

Lecture Notes in Computer Science 6130
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bernard Mourrain Scott Schaefer
Guoliang Xu (Eds.)

Advances in
Geometric Modeling
and Processing

6th International Conference, GMP 2010
Castro Urdiales, Spain, June 16-18, 2010
Proceedings

13

Volume Editors

Bernard Mourrain
GALAAD, Inria Méditerranée
2004 route des Lucioles, 06902 Sophia Antipolis Cedex, France
E-mail: bernard.mourrain@sophia.inria.fr

Scott Schaefer
Texas A&M University, Department of Computer Science
College Station, TX 77843-3112, USA
E-mail: schaefer@cs.tamu.edu

Guoliang Xu
Chinese Academy of Science
Institute of Computational Mathematics and Scientific/Engineering Computing
Beijing 100080, China
E-mail: xuguo@lsec.cc.ac.cn

Library of Congress Control Number: 2010927597

CR Subject Classification (1998): I.3.5, G.2, I.5, I.4, F.2, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13410-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13410-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the papers presented at 6th Conference on Geometric
Modeling and Processing (GMP 2010) held in Castro Urdiales, Spain during
June 16–18, 2010. Geometric Modeling and Processing is a biannual international
conference series on geometric modeling, simulation and computing. Previously,
GMP has been held in Hong Kong (2000), Saitama, Japan (2002), Beijing, China
(2004), Pittsburgh, USA (2006) and Hangzhou, China (2008).

GMP 2010 received a total of 30 submissions that were reviewed by three
to four Program Committee members on average. While the number of submis-
sions dropped significantly from previous years, the quality did not and was still
quite high overall. Based on the reviews received, the committee decided to ac-
cept 20 papers for inclusion in the proceedings. Additionally, extended versions
of selected papers were considered for a special issue of Computer-Aided De-
sign (CAD) and Computer-Aided Geometric Design (CAGD). The paper topics
spanned a wide variety and include:

– Solutions of transcendental equations
– Volume parameterization
– Smooth curves and surfaces
– Isogeometric analysis
– Implicit surfaces
– Computational geometry

Many people helped make this conference happen and we are grateful for
their help. We would especially like to thank the Conference Chair, all of the
authors who submitted papers, the Program Committee members who reviewed
the papers and all of the participants at the conference.

Bernard Mourrain
Scott Schaefer
Guoliang Xu

Conference Organization

Conference Chair

Laureano Gonzalez-Vega University of Cantabria, Spain

Program Chairs

Bernard Mourrain GALAAD, INRIA Mediterranée, France
Scott Schaefer Texas A&M University, USA
Guo Liang Xu Chinese Academy of Science Beijing, China

Program Committee

Marc Alexa
Alexander Belyaev
Mirela Ben-Chen
Tamy Boubekeur
Marie-Paule Cani
Falai Chen
Jiansong Deng
Tamal Dey
Neil Dodgson
Gershon Elber
Ioannis Z. Emris
Bianca Falcidieno
Gerald Farin
Andre Galligo
Xiao-Shan Gao
Ron Goldman
Xianfeng Gu
Stefanie Hahmann
Kai Hormann
ShiMin Hu
Tao Ju
Bert Juettler
Takashi Kanai
Misha Kazhdan
Young J Kim
Tae-wan Kim
Leif Kobbelt

Seungyong Lee
Bruno Levy
Guiqing Li
Hua Li
Ligang Liu
Weiyin Ma
Takashi Maekawa
Steve Mann
Dinesh Manocha
Ralph Martin
Knut Morken
Ashish Myles
Ahmad Nasri
Gregory Nielson
Nicholas M. Patrikalakis
Jorg Peters
Konrad Polthier
Hong Qin
Ulrich Reif
Jarek Rossignac
Malcom Sabin
Zbynek Sir
Luiz Velho
Johannes Wallner
Guozhao Wang
Guojin Wang
Wenping Wang

VIII Organization

Joe Warren
Hongbin Zha
Qin Zhang

Caiming Zhang
Kun Zhou

External Reviewers

Bert Buchholz
Daniela Giorgi
Xian-Ying Li
Michela Mortara

Olga Sorkine
Jean-Marc Thiery
Guo-xin Zhang

Table of Contents

Global Solutions of Well-Constrained Transcendental Systems Using
Expression Trees and a Single Solution Test . 1

Maxim Aizenshtein, Michael Bartoň, and Gershon Elber

Surfaces with Rational Chord Length Parameterization 19
Bohumı́r Bastl, Bert Jüttler, Miroslav Lávička, and Zbyněk Š́ır

Support Function of Pythagorean Hodograph Cubics and G1 Hermite
Interpolation . 29

Eva Černohorská and Zbyněk Š́ır

Piecewise Tri-linear Contouring for Multi-material Volumes 43
Powei Feng, Tao Ju, and Joe Warren

An Efficient Algorithm for the Sign Condition Problem in the
Semi-algebraic Context . 57

Rafael Grimson

Constraints on Curve Networks Suitable for G2 Interpolation 77
Thomas Hermann, Jorg Peters, and Tim Strotman

Computing the Distance between Canal Surfaces . 88
Yanpeng Ma, Changhe Tu, and Wenping Wang

A Subdivision Approach to Planar Semi-algebraic Sets 104
Angelos Mantzaflaris and Bernard Mourrain

Non-manifold Medial Surface Reconstruction from Volumetric Data 124
Takashi Michikawa and Hiromasa Suzuki

Decomposing Scanned Assembly Meshes Based on Periodicity
Recognition and Its Application to Kinematic Simulation Modeling 137

Tomohiro Mizoguchi and Satoshi Kanai

Automatic Generation of Riemann Surface Meshes 161
Matthias Nieser, Konstantin Poelke, and Konrad Polthier

G1 Bézier Surface Generation from Given Boundary Curve Network
with T-Junction . 179

Min-jae Oh, Sung Ha Park, and Tae-wan Kim

Efficient Point Projection to Freeform Curves and Surfaces 192
Young-Taek Oh, Yong-Joon Kim, Jieun Lee, Myung-Soo Kim, and
Gershon Elber

X Table of Contents

Construction of Minimal Catmull-Clark’s Subdivision Surfaces with
Given Boundaries . 206

Qing Pan and Guoliang Xu

Parameterization of Star-Shaped Volumes Using Green’s Functions 219
Jiazhi Xia, Ying He, Shuchu Han, Chi-Wing Fu, Feng Luo, and
Xianfeng Gu

Optimal Analysis-Aware Parameterization of Computational Domain
in Isogeometric Analysis . 236

Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows
with G1 Boundary Conditions . 255

Guoliang Xu and Qing Pan

Efficient Computation of 3D Clipped Voronoi Diagram 269
Dong-Ming Yan, Wenping Wang, Bruno Lévy, and Yang Liu

Selecting Knots Locally for Curve Interpolation with Quadratic
Precision . 283

Caiming Zhang, Wenping Wang, Jiaye Wang, and Xuemei Li

Eigenmodes of Surface Energies for Shape Analysis 296
Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and
Konrad Polthier

Author Index . 315

Global Solutions of Well-Constrained
Transcendental Systems Using Expression Trees

and a Single Solution Test

Maxim Aizenshtein, Michael Bartoň, and Gershon Elber

Department of Computer Science, Technion, Haifa, 32000, Israel
sniffer@t2.technion.ac.il,

{barton,gershon}@cs.technion.ac.il

Abstract. We present an algorithm which is capable of globally solving
a well-constrained transcendental system over some sub-domain D ⊂ R

n,
isolating all roots. Such a system consists of n unknowns and n regular
functions, where each may contain non-algebraic (transcendental) func-
tions like sin, exp or log. Every equation is considered as a hyper-surface
in R

n and thus a bounding cone of its normal field can be defined over
a small enough sub-domain of D. A simple test that checks the mutual
configuration of these bounding cones is used that, if satisfied, guarantees
at most one zero exists within the given domain. Numerical methods are
then used to trace the zero. If the test fails, the domain is subdivided.
Every equation is handled as an expression tree, with polynomial func-
tions at the leaves, prescribing the domain. The tree is processed from
its leaves, for which simple bounding cones are constructed, to its root,
which allows to efficiently build a final bounding cone of the normal field
of the whole expression. The algorithm is demonstrated on curve-curve
and curve-surface intersection problems.

1 Introduction and Previous Work

Solving nonlinear algebraic and/or transcendental systems of equations is a
crucial problem in many fields such as computer-aided design, manufacturing,
robotics, kinematics and many others. Robust and efficient algorithms that solve
such systems are in strong demand. For instance, the problem of intersecting a
parametric space curve with a parametric surface leads to a system consisting
of three equations and three unknowns. Similarly, the problem of computing the
closest point(s) on a curve or surface to a given point leads to a well-constrained
polynomial/transcendental system (see, e.g., [17,18]). In these and similar appli-
cations, all solutions of a system of equations within a certain domain D, which
is typically a box in Rn, are sought for.

For polynomial systems, various methods exist. The symbolically oriented
approaches like Gröbner bases and similar elimination-based techniques [3] map
the original system to a simpler one, preserving the solution set. Polynomial
continuation methods start at roots of a suitable simple system and transform
it continuously to the desired one [15]. These methods handle the system in a

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Aizenshtein, M. Bartoň, and G. Elber

purely algebraic manner and give a general information about the solution set.
These methods are typically not well-suited if only real roots are required.

Contrary to this, a family of solvers which focuses only on real roots has
been introduced. These subdivision based schemes handle the polynomials as
hyper-surfaces in Rn and exploit the convex hull property of its Bernstein-Bézier
representations [4,8,10,12,14]. The domain is subdivided, sub-domains which can
not contain a root are clipped away and (a set of) sub-domain(s) which may
contain roots are returned. The subdivision is usually stopped if some numerical
threshold is reached. In [8], a termination criterion which guarantees at most one
root within a sub-domain has been proposed for isolating roots. Many others
polynomial root-finding techniques exist. One survey can be found in [9].

In contrast, for the case of transcendental solvers, schemes which also sup-
port trigonometric and transcendental terms, the literature is not so extensive.
Local root tracing techniques, such as Newton-Raphson iterations, are clearly
employed once a close-to-a-root guess is available. One family of solvers is based
on the reduction of the original n-dimensional system to one-dimensional non-
linear equations, see [6] and related work cited therein. Every function of the
system is evaluated at n− 1 variables and solved with respect to the remaining
one. An approximation of the root is obtained and the process is iteratively re-
peated, converging quadratically to the root. Even though these methods use a
reduction to a single equation, a good initial guess of the root is again needed
and the detection of all the roots is not guaranteed.

Another iterative method was proposed in [7]. Every function of the system is
considered as an objective function. The goal is to minimize these functions and
the problem is essentially reduced to a multiobjective optimization problem. An
evolutionary algorithm is proposed and a sequence of candidates that approxi-
mate the root is created. Again, similarly to [6], the process is iterative and a
good initial guess is required to reach the root.

A different subdivision based approach that handles some transcendental sys-
tems was presented in [5]. The method presented therein is capable of solving
an Extended Chebyshev (EC) systems and is well suited for systems consisting
of exp function(s). In contrast, ”if sin or cos functions are involved, its difficult
to decide whether the system is EC or not.” [5], (p. 94, section 4.3 and p. 82,
1st paragraph of Section 4.2). Making this decision fully automatic is an even
more complex task. In contrast, our approach requires to subdivide only polyno-
mial leaves that contain the variable which needs to be subdivided (and can be
therefore efficiently achieved by using deCasteljeau algorithm). The numerical
subdivision in [5] is based on multiplying a subdivision matrix, which is expen-
sive and the numerical stability is guaranteed only for low-dimensional systems,
see [5], (p. 82).

Another family of subdivision based solvers that support also transcendental
functions relies on interval arithmetic [11]. These methods typically construct
an interval bound on values that given function may attain over given domain.
If the bound of some function of the system is no-zero containing, the particular

Global Solutions of Well-Constrained Transcendental Systems 3

domain is discarded. Again, these schemes are difficult to guarantee numerical
stability during subdivision and no root isolations are offered.

A major drawback of all the subdivision solvers stems from its exponential de-
pendency on the dimension of the problem. In [4], an alternative representation
of the equations, in a form of expression trees, is shown to present only polyno-
mial dependency. Herein, we exploit another advantage of expression trees and
show how they can be used to find the roots of sets of transendental functions.

In this paper, we present a “divide and conquer” algorithm which is capa-
ble of solving transcendental (non-algebraic), well-constrained system over some
domain D ⊂ Rn. Such a system consists of n unknowns and n regular func-
tions, where each may contain transcendental functions like sin, exp or log.
Every equation is considered as a hyper-surface in Rn and thus a bounding cone
of its normal field can be defined over a small enough sub-domain of D. The
termination criterion of [8] is exploited to check the mutual configuration of
these bounding cones which, if satisfied, guarantees at most one zero within the
given sub-domain, and hence offers a robust scheme to isolate all roots, globally.
A multivariate Newton-Raphson method is then used to converge to the zero.
Moreover, such a condition guarantees that the subdivision is not terminated
until all roots are isolated, with the possibility of terminating at the permissible
subdivision tolerance, in cases such as multiple roots.

The rest of the paper is organized as follows. Section 2 briefly recalls no-
tions as transcendental systems, single solution criterion and expression trees.
In section 3, the transcendental system’s solver is presented. The construction
of bounding cones is explained and its arithmetic is introduced. In section 4, the
application of the proposed solver is demonstrated on curve-curve and curve-
surface intersection problems. Finally, Section 5 identifies some possible future
improvements of the presented method and concludes.

2 Preliminaries

The presented solver exploits both the expression trees representation [4] and
the single solution termination test of [8]. A brief survey on these topics will be
given. In 2.1, a non-algebraic system is defined and the single root termination
criterion for such a system is introduced in 2.2. The notion of expression trees
is recalled in 2.3.

2.1 Solving Well-Constrained Transcendental Systems

Definition 1. Function f : R → R is algebraic over Q if there exist a polyno-
mial p(x, y) with integer coefficients y such that p(x, f(x)) = 0. Functions which
are non-algebraic are called transcendental.

Definition 2. Consider the mapping F : Rn → Rn, such that at least one com-
ponent fi, i = 1, . . . , n of F(x) = {f1(x), f2(x), . . . , fn(x)} is a transcendental
function in variables x = (x1, x2, . . . , xn). Then, every solution x of the system,

F(x) = 0, (1)

4 M. Aizenshtein, M. Bartoň, and G. Elber

f1 f1

CC
1

(a) (b)

Fig. 1. (a) System (1) for n = 3, with single solution over some domain D ⊂ R
n. (b)

Complementary (tangent) circular bounding hyper-cone CC
1 of hyper-surface f1 = 0.

is called a root of F and the set of all roots is known as the zero set of the
transcendental mapping F . The determinant of Jacobian matrix, (∂fi

∂xj
(x)), is

referred to as a Jacobian of system (1) at x.

In general, system (1) has a zero set of dimension zero. Assume system (1) is
well-constrained in some sub-domain D ⊆ Rn and a = (a1, a2, . . . , an) ∈ D is a
root. By well-constrained we mean that Jacobian of system (1) never vanishes
in (the vicinity of) any its root. If there is a guarantee that a is the only root
of (1) in D, some numerical technique, like the multivariate Newton–Raphson
method [16], can be used to try and robustly converge on that root. Hence, such
a criterion is strongly desired.

2.2 Single Solution Termination Criterion for Transcendental
Systems

In [8], a single solution criterion was formulated for (piecewise) polynomial sys-
tems. Considering every fi(x), i = 1, . . . , n, from system (1) as hyper-surface
in Rn, its bounding hyper-cone of the normal field, and subsequently bounding
hyper-cone of the complementary (tangential) field, was created. From the mu-
tual position of all n complementary hyper-cones, an existence of at most one
root can be determined. See Fig. 1 and [8] for more.

Since this idea is general, regardless of the type of the system (polynomial,
transcendental), we adopt this approach and, in a similar manner, test the mu-
tual position of all corresponding tangent bounding hyper-cones. Obviously, the
construction of these hyper-cones, unlike the polynomial case, can not be accom-
plished from the control points of hyper-surfaces fi(x) = 0 (there are no control
points anymore) and it will be explained later, in Section 3. Since the proposed
technique is based on the bound of normal fields (gradients), all hyper-surfaces

Global Solutions of Well-Constrained Transcendental Systems 5

are required to be regular and C1 continuous over the domain of interest. We
start by formulating two definitions:

Definition 3. Consider implicit function fi(x) = 0, x ∈ Rn i = 1, . . . , n over
some (rectangular) sub-domain D ⊂ R

n. We define the normal field of the im-
plicit function fi(x) = 0 over sub-domain D by

Ni = {∇fi(x),x ∈ D}, (2)

where ∇fi(x) = (∂fi

∂x1
, ∂fi

∂x2
, . . . , ∂fi

∂xn
) is the gradient of fi.

Definition 4. Consider circular hyper-cone in R
n with the axis in the direction

of unit vector vi and an opening angle αi as

CN
i (vi, αi) = {u|〈u,vi〉 = ‖u‖ cosαi}, (3)

We say that CN
i is a bounding normal hyper-cone of function fi if

〈u,vi〉 ≥ ‖u‖ cosαi, ∀u ∈ Ni. (4)

By a complementary (or tangent) bounding hyper-cone, CC
i , we denote

CC
i (vi, αi) = CN

i (vi, 90o − αi). (5)

Remark 1. In the remainder of the paper, if no misunderstanding can occur, we
call the circular bounding normal hyper-cone as bounding normal cone and the
circular complementary bounding hyper-cone as bounding tangent cone.

+

exp cos

�
√

4 t s

Fig. 2. Binary tree for f(s, t) = e4t +cos(
√

s). The bounding normal cone of the whole
expression f is constructed by parsing the tree from the leaves (lower row) to the upper
node, the root, applying the bounding cones’ arithmetic.

6 M. Aizenshtein, M. Bartoň, and G. Elber

2.3 Expression Trees

We recall the notion of a binary tree as a structure that uniquely corresponds
to some, not necessarily algebraic, expression. The leaf nodes of the tree are
constants and unknowns, expressed as polynomial parametric forms and the
interior nodes are unary/binary operators, including, in this case, transcendental
functions. In the case of a binary operator, its two sub-nodes are the two operands
whereas an unary operator is descended by only one sub-node, see Fig. 2.

In the context of solving transcendental system (1), we have n functions (rep-
resented as expression trees) fi(x) and our aim is to construct a bounding normal
cone of every fi(x) in order to decide whether there is a single zero inside some
sub-domain D. For every particular tree, fi(x), we start to construct bounding
normal cones bottom-up from every leaf and, using the bounding cones’ arith-
metic described in Section 3, the tree is parsed all the way up to the root of the
tree, resulting with the bounding cone of the whole expression of fi(x).

3 Bounding Cones’ Construction and Arithmetic

In this section, we explain how the bounding normal cone of an expression – an
interior node of an expression tree – is constructed, and introduce the bounding
cones’ arithmetic which is used when two leaves are merged together at some
binary (or even unary) node.

3.1 Truncated Bounding Cones and Their Bounding Polytopes

Definition 5. Consider bounding normal cone, CN
g (v, α), of g, over some sub-

domain D ⊂ Rn. Similarly, consider two positive numbers ∇min and ∇max,
such that for all x ∈ D,

∇min ≤ ‖∇g(x)‖ ≤ ∇max, (6)

holds and
〈∇g,v〉 > α‖∇g‖. (7)

We further denote by CN
g = (CN

g ,∇min,∇max) the truncated bounding normal
cone of function g.

Observe that the bounding normal cone, as defined in Def. 4, always contains
the origin of the coordinate system (the apex of the cone), see Fig. 3(b). As will
be seen from the definition of arithmetic operations on bounding cones, a tighter
bound which does not contain the origin, is needed. The truncated cone defined
in Def. 5 bounds both the direction and the magnitude of the gradients of g.

The upper and lower caps of CN
g (see Fig. 3) are n− 1 dimensional balls, since

their boundaries are n− 2 dimensional spheres, the result of intersections of the
hyper-cone with two hyper-planes perpendicular to its axis.

In order to perform operations with truncated normal cones, we now introduce
polygonal bounding regions to these cones, which are referred to as bounding

Global Solutions of Well-Constrained Transcendental Systems 7

v4

v2

v3

v1

B
3

O

Pg

∇min

V

vg

∇max

Bg
Bg[0]

Bg[1]

O

O

(a) (b)

Fig. 3. (a) n = 4, a cap of a truncated cone in R
4, ball B

3, with its wire-frame bounding
orthoplex (an octahedron for B

3) consisting of 2(n − 1) = 6 axis-aligned vertices.
(b) n = 3, truncated normal cone in R

3 with axis vg and apex V at the origin.
The orthogonal complement of vg, Bg , and its orthonormal basis {Bg [0], Bg[1]} is
computed to construct a pair of bounding orthopleces O, O and subsequently the
bounding polytope Pg.

polytopes. Such a polytope follows the shape of the truncated cone, conservatively
bounds it, and is easy to construct once a polygonal bound on both caps of the
cone are given. Direct operations on (exact) truncated cones would be very
difficult to handle, whereas these polytopes discretize the problem to treating
only a finite number of points (the vertices of the polytope).

Definition 6. Consider an (n− 1)-dimensional ball, B
n−1, of radius r. An or-

thoplex1 O of ball Bn−1 is the set

O = {x ∈ R
n−1, ‖x‖1 ≤ r

√
n− 1}, (8)

where ‖.‖1 is the L1 norm.

Lemma 1. The orthoplex O from Def. 6 bounds Bn−1.

Proof. By definition, all the points of Bn−1 satisfy ‖x‖2 ≤ r. Due to the equiv-
alence of norms in a finite dimensional space, ‖x‖1 ≤ λ‖x‖2, for some λ ∈ R+.
Hölder inequality

n−1∑
i=1

|xiyi| ≤ (
n−1∑
i=1

x2
i)

1
2 · (

n−1∑
i=1

y2
i)

1
2 , (9)

for yi = 1, i = 1, . . . , n− 1 gives λ =
√
n− 1, which yields in ‖x‖1 ≤ r

√
n− 1.

��
1 See, e.g., wikipedia.org/wiki/Cross-polytope

8 M. Aizenshtein, M. Bartoň, and G. Elber

Obviously, the bounding orthoplex O was defined in a way that it bounds Bn−1.
Note the advantage that O possesses only 2(n−1) vertices, compared to another
natural bounding region – the (n− 1)-dimensional cube, which consists of 2n−1

vertices. Since the operations on truncated cones are reduced to the vertices of
bounding polytopes, the linear growth with respect to the dimension is definitely
beneficial.

The construction of an orthoplex is straightforward. Consider ball Bn−1 with
its center at the origin of the Cartesian system. Then, all the vertices v1, v2,
. . . , v2n−2 of the bounding orthoplex are located on the n−1 axes, at a distance
of ±r

√
n− 1 from the origin, see Fig. 3(a), so they can be expressed as all

permutations over (±r
√
n− 1, 0, . . . , 0).

Then, ball Bn−1, along with all the vertices vi of its bounding orthoplex,
is transformed (rotated and translated) from the origin-related position to the
proper location such that it caps the truncated cone. In order to achieve this
transformation, the destination position of the system is needed. Since the ball’s
basis is the orthogonal complement of the cone’s axis, see Fig. 3, the construction
of the basis is achieved by a Gramm-Schmidt process.

Definition 7. Let CN
g be the truncated bounding normal cone of g and let O, O

be the bounding orthopleces of the lower and upper caps, respectively. The convex
hull of {O,O} is referred to as the bounding polytope of CN

g , denoted by Pg, see
Fig. 3.

Apparently, the closed polyhedron Pg that bounds CN
g consists of (at most)

4(n − 1) vertices, as the convex hull of O and O, each of which has 2(n − 1)
vertices. Therefore, the arithmetic operations on the bounding truncated cones
can be efficiently accomplished on their bounding polytopes.

3.2 Bounding Cone’s Arithmetic

We introduce the arithmetic rules for the computation of the resulting bounding
cone at a node of an expression tree. In this work, we consider the following
binary operations: +, −, �, · and transcendental functions: sin, cos, exp, and log,
that can act at any node. The idea is general and can be applied to arbitrary
trigonometric function. However, current implementation handles only the above
mentioned functions.

Let f and g be two expressions, two neighboring leaves that are being merged
at some node of an expression tree, and let CN

f (vf , αf) and CN
g (vg, αg) be

their truncated bounding normal cones. Sections 3.2 to 3.2 explain the action
taken for the different operators, as part of the execution of the bounding cones’
arithmetic.

Addition. Let h = f + g and let CN
h be the sought truncated normal cone of h.

As we already mentioned, the exact construction of CN
h from CN

f and CN
g would

be complicated. Instead, we use their bounding polytopes Pf and Pg, as the
following holds

CN
h ⊆ CN

f ⊕ CN
g ⊆ Pf ⊕ Pg ⊆ C∗, (10)

Global Solutions of Well-Constrained Transcendental Systems 9

where the ⊕ denotes the Minkowski sum, and C∗ is a cone that contains the
Minkowski sum of both polytopes. This construction is reduced to only adding
all possible pairs of vertices of both polytopes. Algorithm 1 summarizes this
process. An explanation of some of its steps follows in more detail:

– Since each of the bounding polytopes consists of at most 4(n− 1) vertices,
their Minkowski sum is obtained by processing all possible pairs, 16(n− 1)2

in all. See line 1.1.
– ∇minmax is a vector of size 2 holding (∇min,∇max).
– The radii of the orthopleces is set by

√
n− 1 tan(α) and CN .∇minmax[i] in

lines 1.7 and 1.9 and lines 1.10 and 1.10, respectively.
– In lines 1.2 and 1.3, the orthogonal complements of both axis vectors are

constructed. These orthonormal bases are used to build vertices vf , vg of
the bounding polytopes, in lines 1.10 and 1.11.

– Bounding cone C∗ that contains the Minkowski sum of both polytopes is
computed, possibly using the method of [1], and returned in line 1.13.

Subtraction. Since
∇(f − g) = ∇f +∇(−g) (11)

and the bounding cone of −g is achieved simply by flipping Cg, the problem is
easily reduced to addition.

Scaling. Scaling (scalar multiplication) by a non-zero coefficient λ ∈ R is
achieved by scaling all polytope’s vertices.

Algorithm 1. AddNormalCone(CN
f , CN

g , n)

input : CN
f (vf , αf), CN

g (vg, αg), truncated normal cones of f and g;
n, dimension;

output : C∗, bounding normal cone of f + g, see Eq. (10);

PointsList ← List to hold 16(n− 1)2 elements;1.1

OrthoSystemBf ← HyperplaneOrthoSystem(vf , n);1.2

OrthoSystemBg ← HyperplaneOrthoSystem(vg, n);1.3

for i← 0 to 1 do1.4

for j ← 0 to 1 do1.5

for k← 1 to n− 1 do1.6

uf ←
√

n− 1 tan (αf) ·OrthoSystemBf [k];1.7

for m← 1 to n− 1 do1.8

ug ←
√

n− 1 tan (αg) ·OrthoSystemBg[m];1.9

vf ← CN
f .∇minmax[i] · (vf ± uf);1.10

vg ← CN
g .∇minmax[j] · (vg ± ug);1.11

AppendToList(PointsList, vf + vg);1.12

C∗ ← BoundingConeOfVectors(PointsList);1.13

return C∗;1.14

10 M. Aizenshtein, M. Bartoň, and G. Elber

Multiplication. Since the gradient of a product is

∇(f � g) = g · ∇f + f · ∇g, (12)

the bounding cone is obtained by applying the above discussed operations, where
g · ∇f is accomplished by computing the minimum and maximum of g, in the
sub-domain D. Note that a constant sign of both f and g over D is required.
If not, the bounding cone would span a whole R

n and the solver subdivides in
that case.

Transcendental Functions. exp: Since the exponential function attains only
positive values and

∇(ef) = ef · ∇f, (13)

this case is similar to scaling by min
x∈D

ef(x) and max
x∈D

ef(x).

log: We obtain

∇(log f) =
1
f
· ∇f, (14)

the problem is again reduced to scaling and f is required to have a strictly
monotone sign on D.

sin & cos: Analogously,

∇(sin f) = cos f · ∇f, (15)

and scaling by constants max
x∈D

cos f(x) and min
x∈D

cos f(x) gives the result under

the assumption that cos f does not change sign on D.
In the case of a polynomial leaf, g(x), the bounds of min

x∈D
g(x) and max

x∈D
g(x)

are directly obtained from its control points exploiting the convex hull property.
Min/max bounds of interior nodes are computed following the same rules of
interval arithmetic for simple arithmetic and Equations (13) to (15), in case of
transendental functions. In the latter case, f is required to be monotone over D
and f(g(x)) is evaluated at min g(x) and max g(x).

3.3 No Root Exclusion Test

In order to eliminate domains which contain no roots, the sign variation of every
function fi(x), i = 1, . . . , n, is tested over a given domain D. If fi(x) > 0,
(or fi(x) < 0) for some i, for all x ∈ D, D is discarded. For any polynomial
leaf, this test is easily achieved by checking the signs of corresponding Bernstein
coefficients. If all are positive (negative), the convex hull property guarantees
that no roots exist. For every fi, all its polynomial leaves are tested and the
minimum and maximum of the Bernstein coefficients define a bounding interval
of values that the (polynomial) leaves may attain. Since fi is treated as an
expression tree, an interval arithmetic is applied at every interior node of the
tree, giving a new bound on the merged expression. Parsing the tree from its
leaves to the root, only to provide a bound on fi itself.

Global Solutions of Well-Constrained Transcendental Systems 11

3.4 Numerical Improvements Stage

Once a domain, which contains at most one root is isolated, a numerical improve-
ment stage is commenced, and techniques, such as the ones presented in [6] or [7]
could be clearly employed. Herein, we use simple Newton Raphson iterations,
starting with an initial solution guess of x0 at the mid point of the obtained do-
main. The expression tree structure of the equations also allows for an efficient
computation of ∂fi

∂xj
, necessary for the Newton Raphson iterations, by using the

derivative rules (such as the addition and multiplication rules, in Section 3.2).
If the iterations do not converge or go outside of the domain, we declare that

there is no root in the domain. One can, in that case, continue the subdivision
steps in the hope that a closer initial guess will be more successful. This, until
some prescribed subdivision tolerance is met. The last case typically hints on
non simple roots, which are prevented by passing the single solution test, or in
some cases, on roots on the boundary of the domain. However, if the Newton-
Rapshon fails, one can further subdivide to get a closer initial guess or, in the
no-root case, to eliminate that domain by the exclusion test.

3.5 Algorithm – Summary

Every function fi of the system (1) is represented by an expression tree. The
solver parses the tree, starts with the simple bounding cones of polynomial func-
tions at the leaves of the expression tree, and ends up at the root of the tree with
a bounding normal cone of fi. If in some node, the merging process fails to pro-
duce valid bounding cone (i.e. the cone spans the whole Rn), the solver simply
subdivides. Recall from [4] that the advantage of subdividing using expression
trees stems from the fact that only the leaves in the direction of the subdivision
are required to be subdivided.

Once the bounding cones of all the fi functions are built, the complementary
bounding cones are constructed (recall Section 2.2) and the single solution test of
[8] is executed. If this test succeeds, guaranteeing at most one isolated root within
the domain, a multivariate Newton-Rapshon method is applied. Otherwise, the
solver subdivides further, up to the permissible tolerance.

3.6 Analysis of the Bounding Cone’s Tightness

In this section, we discuss the quality of the bound which was introduced in
Section 3.1. The polyhedral bound, the bounding polytope, of the truncated
normal cone is based on bounds of the cap(s), the (n − 1) dimensional ball(s)
Bn−1. For convenience, we shift the index to n, in this section.

Since the tightness of the polytope with respect to the truncated cone follows
the quality of the bound of the orthoplex with respect to B

n, we discuss the
quality of this bound. Several criteria of the bound can be considered:

(1) Number of vertices of the bounding polyhedron,
(2) distance of the farthest vertex from the center of the ball,
(3) the ratio between the volumes of the bound and the original ball.

12 M. Aizenshtein, M. Bartoň, and G. Elber

Table 1. Cube vs. Orthoplex as a bound on unit ball B
n with respect to the dimension

n. The numbers of vertices, volumes and relative volumes with respect to the ball B
n

are shown.

n
NumOfV ert V olume V olumetric Ratio

Orth. Cube Orth. Cube Sphere
Orth.

Sphere
Cube

2 4 4 4 4 π
4

π
4

4 8 16 32
3

16 3π2

64
π2

32

6 12 64 96
5

64 5π3

576
π3

384

8 16 256 8192
315

256 105π4

65536
π4

6144

10 20 1024 16000
567

1024 189π5

640000
π5

122880

2 4 6 8 10 12 14
n

0.2

0.4

0.6

0.8

1.0
RatioRelative volumes

n

Fig. 4. Comparison of the bounding tightness: Relative volumes V (B
n)

V (Cn)
(red) and V (B

n)
V (On)

(blue), as a function of dimension n, are depicted

As a natural alternative to an orthoplex, an n-dimensional cube comes up in
mind. A comparison of these two bounds follows.

(1) As already mentioned in Section 3.1, an orthoplex consists of only 2n vertices
in contrast to 2n vertices of the cube.

(2) Any vertex of both bounding objects is at the distance of r
√
n from the

center of Bn.
(3) The volume of a cube is V (Cn) = (2r)n and the volume of the inscribed

ball2, Bn, is given by

V (Bn) =
(r
√
π)n

Γ (n
2 + 1)

, (16)

2 See, e.g., mathworld.wolfram.com/Ball.html

Global Solutions of Well-Constrained Transcendental Systems 13

which can be rewritten using Stirling’s approximation as

(r
√
π)n

Γ
(

n
2 + 1

) ≈ (
2πe
n

)n
2 rn

√
nπ

. (17)

The direct computation of the volume3 of the orthoplex gives

V (On) =
∫
O

dx = (r
√
n)n

∫
‖x‖1≤1

dx =
(2r
√
n)n

n!
. (18)

Table 1 displays the comparison of the criteria for various n.
Observe also the asymptotic behavior of V (Bn)

V (On) and V (Bn)
V (Cn) , in Fig. 4. Using

Stirling’s approximation again, we get

V (Bn)
V (On)

=
(r

√
π)n

Γ (n
2 +1)

(2r
√

n)n

n!

≈
(2πe

n)
n
2 rn
√

nπ

(2e√
n
)n rn√

2nπ

=
√

2(
π

2e
)

n
2 , (19)

whereas
V (Bn)
V (Cn)

≈ (
eπ

2n
)

n
2

1√
nπ
, (20)

which converges to zero much faster.
As observed from the above analysis, the bounding orthoplex is not only more

efficient to process but it also offers a satisfactory bound on Bn, that is better
than the bounding cube. Hence, the use of the orthoplex as a bounding volume
results in a tight bound of the truncated cone.

4 Examples

Demonstrating the proposed solver on intersection problems, in this section, we
present several examples of solving non-polynomial well-constrained systems.
In the first example, an Archimedean spiral is intersected with a parabola,
(see Fig. 5), resulting in four single roots.

In the next example, circle C1(t) = [10 cos(t), 10 sin(t)], t ∈ [0, 2π] is in-
tersected with cycloid C2(s) = [10 cos(s) + 2 cos(10s), 10 sin(s) + 2 sin(10s)],
s ∈ [0, 2π] yielding the system

10 cos(t)− 10 cos(s)− 2 cos(10s) = 0,
10 sin(t)− 10 sin(s)− 2 sin(10s) = 0, (21)

over the Cartesian product of their parametric domains, [0, 2π] × [0, 2π], see
Fig. 6. A modification of the circle’s radius gives the tangent and near-to-tangent
configuration, see Fig. 7. Whereas the first case forces the solver to subdivide
until the subdivision tolerance is reached, and the centers of the may-be-root
domains are returned, in the latter case, the roots are isolated by the single
solution test [8].
3 See, e.g., wikipedia.org/wiki/Cross-polytope

14 M. Aizenshtein, M. Bartoň, and G. Elber

K3 K2 K1 0 1 2 3

K3

K2

K1

1

2

0 2 4 6 8 10 12 14 16 18
0

1

2

3

1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42

K0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(a) (b) (c)

Fig. 5. (a) Archimedean spiral C1(t) = [1
5
t cos(t), 1

5
t sin(t)], t ∈ [0, 6π] (blue) vs. a

segment of parabola C2(s) = [s,
√

s], s ∈ [0, π], (green) gives 4 intersection points. (b)
Corresponding points (red asterisks) in the parametric st-space [0, 6π]×[0, π]. The grey
domains, rectangles with black polylines as boundaries, report when the subdivision
was stopped with a guarantee of at most one root within the domain. (c) A zoom-in on
the second root. In the case of the root at the origin [0, 0], the subdivision tolerance of
εsub = 10−3 was reached. Once the subdivision is stopped, a Newton-Raphson scheme
is applied to numerically reach the root.

K10 K5 0 5 10

K10

K5

5

10

1 2 3 4 5 6

1

2

3

4

5

6

(a) (b) (c)

Low High

Fig. 6. (a) A cycloid C2(s) = [10 cos(s) + 2 cos(10s), 10 sin(s) + 2 sin(10s)], s ∈ [0, 2π]
(green) is intersected with a circle (blue), giving 18 intersection points. (b) Corre-
sponding points (red asterisks) in the solution (preimage) st-space [0, 2π]× [0, 2π] and
sub-domains, that contain at most one root (grey). (c) Red isocurves indicate locations
where the Jacobian of System (21) is zero. Color coding depicts the L2 norm of the
system, dark color corresponds to low values. Green dots are the roots.

More complex example is shown at Fig. 8. Two cycloidal curves
C1(t) = [sin(t

5) cos(t), sin(t
5) sin(t)], t ∈ [− 5π

2 ,
5π
2] and C2(s) =

[sin(3s) cos(s), sin(3s) sin(s)], s ∈ [−π
2 ,

π
2] are intersected, having fourteen sin-

gle roots and a triple root at point [0, 0].
An example that corresponds to a 4 × 4 system is shown at Fig. 9. Vertices

V1, . . . , V4 of a square (of an unknown size) are constrained to lie in turn on four

Global Solutions of Well-Constrained Transcendental Systems 15

(a) (b) (c)

Fig. 7. (a) A cycloid C2(s) = [10 cos(s) + 2 cos(10s), 10 sin(s) + 2 sin(10s)], s ∈ [0, 2π]
(green) and a circle (blue) of radius r = 8 possess a tangent contact along 9 points (black
asterisks). (b) A semi-tangent configuration for r = 8.01 with 18 pairwise grouped
intersection points and a zoom on one such a pair (c).

K0.8 K0.6 K0.4 K0.2 0 0.2 0.4 0.6 0.8

K1.0

K0.5

0.5

1.0

K6 K4 K2 0 2 4 6

K1.0

K0.5

0.5

1.0

(a) (b) (c)

Low High

Fig. 8. (a) Two cycloidal curves are intersected, giving 17 intersection points (black
asterisks). The solution point at the origin has multiplicity 3. (b) Corresponding points
(red asterisks) in the solution (preimage) st-space [− 5π

2
, 5π

2
]×[−π

2
, π

2
] and sub-domains,

that contain the at most one root (grey rectangles). (c) Red isocurves indicate locations
where the Jacobian of the system is zero. Color coding depicts the L2 norm of the
system, dark color corresponds to low values. Green dots are the roots.

algebraic curves α1 : (x−3)2 +(y−0.4)2 = 1, α2 : (x−3)2 +(x−3)(y−3)+(y−
3)2 = 1, α3 : x2−x(y− 3)+ (y− 3)2 = 1 and α4 : x2 +xy+ y2 = 1. Consider Vi,
i = 1, . . . , 4 as Vi = [c1+k cos(φ+ (i−1)π

2), c2+k sin(φ+ (i−1)π
2)], where C = [c1, c2]

is the center of the square, k is the scaling factor, and φ is the angle between
V1−C and the positive x-axis. Substituting the coordinates of Vi into αi gives the
system. Solving for [c1, c2, k, φ] over domain [0, 3]× [0, 3]× [0, 2.5]× [−π/2, π/2]
gives 6 solutions, see Fig. 9. Observe that the configuration of four blue curves
offers many almost-solution positions of the square, which makes the system
time demanding.

16 M. Aizenshtein, M. Bartoň, and G. Elber

Fig. 9. A solution of a time demanding 4× 4 system: A square of an unknown edge’s
length is sought such that each its vertex lies on one of four particular implicit curves
(blue). Six solutions were found (red). One solution (square) is highlighted (bold black).

(a) (b) (c)

Fig. 10. (a) A curve-surface intersection with 2 solutions. (b) The same arrangement
seen from the top. (c) A zoom on a root-containing segment of the solution, uv × t,
space. Colored voxels report when the solver stops subdivision, while the two thick
black dots are the roots of the system.

As a last example, space curve C(t) = [et, e−2t, t
2], t ∈ [0, 1] is intersected

with surface S(u, v) = [ln(1 + u), ln(1 + v), cos(2π(uv+ v)), [u, v] ∈ [0, 1]× [0, 1],
giving a system of dimension three.

Table 2 gives a timing summary of all given examples. These timings are
obtained from a 2.67 Mhz IBM PC running Windows XP. Every example was
run 60 times and the timings were averaged.

Global Solutions of Well-Constrained Transcendental Systems 17

Table 2. All the parametric spaces were scaled to the unit box, tested with subdivision
tolerance εsub = 10−3. Times are for an 2.67 MHz IBM PC running Windows XP.

Example Num Of Roots T ime(secs)

Fig. 5 4 0.0049
Fig. 6 18 0.0487

Fig. 7(a) 9 0.1011
Fig. 7(b) 18 0.0998

Fig. 8 17 0.0276
Fig. 9 6 100.2
Fig. 10 2 0.0187

5 Conclusion and Future Work

In this work, we have presented a solver that robustly solves well-constrained
n×n transcendental systems. Exploiting the expression trees to construct bound-
ing normal cones of n transcendental constraints, the subdivision based solver
detects all sub-domains, where at most one root can exist. The root is then
numerically improved by a multivariate Newton-Raphson scheme.

The presented solver guarantees to isolate and return all single roots of the
system within a given domain. Other roots are only isolated. This, in contrast
of commercial software such as Maple4, Mathematica5, or Matlab6, which – to
our best knowledge – can locally isolate and provide only one root or a few of
them.

As a future work, an improved algorithm is intended, which better handles
multiple roots. As of now, the solver only subdivides to such points, up to the
permissible tolerance. In addition, the numerical stage of the algorithm deserves
some further research. For once, under the current scheme, there is no guarantee
that a multivariate Newton-Raphson scheme will converge to the root. Also, if
the system is underconstrained and (at least) one-dimensional solution space is
expected like in [2], a special treatment of the system is more favorable.

Despite the use of expression trees, which are highly efficient during the subdi-
vision stage, the growth in the number of subdivisions is required to be minimal
with respect to the dimension n. Hence, the handling of higher-dimensional sys-
tems is within the scope of our interest.

Acknowledgments

This research was partly supported by the Israel Science Foundation (grant No.
346/07), and in part by the New York metropolitan research fund, Technion.
4 http://www.maplesoft.com/
5 http://www.wolfram.com/products/mathematica
6 http://www.mathworks.com/

18 M. Aizenshtein, M. Bartoň, and G. Elber

References

1. Barequet, G., Elber, G.: Optimal bounding cones of vectors in three and higher
dimensions. Information Processing Letters 93, 83–89 (2005)

2. Bartoň, M., Hanniel, I., Elber, G.: Topologically guaranteed univariate solutions
of underconstrained polynomial systems via no–loop and single–component tests
(in preparation)

3. Cox, D.A., Little, J.B., O’Shea, D.: Using algebraic geometry. Springer, Heidelberg
(2005)

4. Elber, G., Grandine, T.: Efficient solution to systems of multivariate polynomi-
als using expression trees. In: Tenth SIAM Conference on Geometric Design and
Computing (2007)

5. Gaukel, J.: Efficient solving of polynomial and nonpolynomial systems using sub-
division (in German), PhD thesis, TU Darmstadt (2003)

6. Graspa, T.N., Vrahatis, M.N.: Dimension reducing methods for systems of non-
linear equations and unconstrained optimization: A review. Recent Adv. Mech.
Related Fields, 215–225 (2003)

7. Grosan, C., Abraham, A.: A new approach for solving nonlinear equations systems.
IEEE Transactions on systems, man and cybernetics: Systems and humans 38(3)
(2008)

8. Hanniel, I., Elber, G.: Subdivision termination criteria in subdivision multivari-
ate solvers using dual hyperplanes representations. Computer Aided Design (39),
369–378 (2007)

9. McNamee, J.M.: Bibliographies on roots of polynomials. J. Comp. Appl. Math (47),
391–394, 78(1-1), (110), 305–306, (142) (433–434) (1993–2002)

10. Mourrain, B., Pavone, J.-P.: Subdivision methods for solving polynomial equations.
J. of Symbolic Computation 44(3), 292–306 (2009)

11. Neumaier, A.: Introduction to Numerical Analysis. Cambridge Univ. Press, Cam-
bridge (2001)

12. Reuter, M., Mikkelsen, T.S., Sherbrooke, E.C., Maekawa, T., Patrikalakis, N.M.:
Solving nonlinear polynomial systems in the barycentric Bernstein basis. Visual
Computer (24), 187–200 (2008)

13. Rheinboldt, W.C.: Methods for solving systems of nonlinear equations. In: Regional
Conference Series in Applied Mathematics, 2nd edn. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia (1998)

14. Sherbrooke, E.C., Patrikalakis, N.M.: Computation of solution of nonlinear poly-
nomial systems. Computer Aided Geometric Design 5(10), 379–405 (1993)

15. Sommese, A.J., Wampler, C.W.: The numerical solution of systems of polynomials
arising in engineering and science. World Scientific, Singapore (2005)

16. Stewart, J.: Multivariate Calculus (2002)
17. Wang, H., Kearney, J., Atkinson, K.: Robust and efficient computation of the

closest point on a spline curve. In: Lyche, T., et al. (eds.) Curve and Surface
Design, Saint Malo 2002, pp. 397–405. Nashboro Press, Brentwood (2002)

18. Zhou, J., Sherbrooke, E.C., Patrikalakis, N.M.: Computation of stationary points
of distance functions. Engineering with Computers 9(4), 231–246 (1993)

Surfaces with Rational Chord Length
Parameterization

Bohumı́r Bastl1, Bert Jüttler2, Miroslav Lávička1, and Zbyněk Š́ır1

1 University of West Bohemia, Faculty of Applied Sciences,
Department of Mathematics, Plzeň, Czech Republic

{bastl,lavicka,zsir}@kma.zcu.cz
2 Johannes Kepler University of Linz, Institute of Applied Geometry,

Linz, Austria
bert.juettler@jku.at

Abstract. We consider a rational triangular Bézier surface of degree n
and study conditions under which it is rationally parameterized by chord
lengths (RCL surface) with respect to the reference circle. The distin-
guishing property of these surfaces is that the ratios of the three distances
of a point to the three vertices of an arbitrary triangle inscribed to the
reference circle and the ratios of the distances of the parameter point to
the three vertices of the corresponding domain triangle are identical. This
RCL property, which extends an observation from [10,13] about rational
curves parameterized by chord lengths, was firstly observed in the sur-
face case for patches on spheres in [2]. In the present paper, we analyze
the entire family of RCL surfaces, provide their general parameterization
and thoroughly investigate their properties.

1 Introduction

Recently, chord length parametrization has become an active research area in
Computer Aided Geometric Design. This approach was motivated by the use of
chord length parameterization for interpolation and approximation of discrete
point data. It can be seen as an alternative to arc-length parameterizations
because analogously to arc-length parameter, the chord-length parameter is also
uniquely given by the loci of the curve.

The investigation of rational curves with chord length parameterization was
initiated by [6] by formulating the observation that rational quadratic circles
in standard Bézier form are parameterized by chord length. Earlier, a geomet-
ric proof of this fact was given in [11], along with an application to a circle-
preserving variant of the four-point subdivision scheme. A thorough analysis
followed in [10,13], where two independent constructions for general rational
curves of this type were presented. In some sense, rational curves with chord
length parameterizations (shortly RCL curves) are a chord-length analogy to
the so called Pythagorean-hodograph curves characterized by closed form ex-
pressions for their arc-lengths, cf. [7,9].

Curves with RCL property are worth studying mainly because of the fol-
lowing advantages. First they provide a simple inversion formula, which can be

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 19–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 B. Bastl et al.

e.g. used for computing their implicit equations. Second, it is simple to perform
point-curve testing. Finally, these curves do not possess self-intersections. In ad-
dition to straight lines and circles in standard form, this class of RCL curves also
contain e.g. equilateral hyperbola, Bernoulli’s lemniscate and Pascal’s Limaçon.
Curves with chord-length parameterization were also mentioned among remark-
able families of curves admitting a complex rational form in [12].

Motivated by RCL curves, it is natural to extend this approach also to ra-
tional surfaces. A promising result was presented in [2] where the equal chord
property of quadratic rational Bézier patches describing a segment of a sphere
was proved. For this, the well-known construction of spherical quadratic patches
by stereographic projection was used, cf. [1,4,5]. This result directly extends
the planar result for circles, see [6]. As a byproduct, it was shown in [2] how
to characterize this property using tripolar coordinates in space, which extend
the observations of [13] concerning the relation between bipolar coordinates (see
[3,8] for more details) and curves with chord-length parameterization.

The present paper is devoted to the equal chord property of rational triangu-
lar Bézier surfaces of degree n, thus extending the results of [10,13] to the case
of surfaces. We present a general construction of rational chord length parame-
terizations (RCL surfaces) and study their attractive geometric properties. The
introduced approach is then demonstrated by several examples of RCL surfaces.

2 Preliminaries

We consider a rational surface of degree n, which is described by its triangular
Bernstein–Bézier representation

P(X) =

∑
i,j,k∈Z+, i+j+k=n

wijk bijk
n!
i!j!k!

λiμjνk

∑
i,j,k∈Z+, i+j+k=n

wijk
n!
i!j!k!

λiμjνk
, X ∈ R

2 (1)

with respect to a non-degenerate reference triangle �(A1,A2,A3) ⊂ R2 with
vertices (A�)�=1,2,3. Its argument

X = λA1 + μA2 + νA3, λ+ μ+ ν = 1, (2)

is expressed by barycentric coordinates with respect to the reference triangle.
The shape of the surface is determined by the

(
n+1

2

)
control points bijk with

the associated weights wijk. In particular, the control net of the patch has the
three vertices

v1 = bn00, v2 = b0n0, and v3 = b00n (3)

which are the images of the vertices of the reference triangle.
Let

R�(X) = ||X−A�||2 and r�(X) = ||P(X) − v�||2 (4)

Surfaces with Rational Chord Length Parameterization 21

be the squared distances of the point X and its image P(X) to the vertices of
the domain triangle and to the vertices of the patch, respectively.

Definition 1. The surface (1) is a rational chord length parameterization
(RCL) with respect to the reference triangle, if

r1 : r2 : r3 = R1 : R2 : R3, or, equivalently,

∀(i, j) ∈ {(1, 2), (2, 3), (3, 1)} : riRj = rjRi (5)

holds for all points X ∈ R2.

The squares of the chord lengths are quadratic polynomial functions of the
barycentric coordinates. On the other hand, for any point of a RCL surface,
the barycentric coordinates of the argument can be computed from the chord
lengths by solving a quadratic equation, see [2] for more details.

We first analyze the relation between the reference triangle and the triangle
spanned by the vertices of the control net.

Lemma 1. If the surface is a rational chord length parameterization, then the
triangles �(A1,A2,A3) and �(v1,v2,v3) are similar.

Proof. We evaluate the three relations (5) at the three vertices A� of the domain
triangle. Six of these 9 equations are trivially satisfied, since one of the ri and Ri

vanish at each vertex. The remaining three equations guarantee the similarity of
the triangles. ��

In the remainder of the paper, we identify the reference triangle �(A1,A2,A3)
with the vertex triangle �(v1,v2,v3) and the domain R

2 containing it with the
plane spanned by the vertex triangle. Consequently, the domain of the surface
is the plane spanned by the vertex triangle.

For any point Y ∈ R3, we denote with

	�(Y) = ||Y − v�||2,
 = 1, 2, 3, (6)

the squared distances to the vertices of the patch.

Lemma 2. The set of all points Y satisfying

∀(i, j) ∈ {(1, 2), (2, 3), (3, 1)} : 	i(Y)Rj(X) = 	j(Y)Ri(X) (7)

is a circle which passes through X and is perpendicular to any sphere containing
the vertices of the patch. If X lies on the circumcircle of the vertex triangle, then
the circle Y shrinks to the single point X.

Proof. Recall that for any two points M, N in the plane, the set of all points Z
satisfying

||Z−M||2 = c ||Z−N||2 (8)

22 B. Bastl et al.

for some positive constant c is a circle (Apollonius’ definition) which intersects
any circle through M and N orthogonally. Consequently, for a given point X,
the set of all points Y satisfying

	i(Y)Rj(X) = 	j(Y)Ri(X) (9)

is a sphere whose center lies on the line through vi and vj . Moreover, any sphere
containing these two vertices intersects this sphere orthogonally. Indeed, if we
consider the intersection with the common symmetry plane of both spheres,
which is spanned by the sphere’s center and the line through vi and vj , then
we obtain the two families of circles which appear in Apollonius’ definition of a
circle.

Clearly, the three spheres (9) obtained for (i, j) ∈ {(1, 2), (2, 3), (3, 1)} inter-
sect in one circle, since the equations defining them are not independent. More-
over, since these spheres intersect any sphere through the three points v1,v2,v3,
orthogonally, so does the intersection curve, cf. Fig. 1.

If X belongs to the circumcircle of the vertex triangle, then any two of the
three spheres (9) touch each other at this point and the circle degenerates into
a single point. ��

Corollary 1. If P is a rational chord length parameterization, then its restric-
tion to the circumcircle of the reference triangle is the identity. Moreover, the
surface is a rational chord length parameterization with respect to any reference
triangle which possesses the same circumcircle.

Proof. The surface P is a RCL surface if and only if any point P(X) lies on the
circle described in Lemma 2. On the one hand, if X is on the circumcircle of

Fig. 1. Examples of circles perpendicular to any sphere containing the reference circle

Surfaces with Rational Chord Length Parameterization 23

the reference triangle, then this circle shrinks to the point X itself. On the other
hand, the family of circles described in Lemma 2 does not depend on choice of
the reference triangle. ��

Consequently, the RCL surface always contains the circumcircle of its reference
triangle, and its definition depends solely on this circle. The latter fact can also
be concluded from Corollary 4 of [2]. This observation motivates the following
extended definition.

Definition 2. A surface P is said to be a rational chord length parameterization
with respect to a circle, if it is a rational chord length parameterization with
respect to a reference triangle possessing this circle as its circumcircle.

3 Construction of RCL Surfaces

In order to simplify the formulas, we choose the reference circle as the unit circle
C in the xy-plane. Consequently, the arguments of the rational surface P are all
points of the form X = (u, v, 0)�.

Theorem 1. A surface P is a rational chord length parameterization with re-
spect to the reference circle C if and only if there exists a rational function
q : (u, v) �→ q(u, v) such that

P(u, v) =
(

(1 + q2)u
1 + q2(u2 + v2)

,
(1 + q2)v

1 + q2(u2 + v2)
,
q(1− u2 − v2)
1 + q2(u2 + v2)

)�
. (10)

Proof. Without loss of generality, we consider the reference triangle with the
vertices A1 = (1, 0, 0)�, A2 = (0, 1, 0)�, A3 = (0,−1, 0)� on the reference circle
C. The surface P is RCL if and only if there exists a rational function λ such
that the squared distances R� and r� are related by

∀(u, v) : λ(u, v)R�(u, v) = r�(u, v),
 = 1, 2, 3. (11)

A short computation confirms that the intersection points of the three spheres
with centers Ai and radii

√
ri has the coordinates

P±(u, v) =
1
4
(
− 2r1 + r2 + r3,−r2 + r3,

±
√

2 ·
√

4(r2 + r3)− [(r1 − r2)2 + (r1 − r3)2]− 8
)�

.

(12)

Using (11) and the identities R1 = (u − 1)2 + v2, R2 = u2 + (v − 1)2, R3 =
u2 + (v + 1)2, which follow from the definition (4), this can be rewritten as

P±(u, v) =
(
λu, λv,±

√
(1− λ)(λu2 + λv2 − 1)

)�
. (13)

This surface has a rational parameterization with respect to u, v if and only if
the argument of the square root is a perfect square. This is equivalent to the
condition on the existence of a rational function q(u, v) such that

1− λ = q2(λu2 + λv2 − 1). (14)

24 B. Bastl et al.

Solving (14) for λ we arrive at

λ(u, v) =
1 + q(u, v)2

1 + q(u, v)2(u2 + v2)
. (15)

Finally, we substitute λ into (13). The two possible choices of the sign of the third
coordinate can be obtained by specifying the sign of the rational function q. ��

We provide a geometric meaning for this result.

Proposition 1. Consider the angle α(u, v) ∈ [−π, π] which satisfies

tan
α(u, v)

2
= q(u, v). (16)

If u2 + v2 �= 1, then α is the angle between the xy-plane and the sphere which
passes through the point P(u, v) and the reference circle C. If u2 + v2 = 1, then
P(u, v) lies on the reference circle C and α is the angle between the xy-plane and
the tangent plane of the surface P at this point.

Proof. We consider a surface (10). In the first case, the unique sphere which
passes through the reference circle and through the point P(u, v) has the center
C = (0, 0, (q2− 1)/(2q))� and the radius r = (q2 + 1)/(2|q|). The oriented angle
α between the sphere and the xy-plane is equal to the angle between the vectors
(C−A1) and (0, 0, 1)�, which gives tanα = 2q

1−q2 . The second case can be proved
similarly by a direct computation. ��

Remark 1. The angle α is equal to the angle which is used in the definition of
tripolar coordinates, as introduced in [2].

The following observation provides an alternative geometric interpretation of the
characterization result (10).

Proposition 2. Any RCL surface (10) with the reference circle C can be ob-
tained by composing

(i) the inversion M with respect to the sphere centered at (0,−1, 0)� with radius√
2,

(ii) the rotation Rα about the x-axis through the angle α(u, v), where q satisfies
(16), and

(iii) the same inversion as in (i) ,

and applying this transformation to the parameterization (u, v, 0)� of the plane
containing C.

Proof. The rotation (ii) and the inversion (i,iii) are described by

Rα(x, y, z) =

⎛⎜⎝1 0 0
0 1−q2

1+q2 − 2q
1+q2

0 2q
1+q2

1−q2

1+q2

⎞⎟⎠
⎛⎝x
y
z

⎞⎠ (17)

Surfaces with Rational Chord Length Parameterization 25

and

M(x, y, z) =
1

x2 + (y + 1)2 + z2

⎛⎝ 2x
1− x2 − y2 − z2

2z

⎞⎠ . (18)

A direct computation now confirms that

P(u, v) = (M ◦Rα ◦M)(u, v, 0), (19)

cf. (16) and (10). ��

Remark 2. The characterization (19) of RCL surfaces can be derived directly, as
follows. The inversion M maps the reference circle to the x-axis and the circles
of constant chord-length ratios described in Lemma 2 to coaxial circles around
it. Consequently, M(P(u, v)) can be obtained by applying the rotation Rα to
the point M(u, v, 0). This leads to (19), since M = M−1. All RCL surfaces can
be obtained in this way, since M is a birational mapping. Proposition 1 can also
be derived from this construction, since the spherical inversion M is a conformal
transformation.

4 Properties and Examples of RCL Surfaces

In this section we will review some attractive properties of RCL surfaces and
demonstrate them on some interesting examples which are computed using (10)
for different choices of q(u, v). Obviously, by choosing a constant function q(u, v),
we obtain a sphere, cf. [2].

Proposition 3. Any RCL surface P(u, v) has a rational unit normal field along
the reference circle. On the other hand, any rational unit normal field along the
reference circle can be extended to an RCL surface. Finally, two RCL surfaces
given by (10) with functions q1, q2 have the same normals along the reference
circle if and only if

q1 − q2 = (1− u2 − v2)f, (20)

where f(u, v) is a rational function.

Proof. Under the condition u2 + v2 = 1, the unit normal of P can be computed
from (10) as (

2qu
1 + q2

,
2qv

1 + q2
,
1− q2
1 + q2

)�
. (21)

This gives also the second statement. Finally, the third part is a direct
consequence. ��

Let I denotes the circle inversion with respect to the reference circle in the u, v
plane, i.e.,

I(u, v) =
(

u

u2 + v2 ,
v

u2 + v2

)�
.

The following proposition can be verified by a straightforward computation.

26 B. Bastl et al.

Proposition 4. The two surfaces P1(u, v), P2(u, v) obtained for q(u, v) and
−1/q(I(u, v)), respectively, are identical up to the reparameterization via I, i.e.,

P1(u, v) = P2(I(u, v)).

Definition 3. For a given q let us call the restriction of P1(u, v), or P2(u, v)
to the reference disc (i.e., to the interior of the reference circle) the first branch,
or the second branch of the associated RCL surface.

Figures 2 and 3 (left) present examples of the surfaces mentioned in
Proposition 4, where red and blue patches correspond to P1(u, v) and P2(u, v),
respectively.

Proposition 5. If q(u, v) (or 1/q(I(u, v))) does not possess a pole at (0, 0), then
the first branch (or the second branch) is smooth and bounded. In particular,
if both these conditions hold, then the entire RCL surface is a closed bounded
smooth surface.

Fig. 2. Left: q(u, v) = 1− u2 − v2; Right: q(u, v) = 1/(1 + u2 + v2) + 1

Fig. 3. Left: q(u, v) = u2 + v2; Right: q(u, v) = u + 1

Surfaces with Rational Chord Length Parameterization 27

Fig. 4. Left: q(u, v) = 2u + v + 1; Right: q(u, v) = u2 − 2/3

Proof. If there is no pole for q at (0, 0), then Pq(0, 0) = (0, 0, q)� is well defined
and finite. By a continuity argument the same holds for some neighborhood of
(0, 0). The remainder of the first branch is also bounded, since each point must
lie on the corresponding circle – see Lemma 2. The same argument holds for the
second branch and −1/q(I(0, 0)). ��

Proposition 6. The first branches P1, P̃1 of two RCL surfaces join with G1

continuity along the reference circle if and only if qq̃ = −1 for u2 + v2 = 1.

Proof. The first branches P1 and P̃1 join with G1 continuity along the reference
circle iff α̃ = −(180◦ − α). Hence, q̃ = tan α̃

2 = − tan
(
90◦ − α

2

)
= − cot α

2 =
−1/q. ��

Figures 3 (right) and 4 show examples of surfaces described in Proposition 6,
where red and blue patches correspond to P1 and P̃1, respectively.

5 Conclusion

We described a class of rational triangular Bézier surfaces possessing a param-
eterization which preserves the distance ratios to the vertices of the domain
triangle inscribed to the reference circle. This extends the property of chord-
length parameterization of rational curves, which was studied in [10] and [13], to
the case of surfaces. We identified a family of RCL surfaces, characterized their
general parameterization and studied their properties. The future research will
be focused mainly on modeling with surface patches of this type.

Acknowledgments

B. Bastl, M. Lávička and Zbyněk Š́ır were supported by Research Plan MSM
4977751301. All authors were supported by grant 2009/05 of AKTION Öster-
reich–Tschechische Republik. We thank all referees for their comments which
helped us to improve this paper.

28 B. Bastl et al.

References

1. Albrecht, G.: Determination and classification of triangular quadric patches. Com-
puter Aided Geometric Design 15, 675–697 (1998)

2. Bastl, B., Jüttler, B., Lávička, M., Schicho, J., Š́ır, Z.: Spherical quadratic Bézier
triangles with rational chord lengths parameterization and tripolar coordinates in
space, Computer Aided Geometric Design, submitted. Available as Report no. 90
(2009) (submitted), http://www.industrial-geometry.at/techrep.php

3. Bateman, H.: Spheroidal and bipolar coordinates. Duke Mathematical Journal 4(1),
39–50 (1938)

4. Dietz, R., Hoschek, J., Jüttler, B.: An algebraic approach to curves and surfaces on
the sphere and on other quadrics. Computer Aided Geometric Design 10, 211–229
(1993)

5. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Francisco (2002)
6. Farin, G.: Rational quadratic circles are parametrized by chord length. Computer

Aided Geometric Design 23, 722–724 (2006)
7. Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable.

Springer, Berlin (2008)
8. Farouki, R., Moon, H.P.: Bipolar and multipolar coordinates. In: Cippola, R., Mar-

tin, R. (eds.) The Mathematics of Surfaces IX, pp. 348–371. Springer, Heidelberg
(2000)

9. Farouki, R., Sakkalis, T.: Real rational curves are not unit speed. Computer Aided
Geometric Design 8, 151–158 (1991)

10. Lü, W.: Curves with chord length parameterization. Computer Aided Geometric
Design 26, 342–350 (2009)

11. Sabin, M.A., Dodgson, N.A.: A circle-preserving variant of the four-point subdivi-
sion scheme. In: Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves
and Surfaces, pp. 275–286. Nashboro Press (2005)

12. Sánchez-Reyes, J.: Complex rational Bézier curves. Computer Aided Geometric
Design 26, 865–876 (2009)

13. Sánchez-Reyes, J., Fernández-Jambrina, L.: Curves with rational chord-length
parametrization. Computer Aided Geometric Design 25, 205–213 (2008)

http://www.industrial-geometry.at/techrep.php

Support Function of Pythagorean Hodograph Cubics
and G1 Hermite Interpolation

Eva Černohorská and Zbynek Šı́r

Faculty of Mathematics and Physics, Charles University in Prague,
Sokolovská 83, 186 75 Praha 8

evajs@atlas.cz,zbynek.sir@mff.cuni.cz

Abstract. The Tschirnhausen cubic represents all non-degenerate Pythagorean
Hododgraph cubics. We determine its support function and represent it as a con-
volution of a centrally symmetrical curve and a curve with linear normals. We
use the support function to parametrize the Tschirnhausen cubic by normals. This
parametrization is then used to an elegant and complete solution of the G1 Her-
mite interpolation by Pythagorean Hodograph cubics. We apply the resulting al-
gorithm to various examples and extend it to the interpolation by offsets of PH
cubics.

1 Introduction

The support function representation describes a curve as the envelope of its tangent
lines, where the distance between the tangent line and the origin is specified by a func-
tion of the unit normal vector. This representation is one of the classical tools in the
field of convex geometry [3,10,11]. In this representation offsetting and convolution of
curves correspond to simple algebraic operations of the corresponding support func-
tions. In addition, it provides a computationally simple way to extract curvature in-
formation [9]. Applications of this representation to problems from Computer Aided
Design were foreseen in the classical paper [16] and developed in several recent publi-
cations, see e.g. [18,8,19,2,1,20].

Pythagorean hodograph (PH) curves form an important subclass of polynomial para-
metric curves. The distinguishing property is that their arc length function is piecewise
polynomial and, in the planar case, they possess rational offset curves. Since their intro-
duction by Farouki and Sakkalis [5], planar and spatial PH curves have been thoroughly
studied, see [6,7] and the references cited therein. Due to the special algebraic proper-
ties of PH curves, all constructions, such as interpolation or approximation, which are
linear in the case of standard spline curves become quadratic, see e.g. [12,15,17].

The simplest nontrivial polynomial PH curves are polynomial PH cubics. The prob-
lem of G1 Hermite interpolation with PH cubics was first studied in [14] and later
analyzed in [4]. In these papers the control polygon of the interpolants is constructed
directly, while certain condition on its legs and angles is required, in order to ensure the
PH condition.

The support function representation is particularly well suited for geometrical inter-
polation. In the present paper we exploit the fact, that up to similarities and reparame-
terization there is only one PH cubic, called the Tschirnhausen cubic. We determine its

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 29–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 E. Černohorská and Z. Šı́r

support function and then fully describe all possible data which can be interpolated and
give the number of solutions. We thus solve the interpolation problem in a top-down
way and extend results of [14].

The remainder of this paper is organized as follows. In Section 2 we recall some basic
facts about PH curves and support function. In Section 3 we determine the support
function and suitable parameterization of the Tschirnhausen cubic. In Section 4 we
carefully analyze all Hermite data occurring on the Tschirnhausen cubic. Section 5 is
devoted to the interpolation algorithm and examples. Finally we conclude the paper.

2 Preliminaries

In this section we will recall some basic facts about Pythagorean Hodograph curves and
the support function representation.

Recall, that a polynomial planar curve c = (x(t), y(t))� is called Pythagorean-Ho-
dograph curve (PH), if there exists a polynomial σ so that

x′
2(t) + y′

2(t) = σ2(t) (1)

see [6] and citations therein. All polynomial PH curves can be constructed using the
following lemma proved for general unique factorization domains by Kubota in [13].

Lemma 1. The condition (1) is satisfied if and only if there exist polynomials u(t), v(t),
w(t) such that

x′(t) = 2u(t)v(t)w(t) and y′(t) = [u2(t)− v2(t)]w(t). (2)

We are in particular interested in cubic PH curves. We can suppose that w(t) = 1, since
any non-constant w would lead to a cubic which is just a (singular) reparameterization
of a straight line. In order to obtain a cubic, the maximal degree of polynomials u, v
must be 1. Consider the following PH cubic.

Definition 1. The PH curve

T (t) =
(
−t2, t− t3

3

)�
, (3)

obtained setting w(t) = 1, u(t) = −1 and v(t) = t in (2), is called the Tschirnhausen
cubic see Figure 1.

We use a somewhat unusual position of the Tschirnhausen cubic in order to obtain a
nice support function later on. In fact, this curve is a typical representative of PH cubics
as shown in the following lemma which is proved in [5].

Lemma 2. Any (segment of) PH cubic can be obtained from (a segment of) the Tschirn-
hausen cubic via scaling, rotation, translation and linear reparameterization.

For an (oriented) planar curve c we define its support function h as (possibly multival-
ued) function defined on the (subset of the) unit circle

h : S
1 ⊃ U → R

1

Support Function of Pythagorean Hodograph Cubics 31

V

U

�v

�u

�w
ω

β

Fig. 1. The Tschirnhausen cubic and description of the Hermite data on its segment U , V using
vectors β and ω

which to any unit normal n = (n1, n2)� associates the distance(s) from the origin to
the corresponding tangent line(s) of the curve. The curve c can be recovered from h as
the envelope of the system {n · x− h(n) = 0 : n ∈ U} of these lines via the envelope
formula

c(n) = h(n)n +∇S1h(n), (4)

where∇S1 denotes the intrinsic gradient with respect to the unit circle. Rotation, scaling
and translation of c correspond to rotation of h, multiplication of h by a constant and
adding a linear term to h, respectively. Moreover the convolution of curves corresponds
to the addition of their support functions, see [18] for more details.

3 Support Function of the Tschirnhausen Cubic

In this section we will determine the support function of the Tschirnhausen cubic and
describe it as a convolution of a curve with odd rational support function and a curve
with even rational support function. We will also parametrize the Tschirnhausen cubic
by its normals.

Theorem 1. The support function of the Tschirnhausen cubic is the restriction of the
function (5) to the unit circle.

h(n1, n2) =
n3

1 − 3n1 + 2
3n2

2
(5)

Proof. Consider the two equations

n ·T (t) = −n1t
2 +n2(t−

t3

3
) = h and n ·T ′(t) = −n12t+n2(1− t2) = 0, (6)

where the former express that T (t) lies on a line and the latter forces its normal vector
n to be perpendicular to the tangent vector at the same point T (t). After elimination

32 E. Černohorská and Z. Šı́r

⊕
=

h = 2
3n2

2
h = n3

1−3n1
3n2

2
h = n3

1−3n1+2

3n2
2

Fig. 2. Tschirnhausen cubic as a convolution of a LN curve and a curve with an even rational
support function

of t from (6) we get one quadratic equation for h. Each solution corresponds to one
orientation of T and we choose one of them by fixing the normal (1, 0)� at the point
(0, 0)�. After simplification of the corresponding solution using n2

1 +n2
2 = 1 we obtain

the result (5). See [8] for more details about support functions obtained as restrictions
of rational functions. ��

For later reference purposes we substitute the parameterization n = (cos θ, sin θ)� of
the unit circle into (5) obtaining

h(θ) =
(1− cos θ)(2 + cos θ)

3(1 + cos θ)
. (7)

The envelope formula (4) then becomes

T (θ) = h(θ)n(θ) + h′(θ)n′(θ) =
(
− 1− cos 2θ

2(1 + cos θ)2
,
2 sin θ + 2 sin 2θ

3(1 + cos θ)2

)�
, (8)

which is the parametrization of the Tschirnhausen cubic by its normal, i.e. the normal
at T (θ) is simply n(θ) = (cos θ, sin θ)�. In this case, the two parameterizations T (t)
and T (θ) are related by simple equation

t = tan
θ

2
. (9)

Theorem 1 also leads to the natural decomposition of the support function of the
Tschirnhausen cubic into a sum of an even and an odd rational function

n3
1 − 3n1 + 2

3n2
2

=
2

3n2
2

+
n3

1 − 3n1

3n2
2

. (10)

Consequently, the Tschirnhausen cubic is a convolution (see Figure 2) of a centrally
symmetrical curve (of degree 6) with even rational support and a cubic curve with linear
normals, see [8] for general theory.

Support Function of Pythagorean Hodograph Cubics 33

β

ω

0 2π

π

4π
3

ββ̃

ω

2π

π

2π
3

5π
3

4π
3

π
2

Fig. 3. All pairs of angles obtained from the segments on the Tschirnhausen cubic (left) and the
detail of one of the four symmetrically placed components of the domain Ω (right), which is
black on the left figure. Different colors represent: no segment (white), one segment without loop
(violet), one segment with loop (yellow), two segments without loop (blue), two segments with
loop (green) and two segments of which precisely one has a loop (red). When printed in black
and white the colors can be distinguished by the decreasing brightness: yellow, green, violet, red,
blue. Note than only two colors (yellow and violet) appear on the left figure.

4 G1 Data on the Tschirnhausen Cubic

In this section we will describe G1 Hermite data generated by boundary points of all
possible segments of Tschirnhausen cubic. Consider a segment with the end–points
U ,V . The G1 boundary data are (up to similarity) fully described by a pair of oriented
angles β ∈ (−2π, 2π) and ω ∈ [−π, π], where β is the rotation angle traveled by the
tangent vector between points U, V and ω is the oriented angle between the difference
vector

−−→
UV and the bisector of β (more precisely the middle tangent vector −→w which

appears in the segment UV), see Fig. 1.
Clearly the obtained pairs (β, ω) do not depend on the scaling, rotation and transla-

tion of the cubic. On the other hand, symmetrical results will occur for its two possible
orientations.

Lemma 3. Considering all segments on the Tschirnhausen cubic, there is

i) one segment without loop for any pair of angles satisfying

|β| < 4π
3
, |ω| < |β|

2
(11)

ii) one segment with loop for any pair of angles

4π
3
< |β| < 2π,

|β|
2
< |ω| < π (12)

iii) two segments for any pair of angles in the interior of the domain

Ω := {(β, ω) :
4π
3
≤ |β| ≤ 2π, |π − arctan

2 sin |β|
2√

1 + 2 cosβ
| ≤ |ω| ≤ |β|

2
}. (13)

34 E. Černohorská and Z. Šı́r

and one segment for angles on its boundary curves.1

Other pairs of angles can not be obtained, including corner points of Ω, see Figure 3.

Proof. Two different orientations of the Tschirnhausen cubic will produce symmetri-
cal data (−β, ω instead of β, ω). We will therefore suppose β > 0 and use only the
parametrization (8) which is very suitable for our purpose, since θ is the oriented an-
gle between the tangent vector and the vector (0, 1)�. For this reason, any segment for
given β can be obtained from T (θ) for θ ∈ (−β/2+α, β/2+α). Since T (θ) is defined
only for θ ∈ (−π, π), we get following domains for β, α

β ∈ (0, 2π), α ∈
(
−π +

β

2
, π − β

2

)
. (14)

In order to simplify the computation of ω we will consider rotated Tschirnhausen cubic

Tα(θ̃) := T (θ̃ + α)

and segments obtained by taking Tα(θ̃) for θ̃ ∈ (−β/2, β/2). In this case, ω is simply

the angle between the vectors
−−→
UV and (0, 1)�, which is the bisector of the tangent

vectors at U and V . By a direct computation, we get

−−→
UV = Tα

(
β
2

)
− Tα

(
−β

2

)
=

(
− 8 sin α sin3 β

2

3(cos α+cos β
2)3
,

4(3 cos β
2 +(2+cos β) cos α) sin β

2

3(cos α+cos β
2)3

)�
.

(15)
and taking the ratio of both components of this vector we get

tanω = −
2 sinα sin2 β

2

3 cos β
2 + (2 + cosβ) cosα

=: F (α, β). (16)

The angle ω can be deduced from (16) considering, that |ω| < π/2 or |ω| > π/2
depending on the sign of the y-component of

−−→
UV . In order to understand the behavior

of ω as a function of β andαwe have to analyze the functionF (α, β) within the domain
(14). It is easy to check that F (α, β) is odd in α and even in β. We will discuss different
cases depending on β. The denominator of (16) is zero exactly for

α = ± arccos

(
3 cos β

2

2 + cosβ

)
︸ ︷︷ ︸

ᾱ

(17)

and due to (14), F (α, β) will have a discontinuity for β ∈ (π, 4π/3). At the same time,

ᾱ is the only value, for which the y-component of the vector
−−→
UV can be 0 and change

sign.
We also obtain

∂F (α, β)
∂α

= −
2(2 + 3 cosα cos β

2 + cosβ) sin2 β
2

(3 cos β
2 + (2 + cosβ) cosα)2

, (18)

1 The exact behavior for angles in Ω̃ is discussed in Corollary 1.

Support Function of Pythagorean Hodograph Cubics 35

−tanβ
2

αβ
2 − π

tanβ
2

ᾱ α

β
2 − π

√
3

α

−π
3

α0

tanβ
2

α

β
2 − π

−β
2

α

ω

β
2 − π

−β
2

α

ω

β
2 − π

− 2π
3

−π
2

α

ω

−π
3

−β
2

α0 α

ω

−π

β
2 − π

β ∈ (0, π) β ∈ [π, 4π
3

) β = 4π
3

β ∈ (4π
3

, 2π)

Fig. 4. For fixed β we display F (upper row) and ω (lower row) as functions of α ∈ (−π + β
2
,

π − β
2
)

which is zero for

α = ± arccos

(
2 + cosβ
3 cos β

2

)
︸ ︷︷ ︸

α0

. (19)

A segment on Tschirnhausen cubic cubic T (θ) has a loop if and only if the both values
θ = ±2π/3 are contained in its domain. This gives following loop condition for the
rotation angle α

|α| ≥ β

2
− 2π

3
, (20)

which can be satisfied only for β ≥ 4π/3.

Case β ∈ (0, π) :
In this case ω is strictly decreasing function of α, see Fig. 4, lower row. Indeed both ᾱ
and α0 are not contained in the domain α ∈ (−π + β

2 , π −
β
2) and function F is con-

tinuous and strictly decreasing and takes its values from the interval (− tan β
2 , tan β

2).
Figure 4, upper row, shows the behavior of F . Moreover the y-component of the vec-
tor
−−→
UV is in this case always positive and therefore ω = arctan(F) yielding (11) for

β ∈ (0, π).

36 E. Černohorská and Z. Šı́r

Case β ∈ [π, 4π
3) :

In this case ω is again decreasing function of α, see Fig. 4, lower row. In this case,
ᾱ ∈ (−π+ β

2 , π−
β
2) and F has two discontinuities. However, α0 �∈ (−π+ β

2 , π−
β
2)

and F has negative derivative everywhere. The values of F cover all R. Figure 4, upper
row, shows typical behavior of F . At the same time, the y-component of the vector

−−→
UV

is positive for α ∈ (−ᾱ, ᾱ) and negative otherwise. For this reason

ω =

⎧⎪⎨⎪⎩
arctan (F) + π, for α ∈ (−π + β

2 ,−ᾱ)
arctan (F), for α ∈ (−ᾱ, ᾱ)
arctan (F)− π, for α ∈ (ᾱ, π − β

2)

and we get (11) for β ∈ [π, 4π
3).

Case β = 4π
3 :

This is the limit situation of the previous case. 0 = ᾱ ∈ (−π + β
2 , π −

β
2), but α0 �∈

(−π+ β
2 , π−

β
2). ThereforeF has one discontinuity and its derivative is always negative.

The behavior of F can be seen in Fig. 4, upper row, and it takes values from intervals
∈ (−∞,−

√
3) ∪ (

√
3,∞). The y-component is negative everywhere, so

ω =

{
arctan (F) + π, for α ∈ (−π + β

2 , 0)
arctan (F)− π, for α ∈ (0, π − β

2),

see Figure 4, lower row. We thus obtain result for one boundary curve of Ω, see (13)
and Fig 3, right. For α = 0 we get degenerated data, since U = V . For other α the loop
condition (20) is not satisfied and the segments are without loop.

Case β ∈ (4π
3 , 2π) :

In this case, ᾱ �∈ (−π + β
2 , π −

β
2), but α0 ∈ (−π + β

2 , π −
β
2), F is continuous and

has two extremes, see Figure 4, upper row. At the same time, the y-component of the
vector

−−→
UV is always negative and

ω =

{
arctan (F) + π, for α ∈ (−π + β

2 , 0]
arctan (F)− π, for α ∈ (0, π − β

2),

see Figure 4, lower row. Note, that this function is in fact smooth due to the periodic
behavior of ω, (i.e. values π and −π are identified. The values at endpoints are ±β/2
and we obtain (12). The extreme values of F can be computed as ± 2 sin β

2√
1+2 cos β

and we
obtain boundary curves of Ω in (13).

Let us denote α = arctanβ/2 the left point of the interval where F cease to be
proper. The loop condition value αl = β

2 −
2π
3 , see (20) will always fall in the interval

[α, π−β/2]. For this reason the segments of (12) will always have a loop. The position
of αl with respect to α0 leads to various cases of presence of loops for segments in
Ω. ��

The previous proof, in particular the last two cases, yields also an information about the
data in Ω, which we summarize in following corollary.

Support Function of Pythagorean Hodograph Cubics 37

Corollary 1. The following pairs of angles on the boundary ∂Ω are obtained (see
figure 3, right).

i) from one segment without loop{
|β| = 4π

3
,
π

2
< |ω| < 2π

3

}
∪
{

4π
3
< |β| < β̃, |ω| = F0

}
(21)

ii) from one segment with a loop{
|β| ∈

(
4π
3
, 2π

)
, |ω| = |β|

2

}
∪
{
|β| ∈

[
β̃, 2π

)
, |ω| = F0

}
. (22)

Following pairs in the interior of Ω are obtained

iii) from one segment without loop and one segment with a loop{
|β| ∈

(
4π
3
,
5π
3

)
, |ω| ∈

(
Fl,
|β|
2

)}
(23)

iv) from two segments without loop{
|β| ∈

(
4π
3
, β̃

)
, |ω| ∈ (F0, Fl)

}
(24)

v) from two segments with loop{
|β| ∈

[
5π
3
, 2π

)
, |ω| ∈

(
F0,

|β|
2

)}
∪
{
|β| ∈

(
β̃,

5π
3

)
, |ω| ∈ (F0, Fl)

}
(25)

where

β̃ = 2 arccos
(
− 2√

7

)
, F0 = π − arctan

2 sin |β|
2√

1 + 2 cosβ
,

Fl = π +
2 cos (|β|2 + π

6) sin2 β
2

3 cos β
2 − (2 + cosβ) sin (|β|2 + π

6)
.

5 Hermite Interpolation with PH Cubics and Their Offsets

In this section we will apply the previous results to the inverse problem, i.e. to the
Hermite interpolation by PH cubics. We will discuss the number of solutions, provide
an algorithm for their computation and give a number of examples. We will also extend
the interpolation algorithm to the offsets of PH cubics.

38 E. Černohorská and Z. Šı́r

U

V

ψ

φ

u

v

U

V

u

v

Fig. 5. Given data and a G1 interpolant

5.1 Existence and Number of Solutions

We have the situation as in the Figure 5, i.e. we are given two points U, V along with
unit tangent vectors−→u and −→v and we want to find a PH cubic which interpolates these
data.

Up to similarities these data are described by two angles φ ∈ (−π, π), ψ ∈ [−π, π],
where φ is the oriented angle between −→u and −→v and ψ the oriented angle between

−−→
UV

and the bisector (−→u +−→v)/2 (see Fig. 1). For simplicity we exclude the case−→u = −−→v
which allows for no interpolants.

Suppose we have an interpolant of the data by a segment of the Tschirnhausen cubic.
Then angles φ, ψ are related to the angles β, ω in one of the two following way. Either
the curve tangent travels the shorter angle φ or it travels the complementary angle. Thus
we get

β = φ, ω = ψ or β = φ− 2π, ω = ψ − π (26)

Applying Lemma 3 and combining these two cases, we obtain immediately following
result.

Theorem 2. For given G1 Hermite data described by φ, ψ there exists

i) two interpolants (one of them with a loop) if

0 < |φ| < 2π
3

and |ψ| < |φ|
2

(27)

ii) one interpolant with a loop if

|φ| > 2π
3

and |ψ| �= |φ|
2

(28)

iii) two interpolants for (φ, ψ) in the interior of the domain

Ω̃ := {(φ, ψ) : |φ| ≤ 2π
3
, |π − arctan

2 sin |φ|
2√

1 + 2 cosφ
| < |ψ| < |φ

2
|}. (29)

and one segment for angles on its boundary curves.2

2 Exact behavior for angles in Ω follows from Corollary 1.

Support Function of Pythagorean Hodograph Cubics 39

φ

ψ

π

π θ1

θ2

2π

2π

Fig. 6. Number of interpolants for various Hermite data expressed by angles φ, ψ (left figure) or
equivalently by angles θ1, θ2 (right figure). Different colors represent: white: no segment, violet
(or light gray in b/w): one segment without loop, red (or dark gray in b/w): one segment with
loop and one without loop. For a detail of black regions see Figure 3, right.

Figure 6, left represents graphically the previous theorem. It is simply obtained from the
Figure 3 by keeping the part β < π corresponding to the first case of (26) and adding
symmetrical images of the remaining parts corresponding to the second case of (26).

In order to make our results compatible with [14], we transform the angles φ, ψ to the
angles θ1, θ2 used therein. These are oriented angles between

−−→
UV and vectors −→u and

−→v respectively, where θ1 is measured anticlockwise and θ2 clockwise. These angles
are related to φ, ψ by a simple linear transformation and the results of the interpolation
problem are displayed on the figure 6, right.

5.2 Computation of Interpolants and Examples

In order to compute interpolants for concrete G1 Hermite data U, V , −→u ,−→v we design
the following procedure.

1. Determine φ and ψ.
2. Using Theorem 2 decide whether to set β = φ, ω = ψ or β = φ− 2π, ω = ψ− π,

or to consider both cases.
3. Compute α from equation (16).
4. From (9) compute values of t1, t2 corresponding to θ = α−β/2 and θ = α+β/2.
5. Compute control points for the segment t ∈ [t1, t2] of (3).
6. Transform the control points by the unique direct Euclidean similarity transforma-

tion which maps the first control point to U and the last one to V .

Let us comment on some steps of this procedure to argue, that they are extremely simple
and fast. Steps 1 and 2 are trivial. Step 3 might seem too complicated, but (16) with
unknown α is essentially of the form

A sin(α) +B cos(α) = C, (30)

40 E. Černohorská and Z. Šı́r

U
V

U V

U V

U
V

U
V

Fig. 7. Hermite data and PH cubic interpolants, see Table 1 for numerical values. Example 1 (left,
top), example 2 (right, top), example 3 (right, middle), example 4 (left, bottom), example 5 (right,
bottom).

Table 1. Examples of various input data and computed segments determined by α, see Figure 7
for resulting interpolants. The color corresponds to color code of Figures 6 and 3.

example number (φ, ψ) (β, ω) computed α presence of a loop color code

1 (π
2
, π

8
) (π

2
, π

8
) −1.435 yes

red
(3π

2
, 7π

8
) −3.090 no

2 (5π
6

,−π
2
) (− 7π

6
, π

2
) −2.325 no violet

3 (π
6
,− 289π

3000
) (55π

30
, 2711π

3000
)

0.137 yes
green

0.160 yes

4 (π
2
,− 88π

300
) (− 3π

2
, 212π

300
)
−2.649 no

red−2.908 yes

5 (π
2
,− 91π

300
) (− 3π

2
, 209π

300
)
−2.649 no

blue−2.908 no

which is well known simple goniometric equation. Moreover, for the next step we really
need only sin(α) and cos(α) which can be computed from (30) via solving a quadratic
equation similar to [14]. Step 5 can be efficiently performed applying the de Casteljau
algorithm to a precomputed polygon of the segment t ∈ [0, 1]. Step 6 is trivial and
occurs in most interpolation algorithms requiring some kind of canonical position of
the data.

We will now present several examples obtained by this procedure. Figure 7 shows
input data (end-points and vectors) and interpolants to these data. Table 1 displays nu-
merical values of angles occurring in the algorithm. Example 1 describes interpolants
for data treated in [14]. The other examples show interpolants for data excluded [14]
and differ by the number of loops.

The interpolation procedure can be used for approximation a given curve with a
G1 continuous spline composed of PH cubics. Figure 8, right, shows the graph of the
function sinus approximated by a spline composed of 4 segments of PH cubics. The

Support Function of Pythagorean Hodograph Cubics 41

�u
�v 0 π

2π

1

−1

Fig. 8. Left:Hermite data and interpolanats (dashed) consisting of offsets at given distance to PH
cubics (gray). Right: graph of the function sinus (dashed) approximated by a PH cubic spline
(solid).

approximation order is 4 (error decreases 16 times after one subdivision), since in the
limit case the analysis of [14] applies.

The interpolation algorithm can be simply extended to offsets of PH cubics. This
problem naturally occurs when we want to produce certain shape with a circular tool
and we want the center of the tool to follow a PH spline curve permitting to simply
control its speed. Given G1 data and the offset distance d, we can easily obtain the
corresponding data for the PH cubic by shifting the end points perpendicularly to the
end point vectors (angle φ will not change). We will not analyze in details this problem
and limit ourselves to one example of data and four Hermite interpolants (two for the
left and two for the right offset), see Figure 8, left.

6 Conclusion

We have determined the support function representation of the Tschirnhausen cubic and
applied it to the computation of PH cubic Hermite interpolants. This approach allowed
us to solve the interpolation problem in a top-down way based on the analysis of all
possible segments of the Tschirnhausen cubic. We have presented a full discussion of
existence and number of solutions, which is analogous to [4] and remove data restric-
tion of [14]. We have also represented the Tschirnhausen cubic as the convolution of
a centrally symmetrical sextic curve and a cubic with linear normals. In the future we
plan to apply similar techniques to the G2 interpolation with special curves.

42 E. Černohorská and Z. Šı́r

Acknowledgment

This research was supported by the project MSM 0021620839 of the Czech Ministry of
Education and by the project no. 201/08/0486 of the Czech Science Foundation.

References

1. Aigner, M., Gonzalez-Vega, L., Jüttler, B., Schicho, J.: Parameterizing surfaces with certain
special support functions, including offsets of quadrics and rationally supported surfaces.
Symbolic Comput. 44(2), 180–191 (2009)

2. Aigner, M., Gonzalez-Vega, L., Jüttler, B., Sampoli, M.L.: Computing isophotes on free-form
surfaces based on support function approximation. In: Hancock, E.R., Martin, R.R., Sabin,
M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 1–18. Springer, Heidelberg
(2009)

3. Bonnesen, T., Fenchel, W.: Theory of convex bodies. BCS Associates, Moscow (1987)
4. Byrtus, M., Bastl, B.: G1 Hermite interpolation by PH cubics revisited. Submitted to Com-

puter Aided Geometric Design, 20xx
5. Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34, 736–752

(1990)
6. Farouki, R.T.: Pythagorean hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.)

Handbook of Computer Aided Geometric Design, pp. 405–427. North-Holland, Amsterdam
7. Farouki, R.T.: Pythagorean-hodograph curves: Algebra and Geometry Inseparable. In: Ge-

ometry and Computing. Springer, Heidelberg (2008)
8. Gravesen, J., Jüttler, B., Šı́r, Z.: On rationally supported surfaces. Comput. Aided Geom.

Design 5(4-5), 320–331 (2008)
9. Gravesen, J.: Surfaces parametrised by the normals. Computing 79, 175–183 (2007)

10. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge
University Press, Cambridge (1996)

11. Gruber, P.M., Wills, J.M.: Handbook of convex geometry. North–Holland, Amsterdam
(1993)

12. Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math.
Comp. 70, 1089–1111 (2001)

13. Kubota, K.K.: Pythagorean Triples in Unique Factorization Domains. Amer. Math.
Monthly 79, 503–505 (1972)

14. Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. Jour-
nal of Computational and Applied Mathematics 81, 299–309 (1997)

15. Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite
interpolants. Comp. Aided Geom. Design 18, 93–115 (2001)

16. Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations,
Technical report no. VTO/MS/207, British aircraft corporation (1974),
http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/
vtos.htm

17. Šı́r, Z., Jüttler, B.: Constructing acceleration continuous tool paths using pythagorean hodo-
graph curves. Mech. Mach. Theory 40(11), 1258–1272 (2005)

18. Šı́r, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support func-
tions. Theor. Comput. Sci. 392(1-3), 141–157 (2008)

19. Šı́r, Z., Gravesen, J., Jüttler, B.: Computing Minkowski sums via Support Function Repre-
sentation. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface Design: Avignon
2006, pp. 244–253. Nashboro Press, Brentwood (2007)

20. Šı́r, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with
rational offsets. Comput. Aided Geom. Design (2010), doi:10.1016/j.cagd.2010.02.001

http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.htm
http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.htm

Piecewise Tri-linear Contouring for
Multi-material Volumes

Powei Feng1, Tao Ju2, and Joe Warren1

1 Rice University
{pfeng,jwarren}@rice.edu

2 Washington University in St. Louis
taoju@cse.wustl.edu

Abstract. The ability to model objects composed of multiple materi-
als has become increasingly more demanded in scientific applications.
The visualization of a discrete multi-material volume often suffers from
voxelization of the boundary between materials. We propose a contour-
ing method that can be efficiently implemented on the GPU to reduce
the artifacts and jaggedness along the material boundaries. Our method
extends naturally from the standard tri-linear contouring in a signed vol-
ume, and further provides sub-voxel accuracy for representing three or
more materials.

1 Introduction

Many scientific modeling applications require the ability to model objects com-
posed of multiple materials. Probably the most common examples are found
in bio-medicine, where researchers are often interested in the decomposition of
a biological structure, obtained by imaging techniques like MRI or EM, into
individual function units. Figure 1 shows two such examples, a human skull seg-
mented into anatomical subdivisions, and a molecular complex decomposed into
protein subunits. Modeling of these smaller units helps biologists and medical
researchers to understand the function of the entire entity.

One of the simplest ways to represent multiple materials in a grid volume
is to attach an integer material label to each grid point. While this approach
is fairly simple to implement, its drawbacks are obvious. The discrete labeling
leads to blocky, voxelized material boundaries that are hard to shade in a natural
manner [7] (see Figures 2(a) and 2(c)).

When only two materials (e.g., inside and outside) are present in the volume,
a standard solution is implicit modeling [1]. In this approach, each grid point
is associated with a positive or negative floating-point scalar, where the sign
indicates whether the grid point lies inside or outside the object. These scalars
can be considered as samples of a continuous function f(x, y, z), and the bound-
ary surface is defined as the set of all points where f(x, y, z) = 0. There are
numerous contouring algorithms that can produce a polygonal approximation of

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 43–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

44 P. Feng, T. Ju, and J. Warren

(a) (b) (c) (d)

Fig. 1. Multi-material volumes representing structure of Hsp 26 (EMDB 1226) (a),
subunits of the molecular chaperone GroEL (b), bones of a salamander (c), and the
anatomical regions of a human head (d) visualized using tri-linear contours

(a) (b) (c) (d)

Fig. 2. Comparison of the typical voxelized material boundaries (a,c) with the same
materials visualized using our tri-linear contours (b,d). This example is the replicative
helicase G40P molecular structure, before (a,b) and after (c,d).

this surface, such as Marching Cubes [11], Dual Contouring [9] and others [5,10].
Alternatively, the continuous surface can be directly rendered on GPU [18,3,12].
The key idea behind these approaches are that the signed grid can be stored as a
3D texture and that a single texture fetch can be used to evaluate f(x, y, z) via
tri-linear interpolation at an arbitrary point. In practice, this tri-linear boundary
surface provides better normals (for shading) and better silhouettes than either
polygonal contours or voxelized boundaries (see Figure 2(b)).

While the use of two signs to model two materials is simple and elegant,
the idea of using three or more labels to represent a partition of space into
multiple materials has received only limited attention. Most existing works in this
direction focus on producing polygonal inter-material boundaries. For example,
Dual Contouring [9] creates polygons from point and normal data stored on
edges in the grid, and the works of [6,15] use a generalized Marching Cubes
look-up table to polygonalize a multi-labeled cell.

A work on smooth boundaries among multiple materials that is similar to our
own is by Stalling et al. [16]. In their approach, a tri-linear function fk(x, y, z)
is defined for each material k, and the boundary surfaces are located where the
values of two or more functions are identical and higher than the remaining
functions. To define fk(x, y, z), each grid point is associated with an array of

Piecewise Tri-linear Contouring for Multi-material Volumes 45

(a) (b) (c) (d) (e) (f)

Fig. 3. Two-dimensional comparison of methods. (a) is a multi-material voxel with no
intensity information. (b) is the naive approach of classifying by nearest neighbor. (c)
Tiede et al. proposes a linear filter for classification [17], but it leaves points unclassified.
(d) We propose a tri-linear representation that classifies all points within a voxel. (e)
and (f) are examples of our approach that demonstrate the flexibility in representing
contours.

scalars representing the “probabilities” that this grid point is classified as each
material present in the volume. While this approach gives smooth material inter-
faces, the need to store multiple scalars per point not only increases the memory
consumption, in comparison to the signed scalar representation of two materials,
but also hampers fast GPU implementations as more texture fetches are needed.
We build on their approach by providing a more compact representation that
allows for fast GPU implementation.

Tiede et al. introduced a multi-material classification scheme for volume ray-
casting [17]. Hadwiger et al. integrated this classification scheme into their hard-
ware implementation of high-quality volume rendering [8]. The classification
scheme described by Tiede et al. focuses on segments produced by threshold-
ing. In the case where the threshold ranges of multiple materials overlap, Tiede
et al.’s approach is to linearly interpolate the binary mask associated with the
material. For each material A, space where the interpolated value (with respect
to A’s tri-linearly interpolated binary mask) is greater than 0.5 is classified as
A. Although linear filtering resolves the overlap of threshold ranges, it also pro-
duces unclassified regions within a single voxel (see Figure 3(c)). In the case
where the input is a segmented volume without intensity information, Tiede
et al’s approach would produce a classification that has ripple-like effect (see
Figure 4(b)). Our method guarantees classification for all points within a voxel
(see Figure 3(d)) and provides greater flexibility in sub-voxel classification (see
Figure 3(e)), hence capable of representing smooth inter-material boundary (see
Figure 4(c)) . Also note that both Tiede et al. and Hadwiger et al. tackled the
problem from a visualization perspective, where they improved multi-material
rendering for one particular visualization technique. Our approach is to present a
geometric representation for multi-material volume that can be used for various
visualization methods.

In this paper, we propose an alternative generalization of the idea of two-sign
tri-linear contouring to that of multi-labeled tri-linear contouring with the goal
of creating smooth multi-material boundary surfaces that can be efficiently ren-
dered. The key difference between our generalization and that in [16] is that we
only require a single scalar and a single integer label to be stored at each grid

46 P. Feng, T. Ju, and J. Warren

(a) (b) (c)

Fig. 4. Three-dimensional comparison of methods. (a) is the input of a sphere-like
segment. (b) is rendered using Tiede et al.’s classification scheme [17]. Note that it
produces a bumpy surface. (c) is our representation for the segment contour. Details
for constructing (c) from the segment (a) is described in Section 4.

point. We show that the multi-material contours defined this way enjoys a num-
ber of properties, such as being piece-wise tri-linear and reproducing two-sign
tri-linear contours where only two materials are present. The compact volume
representation allows fast GPU-based rendering of the smooth contours. We
demonstrate the use of tri-linear contouring in several examples of multi-labeled
volumes.

Contributions. In the context of implicit modeling and multi-material model-
ing, our work makes several novel contributions:

• We introduce a generalization of the standard two-sign tri-linear contouring
to multi-labeled volumes, and demonstrate the properties of the resulting
contours.

• We present an efficient GPU implementation for rendering the tri-linear
multi-material contours.

• We generalize the common set operations, union and intersection, from two-
signed volume to a multi-material volume.

• We demonstrate the use of our multi-material representation and routines
in several examples.

2 Multi-material Contouring

Conventionally, the tri-linear contour in a two-material grid is defined by signed
scalars associated with the grid points. Our approach for multi-material contour-
ing is to replace the signed scalar at each grid point with a scalar and a material
label. In the two material case, our method would reproduce the standard tri-
linear contours defined by signed scalars. In the case of three or more materials,
the contouring method would generate piecewise tri-linear contours that form a
continuous surface. Our method adds small overhead over the traditional signed
volumes, and allows efficient hardware-accelerated rendering.

In the following, we first introduce the definition of contours in our volume
representation. We next present a number of properties of such contours. We
end this section by a discussion of means to evaluate the contours.

Piecewise Tri-linear Contouring for Multi-material Volumes 47

(a) (b) (c) (d) (e)

Fig. 5. Two material example: material classification in a 2D cell with +/− labels (the
arrows denote the gradient) (a), the bi-linear function for each material label (b,c) and
their maximum (d). (e) shows the bi-linear function defined by treating the two-labeled
scalars at cell corners as signed scalars, and the function’s zero contour.

2.1 Defining contours

To define the contour surfaces that partition the space into regions with different
materials, we first consider the dual problem of classifying the material of an
arbitrary point in space. Given a grid cell whose corners have associated non-
negative scalars si and material labels mi, the following method can be used to
determine the material label of a point x inside the cell. Here, index i ranges
from 0 to 7, representing the eight corners of a cell.

• For each distinct material label k present in the cell, construct a set of scalars
tk associated with the corners of the cell via the following rule:

tki = si if k = mi

tki = 0 otherwise

• Compute the values of the tri-linear interpolant tk(x) for each distinct label
k. The trilinear coefficients are tki for i = 0, 1, . . .7.

• Return the material label k for which tk(x) is maximum.

With this classification, the contour between two regions with material labels k
and j is simply where tri-linear functions tk(x), tj(x) both reach maximum. This
contour is an iso-surface of the form:

tk(x) = tj(x) ≥ tm(x), ∀m �= k, j (1)

Figure 5(a) illustrates the classification method and the resulting contours in
a 2D cell. In this example, only two materials are present at the cell corners,
which we label as + (red) and − (green). Figure 5(b) and 5(c) shows the two
bi-linear functions t+(x) and t−(x), respectively. Figure 5(d) shows a plot of the
maximum of these two functions, where the white curve indicates the contour.

Figure 6(a) shows another 2D example in which the four corner of the cell
have three distinct materials, red, green and blue. Figure 6(b) show plots of
the three bi-linear functions associated with the materials. Finally, Figure 6(c)
shows a plot of the maximum of these functions and the associated partition of
the cell into three distinct materials via three contours that meet at a common
point.

48 P. Feng, T. Ju, and J. Warren

(a) (b) (c)

Fig. 6. Three material example: material classification in a 2D cell with R/G/B labels
(the arrows denote the gradient) (a), the three bi-linear functions, one for each material
label (b), and their maximum (c)

2.2 Characterization of the Contours

The multi-material contours produced by this method have several important
properties.

Piecewise tri-linear and continuous surfaces. By Definition 1, the multi-
material contours defined within each cell are piecewise contours of various tri-
linear functions. The contours are also continuous across neighboring cells. This
fact follows from the observation that two cells sharing a common grid point,
edge or face have the same scalars and material labels on that common grid
element. Since the restriction of the tri-linear functions used in defining our
multi-material contour on each grid point, edge or face depend only the scalar
and material labels on that grid element, the multi-material contours must agree
across adjacent grid elements.

Reproducing tri-linear contours on signed grids. A key property of our
contour definition is that it can exactly reproduce the contours defined by the
standard tri-linear interpolation on a signed grid. Consider a cell whose corners
are associated with signed scalars ŝi. The tri-linear interpolant ŝ(x) defined by
these signed scalars is either positive or negative, and the standard tri-linear
contour is defined as the surface ŝ(x) = 0.

To reproduce this surface using our method, we construct the scalars and
labels at the cell corners as follows. If ŝi is positive at corner i, we let si = ŝi

and label mi as +. Otherwise, we let si = −ŝi and label mi as −. Note that this
coefficient set satisfies the relation

ŝi = t+i − t−i (2)

Hence the associated tri-linear functions t+(x) and t−(x) also satisfy

ŝ(x) = t+(x)− t−(x). (3)

Therefore, the zero contour of the function ŝ(x) coincides with the locations of
x where t+(x) equals t−(x), which is the contour defined by our classification
method.

Piecewise Tri-linear Contouring for Multi-material Volumes 49

Figure 5(e) plots the bi-linear function ŝ(x) for the 2D cell configuration in
Figure 5(a), treating each labeled scalar as a signed scalar. Observe that the
zero contour of this bi-linear function is identical to the contour defined using
our method as where the two bi-linear functions are identical (Figure 5(d)).

Gradient. One useful property from standard implicit modeling is that the
gradient of the implicit function is normal to the contours of that function.
In the multi-material case, a similar property holds. Given a contour formed
by the iso-surface tk(x) = tj(x), the gradient of the function tk(x) − tj(x) is
simply the normal to this surface. The key observation here is that the pair of
material labels j and k change as the point x varies over the cell. For the three
material case, tk(x) and tj(x) denote the largest and second largest tri-linear
interpolant at x. This will produce the exact gradient field since we can view the
local neighborhood of a point on the two-material boundary as being defined by
the two dominant tri-linear functions. Note that points where more than two
materials meet are degenerate with unknown gradients. Figure 5(a) show the
gradient field for a two material cell while Figure 6(a) shows the gradient field
for a three material cell.

2.3 Evaluating Contours

We will discuss two ways to evaluate the multi-material contours, one utilizing
the graphics hardware for direct surface rendering, and the other resorting to
polygonization of the contours. Note that all examples in this paper are presented
using the first approach.

Direct rendering. A key motivation of our multi-material representation is to
utilize graphics hardware for efficient rendering of the contours. We use texture-
slicing volume rendering as our algorithm for visualizing multi-material volumes,
as done in standard implicit modeling on a signed grid [18,2]. Texture-slicing
volume rendering approximates the ray-integral in traditional ray-casting volume
rendering by rendering view perpendicular slices and compositing the slices using
hardware blending.

The scalars and material labels, along with auxiliary data such as a density
map, are stored as 3D textures. Coloring a single screen fragment involves a
number of texture fetches to determine the density, color, and shade of the frag-
ment in texture space, utilizing the underlying tri-linear interpolation capability
of GPU. For our classification algorithm, we need to fetch an additional 8 scalar
values and 8 integer labels as part of the fragment shader program. Texture
fetches are typically expensive operations in shader programming. We note that,
however, these 16 fetches can be reduced to 4 fetches by packing the values into
the RGBA channels for a single texel. As we shall see in the Results section, our
algorithm achieves interactive rendering rates, even for volumes with complex
material composition like those in Figure 1.

Both the scalars and material labels are 8-bit textures, which allows up to
256 number of materials. With only 8-bits of precision for the scalars, we need

50 P. Feng, T. Ju, and J. Warren

(a) (b) (c) (d)

Fig. 7. The perspective view of a multi-material volume of size 333 rendered using GPU
tri-linear contouring (a) and as polygonal contours generated by Dual Contouring (b),
showing the grid structure (c). (d) depicts the mesh generated from Dual Contouring
without the dots.

to ensure that the precision is not spent on non-essential portions of the repre-
sentation. We note that the scalars are used for arbitration only on the border
between different materials. This implies that the scalars only need to be accu-
rate for cells that intersect the inter-material boundary.

Lastly, we use a single 1D transfer function that maps the voxel density to an
opacity value. The color of each pixel is determined by the classification, where
each material label is associated with a single color. Note that our method is a
general classification scheme, and it can be extended to include multiple transfer
functions (one for each material label) as described by Hadwiger et al. [8].

Polygonization. Besides GPU-based rendering, an alternative way to evaluate
the contours is using polygonal methods such as Dual Contouring. Under Dual
Contouring, we create a vertex within each cell that exhibits a label change, and
then form a polygon for each grid edge that exhibits a material label change by
connecting the vertices created within the cells sharing that edge.

The vertex in a cell should be located closest to the intersection of all the
pairwise tri-linear surfaces within the cell. More formally, let M be the set of
materials in the cell and let x be a point inside the cell. Consider the function

E(x) =
∑

j �=k∈M

(tk(x) − tj(x))2 (4)

The minimum of this function describes a point that is close to the intersection
of all the surfaces that satisfy tk(x) = tj(x). This is a non-linear optimization
problem that can be costly to compute. We approximate the solution using
an QEF-based approach that was described by Schaefer et al [14]. Using this
method, we first locate the intersections, pi, of the surfaces along the cell edges.
These intersections and the gradient directions (as described in Section 2.2),
ni, at these points describe a set of planes per cell. We then find a point that
minimizes

E′(x) =
∑

i

(ni · (x − pi))2 (5)

Piecewise Tri-linear Contouring for Multi-material Volumes 51

This minimization gives an approximation of Eq. 4 that is reasonable for our
purpose. Note that this is an outline for computing the contour point. Please
refer to the work of Schaefer et al. for more implementation details [14]. An
example of the Dual Contouring polygonization is shown in Figure 7.

3 Set Operations on Multi-material Contours

One of the primary attractions of implicit modeling is the ease with which it
can model Boolean operations from constructive solid geometry [13]. To enable
interactive construction of multi-material models in our representation, we next
develop analogs of the set operations Union and Intersection for multi-material
contours. These operations can be applied in several context with regards to
interactive segmentation. Due to space limitation, we direct the reader to [4] for
more detail.

In the signed (two-material) case, the typical convention is to represent a
solid as the set of solutions to the inequality f(x, y, z) < 0. Now, given two
solids f(x, y, z) < 0 and g(x, y, z) < 0, the union of these two solids is simply
the set min(f(x, y, z), g(x, y, z)) < 0 while the intersection of two solids is the
set max(f(x, y, z), g(x, y, z)) < 0.

If the functions f and g are represented by signed grids, a standard technique
for approximating their union or intersection is to take the min or max of their
associated sign grids. Our goal is to develop equivalent rules for the two-material
case that generalize to the multi-material case in a natural manner.

Our approach is as follows; consider two materials A and ¬A (not A). A
can be interpreted as being the inside of a solid (i.e; negative in the implicit
model) and ¬A can be interpreted as being the outside of a solid (i.e; positive
in the implicit model.). Given a multi-material map consisting of only these two
materials, we can attempt to construct rules for computing new non-negative
scalars and material labels on the grid that reproduce the operations Union and
Intersection.

In particular, given a grid point with two associated pairs (s1, k1) and (s2, k2)
(where both the si are non-negative), our goal is to compute a scalar/label pair
(s, k) for the union of the material S. This new pair can be compute using the
case look-up given in Table 1.

Note that the rule for computing k is straightforward. For Union, the new
material label is A if and only if at least one of the material labels is A. For
Intersection, the new material label is A if and only if both of the material labels
are A. The rule for computing the new scalar s is only slightly more involved.
The key is to convert back to the signed case and then return the result of taking
the minimum of the converted scalars. For example, if both material labels are
A, we take the negative of both scalars s1 and s2, computed their min and then
negate the result. These three operations are simply the equivalent of taking the
max of the original scalars. In particular, if both s1 and s2 are non-negative,

max(s1, s2) = −min(−s1,−s2) (6)

52 P. Feng, T. Ju, and J. Warren

Table 1. Rules for performing Intersection and Union operations. We consider the pairs
(s1, k1) and (s2, k2) as the input. The output of Union and Intersection is denoted as
pair (s, k).

Union
k1 k2 k s

A A A max(s1, s2)
A ¬A A s1

¬A A A s2

¬A ¬A ¬A min(s1, s2)

Intersection
k1 k2 k s

A A A min(s1, s2)
A ¬A ¬A s2

¬A A ¬A s1

¬A ¬A ¬A max(s1, s2)

Similar argument can be used to derive the given formulas for the remaining
cases.

Another interpretation of these operations on the scalars s1 and s2 is to view
these numbers as estimate of the distance from the grid point to the boundary
of the region A. In the case of Union, the rule is that if both grid points lie in
A, a good estimate of the distance from the grid point to the boundary of the
union is the maximum of these two distances. Similar arguments again apply in
the other cases.

3.1 Operations for Three or More Materials

Given the method for union and intersection defined above, the generalization of
these operations to the three or more material case is relatively easy. We suggest
two operations analogous to Union and Intersection for the multi-material case.
The first operation Overwrite takes a multi-material map and a two-material
map (with material A and ¬A) and performs the multi-material analog of Union.
In particular, it treats the material in the first multi-material map as being either
A or ¬A and applies the two material rules for Union described above. The result
of an Overwrite operation is that the material A in the second map overwritten
onto any existing materials in the first map. The resulting map contains the
union of the materials A in both maps.

The second operation Restrict again takes as input a multi-material map
and a two-material map (with materials A and ¬A). In this case, the Restrict
operation modifies the second map to return the intersection of the first map
(viewed as materials A and ¬A) and the second map. Essentially, the second
map is restricted to only those regions where the material A exists in the
first map.

4 Implementation

We first consider visualizing a given multi-material volume where grid points are
attached with only integer labels. Direct visualization of the voxelized material
boundaries gives a blocky look (see Figure 8(a)). To create piece-wise smooth tri-
linear contours, our method needs additional scalars besides the material labels.

Piecewise Tri-linear Contouring for Multi-material Volumes 53

(a) (b) (c) (d) (e)

Fig. 8. Implementation details. Viewing a multi-material volume with only integer
labels: direct rendering of the voxelized boundaries (a), tri-linear contouring using
uniform assignment of scalars (b) and using Guassian-filtered scalars (c). Viewing
nested iso-surfaces in a density volume using transfer function (d) as a multi-material
volume (e).

A simple approach is to assign si = 1 uniformly for every grid point. Although
locally smooth, such contours “wobble” a lot and do not represent a globally
smooth surface (see Figure 8(b)).

To alleviate local surface undulations, we use an improved scalar assignment
based on blurring. Recall in our classification method that tki is a scalar at grid
point i for material label k, determined by the scalar si and material label mi

at that point. First, we assign si = 1 for every grid point, and hence tki would
be binary (0 or 1). Next, for each label k, we compute a blurred value, t̄ki , by
applying a truncated 3× 3× 3 gaussian filter to tkg at neighboring grid points g
as mentioned in [7]. Finally, we assign si to be

snew
i = t̄ki − t̄

j
i (7)

where t̄ki and t̄ji are the largest and second largest values among the blurred
scalars for all material labels. Accordingly, the material label is set to be mi = k.

This heuristic is guided by the same intuition given in the gradient discussion
of Section 2.2. In the two-material case, the contour resulted from the blurred
assignment reproduces the standard tri-linear contour after blurring a signed
scalar grid. In the case of three or more materials, the contour is formed by the
top two dominant tri-linear interpolants (t̄k(x) and t̄j(x)), and the assignment
in Eq. 7 results in an approximation of that contour in the cell. Figure 8(c)
shows the result of our heuristic. Note that the resulting contours improve over
those of uniform assignment. More in-depth implementation details, including
segmentation generation, can be found in [4].

5 Results

Our method has been implemented and tested on an Intel Xeon 5150 machine
with 2 dual-core CPUs running at 2.66GHz. We use an nVidia GTX280 graphics
card with 1GB of video RAM. The shaders were written in GLSL. We use
OpenMP to enable multi-core processing for easily parallelizable portions of
the code.

54 P. Feng, T. Ju, and J. Warren

Table 2. The rendering speed for a selection of datasets. All results were measured in
frames per second (fps).

model size binary tri-linear
(fps) (fps)

Hsp26 128× 128× 128 69 23
GroEL 240× 240× 240 44 18
head 128× 256× 256 46 13

engine 256× 256× 256 40 17
sea turtle 256× 256× 397 29 11

We gather rendering times for a selection of our test cases. The models are
displayed in Figure 1. The running time is largely dependent on the maximum
dimension of the volume as we use that to determine the number of quads
to use as proxies for rendering. The rendering screen is 512 × 512 pixels. In
addition, shading only occurs for visible fragments, and intensive computation
only occurs for inhomogeneous cells. The variability of computing load in the
fragment shader accounts for the differences in rendering times for volumes such
as the “head” and “engine” datasets.

It is also worthy to note that the rendering speed is also dependent on the
pixel estate required to display each volume. In other words, the smaller the
volume appears on the screen, regardless of input size, the faster the rendering
will be, which is an expected result. Our results are taken from the slowest

(a) (b) (c)

(d) (e) (f)

Fig. 9. A close up example of rendering using binary classification (b,e) and our piece-
wise tri-linear representation (c,f). The top example is the CT scan of Tarich Torosa
(salamander) provided by the Digitial Morphology Library. The bottom example is the
GroEL structure, which was obtained from Electron Microscopy Data Bank (EMDB)
under entry number 5002.

Piecewise Tri-linear Contouring for Multi-material Volumes 55

rendering time for each of the test sets. Our method maintains a reasonable
frame-rate when rendering the tri-linear contours. Lastly, Figures 9 illustrates
the rendering improvement of the tri-linear contours versus binary classification.

6 Conclusions and Future Work

We present a contouring technique for multi-material volumes, aimed at pro-
viding both a smoother inter-material boundary than in typical voxelized ap-
proaches and efficient GPU-based rendering. The technique is a generalization
of the standard tri-linear contouring in a signed volume, and only requires a small
overhead to offer sub-voxel representations of multiple materials. Our technique
can be used to improve the visualization of an existing multi-labeled volume and
in interactive painting of a density volume [4].

For our future work, we will experiment with using higher level interpolants
such as B-splines for classification. This will give us greater flexibility and accu-
racy in defining the boundary between materials.

Acknowledgement

The work of Powei Feng is supported in part by the NIH grant R01GM079429.
The work of Tao Ju is supported in part by NSF grants IIS-0705538, IIS-0846072,
CCF-0702662 and DBI-0743691. We thank Matt Baker, Wah Chiu, Lu Liu, and
Travis McPhail for helpful discussions. We thank Timothy Rowe and Jennifer
Maisano of Digital Morphology Library for providing the salamander and sea
turtle datasets. We thank The Volume Library, volvis.org, Electron Microscopy
Data Bank, and the Protein Data Bank for providing the rest of the datasets.

References

1. Bloomenthal, J.: Implicit surfaces. Computer Aided Geometric Design 5, 341–355
(1997)

2. Cullip, T.J., Neumann, U.: Accelerating volume reconstruction with 3d texture
hardware. Tech. rep. Chapel Hill, NC (1994)

3. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In: HWWS 2001: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pp. 9–16. ACM,
New York (2001)

4. Feng, P.: Segmentation and Visualization of Volume Maps. Master’s thesis, Rice
University, Texas, United States (2010)

5. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled
distance fields: a general representation of shape for computer graphics. In:
SIGGRAPH 2000: Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, pp. 249–254. ACM Press/Addison-Wesley Publish-
ing Co., New York (2000)

56 P. Feng, T. Ju, and J. Warren

6. Fujimori, T., Suzuki, H.: Surface extraction from multi-material ct data. In: Ninth
International Conference on Computer Aided Design and Computer Graphics,
pp. 319–324 (December 2005)

7. Gibson, S.F.F.: Using distance maps for accurate surface representation in sam-
pled volumes. In: IEEE Symposium on Volume Visualization and Graphics, vol. 0,
pp. 23–30 (1998)

8. Hadwiger, M., Berger, C., Hauser, H.: High-quality two-level volume rendering of
segmented data sets on consumer graphics hardware. In: VIS 2003: Proceedings
of the 14th IEEE Visualization 2003 (VIS 2003), p. 40. IEEE Computer Society
Press, Washington (2003)

9. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data.
In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pp. 339–346. ACM, New York (2002)

10. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature sensitive surface
extraction from volume data. In: SIGGRAPH 2001: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pp. 57–66. ACM,
New York (2001)

11. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: SIGGRAPH 1987: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques, pp. 163–169. ACM,
New York (1987)

12. Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive volume
on standard pc graphics hardware using multi-textures and multi-stage rasteriza-
tion. In: HWWS 2000: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pp. 109–118. ACM, New York (2000)

13. Ricci, A.: A Constructive Geometry for Computer Graphics. The Computer Jour-
nal 16(2), 157–160 (1973)

14. Schaefer, S., Warren, J.: Dual contouring: ”the secret sauce”, rice University, De-
partment of Computer Science Technical Report (2003)

15. Shammaa, M.H., Suzuki, H., Ohtake, Y.: Extraction of isosurfaces from multi-
material ct volumetric data of mechanical parts. In: SPM 2008: Proceedings of
the 2008 ACM symposium on Solid and physical modeling, pp. 213–220. ACM,
New York (2008)

16. Stalling, D., Zckler, M., Hege, H.C.: Interactive segmentation of 3d medical images
with subvoxel accuracy. In: Proc. CAR 1998 Computer Assisted Radiology and
Surgery, pp. 137–142 (1998)

17. Tiede, U., Schiemann, T., Höhne, K.H.: High quality rendering of attributed vol-
ume data. In: VIS 1998: Proceedings of the conference on Visualization 1998,
pp. 255–262. IEEE Computer Society Press, Los Alamitos (1998)

18. Wilson, O., VanGelder, A., Wilhelms, J.: Direct volume rendering via 3d textures.
Tech. rep., Santa Cruz, CA, USA (1994)

An Efficient Algorithm for the Sign Condition
Problem in the Semi-algebraic Context

Rafael Grimson1,2

1 Dept. of Mathematics, University of Buenos Aires
rgrimson@dm.uba.ar

2 Dept. of Computer Science, Hasselt University

Abstract. We study algebraic complexity of the sign condition problem
for any given family of polynomials. Essentially, the problem consists in
determining the sign condition satisfied by a fixed family of polynomials
at a query point, performing as little arithmetic operations as possible.
After defining precisely the sign condition and the point location prob-
lems, we introduce a method called the dialytic method to solve the first
problem efficiently. This method involves a linearization of the original
polynomials and provides the best known algorithm to solve the sign
condition problem. Moreover, we prove a lower bound showing that the
dialytic method is almost optimal. Finally, we extend our method to the
point location problem.

The dialytic method solves (non-uniformly) the sign condition prob-
lem for a family of s polynomials in R[X1, ..., Xn] given by an arithmetic
circuit ΓF of non-scalar complexity L performingO((L+n)5 log(s)) arith-
metic operations.

If the polynomials are given in dense representation and d is a bound
for their degrees, the complexity of our method is O(d5nlog(s)). Compa-
rable bounds are obtained for the point location problem.

1 Introduction

Given a partition S of Rn into disjoint regions, the point-location problem for
the partition S asks to determine the region containing a query point. Point
location is a basic problem in computational geometry and has inspired several
data structures (see [Sno04]). It has applications in different domains, including
geographic information systems (GIS) and robot motion planning. We give now
a precise definition of this problem.

Definition 1. An algorithm taking as input a point in Rn and with a finite
set of possible outputs {O1, ..., Ok} solves the point location problem for a given
partition S of Rn if it satisfies the following condition:

for any pair of points x, y ∈ Rn, the algorithm returns the same output on
both inputs x and y, if and only if x and y belong to the same element of the
partition S of Rn.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 57–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

58 R. Grimson

The output of a point location algorithm can be seen as a label identifying the
region containing the query point. The regions in the given partition may have
very complex descriptions. Using labels instead of these descriptions, we obtain
algorithms whose query time is independent of their size. Using the terminology
from database theory, we are measuring the point location search time and not
its report time.

Definition 2. Let P ⊂ R[X1, ..., Xn] be a finite family of polynomials. The
realizations of the P-sign condition form a partition of Rn denoted by S(P).
The elements of S(P) are not necessarily connected subsets of Rn. We define
the arrangement induced by P as the partition of Rn consisting of the connected
components of the realization of the sign conditions of the family P and denote it
by A(P). The elements of A(P), are called the faces of the arrangement induced
by P.

We first study the point location problem for the partition S(P), called the sign
condition problem for the family P . The point location problem for the partition
A(P) is called the point location problem for the family P and will be studied
afterwards.

In Section 2, we introduce the computational models used in this article
and the different representations of polynomials that we consider: circuit, dense
arithmetic and dense bit representations. In Section 3 we introduce the dialytic
method ; it solves the sign condition problem for a given family of polynomials in
any of the mentioned representations (see Theorem 2 and Corollaries 1 and 2).
In Section 4 we present sharp lower bounds for this problem. Finally, in Section
5, we extend our method to the point location problem.

1.1 Basic Observations

The simplest instance of point location is list searching. Given different points
x1, x2, ..., xs ∈ R, consider indices 1 ≤ i1, ..., is ≤ s such that xi1 < ... < xis .
Then, a partition of R into disjoint regions is determined by these points and the
intervals (−∞, xi1), (xi1 , xi2), ..., (xis−1 , xis), (xis ,+∞). The list searching prob-
lem already illustrates several aspects of the general point location problem. On
the one hand, without any preprocessing, the point location query for this par-
tition of R can be answered in time O(s) performing a linear search. On the
other hand, if we order the points in a preprocessing stage (using O(s log(s))
operations), the query can be answered performing a binary search involving
only O(log(s)) operations. In what follows, we generalize this second method to
higher dimensions and higher degrees.

The space Rn can be divided in 2n regions by n hyperplanes. If we consider
s > n hyperplanes in Rn, we will no longer obtain 2s regions determined. Some
implications appear; its associated system of equations is overdetermined. It
is easy to see this in the plane: two lines divide the plane in four different
regions, but no three lines divide the plane in eight regions. Not all syntactically
possible sign conditions are simultaneously geometrically realizable by any family
of hyperplanes.

An Efficient Algorithm for the Sign Condition Problem 59

An analogous phenomenon can be observed for algebraic hypersurfaces of
higher degree. In 1968, Warren [War68] proved that the number of connected
components of the realizations of strict sign conditions of a family of s polynomi-
als in n variables of degree at most d, is bounded by (4esd/n)n, where e is the base
of the natural logarithm (see also [Mil64, Gri88, HRS90b, JS00, LB01, BPR10]).

For a fixed n, the number of syntactically definable sign conditions, 3s, grows
exponentially with s, while the number of simultaneously geometrically realizable
sign conditions grows only polynomially in s and d. Moreover, the number of
faces of the induced arrangement is also polynomial in s and d, for any fixed n.
The best bound known today [BPR10] for the number of faces of A(P) is

(2d)n

n!
sn +O(sn−1).

Observing this bound, it is natural to try to design an algorithm that solves the
point location problem performing a number of arithmetic operations that grows
logarithmically in s, the number of polynomials in the family P .

1.2 Related Work

Linear Case. Let P ⊂ R[X1, ..., Xn] be a family of s linear polynomials. We
remark that, since the non-empty realizations of P-sign conditions are convex
sets, the sign condition and point location problems for the family P coincide.

Dobkin and Lipton [DL76] were the first to present an algorithm solving
the point location problem, in this context, whose query time is logarithmic
in the numbers s of polynomials; the size of the associated data structure is
O(s2

n−2). Clarkson [Cla87] improved the space complexity to O(sn+ε); in both
cases the query time is exponential in n. Meyer auf der Heide [MadH84] solved
a particular instance of this problem (he considered hyperplanes with integer
coefficients only), that allowed him to derive the existence of a non-uniform
polynomial-time solution to the Knapsack Problem (see also [MadH88]). Finally,
in 1993, Meiser [Mei93] gave a solution with running time O(n5 log(s)) and space
bound O(sn+ε), for arbitrary ε > 0. The preprocessing is done in expected time
O(sn+1+ε), for arbitrary ε > 0. This last algorithm allowed Meiser to derive
a strongly polynomial non-uniform algorithm for the NP-complete Knapsack
problem (see also Chapter 3 in [BCS97]). After the next paragraph, we give a
brief description of Meiser’s algorithm.

Polynomial case. Chazelle and Sharir [CS90] (see also [CEGS91]) proposed an
algorithm, based on Collins’ Cylindrical Algebraic Decomposition [Col75], for
the general algebraic point location problem in the traditional unit-cost RAM
model. The complexity of their method is logarithmic in the number of polyno-
mials, but in the complexity analysis they ignore the dependency of their method
on the degree of the polynomials and on the dimension of the ambient space.
This is a usual practice in computational geometry, where the degree of the poly-
nomials and the dimension of the ambient space are assumed to be bounded by
a constant.

60 R. Grimson

Grigoriev [Gri00] bounded the branching (or topological) complexity of the
sign condition problem from above by the logarithm of the number of faces of the
arrangementA(P). Nevertheless, the algebraic complexity of Grigoriev’s method
depends linearly on s. See also [Koi00] for further details and for its relation with
the P = NP question over the reals.

Before presenting our work, we briefly summarize Meiser’s algorithm for the
linear case.

Meiser’s algorithm. For future reference, we state Meiser’s result [Mei93] pre-
cisely in our model (see Section 2 for some details on the model).

Theorem 1. Given a family, P ⊂ R[X1, ..., Xn], containing s linear polynomi-
als, there exists an algebraic computation tree ΓP that solves the sign condition
problem for the family P in time O(n5 log(s)).

The size of the tree ΓP is bounded by O(sn+ε) and it can be constructed in
expected time O(sn+1+ε), for arbitrary ε > 0. ��

Meiser’s original algorithm uses the trie data structure. The conversion of this
algorithm to the context of algebraic computation trees is straight-forward. We
observe that the upper bound stated by Meiser for his algorithm is not optimal.
He claims an O(n5 log(s)) bound, but more precisely it is n4 log(n)O(1) log(s).
Meiser’s method behaves well also in the bit model; see his article for further
details.

Roughly, in a first step the algorithm evaluates at the query point all the
polynomials in a subset R of P and determines the degenerated simplex (see
[Mei93]) in a triangulation �A(R) of A(R) containing the query point. The set
R and the triangulation �A(R) are precomputed and have the following key
properties:

– The cardinality of R is bounded by a polynomial in n,
– the degenerated simplex in the triangulation �A(R) containing the query

point can be determined in polynomial time in n, and
– only a constant fraction ε, 0 < ε < 1 of the polynomials in P change their

sign in each degenerated simplex in �A(R).

In this way, after a logarithmic number of steps (log(s)), the problem is reduced
to a number of equations whose number depends on n but not on s. Then, the
sign condition is determined by direct evaluation.

We remark that Meiser’s algorithm is completely linear, i.e., it does not per-
form any non-scalar multiplication.

2 Computational Models and Representations of
Polynomials

Our algorithms are represented by algebraic computation trees over the real
numbers (see [BCS97]; cf. [Str81], [BO83] and [Lic90]). We measure the number

An Efficient Algorithm for the Sign Condition Problem 61

of arithmetic operations performed by an algorithm and call it its algebraic
complexity.

In some cases, we are also interested in the bit or binary complexity of our
algorithms. To measure this within our computational model, we restrict the
arithmetic operations performed by our algorithms to integer numbers. Rational
and algebraic numbers are represented by tuples of integers and we measure,
besides the number of arithmetic operations, the bitsize of the integers involved
in these operations. For the sake of definiteness, we assume that real algebraic
points in Rn are represented using a Triangular Thom encoding (see [BPR06]).

In this sense, algorithms (like that of Khachiyan [Kha79] for linear program-
ming) that belong to the bit model but are not based on arithmetic operations,
are out of the scope of our model.

Roughly, given a finite family of polynomials we construct, in a preprocessing
stage, a data structure. Then, using this data structure, we answer some queries
about the original family efficiently. Within the model of algebraic computation
trees, the data structure is the tree itself.

The performance of a data structure is measured by the time spent in an-
swering a query (called the query time), the time needed to construct the data
structure (called the preprocessing time) and the size of the data structure. Since
the data structure is constructed only once, its query time and size are more im-
portant than its preprocessing time. If a data structure supports insertion and
deletion operations, the update time is also relevant, but we shall not consider
this situation.

The complexity of some queries depend on the output size—consider, for
instance, the sign condition query. We divide the query time in two parts: the
search time and the reporting time. In some applications, it is important to
distinguish different answers but not to write them down explicitly; in these
cases, the search time plays a fundamental role.

2.1 Computational Models

We introduce the computational models considered in this article along with
their associated complexity measures.

We start defining the algebraic decision tree model, that is a simple model
used to prove lower complexity bounds (see Exercises 3.15 and 11.4 in [BCS97]).
We then introduce the algebraic computation tree model.

A tree is a finite set T of nodes such that

– there is one specially designated node called the root of the tree;
– the remaining nodes are partitioned into m ≥ 0 disjoint nonempty sets
T1, ..., Tm, and each of these sets is in a tree. These trees are call the subtrees
of the root.

The number m of subtrees of a node v ∈ T is called the outdegree of the node.
The root of a tree is called the parent of the roots of its subtrees. The predecessor
relation is defined as the transitive closure of the parent relation. Hence, a node
v1 ∈ T is called a predecessor of a node v2 ∈ T if v1 is the root of a subtree of T

62 R. Grimson

containing v2. A ternary tree is a tree in which each internal node has outdegree
one, two or three.

Algebraic Decision Trees over the Reals. Let n be a positive integer. An
algebraic decision tree over the reals is a ternary tree together with a function
that assigns to each of its inner nodes v a polynomial Fv in R[X1, ..., Xn], and to
each of its leaves a label (for instance, these labels could be “accept” or “reject”).

The semantics of algebraic decision trees is defined as follows. To any input
x ∈ Rn, we assign a unique path in the tree from the root to a leaf by continuing
with the left son of a node v if Fv(x) < 0, with the middle son if Fv(x) = 0, and
with the right son if Fv(x) > 0. The output of the algebraic decision tree is the
label of the leaf where the path ends.

The number of steps of an algebraic decision tree is defined as the depth of
the underlying tree.

Algebraic decision trees are used to give lower bounds for the branching (also
called topological) complexity of semi-algebraic problems.

Algebraic Computation Trees over the Reals. We now briefly describe
the notion of algebraic computation trees used in this article. Our definitions are
based on the formulation of [BCS97] (see also [Str81], [BO83] and [Lic90]).

Analogous to Strassen [Str81], we define computation trees as consisting of a
subjacent tree, an instruction function and an inference partition of the leaves.

Syntax of computation trees.

Definition 3. Let T be a finite tree with four types of nodes: assignment nodes
(outdegree 1), arithmetic nodes (outdegree 1), test nodes (outdegree 3) and leaf
nodes (outdegree 0). An algebraic computation tree with variables X1, ..., Xn is
a such a tree T together with a function (the instruction function) that associates

- to each assignment node v, a real constant or a variable;
- to each arithmetic node v, an arithmetic operation ◦v ∈ {+,−,×, /} and two

predecessor nodes, p1(v) and p2(v), of v in T ;
- to each test node v, two predecessor nodes, p1(v) and p2(v), of v in T ;
- to each leaf node l, a label.

Semantics of computation trees. Let T be an algebraic computation tree with
variables X1, ..., Xn. We associate to each internal node v ∈ T , a rational func-
tion compv ∈ R[X1, ..., Xn], as follows:

- for an assignment node v, with an associated real constant c, we define
compv := c;

- for an assignment node v, with an associated variableXi, we define compv :=
Xi;

- for an arithmetic node v, we define compv := compp1(v) ◦v compp2(v);
- for a test node v, we define compv := compp1(v) − compp2(v).

An Efficient Algorithm for the Sign Condition Problem 63

If v is an internal node of T , we say that it computes the rational function compv.
For any x = (x1, ..., xn) ∈ Rn we associate to v the real value compv(x, u) if
compv is defined on x. Otherwise, we say that compv is undefined on x.

Let v be an arithmetic node that computes the product of two preceding
nodes. If one of these two preceding nodes computes a constant from R, we say
that v performs a scalar multiplication Otherwise, we say that it performs a
non-scalar multiplication.

Definition 4 (Computation path, output). The computation path followed
in an algebraic tree T on input x = (x1, ..., xn) ∈ Rn, is the unique path in T
that satisfies the following properties:

- the path starts at the root of T ;
- the successor of an assignment node v in this path is its unique immediate

successor in the tree T ;
- an arithmetic node v has a successor in this path only if compv(x) is defined:

in this case the successor of v in the path is its unique successor in T ;
otherwise, the computation path ends in v;

- the successor of a test node v in this path corresponds to the first, second or
third immediate successor of the node v in T , according to whether compv(x)
is less, equal or greater than zero, respectively—i.e., according to whether
compp1(v)(x) is lower, equal or greater than compp2(v)(x);

- leaf nodes have no successor in a computation path.

We denote by T (x) the last node reached by this computation path. If T (x) is a
leaf, say l, of T , then its label is the result of the execution of T on input x and
we say that the algebraic tree T is executable on x.

Pragmatics of computation trees. Algebraic computation trees provide an excel-
lent model to prove lower bounds for the algebraic complexity of some problems.
Lower bounds are usually proved for the branching complexity or the non-scalar
complexity of any algebraic computation tree solving a fixed problem.

Let T be an algebraic computation tree. Its total complexity is defined as the
length of the longest path in the tree. Its branching complexity is defined as
the maximum number of branching (test) nodes in a single path of the tree. Its
non-scalar complexity is defined as the maximum number of non-scalar multi-
plication nodes in a single path of the tree. Finally, its multiplicative-branching
complexity is defined as the maximum number of non-scalar multiplication nodes
and branching nodes in a single path of the tree.

In order to prove lower bounds, the main drawback of this model is that it does
not include a notion of uniformity. On the other hand, this allows to describe non-
uniform algorithms in this model. For instance, Meyer auf der Heide [MadH84]
described a non-uniform polynomial time solution to the NP-complete Knapsack
problem using a similar (linear) model.

Arithmetic Circuits over the Reals. An arithmetic circuit (see [vzG86,
BCS97]), C, is a finite directed acyclic multigraph (a multigraph is a graph in

64 R. Grimson

which more than one edge is allowed between a pair of vertices) where each node
has in-degree zero (input nodes or constant nodes) or in-degree two (gate nodes).
Some nodes of the graph are marked as output nodes.

Every gate node is labeled with an arithmetic operation (×,+,−, /). We con-
sider only division free arithmetic circuits, i.e., arithmetic circuits where no gate
node is labeled with /. Each input nodes has an associated variable name and
each constant node an associated constant from R.

We define the size of C as the number of nodes in the circuit (see also [Weg87]).
We will use this number as our measure of sequential complexity, whereas the
parallel complexity is determined by the depth of the circuit (i.e., the length
of the longest path in the subjacent graph, from an input node to an output
node). The non-scalar complexity of C is defined as the number of non-scalar
multiplication nodes in the circuit.

We will not define the semantics of arithmetic circuits. We simply remark that
they furnish a versatile data structure to represent polynomials.

2.2 Representation of the Polynomials

Now, we describe the data types used in this article to represent polynomials.
Let us first introduce some notation.

Definition 5. A sign condition is an element of {0, 1,−1}. For x ∈ R we define

sgn(x) :=

⎧⎨⎩
−1 if x < 0;
0 if x = 0;
1 if x > 0.

Let P ⊂ R[X1, ..., Xn]. A P-sign condition, σ, is an element of {−1, 0, 1}P. We
say that P realizes the sign condition σ at x ∈ Rn, or that x satisfies the sign
condition σ if, for every P ∈ P, sgn(P (x)) = σ(P). We denote the sign condition
realized by P at x by sgn(P , x).

Let us denote by H(m) the height (or absolute value) of an integer m ∈ Z and
by h(m) its logarithmic height (or bitsize) defined as h(m) := �log(H(m) + 1)�.

For a polynomial P ∈ Z[X1, ..., Xn], we denote by H(P) its height defined as
the maximal height of all its coefficients and, analogously, by h(P) its logarithmic
height defined as the maximal logarithmic height of all its coefficients.

Let be given a polynomial F ∈ R[X1, ..., Xn]. We shall consider the following
different representations of it. Besides the number n of variables, each of these
representations has associated some natural parameters measuring the complex-
ity of the representation.

1. Arithmetic-circuit representation. The polynomial F is represented by
a division-free arithmetic circuit Γ over R that computes it. Let us denote
by L the non-scalar complexity of Γ and observe that the degree of F is
bounded by 2L. The parameters associated with this representation are n
and L.

An Efficient Algorithm for the Sign Condition Problem 65

2. Dense arithmetic representation. Suppose that the polynomial F has
degree d. The dense arithmetic representation of F consists on the tuple in
R(d+n

n) of its coefficients in the monomial basis. The parameters associated
with this representation are n and d.

3. Dense bit representation. We assume that the polynomial F has integer
coefficients. If F has logarithmic height τ and degree d, its dense bit rep-
resentation is the tuple in Z(d+n

n) of its coefficients in the monomial basis,
where each integer is represented by its bit encoding (of size at most τ). The
parameters associated with this representation are n, d and τ .

Given a family F := {F1, ..., Fs} of polynomials in R[X1, ..., Xn], the dense
(arithmetic or bit) representation of F is simply the collection of the dense
(arithmetic or bit) representations of each polynomial in the family F .

On the other hand, the arithmetic-circuit representation the family F is
division-free arithmetic circuit Γ over R that computes all the polynomials in
F . Let us denote by L the non-scalar size of Γ and observe that the degrees of
the polynomials in F are bounded by 2L. The parameters associated with this
representation are s, n and L.

We observe that the dense representation can be seen as a special case of the
arithmetic-circuit representation with L equal to

(
d+n

n

)
− n− 1, the number of

monomials of degree between two and d in n variables.
The size of a Triangular Thom encoding (T1, σ1, ..., Tn, σn) (where, for 1 ≤

i ≤ n, Ti is a polynomial and σi a sign condition on the derivatives of Ti, see
[BPR06]) of a real algebraic point x ∈ Rn is defined as the pair (d, τ), where d is
the maximum of the degrees of the polynomials T1, ..., Tn and τ us the maximum
of their logarithmic heights.

3 The Dialytic Method to Solve the Sign Condition
Problem

In this section we introduce the dialytic method1 and show how it enables us to
reduce the sign condition problem to the linear case. We assume the arithmetic-
circuit representation of polynomials. We recall that the dense arithmetic repre-
sentation can be seen as a particular case of this representation.

Let us consider a family F := {F1, ..., Fs} of polynomials in R[X1, ..., Xn] and
suppose that ΓF is a division-free arithmetic circuit of non-scalar complexity L
that computes the family F .

Suppose given a family of polynomials G = {G1, ..., Gk} ⊂ R[X1, ..., Xn] that
generate an R-subspace VG of R[X1, ..., Xn] that contains F . Let us also suppose
that the family G can be evaluated by a division-free arithmetic circuit of non-
scalar complexity LG . We consider the following three different examples of the
family G, called the family of generators :
1 The word dialytic comes from the Greek word διάλυσις, meaning separation

[LSJM40]. This term was used by Sylvester [Syl42] when he introduced the resultant
of a monic polynomial treating each monomial as a different variable.

66 R. Grimson

– As the family of generators we can take the family GP composed of the
polynomials computed by the non-scalar multiplication nodes in ΓF together
with a basis for the linear polynomials in R[X1, ..., Xn]. In this case, we have
k = L + n + 1 and LGP = L. It is clear that any polynomial in F can be
written as a linear combination of the polynomials in GP .

– Alternatively, as the family of generators we can take a maximal, R-linearly
independent subset GF of {F1, ..., Fs}. In this case, we have k equal to the
dimension of the R-subspace generated F (bounded by L + n + 1, as the
previous example shows) and LGF ≤ L.

– Finally, if the polynomials F1, ..., Fs have degree bounded by d we can also
take, as the family of generators, the monomial basis GB of R[X1, ..., Xn]
obtaining k =

(
n+d

n

)
and LGB =

(
n+d

n

)
− (n+ 1).

We assume fixed any such family of generators G = {G1, ..., Gk}. Then, for
1 ≤ i ≤ s and 1 ≤ j ≤ k, there exist constants α(i)

j ∈ R such that

Fi = Σk
j=1α

(i)
j Gj .

Let Z1, ..., Zk be new indeterminates and consider, for 1 ≤ i ≤ s, the polynomials
Fi := Σk

j=1α
(i)
j Zj ∈ R[Z1, ..., Zk]. Let us denote by G : Rn → Rk the function

defined by G(x) := (G1(x), ..., Gk(x)).

Remark 1. For any x ∈ Rn and for 1 ≤ i ≤ s, the value of Fi(x) is the same as
the value of Fi(G(x)).

In particular, this implies that a solution for the sign condition problem for the
family of linear polynomials {F1, ..., F1} induces a solution for the sign condition
problem for the original family {F1, ..., Fs}.

Theorem 2. Let F := {F1, ..., Fs} ⊂ R[X1, ..., Xn] be a family of polynomi-
als and suppose given an arithmetic circuit ΓF of non-scalar complexity L that
computes the family F .

Then, there exists an algebraic computation tree Γ that solves the sign condition
problem for the family F performing O((L + n)5 log(s)) arithmetic operations.

The size of Γ is bounded by sO(n+L) and it can be constructed in expected
time sO(n+L).

To prove this theorem, we need the following lemma that relates the total com-
plexity of evaluating some polynomials in a given family to the non-scalar com-
plexity of the family.

Lemma 1. Let F := {F1, ..., Fs} ⊂ R[X1, ..., Xn] be a family of polynomials
represented by a division-free arithmetic circuit Γ of non-scalar complexity L.
Let k be a positive integer, 1 ≤ k ≤ s, and let 1 ≤ i1 ≤ ... ≤ ik ≤ s be integers.
Then, Fi1 , ..., Fik

can be computed with total complexity O((L + k)(L+ n)).

Proof. Let us denote by n1, ..., nL the non-scalar multiplication nodes in Γ and
by P1, ..., PL the polynomials in R[X1, ..., Xn] computed by these nodes. We
assume, without loss of generality, that deg(P1) ≤ deg(P2) ≤ ... ≤ deg(PL).

An Efficient Algorithm for the Sign Condition Problem 67

It is easy to see that, for 1 ≤ i ≤ L, the node ni computes the product of two
polynomials of the form

Σi−1
j=1γjPj +Σn

j=1βjXj + β0,

where the greek letters represent real numbers. Rewriting the circuit if necessary,
each of these linear combinations can be computed from the preceding non-scalar
multiplication nodes and input variables without non-scalar multiplications and
a total complexity of O(n + i). Thus, there exists a division-free arithmetic
circuit, namely ΓP , that computes the family {P1, ..., PL} with total complexity
O(L2 + nL).

We remark that, for any 1 ≤ i ≤ s,

Fi = ΣL
j=1γjPj +Σn

j=1βjXj + β0,

where the greek letters represent real numbers. Hence, each Fi can be computed
from {P1, ..., PL} performing O(L+n) arithmetic operations. Thus, the polyno-
mials Fi1 , ..., Fik

can be computed with a total complexity O(L2+nL)+O(k(L+
n)). This completes the proof.

Proof (Proof of Theorem 2). Let G = {G1, ..., Gk} be one of the families of
generators GP or GF defined above, and denote by G : Rn → Rk the associated
function.

Using Meiser’s result (see Theorem 1) we construct an algebraic computation
tree ΓF that solves the point location problem for the family F := {F1, ..., Fs}
of linear polynomials in R[Z1, ..., Zk], with query time O(k5 log(s)).

Then, given a query point x ∈ Rn the sign condition satisfied by the family
{F1, ..., Fs} at x can be determined using Meiser’s algorithm for the family F at
the point G(x).

The correctness of this method follows from Remark 1. The number of arith-
metic operations needed to compute G(x) is bounded by O((L+n)2) by Lemma
1 since k is bounded by L+n+ 1 by construction. Thus, the total complexity is
bounded by O((L + n)5 log(s) + (L+ n)2) = O((L + n)5 log(s)).

If we use the monomials basis GB as the family of generators, we obtain the
following result.

Corollary 1. Let F := {F1, ..., Fs} ⊂ R[X1, ..., Xn] be a family of polynomials
of degree bounded by d.

Then, there exists an algebraic computation tree Γ that solves the sign con-
dition problem for the family F performing O(

(
d+n

n

)5
log(s)) = O(d5n log(s))

arithmetic operations
The size of Γ is bounded by sO(dn) and it can be constructed in expected time

sO(dn).

Proof. Ordering the monomials in R[X1, ..., Xn] of degree at most d by ascending
degree, each monomial in GB can be computed as a product of two preceding
monomials. Hence, the family GB can be computed by a division-free arithmetic
circuit of non-scalar complexity

(
n+d

n

)
−n− 1. Thus, the result follows from last

theorem.

68 R. Grimson

If we restrict our algorithms to perform arithmetic operations on integers, using
Algorithm 11.8 (Sign Determination Algorithm) from [BPR06], we obtain the
following result.

Corollary 2. Let F := {F1, ..., Fs} ⊂ Q[X1, ..., Xn] be a family of polynomials
of total degree bounded by d and logarithmic height bounded by τ .

Then, there exists an algebraic computation tree Γ that allows to determine,
for any algebraic point x ∈ Rn given by a triangular Thom encoding of size
(d′, τ ′), the sign conditions satisfied by the polynomials in F at x performing
log(s)d

O(n)
arithmetic operations between integers of logarithmic height bounded

by τd
O(n)

, where τ = max{τ, τ ′} and d = max{d, d′}. The size of the algebraic
computation tree Γ is O(τs(d+1)n

) and it can be constructed in expected time
O(τs(d+1)n+1). ��

Evaluation of First-Order Quantifier-Free Formulas. Let us consider L, the first-
order language defined as the usual first-order language of the reals but allowing
only unary predicates t > 0 and t = 0 for any term t in the language, instead
of the usual binary predicates s = t and s > t for arbitrary terms s and t. Of
course, this does not change the expressive power of the language.

Let ϕ be a quantifier-free formula in this language with n free variables. The
truth value of ϕ evaluated at x ∈ Rn depends only on the signs taken at x by
the polynomials involved in ϕ. Hence, as a consequence of the Corollary 1 we
obtain the following result.

Proposition 1. Let ϕ be a quantifier-free formula with n free variables in the
language L containing s polynomials of degree bounded by d.

Then, there exists an algebraic computation tree Γ that solves the membership
problem for the set {x ∈ Rn | R |= ϕ(x)} performing O(d5n log(s)) arithmetic
operations.

The size of Γ is bounded by sO(dn) and it can be constructed in expected time
sO(dn). �

We remark that the dialytic method performs non-scalar multiplications only to
evaluate the function G (defined before Remark 1) at the input point. The rest
of the algorithm is free from non-scalar multiplications, i.e., it performs only
linear operations on these results and branches according to their signs.

We can ask now: are these complexity bounds reasonable for the simple sign
condition problem? In the next section we shall prove some lower bounds related
to this problem.

4 Lower Bounds for the Sign Condition Problem

We shall analyze the cost of solving the sign condition problem for different
examples of families of polynomials. Each example leads to a different lower
complexity bound for the depth of any algebraic computation tree solving this

An Efficient Algorithm for the Sign Condition Problem 69

problem. In this way, we obtain lower bounds for the worst case complexity of
the sign condition problem in terms of natural parameters of the given family.

In Example 1 we construct, for any positive integers s and n, a family of
s linear forms in R[X1, ..., Xn] that leads to the lower bound Ω(n · log(s)) for
the branching complexity of any algebraic computation tree solving the sign
condition problem for this family.

In Example 2 we construct, for any positive integers s, L and n with s ≥ n2, a
family of non-scalar complexity L, containing s+1 polynomials in R[X1, ..., Xn],
that leads to the lower bound l(L, n, s) := max{L, n log3(s)

2 } for the multiplicative
branching complexity of any algebraic computation tree solving the sign condi-
tion problem for this family. If we denote by u(L, n, s) := O((L+n)5 log(s)) the
upper bound given by the dialytic method, we obtain that

u(L, n, s) = O(l(L, n, s)6) = l(L, n, s)O(1).

Hence, this example shows that the dialytic method is almost optimal.
The main drawback of Example 2 is that the degrees of the polynomials

involved in it are exponential on L. Example 3 is a modification of it. We obtain,
under a suitable hypothesis, the same results as in the referred example with the
additional property that the polynomials in the constructed family have degree
bounded by O(L2).

In Example 4, we consider a very restricted model: algebraic decision trees that
can only test the sign of the polynomials in the family F at the input point. Our
algorithms do not fit in this model since they evaluate also polynomials that do
not belong to the original family. For this model, we show an Ω(s) lower bound.

4.1 The Algebraic Model

Now, we concentrate on the multiplicative branching complexity of any algebraic
computation tree solving the sign condition problem for a given family of poly-
nomials, i.e., we take into account non-scalar multiplications and comparisons.

First we give a lower bound for the linear case, showing that Meiser’s original
algorithm is almost optimal.

Example 1. This example is a simplified linear version of the example used in
[JS00] to prove a lower bound on the number of sign conditions satisfied by a
family of polynomials.

For any positive integers s and n with s > n, consider s linear forms l1, ..., ls ∈
R[X1, ..., Xn] satisfying:

– for every subset {li1 , ..., lin} of {l1, ..., ls} consisting of n different linear forms,
the linear equation system li1(X) = 0, ..., lin(X) = 0 has exactly one solution
in Rn, and

– for every subset {li1 , ..., lin+1} of {l1, ..., ls} consisting of n+ 1 different lin-
ear forms, the linear equation system li1(X) = 0, ..., lin+1(X) = 0 has no
solutions in Rn.

70 R. Grimson

We remark that these conditions define a non-empty open set (complementary
to determinantal varieties, see [JS00]) in the space Rs×(n+1) of coefficient of the
linear forms. Hence, it is legitimate to assume the existence of a family {l1, ..., ls}
with the stated properties. The linear forms l1, ..., ls are said to be in general
position. Let us denote by Cs the number of sign conditions realized by this
family in Rn.

The two preceding conditions guarantee that for any two different subsets,
{li1 , ..., lin} and {lj1 , ..., ljn}, of {l1, ..., ls} consisting each of n linear forms,
the unique solution of the linear equation system li1(X) = 0, ..., lin(X) = 0
is different from the unique solution of the linear equation system lj1(X) =
0, ..., ljn(X) = 0. In particular, we obtain that the family {l1, ..., ls} satisfies at
least

(
s
n

)
different sign conditions in Rn, i.e., Cs ≥

(
s
n

)
.

The following proposition follows immediately and plays an important role in
our lower-bound results.

Proposition 2. If an algebraic computation tree computes a partition π of Rn,
then its branching complexity is at least log3(#π).

Proof. We recall that, in any algebraic computation tree, the only nodes with
more than one immediate successor are the branching nodes, that have three
immediate successors. Taking into account that a computation tree has at least
one output node (i.e., one leaf of the subjacent tree) for each element of π, the
proof follows easily by induction.

Suppose that Γ is an algebraic computation tree that solves the sign condition
problem for the family {l1, ..., ls}. Hence, it computes a partition of cardinality
Cs. We conclude, from Proposition 2, that its branching complexity is at least
log3(Cs) > n(log3(s)− log3(n)). In particular, if we take s > n2, we obtain that
the branching complexity of Γ is n log3(s)

2 = Ω(n · log(s)).
We remark that the upper bound given by Meiser’s algorithm is O(n5 log(s)).

Thus, the upper bound is bounded by a polynomial function of the lower bound,
which is satisfactory.

Meiser’s algorithm does not use non-scalar multiplications. From our lower
bound, we conclude that using non-scalar multiplications would not help to
improve essentially the point location algorithm in the linear case.

For the discussion of the next example we need the following technical lemma
that is the key to bound the non-scalar complexity of any algebraic computation
tree that solves the sign condition problem.

Lemma 2. Assume that {F0, ..., Fs} is a family of different irreducible poly-
nomials defining real algebraic hypersurfaces in Rn and that Γ is an algebraic
computation tree solving the sign condition problem for this family.

Then, for every i ∈ N, 0 ≤ i ≤ s, there exists a branching node of Γ testing
the sign of a multiple of Fi evaluated at the input point.

Proof. Let G1, ..., Gk be the non-zero irreducible factors of the polynomials in-
tervening in the branching nodes of Γ and suppose, for the sake of definiteness,

An Efficient Algorithm for the Sign Condition Problem 71

that F0 is not associated with any of them. We remark that G1, ..., Gk and F0
are irreducible.

Then, a particular form of the real Nullstellensatz for principal ideas (see
Theorem 4.5.1 in [BCR98]) implies that there exists an x ∈ Rn such that F0(x) =
0 and Gi(x) �= 0 for 1 ≤ i ≤ k. Choose ε ∈ R, ε > 0 such that the polynomials
G1, ..., Gk do not vanish anywhere in the ball B = Bε(x).

Therefore, the signs of G1, ..., Gk are constants in B. In particular, the com-
putation path followed by Γ for any two input points of B is exactly the same.

Since {x ∈ Rn | F0(x) = 0} is an hypersurface that cuts B, we conclude that
there are two points y, z ∈ B satisfying the conditions F0(y) = 0 and F0(z) �= 0.
Hence, Γ does not solve the sign condition problem for the family {F0, ..., Fs}.
This contradicts the assumption that Γ solves the sign condition problem for
the family {F0, ..., Fs}.
Example 2. In this example we show that, for any positive integers n, s and
L with s > n2 it is possible to construct a family F of s + 1 polynomials in
R[X1, ..., Xn] such that L(F) = L and any algebraic computation tree solving the
sign condition problem for this family has multiplicative branching complexity
at least max{L, n · log(s)}.

Given positive integers s, n and L with s > n2, consider, as in Example 1, s
linear forms F1, ..., Fs ∈ R[X1, ..., Xn] in general position and let us define the
polynomial F0 := X2L

1 − X2. We denote by F the family F := {F0, F1, ..., Fs}
composed of these polynomials.

Suppose that Γ is an algebraic computation tree that solves the sign condition
problem for this family. Since the family F has at least the same number of re-
alizable sign conditions as the family {F1, ..., Fs}, we conclude, as in Example 1,
that the branching complexity of Γ is at least n log3(s)

2 .
Clearly, the polynomial F0 = X2L

1 −X2 is irreducible and takes positive and
negative values in Rn. Hence, it defines a real algebraic hypersurface. Whence,
the family F satisfies the assumptions of Lemma 2. Thus, Γ evaluates a multiple
of F0. Since the degree of any multiple of F0 is at least 2L, we conclude that the
non-scalar complexity of Γ is at least L.

Summarizing, we have that the branching complexity of Γ is at least n log3(s)
2

and that its non-scalar complexity is at least L. Hence, its multiplicative branch-
ing complexity is at least l(L, n, s) := max{L, n log3(s)

2 }.
The upper bound obtained from the dialytic method is u(L, n, s) := O((L +

n)5 log(s)). In order to compare both bounds, we remark that l(L, n, s) = max{L,
n log3(s)

2 } = Ω(L + n · log(s)). Hence, we obtain that

u(L, n, s) ≤ l(L, n, s)6 = l(L, n, s)O(1).

This proves that the dialytic method behaves very well for the chosen parameters.

Discussion. Let us consider a new parameter M ∈ N defined as the maximum
of the non-scalar complexity of each polynomial in the given family. We remark
that while the upper bound given by the dialytic method depends intrinsically
on L, our lower bound would depend on M instead of L.

72 R. Grimson

The family of polynomials constructed in this example has two characteristics
that allowed us to derive the lower complexity bound:

1. the non-scalar complexity of some polynomials in the family is close to the
non-scalar complexity of the whole family (L = MO(1)), and

2. the family defines enough different sign conditions (sO(n)).

What is not satisfactory about this lower bound is that the degrees of the poly-
nomials involved are exponential on L. In the following example, we show that,
under a suitable assumption, it is possible to modify our construction to obtain
a polynomial F0 whose degree is quadratic in its non-scalar complexity.

Example 3. This example is a modification of Example 2 and we shall use the
notation introduced there. For any d > 0 sufficiently large, there exists, following
Corollary 3.1 in [BH99], a univariate polynomial Pd ∈ R[X] of degree d such that
the non-scalar complexity of any multiple of Pd is at least 1

3d
1
2 . In particular,

L(Pd) ≥ 1
3d

1
2 . On the other hand, Horner’s rule give the upper bound, L(Pd) ≤

d− 1.
We make the following (unproven) assumption: For any d > 0 sufficiently

large and for any constant c ∈ R the non-scalar complexity of any multiple of
Pd − c is at least 1

3d
1
2 .

We assume that this conjecture is true and continue with the following
construction.

Consider the polynomial F̃0 := Pd(X1) −X2 ∈ R[X1, ..., Xn]. We claim that
the non-scalar complexity of any non-zero multiple of F̃0 in R[X1, ..., Xn] is
at least 1

3d
1
2 . To prove the claim, consider a straight line program (SLP) γ

of non-scalar complexity L that computes a non-zero multiple P of F̃0. Take
x = (x1, ..., xn) ∈ Rn such that P (x) �= 0, evaluate the SLP γ in (X,x2, ..., xn)
and denote by γ′ the resulting SLP. Then, γ′ computes a non-zero multiple
of Pd − x2 ∈ R[X] and we conclude from our conjecture that its non-scalar
complexity is at least 1

3d
1
2 . Since the non-scalar complexity of γ is at least that

of γ′, our claim follows.
We define now the family F̃ as in the last example but using the polynomial

F̃0 instead of F0. We immediately obtain the following result.
For any three positive integers n, s and d with s > n2 and d > O(1) there exists

a family F of non-scalar complexity L(F) = dO(1) containing s+1 polynomials in
R[X1, ..., Xn] of degree bounded by d such that any algebraic computation tree
solving the sign condition problem for this family has multiplicative branching
complexity Ω(d+ n · log(s)).

Let us consider now another model.

Algebraic decision tree model. This is the simplest model where the sign con-
dition problem for a family {F1, ..., Fs} of polynomials can be solved. In this
model, an algorithm is an algebraic decision tree (that should not be confused
with the algebraic computation trees of the previous examples) whose tests can
only be based on the sign satisfied by some polynomial in {F1, ..., Fs} evaluated
at the input point.

An Efficient Algorithm for the Sign Condition Problem 73

Example 4. In this example, we construct a family of linear polynomials in
R[X1, X2] and show that any algebraic decision tree in our restricted model
that solves the sign condition problem for this family must have depth s.

Consider the unit circle in the plane S1 ⊂ R2 and s different points on it,
p1, ..., ps ∈ S1. For 1 ≤ i ≤ s, let us denote by Fi the linear equation pi·(x1, x2)−1
representing the tangent line to S1 passing through pi. We remark that inside
the unit circle all these equations take negative values. Also, for 1 ≤ i ≤ s, all
these linear polynomials take negative values at pi except Fi which is zero.

Suppose now that Γ is an algebraic decision tree satisfying that any of its
decisions (branchings) is based on the sign of some polynomial in the family
F1, .., Fs evaluated at the input point. We claim that for any input whose com-
putation path follows the negative sign branch of each test in this path, all the
polynomials in the family F1, ..., Fs must be evaluated before the sign taken by
all of them at the input is completely determined.

To prove the claim, suppose that F1, ..., Fs−1 are evaluated but not Fs. Con-
sider the point ps; as remarked before, F1, ..., Fs−1 take negative values at ps

and Fs(ps) = 0. Then, there exists a small open ball, Bε(ps) ⊂ R2 such that
F1, ..., Fs−1 take negative values inside this ball. Since Fs = 0 describes a line,
we conclude that there exist two different points, namely x and y, in the ball
Bε(ps) such that Fs(x) > 0 and Fs(y) < 0. Hence, the sign of an input point
cannot be determined evaluating a proper subset of {F1, ..., Fs} at this point.
Thus, the depth of Γ is at least s.

Discussion. This example can be easily generalized to higher dimensions and,
with some more work, to polynomials of any given non-scalar complexity.

This example shows that other polynomials than F1, ..., Fs must be evaluated
in order to obtain an upper bound that depends logarithmically on s. Inspecting
Meiser’s algorithm and the dialytic method, we see that it is enough to admit
to test the sign of linear combinations of the polynomials evaluated in previous
tests.

5 The Dialytic Method for Point Location

Now, we show how the dialytic method can be used to solve the point location
problem for a given family of polynomials.

To solve the point location problem for a family of polynomials, we use the fol-
lowing proposition, that is an immediate consequence ofTheorem 16.18 in [BPR06]
(see [HRS90a,GHR+90,HRS94b,CGV91,GV92, HRS94a,Can93,GR93,BPR99]
for the historical development of this result).

Proposition 3. Let P be a family of s polynomials in R[X1, ..., Xn] of degree
bounded by d. Then, there exists a family P̃ containing sndO(n4) polynomials in
R[X1, ..., Xn] of degree bounded by dO(n3), such that the partition S(P̃) of Rn

induced by the realization of the sign conditions on the family P̃ is finer than
the partition A(P) induced by the connected components of the realization of the
sign conditions on the family P.

74 R. Grimson

Moreover, there exists an algorithm that, on input P, computes a family P̃ with
the stated properties in time bounded by sn+1dO(n4); if the input polynomials have
integer coefficients whose bitsize is bounded by τ , the bitsize of the coefficients of
the output is τdO(n3). ��

The last proposition implies that a solution of the sign condition problem for
the family P̃ leads to a solution of the point location problem for the family
P . Combining the Corollary 2 with the last proposition, and identifying differ-
ent outputs corresponding to a same face of the arrangement A(P), we obtain
following corollary.

Corollary 3. Let P := {P1, ..., Ps} be a family polynomials in R[X1, ..., Xn]
of total degree bounded by d and logarithmic height bounded by τ . Then, there
exists an algebraic computation tree of size τsdO(n4)

that solves the point location
problem for the family P. For any x ∈ Rn given by a triangular Thom encoding

of size (d′, τ ′), the point location query at x is answered performing log(s)d
O(n4)

arithmetic operations between integers of logarithmic height bounded by τd
O(n)

,
where τ = max{τ, τ ′} and d = max{dO(n3), d′}. The algebraic computation tree

can be constructed in expected time τsdO(n4)
. ��

References

[BCR98] Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Modern
Surveys in Mathematics, vol. 36. Springer, Heidelberg (1998)

[BCS97] Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity the-
ory. Grundlehren der mathematischen Wissenschaften. Springer, Heidel-
berg (1997)

[BH99] Baur, W., Halupczok, H.: On lower bounds for the complexity of poly-
nomials and their multiples. Computational Complexity 8(4), 309–315
(1999)

[BO83] Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC
1983: Proceedings of the fifteenth annual ACM symposium on Theory of
computing, pp. 80–86. ACM, New York (1983)

[BPR10] Basu, S., Pollack, R., Roy, M.F.: An asymptotically tight bound on the
number of connected components of realizable sign conditions. Combina-
torica (2009/2010) (to appear)

[BPR99] Basu, S., Pollack, R., Roy, M.-F.: Computing roadmaps of semi-algebraic
sets on a variety. J. AMS 3(1), 55–82 (1999)

[BPR06] Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry. In:
Algorithms and Computation in Mathematics, 2nd edn., vol. 10. Springer,
Secaucus (2006)

[Can93] Canny, J.F.: Computing roadmaps of general semi-algebraic sets. Comput.
J. 36(5), 504–514 (1993)

[CEGS91] Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly-
exponential stratification scheme for real semi-algebraic varieties and its
applications. Theoretical Computer Science 84(1), 77–105 (1991)

An Efficient Algorithm for the Sign Condition Problem 75

[CGV91] Canny, J.F., Grigoriev, D., Vorobjov, N.: Finding connected components
of a simialgebraic set in subexponential time. Appl. Algebra Eng. Com-
mun. Comput. 2, 217–238 (1991)

[Cla87] Clarkson, K.L.: New applications of random sampling in computational
geometry. Discrete & Computational Geometry 2(2), 195–222 (1987)

[Col75] Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields
by Cylindrical Algebraic Decomposition. Automata Theory and Formal
Languages, 134–183 (1975)

[CS90] Chazelle, B., Sharir, M.: An algorithm for generalized point location and
its applications. J. Symb. Computation 10(3-4), 281–309 (1990)

[DL76] Dobkin, D.P., Lipton, R.J.: Multidimensional searching problems. SIAM
J. Comput. 5(2), 181–186 (1976)

[GHR+90] Grigoriev, D., Heintz, J., Roy, M.F., Solern, P., Vorobjov, N.: Comptage
des composantes connexes d’un ensemble semi-algbrique en temps sim-
plement exponentiel. C.R. Acad. Sci. Paris 311, 879–882 (1990)

[GR93] Gournay, L., Risler, J.J.: Construction of roadmaps in semi-algebraic sets.
Appl. Algebra Eng. Commun. Comput. 4, 239–252 (1993)

[Gri88] Grigoriev, D.: Complexity of deciding tarski algebra. J. Symb. Computa-
tion 5(1/2), 65–108 (1988)

[Gri00] Grigoriev, D.: Topological complexity of the range searching. J. Complex-
ity 16(1), 50–53 (2000)

[GV92] Grigoriev, D., Vorobjov, N.: Counting connected components of a semial-
gebraic set in subexponential time. Computational Complexity 2, 133–186
(1992)

[HRS90a] Heintz, J., Roy, M.F., Solern, P.: Single exponential path finding in semi-
algebraic sets. Part 1: The case of a regular bounded hypersurface. In:
Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 180–196. Springer,
Heidelberg (1991)

[HRS90b] Heintz, J., Roy, M.F., Solern, P.: Sur la complexit du principe de Tarski-
Seidenberg. Bull. SMF 118, 101–126 (1990)

[HRS94a] Heintz, J., Roy, M.F., Solern, P.: Description of the connected components
of a semialgebraic in single exponential time. Discrete & Computational
Geometry 11, 121–140 (1994)

[HRS94b] Heintz, J., Roy, M.F., Solern, P.: Single exponential path finding in semi-
algebraic sets II: The general case, Algebraic geometry and its applica-
tions, collections of papers from Abhyankar’s 60-th birthday conference,
Purdue University, West-Lafayette (1994)

[JS00] Jeronimo, G., Sabia, J.: On the number of sets definable by polynomials.
J. of Algebra 227(2), 633–644 (2000)

[Kha79] Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet
Mathematics Doklady 20, 191–194 (1979)

[Koi00] Koiran, P.: Circuits versus trees in algebraic complexity. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 35–52. Springer, Hei-
delberg (2000)

[LB01] Ganapathy, M.K., Babai, L., Ranyai, L.: On the number of zero-patterns
of a sequence of polynomials. J. American Math. Soc. 14, 717–735 (2001)

[Lic90] Lickteig, T.: On semialgebraic decision complexity, Technical Report TR-
90-052, Int. Comput. Sc. Inst, Berkeley. Habilitationsschrift, Universitat
Tubingen (1990)

[LSJM40] Liddell, H.G., Scott, R., Jones, H.S., Mckenzie, R.: A greek-english lexi-
con. Clarendon Press, Oxford (1940)

76 R. Grimson

[MadH84] Meyer auf der Heide, F.: A polynomial linear search algorithm for the
n-dimensional knapsack problem. J. ACM 31(3), 668–676 (1984)

[MadH88] Meyer auf der Heide, F.: Fast algorithms for n-dimensional restrictions of
hard problems. J. ACM 35(3), 740–747 (1988)

[Mei93] Meiser, S.: Point location in arrangements of hyperplanes. Inf. Com-
put. 106(2), 286–303 (1993)

[Mil64] Milnor, J.: On the Betti numbers of real varieties. Proc. AMS 15, 275–280
(1964)

[Sno04] Snoeyink, J.: Point location. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry. CRC Press LLC,
Boca Raton (2004)

[Str81] Strassen, V.: The computational complexity of continued fractions. In:
SYMSAC 1981: Proceedings of the fourth ACM symposium on Symbolic
and algebraic computation, pp. 51–67. ACM, New York (1981)

[Syl42] Sylvester, J.J.: Memoir on the dialytic method of elimination. Part I.
Philosophical Magazine XXI, 534–539 (1842)

[vzG86] von zur Gathen, J.: Parallel arithmetic computations: a survey. In: Wie-
dermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233,
pp. 93–112. Springer, Heidelberg (1986)

[War68] Warren, H.: Lower bounds for approximation of nonlinear manifolds.
Trans. AMS 133, 167–178 (1968)

[Weg87] Wegener, I.: The complexity of boolean functions. B. G. Teubner, and
J. Wiley & Sons (1987)

Constraints on Curve Networks Suitable for G2

Interpolation

Thomas Hermann1, Jorg Peters2, and Tim Strotman1

1 Parasolid Components, Siemens PLM Software
2 University of Florida

{tamas.hermann,tim.strotman}@siemens.com,jorg@cise.ufl.edu

Abstract. When interpolating a network of curves to create a C1 surface from
smooth patches, the network has to satisfy an algebraic condition, called the vertex
enclosure constraint. We show the existence of an additional constraint that gov-
erns the admissibility of curve networks for G2 interpolation by smooth patches.

1 Introduction

One much-studied paradigm of geometric design is surface interpolation of a given net-
work of C2 curve segments (see Figure 1). While many C2 constructions exist that
join n patches (e.g. [Hah89, GH95, Ye97, Rei98, Pra97, YZ04, LS08, KP09]), these
constructions generate the boundary curves that emanate from the common point, i.e.
rely on full control of these curves. In many practical scenarios, however, the curves are
feature curves. That is, they are given and may only be minimally adjusted. It is well-
known, that interpolating a network of curves by smooth patches to create a C1 surface
is not always possible when the number of curves is even, since an additional algebraic
constraint must hold for the normal component of the curve expansion at the common
point. This is the first-order vertex enclosure constraint [Pet91, DS91, HPS09]. Here
we discuss whether curve nets have to meet additional second-order vertex enclosure
constraints to allow for their G2 interpolation by smooth surface patches. The two pa-
pers on this subject we are aware of are [DS92] which sketches how one might solve
the G2 constraints but does not discuss whether they can be solved and [Pet92] which
analyzes the case when curves join with equal angles.

In particular, we want to determine constraints, if any, on n boundary curves yj , j =
1, . . . , n so that consecutive patches surrounding a vertex can join with C2 continuity
after reparameterization by some regular map

Φj : R
2 → R

2, Φj(u, v) =: [σj

τ j]. (1)

We show constructively under what constraints smooth interpolating surfaces can be
constructed, but we do not discuss how to obtain fair surfaces. Nor are we suggesting
heuristics for the generation of curve networks.

2 Smooth Network Interpolation

As illustrated in Figure 1, we consider n curves yj : R → R3 that start at a point
p ∈ R

3, and we aim at filling-in between the curves using patches xj : R
2 → R

3,

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 77–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

78 T. Hermann, J. Peters, and T. Strotman

1

1

2

2

γj

tj

tj+1

yj

yj+1

yj−1

xj(s, t)

xj+1(u, v)

p

Fig. 1. (left) Network of curve segments. This paper focuses on (right) local network interpolation
(see also Definition 1): curves yj , j ∈ Zn, meeting at a point p are given and pairwise interpo-
lating patches xj are sought. The arrow-labels 1 and 2 indicate the domain parameters associated
with the boundary curves of the patches, e.g. ∂1x

j+1(ν, 0) = ∂2x
j(0, ν).

j ∈ Zn. We note that the angle γj corresponds to patch xj+1 and assume for notational
simplicity that the curves are arclength-parameterized at ν = 0 so that each tangent
vector tj := (yj)′(0) is a unit vector. Differential geometry provides us with two fun-
damental properties that the curve network {yj}must satisfy to be part of a C2 surface.
There must exist a vector n, the normal at p, and I(·, ·), the second fundamental form
acting on the tangent plane components of its two arguments, such that

tj · n = 0, and I(tj , tj) = yj
2 · n, j ∈ Zn. (2)

(We note that n is unique iff there are two linearly independent tj and I is unique iff
there are three pair-wise linearly independent tj . When the tangents form an X, i.e.
when there are just two pair-wise linearly independent tj , then there is a one-parameter
family of second fundamental forms.)

Definition 1 (Smooth Network Interpolation). Let

yj : R → R
3, ν �→ yj(ν), j ∈ Zn = {1, . . . , n} (3)

be a sequence of n regular, C2k continuous curves in R3 that meet at a common point
p in a plane with oriented normal n and at angles γj less than π (cf. Figure 1):

yj(0) = p, tj := (yj)′(0) ⊥ n, 0 < γj := ∠(tj , tj+1) < π. (4)

A Gk surface network interpolation of {yj} is a sequence of patches

xj : R
2 → R

3, (s, t) �→ xj(s, t), j ∈ Zn, (5)

that are regular and C2k at p, that interpolate the curve network according to

xj(ν, 0) = yj−1(ν), xj(0, ν) = yj(ν), (6)

(with index modulon) and that connect pairwise so thatGk constraints (see e.g. [PBP02]
or [Pet02]) hold:

at (u, 0) ∂k1
1 ∂

k2
2 xj+1 = ∂k1

1 ∂
k2
2 (xj ◦Φj), for 0 ≤ ki ≤ k. (7)

Constraints on Curve Networks Suitable for G2 Interpolation 79

Smooth Network Interpolation restricted to the neighborhood of p is called local net-
work interpolation.

Note that the increased smoothness at vertices is natural for spline constructions but (in-
tentionally) rules out out Gregory’s rational constructions [Gre74, MW91, Her96] and
that, by [HLW99], (7) is equivalent to ∂i

2x
j+1(u, 0) = ∂i

2(xj ◦Φj)(u, 0) for 0 ≤ i ≤ k.
Since the reparameterization appears only on one side, the formulation may appear
asymmetric; but with Φj regular, we can invert the relationship – so this formulation is
as general and powerful as reparameterizing both xj+1 and xj .

Section 3 introduces the constraints for k = 2, resulting from expanding (7) at (0, 0).
Section 4 then classifies the G2 constraints at the vertex and analyzes their solvability
for a fixed curve network. Theorem 1 establishes the existence of second-order ver-
tex enclosure constraints. We conclude with a conjecture on the properties of a matrix
that holds the key to the complete characterization of second-order vertex enclosure
constraints.

3 Notation and Constraints

Since our focus is on curvature continuity at p = xj(0, 0), we abbreviate the kth deriva-
tive of yj evaluated at 0 as yj

k and write

xj
k1k2

:= (∂k1
1 ∂

k2
2 xj)(0, 0), τ j

k1k2
:= (∂k1

1 ∂
k2
2 τ

j)(0, 0), σj
k1k2

:= (∂k1
1 ∂

k2
2 σ

j)(0, 0).
(8)

We drop superscripts whenever the context makes them unambiguous, e.g. we write

xk1k2 := xj
k1k2

, x−
k1k2

:= xj−1
k1k2

, . . . , (9)

yk := yj
k = x0k, y−

k := yj−1
k = xk0, y+

k := yj+1
k = x+

0k. (10)

That is xk1k2 is a vector in R3 and not a vector of vectors [. . . ,xj
k1k2

, . . .].
We also tag the equations arising from (7) for a specific choice of (k1, k2) and j as

(k1, k2)j . Again, to minimize ink, we leave out the superscript when possible. By (6),
Φj has the expansion

Φj(u, v) :=

[
(σj

01 + σj
11u+ . . .)v +(σj

02 + σj
12u+ . . .)v2

2 + . . .

u+ (τ j
01 + τ j

11u+ . . .)v +(τ j
02 + τ j

12u+ . . .)v2

2 + . . .

]
. (11)

Substituting the curves according to (6), we obtain from (7) at (0, 0), via the chain rule,
the G1 constraints

y+
1 = y−

1 σ01 + y1τ01 (0,1)

x+
11 = y−

1 σ11 + x11σ01 + y2τ01 + y1τ11 (1,1)

x+
21 = 2x11σ11 + 2y−

1 σ21 + x12σ01 + y3τ01 + 2y2τ11 + 2y1τ21 (2,1)

x+
31 = 3x12σ11 + 6x11σ21 + 6y−

1 σ31 + x13σ01 + y4τ01 + 3y3τ11

+ 6y2τ21 + 6y1τ31 (3,1)

80 T. Hermann, J. Peters, and T. Strotman

and the G2 constraints

y+
2 = y−

2 σ
2
01 + 2σ01x11τ01 + y−

1 σ02 + y2τ
2
01 + y1τ02 (0,2)

x+
12 = 2σ11y−

2 σ01 + 2σ11x11τ01 + y−
1 σ12 + x21σ

2
01 + 2σ01x12τ01

+ x11σ02 + y3τ
2
01 + y2τ02 + 2τ11x11σ01 + 2τ11y2τ01 + y1τ12 (1,2)

x+
22 = 4τ21y2τ01 + 4τ11y3τ01 + 4σ11x11τ11 + 4τ21x11σ01 + 4σ11x12τ01

+ 4σ21x11τ01 + 2σ01x13τ01 + 4σ21y−
2 σ01 + 4σ11x21σ01 + 2y2τ12

+ 4τ11x12σ01 + 2x11σ12 + 2y−
1 σ22 + x12σ02 + y3τ02 + 2y1τ22

+ 2y−
2 σ

2
11 + x22σ

2
01 + y4τ

2
01 + 2y2τ

2
11. (2,2)

Lemma 1 (equivalence of I and normal twist). Let x(u, v) be a patch interpolating
the curves y0(u) and y1(v) with tangents t0 and t1 respectively and x+ its consecu-
tive patch interpolating y1, and y2 with tangent t2. If the tangents tj , j = 0, 1, 2 are
pairwise linearly independent then defining a unique second fundamental form I(·, ·) at
(0, 0) is equivalent to defining x11(0, 0) ·n, the normal component of the corner twist.

Proof. Let t2 = at0 + bt1. Since the second fundamental form is identical for adjacent
patches, at (0, 0),

a2
I(t0, t0) + 2abI(t0, t1) + b2I(t1, t1) = I(at0 + bt1, at0 + bt1) = I(t2, t2) (12)

=(2) x+
02 · n = (a2x20 + 2abx11 + b2x02) · n

=(2) a2
I(t0, t0) + 2abx11 · n + b2I(t1, t1).

If a, b �= 0 then comparing terms shows I(t0, t1) = x11 · n as claimed.

If the tangents form an X, we can define a consistent second fundamental form for the
surface network by choosing the value of

w11 := x0
11 · n = x2

11 · n = −x1
11 · n = −x3

11 · n. (13)

By (1,1), fixing x11 determines τ j
ik, σ

j
ik for 0 ≤ i, k ≤ 1.

4 Constraints on Boundary Curves Arising from G2 Continuity

Let us call the G1 and the G2 constraints (i, s)j for i + s ≤ 4 listed in the previous
section, G2 vertex constraints. First we show that, if we can find a solution satisfying
the G2 vertex constraints then there exists a solution to the local network interpolation.
Later, we analyze under what conditions a solution exists.

Given a network of curves and a solution to the G2 vertex constraints, we construct
a local network interpolation as follows.

Lemma 2. If the G2 vertex constraints hold then there exists a local network interpo-
lation {xk}.

Constraints on Curve Networks Suitable for G2 Interpolation 81

Proof. Dropping as usual the superscript k, we define a network of surfaces

x(s, t) := y−(s) + y(t) − y0 +
∑
ij∈I

xij
si

i!
tj

j!
+ s3

(
tl1(s) +

t2

2
l2(s)

)
, (14)

where I := {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}, J := I ∪ {(1, 0), (2, 0)} and

xij ,ij ∈ I, σ(u, v) :=
∑
ij∈J

σij
ui

i!
vj

j!
, τ(u, v) := u+

∑
ij∈J

τij
ui

i!
vj

j!
(15)

satisfy the G2 vertex constraints. By definition, for any choice of polynomials l1, l2,
x̂(u, v) := x(σ(u, v), τ(u, v)) joins x in a G2 fashion along y; and so does

x+(u, v) := x̂(u, 0) + ∂vx̂(u, 0)v + ∂2
v x̂(u, 0)

v2

2
+ ŷ+(v), (16)

ŷ(ν) := y(ν) − y0 − y1ν − y2
ν2

2

since x+ agrees up to second order with x̂ along y. Therefore x+ and x meet in a G2

fashion along y. Also x+ interpolates y and y+ and the Taylor coefficients of x+ are
designed to be those of x with the superscript increased by 1.

We note that l1 and l2 are not directly involved in the definition of x+ but rather are
defined via (1) for the next curve:

l1(s) :=
∂tx(s, 0)− y1 −

∑2
i=1 xi1

si

i!

s3
, l2(s) :=

∂2
t x(s, 0)− y2 −

∑2
i=1 xi2

si

i!

s3
.

Now we focus on solvability of the Gs constraints, s = 0, 1, 2. The solvability of
(k1, k2)j for k1 + k2 = 2 follows from Lemma 1. Our main goal is therefore to find the
local Gs constraints (k1, k2)j of Section 2 for 3 ≤ k1 + k2 ≤ 4 in terms of the higher-
order derivatives, xj

21, xj
12, xj

31, xj
13, xj

22 and for the reparameterizations’ derivatives
τ j
k1k2

, σj
k1k2

for i, k > 1. We first consider the equations (k1, k2)j when k1 + k2 = 4.

Lemma 3. The equations (k1, k2)j , where k1 + k2 = 4, can always be solved in terms
of xj

31, xj
13, xj

22.

Proof. We have more vector-valued variables, x31, x13, x22, than constraints: (3,1),
(2,2). Equation (3,1) expresses x+

31 in terms of x13 so that we can focus on solving
(2,2) in terms of x13 and x22. Equation (2,2) can be arranged as

x+
22 = σ2

01x22 + 2τ01σ01x13 + f(y,x11,x12,x21), (2,2)

where f(y,x11,x12,x12) is the collection of terms on the boundary or appearing in
lower-order equations. Clearly, we can solve n−1 of these equations for x+

22. In general,
this is all we can hope for since, for equal angles γj , the analysis in [Pet92] shows that
the constraint matrix for solving (2,2) in terms of just x22 is rank-deficient by 1.

82 T. Hermann, J. Peters, and T. Strotman

If the tangents do not form an X configuration, i.e. not all consecutive pairs of angles
add to π, then at least one τ j

01 �= 0. Let τ1
01 �= 0. Then, for any choice of x1

22, we can
solve (2,2), for x2

22, . . .x
n
22,x

1
13.

If the tangents form an X then the valence must be n = 4 and τ01 = 0 and we
solve the tangential component for x2

22, . . .x
4
22,x

1
11, σ12 (we may need σ12 to choose

w11 �= 0 for Lemma 6).

Our analysis therefore focusses on the case of k1 + k2 = 3 derivatives. If the cor-
responding constraints are solvable then no second-order vertex enclosure constraint
exists and a construction is always possible. However, the situation is not that simple as
the next lemma shows.

Lemma 4. The equations (k1, k2)j , where k1 + k2 = 3, can be solved in terms of xj
12

and xj
21 if and only if the following n× n system of equations has a solution:

Mh = r, Mjk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sinγ, k = j − 1
2 sin(γ− + γ), k = j

sinγ−, k = j + 1
0, else,

(17)

rj :=
1
σ01

(2τ01σ11 + 2τ11σ01 + σ02)x11 (18)

+
1
σ01

((τ01)2y3 + 2τ01τ11y2 + 2σ01σ11y−
2 + τ02y2 + τ12y1 + σ12y−

1)

+σ01(2σ−11x
−
11 + τ−01y

−
3 + 2τ−11y

−
2 + 2τ−21y

−
1 + 2σ−21y

j−2
1).

Proof. We eliminate x21 by substituting (2,1)j−1 into (1,2)j to obtain

x+
12 = x−

12σ
−
01σ

2
01 + 2σ01x12τ01 + g(y,x11), (19)

where g(y,x11) collects the terms depending on y and x11. We divide both sides by

−σ01 := sin γ
sin γ− to obtain for hj := − xj

12

sin γj−1

sin γjhj−1 + 2 sin(γj−1 + γj)hj + sin γj−1hj+1 =
1
σ01

g(y,x11) =: rj . (20)

This is Equation (17).

Although, generically, we can freely choose all τ j
k1k2

and σj
k1k2

for k1 + k2 > 1,
rank deficiency of the matrix M could lead to an additional constraint on the boundary
curves when we consider a higher-order saddle point. For a higher-order saddle point,
n · yj

k = 0 for k = 1, 2 and this can force n · xj
11 = 0 so that

n · rj =
(τ01)2

σ01
n · y3 + σ01τ

−
01n · y−

3 .

Constraints on Curve Networks Suitable for G2 Interpolation 83

If
 ∈ Rn is a left null-vector of M, i.e.
M = 0, then we obtain the second-order
vertex enclosure constraint∑

j

τ j
01(
τ j
01

j

σj
01

+ σj+1
01
j+1)n · yj

3. (21)

We therefore focus on the rank of M. The next lemma partly characterizes rank(M)
and hence explains in what cases a second-order vertex enclosure constraint can exists
or where no second-order vertex enclosure constraint exists because M is of full rank.

Lemma 5 (rank of M). The rank of M is at least n− 2. The matrix M is of full rank
(rank(M) = n) if either all angles are equal, and n �∈ {3, 4, 6}; or if all angles are
less than π/3.

Proof. Since all sin γj > 0, we can solve (20) for j = 1, . . . , n − 2, i.e. the rank-
deficiency in the general case is at most 2. Discrete Fourier analysis in [Pet92] shows
M to be of full rank if all angles are equal, and n �∈ {3, 4, 6}. If all angles are less than
π/3 then the matrix is strictly diagonally dominant and therefore invertible.

We will see below that, for n = 4 and equal angles, rank(M) = 2; and for n = 5, when
three angles are π/2, then rank(M) = 3. Discrete Fourier analysis in [Pet92] showed
rank(M) = n − 1 if n ∈ {3, 6} and all angles are equal; and rank(M) = n − 2
when all angles are equal and n = 4. In the general case, however, the analysis is more
complex.

As for first-order vertex enclosure constraint, we can focus exclusively on the normal
component of the constraints since, in the tangent plane, we can always choose τ11 and
σ11 to solve (1,1) for an arbitrary choice of xj

11. Then we can use the tangent component
of x11 and the free choice of σ02 to solve the tangent component of (20)1 and (20)n

(while (20)j is solved in terms of xj
12, j = 2, . . . , n − 1). Focussing on the normal

component, we note that the right hand side simplifies to

n · rj =
1
σ01

(2τ01σ11 + 2τ11σ01 + σ02)n · x11 + 2σ01σ
−
11n · x−

11 (22)

+
1
σ01

((τ01)2n · y3 + (2τ01τ11 + τ02)n · y2)

+σ01τ
−
01n · y−

3 + 2(σ11 + σ01τ
−
11)n · y−

2 .

Lemma 6. If n = 3 or n = 4, no second-order vertex enclosure constraint exists for
any choice of γj .

Proof. For n = 3, sin(γ− + γ) = − sinγ+ and M simplifies to

M =

⎡⎣−2 sinγ2 sinγ3 sin γ1

sin γ2 −2 sinγ3 sin γ1

sin γ2 sinγ3 −2 sinγ1

⎤⎦ . (23)

Since 0 < sin γj ≤ 1, multiples of
 := [1, 1, 1] are the only null-vectors of M; that is,
rank(M) = 2. We have a solution iff

r1 + r2 + r3 = 0. (24)

84 T. Hermann, J. Peters, and T. Strotman

If we choose τ j
kl = σj

kl = 0 for k + l > 1 then we have a solution since

r1 + r2 + r3 =
3∑

j=1

τ j
01(

τ j
01

σj
01

+ σj+1
01)yj

3

=
3∑

j=1

τ j
01

sin(γ− + γ) + sin γ+

− sin γ
yj

3 = 0.

That is, we can choose x1
12 freely and enforce all (1, 2)j by choice of x2

12 and x3
12. Then

xj
21 is uniquely determined by (2, 1)j−1 and all constraints for k1 + k2 = 3 hold.

If n = 4, the determinant of M is

D =

∣∣∣∣∣∣∣∣
2 sin(γ4 + γ1) sin γ4 0 sin γ1

sin γ2 2 sin(γ1 + γ2) sin γ1 0
0 sin γ3 2 sin(γ2 + γ3) sin γ2

sin γ3 0 sin γ4 2 sin(γ3 + γ4)

∣∣∣∣∣∣∣∣ (25)

=
(
4 sin(γ4 + γ1) sin(γ1 + γ2) + sin γ1 sinγ3 − sinγ2 sin γ4)2

(26)

=
(

3 sin
γ1 − γ2 − γ3 + γ4

2
sin

γ1 + γ2 − γ3 − γ4

2

)2

(27)

= 9 sin2(γ2 + γ3) sin2(γ1 + γ2). (28)

The last equation holds because
∑
γj = 2π. That is D = 0 if and only if γ1 + γ2 = π

and therefore γ3 + γ4 = π; or γ2 + γ3 = π and therefore γ4 + γ1 = π. That is D = 0
if and only if at least one pair of tangents, t1,t3 or t2,t4, is parallel.

If γ1 + γ2 = π and γ2 + γ3 = π, i.e. the tangents form an X then sin γj = s,
j = 1, 2, 3, 4, for some scalar 0 < s ≤ 1. The matrix

M =

⎡⎢⎢⎣
0 s 0 s
s 0 s 0
0 s 0 s
s 0 s 0

⎤⎥⎥⎦ (29)

is of rank 2 and has left null-vectors [1, −c, −1, c] and [−c, −1, c, 1] for any c, for
example c := 2 cosγ4. Without loss of generality, we choose
1 := [1, 0, −1, 0] and

2 := [0, −1, 0, 1]. Since σ01 = 1 and τ01 = 0 and, by (1,1)j−1, n · x−

11 = −n · x11

n · rj := (2τ11 + σ02 − 2σ−11)n · x11 + τ02n · y2 + 2(σ11 + τ−11)n · y−
2 . (30)

Choosing, for example, w11 �= 0 in (13), we can enforce n · rj = 0 by choice of σ02
and the constraints can be satisfied.

If γ1+γ2 = π but γ2+γ3 �= π then s1 := sinγ2 = sin γ1 and s4 := sin γ3 = sin γ4

and hence

M =

⎡⎢⎢⎣
2 sin(γ4 + γ1) sinγ4 0 sin γ1

sin γ1 0 sin γ1 0
0 sinγ4 −2 sin(γ1 + γ4) sin γ1

sin γ4 0 sin γ4 0

⎤⎥⎥⎦ . (31)

Constraints on Curve Networks Suitable for G2 Interpolation 85

For this M, rank(M) = 3. Since sin(γ4 + γ1) = cos γ4 sin γ1 + cos γ1 sin γ4,

M = 0 for
 := [1, −2 cosγ4, −1, −2 cosγ1]. (32)

By (13) one n · xj
11 can be chosen freely and we can set

n · r = n · r1 − 2 cosγ4n · r2 − n · r3 − 2 cos γ1n · r4 = 0 (33)

by judicious choice of σj
02.

Our main result, however, proves that a second-order vertex enclosure constraint exists
for a higher valence for some choice of γ.

Theorem 1 (second-order vertex enclosure constraint). For n = 5 and some choice
of γj , a second-order vertex enclosure constraint exists.

Proof. For n = 5, we compute

detM = 18
∏

sin(γj + γj+1). (34)

Abbreviating sj := sin γj and cj := cos γj and assuming, without loss of generality
that γ1 + γ2 = π and therefore γ3 + γ4 + γ5 = π, we get

 := [s3, 2s5(c2s3/s2 + c3)− s4,−s5, s2,−s2]. (35)

If we choose all yj
2 so that n · yj

2 = 0 then (2) and Lemma 1 imply n · xj
11 = 0. With

sj−1,j := sin(γj−1 +γj), the second-order vertex enclosure constraint (21) has to hold
(note again that sj > 0 for all j):

0 =
∑

j

τ j
01(
τ j
01

j

σj
01

+ σj+1
01
j+1)n · yj

3

=
∑

j

sj−1,j

−sjsj−1
(sj−1,j

j + sj+1

j+1)n · yj

3. (36)

Specifically, for γ = π
6 [3, 3, 2, 2, 2]

[. . . , sj , . . .] = [1 1
√

3
2

√
3

2

√
3

2], [. . . , cj , . . .] = [0 0 1
2

1
2

1
2],

[. . . , sj−1,j , . . .] = [1
2 0 1

2

√
3

2

√
3

2],
 = [
√

3
2 0

√
3

2 1 −1].

Then the second-order vertex enclosure constraint is

0 = [1, 0, 1, 0, 0][. . . ,n · yj
3, . . .]

t = n · y1
3 + n · y3

3. (37)

That is, for the two terms corresponding to the curves with opposing tangents, n ·y1
3 =

−n · y3
3 has to hold.

We note that the case n = 5 yields a doubly rank-deficient matrix M when γ =
π
4 [2, 2, 2, 1, 1].

86 T. Hermann, J. Peters, and T. Strotman

5 Higher Valences

Theorem 1 established the existence of a second-order vertex enclosure constraint. An
explicit proof for valences n ≥ 6 requires exhibiting the null-vector
 and hence a full
understanding of the rank of M in its general form. We have not been able to establish
the rank in generality. But we hazard a conjecture.

Conjecture 1. If, for some j both |2 sin(γj+γj−1)| < sin γj+sinγj−1 and |2 sin(γj+
γj−1)| < sin γj+1 + sin γj−2 then there is a choice of the remaining angles for which
M is rank-deficient.

The conjecture draws on Lemma 5 which proves full rank when M is diagonally dom-
inant. Above, we conjecture that when both the row and column of an index are not
diagonally dominant then additional angles can be found so that the determinant of M
is zero.

We conclude with some examples supporting the conjecture. The following choices
of n angles γj , yield a matrix M with zero determinant:

Examples supporting Conjecture 1.
n [. . . , γj, . . .] =
6 π

6 [2, 3, 1, 3, h, 3− h], h := 6
π atan2

√
3

3 ≈ 1.636886845
7 π

6 [2, 2, 2, 1, 1, 1, 3],
7 π

6 [3, 2, 1, 2, 2, h, 2− h], h := 6
π atan

√
3

29 ≈ 0.1139327031
8 π

6 [2, 2, 1, 1, 1, 1, h, 4− h], h := − 6
π atan 483

√
3

−147−672
√

6
≈ 0.8337394914

12 π
12 [4, 1, . . . , 1, h, 11− h], h ≈ 2.237657840

6 Conclusion

We established the existence of a second-order vertex enclosure constraint that gov-
erns the admissibility of curve networks for G2 interpolation by smooth patches. We
fully analyzed the practically important cases of valence 3,4 and 5 and characterized
the second-order vertex enclosure constraint for valence 5. In all other cases, lacking an
exact characterization of the null-space of M, Lemma 5 establishes bounds on the an-
gle distribution that guarantee admissability of any curve network forG2 interpolation.
Conversely, we showed that a solution to the G2 vertex constraints allows constructing
a G2 local network interpolation.

Acknowledgements. The work was supported in part by NSF grant CCF-0728797.
Jianhua Fan helped to bring the G2 vertex constraints into readable form.

References

[DS91] Du, W.-H., Schmitt, F.J.M.: G1 smooth connection between rectangular and tri-
angular Bézier patches at a common corner. In: Laurent, P.-J., Le Méhauté,
A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 161–168. Academic Press,
London (1991)

Constraints on Curve Networks Suitable for G2 Interpolation 87

[DS92] Du, W.-H., Schmitt, F.J.M.: On the G2 continuity of piecewise parametric surfaces.
In: Lyche, S. (ed.) Mathematical Methods in CAGD II, pp. 197–207 (1992)

[GH95] Grimm, C.M., Hughes, J.F.: Modeling surfaces of arbitrary topology using man-
ifolds. In: Computer Graphics. Annual Conference Series, vol. 29, pp. 359–368
(1995)

[Gre74] Gregory, J.A.: Smooth interpolation without twist constraints. In: Barnhill, R.E.,
Riesenfeld, R.F. (eds.) Computer Aided Geometric Design, pp. 71–87. Academic
Press, London (1974)

[Hah89] Hahn, J.: Filling polygonal holes with rectangular patches. In: Theory and practice
of geometric modeling (Blaubeuren, 1988), pp. 81–91. Springer, Berlin (1989)

[Her96] Hermann, T.: G2 interpolation of free form curve networks by biquintic Gregory
patches. Computer Aided Geometric Design 13, 873–893 (1996)

[HLW99] Hermann, T., Lukács, G., Wolter, F.E.: Geometrical criteria on the higher order
smoothness of composite surfaces. Computer Aided Geometric Design 17, 907–911
(1999)

[HPS09] Hermann, T., Peters, J., Strotman, T.: A geometric criterion for smooth interpolation
of curve networks. In: Keyser, J. (ed.) SPM 2009: 2009 SIAM/ACM Joint Confer-
ence on Geometric and Physical Modeling, pp. 169–173. ACM, New York (2009)

[KP09] Karčiauskas, K., Peters, J.: Guided spline surfaces. Computer Aided Geometric De-
sign 26(1), 105–116 (2009)

[LS08] Loop, C.T., Schaefer, S.: G2 tensor product splines over extraordinary vertices.
Comput. Graph. Forum 27(5), 1373–1382 (2008)

[MW91] Miura, K.T., Wang, K.K.: C2 Gregory patch. In: Post, F.H., Barth, W. (eds.) EURO-
GRAPHICS 1991, pp. 481–492. North-Holland, Amsterdam (1991)

[PBP02] Prautzsch, H., Boehm, W., Paluzny, M.: Bézier and B-Spline Techniques. Springer,
Heidelberg (2002)

[Pet91] Peters, J.: Smooth interpolation of a mesh of curves. Constructive Approximation 7,
221–246 (1991)

[Pet92] Peters, J.: Joining smooth patches at a vertex to form a Ck surface. Computer-Aided
Geometric Design 9, 387–411 (1992)

[Pet02] Peters, J.: Geometric continuity. In: Handbook of Computer Aided Geometric De-
sign, pp. 193–229. Elsevier, Amsterdam (2002)

[Pra97] Prautzsch, H.: Freeform splines. Computer Aided Geometric Design 14(3), 201–206
(1997)

[Rei98] Reif, U.: TURBS—topologically unrestricted rational B-splines. Constructive Ap-
proximation 14(1), 57–77 (1998)

[Ye97] Ye, X.: Curvature continuous interpolation of curve meshes. Computer Aided Geo-
metric Design 14(2), 169–190 (1997)

[YZ04] Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary
smoothness. ACM TOG 23(3), 271–275 (2004)

Computing the Distance between Canal Surfaces

Yanpeng Ma1, Changhe Tu1, and Wenping Wang2

1 School of Computer Science and Technology
Shandong University, Jinan, China

chtu@sdu.edu.cn
2 University of Hong Kong

Abstract. A canal surface is the envelope of a one-parameter set of
moving spheres. We present an accurate and efficient method for com-
puting the distance between two canal surfaces. First, we use a set of
cone-spheres to enclose a canal surface. A cone-sphere is a surface gener-
ated by sweeping a sphere along a straight line segment with the radius of
the sphere changing linearly; thus it is a truncated circular cone capped
by spheres at the two ends. Then, for two canal surfaces we use the
distances between their bounding cone-spheres to approximate their dis-
tance; the accuracy of this approximation is improved by subdividing the
canal surfaces into more segments and use more cone-spheres to bound
the segments, until a pre-specified threshold is reached. We present a
method for computing tight bounding cone-spheres of a canal surface,
which is an interesting problem in its own right. Based on it, we present
a complete method for efficiently computing the distances between two
canal surfaces using the distances among all pairs of their bounding cone-
spheres. The key to its efficiency is a novel pruning technique that can
eliminate most of the pairs of cone-spheres that do not contribute to the
distance between the original canal surfaces. Experimental comparisons
show that our method is more efficient than Lee et al’s method [13] for
computing the distance between two complex objects composed of many
canal surfaces.

Keywords: canal surface, distance computation, cone-spheres,
bounding volume, distance interval.

1 Introduction

A canal surface is the envelope of a one-parameter set of spheres with radii
r(t) > 0 and centers P (t), t ∈ [0, 1]. It can be regarded as a surface gener-
ated by sweeping a sphere of radius r(t) along P (t), called the center curve.
Canal surfaces are widely used in the CAD/CAM, computer graphics, com-
puter games and animations. Research on the canal surface abounds, including
rendering[10,17,21], modeling [8,14,5], parameterization [3,4], etc.

Distance computation between two objects refers to computing the distance
between two disjoint objects. It is a major research topic in CAD/CAM, NC ver-
ification, robotics, computer animation, and haptic rendering. There are many

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 88–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computing the Distance between Canal Surfaces 89

methods for computing the distance between two objects, with the majority of
these methods for polyhedral models (e.g. [1,6,7,11,12,15,18]). Distance compu-
tation for free form surfaces is more difficult [2,19]. Some straightforward algo-
rithms solve a set of polynomial equations, which can be quite time consuming
to solve.

Using line geometry, Sohn et al [20] reformulate the distance computation as
a simple instance of a surface-surface intersection problem, and present an ap-
proach to computing the distance between two ellipsoids or the distance between
an ellipsoid and a simple surface, such as a cylinder, cone, and torus. Johnson
and Cohen [6] present an approach using the convex hulls of control nets–two
closest NURBS patches are detected and their minimum distance is computed
by recursive subdivision to the NURBS patches. Kim et al [9] compute the dis-
tance between a canal surface and a simple surface, such as a cylinder, cone, or
torus, by reducing the distance computation to solving a polynomial equation
in one variable, which can be computed quickly.

We study the distance computation between two canal surfaces. Throughout
we will assume that P (t) and r(t) are rational functions. Several methods have
been proposed for computing the distance between two canal surfaces recently.
Chen et al [2] shrink or grow one surface to touch another one, and obtain
equations for calculating one of the two closest points. It require that the two
surfaces do not intersect and at least one must be implicit. In [13], taking a
canal surface as one parameter family of spheres, Lee et al reduce the distance
computation to computing the minimum distance between two moving spheres.
Both methods need to solve a system of polynomial equations. The degree of
these equations are usually very high and therefore time-consuming to solve even
when the sphere center P (t) and radius r(t) have moderate degrees.

We propose a new method for computing the distance between two disjoint
canal surface. Our contributions are:

– We propose to use cone-spheres as bounding volumes of canal surfaces and
present a method for computing a set of cone-spheres to tightly bound a
canal surface. Computing a cone-sphere bounding volume of canal surfaces
is an important problem in its own right, since such tight bounding volumes
can be applied to distance computation, collision detection, and ray-tracing,
etc. that involve canal surfaces.

– We present a robust algorithm for computing the distance between two canal
surfaces based on iterative subdivision of the canal surfaces and computation
of the bounding cone-spheres of the resulting canal surface segments. For
speeding up the search for the distance we propose an effective pruning
technique based on the notion of distance intervals to eliminate most of the
cone-spheres pairs and the canal surface sections contained therein that do
not contribute to the distance between the two canal surfaces.

The remainder of this paper is organized as follows. In Section 2 we consider
distance computation between two cone-spheres. In Section 3, a method is pre-
sented for computing tight bounding cone-spheres of a given canal surface. In

90 Y. Ma, C. Tu, and W. Wang

Section 4, we describe our algorithm for computing the distance between two
canal surfaces, based on recursive subdivision and pruning using distance in-
tervals. In Section 5 we give experimental results and comparisons with Lee’s
method [13]. We conclude the paper in Section 6.

2 Preliminaries

2.1 Cone-Spheres and Their Distance Computation

As is shown in Fig. 1 and Fig. 2, a cone-sphere consists a truncated right circular
cone (drawn with red lines) and two spheres tangent to it at its two ends [16].
It can also be viewed as a simple canal surface generated by a sphere moving
along a straight line segment with its radius varying linearly.

The distance between two disjoint cone-spheres is the Euclidean distance be-
tween two closest points that come from the surfaces of the two cone-spheres,
respectively. This distance can be realized in three different cases as shown in
Fig. 2. Note that the distance between two intersecting cone-spheres is zero.

The distance between two cone-spheres can be computed as follows. Suppose
that we have two cone-spheres Cp and Cq, generated by moving spheres Op(u)
(u ∈ [0, 1]) and Oq(v) (v ∈ [0, 1]), respectively. Then the center curve and radius
function of Op are

P (u) = P1 + u(P2 − P1) (1)

rp(u) = rp1 + u(rp2 − rp1) (2)

where P1 and P2 are the centers of the spheres at the two ends of the cone-sphere
Cp, and rp1 and rp2 the radii of these two spheres. Similarly, the center curve
and radius function of Oq are

Q(v) = Q1 + v(Q2 −Q1) (3)

rq(v) = rq1 + v(rq2 − rq1) (4)

Here, 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
The distance between the two moving spheres Op and Oq is

d(u, v) = ||P (u)−Q(v)|| − rp(u)− rq(v) (5)

C1 C2

TC

HS1

HS2

Fig. 1. An example of cone-spheres

Computing the Distance between Canal Surfaces 91

(a) (b) (c)

Fig. 2. Three cases of distance between two cone-spheres, the distance formed by
(a) cone-cone, or (b) cone-sphere, or (c) sphere-sphere

Then the distance of Cp and Cq is the minimum of d(u, v) over (u, v) ∈ [0, 1]2.
We first fix some notation to simplify derivation. We denote

a = ||−−−→P1Q1||2, b = ||−−−→P1P2||2, c = ||−−−→Q1Q2||2, d = −−−→P1Q1 ·
−−−→
P1P2,

e = −−−→
P1Q1 ·

−−−→
Q1Q2, f = −−−→

P1P2 ·
−−−→
Q1Q2, g = rp2 − rp1, h = rq2 − rq1.

As illustrated in Fig. 2, the distance between Cp and Cq can be realized in three
cases: 1) between two cones; 2) between a cone and a sphere; and 3) between
two spheres. These cases will be considered below, one by one.
Case 1: cone vs. cone– In this case we compute the minimum of d(u, v) with
0 < u < 1 and 0 < v < 1. This entails seeking the zeros of the partial derivatives
of d(u, v), that is

∂d(u, v)
∂u

=
bu− d− fv√

a+ bu2 + cv2 − 2du+ 2ev − 2fuv
− g = 0

∂d(u, v)
∂v

=
cu− e− fv√

a+ bu2 + cv2 − 2du+ 2ev − 2fuv
− h = 0

This system of equations can be written as

v = Au−B (6)

l1u
2 +m1u+ n1 = 0 (7)

where

A =
bh+ fg

fh+ cg
, B =

dh+ eg

fh+ cg
,

l1 = (b −Af)2 − g2(b +A2c− 2Af),
m1 = −2(b−Af)(d−Bf)− 2g2(Ae+Bf − d−ABc),
n1 = (d−Bf)2 − g2(a+B2c− 2Be).

The local minima of d(u, v) can be found from Eqs. (7) and (6) by solving a
quadratic equation. Assuming that the two cone-spheres are disjoint, then by

92 Y. Ma, C. Tu, and W. Wang

geometric observation, the only relevant solution is the one with exactly one
local minimizer (u0, v0) of d(u, v) in (0, 1).
Case 2: cone vs. sphere– In this case, the distance between the two cone-spheres
is realized between one capping sphere of one cone-sphere and the truncated
cone of the other cone-sphere. That is, d(u, v) reaches it minimum with u or v
being 0 (or 1). Without loss of generality, assume v = 0. Then we can find the
minimum by solving the equation

∂d(u, 0)
∂u

=
bu− d√

a+ bu2 − 2du
− g = 0

It can be re-written as
l2u

2 +m2u+ n2 = 0 (8)

where l2 = b(b− g2), m2 = 2d(g2− b), and n2 = d2 − ag2. Note that only a root
u0 in (0, 1) is relevant in this case.
Case 3: sphere vs. sphere– Distances between two capping spheres are the values
of d(0, 0), d(0, 1), d(1, 0) or d(1, 1), which can easily be evaluated and compared
to give the minimum values.

Finally, the distance between the two cone-spheres is computed as the smallest
of all the minima of d(u, v) in the three cases above.

3 Computing Bounding Cone-Spheres

In this section we discuss how to compute bounding cone-spheres of a canal
surface. Fig. 3(a) shows a canal surface from Q1 to Q2. Using the line segment

()a ()b ()c

Q1 Q1 Q1
Q1

Q2
Q2Q2 r2

r1

LC

H
D

D

M

P (t)P (t)

I

Fig. 3. Computation of the bounding cone-sphere of a segment of canal surface

Computing the Distance between Canal Surfaces 93

Q1Q2 and the two spheres centered at Q1 and Q2 we obtain a cone-sphere, as
shown by the dashed outline in Fig. 3(b). Our task is to enlarge (that is, offset)
this cone-sphere to obtain another cone-sphere, as shown by the red, solid outline
in Fig. 3(b), that encloses the canal surface.

Now we are going to determine the necessary offset distance to obtain a bound-
ing cone-sphere. Refer to Fig. 3(c). Suppose that C = P (t) is a point on the
center curve where the moving sphere touches the bounding cone-sphere at D.
Let the line CD intersect the original cone-sphere at H and the line segment
Q1Q2 at L. Let I be the closest point on Q1Q2 to C. Then −→CI is perpendicular
to Q1Q2.

The offset distance ‖HD‖ can be expressed as

‖−−→HD‖ = ‖−−→CD‖+ ‖−→CL‖ − ‖−−→HL‖ (9)

where
‖−−→CD‖ = r(t) (10)

‖−−→HL‖ = r2 +
‖−−→Q2L‖
‖−−−→Q1Q2‖

(r1 − r2) (11)

‖−→CL‖ =
‖−→CI‖
sin α

=

√−→
CI · −→CI
sin α

(12)

with α = � CLI. Furthermore, we have

−→
CI = −−→

CQ2 −
−−−→
Q2Q1 ·

−−→
CQ2

‖−−−→Q2Q1‖2
−−−→
Q2Q1 (13)

To reduce the degree of the equation that we have to solve, in Eqn. (11) we

replace ‖−−→Q2L‖ by ‖−−→Q2I‖ =
−−→
Q2C ·

−−−→
Q2Q1

||
−−−→
Q2Q1||

to obtain an approximation of ‖−−→HL‖ as

GHL = r2 +
‖−−→Q2I‖
‖−−−→Q1Q2‖

(r1 − r2) (14)

For most practical cases the difference between ‖−−→Q2L‖ by ‖−−→Q2I‖ is small – it is
zero when r1 = r2 or when the center curve coincide with Q1Q2. Furthermore, by
an elementary argument, it can be shown that GHL(t) ≤ ‖−−→HL‖ for any t ∈ [0, 1].
Then, defining

f(t) = ‖−−→CD‖+ ‖−→CL‖ −GHL(t) (15)

we have f(t) ≥ ‖−−→HD‖ for any t ∈ [0, 1]. Therefore, the maximum of f(t) in [0, 1]
can be used as the offset distance to obtain a bounding cone-sphere.

To compute the maximum of f(t), we consider the equation f ′(t) = 0, which
is found to be

1
sin α

· (−→CI · −→CI)′

2
√−→
CI · −→CI

+ r′(t)− (||−−→Q2I||)′

||−−−→Q1Q2||
(r1 − r2) = 0

94 Y. Ma, C. Tu, and W. Wang

Clearing the square root yields

[r′(t)− (||−−→Q2I||)′

||−−−→Q1Q2||
(r1 − r2)]2 =

1
sin2 α

· [(−→CI · −→CI)′]2

4−→CI · −→CI

which is

4 sin2 α [r′(t)− (||−−→Q2I||)′

||−−−→Q1Q2||
(r1 − r2)]2 (−→CI · −→CI)− [(−→CI · −→CI)′]2 = 0 (16)

We solve this equation to find the maximum of f(t) and use it as the offset
distance to obtain a bounding cone-sphere. If P (t) and r(t) are polynomials
with deg(P (t)) = m and deg(r(t)) = n, then the degree of this equation is
max{4m− 2, 2m+ 2n− 2}. For example, if both P (t) and r(t) are cubic, Eqn.
(16) has degree 10.

When we compute the bounding cone-sphere, we approximate ‖−−→HD‖ by f(t)
to speed up the computation. This makes the bounding cone-sphere a little
bigger than the exact one, but the difference between them is quite tiny. Fig. 4
shows the comparison of the two bounding cone-spheres. The one drawn with
solid red line is the bounding cone-sphere computed by f(t) and the one drawn
with dashed black line is the exact one computed by ‖−−→HD‖. From the figure, we
can hardly distinguish them. In this example, we set r1 = 3.0 and r2 = 5.5. Then
the offset distance computed by f(t) is 4.384 and the offset distance computed
by ‖−−→HD‖ is 4.365. Hence, using f(t) for computing the offset distance yields a
safe, accurate approximation.

A key assumption in the above argument is that the point L lies within Q1Q2;
for otherwise it is not guaranteed that canal surface is enclosed by the intended

Fig. 4. The tiny difference between approximating and exact computed bounding cone-
spheres

Q1 Q2 L

C

Fig. 5. A case that a bounding cone-sphere doesn’t enclose the surface completely

Computing the Distance between Canal Surfaces 95

bounding cone-sphere constructed above. See such an example in Fig. 5. To pre-
vent such abnormal cases from happening, intuitively we should require that the
center curve P (t) do not vary widely between Q1 and Q2. Specifically, it can eas-
ily seen that such abnormal case does not occur if the angle between the tangent
vector P ′(t) of P (t) and −−−→Q1Q2 is not greater than π/2 for any t ∈ [0, 1]. We will
refer to this condition as the monotonic condition for the center curve P (t).

4 Computing the Distance between Two Canal Surfaces

In this section, we will present the complete algorithm for computing distance
between two canal surfaces S1 and S2. For each of these two canal surfaces,
we perform initial subdivision that cuts its center curve into some segments,
and consequently, each canal surfaces is segmented into a sequence of canal
surfaces, called sections. For each section of S1 and S2, we compute its bounding
cone-sphere, following the discussion in Section 3. Hence we obtain two sets of
bounding cone-spheres, bounding S1 and S2, respectively. Then we compute the
distances between all possible pairs of these bounding cone-spheres and deduce
which pairs may contain canal surface sections that realize the distance between
the original canal surfaces S1 and S2; the other pairs of cone-spheres, which are
called irrelevant pairs, will be discarded without further processing.

To improve the accuracy of distance computation for S1 and S2, those remain-
ing canal surface sections can be further subdivided into even smaller subsec-
tions, and then their bounding cone-spheres are computed and analyzed. These
subdivisions are performed recursively until a pre-specified threshold is reached.
In the following we will discuss in detail the criteria for guiding the subdivision
and explain how to prune most of irrelevant pairs at each level of subdivision
for efficient implementation.

4.1 Segmentation of a Canal Surface

Let S be a canal surface with the center curve P (t) and radius r(t). We segment
S by subdividing the curve P (t) into a series of curve segments. Each curve
segment corresponds a surface section. There are two stages of segmentation in
our algorithm. At the beginning, a possibly long and winded canal surface needs
to be segmented into a number of sufficient short sections so each can be properly
bounded by a cone-sphere; this is called initial segmentation. The second stage is
called recursive subdivision where a canal surface section is cut into two smaller
sections to improve the error of approximation.

For initial segmentation, we propose the following two criteria:

– (1) Radius monotonicity: We require the radius function to change mono-
tonically on each canal surface section, since such a section would be more
compatible with a cone-sphere in shape, whose radius function is always
monotonic, therefore tending to be bounded more tightly. So we solve the
equation r′(t) = 0 to find all points on the center curve P (t) where the radius

96 Y. Ma, C. Tu, and W. Wang

attains local minima or maxima and use them as cutting points to yield the
initial segmentation.

– (2) Bending control: It is clear that a bounding cone-sphere will be quite
loose if the canal surface to be bounded bends too much. The bending of
the surface can be characterized by the deviation angle of the center curve
P (t), t ∈ [0, 1]. Let Q1 = P (0) and Q2 = P (1). The deviation angle of S is
defined to be the angle between the tangent P ′(t) of the center curve and
line segment Q1Q2. Then another consideration in initial segmentation is
the control of the deviation angle.

As discussed in Section 3, to ensure the validness of our computation of
the bounding cone-sphere of S, we require that the deviation angle of S be
less π/2. In fact, it can be shown that if the deviation angle of S is less
than π/4, then the deviation of any subsection of S that may result from
the subsequent recursive subdivision will have its deviation angle less than
π/2, thus ensuring that its bounding sphere can properly be computed by
the method in Section 3. Due to space limitation, we will skip the proof of
this result.

Based on the above analysis, for initial segmentation we will enforce bend-
ing control by subdividing a canal surface section in half if its deviation angle
is greater π/4.

After initial segmentation, two input canal surfaces, represented as two sets of
canal surface sections together with their bounding cone-spheres, will be sub-
jected to analysis for distance computation as will be described in the next
section. During that process, if the error of computation needs to be reduced,
further recursive subdivision of the canal surface sections has to be performed.
When a canal surface section needs to be subdivided at this stage, to optimally
reduce the approximation error, we choose the cutting point to be where the
moving sphere of the canal surface touches the boundary of the existing bound-
ing cone-sphere. (See Fig. 3).

4.2 Pruning Irrelevant Pairs

At any stage of subdivision, let K1 and K2 denote the two sets of bounding cone-
spheres for the two canal surfaces S1 and S2, respectively. Then we examine all
pairs of bounding cone-spheres (C1, C2), C1 ∈ K1 and C2 ∈ K2, to deduce about
the distance between S1 and S2. Typically, the distance between S1 and S2 is only
realized by a smaller number of the pairs of bounding cone-spheres, and these
pairs need to be subdivided further to improve the approximation error. The
others pairs, called irrelevant pairs, cannot contribute the distance computation
and thus should be discarded. Hence, we need an effective scheme to eliminate
as many irrelevant pairs as possible.

The distance of a pair of bounding cone-spheres is only a lower bound of the
distance between the canal surfaces contained therein, so it does not provide
sufficient information for deciding which pair should be discarded as irrelevant
pairs. Consider the example in Fig. 6. Here, The canal surface below is divided

Computing the Distance between Canal Surfaces 97

γ3
β2γ2β3

C1

C2

C3

Fig. 6. Distance interval [β, γ]

into two surface sections bounded by two bounding cone-spheres C2 and C3.
The other canal surface is just one section, bounded by a bounding cone-sphere
C1. So we have two pairs (C1, C2) and (C1, C3) to compare. Although the dis-
tance of (C1, C2) (β2 in Fig. 6) is smaller than that of (C1, C3) (β3), we cannot
conclude (C1, C3) is irrelevant, because the distance between the canals surfaces
in (C1, C2) is bigger than the distance between the canals surfaces in (C1, C3).
That is, discarding (C1, C3) would lead to an erroneous result.

We resolve this issue by assigning a distance interval to each pair of bounding
cone-spheres (C1, C2), and eliminate irrelevant pairs based on comparison of all
distance intervals. For a pair of bounding cone-spheres, let β be the distance
between the two cone-spheres and let γ be the distance between any two spheres
respectively from the two family of moving spheres generating the two canal
surface bounded by C1 and C2. Then the [β, γ] is called a distance interval
associated with (C1, C2). Let d be the distance between the two canal surfaces
bounded by C1 and C2. Then, clearly, β ≤ d ≤ γ. Fig. 6 shows the distance
interval [β, γ] for the two pairs of cone-spheres (C1, C2) and (C1, C3).

In our implementation, from each pair of bounding cone-spheres, we choose the
spheres in the definition of γ as follows. When we compute the closest distance
between the two cone-spheres, we easily find the parameters (u0, v0) ∈ [0, 1]2

that give the minimum of the distance function d(u, v) of the two cone-spheres,
given in Eqn. (5). Then we substitute u0 and v0 into the moving spheres defining
the canal surfaces S1 and S2, respectively, to get two spheres, and designate the
distance between these two spheres to be γ. This selection is motivated by the
need to make the upper bound γ as little as possible so to help eliminate more
irrelevant pairs of bounding cone-spheres.

Distance intervals can be used to eliminate irrelevant pairs as follows. Consider
two pairs of bounding cone-spheres, denoted (C1, C2) and (C′

1, C
′
2), with C1 and

C′
1 bounding sections from a canal surface S1 and C2 and C′

2 bounding sections
from a canal surface S2. Let [β, γ] be a distance interval of (C1, C2) and [β′, γ′] a
distance interval of (C′

1, C
′
2). If γ < β′, then the distance between the two canal

surface sections bounded by (C′
1, C

′
2) will not be the eventual distance between

S1 and S2, thus (C′
1, C

′
2) should be pruned. Similarly, if γ′ < β, then (C1, C2) be

pruned. When [β, γ]
⋂

[β′, γ′] �= ∅, either of (C1, C2) and (C′
1, C

′
2) may contain

98 Y. Ma, C. Tu, and W. Wang

canal surface sections that might realize the distance between S1 and S2, so both
need to be retained for further processing.

4.3 Algorithm

Our complete algorithm is described below.

Algorithm 1 (Computing the distance between two canal surfaces)
Input: Two canal surfaces S1 and S2 with radii ri(t), and centers Pi(t), i = 1..2.
Output: The distance γ min between S1 and S2.

– Step 1: Initialization.

• Segment S1 and S2 into consecutive surface sections respectively. Com-
pute corresponding bounding cone-spheres of these sections, we obtained
two sets of bounding cone-spheres for S1 and S2. Denote them K1 and
K2 respectively.

• Combine two bounding cone-spheres, each from K1 and K2 respectively
to form a pair of bounding cone-spheres. Enumerating all possible com-
binations of the members in K1 and K2. For each pair of the bounding
cone-spheres, compute their distance interval [β, γ]. Taking each combi-
nation of two bounding cone-spheres as a unity, and define it by u.

• Define a set of u as U to record the candidates of the most closed pair
that forms the distance between two input canal surfaces. Add all the
pairs of the bounding cone-spheres computed above into U .

• Randomly initialize γ min to be the γ of the distance interval of a pair
in U .

– Step 2: For each pair of bounding cone-spheres u in the set U . Suppose the
distance interval is [β, γ], do the followings on u.

• If the β > γ min, then remove u from U ;

• Otherwise if γ < γ min, assign γ to γ min, check the other pairs whose
β > γ min, remove them from U ;

– Step 3: If the set U is empty, return the value γ min as the distance between
the two canal surface; otherwise, find the pair among all the pairs in U with
the smallest value γ in its distance interval, again denote the selected pair
by u, pick it out from U , go to step 4.

– Step 4: If both the two surface sections bounded by the cone-spheres in u are
bounded within a pre-specified threshold ε, discard u and go back to step 3;
otherwise, subdivide the surface section whichever is not bounded tightly by
its bounding cone-sphere into two parts. Compute the bounding cone-sphere
for every segment of the surface sections, and combine the new bounding
cone-spheres with those of the other surface section one by one to form new
pairs of bounding cone-spheres. Compute the distance intervals [β, γ] of the
new pairs, add them into U . Go to step 2.

Computing the Distance between Canal Surfaces 99

5 Experimental Results

In this section we present the experimental results for computing the distance
between two objects modeled with canal surfaces. All experiments were run on
the PC with 2.33 GHz Core(TM) 2 Duo CPU and 2 GB memory.

The Table 1 shows how the subdivision level is co-related to the change of the
pre-specified approximation tolerance ε. The second column of Table 1 shows
the depth of bounding tree, and the third one is the number of cone-sphere
pairs which were tested. All the data in Table 1 are obtained by the example in
Fig.7.(c). When we reduce the ε rapidly, the depth of the bounding tree increases
slowly. It means that our bounding cone-spheres converge rapidly. Table 1 shows
that the time and number of testing cone-sphere pairs also increase slowly with
rapidly reducing ε.

In all the following examples, we let the pre-specified threshold ε be 10−5.
We use a group of tests to compare the run time performances and the ac-

curacies of our method and that of the method by Lee et al [13]. In these tests
the two methods are used to compute the distances between two canal surfaces
with center curves P (t) and radius functions r(t) of different degrees. The timing
results are shown in Table 2. Some of these examples are shown in Fig. 7. In the
first column in Table 2, (i, j) stands for the degree of the center curve P (t) and
radii function r(t), respectively. From the comparisons, we see that our method
is faster, while achieving comparable accuracy.

Table 1. The effect of approximation tolerance ε

ε Depth Testing cone- Time (s) Distance
spheres pairs

10−2 4 72 0.017 5.8463058
10−3 6 96 0.025 5.8455473
10−4 7 124 0.031 5.8454567
10−5 9 144 0.039 5.8454345
10−6 10 168 0.043 5.8454344

Table 2. Runtime and distance comparisons of our method and the method in [13] for
computing distances between simple canal surfaces

Benchmarks Method in [13] Our method
Time (s) Distance Time (s) Distance

(2,2) 0.009 65.5312705 0.005 65.5312705
(2,3) 0.032 14.3156072 0.018 14.3156072
(2,4) 0.057 14.7398007 0.020 14.7398016
(3,2) 0.047 52.3472386 0.021 52.3472398
(3,3) 0.058 50.7140234 0.038 50.7140243
(3,4) 0.061 50.7528231 0.039 50.7528237
(4,2) 0.077 8.3783939 0.020 8.3783939
(4,3) 0.082 7.4441963 0.022 7.4441961
(4,4) 0.084 5.8454344 0.039 5.8454345

100 Y. Ma, C. Tu, and W. Wang

(a) Degrees (2,2) (b) Degrees (3,3) (c) Degrees (4,4)

Fig. 7. Some of the test examples in Table 1

Fig. 8. Distance between a stool and
a stick

Fig. 9. Distance between a ring and
a stool

Table 3. Runtime and distance comparisons of our method and the method in [13] for
complex objects

Benchmarks Method in [13] Our method
Time (s) Distance Time (s) Distance

stick and stool 2.236 6.3297552 0.024 6.3297552
ring and stool 2.923 8.9816040 0.047 8.9816041

Fig. 8 and Fig. 9 present the comparisons of the method by Lee et al [13]
and ours for computing the distance between two complex objects consisting of
multiple canal surfaces. The stool in the two figures comprises 28 canal surfaces.
The stick in Fig. 8 comprises 3 canal surfaces and the ring in Fig. 9 comprises 2
canal surfaces. The timing results are shown in Table 3. We see that the efficiency
improvement of our method over the method by Lee et al [13] is more significant
for complex objects than for simple objects.

Computing the Distance between Canal Surfaces 101

Fig. 10. Distance between octopus and floating grass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Our method
Lee’s method

Fig. 11. Runtime comparisons of our method and the method in [13] when the inputs
are deformable complex objects

Fig. 10 shows an example when the input are two deformable objects modeled
with canal surfaces. The complex object in the figure is an octopus, made up of
9 deformable canal surfaces, and the simple object is a single canal surface. Fig.
10 shows the distances between the two objects at two different moments.

Fig. 11 shows the runtime comparisons of our method and the method in [13]
for computing the distance between these two deformable objects. The horizontal
axis is the time line of motion/deformation, and the vertical axis represents the
computational time cost. The dashed curve represents our method’s runtime,
and the solid line for that of the method in [13]. We see that our method is
again more efficient.

6 Conclusion

We have present a new method for computing the distance between two canal
surfaces. We used cone-spheres as bounding volumes to speed up the computa-
tion. We design an efficient method for computing a bounding cone-sphere of
one section of a canal surface, and present a novel method for pruning the irrele-
vant pairs for efficient distance computation. Our tests show that this method is
much faster than the method by Lee et al [13]. The main reason for this superior

102 Y. Ma, C. Tu, and W. Wang

performance is that we just need to solve equations with one-variables due to
the use of the cone-spheres bounding volumes, while Lee et al’s method needs
to solve a system of equations with two variables.

Acknowledgment

The authors would like to thank the reviewers for their invaluable comments.
The work of Changhe Tu is partially supported by the Natural Science Founda-
tion of China project (60970046) and the Natural Science Foundation of Shan-
dong Province project (ZR2009GZ002). Wenping Wang is partially supported
by NSFC project (60933008) and National 863 High-Tech Program of China
(2009AA01Z304).

References

1. Cameron, S.: A comparison of two fast algorithm for computing the distance be-
tween convex polyhedra. IEEE Trans. on Robotics and Automation 13(6), 915–920
(1997)

2. Chen, X.–D., Yong, J.–H., Zheng, G.–Q., Paul, J.–C., Sun, J.–G.: Computing mini-
mum distance between two implicit algebraic surfaces. Computer-Aided Design 38,
1053–1061 (2006)

3. Cho, H.C., Choi, H.I., Kwon, S.–H., Lee, D.S., Wee, N.–S.: Clifford algebra,
Lorentzian geometry,and rational parametrization of canal surfaces. Computer
Aided Geometric Design 21, 327–339 (2004)

4. Choi, H.I., Kwon, S.-H., Wee, N.-S.: Almost rotation-minimizing rational
parametrization of canal surfaces. Computer Aided Geometric Design 21, 859–881
(2004)

5. Jia, J., Joneja, A., Tang, K.: Robustly Computing Intersection Curves of Two
Canal Surfaces with Quadric Decomposition. In: Alexandrov, V.N., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006, Part II. LNCS, vol. 3992,
pp. 342–349. Springer, Heidelberg (2006)

6. Johnson, D.E., Cohen, E.: A framework for efficient minimum distance compu-
tations. In: Proceedings of the IEEE conference on robotics and automation, pp.
3678–3684 (1998)

7. Kawachi, K., Suzuki, H.: Distance computation between non-convex polyhedra at
short range based on discrete Voronoi regions. In: Proc. of Geometric Modeling
and Processing, Hong Kong, pp. 123–128 (2000)

8. Kazakeviciute, M., Krasauskas, R.: Blending cylinders and cones using canal sur-
faces. In: Nonlinear Analysis: Modelling and Control, Vilnius, IMI, vol. 5, pp. 77–89
(2000)

9. Kim, K.-J.: Minimum distance between a canal surface and simple surface.
Computer–Aided Design 35, 871–879 (2003)

10. Kim, K.-J., Lee, I.-K.: The Perspective Silhouette of a Canal Surface. Computer
Graphics forum 22, 15–22 (2003)

11. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient col-
lision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. on
Visualization and Computer Graphics 4(1), 21–36 (1998)

Computing the Distance between Canal Surfaces 103

12. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast Proximity Queries with
Swept Sphere Volumes. In: Proceedings of IEEE Conference on Robotics and Au-
tomation (2000)

13. Lee, K., Seong, J.–K., Kim, K.–J., Hong, S.J.: Minimum distance between two
sphere–swept surfaces. Computer-Aided Design 39, 452–459 (2007)

14. Lee, I.-K., Kim, K.-J.: Shrinking: Another Method for Surface Reconstruction.
In: Proceedings of the Geometric Modeling and Processing 2004 (GMP 2004),
pp. 7695–2078 (2004)

15. Lin, M.C., Canny, J.F.: A fast algorithm for incremental distance calculation.
In: Proc. of IEEE Int’l Conference on Robotics and Automation, Sacramento,
Califonia, pp. 1008–1014 (1991)

16. Max, N.: Cone-Spheres. Computer Graphics 24, 59–62 (1990)
17. Nishita, T., Johan, H.: A scan line algorithm for rendering curved tubular objects.

In: Proc. of Pacific Graphics 1999, pp. 92–101 (1999)
18. Quinlan, S.: Efficient distance computation between non-convex objects. In: Pro-

ceedings of the IEEE Conference on Robotics and Automation, pp. 3324–3329
(1994)

19. Snyder, J., Woodbury, A., Fleischer, K., Currin, B., Barr, A.: Interval methods for
multi-point collisions between time-dependent curved surfaces. In: Proc. of ACM
SIGGRAPH 1993, pp. 321–334 (1993)

20. Kyung–ah, S., Juttler, B., Myung–soo, K., Wang, W.: Computing Distances Be-
tween Surfaces Using Line Geometry. In: Proceedings of the 10th Pacific Conference
on Computer Graphics and Applications (PG 2002) (2002), ISBN: 0-7695-1784-6

21. van Wijk, J.J.: Ray tracing of objects defined by sweeping a sphere. In: Computer
Graphics Forum (Eurographics 1984), pp. 73–82 (1984)

A Subdivision Approach to Planar
Semi-algebraic Sets

Angelos Mantzaflaris and Bernard Mourrain

GALAAD, INRIA Méditerranée
BP 93, 06902 Sophia-Antipolis, France

FirstName.LastName@inria.fr

http://www-sop.inria.fr/galaad

Abstract. Semi-algebraic sets occur naturally when dealing with im-
plicit models and boolean operations between them. In this work we
present an algorithm to efficiently and in a certified way compute the
connected components of semi-algebraic sets given by intersection or
union of conjunctions of bi-variate equalities and inequalities. For any
given precision, this algorithm can also provide a polygonal and isotopic
approximation of the exact set. The idea is to localize the boundary
curves by subdividing the space and then deduce their shape within
small enough cells using only boundary information. Then a systematic
traversal of the boundary curve graph yields polygonal regions isotopic
to the connected components of the semi-algebraic set. Space subdivi-
sion is supported by a kd-tree structure and localization is done using
Bernstein representation. We conclude by demonstrating our C++ im-
plementation in the CAS Mathemagix.

Keywords: subdivision algorithm, semi-algebraic set, connected com-
ponent, algebraic curve, topology computation.

1 Introduction

Planar semi-algebraic sets are unions of subsets S of R2 that satisfy a set of bi-
variate polynomial equalities and inequalities. These sets appear naturally when
polynomial constraints are used for instance to describe regions of validity for
a physical problem. Piecewise algebraic representation of shapes is commonly
used in Computer Aided Geometric Design, for instance in B-spline parametric
representation of curves, or even surfaces of volumes, that also belong to the
class of real semi-algebraic sets. Constructive Solid Geometry models also used
in CAGD are semi-algebraic sets if the involved solid primitives are algebraic.
In domains such as optimization, an important problem is the computation of
global optimum of (polynomial) functions under (polynomial) constraints. These
constraints define a semi-algebraic set as the solution space, in which the optimal
points will be searched [15], [12]. In other words, semi-algebraic sets provide a
general framework to handle many shape representations that are commonly
used in Shape Modeling.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 104–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www-sop.inria.fr/galaad

A Subdivision Approach to Planar Semi-algebraic Sets 105

In the present paper we present a new technique to handle semi-algebraic sets
in the plane. We note that our method can be extended to dimension three,
without theoretical obstacles. Indeed, the implementation is done in a generic
programming framework that allows extension to dimension three without rela-
tively little additional effort, since abstract types and templated data structures
are heavily used.

The study of real semi-algebraic sets has a long historical background [18],
with important theoretical contributions for instance on their triangulation [11],
[13]. More algorithmic questions have also been tackled, essentially using the
well-known Cylindrical Algebraic Decomposition [6]. This approach is based on
performing successive projections of semi-algebraic sets onto subspaces of dimen-
sion one less and then lifting back to the projected set. It yields a decomposition
of a semi-algebraic set S into (connected) components, defined by sign conditions
deduced from some “subresultant” polynomial sequences [5], [8], [3].

One of the bottlenecks for practical applications of C.A.D.-based approaches,
even in small dimension, is its double exponential complexity behavior. This
is due mainly to computations with algebraic numbers of possibly high degree.
Other obstacles include the lack of extension to approximate computation, re-
quired by applications in CAGD and the problem of robust description of the
components. Our approach refrains from costly algebraic manipulations, hence
avoids the high complexity of exact computation. It is based on real root isola-
tion techniques, which are well suited for approximate yet certified computations.
Moreover, it gives an answer to the problem of representing the semi-algebraic
set in a way that is both topologically correct and suitable for applications. This
overcomes the inflexible description by sign conditions or other implicit descrip-
tions, for instance the one in [2], where each connected component is described
itself as a semi-algebraic set.

We propose a subdivision approach that concentrates on rectangular domains
of R2 and computes a piecewise linear approximation of a semi-algebraic set
in the domain, which is topologically equivalent to it. The defining equations of
the set are transformed to tensor-Bernstein form. This gives a numerically stable
way to subdivide this representation into sub-domains, until certain regularity
conditions are fulfilled. During the subdivision process the cells that touch the
boundary of the semi-algebraic set are identified and their adjacency structure
is represented as a graph. When this process terminates, we follow this graph to
recover contours that define the geometry of the set. A tolerance ε > 0, given in
the input, controls the precision of the computed approximation. Nevertheless,
the regularity conditions imply a topologically correct result. In this sense, the
algorithm extends the approach in [1] on the topology of algebraic curves, by
providing a efficient way to deal with semi-algebraic regions and to perform
boolean operations on these regions.

We start by defining the family of sets that we are interested in.

Definition 1. The family S ⊆ 2R
2

of semi-algebraic sets is the closure under
union and intersection of subsets of R

2 of the form

106 A. Mantzaflaris and B. Mourrain

{
(x, y) ∈ R

2 : f(x, y) = 0
}

and
{
(x, y) ∈ R

2 : g(x, y) > 0
}

where f, g ∈ R[x, y].

We call the above sets basic semi-algebraic sets. These definitions extend natu-
rally to higher dimension.

If S ∈ S, its complement Sc = R2\S is easily seen to belong to S. The family
S is thus stable by intersection, union and complementary. Another important
property of semi-algebraic sets is that the projection of a semi-algebraic set is a
semi-algebraic set [3].

Our algorithm has as input an initial frame D0 = [a, b] × [c, d] and a semi-
algebraic set S, given in disjunctive normal form, that is, in the form S1∪· · ·∪Sk

where each Si is an intersection of basic semi-algebraic sets, hence defined as a
subset {(x, y) ∈ R2 : g1 = 0, . . . , gm = 0, f1 > 0, . . . , fn > 0}. It outputs
a boundary effective representation of the connected components of this semi-
algebraic set.

Given a precision ε > 0, it can also output a polygonal approximation of the
set inside the domain D, within the precision ε, which moreover is isotopic to S
in the following sense:

Definition 2. Two semi-algebraic sets S1,S2 of R2 are isotopic if there exists a
continuous application F : R2 × [0, 1] �→ R2 such that F |t=0 is the identity map,
F (S1, 1) = S2 and for all t ∈ [0, 1], F |t : R

2 �→ ImF |t is a homeomorphism.

We introduce some notation. Throughout the text S will refer to an input semi-
algebraic set. By a slight abuse of notation we might denote by S both the
semi-algebraic set and the set of underlying defining polynomials. The meaning
will be clear from the context. Let f be a polynomial of the input. We refer to
parts of the real algebraic curve f = 0 that belong to ∂S, the boundary of S, as
boundary curves. Points where boundary curves intersect (or a single boundary
branch, part of some f = 0 is self-intersecting), are called crossing points. Also,
we will refer to a branch of a curve, defined by two endpoints p, q, as the part
of the curve between these points, e.g. the image of a continuous parametrized
curve r : [0, 1]→ R2 s.t. r(0) = p, r(1) = q and f ◦ r = 0.

This paper is organized as follows: In Sect. 2 we provide details on the repre-
sentation of the main objects in memory. Then in Sect. 3 we describe a subdivi-
sion process that computes a collection of cells covering ∂S. This representation
is used to compute the connected regions of S, in Sect. 4. We specialize the main
functions that appear in the algorithm first for the case of basic sets, in Sect. 5
and then for a general set of S in Sect. 6. We conclude with examples and an
overview of our implementation in Sect. 7.

2 Representation

We begin by describing the main objects in the algorithm, called hereafter cells,
and how they are represented in memory.

A Subdivision Approach to Planar Semi-algebraic Sets 107

A cell carries local information for S in a rectangular domain D = [a, b]×[c, d].
This information includes the Bernstein representation over D of the defining
equations of Si, whenever Si ∩ C �= ∅. It also carries the intersections of every
branch of ∂S that crosses the cell with the cell frame ∂C. The cells of interest
are exactly the cells that contain branches of boundary curves, i.e. parts of ∂S.
These cells are identified during the subdivision process.

A local description of S in a cell is achieved using the tensor-Bernstein rep-
resentation over D of every polynomial that defines S. This representation is
computed using DeCasteljau’s algorithm. It yields for f ∈ R[x, y], an expansion

f(x, y) =
dx∑
i=0

dy∑
j=0

γi,j B
i
dx

(x; a, b)Bj
dy

(y; c, d) ,

where dx, dy is the degree of f inx, y resp. andBi
dx

(x; a, b) the i−thBernsteinpoly-
nomial of degree dx over the interval [a, b], namelyBi

dx
(x; a, b) =

(
dx

i

)
(x− a)i(b−

x)dx−i (b− a)−dx , 0 ≤ i ≤ dx, b < a. Consequently we store an (dx +1)× (dy +1)
matrix in memory to represent f , i.e. a dense Bernstein representation. A number
of properties of this basis, e.g. convexity, variationdiminishing,positivity etc,make
it suitable for stable approximate computations. See [10] for more information.

The first cell C that is computed as soon as the algorithm is launched is
the one corresponding to the initial frame D0. This initial cell carries all the
polynomials of the input. When a sub-cell is computed, if ∂Si does not cross
that cell, for some i, S = S1 ∪ · · · ∪ Sr, then the polynomials of Si are not kept
in the representation of it.

Another object is the region, which is a linear approximation of a 2-dimensional
connected component of the semi-algebraic set. It is described as a collection of
contours, that are closed loops properly oriented to delimit the region: The outer
contour, or shell, is oriented counter-clockwise (CCW for short) whereas any inter-
nal contours, or holes are clockwise (CW) oriented. See Fig. 4 for a region defined
by three contours.

Every contour is essentially a simple polygon described as a list of vertices
that lie on the boundary of the exact set.

We also employ graph structures to keep adjacency information between cells.
These are internally saved in memory using adjacency-list representation [7].

More specifically, we compute an undirected graph A, in which the points
where ∂S intersects ∂C correspond to edges and subdivision cells C correspond
to vertices. We shall compute the restriction of the semi-algebraic set in a given
initial domain, thus the border of this domain is from a computational point of
view a limit for the regions to compute. For this reason, we also keep a directed
graph containing the cells where boundary curves touch the initial frame and
the four corner cells of D0. This forms a CCW loop and is used to complete any
open contours that touch the boundary.

The space subdivision is tracked using a kd−tree, rooted at D0. The leaves of
this tree is a partition of D0 into cells. The inner nodes represent the sequence
of subdivisions that took place.

108 A. Mantzaflaris and B. Mourrain

Example. In Fig. 3(left), we have a partition of the domain into 8 regular cells.
The semi-algebraic set is the grayed area, described by a single contour. Here the
graph A is the closed path of cells 2,7,6,8,3,2. The border graph is the directed
closed path 2,1,7,6,4,3,2.

3 Subdivision Process

The subdivision of the initial domain into regular cells is a main operation of
the algorithm. It consists in splitting the initial domain into smaller cells until
certain local properties are satisfied. These properties will allow in a later step
the construction of a topologically correct approximation of the (boundary of
the) set in each cell.

During this process we construct a graph A whose vertices are the cells that
span ∂S. Alg. 3.1 presents the general process. Here a cell is regarded as an
abstract object that supports the following operations:

• Regularity test(IsRegular). A cell is considered regular if the topology of S
inside the cell is known, i.e. it can be deduced using only discrete data stored in the
cell, namely the points in ∂C ∩ ∂S, or even the sign of some derivatives on them.
Hence interesting cases are the cells that contain branches of boundary curves.
Some characteristic examples of this are presented in Fig. 1. If there is more than
one crossing point in the cell, that is, branches that intersect each other, then there
is ambiguity on how the region behaves in the cell. Thus the regularity implies that
we have at most one crossing point inside the cell and that the branches inside C
have a monotone behavior. This behavior is connected to special points on the
boundary curves, namely points with vertical or horizontal tangents.

• Boundary curve intersection test(OnBoundary). It is used to identify if
a cell is intersecting ∂S, i.e. C ∩ ∂S �= ∅. This can be done by inspecting the sign
variations of Bernstein coefficients of the polynomials that define S. Descartes’
Rule of Signs implies that if there is a branch of ∂S in C, then there will be sign
variations on the coefficients of some boundary equation. On the other hand, by
the positivity property of the Bernstein basis, if the coefficients over a cell C of a
curve f = 0 have no sign variations, then there cannot be a branch of this curve
in C.

(c)(b)(a)
1

2

3

4

1

2

3

4

1

2

3

4

Fig. 1. Examples of cells that are regular and intersect S : (a) intersection of two basic
sets, (b) union of two basic sets with a crossing, (c) union of two sets

A Subdivision Approach to Planar Semi-algebraic Sets 109

Algorithm 3.1. Subdivision algorithm
Input: A cell C0 corresponding to the initial domain D0.
Output: A partition of C0 into regular cells and a cell graph boxruled A.
Initiate a kd−tree K and set its root to C0;
Initiate a graph A with a vertex C0;
for all unvisited leaves C in K do

if OnBoundary(C) and not IsRegular(C) then
subdivide C into two children CL and CR ;
put an edge in A between CL and CR;
distribute the A−neighbors of C to CL, CR;
remove C from A;

else
mark C as visited;

end
return K, A;

end

During the subdivision process the following information is computed:

– Space partition information in the kd-tree structure.
– Local information in the subdivided cells: the tensor-Bernstein representa-

tion over the cell, critical points contained in the cell, intersection points of
∂S with the cell frame.

– Adjacency information between the cells, in horizontal and vertical direction.
The cells in which the boundary curves touch the border ∂D0 are also con-
nected in a counter-clockwise loop, to serve the purpose of limiting the com-
putation inside D0.

• Space Partition. The cells that derive from successive subdivisions are orga-
nized in a kd-tree structure [4], rooted at the initial domain D0. The nodes in this
tree have pointers to their left and right children, as well as to the parent node.
The coordinate in which the subdivision takes place at every level of the tree is
not fixed; it is implied every time by the dimensions of the current cell, thus at the
same level of the tree we may have cell subdivisions either in x or y coordinate.

This structured partition allows to perform fast point location queries. The
reason we have chosen a kd-tree rather than a quad-tree is economy wrt the
overall number of cell subdivisions as well as the modularity that it offers, for
instance it’s direct adaptation to three or more dimensions.

There are two basic tests to be defined, to guide the subdivision process. The
first identifies that a cell is regular, i.e. the topology of the semi-algebraic set in
the cell is known. In this case the subdivision stops at this branch of the kd-tree.
The second test identifies if ∂S intersects the current cell. If not, then either
C ⊆ S or C ∩ S = ∅, thus there is no need to subdivide it any further.

• Cell subdivision. Subdividing a cell C along some coordinate is essentially to
compute, starting from the Bernstein representation over C, representations over
some sub-domains of C. This operation is carried out by one call of DeCasteljau’s
algorithm [10].

110 A. Mantzaflaris and B. Mourrain

Fig. 2. Cell subdivision along x−direction. Neighbors of the parent (left) are dis-
tributed to the children(right). An edge is added between the latter.

Moreover, along the line where the splitting takes place, we solve a univariate
Bernstein polynomial for every boundary curve that intersects the cell, in order
to compute intersection with the new frame sides. The existing crossing points
and frame intersection points are distributed to the resulting sub-cells, Fig. 2.

• Adjacency graph update. At each subdivision step, a former leaf of the
kd-tree obtains two children. To update the cell graph, we disconnect this node
and distribute it’s neighbors to the new children, according to the direction of
splitting. Finally, we introduce a new edge that joins the two children along the
corresponding direction. These steps, demonstrated in Fig. 2, assure that at any
point of the subdivision, the leaves of the kd-tree, which form a partition of D0,
are connected to the neighboring cells in all four sides.

4 Region Recovery

In this section we explain how we pass from the cell description to a polygonal
approximation of the (connected components of the) semi-algebraic set. We will
demonstrate that as soon as the subdivision Alg. 3.1 terminates, we are able to
recover the shape of the semi-algebraic set, and guarantee the correctness of the
construction.

The output is a list of regions that correspond to connected components of
the semi-algebraic set. The set of cells that intersect a region can readily provide
a triangulation of the region, which can be outputted for use in rendering. Each
region is represented as a set of closed oriented contours. The orientation of every
contour reveals whether it is the exterior boundary, or shell of the region, or an
internal gap, or a hole. There is a unique shell for every region of S.

To compute the regions, it suffices to traverse the cell graph A in a suitable
way and recover the shell and holes of every region in the set. The algorithm for
region computation is summarized in Alg. 4.1.

The orientation check IsCCW depends only on the contour F . Every closed
contour can be assigned an orientation; if one walks around the curve in such a
way as to keep the bounded region on one’s left at all times, the contour is said to
be positively oriented. If the contour is traversed in the opposite direction, then
it is said to be negatively oriented. Let c = (p1, p2, . . . , pn) with pi = (xi, yi),
pn+1 = p1 be a list of points defining a closed polygonal contour. The sign of the

A Subdivision Approach to Planar Semi-algebraic Sets 111

123

4 5 6

7

8

1

2 3 4

5

67

Fig. 3. Left: Subdivision process, with marked subdivided cells and intersections.
Right: Computed polygonal region, marked with the oriented list of contour points.

Algorithm 4.1. Region computation
Input: A cell graph A covering the semi-algebraic set S .
Output: A list L of polygonal regions, one for every connected component of S .
L← ∅;
for all boundary cells C in A do

if C is not visited then
F ← DiscoverContour(C);
if F IsCCW then

Initialize region R with F ;
push R to L;

else
attach hole F to it’s containing shell

end

end

end
return L;

quantity
s∑

i=1

(xiyi+1 − xi+1yi) determines weather c is positively or negatively

oriented. This sum is twice the (signed) area of the contour.
The function DiscoverContour, presented in Alg. 4.2, returns a contour

that crosses the cell C and is oriented CCW wrt the region it delimits. For
instance, both the holes and the shell of the region in Fig. 4 are CCW oriented
wrt the grayed region. It is required that the cell argument is regular, so that
the global shape of the contour can be determined by following the known local
topology in the cell. This is ensured by the subdivision process of Sect. 3.

Apart from the cells containing branches of the boundary contours, there are
special cells that are needed in order to constrain the computation in the initial
frame D. These are the boundary cells that touch the frame as well as the four
corners of D. They are connected in a CCW loop during the subdivision process

112 A. Mantzaflaris and B. Mourrain

that is used to complete the contours that escape D and would not be closed
otherwise.

4.1 Following the Boundary Curves around a Region

The main function in Alg. 4.1 is DiscoverContour, which is in turn based on
two routines, Pair and StartingPoint.
• Pair. If a cell intersects both a region and the region’s boundary, then for
every intersection point p there is a unique point q that is connected to p via a
segment of ∂S that lies inside the cell. If the cell in question is also regular, q
can be computed using sign conditions along ∂C. We define this point q to be
the result of Pair(C, p). If this point q is different from p, then evidently it is
connected to p via a branch of some boundary contour of the region. Alg. 4.3
presents a general strategy to compute q.
Example. In Fig. 1 the result of Pair is: (a)1 → 2, (b)4 → 3, (c)2 → 3. Note
that in case (c), the branch 1 → 4 will not occur in the computation, since it
does not belong to ∂S.
• Starting Point. A contour has to be traversed with the correct orientation,
otherwise we would not be able to distinguish between shells and holes of a
region. For this, it suffices to provide the first two points in the point list of
the contour with the correct orientation. This is the task of the Starting-
Point(C) routine. It returns a point p on ∂C s.t. the oriented branch with end-
points p, Pair(p) has on it’s left side the region to be computed. This is a special
case of the Pair computation described in the next paragraph.
Example. For Fig. 1 the result of StartingPoint is: (a)2, (b)3, (c)2. Indeed,
the respective branches (a)2 → 1, (b)3 → 4 and (c)2 → 3, are CCW-oriented
wrt S.

Looking at the graph A induced by Alg. 3.1, we distinguish two kinds of
regular cells:

– Cells that contain non-crossing branches of ∂S.
– Cells that contain branches that intersect at one crossing point.

Fig. 4. A region defined by it’s oriented border. All the contours are CCW-oriented
wrt the grayed region. This leaves the holes CW oriented with respect to the bounded
domain they define.

A Subdivision Approach to Planar Semi-algebraic Sets 113

Recall that the outcome of Pair(C) is the point connected to p via a branch
which lies inside C. The general algorithm is presented in Alg. 4.3. The essential
tool for this computation is an efficient way to check if a given point on ∂C is
contained in S. This is done using the sign of the Bernstein coefficients. For
every polynomial f of C, there are four extreme coefficients that are equal to
it’s value on the four corners of ∂C. Now taking into account that the sign of f
along ∂C alternates every time we pass a boundary intersection point, we can
determine the sign on any point of ∂C by starting from an extreme coefficient
and counting points along ∂C, up to the desired point.

If there is one crossing point in C the topology of ∂S ∩C is conic (Fig. 1(a,b)).
To choose the correct pair of a given point on ∂C ∩ ∂S, we check whether a
∂C−neighborhood on the left of p belongs to S or on the right of p. We output
accordingly the point on the side where the test was positive.

If there is no crossing point, (Fig. 1(c)) it suffices to return the other end of
the branch that starts from p. We shall see in the sequel how this information is
recovered on regular cells.
Example. In the case of Fig. 3(left) we execute Alg. 4.2. Starting from cell 2,
we obtain a first point of the contour, using StartingPoint routine. Succesive
calls of the pair function give the sequence of points shown in Fig. 3(right). The
process stops when we reach the cell 2 again, thus completing the contour.

Algorithm 4.2. DiscoverContour(C)
Input: A regular cell C of A.
Output: A list F of points in the plane that define a closed contour.
p← StartingPoint(C);
Initialize a contour F and push p to it;
C0 ← C;
repeat

mark C as visited;
p← Pair(C, p);
push p to contour F ;
C ← the A−neighbor of C that contains p;

until C = C0 ;
return F ;

Algorithm 4.3. Pair

Input: A regular cell C and an intersection point p on ∂C.
Output: The intersection point q such that {p, q} lie on a branch of ∂S .
if there is a crossing in C then

Let l, r be the CCW previous and next point, resp., of p, in ∂C ∩ {f = 0};
Based on which of the segments lp or pr lies in S , return either l or r ;

else
return the other end of the C−branch starting from p;

end

114 A. Mantzaflaris and B. Mourrain

It remains to specialize these functions. We continue by doing so, first in the
case of basic algebraic sets and then in the case of intersection and union.

5 The Case of Basic Semi-algebraic Sets

A basic semi-algebraic set is defined by one polynomial, S = {(x, y) : f > 0}, or
S = {(x, y) : f = 0}. In both cases the treatment is quite the same, and depends
on the boundary curve f = 0, hence we shall suppose S = {(x, y) : f > 0}.
In the case of equality it is only the contour lines that will be outputted rather
than two-dimensional regions. After fully treating this case, we shall generalize
by extending the operations to the cases of intersection and union.

This case is closely related to the topology computation of an implicit real
algebraic curve. The latter is the partition of space into points, edges and faces
defined by the curve f = 0. See Figure 5 for an example. Note that recovering
the topology of the real algebraic curve f = 0 is a special case of our algorithm.
Indeed, it suffices to execute the subdivision algorithm on S = {f = 0} and
then run the region recovery twice, once with S = {f > 0} and once with
S = {−f > 0}. The union of these two outputs is exactly the set of faces defined
by the curve f = 0.

5.1 Regularity Test

We describe the regularity criteria that are used for the boundary curve of the
set. We shall provide a brief overview and refer the reader to [1, Sect. 4] for an
extended presentation.

The regularity depends on special points on the curve, that reveal the local
shape of the curve in a neighborhood around them. These are:

Fig. 5. The 23 faces in the topology of the degree 8 curve f = 2 + 7x − 7y − 14x3 + 7x5 −

x7 − 16y2 + 14y3 + 20y4 − 7y5 − 8y6 + y7 + y8 − 42y2x − 70y3x2 + 35xy4 + 70y2x3 + 42yx2 − 35x3y4 + 7x6y −

21x5y2 − 35x4y +21x2y5 + 35y3x4 − 7xy6 computed by running our algorithm on S = {f > 0},
S = {f < 0} and D = [−4, 4]× [−3, 3]

A Subdivision Approach to Planar Semi-algebraic Sets 115

Definition 3. The set of extremal points of f ∈ R[x, y] is the solutions of the
system ∂xf(x, y) = ∂yf(x, y) = 0.
The set of singular points of f is the subset of extremal points that also satisfy
the equation f(x, y) = 0.
The set of x-critical (y-critical) points of f is the solution set of ∂xf(x, y) =
f(x, y) = 0} (∂yf(x, y) = f(x, y) = 0}).
Computing these points, approximately but also efficiently, is a vital ingredient
of the algorithm. In [16], an algorithm is presented that acts on polynomials in
Bernstein form. It uses domain subdivision as well as enveloping and precondi-
tioning techniques to provide a robust polynomial solver. We rely on this solver
to obtain good approximations of the points in Def. 3. These points are precom-
puted and during the subdivision process they are isolated between the cells, i.e.
we do not allow more than one of them in a single cell. As a result, after the
subdivision process terminates, we obtain a partition of D0 into regular cells of
the following type:

– x-regular cells, those that contain no x-critical points (similarly for y−regular).
– simply singular cells, that contain a single singular point and all branches of
∂S ∩ C intersect it.

• Regular cells. If a cell is x−regular, it contains a number of x−monotone
branches. In short, the direction of the tangential gradient vector (∂yf,−∂xf)
evaluated at the points in ∂C∩∂S yields the connection of the branches inside C.
The Bernstein representation of the derivatives themselves are easily computed,
since they are given as differences of Bernstein coefficients of f . A sufficient
condition for f to be x-regular is that the Bernstein coefficients of ∂xf maintains
a constant sign. By Descartes’ law, this statement implies that the sign variations
in x−direction should be at most one.

Note that in special cases where the critical point is on ∂C two branches may
share a starting or ending point.

• Simply singular cells. If there is a single singular point in a cell C, and no
additional extremal points, one must test whether all the branches inside C cross
this point. This would imply that the topology inside C is a cone starting from the
singular point. The test is based on computing the topological degree, or Gauss
map [17] of the vector field ∇f = (∂yf, ∂xf) around the closed curve ∂C. This
breaks down to isolating the real roots of ∂xf and ∂yf along ∂C. Khimshiashvili’s
theorem [14] relates the number of branches that reach the singular point to the
topological degree deg(∇f, C); it states that the number of branches is exactly
2 (1 − deg(∇f, C)). If this number coincides with the cardinality of ∂C ∩ ∂S
then we can treat this cell, otherwise there are additional branches in C and the
subdivision will continue until they are isolated from the singular point.

6 The General Case

To treat semi-algebraic sets with more than one defining equation, it suffices
to extend the main operations in this case. Our aim is to have a covering of

116 A. Mantzaflaris and B. Mourrain

the boundary curves of ∂S by regular cells. The main difference is that crossing
branches in a cell can correspond to two basic sets in a union, or two basic sets
in an intersection. Treating correctly these cases will extend our algorithm to
the whole family of semi-algebraic sets. Again, we assume that the basic sets
are defined by inequalities, since restricting to (in the case of intersection) or
attaching (in the case of union) a curve segment to the output is not essentially
different from treating boundary curves of two dimensional components. In par-
ticular, the cell graph A that we obtain from the subdivision Alg. 3.1 will span
any components of lower dimensions.

Let S = S1 ∪ · · · ∪ Sk. Recall that a cell C carries the polynomials of Si if
∂Si∩∂C �= ∅. For all the other parts Sj , it is either Sj ∩C = ∅ or C ⊆ Sj , hence
C does not interfere with the boundary curves of these components.

We define a regular cell to be a cell in which every attached polynomial is
regular (in the sense of Sect. 5.1) and conforms to any of the following properties:

1. There is only one set Si in C and at most one (self-)intersection.
2. There are two sets Si and Sj and one intersection between a branch of f ∈ Si

and g ∈ Sj .

These intersection points are also computed using the Bernstein solver [16] and
are isolated among the cells during the subdivision process.

Deciding if a region spans ∂S is done by checking whether it belongs to the
boundary of every Si that is carried by C, and consists again in checking signs
on the boundary.

To simplify the process, we rely on basic cells (cells that have branches of a
single basic set contributing to S) for determining the orientation of regions, i.e.
applying StartingPoint. This is a mild assumption, since in any case, bound-
ary curves away from crossings define basic semi-algebraic sets. This assumption
also simplifies the way we deal with cells like Fig. 1(c), since we only need to
know the connection inside the cell in order to traverse them and choose the
correct branch (for instance, in Fig. 1(c), discard the locally redundant curve).

We describe how we compute Pair in the above two cases:
• Case 1. There is a set of branches in the cell that intersect in one point only,
similar to 1(b). Since the corresponding basic sets are combined by intersec-
tion we search around ∂C for a part that attains positive sign on all involved
polynomials, to decide the Pair routine.
• Case 2. Two branches intersect, corresponding to basic sets combined by
union, for instance 1(c). We propagate the search to points around parts of ∂C
that satisfy any of the sign conditions implied by Si or Sj . When we reach a
part that is outside S, we return the last point found.

7 Implementation and Demonstration

Our implementation is generic, working on abstract classes of cells, that define
internally a small number of predicates. We chose to use the open-source project
Mathemagix1, for the fast data structures it provides for polynomials and it’s
1 http://www.mathemagix.org

http://www.mathemagix.org

A Subdivision Approach to Planar Semi-algebraic Sets 117

Fig. 6. S = {(x, y) : f1 > 0, f2 > 0} with f1 = x4 + 2x2y2 + y4 + 3x2y − y3,
f2 = −105y2x4 − 80y3 + 140x3y3 − 140y3x + 35y4 − 105y4x2 + 48y5 + 42xy5 − 42x2 +
35x4 − 7x6 + 32y + 84xy − 140x3y + 42x5y + 210x2y2 − 42y2 − 7y6 − 8y7 + 7 over the
box [−1, 1]2

Fig. 7. Left: defining curves and cell graph. Right: boundary contours of the underlying
set.

support to certified arithmetic primitives. Our code is written in the frame of
the shape module, which is the part of Mathemagix providing a variety of
geometric operations in two or three dimensions.

Solution of univariate and bi-variate systems of polynomial is performed using
the algorithm in [16], which is hosted in the module realroot. This module also
provides algebraic operations, Bernstein dense representation and a variety of
zero-dimensional system solvers. Hardware accelerated rendering of output has
been made possible using Axel2 platform.

2 http://axel.inria.fr

http://axel.inria.fr

118 A. Mantzaflaris and B. Mourrain

Fig. 8. Left: Two connected components of a semi-algebraic set, each containing a hole.
Right: regions of the complementary set.

Fig. 9. Computing the topology of a degree 28 algebraic curve with cusps

A first example is given in Fig. 6, where we can see the cells deduced by the
subdivision process together with the defining curves (left), and the computed
regions (right) based on this cell graph. The boxes span only the actual boundary
curves of ∂S, but we also draw the full defining curves to give an idea of the
situation.

A Subdivision Approach to Planar Semi-algebraic Sets 119

Fig. 10. Semi-algebraic set defined by: f1 = −105y2x4−80y3+140x3y3−140y3x+35y4−105y4x2+

48y5 +42xy5−42x2+35x4−7x6+32y+84xy−140x3y+42x5y+210x2y2−42y2 −7y6−8y7 +7, f2 = x2+3y2−1,

f3 = x6 + y2x4 − y4x2 − 2x4 − y6 + 2y4 + x2 − y2 + xy in domain [−3, 3]2

120 A. Mantzaflaris and B. Mourrain

Fig. 11. Topology of a degree 76 curve coming from the self-intersection locus of a 3D
surface

Fig. 12. A (degree 12) apparent contour of 3D surface with cusps

A Subdivision Approach to Planar Semi-algebraic Sets 121

Fig. 13. Regions in the arrangement of three curves, of resp. degrees 32,4,4(top),
32,4,13 (bottom) computed using our algorithm on the underlying semi-algebraic
domains.

122 A. Mantzaflaris and B. Mourrain

A precision of ε = 0.05 is used, that is, the cells are subdivided down to this
size, to obtain a smooth visual result. Note the two branches that are almost
tangent near the bottom left corner. They cause the subdivision to continue
further around this area until the branches are properly separated.

In Fig. 7 we compute a set S = {(x, y) : f1 > 0, f2 > 0} defined by a degree
6 and a degree 32 polynomial. The domain of computation is [−1.5, 1.5]2 and
precision set as before, ε = 0.05. The running time for this example is less
than one second. Our implementation is able to handle polynomials of quite
higher degree, up to 100 or more. Here the resulting regions contain holes, which
are correctly recognized. Finally, Fig. 7 presents the complementary set, Sc =
{(x, y) : −f1 > 0} ∪ {(x, y) : −f2 > 0} given by 4 connected components.

The purpose of the third example is to demonstrate how our implementation
can handle degenerate cases, namely cusps. We treat a single curve of degree 28,
having several cusps. This curve is taken from a real application in non-linear
computational geometry, namely the computation of the Voronoi diagram of
ellipses, see recent paper [9]. We compute all regions defined by the curve, in the
domain [−7, 3]2 and set precision to ε = 0.5. Detailed output is shown in Fig. 9.

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme [FP7/2007-
2013], Marie Curie ITN SAGA, grant agreement no [PITN-GA-2008-214584].

References

1. Alberti, L., Mourrain, B., Wintz, J.: Topology and Arrangement Computation of
Semi-algebraic Planar Curves. Comput. Aided Geom. Des. 25(8), 631–651 (2008)

2. Basu, S., Pollack, R., Roy, M.-F.: Complexity of computing semi-algebraic de-
scriptions of the connected components of a semi-algebraic set. In: ISSAC 1998:
Proceedings of the 1998 international symposium on Symbolic and algebraic com-
putation, pp. 25–29. ACM, New York (1998)

3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin (2003)

4. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4),
214–229 (1980)

5. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle. Springer,
Heidelberg (1987)

6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein., C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

8. Coste, M.: An introduction to semi-algebraic geometry. RAAG network school
(2002)

9. Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: Exact delaunay graph of smooth
convex pseudo-circles: general predicates, and implementation for ellipses. In: SPM
2009: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling,
pp. 211–222. ACM, New York (2009)

A Subdivision Approach to Planar Semi-algebraic Sets 123

10. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann
Publishers Inc., San Francisco (2002)

11. Hardt, R.M.: Triangulation of Subanalytic Sets and proper light subanalytic maps.
Invent. Math. 38(3), 207–217 (1976/1977)

12. Henrion, D., Lasserre, J.-B., Lofberg, J.: GloptiPoly 3: Moments, Optimization and
Semidefinite Programming. Optimization Methods and Software 24(4-5), 761–779
(2009)

13. Hironaka, H.: Triangulations of algebraic sets. In: Algebraic geometry, Proc. Sym-
pos. Pure Math., Humboldt State Univ., Arcata, Calif., 1974, vol. 29, pp. 165–185.
Amer. Math. Soc., Providence (1975)

14. Khimšiašvili, G.N.: The local degree of a smooth mapping. Sakharth. SSR Mecn.
Akad. Moambe 85(2), 309–312 (1977)

15. Lasserre, J.B.: Moments, Positive Polynomials and their Applications. Optimiza-
tion Series, vol. 1. Imperial College Press, London (2009)

16. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations.
J. Symb. Comput. 44(3), 292–306 (2009)

17. Stenger, F.: Computing the topological degree of a mapping in R
n. Numer.

Math. 25(1), 23–38 (1975)
18. Tarski., A.: A decision method for elementary algebra and geometry. Univ. of

California Press, Berkeley (1951)

Non-manifold Medial Surface Reconstruction
from Volumetric Data

Takashi Michikawa and Hiromasa Suzuki

The University of Tokyo, Tokyo, Japan
{michi,suzuki}@den.rcast.u-tokyo.ac.jp

Abstract. We present a method for medial surface reconstruction from
volumetric data of thin-plate objects including junctions. Given medial
voxels and distance fields computed from binarized volumes, we polygonize
medial voxels by covering them with spherical supports and connecting the
center points of the supports. These spherical supports are constructed by
distributing spheres depending on the topological type of the voxels so that
junction and boundary voxels are distributed first. Triangular meshes are
built from Voronoi diagrams on medial voxels. This improvement builds
correct junctions, whereas conventional voxel-based methods tend to re-
sult in small cavities around them. This paper also demonstrates several
results computed from CT-scanned engineering objects.

1 Introduction

This paper outlines a method for converting volumetric data of thin-plate ob-
jects to polygonal meshes for use in digital engineering applications. Thin-plate
engineering objects are made of metal plates, and are formed by stamping and
welding; they are often found in cars and home electronics. Industrial companies
measure such objects as volumetric images using X-ray CT scanners or non-
destructive scanning devices (Fig. 1 (a)). Since each voxel has a CT value that
identifies its material, we can extract volumetric data with certain threshold val-
ues from CT images. Companies need polygonal meshes of these CT images for
use in accelerating engineering processes such as comparison with CAD models
and CAE simulation.

It is well known that polygonal meshes can be obtained by isosurface con-
touring of volumetric data [1,2]. This is effective for solid objects, but can create
closed surfaces with thin-plate objects (Fig. 1 (b)). The center-line surfaces (Me-
dial surfaces) of the objects shown in Fig. 1 (c) are preferable because common
CAD systems represent thin-plate objects as open surfaces [3].

Thin-plate objects are usually welded to other objects for reinforcement. The
medial surfaces of such objects become non-manifold, and their welded parts
become junctions. Since our focus here is on engineering application, these forms
must be reconstructed correctly. One of the challenges involved is capturing non-
manifold junctions from CT images correctly as shown in Fig. 1 (c).

The computingation of medial surfaces from volumetric data has been ex-
tensively discussed in previous studies [3,4,5]. The basic approach first creates

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 124–136, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Non-manifold Medial Surface Reconstruction from Volumetric Data 125

(a) CT data (b) Isosurface of (a) (c) Medial surface of (a)

Fig. 1. CT images of welded aluminum and its polygonal meshes. The resolution of
volumetric data (a) is 350x330x220 and its isosurface (b) and medial surface have
130,000 and 3,000 faces (Computation Time: about 1 min.) respectively. Note that the
junction edges (red) of the medial surfaces created using our method (c) are correctly
reconstructed. Lower row shows corresponding illustrations.

medial voxels from input volumetric data, and polygonal meshes are then cre-
ated formed based on the resulting voxel connectivity. However, this approach
creates small cavities around junctions (Fig. 3 (b)) even though no such cavi-
ties exist in the input data. This is due to the ambiguity of triangulation from
voxel connectivity. Prohaska and Hege [4] introduced a look-up table for non-
manifold topology polygonization. However, local voxels are still checked due to
the existence of bad cases of cavities.

We present a method of medial surface reconstruction from volumetric data
of thin-plate objects including junctions. Given medial voxels with distance, we
first apply sub-sampling to these voxels so that junction and boundary voxels
can be preferentially selected. This computation is performed by covering the
medial voxels with spherical supports [6]. We then perform Voronoi diagram
computation for medial voxels using the sampled points as Voronoi sites to build
vertex connectivity, from which triangular meshes are then created.

This approach offers various advantages in medial surface reconstruction from
volumetric data. In particular, spherical supports in the sub-sampling phase
remove unnecessary voxels around junctions. This contributes to the absorption
of various types of artifacts, including branches and small cavities. Indeed, we
confirmed this by applying the method to CT-scanned engineering objects.

This paper consists of five sections. We review related work in Section 2,
the proposed algorithm is introduced in Section 3, we outline the experimental
results and discuss them in Section 4, and Section 5 concludes the paper.

126 T. Michikawa and H. Suzuki

2 Related Work

Our issue is related to a medial axis whose formulation was first introduced in
[7]; that is, the set of center points of a collection of maximal inscribed spheres.
Many approaches involving MATs (medial axis transforms) have been studied
over a period of four decades in the image processing and geometric modeling
community. This section reviews several approaches related to our objective.

Volume-based methods. Volume-based approaches compute medial voxels from
binarized volumetric data. This produces a volumetric version of the medial
axis. A typical strategy is topological thinning, or voxel pruning, which leaves
the topology of the input data unchanged (such voxels are called “simple voxels”)
and preserves the ends of surface voxels. This process is iteratively applied until
no more voxels can be removed.

Sequential thinning removes simple voxels one by one. This approach preserves
the topology of the original data, but the order of pruning may preserve excess
simple voxels and cause many branches or bumps. Although several solutions
to this have been discussed (e.g., sub-cycles [8], distance fields [9] and relaxed
conditions [10]), the issue has not yet been completely resolved.

Parallel thinning removes all simple voxels on the boundary of an object simul-
taneously. Tsao and Fu [11] formulated conditions for building smooth surfaces,
but the topology of the input model may be lost with this technique. The result-
ing surfaces are relatively smooth, but it is difficult to preserve topology because
many voxels are removed at once. There are also topology-preserving methods
for parallel thinning [12,13], but these cause a deterioration in voxel quality.
Prohaska and Hege [4] used the geodesic distance between two closest boundary
voxels to determine pruning priority. This global metric is more stable for noisy
data, and hardly any unnecessary branches are generated. Accordingly, it is used
in a number of engineering applications [3,5,14].

Polygonal meshes can be computed from medial voxels. For instance, we can
cast this issue to surface reconstruction problems (e.g., [15]). However, non-
manifold surfaces cannot be handled. Another approach builds triangular meshes
using voxel connectivity, but this method produces ambiguous cases of triangu-
lation from such connectivity, and small cavities may be created. Prohaska and
Hege [4] introduced a look-up table for the polygonization of non-manifold topol-
ogy. However, local voxels are still checked due to the existence of bad cases of
cavities.

Polygon-based methods. Alternative approaches involve computing medial axes
from polygonal meshes. Although an exact solution can be computed by solving
algebraic equations, this is not practical for large models, and most polygon-
based methods deal with approximate solutions of MAT. One popular approach
is the use of Voronoi diagrams[16,17,18,19].

The structures of medial axes computed using the above methods are usually
complex, and may have small branch surfaces. For simplified medial axes, these
are usually removed using certain criteria. One popular criterion is the separation

Non-manifold Medial Surface Reconstruction from Volumetric Data 127

(a) (b) (c)

(d) (e)

Fig. 2. An overview of our approach. (a) Medial voxels. Each voxel includes a distance
to the closest boundary point (indicated by color mapping). (b) Topology classification
of (a). Junction and boundary voxels are shown in red and green, respectively. (c)
Spherical supports produced by sub-sampling medial voxels based on (b). (d) Voronoi
diagram on medial voxels. (e) Result of meshing.

angle of sheets [16,20]. Dey and Zhao [19] used additional conditions to improve
enhancement the of quality of medial surfaces. Sud et al. [21] also improved the
medial axis simplification method [20] so that to preserve the homotopy of the
input data is preserved.

When these techniques are applied to our issue, polygonal meshes must be com-
puted using isosurface extraction methods. This is straightforward, but the result-
ing meshes have several problems including numerical issues for complex models
and artifacts caused by noise and blur in CT images. Accordingly, polygon-based
approaches are not practical in achieving our objective.

3 Medial Surface Reconstruction from Medial Voxels

The goal of this algorithm is to compute medial surfaces with junctions as polyg-
onal meshes from volumetric data. Fig. 2 shows an overview of our method.

In our method, the input is a set of binary voxels generated by thresholding
a volumetric model obtained by scanning a thin-plate structure. Note that the
medial voxels M = {vi} and distance field D = {di} of the input volumetric
models are pre-computed using conventional methods (Fig. 2(a)), where di is
the distance value of vi from its nearest voxel in the volumetric data on the
boundary computed using distance transforms.

128 T. Michikawa and H. Suzuki

Our method consists of three steps:

Sub-sampling - distributes spherical supports on voxels iteratively so that they
completely cover the input medial voxels (Fig. 2(c)).

Voronoi diagram - computes a Voronoi diagram on voxels to build mesh edges
(Fig. 2(d)).

Non-manifold meshing - computes polygonal meshes by finding three ver-
tices connected to each other and applies topological cleaning to remove
excess non-manifold edges (Fig. 2(e)).

3.1 Sub-sampling of Medial Voxels

The first step of the algorithm involves medial voxel sub-sampling. Given a set
of medial voxels M , we select one voxel vi from M and set it to vertex list V .
Then, we remove neighboring voxels vj such that ||vi − vj || < αdi from M ,
where vi denotes the coordinates of vi, and α denotes the radius scaling factor.
Note that a larger value for α makes robust triangulation at very thin parts of
the object because the radii of such parts are usually small and may cause bad
sampling of medial voxels. Accordingly, a value of α = 2 is set for all examples
in this paper. Iteration is performed until M is empty.

An important point here is how to find these vi voxels from M , because their
distribution affects mesh topology directly. Fig. 3 illustrates a 2D example. Ran-
dom distribution may not involve placement at junctions, and sampling points
around junctions may be connected to each other, thereby creating small cavities
as shown in Fig. 3 (a). On the other hand, in Fig. 3 (b), spheres are distributed
at junction and boundary voxels first, and correct polygonization is obtained.
We therefore introduce topology-dependent distribution as described below.

Topology criterion control sampling is implemented so that points are well
distributed on junctions and boundary edges. This contributes to fastening low-
dimensional topology features such as junctions and boundaries, as shown in
Fig. 3 (b). We use it here as the primary priority. A similar idea can be found in
the bubble mesh algorithm [22] for polygonal meshes with explicit topology, and

Sub-sampling

(a) (b)

Fig. 3. A 2D comparison of meshing results with random distribution (a) and topology-
dependent distribution (b). In each figure, the voxels shown in red denote sampled
points, and dotted circles represent the spherical supports of voxels. The red lines
show medial surfaces connected by a Voronoi diagram on medial voxels.

Non-manifold Medial Surface Reconstruction from Volumetric Data 129

we apply similar approach to volumetric data. Classification of voxel topology is
described in Appendix A.

We also consider the distance value of voxels as a secondary criterion. This is
because medial voxels have relatively larger distances than neighboring voxels,
and it is natural that such voxels should be selected first.

Finally, the topology-dependent sub-sampling algorithm is summarized as
below.

1. Find the vi with the top priority in M and copy it to V .
2. Remove vj from M such that ||vi − vj || < αdi.
3. Iterate 1 and 2 until M becomes empty.

3.2 Building a Voronoi Diagram on Medial Voxels

We next build mesh edges from the set of sampled vertices V . In our targeting
of objects of thin-plate structures, we can assume that medial voxels can be
decomposed into a collection of subsets, each of which is an analog of a two-
manifold surface (See below for details). Therefore This subset therefore inherits
the properties of a two-manifold surface. In particular, it allows us to define
Voronoi diagrams on this subset. Fig. 4 illustrates the formulation of Voronoi
diagrams on medial voxels. Given sites V = {vi} ⊆ M , we define the region
R(vi) as follows :

R(vi) = {x|d(vi, x) ≤ d(vj , x), ∀j �= i} , (1)

where d(vi, x) denotes the shortest path length between vi and x in the voxel
space. In practice, we compute it using the wavefront propagation of distance
from the sites. Fig. 2(d) shows the result of the diagram for medial voxels.We
define an edge (vi, vj) if there is a neighboring voxel pair (x, y) such that x ∈
R(vi) and y ∈ R(vj) in 26-adjacent.

Validity of polygonization. Medial voxels in our method can be divided into
surface, boundary and junction types by topology classification. They can be

vi : Site

d(vi,x) :

Shortest path length

R(vi) : Region

Adjacency

Fig. 4. Voronoi diagram definition on medial voxels. Identically colored voxels belong
to the same sites.

130 T. Michikawa and H. Suzuki

(a) (b)

Fig. 5. Medial voxels can be separated into three simple sheets consisting of boundary
and surface voxels

v B0(v)

B1(v) F(v)

Planer graph

Fig. 6. 2D illustration of neighboring voxels in surface voxels. Note that the planer
graph can be defined between F (v) and B0(v) (indicated by the bold red line).

separated into a set of sheets consisting of boundary and surface voxels by junc-
tion voxels (Fig. 5 (b)). We can also consider that the Voronoi diagram is defined
on a surface composed of the faces of foreground voxels shared by background
voxels. It should be noted here that a voxel is regarded as a cubic volume.

Based on the definition of topological classification, each surface voxel v in
a sheet separates its 26-neighboring voxels N(v) into two background compo-
nents Bi(v)(i = 0, 1) using one foreground component F (v) (Fig.6). When we
focus on B0(v) and F (v), the boundary surface between their voxels is topolog-
ically equivalent to a disk, because B0(v) is 6-connected and its surface must be
two-manifold. This indicates that every surface piece at a voxel on the sheet is
topologically equivalent to a disk and thus the total surface of the sheet is topo-
logically equivalent to a two-manifold surface. The Voronoi diagram is therefore
defined on surface voxels and we can generate a polygonal mesh by taking the
dual of the Voronoi diagram.

3.3 Non-manifold Meshing from Vertex Connectivity

In the final step, polygonal meshes are constructed from the vertices and edges
computed in the previous steps. This computation is performed by finding triples
(vi, vj , vk) that are connected to each other (Fig. 7).

This approach creates non-manifold meshes with no small cavities caused by
invalid sampling, but may also create overlapping triangles on surface voxels

Non-manifold Medial Surface Reconstruction from Volumetric Data 131

vi vk

vj

Fig. 7. Polygonal mesh generation from a Voronoi diagram

(a)The result of meshing (b) After cleaning

Fig. 8. Topological cleaning for non-manifold meshes. The red and blue lines show
junctions and boundaries, respectively.

(Fig. 8 (a)) for similar reasons related to the degeneration of Delaunay triangu-
lation. Such triangles must be eliminated so that necessary ones around junctions
are not removed.

Based on medial voxel topology classification, we decompose all vertices into
manifold vertices (on surfaces) and non-manifold vertices (on boundaries or junc-
tions), and then apply manifold cleaning [6] to the manifold vertices only.

Simply speaking, this method performs iteration to find a planar graph from
the one-ring neighborhood of each vertex such that the number of vertices in the
graph is maximized. Triangles excluded from the planar graph are removed from
the mesh. Fig. 8 (b) shows the results of cleaning. Note that some overlapping
triangles may still be left if all vertices belong to junctions. Such issues are
generally seen when junctions are very close.

4 Result and Discussion

The experimental results of meshing are shown in Figs. 1, 9 and 10. The re-
sults of decomposition into a set of manifold polygonal surfaces are also given in
Fig. 9 (c). All examples were tested on a 3.16 GHz computer, and the computa-
tion times are provided in the caption of each figure. There is room for improve-
ment here, as our prototype is not yet optimized. The current bottleneck lies in
Voronoi diagram creation and mesh cleaning. Since Voronoi

132 T. Michikawa and H. Suzuki

(a) Input volumes (b) Medial surfaces (c) Segmentation

Fig. 9. Experimental results for CT-scanned shock absorber data (400 x 400 x 576
voxels; computation time: 5 min.))

(a) Input volume (b) Result

Fig. 10. Experimental results for a crushed automobile frame (708 x 965 x 813 voxels;
computation time: over 8 hours)

diagrams compute using a multi-source Dijkstra’s algorithm, the computation
cost is O(n log n). Note that although connecting spherical supports [6] may cre-
ate polygons fast, the technique truncates topology information hidden in medial
voxels, whereas the Voronoi-based method considers such topological informa-
tion. The non-manifold mesh data structure used in cleaning is based on an
IndexedFaceSet (a.k.a. Wavefront OBJ format), and takes a long time to search
neighboring voxels. An advanced data structure for non-manifold meshes (e.g.,
[23]) is expected to improve the level of performance.

Using topology-dependent sampling, medial surfaces with junctions were re-
constructed from CT-scanned engineering objects. In addition, sub-sampling
with spherical supports contributes to the recovery of non-manifold junctions.

Fig. 11 shows an efficient example with junctions connecting to multiple
sheets. In voxel space, it is hard to represent such complex junctions exactly, so
they are represented by a set of simple junctions as an approximation
(Figs. 11 (b) and (c)). Since conventional methods create polygonal meshes from
them, the meshing result also includes a set of simple junctions. On the other
hand, our method removes neighboring junction voxels during the sub-sampling
phase using spherical supports. This is because correct junction voxels have
larger distance values, and unnecessary ones are included in the spherical sup-
ports of correct junction points. Fig. 11 (d) shows the outcome, and non-manifold
edges are also shown in Fig. 11 (e). Note that the center axis of the object is
represented by one line sequence.

Non-manifold Medial Surface Reconstruction from Volumetric Data 133

(a) Input volume (b) Medial voxel (c) Intersection of (b)

(d) Medial surface (e) Junction edges

Fig. 11. Medial surface reconstruction from an artificial volume (256 x 256 x 256) with
high-valence junctions. Note that the center axis can represent only one edge sequence
in (d) and (e).

Fig. 12. CAD surface reconstruction from the bottom part of shock absorber model

Our method contributes to the acceleration of digital engineering processes.
One possible application is in conversion to parametric surfaces (a.k.a. reverse
engineering). Fig. 12 shows the results of converting NURBS surfaces using re-
verse engineering software. Once CAD models are converted, they can be used
for a number of advanced applications such as CAE and quality assurance.

One limitation of our method is that the output surfaces represent only thin-
plate objects even though solid objects are given. It is necessary to combine
isosurface meshing techniques with our method to handle thin-plate and solid
objects simultaneously (see [10] for details). Another limitation is its use with
thin objects. We use medial voxels sampled on a uniform grid, which causes sin-
gularity of dual meshes when the thickness value is small. This can be eliminated
by taking larger spherical supports or larger values of α. However, with larger α
values, close junctions may be merged.

134 T. Michikawa and H. Suzuki

5 Conclusion and Future Work

This paper has proposed a method for non-manifold medial surface reconstruction
using volumetric data of thin-plate objects. The technique applies sub-sampling
on medial voxels with spherical supports depending on digital topology so that
junctions and boundary voxels are preferentially sampled. Triangular meshes are
computed by connecting neighboring triple vertices. Since sampling points are
placed on singular voxels, junction edges are well reconstructed. Indeed, we ap-
plied this method to several CT images of thin-plate engineering objects.

A number of directions need to be followed in future work. The first is the
simultaneous meshing of solid, surface and wire objects [10]. We believe our
approach has the potential to handle this issue by controlling the distribution of
sub-sampling. Another direction is to extend the method to unrecognized points
extracted by laser scanners. If junctions and boundary points can be estimated
in a similar way to digital topology, then our method can be applied to point
sets of non-manifold models, whereas conventional methods assume manifolds.

Acknowledgment

The authors would like to thank Koichi Matsuzaki for converting polygonal
meshes to CAD data using his reverse engineering software. Crashed side frame
CT images are courtesy of Honda. This work is partially supported by Grant-
in-Aid for Young Scientists(B) (No.20760096) and Grant-in-Aid for Scientific
Research(B) (No.19360070).

References

1. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: SIGGRAPH 1987: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques, pp. 163–169. ACM,
New York (1987)

2. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data.
In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pp. 339–346. ACM, New York (2002)

3. Fujimori, T., Suzuki, H., Kobayashi, Y., Kase, K.: Contouring medial surface of
thin plate structure using local marching cubes. In: International Conference on
Shape Modeling and Applications, pp. 297–306 (2004)

4. Prohaska, S., Hege, H.C.: Fast visualization of plane-like structures in voxel data.
In: Proceedings of the conference on Visualization 2002, Washington, DC, USA,
pp. 29–36. IEEE Computer Society, Los Alamitos (2002)

5. Suzuki, H., Fujimori, T., Michikawa, T., Miwata, Y., Sadaoka, N.: Skeleton surface
generation from volumetric models of thin plate structures for industrial applica-
tions. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces
2007. LNCS, vol. 4647, pp. 442–464. Springer, Heidelberg (2007)

6. Ohtake, Y., Belyaev, A., Seidel, H.P.: An integrating approach to meshing scattered
point data. In: SPM 2005: Proceedings of the 2005 ACM symposium on Solid and
physical modeling, pp. 61–69. ACM, New York (2005)

Non-manifold Medial Surface Reconstruction from Volumetric Data 135

7. Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Wathen-
Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380.
MIT Press, Cambridge (1967)

8. Palágyi, K., Kuba, A.: A parallel 12-subiteration 3d thinning algorithm to extract
medial lines. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS,
vol. 1296, pp. 400–407. Springer, Heidelberg (1997)

9. Toriwaki, J., Mori, K.: Distance transformation and skeletonization of 3d pictures
and their applications to medical images. In: Bertrand, G., Imiya, A., Klette,
R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 412–428. Springer,
Heidelberg (2002)

10. Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric
models for shape description. Computer Aided Design 39(5), 352–360 (2007)

11. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-d pictures. Computer
Graphics and Image Processing 17(4), 315–331 (1981)

12. Manzanera, A., Bernard, T., Preteux, F., Longuet, B.: Medial faces from a concise
3d thinning algorithm. In: IEEE International Conference on Computer Vision,
vol. 1, p. 337 (1999)

13. Borgefors, G., Nystrom, I., Baja, G.S.D.: Computing skeletons in three dimensions.
Pattern Recognition 32(7), 1225–1236 (1999)

14. Michikawa, T., Nakazaki, S., Suzuki, H.: Efficiend medial voxel extraction from
large volumetric models. In: Proceeding of WSCG 2009, pp. 169–176 (2009)

15. Dey, T.K., Li, K., Ramos, E.A., Wenger, R.: Isotopic reconstruction of surfaces
with boundaries. Computer Graphics Forum 28(5), 1371–1382 (2009)

16. Attali, D., Montanvert, A.: Computing and simplifying 2d and 3d continuous skele-
tons. Computer Vision and Image Understanding 67(3), 261–273 (1997)

17. Etzion, M., Rappoport, A.: Computing the voronoi diagram of a 3-d polyhedron by
separate computation of its symbolic and geometric parts. In: SMA 1999: Proceed-
ings of the fifth ACM symposium on Solid modeling and applications, pp. 167–178.
ACM, New York (1999)

18. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA 2001: Proceedings
of the sixth ACM symposium on Solid modeling and applications, pp. 249–266.
ACM, New York (2001)

19. Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In:
SMA 2002: Proceedings of the seventh ACM symposium on Solid modeling and
applications, pp. 356–366. ACM, New York (2002)

20. Foskey, M., Lin, M.C., Manocha, D.: Efficient computation of a simplified medial
axis. In: SM 2003: Proceedings of the eighth ACM symposium on Solid modeling
and applications, pp. 96–107. ACM, New York (2003)

21. Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial axis simplification.
In: SPM 2005: Proceedings of the 2005 ACM symposium on Solid and physical
modeling, pp. 39–50. ACM, New York (2005)

22. Shimada, K., Gossard, D.C.: Bubble mesh: automated triangular meshing of
non-manifold geometry by sphere packing. In: SMA 1995: Proceedings of the
third ACM symposium on Solid modeling and applications, pp. 409–419. ACM,
New York (1995)

23. Masuda, H.: Topological operators and boolean operations for complex-based non-
manifold geometric models. Computer-Aided Disign 25(2), 119–129 (1993)

24. Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete
surfaces. International Journal of Computer Vision 10(2), 183–197 (1993)

136 T. Michikawa and H. Suzuki

A Topology Classification of Voxels

The topology of each voxel can be estimated by counting the number of fore-
ground and background components in neighboring voxels [24]. In this method,
the following two entities are used:

– C∗ : The number of 26-connected foreground voxel components in 26-neighbor
voxels of v that are 26-adjacent to v.

– C̄ : The number of 6-connected background voxel components in 18-neighbor
voxels of v that are 6-adjacent to v with the exception of v itself.

Using these entities, junction, boundary and surface voxels can be classified as
follows :

– Junction voxel : C∗ = 1 C̄ > 2
– Boundary voxel : C∗ = 1 C̄ = 1
– Surface voxel : C∗ = 1 C̄ = 2

Fig. 13 shows examples of classification.

(a) Junction (b) Boundary (c) Surface

Fig. 13. Examples of topology classification. Foreground and background voxels are
indicated in black and white, respectively.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 137–160, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Decomposing Scanned Assembly Meshes
Based on Periodicity Recognition and Its Application

to Kinematic Simulation Modeling

Tomohiro Mizoguchi1 and Satoshi Kanai2

1 Department of Computer Science, College of Engineering, Nihon University,
1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima, 963-8642, Japan

mizo@cs.ce.nihon-u.ac.jp
2 Graduate School of Information Science and Technology, Hokkaido University,

Kita-14, Nishi-9, Kita-ku, Sapporo, 060-0814, Japan
kanai@ssi.ist.hokudai.ac.jp

Abstract. Along with the rapid growth of industrial X-ray CT scanning
systems, it is now possible to non-destructively acquire the entire meshes of as-
semblies consisting of a set of parts. For the advanced inspections of the assem-
blies, such as estimation of their assembling errors or examinations of their
behaviors in the motions, based on their CT scanned meshes, it is necessary to
accurately decompose the mesh and to extract a set of partial meshes each of
which correspond to a part. Moreover it is required to create models which can
be used for the real-product based simulations. In this paper, we focus on CT
scanned meshes of gear assemblies as examples and propose beneficial methods
for establishing such advance inspections of the assemblies. We first propose a
method that accurately decomposes the mesh into partial meshes each of which
corresponds to a gear based on periodicity recognitions. The key idea is first to
accurately recognize the periodicity of each gear and then to extract the partial
meshes as sets of topologically connected mesh elements where periodicities
are valid. Our method can robustly and accurately recognize periodicities from
noisy scanned meshes. In contrast to previous methods, our method can deal
with single-material CT scanned meshes and can estimate the correct bounda-
ries of neighboring parts with no previous knowledge. Moreover it can effi-
ciently extract the partial meshes from large scanned meshes containing about
one million triangles in a few minutes. We also propose a method for creating
simulation models which can be used for a gear teeth contact evaluation using
extracted partial meshes and their periodicities. Such an evaluation of teeth con-
tacts is one of the most important functions in kinematic simulations of gear as-
semblies for predicting the power transmission efficiency, noise and vibration.
We demonstrate the effectiveness of our method on a variety of artificial and
CT scanned meshes.

1 Introduction

Mechanical products, especially the ones used in power transmission machineries, such
as gear trains, bearings, ball screws and chain sprockets, are composed as assemblies
consisting of a set of parts. Since such assemblies are typically covered by housings, it

138 T. Mizoguchi and S. Kanai

is difficult to observe the assembling errors of each part or the dynamical behavior in
their motions from outside. If one could non-destructively capture the source of the
assembling errors or the behaviors in the motions of the assemblies, it would enable real
product-based inspections. Such advanced inspections would be a big contribution for
the performance improvements of mechanical products.

On the other hand, industrial X-ray CT scanning systems have been rapidly devel-
oped and it is now possible to non-destructively capture the “static” conditions of the
entire products inside the housings. However such CT scanned static data cannot be
directly used for inspections of assemblies. Specifically, for investigating the source
of the assembling errors, the spatial position and the posture of each part should be
identified. And for examining the behavior in the motions, the model of each part and
their contact relations should be identified, the kinematic or multi-body dynamic
simulation models need to be created, and then real-product based simulations must
be performed. Hence, to achieve such advanced inspections of the assemblies, it is
necessary to extract a set of separated data each of which corresponds to a part from
their CT scanned static data and to create models which can be used for simulating the
assembling conditions and the motions.

The problems become much difficult when we deal with single material assem-
blies. Although the entire surface meshes of the assemblies can be acquired by the CT
scannings, the boundary information between parts cannot be clearly captured in the
meshes. Therefore, using the current methods, we cannot decompose the assembly
mesh and generate a set of models each of which corresponds to a single part.

In this paper, we focus on the periodicities on the surfaces of assembly components
and propose beneficial methods that contribute to the advanced inspections of me-
chanical products based on periodicity recognitions. We first propose an automatic
method that decomposes a CT scanned surface mesh of parts assembly into separated
partial meshes each of which corresponds to a part based on periodicity recognition.
Our method recognizes a set of rotational periodicities of parts from a CT scanned
assembly mesh. Then, using the periodicities, the parts boundaries which cannot be
captured by the CT scanning are estimated in the proper way from the engineering
view points and the mesh is decomposed into separated parts along the boundaries.
Our proposed method enables the accurate decomposition of single material scanned
meshes which previous methods failed. And it also enables the generation of partial
meshes whose boundaries are properly interpolated. In addition, as an application of
our mesh decomposition, we propose a new method for advanced inspections, esti-
mating teeth contacts, of gear trains which are the most frequently used assemblies in
power transmission machineries. Our method generates models for estimating assem-
bling conditions and for performing real-product based kinematic simulations.

We deal with only gear trains in this paper, but our method is not limited to them. It
can also be used for the assemblies where rotational periodicities exist in the contact
area between parts, i.e., power transmissions such as bearings and chain sprockets.

2 Related Works

2.1 Periodicity Recognition

Many algorithms have been proposed for recognizing periodicities in 2D images. Lin
et al. [6] proposed an algorithm that recognizes a translational periodicity in a 2D

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 139

texture based on the generalized Hough transform. Liu et al. [7] proposed an algo-
rithm that recognizes a variety of periodicities, including translations, rotations, and
reflections, based on the crystallographic theory. Müller et al. [8] proposed an algo-
rithm for extracting a translational periodicity from a 2D façade image of a building
by subdividing the image and evaluating the mutual information between the subdi-
vided images. However such algorithms cannot be easily extended to 3D meshes.

Periodicity recognitions have strong relations with symmetry detections in the
sense that they both find pairs of local shapes that can be matched each other under
certain transformations. Recently symmetry detections have gained much attention
and many algorithms have been proposed in computer graphics field [9,10,11].
However these algorithms aim at detecting pairs of congruent regions and their
transformations for the matching, and they cannot extract the parameters defining the
periodicities.

Liu et al. [12] proposed an algorithm that extracts a single region from the periodi-
cally displaced ones in a 3D mesh of a relief with user interactions. However, this
algorithm cannot extract a set of periodically-displaced regions and the parameters
defining their periodicity. Pauly et al. [13] proposed an algorithm that discovers a
class of periodicities defined by a combination of translations, rotations, and uniform
scalings. The algorithm is based on computations of transformations under which
pairs of local coordinate systems around the points can be matched and their voting to
a transformation space, grid fittings in transformation space for sets of voted points,
and the simultaneous registration in 3D space. However the algorithm needs to
evaluate a large number of pairs of points for stably and robustly discovering peri-
odicities on large and noisy scanned data, therefore, it needs long computational time
for such data.

Li et al. [21] proposed an algorithm for detecting a wide class of approximate
symmetries from B-rep CAD models by extracting characteristic points and analyzing
their connectivity. The authors then used detected symmetries for estimating design
intents from B-rep models [22]. However, the symmetry detection algorithm proposed
in [21, 22] may be unable to work or to accurately detect the symmetries in case of
noisy CT scanned meshes. Moreover the method cannot explicitly compute the pa-
rameters defining the periodicities such as rotational axes or the basis angles in case
of the rotational periodicity.

2.2 Decomposition of 3D Models into Parts

Many methods have been proposed for decomposing 3D models into parts in the
computer graphics field [2,3]. These methods aim at segmenting character models
such as animals into parts, i.e., heads, bodies, and legs. However these methods finds
only the authentic-looking boundaries between neighboring parts by analyzing con-
cave area of the model based on optimizations and thus cannot uniquely define the
correct boundaries in meshes of parts assemblies.

Alternative methods have been proposed in the digital engineering field. Shammaa
et al. [4] proposed a method that registers the original CAD data corresponding to
each part with CT volumetric data of parts assemblies and then accurately decom-
poses the data into parts each of which can be closely registered with a CAD data.
However this method cannot be used when the original CAD data are not provided,

140 T. Mizoguchi and S. Kanai

for example, a case of old products. Shammaa et al. [5] also proposed a method that
decomposes the multi-material CT volumetric data into parts by analyzing the CT
values which differ per material based on graph cut. However this method cannot be
used for single-material data such as gear trains where CT values are almost constant.

3 An Overview of Our Method

From this section, the details of our method are described by taking a gear train as an
example. In CAD systems, an entire model of a single gear can be designed first by
creating a partial model including one tooth and then by rotating it around the axis by
the integral multiple of the basis angle. Therefore, as shown in Figure 1, for recogniz-
ing such a rotational periodicity from a scanned mesh, it is required to extract a basis
region 0R and a set of parameters defining the periodicity, such as an axis directional

vector d , a point on an axis p , and a basis angle θ .

In this paper, we propose a new method that recognizes rotational periodicities on a
CT scanned surface mesh of an assembly and then decomposes the mesh into partial
meshes each of which corresponds to a part based on the periodicities. In addition, we
propose a method that evaluates gear teeth contact, which is one of the most important
functions in kinematic simulations, using the results of periodicity recognition and the
partial meshes. As shown in Figure 2, our method consists of following four steps.

R0

(d,p)

(a) Gear (b) Scanned mesh (c) Rotational grid

Fig. 1. Periodicity recognition

Step1: Segmentation and classification of regions (Section 4)
Given a CT scanned surface mesh of a gear train generated from its CT volumetric
data, principal curvatures are estimated at each vertex based on local polynomial
fittings and high curvature vertices are detected by thresholding the estimated curva-
tures [14,15] (Section 4.1). Then a mesh is segmented into separated regions, which
are sets of topologically connected vertices, so that each region can be bounded by
high curvature vertices (Section 4.1). Next, the pairwise ICP matching [16] is per-
formed for finding a set of congruent regions mostly corresponding to gear teeth from
the segmented regions under the fact that all teeth in a single gear represent the same
geometry (Section 4.2). Finally the congruent regions are classified into groups each
of which corresponds to a gear based on the RANSAC algorithm (Section 4.3).

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 141

Step4
Evaluation of Gear Teeth Contact

Step3
Generation of Partial Meshes

Partial meshes
corresponding to each gear

Region growing
Geometric synthesis

Gear teeth contact

Step1
Segmentation and

Classification of Regions
Step2

Periodicity Recognition

Periodically displaced regions
corresponding to gear teeth Periodicities of each gear

Curvature estimation
Congruency test

RANSAC-based classification

Planar parameterization
Basis estimation

Simultaneous matching

X-ray CT scanned mesh
of a gear assembly

Fig. 2. An overview of our method

Since the top, bottom, and sides of teeth in almost all gears include minute fillets or
chamfers and the estimated curvatures in such regions are high compared with those
in teeth regions, our simple segmentation can extract a set of regions corresponding to
gear teeth separately. Moreover our method uses only boundary vertices of regions for
congruency tests based on the ICP matching, and it much reduces the computational
cost without decreasing the matching accuracy.

Step2: Periodicity recognition (Section 5)
For each group of regions, a least-squares plane is fitted to a set of barycenters of the
regions. Then the barycenters are projected onto the plane and their 2D parameters are
calculated (Section 5.1). Then the regions in a group are classified into sub groups in the
case of gears whose tooth are originally designed by multiple faces in CAD system
(Section 5.2). Next, for each group or each sub group, an initial rotational axis and a
basis angle are extracted based on our basis estimation method [20] which is the modifi-
cation of Lin's [6] and then an index that specifies the multiple of the basis angle is
assigned to each region (Section 5.3). Finally optimal parameters defining the periodic-
ity are extracted based on our simultaneous matching algorithm [20] (Section 5.4).

Our basis estimation and simultaneous matching methods enable accurate extrac-
tion of parameters defining the periodicities from noisy scanned meshes. Our method

142 T. Mizoguchi and S. Kanai

also uses only boundary vertices of regions for the simultaneous matching and it
much reduces the computational cost without decreasing the extraction accuracy.

Step3: Generation of partial meshes (Section 6)
Extracted regions in step 1 are then simultaneously enlarged by our region growing
according to the periodicities (Section 6.1). Next, points are interpolated by our geo-
metric synthesis algorithm in the area where the regions are missing due to the seg-
mentation and classification failure or where the surface meshes are not generated in
the contact area of neighboring parts. This algorithm enables to generate all-round
points for each gear (Section 6.2). Finally the partial meshes each of which corre-
sponds to a gear can be generated by triangulating the points.

Our region growing enables the extraction of as large regions as possible where pe-
riodicities are valid under the user specified tolerance. And our geometric synthesis
enables to accurately estimate the boundaries of neighboring gears and to extract the
partial meshes each of which corresponds to a single gear.

Step4: Evaluation of gear teeth contact (Section 7)
Then pairs of partial gear meshes which are contact each other are sequentially rotated
around the axis by the constant pitch angle and their teeth contacts are estimated at
every angle. In our method, estimations of teeth contacts are reduced to the distance
computations between surfaces approximating the regions corresponding to the teeth.

Such surface approximations reduce the effect of the scanning noise for the evalua-
tions of gear teeth contacts. Moreover our method enables to estimate the behaviors in
the motions of real-world gear assemblies based on their CT scanned surface meshes.

From the next section, the details of our method are explained using the mesh in
Figure 3. To generate this mesh, we first copied the CAD model of the single gear
with thirty six teeth in Figure 3(a) and then created the gear train model consisting of
three gears in Figure 3(b). Then we tilted the rotational axes of the two gears by five
degrees with reference to the one and generated the gear train mesh with 447,840
triangles in Figure 3(c) by triangulating the CAD model using the CAE meshing
software. We also added the artificial noise to the mesh by displacing each vertex
along its normal direction by a Gaussian distributed random distance with the stan-
dard deviation 5% proportional to the averaged mesh edge length.

(c) Mesh of gear assembly
(#tri: 447,840)

(a) CAD model of a
single gear (#teeth=36)

64mm

(b) CAD model of
gear assembly

Fig. 3. An artificial mesh of a gear assembly

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 143

4 Segmentation and Classification of Regions

4.1 Curvature Estimation and Segmentation

In the beginning of our method, principal curvatures are estimated at each vertex
based on the local quadratic polynomial surface fitting [14,15] as shown in Figure
4(a). Then, if the estimated maximum principle curvature maxκ at each vertex satisfy

avghigh lth<max1 κ , it is classified as high curvature vertex. As shown in Figure 4(b),

most of high curvature vertices are in the vicinity of minute fillets or chamfers. Here

highth is the threshold which must be set in trial-and-error manner depending on the

geometry and the resolutions of the mesh and avgl is the averaged mesh edge length.

Then the mesh is segmented into separated regions each of which is a set of topologi-
cally connected vertices and is bounded by high curvature vertices as shown in Figure
4(c). Since the top, bottom, and sides of teeth in almost all gears include minute fillets
or chamfers and the estimated curvatures in such regions are high compared with
those in teeth regions, our simple segmentation can extract a set of regions corre-
sponding to gear teeth separately.

(g) Classified regions(e) Barycenters of
congruent regions

(f) Barycenters of
classified regions

(a) Max. curvature (b) High curvature vertices

(c) Regions (d) Boundary vertices
of congruent regions

Fig. 4. Segmentation and classification of regions

144 T. Mizoguchi and S. Kanai

4.2 Selection of Congruent Regions

Next, under the fact that all gear teeth in a single gear represent the same geometry,
the congruency tests are performed for the segmented regions }1|{ segnR ≤≤ αα based

on the pairwise ICP algorithm [16] for selecting a set of congruent regions mostly
corresponding to gear teeth. Here we assume that the most of }{ αR are congruent
ones. The ICP algorithm matches pairs of regions so that the sum of the distances
between corresponding points can be minimized. The congruent regions represent the
same geometry and the pair of them can be matched by the ICP algorithm so that their
averaged distance is minimized. However, when non congruent regions are paired, the
distance will be larger. Based on this fact, our method applies the following proce-
dures for selecting congruent regions.

Our method first randomly select the user specified number of regions }{ βQ
among }{ αR , and for each βQ , create a set of pairs }1|,{ segnRQ ≤≤〉〈 ααβ .

1. For each pair in },{ 〉〈 αβ RQ , apply the ICP algorithm to match them and compute
the averaged distances }{ αβe between the corresponding points.

2. For each βQ , count the number of false pairs αβn whose αβe is more than the

threshold congth . We set congth so that it becomes proportional to the averaged

mesh edge length avgl , such that avgcongcong lth τ= . We set 0.1=congτ .

3. If segcong nwn >αβ , verify that βQ is not a congruent region and then do not apply
the following procedure to any 〉〈 αβ RQ , . Otherwise, select βQ as a congruent
region and then evaluate αβe

for each pair 〉〈 αβ RQ , . If αβe

is less than congth ,

select αR

as a congruent region. Here we set 5.0=congw .

As a result of this process, a set of congruent regions most of which correspond to
gear teeth can be accurately selected. As shown in the Figure 4(d), our method uses
only boundary vertices of regions for the ICP matching and it much reduces the com-
putational cost without decreasing the matching accuracy. We note that several re-
gions which do not correspond to gear teeth remain in the end of this test.

4.3 Classification of Regions

Then, under the assumption that the reference points of gear teeth of a single gear
should be positioned on a circle, the barycenters of the congruent regions in Figure 4(e)
are classified into groups each of which corresponds to a gear based on the RANSAC-
based circle fittings as shown in Figure 4(f). If a set of barycenters lie on one circle
within a certain tolerance, they are classified into the group. This process classifies the
regions into groups }{ j

ii RG = as shown in Figure 4(g) and it also eliminates the re-

mained false regions which do not correspond to gear teeth from any iG .

5 Periodicity Recognition

5.1 Planar Parameterization

Next, for each group iG , a least-squares plane iP is fitted for a set of barycenters

}{ j
iB of }{ j

iR . Each j
iB is then projected onto the plane and their 2D parameters

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 145

),(j
i

j
i vu are calculated. The axes u and v on the plane are arbitrarily defined so that

they can be orthogonal each another.

5.2 Sub Grouping

As shown in the inset figure, the gear shapes may be defined with several faces, e.g.,
top, bottom, and two side faces, in CAD system. We observed that the surface area of
the top and the bottom faces are smaller than those of
two side faces and that the mesh vertices correspond-
ing to their faces are classified as high curvature verti-
ces in step 1. Therefore the regions that correspond to
top and bottom faces are not extracted by our segmen-
tation and the only regions from two sides regions are
extracted. Our current method of the periodicity rec-
ognition can deal with the case where one single re-
gion or two sides regions are extracted from a single gear tooth. An examples of sin-
gle regions is shown in Figure 14 and those of two side regions are in Figure 4, 15, 17
and 18. When the two sides regions are extracted, our method separates them into sub
groups, i.e., right side and left side sub groups, by the following procedures. The
entire procedure is illustrated in Figure 5.

1. For each region j
iR , compute the normal vector j

iN as the averaged vector of
the vertex normal vectors in j

iR .
2. Arbitrarily select a region x

iR among iG and apply the following process for
other regions }{ j

iR .

2.1. Rotate the normal vector j
iN by the angle between x

iB and j
iB , and

compute the angle jx
i

,θ between x
iN and the rotated normal vector j

iN̂ .
2.2. If xj

i
,θ is smaller than the threshold subth , classify j

iR into the same sub
group with x

iR . We set deg0.45=subth for all the meshes in this paper.

3. Repeat the process 2 until there is no region which have not been classified into
any sub groups.

Group Init/Opt
parameters

Merged
region &

parameters

Congruent
regions

Sub group

Mesh

Segmentation & Selection
(Sec. 4.1&4.2)

Classification
(Sec. 4.3)

Sub grouping
(Sec. 5.2)

Recognition
(Sec. 5.3 & 5.4)

Merging

Fig. 5. Classification of regions

bottom

top two sides

146 T. Mizoguchi and S. Kanai

u

v

j
iB

~

aθ

bθ

0.3≈ab θθ

o

u

v

aθ

bθ

5.1≈ab θθ

o

(b) Correct angle(a) Incorrect angle

k
iB

~

l
iB

~

j
iB

~

k
iB

~

l
iB

~

Fig. 6. Initial estimation

In the following section, we describe our periodicity recognition method for each sub
group. After periodicities are recognized by the methods describe in section 5.3 and
5.4, our method merges the sub groups into the group and obtains the merged regions
and the common rotational axis and the basis angle of the group. The method is very
simple and easy to implement, we skip to describe the details of it. From the next
section, we refer the sub group as group and denote it as }{ j

ii RG = for simplicity.

5.3 Initial Estimation and Assignment of Indices

Then, for each group iG , our method estimates the initial parameters defining the

periodicity, including an axis directional vector d, a point on an axis p, and a basis
angle θ. In rotational periodicities, a set of projected barycenters j

iB
~

 approximately

forms a rotational grid on the plane as shown in Figure 6. The grid is spanned by a
rotational basis angle around a center of rotation. A single region j

iR can be simulta-

neously matched to others under a set of periodic rotations, and therefore a projected
barycenter j

iB
~

 can also be approximately matched to others under the same transfor-

mations. Under this assumption, our method first estimates the initial parameters
using our basis estimation method [20] which is the modification of Lin’s [6]. The
estimated parameters are then used to assign an index to each j

iR .

Since we deal with CT scanned meshes, the projected barycenters have several per-
turbations which are caused by spatial distribution of vertex position and by scanning
noise and they form an approximate rotational grid. The advantage of our method is
the robustness for such distortions of the grid. Our method is a kind of voting scheme
and it extracts the best parameters among several candidates.

Estimation of the initial axis:
The estimation of the axis is easy and intuitive. It is simply computed by performing
the following procedures.

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 147

1. Calculate the initial directional vector init
id of the rotational axis as the normal

vector of the projection plane iP .
2. Fit a circle to }

~
{ j

iB and compute the initial point on the axis init
ip as the center of

the circle.

Estimation of the initial basis angle:
In the beginning of this step, we regard the projected barycenters as a set of vectors

}1|),(
~

{ i
j

i
j

i
j
i Njvu ≤≤=B originated by init

ip . We define the basis angle as the one

whose absolute value is small and which other angles between pairs of vectors can be
represented by its integral multiples as possible. Examples are shown in Figure 6. As
for the example in Figure 6(a), if we select aθ for the basis angle, bθ cannot be repre-

sented by its integral multiple and therefore aθ is incorrect as a basis angle. In con-

trast, as for the example in Figure 6(b), bθ can be represented by the integral multiple

of aθ , and therefore aθ is suitable for the basis angle. To find such a basis angle

among all the angles between pairs of vectors, our method performs the following
procedures.

1. Create a 2D accumulate array),(kjS and initialize entries of the array
0),(=kjS for iNkj ≤≤ ,1 .

2. For each pair of vectors j
iB

~
 and k

iB
~

, where iNkj ≤<≤1 , perform the follow-
ing procedures:

2-1. For each vector l
iB

~
, where iNl ≤≤2 , compute the value a using aba θθ= ,

where)
~

,
~

(k
i

j
ia angle BB=θ and)

~
,

~
(l

i
j
ib angle BB=θ . Let a′ be the round inte-

ger of a.
2-2. Update the value of),(kjS using the scoring rule in Eq.(1).

{ }γ
)

~
,

~
(

21
),(),(

k
i

j
iangle

aa
kjSkjS

BB

′−−
+← (1)

3. Let the entry with the highest score in the array S locate at)ˆ,ˆ(kj and then set the
initial basis angle init

iθ as)
~

,
~

(
ˆˆ k
i

j
iangle BB .

In our method, for each pair of vectors j
iB

~
 and k

iB
~

, if the vectors were located near

the vertices of an accurate rotational grid and if their angle is small, their correspond-
ing score becomes high. We set 5.0=γ for all meshes in this paper and we found it

provides satisfactory results from various experiments.

Assignment of Indices to the PDRs:
For each j

iB
~

, compute the value c using init
cc θθ= , where)

~
,

~
(1

i
j
ic angle BB=θ . Let

c′ be the round integer of c. Then the index of j
iB

~
 is computed as c′ .

148 T. Mizoguchi and S. Kanai

5.4 Optimal Estimation

In this section, we describe our simultaneous matching algorithm [20] which extracts

optimal parameters optoptopt θ,,pd defining the rotational periodicities. The initial

parameters calculated in section 5.2 includes large estimation error of the rotational
axis and the basis angle due to the perturbations of the projected barycenters, there-
fore, this step minimizes the error by an optimization and extracts more accurate pa-
rameters. Our simultaneous matching algorithm is the extension of ICP [16]. The ICP
iterates computing a transformation and finding corresponding points for a single pair
of regions, and it finally estimates an optimal transformation under which a pair of
regions can be matched each other so that the sum of distances between correspond-
ing points can be minimized. In contrast to the ICP, our simultaneous matching algo-
rithm iterates computing a rotational axis and a basis angle and finding corresponding
points for all the pairs of regions, and finally it estimates an optimal axis and an angle
under which any single region can be matched to others by a periodic rotations using
their indices so that their matching error can be minimized. More simply, our algo-
rithm can be regarded as the bidirectional distance minimization between correspond-
ing points in all pairs of regions.

Here we denote a region j
iR in a group iG as a set of points

}1,1|{ ,
j

ii
j

ki
j

i nkNjR ≤≤≤≤= x . The point j
ki,x can be closely matched to its corre-

sponding point l
kci)(,x in l

iR by)(,
j
ki

itr xT , where)(,
j
ki

itr xT is the rotation around the
axis pd, with the angle θ))()((l

i
j

i RidRid − . Here)(j
iRid and)(l

iRid are the indi-
ces of j

iR and l
iR respectively. And)(kc is the vertex ID of l

kci)(,x corresponding to
j
ki,x . To estimate optimal parameters, our algorithm performs the following proce-

dures.

1. Initialize: Set init
ii dd =0 , init

ii pp =0 , init
ii θθ =0 and 0=itr .

2. Find closest points: For each j
iR , where iNj ≤≤1 , perform the following

process:
For each point)(,

j
ki

itr xT in the current position of j
iR , find the set of closest

point }{)(,
l

kcix in each l
iR . And for each point l

mi,x in the initial position of l
iR ,

find the set of closest point)}({)(,
j

mci
itr xT in the current position of each j

iR .
3. Compute parameters: Compute the parameters itr

i
itr
i

itr
i θ,,pd by minimizing

the sum of squared distances between corresponding points in Eq.(2):

∑ ∑∑ ∑

= +== +=

→+→=
i ii i N

j

N

jl

j
i

l
i

itr
N

j

N

jl

l
i

j
i

itritr RRDRRDD
1 11 1

)()(

(2)

Here)(l
i

j
i

itr RRD → and)(j
i

l
i

itr RRD → are described in Eq.(3) and Eq.(4)
respectively.

∑ −=→

j
in

k

l
kci

j
ki

itrl
i

j
i

itr RRD
2

)(,,)()(xxT

(3)

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 149

∑ −−=→

l
in

m

j
mci

itrl
mi

j
i

l
i

itr RRD
2

)(,,)()(1xTx

(4)

This non-linear equation can be solved for itr
id , itr

ip , and itr
iθ using Levenberg-

Marquardt algorithm [19].
4. Update points and calculate distance: Update the points such that

j
ki

j
ki

itr
,,)(xxT ← using the current parameters itr

id , itr
ic , and itr

iθ . Then calculate
the averaged distance from Eq.(2) as all

i
itritr NDE = , where all

iN is the total
number of pairs of corresponding points in group iG .

5. Termination condition: If ε>− +1itr
i

itr
i EE , update 1+← itritr and repeat the

process from Step 2. Otherwise, output the optimal parameters as itr
i

opt
i dd = ,

itr
i

opt
i pp = and itr

i
opt
i θθ = , and then stop the process. (We set ε such that

avgoptlw=ε , typically with 001.0=optw .)

6 Generation of Partial Meshes

For the purpose of inspecting the assembling errors of gear trains, the methods men-
tioned in the previous section are sufficient where the rotational axes are estimated.
However, for performing kinematic simulations based on their CT scanned meshes,
the meshes obtained from the periodicity recognition are still insufficient because
several number of gear teeth portions are missing in the mesh at the gear-to-gear con-
tact are. A set of complete meshes each of which expresses closed surface of an indi-
vidual gear must be used in the simulation of gear teeth contacts. To generate such a
complete mesh of each gear, our method first enlarges the gear teeth regions and ex-
tracts as large regions as possible where periodicities are valid by our region growing.
Then it interpolates the points by our geometric synthesis for the false regions where
the appropriate regions are not detected by our segmentation and classification (men-
tioned in section 4) and where surface meshes are not created in the area that the
neighboring parts are contact in the CT scanning. These processes can extract the
enlarged and the synthesized all-round point sets for each gear and the complete
meshes of each part can be easily created by triangulating them.

6.1 Region Growing

For each group }{ j
ii RG = , the regions extracted in step 1 are simultaneously enlarged

by our region growing algorithm according to the estimated periodicity. Since we deal
with scanned meshes, mesh vertices of each congruent regions do not lie in the
equivalent position. Therefore our method uses a tolerance that allows the vertex
perturbations. Our region growing enables the extraction of as large regions as
possible where periodicities are valid under the user specified tolerance. As shown in
Figure 7, our method performs the following procedures.

150 T. Mizoguchi and S. Kanai

4. Terminate condition
Stop if the number of
added vertices is zero.

: Boundary vertices
: Vertices in 1-ring outside

0R 1R

2R3R

Transformed region

1. Extraction of candidate points

Found

Found

Found

Found

Not found

Not found

Rotated vertices Vertices after rotations

Processing per
candidate vertex: Corresponding

vertices

2. Rotation and closest
point search

θ
θ2θ3

Add vertices if corresponding vertices
are found in all regions.

: Added vertices

3. Vertex additionRepeat if the number of
added vertices is
more than one.

Fig. 7. An overview of our region growing

1. Extraction of candidate points: Extract a set of candidate points }{ ,
j
ki

j
iC x=

for addition to the regions. Here j
iC includes vertices which lie on the bounda-

ries of the current region and vertices which lie outside of it among their 1-ring
vertices.

2. Rotation and closest point search: For each vertex 1
,kix in 1

iC , transform it to
}{ 1

,
j

ki
→x by rotating it by opt

ii
j

i RidRid θ))()((1− so that 1
iC can be matched to

each j
iC . Then, for each point j

ki
→1
,x , search a set of closest points }{)(,

j
kcix in

each j
iC and compute the distances }{ ,1

,
j

kid between points.
3. Vertex addition: For each point j

ki
→1
,x , if all the distances }{ ,1

,
j

kid are less than
threshold addth , add 1

,kix to 1
iR and }{)(,

j
kcix to }{ j

iR respectively. We set

avgadd lth 0.1= for all the examples in this paper.
4. Terminate condition: If the number of points added to 1

iR is more than one,
continue the process from process 1. Otherwise, stop the process.

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 151

As a result of the process described above, regions can be enlarged as shown in
Figure 10(a). In this figure, regions are colored according to their indices, i.e. light for
odd and deep for even indices.

6.2 Geometric Synthesis

When pairs of teeth in gears are contact or close each other in the CT scanning proc-
ess, these areas on meshes are connected and their boundaries cannot be measured as
shown in Figure 8 due to the blur of CT values. Our segmentation and congruency
tests in step 1 cannot detect regions corresponding to gear teeth separately from such
areas. Moreover, even when the meshes are appropriately created, our segmentation
may fail to extract regions due to the inadequate threshold setting especially when the
number of vertices in the regions is small. In addition, even when our segmentation
successes, our classification method may fail to appropriately classify regions into a
group due to the perturbations of the regions' barycenters. In these cases, it results that
there exists several false regions after region growing mentioned in section 6.1 as
shown in Figure 10(a), 14(c,f), and 15(c). Therefore our geometric synthesis interpo-
lates points in such areas and plausibly estimates the original geometry.

Fig. 8. Connected area on meshes due to the blur of CT values

4

3

5

6

7 8

9

10

11

0

12

θ4 θ5
θ6

Selected
region

False regions
Interpolated points

Fig. 9. Geometric synthesis

152 T. Mizoguchi and S. Kanai

(a) Grown regions (b) Interpolated points (c) Partial meshes

Fig. 10. Generation of partial meshes

In our method, an arbitrarily selected region j
iR is transformed to the false region

{}=l
iR by rotating it by optl

i
j

i RidRid θ))()((− and points on the boundaries are in-
terpolated as shown in Figure 9 and 10(b). This enables to generate all-round points
for each gear, and then partial meshes }{ iM can be easily generated by triangulating
them as shown in Figure 10(c). We are currently using commercial software Geo-
magic [18] but existing meshing algorithms such as marching cubes [19] can be used.

We note that our method cannot estimate the completely correct boundaries of the
gears and can find only the boundaries where periodicities are valid. However such
boundaries are sufficient for the kinematic simulation purposes.

7 Evaluation of Gear Teeth Contact

In this section, a method is described for evaluating gear teeth contacts using the ex-
tracted periodicities and the partial meshes. Such an evaluation is one of the most
important functions in kinematic simulations of gear assemblies for predicting the
power transmission efficiency, noise and vibration.. In our method, evaluations of
gear teeth contacts are replaced by the distance computations between surfaces ap-
proximating the teeth regions. More precisely, our method rotates the pair of partial
meshes biting each other around each axis by a specified pitch angle and computes
the distances between the approximating surface of one tooth and the vertices pro-
jected onto the surface approximating the other one at each rotation. The surface ap-
proximations can decrease the effect of scanning noise for the contact evaluations. We
use bicubic polynomial surfaces [15] for the approximations so that they can be
closely fitted for a larger class of teeth faces. Our method performs the following
procedures.

1. Extraction of pairs of partial gear meshes: Extract the pairs of partial gear
meshes ji MM , biting each other by simply thresholding the shortest distance
between pairs of approximating surfaces of the teeth.

2. Computation of pitch angle ratio: For each pair ji MM , , compute a pitch
angle ji φφ , as ii L/360=φ and jj L/360=φ respectively, where iL and jL
are the numbers of teeth in each gear. Then compute their ratio ijijr φφ= .

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 153

initϕ

Collision
Surface

ϕΔ Region
t
jR

)(s
iRf

 0

Surface
Region

φΔijrφΔ

initϕ

t
jR

)(s
iRf

 Fig. 11. Initial matching Fig. 12. Evaluation of gear teeth contacts

Mesh
(#tri: 453,638)

(a) Normal-type (b) Floating-type

Mesh
(#tri: 452,578)

(c) Tilting-type

Mesh
(#tri: 447,840)

Extracted grid Extracted grid Extracted grid

Fig. 13. Results for artificial meshes

Table 1. Accuracy evaluation of parameters extraction

Max. Direction error (deg)

Max. Basis angle error (deg)

0.19 0.05 0.45

0.01 0.01 0.01

0.15 0.02 0.21

0.01 0.01 0.01

0.05 0.02 0.29

0.01 0.01 0.01

Noise level (a%) 5.0 10.0 15.0 5.0 10.0 15.0 5.0 10.0 15.0

Normal-type Floating-type Tilting-type

154 T. Mizoguchi and S. Kanai

3. Initial matching: For each pair ji MM , , find the pair of regions t
j

s
i RR ,

corresponding to gear teeth which are almost contact. Then the initial matching
can be performed so that the pair can be completely contact. First a bicubic
polynomial surface)(s

iRf is fitted to s
iR in a least-squares manner. Next, as

shown in Figure 11, t
jR is sequentially rotated by a specified pitch angle ϕΔ ,

the collision is tested between)(s
iRf and t

jR , and the adjacent angle initϕ is de-
tected before their collision. Then the initial matching can be performed by rotat-
ing jM by the computed angle initθ such that jj MM ′→ . We set deg01.0=Δϕ
for the example in Figure 16. For more accurately performing the initial match-
ing, we can up-sample the surface)(t

iRf and make ϕΔ smaller.
4. Evaluation of teeth contacts: Rotate iM and jM ′ at the pitch angle φΔ and

φΔijr respectively, and evaluate the contacts as the distance between the surface
)(s

iRf and the region t
jR′ which are in contact at each rotation. We set

deg1.0=Δφ for the example in Figure 16.

8 Results

We applied the proposed method for various meshes and verified its effectiveness. All
the experiments were run on the PC with Core2Duo 2.4GHz CPU and 2GB RAM.

Figure 13 shows the results of periodicity recognitions for the artificial meshes of
gear trains. These three types of meshes are generated in the similar ways with the
mesh in Figure 3. The first mesh is normal-type which are simply generated by
triangulating CAD model of the gear assembly using CAE meshing software. The
second mesh is floating-type which are generated first by moving two CAD models
along the rotational axis by 3mm with reference to the one, which imitates posi-
tional offset error along the axis between gears, and then by triangulating them in
the same way. The third mesh is tilting-type which are generated first by rotating
two CAD models by five degrees with reference to the one, which imitates the axis
misalignments between gears, and then by triangulating them in the same way.
These three meshes contain about 450,000 triangles. We added the artificial noise to
the meshes by displacing each vertex along its normal direction by Gaussian dis-
tributed random distances with the standard deviation α% proportional to the aver-
aged mesh edge length. We set α=5.0, 10.0, 15.0, and evaluated the accuracy of
parameters extraction at each setting. Our method extracted the periodicities de-
scribed by the grids in Figure 13 from all meshes at any noise level settings. We
evaluated the axis directional vector and the basis angle extracted by our method
with the theoretical values. The results are shown in Table 1. The maximum estima-
tion error of directional vectors among the three gears in a mesh was 0.45deg in the
case of normal-type mesh with α=15.0. The errors of basis angles were less than
0.01deg in all cases. The averaged number of vertices in the interior of the regions
corresponding to gear teeth was about 90 and the total running time for the perio-
dicity recognitions were about 70 seconds.

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 155

(b) Scanned mesh
(#teeth=18)

(#tri=27,280)

(c) Interpolated points (d) Generated mesh

(e) Scanned mesh
(#teeth=18)

(#tri=25,657) (f) Interpolated points (g) Generated mesh

Cut off
(#teeth=3)

Cut off
(#teeth=3)

Cut off
(#teeth=3)

(a) Cranfshaft

False regions

False regions

Fig. 14. Results for CT scanned meshes of the gear in crankshaft

Figure 14 shows the results of the generations of partial meshes from the CT
scanned mesh of the single gear in the mechanical part in Figure 14(a). We interac-
tively extracted the portions in the mesh corresponding to the gear shown in orange
box. Assuming that the pairs of gear teeth are contact during the CT scanning process
and that surface meshes cannot be properly created, we manually cut off the one and
the two portions as shown in Figure 14(b) and (e). Estimation errors of the basis an-
gles were less than 0.01deg with reference to the theoretical angle in both meshes.
This result shows that our method can accurately recognize periodicities even when
segmentation cannot be appropriately performed. Moreover it could generate all-
round partial meshes from such incomplete meshes as shown in Figure 14(d) and (g).
We set the threshold highth for classifying high curvature vertices (mentioned in sec-

tion 4.1) as 0.3=highth and the running time was less than 2 seconds for both meshes.

Figure 15 shows the results for the decomposition of the CT scanned mesh in Fig-
ure 15(a) of a LEGO gear assembly. The object includes six gears and our method
generated three meshes among them. As for the detected three gears, our method
could interpolate the points even when regions cannot be appropriately extracted in
step 1 as shown in Figure 15(c) and generate partial meshes in Figure 15(d). The
estimation errors of the basis angle were less than 0.01deg in all gears. The mesh
includes 981,036 triangles. The running time was 261 seconds in step 1, 6 seconds in
step 2, and 3 seconds in step 3 except for mesh generations from interpolated points.
We note that most of the times in step 1 were spent for the congruency test based on
pairwise ICP matching as in [13]. As shown in Figure 15(b), since many regions

156 T. Mizoguchi and S. Kanai

which did not correspond to gear teeth still remained after congruency tests based on
ICP matching, the following RANSAC algorithm could not classify the regions that
correspond to gear teeth. We set 0.10=highth for this mesh.

Figure 16 show the results for the evaluation of gear teeth contacts for the pair of
meshes M1 and M2 in Figure 15(d). In this figure, the contacts of the pair of teeth at
several rotation starting from an angle xϕ are shown. Red color corresponds to larger

distance and yellow to zero. In the case of spur gears as shown in this figure, if the
rotational axes of the pair of gears are parallel, the teeth contact area should be a
straight line parallel to the axes and the line move from the root to the head of the
teeth. As shown in Figure 16, the behaviors of the real gear assemblies were observed
on their CT scanned meshes by our method. We also observed the similar behaviors
from other pairs. The total running time was about 10 seconds for this pair.

M1

M2

M3

(a) Scanned mesh of
a gear assembly of LEGO

(#tri; 981,036)

(b) Barycenters of congruent regions

(d) Extracted partial meshes(c) Interpolated points

Fig. 15. Results for a generation of partial meshes from a CT scanned mesh

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 157

xϕ deg5.0+xϕ deg0.1+xϕ

deg5.1+xϕ deg0.2+xϕ deg5.2+xϕ

0.0mm

0.2mm

Fig. 16. Result for evaluating gear teeth contact

(b) Scanned mesh
(#teeth=10, #tri: 106,227)

(c) Interpolated points (d) Generated mesh

(e) Scanned mesh
(#teeth=10, #tri: 101,924) (f) Interpolated points (g) Generated mesh

(a) gear

Cut off
(#teeth=2) Cut off

(#teeth=2)

Cut off
(#teeth=2)

Fig. 17. Result for the all-round mesh generation from a CT scanned mesh of an gear

Figures 17 and 18 show the results for the single bevel gears. In both figures, the par-
tial meshes are manually cut off in the same way as the meshes in Figure 14. These
results show that our proposed processes can be applied for the various types of CT
scanned meshes of real gears and that it can well generate the all-round surface meshes.
Therefore, it is highly probable that our whole algorithm still works well for real CT
data of real gear trains. We set 0.10=highth for all meshes in Figure 17 and 18.

158 T. Mizoguchi and S. Kanai

(c) Interpolated points(a) gear (b) Scanned mesh
(#teeth=15, #tri: 301,924)

Cut off
(#teeth=2) Cut off

(#teeth=2)

Fig. 18. Result for the all-round points generation from a CT scanned mesh of an engineering
object

Discussion. Our segmentation algorithm mentioned in section 4 may fail to extract
regions corresponding to gear teeth due to the scanning noise and to the inappropriate
threshold setting for the classification of high curvature vertices. Moreover it cannot
detect regions of gear teeth which are contact in the CT scanning process. In addition,
our classification algorithm based on RANSAC based circle-fittings may fail to clas-
sify the regions into groups each of which corresponds to a single gear due to the
perturbation of the barycenters of the regions. Even in such cases, our periodicity
recognition and partial mesh generation algorithms can recover such false regions and
reconstruct the complete meshes. Examples are shown in Figure 14 and 15. In these
figures, although several regions are not correctly segmented or classified, our method
could generate the complete meshes which can be usefully used for kinematic simula-
tions. In our experiments, our algorithm can generate the complete meshes when
about half of regions are correctly segmented and classified. We note that the extrac-
tion accuracy of parameters, such as rotational axes and basis angles, decreases when
fewer regions are segmented and classified.

9 Conclusion and Future Works

In this paper, we proposed a new method for decomposing CT scanned surface
meshes of parts assemblies based on periodicity recognition. We demonstrated the
effectiveness of our proposed method from various experiments on the artificial and
the CT scanned meshes. By taking the gear trains as examples, we verified that our
method enabled to uniquely determine the correct boundaries between parts and to
accurately decompose single material CT scanned surface meshes into partial meshes
each of which corresponds to a gear without reference data such as original CAD data
and CT values. Moreover we proposed a method for evaluating gear teeth contacts
using the generated partial meshes and the recognized periodicities as an example of
kinematic simulations. We found that our method could estimate the behaviors in the
motions of real gear assemblies based on their CT scanned meshes.

 Decomposing Scanned Assembly Meshes Based on Periodicity Recognition 159

Our proposed method can be used not only for gear trains as presented in this paper
but also for a wide class of assemblies where rotational periodicities exist in the con-
tact area between parts, e.g., bearings, chain sprocket. We will test the versatility of
our method for such assemblies in future works.

Limitations. In some gears, the surface area of a tooth is very small and therefore the
number of vertices in such a region in a scanned mesh is also small. Our segmentation
cannot appropriately extract the regions corresponding to such teeth due to the diffi-
culties of the threshold setting and thus cannot generate partial meshes of such gears.

As for the practical evaluations of gear teeth contacts, more precise evaluations are
required, e.g., a few micron order, and the current resolution of CT scanning is not
enough for the practical use of our method. However it can be estimated that the reso-
lution of CT scanning will be higher in near future and we believe that our method
can be practically used in such days.

Acknowledgements

We would like to thank anonymous reviewers for their helpful comments. The CT
scanned meshes of the engineering parts in Figure 14, 17, and 18 were provided by
Ichiro Nishigaki and Noriyuki Sadaoka in HITACHI Co., Ltd. The CT scanned mesh
of the LEGO block in Figure 15 and 16 was provided by Hiroyuki Tanaka and Hide-
aki Aiyama in Hokkaido Industrial Research Institute. This work was financially
supported by the Grant-in-Aid for Scientific Research under the project
No.18004488-00.

References

[1] Suzuki, H.: Convergence engineering based on X-ray CT scanning technologies. In: Proc.
JSME Digital Engineering Workshop, pp. 74–77 (2005)

[2] Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM
Transactions on Graphics 22(3), 954–961 (2003)

[3] Katz, S., Leifman, G., Tal, A.: Mesh Segmentation using Feature Point and Core Extrac-
tion. The Visual Computer 21(8-10), 649–658 (2005)

[4] Shammaa, H.M., Suzuki, H., Michikawa, T.: Registration of CAD mesh models with CT
volumetric model of assembly of machine parts. The Visual Computer 23(12), 965–974
(2007)

[5] Shammaa, H.M., Suzuki, H., Ohtake, Y.: Extraction of isosurfaces from multi-material
CT volumetric data of mechanical parts. In: Proc. ACM symposium on Solid and Physi-
cal Modeling, pp. 213–220 (2008)

[6] Lin, H.C., Wang, L.L., Yang, S.N.: Extracting periodicity of a regular texture based on
autocorrelation functions. Pattern Recognition Letters 18, 433–443 (1997)

[7] Liu, Y., Collins, T.T., Tsin, Y.: A computational model for pattern perception based on
frieze and wallpaper groups. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 26(3), 354–371 (2006)

[8] Müller, P., Zeng, G., Wonka, P., Gool, L.V.: Image-based procedural modeling of fa-
cades. ACM Transactions on Graphics 26(3), 85 (2007)

160 T. Mizoguchi and S. Kanai

[9] Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3D
geometry. ACM Transactions on Graphics 25(3), 560–568 (2006)

[10] Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-
reflective symmetry transform for 3D shapes. ACM Transactions on Graphics 25(3),
549–559 (2006)

[11] Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., Xiong, Y.: Partial
Intrinsic Reflectional Symmetry of 3D Shapes. In: ACM Transactions on Graphics
(SIGGRAPH Asia 2009) (2009) (to appear)

[12] Liu, S., Martin, R.R., Langbein, F.C., Rosin, P.L.: Segmenting Periodic Reliefs on Trian-
gle Meshes. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces
2007. LNCS, vol. 4647, pp. 290–306. Springer, Heidelberg (2007)

[13] Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.: Discovering structural regu-
larity in 3D geometry. ACM Transaction on Graphics 27(3), 43 (2008)

[14] Mizoguchi, T., Date, H., Kanai, S., Kishinami, T.: Quasi-optimal mesh segmentation via
region growing/merging. In: Proc. ASME/DETC-35171 (2007)

[15] Vieira, M., Shimada, K.: Surface mesh segmentation and smooth surface extraction
through region growing. Computer-Aided Geometric Design 22(8), 771–792 (2005)

[16] Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 14(2), 239–256 (1992)

[17] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in
C++: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge
(1992)

[18] Geomagic, http://www.geomagic.com
[19] Lorensen, W.E., Harvey, E.C.: Marching cubes: A high resolution 3D surface construc-

tion algorithm. ACM SIGGRAPH Computer Graphics 21(4), 163–169 (1987)
[20] Kondo, D., Mizoguchi, T., Kanai, S.: Recognizing Periodicities on 3D Scanned Meshes

Based on Indexed-ICP Algorithm. In: Integrated Design and Manufacturing in Mechani-
cal Engineering, Springer, Heidelberg (to appear, 2010)

[21] Li, M., Langbein, F.C., Martin, R.R.: Detecting approximate symmetries of discrete point
subsets. Computer-Aided Design 40(1), 76–93 (2008)

[22] Li, M., Langbein, F.C., Martin, R.R.: Detecting design intent in approximate CAD mod-
els using symmetry. Computer-Aided Design 42(3), 183–201 (2010)

Automatic Generation of Riemann Surface
Meshes

Matthias Nieser, Konstantin Poelke, and Konrad Polthier

Freie Universität Berlin, Germany
{matthias.nieser,konstantin.poelke,konrad.polthier}@fu-berlin.de

Abstract. Riemann surfaces naturally appear in the analysis of com-
plex functions that are branched over the complex plane. However, they
usually possess a complicated topology and are thus hard to understand.
We present an algorithm for constructing Riemann surfaces as meshes
in R

3 from explicitly given branch points with corresponding branch in-
dices. The constructed surfaces cover the complex plane by the canonical
projection onto R

2 and can therefore be considered as multivalued graphs
over the plane – hence they provide a comprehensible visualization of the
topological structure.

Complex functions are elegantly visualized using domain coloring on
a subset of C. By applying domain coloring to the automatically con-
structed Riemann surface models, we generalize this approach to deal
with functions which cannot be entirely visualized in the complex plane.

1 Introduction

Riemann surfaces are a fundamental concept in modern complex analysis, topol-
ogy and algebraic geometry. Bernhard Riemann himself introduced them 1851
in his dissertation “Grundlagen für eine allgemeine Theorie der Functionen einer
veränderlichen complexen Größe”, but it was Felix Klein and Hermann Weyl who
caused his idea to become known among the mathematicians in the beginning
20th century. Since then, among other things, Riemann surfaces serve as general-
ized domains for complex functions because multi-valued complex functions can
be turned into single-valued functions when defined on such a surface instead of
the complex plane. However, these surfaces might possess a complicated topolog-
ical structure since multi-valued functions give rise to ramifications determined
by characteristic points - the so-called branch points.

Riemann surfaces on manifolds are used for several methods in computer
graphics. For example, [1] uses a universal covering for the computation of short-
est cycles in each homotopy class of a surface. The surface parameterization
method [2] computes a 4-sheeted covering in order to represent the (multival-
ued) parameter function on higher genus surfaces. The notion of covering spaces
provides a nice theoretical foundation of this parameterization approach.
� Supported by DFG Research Center Matheon “Mathematics for key technologies”.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 161–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 M. Nieser, K. Poelke, and K. Polthier

1.1 Related Work

Surprisingly there is very little about the computer-aided visualization of Rie-
mann surfaces. The most important contribution might be the work by Trott [3,4]
for Wolfram Research. He uses the symbolic derivation and nonlinear equations
solver provided by Mathematica and computes 3D plots based on an explicit
function definition. To the best of our knowledge it is the only work that auto-
matically generates visualizations of Riemann surfaces – most available images
of Riemann surfaces usually show explicitly parametrized surfaces.

Important achievements concerning the technique of domain coloring are done
by Farris [5], who also introduced this term. He uses simple color gradients
without further features. The colorings of Pergler [6] and Lima da Silva [7] are
of better quality and Lundmark [8] gives a detailed introduction and uses a
color scheme revealing several important aspects of complex functions. Hlavacek
[9] provides a gallery of complex function plots, using color schemes similar to
Lundmark’s and Pergler’s. Further advancement and additional indicators are
provided in [10].

1.2 Contribution

In this paper we present an algorithm for computing 3D models for Riemann
surfaces based on given branch points and branch indices. Usually these surfaces
possess a non-trivial topology and are thus hard to capture. The models we con-
struct are a visualization technique for an easier understanding of the topology
of these surfaces. This process consists of two parts:

1. Cutting the surface open, either by a user given cut graph or by computing
the shortest cut graph as in [11], and computing multiple surface layers.

2. Computing a height function for each of the layers. The resulting surface is
then interpreted as a graph over the complex plane. Since this embedding is
used for visualization, there is possibly more than one height function that
could be used in order to produce reasonable results. We use harmonic height
functions as a natural choice as they produce almost smooth surfaces.

Whereas Trott’s method [3] provides 3D plots of Riemann surfaces, we generate
triangulated meshes which can be used as 3D models for further processing. As
our meshes will be patched together from single sheets, we can easily extract
parts of the model in order to focus on the important features of the surface.

We also apply domain coloring to these Riemann meshes – a method tradi-
tionally used for visualizing complex functions by a color map on the complex
plane. However, complex functions usually define a covering of the complex plane,
which can be explicitly constructed as a triangle mesh with our method. Using
this triangle mesh as new domains for domain coloring, we can visualize analyt-
ical extensions of functions that are discontinuous when defined on the complex
plane which helps for an overall understanding of those functions.

The paper is organized as follows: Sect. 2 introduces Riemann surfaces and
gives the theoretical background and general setting of our approach. Sect. 3

Automatic Generation of Riemann Surface Meshes 163

explains the main concept of our visualization approach. The algorithm itself is
explained in Sect. 4, and in Sect. 5 results are presented and discussed.

2 Riemann Surfaces and Complex Analysis

2.1 Problem Statement

The problem of visualizing covering surfaces has arisen to us in the analysis of
complex functions. Given a holomorphic map η : U ⊂ C → V ⊂ C between
two simply connected domains in the complex plane, its geometrical structure
can be visualized by domain coloring as demonstrated in [10]. Domain coloring
uses a reference image which is defined over V and transfers it to U via η. The
resulting image in U yields many information about η.

Fig. 1. Domain coloring (cf. section 5.2) is a technique that makes use of a color
scheme to visualize complex valued functions. The left image shows a reference color
scheme that represents the complex plane. The right image shows a typical color plot
of a meromorphic function. The black spots denote zeros, here with multiplicity 2 (the
bigger one on the left) and 1 (the one on the right). The white spot in the upper third
is a double pole whereas the punctual spot at the bottom is a simple pole. This can
also be seen from the multiplicity and order of the colors around these points – the
double zeros and poles are surrounded by the complete color circle twice in contrast to
the simple zeros and poles.

A problem arises if η is non-injective and one ones to color its inverse η−1

which is now a multivalued function. In this case, there are points in U which
obtain more than one color and we would obtain sort of a multivalued image.
We present a method for visualizing even those functions. The main idea is to
use a covering surface X of V and a bijective map f : U → X that encodes the
same geometrical information as η.

2.2 Theoretical Background

This section gives a short introduction into Riemann Surfaces and covering
spaces. Good introductions to the general theory are e.g. [12, 13, 14, 15].

Definition 1 (Riemann Surface). A Riemann Surface is a Hausdorff space
together with a holomorphic structure, i.e. with an atlas of charts {(Ui, hi)}, hi :
Ui → C whose transition maps hj ◦ h−1

i are biholomorphic complex functions.

164 M. Nieser, K. Poelke, and K. Polthier

In our setting, we use the notion of coverings from complex analysis. They are
special cases of topological coverings equipped with a complex structure and can
be easily described using local winding maps:

Definition 2 (Winding Map, Covering, Branch Point, Branch Index).
A winding map η : U → V between two disks is a map which is isomorphic to
the function z �→ zn on a unit disk in C. n is called the winding number of η.

A covering (X, η) of a Riemann Surface Y is defined by a map η : X → Y ,
such that each point y ∈ Y has a neighbourhood V whose inverse image is a
union of countably many disks (layers) and the restriction of η to each of these
disks is a winding map (with winding number n(x), ∀x ∈ η−1(y)).

If there is a point x with n(x) ≥ 2, the covering is branched and y = η(x) is
a branch point with branch index n(x). If n(x) = 1 for all x ∈ X, the covering
is unbranched.

The preimage of a point y ∈ Y is called the fibre of y. One can show, that if the
fibre is finite then the sum gr(η) :=

∑
x∈η−1(y) n(x) is independant of the choice

of y and is therefore called the grade of η.
Theoretically, our approach can handle finite or infinite coverings. However,

for simplicity we restrict to coverings with finite fibres. For instance, they arise
naturally as coverings induced by implicit functions that are defined by algebraic
equations. In particular, if one assumes η to be proper (i.e. preimages of compact
sets are compact) and to have only finite fibres, η is called a finite map and we
have the following theorem:

Theorem 1. Every finite holomorphic map between Riemann surfaces defines
a covering.

The finite holomorphic maps C → C are exactly the non-constant polynomials,
hence the powers z �→ zn and all finite concatenations of them are coverings
with finite fibres. An example of an infinite covering is the exponential map
exp : C → C∗.

For a given coveringX , a Deck map is an automorphism on X which leaves all
fibres invariant, i.e. D(η) := {g ∈ Aut(X) : η ◦g = η}. A Deck map of a covering
η is uniquely defined by a given point a ∈ X and its image η(a). The set of all
Deck maps form a group and this Deck group uniquely defines the topology of
the covering.

We consider coverings which are normal and cyclic meaning that the Deck
group is isomorphic to the modulo group (Z/nZ,+).

3 Approach

3.1 Visualization of Holomorphic Functions

We construct a topologically correct triangle mesh X for a given covering η :
U → V on given simply connected sets U, V ⊂ C. For simplicity, let η be finite
(i.e. η has finitely many layers). The surface X covers V in the same way as U

Automatic Generation of Riemann Surface Meshes 165

does, i.e. there is a covering map π : X → V and an isomorphism f : U → X ,
such that η = f ◦ π. Thus, both coverings π and η are isomorphic (Fig. 2, left).

We realize the surface X as a triangle mesh, which admits the same combi-
natorics as V and whose vertices live in C × R. The projection operator π is
just the Euclidean projection (z, r) �→ z. The covering can therefore be seen as
a (multivalued) graph over the complex plane. However, in general X cannot be
embedded in R3 and we usually obtain self-intersections.

As an additional visualization, one can now apply the domain coloring tech-
nique to these Riemann surfaces (Fig. 2, right). Instead of V , the surface X
gets colored by transfering the domain image via f onto X . This will produce
a continuous pattern, since f is bijective (in contrast to η). Since π is just a
projection along the real axis, all the metric information about the function is
still contained in f and can intuitively be captured by the viewer.

Fig. 2. Left: Given covering η will be visualized by X. Right: Domain coloring of
η(z) = z2.

This visualization helps to recognize the different types of extraordinary points.
Branch points are characterized as center points of a helix, whereas singularities
can be recognized as special points in the texture on the covering.

3.2 Branch Points and Branch Graph

Given the position of all branch points B = {b0, . . . , bd−1} ⊂ V with correspond-
ing ramification indices (r0, . . . , rd−1), this uniquely defines a covering over the
complex plane which is normal and cyclic up to isomorphism.

A neighborhood of a branch point p ∈ η−1(B) on the covering looks like the
union of one or more helices with ri layers. Away from branch points, V \ B is
covered by an unbranched surface – the fibre of every open disc is isomorphic
to just N ∈ N copies of the disk. For a globally consistent covering, we need at
least N := lcm(r0, . . . , rd−1) many layers (the covering is of degree N). Thus,
the fibre over each branch point bi consists of N/ri many helices with ri layers
each.

166 M. Nieser, K. Poelke, and K. Polthier

For the construction we need to enumerate the different layers ofX . In general,
there is no globally consistent enumeration since the covering is a connected
surface and the layers exchange their role in different regions.

Given an arbitrary point v0 ∈ V \ B as root point, its fibre consists of N
disjoint points which will be enumerated by x0, . . . , xd−1. For each pair of points
(x0, xi), i ∈ {0, . . . , d − 1}, there is a unique Deck map (defined on the whole
covering) which maps x0 to xi. This Deck map transfers the cyclic order of the
layers to any other fibre in V (the Deck map is a permutation in each fibre).
Thus, all fibres in the covering are global consistently ordered in the same cyclic
manner.

We can therefore enumerate the d layers as follows: Let G be a cut graph of
V \ B, i.e. the union of paths {γk}, which cut the surface open into a simply
connected disk (Fig. 3). Each path γk must start and end either at a branch
point or at the boundary of V . The covering η−1(V \G) of this slotted surface
then decomposes into d disjoint connected components Xi.

The preimage η−1(γk) of a cut path on the covering consists of d paths in X .
Each of these (lifted) paths separate two layers: Xi on the left side and Xj on
the right side of the directed path. Because of the cyclic order, the difference
sh(γk) = j − i is the same for all these lifted paths and is called the shift of γk.
The paths γk together with their shifts sh(γk) form a branch graph of V .

Fig. 3. A branch graph on a surface

The branch graph just connects different layersXi to a closed covering surface.
When a given point p ∈ Xi in an arbitrary layer of the covering is continuously
moved around, it still stays on Xi until a cut path is crossed. In this case, the
layer changes to X(i±sh(γk)) mod d (with a + sign if it crosses the path from left
to right).

The labeling Xi therefore depends on the choice of the cut graph. However,
the covering itself is independant from this choice. Our algorithm will construct
an arbitrary branch graph from given branch points and uses it for the generation
of the covering. The topology of the covering surface will not depend on G, but
only on the position and indices of branch points.

3.3 Shifts

The shifts of a cut path define, how the different layers on the left and right side
of the path are connected. Similarly, we introduce the shift at a branch point:

Automatic Generation of Riemann Surface Meshes 167

Fig. 4. 2D cut through the layers of different coverings. Top left : Branch point with
ri = 2. Bottom left : branch point with ri = 3. Right : Covering with N = 6 sheets and
two branch points. The left one has ri = 2 and a shift of 3, the right one has ri = 3
and a shift of 2.

Definition 3 (Lifting, Layer Shift). Given a point p ∈ V and an infinitesimal
small loop δ : [0, 1]→ V around p (counterclockwise). Let δ′ be a lifting of δ, i.e.
a (not necessarily closed) path in X with π(δ′) = δ. Denote Xi, Xj the layers of
X, such that δ′(0) ∈ Xi and δ′(1) ∈ Xj. Then sh(p) := (j − i) mod N is called
the layer shift of the point p.

The layer shift just measures how many layers are being crossed when walking
around p once. The shift is 0 for all regular points and �= 0 at branch points. The
shifts of branch points and the shifts of cut paths are related by the following
equation:

Let bi be a branch point and γk the set of paths starting or ending in bi. Then
the shift of bi is the sum

sh(bi) =
∑

starting γk

sh(γk)−
∑

ending γk

sh(γk). (1)

This defines a linear relation between shifts of the d branch points and shifts of
the d cut paths (since V has a boundary, which is also connected by the branch
graph G). The sum −

∑
bi

sh(bi) mod N is called the shift of the boundary. If it
is 0, then the boundary of V lifts to a closed loop on X , otherwise walking along
the boundary once will end on another layer on the covering.

The shift at a branch point depends on the ramification index as follows:
The neighborhood of each branch point consists of N/ri helices whose layers
are entwinded. Thus, the shift is an arbitrary number siN/ri, si ∈ N, but si

must be coprime to ri in order to produce the correct number of helices, e.g. set
sh(bi) := N/ri.

The algorithm only needs the branch graph and the shifts of all cut paths. If
only the branch points and their ramification indices are given, then their shifts
can be chosen as described above and the shifts of the cut paths uniquely follow
from Eqn. 1 (assuming that the shift of the boundary is also prescribed, e.g.
to 0).

For the application of domain coloring, it is necessary to explicitly prescribe
the shifts in addition to the ramification indices (see Sect. 5.2). This would be
an optional input for the algorithm.

168 M. Nieser, K. Poelke, and K. Polthier

4 Algorithmic Generation of Riemann Surface Models

The algorithm for generating the surface models can be separated into several
parts. As an input it takes a set of branch points {b0, . . . , bd−1} which are located
on vertices on a simply connected planar geometryMh, i.e. a triangulated planar
mesh.

Additionally, the number of layersN of the covering and the shift of the branch
points sh(bi) are given. One could alternatively prescribe the local ramification
indices ri of all branch points and then set N := lcm(r0, . . . , rd−1) and sh(bi) :=
siN/ri for any arbitrary integer si which is coprime to ri. The shift of the
boundary is set to −

∑
bi

sh(bi).
The following subsections describe the individual steps of the algorithm:

Algorithm 1. Compute Riemann Surface
Input: Triangulated domain Mh, Branch points bi, Shifts sh(bi)
Generate a branch graph (Sect. 4.1)1
Cut domain geometry along the branch graph (Sect. 4.2)2
Compute height function on branch graph in all sheets (Sect. 4.3)3
Extend height function smoothly to the inner (Sect. 4.4)4

4.1 Building the Cut Graph

The cut graph of the surface Mh consists of paths γk along edges of Mh, whose
union cut the surface open into a topological disk. Branch points are thereby
considered as infinitesimal holes in the surface, thus they must be connected by
the branch graph.

The choice of a special cut graph to given singularities is not unique. There
may be more than one graph and these paths might be topologically different
and the choice of another cut graph alters the embedding of our constructed
surface into C × R. However the topology of the embedding does only depend
on the branch points and not on the cut graph.

Hence, we allow any user given cut graph as an input. If such a graph is not
specified explicitly, it can be automatically generated – a canonical choice is the
shortest cut graph of the surface. [11] describes an algorithm on computing this
shortest cut graph for surfaces without boundary. A generalization to surfaces
with boundary can be found in [16].

Given the cut paths γi, their shifts are computed as explained in Sect. 3.3.
They are completely determined by the shifts of the branch points.

4.2 Cutting the Base Geometry

The next step is cutting the plane Mh along all cut paths. Each cut path γk is
given as a path on edges of the planar domain geometry, i.e. it can be described
by a list of vertices v1, . . . , vk. Cutting Mh along γk means that every vertex

Automatic Generation of Riemann Surface Meshes 169

v

Mh

γk

v v′

v v′

γk

Fig. 5. Cutting Mh along γk

vj , j ∈ {2, . . . , k − 1} has to be duplicated and its neighborhood has to be
updated. The original vertex vj is connected with vertices on the left hand side
of γk, whereas the copy v′j is connected with vertices on the right hand side only.
Figure 5 demonstrates this procedure.

The resulting geometry then represents one sheet of the future covering sur-
face. Since all sheets are of the same topology, the slotted domain surface is
copied N − 1 times and we obtain a total of N geometries Xi all cut in exactly
the same manner.

4.3 Boundary Constraints for the Height Function

After having cut the domain, we now have N triangle meshes Xi representing
the different sheets of the covering, which still live in the complex plane. This
section and Sect. 4.4 deals on lifting them into C × R by computing a height
function. We start by prescribing height values on the boundary of Xi, i.e. on
the cut path and the outer surface boundary.

The sheets in the resulting geometry should be stacked according to their
cyclic order, i.e. X0 is at the bottom and XN−1 is the top most layer. The
height difference between two consecutive sheets is defined by a constant Δ > 0,
thus layer Xi is assigned a height value of iΔ.

Given a sheet Xi and a cut path γk between two branch points bm and bn,
we will now describe, how the height values for the vertices on the left side of
γk are computed. The vertices on the right side are then handled in the same
manner, but using the inverted path with a negative shift value of −sh(γk).

The vertices in Xi on γk (on the left side) should be connected to vertices of
the layer X(i+sh(γk)) mod N . The height function must therefore change smoothly
from iΔ (in Xi) to (i+ sh(γk)) mod N ·Δ (in the neighboring sheet). The path

170 M. Nieser, K. Poelke, and K. Polthier

γk is somewhere between these two layers, thus let is give it a height of the
average hleft(γk) := (i+ (i+ sh(γk)) mod N)/2 for a moment.

If we just assigned this constant height value to all vertices on γk, it would
cause problems in the vicinity of the start and end points of γk (branch points
bm, bn), since several layers with different height values are glued together there.
Hence we interpolate smoothly between these height values.

As described in Sect. 3.2, the branch point bm occures exactly N/rm = sh(bm)
times in the covering. Denote them by b′m,0, . . . , b

′
m,N/rj−1. Each b′m,i connects

all the sheets Xi, Xi+sh(bi), . . . , XN−sh(bj) (Fig. 6, left). We define the height of
b′m,i as the average value ((N − sh(bj))/2 + i)Δ.

We can now define the height function on γk with the following properties:

– Height in start point bm is ((N − sh(bm))/2 + (i mod sh(bm)))Δ.
– Height in end point bn is ((N − sh(bn))/2 + (i mod sh(bn)))Δ.
– Height of vertices between bn and bm is (i+ ((i+ sh(γk)) mod N))/2.

We let the height function be constant on the middle third of the branch cut
and interpolate on the other parts with a clamped cubic spline, i.e. a polynomial
of the form

s(x) = a+ bx+ cx2 + dx3 (2)

with given boundary values and first derivatives at the end points (Fig. 6, right).

(N − (bm))Δ

(N − (bm))Δ/2
Δ

Fig. 6. Computing the height function. Left: Vicinity of a branch point bm, where
different layers are connected. Right: Height function along a cut path γk.

It remains to define a height function on the outer boundary of Xi. All our
examples are constructed such that the shift of the outer boundary is 0 (i.e.
the shifts of all branch points sum to 0). In this case, the height on the outer
boundary is just the constant iΔ. If the shift of the boundary is not 0, then
the height function must interpolate smoothly between the different layers when
walking around the boundary once. It does not matter how this interpolation is
done as long as it defines a smooth height function along the boundary.

Automatic Generation of Riemann Surface Meshes 171

4.4 Computing the Height Function on the Inside

Having defined a height function on the boundary of each layer Xi, we now solve
the Dirichlet problem with given boundary values:

Δf = 0 in Xi

f = prescribed height values on ∂Xi (3)

More precisely, we solve the corresponding discrete variational formulation

Av = b with v, b ∈ R
d×1, A ∈ R

d×d (4)

where d is the number of vertices of Xi, A is the Laplacian matrix, containing
the well-known cotan weights of the underlying triangle mesh, and b is the right
side, which is almost zero except for the boundary values f .

The solution is a harmonic function and produces a smooth surface in the
interior of all sheets. However, along the cuts the surface is in general not C1

continuous.
It should be mentioned that this height function is just one option and of

course one is free to choose any arbitrary height function. Heuristically, har-
monic functions often produce elegant surfaces and they are closely related to
holomorphic functions (in fact, real and imaginary part of a holomorphic func-
tion are harmonic functions). The only thing one has to care about is that the
values on the boundary fit together, such that the “gluing” is correctly reflected
by the model.

5 Results

5.1 Riemann Surface Models

The following models are generated by our algorithm. We applied further domain
coloring techniques on some models, which are then shown in Sect. 5.2. Branch
points are highlighted as small yellow balls. The transition between adjacent
layers as well as the surface boundary is marked by black lines.

Figures 7 and 8 show a two-sheeted Riemann surface with two branch points of
shift 1 (i.e. index is 2). We generated two embeddings using different cut graphs.
The cut graph in Fig. 7 directly connects both branch points, whereas in Fig. 8,
the two branch cuts emanate from a singularity and both meet at infinity. Thus,
the situation is indeed the same and both surfaces are therefore topologically
equivalent. Since we can only compute a compact subset of the infinite Riemann
surface, we have to take care, that the height function respects the layer shift at
the patch boundary, whenever the cut graph meets the boundary.

Figure 9 shows a Riemann surface with three sheets and two branch points
of index 3, the shifts are 1 and −1. When crossing the branch cut between the
two singularities from left to right one ends up the next lower sheet, or on the
top most sheet when starting from the lowest one.

172 M. Nieser, K. Poelke, and K. Polthier

Fig. 7. A surface with two sheets and two branch points of index 2

Fig. 8. Another embedding of the Riemann surface from Fig. 7

Fig. 9. A surface with three sheets and two branch points. (a) shows the whole surface.
(b)-(d) show the three sheets separately.

Automatic Generation of Riemann Surface Meshes 173

Fig. 10. Riemann surface with four layers and four branch points. (a) Whole surface.
(b) Second and third sheet slightly rotated.

Fig. 11. Riemann surface with four sheets and four branch points. (a) Whole surface.
(b) Second and third sheet. (c) Displaying only the third sheet reveals the hidden
branch points.

A more complex model is shown in Fig. 10. It has four sheets and four branch
points A,B,C,D of shift 1, 2, 2 and 3, respectively. The branch points form a
square (the branch point on the corner in the back is hidden) and are connected
by branch cuts between A and B, B and C and C and D. The two leftmost
branch points (A and D) in (a) are not connected. When starting from the right
on the upper sheet and crossing the branch cuts between C and D and A and
B, one does not change the layer. This corresponds to the fact that the branch
shifts along these cuts sum up to four which is zero modulo four.

Figure 11 again shows the same situation with the same branch points as in
Fig. 10, but with a different branch graph. This time, A and C are connected as
well as B and D, so the branch graph is disconnected. Note that this is also a
valid configuration since the branch shifts along each cut sum up to zero modulo
four. However, we obtain a different embedding in R3, although all branch shifts
are the same as in the previous picture. In (b) one can clearly see the layer shift
of one when crossing the cut in the front of the picture. Note that the second
branch cut in the back connects two branch points of shift 2 and thus the model

174 M. Nieser, K. Poelke, and K. Polthier

locally decomposes into two connected components around this cut. That is why
a second pair of branch points is introduced which can be slightly seen.

5.2 Domain Coloring on Riemann Surfaces

As mentioned in Sec. 2.2, Riemann surfaces are naturally induced by holomorphic
covering maps. However the visualization of complex functions as graphs over
a domain is not possible, since their graphs live in C2 ∼= R4. That is why one
often makes use of an elegant technique called domain coloring (see [5] or [10]),
which encodes the range of a complex function as a color scheme that is plotted
directly onto the domain. We use this technique to visualize complex functions
whose proper domains are Riemann surfaces. In particular, for a given covering
map η as in Fig. 2, we can define its inverse mapping as a function living on
the Riemann surface. Those functions are naturally multivalued when defined
over the complex plane and hence cannot be properly defined as holomorphic
functions on C – in fact they are not even continuous and one has to cut the
plane in order to define at least a so called holomorphic branch of a function.
With the notation of Fig. 2, these branches can be considered as restrictions of
f−1 to a sheet Xi ⊂ X and π |Xi becomes an isomorphism between the cut
complex plane and Xi.

Fig. 12. A function having two branches and a branch cut between the branch points
−1 and +1. (a) and (b) show the model from Fig. 7 with the coloring for f−1(z) := (z−
1)1/2(z+1)1/2. Whereas the restriction to a single sheet results in a color–discontinuous
planar plot (see (d) and (e)), the coloring on the surface is continuous. (c) shows the
local topology of our model close to a branch point. The typical two-sheeted helix is
a picture often shown as an explicitly parametrized surface for the Riemann surface
induced by z �→ z2.

Automatic Generation of Riemann Surface Meshes 175

Fig. 13. Domain coloring of a function with three branches. (c) Local model in a neigh-
borhood of a branch point The planar color plots (d)–(f) are discontinuous between
the branch points which is resolved on the Riemann surface model.

Fig. 14. (a) and (b) Domain colored Riemann surface with two disconnected branch
cuts. (c) and (d) The planar domain coloring of the function is discontinuous at the
branch cut.

176 M. Nieser, K. Poelke, and K. Polthier

Fig. 15. A 6-sheeted covering of a function having two branch cuts with different shift
and thus with branch points of different branch indices – two of index 3 and two of
index 2. Top left: whole covering. Top right: 2d view on top most layer. The black lines
are the cut paths with not vanishing shift (shift 2 and 3). The 6 pictures below show
the layers separately.

We apply domain coloring to Riemann surfaces and obtain globally color-
continuous plots corresponding to globally holomorphic mappings on the sur-
faces. These surfaces are computed by using our method with the branch points
and the shifts of η which can be derived from the function definition. The color-
ing is induced by f−1 and the colored surfaces reveal the behaviour of a function
as well as the topology of the induced Riemann surface.

Note that the composition f−1 ◦ (π |Xi)−1 maps from the cut complex plane
into C and can be visualized using planar domain coloring, but the unrestricted
map (π◦f)−1 is in general multivalued. Figures 9 – 12 show some colored surfaces
together with planar domain colorings obtained by restriction to a single sheet.
A two-sheeted Riemann surface with domain coloring is shown in Fig. 12.

Figure 13 shows the domain coloring of a function having three sheets and
a two branch points at +1 and −1. The Riemann surface is the same one as

Automatic Generation of Riemann Surface Meshes 177

in Fig. 9, this time equipped with domain coloring of a holomorphic function.
One can see the smooth transition between the first and the third sheet in (a)
whereas (b) shows the transition between the second and third sheet.

Figure 14 shows a Riemann surface with two branch cuts which are not con-
nected, or, equivalently, as being connected by a branch cut with shift 0, which
does not cause any sheet transition. As in the example in Fig. 12, the branch
cuts connect two sheets and the restriction to a single sheet results in a dis-
continuouities of the branched function, see (c), (d). Note that the function is
continous on every sheet between the branch cuts.

6 Outlook

Although our algorithm is capable to deal with a large class of functions, there
are some issues left to solve.

Having realized the generation of Riemann surface models in R3 it is tempt-
ing to switch to the projective setting and consider compact surfaces over the
compactified complex plane C∪{∞}, i.e. the Riemann sphere. A closely related
advancement is the consideration of covering surfaces over arbitrary manifolds.

Another challenging task is the extension of domain coloring to maps between
arbitrary Riemann surfaces, i.e. maps which are multivalued and non-injective
when defined on the complex plane. This implies that neither the map itself nor
its inverse can be continuously defined on C.

References

1. Yin, X., Jin, M., Gu, X.: Computing shortest cycles using universal covering space.
Vis. Comput. 23(12), 999–1004 (2007)

2. Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using
branched coverings. Comput. Graph. Forum. 26(3), 375–384 (2007)

3. Trott, M.: Visualization of Riemann surfaces (2009),
http://library.wolfram.com/examples/riemannsurface/ (retrieved December
8, 2009)

4. Trott, M.: Visualization of Riemann surfaces of algebraic functions. Mathematica
in Education and Research 6, 15–36 (1997)

5. Farris, F.A.: Visualizing complex-valued functions in the plane,
http://www.maa.org/pubs/amm_complements/complex.html (retrieved December
8, 2009)

6. Pergler, M.: Newton’s method, Julia and Mandelbrot sets, and complex coloring,
http://users.arczip.com/pergler/mp/documents/ptr/ (retrieved December 8,
2009)

7. da Silva, E.L.: Reviews of functions of one complex variable graphical representa-
tion from software development for learning support,
http://sorzal-df.fc.unesp.br/~edvaldo/en/index.htm (retrieved on Decem-
ber 8, 2009)

8. Lundmark, H.: Visualizing complex analytic functions using domain coloring
(2004),
http://www.mai.liu.se/~halun/complex/domain_coloring-unicode.html (re-
trieved on December 8, 2009)

http://library.wolfram.com/examples/riemannsurface/
http://www.maa.org/pubs/amm_complements/complex.html
http://users.arczip.com/pergler/mp/documents/ptr/
http://sorzal-df.fc.unesp.br/~edvaldo/en/index.htm
http://www.mai.liu.se/~halun/complex/domain_coloring-unicode.html

178 M. Nieser, K. Poelke, and K. Polthier

9. Hlavacek, J.: Complex domain coloring,
http://www6.svsu.edu/~jhlavace/Complex_Domain_Coloring/index.html (re-
trieved on December 8, 2009)

10. Poelke, K., Polthier, K.: Lifted domain coloring. Computer Graphics Forum 28(3),
735–742 (2009)

11. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators.
In: SODA, pp. 1038–1046 (2005)

12. Farkas, H.: Riemann Surfaces. Springer, New York (1980)
13. Lamotke, K.: Riemannsche Flächen. Springer, Berlin (2005)
14. Forster, O.: Lectures on Riemann Surfaces, 4th edn. Graduate Texts in Mathemat-

ics. Springer, Heidelberg (1999)
15. Needham, T.: Visual Complex Analysis. Oxford University Press, Oxford (2000)
16. Kälberer, F., Nieser, M., Polthier, K.: Stripe parameterization of tubular surfaces.

In: Topology-Based Methods in Visualization III. Mathematics and Visualization.
Springer, Heidelberg (to appear 2010)

17. Riemann, B.: Grundlagen für eine allgemeine theorie der functionen einer verän-
derlichen complexen größe (1851)

http://www6.svsu.edu/~jhlavace/Complex_Domain_Coloring/index.html

G1 Bézier Surface Generation from Given
Boundary Curve Network with T-Junction

Min-jae Oh1, Sung Ha Park1, and Tae-wan Kim2

1 Department of Naval Architecture and Ocean Engineering,
Seoul National University, Seoul 151-744, Republic of Korea

2 Department of Naval Architecture and Ocean Engineering, and Research Institute
of Marine Systems Engineering, Seoul National University, Seoul 151-744,

Republic of Korea

Abstract. T-junctions usually appear in surface modeling processes
that start with a given curve network. However, since T-shaped patches
are not available in current CAD system so existing G1 surface genera-
tion methods are restricted to n-sided patches. Therefore a designer must
design a curve network without T-junctions, or subdivide it into n-sided
patches, to avoid T-shaped topologies. We generate G1 Bézier surfaces
at a T-junction by combining the coplanar G1 continuity condition with
the de Casteljau algorithm to avoid the collision of twist points. Both
T-junctions in the middle of boundary curves and at 3-valent vertices
are considered. Our method requires no subdivision or triangulation of
the surface, and the curve network is not changed.

1 Introduction

In modeling processes which start from a given curve network, continuity of the
resulting surface is usually important. For example, a car body can be modeled
by surfacing a curve network. The resulting surface has to meet criteria such as
low air resistance and a smooth surface is also likely to be aesthetically pleas-
ing. Similarly, the hull of a ship should be smooth to create as little drag as
possible. Surface continuity is critical in modeling these types of structure. But
the curve networks on which composite surfaces are constructed usually have
some T-junctions. G1 current CAD systems cannot generate smooth surfaces at
T-junction, and the designer usually has to re-design the curve network, or it is
preprocessed to reduce the T-junctions.

A great deal of work has been done on the interpolation[1] of a surface over a
given curve network. Bézier[2] himself introduced a method of joining two Bézier
patches with G1 continuity across the common boundary curve, and Farin[3] and
Sarraga[4] developed this condition in terms of the Bézier control points of ad-
jacent patches. Several other authors[5, 6, 7, 8, 9] have dealt with the coplanar
condition for G1 continuity, employing patches and boundary curves of vari-
ous degrees. Loop[10] devised another way to construct a C2 boundary curve
network of arbitrary topological type using the theory of circulant matrices,
so that the network approximates the vertices of a triangular control mesh. In

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 179–191, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 M.-j. Oh, S.H. Park, and T.-w. Kim

an extension of Loop’s scheme, Hanmann and Bonneau[11] suggested domain-
splitting techniques in which a macro triangle consists of 4 quintic triangular
Bézier patches, while the boundary curves are piecewise C1 continuous cubics.
Liu and Mann[12] also adopted Loop’s scheme to interpolate parametric trian-
gular surfaces to achieve approximate G1 continuity. Recently, Cho et al.[13]
have proposed a method of interpolation for ship hulls that cares G1 Bézier
surfaces over an irregular curve network; they analyzed the degree of the fill-
in patches and the local singularities that can occur during construction[14].
However, several subdivision schemes are required to preprocess curves with T-
junctions, which still represent topological restrictions on the curve network,
although some improvements can be found in more recent work[15, 16].

We extend the work of Cho et al., and present a new method of generating
a G1 Bézier surface at a T-junction, which combines the coplanar G1 continu-
ity condition with the de Casteljau algorithm to satisfy the vertex enclosure
constraint. The advantages of our method can be summarized as follows:

(1) We can generate a G1 continuous Bézier surface from a given boundary
curve which has a T-junction by classifying the T-junction into two types
and applying a different G1 surface generation method in each case.

(2) We do not need to subdivide or change the given curve network.
(3) Our method is applied locally to the vertex and edge conditions.

The rest of this paper is structured as follows: In Section 2, we introduce the two
types of T-junction that we deal with. In Section 3, we describe the geometric
conditions for G1 continuity, and the algorithm to generate a smooth surface
for both types of T-junction. In Section 4, we show the results of our algorithm
on example surface configurations, showing the resulting continuity by drawing
reflection lines. We conclude the paper in Section 5.

2 Two Types of T-Junction

In this paper we consider two types of T-junction; one occurs when an edge ends
in the middle of a boundary curve(Fig. 1(a)); the other occurs when three edges,
two of which are collinear, meet at a 3-valent vertex(Fig. 1(b)). The topology
in Fig. 1(a) frequently occurs when modeling starts with a given curve network,
while that in Fig. 1(b) is less frequent: nevertheless, we present a method for
each type of T-junction. In this paper, we only consider about boundary curve
with ‘a’ T-junction. If there are many T-junctions at boundary curves, it should
be much more complicated problem. We will remain it as future work.

3 Generating a G1 Bézier Surface at a T-Junction

3.1 T-Junction on a Boundary Curve

Consider three triangular patches S1, S2, and S3, of degree 6 (see Fig. 2). Here,
and throughout this paper, we will assume that boundary curves are of degree 3,

G1 Bézier Surface Generation from Given Boundary Curve Network 181

(a) T-junction on a boundary
curve

(b) T-junction at a 3-valent vertex

Fig. 1. Two types of T-junction

Fig. 2. The distribution of control points on the initial surfaces

with a linear weight function λ(t) and a quartic weight function μ(t), as in pre-
vious work[14]. It is proved that the edge condition and the vertex condition
can be solved separately when we use the triangular patches of degree 6(the
degree will be 5 at rectangular case) in previous work. Farin[1] described the
G1 surface generation method using coplanar condition between two triangu-
lar patches using linear weight functions. Furthermore, he extended the result
to the rectangular patches using degree-elevation method to the rectangular
boundary. If we elevate the degree to the one boundary curve of the rectangle,
the boundary curve and the cross boundary curve’s topology will be same as tri-
angle boundary. For example, if the rectangular patch’s degree is 5, and elevate
the one boundary curve for G1 surface generation, then the degree is same as
triangular patch with degree 6. Therefore, we suggest the G1 surface generating
algorithm among the triangular patches, and the algorithm can be extended to
the rectangular patches by boundary degree-elevation.

182 M.-j. Oh, S.H. Park, and T.-w. Kim

G1 Condition at the vertex. Cho et al.[14] suggest a method of solving
the equations that determine both the vertex and the edge condition, so as to
generate G1 surface. We use this method to solve the T-junction problem. The
T-junction is itself a vertex, but we cannot directly apply the same condition that
we apply to other vertices because there is no information about the interior of
the surface S2 in Fig. 2. So we subdivide S2 at parameter c and create auxiliary
control points r̃1

i , r̃2
i [1]. The parameter c can be calculated by given boundary

curve and intersecting point(q2
0). Keeping the requirement for planarity at the

junction in mind, we define the control point r̃1
5 to be collinear with p1

5 and q2
0.

For simplicity, we choose the ratio of p1
5q

2
0 and q2

0r̃
1
5 to be 1 : 1. This ratio can

be changed depending on the shape of the surface.
Fig. 3 shows the subdivided surface with the auxiliary control points. Now

we can apply the same approach as Cho et al. to obtain equations for both
the vertices and edges that correspond to the G1 continuity condition between
surface S1 and S2, which can then be expressed as follows:

k = 0 :
(
λ1

0p
1
0 + λ1

0r̃
1
0

)
=

(
μ1

0q
1
0 + μ1

0q
1
1

)
k = 1 : 5

(
λ1

0p
1
1 + λ1

0r̃1
1

)
+

(
λ1

1p
1
0 + λ1

1r̃1
0

)
= 2

(
μ1

0q
1
1 + μ1

0q
1
2

)
+ 4

(
μ1

1q
1
0 + μ1

1q
1
1

)
k = 2 : 10

(
λ1

0p
1
2 + λ1

0r̃1
2

)
+ 5

(
λ1

1p
1
1 + λ1

1r̃1
1

)
=

(
μ1

0q
1
2 + μ1

0q
1
3

)
+ 8

(
μ1

1q
1
1 + μ1

1q
1
2

)
+ 6

(
μ1

2q
1
0 + μ1

2q
1
1

)
k = 3 : 10

(
λ1

0p
1
3 + λ1

0r̃1
3

)
+ 10

(
λ1

1p
1
2 + λ1

1r̃1
2

)
= 4

(
μ1

1q
1
2 + μ1

1q
1
3

)
+ 12

(
μ1

2q
1
1 + μ1

2q
1
2

)
+ 4

(
μ1

3q
1
0 + μ1

3q
1
1

)
k = 4 : 5

(
λ1

0p
1
4 + λ1

0r̃1
4

)
+ 10

(
λ1

1p
1
3 + λ1

1r̃1
3

)
= 6

(
μ1

2q
1
2 + μ1

2q
1
3

)
+ 8

(
μ1

3q
1
1 + μ1

3q
1
2

)
+

(
μ1

4q
1
0 + μ1

4q
1
1

)
k = 5 :

(
λ1

0p
1
5 + λ1

0r̃
1
5

)
+ 5

(
λ1

1p
1
4 + λ1

1r̃
1
4

)
= 4

(
μ1

3q
1
2 + μ1

3q
1
3

)
+ 2

(
μ1

4q
1
1 + μ1

4q
1
2

)
k = 6 :

(
λ1

1p
1
5 + λ1

1r̃
1
5

)
=

(
μ1

4q
1
2 + μ1

4q
1
3

)
.

(1)

The continuity equations at the boundaries S2S3 and S3S1 are the same as there,
except for the indices of the control points.

Then the equations for the vertices will be

5
(
λ1

1p
1
4 + λ1

1r̃1
4

)
= −

(
λ1

0p
1
5 + λ1

0r̃1
5

)
+ 4

(
μ1

3q
1
2 + μ1

3q
1
3

)
+ 2

(
μ1

4q
1
1 + μ1

4q
1
2

)
,

5
(
λ2

0p
2
1 + λ2

0r̃2
1

)
= −

(
λ2

1p
2
0 + λ2

1r̃2
0

)
+ 2

(
μ2

0q
2
1 + μ2

0q
2
2

)
+ 4

(
μ2

1q
2
0 + μ2

1q
2
1

)
,

5
(
λ3

0p
3
1 + λ3

0r
3
1

)
= −

(
λ3

1p
3
0 + λ3

1r
3
0

)
+ 2

(
μ3

0q
3
1 + μ3

0q
3
2

)
+ 4

(
μ3

1q
3
0 + μ3

1q
3
1

)
.

G1 Bézier Surface Generation from Given Boundary Curve Network 183

Fig. 3. The subdivided control points derived from the initial surfaces

We can see from Fig. 3 that p3
1 = p1

4 and r3
1 = p2

1, and hence we obtain

5

⎡⎢⎣λ1
1 λ

1
1 0 0

0 0 λ2
0 λ

2
0

λ3
0 0 λ3

0 0

⎤⎥⎦
⎡⎢⎢⎣

p1
4

r̃1
4

p2
1

r̃2
1

⎤⎥⎥⎦ =

⎡⎣ rhsT
1 (μ1

3)
rhsT

2 (μ2
1)

rhsT
3 (μ3

1)

⎤⎦ ,
where

rhsT
1 (μ1

3) = −
(
λ1

0p
1
5 + λ1

0r̃1
5

)
+ 4

(
μ1

3q
1
2 + μ1

3q
1
3

)
+ 2

(
μ1

4q
1
1 + μ1

4q
1
2

)
,

rhsT
2 (μ2

1) = −
(
λ2

1p
2
0 + λ2

1r̃2
0

)
+ 2

(
μ2

0q
2
1 + μ2

0q
2
2

)
+ 4

(
μ2

1q
2
0 + μ2

1q
2
1

)
,

rhsT
3 (μ3

1) = −
(
λ3

1p
3
0 + λ3

1r
3
0

)
+ 2

(
μ3

0q
3
1 + μ3

0q
3
2

)
+ 4

(
μ3

1q
3
0 + μ3

1q
3
1

)
.

This system is underdetermined because there are three equations and four un-
knowns. By Gaussian elimination we can put it into matrix form, as follows:⎡⎢⎣λ1

1 λ
1
1 0 0 : rhsT

1

0 0 λ2
0 λ

2
0 : rhsT

2

λ3
0 0 λ3

0 0 : rhsT
3

⎤⎥⎦⇒
⎡⎢⎢⎣
λ1

1 λ1
1 0 0 : rhsT

1

0 −λ3
0

λ1
1
λ1

1 λ
3
0 0 : rhsT

3 −
λ3
0

λ1
1
rhsT

1

0 0 λ2
0 λ

2
0 : rhsT

2

⎤⎥⎥⎦ .

Since λ1
1 �= 0, λ2

0 �= 0, and λ3
0 �= 0, the matrix has a full rank of 3, and the system

can be solved iteratively by the least-squares method from an initial guess.

G1 Condition at the Edges. We only need to consider the G1 continuity
condition the between the edges of patches S1 and S2, because the conditions at
the edges S2S3 and S3S1 are the same as those for S1S2, except for the indices

184 M.-j. Oh, S.H. Park, and T.-w. Kim

of the control points. The conditions at the edge S1S2 can be written in matrix
form as follows:

10

⎡⎢⎣λ1
0 λ

1
0 0 0

λ1
1 λ

1
1 λ

1
0 λ

1
0

0 0 λ1
1 λ

1
1

⎤⎥⎦
⎡⎢⎢⎣

p1
2

r̃1
2

p1
3

r̃1
3

⎤⎥⎥⎦ =

⎡⎣ rhs11(μ1
1, μ

1
2)

rhs12(μ
1
1, μ

1
2, μ

1
3)

rhs13(μ
1
2, μ

1
3)

⎤⎦ , (2)

where

rhs11(μ
1
1, μ

1
2) = −5

(
λ1

1p
1
1 + λ1

1r̃1
1

)
+

(
μ1

0q
1
2 + μ1

0q
1
3

)
+8

(
μ1

1q
1
1 + μ1

1q
1
2

)
+ 6

(
μ1

2q
1
0 + μ1

2q
1
1

)
,

rhs12(μ
1
1, μ

1
2, μ

1
3) = 4

(
μ1

1q
1
2 + μ1

1q
1
3

)
+ 12

(
μ1

2q
1
1 + μ1

2q
1
2

)
+4

(
μ1

3q
1
0 + μ1

3q
1
1

)
,

rhs13(μ
1
2, μ

1
3) = −5

(
λ1

0p
1
4 + λ1

0r̃1
4

)
+ 6

(
μ1

2q
1
2 + μ1

2q
1
3

)
+8

(
μ1

3q
1
1 + μ1

3q
1
2

)
+

(
μ1

4q
1
0 + μ1

4q
1
1

)
.

Since the parameters μ1
1 and μ1

3 are determined from the vertex condition, the
right-hand side has only one parameter, μ1

2.
System (2) is underdetermined, with three equations and four unknowns. By

Gaussian elimination, we can find the augmented matrix

⎡⎢⎣λ1
0 λ

1
0 0 0 : rhs11

λ1
1 λ

1
1 λ

1
0 λ

1
0 : rhs12

0 0 λ1
1 λ

1
1 : rhs13

⎤⎥⎦⇒
⎡⎢⎢⎣
λ1

0 λ1
0 0 0 : rhs11

0 λ1
1 −

λ1
1

λ1
0
λ1

0 λ
1
0 λ

1
0 : rhs12 −

λ1
1

λ1
0
rhs11

0 0 λ1
1 λ

1
1 : rhs13

⎤⎥⎥⎦ .

Note that

λ1
1 −

λ1
1

λ1
0

λ1
0 =

λ1
1 − λ1

0

λ1
0

.

Thus, if λ1
1 �= λ1

0, the matrix has a full rank of 3, and the system can be solved
iteratively by the least-squares method. On the other hand, if λ1

1 = λ1
0, then the

system will be

10

⎡⎣λ1
0 λ

1
0 0 0

0 0 λ1
0 λ

1
0

0 0 0 0

⎤⎦
⎡⎢⎢⎣

p1
2

r̃1
2

p1
3

r̃1
3

⎤⎥⎥⎦ =

⎡⎣ rhs11
rhs12 − rhs11

rhs13 − rhs12 + rhs11

⎤⎦ .

G1 Bézier Surface Generation from Given Boundary Curve Network 185

For this system to have a solution, the right-hand side rhs13−rhs12 +rhs11 should
be zero:

rhs13 − rhs12 + rhs11

= −5
(
λ1

0p
1
4 + λ1

0r̃1
4

)
+ 6

(
μ1

2q
1
2 + μ1

2q
1
3

)
+ 8

(
μ1

3q
1
1 + μ1

3q
1
2

)
+

(
μ1

4q
1
0 + μ1

4q
1
1

)
−4

(
μ1

1q
1
2 + μ1

1q
1
3

)
− 12

(
μ1

2q
1
1 + μ1

2q
1
2

)
− 4

(
μ1

3q
1
0 + μ1

3q
1
1

)
−5

(
λ1

1p
1
1 + λ1

1r̃1
1

)
+

(
μ1

0q
1
2 + μ1

0q
1
3

)
+ 8

(
μ1

1q
1
1 + μ1

1q
1
2

)
+6

(
μ1

2q
1
0 + μ1

2q
1
1

)
= 0.

When λ1
1 = λ1

0, the formulae for k = 0 and 1 in Eq.(1) reduce to

5
(
λ1

1p
1
1 + λ1

1r̃1
1

)
= −

(
μ1

0q
1
0 + μ1

0q
1
1

)
+ 2

(
μ1

0q
1
1 + μ1

0q
1
2

)
+ 4

(
μ1

1q
1
0 + μ1

1q
1
1

)
,

and the formulae for k = 5 and 6 reduce to

5
(
λ1

0p
1
4 + λ1

0r̃
1
4

)
= −

(
μ1

4q
1
2 + μ1

4q
1
3

)
+ 4

(
μ1

3q
1
2 + μ1

3q
1
3

)
+ 2

(
μ1

4q
1
1 + μ1

4q
1
2

)
.

Using these two relations, the right-hand side becomes

rhs13 − rhs12 + rhs11

=
(
μ1

4q
1
2 + μ1

4q
1
3

)
− 4

(
μ1

3q
1
2 + μ1

3q
1
3

)
− 2

(
μ1

4q
1
1 + μ1

4q
1
2

)
+6

(
μ1

2q
1
2 + μ1

2q
1
3

)
+ 8

(
μ1

3q
1
1 + μ1

3q
1
2

)
+

(
μ1

4q
1
0 + μ1

4q
1
1

)
−4

(
μ1

1q
1
2 + μ1

1q
1
3

)
− 12

(
μ1

2q
1
1 + μ1

2q
1
2

)
− 4

(
μ1

3q
1
0 + μ1

3q
1
1

)
+

(
μ1

0q
1
0 + μ1

0q
1
1

)
− 2

(
μ1

0q
1
1 + μ1

0q
1
2

)
− 4

(
μ1

1q
1
0 + μ1

1q
1
1

)
+

(
μ1

0q
1
2 + μ1

0q
1
3

)
+ 8

(
μ1

1q
1
1 + μ1

1q
1
2

)
+ 6

(
μ1

2q
1
0 + μ1

2q
1
1

)
= q1

0
(
−μ1

0 + 4μ1
1 − 6μ1

2 + 4μ1
3 − μ1

4
)

+3q1
1
(
μ1

0 − 4μ1
1 + 6μ1

2 − 4μ1
3 + μ1

4
)

+3q1
2
(
−μ1

0 + 4μ1
1 − 6μ1

2 + 4μ1
3 − μ1

4
)

+q1
3
(
μ1

0 − 4μ1
1 + 6μ1

2 − 4μ1
3 + μ1

4
)

=
(
μ1

0 − 4μ1
1 + 6μ1

2 − 4μ1
3 + μ1

4
) (
−q1

0 + 3q1
1 − 3q1

2 + q1
3
)

= 0.

186 M.-j. Oh, S.H. Park, and T.-w. Kim

Therefore we have
μ1

0 − 4μ1
1 + 6μ1

2 − 4μ1
3 + μ1

4 = 0,

or
μ1

2 =
1
6
(
−μ1

0 + 4μ1
1 + 4μ1

3 − μ1
4
)
.

Using the value μ1
2, we can solve the edge equation.

Merging the Subdivided Surfaces. We have now solved the G1 continuity
problem, but we still have the difficulty that S2 should be a single surface,
because we want only three surfaces to meet at the T-junction. So we need
to merge the surfaces created by the subdivision. However it turns out to be
impossible to merge the modified surfaces with G1 continuity condition using
the reverse de Casteljau algorithm. We will now suggest a series of steps that
are capable of merging the subdivided surface into one patch.

Step 1: Solve the vertex condition (Fig. 4(a))
Step 2: Calculate r1 and r4 (Fig. 4(b))
Step 3: Calculate r2 and r3 using the relation (Fig. 4(c))
Step 4: Calculate the control points for the edge condition using the de Castel-

jau algorithm (Fig. 4(d))
Step 5: Solve the edge condition for the control points (Fig. 4(e))

At first step, we can calculate the control points p1
1, r̃1

1, p1
4, p2

1, r̃1
4, r̃2

1, p2
4, and

r̃2
4 from the vertex conditions. At step 2, r1 and r4 can be calculated by the de

Casteljau algorithm using control points from step 1. At step 3, r2 and r3 can
be obtained by the relation which is in the Fig. 4(c). The relation of the control
points is also from the de Casteljau algorithm. These control points consist of
cross boundary curve on S2. Now we can get the r̃ values from cross boundary
curves because r̃ values are from the subdivided cross boundary curve like step 4.
Finally, we can get the p1

2, p
1
3, p

2
2, and p2

3 values by solving edge condition using
fixed r̃ values. Since we have already defined the vertex and edge conditions, we
can apply the above steps to the G1 continuity equation, and thus resolve the G1

continuity problem at a T-junction without requiring any subdivision process.
The other interior control points which do not related with the cross boundary
for G1 continuity can be selected by coons’ patch method. In this paper, we use
the Coons’ patch method to select the control points, but it is possible to use the
other surface interpolating method from boundary curves because these points
have no effect on the vertex and edge conditions.

3.2 T-Junction at a 3-Valent Vertex

In this case, we also choose an auxiliary control point q̂4
2 (see Fig. 5) to allow

the G1 continuity condition to be met on the boundary curve at the T-junction.
The q̂4

i are control points on the auxiliary boundary curve with degree 6. We
determine q̂4

2 in the same way that we selected r̃1
5 in the previous section. In

fact q̂4
0 and q̂4

1 are both the same as q1
0, because the two edges are collinear.

G1 Bézier Surface Generation from Given Boundary Curve Network 187

(a) Calculate the vertices values by
solving vertex condition

(b) Calculate the values of r1 and r4

using the de Casteljau algorithm

(c) Relation of r2 and r3 from the de
Casteljau algorithm

(d) Calculate r̃1
2, r̃1

3, r̃2
2, and r̃2

3 using
the de Casteljau algorithm

(e) Solve the edge condition for p1
2, p1

3,
p2

2, and p2
3

Fig. 4. Sequence of solving the G1 continuity equations

That means that there is no plane to be satisfied by the G1 continuity condition
because q1

1, q1
0, and q2

1 are collinear. So we cannot apply the G1 continuity
condition at the T-junction. Instead, we use the control point q̂4

2 to establish the
G1 continuity condition.

188 M.-j. Oh, S.H. Park, and T.-w. Kim

Fig. 5. The auxiliary control point for subdivision at a 3-valent T-junction

Fig. 6. Subdivision of triangle patch

Then we can apply the same method as before to a T-junction at a vertex.
However, there are some differences in this case. We can apply the vertex con-
dition and edge condition using the auxiliary control point like in Fig. 6. When
we apply the vertex condition about q̂4

0, q̂4
2 is needed because q̂4

0 and q̂4
1 are

same we have already mentioned. Also we should consider about the relation of
the q̂1

2, r̃1
1, q̂4

2, r̃2
1, and q̂2

2. These control points should satisfy the de Casteljau
algorithm with subdivision parameter c. And we do not need to merge the sub-
divided surface like T-junction on a boundary case, because r̃1

i r̃2
i are related

with the near boundary control points. For instance, r̃1
2 is a subdivision point of

G1 Bézier Surface Generation from Given Boundary Curve Network 189

q̂1
3 and r1

2 with parameter c. So we can solve the edge condition directly without
fixing the r̃1

i and r̃2
i values. After we determined r̃1

i and r̃2
i using the edge con-

dition, we can re-calculate the control points of the original surface using the de
Casteljau algorithm.

4 Results

Figs. 7 and 8 show some results produced by our method. We can see the differ-
ence between the two examples when we look carefully at the lower surface: in

(a) Reflection lines on three ini-
tial surfaces constructed as G0

Coons’ patches and meeting at a
T-junction

(b) Reflection lines of a G1 sur-
face constructed by applying our
method to the initial surfaces

Fig. 7. G1 surface at a T-junction on boundary curves

(a) Reflection lines on three initial
surfaces constructed as G0 Coons’
patches and meeting at a 3-valent
T-junction

(b) Reflection lines of a G1 sur-
face constructed by applying our
method to the initial surfaces

Fig. 8. G1 surface with a 3-valent T-junction

190 M.-j. Oh, S.H. Park, and T.-w. Kim

Fig. 7(a) it is flatter than it is the Fig. 8(a). We have checked the angles between
the adjacent Bézier surfaces.The angles are same within numerical round-off er-
ror bounds. Also, we show the reflection lines about the Bézier surfaces. The
reflection lines have one degree less continuity than the surfaces, and thus illus-
trate continuity: where a reflection line has G0 continuity, the surface has G1

continuity. Thus the figures show that all the surfaces have G1 continuity.

5 Conclusions and Future Work

We presented a method of constructing a G1 Bézier surface at a T-junction. We
examined two different types of T-junction and suggested a way of constructing
a G1 surface in each case. We confirmed the functionality of our algorithm on
example surfaces using reflection lines to clarify the continuity of the resulting
surfaces. This is the first method of generating a G1 surface at a T-junction that
has appeared so far. So we expect it to have wide application in surface modeling
processes that begin with a curve network. In future research we intend to look
at the generation of surfaces with many T-junctions. We only consider about
the surfaces with ‘a’ T-junction in this paper. We think that the problem can
be possible when we extend our concept. Also, we will develop the generation
algorithm for surfaces at T-junctions with near-G2 continuity. We believe that
this can be achieved by choosing the auxiliary control point more carefully.
Furthermore, we hope that this method may be applicable to T-splines [17] and
to polynomial hierarchical t-splines [18].

References

[1] Farin, G.: Curves and surfaces for CAGD: A Practical Guide, 5th edn. Morgan
Kaufmann, San Francisco (2002)

[2] Bézier, P.: Essai de définition numérique des courbes et des surfaces
expérimentales. PhD thesis, Université Pierre et Marie Curie, Paris (1977)

[3] Farin, G.: A construction for visual C1 continuity of polynomial surface patches.
Computer Graphics and Image Processing 20, 272–282 (1982)

[4] Sarraga, R.: G1 interpolation of generally unrestricted cubic Bézier curves. Com-
puter Aided Geometric Design 4, 23–40 (1987)

[5] Du, W.H., Schimitt, F.J.M.: On the G1 continuity of piecewise Bézier surfaces: a
review with new results. Computer-Aided Design 22, 556–573 (1990)

[6] Liu, Q., Sun, T.C.: G1 interpolation of mesh curves. Computer-Aided Design 26(4),
259–267 (1994)

[7] Peters, J.: Local smooth surface interpolation: a classification. Computer Aided
Geometric Design 7, 191–195 (1990)

[8] Piper, B.: Visually smooth interpolation with triangular Bézier patches. In: Farin,
G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 221–233. SIAM,
Philadelphia (1987)

[9] Shirman, L.A., Séquin, C.H.: Local surface interpolation with Bézier patches.
Computer Aided Geometric Design 4, 279–295 (1987)

[10] Loop, C.: A G1 triangular spline surface of arbitrary topological type. Computer
Aided Geometric Design 11, 303–330 (1994)

G1 Bézier Surface Generation from Given Boundary Curve Network 191

[11] Hanmann, S., Bonneau, G.P.: Triangular G1 interpolation by 4-splitting domain
triangles. Computer Aided Geometric Design 17, 731–757 (2000)

[12] Liu, Y., Mann, S.: Parametric triangular Bézier surface interpolation with ap-
proximate continuity. In: Proceedings of the 2008 ACM Symposium on Solid and
Physical Modeling, pp. 381–387 (2008)

[13] Cho, D.Y., Lee, K.Y., Kim, T.W.: Interpolating G1 Bézier surfaces over irregular
curve networks for ship hull design. Computer-Aided Design 38, 641–660 (2006)

[14] Cho, D.Y., Lee, K.Y., Kim, T.W.: Analysis and avoidance of singularities for
local G1 surface interpolation of Bézier curve network with 4-valent nodes. Com-
puting 79, 261–279 (2007)

[15] Tong, W.H., Kim, T.W.: Local and singularity-free G1 triangular spline surfaces
using a minimum degree scheme. Computing 86(2-3), 235–255 (2009)

[16] Tong, W.H., Kim, T.W.: High-order approximation of implicit surfaces by G1

triangular spline surfaces. Computer-Aided Design 41, 441–455 (2009)
[17] Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-spline simplilcation and

local refinement. ACM Transactions on Graphics 22(3), 477–484 (2003)
[18] Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., Feng, Y.: Polynomial

splines over hierarchical T-meshes. Graphical Models 70(4), 76–86 (2008)

Efficient Point Projection to Freeform Curves
and Surfaces

Young-Taek Oh1, Yong-Joon Kim1, Jieun Lee2,
Myung-Soo Kim1, and Gershon Elber3

1 School of Computer Science and Eng., Seoul National Univ., Seoul 151-744, Korea
2 School of Computer Science and Eng., Chosun Univ., Kwangju 501-759, Korea

3 Computer Science Department, Technion, Haifa 32000, Israel

Abstract. We present an efficient algorithm for projecting a given point
to its closest point on a family of freeform C1-continuous curves and
surfaces. The algorithm is based on an efficient culling technique that
eliminates redundant curves and surfaces which obviously contain no
projection from the given point. Based on this scheme, we can reduce
the whole computation to considerably smaller subproblems, which are
then solved using a numerical method. In several experimental results,
we demonstrate the effectiveness of the proposed approach.

1 Introduction

The projection of a point to a set is the closest element of the set to the given
point. The point projection problem plays a crucial role in many important geo-
metric computations such as the Hausdorff distance computation, the minimum
distance computation, simulation, haptic rendering, tolerance checking, freeform
shape fitting and reconstruction, to mention only a few [1,2,3,4,5]. Because of
its importance, many previous methods have been developed for the solution of
the problem [5,6,7,8,9,10,11,12].

There are many variants of the point projection problem, depending on what
to project, where to project, which distance-metric to use, etc. In this paper,
we consider a basic type of the point projection problem, where we project a
static point p to a finite family of freeform curves Ci(t), 0 ≤ t ≤ 1, or surfaces
Si(u, v), 0 ≤ u, v ≤ 1, for i = 1, . . . , n. An immediate application of this problem
can be found in an interactive selection of the nearest curve Ck to the cursor
location p among all curves on the display screen. For a further manipulation of
the selected curve Ck, we may also need to find the parameter t∗ of the nearest
curve point Ck(t∗).

Translating the point p and the curves Ci(t) or surfaces Si(u, v) by −p, we
may assume that the query point p is located at the origin. The problem is then
reduced to finding an index k and a curve parameter t∗ or surface parameters
(u∗, v∗) such that

‖Ck(t∗)‖ = min
1≤i≤n

min
0≤t≤1

‖Ci(t)‖, or ‖Sk(u∗, v∗)‖ = min
1≤i≤n

min
0≤u,v≤1

‖Si(u, v)‖.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 192–205, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Efficient Point Projection to Freeform Curves and Surfaces 193

(a) (b) (c) (d)

Fig. 1. Efficient culling via an axis-aligned bounding square for a clipping circle: (a) a
clipping circle determined by the nearest sample point to the query point, (b) an axis-
aligned bounding square for the clipping circle, (c) curves remaining after the culling
stage, and (d) curves remaining after an additional culling with a rotated square

Conventional approaches attack this problem for curves by solving the foot-
point constraint: 〈Ci(t), C′

i(t)〉 = 0, and then comparing the distances to all
solution curve points of this equation as well as to the curve end points. For sur-
faces, the footpoint constraint is a system of equations:

〈
Si(u, v), ∂Si

∂u (u, v)
〉

= 0
and

〈
Si(u, v), ∂Si

∂v (u, v)
〉

= 0. The distances to all solution surface points are then
compared with those to the four boundary curves of the surface. (See Johnson [5]
for an extensive literature survey on conventional methods.) Since the majority
of these solutions turn out to be redundant, it is important to reduce the expen-
sive equation solving as much as possible. Recent results propose efficient culling
or clipping techniques for this purpose.

Chen et al. [6] proposed a circle/sphere clipping method that applies a certain
Bézier clipping technique to the squared distance function of a NURBS curve.
This is an improvement over Selimovic [8], which is based on a Voronoi cell
test. The circle/sphere clipping demonstrates a better result. Nevertheless, as
discussed in more details in Appendix A, it is quite expensive to set up the
squared distance function which has degree almost twice higher than the original
curve or surface degree(s). Moreover, it is also time-consuming to subdivide the
squared distance function, in particular for the surface case.

In this paper, we propose an approach that is based on the clipping cir-
cle/sphere, but only conceptually; for efficiency reason, we instead use simple
clipping lines/planes tangent to the circle/sphere. The simplest lines/planes for
our purpose are those orthogonal to the coordinates axes. For example, given a
clipping circle of radius r centered at the origin, we may consider the clipping
lines x = ±r and y = ±r. Figure 1 shows an example where many input curves
can easily be eliminated from further consideration using a simple window clip-
ping. When a Bézier curve has control points (xi, yi) with xi > r for all i (or
xi < −r for all i), the distance to this curve must be larger than r and can safely
be eliminated. Similarly, we can check the y-coordinates of the control points.
We may then proceed to checking xi + yi >

√
2 r for all i, etc (Figure 1(d)).

194 Y.-T. Oh et al.

In some sense, our approach employs the k-DOP structure that bounds the
control points of the freeform curves or surfaces [13]. Though less tight than
the convex hull of the control points, the k-DOP is considerably easier to con-
struct; moreover, it is much tighter than the bounding circle/sphere of the control
points. In our application, the k-DOP is constructed incrementally, which is es-
sential for improving the overall performance of our algorithm. (According to our
experiments, the first couple of separation tests usually cull away a large number
of freeform curves and surfaces; thus the construction of a complete k-DOP is
rarely needed.)

The real advantage of Chen et al. [6] is in checking the uniqueness of local
minimum of the squared distance function, which can be tested by the same
condition for the control coefficients of the function. Nevertheless, it is difficult
to extend the uniqueness condition of Chen et al. [6] to the surface case. Conse-
quently, Chen et al. [11] propose no property for testing the uniqueness of local
minimum distance between two freeform curves. A simple remedy for this defi-
ciency is to employ the condition of Elber and Kim [12] (Theorem 1) for testing
the uniqueness of solution for a system of polynomial equations in a restricted
domain.

Chen et al. [6] pointed out that there may be redundant solutions in the sys-
tem of equations that Elber and Kim [12] solve. However, the chance of getting
redundancy is extremely low in our approach. As the result of applying an effi-
cient culling and clipping procedure, the remaining freeform curves and surfaces
are usually defined on small domains. Consequently, the tests for the unique-
ness of solution are mostly successful and no further expensive subdivisions are
needed in the majority of case. Once the uniqueness is guaranteed, the equations
can be solved efficiently using a numerical method.

The main contribution of this work can be summarized as follows:

– An efficient culling or clipping technique is proposed that can significantly
reduce the problem size, i.e., the number of freeform curves and surfaces and
also the size of their remaining subsegments and subpatches.

– Our technique is based on geometric concepts such as the separating axis
and the k-DOP bounding volume [13], though they are only incrementally
constructed on-the-fly as needed for freeform curves and surfaces; thus our
basic approach can easily be extended to more general projection problems or
combined with other geometric computations based on these useful concepts.

– For the point-to-surface projection problem, employing the condition of El-
ber and Kim [12] (Theorem 1), we can test the uniqueness of solution for
a system of polynomial equations. This approach can also be extended to
more general multivariate projection problems.

The rest of this paper is organized as follows. Section 2 presents a brief review on
related previous work and also the basic idea of our approach. In Section 3, the
details of our algorithm are presented. In Section 4, we demonstrate the effec-
tiveness of our approach using several experimental results. Finally, in Section 5,
we conclude this paper with discussions on future work.

Efficient Point Projection to Freeform Curves and Surfaces 195

2 Related Work and Our Basic Idea

In his PhD Thesis, Johnson [5] presented an extensive literature survey on
the minimum distance computation and the associated applications in virtual
prototyping and haptic rendering. He made an interesting observation that con-
ventional methods for polygonal models mainly considered efficient pruning tech-
niques; on the other hand, those for parametric surfaces developed numerical
techniques for the minimum distance computation. Johnson [5] then proposed a
pruning technique for freeform curves and surfaces.

The method of Johnson [5] starts with taking some samples on the freeform
curves or surfaces and consider a circle/sphere centered at the query point and
containing the nearest point among the samples. After that, the algorithm then
prunes away curves and surfaces when the convex hulls of their control points
have no overlap with the current clipping circle/sphere. To do the overlap test,
the distance is computed from the query point to each convex hull, which is the
main computational bottleneck of the algorithm.

In this paper, we instead use separation axis tests with simple directions such
as the coordinate directions and other combinations of them. This approach is
essentially the same as incrementally constructing a k-DOP bounding volume
for the set of all control points.

There are some previous methods for testing a sufficient condition for the
point-projection to a curve end point or to a surface corner point. We start with
discussing the method of Ma and Hewitt [7]. (Selimovic [8] does the same thing
but more efficiently; nevertheless, it is easier to visualize the condition of Ma
and Hewitt [7].) Figure 2(a) shows a region A where each point p is guaranteed
to be projected to the left end point b0 of a cubic Bézier curve. Consider the
Voronoi cell decomposition for the convex hull of the Bézier control points. Then
the region A is in fact the Voronoi cell for the end point b0 in the exterior of the
convex hull; consequently, all points in the region A are closer to the end point
b0 than to any other points in the convex hull including all the curve points. For
higher degree curves, the convex hull computation can be somewhat intricate,
in particular, for space curves. The same sufficient condition can be formulated
for the surface case as well; however, the convex hull computation becomes even
more cumbersome for the control points of a freeform surface.

Selimovic [8] tests the same sufficient condition more efficiently. When a point
p is in the Voronoi cell, it is on an outward normal line of the convex hull
from the end point b0. Now consider a line/plane (passing through the end
point b0) which is orthogonal to the normal line and divides the whole space
into two half-spaces. All the Bézier control points are then contained in a half-
space opposite to that of the query point p. Selimovic [8] checks this condition
by testing 〈b0 − p,bi − b0〉 > 0, for i = 1, . . . , d. Since these sign tests are
considerably easier than the construction of a convex hull and the Voronoi cell
of a vertex, Selimovic [8] is more efficient than Ma and Hewitt [7].

Now the next question is whether the Voronoi cell concept is indeed a good
idea for the point-projection problem. Figure 2(b) shows a region B which may
immediately lead us to a negative answer to this question. In this specific example

196 Y.-T. Oh et al.

P

b0

b1 b2

b3

A

(a)

P

b0

b1 b2

b3

B
(b)

Fig. 2. (a) A region where each point is guaranteed to be projected to the left end
point of the curve. (b) A similar region of points to be projected to b0, but which
cannot be detected as such by the Voronoi cell test of the previous methods of Ma and
Hewitt [7] or Selimovic [8].

of a symmetric cubic Bézier curve, all query points p in both regions A and B
of Figures 2 will be projected to the curve end point b0. Thus we need a better
condition than the Voronoi cell test [7,8].

Geometrically speaking, the circle/sphere clipping of Chen et al. [6] is optimal
in the sense that, if a query point p has its projection to the end point b0, the
circle with center p and radius ‖b0 − p‖ contains no other curve point in its
interior. But the problem is how to test this condition efficiently. Chen et al. [6]
employed the squared distance function; however, as discussed in Appendix A,
it is quite expensive to set up the squared distance function, in particular, for
freeform surfaces and rational curves of high degree. Thus we propose more
efficient geometric tests than the circle/sphere test.

Figure 3(a) shows a clipping circle centered at p and a tangent line of the
circle with normal (1, 1). The Bézier clipping technique [14,15] applied to this
line can remove some part of the curve as shown in Figure 3(b). The remaining

(a) (b) (c)

Fig. 3. Efficient curve clipping using tangent lines to the clipping circle: (a) a clipping
line with normal (1, 1), (b) a segment of the curve approximately clipped, and (c)
the left end point is shown to be the closest point by the Voronoi cell condition of
Selimovic [8]

Efficient Point Projection to Freeform Curves and Surfaces 197

curve segment can be tested by the Voronoi cell condition of Selimovic [8], which
will guarantee the projection of p to b0 (Figure 3(c)).

The problem becomes more difficult when the point p is located in the concave
area of a curve and the projection occurs in the curve interior. The squared
distance function of Chen et al. [6] plays an important role here as more details
to be discussed in the following section.

3 Our Approach

Our approach starts with sampling the given family of curves and surfaces, and
making an initial guess of the minimum distance and the associated clipping cir-
cle/sphere. Simple tangent lines/planes are then considered for culling or clipping
away redundant curves or surfaces. To the remaining curves and surfaces, geo-
metric tests are applied to detect special cases of point-projection: (i) to a curve
end point or a surface corner point, (ii) to a surface boundary curve, where the
problem is reduced to a point-to-curve projection, or (iii) to a unique interior
point of a curve segment or a surface patch, where a numerical method can be
applied. Otherwise, the freeform curves and surfaces are further subdivided and
the whole procedure is repeated recursively.

3.1 Clipping Circle/Sphere and Clipping Lines/Planes

Given a query point p and its nearest point pk among all sample points pi,
i = 1, . . . , n, we consider the circle/sphere with center p and radius r = ‖pk−p‖
that will be used for culling or clipping redundancies from the given freeform
curves or surfaces. To make the whole algorithm efficient, we should take only a
suitable number of sample points that would be sufficient to give a good initial
guess on the minimum distance. When there are many curve segments or surface
patches to consider, we take only the curve end points and the surface corner
points into account at the beginning. As we converge to a small number of
freeform curves and surfaces, we may take more samples in their interior.

For the sake of simplicity of presentation, we consider the curve case in de-
tail; however, a similar technique can be applied to surfaces as well. Given a
curve C(t), the clipping based on a squared distance: ‖C(t)− p‖2 > r2, is quite
expensive as discussed in Appendix A. Thus we instead do an approximate clip-
ping with a few simple tangent lines to the clipping circle: ax + by + c > 0,
where c2 = (a2 + b2)r2 and (a, b) is an outward normal direction of the tangent
line. When all the control points bi = (xi, yi), i = 0, . . . , d, satisfy the following
condition:

axi + byi + c > 0, for i = 0, . . . , d,

we can guarantee that the whole curve C(t) is outside the clipping circle as well
as the clipping line and thus contains no projection from the query point p.
However, this approach requires 2(d+1) multiplications, 2(d+1) additions, and
(d+ 1) sign tests. We can do better. Following the approach of k-DOP [13] , we
consider simple normal directions such as (±1, 0), (0,±1), (±1,±1), etc. Using

198 Y.-T. Oh et al.

these direction vectors, many multiplications in the culling/clipping tests can be
replaced by additions and subtractions of xi’s and yi’s. In the majority of case,
only one or two of these directions would be needed to cull away redundancies.

3.2 Uniqueness of Solution

After the culling and clipping stage, we will end up with a relatively small num-
ber of freeform curve segments or surface patches. For each of these remaining
curves and surfaces, we compute the nearest point from the query point p and
dynamically update the minimum distance and the clipping circle/sphere when
a closer projection point is found than the current one.

We consider a Bézier curve C(t) of degree d defined by (d+ 1) control points
bi, for i = 0, . . . , d. If p is closer to b0 than to bd, we test the projection of p
to the end point b0 using the Voronoi cell condition of Selimovic [8]:

〈b0 − p,bi − b0〉 > 0, for i = 1, . . . , d.

If the query point p is closer to bd than to b0, the projection of p to the other
end point bd is tested as follows:

〈bd − p,bi − bd〉 > 0, for i = 0, . . . , d− 1.

Even if the above Voronoi cell condition is not met, we cannot completely exclude
the possibility of projection to b0 or bd (as shown by the regionB of Figure 2(b));
however, the chance is quite low since the region B is very small for a short
curve segment we are dealing with after the culling and clipping stage. Thus
we employ the squared distance function: ‖C(t)− p‖2 of Chen et al. [6]. When
the Bézier control coefficients fi, i = 0, . . . , 2d, of this function have only one
local minimum, the function graph will have a U-shape with only one local
minimum, which is thus the global minimum. (The exact curve location for the
minimum distance can be computed by a numerical method.) Otherwise, the
squared distance function is subdivided into two and each subproblem is tested
recursively.

For a Bézier surface S(u, v) of degree (d1, d2) defined by (d1+1)(d2+1) control
points bij , for i = 0, . . . , d1 and j = 0, . . . , d2, we may assume that p is closer
to b00 than to three other corner points. We can then test the projection of p
to the surface corner point b00 using the condition of Selimovic [8]:

〈b00 − p,bij − b00〉 > 0, for i = 0, . . . , d1; j = 0, . . . , d2; i+ j > 0.

Selimovic [8] also presents a condition for checking the projection of p to a
boundary curve S(u, 0):〈

bi0 − p,
∂S

∂v
(u, v)

〉
> 0, for i = 0, . . . , d1, and 0 ≤ u, v ≤ 1.

The projection to other boundary curves can be tested similarly.

Efficient Point Projection to Freeform Curves and Surfaces 199

However, the above condition is difficult to check since the set of all v-partial
derivatives forms another freeform surface of degree (d1, d2 − 1). From the rela-
tion: ∂S

∂v (u, v) =
∑d1

l=0
∑d2−1

j=0 (bl,j+1−bl,j)Bd1
l (u)Bd2−1

j (v), we suggest a simpler
sufficient condition for the projection of p to the boundary curve S(u, 0):

〈bi,0 − p,bl,j+1 − bl,j〉 > 0, for all i, l = 0, . . . , d1; j = 0, . . . , d2 − 1.

Now when the above conditions are not met, the minimum distance may occur
in the surface interior (even though we cannot exclude some possibility of getting
the minimum distance on the boundary curve or even at a corner point). Using
the condition of Elber and Kim [12] (Theorem 1), we consider how to test the
uniqueness of local minimum distance on the interior of the surface S(u, v):
0 < u, v < 1. At each local minimum distance, the solution point S(u, v) must
satisfy the following two bivariate equations:

F (u, v) =
〈
S(u, v),

∂S

∂u
(u, v)

〉
= 0, G(u, v) =

〈
S(u, v),

∂S

∂v
(u, v)

〉
= 0.

When there is a unique solution for this system of equations in the uv-domain:
0 < u, v < 1, this solution may correspond to the minimum distance from the
query point p.

The above system of bivariate equations has at most one solution if the fol-
lowing condition is met [12]:

{α∇F (u, v) | α ∈ R, 0 < u, v < 1} ∩ {β∇G(u, v) | β ∈ R, 0 < u, v < 1} = {0}.

3.3 Numerical Improvement

For the curve case, we compute the minimum of the squared distance function
D2(t) =

∑2d
i=0 fiB

2d
i (t), by solving the unique solution of the following derivative

equation:
2d−1∑
i=0

(fi+1 − fi)B2d−1
i (t) = 0.

We employ Brent’s method for the sake of robustness in solving the above equa-
tion [16]. Note that the uniqueness of solution is guaranteed by the condition of
Chen et al. [6].

For the surface case, we employ a bivariate Newton-Raphson method as dis-
cussed in Elber and Kim [12] and implemented in the IRIT solid modeling sys-
tem [17].

4 Experimental Results

We have implemented our point-projection algorithm in C on an Intel Pentium
IV 2.4GHz PC with a 2GB main memory. To demonstrate the effectiveness of our
approach, we have tested the algorithm for several freeform curves and surfaces.

200 Y.-T. Oh et al.

Figure 4(a) shows a circle composed of four circular arcs of the same length.
The circle itself is represented as a rational quadratic B-spline curve. The four
end points of these component arcs are used as samples for estimating the initial
guess on the minimum distance. To compare the performance of different algo-
rithms, we randomly generate 100 query points within a box that is 50% larger
in each dimension than the axis-aligned minimum bounding square of the circle.
Table 1(a) shows the result of measuring the performance of different algorithms
on these query points averaged over 100 independent tests.

As the first step of the experiment, we start with converting the B-spline
representation of the circle to four rational quadratic Bézier curves, which takes
approximately 11.6μs on average. The conversion time is not included in Ta-
ble 1(a), since it is common in all four algorithms under comparison. For each
random query point p, the distances to the four curve end points are compared
and the minimum is taken as the radius of an initial clipping circle centered at
the query point p, which takes approximately 0.9μs on average. This part is also
common and thus not included in the performance measure.

Figure 4(b) shows a character font G that is designed with a non-uniform
quadratic B-spline curve which can be converted to 38 quadratic Bézier curves.
The conversion takes approximately 285μs. Figure 4(c) shows a uniform cubic
B-spline space curve which can be converted to 9 cubic Bézier space curves,
approximately in 37μs.

(a) (b) (c)

Fig. 4. (a) A rational quadratic B-spline circle, (b) a character G with a non-uniform
quadratic B-spline curve, and (c) a uniform cubic B-spline space curve

In Table 1, the column under D2 only shows the result of Chen et al. [6]
applied to the Bézier curves. The column under Circle+D2 corresponds to
an algorithm that first culls away some redundant Bézier curves when their
bounding circles have no overlap with the initial clipping circle. (The bounding
circle of a Bézier curve has its center at the center of mass of the Bézier control
points and its radius is taken to be the maximum distance from the center to
the control points.) After that, the algorithm employs Chen et al. [6] for the
remaining Bézier curves. The next column under Kdop+D2 shows the result
of applying our algorithm proposed in this paper; namely, we apply a k-DOP
based culling to the Bézier curves and employ Chen et al. [6] for the remaining

Efficient Point Projection to Freeform Curves and Surfaces 201

Table 1. Results for (a) a rational B-spline circle (Fig. 4(a)), (b) a non-uniform B-
spline character (Fig. 4(b)), and (c) a uniform B-spline space curve (Fig. 4(c))

D2 only Circle+D2 Kdop+D2 K+Selim+D2

Cull/Clip 0.000 16.110 16.034 16.767
D2+Subdiv 118.666 58.282 45.191 44.518
Numeric 9.482 5.834 5.106 5.104
Total (in μs) 128.148 80.227 66.331 66.389
curve 4.000 2.170 1.690 1.650
subdiv 0.000 0.000 0.000 0.000
num iter 7.920 4.640 4.040 4.040

(a)

D2 only Circle+D2 Kdop+D2 K+Selim+D2

Cull/Clip 0.000 111.623 112.147 112.607
D2+Subdiv 553.575 37.542 27.580 23.069
Numeric 20.079 6.856 5.637 5.707
Total (in μs) 573.655 156.022 145.364 141.384
curve 38.000 2.690 1.980 1.580
subdiv 0.010 0.000 0.000 0.000
num iter 20.480 5.260 4.140 4.140

(b)

D2 only Sphere+D2 Kdop+D2 K+Selim+D2

Cull/Clip 0.000 30.687 30.913 31.324
D2+Subdiv 145.569 36.451 23.657 22.148
Numeric 19.949 8.167 5.673 5.582
Total (in μs) 165.518 75.306 60.243 59.054
curve 9.000 2.630 1.700 1.570
subdiv 0.610 0.250 0.120 0.120
num iter 24.400 9.030 6.070 5.920

(c)

Bézier curves. For the k-DOP based tests, we have employed only a subset of 8
directions: (±1, 0), (0,±1), (±1,±1) for planar curves, and a subset of 14 direc-
tions: (±1, 0, 0), (0,±1, 0), (0, 0,±1), (±1,±1,±1) for space curves and surfaces.
The last column under Kdop+Selim+D2 reports the result from a variant of
our algorithm where we apply Selimovic [8] immediately after the k-DOP based
culling and right before we employ Chen et al. [6].

The first four rows in each of Table 1(a)–(c) show the computing time for each
algorithm in each step of the computation, measured in micro seconds (μs). The
first row reports the time taken in culling or clipping redundant Bézier curves.
The second row shows the computing time for setting up the squared distance
functions for all remaining Bézier curves and checking the uniqueness of local
minimum for each function and recursively subdividing those with potentially
multiple local minimums. The third row is for the stage of numerical improve-
ment. The total computing time is shown in the fourth row.

202 Y.-T. Oh et al.

The last three rows in each of Table 1(a)–(c) show the average number of
Bézier curves remaining after the initial culling, the number of subdivisions taken
in all the squared distance functions D2(t) until the uniqueness of local minimum
is guaranteed for each curve segment, and the total number of Brent iterations
for all subdivided curves in the numerical improvement stage. The numerical
approximation is made within a precision of 10−6 in the Bézier curve parameter.
All the data in each table show the average of results over 100 independent tests
on randomly selected query points.

Note that, in the first column D2 only of Table 1(b), the number of Brent
iterations is smaller than the number of remaining curve segments. This is be-
cause, for some curve segments, the control coefficients of the squared function
D2(t) are all larger than the current minimum squared distance and thus no
numerical iteration is needed for these redundant curves.

In Table 1, we can observe that the computing times for culling redundant
curve segments are about the same in the two different methods: Circle+D2

and Kdop+D2. However, the latter is more effective in the culling result it-
self, since the k-DOP bounding volume is usually tighter than the circle/sphere
bounding volume. In Table 1(b)–(c), some performance improvement is achieved
by employing the end-point projection condition of Selimovic [8] as reported in
the last column under Kdop+Selim+D2, though it is not obvious in Table 1(a)
because of the relatively larger size of the Bézier curve segments than those in
other examples.

Figure 5(a) shows the spout of the Utah teapot represented as a non-uniform
bicubic B-spline surface which can be converted to 4 bicubic Bézier surfaces.
Figure 5(b) shows the B-spline surfaces for the whole Utah teapot which can be
converted to 28 bicubic Bézier surfaces. In the surface case, after culling away
redundant Bézier surfaces, we compute the local minimum distance to each of
the remaining Bézier surfaces by employing the bivariate equation solver of Elber
and Kim [12] as implemented in the IRIT solid modeling system [17].

In Table 2, the first row shows the conversion time from the B-spline rep-
resentation to bicubic Bézier surfaces, the second row shows the culling time,
and the third row shows the time taken in the solution procedure by the IRIT

(a) (b)

Fig. 5. The B-spline surfaces for: (a) the spout and (b) the Utah teapot

Efficient Point Projection to Freeform Curves and Surfaces 203

Table 2. Results for: (a) the spout (Fig. 5(a)) and (b) the Utah teapot (Fig. 5(b))

Sphere+D2 Kdop+D2

Conversion 43.023 43.064
Culling 9.897 7.516
IRIT 1186.613 1005.708
Total (in μs) 1196.510 1013.224
surface 2.220 1.890

(a)

Sphere+D2 Kdop+D2

Conversion 438.731 434.625
Culling 35.287 25.906
IRIT 1690.218 1228.548
Total (in μs) 1725.505 1254.455
surface 5.420 3.810

(b)

solver. Because of the large number of control points for the surface case, we
can observe that the sphere method takes more culling time than the k-DOP
method. Similarly to the curve case, for the culling result itself, the k-DOP is
also more effective than the sphere.

5 Conclusions

We have presented an efficient point-to-curve/surface projection algorithm that
computes the nearest point on a family of freeform curves and surfaces from a
given query point. Effectively using only a small number (usually one or two)
of separation axes among the k-DOP directions, we have developed a culling
method as efficient as the circle/sphere method for the curve case and even more
effective than the sphere for the surface case. Tighter than circles/spheres, our
approach produces better culling results and consequently better performance
for both curve and surface cases.

In future work, we plan to extend the current result to the case of projecting a
dynamically moving point to freeform curves and surfaces. In this more general
case, we may need an effective pre-processing of the freeform shapes so that
we can fully utilize their geometric structure in the main computation of the
projection problem. Furthermore, we hope our approach could be extended to the
more general distance problems dealing with freeform shapes under continuous
deformation.

Acknowledgment

This research was supported in part by the Israeli Ministry of Science Grant No. 3-
4642, in part by the Israel Science Foundation (grant No. 346/07), in part by
KICOS through the Korean-Israeli Binational Research Grant (K20717000006)
provided by MEST in 2007, in part by the Korea Research Foundation under the
Grant KRF-2008-313-D00923,and also in part by NRF Research Grant (No. 2009-
0075116) provided by MEST in 2009. Y.-T. Oh was supported by the Seoul
Fellowship.

204 Y.-T. Oh et al.

References

1. Lin, M.C., Gottschalk, S.: Collision detection between geometric models: A survey.
In: Proc. of IMA Conference on Mathematics of Surfaces, pp. 37–56 (1998)

2. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn.,
pp. 787–807. Chapman & Hall/CRC (2004)

3. Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the dis-
tance between complex objects in three-dimensional space. IEEE Trans. Robot.
Automat. 4, 193–203 (1988)

4. Lin, M.C., Canny, J.: A fast algorithm for incremental distance calculation. In:
IEEE Int. Conf. Robot. Automat., Sacramento, CA, April 1991, pp. 1008–1014
(1991)

5. Johnson, D.: Minimum distance queries for haptic rendering. PhD thesis, Computer
Science Department, University of Utah (2005)

6. Chen, X.-D., Yong, J.-H., Wang, G., Paul, J.-C., Xu, G.: Computing minimum
distance between a point and a NURBS curve. Computer-Aided Design 40(10-11),
1051–1054 (2008)

7. Ma, Y.L., Hewitt, W.: Point inversion and projection for NURBS curve and surface:
control polygon approach. Computer Aided Geometric Design 20(2), 79–99 (2003)

8. Selimovic, I.: Improved algorithms for the projection of points on NURBS curves
and surfaces. Computer Aided Geometric Design 23(5), 439–445 (2006)

9. Hu, S.-M., Wallner, J.: A second order algorithm for orthogonal projection onto
curves and surfaces. Computer Aided Geometric Design 22(3), 251–260 (2005)

10. Liu, X.-M., Yang, L., Yong, J.-H., Gu, H.-J., Sun, J.-G.: A torus patch approx-
imation approach for point projection on surfaces. Computer Aided Geometric
Design 26(5), 593–598 (2009)

11. Chen, X.-D., Chen, L., Wang, Y., Xu, G., Yong, J.-H.: Computing the minimum
distance between Bezier curves. Journal of Computational and Applied Mathemat-
ics 230(1), 294–310 (2009)

12. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational
spline functions. In: Proc. of the Sixth ACM Symposium on Solid Modeling and
Applications, pp. 1–10 (2001)

13. Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision de-
tection using bounding volume hierarchies of k-dops. IEEE Trans. on Visualization
and Computer Graphics 4(1), 21–37 (1998)

14. Sederberg, T.W., Nishita, T.: Curve intersection using Bézier clipping. Computer-
Aided Design 22(9), 337–345 (1990)

15. Nishita, T., Sederberg, T.W., Kakimoto, M.: Ray tracing trimmed rational surface
patches. Computer Graphics 24(4), 337–345 (1990)

16. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art
of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

17. IRIT 9.5 User’s Manual, Technion, http://www.cs.technion.ac.il/~irit

A Operation Counts for Squared Distance Functions

A.1 Squared Distance Functions for Cubic Bézier Curves

Given a cubic planar Bézier curve C(t) = (x(t), y(t)), 0 ≤ t ≤ 1, with four
control points bi = (xi, yi), for i = 0, 1, 2, 3, the x-coordinate function is given

http://www.cs.technion.ac.il/~irit

Efficient Point Projection to Freeform Curves and Surfaces 205

as x(t) = (1 − t)3[x0] + 3(1 − t)2t[x1] + 3(1 − t)t2[x2] + t3[x3], and its squared
function is a Bézier function of degree 6:

x(t)2 = (1− t)6[x2
0] + 6(1− t)5t[x0x1] + 15(1− t)4t2[0.4x0x2 + 0.6x2

1]
+20(1− t)3t3[0.1x0x3 + 0.9x1x2] + 15(1− t)2t4[0.4x1x3 + 0.6x2

2]
+6(1− t)t5[x2x3] + t6[x2

3].

Note that the seven control coefficients can be computed using 16 multiplications
and 3 additions. Similarly, the squared distance function for the curve is given
as follows:

‖C(t)‖2 = x(t)2 + y(t)2

= (1 − t)6[x2
0 + y2

0] + 6(1− t)5t[x0x1 + y0y1]
+15(1− t)4t2[0.4(x0x2 + y0y2) + 0.6(x2

1 + y2
1)]

+20(1− t)3t3[0.1(x0x3 + y0y3) + 0.9(x1x2 + y1y2)]
+15(1− t)2t4[0.4(x1x3 + y1y3) + 0.6(x2

2 + y2
2)]

+6(1− t)t5[x2x3 + y2y3] + t6[x2
3 + y2

3],

which can be constructed as a Bézier polynomial function D2(t) using 26 multi-
plications and 13 additions.

Now the squared distance function for a cubic space Bézier curve can be com-
puted using 36 multiplications and 23 additions. For a cubic rational planar
Bézier curve C(t) = (X(t), Y (t),W (t)), represented in a homogeneous coordi-
nate, its squared distance function D2(t) = (X(t)2 + Y (t)2)/W (t)2 is a rational
Bézier function of degree 6, which can be constructed using 47 multiplications,
16 additions, and 7 divisions. (The additional 7 divisions are needed to get the
control coefficients of D2(t) by dividing each control coefficient of X(t)2 +Y (t)2

by the corresponding coefficient of W (t)2.) Similarly, for a cubic rational space
Bézier curve, it requires 57 multiplications, 26 additions, and 7 divisions.

A.2 Differential of Squared Distance Functions

The local extremes for the squared distance function D2(t) = ‖C(t)‖2 can be
computed by solving the constraint equation: < C(t), C′(t) >= 0. At first, a
direct multiplication of C(t) and C′(t) may look a reasonable approach to con-
structing the Bézier representation of < C(t), C′(t) >. However, because of the
asymmetry of C(t) and C′(t), it is not the case.

For a cubic Bézier curve C(t) with its squared distance function D2(t) with
7 control coefficient fi, i = 0, . . . , 6, the function 1

3 < C(t), C′(t) > can be
computed as a Bézier polynomial of degree 5 with 6 control coefficients fi+1−fi,
for i = 0, . . . , 5.

Construction of Minimal Catmull-Clark’s
Subdivision Surfaces with

Given Boundaries

Qing Pan1, and Guoliang Xu2,

1 College of Mathematics and Computer Science,
Hunan Normal University, Changsha, 410081, China

panqing@lsec.cc.ac.cn
2 LSEC, Institute of Computational Mathematics, Academy of Mathematics and

System Sciences, Chinese Academy of Sciences, Beijing 100190, China
xuguo@lsec.cc.ac.cn

Abstract. Minimal surface is an important class of surfaces. They are
widely used in the areas such as architecture, art and natural science
etc.. On the other hand, subdivision technology has always been active
in computer aided design since its invention. The flexibility and high
quality of the subdivision surface makes them a powerful tool in ge-
ometry modeling and surface designing. In this paper, we combine these
two ingredients together aiming at constructing minimal subdivision sur-
faces. We use the mean curvature flow, a second order geometric partial
differential equation, to construct minimal Catmull-Clark’s subdivision
surfaces with specified B-spline boundary curves. The mean curvature
flow is solved by a finite element method where the finite element space
is spanned by the limit functions of the modified Catmull-Clark’s subdi-
vision scheme.

Keywords: Minimal Subdivision Surface, Catmull-Clark’s Subdivision,
Mean Curvature Flow.

MR (2000) Classification: 65D17

1 Introduction

Surfaces whose mean curvature H is zero everywhere are minimal surfaces. Min-
imal surfaces are often used as models in architecture because of having several
desirable properties. Most important of all, minimal surfaces have the least sur-
face area, which makes them almost indispensable in large scale and light roof
constructions. Secondly, minimal surfaces are separable. Any sub-patch, no mat-
ter how small, sheared from a minimal surface still has the least area of all surface
� Supported in part by NSFC grant 10701071 and Program for Excellent Talents in

Hunan Normal University (No. ET10901).
�� Supported in part by NSFC under the grant 60773165, NSFC key project under the

grant 10990013. Corresponding author.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 206–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Construction of Minimal Catmull-Clark’s Subdivision Surfaces 207

patches with the same boundary. Thirdly, minimal surfaces have the balanced
surface tension in equilibrium at each point on the roof, as on a soap film, which
stabilizes the whole construction. Finally, there are no umbilicus points on a
minimal surface; hence no water can stay on the minimal surface roof. Architec-
ture inspired from minimal surfaces embodies the unity of economy and beauty.
The most representative buildings of that architectural style are the roofs of
the Munich Olympic stadium, the former Kongreßhalle in Berlin. In art world
we see plenty of ingenious sculpture works playing the ultimate of minimal sur-
faces. Scientists and engineers have anticipated the nanotechnology applications
of minimal surfaces in the areas of molecular engineering and materials science.

Studies on minimal surfaces was traced back 250 years ago (1744) with Euler
as the forerunner, whose research focused on the rotation surface with minimal
area. Since then the research of minimal surfaces has been active for several hun-
dred years. In 1760, Lagrange derived the equation minimal surfaces satisfy. The
well-known Plateau (1855-90) problem is the existence problem of constructing
a piece of surface that interpolates the given boundary curve and has minimal
area. This problem, though raised by Lagrange in 1760, was named after Plateau,
who created several special cases experimenting with soap films and wire frames.
Various special forms of this problem were solved, but it was only in 1930 that
general solutions were found independently by Douglas and Rado. The general
solution of the equation H = 0 was given by Weierstrass (1855-90).

The construction of minimal surfaces have been a heat topic in the area of
computer aided design. According to Consin and Monterde [4], there are certain
conditions that the control points of Bézier surfaces must satisfy, and in the
bicubical case all minimal surfaces are pieces of the Ennerper surfaces up to
an affine transformation. Using the four-sided Bézier surface to approximate the
minimal surface, Monterde (see [12]) solved Plateau-Bézier problem by replacing
the area functional with the Dirichlet functional. Triangular Bézier surface based
on a variational approach was constructed by Arnal et al.[1]. Much has been
done (see [8], [10], [11]) on the use of minimal surfaces in geometry modeling
and shape design. Discrete minimal surfaces were studied by Polthier in [15].
Minimal surfaces as the steady solution of the mean curvature flow (see [16])
were also produced, where they can be both continuous and discrete, usually
Bézier surfaces, or B-spline surfaces for the former.

B-splines have been widely accepted as representation tools for curves and
surfaces in the industrial design, however there is a serious limitation for de-
signing minimal surfaces with any shaped boundaries using Bézier, B-spline and
NURBS because they require the surface patch to be three- or four-sided. In
1974, Charkin first brought the concept of discrete subdivision into the area of
computer graphics. Doo-Sabin (see [6]) and Catmull-Clark (see [3]) respectively
proposed the subdivision schemes of biquadratic and bicubic B-spline for quadri-
lateral mesh in 1978. The quartic triangular B-splines was developed by Loop
(see [9]) in 1987. Henceforth, subdivision surfaces have rapidly gained popularity
in computer graphics and computer aided design. Subdivision algorithms have
no limitation on the topology of the control mesh. They can efficiently generate

208 Q. Pan and G. Xu

smooth surfaces from arbitrary initial meshes through a simple refinement algo-
rithm, and they are flexible in creating the features of surface without difficulty.

It is obvious that these well-known subdivision algorithms suffer from seri-
ous problems when applied to a control mesh with a boundary because they
are suitable for the interior control mesh. Boundary subdivision rules are very
important: a plenty of surface designing work deals with the input mesh with
boundaries, marked edges and vertices, and the specific treatment for the fea-
tures of boundaries, such as concave corners, convex corners, sharp creases and
smooth creases etc., is always necessary in order to satisfy the designing require-
ment. For many surface modeling problems, such as the construction of bodies
of cars, aircrafts, machine parts and roofs, surfaces are usually piecewise con-
structed with fixed boundaries. The following are the related works. Subdivision
rules of Doo-Sabin surfaces for the boundaries were discussed by Doo (see [5])
and Nasri (see [14]). Based on the work of Hoppe et al.(see [7]) and Nasri (see
[13]), Biermann et al.(see [2]) extended the well-known subdivision schemes of
Catmull-Clark and Loop. They solve some problems of the original ones, such
as lack of smoothness at extraordinary boundary vertices and folds near concave
corners, and improve control of the surface shapes with prescribed normals both
on the boundary and in the interior.

In this paper, we construct minimal subdivision surfaces based on the modi-
fied Catmull-Clark’s subdivision algorithms [2] which improves the subdivision
scheme around boundaries, and it is preferable and acceptable to use B-spline to
represent surface boundary. The well-known mean curvature flow with Dirichlet
boundary condition is our evolution model. We adopt the finite element method,
where the finite element space spanned by the limit functions of the modified
Catmull-Clark’s subdivision scheme, as the discretization tool. All the above
frameworks contribute to our target, successful construction of desirable mini-
mal subdivision surfaces.

The remainder of this paper is organized as follows: Section 2 is a brief review
of the Catmull-Clark’s subdivision scheme and its modification of the bound-
aries, as well as the evaluation of standard and nonstandard Catmull-Clark’s
subdivision surfaces. In Section 3 we provide the mean curvature flow used to
construct the minimal surfaces, and the details of its discretization and numerical
computation. Section 4 show several graphic examples and some error comparing
results to illustrate the effects of our method. Section 5 is the conclusion.

2 Evaluation of Catmull-Clark’s Subdivision Surfaces

Our goal is to construct Catmull-Clark’s subdivision surface with specified bound-
ary curves and minimal area. The subdivision surface is defined as the limit of an
iterative refinement procedure starting from an initial control mesh where a se-
quence of increasing refined meshes can be achieved according to the subdivision
scheme. The Catmull-Clark’s subdivision scheme requires all faces of the initial
control mesh must be quadrilaterals. The subsequent refined meshes consist of
only quadrilaterals. The control vertices of the refined meshes are generated from

Construction of Minimal Catmull-Clark’s Subdivision Surfaces 209

(a) (b)

(c) (d)

Fig. 1. (a): A regular patch over the shaded quadrilateral with its neighboring 16
control vertices. (b): An irregular patch over the shaded quadrilateral with an extraor-
dinary vertex labeled ’1’ whose valence is 5. (c): Subdividing this irregular patch once
generates 3 shaded sub-patches, and enough control vertices for evaluating them. (d):
A unit square is subdivided into unlimited group of quadrilateral sub-domains.

the control vertices of the previous step by a portfolio of weight coefficients. Fi-
nally, this sequence of meshes converges to a limit surface composed of unlimited
number of surface patches.

We can refer to [3] for the standard Catmull-Clark’s subdivision scheme, and
its modification proposed by Biermann et al. is described in [2]. we need classify
the control mesh into two groups, i.e., standard mesh and nonstandard mesh.
Nonstandard mesh includes boundary quadrilaterals and sub-boundary quadri-
laterals. Standard mesh consists of only interior quadrilaterals. The quadrilater-
als containing boundary vertices are named as boundary quadrilaterals, the ones
adjacent to the boundary quadrilaterals are called sub-boundary quadrilaterals,
and all others are called interior ones.

2.1 Evaluation of Standard Catmull-Clark’s Subdivision Surface

In this section, we briefly describe the evaluation of the standard Catmull-Clark’s
subdivision surface whose control mesh consists of only interior quadrilaterals.

210 Q. Pan and G. Xu

Each quadrilateral of the control mesh corresponds to one quadrilateral patch
of the limit surface. The quadrilateral of the control mesh is regarded as the
parameter domain of the surface patch. We choose a unit square

Ω =
{
(u, v) ∈ R

2 : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1
}

as the local parametrization for each quadrilateral tα and (u, v) as its barycentric
coordinates. A regular patch whose four control vertices have a valence of 4 can
be represented by 16 basis functions and their corresponding 16 control vertices:

xα(u, v) =
16∑

i=1

Bi(u, v)xi, (1)

where the label i refers to the local sorting of the control vertices shown in
Fig.1(a). The bicubic B-spline basis functions Ni are:

Bi(u, v) = N(i−1)%4(u)N(i−1)/4(v), i = 1, 2, · · · , 16,

where ”%” and ”/” stand for the remainder and division respectively. The func-
tions Ni(t) are the cubic uniform B-spline basis functions:

N0(t) = (1− 3t+ 3t2 − t3)/6,
N1(t) = (4− 6t2 + 3t3)/6,
N2(t) = (1 + 3t+ 3t2 − 3t3)/6,
N3(t) = t3/6.

If a quadrilateral is irregular, i.e., at least one of its control vertices has a va-
lence other than 4, the resulting patch is not a bicubic B-spline. Now we assume
extraordinary vertices are isolated, i.e., there is no edge in the control mesh
such that both of its vertices are extraordinary. This assumption can be fulfilled
by subdividing the mesh once. Under this assumption, any irregular patch has
only one extraordinary vertex. In order to evaluate the surface at any parametric
value (u, v) ∈ tα, the mesh needs to be subdivided repeatedly until the parameter
values of interest are interior to a regular patch. Each subdivision of an irreg-
ular patch produces three regular sub-patches and one irregular sub-patch (see
Fig. 1(b) and (c)). Repeated subdivision of the irregular patch produces three
groups of regular patches. This irregular surface patch can be piecewise param-
eterized as shown in Fig.1(d). The sub-domains Ωn

j , n ≥ 1, j = 1, 2, 3, which can
be evaluated, are given as:

Ωn
1 = {(u, v) : u ∈ [2−n, 2−n+1], v ∈ [0, 2−n]},

Ωn
2 = {(u, v) : u ∈ [2−n, 2−n+1], v ∈ [2−n, 2−n+1]},

Ωn
3 = {(u, v) : u ∈ [0, 2−n], v ∈ [2−n, 2−k+1]}.

(2)

They can be mapped onto the unit square Ω through the transform

t1,n(u, v) = (2nu− 1, 2nv), (u, v) ∈ Ωn
1 ,

t2,n(u, v) = (2nu− 1, 2nv − 1), (u, v) ∈ Ωn
2 ,

t3,n(u, v) = (2nu, 2nv − 1), (u, v) ∈ Ωn
3 .

Construction of Minimal Catmull-Clark’s Subdivision Surfaces 211

The surface patch xα(u, v) is then defined by its restriction to each quadrilateral

xα(u, v)|Ωn
j

=
16∑

i=1

Ni(tj,n(u, v))xj,n
i , j = 1, 2, 3; n = 1, 2, · · · , (3)

where xn,j
i are the properly chosen 16 control vertices around the irregular patch

at the subdivision level n = floor(min(−log2(u),−log2(v))). Three sets of control
vertices are (see Fig.1(c))

{x1,n
i }= [xn

8 ,xn
7 ,xn

2N+5,x
n
2N+13,x

n
1 ,xn

6 ,xn
2N+4,x

n
2N+12,x

n
4 ,xn

5 ,xn
2N+3,x

n
2N+11,

xn
2N+7,x

n
2N+6,x

n
2N+2,x

n
2N+10],

{x2,n
i }= [xn

1 ,xn
6 ,xn

2N+4,x
n
2N+12,x

n
4 ,xn

5 ,xn
2N+3,x

n
2N+11,x

n
2N+7,x

n
2N+6,x

n
2N+2,

xn
2N+10,x

n
2N+16,x

n
2N+15,x

n
2N+14,x

n
2N+9],

{x3,n
i } = [xn

2 ,xn
1 ,xn

6 ,xn
2N+4,x

n
3 ,xn

4 ,xn
5 , xn

2N+3, x
n
2N+8,x

n
2N+7,x

n
2N+6,x

n
2N+2,

xn
2N+17,x

n
2N+16,x

n
2N+15,x

n
2N+14].

With the subdivision matrix A and the extended subdivision matrix Ā, we can
get these control vertices by

Xn = AXn−1 = · · · = AnX0

and
X̄n+1 = ĀXn = ĀAnX0

where Xn = [xn
1 , · · · ,xn

2N+8]
T and X̄n = [xn

1 , · · · ,xn
2N+17]

T .

2.2 Evaluation of Nonstandard Catmull-Clark’s Subdivision Surface

As noted above, for the nonstandard Catmull-Clark’s subdivision surface, whose
control mesh includes boundary quadrilaterals and sub-boundary quadrilaterals,
we adopt the modified Catmull-Clark’s subdivision rules. Subdividing a sub-
boundary quadrilateral once will result in four interior quadrilaterals, so it is
easy to evaluate their corresponding patches using the evaluation method of the
standard Catmull-Clark’s subdivision surface.

The condition of boundary quadrilaterals is a little complicated, however
we can repeatedly subdivide it till its sub-patches belong to the class of sub-
boundary quadrilaterals. The patches for sub-boundary quadrilaterals can be
evaluated using the method stated in the previous paragraph. The boundary
quadrilaterals may need to be further subdivided if the parameter values, where
the surface patch need to be evaluated, are in this domain. This process are
carried through repeatedly till the parameter values to be evaluated are within
a sub-boundary quadrilateral.

In the next section, we will introduce the evolution equation and its finite
element method based on the modified Catmull-Clark’s subdivision scheme.

212 Q. Pan and G. Xu

3 Minimal Surface Construction

LetM0 be a compact immersed orientable surface in R3 and x ∈M0 be a general
surface point. We intend to find a family {M(t) : t ≥ 0} of smooth orientable
surfaces in R3 which evolve according to the mean curvature flow

∂x
∂t

= 2Hn, M(0) = M0, (4)

whereH and n are the mean curvature and the surface normal ofM respectively.
It is well known that the mean curvature flow is area reducing. The area reducing
stops when H = 0. Since

Δsx = 2Hn,

the steady solution of the following mean curvature flow

∂x
∂t

= Δsx, M(0) = M0, (5)

is the minimal surface. We use a finite element method to obtain the numerical
solution of (5), and our finite element basis functions are the limit form of the
modified Catmull-Clark’s subdivision scheme.

3.1 Finite Element Method for the Mean Curvature Flow

Let M be the limit surface of the modified Catmull-Clark’s subdivision scheme
for the control mesh Md. We multiply a trial function ψ for (5) and apply the
Green’s formula, then we obtain the following weak form equation⎧⎪⎪⎨⎪⎪⎩

Find x(t) ∈ V 3
M(t), such that∫

M(t)

[
∂x(t)
∂t

ψ + (∇sx(t))T∇sψ

]
ds = 0, ∀ψ ∈ VM(t) ∩ C1

0 (M(t)),

M(0) = M0, ∂M(t) = Γ, ∀x ∈ Γ,

(6)

where VM(t) ⊂ C1(M(t)) is a finite dimensional function space defined by the
modified Catmull-Clark’s subdivision scheme for the discrete function values on
the vertices. C1(M(t)) is the function space consisting of C1 smooth functions
onM(t), and C1

0 (M(t)) consists of functions of C1(M(t)) with compact support.
Let φi be a basis function of VM(t) corresponding to the control vertex xi

(i = 1, · · · ,m) of the surface M(t), where we assume {xi}m0
i=1 are the interior

vertices, and the remaining {xi}m
i=m0+1 are the boundary vertices. Then x(t)

can be represented as

x(t) =
m0∑
i=1

xi(t)φi +
m∑

i=m0+1

xi(t)φi, xi(t) ∈ R
3.

Construction of Minimal Catmull-Clark’s Subdivision Surfaces 213

Take trial function ψ to be φj(j = 1, · · · ,m0), (6) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m0∑
i=1

x′
i(t)

∫
M(t)

φiφjds+
m0∑
i=1

xi(t)
∫

M(t)
(∇sφi)T∇sφjds

= −
m∑

i=m0+1

xi(t)
∫

M(t)
(∇sφi)T∇sφjds, j = 1, · · · ,m0,

xj(0) = xj , j = 1, · · · ,m,

(7)

where xj is the j-th control vertex of the initial surface M(0). (7) is a set of
nonlinear ordinary differential equations for the unknowns xi(t), i = 1, · · · ,m0.
The system is nonlinear because the domain M(t), over which the integrations
are taken, is also unknown. We use forward Euler scheme to discretize x′

i(t)

as xk+1
i −xk

i

τ for a given temporal step-size τ , and use a semi-implicit scheme to
discretize the remaining terms. A linear system is obtained⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m0∑
i=1

xk+1
i

∫
Mk

φiφjds+ τ

m0∑
i=1

xk+1
i

∫
Mk

(∇sφi)T∇sφjds

=
m0∑
i=1

xk
i

∫
Mk

φiφjds− τ
m∑

i=m0+1

x0
i

∫
Mk

(∇sφi)T∇sφjds, j = 1, · · · ,m0,

x0
j = xj , j = 1, · · · ,m,

(8)

for the unknowns xk+1
i , where Mk is the limit surface of the control vertices xk

i .
System (8) is iteratively solved for k = 0, 1, · · · , using GREMS method till the
termination condition

max
i
‖xk+1

i − xk
i ‖ ≤ ε

(ε is a given small value) is satisfied.

3.2 Definition of Basis Functions

As mentioned above, the basis functions of our finite element function space
VM(t) is the bicubic B-spline. We use φi to represent the basis function asso-
ciating with the control vertex xi of the surface M , including its interior ver-
tices, corner vertices and boundary vertices. The basis function φi is defined by
the limit of the modified Catmull-Clark’s subdivision scheme where its function
value is one at this vertex xi, but zero at any other vertices. The support of φi

is compact and it covers the 2-ring neighborhoods of vertex xi.
It needs to evaluate φi and its partial derivatives in forming the linear system

(8), whose parameter values are chosen to be the Gaussian quadrature knots
within a unit square. Therefore we only need a few subdivision steps so as to
bring these Gaussian quadrature knots into the interior of a regular quadrilateral.
Let ej , j = 1, · · · ,mi be the 2-ring neighborhood elements of xi. If ej is regular,
the expression (1) exists for φi on ej . If ej is irregular, local subdivision, as
described in §2.1 and §2.2, is needed around ej until the parameter values of
interest are interior to a regular patch.

214 Q. Pan and G. Xu

3.3 Parametrization of Subdivision Surface and Functions on the
Surface

In Riemannian geometry, differentiable functions are smooth and C∞. However,
our discretized version of the diffusion problem will be in the class C1. As we
mentioned earlier, the functions are defined by the limit form of the modified
Catmull-Clark’s subdivision. Such a function is C2 smooth everywhere except at
the extraordinary vertices, where it is C1. The function is locally parameterized
as the image of the unit square defined by

Ω = {(u, v) ∈ R
2 : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.

That is, (u, v) is the barycentric coordinate of the quadrilateral. Using this
parametrization, our discretized representation of M is

M =
k⋃

α=1

Tα, T̊α ∩ T̊β = ∅ for α �= β,

where T̊α is the interior of the quadrilateral function patch Tα. Each quadrilateral
surface patch is assumed to be parameterized locally as

xα : Ω → Tα; (u, v) �→ xα(u, v), (9)

where xα(u, v) is defined by (1) and (3). Function itself on the surface and its
partial derivatives, such as tangents and gradients, can be computed directly.
The integration of a function on the surface M is calculated as∫

M

fdx :=
∑
α

∫
Ω

f(xα(u, v))
√
det(gij)du dv, (10)

where gij are the coefficients of the first fundamental form of the surface M . The
integration on the square Ω is computed adaptively using Gaussian quadrature
formulas (see [17]).

4 Experimental Results

In this section, we present several graphical and numerical results to show that
the proposed method for constructing minimal subdivision surface is effective.

4.1 Graphical Examples

We firstly show three models of minimal surfaces with the analytic forms, Heli-
coid, Catenoid and Ennerper. In Fig. 2, we discretize these three analytic surfaces
at a rough level and perturb their interior domain as shown in the first column,
then we linearly refine them several times as the initial constructions of our equa-
tion evolution. The minimal subdivision surfaces as the steady solutions of (6)
are presented in the forth column. We show their corresponding Catmull-Clark’s

Construction of Minimal Catmull-Clark’s Subdivision Surfaces 215

(a) (a′) (a′′) (a′′′)

(b) (b′) (b′′) (b′′′)

(c) (c′) (c′′) (c′′′)

Fig. 2. The first row is the Helicoid surface model, the second row is the Catenoid
model and the third row is Ennerper model. (a), (b) and (c) are their initial rough
meshes. (a′), (b′) and (c′) are the initial constructions for the equation evolution by
linearly refining the meshes in the first column. (a′′), (b′′) and (c′′) are the Catmull-
Clark’s surface resulting from refining the rough constructions in the first column by the
modified Catmull-Clark’s subdivision scheme. On the base of the initial constructions
in the second column, we show their corresponding minimal subdivision surfaces by our
equation evolution in (a′′′), (b′′′) and (c′′′). The density of meshes in the third column
and in the forth column is the same.

216 Q. Pan and G. Xu

(a) (a′) (a′′) (a′′′)

(b) (b′) (b′′) (b′′′)

(c) (c′) (c′′) (c′′′)

Fig. 3. (a), (b) and (c) are the roughest surface meshes of three models. (a′), (b′)
and (c′) are their corresponding initial constructed surface meshes by linearly refining
(a), (b) and (c) respectively. (a′′), (b′′) and (c′′) are their subdivision surfaces through
refining the meshes in the first column according to the modified Catmull-Clark’s sub-
division scheme. (a′′′), (b′′′) and (c′′′) are their corresponding minimal subdivision
surfaces constructed by use of our method based on the initial constructions in the
second column.

surfaces in the third column which are obtained by refining the rough meshes in
the first column according to the modified Catmull-Clark’s subdivision scheme
until they have the same density as the corresponding meshes do in the second
column. It is clear to see that the Catmull-Clark’s surfaces are very different
from the final minimal subdivision surfaces.

Fig. 3 shows three examples with fixed boundaries and arbitrary genus. We
construct their initial surfaces only from the boundary information at a rough
level in the first column. We refine the initial meshes several times by linear

Construction of Minimal Catmull-Clark’s Subdivision Surfaces 217

Table 1. k describes the subdivision times, where we subdivide the six models at 6
more and more dense levels respectively. The data from the second to the seven row
are the maximum approximate errors of the mean curvature |H | computed from the
discrete solutions of the PDE evolution.

Asymptotic maximal values of |H |
Models k k + 1 k + 2 k + 3 k + 4 k + 5
Fig 2(a) 3.783E-2 1.858E-2 1.009E-2 6.092E-3 4.236E-3 3.467E-3
Fig 2(b) 5.748E-2 2.972E-2 1.658E-2 1.077E-2 8.132E-3 6.787E-3
Fig 2(c) 4.638E-2 2.321E-2 1.418E-2 9.558E-3 7.628E-3 6.650E-3
Fig 3(a) 6.223E-2 3.015E-2 1.684E-2 9.713E-3 6.787E-3 5.595E-3
Fig 3(b) 1.073E-1 5.327E-2 2.916E-2 1.631E-2 1.061E-2 7.837E-3
Fig 3(c) 3.234E-1 1.628E-1 8.674E-2 5.607E-2 4.132E-2 3.314E-2

method and show the results in the second column which are the initial con-
structions of the equation evolution. The boundary curves can have discontinu-
ity on its tangent direction, as shown in Fig. 3 (a′), and some model meshes
have extraordinary vertices clearly presented in Fig. 3 (b′) and (c′) where the
face valence of some control vertices is 6. Similarly we also compare the result-
ing minimal subdivision surfaces in the forth column with their corresponding
Catmull-Clark’s surfaces in the third column where they have the same density,
but the difference of them is very clear.

4.2 Refinement and Convergence

In order to further show the proposed method is effective, we compute the max-
imum values of |H | from the discrete solutions of our numerical method for the
six models used above. We construct the initial surfaces of these models as the
initial value of the PDE evolution by subdividing the six models at gradually
more and more dense level according to the modified Catmull-Clark’s subdivision
scheme. The maximal asymptotic values of |H | are presented in Table 1. From
the numerical results, we can see that the maximal values of |H | monotonously
decline as the increasing of subdivision times k. Hence, our numerical method is
convergent.

5 Conclusions

Extensive research work has been done about minimal surfaces. The fascinating
characters of minimal surfaces make them widely used in shape designing and
many other areas. Subdivision algorithm is a simple and efficient tool to describe
free surfaces with any topology. In this paper we adopt the modification of the
Catmull-Clark’s subdivision scheme which improves the boundary subdivision
rules for quadrilateral mesh. We successfully construct minimal Catmull-Clark’s
subdivision surfaces with given boundary curves using the mean curvature flow,
and adopt the numerical method of the finite element based on the modified

218 Q. Pan and G. Xu

Catmull-Clark’s subdivision scheme. Our framework can uniformly and flexibly
treat all kinds of boundary conditions. The asymptotic error data show our
numerical method is also convergent.

References

1. Arnal, A., Lluch, A., Monterde, J.: Triangular Bézier Surfaces of Minimal Area. In:
Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS,
vol. 2669. Springer, Heidelberg (2003)

2. Biermann, H., Levin, A., Zorin, D.: Piecewise-smooth Subdivision Surfaces with
Normal Control. In: SIGGRAPH, pp. 113–120 (2000)

3. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Computer-Aided Design 10(6), 350–355 (1978)

4. Cosin, C., Monterde, J.: Bézier surfaces of minimal area. In: Sloot, P.M.A.,
Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS,
vol. 2330, pp. 72–81. Springer, Heidelberg (2002)

5. Doo, D.: A subdivison algorithm for smoothing down irregularly shaped poly-
hedrons. In: proceedings on Interactive Techniques in computer Aided Design,
Bologna, pp. 157–165 (1978)

6. Doo, D., Sabin, M.: Behavious of recursive division surfaces near extraordinary
points. Computer-Aided Design 10(6), 356–360 (1978)

7. Hoppe, H., DeRose, T., Duchamp, T., Halstend, M., Jin, H., McDonald, J.,
Schweitzer, J., Stuetzle, W.: Piecewise smooth surfaces reconstruction. In: Com-
puter Graphics Proceedings, Annual Conference series, ACM SIGGRAPH 1994,
pp. 295–302 (1994)

8. Jin, W., Wang, G.: Geometric Modeling Using Minimal Surfaces. Chinese Journal
of Computers 22(12), 1276–1280 (1999)

9. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis. Technical
report, Department of Mathematices, University of Utah (1978)

10. Man, J., Wang, G.: Approximating to Nonparameterzied Minimal Surface with
B-Spline Surface. Journal of Software 14(4), 824–829 (2003)

11. Man, J., Wang, G.: Minimal Surface Modeling Using Finite Element Method. Chi-
nese Journal of Computers 26(4), 507–510 (2003)

12. Monterde, J.: Bézier surface of minimal area: The dirichlet approach. Computer
Aided Geometric Design 21, 117–136 (2004)

13. Nasri, A.H.: Surface interpolation on irregular networks with normal conditions.
Computer Aided Geometric Design 8, 89–96 (1991)

14. Nasri, A.H.: Polyhedral subdivision methods for free-form surfaces. ACM Trans-
actions on Graphics 6(1), 29–73 (1987)

15. Polthier, K.: Computational aspects of discrete minimal surfaces. In: Hass, J.,
Hoffman, D., Jaffe, A., Rosenberg, H., Schoen, R., Wolf, M. (eds.) Proc. of the
Clay Summer School on Global Theory of Minimal Surfaces (2002),
citeseer.ist.psu.edu/polthier02computational.html

16. Xu, G.: Geometric Partial Differential Equation Methods in Computational Ge-
ometry. Science Press, Beijing (2008)

17. Xu, G., Shi, Y.: Progressive computation and numerical tables of generalized Gaus-
sian quadrature formulas. Journal on Numerical Methods and the Computer Ap-
plication 27(1), 9–23 (2006)

citeseer.ist.psu.edu/polthier02computational.html

Parameterization of Star-Shaped Volumes Using
Green’s Functions

Jiazhi Xia1, Ying He1, Shuchu Han1, Chi-Wing Fu1, Feng Luo2, and Xianfeng Gu3

1 School of Computer Engineering, Nanyang Technological University, Singapore
{xiaj0002,yhe,schan,cwfu}@ntu.edu.sg

2 Department of Mathematics, Rutgers University, USA
fluo@math.rutgers.edu

3 Department of Computer Science, Stony Brook University, USA
gu@cs.sunysb.edu

Abstract. Parameterizations have a wide range of applications in computer
graphics, geometric design and many other fields of science and engineering.
Although surface parameterizations have been widely studied and are well devel-
oped, little research exists on the volumetric data due to the intrinsic difficulties
in extending surface parameterization algorithms to volumetric domain. In this
paper, we present a technique for parameterizing star-shaped volumes using the
Green’s functions. We first show that the Green’s function on the star shape has
a unique critical point. Then we prove that the Green’s functions can induce a
diffeomorphism between two star-shaped volumes. We develop algorithms to pa-
rameterize star shapes to simple domains such as balls and star-shaped polycubes,
and also demonstrate the volume parameterization applications: volumetric mor-
phing, anisotropic solid texture transfer and GPU-based volumetric computation.

1 Introduction

The recent decade has witnessed the great advancements of surface parameterizations,
exemplified in a wide range of applications exhibited in science and engineering. De-
spite these successes, most real-world objects are in fact volumes rather than surfaces.
It remains both unclear and challenging on how to generalize existing surface param-
eterization methods from surfaces to volumes. And with volume parameterization, we
envision a large pool of applications that can benefit from the result, including solid tex-
ture mapping, volumetric tetrahedralization for simulation, and volumetric registration.

Due to the intrinsic difference between surfaces and volumes, many classical results
on surface parameterization cannot be directly generalized to produce volume param-
eterization. For example, it is well-known that a harmonic map between a topological
disk (a genus zero surface with a single boundary) and a planar convex domain is dif-
feomorphic (i.e., bijective and smooth), if the boundary map is homeomorphic (i.e., bi-
jective and continuous). This result plays an important role in surface parameterization.
Unfortunately, such an approach is not applicable to volumes, i.e., volumetric harmonic
map is not guaranteed to be bijective even though the target domain is convex. In this
paper, we aim at handling the challenges by proposing a theoretically sound algorithm
that can produce a diffeomorphism between two star-shaped volumes.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 219–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

220 J. Xia et al.

Our volume parameterization method is strongly motivated by the property of elec-
tric field. Given a closed genus-0 metal surface S, let M denote its interior volume, i.e.,
∂M = S. We construct an electric field by putting a positive electric charge at a point c
inside M, and connecting the boundary surface S to the ground. The electric potential
inside M is a Green’s function, G : M → R, such that{

ΔG(x) = δ (x− c)
G|∂M ≡ 0,

(1)

where δ (x−c) is the Dirac function. In general, the level set of G, G−1(r),r ∈R
+ or an

isopotential surface is a smooth surface in M. The gradient of the electric potential ∇G
is the electric field. Electric field lines are the integration curves of the electric field, i.e.,
the tangent vectors of the electric field lines are parallel to the electric field. Different
electric field lines only intersect at the points where we put the electric charge, or at
the critical point of the potential. Electric field lines start from the electric charge and
are orthogonal to the iso-potential surfaces everywhere, in particular to the boundary
surface ∂M.

If M is a star-shaped volume, every ray cast from c intersect S only once, and there
are no other critical points of the potential. Therefore, all the iso-potential surfaces can
be topological spheres and all electric field lines intersect only at point c (see Fig. 1).
Since each point inside M is now uniquely determined by a corresponding electric field
line and an iso-potential surface, determining the map between two star-shaped volumes
is equivalent to constructing the map between the corresponding iso-potential surfaces
and the electric field lines. Therefore, we map the boundary surface to the unit sphere,
thereby putting each iso-potential surface to a concentric sphere, the electric field lines
to the radii, and the center c to the origin. In this way, the star-shaped volume can be
parameterized to the unit solid ball. With the help of ball parameterization, the map
between two star shapes can then be constructed by mapping each shape to the unit
ball and constructing a bijective map between the two unit balls. Such a constructed
volumetric map is guaranteed to be a diffeomorphism.

(a) (b) (c) (d)

Fig. 1. Electric field on the star shape. Given a metal surface S, we put a positive charge at the
center (the red point) and then connect S to the ground (shown in (a)). The electric field is a
Green’s function shown in (b). If the surface S is star-shaped, then the Green’s function has a
unique critical point. As a result, all iso-potential surfaces are topological spheres (shown in (c)).
The electric field line (red curve in (d)) is perpendicular to all iso-potential surfaces.

Parameterization of Star-Shaped Volumes Using Green’s Functions 221

Our contributions include

– First, we show that the Green’s function on star shapes has a unique critical point
and all level sets inside the star shape are topological spheres. Then we prove that
the Green’s function can induce a diffeomorphism between two star shapes. To our
knowledge, this is the first constructive proof of the existence of a diffeomorphism
between two non-trivial shapes.

– Secondly, based on our theoretical results, we develop algorithms to parameterize
star shapes to star-shaped domains, such as solid balls and star-shaped polycubes.

– Thirdly, we showcase a variety of applications that benefit from our volume pa-
rameterization method, including volumetric morphing, anisotropic solid texture
transfer and GPU-based volumetric computation.

The remaining of the paper is organized as follows. We first briefly discuss the previ-
ous work in Section 2. Next, we introduce the theoretic background in Section 3, and
present our volume parameterization algorithm in Section 4. Experimental results are
then reported in Section 5. We conclude this work in Section 6. The theoretic proofs are
presented in the Appendix.

2 Previous Work

Extensive research has been done on surface parameterization due to its wide applica-
tions in computer graphics. The surveys of [1][2] provide excellent reviews on various
kinds of mesh parameterization techniques. In the following, we briefly review the re-
lated work on volumetric meshing and volumetric harmonic map.

Labelle and Shewchuk introduced the isosurface stuffing algorithm to generate tetra-
hedron meshes with bounded dihedral angles in [3]. The volumetric discrete Laplace-
Beltrami operator used in this work generalizes the cotan formula in the surface case;
the cotan value of dihedral angles is used to replace those of corner angles. The range
of the dihedral angles affects the parameterization quality. A Delaunay-based varia-
tional approach to isotropic tetrahedral meshing is introduced by Alliez et al. in [4];
this method can produce well-shaped tetrahedra by energy minimization. Tandem algo-
rithm is introduced to isosurfaces extraction and simplification in [5]. The volumetric
harmonic map depends on volumetric Laplacian; Zhou et al. [6] applied volumetric
graph Laplacian to large mesh deformation.

Harmonicity in volumes can be similarly defined via the vanishing Laplacian, which
governs the smoothness of the mapping function. Wang et al. [7] studied the formula of
harmonic energy defined on tetrahedral meshes and computed the discrete volumetric
harmonic maps by a variational procedure. Volumetric parameterization using funda-
mental solution method is introduced in [8] and applied to volumetric deformation and
morphing. Other than that, harmonic volumetric parameterization for cylinder volumes
is applied for constructing tri-variate spline fitting in [9]. All the above approaches rely
on volumetric harmonic maps. Unfortunately, as pointed out previously in Section 1,
these volumetric harmonic maps cannot guarantee bijective mappings even though the
target domain is convex.

222 J. Xia et al.

Besides the volumetric harmonic map, another stream of research studies the mean
value coordinates for closed triangular mesh [10,11]. Mean value coordinates are a
powerful and flexible tool to define a map between two volumes. However, there is no
guarantee that the computed map is a diffeomorphism.

Our approach differs intrinsically from these existing approaches in two-fold. First,
we solve the Green’s functions on star shapes and show that the resultant functions
have unique critical points. As a result, the Green’s function induced map is guaranteed
to be a diffeomorphism. Second, we use fundamental solution method [12,8,13] rather
than the conventional volumetric harmonic map [7], since the fundamental solution
method is truly meshless, thus, it does not depend on the tetrahedral mesh. In sharp
contrast, volumetric harmonic map heavily depends on the quality of the tetrahedral
mesh. Irregular tetrahedralization may lead to numerical error and degeneracy of the
volumetric harmonic map even on convex or star shapes.

Our work is also related to polycube map which can be used as the parametric do-
main for the volume parameterization. Tarini et al. pioneered a method to construct
polycube map by projecting the vertices to the polycube domain [14]. Wang et al. pre-
sented an intrinsic approach to construct polycube map that is guaranteed to be a diffeo-
morphism [15]. Later, they developed a method that allows the users to freely specify
the extraordinary points on the 3D models [16]. Lin et al. presented an automatic al-
gorithm to construct polycube map with simple geometry and topology [17]. Using the
divide-and-conquer strategy, He et al. developed a polycube map construction method
that can process large 3D models [18].

3 Theoretic Foundation

This section briefly introduces the theoretic foundation of star shape parameterization;
see the detailed proof in the Appendix section.

A volume M is called a star shape if there exists a point c ∈M such that any ray cast
from c intersects the boundary of M only once. The point c is called the center of M. In
particular, any convex volume is a star shape, where any interior point can serve as the
center. From the implementation point of view, computing the intersection of a ray with
a surface is typically computationally expensive. Thus, we use an alternative approach
to define a star shape:

Lemma 1. A volume M is a star shape if and only if there exists a point c ∈ M such
that for any boundary point p ∈ ∂M,

(c−p,n(p))≤ 0, (2)

where n(p) is the normal vector at p and (,) is the dot product.

The following lemmas reveal some nice properties of star shapes and lay a crucial role
in our work.

Lemma 2 (Green’s function on a star shape). Suppose M is a star shape with a center
c∈M, G is the Green’s function (see Eqn. (1)) with a pole at c, then c is the only critical
point of G.

Parameterization of Star-Shaped Volumes Using Green’s Functions 223

Lemma 3. Suppose M is a star shape with a center c ∈M, G is the Green’s function
with a pole at c. Then for any r ∈ R+, the level set G−1(r) is topologically equivalent
to a sphere.

Let γ1 and γ2 be two integration curves of the gradient field, ∇G. If γ1 and γ2 intersect
at point p, i.e., p ∈ γ1 ∩ γ2, then ∇G(p) must be zero. Namely, p must be a critical
point of G. Since G has only one critical point c, γ1 and γ2 only intersect at the cen-
ter c. Furthermore, each integration curve of ∇G intersects the boundary surface ∂M
perpendicularly.

A map between two star-shaped volumes M and M̃ with centers c and c̃, respectively,
can be constructed in the following manner. First we compute a bijective map between
their boundaries φ : ∂M → ∂M̃. Then we compute two Green’s functions G and G̃ on
M and M̃ with poles c and c̃, respectively. Let r ∈ R+, then the level set G−1(r) ⊂M
matches the level set G̃−1(r) ⊂ M̃. Let p ∈ ∂M, the integration curve through p in M
matches the integration curve through φ(p) in M̃. The centers of M and M̃ are mapped
to each other. Each interior point (other than the origin) is the intersection of a unique
level set and a unique integration curve, therefore, every point in M can be uniquely
mapped to a point in M̃.

Therefore, we arrive at the following theorem, which lays down the theoretic foun-
dation of our volumetric parameterization algorithm.

Theorem 1. Suppose M and M̃ are star-shaped volumes with centers c and c̃, G and G̃
are Green’s functions with poles at c and c̃, respectively. If the boundary map ∂M →
∂M̃ is a diffeomorphism, then the map f : M → M̃ induced by G and G̃ is also a
diffeomorphism.

Theorem 1 laid down the foundation of the proposed volume parameterization frame-
work. We should point out that even though c and c̃ are poles of the Green’s functions G
and G̃, the induced map f : M→ M̃ is smooth everywhere including the pole c since we
define f (c) := c̃. This can be elucidated by the physical meaning of Green’s function.
Consider the phenomenon of a grounded conducting surface surrounding a charged
body at the center c. The electric potential inside the volume bounded by the surface
is the Green’s function. If the volume is a solid ball and the center is the origin, then
parameterization induced by the Green function is equivalent to the polar coordinate.
The center is the pole of the polar parameterization, but the mapping between two balls
induced by the polar coordinates has no singularity [19].

Remark. Gergen showed that the gradient of a Green’s function in a star-shaped three
dimensional region never vanish[20]. This implies that there is no interior singularity
of the Green function, therefore the level sets are topological spheres, the integration
curves of the gradient field do not intersect either. This gives alternative proof for our
main theoretic result.

4 Volume Parameterization Using Green’s Functions

This section presents the algorithmic detail of parameterizing star-shaped volumes to
simple domains, such as the unit ball and star-shaped polycubes.

224 J. Xia et al.

4.1 Parameterizing a Star Shape to a Ball

Step 1. Star shape verification and center detection. The input of our algorithm is a
closed genus-0 surface S which encloses a volume M, i.e., S = ∂M. S is represented by a
triangular mesh with vertices {vi}n

i=1. First, we need to verify whether M is star-shaped.
If it is true, we determine the center of M. Note that for a given star shape, there could
be infinite possible choices for the centers and the distribution of Green’s function. A
badly chosen center may introduce severe bias in the volume parameterization. Thus,
we prefer a geometry-aware center, where a natural choice is a center that is close
to the center of mass of M. This leads to the following linear constrained quadratic
programming problem:

min
c

1
n

n

∑
i=1

‖c−vi‖2

sub ject to (c−vi,ni)≤ 0 i = 1, · · · ,n .

The objective function aims to minimize the distance between the center c and the center
of mass, where the linear constraints precisely ensure the detected center c satisfies the
star shape requirement (see Eqn. 3). If M is not star-shaped, then no valid solution will
be found. In our implementation, we use the MOSEK optimization software [21] to
solve this quadratic programming problem.

Input: S, the boundary mesh of a star-shaped volume M
Output: f : M → B3 is diffeomorphism
Find the center of M;1.1

Compute the Green’s function on M, GM : M → R;1.2

Map the center c to the center of B3, f (c) = 0;1.3

Parameterize the boundary points by constructing a conformal spherical1.4

mapping φ : ∂M → ∂B3;
for every interior vertex p ∈M1.5

Trace the integration curve γ from p to the boundary point q ∈ ∂M;1.6

Set f (p) = φ(q)
GM(p)+11.7

end for1.8

Algorithm 1. Ball parameterization of star shapes

Step 2. Computing Green’s functions on M and B3. Next, we compute the Green’s
function on the star-shaped volume M using the method detailed in the fundamental
solution [12,8]. Suppose we have an electric charge qi at point pi, the electric potential
caused by qi at point r is

K(qi,pi;r) =
1

4π
qi

|pi− r| .

We need to put m electric charges {qi} at m points {pi} on an offset surface above the
boundary surface of ∂M, such that on the boundary ∂M, the total potential equals zero,

GM(r) =
m

∑
i=1

K(qi,pi;r)+ G(1,c;r) = 0,∀r ∈ ∂M,

Parameterization of Star-Shaped Volumes Using Green’s Functions 225

Fig. 2. Green’s function induces a diffeomorphism between the star shape M and the unit ball
B3. The input model is a triangular mesh (shown in (a)) which encloses a star-shaped volume.
The red point in (b) shows the star shape center. Then we compute the Green’s function on M
using the fundamental solution method. (c) The source point placed on the offset surface of ∂M.
(d) The Green’s function on M. (e) The Green’s function on B3 which is given by a closed form
formula 1

r − 1. (f) The boundary parameterization by constructing a conformal spherical map
φ : ∂M → ∂B3. (g) We parameterize the interior point p by tracing the integration curve γ to the
boundary point q. Note that the integration curve is perpendicular to the iso-surfaces of G. (h)

The image of p is given by φ(p)
GM(p)+1 . (i) and (j) show the volume rendering of a soccer ball texture

on M and B3, respectively.

where qi’s are unknowns. The equation is converted to a dense linear system, which
can be solved using the singular value decomposition method provided in Matlab. As
suggested in [8], we place m = 0.6n source points on the offset surface with offset
distance equals 0.05 times the main diagonal of M.

The Green’s function on B
3 (with the origin as the center) has a closed form, GB(p)=

1
r −1, where r is the distance from p to the origin.

Step 3. Parameterizing the boundary points. Furthermore, we compute the boundary
map φ : ∂M → B

3. Since the boundary of the unit ball is the sphere S
2, the conformal

spherical mapping [22] is a diffeomorphism, and thus, can serve as the boundary map.

226 J. Xia et al.

Fig. 3. Parameterizing a star shape M to a polycube P using the Green’s function. We first con-
struct the conformal polycube map φ : ∂M → ∂P. Then, we parameterize M and P to the ball
using Algorithm 1. The conformal polycube map φ induces an identity map between ∂B3

M and
∂B3

P. The volume parameterization is then given by f = fM ◦ f−1
P .

Step 4. Parameterizing the interior points. The interior of the volume is represented
by a tetrahedral mesh. We use Tetgen [23] to generate a tetrahedral mesh for a given
surface mesh S to meet the boundary constraints. To improve the meshing quality, we
employ the variational tetrahedral meshing techinque [4] which can significantly re-
duce the slivers and produce well-shaped tetrahedral meshes. The tetrahedral mesh M
is represented by M = (V,E,F,T) where V,E,F, and T are the vertex, edge, face, and
tetrahedra sets, respectively. The Green’s function GM is represented as a piecewise lin-
ear function, GM : V →R. The gradient of G can be computed as follows: suppose ti jkl

is a tetrahedron with vertices {vi,v j,vk,vl}, the face on the tetrahedron against vertex vi

is fi; similarly v j, vk, and vl are against f j , fk, and fl , respectively. We define si to be
the vector along the normal of fi with length equal to 2 times the area of fi, and so can
s j,sk,sl be defined. Then, the gradient of GM in ti jkl is a constant vector field

∇GM = GM(vi)si + GM(v j)s j + GM(vk)sk + GM(vl)sl.

We then define the vertex gradient as the average of the gradient vectors in the neigh-
boring tetrahedra.

Finally, the parameterization from M to B3, f : M → B3 is constructed as follows.
We map the center c to the origin, i.e., the center of B3. Given an interior point p ∈M
(other than the center c), we trace the integration curve γ of the gradient field from p, γ
intersects the boundary surface ∂M at q, then γ corresponds to the radius of B3 through
the point φ(q). Suppose the Green’s function value at p is GM(p), then the image of p
is defined by

Parameterization of Star-Shaped Volumes Using Green’s Functions 227

f (p) =
φ(q)

GM(p)+ 1
.

Figure 2 illustrates the pipeline of parameterizing the dog head to a solid ball. To vi-
sualize the parameterization, we design a soccer ball texture on B3 and then map it to
the dog head. Note that the iso-parameter surfaces in M are curved, but the cut view is
obtained by a cutting plane. Thus, the texture on the intersection plane in Fig. 2(l) may
look irregular.

Input: boundary meshes of a star shape M and a star-shaped polycube P
Output: f : M → P is diffeomorphism
Parameterize P to the unit ball fP : P→ B3

P;2.1

Parameterize M to the unit ball fM : M → B3
M;2.2

Construct the polycube map φ : ∂M → ∂P;2.3

Construct the map between two balls ψ : B3
P → B3

M induced by the polycube map2.4

φ ;
Compute the composite map f : M → P, f = fM ◦ψ ◦ f−1

P .2.5

Algorithm 2. Polycube parameterization of star shapes

4.2 Parameterizing a Star Shape to a Polycube

Ball parameterization is useful for the star shapes which resemble the geometry of the
sphere. However, a general star shape may be significantly different from a ball. Thus,
ball parameterization may result in large distortions. For such cases, we propose to use
the star-shaped polycube as the parametric domain since it resembles the input object
better than the ball.

Given a star shape M and a polycube P, we want to find a bijective and smooth map
f : M → P. Rather than computing the map directly, we first individually parameterize
M and P to the unit balls using Algorithm 1 (see Sec 4.1). Then we seek a smooth map
between two balls ψ : B

3
M → B

3
P. Finally, the polycube parameterization is given by the

composite map f = fM ◦ψ ◦ f−1
P .

The polycube parameterization can be illustrated clearly by the following commuta-
tive diagram:

M P

B
3
M B

3
P

�f :M→P

�
fM :M→B3

M

�
fP:P→B3

P

�
ψ:B3

M→B3
P

Note that there exists infinitely many smooth maps between two unit balls, but different
ψ could result in different volumetric parameterization. To find a low-distortion volu-
metric parameterization, i.e., mapping the head of Moai (see Fig. 3(a)) to the top of the
polycube, and so on, the polycube map can serve as a feasible boundary constraint. In
our implementation, we choose the approach of conformal polycube map (for genus-0

228 J. Xia et al.

Fig. 4. Parameterizing the pig model to a polycube. Row 1 and 2 show the volume rendering of
the volumetric data and polycube parameterization respectively.

Fig. 5. Comparison. We map the dog head to unit ball using volumetric harmonic map [7] and our
approach. As shown in the cut view of iso-parametric curves, our method is more robust and leads
to hexahedral meshes with better quality. Our approach also guarantees that the iso-parametric
curve which follow the direction of the gradient is orthogonal to the other two iso-parametric
curves which span the iso-surface of the Green’s function.

surfaces) [15]. Figure 3 illustrates the pipeline of parameterizing the star shapes to the
polycube.

5 Experimental Results and Applications

This section showcases the experimental results and a variety of applications that can
benefit from our star-shape parameterization method, from volumetric morphing to
volume-based computation on the GPU.

Results. Figure 4 shows the parameterization of the pig-shaped coin box to a polycube.
The volume rendering and the cut views reveal the quality of the parameterization.

We compared our method with the volumetric harmonic map method [7]. As men-
tioned above, the volumetric harmonic map is not guaranteed to be homeomorphic even
though the domain is convex. In Figure 5, we parameterized the star model to the unit

Parameterization of Star-Shaped Volumes Using Green’s Functions 229

ball. As shown in the cut view and iso-parametric curves, our method is robust and leads
to hexahedral meshes with better quality.

Volumetric Morphing. To morph from one star-shape to another, we parameterize
them to a common parametric domain, such as a ball and then determine a smooth map
(e.g., identity map in our current implementation) between the balls. Figure 6 shows a
running example from star to Venus head.

Anisotropic Solid Texture. Solid textures [24], or anisotropic solid textures [25],
allow us to fill the interior of 3D models with spatially-varying and anisotropic texture
patterns. Takayama et al. [25] proposed a lapped texture approach [26] to synthesize
anisotropic solid textures by pasting solid texture examplars [24] repeatedly over the
tetrahedron structure of 3D geometries. This approach can result in high-quality and
large-scale solid textures with low computation cost; to create such a texture, the user,
however, has to mark up volumetric tensor field and edit the texture in a geometry-
dependent fashion.

Our star-shape volume parameterization method can further broaden the applicability
of the lapped solid texture results to a larger pool of geometric models. As illustrated in
Figure 7, we can first parameterize a given star shape that has been pre-synthesized with
lapped solid texture to a solid ball using the Green’s function; hence, we can transfer the
synthesized texture information from the input geometric model to our star-shape model
through the common parametric ground. Our approach allows the reuse of synthesized
anisotropic solid textures without incurring additional texture synthesis. Furthermore,
since our volume parameterization method is a diffeomorphism, we can guarantee the
bijectivity and smoothness in the texture transfer process, as demonstrated in Figure 7.

GPU-based Volumetric Computation. Another advantage of having a smooth volume
parameterization is the luxury of being able to perform computations throughout the
volume by taking the computation process to the highly-structured parametric domain.
Here we can parameterize the given star-shape model by a cube model (or polycube) so
that the data inside the parametric domain can naturally be modeled by a 3D texture;

Fig. 6. Volumetric morphing between the star and the Venus head

230 J. Xia et al.

Fig. 7. Transferring the anisotropic solid texture from kiwi (column 1) to star shapes (column 2:
dog head; column 3: star)

Fig. 8. Volumetric reaction-diffusion computation on the GPU. The first column shows the
reaction-diffusion results in equilibrium state over the cube-based parametric domain, whereas
the second column shows the reaction-diffusion results after mapped to the star-shaped model.
Without distortion compensation by the metric matrix, we can see distortion in the lower right
pattern, but such a distortion can be corrected (see upper row) if we take the metric matrix into
account.

Parameterization of Star-Shaped Volumes Using Green’s Functions 231

as a result, we can carry out the computation on the GPU and further accelerate the
computation performance.

In detail, we first parameterize a given star-shape model by a cube shape so that
the reaction-diffusion data (concentration values, etc.) can be naturally modeled as
3D textures stored in our GPU implementation. Here, we employ and extend Turing’s
reaction-diffusion model [27,28] to three-dimensional, and expectedly, 3D sphere-like
spot patterns will be developed when the chemical concentrations reach a dynamic equi-
librium state. Furthermore, we employ Witkin and Kass’s method [29] to account for
the distortion caused by the parameterization (since we compute the reaction-diffusion
on the parameterization grid): Given the parameterization from star-shape to cube, we
compute the local Jacobian per voxel element over the 3D parameterization grid; then,
we can compute the metric tensor as a three-by-three matrix M = JT J. Hence, we can
adaptively and locally modify the rate of diffusion by the diagonal values in the metric
matrix; this allows us to temper the reaction-diffusion pattern, thereby compensating
the volumetric distortion in the parameterization. Figure 8 shows the reaction-diffusion
results on the Venus head model.

6 Conclusion and Future Work

This paper presented a volume parameterization technique for star shapes. On the theo-
retical side, we showed that the Green’s function in a star-shaped volume has a unique
critical point and then give a constructive proof of the existence of a diffeomorphism
between two star shapes. On the application side, we developed algorithms to parame-
terize star shapes to simple domains such as solid balls and star-shaped polycubes. We
also applied the star shape parameterization to several applications, such as volumetric
morphing, anisotropic solid texture transfer and GPU-based volumetric computing.

The proposed technique has several limitations that can lead to further investiga-
tions. First, the current framework only applies to star-shaped volumes. However, most
real-world shapes are not star-shaped. One possible solution to parameterize volumes
of arbitrary topology and geometry is to segment the shape into a set of disjoint star
shapes, then parameterize each shape individually, and finally glue patches together
with a certain order of continuity. As a future direction, we will develop automatic
techniques to facilitate the segmentation and gluing procedures. Second, from the im-
plementation point of view, we solve the Green’s function using fundamental solution
method, which requires solving a dense linear system. Thus, it is not efficient when the
number of source points is too large.

Acknowledgements

This work was partially supported by AcRF RG69/07, AcRF RG13/08, NSF CCF-
1081424, ONR N000140910228, CCF-0448399, and CCF-0830550. We would like to
thank Kenshi Takayama for the anisotropic solid textures and the anonymous reviewers
for their constructive comments. Special thanks go to one reviewer who pointed out the
reference [20].

232 J. Xia et al.

References

1. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in
Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)

2. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications.
Foundations and Trends� in Computer Graphics and Vision 2(2) (2006)

3. Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral meshes with good dihedral
angles. ACM Trans. Graph. 26(3), 57 (2007)

4. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing.
ACM Trans. Graph. 24(3), 617–625 (2005)

5. Attali, D., Cohen-Steiner, D., Edelsbrunner, H.: Extraction and simplification of iso-surfaces
in tandem. In: Symposium on Geometry Processing, pp. 139–148 (2005)

6. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deforma-
tion using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)

7. Wang, Y., Gu, X., Thompson, P.M., Yau, S.T.: 3d harmonic mapping and tetrahedral meshing
of brain imaging data. In: MICCAI (2004)

8. Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Harmonic volumetric mapping for solid
modeling applications. In: SPM, pp. 109–120 (2007)

9. Martin, T., Cohen, E., Kirby, M.: Volumetric parameterization and trivariate b-spline fitting
using harmonic functions. In: Proceeding of Symposium on Solid and Physical Modeling
(2008)

10. Ju, T., Schaefer, S., Warren, J.D.: Mean value coordinates for closed triangular meshes. ACM
Trans. Graph. 24(3), 561–566 (2005)

11. Floater, M.S., Kós, G., Reimers, M.: Mean value coordinates in 3d. Computer Aided Geo-
metric Design 22(7), 623–631 (2005)

12. Fairweather, G., Karageorghis, A.: The method of fundamental solution for elliptic boundary
value problems. Advances in Computational Mathematics 9(1-2), 69–95 (1998)

13. Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Meshless harmonic volumetric map-
ping using fundamental solution methods. IEEE Transactions on Automation Science and
Engineering 6(3), 409–422 (2009)

14. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans.
Graph. 23(3), 853–860 (2004)

15. Wang, H., He, Y., Li, X., Gu, X., Qin, H.: Polycube splines. Computer-Aided Design 40(6),
721–733 (2008)

16. Wang, H., Jin, M., He, Y., Gu, X., Qin, H.: User-controllable polycube map for manifold
spline construction. In: ACM Symposium on Solid and Physical Modeling (SPM 2008),
pp. 397–404 (2008)

17. Lin, J., Jin, X., Fan, Z., Wang, C.C.L.: Automatic polycube-maps. In: Chen, F., Jüttler, B.
(eds.) GMP 2008. LNCS, vol. 4975, pp. 3–16. Springer, Heidelberg (2008)

18. He, Y., Wang, H., Fu, C.W., Qin, H.: A divide-and-conquer approach for automatic polycube
map construction. Comput. Graph. 33(3), 369–380 (2009)

19. Weber, H.J., Arfken, G.B.: Mathematical Methods For Physicists. Academic Press, London
(2005)

20. Gergen, J.J.: Note on the green function of a star-shaped three dimensional region. American
Journal of Mathematics 53(4), 746–752 (1931)

21. MOSEK, http://www.mosek.com/
22. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal

mapping and its application to brain surface mapping. TMI 23(8), 949–958 (2004)
23. Si, H.: Tetgen: A quality tetrahedral mesh generator and three-dimensional delaunay trian-

gulator, http://tetgen.berlios.de/

http://www.mosek.com/
http://tetgen.berlios.de/

Parameterization of Star-Shaped Volumes Using Green’s Functions 233

24. Kopf, J., Fu, C.W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.T.: Solid tex-
ture synthesis from 2d exemplars. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2007) 26(3), 2:1–2:9 (2007)

25. Takayama, K., Okabe, M., Ijiri, T., Igarashi, T.: Lapped solid textures: filling a model with
anisotropic textures. ACM Trans. Graph. 27(3), 1–9 (2008)

26. Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures. In: SIGGRAPH, pp. 465–470 (2000)
27. Turing, A.: The chemical basis of morphogenesis. Royal Society of London Philosophical

Transactions Series B 237, 37–72 (1952)
28. Turk, G.: Generating textures on arbitrary surfaces using reaction-diffusion. In: SIGGRAPH,

pp. 289–298 (1991)
29. Witkin, A.P., Kass, M.: Reaction-diffusion textures. In: SIGGRAPH, pp. 299–308 (1991)

Appendix

We prove the main theoretical results in this appendix.

Lemma 1. A volume M is a star shape if and only if there exists a point c ∈ M such
that for any boundary point p ∈ ∂M,

(c−p,n(p))≤ 0, (3)

where n(p) is the normal vector at the point p.

Proof. Assume the boundary surface ∂M is represented by the zero level set of an
implicit function f : R

3 → R, i.e., ∂M = f−1(0) and the interior points r ∈M satisfy
f (r)< 0.

(=⇒ necessary condition) If M is a star shape, for any boundary point p∈M, the ray
p− c intersects ∂M only once and the intersection point is p. Thus, for any ε ∈ [0,1],
the point q = p+ εc−p∈M is inside M. Then, for a small ε > 0,

f (q) = f (p)+ ε! f (p) · (c−p)+ O(ε2‖c−p‖2).

Note that f (p) = 0 and f (qε)≤ 0, thus,! f (p) ·(qε−p)≤ 0. Since! f (p) points to the
normal direction n(p), and c−p has the same direction as qε−p, then (c−p,n(p))≤ 0.

(⇐= sufficient condition) Given a point c ∈ M, for every boundary point p, (c−
p,n(p)) ≤ 0 holds. Assume M is not a star shape, then there exists a ray from c which
intersects ∂M at least twice. Without loss of generality, say p1 and p2 are the first two
intersection points and p1 is closer to c. Consider a point q = ε(p1 − p2) + p2 with
ε > 0. Clearly, q is on the segment p1p2 and out of M. Thus, f (q) > 0. Using Taylor
expansion,

f (q) = f (p2)+ ε! f (p2) · (p1−p2)+ O(ε2‖p1−p2‖2).

Note that f (p2) = 0 and! f (p2) points to the same direction as normal n(p2), p1−p2

points to the same direction as c− p2, thus, ! f (p2) · (p1 − p2) ≤ 0 and f (q) ≤ 0,
contradiction! Q.E.D.

Lemma 2 [Green’s function on a star shape]. Suppose M is a star shape with a cen-
ter c∈M, G is the Green’s function with a pole at c, then c is the only critical point of G.

234 J. Xia et al.

Proof. Without loss of generality, we assume c is at the origin in R3. Let B(c,ε) be a
small ball centered at c with radius ε . Consider the following function, the inner product
of the point p = (x1,x2,x3) and the gradient of G at p,

f (p) = (p,∇G) = x1
∂G
∂x1

+ x2
∂G
∂x2

+ x3
∂G
∂x3

.

By direct computation, it is easy to verify that

Δ f = (∑
k

∂ 2

∂x2
k

)(∑
i

xi
∂G
∂xi

) = 0.

In details,
∂ 2

∂x2
k

(∑
i

xi
∂G
∂xi

) = 2
∂ 2G

∂x2
k

+∑
i

xi
∂ 3G

∂x2
k∂xi

,

therefore

(∑
k

∂ 2

∂x2
k

)(∑
i

xi
∂G
∂xi

) = 2ΔG+∑
i

xiΔ
∂G
∂xi

.

Because G is harmonic, therefore, ∂G
∂xi

is also harmonic, and the above equation equals
zero.

Therefore f (p) is a harmonic function on M/B(c,ε). According to the maximum
principle of harmonic maps, f reaches its max and min values on the boundary surfaces
∂M and ∂B(c,ε). Here by definition, and c is the pole of f , f is negative on ∂B(c,ε).
Because M is a star shape, on ∂M, (n, p)> 0, where n is the normal on p to ∂M. ∇G is
orthogonal to ∂M and is on the opposite direction of n. Therefore, f is always negative
in the whole volume M/B(c,ε), ∇G is non-zero in M/B(c,ε). Since ε is arbitrary, ∇G
is non-zero for all points in M/{c}. We conclude that G has no critical points in M
except c. Q.E.D.

Lemma 3. Suppose M is a star shape with a center c ∈ M, G is the Green’s function
with a pole at c. Then for any r ∈ R+, the level set G−1(r) is a topological sphere.

Proof. Let r ∈ R+, G−1(r) is the level set of G. G−1(0) is the boundary of M, ∂M,
which is a topological sphere. By lemma 2, there is no critical points in G−1([0,r]).
According to Morse theory, G−1(r) and G−1(0) share the same topology. In fact, we
can start from a point p ∈ G−1(r) and trace along the integration curve of the gradient
of G and reach a unique point q on G−1(0), this gives us a diffeomorphism from G−1(r)
to G−1(0). Q.E.D.

Theorem 1. Suppose M and M̃ are star-shaped volumes with centers c and c̃, G and
G̃ are Green’s functions with the poles at c and c̃ respectively. The Green’s functions
induce foliations. If the boundary map ∂M→ ∂M̃ is a diffeomorphism, the map M→ M̃
constructed using the foliations is a diffeomorphism.

Proof. We first introduce the concepts of foliation and leaf.

Parameterization of Star-Shaped Volumes Using Green’s Functions 235

A dimension m foliation of an n-dimensional manifold M is a covering by charts
Ui together with maps φi : Ui → Rn, such that on the overlaps Ui ∩Uj, the transition
functions φi j = φ j ◦φ−1

i take the form

φi j(x,y) = (φ1
i j(x),φ

2
i j(x,y))

where x denotes the first n−m coordinates, y denotes the last m coordinates. In each
chart Ui the x = const stripes match up with the stripes on Uj. The stripes piece
together from chart to chart to form maximal connected injectively immersed subman-
ifolds called the leaves.

The we show the proof. Let F1 be the foliation of M by topological spheres induced
by the level sets of G, F2 be the foliation of M induced by the gradient lines of G.
We choose an open cover of M/{c}, {(Uα ,φα)}, Uα is the union for leaves in F2,
Uα = ∪ f , f ∈ F2, such that φα : Uα → R3, leaves in F1 are mapped to the planes z =
const, leaves in F2 are mapped to lines (x,y) = const. {(Uα ,φα)} is a differential atlas.
Similarly, we can construct a differential atlas of M̃/{c̃}, {Ũ , φ̃β}, the level sets and
the integration lines are mapped to canonical planes orthogonal to the z-axis and lines
parallel to the z-axis.

The restriction of the map f : M → M̃ on the local coordinate system

fαβ = φ̃β ◦ f ◦φ−1
α : φα (Uα)→ φ̃β (Ũβ)

has the following form
fαβ (x,y,z) = (g(x,y),z),

where g(x,y) is determined by the restriction of f on the boundary, f |∂M : ∂M → ∂M̃.
The restriction is a diffeomorphism, therefore g(x,y) is a diffeomorphism, and fαβ is a
diffeomorphism. Because Uα and Ũβ is arbitrarily chosen, f itself is a diffeomorphism.
Q.E.D.

Optimal Analysis-Aware Parameterization of
Computational Domain in Isogeometric Analysis

Gang Xu1, Bernard Mourrain1, Régis Duvigneau2, and André Galligo3

1 GALAAD, INRIA Sophia-Antipolis, 2004 Route des Lucioles, 06902 Cedex, France
2 OPALE, INRIA Sophia-Antipolis, 2004 Route des Lucioles, 06902 Cedex, France

Firstname.Lastname@sophia.inria.fr
3 University of Nice Sophia-Antipolis, 06108 Nice Cedex 02, France

galligo@unice.fr

Abstract. In isogeometric analysis (IGA for short) framework, compu-
tational domain is exactly described using the same representation as
that employed in the CAD process. For a CAD object, we can construct
various computational domain with same shape but with different param-
eterization. One basic requirement is that the resulting parameterization
should have no self-intersections. In this paper, a linear and easy-to-check
sufficient condition for injectivity of planar B-spline parameterization is
proposed. By an example of 2D thermal conduction problem, we show
that different parameterization of computational domain has different
impact on the simulation result and efficiency in IGA. For problems with
exact solutions, we propose a shape optimization method to obtain opti-
mal parameterization of computational domain. The proposed injective
condition is used to check the injectivity of initial parameterization con-
structed by discrete Coons method. Several examples and comparisons
are presented to show the effectiveness of the proposed method. Com-
pared with the initial parameterization during refinement, the optimal
parameterization can achieve the same accuracy but with less degrees of
freedom.

Keywords: isogeometric analysis; analysis-aware parameterization of
computational domain, injectivity, shape optimization, steepest descent
method.

1 Introduction

CAGD software usually relies on splines or NURBS representations,but the analy-
sis software for CAD object uses mesh-based geometric descriptions (structured or
unstructured). Therefore, in conventional approaches, several information trans-
fers occur during the design phase, yielding approximations and non-linear trans-
formations that can significantly deteriorate the overall efficiency of the design
optimization procedure.

The isogeometric approach proposed by Hughes et al. [19] is employed to
overcome this difficulty by using CAD standards as unique representation for all
disciplines. The isogeometric analysis consists in developing methods that use
NURBS representations for all design and analysis tasks:

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 236–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 237

– the geometry is defined by NURBS curves or surfaces;
– the computation domain is defined by planar NURBS surfaces or NURBS

volumes instead of discrete meshes;
– the solution fields are obtained by using a finite-element approach that uses

NURBS basis functions instead of classical Lagrange polynomials;
– the optimizer controls directly NURBS control points.

This framework allows to compute the analysis solution on the exact geome-
try (not a discretized geometry), obtain a more accurate solution (high-order
approximation), reduce spurious numerical sources of noise that deteriorate con-
vergence, avoid data transfers between the design and analysis phases. Moreover,
NURBS representation is naturally hierarchical and allows to perform refinement
operations to improve the analysis result.

In finite element analysis (FEA), mesh generation, which generates discrete
geometry as computational domain from given CAD object, is a key and the
most time-consuming step. In IGA framework, parameterization of computa-
tional domain, which corresponds to the mesh generation in FEA, also has some
impact on analysis result and efficiency. Moreover, in FEA, one can perform ar-
bitrary refinements on the computational mesh, but in IGA using tensor product
B-splines, the refinement is not arbitrary, we can only perform refinement op-
erations in u direction and v direction by knot insertion or degree evaluation.
Hence, parameterization of computational domain is more important in IGA.

The parameterization of a computational domain in IGA is determined by
control points, knot vectors and the degrees of B-spline objects. For IGA problem
of two dimension, the knot vectors and the degree of computational domain are
determined by the given boundary curves. Hence, finding the optimal placement
of inner control points for a specified physical problem, is a key issue in IGA.
A basic requirement of resulting parameterization for IGA is that it doesn’t
have self-intersections. In this paper, we first propose a linear and easy-to-test
sufficient condition for injectivity of planar B-spline parameterization. Then we
show that different parameterizations of computational domain has different
impact on the simulation results in IGA. For problems with exact solutions, a
shape optimization method is proposed to obtain an optimal parameterization of
computational domain. Some examples and comparisons are presented based on
the heat conduction problem to show the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section 2 reviews the re-
lated work in isogeometric analysis. Section 3 proposes the linear sufficient con-
ditions for injectivity of planar B-spline parameterization. Section 4 describes
a test IGA model and shows the impact of different parameterizations of com-
putational domain. Section 5 presents the shape optimization method to obtain
an optimal parameterization of a computational domain. Some examples and
comparisons are also presented in Section 5. Finally, we conclude this paper and
outline future works in Section 6.

238 G. Xu et al.

2 Related Work

In this section, we review related works in IGA and parameterization of compu-
tational domains.

The concept of IGA was firstly proposed by T.R Hughes et al. [19] in 2005
to achieve the seamless integration of CAD and FEA. Since then, many re-
searchers in the fields of mechanical engineering and geometric modeling were
involved in this topic. The current work on isogeometric analysis can be classi-
fied into three categories: (1) application of IGA to various simulation problems
[2,5,6,10,14,18,20,27,28]; (2) application of various geometric modeling tools to
IGA [7,12,24]; (3) accuracy and efficiency improvement of IGA framework by
reparameterization and refinement operations [1,3,8,9,15,21,25].

The topic of this paper belongs to the third field. As far as we know, there are
few works on the parametrizations of computational domains for IGA.
T. Martin et al. [25] proposed a method to fit a genus-0 triangular mesh by
B-spline volume parameterization, based on discrete volumetric harmonic func-
tions; this can be used to build computational domains for 3D IGA problems.
A variational approach for constructing NURBS parameterization of swept vol-
umes is proposed by M. Aigner et al [1]. Many free-form shapes in CAD systems,
such as blades of turbines and propellers, are covered by this kind of volumes.
E. Cohen et.al. [8] proposed the concept of analysis-aware modeling, in which the
parameters of CAD models should be selected to facilitate isogeometric analy-
sis. They also demonstrated the influence of parameterization of computational
domains by several examples. In this paper, a method for generating optimal
analysis-aware parameterization of computational domain is proposed based on
shape optimization method.

3 A Linear Sufficient Condition for Injectivity of Planar
B-spline Parameterization

The main idea of the isogeometric approach is to use the same representation for
the geometry and the physical solutions we are interested in. Schematically, the
geometry Ω involved in the physical problem can be a surface or a volume in a
three-dimensional space R

3. Let us call x = (x, y, z) the coordinates associated to
this space. In our case, this geometry will be represented by a parameterization
σ for a domain P of the parameter space. Let us call u the coordinates of this
parameter domain, which could be of dimension 2 for a surface or 3 for a volume.
This parameterization will be given by B-spline functions with knots in P and
control points in R3.

The concept of isogeometry consists in representing the physical quantities
Φ ∈ Rp on the geometry Ω using the same type of B-spline representation as for
the geometry Ω. In other words, given a point x = σ(u) ∈ Ω with u ∈ P , we
associate to it the physical quantities Φ(u) where Φ(u) is a B-spline function with
nodes in P and control points in Rp. This means that the map x ∈ Ω �→ Φ ∈ Rp

is defined implicitly as x �→ Φ ◦ σ−1(x).

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 239

Consequently, the framework of isogeometry is thus valid when the parame-
terization σ of the geometry is injective (or bijective on its image). We are going
to describe sufficient and easy-to-check conditions for the injectivity of σ. We
will consider this problem in the context of finding a “good” parameterization
of a domain when its boundary is given. In [23], a general sufficient condition is
proposed for injective parameterization.

Proposition 1. Suppose that σ is a C1 parameterization from a compact do-
main P ⊂ Rn with a connected boundary to a geometry Ω ⊂ Rn. If σ is injective
on the boundary ∂P of P and its Jacobian Jσ does not vanish on P, then σ is
injective.

For a parameterization σ from [a, b]× [c, d] to Ω ⊂ R
2, we define the boundary

curves as the image of {a} × [c, d], {b} × [c, d], [a, b] × {c}, [a, b]× {b} by σ. We
say that σ defines a regular boundary if these curves do not intersect pairwise,
except at their end points and if they have no self-intersection.

As a consequence of the previous proposition, we get the following injectivity
test for standard B-spline tensor product parameterization of a planar domain.

Proposition 2. Let σ be a C1 parameterization from [a, b] × [c, d] to Ω ⊂ R2

which defines a regular boundary. If its Jacobian Jσ does not vanish on [a, b]×
[c, d], then σ is injective.

These tests involve injectivity conditions on the boundary, which can be checked
recursively using the same techniques, non-intersection tests for boundary curves
and surfaces which are provided for instance by geometric (subdivision) algo-
rithms and the local injectivity condition corresponding to the non-vanishing
of the Jacobian. This last condition requires to test on all the domain Ω that
the Jacobian does not vanish. Hereafter we propose a sufficient and easy-to-test
condition to ensure the local injectivity condition.

We consider first the case of a planar parameterization

σ : u ∈ P := [a, b]× [c, d] �→ σ(u) :=
∑

0≤i≤l1,0≤j≤l2

ci,jNi,j(u),

where ci,j ∈ R2 are the control points and Ni,j(u) are the B-spline basis func-
tions. The derivative of σ(u) with respect to u1 can be expressed in terms of the
differences Δ1

i,j := ci+1,j − ci,j :

∂u1σ(u) :=
∑

0≤i≤l1−1,0≤j≤l2

ω1
i,jΔ

1
i,jN

1
i,j(u),

where N1
i,j is the B-spline basis function with one degree less in u1, ω1

i,j is a
positive factor. We denote by C1(c) the convex cone of R2 generated by the half
rays R+ ·Δ1

i,j .
Similarly, the derivative of σ(u) with respect to u2 can be expressed in terms

of the differences Δ2
i,j := ci,j+1 − ci,j :

∂u2σ(u) :=
∑

0≤i≤l1−1,0≤j≤l2−1

ω2
i,jΔ

2
i,jN

2
i,j(u),

240 G. Xu et al.

(a) transverse cone (b) non-transverse cone

Fig. 1. Injectivity test by cones

where N2
i,j is the B-spline basis with one degree less in u2, ω2

i,j is a positive
factor. We denote by C2(c) the convex cone of R2 generated by the half rays
R+ · Δ2

i,j . If there exist two opposite vectors, which are on a straight line, we
define Ci(c) as a half-plane.

We say that two cones C1, C2 are transverse if R · C1 and R · C2 intersect only
at {0}.

Proposition 3. Let σ be a B-spline parametrisation, which is at least C1 from
P := [a, b]× [c, d] to Ω ⊂ R2 given by the control points c. If the boundary curves
do not intersect and have no self-intersection point and the cones C1(c), C2(c)
are transverse, then σ is injective on P.

Proof. We check first that the transversality of the cones C1(c), C2(c) implies
that the Jacobian of σ is not vanishing. This jacobian Jσ(u) is obtained by
taking the determinant |∂u1σ, ∂u2σ| which expands as∑

0≤i≤l1−1,0≤j≤l2

∑
0≤i′≤l1−1,0≤j′≤l2−1

|Δ1
i,j , Δ

2
i′,j′ |ω1

i,jω
2
i′,j′N

1
i,j(u)N2

i′,j′ (u).

Since the cone C1(c) and C2(c) are transverse, the determinants |Δ1
i,j , Δ

2
i′,j′ | have

a constant sign for Δ1
i,j ∈ C1(c), Δ2

i′,j′ ∈ C2(c). As the basis functions and the
factors are positive, the Jacobian Jσ(u) cannot vanish at u ∈ G, except if all the
N1

i,j(u)N2
i′,j′(u) vanish, which is not possible.

The map σ is locally injective on P . By Proposition 2, we deduce that σ is
globally injective on P . �

Fig.1 shows two examples of the injectivity testing method. In Fig.1 (a), it sat-
isfies the sufficient condition in our method, but it does not satisfy the sufficient
condition of the method proposed in [17]. Hence, our method is an improved
version of the method presented in [17].

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 241

Linear constraint for injectivity. This condition can be used to devise an
algorithm which constructs an injective parameterization for given boundary
control points. We first consider the planar case. Given four planar boundary
curves described by the controls points ci,0, ci,l2 , c0,j , cl1,j , with 0 ≤ i ≤ l1, 0 ≤
j ≤ l2, we define the boundary cone C0

1(c) (resp. C0
2(c)) as the cone generated

by the vectors Δ1
i,0(c), Δ

1
i,l2

(c) for 0 ≤ i ≤ l1 − 1 (resp. Δ2
0,j(c), Δ

2
l2,j(c) for

0 ≤ j ≤ l2−1). We assume that these boundary curves form a regular boundary
and that the two boundary cones C0

1(c), C0
2(c) are transverse. R · C0

1(c) is the
cone defined by F+

1 (C0
1(c)) ≤ 0, F−

1 (C0
1(c)) ≤ 0, where F+

1 and F−
1 are the linear

equations defining the boundary of R · C0
1(c). We defined similarly F+

2 , F
−
2 for

C0
2(c).
To apply Proposition 3, the inner control points ci,j should satisfy the follow-

ing linear constraints for injective parameterization:{
F+

1 (ci+1,j − ci,j) ≤ 0, F−
1 (ci+1,j − ci,j) ≤ 0, 0 ≤ i < l1, 0 < j < l2

F+
2 (ci,j+1 − ci,j) ≤ 0, F−

2 (ci,j+1 − ci,j) ≤ 0, 0 < i < l1, 0 ≤ j < l2.
(1)

The linear condition in (1) is a rather restrictive condition, and it is sufficient to
require that the two cones constructed from the first derivative vectors are sep-
arated. Inspired from [22], the following constraints are proposed as alternative
condition{

F+
2 (ci+1,j − ci,j) + F−

1 (ci+1,j − ci,j) ≤ 0, F−
2 (ci+1,j − ci,j) + F+

1 (ci+1,j − ci,j) ≥ 0,
F+

2 (ci,j+1 − ci,j) + F−
1 (ci,j+1 − ci,j) ≥ 0, F−

2 (ci,j+1 − ci,j) + F+
1 (ci,j+1 − ci,j) ≥ 0,

where 0 < i < l1, 0 ≤ j < l2.

Remarks 1. For 3D case, the 3D convex cones can be also constructed from the
derivative vectors in three parametric directions. The difference is that the cross
product condition should be considered in the injectivity condition as in [17].

These conditions provide an easy-to-check method for the injectivity of a
parameterization. In Section 5, we will employ it to check the injectivity of
initial parameterization.

4 Isogeometric Analysis and Parameterization of
Computational Domain

In this section, we aim at presenting the reasons why solutions from IGA depend
strongly on the choice of the parameterization. This will be illustrated by a heat
conduction problem.

4.1 Test Model — Heat Conduction Problem

Given a domain Ω with Γ = ∂ΩD ∪ ∂ΩN , we consider the following thermal
conduction problem:

∇(κ(x)∇T (x)) = f(x) in Ω
T (x) = T0(x) on ∂ΩD

κ(x)
∂T

∂n
(x) = Φ0(x) on ∂ΩN ,

(2)

242 G. Xu et al.

where x are the Cartesian coordinates, T represents the temperature field and
κ the thermal conductivity. Dirichlet and Neumann boundary conditions are
applied on ∂ΩD and ∂ΩN respectively, T0 and Φ0 being the imposed temperature
and thermal flux (n unit vector normal to the boundary). f is a user-defined
function that allows to generate problems with an analytical solution, by adding
a source term to the classical heat conduction equation.

According to a classical variational approach, we seek for a solution T ∈
H1(Ω), such as T (x) = T0(x) on ∂ΩD and:∫

Ω

∇(κ(x)∇T (x)) ψ(x) dΩ =
∫

Ω

f(x) ψ(x) dΩ ∀ψ ∈ H1
∂ΩD

(Ω),

where ψ(x) are test functions. After integrating by parts and using boundary
conditions, we obtain:

−
∫

Ω

κ(x)∇T (x) ∇ψ(x) dΩ +
∫

∂ΩN

Φ0(x) ψ(x) dΓ =
∫

Ω

f(x) ψ(x) dΩ. (3)

According to the IGA paradigm, the temperature field is represented using B-
spline basis functions. For a 2D problem, we have:

T (ξ, η) =
ni∑

i=1

nj∑
j=1

N̂pi

i (ξ) N̂pj

j (η)Tij ,

where N̂i functions are B-Spline basis functions and u = (ξ, η) ∈ P are domain
parameters. Then, we define the test functions ψ(x) in the physical domain such
as:

Nij(x) = Nij(x, y) = Nij(T (ξ, η)) = N̂ij(ξ, η) = N̂pi

i (ξ) N̂pj

j (η).

The weak formulation Eq. 3 reads:
nk∑

k=1

nl∑
l=1

Tkl

∫
Ω

κ(x)∇Nkl(x) ∇Nij(x) dΩ =
∫

∂ΩN

Φ0(x) Nij(x) dΓ +
∫

Ω

f(x) Nij(x) dΩ.

Finally, we obtain a linear system similar to that resulting from the classical
finite-element methods, with a matrix and a right-hand side defined as:

Mij,kl =
∫

Ω

κ(x)∇Nkl(x) ∇Nij(x) dΩ

=
∫
P
κ(T (u))∇uÑkl(u)B(u)TB(u) ∇uÑkl(u)J(u) dP

Sij =
∫

∂ΩN

Φ0(x) Nij(x) dΓ +
∫

Ω

f(x) Nij(x) dΩ

=
∫

∂PN

Φ0(T (u)) Ñkl(u)J(u) dΓ̃ +
∫
P
f(T (u)) Ñkl(u)J(u) dP .

where J is the Jacobian of the transformation, BK is the transposed of the
inverse of the Jacobian matrix. The above integrations are performed in the
parameter space using classical Gauss quadrature rules.

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 243

(a) control point placement I (b) control point placement II

(c) isoparametric curves I (d) isoparametric curves II

Fig. 2. Two different parameterizations of computational domains. (a),(b): two differ-
ent placements of inner control points. (c), (d): isoparametric curves on the computa-
tional domain with respect to the control points placements in (a) and (b).

Starting from a planar B-spline surface as computational domain, a general
framework of an isogeometric solver for thermal conduction problem (2) has been
implemented as plugins in the AXEL1 platform, yielding a B-spline surface as
solution field. Gauss-Seidel algorithm is employed to solve the linear system. In
order to improve the simulation results, refinement operation can be performed
for two parametric directions. Additional details concerning the methods can be
found in [13].

4.2 Isogeometric Analysis with Different Parameterization

As mentioned above, given four boundary planar B-spline curves, we can construct
various planar B-spline surfaces with different parameterizations. For Example I
in Fig. 2, we present two kinds of parameterization for a computational domain
1 http://axel.inria.fr/

244 G. Xu et al.

(a) solution surface of
parameterization I

(b) colormap of solution surface
based on parameterization I

(c) solution surface of
parameterization II

(d) colormap of solution surface
based on parameterization II

(e) exact solution surface (f) colormap of exact solution
surface

Fig. 3. Simulation results and exact solution

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 245

Fig. 4. Error analysis with the curve (log
√

M, log e), where M is the number of control
points in each refinement

Ω(x, y) = [0, 6] × [0, 6] represented by cubic B-spline surfaces, where the knot
vectors in u and v directions are both {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. Fig. 2 (a) and
Fig. 2(b) present two different placements of inner control points, Fig. 2 (c) and
Fig. 2(d) show the isoparametric curves on the computational domain with respect
to different placements of inner control points.

We test these two parameterizations on the heat conduction problem (2) with
source term

f (x, y) = −4
9

sin(
πx

3
) sin(

πy

3
). (4)

For this problem with boundary condition T 0(x) = 0 and Φ0(x) = 0, the exact
solution over the computational domain [0, 6]× [0, 6] is

T (x, y) = 2 sin(
πx

3
) sin(

πy

3
). (5)

Fig.3 (a) and Fig.3 (b) show the approximate solution surface, color map and
iso-temperature lines with respect to parameterization I; Fig.3 (c) and Fig.3
(d) show the approximate solution surface, color map and iso-temperature lines
with respect to parameterization II. In Fig.3 (e) and Fig.3(f), the exact solution
surface and its colormap are presented. Obviously, parameterization I is better
than parameterization II for this specified heat conduction problem.

Refinement via knot insertion is an efficient operation to improve the result
of isogeometric analysis. We compare the error history during refinement opera-
tion for these two different parameterization in Fig.4. The error is computed in
relative L2 norm as follows [24]

e =

√√√√∫
Ω

(T − T̃)T (T − T̃)dΩ∫
Ω

TT TdΩ
,

246 G. Xu et al.

where T is the exact solution and T̃ is the approximate solution. From Fig.4,
we see that different parameterizations have different impact on the final result
after refinement operation. Though the convergence rates of the two different
parameterization are in good agreement with theoretical convergence (4 for cubic
parameterization), for an error value about 5×10−5, parameterization I requires
35× 35 control points, and parameterization II requires 67 × 67 control points.
One reasonable explanation is that with B-spline tensor product surfaces, we
can only perform the refinement operations along the parametric directions in
IGA, hence it is more restricted than the refinement of a mesh in FEA.

The above example and its analysis show that good parameterization of com-
putational domain is a key issue for IGA. In the next section, we will propose a
shape optimization method to construct optimal parameterization of a compu-
tational domain.

5 Optimization Method for Parametrization of
Computational Domain

5.1 Problem Statement

The problem studied in this section can be stated as follows: given four coplanar
boundary B-spline curves, find the inner control points such that the parameter-
ization of a computational domain is optimal for an IGA problem with known
exact solution. The extension of the proposed method to isogeometric problems
without known exact solution is one of our ongoing work.

5.2 Shape Optimization Method

The shape optimization problem consists in finding the shape which is optimal in
that it minimizes a certain cost function while satisfying given constraints. The
purpose of shape optimization in CAE is to optimize the CAD object for some
physical problem, and the design variables are the control points of the CAD
object. For 2D isogeometric shape optimization problem, the design variables
are the control points of boundary B-spline curves.

Inspired from the idea of shape optimization, in order to obtain optimal pa-
rameterization of computational domain, we should let the inner control points,
rather than boundary control points, be the design variables for the shape opti-
mization, and find the best placement of inner control points to make the value
of a cost function as small as possible.

Initial construction of inner control points. As the shape optimization
problem, we need to construct an initial placement of inner control points as
starting point in the iteration process. We rely on the discrete Coons method
presented in [16] to generate inner control points as initial value from boundary
control points.

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 247

Fig. 5. Example II

248 G. Xu et al.

Given the boundary control points P0,j ,Pn,j ,P i,0,P i,m, i = 0, . . . , n, j =
0, . . . ,m, the inner control points P i,j (i = 1, . . . , n − 1, j = 1, . . . ,m − 1) can
be constructed by the discrete Coons method as follows:

P i,j = (1− i

n
)P0,j +

i

n
Pn,j + (1 − j

m
)P i,0 +

j

m
P i,m

−[1− i

n

i

n
]
(

P0,0 P0,m

Pn,0 Pn,m

)(
1− j

m
j
m

)
Remarks 2. Since the sum of the coefficients equals 1, the resulting inner control
points lie in the convex hull of the boundary control points.

Remarks 3. For some given boundary curves, this construction may cause some
self-intersections, and lead to an improper parameterization for IGA. We use the
linear injectivity condition proposed in Section 3 to check the injectivity of initial
parameterization. If it does not satisfy the condition, the linear programming
method is used to produce another initial parameterization.

Optimization method. In the proposed approach, we minimize the error com-
puted from the IGA solution and the exact solution, by moving inner control
points of the computational domain. Therefore, we consider as optimization vari-
ables the coordinates of the inner control points and as cost function the error
of the IGA solution. The optimization algorithm used for this study is a classi-
cal steepest-descent method in conjunction with a back-tracking line-search. For
this exercise, the gradient of the cost function is approximated using a centered
finite-differencing scheme.

Each iteration k of the optimization algorithm can be summarized as follows,
starting from a point xk in the variable space:

1. Evaluation of perturbed points xk + εek

2. Estimation of the gradient ∇f(xk) by finite-difference
3. Define search direction dk = −∇f(xk)
4. Line search : find ρ such as f(xk + ρdk) < f(xk)

These steps are carried out until a stopping criterion is satisfied.

5.3 Examples and Comparison

In this section, we will present some parameterization results and compare them
with the initial solution with respect to the heat conduction problem (2).

Example II . The second example is for the parameterization of the domain
Ω = [0, 3]× [0, 3] by cubic Bézier surfaces. The corresponding source term and
exact solution is presented in (4) and (5). The parameterization result and com-
parison with initial parameterization are shown in Fig.5. The initial error is
reduced by 24.52% as shown in Fig.5 (e). The final parameterization is clearly
better than the initial parameterization during refinement operations as pre-
sented in Fig.5 (f).

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 249

Fig. 6. Example III

250 G. Xu et al.

Fig. 7. Example IV

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 251

Fig. 8. Interface for isogeometric solver in AXEL

Example III . The next example is for the parameterization of the domain

Ω(x, y) = {(x, y)| − 1 ≤ y ≤ x2, 0 ≤ x ≤ 1}

by Bézier surface with degree 3× 6. The parabola is represented by degenerate
cubic Bézier curve. For the problem with boundary condition T 0(x) = 0 and
Φ0(x) = 0 in (2), we can construct an exact solution T (x, y) as follows

T (x, y) = sin(π(y − x2)) sin(πx) sin(πy)

The initial placement of inner control points is produced by the discrete Coons
method as shown in Fig.6 (a). The final parameterization results and some com-
parisons are also shown in Fig.6. We can find that there are some self-intersections
on the control mesh in Fig.6 (b). However, there is no self-intersection on the final
parameterization as shown in Fig.6 (c). During the optimization, the initial error
is reduced by 14.65% as shown in Fig.6 (g). The error history during refinement
operation is presented in Fig.6 (h).

Example IV . The final example is for the parameterization of the domain Ω =
[0, 3]× [0, 6] by cubic B-spline surface with knot vector {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
in the u direction and knot vector {0, 0, 0, 0, 1, 1, 1, 1} in the v direction. The cor-
responding source term and exact solution is presented in (4) and (5). The initial
placement of inner control points is non-uniform as shown in Fig.7 (a), and the
final parametrization result and some comparison are also shown in Fig.7. During
the optimization, the initial error is reduced by 3.31% as shown in Fig.7 (g). The
error history during refinement operation is presented in Fig.7 (h).

252 G. Xu et al.

6 Conclusion and Future Work

Parameterization of computational domains is the first step in an IGA process.
In this paper, we show that for different parameterizations of a computational
domain, different simulation results can be obtained. Based on this observation
and inspired by shape optimization, an approach for optimal parameterization of
computational domain is proposed. We also proposed a linear and easy-to-check
sufficient condition for injectivity of planar B-spline parameterization. Several
examples are presented to illustrate the effectiveness of the proposed method.
As shown in Fig.8, a user-friendly interface for isogeometric solver and optimizer
is implemented as plugin in the AXEL platform.

The proposed method will be tested on more complex computational domain
and generalized to 3D cases with exact solutions in the future. The construction
of a proper parameterization of computational domain for general problem, in
which the exact solution is unknown, is also a part of our ongoing work. One
possible way is to find an accurate posteriori error estimation method for IGA,
and perform the optimization based on this estimation. We will discuss this topic
in another paper.

Acknowledgments. The authors would like to thank the reviewers for their con-
structive comments and suggestions. The authors are supported by the 7th Frame-
work Program of the European Union, project SCP8-218536 “EXCITING”.

References

1. Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-
V.: Swept volume parametrization for isogeometric analysis. In: Hancock, E.R.,
Martin, R.R., Sabin, M.A. (eds.) MOS XIII 2009. LNCS, vol. 5654, pp. 19–44.
Springer, Heidelberg (2009)

2. Auricchio, F., da Veiga, L.B., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.:
A fully locking-free isogeometric approach for plane linear elasticity problems: A
stream function formulation. Computer Methods in Applied Mechanics and Engi-
neering 197, 160–172 (2007)

3. Bazilevs, Y., Beirao de Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Iso-
geometric analysis: approximation, stability and error estimates for refined meshes.
Mathematical Models and Methods in Applied Sciences 6, 1031–1090 (2006)

4. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid structure
interaction: Theory, algorithms, and computations. Computational Mechanics 43,
3–37 (2008)

5. Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid structure
interaction analysis with applications to arterial blood flow. Computational Me-
chanics 38, 310–322 (2006)

6. Bazilevs, Y., Hughes, T.J.R.: NURBS-based isogeometric analysis for the compu-
tation of flows about rotating components. Computational Mechanics 43, 143–150
(2008)

7. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S.,
Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-Splines. Computer
Methods in Applied Mechanics and Engineering 199(5-8), 229–263 (2010)

Optimal Analysis-Aware Parameterization of Computational Domain in IGA 253

8. Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware
Modeling: Understanding Quality Considerations in Modeling for Isogeometric
Analysis. Computer Methods in Applied Mechanics and Engineering 199(5-8),
334–356 (2010)

9. Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in iso-
geometric analysis. Computer Methods in Applied Mechanics and Engineering 196,
4160–4183 (2007)

10. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of
structural vibrations. Computer Methods in Applied Mechanics and Engineer-
ing 195, 5257–5296 (2006)

11. Dokken, T., Skytt, V., Haenisch, J., Bengtsson, K.: Isogeometric representation and
analysis–bridging the gap between CAD and analysis. In: 47th AIAA Aerospace
Sciences Meeting including The New Horizons Forum and Aerospace Exposition,
Orlando, Florida, January 5-8 (2009)

12. Dörfel, M., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-
refinement with T-splines. Computer Methods in Applied Mechanics and Engi-
neering 199(5-8), 264–275 (2010)

13. Duvigneau, R.: An introduction to isogeometric analysis with application to ther-
mal conduction. INRIA Research Report RR-6957 (June 2009)

14. Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: B̄ and F̄ projection meth-
ods for nearly incompressible linear and non-linear elasticity and plasticity using
higher-order NURBS elements. Computer methods in applied mechanics and en-
gineering 197, 2732–2762 (2008)

15. Evans, J.A., Bazilevs, Y., Babuka, I., Hughes, T.J.R.: n-Widths, supinfs, and opti-
mality ratios for the k-version of the isogeometric finite element method. Computer
Methods in Applied Mechanics and Engineering 198, 1726–1741 (2009)

16. Farin, G., Hansford, D.: Discrete coons patches. Computer Aided Geometric De-
sign 16(7), 691–700 (1999)

17. Gain, J.E., Dodgson, N.A.: Preventing self-Intersection under free-form deforma-
tion. IEEE Transactions on Visualization and Computer Graphics 7(4), 289–298
(2001)

18. Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the
Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and
Engineering 197, 4333–4352 (2008)

19. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry, and mesh refinement. Computer Methods in
Applied Mechanics and Engineering 194(39-41), 4135–4195 (2005)

20. Hughes, T.J.R., Realli, A., Sangalli, G.: Duality and unified analysis of discrete
approximations in structural dynamics and wave propagation: Comparison of p-
method finite elements with k-method NURBS. Computer methods in applied
mechanics and engineering 197, 4104–4124 (2008)

21. Hughes, T.J.R., Realli, A., Sangalli, G.: Efficient quadrature for NURBS-based
isogeometric analysis. Computer Methods in Applied Mechanics and Engineer-
ing 199(5-8), 301–313 (2010)

22. Jüttler, B.: Shape-preserving least-squares approximation by polynomial paramet-
ric spline curves. Computer Aided Geometric Design 14, 731–747 (1997)

23. Kestelman, H.: Mappings with non-vanishing Jacobian. Amer. Math. Monthly 78,
662–663 (1971)

24. Kim, H.J., Seo, Y.D., Youn, S.K.: Isogeometric analysis for trimmed CAD surfaces.
Computer Methods in Applied Mechanics and Engineering 198(37-40), 2982–2995
(2009)

254 G. Xu et al.

25. Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate B-
spline fitting using harmonic functions. Computer Aided Geometric Design 26(6),
648–664 (2009)

26. Sevilla, R., Fernandes-Mendez, S., Huerta, A.: NURBS-enhanced finite element
method for Euler equations. International Journal for Numerical Methods in Flu-
ids 57, 1051–1069 (2008)

27. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization.
Computer Methods in Applied Mechanics and Engineering 197, 2976–2988 (2008)

28. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C., Hughes, T.J.R.: Patient-specific
vascular NURBS modeling for isogeometric analysis of blood flow. Computer Meth-
ods in Applied Mechanics and Engineering 196, 2943–2959 (2007)

Construction of Subdivision Surfaces by
Fourth-Order Geometric Flows with

G1 Boundary Conditions

Guoliang Xu1, and Qing Pan2,

1 LSEC, Institute of Computational Mathematics, Academy of Mathematics and
System Sciences, Chinese Academy of Sciences, Beijing, 100190, China

2 College of Mathematics and Computer Science, Hunan Normal University,
Changsha, 410081, China
panqing@lsec.cc.ac.cn

Abstract. In this paper, we present a method for constructing Loop’s
subdivision surface patches with given G1 boundary conditions and a
given topology of control polygon, using several fourth-order geometric
partial differential equations. These equations are solved by a mixed fi-
nite element method in a function space defined by the extended Loop’s
subdivision scheme. The method is flexible to the shape of the bound-
aries, and there is no limitation on the number of boundary curves and
on the topology of the control polygon. Several properties for the basis
functions of the finite element space are developed.

Keywords: Subdivision Surface, Geometric Partial Differential
Equations, G1 continuity.

1 Introduction

A surface satisfing a geometric partial differential equation (PDE) is referred to
as geometric PDE surface in this paper. Geometric PDE surfaces, such as mini-
mal surfaces (see [13]), constant mean-curvature surfaces (see [7,16]), Willmore
surfaces (see [3,9,10,19])) and minimal mean-curvature variation surfaces (see
[23]), are important and preferred in the shape designing and modeling because
they share certain optimal properties. For instance, the minimal surfaces have
minimal area, the Willmore surfaces have minimal total squared mean curva-
ture and minimal mean-curvature variation surfaces have minimal total mean-
curvature variation. Here the terminology total means the integration over the
surfaces. Various type geometric PDE surfaces have been constructed in the lit-
eratures (see [21]). Most of them are discrete surfaces (triangular or quadrilateral

� Supported in part by NSFC under the grant 60773165, NSFC key project under the
grant 10990013, and National Key Basic Research Project of China (2004CB318000).

�� Supported in part by NSFC grant 10701071 and Program for Excellent Talents in
Hunan Normal University (No. ET10901). Corresponding author.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 255–268, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

256 G. Xu and Q. Pan

control polygons), a few of them are continuous surfaces. Usually, the represen-
tation of the continuous surfaces are Bézier (see [8]), rational Bézier, B-spline
(see [11,12]) and NURB surfaces.

Obviously, Bézier surfaces, B-spline and NURB surfaces have to be three-
or four-sided. This is a serious limitation for designing geometric PDE surfaces
with arbitrary shaped boundaries. In this paper, our intension is to construct
geometric PDE subdivision surfaces with piecewise B-spline curve boundaries
and tangent conditions. There is no limitation on the number of spline curve
pieces. B-spline representation for curves and surfaces have been widely accepted
in the CAD and industrial design. Using B-spline to represent surface boundary
is preferable and acceptable. To represent a surface patch with any topology,
subdivision surfaces are the best candidates, since there is no limitation on the
topology of the control polygon. However, subdivision surfaces, such as Loop’s
subdivision surfaces and Catmull-Clark subdivision surfaces are traditionally
closed, which cannot be used directly for serving our purpose.

For many surface modeling problems, such as the construction of the bodies
of cars and aircrafts, machine parts and roofs, surfaces are usually constructed
in a piecewise manner with fixed boundaries for each of the pieces. In such
a case Loop’s subdivision scheme cannot be applied near the boundary of the
control polygon. Therefore, an extension of the Loop’s scheme to control polygon
with boundaries is required. On this aspect, an excellent work has been done by
Biermann et al [2] and that is just sufficient for achieving the goal of constructing
piecewise smooth surface.

In this paper we construct geometric PDE subdivision surface patches with
given G1 boundary conditions and a given topology of the control polygon using
several fourth-order geometric partial differential equations. These equations are
solved by a mixed finite element method in a function space defined by the
extended Loop’s subdivision scheme. By the term topology of the control polygon,
we mean the connection mode among the vertices of the control polygon.

Fourth-order geometric flows have been used to solve the problems of dis-
crete surface blending, N-sided hole filling and the free-form surface fitting
(see [4,17,18,22]). In [17,18], the surface diffusion flow has been used for fair-
ing/smoothing meshes while satisfying the G1 boundary conditions. The finite
element method is used by Clarenz et al. [4] to solve the Willmore flow equa-
tion, based on a new variational formulation of this flow, for the discrete surface
restoration.

Problem Description

Input: Given an initial open control polygon (a piece of triangular mesh) of a
surface patch with fixed boundary control points, and some of the boundary
control points are to be interpolated. The boundary curve is defined as piece-
wise cubic B-spline with the boundary control points as the B-spline control
points and equal spaced knots for each piece. The interpolated boundary
control points are served as the end-points of the B-spline curves. On each

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows 257

of the boundary curves, we are also given a tangential vector (co-normal)
curve, which is represented in the same form as the boundary curve.
Output: We want to construct a geometric PDE subdivision surface that
interpolates the boundary curves and tangents, at the same time its control
polygon has the same topology as the initial one.

2 Geometric PDEs and Their Weak-Form Formulations

To describe precisely the geometric partial differential equations used in this
paper, we need introduce a few notations (see the details in [21]).

2.1 Notations

Let
S :=

{
x(u1, u2) ∈ R

3 : (u1, u2) ∈ D ⊂ R
2}

be a parametric surface which is sufficiently smooth and orientable. Let

gαβ = 〈xuα ,xuβ 〉 and αβ = 〈n,xuαuβ 〉

be the coefficients of the first and the second fundamental forms of S with

xuα =
∂x
∂uα

, xuαuβ =
∂2x

∂uα∂uβ
, α, β = 1, 2,

n = (xu × xv)/‖xu × xv‖, (u, v) := (u1, u2),

where 〈·, ·〉, ‖ · ‖ and ·× · stand for the usual inner product, Euclidean norm and
cross product in R3, respectively.

Curvatures. To introduce the notions of the mean curvature and the Gaussian
curvature, we use the concept of Weingarten map or shape operator (see [5]). It
is a self-adjoint linear map on the tangent space

TxS := span{xu,xv}.

In matrix form, it can be represented by a 2× 2 matrix

S = [bαβ][gαβ] with [gαβ] = [gαβ]−1.

The eigenvalues k1 and k2 of S are the principal curvatures of S and their
arithmetic average and product are the mean curvature H and the Gaussian
curvature K, respectively. That is

H =
k1 + k2

2
=

tr(S)
2

,

K = k1k2 = det(S).

Let H = Hn. It is referred to as the mean curvature normal.

258 G. Xu and Q. Pan

Tangential gradient operator. Suppose f ∈ C1(S), where C1(S) stands for
a function space consisting of C1 smooth functions on S, then the tangential
gradient operator ∇s acting on f is defined as

∇sf = [xu, xv][gαβ][fu, fv]T ∈ R
3. (1)

For a vector-valued function

f = [f1, · · · , fk]T ∈ C1(S)k,

its gradient is defined as

∇sf = [∇sf1, · · · ,∇sfk] ∈ �3×k.

The third tangential operator. Let f ∈ C1(S). Then the third tangential
operator # acting on f is defined as

#f = [xu,xv][gαβ]S[fu, fv]T ∈ R
3.

Apart from these two tangential operators, there is another one, called the second
tangential operator (see [21]). Since it is not involved in this work, we do not
introduce it.

Divergence operator. Suppose v is a smooth vector field on surface S, then
the divergence operator divs acting on v is defined as

divs(v) =
1
√
g

[
∂

∂u
,
∂

∂v

] [√
g [gαβ] [xu,xv]T v

]
. (2)

Laplace-Beltrami operator. Let f ∈ C2(S). Then the Laplace-Beltrami op-
erator (LBO) Δs acting on f is defined as (see [5], p. 83)

Δsf = divs(∇sf).

Theorem 1 (Green’s formula for LBO). Let S be an orientaable surface, Ω
a subregion of S with a piecewise smooth boundary ∂Ω. Let nc ∈ TxS (x ∈ ∂Ω)
be the outward unit normal (also named as co-normal) along the boundary ∂Ω.
Then for a given C1 smooth vector field v on S, we have∫

Ω

[〈v,∇sf〉+ f div(v)]dA =
∫

∂Ω

f〈v,nc〉ds. (3)

2.2 Used Geometric PDEs

For completeness, we describe briefly the equations used and their behaviors.
More details on these equations can be found in [21].

Surface Diffusion Flow

∂x
∂t

= −2ΔsHn. (4)

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows 259

This flow was introduced by Mullins in 1957 (see [14]), to describe the interface
motion law of the growing crystal. It is well known that surface diffusion flow
is volume preserving and area shrinking. The area shrinkage stops when H is a
constant. Surfaces with constant mean curvature are the steady solution of (4).

Willmore flow

∂x
∂t

= −2
[
ΔsH + 2H(H2 −K)

]
n. (5)

Willmore flow is derived from minimizing total squared mean-curvature
∫
S H

2dA.
A factor 2 is added to the original Willmore flow for comparability with other
equations used in this paper. There are sound published research papers that use
this flow (see [3,9,10,19]). There is no volume/area preserving/shrinking prop-
erty for this flow. However, if the initial surface is a sphere, Willmore flow keeps
the spherical shape unchanged. Moreover, surfaces with zero mean curvature are
the the steady solution of (5). A torus with R/r =

√
2 is a steady solution of

(5), where the torus is defined by rotating a circle with radius r along another
circle with radius R.

Quasi-surface diffusion flow

∂x
∂t

= −Δ2
sx. (6)

This flow is introduced in [22], and used in discrete surface design. We remove
the tangential movement of (6) because tangent motion of a surface does not
alter the surface shape (see [6]), then obtain the following geometric flow

∂x
∂t

= −2
[
ΔsH − 2H(2H2 −K)

]
n. (7)

Quasi-surface diffusion flow is area diminishing and the solution surfaces of (6)
approach to the minimal surface.

These three flows share the same fourth-order term −2ΔsHn and only the
second order terms are different, however, their behaviors are quite different.

2.3 Mixed Variational Formulations

Let
y(x) = H(x)n(x) ∈ R

3

stand for the mean curvature normal. Then the mixed variational form of SDF
(4) is: Find (x,y) ∈ H2(S)3 ×H1(S)3 such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
S

∂x
∂t
φ dA+ 2

∫
S

[
φ# y − n(∇sφ)T∇sy

]
n dA = 0, ∀φ ∈ H1

0 (S),∫
S
yψ dA+

1
2

∫
S
(∇sx)T∇sψ dA− 1

2

∫
∂S

ncψ ds = 0, ∀ψ ∈ H1(S),

S(0) = S0, ∂S(t) = Γ, nc(x) = n(Γ)
c (x), ∀x ∈ Γ,

(8)

260 G. Xu and Q. Pan

where n(Γ)
c is the given co-normal on the boundary curve Γ . The mixed varia-

tional form of (5) and (7) are similar, and the differences occur only in the first
equation. For WF (5), the first equation of the mixed variational form is∫

S

∂x
∂t
φ dA+ 2

∫
S

[
φ# y − n(∇sφ)T∇sy

]
n dA

+ 4
∫
S
n(H2 −K)φnTy dA= 0, ∀φ ∈ H1

0 (S).
(9)

For QSDF (7), the first equation of the mixed variational form is∫
S

∂x
∂t
φ dA+ 2

∫
S

[
φ# y − n(∇sφ)T∇sy

]
n dA

− 4
∫
S
n(2H2 −K)φnTy dA= 0, ∀φ ∈ H1

0 (S).
(10)

3 Subdivision Surfaces and Finite Element Space

In this section, systems (8)–(10) are discretized in a finite element space de-
fined by the extended Loop subdivision scheme. The original Loop’s subdivision
scheme is usable only for control polygons without boundary. Therefore, an ex-
tension of the subdivision scheme to control polygons with boundary is required.
We use Biermann et al’s extension (see [2]) to achieve our goal. For saving the
space, we do not describe them.

3.1 Basis Functions and Their Properties

Now let us define the basis functions of the finite element function space, de-
noted as VS(t). For each control point xi, including the corner control point and
boundary control points, of a control polygon Sd, we associate it with a basis
function φi, where φi is defined as the limit of the extended Loop’s subdivision
scheme with the zero control values everywhere except at xi where it is one.

The control polygon Sd, as a piecewise linear surface, is served as the definition
domain of the basis function φi. The mapping from Sd to φi is defined by a
dual subdivision process. More precisely, when the extended Loop’s subdivision
scheme is applied to the control function values recursively, the linear subdivision
scheme (each triangle is partitioned into four equal-sized sub-triangles) is applied
to the control polygon correspondingly. The limit of the former is φi and that of
later is Sd itself.

The basis functions share some important properties:

1. Positivity.
The weights of the extended subdivision rules are positive. Hence the basis
function φi is nonnegative everywhere and positive around xi.

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows 261

2. Locality.
The limit value at a control point is a linear combination of the one-ring
neighbor values. Hence, the limit value is zero at a control point if the con-
trol values on the one-ring neighbor control points are zeros. Therefore, the
support of the basis function is within the two-ring neighborhood.

3. Partition of Unity.
Since all the subdivision rules have the properties that the weights are
summed to one. Therefore, if we choose all the control values as one. The
control values after one subdivision step are still one. This implies that

m∑
i=0

φi(x) = 1.

This property is called partition of unity.
4. Interpolatory Properties at the Boundary.

The extended subdivision rules on the boundary do not involve the inte-
rior control points. Hence the basis functions for the interior control points
are zero at the boundary. This means that the given boundary curves are
interpolated.

5. Tangential Property.
Let xi be a control point, with non of its one-ring neighbor control points is
boundary control points. Then ∇sφi vanishes on the boundary. This fact can
be observed by considering the eigen-decomposition of the control points. Let
p(k) ∈ R

(n+1)×3 be a vector consisting of one-ring neighbor control points
of x(k)

i at the subdivision level k, S ∈ R(n+1)×(n+1) the local subdivision
matrix that convert p(k) to pk+1, i.e.,

p(k+1) = Sp(k) = Skp(1), k = 1, 2, · · · .

Here n stands for the valence of x(k)
i . Suppose p(1) is decomposed into

p(1) = e0aT
0 + e1aT

1 + e2aT
2 + · · ·+ enaT

n , aj ∈ R
3,

where e0, e1, · · · , en are the eigenvectors of S. Here we assume that these
eigenvectors are arranged in the order of non-increasing eigenvalues λj . Then

p(k+1) = λk
0e0aT

0 + λk
1e1aT

1 + λk
2e2aT

2 + · · ·+ λn
nenaT

n ,

where λ0 = 1, λ1 = λ2 < 1. The limit position at the center is a0. The
tangent direction at this point are a1 and a2, and aj is given by

aT
j = ẽT

j p(1),

where ẽj are the left eigenvectors of S with normalized condition ẽT
j ej = 1.

6. Linear independency.
As a set of basis functions, {φi}m

i=0 must be linearly independent. For Loop’s
subdivision scheme, this fact is implied by a result from [20] on the solvability
of interpolation problem:

262 G. Xu and Q. Pan

For the given function values {fi}m
0 , find the control function values {gi}m

0
such that

m∑
j=0

gjφj(vi) = fi, i = 0, · · · ,m, (11)

where vi is the limit position of the subdivision surface corresponding to the
control point xi.

3.2 Spatial Discretizations

Suppose φi is a basis function of VS(t) corresponding to control point xi, i =
0, · · · ,m. Assume x0, · · · , xm0 are the interior control points, and xm0+1, · · · ,
xm are the boundary control points. Then x(t) ∈ S(t) can be represented as

x(t) =
m0∑
j=0

xj(t)φj +
m∑

j=m0+1

xj(t)φj , xj(t) ∈ R
3, (12)

and therefore,

∇sx(t) =
m0∑
j=0

∇sφj [xj(t)]T +
m∑

j=m0+1

∇sφj [xj(t)]T , xj(t) ∈ R
3×3. (13)

The mean curvature vector of the surface is represented approximately as

y(t) =
m∑

j=0

yj(t)φj , yj ∈ �3, ∇sy(t) =
m∑

j=0

∇sφj [yj(t)]T ∈ R
3×3. (14)

Since the boundary control points are fixed and the interior control points are
to be determined, the coefficients xj in the first term of (12) are unknowns,
while the coefficients xj in the second term are the given control points on the
boundary. Furthermore, since the curvature on the surface boundary involves
the unknown interior control points, hence all the coefficients in (14) are treated
as unknowns.

Now let us discretize equations (8)–(10) in the finite space VS(t). Since these
equations are similar in form, we treat them together. Let S be the limit surface
of the extended Loop’s subdivision scheme for the control polygon Sd. Substitut-
ing (12)–(14) into (8)–(10), and taking the test functions φ as φi(i = 0, · · · ,m0),
ψ as φi(i = 0, · · · ,m), and finally noting that

∂xj(t)
∂t

= 0 if j > m0,

we obtain the following matrix representations of (8)–(10):⎧⎨⎩M
(1)
m0

∂Xm0 (t)
∂t + L

(1)
m Ym(t) = 0,

M
(2)
m Ym(t) + L

(2)
m Xm(t) = B,

(15)

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows 263

where
Xj(t) = [xT

0 (t), · · · ,xT
j (t)]T ∈ R3(j+1),

Ym(t) = [yT
0 (t), · · · ,yT

m(t)]T ∈ R3(m+1),

are matrices consisting of the control points for the surface and the mean cur-
vature normals, respectively, and

B = [bT
0 , · · · ,bT

m]T ∈ R3(m+1),

M
(1)
m0 = (mijI3)

m0,m0
ij=0 , M

(2)
m = (mijI3)

m,m
ij=0 ,

L
(1)
m =

(
l
(1)
ij

)m0,m

ij=0
, L

(2)
K =

(
l
(2)
ij I3

)m,K

ij=0
.

are the coefficient matrices. The elements of these matrices are defined as follows:

mij =
∫
S
φiφj dA,

l
(1)
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l
(s)
ij for SDF,

l
(s)
ij + 4

∫
S

[
n(H2 −K)φiφj

]
nTdA for WF,

l
(s)
ij − 4

∫
S

[
n(2H2 −K)φiφj

]
nTdA for QSDF,

l
(2)
ij =

1
2

∫
S

[
(∇sφi)T∇sφj

]
dA,

bi =
1
2

∫
Γ

ncφi ds, (16)

with

l
(s)
ij = 2

∫
S

[
φi # φj − n(∇sφi)T∇sφj

]
nT dA.

Moving the terms relating to the known control points xm0+1, · · · , xm in the
second equation of (15) to the equations’ right-hand side, we can rewrite (15) as⎧⎨⎩M

(1)
m0

∂Xm0 (t)
∂t + L

(1)
m Ym(t) = 0,

M
(2)
m Ym(t) + L

(2)
m0Xm0(t) = B(2).

(17)

Note that, matrices M (1)
m0 and M

(2)
m are symmetric and positive definite. The

integrals in defining the matrix elements are computed using Gaussian quadra-
ture formulas over the domain triangles. The knots in the barycentric coordinate
form and weights of the Gaussian quadrature formulas can be found in [1].

In the boundary integrals (16), nc is the co-normal of the surface, it is in-
feasible to compute these co-normals nc from the previous approximation, since

264 G. Xu and Q. Pan

Fig. 1. First column: the boundary curves. Second column: the boundary curves with
the co-normals. Third column: the initial control meshes. Last column: the control
mesh of the constructed PDE subdivision surfaces.

they do not satisfy the given boundary condition. The right way is to replace nc

with n(Γ)
c . That is

bi =
1
2

∫
Γ

n(Γ)
c φi ds.

3.3 Temporal Direction Discretization

Suppose we have approximate solutions

X(k)
m0

= Xm0(tk) and Y (k)
m = Ym(tk)

at t = tk. We want to obtain approximate solutions X(k+1)
m0 and Y (k+1)

m at t =
tk+1 = tk + τ (k) using a forward Euler scheme. Specifically, we use the following
approximation

Xm0(tk+1)−Xm0(tk)
τ (k) ≈ ∂Xm0

∂t
.

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows 265

The matrices M (1), M (2), L(1) and L(2) in (17) are computed using the surface
data at t = tk. This yields a linear system with X(k+1)

m0 and Y (k+1)
m as unknowns:[

M
(1)
m0 τ

(k)L
(1)
m

L
(2)
m0 M

(2)
m

] [
X

(k+1)
m0

H
(k+1)
m

]
=

[
τ (k)B(1) +M

(1)
m0X

(k)
m0

B(2)

]

Though the matrices M (1) and M (2) are symmetric and positive definite, the
total matrix is neither symmetric nor positive definite. However the coefficient
matrix of this system is highly sparse, hence a stable iterative method for its
solution is desirable. We use Saad’s iterative method, namely GMRES (see [15]),
to solve our sparse linear system. The numerical tests show that this iterative
method works very well.

4 Illustrative Examples

To illustrate our surface construction method is effective. We give several graphi-
cal examples in this section. The Given G1 boundary conditions means specifying

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) is the boundary curves, (b) is boundary curves with different co-normals.
(c) is the boundary curves with the same co-normals. (d) is the initial control polygon.
(e) and (f) are the control polygons of the PDE subdivision surfaces corresponding to
the boundary curves (b) and (c), respectively.

266 G. Xu and Q. Pan

B-spline boundary curves with co-normals on these curves where the boundary
B-spline control points need to be interpolated.

For easy to illustrate, several existing triangle mesh models are used as the
initial control mesh. Boundary control polygon are extracted from these models.
The co-normals are computed from the initial control mesh. To show the power
of our approach, the interior control vertices are sometimes perturbed.

In Fig. 1, we show one surface patch construction process. The first column
in Fig. 1 shows the boundary curves. The second column shows the boundary
curves as well as the co-normals on the curves. The third column shows the initial
control meshes. The last column shows the control mesh of the constructed PDE
subdivision surfaces. The control meshes of PDE subdivision surfaces shown in
the last row, from the top down, are produced using quasi-surface diffusion flow,
surface diffusion flow, Willmore flow and surface diffusion flow, respectively. The
temporal step-sizes are 0.0001 for the first two, and 0.001 for the last two. The
iteration numbers used are 100 for the first three, and 25 for the last one.

In Fig.2 and 3, we join several surface patches together to form closed surfaces.
For each patch, boundary curves and co-normals are provided. At the common
boundaries, the co-normals may not be the same. Hence, surfaces with sharp
feature can be constructed. The control meshes of the PDE subdivision surfaces
as shown in Fig.2(e) and (f) are generated using Willmore flow with 20 iterations
and temporal step-size 0.01. The control mesh of the PDE subdivision surface
as shown in Fig. 3(d) is generated using surface diffusion flow with 20 iterations
and temporal step-size 0.0001.

(a) (b)

(c) (d)

Fig. 3. (a), (b), (c) and (d) are the boundary curves, boundary curves with co-normals,
initial control mesh and the PDE subdivision surface

Construction of Subdivision Surfaces by Fourth-Order Geometric Flows 267

5 Conclusions

Mesh subdivision technology can provide a simple and efficient method to con-
struct surfaces with any topology structure, at the same time satisfy some
smoothness requirement. Geometric PDEs are powerful tools for constructing
high quality surfaces. In this paper, we combine these two ingredients together.
We construct geometric PDE Loop’s subdivision surfaces, with given G1 bound-
aries condition, using three fourth-order geometric flows. A numerical solution
method of the finite element based on the extended Loop’s subdivision scheme
is adopted, and the geometric PDE subdivision surfaces are therefore efficiently
constructed.

References

1. Bajaj, C., Xu, G.: Anisotropic diffusion of subdivision surfaces and functions on
surfaces. ACM Transactions on Graphics 22(1), 4–32 (2003)

2. Biermann, H., Levin, A., Zorin, D.: Piecewise-smooth Subdivision Surfaces with
Normal Control. In: SIGGRAPH, pp. 113–120 (2000)

3. Bryant, R.: A duality theorem for Willmore surfaces. J. Diff. Geom. 20, 23–53
(1984)

4. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method
for surface restoration with boundary conditions. Computer Aided Geometric De-
sign 21(5), 427–445 (2004)

5. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1992)
6. Epstein, C.L., Gage, M.: The curve shortening flow. In: Chorin, A., Majda, A.

(eds.) Wave Motion: Theory, Modeling, and Computation, pp. 15–59. Springer,
New York (1987)

7. Escher, J., Simonett, G.: The volume preserving mean curvature flow near spheres.
Proceedings of the American Mathematical Society 126(9), 2789–2796 (1998)

8. Jin, W., Wang, G.: Geometric Modeling Using Minimal Surfaces. Chinese Journal
of Computers 22(12), 1276–1280 (1999)

9. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Diff.
Geom. 57(3), 409–441 (2001)

10. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Comm. Anal.
Geom. 10(5), 1228–1245 (2002)

11. Man, J., Wang, G.: Approximating to Nonparameterzied Minimal Surface with
B-Spline Surface. Journal of Software 14(4), 824–829 (2003)

12. Man, J., Wang, G.: Minimal Surface Modeling Using Finite Element Method. Chi-
nese Journal of Computers 26(4), 507–510 (2003)

13. Mullins, W.W.: Two-dimensional motion of idealised grain boundaries. J. Appl.
Phys. 27, 900–904 (1956)

14. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)
15. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-

phia (2003)
16. Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale–

spaces. IEEE Trans. Pattern Anal. Mach. Intell. 17, 67–72 (1995)
17. Schneider, R., Kobbelt, L.: Generating fair meshes with G1 boundary conditions.

In: Geometric Modeling and Processing, Hong Kong, China, pp. 251–261 (2000)

268 G. Xu and Q. Pan

18. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form
surface design. Computer Aided Geometric Design 18(4), 359–379 (2001)

19. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun.
Analysis Geom. 1(2), 281–326 (1993)

20. Xu, G.: Interpolation by Loop’s Subdivision Functions. Journal of Computational
Mathematics 23(3), 247–260 (2005)

21. Xu, G.: Geometric Partial Differential Equation Methods in Computational Ge-
ometry. Science Press, Beijing (2008)

22. Xu, G., Pan, Q., Bajaj, C.: Discrete surface modelling using partial differential
equations. Computer Aided Geometric Design 23(2), 125–145 (2006)

23. Xu, G., Zhang, Q.: G2 surface modeling using minimal mean–curvature–variation
flow. Computer - Aided Design 39(5), 342–351 (2007)

Efficient Computation of 3D Clipped Voronoi
Diagram

Dong-Ming Yan, Wenping Wang, Bruno Lévy, and Yang Liu

The University of Hong Kong, Pokfulam Road, Hong Kong, China
Project Alice, INRIA, Nancy, France

{dmyan,wenping}@cs.hku.hk, {Bruno.Levy,Yang.Liu}@loria.fr

Abstract. The Voronoi diagram is a fundamental geometry structure
widely used in various fields, especially in computer graphics and geom-
etry computing. For a set of points in a compact 3D domain (i.e. a finite
3D volume), some Voronoi cells of their Voronoi diagram are infinite, but
in practice only the parts of the cells inside the domain are needed, as
when computing the centroidal Voronoi tessellation. Such a Voronoi dia-
gram confined to a compact domain is called a clipped Voronoi diagram.
We present an efficient algorithm for computing the clipped Voronoi di-
agram for a set of sites with respect to a compact 3D volume, assuming
that the volume is represented as a tetrahedral mesh. We also describe
an application of the proposed method to implementing a fast method
for optimal tetrahedral mesh generation based on the centroidal Voronoi
tessellation.

Keywords: Voronoi diagram, Delaunay triangulation, centroidal
Voronoi tessellation, tetrahedral meshing.

1 Introduction

The Voronoi diagram (VD) is a fundamental and important geometry structure
which has numerous applications in different areas, such as shape modeling [3],
motion planning [18], scientific visualization [5], collision detection [19], geogra-
phy [11], chemistry [16] and so on. For a finite set of sites (points in 3D), each
site is associated with a Voronoi cell containing all the points closer to the site
than to any other sites; all these cells constitute the Voronoi diagram of the set
of sites.

Suppose that a set of sites in a compact domain in 3D are given. The Voronoi
cells of those sites that on the boundary of the convex hull of all the sites are infi-
nite. However, in many applications one often needs only the parts of the Voronoi
cells inside the domain, as when computing the centroidal Voronoi tessellation.
That is, the Voronoi diagram with respect to the given domain is defined as
the intersection of the 3D Voronoi diagram and the domain, and is therefore
called the clipped Voronoi diagram. The corresponding Voronoi cells are called
the clipped Voronoi cells, see Figure 1 for 2D examples.

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 269–282, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

270 D.-M. Yan et al.

Computing the clipped Voronoi diagram in a convex domain is relatively easy
– one just needs to compute the intersection of each Voronoi cell and the do-
main, both being convex. However, the operations would be more involved if
the domain is non-convex and there has been no previous work on computing
exact clipped Voronoi diagram for non-convex domains with arbitrary topol-
ogy. A brute-force implementation would be inefficient because of the domain
complexity.

Contributions: We present an efficient algorithm for computing clipped Voronoi
diagrams of arbitrary closed 3D objects. The idea of our approach is to represent
the input domain by a set of convex primitives. We use tetrahedron as the basic
primitive in this paper – that is, the 3D domain is represented as a 3D tetrahedral
mesh. Then the intersection of a 3D Voronoi cell and the input domain is reduced
to computing the intersection of a 3D Voronoi cell and a set of tetrahedra, which
can be done efficiently. The key to an efficient implementation is assigning each
tetrahedron to its incident Voronoi cells, i.e., those Voronoi cells that intersect
with the tetrahedron. Then we only need to compute the intersection between
the tetrahedron and its incident cells. We identify the incident Voronoi cells for
all the tetrahedra using neighborhood propagation.

This work extends our previous work [22] on computing the restricted Voronoi
diagram (RVD) of a mesh surface in the following aspects. There we discuss how
to compute a Voronoi diagram of sites on a triangle mesh surface by restricting
the 3D Voronoi diagram of the sites to the surface, which involves the inter-
section of 3D Voronoi cells with individual triangles of the mesh surface. Also,
in [22], we assume no connectivity information between the triangle elements
and the intersection pairs of Voronoi cells and triangle elements are found with
the assistance of a kd-tree. In this paper, we further improve the efficiency of
surface RVD computation algorithm [22] by replacing the kd-tree query by a
more efficient neighbor propagation approach, assuming the availability of the
mesh connectivity information.

1.1 Previous Work

A detailed survey of the Voronoi diagram is out of the scope of this paper, the
reader is referred to [4,10,15] for the properties and applications of the Voronoi
diagram. Existing techniques can compute the Voronoi diagram for point sites in
2D and 3D Euclidean spaces efficiently. There are several robust implementations
that are publicly available, such as CGAL [1] and Qhull [6].

To speed up the Voronoi diagram computation in specific applications, many
researchers focus on computing approximated Voronoi diagram on discrete spaces
with the help of the GPU (Graphical Processing Unit). Hoff III et al. [12] propose
a technique for computing discrete generalized Voronoi diagram using graphics
hardware. The Voronoi diagram computation is cast into a clustering problem
in the discrete voxel/pixel space. Sud et al. [19] present an n-body proximity
query algorithm based on computing the discrete 2nd order Voronoi diagram on

Efficient Computation of 3D Clipped Voronoi Diagram 271

the GPU. GPU based algorithms are fast but produce only a discrete approxi-
mation of the true Voronoi diagram.

Yan et al. [22] present a direct algorithm for computing the restricted Voronoi
diagram (RVD) [9] on mesh surfaces. In that method no connectivity informa-
tion between the triangle facets is assumed, and a kd-tree is used to find the
nearest sites of each triangle in order to identify its incident Voronoi cells. The
incident 3D Voronoi cells of each triangle face are identified starting from the
nearest site and the intersection between the triangle and its incident Voronoi
cells is computed by Sutherland’s clipping algorithm [20]. Let m be the number
of triangles and n the number of sites. Then the time complexity of the method
in [22] is O(m logn) assuming that the number of incident cells of each triangle
is bounded, since a kd-tree is used for the nearest site query.

1.2 Outline

The remainder of this paper is organized as follows: We give the problem formu-
lation in Section 2 and the overview of our algorithm in Section 3. We present
our algorithm for computing clipped Voronoi diagram of 3D objects in Section
4. As an application of our algorithm, we present in Section 5 a CVT-based
tetrahedral meshing method built on the top of our new method for computing
the 3D clipped Voronoi diagram. Experimental results are given in Section 6 and
we draw conclusions in Section 7.

2 Problem Formulation

We consider computing the exact clipped Voronoi diagram of closed 3D objects.
Figure 1 illustrates the problem with two 2D examples of the clipped Voronoi
diagram with a convex domain and a non-convex domain, respectively.

(a) (b)

Fig. 1. Clipped Voronoi diagram on 2D convex (a) and non-convex (b) domains. Shaded
cells are boundary Voronoi cells. The number of seeds is 200 for each example.

272 D.-M. Yan et al.

Given a set of sites X = {xi}n
i=1 in 3D, the Voronoi diagram of X is defined

by a collection of n Voronoi cells Ω = {Ωi}n
i=1, where

Ωi = {x ∈ R
3, ‖x− xi‖ ≤ ‖x− xj‖, ∀j �= i}.

Each Voronoi cell Ωi is the intersection of a set of 3D half-spaces, delimited by
the bisecting planes of the Delaunay edges incident to the site xi.

LetM denote the input domain, which is assumed to be a connected compact
set in 3D. The clipped Voronoi diagram for the sites X with respect to M is
defined as the intersection of the 3D Voronoi diagram Ω and M, denoted as
Ω|M = {Ωi|M}n

i=1, where

Ωi|M = Ωi

⋂
M = {x ∈M, ‖x− xi‖ ≤ ‖x− xj‖, ∀j �= i},

which is the intersection of the Voronoi cell Ωi and M. We call Ωi|M the clipped
Voronoi cell with respect to M.

3 Algorithm Overview

In this section we describe an efficient algorithm for computing the clipped
Voronoi diagram of 3D objects. We suppose that the domain M is represented
as a set of tetrahedra; other types of convex primitives can be used for this
decomposition as well.

Suppose that the input domain M is given by a tetrahedral mesh, that is
M = {V , T }, where V = {vk}nv

k=1 is the set of mesh vertices and T = {ti}m
i=1 is

the set of tetrahedral elements. Each tetrahedron (tet for short in the following)
ti stores the information of its four incident vertices and four adjacent tets. The
four vertices are assigned indices 0, 1, 2, 3 and so are the four adjacent tets. The
index of an adjacent tet is the same as the index of the vertex which is opposite
to the tet. The boundary ofM is a triangle mesh, denoted as S = {fj}nf

j=1, which
is assumed to be 2-manifold. Each boundary triangle facet fj stores the indices
of three neighboring facets and the index of its containing tet.

The clipped Voronoi cells {Ωi|M} can be classified into two types: inner
Voronoi cells that are contained in the interior ofM and boundary Voronoi cells
that intersect the boundary S of the domain M. Since the inner Voronoi cells
of Ω|M are entirely inside the domain, there is no need to clip them against the
boundary surface S. So we just need to concentrate on computing the boundary
Voronoi cells, see Figure 1 for 2D examples of clipped Voronoi diagrams.

Therefore the problem now is how to identify all the sites whose Voronoi
cells intersect the boundary S. To solve this problem, we first compute the
surface restricted Voronoi diagram (RVD) for all the sites X. The sites whose
Voronoi cells intersect the domain boundary surface are called the boundary
sites and their cells are the boundary Voronoi cells. So we will just compute
the intersection of the boundary Voronoi cells with the domain M. The reader
is referred to [21,22] for details of surface RVD computation. In this paper, we
further improve the RVD computation algorithm by replacing the kd-tree search
in [22] by a more efficient neighbor propagation approach.

Efficient Computation of 3D Clipped Voronoi Diagram 273

4 Clipped Voronoi Diagram Computation

There are three main steps of our algorithm for computing the clipped Voronoi
diagram:

1. Voronoi diagram construction: This step computes the Delaunay trian-
gulation for the input sites, from which we extract the 3D Voronoi diagram;

2. Surface RVD computation: We compute the surface RVD to identify all
the boundary Voronoi cells;

3. Clipped Voronoi cells construction: The 3D clipped Voronoi cells for all
the boundary Voronoi cells are computed.

In the following, we will explain each step in details.

4.1 Voronoi Diagram Construction

We first build a 3D Delaunay triangulation from input sites X = {xi}n
i=1, using

CGAL. The corresponding 3D Voronoi diagram Ω = {Ωi}n
i=1 is constructed as

the dual of the Delaunay triangulation, as defined in Section 2.

4.2 Surface RVD Computation

For the given set of sites X = {xi}n
i=1 and the boundary surface S, the restricted

Voronoi diagram (RVD) is defined as the intersection of the 3D Voronoi diagram
Ω and the surface S, denoted as R = {Ri}n

i=1, where Ri = Ωi

⋂
S [9]. Each

Ri is called a restricted Voronoi cell (RVC). We compute the surface RVD using
neighbor propagation, which is faster than searching using the kd-tree structure,
as shown by our tests.

Now we are going to explain the propagation steps. Refer to Figure 2. We
start from a seed triangle and one of its incident cells, which can be found by a
linear search function. Here we assume that a triangle f0 of boundary S is the

Ω4

Ω3

Ω1

Ω0

f0

Ω2

Ω5

f3

f2

f1

(a)

Ω4

Ω3

Ω1

Ω0

f0

Ω2

Ω5

f3

f2

f1

q0

q4q3
q2

q1

q5

(b)

Fig. 2. Illustration of propagation process

274 D.-M. Yan et al.

seed triangle and the Voronoi cell Ω0 is the corresponding cell of the nearest site
of f0, as shown in Figure 2(a). We use an FIFO queue Q to store all the incident
cell-triangle pairs to be processed. To start, the initial pair {f0, Ω0} is pushed
into the queue. The algorithm repeatedly pops out the pair in the front of Q and
computes their intersection. During the intersection process, new valid pairs are
identified and pushed back into Q. The process terminates when Q is empty.

The key issue now is how to identify all the valid cell-triangle pairs during the
intersection. Assume that {f0, Ω0} is popped out from Q, as shown in Figure 2.
We clip f0 against the bounding planes of Ω0, which has five bisecting planes, i.e.,
[x0,x1], [x0,x2]..., [x0,x5]. The resulting polygon is represented by q0,q1, ...,q5,
as shown in Figure 2(b). Since the line segment q0q1 is the intersection of f0 and
[x0,x1], we know that the opposite cell Ω1 is also an incident cell of f0, thus the
pair {f0, Ω1} is an incident pair. Since the common edge of [f0, f1] has intersection
with Ω0, the adjacent facet f1 also has intersection with cell Ω0, thus the pair
{f1, Ω0} is also an incident pair. So is the pair {f2, Ω0}. The other incident pairs
are found in the same manner. To keep the same pair from being processed
multiple times, we store the incident facet indices for each cell. Before pushing a
new pair into the queue, we add the facet index to the incident facet indices set
of the cell. The pair is pushed into the queue only if the facet is not contained
in the incident facets set of the cell; otherwise the pair is discarded. Each time
after intersection computation, the resulting polygon is made associated with
the surface RVC of the current site. The surface RVD computation terminates
when the queue is empty. Those sites that have non-empty surface RVC are
marked as boundary sites, denoted as Xb = {xi|Ri �= ∅}. The pseudo code of
the algorithm is given in Algorithm 4.1.

Algorithm 4.1. Surface RVD computation algorithm
input : sites X, boundary mesh S
output: surface RVD R of X on S
begin

Ω ← VoronoiDiagram(X) ;
{f0, Ω0} ← FindInitialPair() ;
queue Q← {f0, Ω0} ;
while Q �= ∅ do
{ft, Ωt} ← Q.pop() ;
polygon poly ← Intersect(ft, Ωt) ;
Rt ← Rt

⋃
poly ;

Q.push(NewIncidentPairs(poly)) ;
end

end

4.3 Clipped Voronoi Cells Construction

Once the boundary sites Xb are found, we will compute the clipped Voronoi
cells for these sites. The boundary Voronoi cells computation is similar to the

Efficient Computation of 3D Clipped Voronoi Diagram 275

surface RVD computation presented in Section 4.2, with the difference that we
restrict the computation on boundary cells only. For each boundary cell, we
have recorded the indices of its incident boundary triangles. We know that the
neighboring tet of each boundary triangle is also incident to the cell. We also
store the indices of incident tet for each boundary cell. The incident tet set is
initialized as the neighboring tet of the incident boundary triangle.

We use an FIFO queue to facilitate this process. The queue is initialized by a
set of incident cell-tet pairs (Ωi, tj), which can be obtained from the boundary
cell and its initial incident tet set.

The pair (Ωi, tj) in front of Q is popped out repeatedly. We compute the
intersection of Ωi and tj again by Sutherland-Hodgman clipping algorithm [20]
and identity new incident pairs at the same time. We clip the tet tj by bounding
planes of cell Ωi one by one. If the current bounding plane has intersection with
tj , We check the opposite Voronoi cell Ωo that shares the current bisecting plane
with Ωi, if Ωo is a boundary cell and tj is not in the incident set of Ωo, a new pair
(Ωo, tj) is found. We also check the neighbor tets who share the facets clipped
by the current bisecting plane. Those cells that are not in the incident set of Ωi

are added to its set, and new pairs are pushed into the queue. After clipping,
the resulting polyhedron is made associated with the clipped Voronoi cell Ωi|M
of site xi. This process terminates when Q is empty.

5 Tetrahedral Mesh Generation

As an application, we implemented an efficient method for tetrahedral meshing
based on centroidal Voronoi tessellation (CVT) [7,8], which utilizes heavily the
computation of the 3D clipped Voronoi diagram. The L-BFGS method in [14]
for computing CVT is used in our implementation. We will briefly describe this
framework and present our experimental results in Section 6.

The centroidal Voronoi tessellation is a special kind of Voronoi tessellation
such that each seed xi coincides with the mass center of its Voronoi region.
In the context of CVT based tetrahedral meshing, the CVT energy function is
defined on the input mesh M, i.e.,

F (X) =
n∑

i=1

∫
Ωi|M

ρ(x)‖x− xi‖2 dσ, (1)

where ρ(x) > 0 is a user-defined density function. When ρ is a constant, we get
a uniform CVT. The reader is referred to [7] for preliminaries of CVT and [14]
for details of convergency analysis of CVT energy functions. We omit them here
since they are not the main contribution of this paper.

There are three steps of the CVT based meshing framework: initialization,
iterative optimization, and mesh extraction. Our mesh generation framework is
illustrated by the example in Figure 3.

276 D.-M. Yan et al.

(a) (b) (c) (d)

Fig. 3. Illustration of the proposed tetrahedral meshing algorithm. The wire frame is
the boundary of input mesh. (a) Clipped Voronoi diagarm of initial sites (the boundary
Voronoi cells are shaded); (b) result of unconstrained CVT with ρ = 1; (c) result of
constrained optimization. Notice that boundary seeds are constrained on the surface
S ; (d) final uniform tetrahedral meshing result.

5.1 Initialization

In this step, we build a uniform grid to store the sizing field for adaptive meshing.
Following the approach in [2], we first compute the local feature size (lfs) for all
boundary vertices and then use a fast matching method to construct a sizing
field on the grid. This grid is also used for efficient initial sampling (Figure 3(a)).
The reader is referred to [2] for details.

5.2 Optimization

There are two phases of the global optimization part: unconstrained CVT op-
timization and constrained CVT optimization. In the first phase, we optimize
the positions of the sites inside the input volume without any constraint, which
yields a well-spaced distribution of the sites within the domain, with no sites
lying on the domain boundary surface (Figure 3(b)). In the second phase, we
identify all the boundary sites, i.e. those sites whose Voronoi cells intersect the
domain boundary surface; we project these sites onto the boundary surface and
they will be constrained to the boundary surfaces during the subsequent opti-
mization. Then all the boundary sites and the inner sites are optimized simul-
taneously, again with respect to the CVT energy function (Figure 3(c)). The
details of these steps are explained in the following.

CVT optimization. In the first phase, we use the L-BFGS method [14] to
compute the CVT by minimizing the CVT energy function (Eqn. 1). To apply
the L-BFGS method to minimize the CVT energy function we need the gradient
of the CVT energy function. The partial derivative of the energy function w.r.t.
each site is given by the following equation [13]:

∂F

∂xi
= 2mi(xi − x∗

i), (2)

here mi =
∫

Ωi|M ρ(x)‖x− xi‖2 dσ, and x∗
i is the centroid given by

Efficient Computation of 3D Clipped Voronoi Diagram 277

x∗i =

∫
Ωi|M ρ(x)xdσ∫
Ωi|M ρ(x)dσ

. (3)

To integrate this function, each clipped Voronoi cell Ωi|M is split into a set of
sub-tets {τk} by simply connecting the centroid of each clipped polyhedron of
Ωi|M with its triangulated facets (see Section 4.3). As discussed in [2], the exact
integration of the density function may not improve the quality very much, since
the density function is also discretely defined. We use a one-point approximation
of the density function at the centroid of each sub-tet of the Voronoi cells, i.e.,

x∗i =

∑
τk∈Ωi|M ρ(ck)ck · |τk|∑

τk∈Ωi|M ρ(ck) · |τk|
, (4)

where ck and |τk| are the centroid and the volume of sub-tet τk, respectively.
Once the L-BFGS method is used to compute the updated sites, we need to

compute the exact clipped Voronoi cells of these sites in the domainM. Then we
start the next iteration until convergence or some termination condition is met.
After convergence, all the sites of the boundary Voronoi cells will be projected
to the domain boundary surface.

Constrained CVT. During the second phase of optimization, all the boundary
sites will be constrained on the boundary. The partial derivative of the energy
function w.r.t each boundary site is computed as:

∂F

∂xi

∣∣∣∣
S

=
∂F

∂xi
−

[
∂F

∂xi
·N(xi)

]
N(xi), (5)

where N(xi) is the unit normal vector of the boundary surface at the boundary
site xi [14]. The partial derivative with respect to an inner site is still computed
by Eqn. (2). Both boundary and inner sites will be optimized simultaneously,
applying again the L-BFGS method to minimize the CVT energy function.

Sharp features are preserved in a similar way as how the boundary sites are
treated. For example, we project sites on sharp edges on the boundary and allow
them to vary only along these edges during the second stage of optimization.
For details, please refer to [22] where these steps are described in the context of
surface remeshing.

5.3 Final Mesh Extraction

After convergence, we shall extract a well-shaped surface triangle remesh for
the domain boundary as well as a tetrahedral mesh for the domain interior as
the dual of the final CVT. We first compute a boundary remesh S′ from all
the boundary seeds Xb [22]. The final tetrahedral mesh is then extracted by
computing a conformal Delaunay triangulation from S′ and all the inner seeds
(Figure 3(d)).

278 D.-M. Yan et al.

6 Experimental Results

Our algorithm is implemented in C++ on both Windows and Linux platform.
We use CGAL [1] for Delaunay triangulation and TetGen [17] for background
mesh generation when the input is given only as a closed boundary mesh. All
the experimental results are tested on a laptop with 2.4Ghz processor and 2Gb
memory.

Efficiency. We first demonstrate the performance of the proposed clipped VD
computation algorithm. We progressively sample points inside an input tetrahe-
dral mesh, which contains 1k boundary triangles and 3, 368 tets. The number
of sites increases from 10 to 6 × e5. The results are shown in Figure 4 and the
timing curves are shown in Figure 5. From the timing curve in Figure 5, we can
see that the time spent on surface RVD computation is much less than Delaunay

(a) (b) (c) (d)

Fig. 4. (a) Input Bone model (3, 368 tets and 1k boundary triangles); (b) clipped
Voronoi diagram of 100 sites; (c) 1k sites; (d) 10k sites

#Seeds

0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5

T
im

e(
s)

0

5

10

15

20

25

30

35

of seeds vs time of DT
of seeds vs time of RVD
of seeds vs time of clipped VD

Fig. 5. Timing curve of clipped Voronoi diagram computation against the number of
sites on Bone model

Efficient Computation of 3D Clipped Voronoi Diagram 279

Fig. 6. Results of clipped Voronoi diagram computation

Table 1. Statistics of clipped Voronoi diagram computation on various models. |T |
is the number of input tetrahedra. |S| is the number of boundary triangles. |X| is the
number of sites. |Xb| is the number of boundary sites. Time (in seconds) is the total
time for clipped Voronoi diagram computation, including both Delaunay triangulation
and surface RVD computation.

Model |T | |S| |X| |Xb| Time
Twoprism 68 30 1k 572 0.2

Bunny 10k 3k 2k 734 1.8
Elk 34.8k 10.4k 2k 1,173 3.1

Block 77.2k 23.4 1k 659 4.7
Homer 16.2k 4,594 10k 2,797 6.3

Rockerarm 212k 60.3k 3k 1,722 12.1
Bust 68.5k 20k 30k 5k 16.2

triangulation, since only a small portion of all the sites are boundary sites. More
results of clipped Voronoi diagram computation of various 3D objects are given
in Figure 6 and the timing statistics are given in Table 1.

The computational time of the clipped VD computation algorithm is propor-
tional to the total number of incident cell-tet pairs (Section 4.3). Therefore, an
input mesh with a small number of tetrahedral elements would help improve the
efficiency. In our experiments, all the input tetrahedral meshes are generated by
the robust meshing software TetGen [17] with conforming boundary.

Tetrahedral meshing. The complete process of the proposed tetrahedral mesh-
ing framework is illustrated in Figure 3. Figure 7 shows two adaptive tetrahedral
meshing examples, with lfs as the density function. Figure 8 gives two examples
with sharp features preserved. Our framework can generate high quality meshes
efficiently and robustly. The running time for obtaining final results ranges from
seconds to minutes, depending on the size of the input tetrahedral mesh and the
desired number of sites.

280 D.-M. Yan et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Adaptive meshing result of Bone (top row) and Fertility (bottom row). (a)&(e)
Cut-view of input meshes; (b)&(f) clipped Voronoi diagrams of initial samples; (c)&(g)
optimization results; (d)&(h) tetrahedral meshing results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Uniform meshing result of Fandisk (top row) and Joint (bottom row). (a)&(e)
Cut-view of input meshes; (b)&(f) clipped Voronoi diagrams of initial samples; (c)&(g)
optimization results; (d)&(h) tetrahedral meshing results with feature preserved.

Efficient Computation of 3D Clipped Voronoi Diagram 281

7 Conclusion

We have presented an efficient algorithm for computing clipped Voronoi diagram
for closed 3D objects, which has been a difficult problem without an efficient
implementation. As an application, we present a new CVT based tetrahedral
meshing algorithm which combines our fast clipped VD computation with fast
CVT optimization [14]. In the future, we plan to investigate GPU-based methods
to further improve the efficiency.

Acknowledgements

The Bunny model is the courtesy of the Stanford 3D Scanning Repository. The
other 3D models used in this paper are from AIM@Shape project. We would like
to thank Mr. Feng Sun for many helpful discussions during this work.

Dong-Ming Yan and Wenping Wang are partially supported by the General
Research Funds (718209, 717808) of Research Grant Council of Hong Kong,
NSFC-Microsoft Research Asia co-funded project (60933008), and National 863
High-Tech Program of China (2009AA01Z304). Bruno Lévy and Yang Liu are
supported by the European Research Council (GOODSHAPE FP7-ERC-StG-
205693).

References

1. CGAL, Computational Geometry Algorithms Library, http://www.cgal.org
2. Alliez, P., Cohen-Steiner,D., Yvinec,M., Desbrun,M.: Variational tetrahedralmesh-

ing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2005) 24(3),
617–625 (2005)

3. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of
surfaces. Shape Analysis and Structuring, 53–82 (2008)

4. Aurenhammer, F.: Voronoi diagrams: a survey of a fundamental geometric data
structure. ACM Computing Surveys 23(3), 345–405 (1991)

5. Balzer, M., Deussen, O.: Voronoi treemaps. In: Proceedings of the 2005 ACM
Symposium on Software Visualization, pp. 165–172 (2005)

6. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Software 22, 469–483 (1996)

7. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications
and algorithms. SIAM Review 41(4), 637–676 (1999)

8. Du, Q., Gunzburger, M., Ju, L.: Advances in studies and applications of centroidal
Voronoi tessellations. Numer. Math. Theor. Meth. Appl. (to appear 2010)

9. Edelsbrunner, H., Shah, N.R.: Triangulating topological spaces. Int. J. Comput.
Geometry Appl. 7(4), 365–378 (1997)

10. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Computing in Eu-
clidean Geometry, pp. 193–233 (1992)

11. Gold, C.M.: What is GIS and what is not? Transactions in GIS 10(4), 505–519
(2006)

12. Hoff III, K.E., Keyser, J., Lin, M.C., Manocha, D.: Fast computation of gen-
eralized Voronoi diagrams using graphics hardware. In: Proceedings of ACM
SIGGRAPH 1999, pp. 277–286 (1999)

http://www.cgal.org

282 D.-M. Yan et al.

13. Iri, M., Murota, K., Ohya, T.: A fast Voronoi diagram algorithm with applications
to geographical optimization problems. In: Proceedings of the 11th IFIP Conference
on System Modelling and Optimization, pp. 273–288 (1984)

14. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal
Voronoi tessellation: Energy smoothness and fast computation. ACM Transactions
on Graphics 28(4), Article No. 101 (2009)

15. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)

16. Poupon, A.: Voronoi and Voronoi-related tessellations in studies of protein struc-
ture and interaction. Current Opinion in Structural Biology 14(2), 233–241 (2004)

17. Si, H.: TetGen: A quality tetrahedral mesh generator and three-dimensional De-
launay triangulator, http://tetgen.berlios.de/

18. Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D.: Real-time path plan-
ning in dynamic virtual environments using multiagent navigation graphs. IEEE
Transactions on Visualization and Computer Graphics 14(3), 526–538 (2008)

19. Sud, A., Govindaraju, N.K., Gayle, R., Kabul, I., Manocha, D.: Fast prox-
imity computation among deformable models using discrete Voronoi diagrams.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2006) 25(3),
1144–1153 (2006)

20. Sutherland, I.E., Hodgman, G.W.: Reentrant polygon clipping. Communications
of the ACM 17(1), 32–42 (1974)

21. Yan, D.-M.: Variational Shape Segmentation and Mesh Generation. Phd disserta-
tion, The University of Hong Kong (2010)

22. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast
and exact computation of restricted Voronoi diagram. Computer Graphics Forum
(Proceedings of SGP 2009) 28(5), 1445–1454 (2009)

http://tetgen.berlios.de/

Selecting Knots Locally for Curve Interpolation
with Quadratic Precision�

Caiming Zhang1, Wenping Wang2, Jiaye Wang1, and Xuemei Li1

1 School of Computer Science and Technology, Shandong University,
Jinan 250101, China

2 The Department of Computer Science, University of Hong Kong,
Pokfulam Road, Hong Kong

Abstract. There are several prevailing methods for selecting knots for
curve interpolation. A desirable criterion for knot selection is whether the
knots can assist an interpolation scheme to achieve the reproduction of
polynomial curves of certain degree if the data points to be interpolated
are taken from such a curve. For example, if the data points are sam-
pled from an underlying quadratic polynomial curve, one would wish to
have the knots selected such that the resulting interpolation curve repro-
duces the underlying quadratic curve; and in this case the knot selection
scheme is said to have quadratic precision. In this paper we propose a lo-
cal method for determining knots with quadratic precision. This method
improves on upon our previous method that entails the solution of a
global equation to produce a knot sequence with quadratic precision.
We show that this new knot selection scheme results in better inter-
polation error than other existing methods, including the chord-length
method, the centripetal method and Foley’s method, which do not pos-
sess quadratic precision.

Keywords: parametric curves, knots, quadratic polynomial,
interpolation.

1 Introduction

The problem of computing parametric interpolating curves is of fundamental im-
portance in computer aided geometric design, scientific computing and computer
graphics. Given a sequence of data points Pi, i = 1, 2, . . . , n, an interpolation
scheme needs the so called knots ti associated with the Pi to produce an in-
terpolation curve P (t) with P (ti) = Pi. The quality of the interpolation curve,
in terms of fairness and interpolation error, depends on not only the particular
interpolation scheme used, but also the selection of the knots ti. This paper
addresses the problem of computing knots for a given set of data points.
� Supported by the National Key Basic Research 973 Program of China

(No.2006CB303102) and the National Nature Science Foundation of China
(No.60573181,60933008), Shandong Province National Nature Science
Foundation(No.Z2006G05).

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 283–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

284 C. Zhang et al.

There are several existing methods for solving this problem. It is well known
that using a uniform parametrization (that is, the knots ti are equally spaced) to
choose knots generally leads to unsatisfactory results when the distances of the
data points vary greatly. The chord length parametrization is a widely accepted
method for determining knots [1][2][3][4][5][6]. This method produces satisfac-
tory results because the accumulated chord length is a reasonable approxima-
tion to the accumulated arc length. The quality of chordal parametrisation is
discussed recently in the paper[7]. Two other commonly used methods are Fo-
ley’s method [9] and the centripetal method [8], which are the variations of the
chord length method. Our experiments in Section 5 show that, in terms of inter-
polation error, none of these methods has a distinct advantage over the others.
Moreover, in some cases none of these methods can produce a satisfactory result.

The problem of determining knots for constructing B-spline/NURBS curve is
discussed [12][13], where the knots are determined using an energy-optimization
method. Other recent methods of determining knots can be found in [14][15][16].

One property shared by many of the above methods for knot selection is lin-
ear precision, which means that, roughly speaking, using the knots provided by
such a method, the resulting interpolation curve will be a linearly parameterized
straight line if the data points are sampled from a straight line. By approxima-
tion theory, in general, a smooth function with bounded derivatives is better
approximated with a polynomial of higher degree. This means that a higher
order precision would in general lead to an interpolation curve with a smaller
interpolation error. Our contribution is a new, local knot selection method with
quadratic precision.

Since the notion of quadratic precision is central to our method, it deserves
some elaboration. Suppose that we have a curve interpolation scheme that takes
in a set of data points Pi = (xi, yi) and knots ti to produce polynomial functions
x(t) and y(t) that form a parametric curve P (t) = (x(t), y(t)) to interpolate
the points Pi = (xi, yi); that is, x(ti) = xi and y(ti) = yi, i = 1, 2, . . . , n.
Now consider two arbitrary quadratic functions g(t) and h(t). Suppose that the
coordinates {xi} and {yi} of the data points Pi are sampled from g(t) and h(t)
with the same variable values ti in the increasing order; that is, g(ti) = xi and
h(ti) = yi, i = 1, 2, . . . , n. Then the interpolation scheme is said to have quadratic
functional precision if, with the same ti as knots, it produces an interpolation
curve P (t) = (x(t), y(t)) of the points Pi such that x(t) = g(t) and y(t) = h(t).
That is to say, the original curve G(t) = (g(t), h(t)) on which the data points lie
is reproduced by the interpolation scheme.

However, in a curve interpolation problem, only the data points are specified
and the knots ti are not provided as part of the input; they need to be estimated
by some knot selection method before applying a curve interpolation scheme.
Hence, even when an interpolation scheme possessing the quadratic functional
precision is used and the data points are sampled from a quadratic polynomial
curve G(t), without an appropriate set of knots ti, the resulting interpolation
curve P (t) may still not reproduce the curve G(t).

Now we give the definition of quadratic precision of a knot selection scheme.

Selecting Knots Locally for Curve Interpolation with Quadratic Precision 285

Definition. Suppose that an interpolation scheme possessing quadratic func-
tional precision is used to compute an interpolation curve for a set of given data
points {Pi}, i = 1, 2, . . . , n. A method for computing knots ti from {Pi} is said
to have quadratic precision if, for any set of data points {Pi} sampled from
any quadratic curve G(t), it produces the knots ti such that with these knots the
interpolation scheme reproduces G(t) as the interpolation curve.

The first author of the present paper and his co-workers propose a method
in [10], to be referred to as the ZCM method, that solves a global equation
to find knots with quadratic precision. Here we preset a new, local method
that computes knots with quadratic precision without having to solve a global
equation. In contrast, the knots computed by the chord length, Foley’s method
and the centripetal methods have linear precision but not quadratic precision.

The remainder of the paper is organized as follows. The idea of the new
method is described in Section 2. In Section 3, we discuss how to compute
the local knot sequences for each data point from its neighboring points. In
Section 4, we use a normalization scheme to merge the local knot sequences into a
global, consistent knot sequence with quadratic precision.The comparison of the
new method with the chord length method, Foley’s method and the centripetal
methods is presented in Section 5, and we conclude the paper in Section 6.

2 Basic Idea

The main idea of the method is as follows. We locally estimate the intervals be-
tween consecutive knots based on quadratic curves interpolating each set of four
consecutive data points, assuming that such four points form a locally convex
configuration (i.e. no inflection). Then these local knot intervals are registered
together via a normalization scheme to determine a global knot sequence. When
the data points are sampled from a quadratic curve, the quadratic curves inter-
polating each set of four consecutive data points become the same curve, since
a quadratic curve (i.e. a parabola) is uniquely determined by four points on it.
We shall show that the global knot sequence thus chosen possesses quadratic
precision.

Let Pi = (xi, yi), 1 ≤ i ≤ n, be a set of distinct data points. Four consecutive
data point Pi+k, k = 0, 1, 2, 3, form a convex chain if PiPi+1Pi+2Pi+3Pi is a
convex polygon. For the moment, we assume that every point Pi = (xi, yi), 1 ≤
i ≤ n, belongs to at least two convex chains. For example, in Figure 3, the point
Pi belongs to the convex chains {Pi−2, Pi−1, Pi, Pi+1} and {Pi, Pi+1, Pi+2, Pi+3}.

Let ti denote the knots to be assigned for the points Pi, 1 ≤ i ≤ n. Our goal
is to determine the ti in such a way that, if the Pi are taken from a parametric
quadratic polynomial, i.e.,

Pi = Aξ2i +Bξi + C, 1 ≤ i ≤ n, (1)

then ti = αξi + β, 1 ≤ i ≤ n, for some constants α and β. This will ensure the
quadratic precision, since a linear transform of the knots does not affect the type

286 C. Zhang et al.

of interpolation curves produced by an interpolation scheme that has quadratic
functional precision.

Suppose that the data points Pi, 1 ≤ i ≤ n, are taken from a parametric
quadratic polynomial P (ξ) = (x(ξ), y(ξ)) defined by

x(ξ) = X2ξ
2 +X1ξ +X0,

y(ξ) = Y2ξ
2 + Y1ξ + Y0.

(2)

Then any four consecutive data points {Pi−2, Pi−1, Pi, Pi+1}, i = 3, 4, · · · , n −
1(see Figure 1) will uniquely determine a quadratic polynomial curve Pi(t) which
is the same as P (ξ) in Eqn. (2), but possibly with a different parameterization.
Since any two proper parameterizations of a quadratic curve differ by a linear
reparameterization, it follows that t = αξ + β, for some constants α and β.

Let t(0)j = αiξj + βi denote the knots computed with respect to Pi(t) for the
four consecutive data points {Pi−2, Pi−1, Pi, Pi+1}. Suppose that the next four
data points determine the quadratic curve Pi+1(t). Let t(1)j = αi+1ξj + βi+1
denote the knots computed with respect to Pi+1(t) for the four consecutive data
points {Pi−1, Pi, Pi+1, Pi+2}. Thus, we will have two sets of knot values t(0)j and

t
(1)
j for the three data points Pj , j = i− 1, i, i+ 1, derived from the two possibly

different parameterizations Pi(t) and Pi+1(t) of the same quadratic curve P (ξ).
Since the two sequences of knots t(0)j and t

(1)
j , j = i − 1, i, i + 1, are both

linearly related to ξi, it is possible to use a linear mapping to match up the
two sequences. This is, in fact, the key idea that enables us to compute knots
with quadratic precision using only local computation. At the overall level of the
algorithm, suppose that we want to compute a global sequence of knots for the
data points Pi, i = 3, 4, · · · , n−1, that are taken from the same quadratic curve.
We first consider all groups of four consecutive data points and compute locally
the knots of the four points in each group with respect to the quadratic curve
locally determined by these four points; thus each group of points will have its
knot sequence of length 4. Since any two adjacent groups share three common
data points and the two quadratic curves determined respectively by the two
groups of points are the same curve, we can merge their knot sequences using a
linear reparameterization to form a longer knot sequence.

To develop a complete solution based on this idea, we face two tasks: 1)
computing the local knot sequence tj from each group of four consecutive data
points; 2) merging all these local knot sequences into a global knot sequence
that has quadratic precision. These two steps will be explained in the following
sections.

3 Computing Knots from Neighboring Data Points

In this section, we will consider how to locally compute the knots of three
consecutive points {Pi−1, Pi, Pi+1} from their neighboring points. Consider a
data point Pi and its neighboring points Pi−2, Pi−1, Pi+1, and Pi+2. Let Pi(t)
and Pi+1(t) be the two quadratic curves determined respectively by the first

Selecting Knots Locally for Curve Interpolation with Quadratic Precision 287

�

�
�

�

�

�

w

v

P
i-2

P
i-1

1

P
i

Pi+1

Pi+2

Fig. 1. Five data points

group of four points {Pi−2, Pi−1, Pi, Pi+1} and the next group of four points
{Pi−1, Pi, Pi+1, Pi+2}, assuming each group forming a convex chain. Note that
the three points {Pi−1, Pi, Pi+1} are shared by both groups. We will discuss
how to compute the knots t(0)j of the three points {Pi−1, Pi, Pi+1} with respect

to Pi(t) and the knots t(1)j of the three points with respect to Pi+1(t). In the
general case where the five points Pi−2, Pi−1, Pi, Pi+1 are not taken from the
same quadratic curve, since the knots t(0)j and t(1)j , j = i− 1, i, i+ 1, cannot be
matched up by a linear mapping, we will need to generate the local knots for
{Pi−1, Pi, Pi+1} via an appropriate averaging of the t(0)j and t(1)j , j = i−1, i, i+1.

Let Pj = (xj , yj), i − 2 ≤ j ≤ i + 2, be five consecutive points, where
i = 3, 4, · · ·, or n − 2. For the moment, assume that these five points form a
convex chain and no three consecutive points of them are collinear. Then, for
brevity, via an affine mapping, the five points can be mapped to have the coor-
dinates (xi−2, yi−2), (0, 1), (0, 0), (1, 0) and (xi+2, yi+2), respectively, as shown
in Figure 1. Such an affine mapping does not affect our argument since the
correspondence between a group of four points and the unique quadratic curve
determined by the four points is invariant under affine mappings. Let Q(s) be the
quadratic curve that interpolates Pi−1, Pi, and Pi+1. Taking advantage of linear
reparameterization, we may assume Q(0) = Pi−1, Q(si) = Pi, and Q(1) = Pi+1,
for some constant si in (0, 1). It can be shown that Q(s) = (x(s), y(s)) has the
expression

x = x(s) =
s(s− si)
1− si

,

y = y(s) =
(s− si)(s− 1)

si
.

(3)

The freedom of choosing si ∈ (0, 1) indicates that one more point is needed to
uniquely determine Q(s). So next we will fix si by requiring Q(s) to further
interpolate Pi+2. By the first equation of (3), replacing s(s − si) of the second
equation of (3) by (1 − si)x, we get

(1− si)x = s(s− si),
s = x+ (1− x− y)si.

(4)

288 C. Zhang et al.

Substituting the second equation of (4) into the first one and arranging, the
implicit equation of the quadratic curve Q(s) is found to be

w(x, y) = a(x, y)s2i + b(x, y)si + c(x, y) = 0, (5)

where
a(x, y) = (1− x− y)(x + y),
b(x, y) = −2x(1− x− y),
c(x, y) = (1− x)x.

Since Pi+2 = (xi+2, yi+2) is a point on this curve, substituting (xi+2, yi+2) for
x, y in Eqn. (5) yields the two roots of si:

sr
i =

1
xi+2 + yi+2

(
xi+2 ±

√
xi+2yi+2

xi+2 + yi+2 − 1

)
. (6)

Substituting (xi+2, yi+2) and (6) into (4) yields

si+2 = ∓
√

xi+2yi+2

xi+2 + yi+2 − 1
+ sr

i .

Since si+2 > 1 and sr
i < 1, it follows

sr
i =

1
xi+2 + yi+2

(
xi+2 −

√
xi+2yi+2

xi+2 + yi+2 − 1

)
. (7)

Substituting si+2 > 1 into (3) gives xi+2 > 1 and yi+2 > 0, so the point Pi+2 =
(xi+2, yi+2) should be in the dotted region in Figure 1 in order for the solution
sr

i to be real. This means that the four data points need to form a convex chain
in order to uniquely determine a quadratic polynomial.

On the other hand, if we require Q(s) to interpolate Pi−2, instead of Pi+2, by
a similar argument we get another knot sl

i for Pi, given by

sl
i =

1
xi−2 + yi−2

(
xi−2 +

√
xi−2yi−2

xi−2 + yi−2 − 1

)
. (8)

When the five points Pj = (xj , yj), i − 2 ≤ j ≤ i+ 2, are taken from the same
quadratic curve, we have sl

i = sr
i . However, for data points given in general

positions (but still assumed to form a convex chain), these five points may not
lie on the same underlying quadratic curve, so we may have sl

i �= sr
i . In this case

we would need to reconcile the two values to determine a knot si for Pi. An
obvious choice would be to set si = (sl

i + sr
i)/2. But, in the following we will

propose a more elaborate scheme to get si from sl
i and sr

i , to further improve
the estimate of si.

Substituting (xi−2, yi−2) and (xi+2, yi+2) into (5), respectively, one gets the
following equations

a(xi−2, yi−2)s2i + b(xi−2, yi−2)si + c(xi−2, yi−2) = 0,
a(xi+2, yi+2)s2i + b(xi+2, yi+2)si + c(xi+2, yi+2) = 0.

(9)

Selecting Knots Locally for Curve Interpolation with Quadratic Precision 289

�

�

1
� � �

w(xi+2, yi+2)
w(xi−2, yi−2)

si�
sm

i

�
��

sl
i

�
��

sr
i

Fig. 2. Positions of sl
i, sm

i and sr
i

From these equations another estimate of si is given by

sm
i =

c(xi+2, yi+2)a(xi−2, yi−2)− c(xi−2, yi−2)a(xi+2, yi+2)
b(xi−2, yi−2)a(xi+2, yi+2)− b(xi+2, yi+2)a(xi−2, yi−2)

. (10)

Thus, we have now three estimates sl
i, s

m
i , s

r
i for si, as indicated in Figure 2.

Now we are going to compute si as a combination of sl
i, s

m
i and sr

i , defined
by (8), (10) and (7), respectively. Substituting si defined by (7), (8) and (10)
into w(x, y) (5), the corresponding w(x, y)’s are denoted by wr(x, y), wl(x, y)
and wm(x, y), respectively. The discussion above shows that, in general, wr(x, y)
passes (xi+2, yi+2) and approximates (xi−2, yi−2), wl(x, y) passes (xi−2, yi−2)
and approximates (xi+2, yi+2), while wm(x, y) approximates both (xi−2, yi−2)
and (xi+2, yi+2). Let

ατ
i =

√
wτ (xi−2, yi−2)2 + wτ (xi+2, yi+2)2,

τ = l,m, r.

If αl
i = αm

i = αr
i = 0, then sl

i = sm
i = sr

i , and we simply set si = sl
i. Otherwise,

as among sl
i, s

m
i and sr

i , none is better for defining si than the rest two ones, si

is defined by the weighted combination of sl
i, s

m
i and sr

i as follows

si =
αm

i α
r
i s

l
i + αl

iα
r
i s

m
i + αl

iα
m
i s

r
i

αm
i α

r
i + αl

iα
r
i + αl

iα
m
i

. (11)

Note that wl(xi−2, yi−2) = 0 and wr(xi+2, yi+2) = 0, so, αl
i = |wl(xi+2, yi+2)|

and αr
i = |wr(xi−2, yi−2)|.

So far we have excluded the cases where the point Pj , j = i−2, i−1, i, i+1, i+2,
do not form a convex chain or some three consecutive points of them are collinear.
Now we need to address these cases.

If Pi−1, Pi and Pi+1 are on a straight line, then we set

si =
|Pi−1Pi|

|Pi−1Pi|+ |PiPi+1|
. (12)

This choice makes the quadratic polynomial which passes Pi−1, Pi and Pi+1 be
a straight line with the magnitude of the first derivative being a constant. Such
a straight line is the most naturally defined curve one can get in this case.

290 C. Zhang et al.

Pi�2

Pi�1

Pi

Pi�1

Pi�2

Pi�3

x

y

Fig. 3. Data points whose convexity changes sign

When the data points Pj , j = i− 2, i− 1, i, i+ 1, i+ 2, do not form a convex
chain, as shown in Figure 3, the knot si for Pi is computed by (8) using the points
{Pi−2, Pi−1, Pi, Pi+1}, and the knot si+1 for Pi+1 is computed by (7) using the
points {Pi, Pi+1, Pi+2, Pi+3}.

Finally, for the end data points, s2 corresponding to Q2(s) is determined
using the four points Pj , j = 1, 2, 3, 4, and sn−1 corresponding to Qn−1(s) is
determined using points the Pj , j = n− 3, n− 2, n− 1, n.

4 Merging Local Knots Sequences

So far we have computed the local knots 0, si, 1 for the three points Pi−1, Pi, Pi+1
with respect to two locally interpolating quadratic curves Pi(t) and Pi+1(t).
These knots define the knot interval [0, si] between Pi−1 and Pi, and the knot
interval [si, 1] between Pi and Pi+1; we will associate the lengths of these two
intervals, i.e. si and 1− si, with the point Pi, and still call them knot intervals.
Even when all the data points Pi are taken from the same quadratic curve,
the knot intervals associated with different points may not be equal due to the
different linear scales of different parameterizations. In this section, we introduce
a normal form of a quadratic curve and use it to merge all the knot intervals
associated with different points Pi, i = 2, 3, . . . , n − 1, into a consistent global
knot sequence with respect to the same parameterization of a quadratic curve.

Any quadratic curve Pi(t) = (xi(t), yi(t)), where

xi(t) = Xi,2t
2 +Xi,1t+Xi,0,

yi(t) = Yi,2t
2 + Yi,1t+ Yi,0

(13)

can be transformed by a rigid transformation and a linear reparameterization
into the form

x̄i(s) = s2 + X̄1s+ X̄0,
ȳi(s) = s2 + Ȳ1s+ Ȳ0,

(14)

Selecting Knots Locally for Curve Interpolation with Quadratic Precision 291

with Xi,2 �= 0 or Yi,2 �= 0. The transformations and reparameterization required
are

x̄ = x cos βi + y sinβi

ȳ = −x sinβi + y cosβi
(15)

where
cosβi =

Xi,2 + Yi,2√
X2

i,2 + Y 2
i,2

, sinβi =
Yi,2 −Xi,2√
X2

i,2 + Y 2
i,2

,

and

X̄0 = cosβiXi,0 + sinβiYi,0, Ȳ0 = − sinβiXi,0 + cosβiYi,0

X̄1 =
cosβiXi,1 + sinβiYi,1√
cosβiXi,2 + sinβiYi,2

, Ȳ1 =
− sinβiXi,1 + cosβiYi,1√

cosβiXi,2 + sinβiYi,2
, (16)

and
s = (X2

i,2 + Y 2
i,2)

1
4 t. (17)

For Pi−1, Pi and Pi+1, i = 2, 3, · · · , n − 1, the parametric quadratic polyno-
mial Qi(s) = (xi(s), yi(s)) which interpolates Pi−1, Pi and Pi+1 at 0, si and 1,
respectively, is

xi(s) = Xi,2s
2 +Xi,1s+ xi−1,

yi(s) = Yi,2s
2 + Yi,1s+ yi−1,

(18)

where
Xi,2 =

xi−1 − xi

si
+
xi+1 − xi

1− si
,

Xi,1 = − (xi−1 − xi)(si + 1)
si

− (xi+1 − xi)si

1− si
,

Yi,2 =
yi−1 − yi

si
+
yi+1 − yi

1− si
,

Yi,1 = − (yi−1 − yi)(si + 1)
si

− (yi+1 − yi)si

1− si
.

(19)

When we convert the quadratic curve Qi(s) in Eqn. (18) to the normal form
in Eqn. (14), by the reparameterization (17), the knot intervals si and 1 − si

associated with Pi become

Δi
i−1 = (X2

i,2 + Y 2
i,2)

1
4 si,

Δi
i = (X2

i,2 + Y 2
i,2)

1
4 (1− si),

(20)

where Xi,2 and Yi,2 are defined in (19).
If Pi−1, Pi and Pi+1 are on a straight line, then with (16) and (12), it is easy

to prove that
Δi

i−1 = |Pi−1Pi|,
Δi

i = |PiPi+1|.
(21)

Hence, by mapping each Qi(s) into the normal form, for each pair of consecutive
points Pi and Pi+1 there are two knot intervals Δi

i and Δi+1
i , 2 ≤ i ≤ n− 1. We

have Δi
i = Δi+1

i if all the data points are taken from the same quadratic curve.
But, in general, Δi

i �= Δi+1
i . Furthermore, for end data points, there is only one

292 C. Zhang et al.

knot interval, Δ1
1, for the pair P1 and P2; and there is one knot interval, Δn−2

n−1,
for the pair Pn−1 and Pn.

We first average the two sequences of knot intervals, {Δi
i} and {Δi+1

i }, into
a single sequence of knot intervals, {Δi}, i = 1, 2, . . . , n− 1, as follows.

Δ1 = Δ1
1,

Δi =
2Δi

iΔ
i+1
i

Δi
i +Δi+1

i

, i = 2, 3, · · · , n− 2,

Δn−1 = Δn−2
n−1.

From the knot intervals {Δi}, we compute the global knot sequence {ti}, i =
1, 2, . . . , n, as follows.

t1 = 0,
ti+1 = ti +Δi, i = 1, 2, · · · , n− 1.

(22)

5 Experiments

We will present two test examples to compare our new local knot selection
method with the chord length method, Foley’s method, and the centripetal
method. The comparison is performed by using the knots computed with these
methods in the construction of a parametric cubic spline interpolant. In the first
example, the data points used in the comparison are taken from the ellipse,
F (s) = (x(s), y(s) defined by

x(s) = 3 cos(2πs),
y(s) = 2 sin(2πs).

The four methods are compared on non-uniform data points produced by divid-
ing the interval s ∈ [0, 1] into n subintervals, n = 20, 40, 80, i.e., si is defined as
follows:

si = [i+ λsin(i ∗ (n− i))]/n, i = 0, 1, 2, · · · , n, (23)

where λ = 0.1, which makes the distance between two adjacent points being
unequal.

The four methods are evaluated in terms of the absolute error E(t) defined
by

E(t) = min
s
{|P (t)− F (s)|}

= min
s
{|P̃i(t)− F (s)|, si−1 ≤ s ≤ si}, i = 0, 1, 2, · · · , n− 1,

where P (t) denotes one of the splines constructed by the four methods, P̃i(t) is
the corresponding part of P (t) on the subinterval [ti−1, ti], and F (s) is the above
ellipse. For point P̃i(t), min{|P̃i(t) − F (s)|, si−1 ≤ s ≤ si} means the shortest
distance from the point P̃i(t) to the curve segment F (s).

Selecting Knots Locally for Curve Interpolation with Quadratic Precision 293

Table 1. Maximum absolute errors

Error New chord Foley centripetal
n=20 4.6e-4 8.41e-4 7.48e-3 1.02e-2
n=40 2.02e-5 7.11e-5 5.54e-4 1.17e-3
n=80 3.01e-6 4.25e-6 1.06e-4 4.60e-4

(a) 2400*E(t) by the new method

(b) 1200*E(t) by the chord length method

(c) 120*E(t) by Foley’s method

(d) 96*E(t) by the centripetal method

Fig. 4. Error curves by the four methods

The four methods have been compared on data points defined by (23). The
maximum values of the error curve E(t) generated by the four methods are
shown in Table 1. For n = 20, the error curves by the four methods are shown
in Figure 4.

In the second example, the four methods are compared using data points taken
from a Bézier curve of degree eight, F (s) = (x(s), y(s)). The control points of
the curve are {(0, 0), (19, 24), (39, 43), (58, 37), (78, 0), (98,−50), (141,−81),
(164,−64), (188, 0)}. To prevent large errors from occurring near the end points
(x0, y0) and (xn, yn), n = 20, 40, 80, the tangent vectors of F (s) at s = 0 and
s = 1 are used as the end conditions to construct the cubic splines. The maximum
values of the error curve E(t) generated by the four methods are shown in Table
2. For n = 20, the error curves by the four methods are shown in Figure 5.

The two test examples show that our method leads to smaller interpolation
error than all the other three methods. It is about half of the error of the chord
length method, and about one order of magnitude smaller than Foley’s method
and the centripetal method.

294 C. Zhang et al.

Table 2. Maximum absolute errors

Error New chord Foley centripetal
n=20 4.92e-3 2.47e-2 4.33e-2 9.60e-2
n=40 1.60e-3 2.16e-3 7.64e-3 2.26e-2
n=80 3.348e-4 3.94e-4 1.75e-3 7.71e-3

(a) 180*E(t) by the new method

(b) 45*E(t) by the chord length method

(c) 30*E(t) by Foley’s method

(d) 12*E(t) by the centripetal method

Fig. 5. Error curves by the four methods

6 Conclusions and Future Work

A new method for choosing knots in parametric curve interpolation has been
presented. The new method can be used in polynomial curve interpolation as
well as in spline curve interpolation. The chosen knots have a quadratic precision,
meaning that, from the approximation point of view, the new method is better
than the chord length method, the centripetal method, and Foley’s method. Our
experiment results also indicate that if the polygon formed by the data points
does not has any inflection, that is, globally convex, then the new method in
general gives better approximation than the other three methods.

While the approximation error produced with the new method is relatively
small, it is however more involved than the other existing methods. Therefore
a further research problem is to devise a simpler method for computing knots
with quadratic precision.

Selecting Knots Locally for Curve Interpolation with Quadratic Precision 295

It is known that, when constructing a cubic spline interpolant, with the
suitable two end conditions and the knots, the constructed parametric cubic
spline reproduces parametric cubic polynomials. Our next work is to investigate
whether there is a method of choosing knots with cubic precision.

References

1. Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The theory of splines and their applica-
tions. Academic Press, New York (1967)

2. de Boor, C.: A practical guide to splines. Springer, New York (1978)
3. Brodlie, K.W.: A review of methods for curve and function drawing. In: Brodile,

K.W. (ed.) Mathematical methods in computer graphics and design, pp. 1–37.
Academic Press, London (1980)

4. Su, B., Liu, D.: Computational Geometry, pp. 47–48. Shanghai Science and Tech-
nology Press, Shanghai (1982)

5. Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture.
Ellis Horwood (1979)

6. Späth, H.: Spline algorithms for curves and surfaces Utilitas Mathematica. Win-
nipeg, Canada (1974)

7. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J.
Numer. Anal. 26, 25–33 (2006)

8. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. CAD 21(6),
363–370 (1989)

9. Farin, G.: Curves and surfaces for computer aided geometric design: A practical
guide. Academic Press, London (1988)

10. Zhang, C., Cheng, F., Miura, K.: A method for determing knots in parametric
curve interpolation. CAGD 15, 399–416 (1998)

11. Zhang, C., Cheng, F.: Constructing Parametric Quadratic Curves. Journal of Com-
putational and Applied Mathematics 102, 21–36 (1999)

12. Xie, H., Qin, H.: A Novel Optimization Approach to The Effective Computation
of NURBS Knots. International Journal of Shape Modeling 7(2), 199–227 (2001)

13. Xie, H., Qin, H.: Automatic Knot Determination of NURBS for Interactive Geo-
metric Design. In: Proceedings of International Conference on Shape Modeling and
Applications, SMI 2001, pp. 267–277 (2001)

14. Marin, S.P.: An approach to data parametrization in parametric cubic spline in-
terpolation problems. J. Approx. Theory 41, 64–86 (1984)

15. Zhang, C., Han, H., Cheng, F.: Determining Knots by Minimizing Energy. Journal
of Computer Science and Technology 216, 261–264 (2006)

16. Hartley, P.J., Judd, C.J.: Parametrization and shape of B-spline curves for CAD.
CAD 12(5), 235–238 (1980)

Eigenmodes of Surface Energies
for Shape Analysis

Klaus Hildebrandt, Christian Schulz,
Christoph von Tycowicz, and Konrad Polthier

Freie Universität Berlin

Abstract. In this work, we study the spectra and eigenmodes of the
Hessian of various discrete surface energies and discuss applications to
shape analysis. In particular, we consider a physical model that describes
the vibration modes and frequencies of a surface through the eigenfunc-
tions and eigenvalues of the Hessian of a deformation energy, and we
derive a closed form representation for the Hessian (at the rest state of
the energy) for a general class of deformation energies. Furthermore, we
design a quadratic energy, such that the eigenmodes of the Hessian of
this energy are sensitive to the extrinsic curvature of the surface.

Based on these spectra and eigenmodes, we derive two shape sig-
natures. One that measures the similarity of points on a surface, and
another that can be used to identify features of the surface. In addition,
we discuss a spectral quadrangulation scheme for surfaces.

1 Introduction

The spectrum and the eigenfunctions of the Laplace-Beltrami operator of a sur-
face have stimulated much recent work in shape analysis and geometry process-
ing, ranging from parametrization, segmentation, and symmetry detection to
shape signatures and mesh filtering. Such methods profit from the properties of
the eigenfunctions of the Laplace-Beltrami operator. For example, on a curved
surface they form an orthogonal basis of the space of L2-functions on the surface.
Furthermore, the Laplacian depends only on the metric of the surface, hence the
eigenvalues and eigenfunctions are invariant under isometric deformations of the
surface. However, there are disadvantages as well. For example, a consequence
of the invariance to isometric deformations is an insensitivity to extrinsic fea-
ture of the surface, like sharp bends, that are of essential importance for some
applications.

Contributions. In this work we derive operators, whose eigenmodes and spec-
tra can serve as alternatives to the spectrum and modes of the Laplacian for
applications in geometry processing and shape analysis. On the one hand, the
eigenfunctions of these operators share properties with the eigenfunctions of the
Laplacian, e.g., they form an orthogonal basis of an adequate space of variations
of the surface. On the other hand, there are fundamental differences, e.g., these
eigenfunctions depend (not only on intrinsic quantities but also) on the extrinsic

B. Mourrain, S. Schaefer, and G. Xu (Eds.): GMP 2010, LNCS 6130, pp. 296–314, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Eigenmodes of Surface Energies for Shape Analysis 297

curvature of the surface. We consider two different settings: vibration modes and
frequencies of surfaces derived from deformation energies, and eigenvalues and
eigenmodes of the Hessian of quadratic energies that are defined on a space of
functions on a surface.

On a planar domain, the eigenfunctions of the Laplacian serve as a model
for the vibration modes of a flat plate (Chladni plates). For curved surfaces
more elaborate models are required to describe the vibration modes of a surface.
We consider a physical model that describes vibration modes of a surface mesh
through the eigenfunctions of the Hessian of a deformation energy. In general,
computing the Hessian of a deformation energy is a delicate and laborious task.
But, to compute the vibration modes we do not need to compute the Hessian at
all points in the space of possible surfaces, but only at the point that represents
the reference surface. We derive a simple formula, that can be used to compute
the Hessian at the reference surface for a general class of deformation energies.
We hope that this framework will stimulate further exploration of the eigenmodes
and eigenfrequencies of deformation energies.

The Dirichlet energy of a surface is a quadratic functional on an appropriate
space of functions on a surface. The Hessian of this energy is the Laplace- Bel-
trami operator of the surface. We propose a quadratic functional that can be
derived from the Dirichlet energy, but is not intrinsic. The eigenfunctions of this
energy are sensitive to the extrinsic curvature of the surface.

We discuss three applications that use the proposed eigenmodes and spectra.
We define two (multi-scale) signatures, the vibration signature, based on the
vibration modes, and the feature signature, based on the eigenmodes of the
modified Dirichlet energy. To each of the two signatures we associate a (multi-
scale) pseudo-metric on the surface. The resulting vibration distance can be
used as a similarity measure on the surface and the feature distance can identify
features of a mesh. Furthermore, we test the spectral surface quadrangulation
method of Dong et al. [6] with specific vibration modes, instead of eigenfunctions
of the Laplacian. The resulting quadrangulation, in our opinion, aligns better
with the extrinsic curvature of the surface.

Related work. Recently, we have seen a boom of papers that use the eigen-
values and eigenfunctions of the Laplace-Beltrami operator as an ingredient to
algorithms in geometry processing and shape analysis. An overview of this de-
velopment can be found in the recent survey by Zhang et al. [29] and in the
course notes of a Siggraph Asia 2009 course held by Lévy and Zhang [16]. Here,
we can only briefly outline the work that has been most relevant for this paper.

The spectrum of the Laplace-Beltrami operator of a Riemannian manifold
contains a significant amount of information about the manifold and the metric.
Though it does not fully determine the Riemannian manifold, it can be used
as a powerful shape descriptor of a class of isometric Riemannian manifolds.
Reuter et al. [21,22] use the spectrum of the Laplace-Beltrami operator to con-
struct a finger print of surfaces, which they call the Shape-DNA. By construction
this finger print is invariant under isometric deformations of a surface. Among
other applications the Shape-DNA can be used for shape matching, copyright

298 K. Hildebrandt et al.

Fig. 1. Visualization of modes of different energies. First column shows the Laplacian
eigenmodes, second column the eigenmodes of the modified Dirichlet energy EN

D , and
third column the vibrations modes derived from the thin shell energy restricted to
normal variations.

protection, and database retrieval. Rustamov [23] developed the Global Point
Signature (GPS), a signature that can be used to classify shapes up to isometry.
Based on GPS, Ovsjanikov et al. [17] developed a method for the detection of
global symmetries in shapes. Dong et al. [6] present an elegant technique that
uses the Morse-Smale complex (and the quasi-dual complex) of a carefully chosen
Laplace eigenfunction to generate a coarse quadrangulation of a surface mesh.
This approach was extended by Huang et al. [14], who design a least-squares op-
timization routine that modifies the selected Laplace eigenfunction (and hence
its Morse-Smale complex) and provides a user with control of the shape, size,
orientation, and feature alignment of the faces of the resulting quadrangula-
tion. The computation of the spectrum and eigenfunctions of the Laplacian is
a delicate and computationally expensive task, even for medium sized meshes.
Vallet and Lévy [27] propose an efficient shift-and-invert Lanczos method and
present an implementation that is designed to handle even large meshes. Using
the eigenfunctions of the Laplacian, one can compute the heat kernel of the sur-
face. Sun et al. [26] propose a surface signature based on the heat kernel and
use the signature to derive a measure for the geometric similarity of different
regions of the surface. Due to its construction, this measure is invariant under
isometric deformations of the surface. Independent of this work, Gebal et al. [10]
propose a similar signature, named the Auto Diffusion Function, and use it for
mesh skeletonization and segmentation.

Modal analysis is a well established technique in structural mechanics and
mechanical engineering, that aims at computing the modes and frequencies of
an object during vibration. In graphics, it is mainly used to speed up physical
simulations, see [18, 12,2,4]. Recently, Huang et al. [15] use vibration modes of
a surface to decompose it into physically meaningful parts. They compute the
modes of the surface from the Hessian of the as-rigid-as-possible deformation
energy, which was proposed by Sorkine and Alexa [25].

Eigenmodes of Surface Energies for Shape Analysis 299

In physical simulation, thin shell models describe the dynamics of a thin
flexible structure that has a curved undeformed configuration. For example, in
cloth simulation thin shells are used to describe folds and wrinkles [3]. Common
discrete models [1, 3, 11, 9] describe the middle surface of a thin shell by a mesh
and measure the bending of the surface at the edges of the mesh. Of particular
interest for this work is the model of Grinspun et al. [11] that uses a discrete
energy to simulate thin shells.

2 Deformation Energies

In this section, we consider discrete deformation energies that are defined for
surface meshes in R3. Such energies measure the deformation of a mesh from a
reference mesh. A surface mesh is given by the positions of the vertices and the
combinatorial information which vertices form triangles. Here, we vary only the
positions of the vertices and leave the combinatorial information unchanged. The
positions of the vertices can be written in one 3n-vector x, where n is the number
of vertices. Hence, we can identify the space of meshes (with fixed combinatorics)
with R3n.

A general deformation energy. We consider deformation energies of the
following form:

E(x) =
1
2

∑
i
ωi(x̄) (fi(x) − fi(x̄))

2
, (1)

where x is a surface mesh and x̄ a fixed reference mesh. In this equation, the
sum can run over the edges, the vertices, or the triangles of x, and the fi’s and
ωi’s are elementary functions, which e.g. measure angles, length of edges, or
area of triangles. The weights ωi must be positive and we require E to be twice
continuously differentiable around x̄. Then, E has global minimum at x̄, which
implies that the gradient of E at x̄ vanishes and that the Hessian of E at x̄ is
positive semi-definite.

As an example of such an energy we consider a discrete energy that is designed
for thin shell simulation.

Discrete shells. If we regard the surface mesh as a thin shell, then a physical
model of thin shells provides us with a deformation energy. Here, we consider
the discrete shell model of Grinspun et al. [11]. The energy that governs this
model of thin shells is a weighted sum of two components: a flexural energy
and a membrane energy. The weight reflects properties of the material to be
simulated, e.g., in cloth simulation the membrane energy usually gets a high
weight due to the stretching resistance of cloth.

The discrete flexural energy is given as a summation over the edges of the
mesh:

EF =
3
2

∑
i

‖ēi‖2

Āei

(
θei − θ̄ei

)2
, (2)

where θei is the dihedral angle at the edge ei, Aei is the combined area of the
two triangles incident to ei and ‖ei‖ is the length of the edge. The quantities

300 K. Hildebrandt et al.

Fig. 2. Two eigenmodes of the lower spectrum on the double torus with sharp features,
left: Laplacian, and right: modified Dirichlet energy

‖ēi‖ , Āei , and θ̄ei are measured on the reference mesh. To write this flexural
energy in the general form (1) we set

fi = θei and ωi =
3 ‖ei‖2

Aei

.

The membrane energy consists of two terms: one measuring the stretching of the
edges,

EL =
1
2

∑
i

1
‖ēi‖

(‖ei‖ − ‖ēi‖)2, (3)

and one measuring the change of the triangle areas Ai

EA =
1
2

∑
i

1
Āi

(Ai − Āi)2. (4)

Here the second sum runs over the triangles of the mesh. We can describe EL

in the general form (1) by setting

fi = ‖ei‖ and ωi =
1
‖ei‖

,

and to describe EA we set

fi = Ai and ωi =
1
Ai

.

3 Modes of Deformation Energies

Modal analysis provides ways to compute the modes of a surface with respect to
a deformation energy. To inspect the modes of a mesh, given by a 3n-vector x̄,
we consider a deformation energy E(x) that has x̄ as a reference surface. Then,
we are interested in the eigenvalues and eigenmodes of the Hessian of the defor-
mation energy E at the mesh x̄ ∈ X .

The Hessian of a deformation energy (or more general of a function) does
not depend solely on the differentiable structure of X , but also on the metric

Eigenmodes of Surface Energies for Shape Analysis 301

on X , hence belongs to Riemannian geometry. Therefore, before considering
the Hessian of E we equip X with a metric. Since X equals R3n, the tangent
space TxX at a mesh x can be identified with R3n. We can interpret an element
of TxX as a vector field on x, that assigns a vector in R3 to every vertex of x.
Then, a natural choice of a scalar product on TxX is a discrete L2-product, e.g.,
the mass matrix used in FEM [28] or the discrete L2-product used in DEC [5,27].
We denote the matrix, that describes the scalar product on TxX by Mx. For
completeness, we would like to mention that if x is a mesh that has degenerate
triangles, the discrete L2-product on TxX may be only positive semi-definite.
However, away from the closed set of meshes that have at least one degenerate
triangle, X equipped with the discrete L2-product is a Riemannian manifold.

We denote by ∂Ex the 3n-vector containing the first partial derivatives of E
at x and by ∂2Ex the matrix containing the second partial derivatives at x.
We would like to emphasize that ∂Ex and ∂2Ex do not depend on the metric
on X , whereas the gradient and the Hessian of E do. The gradient of E at x is
given by

gradxE = M−1
x ∂Ex. (5)

The Hessian of E at a mesh x is the self-adjoint operator that maps any tangent
vector v ∈ TxX to the tangent vector hessxE(v) ∈ TxX given by

hessxE(v) = ∇vgradxE, (6)

where ∇ is the covariant derivative of X .

Hessian computation. In general, it is a delicate task to derive an explicit
representation of the Hessian of a deformation energy and often only approxi-
mations of the Hessian are available. Here, we derive a simple explicit formula
for the Hessian of a deformation in the general form (1) at the point x̄, which
involves only first derivatives of the fi’s.

Since the gradient of E vanishes at x̄, one can show that at x̄ the Hessian
of E takes the following form

hessx̄E = M−1
x̄ ∂2Ex̄.

Hence, at x̄ we do not need derivatives of the metric to compute hessx̄E.
Furthermore, to compute the second partial derivatives of E at x̄ we do not
need to calculate second derivatives, but we only need the first derivatives of
the fi’s. We present an explicit formula for ∂2Ex̄ in the following Lemma.

Lemma 1 (Explicit Hessian). Let E be a deformation energy of the form (1).
Then, the matrix ∂2Ex̄ containing the second derivatives of E at x̄ has the form

∂2Ex̄ =
∑

i
ωi(x̄) ∂fi x̄ ∂fi x̄

T , (7)

where ∂fi x̄
T denotes the transpose of the vector ∂fi x̄.

302 K. Hildebrandt et al.

Fig. 3. Visualization of vibration modes derived from the discrete thin shell energy.
In each row the left most image shows the rest state followed by some deformations
captured by a vibration mode.

The computation of the first derivatives of the fi’s is usually straight forward,
and, in addition, the first derivatives of many elementary quantities are explicitly
stated in the literature. For example, a formula for the first derivative of the
dihedral angle θ can be found in [28] and a formula for the first derivative of the
area of a triangle is contained in [20].

Eigenvalue problem. To get the eigenmodes of hessx̄E, we need to solve the
generalized eigenvalue problem

∂2Ex̄ Φ = λMx̄ Φ, (8)

where Φ ∈ Tx̄X and λ ∈ R. The matrix ∂2Ex̄ is symmetric and at least positive
semi-definite (x̄ is a minimum of E) and Mx̄ is symmetric and positive definite.
Hence, the structure of this problem is similar to the generalized eigenvalue
problem arising in manifold harmonics [23,27]. Fast solvers for this problem are
discussed in [24, 27]. Since hessx̄E is self-adjoint with respect to the discrete
L2-product (given by Mx̄), all eigenvalues of hessx̄E, i.e. the solutions of (8),
are real and the eigenmodes hessx̄E form an orthogonal basis of Tx̄X . If we
L2-normalize the eigenmodes, they form an orthonormal basis of Tx̄X in which
both Matrices ∂2Ex̄ and Mx̄ are diagonal matrices.

Vibration modes. To illustrate the concept of eigenmodes of the Hessian of a
deformation energy, we look at the vibrations of a mesh in a force field induced
by the energy. For simplicity, we consider the case of free vibrations. In general,
the dynamics of a time-dependent mesh x(t) in the space X is governed by a
system of non-linear second-order ODEs of the form

Mx(t)ẍ(t) = f(t, x(t), ẋ(t)),

Eigenmodes of Surface Energies for Shape Analysis 303

see [1]. Here, the mass matrix Mx represents the physical mass of x and f repre-
sents the acting forces. We consider the force field that has E as its potential, i.e.,

f(t, x(t), ẋ(t)) = −∂Ex(t).

In the case of free vibrations, this is the only force. In a more general setting, we
could include damping and exterior forces, see [18]. The equations that govern
the motion of a time-dependent mesh x(t) during free vibration are

gradx(t)E + ẍ(t) = 0, (9)

where we use the definition of the gradient, eq. (5), to simplify the formula. Since
we are interested in meshes x that are (arbitrarily) close to x̄, we expand the
force gradxE into a Taylor series around x̄. Using ∂Ex̄ = 0 (x̄ is a minimum of
E) we get

gradxE = hessx̄E(x− x̄) +O(‖x− x̄‖2). (10)

Then, if we omit the second order term in (10) and plug (9) and (10) together,
we get

hessx̄E u(t) + ü(t) = 0, (11)

where u(t) = x(t) − x̄. This is a system of second-order linear ODEs that are
coupled by hessx̄E. To solve the system we consider a normalized eigenbasis B
of hessx̄E. Written in such a basis, both matrices ∂2Ex̄ and Mx̄ are diagonal
matrices and equation (11) takes the form

Λw(t) + ẅ(t) = 0, (12)

where w is the representation of u in the basis B and Λ is a diagonal matrix
that contains the eigenvalues. The system (12) is decoupled and can be solved
row by row. Each row describes an oscillation around x̄ with frequency

√
λ in

the direction of the eigenmode Φ corresponding to the eigenvalue λ. This means,
that the eigenmodes of problem (8) describe the vibration modes of the mesh x̄
(with respect to the deformation energy E).

The vibrations of a physical system are usually not free, but are affected by
damping forces. Common models for such forces are Rayleigh damping, see [12],
and, even simpler, mass damping, see [18]. We would like to mention that if
Rayleigh (or mass) damping forces are added to the system, it still has the same
vibration modes, see [12].

Normal variations. In addition to arbitrary variations of the vertices of x̄,
we consider variations that restrict every vertex to vary only in direction of the
surface normal at the vertex. Let us fix a normal direction at each vertex of the
mesh. Then, a normal variation is determined by a function on the mesh. This
reduces the eigenvalue problem (11) to an n-dimensional problem. We denote
the restriction of ∂2Ex̄ to the subspace of Tx̄X spanned by the vertex normals
of x̄ by ∂2EN

x̄ . Then, equation (11) reduces to

hessx̄E
N ϕ + ϕ̈ = 0,

304 K. Hildebrandt et al.

Fig. 4. Visualization of modes of the Laplacian (three images on the left) and modes
of the thin shell energy restricted to normal variations (three images on the right)

where ϕ is a function on the mesh. The corresponding eigenvalue problem is

∂2EN
x̄ ϕ = λMx̄ ϕ,

whereMx̄ is the mass matrix that represents the discrete L2-product of functions
on the mesh x̄.

4 Quadratic Energies

In addition to energies defined on the space of meshes X , we consider energies
that are defined on an appropriate space of functions on a surface. In particular,
we consider the Dirichlet energy, that on a compact smooth surface Σ is defined
for weakly differentiable functions ϕ : Σ → R (that vanish at the boundary of
Σ) by

EΔ(ϕ) =
1
2

∫
Σ

‖gradϕ‖2 dA. (13)

This is an intrinsic energy, therefore, the energy and its eigenmodes do not change
under isometric deformations of the surface Σ. For some applications this is a
desired feature, for other applications it is not. By modifying the Dirichlet energy,
we construct a new energy that is extrinsic.

Assume that Σ is an orientable surface in R3 and let ν denote the normal of
Σ. Then, all three coordinates νk of ν are smooth functions and for a weakly
differentiable function ϕ the product ϕνk is weakly differentiable. We define

EN
Δ (ϕ) =

3∑
k=1

EΔ(ϕνk). (14)

Eigenmodes of Surface Energies for Shape Analysis 305

This energy satisfies the equation

EN
Δ (ϕ) = EΔ(ϕ) +

1
2

∫
Σ

ϕ2(κ2
1 + κ2

2)dA, (15)

where κ1 and κ2 are the principal curvatures of Σ. This means that EN
D (ϕ) is

the sum of the Dirichlet energy of ϕ and the ϕ2-weighted total curvature of Σ.

Discrete energies. In the discrete setting, we consider a mesh x ∈ X and the
space Fx of continuous functions u : x → R that are linear in every triangle.
Such a function is differentiable in the interior of every triangle, and hence one
can directly evaluate the integral (13). For a rigorous treatment of this discrete
Dirichlet energy and a convergence analysis see [7,13]. A function in Fx is already
determined by its function values at the vertices of x, hence it can be represented
by an n-vector. Then, the discrete Dirichlet energy ED is a quadratic functional
on Fx, and for a function u ∈ Fx (represented by an n-vector) ED(u) is explicitly
given by

ED(u) =
1
2
uTS u, (16)

where S is the usual cotan-matrix, see [19,28].
To discretize the energy EN

Δ we fix a normal direction at every vertex of
the mesh, and we denote the oriented unit normal vector at a vertex vi by
N(vi). Then, we say a continuous and piecewise linear vector field V on x is
a normal vector field if for every vertex vi of x the vector V (vi) is parallel to
N(vi). The space of normal vector fields on x is an n-dimensional vector space
and the map that maps a function u ∈ Fx to the normal variation Vu, given by
Vu(vi) = u(vi)N(vi) for all vi ∈ x, is a linear isomorphism. The three coordinate
functions V k

u of Vu are functions in Fx and we define the discrete energy EN
D

analog to eq. (14) by

EN
D (u) =

3∑
k=1

ED(V k
u).

A simple calculation shows that the energy EN
D satisfies

EN
D (u) =

1
2
uTAu, (17)

where the formula
Aij = 〈N(vi), N(vj)〉Sij

relates the entries Aij of the matrix A to the entries Sij of the cotan-matrix S.
The computation of the Hessian of the Dirichlet energy ED and the energy

EN
D is simple. Both energies are quadratic, therefore the Hessian is constant

and the matrices ∂2ED and ∂2EN
D are the matrices S and A given in equations

(16) and (17). The metric we consider on Fx is the discrete L2-product given
by the mass matrix M . The eigenvalues and eigenfunctions of the Hessian of
ED (resp. EN

D) satisfy the generalized eigenvalue problem S φ = λ M φ (resp.

306 K. Hildebrandt et al.

v

Fig. 5. Vibration distance to the marked vertex v of the Armadillo model in three
colorings: continuous coloring from white being similar to red being dissimilar to v and
binary colorings with two different thresholds where blue vertices are similar to v

Aφ = λ M φ). To abbreviate the terminology, we call these eigenvalues and
eigenfunctions the eigenvalues and eigenmodes of the energy ED (resp. EN

D).
Similar to the vibration modes of a deformation energy, the eigenmodes of ED

and EN
D are orthogonal with respect to M . We would like to remark that the

Hessian of the ED is the discrete Laplace-Beltrami operator and therefore the
eigenmodes and eigenvalues of ED agree with the eigenfunctions and eigenvalues
of the discrete Laplace-Beltrami operator.

Modes of EN
D . As illustrated in Figures 1 and 2, the eigenmodes of ED and EN

D

differ significantly. Whereas the eigenmodes of the Laplacian are insensitive to
the extrinsic curvature, the modes of EN

D corresponding to lower eigenvalues
hardly move in regions of high curvature, see Fig 1. A possible explanation
for this behavior is the following. The energy has its minimum at the origin
of the space of normal vector fields. Therefore, at the origin the gradient of the
energy vanishes and the modes of the Hessian corresponding to small eigenvalues
point into directions of least expenditure of energy. Now, equation (15) shows
that ED and EN

D differ by a zero’s order term, that measures a weighted L2-
norm of the function, where the weight is the sum of the squared principal
curvatures. Therefore, eigenmodes of EN

D that correspond to small eigenvalues
have small function values in areas of high curvature, because then a variation
in this direction causes less increase of energy.

5 Modal Signatures

In this section we introduce two multi-scale surface signatures: the vibration
signature, based on the vibration modes of the surface, and the feature signature,
which uses the eigenfunctions and eigenvalues of the modified discrete Dirichlet
energy EN

D . The construction of the signatures follows the construction of the
heat kernel signature defined in [26].

Eigenmodes of Surface Energies for Shape Analysis 307

The signatures we consider are multi-scale signatures, which take a positive
scale parameter t as input. For every t such a signature is a function on the mesh,
i.e., it associates a real value to every vertex of the mesh. Let v be a vertex of a
mesh x and let t be a positive value. Then, we define the vibration signature of
x at vertex v and scale t by

SV ib
t (v) =

∑
j

e−λjt ‖Φj(v)‖2 , (18)

where λj and Φj denote the eigenvalues and the L2-normalized vector-valued
vibration modes of a mesh x. The value ‖Φj(v)‖ describes the displacement of
the vertex v under the L2-normalized vibration mode Φj . For a fixed t the vi-
bration signature of v measures a weighted average displacement of the vertex
over all vibration modes, where the weight of the jth eigenmode is e−λjt. The
weights depend on the eigenvalues and on the scale parameter. For increasing
λ, the function e−λ t rapidly decreases, e.g., the modes with smaller eigenvalue
receive higher weights than the modes with large eigenvalues. Furthermore, for
increasing t all weights decrease, and, more importantly, the weights of the vi-
bration modes with smaller eigenvalues increases relative to the weights of the
modes with larger eigenvalues.

The feature signature is constructed in a similar manner, but it uses the
eigenmodes and eigenvalues of the modified Dirichlet energy EN

D . We define

SFeat
t (v) =

∑
j

e−λjt φj(v)2 (19)

where the λj are the eigenvalues and the φj(v) are the L2-normalized eigenmodes
of the Hessian of the modified discrete Dirichlet energy EN

D .

Multi-scale distances. From each of the two signatures we can construct the
following (multi-scale) pseudo-metric on the mesh: let v,ṽ be vertices of the mesh
x, then we define

δ[t1,t2](v, ṽ) =

(∫ t2

t1

(St(v)− St(ṽ))
2∑

ke
−λkt

d log t

) 1
2

. (20)

By construction, for any pair of scale values t1 < t2, δ[t1,t2] is positive semi-
definite and symmetric, and one can show that it satisfies the triangle inequal-
ity. We call the pseudo-metrics constructed from SV ib

t and SFeat
t the vibration

distance and the feature distance.
The idea behind the construction of the pseudo-metric is to use the integral∫ t2

t1
(St(v)− St(ṽ))

2dt. However, the actual definition additionally includes two
heuristics. First, since for increasing t the values St(v) decreases for all v, we
normalize the value (St(v) − St(ṽ))

2 by dividing it by the discrete L1-norm of St,

‖St‖L1 =
∑

ke
−λkt.

308 K. Hildebrandt et al.

v

Fig. 6. Vertices (blue) similar to vertex v based on heat kernel signature [26] (top row)
and our vibration signature (lower row). Left and right column depict similarity based
on a small range of t’s and middle column on a large range of t’s.

Second, for a fixed vertex v the signature St(v), in general, varies stronger for
small values of t than for large t’s. To increase the discriminative power of the
pseudo-metric, we associate a higher weight to the small t’s and a lower weight to
the larger t’s. We achieved this by using a weighted integral with weight function
dlog t = 1

t dt. To discretize this weighted integral we use a uniform decomposition
of the logarithmically scaled interval [t1, t2].

6 Results and Discussion

We experiment with the vibration modes of the discrete thin shell energy, the
eigenmodes of EN

D , and, for comparison, the eigenfunctions of the cotan- Laplace
operator. In addition, we restrict the space of variations to normal variations of
the mesh and inspect the modes of the thin shell energy in this setting. As a
discrete L2-scalar product we use the diagonal (or lumped) mass matrix M ,
which comes from FEM. The diagonal entry in the ith row of the matrix is
a third of the combined area of the triangles adjacent to the ith vertex of the
mesh. To compute the eigenmodes of a mesh, we solve the generalized eigenvalue
problem (8). Since M is a diagonal matrix, this problem can be transformed into
a standard eigenvalue problem as described in [27]. Then, we solve the resulting
standard eigenvalue problem with the shift-and-invert Lanczos scheme described
in [27]. For most examples and applications we do not need to compute the full
spectrum, but only the lower part of the spectrum.

Spectral zoo. We compare the eigenmodes of the Laplacian to the ones of the
modified Dirichlet energy EN

D and to the vibration modes of the thin shell energy

Eigenmodes of Surface Energies for Shape Analysis 309

v

Fig. 7. Comparison of two similarity measures. Distance to vertex v in binary as well
as continuous coloring based on our vibration signature (left most) and the heat kernel
signature (right most).

restricted to normal variations. To convey an impression of the characteristics
of the modes of the different energies, we show some examples in Figures 1, 2
and 4. To visualize the modes we use blue color for positive values, white for
zero crossings, and orange for negative values. Additionally, we draw isolines as
black lines.

As a first example, we study how the eigenmodes change when we isometrically
deform a flat plate, see Fig. 1. On the undeformed flat plate, the eigenmodes
of EN

D equal the eigenmodes of the Laplacian. As shown in Fig. 1, there are
certain differences between the three types of considered modes when computed
on the deformed plate. Due to its intrinsic nature the Laplacian eigenmodes
ignore the newly introduced feature, Fig. 1 left. In contrast, the eigenmodes of
EN

D and the vibration modes are sensitive to the feature, Fig. 1 middle and right.
The eigenmodes of EN

D corresponding to lower eigenvalues almost vanish at the
feature and the vibration modes place additional extrema on the fold.

Investigating the differences between the eigenmodes of the Laplacian and
EN

D further, we compute them on the double torus with sharp features shown
in Fig. 2. It can be seen that each of the shown Laplacian eigenmodes contains
a more or less equally distributed set of extrema as well as a certain reflection
symmetry, Fig. 2 left. The corresponding isolines suggest a low influence of the
sharp features to the considered Laplacian eigenmodes. Similar to the Laplacian
modes the two eigenmodes for EN

D also posses a reflection symmetry, Fig. 2
right. But here we find that the eigenmodes of the lower part of the spectrum
correspond to oscillations of flat areas surrounded by sharp edges, Fig. 2 right.
This matches our considerations in Section 4.

For a third comparison, we choose a model without sharp edges, the dancer
(25k vertices). We compare the eigenmodes of the Laplacian to the modes of the
thin shell energy restricted to normal variations, see Fig. 4. As in the case of the
torus we notice that the Laplacian eigenmodes oscillate equally over the whole
surface, see Fig. 4 left. In contrast, the vibration modes respect the extrinsic ge-
ometry features, e.g., they align to the creases on the dancer model. In addition,

310 K. Hildebrandt et al.

Fig. 8. Results of the feature signature on the rocker arm model. The top row shows
the feature signature for increasing scale values. The bottom row shows on the left the
feature distance to the marked vertex v binary colored by a threshold, and, on the
right, the surface colored by curvature (

√
κ2

1 + κ2
2).

on the dancer model vibration modes corresponding to the lower eigenvalues of
the thin shell energy spectrum tend to concentrate on some parts of the surface,
e.g., a leg of the dancer. Though the whole surface vibrates, the amplitude of
the vibration varies strongly across the surface.

Fig. 3 shows eigenvibrations with respect to the discrete thin shell energy.
The images on the left (top and bottom row) show the reference mesh and each
of the other images visualizes a vibration mode. The discrete thin shell energy is
a weighted sum of a flexural and a membrane energy. If we decrease the weight
of the membrane energy, the resulting vibration modes include stretching and
squashing of the surface, Fig. 3 top row 2nd and 3rd image. In contrast, if we put
a large weight on the membrane energy, the resulting eigenmodes try to preserve
the metric. Examples of such modes are given in Fig. 3 top row 4th, bottom row
2nd and 3rd image.

Vibration Signature. In the following we examine the properties of the vi-
bration signature SV ib

t defined in eq. (18) and compare it to the heat kernel
signature (HKS) introduced in [26]. As noted in Section 5, SV ib

t (v) encodes the
vibration behavior of a vertex v on multiple scales, i.e., vertices that oscillate
with similar intensity throughout the eigenmodes, will be close in terms of the
vibration distance δ[t1,t2](·, ·). We illustrate this property in Fig. 5 for the Ar-
madillo model (16k vertices). On the left we color plot the vibration distance
δ[t1,t2](v, ·) to the marked vertex v. Two further binary colorings are given, col-
orizing vertices that are closer to v than a threshold in blue and the other vertices

Eigenmodes of Surface Energies for Shape Analysis 311

Fig. 9. Quadrangulation of the Kitten and the Venus model based on eigenmodes of
the discrete thin shell energy restricted to normal variations

in white. For a small threshold the vertices on both feet are close to v; increasing
the threshold causes parts of the hands to be colored in blue as well.

Fig. 6 compares SV ib
t to the HKS. Every image of the hand model (40k ver-

tices) depicts the vertices that are closer to the marked vertex v. In the first col-
umn similar results are achieved for HKS and SV ib

t . Since the HKS is constructed
using the spectrum and eigenfunctions of the Laplacian, the signature depends
only on intrinsic properties of the surface. Thus the signature is incapable to
discern isometrically deformed parts of a surface. The vibration signature how-
ever is sensitive to extrinsic information and hence represents an alternative to
the HKS. This characteristic of SV ib

t becomes especially apparent in the second
column of Fig. 6. Here the middle finger of the hand is almost isometrically
deformed. The HKS cannot distinguish this situation from the undeformed one;
hence it recognizes the tips of the three longest fingers of the hand as similar
to vertex v. As the deformation alters the vibration behavior of the bent finger,
SV ib

t detects only the tips of the unbent ones. Alike the HKS, the vibration dis-
tance can be evaluated at different scales (different choices of [t1, t2]). Choosing
smaller t’s increases the weights (cf. eq. 18) for eigenmodes with higher frequency.
Therefore, more local vibrations described by these eigenmodes contribute more
to the vibration distance. An example is shown on the right side of the lower
row of Fig. 6. For smaller t’s, δ[t1,t2](v, ·) captures vibrations of the fingertips as
well and thus classifies the vertices on all tips as similar to v.

In Fig. 7 we provide a last comparison of the vibration signature and the
HKS for the camel model (10k vertices). The vibration distance shown on the
left, finds both pairs of knees (at the forelegs and at the hind legs) to be the
closest to vertex v. For the HKS, shown on the right, the results are not as
intuitive: the vertices at the mouth resp. ears of the camel are closer to the
vertex v than the vertices at the hind legs, even closer than the vertices at the
knees of the hind legs. This behavior of the HKS was the same at different scales
and it is difficult to interpret the results. An indication for this behavior can be
found by inspecting the Fiedler vector, which is the eigenfunction of the discrete
Laplacian associated to the lowest (non-zero) eigenvalue. Of all eigenfunctions,

312 K. Hildebrandt et al.

this one gets the highest weight in the signature. On the camel model, the Fieldler
vector has one type of extrema (e.g. its minima) at tips of the toes of the hind
legs at the tip of the tail and the other type of extrema (e.g. its maxima) at
the tips of the toes of the forelegs, at the tips of the ears, and the tip of the
snout. The function values at the tips of the ears and the tip of the snout are
about the same as the function values at the knees of the forelegs. Hence, the
contribution of this eigenfunction to the vibration distance is almost zero. This
behavior repeats at some of the higher modes.

Feature Signature. The feature signature and the feature distance can be
used to identify features of the surface like sharp bends or sharp corners. It is
our impression that the signature could serve as an indicator function to surface
segmentation algorithms. Fig. 8 shows the feature signature on the rockerarm
model for different scale values. Vertices of the mesh that have a signature value
close to zero are colored white in these images. The white areas seem to include
the important features of the rocker arm model. The lower left image shows in
blue all the vertices that are close (with respect to the feature distance) to a
vertex on a sharp bend. For comparison we show a curvature plot (

√
κ2

1 + κ2
2)

on the rocker arm.
Concerning the applicability as a feature indicator, an advantage of the fea-

ture signature over curvature is that the feature signature naturally comes with a
scale parameter. Whereas the curvature is noisy and would require some smooth-
ing operations, the feature distance even for low scale values seems to be much
smoother. Another interesting difference is the following. Some areas of the rock-
erarm model have high curvature but do not indicate features, e.g., the curved
area inside the hole has a much higher curvature than for example the flat parts
on the sides of the model. Still, the feature distance associates similar function
values to both of these parts.

Quadrangulation. We investigate the applicability of the spectral quadrangu-
lation approach by Dong et al. [6] to the eigenmodes of the thin shell energy
restricted to normal variations. The Morse-Smale complex of an eigenfunction
decomposes the surface into four-sided regions, see Fig. 9. Critical points emerg-
ing from high frequency noise in the functions are removed using cancellations,
see Edelsbrunner et al. [8]. Based on the positions of the irregular (non valance 4)
vertices and the connectivity of the Morse-Smale complex, a quadrangulation of
the surface is constructed. The results of the quadrangulation algorithm for the
Kitten (25k vertices) and the Venus (4k vertices) model are shown in Fig. 9. Two
images are shown for every model: first the Morse-Smale complex together with
the generating eigenmode and second the final quadrangulation. For the Kitten
model the lines of the quadrangulation run diagonally while for the Venus the
lines are aligned with the quadrilaterals of the Morse-Smale complex. Since the
quadrangulation method depends on various factors, the initial function being
only one of these, it is difficult to compare the results produced by eigenmodes of
the restricted thin shell energy to those of Laplacian eigenfunctions. Still, our im-
pression is that the quadrangulations produced by eigenmodes of the restricted
thin shell energy align more with the features of the surface.

Eigenmodes of Surface Energies for Shape Analysis 313

7 Future Work

Using the eigenmodes of the thin shell energy restricted to normal variations for
the quadrangulation of a surface yields promising results. Many critical points
of the eigenmodes are placed on the characteristic features of the surface. In
its current form the quadrangulation method varies the position of the critical
points in order to produce quadrilaterals of similar size, and, therefore, moves
the vertices of the quadrangulation away from the features. As future work we
would like to modify this scheme such that the vertices of the quadrangulation
are not allowed to move away from the feature, but still may vary along the
feature. The goal would be to produce quadrangulations that include features
(like sharp bends) of the surface. Furthermore, it would be interesting to include
the feature signature into the quadrangulation process.

Acknowledgements. This work was supported by the DFG Research Center
Matheon ”Mathematics for Key Technologies” in Berlin. We would like to
thank the anonymous reviewers for their comments and suggestions.

References

1. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM
SIGGRAPH, pp. 43–54 (1998)

2. Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff
deformable models. ACM Transactions on Graphics 24(3), 982–990 (2005)

3. Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrin-
kles. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 28–36 (2003)

4. Choi, M.G., Ko, H.S.: Modal warping: Real-time simulation of large rotational
deformation and manipulation. IEEE Transactions on Visualization and Computer
Graphics 11(1), 91–101 (2005)

5. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus
(2005), arXiv:math/0508341, arXiv preprint

6. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface
quadrangulation. ACM Transactions on Graphics 25(3), 1057–1066 (2006)

7. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In:
Partial Differential Equations and Calculus of Variations. Lecture Notes in Math-
ematics, vol. 1357, pp. 142–155. Springer, Heidelberg (1988)

8. Edeslbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes
for piecewise linear 2-manifolds. Discrete Computational Geometry, 87–107 (2003)

9. Garg, A., Grinspun, E., Wardetzky, M., Zorin, D.: Cubic Shells. In: Proceedings of
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 91–98
(August 2007)

10. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto
diffusion function. Computer Graphics Forum 28(5), 1405–1413 (2009)

11. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Pro-
ceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 62–67 (2003)

arXiv:math/0508341

314 K. Hildebrandt et al.

12. Hauser, K.K., Shen, C., O’Brien, J.F.: Interactive deformation using modal analysis
with constraints. In: Graphics Interface, pp. 247–256 (2003)

13. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and
geometric properties of polyhedral surfaces. Geometricae Dedicata 123, 89–112
(2006)

14. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H.: Spectral quadrangula-
tion with orientation and alignment control. ACM Transactions on Graphics 27(5),
1–9 (2008)

15. Huang, Q., Wicke, M., Adams, B., Guibas, L.: Shape decomposition using modal
analysis. Computer Graphics Forum 28(2), 407–416 (2009)

16. Lévy, B., Zhang, H.: Spectral mesh processing. In: ACM SIGGRAPH ASIA
Courses, pp. 1–47 (2009)

17. Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. Com-
puter Graphics Forum 27(5), 1341–1348 (2008)

18. Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and
animation. In: Proceedings of ACM SIGGRAPH, pp. 215–222 (1989)

19. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics 2(1), 15–36 (1993)

20. Polthier, K.: Computational aspects of discrete minimal surfaces. In: Hass, J.,
Hoffman, D., Jaffe, A., Rosenberg, H., Schoen, R., Wolf, M. (eds.) Global Theory
of Minimal Surfaces, Clay Foundation (2005)

21. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape
matching. In: Proceedings of the ACM Symposium on Solid and Physical Modeling,
pp. 101–106 (2005)

22. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as ”Shape-DNA”
of surfaces and solids. Computer-Aided Design 38(4), 342–366 (2006)

23. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape
representation. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, pp. 225–233 (2007)

24. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester Univer-
sity Press (1992)

25. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of Eu-
rographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116
(2007)

26. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative
multi-scale signature based on heat diffusion. Computer Graphics Forum 28(5),
1383–1392 (2009)

27. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Com-
puter Graphics Forum (2008)

28. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete
quadratic curvature energies. Computer Aided Geometric Design 24(8-9), 499–518
(2007)

29. Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. Computer Graphics
Forum (to appear 2010)

Author Index

Aizenshtein, Maxim 1

Bartoň, Michael 1
Bastl, Bohumı́r 19

Černohorská, Eva 29

Duvigneau, Régis 236

Elber, Gershon 1, 192

Feng, Powei 43
Fu, Chi-Wing 219

Galligo, André 236
Grimson, Rafael 57
Gu, Xianfeng 219

Han, Shuchu 219
Hermann, Thomas 77
He, Ying 219
Hildebrandt, Klaus 296

Ju, Tao 43
Jüttler, Bert 19

Kanai, Satoshi 137
Kim, Myung-Soo 192
Kim, Tae-wan 179
Kim, Yong-Joon 192

Lávička, Miroslav 19
Lee, Jieun 192
Lévy, Bruno 269
Li, Xuemei 283
Liu, Yang 269
Luo, Feng 219

Mantzaflaris, Angelos 104
Ma, Yanpeng 88
Michikawa, Takashi 124
Mizoguchi, Tomohiro 137
Mourrain, Bernard 104, 236

Nieser, Matthias 161

Oh, Min-jae 179
Oh, Young-Taek 192

Pan, Qing 206, 255
Park, Sung Ha 179
Peters, Jorg 77
Poelke, Konstantin 161
Polthier, Konrad 161, 296

Schulz, Christian 296
Š́ır, Zbyněk 19, 29
Strotman, Tim 77
Suzuki, Hiromasa 124

Tu, Changhe 88

von Tycowicz, Christoph 296

Warren, Joe 43
Wang, Jiaye 283
Wang, Wenping 88, 269, 283

Xia, Jiazhi 219
Xu, Gang 236
Xu, Guoliang 206, 255

Yan, Dong-Ming 269

Zhang, Caiming 283

	Title
	Preface
	Organization
	Table of Contents
	Global Solutions of Well-Constrained Transcendental Systems Using Expression Trees and a Single Solution Test
	Introduction and Previous Work
	Preliminaries
	Solving Well-Constrained Transcendental Systems
	Single Solution Termination Criterion for Transcendental Systems
	Expression Trees

	Bounding Cones’ Construction and Arithmetic
	Truncated Bounding Cones and Their Bounding Polytopes
	Bounding Cone’s Arithmetic
	No Root Exclusion Test
	Numerical Improvements Stage
	Algorithm – Summary
	Analysis of the Bounding Cone’s Tightness

	Examples
	Conclusion and Future Work
	References

	Surfaces with Rational Chord Length Parameterization
	Introduction
	Preliminaries
	Construction of RCL Surfaces
	Properties and Examples of RCL Surfaces
	Conclusion
	References

	Support Function of Pythagorean Hodograph Cubics and G^{1} Hermite Interpolation
	Introduction
	Preliminaries
	Support Function of the Tschirnhausen Cubic
	G^{1} Data on the Tschirnhausen Cubic
	Hermite Interpolation with PH Cubics and Their Offsets
	Existence and Number of Solutions
	Computation of Interpolants and Examples

	Conclusion
	References

	Piecewise Tri-linear Contouring for Multi-material Volumes
	Introduction
	Multi-material Contouring
	Defining contours
	Characterization of the Contours
	Evaluating Contours

	Set Operations on Multi-material Contours
	Operations for Three or More Materials

	Implementation
	Results
	Conclusions and Future Work
	References

	An Efficient Algorithm for the Sign Condition Problem in the Semi-algebraic Context
	Introduction
	Basic Observations
	Related Work

	Computational Models and Representations of Polynomials
	Computational Models
	Representation of the Polynomials

	The Dialytic Method to Solve the Sign Condition Problem
	Lower Bounds for the Sign Condition Problem
	The Algebraic Model

	The Dialytic Method for Point Location
	References

	Constraints on Curve Networks Suitable for G^{2} Interpolation
	Introduction
	Smooth Network Interpolation
	Notation and Constraints
	Constraints on Boundary Curves Arising from G2 Continuity
	Higher Valences
	Conclusion
	References

	Computing the Distance between Canal Surfaces
	Introduction
	Preliminaries
	Cone-Spheres and Their Distance Computation

	Computing Bounding Cone-Spheres
	Computing the Distance between Two Canal Surfaces
	Segmentation of a Canal Surface
	Pruning Irrelevant Pairs
	Algorithm

	Experimental Results
	Conclusion
	References

	A Subdivision Approach to Planar Semi-algebraic Sets
	Introduction
	Representation
	Subdivision Process
	Region Recovery
	Following the Boundary Curves around a Region

	The Case of Basic Semi-algebraic Sets
	Regularity Test

	The General Case
	Implementation and Demonstration
	References

	Non-manifold Medial Surface Reconstruction from Volumetric Data
	Introduction
	Related Work
	Medial Surface Reconstruction from Medial Voxels
	Sub-sampling of Medial Voxels
	Building a Voronoi Diagram on Medial Voxels
	Non-manifold Meshing from Vertex Connectivity

	Result and Discussion
	Conclusion and Future Work
	References
	Topology Classification of Voxels

	Decomposing Scanned Assembly Meshes Based on Periodicity Recognition and Its Application to Kinematic Simulation Modeling
	Introduction
	Related Works
	Periodicity Recognition
	Decomposition of 3D Models into Parts

	An Overview of Our Method
	Segmentation and Classification of Regions
	Curvature Estimation and Segmentation
	Selection of Congruent Regions
	Classification of Regions

	Periodicity Recognition
	Planar Parameterization
	Sub Grouping
	Initial Estimation and Assignment of Indices
	Optimal Estimation

	Generation of Partial Meshes
	Region Growing
	Geometric Synthesis

	Evaluation of Gear Teeth Contact
	Results
	Conclusion and Future Works
	References

	Automatic Generation of Riemann Surface Meshes
	Introduction
	Related Work
	Contribution

	Riemann Surfaces and Complex Analysis
	Problem Statement
	Theoretical Background

	Approach
	Visualization of Holomorphic Functions
	Branch Points and Branch Graph
	Shifts

	Algorithmic Generation of Riemann Surface Models
	Building the Cut Graph
	Cutting the Base Geometry
	Boundary Constraints for the Height Function
	Computing the Height Function on the Inside

	Results
	Riemann Surface Models
	Domain Coloring on Riemann Surfaces

	Outlook
	References

	G^{1} B\'{e}zier Surface Generation from Given Boundary Curve Network with T-Junction
	Introduction
	Two Types of T-Junction
	Generating a G^{1} B\'{e}zier Surface at a T-Junction
	T-Junction on a Boundary Curve
	T-Junction at a 3-Valent Vertex

	Results
	Conclusions and Future Work
	References

	Efficient Point Projection to Freeform Curves and Surfaces
	Introduction
	Related Work and Our Basic Idea
	Our Approach
	Clipping Circle/Sphere and Clipping Lines/Planes
	Uniqueness of Solution
	Numerical Improvement

	Experimental Results
	Conclusions
	References
	Operation Counts for Squared Distance Functions
	Squared Distance Functions for Cubic B´ezier Curves
	Differential of Squared Distance Functions

	Construction of Minimal Catmull-Clark’s Subdivision Surfaces with Given Boundaries
	Introduction
	Evaluation of Catmull-Clark’s Subdivision Surfaces
	Evaluation of Standard Catmull-Clark’s Subdivision Surface
	Evaluation of Nonstandard Catmull-Clark’s Subdivision Surface

	Minimal Surface Construction
	Finite Element Method for the Mean Curvature Flow
	Definition of Basis Functions
	Parametrization of Subdivision Surface and Functions on the Surface

	Experimental Results
	Graphical Examples
	Refinement and Convergence

	Conclusions
	References

	Parameterization of Star-Shaped Volumes Using Green’s Functions
	Introduction
	Previous Work
	Theoretic Foundation
	Volume Parameterization Using Green’s Functions
	Parameterizing a Star Shape to a Ball
	Parameterizing a Star Shape to a Polycube

	Experimental Results and Applications
	Conclusion and Future Work
	References
	Appendix

	Optimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis
	Introduction
	Related Work
	A Linear Sufficient Condition for Injectivity of Planar B-spline Parameterization
	Isogeometric Analysis and Parameterization of Computational Domain
	Test Model — Heat Conduction Problem
	Isogeometric Analysis with Different Parameterization

	Optimization Method for Parametrization of Computational Domain
	Problem Statement
	Shape Optimization Method
	Examples and Comparison

	Conclusion and Future Work
	References

	Construction of Subdivision Surfaces by Fourth-Order Geometric Flows with G^{1} Boundary Conditions
	Introduction
	Geometric PDEs and Their Weak-Form Formulations
	Notations
	Used Geometric PDEs
	Mixed Variational Formulations

	Subdivision Surfaces and Finite Element Space
	Basis Functions and Their Properties
	Spatial Discretizations
	Temporal Direction Discretization

	Illustrative Examples
	Conclusions
	References

	Efficient Computation of 3D Clipped Voronoi Diagram
	Introduction
	Previous Work
	Outline

	Problem Formulation
	Algorithm Overview
	Clipped Voronoi Diagram Computation
	Voronoi Diagram Construction
	Surface RVD Computation
	Clipped Voronoi Cells Construction

	Tetrahedral Mesh Generation
	Initialization
	Optimization
	Final Mesh Extraction

	Experimental Results
	Conclusion
	References

	Selecting Knots Locally for Curve Interpolation with Quadratic Precision
	Introduction
	BasicIdea
	Computing Knots from Neighboring Data Points
	Merging Local Knots Sequences
	Experiments
	Conclusions and Future Work
	References

	Eigenmodes of Surface Energies for Shape Analysis
	Introduction
	Deformation Energies
	Modes of Deformation Energies
	Quadratic Energies
	Modal Signatures
	Results and Discussion
	Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

