftr�(train),
and (101, 1, appr , 0.7) ∈ ftr�(train) Thus, if we observe that an implemen-
tation A1 verifies (101, appr) ∈ tr(A1), we can say A1 fconf/ 0.8

�,� train and
A1 fconf/ 0.8

�,� train , but it might A1 fconf0.8
�,� train.

Now let us focus on the loop among the states q0, q1, and q2. Since the clock x
is set to 0 in each transition, the following traces do not depend on any particular
t-norm, that is, for any t-norm ( we have

(20, 1, appr , 1)(10.02, 1, cross, 0.9)(4, 1, cross, 1)
(20, 1, appr , 1)(10.01, 1, cross, 0.95)(2.98, 1, cross, 0.9) ∈ ftr�(train)
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If we take the certainty values of the trace and we compound them under the
different t-norms, we have

[[�]](1, 1, 1, 0.9, 1, 1, 1, 1, 1, 0.95, 1, 0.9) = 0.9
[[�]](1, 1, 1, 0.9, 1, 1, 1, 1, 1, 0.95, 1, 0.9) = 0.77
[[	]](1, 1, 1, 0.9, 1, 1, 1, 1, 1, 0.95, 1, 0.9) = 0.76

Therefore, if an implementation A2 exhibit the trace

(20, appr)(10.02, cross)(4, cross)(20, appr )(10.01, cross)(2.98, cross) ∈ tr(A2)

We can say that A2 fconf/ 0.9
�,� train and A2 fconf/ 0.9

�,� train; but A2 is still a
candidate to conforms the fuzzy automaton with respect the Gödel t-norm, that
is, it might A2 fconf0.9

�,� train. Furthermore, if the loop continues with time
measurements outside the kernel of the constraints, like in the trace above, the
global credibility continuously decreases under the Łukasiewicz t-norm and the
product t-norm even if each single credibility is above any threshold. Thus, there
will be no α ∈ [0, 1] such that A2 fconfα�,� train or A2 fconfα�,� train . On the
contrary, if each single credibility is above the 0.9 threshold, we could have that
A2 fconf0.9

�,� train .

5 Transforming Fuzzy Automata

In this Section we are going to present a transformation from fuzzy-timed au-
tomaton into ordinary timed automaton. This transformation is used to charac-
terize the fuzzy relations in terms of ordinary timed automata. Hence, we can
take advantage of all the theory and tools developed within the framework of
timed automata. The basic idea is to apply a syntactical α-cut to the automaton
constraints. Let us first remark that this α-cut does not work in the general case.
To understand the reason let us consider the following example.

Example 3. Let us consider the fuzzy relation C = x ≤ 50.2	y ≤ 70.4. Then the
set cut0.8(C) cannot be expressed in terms of inequalities. We have

cut0.8(C) = {(a, b) | a ≤ 5 ∧ b ≤ 7} ∪
{(a, b) | a ≤ 5 ∧ 7 < b ≤ 7.32} ∪
{(a, b) | 5 < a ≤ 5.16 ∧ b ≤ 7} ∪
{(a, b) | 5.2 ≥ a > 5 ∧ 7.4 ≥ b > 7 ∧ (1 − a−5

0.2 )(1− b−7
0.4 ) ≥ 0.8}

This set cannot be expressed in terms of conjunctions and inequalities so it
cannot be part of a constraint of a timed automata.

But If we take the Gödel t-norm instead of the product t-norm we have

cut0.8(x ≤ 50.2 � y ≤ 70.2) = {(a, b) | a ≤ 5.12 ∧ b ≤ 7.32}

That can be expressed in terms of inequalities and conjunctions: x ≤ 5.16 ∧ y ≤
7.32. Strictly speaking, this is not a timed constraint expression since 5.32 and
7.36 are not integers. This is not a real problem since the locations and actions
are finite sets, therefore the amount of numbers like those is finite. Hence, in
order to consider them integers it is enough to consider a time change unit. ��
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This example shows that if want to make a transformation that keeps the α-
cuts, we have to restrict ourselves to fuzzy constraints where the only appearing
t-norm is the Gödel one.

Definition 11. A fuzzy-Gödel constraint is a formula generated by the following
B.N.F.:

C ::= True | C1 � C2 | x �� nλ | x− y �� n
λ

where ( is a t-norm, ��∈ {≤, =,≥}, x, y ∈ Clocks, λ is a non-negative rational
number, and n ∈ IN.

Let fA be a fuzzy-timed automaton. We say that is a Gödel fuzzy-timed au-
tomaton if all the fuzzy constraints are fuzzy-Gödel constraints. ��

For fuzzy-Gödel constraints we can generalize what we have observed in Exam-
ple 3. We first define the syntactical α-cut of such constraints

Definition 12. Let C be a fuzzy-Gödel constraint and let α be a rational number
in the interval [0, 1], then we inductively define the α-cut of C as:

cutα(C) =

⎧⎪⎪⎨
⎪⎪⎩

True if C = True

x �� n + α · λ if C = x <= nλ, ��∈ {≤, =,≥}
x− y �� n + α · λ if C = x− y <= n

λ
, ��∈ {≤, =,≥}

C1 ∧ C2 if C = C1 � C2 ��

Now we can prove that cutα(C) is equivalent to the α-cut of the fuzzy contraint
C. That is, the set of clocks that give a satisfaction grade greater than α is the
same that makes the formula cutα(C) true.

Proposition 2. Let C be a fuzzy-Gödel constraint and let α be a rational number
in the interval [0, 1]. Then u 
 cutα(C) if and only if μC(u) ≥ α.
Proof. It is straightforward by structural induction of C. ��
Now that we have shown that the Gödel-fuzzy constraints behave properly when
applying the α-cuts, we can extend the concept to Gödel fuzzy automata.

Definition 13. Let fA = (L, l0, E, I) be a Gödel fuzzy-timed automaton and let
α be a rational number in the interval [0, 1]. We define the automaton cutα(fA)
as the automaton (L, l0, Eα, Iα), where Eα and Iα are defined as:

– (l, a, cutα(C), r, l′) ∈ Eα iff (l, a, C, r, l′) ∈ E.
– If Iα(l) = cutα(I(l)). ��

First we want to prove that these transformations are correct, that is the ob-
tained automaton conforms the fuzzy specification. The conformance relations
in Definition 10 need two t-norms, one to define the operational semantics of
fuzzy-timed automata, and another one to combine the values of the operational
semantics. Again, the t-norms we need are the Gödel t-norm. To prove it we first
need an auxiliary lemma that relates the transitions of a fuzzy-timed automata
and the ones of its α-cut.
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Proposition 3. Let fA = (L, l0, E, I) be a Gödel fuzzy-timed automaton and let
α be a rational number in the interval [0, 1]. Then:

1. (l, u) d−−→ (l, u+d) is a transition of the operational semantics of cutα(fA) if
and only if there exists α′ ≥ α such that (l, u) d−−→ α′ (l, u+d) is a transition
of the �-operational semantics of fA.

2. (l, u) a−−→ (l′, u′) is a transition of the operational semantics of cutα(fA) if
and only if there exists α′ ≥ α such that (l, u) a−−→ α′ (l′, u′) is a transition
of the �-operational semantics of fA.

Proof. The first thing we have to take into account is that the time constraints of
cutα(fA) are obtained by applying the α-cuts. Hence the invariant of a location l
in the automaton cutα(fA) is Iα(l) = cutα(I(l)). Also, by Proposition 2 we have
μI(l)(u) ≥ α if and only if u 
 Iα(l). So we have part 1.

For part 2, we also have to consider that the transitions of the automa-
ton cutα(fA) have the form (l, a, cutα(C), r, l′) where (l, a, C, r, l′) is a tran-
sition of fA. Let us recall that we have consider the Gödel t-norm to build
the operational semantics of fA therefore (l, u) a−−→ α′ (l′, u′) if and only if
α′ = min(μI(l′)(u[r]), μI(l)(u)). Therefore μI(l′)(u[r]) ≥ α′ ≥ α and μI(l)(u) ≥
α′ ≥ α. Again by Proposition 2, that is true if and only if u[r] 
 cutα(I(l′)) and
u 
 cutα(I(l)). ��

Proposition 4. Let fA be a Gödel fuzzy-timed automaton and let α be a rational
number in the interval [0, 1]. Then cutα(fA) fconfmα

�,� fA

Proof. From the previous proposition we have (d1, a1) · · · (dn, an) ∈ tr(cutα(fA))
if and only if there exist αi, βi ≥ α such that (d1, α1, a1, β1) · · · (dn, αn, an, βn) ∈
ftr�(fA). From which the result is immediate. ��

From this proposition we get the main result of this Section: in order to prove
if some automaton conforms a fuzzy specification it is enough to consider the
α-cut of the fuzzy automaton.

Theorem 1. Let A be an timed automaton, fA be a Gödel fuzzy-timed automa-
ton, and α ∈ [0, 1]. Then

– A fconfα�,� fA iff A≤tr cutα(fA)
– A fconfmα

�,� fA iff A≤tr cutα(fA) and cut1(fA)≤tr A. ��

6 Conclusions

In this paper, we have introduced a formalism that deals with time by using
fuzzy logic. In our opinion, this is an important feature since it is difficult (if not
impossible) to have a perfect and exact measurement of time. There have been
many issues about the nature of time in formal methods, specially if it should
be consider a discrete or dense entity. These issues do not have sense in a fuzzy
framework because we are assuming, since the beginning, that we do not have
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an exact measurement of time. Although these measurements are imprecise, the
fuzzy framework provides a precise measurement of this imprecision.

This work has been focused in the automata framework. As we have men-
tioned in the introduction, this fuzzy logic has been introduced successfully in
the literature. However, as far as we know this is the first time where the fuzzi-
ness has been introduce in the time domain of the automata. We have defined
the concept fuzzy-timed automata and defined a conformance relation. The con-
cept of t-norm plays a central role in both the definition of the automata and
the conformance relation. Among the different t-norms we have discover that
the Gödel t-norm is specially important. By using it, we can apply a syntactical
α-cut to the fuzzy-timed automata and reduce the fuzzy conformance relations
to conformance relations between ordinary timed-automata.

This paper has a number of open loose ends that we plan to address in the
future. In first place, the conformance relations are not completely satisfactory.
We have introduced two conformance relations: fconfα�1,�2

and fconfmα
�1,�2

. The
first one corresponds directly to trace inclusion while the second one is closer to
trace equivalence. The first one has the same problems as the trace inclusion;
while the second one has a conceptual problem because we require that certain
fuzzy formula has a satisfaction grade of 1. We do not think this is very adequate
in a fuzzy environment and we are working in an alternate possibility.

Another important issue to address is to implement a software tool. In Sec-
tion 5, we have reduced the fuzzy relations to relation between ordinary au-
tomata. So, we can take advantage of the already existing software tools to
verify the fuzzy relations, we are already working in a tool that performs this
task. The problem is that to perform the transformation we can only work with
Gödel t-norms. Apart from the fact that we would like to work with another
t-norms, we think we can address this problem in an alternative way. The exist-
ing tools for timed automata like Uppaal [4] perform a discretization of time to
transform a timed automaton into a non-timed automaton. What we plan is to
take advantage of the fuzziness to try to avoid the discretization of time.

Acknowledgments. We like to express our gratefulness to the anonymous re-
viewers for their valuable comments. We also want to apologize to them for the
bad English of the first submission. We hope we have improved it.
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Abstract. Hybrid automata are a widely accepted modeling framework for sys-
tems with discrete and continuous variables. The traditional semantics of a net-
work of automata is based on interleaving, and requires the construction of a
monolithic hybrid automaton based on the composition of the automata. This
destroys the structure of the network and results in a loss of efficiency, espe-
cially using bounded model checking techniques. An alternative compositional
semantics, called “shallow synchronization”, exploits the locality of transitions
and relaxes time synchronization. The semantics is obtained by composing traces
of the local automata, and superimposing compatibility constraints resulting from
synchronization.

In this paper, we investigate the different symbolic encodings of the reach-
ability problem of a network of hybrid automata. We propose a novel encoding
based on the shallow synchronization semantics, which allows different strategies
for searching local paths that can be synchronized. We implemented a bounded
reachability search based on the use of an incremental Satisfiability-Modulo-
Theory solver. The experimental results confirm that the new encoding often per-
forms better than the one based on interleaving.

1 Introduction

Hybrid automata ([13]) are increasingly recognized as a clean modeling framework
for systems with discrete and continuous variables. Many systems are structured into
components, and can often be naturally modeled as networks of communicating hybrid
automata: local activities of each component amount to transitions local to each hy-
brid automaton; communications and other events that are shared between/visible for
various components are modeled as synchronizing transitions of the automata in the net-
work; time elapse is modeled as shared timed transitions. The traditional asynchronous
semantics is based on interleaving, and requires the construction of a monolithic hy-
brid automaton based on the composition of the automata in the network. Intuitively,
this means that a path in the automaton is the result of the composition of interleaving
paths. However, the monolithic automaton resulting from the composition can be seen
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as the result of a “strict synchronization”, and the analysis has to deal with an overly
large number of paths, since the structure and the locality of the network are not taken
into account.

An alternative semantics [5] for networks of automata exploits the fact that automata
can be “shallowly synchronized”. The intuition is that each automaton can proceed
based on its individual “local time scale”, unless they perform a synchronizing transi-
tion, in which case they must realign their absolute time. This results in a more concise
semantics, where traces of the network are obtained by composing traces of local au-
tomata, each with local time elapse, by superimposing structure based on shared com-
munication.

In this paper, we provide a fully symbolic account for bounded reachability under
“shallow synchronization”, and we explore various search strategies. We implement the
approach in the sub-case of linear hybrid automata and we use a Satisfiability-Modulo-
Theory (SMT) [15] solver to check the satisfiability of the formulas encoding the reach-
ability problem. The main advantage is that the transition relation of each automata is
unrolled only for the steps necessary to reach locally the target (regardless the length
of the interleaving with the other automata). Typically, local paths are much shorter
because they do not need to stutter allowing other processes to perform local or non-
shared events. The disadvantage is that we may use additional variables and constraints.
We experimentally investigate this trade-off and the results show that the new encoding
often performs better than the one based on interleaving. In particular, the improvement
increases at the growth of the difference between the length of the local traces and the
length of the interleaving trace.

The paper is structured as follows. In Section 2 we present some background on
hybrid automata and their composition through interleaving. In Section 3 we present
the shallow synchronization semantics revising the concepts described in [5] and defin-
ing explicit mappings from the semantics with strict synchronization to the shallowly
synchronized one, and vice versa. In Section 4 we show several ways to symbolically
encode the bounded model checking problem for shallow synchronization semantics.
In Section 5 we discuss related work. In Section 6 we experimentally evaluate our ap-
proach. In Section 7 we draw some conclusions.

2 Background

Notation. Given a set V of real-valued variables, we denote with LB(V ) the set of
Boolean combinations of linear equalities and inequalities over V . We denote with V ′

the set of “next” variables and with V̇ the set of first derivative of the variables in V
over time. We write V ′ = V as an abbreviation for

∧
v∈V v′ = v.

If f is a collection of real functions {fv}v∈V , we denote with fV the composed
function fV (t) = Πv∈V fv(t).

Given a formula φ in LB(V ) and V a set of copies of the variables in V , we denote
with φ(V ) the formula obtained by substituting each v ∈ V with its copy v ∈ V . Given
a formula φ in LB(V̇ ), two copies V 1 and V 2 of V , and ψ a linear term, we denote

with φ(V 2−V 1
ψ ) the formula obtained by substituting each v̇ ∈ V̇ with v2−v1

ψ and then

multiplying by ψ (thus φ(V 2−V 1
ψ ) is a Boolean combination of linear constraints).
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2.1 Hybrid Automata

Due to lack of space, but without loss of generality, we restrict the presentation to the
framework of Linear Hybrid Automata (LHA). The results presented in the rest of this
paper however apply to the general case of Hybrid Automata as defined in [13]1.

Definition 1 ([13]). A LHA is a tuple 〈Q, E, X, F, I, Z, J, U, L〉 where

– Q is the set of locations,
– E ⊆ Q×Q is the set of edges,
– X is the set of continuous variables,
– for each q ∈ Q, F (q) ∈ LB(Ẋ) is the flow condition (denoted also as Fq),
– for each q ∈ Q, I(q) ∈ LB(X) is the initial condition (denoted also as Iq),
– for each q ∈ Q, Z(q) ∈ LB(X) is the invariant condition (denoted also as Zq),
– for each e ∈ E, J(e) ∈ LB(X ∪X ′) is the jump condition (denoted also as Je),
– U is the set of labels,
– for each e ∈ E, L(e) ∈ U is the label of the edge (denoted also as Le).

Definition 2. A run of a LHA H is a sequence 〈q0, s0〉
a1→ 〈q1, s1〉 . . . 〈qn−1, sn−1〉

an→
〈qn, sn〉 such that:

– for all i, 0 ≤ i ≤ n, qi ∈ Q and si is an assignment to the variables of X;
– for all i, 1 ≤ i ≤ n, ai ∈ U ∪ R≥0; hereafter ti =

∑
1≤j≤i,aj∈R≥0 aj and t0 = 0;

we call tn the final time of the run; we call the pair 〈ai, ti〉 an event;
– for all i, 1 ≤ i ≤ n, if ai ∈ R≥0, then qi−1 = qi and there exists a collection of real

functions {fx
i }x∈X such that fx

i is differentiable over [ti−1, ti] and fX
i (ti−1) =

si−1 and fX
i (ti) = si;

– for all i, 1 ≤ i ≤ n, if ai ∈ U then 〈qi−1, qi〉 ∈ E and ai = L(〈qi−1, qi〉);
– for all i, 1 ≤ i ≤ n, if ai ∈ R≥0, then for all t ∈ [ti−1, ti], then ḟX

i (t) |= Fqi ;
– s0 |= Iq0 and for all i, 0 ≤ i ≤ n, si |= Zqi ;
– for all i, 1 ≤ i ≤ n, if ai ∈ R≥0, then for all t ∈ [ti−1, ti], fX

i (t) |= Zqi;
– for all i, 1 ≤ i ≤ n, if ai ∈ U then si−1, si |= J〈qi−1,qi〉.

A run σ1 is a refinement of another run σ2 iff σ1 is obtained by σ2 by splitting some
timed transition 〈qi, si−1〉

ai→ 〈qi, si〉, ai ∈ R≥0 into two or more timed transitions

〈qi, si−1〉
ai1→ 〈qi, si1〉 . . . 〈qi, sih−1〉

aih→ 〈qi, si〉 such that aij ∈ R≥0, 1 ≤ j ≤ h, and,∑
1≤j≤h aij = ai. A timed transition 〈qi, si−1〉

ai→ 〈qi, si〉with ai = 0 ∈ R≥0 is called
a stuttering transition.

2.2 Network of Hybrid Automata

The definition of network of hybrid automata is based on the definition in [13], which
means components communicate with each other by shared labels.

1 As far as the solutions of the flow conditions can be represented in the logic handled by the
SMT solver.
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Definition 3. Given two LHAs H1 = 〈Q1, E1, X1, F1, I1, Z1, J1, U1, L1〉 and H2 =
〈Q2, E2, X2, F2, I2, Z2, J2, U2, L2〉 with Q1 ∩ Q2 = X1 ∩ X2 = ∅, the composition
H1 ×H2 is the LHA 〈QP , EP , XP , FP , IP , ZP , JP , UP , LP 〉 where

– QP = Q1 ×Q2,
– EP = {〈q1 × q2, q

′
1 × q′2〉 | either 〈q1, q

′
1〉 ∈ E1, q2 = q′2, L1(〈q1, q

′
1〉) �∈ U2,

or 〈q2, q
′
2〉 ∈ E2, q1 = q′1, L2(〈q2, q

′
2〉) �∈ U1, or 〈q1, q

′
1〉 ∈ E1, 〈q2, q

′
2〉 ∈

E2, L1(〈q1, q
′
1〉) = L2(〈q2, q

′
2〉)},

– XP = X1 ∪X2,
– FP (q1 × q2) = F1(q1) ∧ F2(q2),
– IP (q1 × q2) = I1(q1) ∧ I2(q2),
– ZP (q1 × q2) = Z1(q1) ∧ Z2(q2),
– UP = U1 ∪ U2,

– JP (〈q1 × q2, q
′
1 × q′2〉) =

⎧⎨
⎩

J(〈q1, q
′
1〉)∧X ′

2 =X2 if q2 =q′2, L1(〈q1, q
′
1〉) �∈U2

J(〈q2, q
′
2〉)∧X ′

1 =X1 if q1 =q′1, L2(〈q2, q
′
2〉) �∈U1

J(〈q1, q
′
1〉)∧J(〈q2, q

′
2〉) if L1(〈q1, q

′
1〉)=L2(〈q2, q

′
2〉),

– LP (〈q1 × q2, q
′
1 × q′2〉) =

⎧⎨
⎩

L(〈q1, q
′
1〉) if q2 = q′2, L1(〈q1, q

′
1〉) �∈ U2

L(〈q2, q
′
2〉) if q1 = q′1, L2(〈q2, q

′
2〉) �∈ U1

L(〈q1, q
′
1〉) if L1(〈q1, q

′
1〉) = L2(〈q2, q

′
2〉).

Definition 4. A networkH of LHAs is a tuple of LHAs.

The semantics of a network of automata is given by the composition of the automata.

Definition 5. A synchronized run of a network H = 〈H1, . . . , Hn〉 is a run of the
composition H1 × . . .×Hn.

In the following we refer to a run of a single automaton in a network as “local”, to
distinguish it from a run of the composition automaton.

Reachability problem. Given a network of automata H = 〈H1, H2, . . . , Hn〉, and
a target set T = 〈q1, q2, . . . , qn〉, the reachability problem for H and T is to verify
whether q1 × q2 × · · · × qn can be reached in the composition H. Thus, we consider
only finite runs, although the approach can be extended to infinite runs which can be
represented by lasso-shape paths.

3 Shallow Synchronization Semantics

While in strict synchronization the behavior of a network is basically obtained by in-
terleaving, in shallow synchronization a run of the network is the result of “composi-
tion” of runs local to each automaton in the network. The intuition is demonstrated in
Figure 1. In the upper part, we see three traces of three automata in a network. Each
automaton Hi has a local label τ ; the ij labels are shared between processes Hi and
Hj ; δ denotes local time elapse. We notice that the synchronization over the ij labels
happens exactly at the same time, e.g., 12 takes place at absolute time 5, although the
number of transitions required by H1 and H2 is different. In the lower part of the figure,
we report the corresponding trace based on interleaving (where each box contains the
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Fig. 1. Three local traces (above), and the corresponding interleaving (below)

state of each of the three processes). Stuttering (e.g. of process 1 and 3 in the first step)
is modeled by the fact that a process does not have any label on its side.

We also define a mapping of a set of shallowly synchronized runs of the automata
into a run in the composition of the automata. Intuitively, the mapping induces an equiv-
alence relation among the runs of the composition automaton which are obtained by
composing the same set of local runs with different interleaving. The shallow synchro-
nization is defined according to the trace of a run i.e., the list of events occurring in the
run. An S-trace, with S ⊆ U , is a trace restricted to the labels in S.

Definition 6. Given a set of labels S ⊆ U and a run σ = 〈q0, s0〉
a1→ 〈q1, s1〉 . . .

an→
〈qn, sn〉, the S-trace τS(σ) is the sequence of events 〈a1, t1〉, 〈a2, t2〉, . . . , 〈ak, tk〉where
ti is the time at which the event ai occurs in σ.

Definition 7. Given two LHAs H1 and H2 with sets of labels U1 and U2 resp., let σ1
be a run of H1 and σ2 a run of H2. Let S be the intersection of U1 and U2 (S =
U1 ∩ U2). The pair 〈σ1, σ2〉 is consistent iff the S-trace of σ1 is equal to the S-trace of
σ2 (τS(σ1) = τS(σ2)) and the final time of σ1 is equal to the final time of σ2.

The last constraint on the final time is necessary because otherwise the two runs may
terminate with a series of local steps with different timings.

Definition 8. A shallowly synchronized run of a network of LHAs is a tuple θ =
〈σ1, . . . , σn〉 such that σj is the run of Hj and, for all j, h, 1 ≤ j < h ≤ n, σj

and σh are consistent.

If θ is a shallowly synchronized run, we denote with θj the j-th component of θ.

Remark 1. In general, two different events can occur at the same time in the same
run, because discrete transitions are not forced to be interleaved with timed transitions.
Moreover, simultaneous events may be interleaved with different orders.

However, in many cases, we can assume that whenever two events occur simulta-
neously, they have a fixed order. Then, the pair 〈σ1, σ2〉 is consistent simply iff for all
a ∈ U1 ∩U2 and t ∈ R, 〈a, t〉 occurs in σ1 iff 〈a, t〉 occurs in σ2. I.e., having the events
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at the same time guarantees that the traces are the same. The definitions and theorems
in [5] have this assumption, while in this section we consider the most general case.

Projection of a synchronized run of the composition automaton on one component is the
corresponding run local to that component automaton. Intuitively, the set of projections
of a synchronized run form a shallowly synchronized run. The projection induces an
equivalence relation over strictly synchronized traces, namely the equivalence of runs
that are the same modulo a reordering of the interleaved labels.

Definition 9. Given a network H and an LHA H ∈ H, the projection πH of a syn-
chronized run σ of H over H is obtained by projecting the states and the assignments
occurring in σ on the H component and substituting transitions labeled with events not
accepted by H with stuttering transitions2.

The following theorem states the relationship between the two semantics3.

Theorem 1. Given a synchronized run σ, the tuple of projections 〈πH1(σ), . . . , πHn(σ)〉
on the different components is a shallowly synchronized run. Vice versa, given a shal-
lowly synchronized run θ, there exists a synchronized run σ such that

〈
πH1(σ), . . . ,

πHn(σ)
〉

is a refinement of θ.

As corollary, there exists a strictly synchronized run reaching qH1 × · · · × qHn iff there
exists a shallowly synchronized run θ such that for all i, 1 ≤ i ≤ n, θHi reaches qHi .

4 Symbolic Encoding

In this section, first, we recall how linear hybrid automata and their reachability problem
can be encoded symbolically; second, we show how we can encode symbolically the
problem for a network with strict and shallow synchronization.

4.1 Symbolic Encoding for Single Automaton

In the following, in order to encode the flow condition into a quantifier-free formula,
we assume the convexity of the invariant conditions. The symbolic encoding of a single
LHA consists of three formulas representing respectively the initial, the transition, and
the invariant condition. The encoding uses the following additional variables: a discrete
variable loc that represents the current location; a real-valued variable δ that represents
the time elapsed at the current step; a discrete variable l that represents the label taken
at the current step; and two distinguished values T and S, representing a timed transition
and stuttering, respectively.

2 The projection is well defined because if 〈qi−1, si−1〉 ai→ 〈qi, si〉 occurs in σ and ai is not a
label of H , then the H components of qi−1 and si−1 are equal to the H components of qi and
si respectively. Thus, the transition can be locally substituted with a stuttering transition.

3 An extended version with proofs can be find at http://es.fbk.eu/people/
tonetta/papers/forte10/

http://es.fbk.eu/people/tonetta/papers/forte10/
http://es.fbk.eu/people/tonetta/papers/forte10/
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The encoding consists of the following formulas:

INIT :=
∧
q∈Q

(loc = q → Iq(X))

INVAR :=
∧
q∈Q

(loc = q → Zq(X))

TRANS :=
∧
q∈Q

(loc = q → (STUTTER ∨ TIMEDq ∨
∨

(q,p)∈E

UNTIMEDq,p))

STUTTER := l = S ∧ δ = 0 ∧ loc′ = loc ∧X ′ = X

TIMEDq := l = T ∧ δ > 0 ∧ loc′ = loc ∧ Fq(
X ′ −X

δ
)

UNTIMEDq,p := l = Lq,p ∧ δ = 0 ∧ loc′ = p ∧ Jq,p(X, X ′)

Given a reachability problem and a bound k on the length of the runs, we can encode
the bounded reachability problem into a formula which is satisfiable iff there exists a
run reaching the target condition. We assume to have a formula TARGET encoding the
target condition. For example, if we want to check the reachability of the location q, we
can set TARGET := loc = q.

As usual in BMC, we introduce k + 1 copies of every variable in the encoding of the
automata. Then, the reachability problem can be encoded into the following formula:

BMCk := INIT0 ∧ INVAR0 ∧
∧

0≤i<k

(
TRANSi ∧ INVARi+1) ∧ TARGETk

where φi means that the current and next variables of φ have been substituted with their
i-th and (i + 1)-th copy, respectively.

When we consider a network, we use BMCk
H to refer to the encoding of the problem

for the automaton H .

4.2 Symbolic Encoding Based on Interleaving

In principle, it would be possible to generate the automaton corresponding to the com-
position of two or more LHAs, and use the above encoding. A more reasonable encod-
ing for a network is based on the encoding of each LHA in the network. The idea is to
simply conjunct the encodings forcing the shared event variables to be true exactly at
the same steps, and forcing the processes to “stutter” when they are not activated. We
assume that the variable δ is shared among the encodings of the different automata.

The reachability problem with a bound k can be encoded as

BMCINTk
H :=

∧
1≤j≤n BMCk

Hj
∧ STRICTSYNCk

H

where STRICTSYNC guarantees that for every pair of processes j and h, every shared
event and the timed event occur at the same step in the two processes, and while a
non-shared event occurs in one process, the other process must stutter4:

4 Note that it is not necessary to force at least one process not to stutter.
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STRICTSYNCk
H :=

∧
1≤j<h≤n

∧
0≤i<k

∧
a∈Uj∩Uh

(lij = a↔ lih = a)

∧
∧

a∈Uj\Uh

(lij = a→ lih = S)

∧
∧

a∈Uh\Uj

(lih = a→ lij = S)

∧ (lih = T ↔ lij = T)

The encoding is compositional in the sense that each automaton is individually encoded.
However, the necessity of stuttering on non-shared events and of performing shared
events in the same steps may cause complex runs (as shown in Fig. 1).

We also consider a variant of the above encoding where we allow discrete transitions
in different automata to occur at the same step of the encoding. Basically, with this
variant, we do not force a process to stutter when other processes perform either a
local event or an event which is not shared by the process. In this cases, we omit the
constraints which force to stutter. This encoding corresponds to the step semantics used
in [12] for encoding the bounded model checking problem of asynchronous systems.

4.3 Symbolic Encoding Based on Shallow Synchronization

In this section, we propose an encoding based on shallow synchronization. We let each
automaton keep its own copy of the bound k and the elapsed time δ; we do not force
processes to stutter and we let shared events occur at different (local) steps. This means
that each of the local encodings is able to construct a local trace.

The reachability problem with bounds k = 〈k1, k2, . . . , kn〉 can be encoded as

BMCSSk
H :=

∧
1≤j≤n

BMC
kj

Hj
∧ SHALLOWSYNC

where SHALLOWSYNC encodes the constraints enforcing that all the paths must be
consistent according to Definition 7. In the following, we present different ways to
encode SHALLOWSYNC. (We assume to be in the case described in Remark 1, but all
the encodings that we are showing can be lifted to the general case.)

Encoding based on enumeration. The first way to encode SHALLOWSYNC is by
enumerating all possible combinations of steps on which the synchronization occurs.
For example, processes P1 and P2 may synchronize over event a, but a may occur in
step 2 for P1, and in step 4 for P2. SHALLOWSYNC guarantees that, for all pairs of
processes, (i) if a shared event occurs in the first process, then the event must occur
also in the second process at the same time (possibly in different steps), and (ii) the
final time of the two processes is the same:
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SHALLOWSYNC :=
∧

1≤j<h≤n

∧
a∈Uj∩Uh

∧
1≤ij≤kj

(lij

j =a↔
∨

1≤ih≤kh

lih

h =a∧t
ij

j = tih

h )∧

∧
1≤ih≤kh

(lih

h =a↔
∨

1≤ij≤kj

l
ij

j =a ∧ t
ij

j = tih

h )∧

∧
1<j≤n t

kj

j = tk1
1

Local reasoning. We propose a variant of the previous encoding which can be split
into constraints local to each automaton, and one for each step. The encoding uses the
following additional variables:

– for each automaton Hj , for each shared label l, a variable countil,j to represent how
many times l has occurred in Hj before step i;

– for each shared label l, a group of variables occ timei,l to represent the time at
which the i-th occurrence of l is fired;

– for each shared label l, a variable llast to record how many times l has been fired in
the whole run;

– clast to record the time at which the system reaches the target.

Note that the variables without superscript are untimed, in the sense that they do not
depend on any temporal step.

The shallow synchronization can be encoded as:

SHALLOWSYNC :=
∧

1≤j≤n

∧
0≤i<kj

SHALLOWSTEPi
j ∧

COUNTERINITj ∧

⎛
⎝ ∧

0≤i<kj

COUNTERSTEPi
j

⎞
⎠∧ FINALSHALLOWj

where SHALLOWSTEPi
j states that if in the i-th step, an event l occurs in the j-th process

for the g-th time, then the local time of the process must be occ timeg,l:

SHALLOWSTEPi
j :=

∧
l∈Uj

(lij = l)→
∧

1≤g≤i

((countil,j = g)→ tij = occ timeg,l)

COUNTERINIT and COUNTERSTEP encode how the counters evolve:

COUNTERSTEPi
j :=

∧
l∈Uj

(lij = l)→ (counti+1
l,j = countil,j + 1)

COUNTERINITj := (count0l,j = 0)

while FINALSHALLOW states that the final values of the counters and the local time
must be the same:

FINALSHALLOWj := (
∧

l∈Uj

count
kj

l,j = llast) ∧ (tkj+1
j = clast))

Exploiting richer theories. It is possible to represent the above encoding with richer
theories introducing uninterpreted functions symbols. In particular we represent the
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time of the i-th occurrence of a label l as a function occ timel from integers to reals.
This way we can rewrite SHALLOWSTEP into

SHALLOWSTEPi
j :=

∧
l∈Uj

(lij = l)→ (tij = occ timel(countil,j)).

5 Related Work

The shallow semantics (defined in [5] and adopted in this paper) bears many similarities
with the “local-time” semantics defined in [3] for networks of timed systems and can
in fact be seen as a generalization to the hybrid case of [3]. Indeed, neither requires
the synchronization of timed transitions of different components; they both use local
clocks that are re-synchronized upon shared events. The two semantics differ in the
types of runs used to solve the reachability problem: the shallow semantics consists of
sets of local runs, while the local-time semantics consists of runs in the interleaving
composition. With a mapping similar to the one defined in Section 3, it can be shown
that the two semantics are equivalent. As far as we know, this is the first attempt to
exploit the shallow/local-time semantics to improve BMC.

Partial-Order Reduction (POR) [11] is one of the most known and used technique
to tackle the state-space explosion problem due to interleaving of concurrent systems.
The idea is to identify cases when the order of transitions is not relevant in order to
prune the search space. The application of POR techniques is difficult in the context of
timed and hybrid systems because the timed transitions are global actions which typi-
cally interleave the local transition, and thus forbid the pruning performed by POR. The
local-time semantics was proposed in [3] to enable POR by removing the synchroniza-
tion on timed transitions. Other works as in [17] propose symbolic versions of POR and
combine them with bounded model checking and SMT. The main difference between
POR and the techniques presented in this paper is that while POR tackles the interleav-
ing explosion problem by fixing the order of independent transitions, we allow them to
be executed in parallel.

Also related is the “step” semantics, used in [12] for an efficient encoding of the
reachability problem in a network of asynchronous systems. The work in [12] is limited
to the case of discrete transitions. The idea presented in this paper can be seen as a
generalization of the step semantics to the case of timed transitions.

The work described in [16] proposes an event-order abstraction to verify timed au-
tomata. The idea is to analyze the discrete and continuous aspects separately by first
finding a discrete path causing an error and then computing a set of timing constraints
that make the path realistic. Similarly, CEGAR-based approaches such as [1,14] per-
form a search on a purely discrete abstraction of the hybrid automaton, and check if the
obtained paths are compliant with the original constraints.

The first approach that adopts a shallowly synchronized semantics is presented in [5]
for path-oriented bounded reachability analysis of a network of LHAs. In the approach,
one path is selected for each component and all selected paths compose a path set for
reachability analysis. Each path is independently encoded to a set of constraints while
synchronization controls are encoded according to the position of shared labels. By
merging all the constraints, the path-oriented reachability problem can be transformed
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(a : Star-shape Fischer) (b : Nuclear Reactor)

Fig. 2. Results where the length of a local run depends on the number of processes

to the feasibility problem of the resulting linear constraint set, which can be solved by
linear programming efficiently. This approach has been extended in BACH [6] into a
general bounded reachability analysis technique. Different from the approach presented
in this paper, this technique traverses the structure of a network of automata using depth-
first search and checks the abstract path set one by one.

In the approaches mentioned above, the search is carried out in two stages: in the first,
a discrete abstraction of the problem is constructed, while in the second the candidate
paths found in the abstract state are checked for consistency in the concrete space.
In our approach, the SMT solver carries out the refinement automatically during the
search, on demand. With respect to explicit-state search, the symbolic representation is
less sensitive to the state-space explosion problem. With respect to abstraction-based
techniques, the BMC technique is more tailored to find error paths.

Bounded model checking for hybrid systems using SMT solvers has been investi-
gated in [2,10,8,9]. The characterizing feature of our work is the attempt to leverage the
structure induced by the synchronization of a network of hybrid automata.

6 Experimental Evaluation

6.1 Implementation

We implemented the encodings presented in Section 4 within the setting of NUSMT,
a model checker that extends NuSMV2 [7] with SMT techniques. The solver used to
check the satisfiability of the formulas was MathSat [4], which provides an incremental
interface. Thus, the search interacts with the solver to analyze problems of increasing
depth. As standard in bounded model checking, we exploit the fact that subproblems at
increasing depth share large parts of the encoding: the solver is able to retain informa-
tion discovered during the previous searches to solve next subproblems more efficiently.
We use the following notation to refer to the options: we use e for using the enumerative
encoding, r for using local reasoning, t for using local reasoning with uninterpreted
functions; with regards to the incrementality, when we use local reasoning, we can add
the synchronization constraints during the unrolling (denoted with u) or add them after
the unrolling (denoted with f). Overall, the options are ru, rf, ef, tu, tf (e.g., ru
means using local encoding with the constraints added during the unrolling).
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Fig. 3. Results where the length of the local runs does not depend on the number of processes

6.2 Benchmarks

We test the performance of the shallow synchronization on the following benchmarks:

– Simple ring: this example is a simple ring of processes where each process only
communicates with its left and right neighbors; it is a proof of concept to show how
the shallow synchronization can perform exponentially better than the interleaving.

– Star-shape Fischer: this is the hybrid fischer algorithm for the mutual exclusion
protocol that uses a shared variable to control the access to a critical session.

– Ring-shape Fischer: this variant contains a ring of processes where each process
shares a variable with its left and right neighbor; the variables are used to access
critical sections in mutual exclusion with the neighbors.
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– ETCS: this example is inspired by the European Train Control System (ETCS)
specification which controls the movement of trains on a track divided into sections.
The accelerated motion of the trains is approximated with linear constraints.

– Motorcycle: this example is inspired by the automated highway system from [14].
This system models a sequence of n motorcycles. Each motorcycle i needs to wait
the signal from the previous one to move, and it needs to keep the sequence during
the parade by synchronizing shared labels with neighbors.

– FDDI Protocol: this example is a ring topology model based on the system in [19].
It is a set of standards for data transmission on fiber optic lines in a LAN. Each
component in the system waits for the signal of previous one to transmit data.

– Nuclear Reactor: this example from [18]. The system controls a nuclear reactor
with n rods, and uses these rods to absorb neutrons one by one. Each rod that has
just been moved out must stay out of the water and cool for several time units.

– Multi-Frequency: this example models a global controller that periodically reads
the value of a variable from n local controllers, which synchronizes with an high
frequency with its environment, and a lower frequency with the global controller.

6.3 Results

We check reachability problems comparing the encodings based on interleaving, step
semantics, and shallow synchronization. We compared the results only on reachable in-
stances. For unreachable cases, since we are using a BMC approach, the results strongly
depend on the fixed bound, but the meaning of the bound depends on the semantics: for
the interleaving, it represents the total number of local and global steps; for the shal-
low synchronization, it represents the maximum bound of a local run. Thus, any bound
would be unfair for either semantics. Nevertheless, note that all algorithms check the
unreachability of the target for path lengths smaller than the final one. So, the perfor-
mance does not depend on the chance of finding the right path. We ran the experiments
on a Red Hat 4.1.2 machine, with Intel(R) Core(TM)2 Quad CPU 2.66*4, and 4GB of
RAM with a time out of 600 seconds.

The results of the comparison are shown in Figures 2 and 3, where the time to solve
the reachability problem is plotted in log scale against the number of automata in the
network. Each line corresponds to a particular option. Table 1 shows some of the fea-
tures of the benchmarks, such as the length of the paths found by reachability analysis as
a function of n (the number of processes in the benchmark family). Results are reported
for interleaving, step semantic and shallow synchronization.

The main finding of the experimental results is that the efficiency of the bounded
model checker depends on necessary depth of the search regardless the adopted seman-
tics. The interleaving performs better than shallow synchronization in the cases where
the depth of the search is the same for the different semantics (because one process in-
teracts with all the others and its local run of one process interleaves the synchronization
with all other processes): in these cases, the shallow synchronization is penalized by the
overhead of the synchronizing constraints. Nevertheless, in many cases (see Fig. 3), the
length of local runs do not depend on the number of processes. Thus, using the shallow
semantics, we reach the target at same depth. In these cases, the encoding based on shal-
low synchronization scales exponentially better than the one based on interleaving. The
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Table 1. Columns 2, 3 and 4 report the length of the path found with the different semantics in
function of the number of processes n. Columns 5, 6, 7 report the size of the hardest instance at-
tempted, and, in square brackets, the corresponding time, or “TO” in case of timeout. For Shallow,
we report the best and worst result over the different options.

Benchmark Path length Hardest instance attempted
Inter Step Shallow Inter Step Shallow

Simple Ring 5n 6 6 5[TO] 20[1.1] 20 [3.1] - 20 [5.5]

Ring-shape Fischer 7n 7 7 5[TO] 20[8.9] 20 [24.2] - 20 [130.2]

Star-shape Fischer 3n 3n 3n 8[TO] 9[TO] 5 [TO] - 6 [TO]

FDDI Protocol 2n + 1 5 3..5 15[TO] 15[TO] 20 [0.7] - 20 [7.3]

Nuclear Reactor 4n 4n 4n 8[TO] 8[TO] 6 [TO] - 7 [TO]

Motorcycle 4n + 3 4n + 3 7..9 7[TO] 6[TO] 20 [22.4] - 20 [259.5]

ETCS NA NA 17 2[TO] 2[TO] 7 [TO] - 14 [TO]

Multi-Frequency NA 3(n − 1)..3n 9 4[TO] 8[TO] 20 [20.4] - 20 [115.6]

shorter depth of the encoding pays off the overhead due to the more complex synchro-
nizing constraints. The same happens for the step semantics, which is the winner when
it is possible to parallelize independent transitions. Among the different options of the
shallow synchronization encodings, there is no winner, but using the local encoding
added after reaching the target seems to win in most of cases.

We also compared our implementation with BACH, which results to be faster on
many examples, while on others it does not terminate with few processes. The com-
parison does not help in understanding which encoding is more efficient, but rather it
confirms that explicit-state search is faster on automata with a small graph, while does
not compete on automata with complex graph structure. Finally, we played with dif-
ferent search strategies but they do not modify the outcome of the presented results.
All results, together with the binaries and test cases necessary to reproduce them, are
available at http://es.fbk.eu/people/tonetta/tests/forte10/.

7 Conclusions and Future Work

In this paper we have introduced a novel approach to symbolic reachability in networks
of hybrid automata. The approach relies on the shallow synchronization semantics, that
preserves the locality of reasoning within each automaton, and forces synchronization
between them only when necessary. We discussed how to exploit the features of shallow
synchronization in the setting of symbolic bounded model checking, exploiting some
advanced features of modern SMT solvers. An experimental evaluation in the setting of
linear hybrid automata shows that the proposed encodings are often more scalable than
the traditional encodings based on interleaving.

In the future, we will investigate the impact of shallow synchronization to the general
case of non-linear hybrid systems. Since automata synchronize only by way of discrete
messages, it should be possible to integrate different reasoning engines, with different
expressive power, within the same framework. The idea is to selectively apply engines
to automata, and to control the search based on the computation cost associated to each

http://es.fbk.eu/people/tonetta/tests/forte10/
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tool. Furthermore, we will investigate the application of shallow synchronization in the
discrete setting, and its combination with partial order reduction techniques.
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Abstract. Separation logic is a popular specification language for im-
perative programs where the heap can only be mentioned through points-
to assertions. However, separation logic’s take on assertions does not
match well with the classical view of assertions as boolean, side effect-
free, potentially heap-dependent expressions from the host programming
language familiar to many developers.

In this paper, we propose a variant of separation logic where side
effect-free expressions from the host programming language, such as
pointer dereferences and invocations of pure methods, can be used in
assertions. We modify the symbolic execution-based verification algo-
rithm used in Smallfoot to support mechanized checking of our variant
of separation logic. We have implemented this algorithm in a tool and
used the tool to verify some interesting programming patterns.

1 Introduction

The design of many specification languages centers around the idea that specifi-
cations should resemble the host programming language, in order to make it easy
for developers to adopt and learn the specification language and to provide a
straightforward semantics for run-time checking. Examples of such specification
languages include the Java Modeling Language [1] and Spec# [2], where field
dereferences and certain method calls can be used freely within contracts.

Over the past couple of years, separation logic [3] has proven to be a promising,
powerful alternative to traditional specification formalisms. However, contrary
to for instance JML and Spec#, separation logic assertions are quite different
from the host programming language, in particular because the heap can only
be mentioned through points-to assertions and expressions cannot mention field
dereferences.

In this paper, we try to achieve the best of both worlds, by combining the
power of separation logic with the programmer-friendly notation offered by tra-
ditional specification languages. In particular, we propose a variant of separation
logic where side effect-free, potentially heap-dependent expressions from the host
programming language can freely be mentioned inside specifications. In addition,
we port the symbolic execution-based verification algorithm used in Smallfoot [4]
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to our variant of separation logic such that program correctness can be checked
mechanically.

Supporting heap-dependent expressions in separation logic is challenging for
a number of reasons. First of all, as pure methods can be used in specifications,
the question arises of how to frame their return values. Secondly, assertions can
be ill-defined, for example because the assertion dereferences a pointer while it
does not have permission to do so. In this paper, we solve the former challenge
by encoding the fact that a pure method’s return value depends only on values
stored in the heap covered by the precondition. We solve the latter challenge by
performing additional checks when assuming and producing assertions.

In summary, the contributions of this paper are as follows:

– We propose a variant of separation logic where heap-dependent expressions
from the host programming language, in particular pointer dereferences and
invocations of pure methods, can be used in specifications.

– We modify Smallfoot’s symbolic execution-based verification algorithm to
support mechanized checking of our variant of separation logic.

– We implemented our algorithm in a tool and report on experience in verifying
some interesting programming patterns.

The remainder of this paper is structured as follows. Section 2 introduces our
variant of separation logic and applies it in an example. In Section 3, we propose
a verification algorithm for the specification language introduced in Section 2.
Finally, we discuss experience with a verifier prototype, compare with related
work and conclude in Sections 4, 5 and 6.

2 Separation Logic with Side Effect-Free Expressions

We describe our variant of separation logic in the context of the imperative
language of Figure 1. In this figure, overlining indicates repetition; annotations
are highlighted by a gray background.

A program consists of a number of declarations and a main routine s. A
declaration is either a mutator function, a pure function or a predicate defini-
tion. Each mutator function has a corresponding contract, consisting of a pre-
and postcondition, and a method body, consisting of a number of statements
followed by a return statement. Each pure function has a corresponding pre-
condition and a method body, returning a side effect-free expression (that can
potentially call the pure function itself). A predicate definition assigns a name
to an assertion. A statement is either a memory allocation, a variable update,
a heap update, a mutator function call, a free statement, an assert statement,
an if-then-else statement, or an open or close statement. Note that the last two
statements are ghost statements: they have no runtime effect and are only needed
to indicate to the program verifier when folding and unfolding of predicates is re-
quired (discussed in Section 3). An expression is a variable, a constant, a pointer
dereference, a pure method call, an open expression, an operator expression or
an old expression. Note that all expressions are side effect-free; however some
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program ::= decl s
decl ::= func | purefunc | predicate

func ::= func f(x) requires A; ensures A; { s return e; }
purefunc ::= pure func p(x) requires A; { return e; }
predicate ::= predicate q(x) = A;
s ::= x := cons(e); | x := e; | [e] := e; | x := f(e); | free e; |

assert e = e; | if(e = e) { s } else { s } | open q(e); | close q(e);

e ::= x | c | [e] | p(e) | open q(e) in e | e op e | old(e)

A ::= q(e) | acc(e) | A ∗ A | e = e | untouched(A)

Fig. 1. A C-like language with side effect-free, heap-dependent expressions and sepa-
ration logic annotations

of them depend on the heap. An assertion is either a predicate assertion, an
access assertion, a separating conjunction, an equality between expressions or
an untouched assertion. An access assertion acc(e) denotes the permission to
dereference e. In classical separation logic, acc(e) would be denoted by e '→ .
An untouched assertion untouched(A) is a two-state assertion that holds if the
values in the heap covered by A are the same in both the pre- and post-state.
In the remainder of this paper, we use true as syntactic sugar for the assertion
0 = 0, and false as syntactic sugar for 1 = 0. In the remainder of this paper,
we consider only well-formed programs (Definition 1). In our implementation,
well-formedness is checked using a simple syntactic analysis.

Definition 1. A program is well-formed if all of the following hold:

– Predicate, mutator function and pure function names are unique within the
program. Parameter names are unique within a declaration.

– The free variables of a function’s body and contract are the function pa-
rameters. Postconditions can additionally mention the variable result. The
free variables of a predicate’s body are the predicate’s parameters. The main
routine has no free variables.

– The program only mentions functions and predicates declared in the program
text. The number of actual arguments in a function call or predicate assertion
is equal to the number of formal parameters in the corresponding declaration.

– Old expressions and untouched assertions only appear in postconditions.

Let us take a look at the example program of Figure 2. This program declares a
predicate, a pure function and a number of mutator functions for dealing with
cells, together with a main routine that uses the aforementioned functions to
create and interact with cells. The pure function get returns the value of the cell
referred to by c. Its precondition demands that c is a valid cell data structure.
Note that pure functions do not have postconditions, as they cannot modify
the program state. create cell creates a new cell data structure with value 0.
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create cell ’s postcondition not only states that the result is a valid cell, but also
expresses that resulting cell holds 0 via the pure function get . inc increments
the value of a cell by one. Note that an old expression is used to relate the pre-
and post-state. copy copies the value of cell d to cell c. The untouched assertion
in its postcondition expresses that the heap covered by cell(d) is not modified
by copy . Client code can use the latter information to frame pure methods that
depend on cell(d). For example, clients can prove that get(d)’s return value is
the same before and after calling copy .

The main routine creates two cells, c1 and c2, updates their values, checks
that the value of c1 is 1, and disposes both cells. Note that in order to prove

predicate cell(c) = acc(c);

pure func get(c)

requires cell(c);

{ return open cell(c) in [c]; }

func create cell()
requires true; ensures cell(result) ∗ get(result) = 0;

{ c := cons(0); close cell(c); return c; }

func inc(c)
requires cell(c);

ensures cell(c) ∗ get(c) = old(get(c)) + 1;

{ open cell(c); [c] := [c] + 1; close cell(c); return 0; }

func copy(c, d)
requires cell(c) ∗ cell(d);

ensures cell(c) ∗ cell(d) ∗ get(c) = get(d) ∗ untouched(cell(d));

{ open cell(c); [c] := get(d); close cell(c); return 0; }

func dispose(c)
requires cell(c); ensures true;

{ open cell(c); free(c); }

c1 := create cell(); inc(c1);
c2 := create cell(); inc(c2);
assert get(c1) = 1;
dispose(c1); dispose(c2);

Fig. 2. An annotated program written in the language of Figure 1. Annotations are
highlighted by a gray background.
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that the assertion never fails, one must show that creating and modifying c2
does not affect the return value of get(c1).

The function bodies in Figure 2 contain open and close ghost statements.
These statements instruct the program verifier to respectively unfold and fold
predicates during symbolic execution. For example, the close statement in the
body of create cell removes the body of the predicate cell from the symbolic heap
and replaces it with the predicate itself, thereby establishing the postcondition.
A more detailed description of symbolic execution and open and close statements
will be given in Section 3.

3 Verification

In this section, we describe the symbolic execution-based verification algorithm
for our variant of separation logic. After defining how we represent program
states symbolically (section 3.1), we define symbolic evaluation and execution of
expressions and statements (section 3.2). Based on these definitions, we define
what it means for a program to be valid (section 3.3).

3.1 Symbolic State

A symbolic state is a four-tuple (h, g, γ, π) consisting of a symbolic heap h, a
symbolic pre-state heap g, a symbolic store γ and a path condition π. A symbolic
heap is a multiset of heap chunks, where each heap chunk q[s](t) consists of a
predicate name q, a first-order term s and a list of first-order terms t. We refer
to the term s as the snapshot of the heap chunk. A symbolic store is a partial
function from variables to first-order terms. Finally, a path condition is a set of
first-order formulas, describing the conditions that hold on the current execution
path.

In the remainder of this section, we describe the symbolic execution algorithm
itself. The core of this algorithm consists of 4 functions: eval, produce, consume
and exec. These functions respectively represent symbolic evaluation of expres-
sions, assuming and checking assertions and symbolic execution of statements.
All aforementioned functions are written in continuation passing style. That is,
each function takes a continuation parameter (typically called Q) that represents
the work to be done on the current path. Their signatures are as follows:

eval : H ×H × Γ ×Π × e× (T ×Π → B)→ B
produce : H ×H × Γ ×Π × T ×A× (H ×Π → B)→ B
consume : H ×H × Γ ×Π ×A× (H ×Π × T → B)→ B
exec : H ×H × Γ ×Π × s× (H × Γ ×Π → B)→ B

In the above signatures, H stands for the set of symbolic heaps, Γ for the set of
symbolic stores, Π for the set of path conditions, T for the set of first-order terms
and B for the set of booleans. Note that each of the aforementioned functions
returns a boolean, indicating whether symbolic execution was successful.
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3.2 Symbolic Execution

Preliminaries. The symbolic state represents symbolic values as first-order
terms and information about those values as first-order formulas. In the algo-
rithm, we use a first-order logic with equality. The signature of the logic contains
a number of built-in functions, including unit , pair , fst and snd , which are used
to create snapshots. A snapshot uniquely determines the values in the heap
covered by a predicate. unit is the empty snapshot, while pair (a, b) combines
snapshots a and b. The functions are axiomatized as follows:

∀a, b • fst(pair (a, b)) = a ∀a, b • snd(pair (a, b)) = b

We do not explicitly mention these axioms in our algorithm. Instead, we write
π ) φ (denoting that formula φ is provable from π) as a shorthand for π ∪ T ) φ,
where T is the theory containing the two axioms described above. Our imple-
mentation relies on the Z3 SMT solver [5] to discharge such proof tasks.

A key question our approach has to answer is how to encode pure functions
during verification in a way that allows us to frame their return values. Like
other verification approaches [6,7,8,9,10,11], we encode a pure function as a first-
order function in the verification logic and encode a call of a pure function
as an application of the corresponding first-order function. The key to solving
the issue of framing is the fact that a pure function’s return value can only
depend on memory locations covered by its precondition. This dependence on
part of the heap is encoded as an additional function parameter. As we will
show in Figure 3, this parameter is the snapshot of the function’s precondition.
For example, the signature of the function symbol for the pure function get of
Figure 2 is get : T × T → T . The first parameter represents the values in the
heap covered by the precondition, while the second parameter corresponds to
the pure function’s parameter c.

Note that the functions produce and consume do not contain cases for acc(e).
Instead, the algorithm considers acc to be just another predicate with one
parameter.

If at a certain point during symbolic execution the path condition is inconsis-
tent, then that point is not reachable during a concrete execution of the program.
In our implementation, we check consistency of the path condition whenever a
new formula is added to it. If adding a new formula makes the path condition
inconsistent, we simply stop symbolic execution and return true (indicating that
symbolic execution succeeded). To avoid cluttering the rules, we do not explicitly
show consistency checks in the definitions of eval, consume, produce and exec.

Symbolic evaluation of expressions. eval(h, g, γ, π, e, Q) (defined in Fig-
ure 3) evaluates the expression e in symbolic state (h, g, γ, π) and passes both
the resulting term and a potentially updated path condition to the continuation
Q. More specifically, symbolic evaluation of a variable x corresponds to looking
up x in the symbolic store and passing the resulting term to the continuation.
A constant evaluates to itself. Dereferencing a pointer is allowed only if the
thread has permission to do so. To check whether the thread has permission,
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the algorithm looks in the symbolic heap for a matching chunk. If a matching
chunk is found, that chunk’s snapshot is passed to the continuation; otherwise,
eval(h, g, γ, π, [e], Q) fails.

eval(h, g, γ, π, x, Q) ≡ Q(γ(x), π)

eval(h, g, γ, π, c, Q) ≡ Q(c, π)

eval(h, g, γ, π, [e], Q) ≡
eval(h, g, γ, π, e, (λt, π′•

let matches = { acc[ts](t1) ∈ h | π � t1 = t } in
∃acc[ts](t1) ∈ matches • Q(ts, π

′)))

eval(h, g, γ, π, p(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, {(x1, t1), . . . , (xn, tn)}, πn, precondition(p), (λh′, π′, s •
if p’s body visible then

produce(h′, g, {(x1, t1), . . . , (xn, tn)}, π′, s, precondition(p), (λh′′, π′′•
eval(h′′, g, {(x1, t1), . . . , (xn, tn)}, π′′, body(p), (λt, π′′′•

Q(p(s, t1, . . . , tn), π′′′ ∪ {p(s, t1, . . . , tn) = t})))))
else

Q(p(s, t1, . . . , tn), π′)))))))

eval(h, g, γ, π,open q(e1, . . . , en) in e, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . (λtn, πn•

consume(h, g, γ, πn, q(e1, . . . , en), (λh′, π′, s•
produce(h′, g, {(x1, t1), . . . , (xn, tn)}, π′, s, definition(q), (λh′′, π′′•

eval(h′, g, γ, π′′, e, Q))))))))

eval(h, g, γ, π, e1 op e2, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

Q(t1 op t2, π2)))))

eval(h, g, γ, π,old(e), Q) ≡ eval(g, g, γ, π, e,Q)

Fig. 3. Symbolic evaluation of expressions

Calling a pure function p(e1, . . . , en) is allowed only if its precondition holds.
Our algorithm checks whether the precondition holds by consuming it. Note
that consuming the precondition not only returns an updated heap and path
condition, but also a snapshot s. This snapshot is used as the first parameter
in the application of the corresponding first-order function. Note that the algo-
rithm branches on the fact whether p’s body is visible. That is, if the body is
visible, an assumption stating that evaluation of p(e1, . . . , en) equals evaluation
of its body is added to the path condition passed to the continuation. An open-
ing expression open q(e1, . . . , en) in e evaluates the expression e in a context
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where the predicate q(e1, . . . , en) is replaced by its body. To symbolically eval-
uate an binary operation e1op e2, the algorithm applies the operation to the
corresponding symbolic values, t1 and t2. Evaluation of an old expression old(e)
corresponds to evaluating e in the pre-state heap g.

Symbolic production of assertions. produce(h, g, γ, π, s, A, Q) assumes the
assertion A in the symbolic state (h, g, γ, π) based on snapshot s and passes a po-
tentially updated heap and path condition to its continuation Q. The parameter
s is used to determine the snapshots of heap chunks created during produc-
tion. The function produce is defined in terms of the helper function produce′ as
follows:

produce(h, g, γ, π, s, A, Q) ≡ produce′(∅, g, γ, π, s, A, (λh′, π′ •Q(h % h′, π′)))

produce′ starts with an empty heap to ensure that assertions are self-framing.
That is, the assertion A should only dereference a pointer if A itself demands
access to that pointer.

Figure 4 shows the definition of produce′. To produce a predicate assertion
q(e1, . . . , en), we add a predicate chunk for q to the symbolic store with snapshot
s. To produce a separating conjunction A1 ∗ A2, we must first produce A1 and
afterwards produce A2 in the resulting symbolic state. Note that the snapshot s
is split up into two pieces using the functions fst and snd . Producing an equality
e1 = e2 comes down to adding the assumption that the values of both expressions
are equal to the path condition. Finally, to produce untouched(A), we consume
A in both the current symbolic heap h and the pre-state heap g, and assume
that the resulting snapshots are equal.

Symbolic consumption of assertions. Consumption is the reverse of produc-
tion. consume(h, g, γ, π, A, Q) checks if A holds in the symbolic state (h, g, γ, π)
and passes a potentially updated heap, path condition and the snapshot of the

produce′(h, g, γ, π, s, q(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

Q(h � {q[s](t1, . . . , tn)}, πn)))))

produce′(h, g, γ, π, s, A1 ∗ A2, Q) ≡
produce′(h, g, γ, π, fst(s), A1, (λh′, π′•

produce′(h′, g, γ, π′, snd(s),A2, Q)))

produce′(h, g, γ, π, s, e1 = e2, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

Q(h, π2 ∪ {t1 = t2})))))

produce′(h, g, γ, π, s,untouched(A),Q) ≡
consume(h, g, γ, π, A, (λ , , s1 • consume(g, g, γ, π, A, (λ , , s2•

Q(h, π ∪ {s1 = s2})))))

Fig. 4. Production of assertions
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consumed heap chunks to the continuation Q. Note that “checking” of spatial
assertions causes heap chunks to be removed from the symbolic heap. consume
is defined in terms of the helper function consume′ as follows:

consume(h, g, γ, π, A, Q) ≡ consume′(h, h, g, γ, π, A, Q)

The first symbolic heap passed to consume′ is used for evaluating expressions,
while the second represents the remainder of the original heap which is not
consumed yet by the assertion.

Figure 5 shows the definition of consume′. Consumption of a predicate asser-
tion q(e1, . . . , en) succeeds only if a heap chunk matching q[ ](t1, . . . , tn) exists.
This heap chunk is removed from the symbolic heap and its snapshot is passed
to the continuation. To consume A1 ∗ A2, one must first consume A1 and af-
terwards consume A2. A pair containing the snapshots of A1 and A2 is passed
to the continuation. Consumption of e1 = e2 succeeds only if both expressions
are provably (from the path condition) equal and the continuation Q succeeds.
Finally, consumption of untouched(A) succeeds only if the snapshots obtained
by consuming A in both the pre- and post-state are provably equal.

consume′(h, h′, g, γ, π, q(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

let matches = {q[s](t′1, . . . , t′1) ∈ h′ | πn � t1 = t′1 ∧ . . . ∧ tn = t′n} in
∃q[s](t′1, . . . , t′1) ∈ matches • Q(h′ − {q[s](t′1, . . . , t′1)}, πn, s)))))

consume′(h, h′, g, γ, π, A1 ∗ A2, Q) ≡
consume′(h, h′, g, γ, π, A1, (λh′′, π′, s1•

consume′(h, h′′, g, γ, π′, A2, (λh′′′, π′′, s2 • Q(h′′′, π′′, pair(s1, s2))))))

consume′(h, h′, g, γ, π, e1 = e2, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

(π2 � t1 = t2) ∧ Q(h′, π2)))))

consume′(h, h′, g, γ, π, s,untouched(A), Q) ≡
consume′(h, h, h, γ, π, A, (λ , , s1 • consume′(g, g, g, γ, π, A, (λ , , s2•

(π � s1 = s2) ∧ Q(h′, π)))))

Fig. 5. Consumption of assertions

Symbolic execution of statements. exec(h, g, γ, π, s, Q) (Figure 6) symboli-
cally executes statement s in symbolic state (h, g, γ, π) and passes a potentially
updated heap, store and path condition to the continuation Q. More specifi-
cally, a memory allocation x := cons(e1, . . . , en); is modeled by creating a fresh
term representing the address of the newly allocated memory. The heap is ex-
tended with n new memory locations starting at address l containing the terms
t1 to tn. The variable x is modified to l. A variable update x := e; modifies
the value of the variable x in the symbolic store γ to the symbolic value of
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e. A heap update [e1] = e2; is allowed only if the symbolic heap contains a
chunk that matches acc[ ](t1). If such a match exists, that heap chunk’s snap-
shot is changed to t2; otherwise, symbolic execution fails. Symbolic execution
of a mutator call x := f(e1, . . . , en); consists of consuming f ’s precondition
and producing f ’s postcondition afterwards. Note that a fresh term is used as
the snapshot for producing the postcondition. A free statement free e; is al-
lowed only if the heap contains a chunk matching acc[ ](t). If it does, then that
chunk is removed from the heap; otherwise, symbolic execution fails. Note that
the chunks produced by cons(e1, . . . , en) need to be freed separately. As assert
statement assert e1 = e2; fails if the values of e1 and e2 are not provably equal;
otherwise, the assert statement is equivalent to skip. An if-then-else statement
if(e1 = e2) { s1 } else { s2 } splits symbolic execution into two branches. An
open statement open q(e1, . . . , en); removes a chunk matching q[ ](t1, . . . , tn)
from the symbolic state and produces q’s body with the snapshot of the re-
moved chunk; if no such chunk exists, symbolic execution fails. Finally, a close
statement close q(e1, . . . , en); consumes q’s body and replaces the consumed
chunks with a predicate chunk for q. The snapshot obtained by consuming q’s
body is used as the snapshot of this new heap chunk.

3.3 Valid Program

We say that a mutator function is valid (Definition 2) if after producing the
precondition for arbitrary values of the parameters and executing the mutator’s
body in the resulting state, consumption of the postcondition succeeds and the
symbolic heap is empty. A pure function is valid (Definition 3) if evaluation of its
body does not fail in the symbolic state resulting from producing the precondi-
tion for arbitrary values of the parameters. A predicate is valid (Definition 4) if
production of its body does not fail for arbitrary parameters. Finally, the main
routine is valid (Definition 5) if its symbolic execution succeeds in an empty
heap, pre-state heap, store and path condition and the resulting heap is empty.

A program is valid if all functions and the main routine are valid. The program
of Figure 2 is valid.

Definition 2. A mutator function

func f(x1, . . . , xn) requires A1; ensures A2; { s; return e; }

is valid if the following holds:

let (t1, . . . , tn) = (fresh, . . . , fresh) in
produce(∅, ∅, {(x1, t1), . . . , (xn, tn)}, ∅, fresh, A1, (λh, π•

exec(h, h, {(x1, t1), . . . , (xn, tn)}, π, s, (λh′, γ, π′•
eval(h′, h, γ, π′, e, (λt, π′′•

consume(h′, h, {(x1, t1), . . . , (xn, tn), (result, t)}, π′′, A2,
(λh′′, , • h′′ = ∅))))))))
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exec(h, g, γ, π, x := cons(e1, . . . , en); , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

let l = fresh in
Q(h � {acc[t1](l), . . . acc[tn](l + n − 1)}, γ[x �→ l], πn)))))

exec(h, g, γ, π, x := e; , Q) ≡
eval(h, g, γ, π, e, (λt, π1 • Q(h, γ[x �→ t], π1)))

exec(h, g, γ, π, [e1] := e2; , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

let matches = {acc[s](t′1) | π2 � t1 = t′1} in
∃acc[s](t′1) ∈ matches • Q(h − {acc[s](t′1)} � {acc[t2](t1)}, γ, π2)))))

exec(h, g, γ, π, x := f(e1, . . . , en), Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, {(x1, t1), . . . , (xn, tn)}, πn, precondition(f), (λh′, π′, •
let (s, r) = (fresh, fresh) in
produce(h′, h, {(x1, t1), . . . , (xn, tn), (result, r)}, π′, s, postcondition(f), (λh′′, π′′•

Q(h′′, γ[x �→ r], π′′)))))))))

exec(h, g, γ, π, free e; , Q) ≡
eval(h, g, γ, π, e, (λt, π′•

let matches = {acc[s](t′) | π′ � t = t′} in
∃acc[s](t′) ∈ matches • Q(h − {acc[s](t′)}, γ, π′)))

exec(h, g, γ, π,assert e1 = e2; , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

(π2 � t1 = t2) ∧ Q(h, γ, π2)))))

exec(h, g, γ, π, if(e1 = e2) { s1 } else { s2 }, Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • eval(h, g, γ, π1, e2, (λt2, π2•

exec(h, g, γ, π2 ∪ {t1 = t2}, s1, Q) ∧ exec(h, g, γ, π2 ∪ {t1 �= t2}, s2, Q)

exec(h, g, γ, π,open q(e1, . . . , en); , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, γ, πn, q(e1, . . . , en), (λh′, π′, s•
produce(h′, g, {(x1, t1), . . . , (xn, tn)}, π, s,definition(q), (λh′′, π′′•

Q(h′′, γ, π′′)))))))))

exec(h, g, γ, π, close q(e1, . . . , en); , Q) ≡
eval(h, g, γ, π, e1, (λt1, π1 • . . . eval(h, g, γ, πn−1, en, (λtn, πn•

consume(h, g, {(x1, t1), . . . , (xn, tn)}, πn, definition(q), (λh′, π′, s•
Q(h′ � {q[s](t1, . . . tn)}, γ, π′)))))))

exec(h, g, γ, π, s0 s, Q) ≡
exec(h, g, γ, π, s0, (λh′, γ′, π′ • exec(h′, g, γ′, π′, s, Q)))

Fig. 6. Symbolic execution of statements
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Definition 3. A pure function

pure func p(x1, . . . , xn) requires A; { return e; }

is valid if the following holds:

let (t1, . . . , tn) = (fresh, . . . , fresh) in
produce(∅, ∅, {(x1, t1), . . . , (xn, tn)}, ∅, fresh, A, (λh, π•

eval(h, h, {(x1, t1), . . . , (xn, tn)}, π, e, (λ , • true))))

Definition 4. A predicate

predicate q(x1, . . . , xn) = A;

is valid if the following holds:

produce(∅, ∅, {(x1, fresh), . . . , (xn, fresh)}, ∅, fresh, A, (λh, π • true))

Definition 5. A main routine s is valid if the following holds:

exec(∅, ∅, ∅, ∅, s, (λh, , • h = ∅))

Pure Method Termination. It is essential for the soundness of our approach
that pure methods terminate. Verification therefore includes a phase that checks
sufficient conditions for pure method termination. Specifically, it is checked for
each pure method call in a pure method body that either (1) the callee is defined
earlier in the program text, or (2) the call is in the body of an open expression, or
(3) there is some symbolic heap chunk that is not consumed by the precondition
of the call. This ensures that at each call, either the size of the symbolic heap
decreases, or the derivation depth decreases (i.e. the number of close operations
required to construct the heap from one that contains only field chunks), or the
position in the program text decreases. Since the size and the derivation depth
are always finite and a pure method cannot increase the size or the derivation
depth of the symbolic heap, this ensures termination. Contrary to pure functions,
mutator functions are not required to terminate.

4 Implementation and Experience

We have implemented the algorithm described in Section 3 in a tool. The source
code (F#), binaries and a number of examples are available from the author’s
website http://www.cs.kuleuven.be/~jans/speccheck. Instead of the C-like
language used in the paper, the tool supports a larger assertion language (e.g.
conditional assertions) for a small subset of C#. To check whether a first-order
formula is derivable from the path condition, we use the Z3 SMT solver [5]. Our
verifier prototype has been used to verify a number of small programming pat-
terns, including aggregate objects and iterator. These programs together with
their verification times are shown in Table 1. To help developers diagnose ver-
ification errors, our verifier includes a symbolic debugger (shown in Figure 7).
When verification fails, the developer can inspect the components of the symbolic
states encountered during symbolic execution on the path to the failure.

http://www.cs.kuleuven.be/~jans/speccheck
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Table 1. Programs verified using the verifier prototype together with the verification
time (seconds). The experiments were executed on a standard desktop machine with a
2.66 Ghz processor and 4 GB of RAM running Windows Vista. cell50 is the similar to
the main routine of Figure 2, except that 50 intermediate cells are created and updated
instead of 1.

example cell abstract cell cell50 interval iterator
time taken (seconds) 0.005 0.008 0.18 0.03 0.01

Fig. 7. A screenshot of the verifier prototype. Developers can use the symbolic debug-
ger in the IDE to diagnose verification errors and inspect the symbolic state at each
program point. The box on the right of the screen contains a list of symbolic states
encountered during symbolic execution. The boxes at the bottom of the screen show
the symbolic state (from left to right: the symbolic heap, the path condition and the
symbolic store) at a particular program point.

5 Related Work

Separation logic [3] extends Hoare logic with three new assertions: emp, sepa-
rating conjunction and points-to. Our assertion acc(e) is similar to separation
logic’s points-to assertion e '→ , which denotes that the current thread has
permission to access the memory at address e (without constraining the value
at that address). The key difference between classical separation logic and our
variant is that we allow expressions that are used inside assertions to depend
on the heap. Examples of heap-dependent expressions include pointer derefer-
ences and function invocations. Note that we do not claim that our variant has
additional expressive power. Instead, the difference leads to a different style of
writing specifications. More specifically, where we use pure methods to express
the state of an object, classical separation logic relies on predicate parameters.
For example, the contract of inc of Figure 2 would be written in separation logic
as: requires cell (c, X); ensures cell(c, X + 1);. Here, X is a logical variable.
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Berdine et al. [4] have proposed a symbolic execution-based verification al-
gorithm for programs annotated with separation logic specifications and have
implemented this algorithm for a small imperative language in Smallfoot. The
algorithm described in Section 3 is a variant of the aforementioned algorithm.
In particular, the idea of dividing the symbolic state in spatial and pure as-
sertions (the symbolic heap and the path condition respectively) and the rules
dealing with heap access, non-heap-dependent expressions and assertions are
largely similar to those in [4]. The novel aspect of our approach is the treat-
ment of pure methods and pointer dereferences inside assertions via snapshots.
Smallfoot only supports a limited number of predicates, but the developer does
not need to write open and close statements as the tool has hard-coded, built-in
rules for reasoning about those predicates.

jStar [12] and VeriFast [13] extend the basic ideas of Berdine et al. to full-
fledged programming languages like Java and C. While loop invariants must be
provided by the developer in our approach, jStar infers certain loop invariants
automatically, provided the developer inputs the necessary abstraction rules.
Using an SMT solver [5] for discharging pure queries and supporting symbolic
debugging via an IDE that shows the components of the symbolic state are ideas
taken from VeriFast.

As an alternative to the Smallfoot’s symbolic execution-based verification al-
gorithm, Leino and Müller [14] and Smans et al. [15] have proposed an approach
based on verification condition generation and automated theorem proving for a
variant of separation logic. However, experience has shown that approaches based
on verification condition generation and automated theorem proving in general,
and [14,15] in particular, have 3 disadvantages: (1) they are slow, (2) they are
unpredictable, as small changes in the specification can have a significant impact
on verification time and (3) verification errors are hard to diagnose, as it is hard
to determine whether the specification is flawed or whether the theorem prover
is unable to prove a particular part of the verification condition. As the exper-
iments with our verifier prototype indicate, verification times are consistently
low. For example, even if we increase the number of intermediate statements in
the main routine of Figure 2, the verification time only increases marginally. The
main reason why verification is fast is that we reason about the heap outside of
the theorem prover, and hence do not need to send quantifier-heavy formulas (in
particular quantifiers about the heap) to the automated prover. These experi-
ments thus confirm earlier results with similar algorithms [4,12,13]. Moreover,
the developer can diagnose verification errors by inspecting the symbolic states
on the path to the failure. A disadvantage of the approach presented in this paper
with respect to [14,15] is that non-separating conjunction is not supported.

Reasoning about method calls in specifications and framing their return val-
ues in particular was posed as a challenge for verification by Leavens, Leino and
Müller [16]. In the context of approaches based on verification condition genera-
tion and automated theorem proving, researchers have attacked well-formedness
of pure method specifications [6,7], framing of return values [8,9,10] and allowing
certain side effects in pure methods [11,9]. The approach proposed in this paper



184 J. Smans, B. Jacobs, and F. Piessens

is similar to existing techniques in the sense that we also encode pure methods as
functions and invocations of pure methods as function applications. Moreover,
the idea of using snapshots is similar to the snapshots used in [8,9]. However, to
the best of our knowledge, this is the first paper that discusses the use of pure
methods and framing of their return values in the context of separation logic
(and in the context of its symbolic execution-based verification algorithm).

6 Conclusion

In this paper, we combined the expressive power of separation logic with the
programmer-friendly notation of specification languages such as JML where
heap-dependent expressions can be used in annotations. We proposed an al-
gorithm to support mechanized checking for this variant of separation logic and
implemented this algorithm in a tool.
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Abstract. Pattern matching is one of the most attractive features of
functional programming languages. Recently, pattern matching has been
applied to programming languages supporting the main current object
oriented features. In this paper, we present a static type analysis based
on the abstract interpretation framework aimed at proving the exhaus-
tiveness of pattern matchings and the safety of type casts. The analysis
is composed by two distinct abstract domains. The first domain collects
information about dynamic typing, while the second one tracks the types
that an object cannot be instance of. The analysis has been implemented
and applied to all the Scala library. The experimental results underline
that our approach scales up since it analyzes a method in 90 msec in
average. In addition, the analysis is precise in practice as well, since we
prove the exhaustiveness of 42% of pattern matchings and 27% of the
type casts without any manual annotation on the code.

Keywords: Abstract interpretation, static analysis, pattern matching.

1 Introduction

Pattern matching is recognized to be one of the most expressive features of func-
tional programming languages. Extending its full expressiveness to programming
languages supporting the current object oriented features is not straightforward
[12]. In fact, features like inheritance and information hiding are not supported
by the functional pattern matching, since it dealt with algebraic data types.
Nevertheless, recent work [14,26] introduced pattern matching in programming
languages supporting the main current object oriented features as F# [1] and
Scala [23]. In addition, some extensions of Java supporting pattern matching
appeared in the last few years [16,24]. Pattern matching checks if an expression
respects a given pattern looking at an ordered list of case expressions. One of
the most common case expressions is the type case: we select the case to ap-
ply following the dynamic type of the expression. Consider the Scala program
in Figure 1. The content of argument x is matched with respect to its type: if
it is an instance of Something, the method returns the string representing the
contained value. Otherwise, the type of x is None, and extract returns the empty
string.

Languages like F# and Scala are compiled into a bytecode language (for in-
stance, MSIL [11] or Java bytecode [18]) that supports the main imperative
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features. Thus type cases in pattern matching are translated into type tests and
casts. For instance, the body of method extract in Figure 1 is translated into
the code in Figure 2 by the Scala compiler [13]. Note that information about
generics is erased.

abstract sealed class Option[T]
final case class Something[T](val y : T) extends Option[T]
final case object None extends Option[Nothing]

def extract [T](x : Option[T]) : String = x match {
case Something(y) => return y.toString();
case None => return ””;

}

Fig. 1. Pattern matching with type cases

1 String extract (Option x) {
2 if (x instanceOf Something)
3 return ((Something) x).y. toString ();
4 else if (x instanceOf None)
5 return ””;
6 else throw new MatchError ();
7 }

Fig. 2. Results of Scala compilation

This code can be easily optimized adopting a specific static analysis. When
x instanceof Something is false, we know that x instanceof None is always true. In
fact, the static type of x is Option, this class is abstract, and the only two classes
that extend it are Something and None. Note that Option is declared as sealed.
In Scala, a sealed class can be extended only by classes that are defined in the
same source file. Therefore we know that Option cannot be extended by external
code, and we can conclude that the if statement at line 4 is always evaluated
to true. In addition, we know that the statement throw new MatchError() is un-
reachable, that is the pattern matching contained by the original Scala program
is exhaustive. Finally, the type cast at line 3 is safe.

1.1 Contribution

The main contribution of this paper is the introduction of two new abstract
domains in order to capture precise information on the types of variables. The
two main goals of our analysis are precision and efficiency. Precision is achieved
through the development of abstract domains focused on the properties of inter-
est, that is, exhaustiveness of pattern matching and safety of casts. Efficiency is
achieved through a modular analysis. For this reason, our approach is based on



188 P. Ferrara

(a) Type hierarchy (b) Static typing

(c) Dynamic typing DT (d) Not-instance-of domain NT

Fig. 3. Type system and abstract domains

the Design-by-Contract (DbC) methodology [21]. This means that when we an-
alyze a method call we rely on class invariants, pre and post conditions. Thanks
to this approach, we do not need to analyze the whole program, but we can
analyze a method alone relying on its contracts. In a similar way, we rely on
language constructs like sealed in Scala in order to be sure that a class cannot
be extended by external code.

In this paper, we do not deal with issues related to the heap and its analysis.
Hence the language on which we are going to define our analysis does not contain
field accesses, aliasing, etc., but it deals only with variables. The object oriented
programs we analyzed are preprocessed by a sound heap analysis that replaces
heap accesses with variables. This means that method calls may have side effects
on these variables. The heap analysis we perform is quite rough: intuitively, we
approximate all the instances of the same class with the same variable, and
we perform weak updates [4] as these abstract references may represent several
concrete references. Then the number of abstract references is bounded to the
number of classes of the analyzed program. In this way we preserve the scalability
of our approach. On the other hand, it may seem that this approach is too much
coarse since we approximate all the fields having the same static type with
the same variable. Indeed, this does not particularly affect the precision of our
approach because, for the most part of the programs we analyzed, the content
of fields is first stored in a local variable (and in this way we obtain a specific
variable identifier), and then type checking and casts are performed on this local
variable.
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Consider now the type hierarchy depicted in Figure 3a. The class Object is
extended by several subclasses that represent different types in a programming
language, e.g., Boolean. The abstract class Number is extended by several sub-
classes, each representing one possible numerical type, e.g., Integer. For instance,
Figure 3b represents a situation in which the static type of a variable is Number.
The static type information guarantees that the objects assigned to a variable
are instances of its static type or of one of its subclasses. Thus instances of Long,
Float, etc. may be assigned to a variable whose static type is Number.

The first abstract domain we are going to define is DT. It is aimed at ap-
proximating information about the dynamic type of variables. Figure 3c depicts
a case in which we assign an object instance of the Integer class (darker area)
to a variable of static type Number (light grey area). The information about
dynamic typing comes mainly from assignments, type casts, new statement, and
assumption of instanceof conditions. Since we rely on DbC, if a method has no
postcondition about the dynamic type of variables (e.g., the returned value),
we would abstract its type information using its static type after the method
call.

The second domain we are going to define is NT. It abstracts the types that
a variable cannot be instance of. For instance, Figure 3d depicts a situation in
which a variable of static type Number cannot be instance of Double, Integer, or
Short. In this way we can discard some leaves of the type tree. This information
is collected when we assume the negation of an instanceof boolean condition. We
could have adopted a different approach capturing a set of types for each variable
representing all the possible types a variable can have at a given program point.
In this way, we may model that an object cannot be instance of a type simply
removing the type from the set of types related to it. Unluckily this solution is
not feasible for two main reasons. Imagine to be after a method call, where we
know only the static type of a variable. In this context, assuming that an object
cannot be instance of a given type (i) may affect the performance (e.g., if its
static type is Object and we have to exclude String we should relate the variable
to a set of types of huge dimensions), (ii) cannot be represented since our analysis
is modular and external code usually defines and instantiates new classes. One
may argue that, since we are interested in proving the exhaustiveness of pattern
matching, we can restrict the analysis only on types that cannot be extended
by external code. With such restriction the approach based on set of possible
types would be feasible, and performance could be preserved supposing that we
have few subclasses. First of all, we want to track information also on classes
that can be externally extended, in order to eventually provide information to
developers like “if this class would be sealed, then the pattern matching would
be exhaustive”. This solution would not collect the information necessary to
provide this output. In addition, we do not expect in general that sealed classes
(or more generally classes that cannot be extended by external code) have only
few subclasses, since each subclass may be used to represent a particular case of
a complex data structure.



190 P. Ferrara

Combining DT and NT, we are in position to obtain precise information about
types and prove the safety of some cast operations, and the unreachability of
some code, in particular when dealing with pattern matching.

The analysis works on a simple object oriented language. We designed it in
order to translate the main object oriented programming languages into this lan-
guage. In this way, we want to apply our analysis to several languages. Up to now,
we have developed the translation of the Scala programming language. Thus our
analysis is focused on the code obtained from the Scala pattern matching state-
ments. In this context, if we prove that a MatchError exception is unreachable,
this means that the pattern matching is exhaustive.

The analysis has been implemented and the experimental results underline
that our approach scales up. We are in position to analyze Scala libraries (more
than 30.000 methods) in less than one hour, and in average we require 90 mil-
liseconds to analyze a single method. In addition, it turns out that the analysis
is precise in practice. In fact, we are able to prove the exhaustiveness of 42% of
pattern matchings (that may contain not only type cases but also other cases
whose information is not captured by our analysis) and 27% of the type casts
without any manual annotation of the code.

The following of this section introduces some preliminaries on abstract inter-
pretation. Section 2 presents the language that we analyze. Section 3 introduces
the concrete domain and semantics, while Section 4 formalizes the two domains
adopted by our analysis, and explains how they work on an example. Section
5 presents the experimental results, and Section 6 introduces the related work.
Finally, Section 7 concludes and discusses the future work.

1.2 Abstract Interpretation

Our approach is based on abstract interpretation [7,8], a theory for defining and
soundly approximating the semantics of a program. A concrete semantics, aimed
at specifying the runtime properties of interest, is defined. Then it is approxi-
mated to obtain an abstract semantics computable but still precise enough to
capture the property of interest, and specified by an abstract domain and an
abstract transition function.

Formally, the concrete domain D is a lattice 〈D,�C,⊥C,*C,�C,�C〉. The con-
crete elements are related to the abstract domain 〈D,�A,⊥A,*A,�A,�A〉 by a
concretization function γ and an abstraction function α. In order to obtain a
sound analysis, we require that they form a Galois connection; we denote it by
〈D,�C,⊥C,*C,�C,�C〉 −−−→←−−−α

γ
〈D,�A,⊥A,*A,�A,�A〉.

A semantics is defined on the abstract and concrete domains. Given a state
of the domain and a statement, it produces the result of the execution of the
statement starting from the given state. The abstract semantics S has to soundly
approximate the concrete one, that is ∀d ∈ D : S�γ(d)� �A γ ◦ S�d�. Usually, the
semantics is defined as the computation of a fixpoint [8].

Different domains can be combined in Cartesian products. Let A × B be the
Cartesian product of abstract domains A and B. The lattice operators are defined
as the pointwise application on the components of the pairs of the lattice operator
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Table 1. OO core language

C ::= x = E (C1) E ::= new T() (E1) B ::= x instanceof T (B1)
declare x : T (C2) x (E2) ! x instanceof T (B2)
assume(B) (C3) (T) x (E3)
x.M(y1, ..., yn) (C4)

on each abstract domain. The reduced product A � B is a Cartesian product on
which a reduce function is provided: given a state of the Cartesian product, it
mutually refines the information contained in each domain using the information
provided by the other domain.

Generic analyzers. Abstract interpretation can be applied in order to develop
generic analyzers [5]. In particular, this theory allows one to define a composi-
tional analysis, e.g., an analysis that can be instantiated with different numerical
domains, and in order to analyze different properties. Many different generic an-
alyzers have been proposed recently [15,19,25]. The type analysis we present in
this paper has been implemented in Sample (Static Analyzer of Multiple Pro-
gramming LanguagEs). This generic analyzer can be plugged with different nu-
merical domains and heap analysis. In addition, it can be extended with new
analyses like our type analysis.

2 Language

We introduce a core language in order to make explicit the main characteristics
of our abstract domains. It consists of assignments (C1), declarations of vari-
ables (C2), assumptions of boolean conditions (C3), and method calls (C4). An
expression that can be assigned to a variable is the instantiation of a class (E1),
another variable (E2), or the cast of a variable (E3). A condition can be the
check that the dynamic type is instance of (B1) or it is not instance of (B2) a
type.

We focus our attention only on the main aspects of the type analysis we are
interested in, that is, casts and runtime checks of dynamic types. Nevertheless,
our implementation covers all the features of current programming languages, as
numerical operations, field accesses, etc. Intuitively, we represent the body of a
method through a Control Flow Graph (CFG). Each block in the CFG contains
a list of statements. Different blocks are connected through edges that could
eventually contain a boolean condition to represent conditional jumps. In this
way, we support control structures like if statements and while loops.

3 Concrete Domain and Collecting Semantics

The concrete domain is composed by environments that collect the dynamic type
for each variable. Formally, Env : [Var → T]. The concrete domain is composed
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Table 2. Collecting semantics

E�new T(), d� = T B�x instanceof T, d� = S�x = E, d� = d[x �→ E�E, d�]
E�x, d� = d(x) = d(x) �T T S�declare x : T, d� = d[x �→ T]
E�(T) x, d� = B�!B, d� = ¬B�B, d� S�assume(B), d� =

=
{

d(x) if d(x) �T T
⊥ otherwise

=
{⊥ if B�B, d� = false

d if B�B, d� = true
S�x.M(y1, ..., yn), d� =

= execute(x.M(y1, ..., yn), d)

by sets of environments. Each environment represents one possible execution
of the program in a given point. The lattice is obtained using set operators.
Formally, 〈℘(Env),⊆,∪,∩, Env, ∅〉.

We define the collecting semantics as a function that, given an environment
and a statement, returns the environment resulting from the execution of the
given statement on the given environment. Table 2 reports the formal definition
of this collecting semantics1. �T corresponds to the subtype relation, while ⊥
is used to represent a situation in which the execution is stopped because of
an unsafe dynamic cast. The collecting semantics is aimed at formalizing the
runtime behaviors focusing on the information we are interested. The extension
of this semantics to our concrete domain (that is made by set of environments)
is the application of this semantics on each environment in the initial state.

S is the basic step adopted in order to compute the semantics of a method on
its CFG representation. Intuitively, we build up incrementally the traces repre-
senting the executions of a method relying on S to perform single computational
steps [6]. Since non-deterministic behaviors are possible (e.g., because of inputs
from the user) and these may also affect the type information, we consider sets
of traces.

4 Abstract Domain and Semantics

In this section, we present and formalize the two abstract domains of our analysis,
how we combine them, and we explain how they work in practice on the example
presented in Figure 2. Note that we will define the abstract semantics only on
single statements. Its extension to blocks and CFGs is obtained as usual in
approaches based on abstract interpretation and trace semantics relying on the
upper bound operators [7].

4.1 Static Typing

The programming language introduced in Section 2 provides some information
on the static types of variables. We suppose that a subtype relation �T is pro-
vided, and that this is a partial ordering. Given two types t1, t2 ∈ T, t1 �T t2 if

1 execute(x.M(y1, ..., yn), d) resolves and executes method M on d.
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and only if t1 is subtype of t2. We denote by �T and �T respectively the upper
and lower bound operators univocally identified by �T. These operators form a
lattice. In this way, we support the most part of common object oriented type
systems [3], like the ones of Java, C#, Scala, and F#.

Each type represents itself and all the types that are its subtype. Note that this
is exactly the semantics of a static type: at runtime a variable of static type t can
have a type that is t or one of its subtypes. Formally, the concretization of a type
t is defined as γT(t) = {t′ : t′ �T t}. Since information about static typing can be
considered as syntactic sugar, we suppose that a function statictype : [Var→ T]
is provided. Given a variable, it returns its static type.

4.2 DT: Dynamic Typing

DT abstracts the dynamic type of variables. Relying on T we build up the domain
DT : [Var→ T] that relates each variable to its dynamic type. The operators on
the lattice 〈DT,�DT,�DT,�DT,*DT,⊥DT〉 are obtained as the functional exten-
sion of the ones of T. The information inferred by DT is refined with the static
type information provided by the statictype function: if the type of a variable
v is not yet defined, the dynamic type domain returns its static type, that is,
statictype(v). The concretization of DT is defined as the functional extension of
γT as well. Formally, γDT(f) = {[v '→ t] : v ∈ dom(f) ∧ t ∈ γT(f(v))}.

Semantics

DT�x = y, dt� = dt[x '→ dt(y)]
DT�x = new T(), dt� = dt[x '→ T]
DT�x = (T)y, dt� = dt[x '→ T �T dt(y), y '→ T �T dt(y)]
DT�assume(x instanceof T), dt� = dt[x '→ dt(x) �T T]
DT�x.M(y1, ..., yn), dt� = DT�assume(rename(postconditionM)),*DT�

When a variable is assigned to another one (x = y), we capture that the dynamic
type of x is the type of y. Similarly, when we assign to a variable the instance
of a fresh object, we relate this variable to the type of the new object. The
dynamic type of the assignment of a cast to type T of a variable y is the lower
bound between the dynamic type of y and type T. Thus, it may be the case in
which it contains a type that is more approximated than T even if the cast is
safe. After the cast, we know that its dynamic type will be surely T or one of
its subtypes. This is why we take the lower bound between the dynamic type of
the variable and T. In a similar way, when we test to true a boolean condition
like x instanceof T, we track that the dynamic type of x is the lower bound of
its type and T. When we analyze a method call, we assume the postconditions
of this method call, that may contain some type information, on the top state
of the DT domain. Since we do not consider framing information, we suppose
that potentially a method may access and assign all the variables of the current
state of computation. Then we assume the postcondition on a top state in or-
der to preserve the soundness of our analysis. In addition, we suppose that a
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rename function is provided, and it renames all the variables contained in the
postcondition matching the calling environment.

Running Example. At the beginning of the analysis of method extract we have
no information about dynamic typing, but we know that the static type of x is
Option. When we analyze the condition of the if branch at line 2 we calculate
that the state leading to the then statement of our dynamic type domain is
[x '→ Something], since the condition is evaluated to true. In the same way, at
line 4 we obtain that [x '→ None]. Thus we prove that the cast at line 3 is safe,
while we are not able yet to detect that line 6 is unreachable.

4.3 NT: Not-instance-of Domain

The second domain we introduce is NT. This domain is aimed at collecting the
types an object cannot be instance of at a given point of the program.

First of all, we define a lattice that collects sets of types. The intuition behind
them is that they contain all the types of which a variable cannot be instance
of. Thus let NT be this domain, i.e., NT = ℘(T). Its concretization contains all
the types that are not in the given set or that are subtypes of one of the types
in the set. Formally, γNT(f) = {[v '→ t : v ∈ dom(f) ∧ �t′ ∈ f(v) : t �T t′]}. The
ordering operator on NT is not the subset operator, as more types we have, more
precise we are. On the other hand, it is neither the superset operator, as several
types may be subtypes of the same type, and they are different elements of the
set. Thus the ordering operator is defined as

nt1 �NT nt2 ⇔ ∀v ∈ dom(nt2) :v ∈ dom(nt1)∧∀t2 ∈ nt2(v) :∃t1 ∈ nt1(v) : t2 �T t1

The other lattice operators are the ones induced by �NT. The bottom element
for a single variable is the set containing only the top type (e.g., Object in Java or
Any in Scala). The concretization of this element would be all the types that are
not subtype of the top type, i.e., the empty set. We denote by⊥NT a function that
relates all the variables to {*T}. Formally, ⊥NT = λx.{*T}. The top element is
the empty function. Formally, 〈NT,�NT,�NT,�NT,⊥NT, ∅〉.

Semantics

NT�x = y, nt� = nt[x '→ nt(y)]
NT�x = new T, nt� = nt[x '→ ∅]
NT�x = (T)y, nt� = nt[x '→ nt(y)]
NT�assume(! x instanceof T, nt)� = nt[x '→ nt(x) ∪ {T}]
NT�x.M(y1, ..., yn), dt� = DT�assume(reaname(postconditionM)),*NT�

We are interested in collecting which types a variable is not instance of. When
a variable y is assigned to x (with or without cast), we track that the types x
cannot be instance of are the same of y. When we assign a new instance of a
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class to a variable, we forget everything we knew about that variable. In this
way, we lose some information: we could consider that the variable cannot be
instance of all the types that are not subtype of the instantiated class. On the
other hand, this would be computationally expensive, the same information is
already contained in DT, and we are going to combine this domain with NT.
NT is also interested to approximate information when a boolean condition like
x instanceof List is tested to false. For instance, when we analyze the if statement
if(x instanceof List) C1; else C2, we know that in the else branch x cannot be
instance of List, and we add List to the state of the NT domain before analyzing
C2. The method call is managed as in DT: method calls may have side effects
on variables, arbitrarily changing their dynamic type. In order to preserve the
soundness of our approach, the only information we have after the method call
is that the postcondition of the called method holds.

Running Example. The NT domain models information on the example pre-
sented in Figure 2 when we test to false conditions containing instanceof. Thus
at line 4 (i.e., the else branch of the if statement at line 2) its state is [x '→
{Something}]. At line 6 (i.e., the else branch of the if statement at line 4) its
state is [x '→ {Something, None}]. Unluckily, NT alone is not enough in order to
prove that line 6 is unreachable, as it knows nothing about the static or dynamic
types of x.

4.4 FT: Reduced Product of DT and NT

The DT domain infers the dynamic type of a variable. NT collects the types a
variable cannot be instance of. Thus these domains model different types of in-
formation, but we can mutually refine them. In particular, we are interested in
checking if the information contained by NT about a variable is not compatible
with the one contained in DT. In this case, we know that this point of the pro-
gram is unreachable, and thus we can refine our domain to the bottom state. For
instance, consider an abstract sealed class I (thus it cannot be instantiated nor
extended by external code) that is implemented by two classes O1 and O2. If we
know from DT that the dynamic type of a variable x is I, but from NT we know
that x cannot be instance of O1 nor O2, then there is no possible type for x.

Formally, let be FT the reduced product of DT and NT, i.e., FT = DT � NT.
The lattice operators of 〈FT,�FT,�FT,�FT,*FT,⊥FT〉 are defined as usual when
dealing with the product of domains. The reduction function redFT is defined as

redFT : [FT→ FT]

redFT((d, n)) =

⎧⎪⎪⎨
⎪⎪⎩

⊥FT if ∃x ∈ dom(d) : getType(x, d) = t∧
∀t1 ∈ γT(t) : abstract(t1) = false ∧ ∃t2 ∈ n : t1 �T t2∧

t cannot be extended by external code
(d, n) otherwise
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Table 3. Results of the analysis of the example

Line DT NT Reduced FT

2 [x �→ Option] ∅
3 [x �→ Something] ∅
4 [x �→ Option] [x �→ {Something}]
5 [x �→ None] [x �→ {Something}]
6 [x �→ Option] [x �→ {Something, None}] ⊥FT

where abstract : [T→ {true, false}] is a function that, given a type, checks if the
given type cannot be instantiated, e.g., it is an interface or an abstract class in
Java, or a trait in Scala.

The reduction function is aimed at discovering if the information contained in
NT is not compatible with the information contained in DT. It returns ⊥FT if and
only if (i) all the types a variable can be instance of following the information
contained in DT are excluded at least by one type contained in NT, (ii) the
type related to the variable in DT cannot be extended by external code (e.g.,
it is declared as sealed in Scala). In this way we achieve the modularity in our
analysis. Note that this reduction is partial, as there may be other ways to refine
the information contained in the different domains. Anyway, we did not find
useful other reductions of the information contained in this domain in order to
improve the precision of our analysis.

The concretization of FT is defined as the intersection of the pointwise appli-
cation of γDT and γNT. Formally, γFT((d, n)) = γDT(d) ∩ γNT(n). The semantics
FT is defined as the pointwise application of DT and NT.

Theorem 1. The fixpoint trace semantics based on FT is sound with respect to
the one based on S.

Running Example. Table 3 reports the results of the FT domain when applied
to method extract of the example presented in Figure 2. We already pointed out
how the information is captured by the abstract domains. The reduced product
refines the information contained in the two domains at line 6 discovering that
it is not possible for variable x to be instance of Option, and not to be instance
of Something and None at the same time. In fact, these two classes represent all
the possible instances of Option. Note that Option is declared as sealed, hence it
cannot be extended by external code. Therefore the reduced product is able to
discover that line 6 is unreachable, and MatchError cannot be thrown. Previously,
we discovered that DT proved that the cast at line 3 is safe, thus, in a Java
environment, a ClassCastException cannot be thrown. Using this information,
we may improve the runtime performance (for instance removing the last if
statement since the else branch is unreachable) and provide useful information to
developers in order to debug programs, since we guarantee that pattern matching
is exhaustive in the original Scala code.
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5 Experimental Results

Casts MatchErrors
#m t tm v nv p v nv p

actors 1626 3’56” 145.35 47 104 31.13% 20 17 54.05%
collection 14578 10’21” 42.63 183 509 26.45% 42 74 36.21%

util 4926 8’21” 101.75 126 508 10.87% 36 65 35.64%
xml 2786 6’21” 136.59 108 286 27.41% 5 21 19.23%

mainlib 8218 12’02” 87.82 97 196 33.11% 37 12 75.51%
scala lib 35732 54’02” 90.72 725 1951 27.09% 156 208 42.86%

We applied our analysis to all the Scala library v. 2.7.7. We executed the analysis
on an Intel Code 2 Quad CPU 2.83 GHz with 4 GB of RAM, running Windows 7,
and the Java SE Runtime Environment 1.6.0 16-b01. The preceding table reports
the experimental results. Column #m reports the number of analyzed methods.
Column t reports the time required to analyze these methods2, while tm reports
the time required in average to analyze a single method in milliseconds. We
report the number of validated cases (column v), not validated (nv) cases, and
the overall precision (p) of our analysis when analyzing both type casts and
reachability of MatchError exceptions.

The Scala library contains more than 35.000 methods. In average we analyze
a method in 90 milliseconds. Thus our analysis is quite efficient, and it scales up.
When we analyze the type casts, we are not able to distinguish between casts due
to the compilation of pattern matchings, and other casts, since our analysis works
on the code obtained after the transformations and simplifications performed by
the Scala compiler. Hence our analysis takes into account all the casts contained
in the program. We are able to automatically prove safe more than 27% of all the
casts. We think that this result goes beyond our initial goal (that was, to precisely
analyze pattern matching), since we proved the safety of more than 700 casts
while there were only 364 MatchError exceptions (that means that there were
364 pattern matchings). On the other hand, in general a precision less than 30%
is not particularly satisfying. We analyzed these warnings, and it turns out that
the most part is due to erasure of type generics of Scala compiler. For instance,
when we access the next element of a list of Integer objects, this is compiled into
a program that takes the next element of a list of Object instances and casts it to
Integer. Obviously, since we do not have information about generics, we cannot
prove the safety of this code. We plan to apply our analysis to languages that
preserve generic type information in order to study how this feature can improve
the precision of our analysis. A minor part of the warnings is induced by the
lack of contracts. Since the Scala library is not annotated, each time we have
a method call we forget everything is contained in DT and NT. We expect the
we may improve the precision of our analysis adding some contracts concerning
framing information in particular.
2 This time takes into account also the heap analysis.



198 P. Ferrara

About the reachability of MatchError, we proved that about 43% of these
exceptions is unreachable. This result is particular encouraging: even if we took
into account a part of the information that can be used in pattern matching and
we do not annotate the code with contracts, we proved that almost half of the
existing pattern matchings is safe, and we can remove the MatchError exception.
Usually we were not able to prove the exhaustiveness of pattern matchings when
they contain some checks on numerical information. In a minor part of the cases,
we failed to prove the exhaustiveness because the pattern matching was not
exhaustive since it expected to receive a particular type of expression. Contracts
would be the solution in order to express that a method expects that an argument
can have only some specific types (e.g., not all the ones that are subtype of its
static type), thus we expect that we could improve the precision adding this
annotation.

6 Related Work

The related work is addressed mainly into two directions: the static analysis of
type information in order to optimize virtual calls, and static analysis of pattern
matching.

The first topic has been studied during the last 15 years. Object oriented
languages introduced the idea of virtual calls: we do not know at compile time
exactly which method we are calling, but we need some runtime information (for
instance, the dynamic type of the object on which we are calling the method).
Thus the binding of the called method is dynamic, and this step may require an
overhead. Applying static analysis to reduce and bound the number of virtual
calls improves the runtime performance of programs. In this context, many ap-
proaches were proposed [2]. Some of them performs an inter-procedural analysis
[17], while our approach relies on contracts. Other approaches analyze the class
hierarchy statically [9], and check if the virtual call can refer only to one im-
plementation of the method in this context. These approaches usually consider
information only about dynamic types.

A recent work [20] proposed a type analysis based on the abstract interpre-
tation theory in order to optimize JavaScript code. This analysis is focused on
the numerical information that can be assigned to a variable in order to infer
if we can adopt an Int32 type instead of a Float64 type. Using this information
the code is optimized. This approach is focused on the numerical information
and adopts this information to infer the types of variables, while our approach
approximates information on the types of variables to check which casts are safe
and if some statements are unreachable.

Recent work applied static analysis techniques to prove properties of pattern
matching. Mitchell and Runciman [22] proposed an analysis to check if non-
exhaustive pattern matching in Haskell could lead to failures. In particular, it
infers preconditions that are strong enough to prove that the pattern matching
never fails. Our approach is aimed at discovering which pattern matchings are
non-exhaustive, instead of inferring which constraints are necessary in order to
make exhaustive a pattern matching that is not.
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Dotta et al. [10] introduced a verification system that checks the disjointness,
reachability, and exhaustiveness of Scala pattern matching. Global information
about the program is inferred through different kinds of formulas. The authors
do not formalize how these formulas are inferred, and there is no proof about
the soundness of the approach. Instead, we fully formalized our approach and
we proved its soundness. On the other hand, their analysis tracks more infor-
mation than ours. Their implementation requires up to some seconds to prove
the exhaustiveness of some case studies. Our analysis tracks information only of
type-based pattern matchings, but it is scales up.

7 Conclusion and Future Work

In this paper we presented a static type analysis focused on pattern matching. We
introduced and combined two distinct abstract domains, each abstracting differ-
ent information (dynamic typing, and not-instance-of information). We proved
the soundness of our approach relying on the abstract interpretation framework.
The analysis has been implemented in Sample, and the experimental results
proved the scalability and the precision of our approach.

As future work, we plan to combine our analysis with some numerical domains
in order to study if considering this information improves the precision of our
analysis. In addition, we plan to exploit the information captured by our analysis
to optimize the programs resulting from the Scala compiler, and to study how
much this optimization may improve the runtime performance of some Scala
benchmarks.
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Abstract. Many model checking methods have been developed and applied to 
analyze cryptographic protocols. Most of them can analyze only one attack 
trace of a found attack. In this paper, we propose a very simple but practical 
model checking methodology for the analysis of cryptographic protocols. Our 
methodology offers an efficient analysis of all attack traces for each found  
attack, and is independent to model checking tools. It contains two novel tech-
niques which are on-the-fly trace generation and textual trace analysis. In addi-
tion, we apply our method to two case studies which are TMN authenticated 
key exchanged protocol and Micali’s contract signing protocol. Surprisingly, it 
turns out that our simple method is very efficient when the numbers of traces 
and states are large. Also, we found many new attacks in those protocols. 

Keywords: Formal methods for cryptographic protocols, Model checking, 
Cryptographic protocols. 

1   Introduction 

Cryptographic protocols are protocols which use cryptographic techniques to achieve 
certain tasks while preventing malicious parties to attack the protocols. There are 
many applications of cryptographic protocols, for example, authenticated key ex-
change protocols, web security protocols, e-payment protocols, e-banking protocols, 
e-voting protocols, etc. 

The design and analysis of cryptographic protocols are difficult to achieve because 
of the increasingly attacking capabilities and the complex requirement of the applica-
tions. Attacks in many cryptographic protocols have been found later after they have 
been designed [1, 2] and even implemented eg. [3, 4]. Thus, it requires a method to 
analyze all possible attacks to the protocols. Such kind of method would offer a com-
prehensive understanding of all vulnerabilities of protocols and certainly would help 
in developing a better protection for them. Note that in this paper we focus on only 
message replay attacks [5]. 

Many model checking methods [6-16] have been developed and applied to analyze 
cryptographic protocols. Most of them can analyze only one attack trace of a found 
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attack. In fact, all of them employ off-the-fly trace generation technique. It means that 
after a state space is generated either partially or fully and an attack state is found, an 
attack trace is then computed. This kind of trace generation is called off-the-fly since 
the trace computation occurs after the state space is generated. An attack trace is con-
structed by searching for a path from an initial state to an attack state. Since the 
searching for all paths between two states is extremely time-consuming, only one path 
is searched, instead, in most methods. However, the analysis of single attack trace is 
rather limited since one path or one attack trace represents only one way amongst 
many possible ways to carry out an attack. In addition, after one attack trace is found, 
a visualization technique is normally employed to illustrate and analyze the attack, for 
example, message sequence charts [31] and graphs. Such visualization technique can 
provide an intuitive analysis of a single attack trace. However, when the number of 
traces is large, for example thousands, it is hard to analyze them by visualizing, eg. to 
classify them into groups.  

In this paper, we propose a very simple but practical model checking methodology 
for the analysis of cryptographic protocols. Our methodology offers an efficient 
analysis of all attack traces for each found attack, and is independent to model check-
ing tools. The study of all attack traces is beneficial since it offers a deep understand-
ing on all attackers’ capabilities to compromise a system. Our method contains two 
novel techniques which are on-the-fly trace generation and textual trace analysis. In 
our method, while a state space is generated, attack traces for states are computed at 
the same time and stored at the states themselves. We call it on-the-fly trace genera-
tion since the trace computation occurs at the same time as the state space computa-
tion. Thus, after the whole state space is computed and an attack is found, then attack 
traces for the attack can be extracted from attack states of the attack immediately. 
Thus, all attack traces can be computed very efficiently without any path searching. 
This technique provides a big improvement in the computation time for all attack 
traces when the number of attack traces and the number of states are large.  

The number of attack traces obtained can be quite large. For example, we found 
1,020 traces for an attack in the TMN protocol. So, we propose textual trace analysis 
technique to classify such large number of attack traces. Those attack traces are clas-
sified by using attack patterns. Attack patterns are minimal but necessary protocol 
traces for an attack. Attack traces that contain the same attack pattern are classified 
into the same group of attack traces. While the development of an attack pattern is 
manual, the attack classification is automatic. By using our two new techniques, pro-
tocol designers could obtain a deep and thorough analysis of all possible attacks to 
cryptographic protocols. 

To demonstrate the practical uses of our approach, we apply our new methodology 
to two case studies which are Micali’s contract signing protocol (ECS1) [17] and 
TMN authenticated key exchange protocol [18]. We implement our methodology in a 
model checker tool called CPNTools [19,20]. Note that CPNTools originally provides 
the off-the-fly trace generation only. Then, we compare the results between our  
on-the-fly trace generation and the off-the-fly trace generation both in CPNTools. 
Surprisingly, it turns out that our on-the-fly trace generation is more efficient than the 
off-the-fly trace generation when the numbers of traces and states are large. For TMN, 
our result shows that when the numbers of states and traces are 74,244 and 13,056,  
respectively, our method improves on the computation times for 6,777 %. For ECS1, 
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our result shows that when the numbers of states and traces are 235,564 and 7,032, 
respectively, our method improves on the computation times for 116.75 %.  

Because our method can analyze all attack traces, we found many new attacks in the 
two protocols in our previous works [21-24]. For Micali’s contract signing protocol, we 
found one new single-session attack [21] and two new multi-session attacks [22]. Also, 
we found three new attacks [22] of Bao et. al.’s modified version of ECS1 [27]. For 
TMN protocol, we found two new multi-session attacks [24]. In fact, our new attacks in 
TMN protocol are quite surprisingly since TMN have been analyzed quite extensively 
[9, 11, 13, 18, 27-28]. Our preliminary results were reported in [21-24], but this paper 
extends our previous works by not only generalizing them into the two new techniques, 
which are the on-the-fly trace generation and the textual trace analysis, but also analyz-
ing the comparative performance between the two trace generation methods.  

In section 2, we provide the background on Micali’s ECS1 and TMN protocol. In 
section 3, we compare our new method with existing related works. In section 4, we 
present our new CPN methodology and apply it to the two case studies. 

2   Background  

We use the following notations throughout the paper. S→R : M means that user S 
sends message M to user R. SIGX(M) represents party X’s signature on a message M 
and we assume that M is always retrievable from SIGX(M). The encryption of a mes-
sage M with party X’s public key is denoted by ENCX(M). Also, H(C) stands for the 
hash of message C, and EK(M) means symmetric encryption on message M by key K. 
Note that a single session means the single execution of the protocol whereas multi-
sessions mean the multiple and concurrent executions of the protocol. 

2.1   TMN Authenticated Key Exchange Protocol (TMN) [18] 

TMN is a cryptographic key exchange protocol for mobile communication system. 
TMN allows user A to exchange a session key with user B by the help of server J. The 
user A is called an initiator, but the user B is called a responder. The detail of TMN is 
described as follows. 

1. A → J : (B, ENCJ(Kaj)), A 
2. J → B : A 
3. B → J : (A, ENCJ(Kab)), B 
4. J  → A : B, EKaj(Kab) 

Where Kab is an exchanged session key and Kaj is A’s secret which is used to transport 
the session key at the last step. Note that the session key is created by user B. In [18], 
it is suggested that the one-time pad and RSA algorithm are used as the underlying 
symmetric encryption and the public key encryption, respectively.  

2.2   Micali’s Contract Signing Protocol (ECS1) [17] 

Micali proposed an efficient optimistic fair exchange protocol for contract signing. 
The protocol aims to ensure that two exchanging parties get each other commitment 
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on an agreed contract or neither of them does. There are three kinds of parties in the 
protocol : Alice as an initiator of the protocol, Bob as an responder of the protocol 
and a third trusted party who resolves a dispute between Alice and Bob during the 
exchange. 

We denote Alice, Bob and a trusted party by A, B and TTP, respectively. It is as-
sumed that both Alice and Bob have already agreed on a plaintext contract C before 
the exchange. Alice is committed to contract C as an initiator if Bob has both 
SIGA(C,Z) and M where Z=ENCTTP(A,B,M) and M is random. On the other hand, 
Bob is committed to C as a responder if Alice has both SIGB(C,Z) and SIGB(Z). How-
ever, there is no need for Alice to verify Z to prove Bob’s commitment.  

The following is the detail of a slightly modified version [25] of the original proto-
col to strengthen the dispute resolution request at step (4). 

A1: 1) A→B: SIGA(C,Z) 
B1: 2)  B→A: SIGB(C,Z), SIGB(Z) 
A2: If Bob’s signatures in step 2 are both valid, then   
        3) A→B: M 
B2: If Bob receives valid M such that Z=ENCTTP(A,B,M)  
       then the exchange is completed  
       else Bob requests TTP to resolve a dispute by the following step 
              4)   B→TTP: SIGA(C,Z), SIGB(C,Z), SIGB(Z) 
To resolve the dispute, TTP performs the following.  
TTP1: If both Alice’s and Bob’s signatures in step 4 are valid and 

Z=ENCTTP(A,B,M) then 
        5a) TTP→A: SIGB(C,Z), SIGB(Z) 
        5b) TTP→B: M 

3   Related works 

3.1   Model Checking for Cryptographic Protocols 

Many model checking methods [6-16] have been developed and applied to analyze 
cryptographic protocols. All of them except for NRL [15] and Proverif [16] can ana-
lyze only one attack trace of a found attack. In fact, all of them are based on the off-
the-fly trace generation which means that an attack trace is computed after a state 
space is generated either partially or fully. The off-the-fly trace generation for all at-
tack traces involves the searching for all paths between two states which is extremely 
time-consuming. Indeed, the searching for all paths can be seen as a core part of algo-
rithms for solving the traveling salesman problem which is known to be NP-complete.  

Avispa [6,7] is a research project which develops four state-of-the-art model 
checking methods to verify cryptographic protocols. They provide high performance 
analysis of protocols and a large number of protocols have been analyzed. Surpris-
ingly, they found some new attacks in some protocols. In [8], Spin which is a widely 
used model checker tool is employed to analyze a cryptographic protocol. A known 
attack to a protocol can be detected. FDR which is a model checker for CSP has been 
applied to analyze many cryptographic protocols in [9,10]. It can detect many new 
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attacks successfully in many protocols. In [11,12], Murphi which is a general model 
checker has also been applied to cryptographic protocols, and it discovered new at-
tacks in some protocols. In [13-14], Petri nets-based model checking methods are 
employed to analyze cryptographic protocols, and they can detect known attacks only. 
All of the model checking methods discussed so far can analyze only one attack trace 
of a found attack.  

There are two model checking methods which analyze multiple attack traces of a 
found attack, namely NRL [15] and Proverif [16]. While NRL computes all attack 
traces of a found attack, Proverif explores on a restricted set of attack traces which 
often contains only one trace. In fact, NRL is quite inefficient partly due to the com-
putation of all paths in the off-the-fly approach.  

3.2   Analysis of TMN and ECS1 

In [25], Bao et al. analyzed ECS1 manually and found three message replay attacks in 
ECS1, and one attack in a simple modification of ECS1. They also proposed an im-
proved ECS1 which can prevent all found attacks. In [26], Zhang and Liu applied a 
manual model checking technique to analyze ECS1. They found one new single-
session attack in Micali’s ECS1 and two new multi-session attacks in Bao et. al.’s 
modified version of ECS1. In fact, their attacks are also independently discovered by 
our method, but we found more attacks. In particular, we found one new single-
session attack of Micali’s ECS1, two new multi-session attacks in Micali’s ECS1 and 
three new attacks of Bao’s modified version of ECS1 all of which cannot be detected 
by Zhang and Liu’s method. Since Bao et. al.’s and Zhang and Liu’s methods are 
done by hands, their analysis does not cover attacks thoroughly.  

TMN has been analyzed quite comprehensively. In [18], Simmon analyzed TMN 
manually and found a multi-session attack by using the homomorphic property of the 
underlying public key cryptographic algorithm. In [27], three formal method ap-
proaches, namely NRL, Interrogator and Inatest, for cryptographic protocols have 
been applied to TMN. Both NRL and Interrogator detect a single-session attack. 
However, Inatest can only reproduce Simmon’s attack. In [11], Murϕ can reproduce 
Simmon’s attack, and detect a new multiple session attack. In [9], CSP/FDR is used 
by Lowe and Roscoe to discover one new single session attack and one new multi-
session attack. In [13], Al-Azzoni et. al. applied CPN to detect a variant form of the 
attack found by Murϕ [11]. In [26], by using a manual model checking, Zhang and 
Liu found some variant forms of Lowe and Roscoe’s attacks [9] in both a single ses-
sion and multiple sessions. Even though there have been many analyses on TMN, we 
found two new attacks on it.  

4   Our Model 

4.1   Our New Methodology  

In general, our model checking methodology for the analysis of cryptographic proto-
cols consists of five steps which are (1) protocol and attacker representation, (2) state 
space and trace generation, (3) characterization and search for attack states, (4) attack 
trace extraction and (5) attack trace classification. However, our new method for 
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computing all attack traces of a found attack contains two novel techniques which are 
on-the-fly trace generation and textual trace analysis. While the on-the-fly trace gen-
eration is employed in steps 2 and 4, the textual trace analysis is used in step 5. We 
focus our discussion on the two techniques but also explain some relevant steps if 
necessary. We discuss the on-the-fly trace generation first.  

Assuming that a protocol and an attacker model are represented. The representation 
depends on a model checker approach. Then, a state space is generated from the rep-
resentation. During the state space generation, when a state is generated, an attack 
trace to the state is computed at the same time and the computed trace is stored at the 
state. This computation is the core of the on-the-fly trace generation. It is important to 
notice that an attack trace of a state is stored at the state itself. Conceptually, an attack 
trace for a state is constructed by simply extending an attack trace stored in the previ-
ous state. Thus, there is no need to always compute an attack trace from the initial 
state, and such computation is vey expensive. 

For simplicity, we assume that each state stores only one attack trace. Thus, our 
state space in general may contain more number of states than the state space in the 
off-the-fly trace generation. A state which can be reached by two different attack 
traces in the off-the-fly method becomes two different states in our method. To reduce 
the size of a computed state space in our method, we employ a decomposition tech-
nique. In particular, we define a configuration to compute a decomposed state space. 
In this paper, we consider the analysis of multi-sessions of protocol execution. A 
configuration consists of the information for the protocol execution in a multi-session 
setting, for example, the identities of initiator and responder, the role of attackers, 
secrets and nounces in each concurrent session, and a schedule of the execution of the 
multiple concurrent sessions. The schedule specifies that the decomposed state space 
is computed for one alternating execution of multiple concurrent sessions of protocol 
runs only, instead of all possible alternating executions. Exploring all possible alter-
nating executions within a state space is expensive and causes a huge state space. 
However, we can explore each attack scenario, eg. a specific alternating execution or 
a specific initiator and responder, one by one by computing a decomposed state space 
with a specific configuration. 

After the state space is obtained, attack states for each kind of attacks are searched 
in the state space. An attack is characterized by a vulnerability event which is an 
event potentially leading to a compromise of protocols. Vulnerability events are pro-
tocol-dependent. There can be many attack states which belong to the same vulner-
ability event and thus the same attack. When an attack state is found in the state 
space, an attack trace is extracted from the state immediately. By searching for all 
attack states of the same attack, all attack traces of the attack can be obtained without 
any path searching. In other words, the computation for all attack traces is reduced to 
the searching for attack states which can be done efficiently. This on-the-fly trace 
generation technique provides a big improvement in the computation time of all at-
tack traces when the number of attack traces and the number of states are large.  

The number of attack traces obtained can be quite large. For example, we found 
1,020 traces for an attack in the TMN protocol. So, we propose textual trace analysis 
technique to classify such large number of attack traces. Those attack traces are clas-
sified by using attack patterns. Attack patterns are minimal but necessary protocol 
traces for an attack. The development of an attack pattern is manual because an attack 
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pattern is protocol-dependent. In an attack pattern, some parts of the protocol mes-
sages are fixed due to the protocol specification, but others can be varied in some 
ways.  

While the development of an attack pattern is manual, the attack classification is 
automatic. Attack traces that contain the same attack pattern are classified into the 
same group of attack traces. As a result, a large amount of attack traces is reduced to a 
reasonable amount of attack patterns which are easier to analyze. Moreover, the attack 
classification process is iterative in that when a new attack pattern is found, it is used 
together with the existing patterns to filter the remaining attack traces. By using our 
two new techniques, protocol designers obtain a deep and thorough analysis of all 
possible attacks to cryptographic protocols. 

Our two new techniques are independent to model checking tools. We implement 
them in a model checker tool called CPNTools [19,20]. Originally, CPNTools pro-
vides the off-the-fly trace generation only and the search mechanism for only one 
attack trace. We employ the simplest approach to implement the on-the-fly trace gen-
eration in CPNTools by using a protocol representation which records incrementally a 
protocol trace by users and attackers into each state. The textual trace analysis for 
attack classification is realized in CPNTools by writing an ML-like program to extract 
attack traces from attack states and process them.   

4.2   Our Analysis for TMN 

Our method for TMN. In this section, we discuss the assumptions of our protocol 
analysis. We also describe vulnerability events of TMN, and provide a definition of a 
configuration of the protocol execution. Finally, we discuss attack patterns.  
 
Definition 1: The assumptions of the protocol execution 
The following are the assumptions of the execution of the TMN protocol.  

1. There are three users who are an initiator, a responder and a server. And all the 
users follow the protocol specification strictly and honestly. 

2. There is one attacker whose abilities are defined below. 
3. The underlying encryption is perfect in that nothing can be inferred from a ci-

phertext without the knowledge of the correct key. This is known as Dolev and 
Yao’s assumption [29]. Also, we consider a general public key encryption 
scheme, instead of RSA algorithm.  

4. We consider the execution of two concurrent sessions of the protocol where such 
execution can be performed in an alternating and non-sequential style.   

5. Initiator and responder involve in one session only, but the server may involve in 
more than one session.  

6. In a session, there must be at least one authentic user. 
 

In assumption 5), the sessions that initiator and responder involve may not be the 
same. In 6), it means that there is at least one victim user in a session.  

 
Definition 2: The attacker abilities 
The attacker in our model is capable of the following: 
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1. The attacker can eavesdrop, modify and drop messages during the transmission 
between users. 

2. The attacker can send any message to a user. 
3. The attacker can either initiate a new session with users or take part in an existing 

session with users. 
4. The attacker can impersonate any user.  
5. The attacker can perform any cryptographic computation, eg. encryption and 

decryption, by using known keys, known messages and known ciphertexts with a 
reasonable power. 

6. The attacker does not attack himself. 
7. There is at most one attacker who performs the attack ability in 1) on a protocol 

step in a session. 
 

The assumptions 1) and 4) mean that the attacker can act as an external observer or an 
impersonator, respectively. In 7), any message that is sent from an attacker will not be 
modified further by any other attacker.   

Attack states are characterized by vulnerability events. For the TMN protocol, 
there are two basic vulnerability events which are secret disclosure by an attacker and 
session key commitment by initiator and responder. Based on the two basic events, 
the following combined and interesting vulnerability events can be created.  

 
Definition 3: The combined and interesting vulnerability events. 
There are three combined vulnerability events. 
 
1. The attacker learns Kab and Kaj, and both A and B commit on Kab. 

[Kab,Kaj][Kab][Kab] 
2. The attacker learns Kab and Kaj, and A is fooled to commit on Ki but B commits 

on Kab.                    [Kab,Kaj][Ki][Kab] 
3. The attacker learns Kab and Kaj, and A is fooled to commit on Kaj but B commits 

on Kab.                [Kab,Kaj][Kaj][Kab] 
 

We use the notation [KB1][KB2][KB3] to describe each combined vulnerability event 
where KB1 stands for  keys that are known by the attacker, and KB2 and KB3 stands 
for keys that are committed by users A and B, respectively, at the completion of the 
protocol. 

In the combined event 1, the attacker learns all later communication between A and 
B, because the attacker obtains the session key between A and B. Lowe and Roscoe’s 
multi-session attack [9] belongs to this event. The combined events 2 and 3 are our 
new attacks. The result of the events 2 and 3 can be seen as a kind of the man-in-the-
middle attacks where the attacker situates between A and B. In event 2, the attacker 
can impersonate B to A by using key Ki, while the attacker can impersonate A to B by 
using key Kab. Then, the attacker learns the later communication between A and B. 
The event 3 is similar to the event 2, but B impersonation to A is done by using key 
Kaj.  

In the following, we provide the definition of a configuration for computing a de-
composed state space for TMN protocol.   
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Definition 4: A configuration of the state space computation for TMN 
A configuration of a decomposed state space computation consists of ((S1, S2,…,Sn), 
Sch, Tr) and Si = (s,I,R,T,K,N) for 1≤ i ≤ n where n is the number of sessions, and 

1. Si is a session information for the i-th session which consists of  
1.1. s is a session identity 
1.2. I, R and T are identities for an initiator, a responder and a server, respec-

tively. 
1.3. K is keys for each party (including attacker) which consists of a pair of pub-

lic and private keys, and a shared key with a specific party 
1.4. N is nounces used by each party 

2. Sch is a multi-session schedule which contains a specific alternating execution of 
multiple concurrent sessions of protocol runs  

3. Tr is a list of attack traces and their vulnerability events  
 

In the configuration, Si and Sch are input parameters for the state space computation 
while Tr is the output from the state space computation. In this paper, we consider the 
multi-session schedule for the man-in-the-middle attack [30] where the attacker par-
ticipates in two sessions and replays messages between them synchronously.  

We consider the following four configurations of two concurrent sessions which 
are all possible configurations regarding to our assumptions. Note that in the configu-
rations, K, N, Sch and Tr are omitted for simplicity.   

1. (1,A,B,J) & (2,In,In,J) 
2. (1,A,In,J) & (2,In,B,J) 
3. (1,In,B,J) & (2,A,In,J) 
4. (1,In,In,J) & (2,A,B,J) 

There are two roles of our attacker which are an external observer and an impersona-
tor. In configuration (1,A,B,J), the attacker behaves explicitly as an external observer 
on the communication amongst A, B and J, In (1,A,In,J) and (1,In,B,J), the attacker 
explicitly impersonates B and A, respectively. But in any configuration, the attacker 
can impersonate implicitly any users according to our attacker model. 

In TMN, an attack pattern for a session consists of the four protocol steps where 
ciphertexts in steps 1, 3 and 4 are of appropriate types of encryption and they are 
obtained from any plaintexts. But identities of initiator in step 2 and responder in step 
4 are fixed to A and B, respectively. Also, identities of initiator and responder be-
tween steps 1 and 3 must be consistent, but can be anything. In fact, the important 
parts of the attack pattern for TMN are ciphertexts in steps 1, 3 and 4 since they con-
tains session and encryption keys that attackers want to disclose and to forge to com-
promise the system, respectively. Thus, we have an attack pattern for each possible 
plaintext of the ciphertexts in the three steps. The following shows one attack pattern 
of our new attack which corresponds to the combined event 2.  

1)    A → In(J) : (B, {Kaj}PK-J), A 
       In(J) → J : (X2, {Ki}PK-J), X1 
1’)   In(A) → J : (X4, {Ki}PK-J), X3 



210 Y. Permpoontanalarp 

2’)   J → In(B) : X3 
2)    J → In(B) : X1 
       In(B) → B : A 
3)    B → J : (X1, {Kab}PK-J), X2 
3’)   In(B) → J : (X3, {Kaj}PK-J), X4 
4’)   J  → In(A) : X4, EKi(Kaj) 
4)    J  → In(A) : X2, EKi(Kab) 
       In(A) → A  : B, EKaj(Ki) 

where Ki is attacker’s secret keys. 
While 1) – 4) describe protocol steps in the 1st session, 1’) – 4’) indicate protocol 

steps in the 2nd session. X1, X2, X3 and X4 stand for arbitrary identities that the at-
tacker creates. In step 1), the message that A sends to J is modified by the attacker. 
The original message is indicated by A → In(J), but the modified message by the 
attacker is indicated by In(J) → J. Also, the messages at steps 2) and 4) are modified 
by the attacker. 

We found 10 attack patterns for each of the events 2 and 3 which are our new at-
tacks. The details of the attack patterns can be found in [24]. 

Performance. In the following, we compare the results between our on-the-fly and 
the off-the-fly trace generation methods both of which are implemented in CPNTools 
model checker. The experiment is done by using a PC with Intel Core2 Duo 2.33 Ghz 
and 2 GB of RAM. 

In table 1, we show the comparison of the sizes of the state spaces between the two 
methods for the four configurations. In the configurations, session and server identi-
ties are ignored. In the worst case the number of states and arcs in the on-the-fly 
method are increased for 40.5 % and 37.9 %, respectively. However, in the best case 
the number of states and arcs are increased for only 9.8 % and 6.2%, respectively. 

In tables 2 and 3, we compare the computation times for state spaces (st) and traces 
(tr) in the two methods for two configurations. Tables 2 and 3 are for the cases of the 
large number and the small number of states, respectively. The event 4 represented by 
[Kaj][Kaj][Kab] means that the attacker learns A’s secret and fools A to commit to A’s 
secret as a session key. The events R1 and R2 are the remaining vulnerability events 
where the attacker learns Kab and Kaj, respectively. Note that in the events 2 and 3 in 
table 3, information is omitted since no attack trace is found for the events. 

It is clear that our on-the-fly method improves the total computation times tremen-
dously. When the numbers of states and traces are large, for example in the event R2 
of table 2, it takes about 16 minutes (1,002 sec.) in our method, but about 19 hours 
(68,913 sec.) in the off-the-fly method. When the numbers of states and traces are 
small, for example in the event 4 of table 3, it takes about 2 minutes in our method, 
but about 11 minutes (5,376 sec.) in the off-the-fly method. 

Indeed, our on-the-fly method requires more times for state space computation, but 
the off-the-fly method requires more times for trace generation. However, the time for 
trace generation in the off-the-fly exceeds greatly the time for state space computation 
in the on-the-fly method. It should be noticed that in both tables, when the number of 
traces is increased, the time for trace generation in the off-the-fly method grows 
greatly, but the time for trace generation in our method is almost constant. 
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Table 1. The comparison of the sizes of state spaces  
 
 
 
 
 
 
 

 
Table 2. The comparison of the computation times for configuration (1,A,B,J) & (2,In,In,J) 

 
On-the-fly 
Time (sec) 

Off-the-fly 
Time (sec) 

 
Events 

Attack 
Traces 

st tr total st tr total 

Improvement 
% 

1. Event 2  360 976 0 976 369 1839 2208  126 
2. Event 3  360 976 0 976 369 1774 2143  119.56 
3. Event 4  1,020 976 0 976 369 5239 5608  474 
4. Event R1 8,226 976 10 986 369 40028 40397 4,039 
5. Event R2 13,056 976 26 1002 369 68544 68913 6,777 

 
Table 3. The comparison of the computation times for configuration (1,In,In,J) & (2,A,B,J) 

 
On-the-fly 
Time (sec) 

Off-the-fly 
Time(sec) 

Events Attack 
Traces 

st tr Total st  tr total 

Improvement 
% 

1. Event 2 0 - - - - - - - 
2. Event 3  0 - - - - - - - 
3. Event 4  360 120 0 120 80 568 688 473.33 
4. Event R1  684 120 0 120 80 1556 1,636 1,263.33 
5. Event R2  2,388 120 1 121 80 5296 5,376 4,380 

 

4.3   Our Analysis for ECS1 

Our method for ECS1. Our method for the analysis of ECS1 is similar to that for 
TMN discussed previously. So, we discuss only the main differences between them 
here. 

The assumptions of the protocol execution for ECS1 are similar to those assump-
tions in definition 1 except for assumption 5. For ECS1, the same initiator and  
responder may participate in more than one session. We assume two kinds of attackers: 
I and Ar. The attacker I is exactly the same as the attacker In discussed in definition 2. 
However, Ar is different and is a malicious user who participates in a session and con-
spires with attacker I by sharing some information. More specifically, Ar can be either 
an initiator or a responder, but not an external observer. Note that one attack found by 
Bao et. al. [24] involves these two kinds of attackers. 

There is one vulnerability event in ECS1 protocol which is an unfair exchange 
state. An unfair state means that one party, who is either initiator or responder, gets 

On-the-fly Off-the-fly Increment (%)  
Configurations nodes arcs nodes arcs nodes arcs 
1. (A,B)(In,In) 104,346 109,476 74,244 79,344 40.5 37.9 
2. (A,In)(In,B) 73,806 77,568 55,656 59,730 32.6 29.8 
3. (In,B)(A,In) 51,212 52,639 46,637 49,543 9.8 6.2 
4. (In,In)(A,B) 34,160 35,095 30,974 33,061 10.2 6.15 
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another party commitment, but the latter does not get the former commitment. There 
are two unfair states. 

− The initiator has the responder’s commitment, but the responder does not have 
the initiator’s commitment. 

− The responder has the initiator’s commitment, but the initiator does not have the 
responder’s commitment.                                                             

We found one new single-session attack and two new multi-session attacks of Mi-
cali’s ECS1, and three new attacks of Bao’s modified version of ECS1. The details 
can be found in [22].  

Performance. In the following, we compare the results between the two methods 
implemented in CPNTools. The experiment is done by using a notebook computer 
with Intel Core2 Duo 2 Ghz and 3 GB of RAM. 

 
Table 4. The comparison of the sizes of state spaces 

 

 
In table 4, we show the comparison of the sizes of the state spaces between the on-

the-fly and the off-the-fly trace generations for some configurations. Each configura-
tion consists of the information of two concurrent sessions, and each session is  
represented by (i1,i2,c,m) where i1 and i2 are identities for initiator and responder, c is 
a contract and m is the random. The table shows that in most cases the number of 
states and arcs in the two methods are identical. However, in the worst case the num-
ber of states and arcs are increased for only 25.5 % and 24.9%, respectively. 

In table 5, we compare the computation times for state spaces (St) and traces (Tr) 
in the two methods for the same configurations as table 4. The attack traces in the 
table are for the two unfair states in the vulnerability event.  

It is clear that our on-the-fly method improves the total computation times greatly 
when the number of states and traces are large. In particular, for the best case the 
improvement is 116.75%. However, when the number of states and traces are small in 
some cases, for example in the configuration 9 which contains 34,930 nodes, the on-
the-fly method performs better. Note that when the number of attack traces is in-
creased, the time for trace generation in the off-the-fly method grows greatly, but the 
time in our method grows very slowly. 

On-the-fly Off-the-fly Increment % Configuration 
nodes Arcs nodes arcs node arc 

1.(I,Ar,c1,mi1)(I,B,c1,mi2) 235564 235563 235564 235563 0 0 
2.(I,B,c1,mi1)(I,Ar,c1,mi1) 118774 119049 118774 119049 0 0 
3.(I,B,c1,mi1)(Ar,I,c1,mi2) 92498 92497 92498 92497 0 0 
4.(Ar,I,c1,mi1)(I,B,c1,mi2) 86470 86469 85582 85705 1.03 0.89 
5.(I,B,c1,mi1)(I,B,c2,mi2) 70082 70081 68509 68629 2.29 2.11 
6.(I,B,c1,mi1) (Ar,I,c1,mi1) 68694 68693 68110 68173 0.85 0.76 
7.(I,B,c1,mi1) (Ar,I,c2,mi1) 68694 68693 68110 68173 0.85 0.76 
8.(I,B,c1,mi1)(I,B,c1,mi1) 48728 49355 38828 39488 25.5 24.9 
9.(A,B,c1,ma1)(I,Ar,c2,mi1) 34930 34929 34930 34929 0 0 
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Table 5. The comparison of the computation times 
 

On-the-fly 
Time (sec) 

Off-the-fly 
Time(sec) 

 
Configuration 

attack 
traces 

St Tr Total St Tr Total 

Improve- 
ment % 

1.(I,Ar)(I,B) 7,032 9863 307 10,170 7090 14954 22,044 116.75 
2.(I,B)(I,Ar) 2,664 2871 139 3,010 1865 3096 4,961 64.91 
3.(I,B)(Ar,I) 3648 1721 114 1,835 994 1563 2,557 39.34 
4.(Ar,I)(I,B) 4104 1548 125 1,673 863 1565 2,428 45.12 
5.(I,B)(I,B) 1272 1091 133 1,224 694 1207 1,901 55.31 
6.(I,B) (Ar,I) 1,876 1077 88 1,165 693 663 1,356 16.39 
7.(I,B) (Ar,I) 1,876 1077 182 1,259 642 714 1,356 7.7 
8.(I,B)(I,B) 1,116 610 42 652 251 414 665 1.99 
9.(A,B)(I,Ar) 1,210 740 41 781 186 256 422 -76.69 

 
Similar to the result in the analysis of TMN, our on-the-fly method requires more 

times for state space computation, but the off-the-fly method requires more times for 
trace generation. But here there is a case which is a configuration 9 where the time for 
trace generation in the off-the-fly does not exceed the time for state space computation 
in our method.  

5   Discussion  

According to the results obtained, we argue that our on-the-fly method is complemen-
tary to the off-the-fly method, and should be used to deal with the case for a large state 
space and a large number of attacks traces. Similarly, our textual trace analysis is also 
complementary to visualization technique in that when the number of traces is large, 
it is more suitable to employ the textual trace analysis. However, when the number of 
traces is very small, visualization technique can provide some intuitive illustration of 
the traces.  

It is true that our on-the-fly trace generation method requires more amount of mem-
ory than the off-the-fly method. In particular, each state in our method is augmented 
with an attack trace. Moreover, a state which can be reached by two different attack 
traces in the off-the-fly method becomes two different states in our method. However, 
the off-the-fly method also requires a large amount of memory to store and process 
attack traces during the path searching for all attack traces. But our method avoids the 
complex path-searching computation and speeds up the whole computation time. 

We hope that our very simple method would be useful for other applications of 
model checking for the analysis of all errors in any system. As a future work, we aim 
to optimize our method for the memory requirement, and to apply our method to ana-
lyze for other cryptographic protocols.  

6   Conclusion  

In this paper, we propose a very simple but practical model checking methodology for 
the analysis of cryptographic protocols. Our methodology offers an efficient analysis 
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of all attack traces for each found attack, and is independent to model checking tools. 
It contains two novel techniques which are on-the-fly trace generation and textual 
trace analysis. We apply our method to two case studies. The result shows that when 
the numbers of states and traces are large, our method is more efficient. In some case, 
our method improves the computation time over the off-the-fly method for 6,777%. In 
addition, we found many new attacks in the two case studies.  
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Abstract. The complexity of distributed algorithms, such as state machine repli-
cation, motivates the use of formal methods to assist correctness verification. The
design of the formal model of an algorithm directly affects the efficiency of the
analysis. Therefore, it is desirable that this model does not add “unnecessary”
complexity to the analysis. In this paper, we consider a general message-passing
(MP) model of distributed algorithms and compare different ways of modeling
the message traffic. We prove that the different MP models are equivalent with
respect to the common properties of distributed algorithms. Therefore, one can
select the model which is best suited for the applied verification technique.

We consider MP models which differ regarding whether (1) the event of mes-
sage delivery can be interleaved with other events and (2) a computation event must
consume all messages that have been delivered after the last computation event
of the same process. For generalized MP distributed protocols and especially fo-
cusing on fault-tolerance, we show that our proposed model (without interleaved
delivery events and with relaxed semantics of computation events) is significantly
more efficient for explicit state model checking. For example, the model size of
the Paxos algorithm is 1/13th that of existing equivalent MP models.

1 Introduction

The use of distributed, message-passing (MP) protocols is an increasingly advocated
approach for performance and availability objectives across the spectrum of service and
safety critical systems, e.g., Google File System [5] or Microsoft’s state machine repli-
cation [14]. Due to the complexity of MP protocols, automated tools are desired for the
debugging and verification of these protocols. Model checking (MC) [8] is suggested as
a good formal analysis candidate given its ability to prove complex properties and espe-
cially to find bugs. However, MC is often restricted by state space explosion, i.e., when
detailed models require a prohibitively large number of states to explore. Therefore, we
expect from the formal model that it does not introduce unnecessary complexity and, at
the same time, provides a faithful representation of the system.

We start from an established model of MP algorithms [1], written as MP, where two
kinds of events are defined: computation events that receive/send messages and update
the local state of the executing process, and delivery events that move messages from
output to input buffers representing message channels. Typically, an MP algorithm is
supposed to implement an abstraction, e.g., of reliable communication, an accessible
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and correct server or register, and the specification of this abstraction is independent
of the underlying MP system. In other words, delivery events are “invisible” with re-
spect to the desired properties of common MP algorithms. In this paper, we propose
alternative semantics of delivery events and show that they result in equivalent models
if delivery events are invisible. One of the proposed semantics turns out to be particu-
larly efficient for MC as it yields smaller models than other semantics, as shown in our
experiments.

The original model MP allows events to be interleaved arbitrarily. For example, con-
sider the following run which consists of two computation and one delivery events:
“process pi sends message mi to pj”; “pk sends mk to pj”; “mi is delivered”. Note that
the delivery event corresponding to mi is interleaved with the sending of mk. MP de-
fines that computation events must empty all local input buffers (restricted computation
semantic). For example, any computation event at process pj extending the previous run
must consume mi. In an attempt to find an abstraction which faithfully and effectively
models MP algorithms, we deal with the following two questions.

First, is MP a general model, i.e., does the restricted computation semantic limits
to a class of systems? In fact, in our first proposed model, termed as M-MP, we relax
the computation semantic of MP and allow computation events to empty a subset of
all local input buffers. As a result, a computation event at process pj extending the run
above can also be an internal event and needs not necessarily process mi. In this way,
M-MP adds a new source of non-determinism compared to MP. However, we prove
that MP and M-MP are equivalent. Therefore, MP is indeed a general model.

Second, can we obtain a model which is equivalent with MP but yields smaller state
spaces? It is intuitive that the interleaving semantic of delivery events results in a large
number of states. Therefore, our next proposed model, called M, eliminates explicit
delivery events such that messages that are sent by some computation event comp are
placed in the target input buffers in an atomic step together with comp. Therefore, our
sample run is not a valid run in M. A similar, and valid, run would look like this: “pi

sends mi to pj and mi is delivered”; “pk sends mk to pj and mk is delivered”. Inter-
estingly, this model together with the relaxed computation semantic result in a model
equivalent with MP (and thus with M-MP too). Intuitively, this is because the non-
determinism of when delivery events are scheduled is replaced by the non-determinism
of deciding the set of those locally delivered messages that are processed by a compu-
tation event.

The basis of our equivalence is stuttering [12], a property usually used in an opti-
mization of temporal logic MC called partial-order reduction (POR) [8]. Intuitively, two
runs are stuttering equivalent if they can be partitioned into blocks where the ith block
consists of subsequent system states exhibiting the same assertions in both runs. For
example, if a, b, c are assertions labeling states of the system, then the runs abc... and
abbc... are stuttering equivalent. Intuitively, we show that each block, e.g., the block of
b’s, corresponds to one visible computation event and the length of the block is deter-
mined by (invisible) delivery events executed in the MP model in use.

Related Work. In POR, certain runs of the system are not explored such that POR
guarantees that each of these runs is stuttering equivalent with at least one the explored
ones. It is in theory possible that given a model, say M-MP, a stuttering equivalent
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model, such as MP or M, is automatically generated by POR. However, independent of
the technique used, POR always has some run-time overhead.

A recent work closely related to ours is [6] where, similarly to the reduction from
MP to M, it is shown that a fine-grained model of distributed MP algorithms can be
reduced to a stuttering equivalent coarse-grained model. The main difference between
[6] and this paper lies in the system model. In [6], a special class of MP algorithms
is characterized by (1) communication-closed rounds and (2) crash faults based on the
Heard-Of model [7]. The reduction theorem shows that it suffices to model a run of the
system as sequence of synchronized rounds where in each round every correct process
sends and receives messages and updates its local state. Our system model is a general
one and it does not assume that a run is divided into rounds such that a message sent in
round i must be delivered before the end of round i otherwise the message is considered
to be lost (communication-closedness), neither do we restrict to crash faults.

In our models, different events can be unrestrictedly interleaved, which corresponds
to asynchronous systems and also it allows “unfair” runs where certain processes can
make no steps. In order to model synchronous rounds or attain fairness [8], the restric-
tion of our general model is necessary.

The presented general model also allows the modeling of process and communica-
tion faults [3]. For example, a Byzantine process is a regular process sending arbitrary
messages or lossy channels can be modeled through auxiliary computation events delet-
ing messages from channels. We remark that the proposed formal model cannot directly
mimic channel overflows because channels are defined as (infinite) sets of messages.
However, channel overflow can be modeled through lossy channels.

2 The System Model

2.1 Model of Computation in Message-Passing Systems

The system consists of n processes. Processes are interconnected via directed channels
from a set Chan following an arbitrary topology. If there is a channel from process i
to j, process i maintains an output buffer called outbuf j which contains the messages
in transit, i.e., messages that are sent by process i to j but not yet delivered by the
channel. Similarly, process j maintains an input buffer called inbuf i containing the
messages sent by i to j and delivered by the channel. Formally, a buffer is a set of
messages. By assumption, buffers are infinite and initially empty. In addition, every
process i maintains a local state, initially taken from Init i. An (initial) configuration of
the system is a tuple c = (p1, ..., pn) where pi stores process i’s (initial) local state and
its input and output buffers. We write proc(c) = (s1, ..., sn) to mean the tuple of local
states of each process.

Transitions between configurations are modeled via computation events. The set of
all computation events is denoted by Comp. Every computation event comp is associ-
ated with a process i and a finite set M of messages. The effect of comp on the current
configuration is deterministic and is defined as follows: every messages M is removed
from i’s input buffers, i’s local state si is updated, and at most one message is added
to every output buffer of i.1 We say that comp is enabled in a configuration c if M

1 Note that computation events with M = ∅ can be used to model internal events.
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is a subset of the union of all input buffers of process i and the update of process i’s
local state is defined by comp. Non-determinism can be modeled through concurrently
enabled computation events.

Based on the previous definitions, a program is a tuple (n,Chan ,Comp). As we
will now see, we have multiple choices to model the delivery of messages.

2.2 Message-Passing Models

The MP Model [1]. This is an existing model where special events, called delivery
events, are used to move a message from an output to the corresponding input buffer.
Formally, a delivery event of a message sent by process i to j is denoted as del(i, j, m)
which means that message m is removed from outbuf j of process i and placed into
inbuf i of process j. Event del(i, j, m) is enabled if m is in outbuf j of process i.

In addition, the MP model defines that every computation event comp associated
with some process i must empty all input buffers of i (restricted computation semantic).
This means that if comp is executed in a configuration c and M is the union of all input
buffers of process i in c, then M is the set of messages that is associated with comp.

The M-MP Model. In an attempt to find out whether the restricted computation seman-
tic means a real restriction, we define a new model called M-MP which is similar to
MP but, given the union M of all input buffers of process i in configuration c, a compu-
tation event comp associated with i and message set M ′ can be executed in c if comp
is enabled in c and M ′ ⊆M . We will see that M-MP is equivalent with MP, thus, this
relaxation is unnecessary.

The M Model. Intuitively, delivery events generate lots of intermediate states where
the local states of the processes are unchanged. Therefore, in the next model, called M,
we ban delivery events and place messages directly to input buffers: messages that are
sent by some computation event comp are moved to the corresponding input buffers
in an atomic step together with comp. Formally, we define a computation event comp
associated with process i as in M-MP with the exception that every message m placed
by comp into output buffer outputj of i is placed into input buffer inputi of process
j. In M, we use the same relaxed semantic of computation events as in M-MP. In fact,
this is key to prove that the new model M is equivalent with MP and M-MP.

2.3 Semantics: State Transition System

Given a program P and a message-passing model MP, M-MP, or M, we define a state
transition system (STS) MPP , M -MPP , or MP in the usual way. An STS is a tuple
(S, T, S0, L) where S is the set of states, T is a set of events such that α : S → S
for each α ∈ T , S0 ⊆ S is the set of initial states, and L : S → 2AP is the labeling
function which labels each state with a set of atomic propositions, a subset of AP .

In all STSs, S is the set of all configurations and S0 is the set of initial configurations.
In MPP and M -MPP , T is the set of all computation and delivery events. In MP , T
is the set of all computation events and it contains no delivery events. For every α ∈ T
and c, c′ ∈ S, α(c) = c′ if α is enabled in c and if c′ is the configuration which results
in executing α in c as defined by MP, M-MP, M, respectively.
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3 Equivalent Message-Passing Models with Invisible Delivery

3.1 The Notion of Equivalence and the Structure of Our Proof

Although the models MP, M-MP and M differ from each other in how they model
the delivery of messages, we prove that given a program P they yield STSs that pre-
serve exactly the same set of properties written in temporal logic. In order to show the
equivalence, we assume that a property can only make assertions about process states
by restricting that (A1) for every delivery event α and configuration c ∈ S such that α
is enabled in c, L(c) = L(α(c)).

Property Language. We adopt temporal logic [8] as the property description language.
Temporal operators (such as “future”, “until”, etc.) are interpreted over runs. Formally,
a run σ is a sequence of configuration c0

α0−→ c1
α1−→ c2... where c0 is an initial configu-

ration and ci+1 = αi(ci) with αi ∈ T . In this case, we call ci a reachable configuration.
We ban the “next” operator from our property language. Intuitively, this is because

the length of a run to reach a configuration is different depending on the MP model.
For example, the delivery of multiple messages is done atomically in M, whereas it
corresponds to a sequence of delivery events in MP. It is known that the use of the
“next” operator can be avoided in the specification of most concurrent systems [12].
We assume that our temporal logic is linear-time (LTL). Therefore, conditions about
different branches along a run cannot be specified (in contrast to CTL). This is not a
limitation because the common properties of distributed protocols specify that every
(fair) run must satisfy the property. The logic we have just described is the well-known
next-free LTL (or LTL-X) [8].

Property Preservation. The key to our equivalence results is that LTL-X cannot dis-
tinguish between stuttering equivalent runs [12]: given an LTL-X formula f and two
stuttering equivalent runs σ and σ′, f holds along σ if and only if it holds along σ′ [8].

Formally, two runs σ = c0
α0−→ c1... and σ′ = c′0

β0−→ c′1... are stuttering equivalent,
σ ≈st σ′ in short, if there are two infinite sequences of integers 0 = i0 < i1 < ... and
0 = j0 < j1 < ... such that for every k ≥ 0, L(cik

) = L(cik+1) = ... = L(cik+1−1) =
L(c′jk

) = L(c′jk+1) = ... = L(c′jk+1−1).

Proof Structure. In order to prove stuttering equivalence between two STSs A and B
we have to show for every run in A a stuttering equivalent run in B and vice versa. In
case of three STSs, corresponding to a program P and three MP models, this means at
most six proofs. In order to minimize the number of proofs we utilize that every run
according to the MP model is also a valid run according to M-MP. Therefore, if we
prove that for every run according to M there is a stuttering equivalent run according to
MP (Figure 1(a)) and for every run according to M-MP there is a stuttering equivalent
run according to M (Figure 1(b)), then we know that the model M is equivalent with
MP and M-MP. In addition, the transitivity of stuttering equivalence implies that the
models MP and M-MP are also equivalent. In summary, our equivalence results imply
the following property preservation.

Corollary 1. Given a program P and an LTL-X formula f such that A1 holds, let
MPP , M -MPP and MP be the STS corresponding to P under the message-passing
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Fig. 1. Equivalence of different MP models given program P and assumption A1. Solid line direc-
tions are proven by (a) Theorem 1 and (b) Theorem 2 while dashed line arrows are implications
thereof. The equivalence is completed by the transitivity of stuttering as stated in Theorem 3.

model MP, M-MP and M, respectively. Then, f holds in MPP iff it holds in M -MPP

and iff it holds in MP .

In the subsequent Subsection, we precisely state and explain the main ideas of the Theo-
rems that imply Corollary 1. The proofs of these Theorems can be found in our technical
report [4].

3.2 Stuttering Equivalent Paths in MP, M-MP and M

As explained above, we have to find for each run σM in MP a run σMP in MPP such
that σMP is stuttering equivalent with σM . Similarly, for every run σM-MP in M -MPP

we need to show a stuttering equivalent run σM in MP .
First, consider σM = c0

α0−→ c1
α1−→ c2.... Since computation events in σM may

leave messages in the input buffers of the associated process, we construct σMP such
that it performs the same sequence of computation events as σM but delivers messages
“on demand”. This means that, given two subsequent computation events αi and αi+1
(i ≥ 0), αi and αi+1 occur in σMP in the same order as in σM and αi+1 is directly
preceded by a sequence of exactly those delivery events that are consumed by αi+1. In
this way, the restricted computation semantic can be respected. We have to prove that
this construction of σMP is always possible and that, as delivery events are invisible,
σM ≈st σMP holds. Formally, we have the following result.

Theorem 1. Given a program P and a run σM = c0
α0−→ c1... in MP , a run σMP =

c′0
β0−→ c′1... in MPP can be constructed as follows. Initially, c′0 = c0. Furthermore, for

every i = 0, 1, ... and αi, execute (in arbitrary order) a delivery event βj for each
message that is consumed by αi in σM , and then execute αi in σMP . In addition,
σM ≈st σMP .

Second, consider σM-MP = c0
α0−→ c1

α1−→ c2... where αi is a delivery or a computa-
tion event. Intuitively, σM is the same as σM-MP without delivery events. This means
that although in σM all messages are delivered atomically it is possible, according to
M’s semantics, to empty only a subset of messages delivered at each process. Similarly
to the previous case, σM-MP and σM are stuttering equivalent because delivery events
are invisible and the sequence of computation events is identical in the two runs.



222 P. Bokor, M. Serafini, and N. Suri

Theorem 2. Given a program P and a run σM-MP = c0
α0−→ c1... in M -MPP , a run

σM = c′0
β0−→ c′1... in MP can be constructed as follows. Initially, c′0 = c0. Further-

more, β1, β2, ... is the sequence of all computation events of σM-MP in the order as
they appear in σM-MP . In addition, σM-MP ≈st σM .

Theorems 1 and 2 directly imply the stuttering equivalence of M -MPP and MPP if
we can show the transitivity of stuttering equivalence. The proof is based on the simple
observation that there might be multiple partitioning, i.e., integer sequences i0, i1, ...
and j0, j1, ..., of the same pair of stuttering equivalent runs. Then, the transitivity prop-
erty can be easily shown based on the partitioning where adjacent segments never have
the same labels. Formally, we have the following result.

Theorem 3. Given an STS and three runs σ, σ′, σ′′, σ ≈st σ′ and σ′ ≈st σ′′ imply that
σ ≈st σ′′ also holds.

4 Evaluation

Setup. We compared the efficiency of MC with different MP models. We used the
Murϕ model checker [9] which supports symmetry reduction (SR) [8,13], a powerful
optimization known to be very efficient for fault-tolerant (FT) distributed protocols [3].
We model checked some basic properties of the Paxos algorithm [10], a highly concur-
rent crash-tolerant consensus algorithm. The MC results of another FT algorithm, the
Byzantine Generals [11], can be found in our technical report [4].

Paxos solves consensus, where many processes can propose a local value and only
one of these values is decided. Paxos uses three symmetric roles, m leaders, n acceptors,
and some learners, and assumes that at most a minority of all acceptors is crash faulty.
Leaders send a proposal, composed of the current local value and a proposal number,
to all acceptors. An acceptor accepts a proposal only if it has not yet received any other
proposal with a higher proposal number. A proposal is termed as chosen if a majority of
acceptors accepts it. A chosen proposal can be learnt by the learners by collecting the
accepted proposals from the acceptors. Consensus requires that no two proposals with
different values are ever chosen (safety) and that a proposal is learnt (liveness).

Results. The results of our MC experiments are shown in Table 1. These include the
verification of the safety property of Paxos as well as false properties and fault-injected
protocols where, for each case, a counterexample was found. Our experiments cover
those (non-trivial) settings that were feasible to verify with Murϕ.2 For each case we
ran six experiments with the three different MP models and without and with SR.

We observe that using M yields significantly fewer explored states and transitions and
less time than M-MP and MP. For example, in the verification of Paxos with n = 3,
the number of states and transitions is approximately 1/13 of those in the STS with
M-MP. The same factor for the verification time is 1/40. In this example, the size of
the M-model without SR is already smaller than other models that exploit symmetries.
In addition, the verification of Paxos with n = 4 is only feasible with the M-model.

2 All experiments ran on DETERlab machines [2] with Xeon processors and 4 GB memory.
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Table 1. MC results of Paxos with Murϕ by using different MP models (M-MP, MP and M) and
symmetry reduction

Protocol Param. Property Model States Transitions Time Result

M-MP — Out of mem.
M-MP symm. 1,754,621 12,463,946 15 m Verified

safety
MP — Out of mem.

MP symm. 1,754,621 11,647,308 13 m Verified
M 1,577,161 11,411,586 3 m Verified

M symm. 135,271 980,290 24 s VerifiedPaxos
M-MP — Out of mem.

Erroneous
M-MP symm. 468,581 2,676,397 2 m CE found

m = 2
safety (chosen

MP — Out of mem.
n = 3

= accepted)
MP symm. 468,444 2,488,162 2 m CE found

M 476,575 2,435,659 31 s CE found
M symm. 49,290 256,761 8 s CE found

M-MP — Out of mem.

Faulty Paxos
M-MP symm. 890,127 5,174,054 7 m CE found

(always accept safety
MP — Out of mem.

proposals)
MP symm. 894,166 4,840,435 6 m CE found

M 1,026,203 5,598,379 1 m CE found
M symm. 99,781 553,159 15 s CE found

M-MP — Out of mem.
M-MP symm. — Out of mem.

Paxos
m = 2

safety
MP — Out of mem.

n = 4 MP symm. — Out of mem.
M — Out of mem.

M symm. 775,355 7,701,472 4 m Verified
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Abstract. Covariant-contravariant simulation and conformance simu-
lation are two generalizations of the simple notion of simulation which
aim at capturing the fact that it is not always the case that “the larger
the number of behaviors, the better”. Therefore, they can be considered
to be more adequate to express the fact that a system is a correct imple-
mentation of some specification. We have previously shown that these
two more elaborated notions fit well within the categorical framework
developed to study the notion of simulation in a generic way. Now we
show that their behaviors have also simple and natural logical charac-
terizations, though more elaborated than those for the plain simulation
semantics.

1 Introduction and Some Related Work

Simulations are a very natural way to compare systems modeled by labeled
transition systems or other related mechanisms based on describing the behavior
of states by means of the actions they can execute [12]. They aim at comparing
processes based on the simple premise “you are better if you can do as much
as me, and perhaps some additional new things”. This assumes that all the
executable actions are controlled by the user (hence, no difference between input
and output actions) and does not take into account that the system will choose
in an unpredictable internal way whenever it has several possibilities for the
execution of an action; thus, the more possibilities, the less control.

In order to cope with this situation one should consider adequate versions of
simulation where the meaning of actions and the idea of preferring processes that
are less non-deterministic are taken into account. This leads to two new notions of
simulation: covariant-contravariant simulation and conformance simulation, that
we roughly sketched in [6] and presented in detail in [7], where we proved that
they can be obtained as particular instances of the general notion of categorical
simulation developed by Hughes and Jacobs [9].

The first new notion is that of covariant-contravariant simulation, where the
alphabet of actions Act is partitioned into three disjoint sets Actl, Actr, and
Actbi . The intention is that simulations will treat the actions in Actl like in the
ordinary case, they will interchange the roles of the related processes for those
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actions in Actr, and they will impose a symmetric condition (like that defining
bisimulation) for the actions in Actbi . The second notion, conformance simula-
tion, captures the conformance relations [10] that several authors introduced in
order to formalize the notion of possible implementations.

After showing in [7] that they can be formalized as categorical simulations, in
this paper we present their logical characterizations. We expect that they will
contribute to clarify the meaning of the corresponding simulations, shedding
light on the properties that can be established when using these two frameworks
within a specification procedure.

Certainly, the distinction between input and output actions or similar classi-
fications is not meant to be new at all and, for instance, it was present in modal
transition systems as early as the end of the eighties. It also plays a central role
in I/O-automata [11] and, more recently, appears as component of several works
on interface automata [4], where the covariant-contravariant distinction is found
when the guarantees of the specification can only be assumed if the conditions
of the specification are satisfied.

Concerning conformance simulation, the first related references are also quite
old [10] and correspond to the notion of conformance testing, which is close to
failure semantics [13]. However, it is a bit surprising that in both cases there is
lack of a basic theory where these notions are presented in a simplified scenario,
stressing their main characteristics and properties.

Let us conclude this introduction by remarking that there is a large collection
of recent papers where notions close to those studied here are either developed
or applied. We regret not having the time or space to discuss, or even to cite,
many of them and just to give a hint we point out [1,2], where several references
to other preliminary works in those directions can be found.

2 Recalling Contravariant Simulations

We consider labeled transition systems (LTS) (P, A,→P ), where→P⊆ P×A×P ,
to define the operational semantics of a family of processes p ∈ P . We say that
the LTS is finitary when for each p ∈ P and a ∈ A we have |{p′ | p a−→ p′}| <∞.

We refer to [7] for a more extensive motivation of covariant-contravariant sim-
ulations; here we only comment on the case of input/output automata. To define
an adequate simulation notion for them we observe that the classic approach to
simulations is based on the definition of semantics for reactive systems, where
all the actions of the processes correspond to input actions that the user must
trigger. Instead, the situation is the opposite whenever we have explicit output
actions: it is the system that produces the actions and the user who is forced to
accept the produced output. Then, it is natural to conclude that in the simu-
lation framework we have to dualize the simulation condition when considering
output actions, and this is exactly what our anti-simulation relations do.

Definition 1. Given P = (P, A,→P ) and Q = (Q, A,→Q), two labeled transi-
tion systems for the alphabet A, and {Ar, Al, Abi} a partition of this alphabet,
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a (Ar, Al)-simulation (or just a covariant-contravariant simulation) between
them is a relation S ⊆ P ×Q such that for every pSq we have:

– for all a ∈ Ar ∪Abi and all p
a−→ p′ there exists q

a−→ q′ with p′Sq′.
– for all a ∈ Al ∪Abi , and all q

a−→ q′ there exists p
a−→ p′ with p′Sq′.

We will write p �CC q if there exists a covariant-contravariant simulation S
such that pSq.

Conformance simulations allow the extension of the set of actions offered by a
process, so that in particular a � a+b, but they also consider that a process can
be “improved” by reducing the nondeterminism in it, so that ap+aq � ap. In this
way we have again a kind of covariant-contravariant simulation, not driven by
the alphabet of actions executed by the processes but by their nondeterminism.

Definition 2. Given P = (P, A,→P ) and Q = (Q, A,→Q) two labeled transi-
tion systems for the alphabet A, a conformance simulation between them is
a relation R ⊆ P ×Q such that whenever pRq, then:

– For all a ∈ A, if p
a−→, then q

a−→ (this means, using the usual notation for
process algebras, that I(p) ⊆ I(q)).

– For all a ∈ A such that q
a−→ q′ and p

a−→, there exists some p′ with p
a−→ p′

and p′Rq′.

We will write p �CS q if there exists a conformance simulation R such that pRq.

3 Logical Characterizations of the New Semantics

3.1 Covariant-Contravariant Simulations

The class LS characterizing the simulation semantics is defined in [3] as that
containing tt, conjunctions

∧
i∈I ϕi (which can be just finite or binary if we only

want to characterize finitary process) and the existential operator 〈a〉ϕ, whose
semantics is defined by: p |= 〈a〉ϕ if there exists some p′ such that p

a−→ p′ and
p′ |= ϕ.

If we compare it with the Hennessy-Milner logic LHM [8], it can be noted that
the main diference is that negation is not present. Obviously, this must be the
case to capture a strict order that is not an equivalence relation, such as �CC .
However, adding both the constant ff and the disjunction

∨
i∈I ϕi does no harm,

thus obtaining L̄S which also characterizes �S. Indeed, ff is just
∨

∅ ϕi, while
disjunctions can be moved to the top of the expression because 〈a〉

∨
i∈I ϕi ≡∨

i∈I〈a〉ϕi, and p |=
∨

i∈I ϕi iff there exists some i ∈ I such that p |= ϕi.
The inspiration to obtain the logic characterizing �CC comes from the fact

that if we only have contravariant actions, then �CC becomes �−1
S , and therefore

by negating all the formulas in L̄S we would obtain the desired characterization.
In particular, for the modal operator 〈a〉 we would obtain its dual form [a], whose
semantics is defined by: p |= [a]ϕ if p′ |= ϕ for all p′ such that p

a−→ p′.
Then, in the presence of both covariant and contravariant actions, we need to

consider the existential operator 〈a〉 for a ∈ Ar ∪Abi and the universal operator
[a] for a ∈ Al ∪Abi , thus obtaining the following definition.
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Definition 3. Given an alphabet A, and {Ar, Al, Abi} a partition of this al-
phabet, the class LCC of covariant-contravariant simulation formulas over A is
defined recursively by:

– tt and ff are in LCC .
– If I is a set and ϕi ∈ LCC for all i ∈ I then

∧
i∈I ϕi ∈ LCC ,

∨
i∈I ϕi ∈ LCC.

– If ϕ ∈ LCC and a ∈ Ar ∪Abi then 〈a〉ϕ ∈ LCC .
– If ϕ ∈ LCC and a ∈ Al ∪Abi then [a]ϕ ∈ LCC .

The satisfaction relation |= is defined recursively by:

– p |= tt.
– p |=

∧
i∈I ϕi if p |= ϕi for all i ∈ I.

– p |=
∨

i∈I ϕi if p |= ϕi for some i ∈ I.
– p |= 〈a〉ϕ if there exists some p′ such that p

a−→ p′ and p′ |= ϕ.
– p |= [a]ϕ if p′ |= ϕ for all p′ such that p

a−→ p′.

Let SCC(p) denote the class of covariant-contravariant simulation formulas sat-
isfied by the process p, that is, SCC(p) = {ϕ ∈ LCC | p |= ϕ}. We will write
p .CC q if SCC(p) ⊆ SCC(q).

The case of input/output transition systems is probably the clearest example
where the covariant-contravariant duality must be applied in order to capture
the appropriate simulation order. Input actions should have a covariant behavior
reflecting the fact that a reactive system is expected to be “better” whenever it
accepts a maximal set of requests; as a consequence, its logical characterization
can only capture liveness properties. Conversely, output actions should be con-
travariant: whenever we specify a system we expect to control its behavior as
much as possible, and outputs are generative, which means not controllable by
the user. This contravariant character is captured by the universal operator [a],
which is only able to define safety properties.

Therefore, the logic LCC includes formulas that simultaneously capture live-
ness and safety at a local level, depending on the character of the actions that
are used. This is not enough to adequately state all the requirements one could
possible need: certainly, after developing a myriad of different semantics for pro-
cesses [13,5], we would not expect that just by fiddling with one of the simplest,
the simulation semantics, we would have the definite answer to treat together
covariant and contravariant actions. We are also investigating the covariant-
contravariant version of other semantics but, in order to establish which are the
basic facts to take into account, it is clear to us that the case of plain simulation
is definitely a basic keystone.

Proposition 1. p �CC q ⇐⇒ p .CC q.

Proof. We will first prove the implication from left to right. Assume that we have
pSq for some covariant-contravariant simulation S: we must show that for each
ϕ ∈ LCC , p |= ϕ implies q |= ϕ. We proceed by structural induction over ϕ.
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– q |= tt, trivially.
– Let p |= 〈a〉ϕ with a ∈ Ar ∪ Abi . Then there is p′ such that p

a−→ p′ with
p′ |= ϕ. Now, since pRq and a ∈ Ar ∪ Abi there must be a q′ such that
q

a−→ q′ with p′Rq′ and, by induction hypothesis, q′ |= ϕ, that is, q |= 〈a〉ϕ.
– Let p |= [a]ϕ. Then for all p′ such that p

a−→ p′ we have p′ |= ϕ. Let q′ be
such that q

a−→ q′ then, since pSq and a ∈ Al∪Abi , there exists p′ such that
p

a−→ p′ and p′Sq′. By induction hypothesis, since p′ |= ϕ then q′ |= ϕ, that
is, q |= [a]ϕ.

– Let p |=
∧

i∈I ϕi. Then p |= ϕi for all i ∈ I, so by induction hypothesis
q |= ϕi for all i ∈ I and then q |=

∧
i∈I ϕi.

– p |=
∨

i∈I ϕi. It is analogous to the previous case.

For the other implication let us assume that p .CC q and show that .CC is a
covariant-contravariant simulation. Let a ∈ Ar ∪ Abi and p

a−→ p′; then there
exists q′ such that q

a−→ q′ and p′ .CC q′. Otherwise, we have that for all q
a−→

q′, p′ �.CC q′, that is, we have formulas ϕq′ such that ϕq′ ∈ SCC(p′) \ SCC(q′).
Now, taking φ = 〈a〉

∧
q′ ϕq′ , we have p |= φ and, by hypothesis, also q |= φ.

That means that there exists some q′0 such that q
a−→ q′0 with q′0 |=

∧
q′ ϕ′

q. But
this cannot be the case since q′0 �|= ϕq′

0
.

Now let a ∈ Al ∪ Abi and q
a−→ q′; similarly we must show that there exists

p′ such that p
a−→ p′ and p′ .CC q′. By way of contradiction, if for all p

a−→ p′

we have p′ �.CC q′, there are formulas ϕp′ ∈ SCC(p′) \ SCC(q′). Taking φ =
[a]

∨
p′ ϕp′ we have p |= φ and then by hypothesis q �|= φ, but this cannot be

since q′ �|= ϕp′ for all p′. ��

3.2 Conformance Simulations

Conformance simulation can be considered to be a variant of the covariant-
contravariant framework in which, instead of separating the actions in several
classes, we have a mixed uniform behavior for all the actions. This is brought
forward by the fact that if a process cannot execute a, then p �CS p + aq.
However, once we have a ∈ I(p) the contravariant character shows since then
p + aq �CS p.

This mixed character of all the actions is now captured at the logical level
by a new modal operator a, whose semantics is defined by: p |= aϕ if p

a−→
and p′ |= ϕ for all p

a−→ p′. It is quite interesting to observe that we can
alternatively define a as “〈a〉 ∧ [a]”, since we have: p |= aϕ ⇐⇒ p |= 〈a〉ϕ and
p |= [a]ϕ, which also reveals the mixed intended nature of all the actions in the
conformance framework.

Definition 4. The class LCS of conformance simulation formulas over A is
defined recursively by:

– tt ∈ LCS.
– If I is a set and ϕi ∈ LCS for all i ∈ I then

∧
i∈I ϕi,∈ LCS,

∨
i∈I ϕi ∈ LCS.

– If ϕ ∈ LCS and a ∈ A then aϕ ∈ LCS.
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The corresponding satisfaction relation |= is defined recursively by:

– p |= tt.
– p |=

∧
i∈I ϕi if p |= ϕi for all i ∈ I.

– p |=
∨

i∈I ϕi if p |= ϕi for some i ∈ I.
– p |= aϕ if p

a−→ and p′ |= ϕ for all p
a−→ p′.

Let SCS(p) denote the class of conformance simulation formulas satisfied by the
process p, that is, SCS(p) = {ϕ ∈ LCS | p |= ϕ}. We will write p .CS q if
SCS(p) ⊆ SCS(q).

One now expects that the liveness and safety requirements will be captured si-
multaneously and this is indeed the case since from p |= aϕ we know both that
p is able to execute a and that, after executing it in any possible way, ϕ will be
satisfied. Therefore, conformance simulation proves to be quite a reasonable se-
mantics whenever we do not want to distinguish between reactive and generative
actions, as discussed in the previous section.

Proposition 2. p �CS q ⇐⇒ p .CS q.

Proof. We first prove the implication from left to right. Assume that we have
pRq for some conformance simulation R: we must show that for each ϕ ∈ LCS ,
p |= ϕ implies q |= ϕ. The proof will follow by structural induction over ϕ, the
case for tt being trivial.

– Let p |= aϕ. Then, for all p
a−→ p′ we have p′ |= ϕ and there exists at least

one such p′. Since pRq also q
a−→, and it remains to prove that q′ |= ϕ for

all successors q
a−→ q′. Let q′0 be such that q

a−→ q′0. Again, since pRq and
p

a−→, for each q
a−→ q′ there exists some p

a−→ p′ such that p′Rq′. So, for q′0
there exists p′0 such that p′0Rq′0 and, since p′0 |= ϕ, by induction hypothesis
also q′0 |= ϕ. Thus q |= aϕ.

– Let p |=
∧

i∈I ϕi. Then p |= ϕi for all i ∈ I, so by induction hypothesis
q |= ϕi for all i ∈ I and then q |=

∧
i∈I ϕi.

– p |=
∨

i∈I ϕi. It is analogous to the previous case.

For the other implication, let us assume that p .CS q: we show that .CS is
a conformance simulation. First, if p

a−→ then, since SCS(p) ⊆ SCS(q) and
p |= att, also q |= att and hence q

a−→. Now, let q
a−→ q′ and p

a−→. Let us
see that there exists some p′ such that p

a−→ p′ and p′ .CS q′. By way of
contradiction, if p′ �.CS q′ for all such p′, then for each p′ there is a formula
ϕp′ ∈ SCS(p′) \ SCS(q′). Let φ = a

∨
p′ ϕp′ . It is easy to see that p |= φ: indeed,

for each p′ such that p
a−→ p′, p′ |= ϕp′ . Since p .CS q, it must also be the case

that q |= φ, that is, for each q′′ such that q
a−→ q′′, q′′ |=

∨
p′ ϕp′ ; but q

a−→ q′

and q′ �|= ϕp′ for any p′, contradicting the fact that q |= φ. ��
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4 Some Examples and a Short Discussion

We will start by illustrating the behavior of covariant-contravariant simulations
in the case in which we distinguish between input (reactive) and output (gener-
ative) actions. Consider the following expending machines:

onecoke : coin→ coke→ 0
cokeorlemonade : coin→

(
(coke→ 0) + (lemonade→ 0)

)
The classical approach would consider onecoke �S cokeorlemonade. However, if
the drinks are provided by the machine in an autonomous way then they should
be formalized as outputs, which leads us to

cokeorlemonade �CC onecoke.

This is justified by the fact that choices between generative actions become
internal and therefore generate (undesired) non-deterministic behavior.

At the logical level the difference between the two processes above can be
brought forward by means of the formula 〈coin〉 [lemonade] ff, which onecoke
satisfies but cokeorlemonade does not. It could be thought that the process
cokeorlemonade is being punished for offering lemonade besides coke, but this
would be an incorrect interpretation because it follows the classical reactive ap-
proach where simultaneous offers mean “the user makes his choice”; instead,
when outputs are generative it is the machine that chooses. As a consequence,
from cokeorlemonade �|= 〈coin〉[lemonade] ff we implicitly infer that it could be
the case that after inserting a coin we did not get our favorite drink (Coke).

Let us now show the differences between covariant-contravariant and confor-
mance simulations. First, at the formal level, the fact that the modal operator a
can be defined as “〈a〉∧ [a]” does not mean that these two basic modal operators
can appear separately in a formula characterizing �CS. Obviously this cannot
be the case since separated 〈a〉 operators characterize plain simulation, and for
the process choice coke lemonade: (coin → coke → 0) + (coin → lemonade → 0)
we have

choice coke lemonade |= 〈coin〉〈lemonade〉tt onecoke �|= 〈coin〉〈lemonade〉tt

but choice coke lemonade �CS onecoke.
Now, if we consider de universal operator [a], its weakness when used alone

arises when it is trivially satisfied. For instance, we have 0 |= [coin] ff but
onecoke �|= [coin] ff and 0 �CS onecoke.

One could infer that conformance simulation is the definitive solution to cap-
ture all the natural requirements in an specification. Certainly, it combines co-
variant and contravariant aspects in a very balanced way, but the fact that it
treats all the actions uniformly makes it impossible to capture the difference
between input and output actions. In particular: onecoke �CS cokeorlemonade
but we have already discussed that when outputs are generative, choices always
generate non-deterministic behaviors that �CS is not punishing at all.
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On the other hand, choices between equal actions are also considered “harm-
ful” by the conformance semantics so that if p �CS q then ap =CS ap + aq. This
is sometimes a too pessimistic approach, which we can illustrate by the following
slot machine specification:

slot machine : (coin→ souvenir→ 0)+(coin→ ((million$→ 0)+(souvenir→ 0)))

which becomes conformance simulation equivalent to the pluff machine

pluff machine : coin→ souvenir→ 0

In this case the possible return of the big pot is not taken into account at all.
Obviously, the solution comes from choosing in each case the adequate semantics
to capture accurately the desired behaviors. The bad news is that we need to
study many diferent semantics; the good news for us is. . . the same!, since we
are already working on them
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Dingel, Juergen 125
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