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Preface

The 10th International Conference on Intelligent Tutoring Systems, ITS 2010, contin-
ued the bi-annual series of top-flight international conferences on the use of advanced 
educational technologies that are adaptive to users or groups of users. These highly 
interdisciplinary conferences bring together researchers in the learning sciences,  
computer science, cognitive or educational psychology, cognitive science, artificial 
intelligence, machine learning, and linguistics. The theme of the ITS 2010 conference 
was Bridges to Learning, a theme that connects the scientific content of the confer-
ence and the geography of Pittsburgh, the host city. The conference addressed the use 
of advanced technologies as bridges for learners and facilitators of robust learning 
outcomes.  

We received a total of 186 submissions from 26 countries on 5 continents: Austra-
lia, Brazil, Canada, China, Estonia, France, Georgia, Germany, Greece, India, Italy, 
Japan, Korea, Mexico, The Netherlands, New Zealand, Pakistan, Philippines, Saudi 
Arabia, Singapore, Slovakia, Spain, Thailand, Turkey, the UK and USA. We accepted 
61 full papers (38%) and 58 short papers. The diversity of the field is reflected in the 
range of topics represented by the papers submitted, selected by the authors. The most 
popular topics among the accepted (full and short) papers were:  empirical studies of 
learning with advanced learning technologies (34 accepted papers), educational data 
mining (EDM) and machine learning (28), evaluation of systems (23), pedagogical 
agents (21), natural language interaction (20), affect (19), intelligent games (16), 
pedagogical strategies (15), models of learners, facilitators, groups and communities 
(15), and domain-specific:  mathematics (15). Of course, many papers covered multi-
ple topics. 

We are delighted that five outstanding and world-renowned researchers accepted 
our invitation to give invited talks during the conference. Abstracts of their presenta-
tions are included in this set of proceedings. Chee-Kit Looi from the National Institute 
of Education (Singapore) shared insights into comprehensive initiatives in Singapore’s 
education system, which involve partnerships between researchers and classroom 
practice. Stacy Marsella from the Institute of Creative Technologies (University of 
Southern California) spoke about the role of emotion and emotion modeling in sys-
tems with virtual characters. Alexander Renkl from the University of Freiburg  
(Germany) suggested a way of reconciling theoretical views on learning held by pro-
ponents of socio-constructivist approaches with cognitively oriented approaches and 
discussed implications for the design of ITS. Steven Ritter from Carnegie Learning, 
Inc. (Pittsburgh, USA) spoke about the third wave of ITS, which takes advantage of 
the large user base of real-world ITS for purposes of data mining and end-user author-
ing. Finally, Beverly Woolf, from the University of Massachusetts, Amherst,  
described the emergence of social and caring computer tutors, which respond to both 
affect and cognition. 
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The proceedings contain 17 short papers within the important Young Researchers 
Track (YRT). This track represents the future of our field. It provides a forum in 
which PhD students present and discuss their work during its early stages, with men-
toring from more senior members of the community. All submissions were carefully 
reviewed by experts. The proceedings also include 18 abstracts of Interactive Events 
that during the conference showcased an interesting mixture of mature systems and 
late-breaking developments in ITS and related tools for authoring, assessment, data 
analysis, etc. Rounding out the scientific program of the conference were six work-
shops and three tutorials. 

All full papers and short papers included in the proceedings were stringently peer-
reviewed. Reflecting the strength of the ITS community, we received a large number 
of submissions of very high quality. The review process rested significantly on the 
outstanding team of international experts from 24 countries who made up the Program 
Committee, the Senior Program Committee and the Advisory Board. Reviewers 
started the process by bidding on abstracts, ensuring that they were reviewing in areas 
of their particular interest and expertise. Conflicts of interest were identified so that no 
paper was assigned to a reviewer who is a close collaborator or colleague of any of the 
paper's authors. Each paper received at least three reviews. One of the reviewers was a 
member of the Senior Program Committee, who was also responsible for leading an 
online discussion of the paper and then writing a meta-review. Criteria for reviews of 
papers were:  relevance, originality, significance, evaluation, related work, organiza-
tion and readability. The final decisions for acceptance were made by the Program Co-
chairs who, working in concert, carefully studied the reviews, discussion and meta-
reviews, often initiating additional discussion among reviewers. In some cases, we 
(the Program Co-chairs) sought additional reviewers. For the most difficult decisions, 
we also read the papers. In making the hard decisions on accepting full papers, we 
were largely driven by the reviews and meta-reviews. Where the scores were close, we 
took into account all review criteria, and in our final decision weighed the relative 
importance of a paper's strengths and weaknesses. We also considered the different 
classes of contributions:  for example, a full paper describing a new system designed 
to improve learning should include a sound evaluation or at minimum a convincing 
pilot study. For short papers, the novelty and potential of the work were key require-
ments. Due to the large number of high-quality submissions, our choices were diffi-
cult. This is a very pleasing situation for the ITS community and augurs well for the 
future as some of the papers we could not accept have the promise to be excellent 
future publications. 

The quality of the reviews was extremely high, which was critical in enabling us to 
distinguish the highest quality work for acceptance as full papers. In addition,  
high-quality reviews are critical for researchers as feedback on their research and their 
papers, regardless of whether they are accepted for publication or not. For example, 
many reviews pointed to additional relevant literature, identified particular strengths 
and gave concrete advice on how to address weaknesses. We believe that authors of 
many of the rejected papers will be able to use this feedback to produce excellent 
papers in the future. We worked very hard to select the Program Committee, the Sen-
ior Program Committee and the Advisory Board so we could meet these goals. We are 
pleased to announce the following Outstanding Reviewer Awards:  Ivon Arroyo, 
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Kevin Ashley, Ryan Baker, Joseph Beck, Gautam Biswas, Sydney d'Mello, Peter 
Brusilovsky, Vania Dimitrova, Neil Heffernan, Akihiro Kashihara, Brent Martin,  
H. Chad Lane, James Lester, Diane Litman, Rose Luckin, Stellan Ohlsson, Niels  
Pinkwart, Steven Ritter, Ido Roll, Carolyn Rosé, Peter Sloep, John Stamper and 
Gerhard Weber. 

A scientific conference of the size of ITS 2010 can only succeed due to contribu-
tions of many people who generously donate their time. Of great significance are the 
contributions of the large number of people who helped with the review process:  the 
Advisory Board, the Senior Program Committee, the Program Committee, as well as 
people who volunteered as reviewers. We are extremely grateful to them for the time 
and effort they put in. Special thanks are due to the people who volunteered to organ-
ize workshops and tutorials, which made up a key part of the scientific program of the 
conference. We also thank the Chairs for Workshops / Tutorials, Young Researcher 
Track / Doctoral Consortium, Interactive Events, and Panels, all of whom had a major 
influence on the scientific program. The Local Arrangements Chairs devoted countless 
hours of preparation to make the conference actually happen successfully “on the 
ground.” The Volunteers / Outings Chairs recruited and organized dozens of students 
not only to help run the conference but to lead small-group outings tailored to individ-
ual interests in the ITS spirit.  The Conference Treasurer organized our budget meticu-
lously, the Sponsorship Chair increased it handsomely, and the Publicity Chair got the 
word out widely. Lynnetta Miller of Carnegie Mellon deserves special recognition for 
contributing in multiple guises (conference secretary, artist, webmaster). A special 
word of thanks is due to Carolyn Manley of Carnegie Mellon's Conference and Event 
Services, who among other things administered (along with programmer Alex Lang) 
the online registration system. We would like to thank Kevin Ashley, Vania Dimi-
trova, Ben du Boulay, Claude Frasson, Art Graesser, Alan Lesgold, James Lester, 
Roger Nkambou, Beverly Woolf, and other past organizers of ITS and AIED confer-
ences for their kind assistance and sage advice. We are very grateful to Jo Bodnar of 
Carnegie Mellon and student volunteers Matthew Easterday, Richard Gluga, and Mi-
chael Lipschultz for the very significant role they played in assembling the proceed-
ings. And we would like to thank our sponsors, listed later, whose support for the 
conference we gratefully acknowledge. 

Our final thanks must be to the authors whose papers appear in these volumes. 
They have contributed many exciting new ideas and a comprehensive body of care-
fully validated work that will serve as an advanced technology bridge to improved 
learning in real educational settings. 

April 2010 Vincent Aleven 
Judy Kay 

Jack Mostow 
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Pedagogical Agents, Learning Companions, and
Teachable Agents

What Do Children Favor as Embodied Pedagogical Agents? . . . . . . . . . . . 307
Sylvie Girard and Hilary Johnson

Learning by Teaching SimStudent: Technical Accomplishments and an
Initial Use with Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Noboru Matsuda, Victoria Keiser, Rohan Raizada, Arthur Tu,
Gabriel Stylianides, William W. Cohen, and Kenneth R. Koedinger

The Effect of Motivational Learning Companions on Low Achieving
Students and Students with Disabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Beverly Park Woolf, Ivon Arroyo, Kasia Muldner,
Winslow Burleson, David G. Cooper, Robert Dolan, and
Robert M. Christopherson

Intelligent Tutoring and Scaffolding 1

Use of a Medical ITS Improves Reporting Performance among
Community Pathologists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Rebecca Crowley, Dana Grzybicki, Elizabeth Legowski,
Lynn Wagner, Melissa Castine, Olga Medvedeva, Eugene Tseytlin,
Drazen Jukic, and Stephen Raab

Hints: Is It Better to Give or Wait to Be Asked? . . . . . . . . . . . . . . . . . . . . . 349
Leena Razzaq and Neil T. Heffernan



Table of Contents – Part I XIX

Error-Flagging Support for Testing and Its Effect on Adaptation . . . . . . . 359
Amruth N. Kumar

Metacognition

Emotions and Motivation on Performance during Multimedia Learning:
How Do I Feel and Why Do I Care? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Amber Chauncey and Roger Azevedo

Metacognition and Learning in Spoken Dialogue Computer Tutoring . . . 379
Kate Forbes-Riley and Diane Litman

A Self-regulator for Navigational Learning in Hyperspace . . . . . . . . . . . . . 389
Akihiro Kashihara and Ryoya Kawai

Pedagogical Strategies 2

How Adaptive Is an Expert Human Tutor? . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Michelene T.H. Chi and Marguerite Roy

Blocked versus Interleaved Practice with Multiple Representations in
an Intelligent Tutoring System for Fractions . . . . . . . . . . . . . . . . . . . . . . . . . 413

Martina A. Rau, Vincent Aleven, and Nikol Rummel

Improving Math Learning through Intelligent Tutoring and Basic Skills
Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Ivon Arroyo, Beverly Park Woolf, James M. Royer,
Minghui Tai, and Sara English

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433



Table of Contents – Part II

Affect 2

The Intricate Dance between Cognition and Emotion during Expert
Tutoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Blair Lehman, Sidney D’Mello, and Natalie Person

Subliminally Enhancing Self-esteem: Impact on Learner Performance
and Affective State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Imène Jraidi and Claude Frasson

Detecting Learner Frustration: Towards Mainstream Use Cases . . . . . . . . 21
Judi McCuaig, Mike Pearlstein, and Andrew Judd

Educational Data Mining 2

Enhancing the Automatic Generation of Hints with Expert Seeding . . . . 31
John Stamper, Tiffany Barnes, and Marvin Croy

Learning What Works in ITS from Non-traditional Randomized
Controlled Trial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Zachary A. Pardos, Matthew D. Dailey, and Neil T. Heffernan

Natural Language Interaction 2

Persuasive Dialogues in an Intelligent Tutoring System for Medical
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Amin Rahati and Froduald Kabanza

Predicting Student Knowledge Level from Domain-Independent
Function and Content Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Claire Williams and Sidney D’Mello

KSC-PaL: A Peer Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Cynthia Kersey, Barbara Di Eugenio, Pamela Jordan, and
Sandra Katz

Authoring Tools and Theoretical Synthesis

Transforming a Linear Module into an Adaptive One: Tackling the
Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Jonathan G.K. Foss and Alexandra I. Cristea



XXII Table of Contents – Part II

An Authoring Tool to Support the Design and Use of Theory-Based
Collaborative Learning Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Seiji Isotani, Riichiro Mizoguchi, Sadao Isotani, Olimpio M. Capeli,
Naoko Isotani, and Antonio R.P.L. de Albuquerque

How to Build Bridges between Intelligent Tutoring System Subfields of
Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Philip Pavlik Jr. and Joe Toth

Collaborative and Group Learning 2

Recognizing Dialogue Content in Student Collaborative Conversation . . . 113
Toby Dragon, Mark Floryan, Beverly Woolf, and Tom Murray

Supporting Learners’ Self-organization: An Exploratory Study . . . . . . . . . 123
Patrice Moguel, Pierre Tchounikine, and André Tricot
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Can Research-Based Technology Change School-Based 
Learning? Perspectives from Singapore 

Chee-Kit Looi 

National Institute of Education, Nanyang Technological University, Singapore 
cheekit.looi@nie.edu.sg 

We start with the broad realization that despite decades of research work in 
technology-mediated learning that have produced many exciting systems and 
studies, we have not seen many pervasive, sustainable and scalable improve-
ments in actual classroom practice. Nonetheless, there are some countries and 
regions in the world in which such systemic approaches to innovating educa-
tional reforms in the classrooms hold the promise of impacting real world prac-
tice. In this talk, we would like to present the case of Singapore where such a 
realistic possibility can be actualized through a coherent program that spans the 
spectrum of many critical dimensions: from policy imperatives to school 
ground-up efforts, from research to impacting practice, from one research pro-
ject in a classroom to sustainability and scaling up, from mere usage to cultural 
and epistemological shifts of the stakeholders, and from technology experimen-
tation to providing robust technology infrastructures. Addressing these dimen-
sions provide the conditions for technology to have an impact. Situations where 
technology works include those where students use technology all the time, 
where technology is truly personal, where the curriculum leverages the affor-
dances of technologies, or where it is easy for teachers or students to add to the 
repertoire of technology-enabled activities. In Singapore, we have embarked on 
a journey in the Learning Sciences Lab to conduct school-based research to de-
velop models of how to enact effective innovations and how to sustain their 
routine use in schools. I will discuss some of the innovations we are working 
on, and the issues and challenges we still face to achieve adoptability in 
schools, challenges that the ITS community might well be able to address. 
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Modeling Emotion and Its Expression 

Stacy Marsella 
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Emotion and its expression play a powerful role in shaping human behavior. As 
research has revealed the details of emotion’s role, researchers and developers 
increasingly have sought to exploit these details in a range of applications. 
Work in human-computer interaction has sought to infer and influence a user’s 
emotional state as a way to improve the interaction. Tutoring systems, health in-
terventions and training applications have sought to regulate or induce specific, 
often quite different, emotional states in learners in order to improve learning 
outcomes. A related trend in HCI work is the use of emotions and emotional 
displays in virtual characters that interact with users in order to motivate, en-
gender empathy, induce trust or simply arouse.  

Common to many of these applications is the need for computational models 
of the causes and consequences of emotions. To the extent that emotion’s im-
pact on behavior can be modeled correctly in artificial systems, it can facilitate 
interactions between computer systems and human users. In this talk, I will give 
an overview of some of the applications that seek to infer and influence a user’s 
emotions. I will then go into detail on how emotions can be modeled computa-
tionally, including the theoretical basis of the models, how we validate models 
against human data and how human data are also used to inform the animation 
of virtual characters. 
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Active Learning in Technology-Enhanced Environments: 
On Sensible and Less Sensible Conceptions of “Active” 

and Their Instructional Consequences 

Alexander Renkl  

Department of Psychology, University of Freiburg, D-79085 Freiburg 
renkl@psychologie.uni-freiburg.de 

Usually ITSs or, more generally, technology-enhanced learning environments 
are designed to afford active learning in order to optimize meaningful knowl-
edge construction. However, researchers in learning and instruction hold differ-
ent conceptions of “active learning.” Most socio-constructivist approaches have 
adopted an active responding stance. They regard visible, open learning activi-
ties such as solving complex problems, hands-on activities, or argument with 
peers as necessary for effective learning. This view, however, is challenged by 
empirical evidence and has theoretical problems. If we assume that learning 
takes place in the individual learner’s mind, then what the mind does, and not 
overt behavior, is central. Accordingly, the active processing stance—the typi-
cal stance of most cognitively-oriented educational psychologists—regards ef-
fective learning as knowledge construction resulting from actively processing 
to-be-learned content. Although active processing might be necessary for 
knowledge construction, it can become unfocused. In hypermedia environ-
ments, for example, learners may focus on peripheral information, which may 
delay or even prevent the acquisition of important content. Against this back-
ground, I have recently proposed a modification of the active processing stance. 
The focused processing stance claims that it is crucial that the learners’ active 
processing is related not only to the learning content but to the central concepts 
and principles to be learned (e.g., mathematical theorems, physics laws). 

The focused processing stance is of special relevance to technology-
enhanced learning environments. Many features of these environments that are 
meant as supportive might actually induce learning-irrelevant additional de-
mands to the learners (e.g., decisions when to use different help facilities), or 
these features might be sub-optimally used (e.g., overuse of help). Hence, these 
“supportive” features can distract from the central concepts and principles to be 
learned. In this talk I will present instructional procedures and findings from 
three lines of research that are relevant in helping learners focus on central con-
cepts and principles: (a) Replacing problem-solving demands by worked solu-
tions in the beginning of the learning process in order to reduce unproductive 
problem-solving attempts; (b) informing the learners of the intended function of 
a learning environment’s “supportive” features in order to optimize their use; 
(c) prompting by specifically-designed questions in order to focus the learners’ 
attention on the central principles of the learning domain. The findings confirm 
that it is crucial not only to induce active learner involvement but also to sup-
port focused processing in order to optimize learning outcomes. 
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Intelligent tutoring systems work falls into three waves. The first wave involves 
basic research on technical implementation, including authoring systems and tu-
toring architectures. Second wave work takes this technological development 
beyond the laboratory. This work involves deep analysis of domain knowledge 
and empirical validation of systems. The emerging “third wave” takes advan-
tage of widespread use of systems to refine and improve their effectiveness. 
Work in this area includes data mining and end-user authoring. 

Although many types of systems have followed this evolution, intelligent tu-
toring systems are uniquely positioned among educational software to take ad-
vantage of the third wave. The architecture and authoring work from the first 
wave and the ability to incorporate domain knowledge and test pedagogical ap-
proaches in the second wave make us well positioned to ride this third wave. 

In this talk, I will describe Carnegie Learning’s experience in riding these 
waves. We have taken intelligent tutoring systems for mathematics originally 
developed at Carnegie Mellon to scale with over 500,000 users per year, and are 
now riding the third wave to leverage this user base and improve the effective-
ness and utility of our systems. 
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Beverly Park Woolf 
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Abstract. If computers are to interact naturally with humans, they must express 
social competencies and recognize human emotion. This talk describes the role 
of technology in responding to both affect and cognition and examines research 
to identify student emotions (frustration, boredom and interest) with around 
80% accuracy using hardware sensors and student self-reports. We also discuss 
“caring” computers that use animated learning companions to talk about the 
malleability of intelligence and importance of effort and perseverance. Gender 
differences were noted in the impact of these companions on student affect as 
were differences for students with learning disabilities. In both cases, students 
who used companions showed improved math attitudes, increased motivation 
and reduced frustration and anxiety over the long term.  We also describe social 
tutors that scaffold collaborative problem solving in ill-defined domains. These 
tutors use deep domain understanding of students’ dialogue to recognize (with 
over 85% accuracy) students who are engaged in useful learning activities.  
Finally, we describe tutors that help online participants engaged in situations 
involving differing opinions, e.g., in online dispute mediation, bargaining, and 
civic deliberation processes.  

Keywords: Social computing, collaborative problem solving, intelligent tutors, 
wireless sensors, student emotion, pedagogical agents, affective feedback, gen-
der differences, special needs populations. 

1   Introduction 

Affect is a central component of human cognition and strongly impacts student learn-
ing [1-4]. If computers are to interact naturally with humans, they must recognize 
affect and express social competencies. Affect has begun to play an important role in 
intelligent tutors [5-6] and affective tutors seem to increase the effectiveness of tuto-
rial interactions and, ultimately learning. The field of affective tutors investigates 
techniques for enabling computers to recognize, model, understand and respond effec-
tively to student emotion. One goal of affective computing is to recognize affect or 
identify the affective state of people from a variety of physical cues that are produced 
in response to affective changes in the individual [7]. This talk describes the role of 
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technology in automatic recognition of and response to user affect. It provides three 
examples of social computing in which affective interventions encourage learning, 
lessen humiliation and provide support and motivation that outweighs or distracts 
from the unpleasant aspects of failure. Section 2 describes the first example system 
that includes real-time automatic recognition of emotions exhibited during learning. 
Section 3 describes automatic generation of appropriate responses to student emotion 
and Section 4 discusses experiments with affective tutors. Section 5 describes a sec-
ond example of social computing, support of online collaboration, and Section 6 
briefly introduces the third example, a tutor for online social deliberation. 

2   Automatic Recognition of Student Affect 

The first example of a social tutor is one that embeds affective support into tutoring 
applications. Prior research has focused on automated detection of affective states as a 
first step towards this goal [5, 8-10]. Currently there is no gold standard for either 
labeling a person’s emotional state or for responding to it. Our sensor platform of four 
physiological sensors (Fig. 1), placed on each student’s chair, mouse, monitor, and 
wrist, conveyed information to the tutor about 
student posture, movement, grip tension, 
arousal, and facially expressed mental states. 
The platform is unobtrusive enough to be used 
by students in a typical setting and resource-
conscious enough to run on average computer 
labs available to students [11]. These sensors 
collect raw data about physical activity and the 
state of a student. The challenge remains to 
map this data into models of emotional states 
and use this information productively.  

Experiments showed that when sensor data 
supplements a user model based on tutor logs, 
the model reflects a larger percentage of the 
students’ self-concept than does a user model 
based on the tutor logs alone [11]. The best 
classifier of each emotion in terms of accuracy ranges from 78% to 87.5%. By using 
Stepwise Regression we isolated key features for predicting user emotional responses 
to four categories of emotion. These results are supported by cross validation, and 
show improvement using a very basic classifier. We showed that students’ self-
reports can be automatically inferred from physiological data that is streamed to the 
tutoring software in real educational settings. Fluctuating student reports were related 
to longer-term affective variables (e.g., value mathematics and self-concept) and these 
latter variables, in turn, are known to predict long-term success in mathematics, e.g., 
students who value math and have a positive self-concept of their math ability  
perform better in math classes [12].  

 

Fig. 1. Sensors used in the classroom 
(clockwise): mental state camera, skin 
conductance bracelet, pressure sensi-
tive mouse, pressure sensitive chair 
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3   Automatic Response to Student Affect 

Once a student’s emotion has been recognized, the next issue is to respond to improve 
student motivation and learning. Providing empathy or support strongly correlates 
with learning [12, 13] and the presence of someone who cares, or at least appears to 
care, can be motivating. Various studies have linked interpersonal relationships be-
tween teachers and students to motivational outcomes [7, 14].  Can this noted human 
relationship be reproduced, in part, by apparent empathy from a computer character? 
Apparently the answer is yes [15]. People seem to relate to computers in the same 
way they relate to humans and 
some relationships are identical 
to real social relationships [16]. 
For example, students continue 
to engage in frustrating tasks on 
a computer significantly longer 
after an empathetic comput-
ational response [17], and have 
immediately lowered stress 
level (via skin conduct-ance) 
after empathy and after apology 
[18]. 

Pedagogical agents have been 
developed to improve learning 
and impact affect [19, 20]. Our 
gendered learning companions 
(LC) are empathetic in that they visually reflect the last emotion reported by the stu-
dent (queried within the system every five minutes) [21, 22]; they emphasize the 
importance of perseverance, express emotions and offer strategies (e.g., “Use the help 
function”), see Fig. 2 [11, 22]. The characters are highly positive, in the sense that 
they displayed encouraging gestures (e.g., excitement and confidence).  Negative 
gestures (appearing frustrated or bored) were not effective and were eliminated by the 
researchers. Mimicking student self-reported emotion is a form of a non-verbal empa-
thetic response (e.g., learning companions appeared excited in response to student 
excitement, see Fig. 3, right). Companions occasionally expressed non-verbal behav-
iors of positive valence only (e.g., looking interested), the underlying goal being to 
make them appear life-like and engaged and to impart some of their enthusiasm to the 
students.  

Companions act out their emotion and talk with students expressing full sentences 
of metacognitive and emotional feedback. They are non-intrusive—they work on their 
own computer to solve the problem at hand, and react only after the student has an-
swered the question. Companions respond with some of Carole Dweck’s [23] recom-
mendations about disregarding success and valuing effort. This adds a new dimension 
to the traditional feedback regarding success/no-success generally given to students. 
Affective companions support students motivationally, by emphasizing the impor-
tance of effort and perseverance and the idea that intelligence is malleable instead of a 
fixed trait [23]. 

 

Fig. 2. Affective learning companions act out their 
emotion and talk with students expressing full sentences 
of cognitive, meta-cognitive and emotional feedback 
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Learning companions delivered approximately 50 different messages emphasizing 
the malleability of intelligence and the importance of effort and perseverance. The 
messages also include metacognitive help related to effective strategies for solving 
math problems and effective use the tutor. The learning companions’ interventions are 
tailored to a given student’s needs according and ultimately will be selected based on 
two models of affect and effort embedded in the tutor. The effort model uses interac-
tion features to provide information on the degree of effort a student invests in gener-
ating a problem solution. An affect model assesses a student’s emotional state; based 
on linear regression, this model is derived from data obtained from a series of studies 
described in [11, 21]. Ultimately, the interventions will be tailored according to the 
tutor’s affective student model.  However, we are currently still validating the models 
and algorithms for deciding which intervention to provide and when, and thus relied 
on an effort model only to assign 
messages. 

The characters provided support by 
responding to the effort exerted by 
students rather than to the student’s 
emotions. Characters were either un-
impressed when effort was not exerted, 
or simply ignored that the student 
solved the problem. They also offered 
praise to students who exerted effort 
while problem-solving, even if their 
answers were wrong, highlighting that 
the goal is to lessen the importance of 
performance in favor of learning.  

 

4   Experiments with Affective Tutors  

Our affect recognition and response software is stand-alone and can provide affective 
input to any tutor and can generate responses from any tutor. We conducted several 
empirical evaluations to dynamically identify student emotion during learning, iden-
tify emotions through classifiers and then respond to students using companions.  

Currently we are using affect systems in tandem with Wayang Outpost, a multime-
dia tutoring system for high school geometry and algebra [21, 22, 24]. Problems are 
presented one at a time, each consisting of the problem statement with four or five 
solution options directly below it. Students select an answer and the tutor provides 
immediate visual feedback by coloring the answer green or red, for correct or incor-
rect respectively. Within each topic section, Wayang adjusts the difficulty of prob-
lems depending on past student performance.  

We conducted several series of experiments involving sensors, learning compan-
ions and Wayang Outpost [21, 22]. One study involved 35 students in a public high 
school in Massachusetts; another involved 29 students in the University of Massachu-
setts; and the final study involved 29 undergraduates from Arizona State University. 
Another set of studies quantitatively analyzed the benefit of learning companions on 

 

Fig. 3. The Wayang Tutor with the female 
affective learning companion 
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affective and cognitive outcomes. The subjects included one hundred and eight (108) 
students from two high schools (one low and the other high achieving) in Massachu-
setts and involved 9th and 10th graders. Two thirds of the students were assigned to a 
learning companion of a random gender, and one-third to the no learning companion 
condition. Wayang has been used with thousands of students in the past and has dem-
onstrated improved learning gains in state standard exams [11, 21, 24] 

Overall results suggest a general advantage of learning companions (both the fe-
male and male ones) for some affective outcomes. Students reported significantly less 
frustration and more interest (less boredom) when learning companions were used 
compared to the no learning companion condition. At the same time, students receiv-
ing the female learning companion reported significantly higher self-concept and 
liking of math at posttest time. Students receiving the female companion also reported 
higher confidence towards problem solving and in post-tutor surveys. While signifi-
cant results are limited to affective outcomes—learning companions did not impact 
learning—we are impressed given the short exposure of students to the tutoring sys-
tem. We carried out Analyses of Covariance (ANCOVA) for each of the affective and 
behavioral dependent variables (post-tutor and within tutor). Results showed that all 
students demonstrated math learning after working with Wayang, with low-achieving 
students learning more than high achieving students across all conditions. Learning 
companions successfully induced positive student behaviors that have been correlated 
to learning, specifically, students spent more time on hinted problems [24]. The bene-
ficial effect of learning companions was mainly on affective outcomes, particularly on 
confidence.  

Gender Studies. While learning companions (LC) afford affective advantages for all 
students, several significant effects in the ANCOVAs indicated a higher benefit  
of learning companions for female students. In the case of the emotional outcomes 
just mentioned (confidence and frustration, in particular), the effects are stronger for 
females than for males. Females’ confidence was improved but not confidence for 
males. It is important to note that these gender effects on emotions (within or after  
the tutor) are not due to females starting out feeling worse, as our analyses account for 
that baseline pretest emotion as a covariate. Females especially perceived the learning 
experience with Wayang significantly better when learning companions were present, 
while the opposite happened for males, who actually reported worse perceptions of 
learning when learning companions were present. Female students in the LC condi-
tion also had more productive behaviors in the tutor: they spent more time than did 
males on “helped problems” compared to females in the no-LC condition; they 
“gamed” less when characters were present (a significant interaction effect revealed 
that the opposite happens for males).  

Studies with Low-achieving Students. Low-achieving students were defined as 
those who scored lower than median grade on the math pretest [24]. Low-achieving 
students disliked math more, valued it less, had worse perception of their math ability, 
and reported feeling worse when solving math problems. Since low achieving stu-
dents (both with and without disabilities) struggle with math, our conjecture was that 
all low achievers could require additional affective support. Thus, the first goal of the 
study was to examine the affective needs of both low achieving and learning disability 
students in our data (15% of subjects). 
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Low-achieving students who received LCs improved their confidence while using 
the tutor and more than students with no LCs, while their counterparts in the no-LC 
condition tended to decrease their confidence. Some differential effects suggest that 
learning companions are essential for low-achieving students’ affect. When LCs are 
present, low achieving students report positive affect nearly as much as do high-
achieving students and it is only when learning companions are absent that a large gap 
exists between these student groups. This affective gap reduces when learning com-
panions are present. This result is found for several outcome variables: self-concept, 
perceptions of learning, frustration, and excitement. 

5   Supporting Student Collaboration 

The second example of social computing comes from a tutor that supports online 
peer-to-peer collaboration. Social computers should recognize and promote dialogue 
among groups of people engaged 
in free-entry text discussion; they 
should recognize the content of 
group work, help participants 
maintain proper focus, provide 
appropriate feedback and center 
participants’ work as needed.  

We developed tools that enable 
students to work together within 
Rashi, an inquiry learning system 
that supports authentic learning 
experiences by considering real-
world inquiry problems. The tutor 
provides case descriptions for 
students to investigate, along with 
information about how to approach 
each problem [25, 26]. In the Rashi 
Human Biology Tutor, students 
evaluate patients and generate 
hypotheses about their medical 
condition. Patients’ complaints 
form an initial set of data from 
which students begin the diagnostic 
process. Students can interview the 
virtual patient (Fig. 4, top), 
perform a physical examination, or 
run lab tests. 

Tools leverage the information 
provided by students to help the 
tutor recognize the students’ focus. 
During collaboration, users view each others' notebooks (Fig. 4, bottom), and drag 
and drop both data and hypotheses from others’ notebooks to their own.  This  

 

 

Fig. 4. Students “interview” the patient in the Rashi 
system (top) and record their hypotheses for a diag-
nosis along with evidence supporting and refuting 
that evidence in the notebook (bottom)  
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supports a variety of collaborative activities ranging from students working in tightly 
knit groups, where each student takes on a role and contributes in a specific manner, 
to students working mostly independently but sharing ideas and thoughts when reach-
ing an impasse. The system also provides a chat facility that enables students to  
discuss issues with members of their group, see Fig. 5.  Several features, including 
text coloring, filtering, and new message notifications increase the usability and qual-
ity of the discussion tools. Within the chat feature a group member can click on a chat 
subject and be quickly taken to related work in a group member’s notebook.  

In order to recognize the 
content of group work and help 
participants maintain proper 
focus, the system matches 
student statements to expert 
knowledge base elements. This 
is accomplished by using the 
search engine library, Lucene, to 
index the individual elements 
from the knowledge base along 
with their associated keywords.  
Rashi uses the expert knowledge 
base to recognize (with 88% 
success rate) when students are 
discussing content relevant to the 
problem and to correctly link 
(with 70% success) that content 
with an actual topic [26]. Subsets of the data indicate that even better results are 
possible. This research provides solid support for the concept of using a knowledge 
base to recognize content in free-entry text discussion and to support students  
engaged in problem-solving activities.  

The addition of collaboration software also offers unique opportunities to recog-
nize situations where students might be helpful to each other.  We hope to allow  
students to support each other at crucial points in time in the conversation [26]. When 
attempting to intelligently encourage collaboration, the tutor reasons about all stu-
dents work at the same time. It supports collaboration by, for example, providing a 
“Suggested Topics” list adjoining the chat window, populated with items that are 
related to a group’s current work according to the expert knowledge base. Students 
can then see the connections and gaps in their collective work. The system also de-
tects a specific moment at which an intervention should be given.  What opportunities 
will be recognized as appropriate times for prompting students to discuss the argu-
ment with one another? We are taking precautions to avoid interventions that would 
be disruptive or counter-productive if the tutoring system were to be mistaken about 
its content recognition abilities.  

6   Supporting Online Social Deliberation 

The third and final example of social computing is about supporting online social 
deliberation, especially as it relates to dispute resolution and collaborative inquiry. 

Sammy: did you find anything   
Anne: no 
Sammy: no brain damage and no alcohol at the time 
Anne: He has no enemies on campus. Chest appears to be normal 
Sammy: no spinal damage either 
Anne: 5'11" is his height; Knees appear to be normal but there is 

 slight swelling in his ankles 
Anne: Normal heart sounds 
Sammy: no toxins 
Anne: Normal heart sounds and normal chest exam 
Sammy: he claims have no asthma 
Anne: weak heart pulse rate, lungs sound wheezing  
Sammy: we found pulmonary problems so something is screwed up with 

his lungs and it aint asthma or his phisical or sexual  activity 
Anne: its anaphlactic shock 
Sammy: we found out he was running before he passed out and he is a 

runner so he got tired sat down and leaned against the tree which cant descirbe 
the mark on his head. 

Fig. 5. Actual chat conversation among middle 
school students (grades 5-6) involved in a Rashi 
discourse to diagnose a patient. Their discussion is 
thoughtful and on-task.  
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This software, which is still in progress, will model and monitor deliberative proc-
esses skills while people are either in collaboration or involved in settling disputes. 
Applications will be for online dispute resolution and collaborative learning, such as 
seen in Rashi. We intend to improve participants’ trust in the quality and legitimacy 
of these processes and will implement separate tools for facilitators and participants.  

An example of one application 
of this software is to work with 
participants trying to settle their 
differences after failing in an eBay 
transaction. 20% of the eBay dis-
putes require the intervention of 
human mediators who provide 
structure for the dispute resolution 
conversation. The online project 
will identify the content of the 
discussion, see Fig. 6, scaffold 
these situations, add structure to 
the dialogue and focus attention 
on social processes. 

We will test the hypothesis that 
online users produce more positive 
results when supported by 
scaffolding that draws attention to 
important skills and features of 
social deliberative processes and 
by adaptive coaching that provides explicit hints and expert advice. Positive results are 
defined as helping people to gain both basic and reflective deliberation skills, e.g., the 
ability to separate facts from opinions and to form logical arguments. The software will 
integrate artificial intelligence techniques into dialogue environments, prompt or re-
mind people, drawing their attention to important features of the deliberative situation 
and provide interventions (e.g., visualization tools and process structures).  

7   Discussion and Future Work 

This talk described three examples of social and caring computer environments and 
the role of technology in automatic recognition of and response to human affect. The 
first example described real-time automatic recognition of emotions, automatic gen-
eration of responses to student emotion and experiments with affective tutors. The 
second example described a tutor that supports collaboration among students and  
the third was software for online social deliberation. These systems contribute to the 
growing body of work on affective reasoning for computers and represent a first step 
towards development of social and caring software. 

We propose that tutors that can reason about and respond to human affect will ul-
timately be able to identify desirable (e.g. flow) and non-desirable (e.g., boredom) 
student states. Different interventions can be tested to keep students in desirable states 
as long as possible (e.g., a confused student might be invited to slow down, reread the 

ACME SALES: Yes we said we would take  the vehicle back and give him the money

back that he won the vehicle for. He wants more.

Marty:  As I indicated, had ACME fully disclosed all problems with this vehicle , I

would not have bid on it.. . .The bottom line is indeed simply that I need to be

reimbursed what I paid for the vehicle  as well as the additional expenses  I

incurred related to this vehicle.. . Had ACME agreed to paying the

$10,297.94 I offered  to accept they  would not received a negative feedback .

Net Neutral: We all agree to return  the vehicle. Now we can focus on on  what

amount is reasonable. ACME, what do you think is a reasonable amount?

ACME SALES: He bought the vehicle Ņas isÓ and  he should fully read the auction

next time. We will only reimburse him  for the winning cost of the vehicle .

Net Neutral: I see that ACME is offering to refund the purchase price $9297.94

Marty:  ACME failed to disclose *major* vehicle defects. ACME should have

*honestly* described the vehicle.. . $10,632.24 is the minimum I will accept.

 remaining conflict

agreement                              domain               money exchange

domain

money exchange money exchange

 money exchange                                                       money exchange

domain

 

Fig. 6. Actual conversation among eBay partici-
pants after a failed negotiation. A human mediator 
(NetNeutral) helped frame the discussion and settle 
the disagreement. Keywords that the software 
should be able to recognize are underlined. 
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problem and ask for hints). Part of this approach includes user models that provide 
instructional recommendations and algorithms based on tutor predictions.  

There are a number of places for improvement in affective tutors.  For example, the 
impact of specific pedagogical actions on student learning should be investigated and 
used to quantitatively gauge the influence of competing tutorial strategies on learning. 
Additionally, summary information of sensor values used in our experiments may be 
improved by considering the time series of each of these sensors.  

Research on affective tutors may ultimately lead to delicate recommendations 
about the type of support to provide for individual students. Should male students 
receive affective support at all? Should all females be provided with learning compan-
ions? Should students with learning disabilities use learning companions? These are 
hard questions to answer from initial and limited experiments. While preliminary 
results suggest that high school females will affectively benefit more than high school 
males, we cannot conclude that males in general should not receive affective learning 
companions. Further studies with larger number of students might result in more nu-
anced recommendations about how to modulate the feedback to individualize instruc-
tion in affective tutors.  
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Abstract. Collaborative filtering (CF) is a technique that utilizes how users are 
associated with items in a target application and predicts the utility of items  
for a particular user. Temporal collaborative filtering (temporal CF) is a  
time-sensitive CF approach that considers the change in user-item interactions 
over time. Despite its capability to deal with dynamic educational applications 
with rapidly changing user-item interactions, there is no prior research of tem-
poral CF on educational tasks. This paper proposes a temporal CF approach to 
automatically predict the correctness of students’ problem solving in an intelli-
gent math tutoring system. Unlike traditional user-item interactions, a student 
may work on the same problem multiple times, and there are usually multiple 
interactions for a student-problem pair. The proposed temporal CF approach ef-
fectively utilizes information coming from multiple interactions and is com-
pared to i) a traditional CF approach, ii) a temporal CF approach that uses a 
sliding-time-window but ignores old data and multiple interactions and iii) a 
combined temporal CF approach that uses a sliding-time-window together with 
multiple interactions. An extensive set of experiment results show that using 
multiple-interactions significantly improves the prediction accuracy while using 
sliding-time-windows doesn’t make a significant difference. 

Keywords: performance prediction, intelligent tutoring systems, temporal col-
laborative filtering. 

1   Introduction 

Collaborative information filtering, or collaborative filtering (CF), is an important 
technology that utilizes how users of a system are associated with items in an applica-
tion to predict the utility of items for a particular user. Specific type of items and 
associations differ by target applications (e.g., buying books at Amazon, reading news 
at Google, and renting CDs at Netflix, etc.). CF techniques have been applied mainly 
in many e-commerce systems for business purposes. Recently, they have also been 
used for educational applications such as legal argumentation [10], educational re-
source recommendation [13], writing skills training [4] and eLearning [8]. An impor-
tant issue with many applications is that users’ behaviors change over time and a  
[ 
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Table 1. Statistics about the number of times each worksheet is repeated 

Repetition 
Statistics 

Worksheet Name 
Equal Group Multiplicative Compare Mixed 

W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 
Mean 2.2 4 1.6 1.5 1.3 3.3 1.4 1.2 1.3 1.1 1 

Std. Dev. 1.8 2 0.5 0.7 0.5 2.9 0.9 0.6 0.9 0.3 0 

 
static CF approach may not always be optimal to anticipate users’ future behaviors. 
Temporal collaborative filtering (temporal CF) is a CF approach that adapts itself to 
the constantly changing system dynamics (i.e., user-item associations). Temporal CF 
has gained substantial interests in business applications such as movie recommenda-
tion [5], [6], [7]. However, despite its capability to deal with dynamic educational 
applications with rapidly changing user-item interactions, temporal CF has not been 
applied to educational tasks yet.  

To the best of our knowledge there is no prior research of temporal CF on the au-
tomatic detection of whether a student will be able to correctly answer a question with 
a high-level student model (i.e., without using any expert knowledge of the domain). 
Prior research utilized combinations of features such as time, mouse tracking and 
performance related features [1], [3], [11]; most of which are extracted while a stu-
dent is solving the problem. However, it is not possible to predict whether a student 
will be able to solve a problem before the problem is presented to the student (i.e., 
enough data is collected) which limits the utilization of the student model. For exam-
ple, related prior research was not able to give an early feedback to the student de-
pending on his likelihood to solve the problem or change the problem with an easier 
or harder one. Prior work on temporal CF focused on business applications such as 
movie recommendation [5], [6], [7]. A simple and popular approach in the prior work 
of temporal CF (to deal with rapidly changing user-item associations) is the utilization 
of sliding time windows, which uses new data in a current sliding window and dis-
cards (or assigns decreasing weights on) old data [5][12]. However, unlike a tradi-
tional CF based application (e.g., a user votes for a movie only once), a student has 
multiple interactions with a task/problem in a problem solving environment and this 
data is ignored by traditional CF approaches or temporal CF approaches such as  
sliding window.  

This paper proposes a novel temporal CF approach that can automatically predict 
the correctness of students’ problem solving in an intelligent math tutor by utilizing 
the information coming from multiple interactions. The new approach is compared to 
i) a traditional CF approach, ii) a temporal CF approach that uses sliding time window 
but ignores old data and multiple interactions and iii) a novel hybrid temporal CF 
approach that uses a sliding-time window together with multiple interactions. We 
show that using multiple interactions significantly improves the prediction accuracy. 
It is also shown that although using sliding time window has been shown to be effec-
tive in prior research [5], [12]; it doesn’t make a significant difference in this work. 
Furthermore, a novel hybrid approach combining the proposed temporal CF together 
with the temporal CF using sliding time windows is found to be not significantly 
different than using the proposed temporal CF approach of only utilizing multiple 
interactions. Finally, the Pearson Correlation Coefficient (PCC) method is found to be 
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not significantly different than the Vector Similarity (VS) while calculating the  
similarity between two users, although PCC has been shown to be more effective than 
VS in other applications (e.g., in business domain) [2].  

2   Data 

Data from a study conducted in fall 2008 and partly in spring 2009 in a nearby elemen-
tary school was used in this work. The study was conducted in mathematics classrooms 
using a math tutoring software (that has been developed by the authors). The tutoring 
software teaches problem solving skills for Equal Group (EG) and Multiplicative 
Compare (MC) problems. These two problem types are a subset of the most important 
mathematical word problem types that represent about 78% of the problems in a fourth 
grade mathematics textbook [9].  In the tutoring system; first, a conceptual instruction 
session is studied by a student followed by problem solving sections to test their under-
standing. Both of conceptual instruction and problem solving parts require students to 
work one-on-one with the tutoring software and if students fail to pass a problem solv-
ing session, they have to repeat the corresponding conceptual instruction and the prob-
lem solving session. Details about the number of repetitions of each worksheet (by all 
students) are given in Table 1. Space limitations preclude discussing in detail but the 
tutoring software has a total of 4 conceptual instruction sessions and 11 problem solv-
ing worksheets that have 12 questions each (4 for Equal Group worksheets, 4 for Mul-
tiplicative Compare worksheets, 3 Mixed worksheets each of which include 6 EG & 6 
MC problems). The software is supported with animations, audio (with more than 500 
audio files), instructional hints, exercises etc. 

The study with the tutoring system included 10 students among which 3 students 
have learning disabilities, 1 student has emotional disorder and 1 student has emo-
tional disorder combined with a mild intellectual disability. Students used the tutor for 
several class sessions of 30 minutes (on average 18.7 sessions per student with stan-
dard deviation of 3.23 sessions) during which their interaction with the tutoring sys-
tem was logged in a centralized database. A total of 2388 problems (corresponding to 
a total of 199 worksheets) were solved with 1670 problems correctly solved (with 
average 167.0 and std. deviation. 23.1) and 718 incorrectly solved (with average 71.8 
and std. deviation 32.5). Data from 9 students was used as training data to build the 
models for making predictions for the remaining 1 student (who is used as the test 
data) at each configuration. That is, all 10 students are used as the test data alterna-
tively and the data from other 9 students is used as training data. The averages of the 
results for all configurations are reported. 

3   Methods and Modeling Approaches 

3.1   Collaborative Filtering Framework 

Predicting correctness of problem solving with a high-level student model (i.e., with-
out using any expert knowledge of the domain) can be treated as a collaborative filter-
ing problem, which models students’ likelihood to solve problems. The collaborative  
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filtering framework in this work can be defined as follows: assume there are M stu-
dents and L worksheets in the system, where each of the worksheets has K questions. 
Note that M is 10, L is 11 and K is 12 in this work. Let  be the th worksheet by mth 
student,  be the total number of repetitions of th worksheet by th student, ,  
be the th repetition of th worksheet by th student, ,  be the ith problem in that 
worksheet and  ,   be the student’s score on the problem (i.e., 1 means the 
student solved the problem correctly and 0 means the student solved the problem 
incorrectly). A first step in CF is to calculate the similarities between students. There 
are two common techniques for this task: Pearson Coefficient Correlation (PCC) and 
Vector Similarity (VS). PCC can be calculated as follows: 

, ∑ ∑∑ ∑ ∑ ∑  (1) 

where ,  is the similarity score between students u and ut
,  is the average 

score of student u on all problems. The vector similarity (VS) can be calculated as 
follows: 

, ∑ ∑∑ ∑ ∑ ∑  (2) 

After the similarity between users are calculated, prediction for a problem can be 
computed by using the sum of the scores of training users on the problem weighted by 
the similarity between users as follows: 

Note that the above CF approach ignores the multiple interactions (i.e., repetitions of 
worksheets) and only uses the latest scores of a student on a worksheet (e.g., in the 
same way it uses the latest rating of a user on a movie). Therefore the repetition in-

dex, that should be included as follows ,
  for a problem , is omit-

ted in the formulas for simplicity. 
To predict the correctness of problem solving for a test worksheet of a student, all 

of the previous worksheets (i.e., the worksheets that are already solved and available 
for use) of that student are used in this modeling approach.  

This modeling approach will serve as a baseline and will be referred as 
Mod_Baseline_All. 

3.2   Temporal Collaborative Filtering with Sliding Time Window 

Temporal collaborative filtering is a time-sensitive CF approach that adapts itself to 
the rapidly changing user-item interactions. The user-item associations in many  
applications change with time as user’s behavior can change over time. One of the 
simple temporal CF approaches to deal with changing dynamics is to favor newer data 
than older data for having an up-to-date model of the users’ behavior. Sliding time 

∑ ,∑ | , |  (3) 
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windows (and their variants) that only use the newest data is a popular approach, 
which has been followed in prior research [5], [12]. To the best of our knowledge, this 
is the first work utilizing sliding time windows on an application in the education 
domain. In this work, the sliding time window is defined as using the last  work-
sheets for 1,2,3,4 . Sliding time window approach will be referred as 
Mod_Baseline_Window. 

3.3   Temporal Collaborative Filtering with Multiple Interactions and a Hybrid 
Approach 

Unlike traditional user-item interactions, students can work on a problem several 
times. In most CF based systems, users don’t interact with the items multiple times, 
therefore a CF approach or a temporal CF approach don’t take into account the infor-
mation coming from multiple interactions that happen in educational environments 
such as tutoring systems with problem solving activities. To predict a student’s per-
formance on a problem, the use of the student’s past performance on the same prob-
lem is a valuable source of data that should not be ignored. By utilizing this data, it 
becomes possible not only to compare the latest performances of students’ on other 
problems (like in CF or temporal CF approaches) but also to compare the learning 
curves by comparing their first, second, etc. trials on the same problems. In this work, 
the temporal CF approach that utilizes multiple interactions can be calculated with the 
following changes over the VS and prediction formulas as follows: the new vector 
similarity (VS): 

, ∑ ∑ ∑ , ,
∑ ∑ ∑ , ∑ ∑ ∑ ,  (4) 

So, if the test student is working on worksheet  for the 1 th time, 
her/his 1st trial on the worksheet is compared with other students’ first trial on the 
same worksheet, her/his second trial is compared with others’ second trial, and her/his 

th trial is compared with other students’ th trial. In the traditional ap-
proach only the latest trials of the test student on previous worksheets (i.e.,  

and 
,

) is compared with only the latest trials of other students on those 

worksheets (i.e., 
,

). An important thing to note is the dimension mismatch 
problem that can happen when two students have different number of trials on a 
worksheet which may cause   where there is no corresponding trial of 
worksheet  from student u to compare with student ut. In such a case, the approach 

used in this paper is as follows: , ,       . That is, for in-
stance, if the third trial of a test user’s worksheet is being compared and a training 
user has repeated that worksheet only twice, her/his third (or more) trial is assumed to 
be the same with her/his second (i.e., last) trial. This approach is better than just com-
paring th trials only, for two reasons: i) as the difference    be-
comes bigger, the proposed approach punishes the similarity more (and since similar 
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students should have similar repetition behaviors this should be the case) and ii) stu-
dents solve a worksheet until they master the worksheet and get enough score on the 
worksheet and therefore their last trial is a good representation of their final status 
(after their last trial) on that worksheet.  

After the new similarity between users is calculated, the new prediction formula 
becomes: 

, ∑ , ,
∑ | , |  

(5) 

So to predict the th repetition of a worksheet of a test user, only the data from 
th repetitions of training students are used, rather than using the data from their 

final (i.e., th) repetitions. This modeling approach will be referred as 
Mod_MultInt_All.  

To better evaluate the effect of sliding time windows approach, we also propose a 
novel hybrid approach combining the proposed temporal CF (i.e., Mod_MultInt_All) 
together with the temporal CF approach that uses sliding time windows. This hybrid 
temporal CF approach will be referred as Mod_MultInt_Window. 

4   Experimental Methodology: Evaluation Metric 

Mean Absolute Error (MAE) has been used as a popular evaluation metric in the prior 
work [2], [5]; and is calculated by looking at the mean absolute deviation of a test 
student’s predicted scores from her/his actual score on the problems. In this work, the 
MAE of a test worksheet ,  (i.e., the th repetition of th worksheet by th student) 
can be computed as: 

, ∑ , ,
 

(6) 

where K is the number of problems in a worksheet, ,  is student’s predicted 
score on the problem (i.e., 1 if predicted to be correctly solved, 0 otherwise) and ,  is student’s actual score (i.e., 1 or 0) on the problem.  

Note that while predicting a test worksheet for a user, all of the previous work-
sheets or part of them (i.e., in the sliding window approach) are used for calculating 
the similarity between users. For instance, if the 3rd repetition of MC worksheet 2 is 
the test worksheet; then Mod_Baseline_All will use only the final repetitions of all 
previous worksheets (i.e., last repetition of EG worksheets 1,2,3,4 and MC worksheet 
1). On the other hand Mod_MultInt_All will use the previous repetitions of the test 
worksheet together with all repetitions of all previous worksheets (i.e., all repetitions 
of EG worksheets 1,2,3,4 and MC worksheet 1 together with 1st and 2nd repetitions of 
MC worksheet 2). Sliding window versions of both approaches only utilize the last k 
of the training worksheets (explained above) depending on the window size. There-
fore each worksheet is predicted separately and the MAE is calculated for each 
 



 Predicting Correctness of Problem Solving in ITS with a Temporal CF Approach 21 

Table 2.  Results of the Mod_Baseline_All, Mod_Baseline_Window, Mod_MultInt_All and 
Mod_MultInt_Window CF approaches in comparison to each other for two similarity configu-
rations: i) Pearson Correlation Coefficient (PCC) and ii) Vector Space (VS) and for four 
window sizes. The window size is the number of past worksheets used for calculating the 
similarity between students. The performance is evaluated with the MAE. 

 
Methods 

Similarity Metric 
Pearson Correlation 
 Coefficient (PCC) 

Vector Space 
(VS) 

Mod_Baseline_All 0.309 0.308 
 
Mod_Baseline_Window 

 

 
Window 

Size 

1 0.296 0.306 
2 0.319 0.309 
3 0.296 0.306 
4 0.296 0.306 

Mod_MultInt_All 0.268 0.269 
Mod_MultInt_Window 

 
Window 

Size 
1 0.265 0.286 
2 0.275 0.285 
3 0.270 0.282 
4 0.275 0.283 

 

predicted worksheet of a student separately. The average of the MAEs for all test 
worksheets of a student (i.e., all worksheets except the first worksheet, namely EG 
worksheet 1) is the MAE of that student. The mean of the MAEs of all students is the 
final MAE; and this final MAE is reported in this work. 

5   Experiment Results 

This section presents the experimental results of the methods that are proposed in 
Methods and Models section. All the methods were evaluated on the dataset as  
described in Data section (i.e., Section 2).   

5.1   The Performance of Temporal CF with Sliding Time Window  
(i.e., Mod_Baseline_Window) 

The first set of experiments was conducted to evaluate the effectiveness of the temporal 
CF approach of using sliding time windows. More specifically, Mod_Baseline_Window 
and Mod_MultInt_Window CF approaches are compared to Mod_Baseline_All and 
Mod_MultInt_All CF approaches (details about which are given in Section 3) with each 
other on the prediction of problem solving task for four different window sizes. Their 
performance can be seen in Tables 2. It can be seen that the Mod_Baseline_Window 
approach slightly outperforms Mod_Baseline_All approach for window sizes 1, 3 & 4; 
and Mod_Baseline_All approach slightly outperforms Mod_Baseline_Window  
approach for window size 2. Similarly the Mod_MultInt_Window approach slightly 
outperforms Mod_MultInt_All approach for window size 1 (with PCC) and 
Mod_MultInt_All approach slightly outperforms Mod_MultInt_Window approach for 
window sizes more than 2 (and window size 1 with VS). Paired t-tests have been ap-
plied for this set of experiments and the improvement gained by using the sliding-time  
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Table 3. Results of the Mod_MultInt_All and Mod_MultInt_Window CF approaches are 
shown in comparison to Mod_Baseline_All and Mod_Baseline_Window CF approaches for 
two similarity configurations: i) Pearson Corrleation Coefficient (PCC) and ii) Vector Space 
(VS). The performance is evaluated with the MAE. 

 
Methods 

Similarity Metric 
Pearson Correlation 
 Coefficient (PCC) 

Vector Space 
(VS) 

Mod_Baseline_All 0.309 0.308 
Mod_MultInt_All 0.268 0.269 
Mod_Baseline_Window 0.296 0.306 
Mod_MultInt_Window 0.266 0.286 

 
window or using different window sizes has been found to be not significant (i.e.,  
p-value is more than 0.01) in most of the configurations (there are some significant 
differences in favor of and against using time windows at the same time, so it is not 
possible to see a consistent and significant dominance of either approach over each 
other). To the best of our knowledge this is the first work using sliding time windows 
for an educational application (specifically for predicting the correctness of problem 
solving). Results discussed above show that, sliding time windows (or their variants), 
despite their positive effect on the applications of temporal CF over business applica-
tions [5], [12]; should be carefully considered. 

5.2   The Performance of Temporal CF with Multiple Interactions and the 
Hybrid Approach (i.e., Mod_MultInt_All and Mod_MultInt_Window) 

The second set of experiments was conducted to evaluate the effectiveness of the 
temporal CF approach of using multiple interactions and the hybrid temporal CF 
approach of using multiple interactions together with the sliding time windows. More 
specifically, Mod_MultInt_All and Mod_MultInt_Window (with window size 1) CF 
approaches are compared to Mod_Baseline_All and Mod_Baseline_Window (with 
window size 1) CF approaches (details about which are given in detail in Section 3) 
with each other. Their performance can be seen in Table 3. It can be seen that both of 
Mod_MultInt_All and Mod_MultInt_Window approaches significantly (with p-value 
less than 0.001) outperform Mod_Baseline_All and Mod_Baseline_Window ap-
proaches respectively. This explicitly shows that utilizing the information coming 
from the multiple interactions (i.e., repetitions of worksheets) is a much better ap-
proach than the default CF approach of using the latest user-item interactions for 
predicting correctness of problem solving.  

The hybrid approach of utilizing sliding time window together with multiple inte-
ractions (i.e., Mod_MultInt_Window) has not been found to be significantly different 
than Mod_MultInt_All approach (i.e., p-value is more than 0.01). This is consistent 
with the results reported in the previous section. To better see the robustness of the 
Mod_MultInt_All approach, the average of PCC and VS results of the 
Mod_MultInt_All approach is shown in comparison to Mod_Baseline_All approach 
in Table 4 for all the test worksheets (i.e., all worksheets except EG worksheet 1). It 
can be seen that Mod_MultInt_All approach is robust across all worksheets and  
performs consistently better than the Mod_Baseline_All approach almost for all 
worksheets. It should also be noted that Mod_MultInt_All achieves comparable 
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readability intelligently (e.g., via mixture models). Second, data from more students 
and different applications can be used to assess the robustness of the proposed algo-
rithms. Future work will be conducted mainly in those directions.  
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Abstract. Intelligent tutors have become increasingly accurate at detecting 
whether a student knows a skill at a given time. However, these models do not 
tell us exactly at which point the skill was learned. In this paper, we present a 
machine-learned model that can assess the probability that a student learned a 
skill at a specific problem step (instead of at the next or previous problem step). 
Implications for knowledge tracing and potential uses in “discovery with mod-
els” educational data mining analyses are discussed, including analysis of which 
skills are learned gradually, and which are learned in “eureka” moments. 

Keywords: Educational Data Mining, Bayesian Knowledge Tracing, Student 
Modeling, Intelligent Tutoring Systems. 

1   Introduction 

In recent years, educational data mining and knowledge engineering methods have led 
to increasingly precise models of students’ knowledge as they use intelligent tutoring 
systems. The first stage in this progression was the development of Bayes Nets and 
Bayesian frameworks that could infer the probability that a student knew a specific 
skill at a specific time from their pattern of correct responses and non-correct res-
ponses (e.g. errors and hint requests) up until that time [cf. 13, 18, 25].  

In recent years, a second wave of knowledge modeling has emerged, which at-
tempts to predict student knowledge more precisely based on information beyond just 
correctness. Beck et al [8] differentiated help requests from errors – however, doing 
so did not significantly improve predictive power. Baker, Corbett, & Aleven [3, 4] 
extended Bayesian Knowledge Tracing with contextualized estimation of the proba-
bility that the student guessed or slipped, leading to better prediction of future cor-
rectness. More recent work has suggested that the exact framework  from [3, 4] leads 
to poorer prediction of post-test scores, but that information on contextual slip can be 
used in other fashions to predict post-test scores more precisely than existing methods 
[6]. Other knowledge tracing frameworks have attempted to model performance on 
problems or problem steps that involve multiple skills at the same time [cf. 21, 22], 
and have focused on predicting a student’s speed of response in addition to just  
correctness [cf. 20]. 
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Creating more precise models of student learning has several benefits. First of all, 
to the extent that student practice is assigned based on knowledge assessments [cf. 
13], more precise knowledge models will result in better tailoring of practice to indi-
vidual student needs [cf. 10]. Second, models of student knowledge have become an 
essential component in the development of models of student behavior within  
intelligent tutoring systems, forming key components of models of many constructs, 
including models of appropriate help use [1], gaming the system [5, 27], and off-task 
behavior [2, 11]. More precise knowledge models can form a more reliable compo-
nent in these analyses, and reduce the noise in these models.  

However, while these extensions to educational data mining have created the po-
tential for more precise assessment of student knowledge at a specific time, these 
models do not tell us when the knowledge was acquired. In this paper, we will intro-
duce a model that can infer the probability that a student learned a skill at a specific 
step during the problem-solving process. Note that this probability is not equal to 
P(T) in standard Bayesian Knowledge Tracing (a full explanation will be given later 
in this paper). Creating a model that can infer this probability will create the potential 
for new types of analyses of student learning, as well as making existing types of 
analyses easier to conduct. For example, this type of approach may allow us to study 
the differences between gradual learning (such as strengthening of a memory associa-
tion [cf.20]) and learning given to “eureka” moments, where a skill is suddenly un-
derstood [cf. 17]. Do different skills lead to each type of learning?  

To give another example, studying which items are most effective (and in which 
order they are most effective) [cf. 9, 23] will be facilitated with the addition of a con-
crete numerical measure of immediate learning. Similarly, studying the relationship 
between behavior and immediate learning is more straightforward with a concrete 
numerical measure of immediate learning. Prior methods for studying these relation-
ships have required either looking only at the single next performance opportunity [cf. 
12], a fairly coarse learning measure, or have required interpreting the difference 
between model parameters in Bayesian Knowledge Tracing [cf. 8], a non-trivial sta-
tistical task. Creating models of the moment of learning may even enable distinctions 
between behaviors associated with immediate learning and behaviors associated with 
learning later on, and enable identification of the antecedents of later learning.  For 
example, perhaps some types of help lead to better learning, but the difference is only 
seen after additional practice has occurred. 

In the following sections, we will present an approach for labeling data in terms of 
student immediate learning, a machine-learned model of student immediate learning 
(and indicators of goodness of fit), and an example of the type of “discovery with 
models” analysis that this type of model enables. In that analysis, we will investigate 
whether learning is differentially “spiky” between different skills, with learning  
occurring abruptly for some skills, and more gradually for other skills.  

2   Data  

The analyses discussed in this paper are conducted on data from 232 students’ use of a 
Cognitive Tutor curriculum for middle school mathematics [16], during the 2002-2003 
school year. All of the students were enrolled in mathematics classes in one middle 



 Detecting the Moment of Learning 27 

 

school in the Pittsburgh suburbs which used Cognitive Tutors two days a week as part 
of their regular mathematics curriculum, year round. None of the classes were com-
posed predominantly of gifted or special needs students. The students were in the 6th, 
7th, and 8th grades (approximately 12-14 years old), but all used the same curriculum (it 
was an advanced curriculum for 6th graders, and a remedial curriculum for 8th graders). 

Each of these students worked through a subset of 35 different lessons within the 
Cognitive Tutor curriculum, covering a diverse selection of material from the middle 
school mathematics curriculum. Middle school mathematics, in the United States, 
generally consists of a diverse collection of topics, and these students’ work was rep-
resentative of that diversity, including lessons on combinatorics, decimals, diagrams, 
3D geometry, fraction division, function generation and solving, graph interpretation, 
probability, and proportional reasoning. These students made 581,785 transactions 
(either entering an answer or requesting a hint) on 171,987 problem steps covering 
253 skills. 290,698 additional transactions were not included in either these totals or 
in our analyses, because they were not labeled with skills, information needed to  
apply Bayesian Knowledge Tracing. 

3   Detecting the Moment of Learning  

In this paper, we introduce a model that predicts the probability that a student has 
learned a specific skill at a specific problem step. We refer to this probability as P(J), 
short for “Just Learned”. This model is developed using a procedure structurally similar 
to that in [3, 4], using a two-step process. First, predictions of student knowledge from 
standard Bayesian Knowledge Tracing are combined with data from future correctness 
and applications of Bayes’ Theorem. This process generates labels of the probability 
that a student learned a skill at a specific problem step. Then a model is trained, using a 
broader feature set with absolutely no data from the future, to predict the labeled data.  

3.1   Labeling Process 

The first step of our process is to label each first student action on a step in the data 
set with the probability that the student learned the skill at that time, to serve as inputs 
to a machine learning algorithm. We label each student problem step (N) with the 
probability that the student learned the skill at that step. Specifically, our working 
definition of “learning at step N” is learning the skill between the instant after the 
student enters their first answer for step N, and the instant that the student enters their 
first answer for step N+1.  

We label step N using information about the probability the student knew the skill 
before answering on step N (from Bayesian Knowledge Tracing) and information on 
performance on the two following steps (N+1, N+2). Using data from future actions 
gives information about the true probability that the student learned the skill during 
the actions at step N. For instance, if the student probably did not know the skill at 
step N (according to Bayesian Knowledge Tracing), but the first attempts at steps 
N+1 and N+2 are correct, it is relatively likely that the student learned the skill at step 
N. Correspondingly, if the first attempts to answer steps N+1 and N+2 are incorrect, it 
is relatively unlikely that the student learned the skill at step N. 
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We assess the probability that the student learned the skill at step N, given infor-
mation about the actions at steps N+1 and N+2 (which we term A+1+2), as: 

 
P(J) = P(~Ln ^ T | A+1+2 ) 

 
Note that this probability is assessed as P(~Ln ^ T), the probability that the student did 
not know the skill and learned it, rather than P(T). Within Bayesian Knowledge Trac-
ing, the semantic meaning of P(T) is actually P(T | ~Ln): P(T) is the probability that 
the skill will be learned, if it has not yet been learned. P(T)’s semantics, while highly 
relevant for some research questions [cf. 8, 16], are not an indicator of the probability 
that a skill was learned at a specific moment. This is because the probability that a 
student learned a skill at a specific step can be no higher than the probability that they 
do not currently know it. P(T), however, can have any value between 0 and 1 at any 
time. For low values of P(Ln), P(T) will approximate the probability that the student 
just learned the skill P(J), but for high values of P(Ln), P(T) can take on extremely 
high values even though the probability that the skill was learned at that moment is 
very low.  

We can find P(J)’s value with a function using Bayes’ Rule: 
 ~ ^ | | ~ ^  ~ ^

 

 
The base probability P(~Ln ^ T) can be computed fairly simply, using the student’s 
current value for P(~Ln) from Bayesian Knowledge Tracing, and the Bayesian Know-
ledge Tracing model’s value of P(T) for the current skill: 

 ~ ^ ~  
 

The probability of the actions at time N+1 and N+2, P(A+1+2), is computed as a func-
tion of the probability of the actions given each possible case (the skill was already 
known, the skill was unknown but was just learned, or the skill was unknown and was 
not learned), and the contingent probabilities of each of these cases. 

   |   | ~ ^  ~ ^   | ~ ^~  ~ ^~  
 

The probability of the actions at time N+1 and N+2, in each of these three cases, is a 
function of the Bayesian Knowledge Tracing model’s probabilities for guessing (G), 
slipping (S), and learning the skill (T). Correct answers are notated with a C and non-
correct answers (e.g. errors or help requests) are notated with a ~C. 
 , | ~   , ~ | ~  ~ , |  ~   ~ , ~ |  , | ~ ^ ~   , ~ | ~ ^ ~  ~ , | ~ ^  ~  ~ , ~ | ~ ^  
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, | ~ ^~ ~ ~  , ~ | ~ ^~ ~ ~  ~ , | ~ ^~ ~ ~ ~ ~  ~ , ~ | ~ ^~ ~ ~ ~ ~   
Once each action is labeled with estimates of the probability P(J) that the student 
learned the skill at that time, we use these labels to create machine-learned models 
that can accurately predict P(J) at run-time. The original labels of P(J) were devel-
oped using future knowledge, but the machine-learned models predict P(J) using only 
data about the action itself (no future data).  

3.2   Features 

For each problem step, we used a set of 25 features describing the first action on prob-
lem step N. The features used in the final model are shown in Table 1. 23 of those 
features were previously distilled to use in the development of contextual models of 
guessing and slipping [cf. 3, 4]. These features had in turn been used in prior work to 
develop automated detectors of off-task behavior [2] and gaming the system [5].  

The 24th and 25th features were used in prior models of gaming the system and off-
task behavior, but not in prior contextual models of guessing and slipping. These 
features are the probability that the student knew the skill before the first attempt on 
action N, P(Ln-1), and the probability that the student knew the skill after the first 
attempt on action N, P(Ln). There are some arguments against including these fea-
tures, as P(~Ln) is part of the construct being predicted, P(~Ln ^ T). However, the 
goal of this model is to determine the probability of learning, moment-by-moment, 
and the students’ current and previous knowledge levels, as assessed by Bayesian 
Knowledge Tracing, are useful information towards this goal. In addition, other pa-
rameters in the model will be more interpretable if these terms are included.  Without 
these terms, it would be difficult to determine if a parameter was predicting T or ~Ln. 
With these terms, we can have greater confidence that parameters are predictive of 
learning (not just whether the skill was previously unknown), because Ln is already 
accounted for in the model. However, in accordance with potential validity concerns 
stemming from including P(Ln-1) and P(Ln) in the model, we will also present good-
ness-of-fit statistics from a model not including these features. 

While it is possible that features tailored to researchers’ intuitions of what sorts of 
behaviors ought to predict moment-to-moment learning might perform better than 
these re-used features, the repeated utility of these features in model after model sug-
gests that these features capture constructs of general applicability. Nonetheless, it 
will be valuable to consider additional features in future models of P(J).  An addition-
al aspect to consider with regards to the features is which actions the features are 
distilled for. As these features involve the first action at problem step N, they 
represent the student’s behavior at the moment right before learning, more than the 
student’s behavior exactly at the moment of learning (which takes place in our model 
after the first action of problem step N and before the first action of problem step 
N+1, as previously discussed). As such, the model’s features should perhaps be inter-
preted as representing immediate antecedents of the moment of learning, as opposed 
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to the exact characteristics of the moment of learning itself. Despite this limitation of 
our feature set, the model is still accurate at identifying the moment of learning (as 
discussed below). However, extending the model with a new set of features relevant 
to subsequent actions on problem step N (e.g. the second action to the last action) may 
improve model accuracy and interpretability.  

3.3   Machine Learning 

Given the labels and the model features for each student action within the tutor, two 
machine-learned models of P(J) were developed. As discussed above, one model used 
all 25 features, the other model only used the 23 features from [3, 4]. Linear regres-
sion was conducted within RapidMiner [19]. All reported validation is batch 6-fold 
cross-validation, at the student level (e.g. detectors are trained on five groups of stu-
dents and tested on a sixth group of students). By cross-validating at this level, we 
increase confidence that detectors will be accurate for new groups of students. Linear 
Regression was tried both on the original feature sets and on interaction terms of the 
features; slightly better cross-validated performance was obtained for the original 
feature sets, and therefore we will focus on the models obtained from this approach. 

3.4   Results 

The model with 25 features, shown in Table 1, achieved a correlation of 0.446 to the 
labels, within 6-fold student-level cross-validation. The model with only 23 features 
achieved a weaker correlation of 0.301.  

We can compute the statistical significance of the difference in correlation in a 
way that accounts for the non-independence between students, by computing a test of 
the significance of the difference between two correlation coefficients for correlated  
 
Table 1. The machine learned model of the probability of learning at a specific moment. In the 
unusual case where output values fall outside the range {0,1}, they are bounded to 0 or 1. 
 

Feature P(J) = 
Answer is correct - 0.0023 
Answer is incorrect + 0.0023 
Action is a help request - 0.00391 
Response is a string + 0.01213 
Response is a number + 0.01139 
Time taken (SD faster (-) / slower (+) than avg across all students) + 0.00018 
Time taken in last 3 actions (SD off avg across all students) + 0.000077 
Total number of times student has gotten this skill wrong total - 0.000073 
Number of times student requested help on this skill, divided by number of problems - 0.00711 
Number of times student made errors on this skill, divided by number of problems + 0.0013 
Total time taken on this skill so far (across all problems), in seconds + 0.0000047 
Number of last 5 actions which involved same interface element - 0.00081 
Number of last 8 actions that involved a help request + 0.00137 
Number of last 5 actions that were wrong + 0.00080 
At least 3 of last 5 actions involved same interface element & were wrong - 0.037 
Number of opportunities student has already had to use current skill - 0.0000075 
F24: The probability the student knew the skill, after the current action (Ln) - 0.053 
F25: The probability the student knew the skill, before the current action (Ln-1) + 0.00424 
Constant Term + 0.039 



 Detecting the Moment of Learning 31 

 

samples [cf. 14] for each student, and then aggregating across students using Stouf-
fer’s Z [23].  According to this test, the difference between the two models is highly 
statistically significant, Z=116.51, p<0.0001. 

Although correlation was acceptable, one limitation of this model is that it 
tended to underestimate values of P(J) that were relatively high in the original la-
bels. While these values remained higher than the rest of the data (hence the mod-
el’s reasonable correlation to the labels), they were lower, in absolute terms, than 
the original labels. This problem could be addressed by weighting the (rarer) high 
values more heavily during model-fitting, although this approach would likely re-
duce overall correlation. 

As with any multiple-parameter linear regression model (and most other model 
frameworks as well), interpretability of the meaning of any parameter in specific is 
not entirely straightforward. This is because every parameter must be considered in 
the context of all of the other parameters – often a feature’s sign can flip based on the 
other parameters in the model. Hence, significant caution should be taken before 
attempting to interpret specific parameters as-is. It is worth noting that approaches 
that attempt to isolate specific single features [cf. 8] are significantly more interpreta-
ble than the internal aspects of a multiple parameter regression model such as this 
one. It is also worth remembering that these features apply to the first action of prob-
lem step N whereas the labels pertain to the student’s learning between the first action 
of problem step N and the first action of problem step N+1. Hence, the features of this 
model can be interpreted more as representing the antecedents of the moment of 
learning than as representing the moment of learning itself – though they do accurate-
ly predict the moment of learning. 

One interesting aspect of this model (and the original labels) is that the overall 
chance of learning a skill on any single step is relatively low within this tutor. How-
ever, there are specific circumstances where learning is higher. Many of these cir-
cumstances correlate to time spent, and the student’s degree of persistence in attempt-
ing to respond. Larger numbers of past errors appear to predict more current learning 
than larger numbers of past help requests, for instance. This result appears at a surface 
level to be in contrast to the findings from [8], but is potentially explained by the 
difference between learning from requesting help once – the grain-size studied in [8] 
– and learning from requesting the same help sequence many times. It may be that 
learning from errors [cf. 26] is facilitated by making more errors, but that learning 
from help does not benefit from reading the same help multiple times.  

4   Studying the Spikiness of Student Learning 

A key way that the model presented here can be scientifically useful is through its 
predictions, as components in other analyses. Machine-learned models of gaming the 
system, off-task behavior, and contextual slip have proven useful as components in 
many other analyses [cf. 2, 12, 27]. Models of the moment of student learning may 
turn out to be equally useful.  
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Fig. 1. A relatively “spiky” graph of a student’s performance on a specific skill, indicating 
eureka learning (left), and a relatively smooth graph, indicating more gradual learning (right). 
The X axis shows how many problem steps have involved the current skill, and the Y axis 
shows values of P(J). 

 
One research area that models of the moment of student learning may shed light on 

is the differences between gradual learning (such as strengthening of a memory asso-
ciation [cf. 20]) and learning given to “eureka” moments, where a skill is understood 
suddenly [cf. 17]. Predictions of momentary learning for a specific student and skill 
can be plotted, and graphs which are “spiky” (e.g. which have sudden peaks of learn-
ing) can be distinguished from flatter graphs, which indicate more gradual learning. 
Examples of students experiencing gradual learning and eureka learning are shown in 
Figure 1.  Note that the graph on the left in Figure 1 shows two spikes, rather than just 
one spike, a fairly common pattern in our data. Understanding why some spiky graphs 
have two spikes, and others have just one, will be an important area for future investi-
gation. The degree to which learning involves a eureka moment can be quantified 
through a measure of “spikiness”, defined as the maximum value of P(J) for a stu-
dent/skill pair, divided by the average value of P(J) for that same student/skill pair. 
This measure of spikiness is bounded between 1 (minimum spikiness) and positive 
infinity (maximum spikiness).  

Spikiness may be influenced by the number of opportunities to practice a skill, as 
more opportunities may (by random variation) increase the potential maximum value 
of P(J). Therefore, to compare spikiness between skills, we only consider skills prac-
ticed at least 6 times, and only consider the first 20 steps relevant to that skill. Spiki-
ness values range for skills between {1.12, 113.52}, M=8.55, SD=14.62. A valuable 
area of future work would be to study what characterizes the skills that have high 
spikiness and low spikiness. Spikiness values range for students between {2.22, 
21.81}, M=6.81, SD=3.09, considerably less spikiness (on the whole) than the differ-
ences in spikiness seen between skills. Interestingly, however, a student’s spikiness is 
a good predictor of their final knowledge; the correlation between a student’s average 
final P(Ln) and their average spikiness is a very high 0.71, which is statistically signif-
icantly different than chance, F(1,228)=230.19, p<0.0001. This result suggests that 
learning spikes may be an early predictor of whether a student is going to achieve 
good learning of specific material.  
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5   Discussion and Conclusions 

In this paper, we have presented a first model of P(J), the probability that a student 
learned a specific skill on a specific opportunity to practice and learn that skill. 
Though this model builds off of past attempts to contextualize student modeling [e.g. 
3, 4] and to study the impact of different events on learning [e.g. 8, 23], this model is 
distinct from prior models of student learning, focusing on assessing the likelihood of 
learning on individual problem steps. We show that the model achieves acceptable 
correlation to the labels of this construct; there is still considerable room for im-
provement, potentially achievable through broadening the feature set.  

We also show that the model’s assessments of P(J) can be used to distill a second-
ary measure, the “spikiness” of learning, defined as the maximum momentary learn-
ing, divided by the average momentary learning. We find that a student’s spikiness is 
an excellent predictor of their final knowledge, and that skills have greater variance in 
spikiness than students. Studying which aspects of skills predicts spikiness may be a 
valuable tool for further research into what types of skills are learned gradually or 
through “eureka” experiences. In addition, given the correlation between spikiness 
and final knowledge, models of P(J) are likely to prove useful for student knowledge 
modeling, as contextual guess and slip have been [e.g. 3, 4], and in the long term may 
lead to more effective adaptation by Intelligent Tutoring Systems.   
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Abstract. Student modeling is very important for ITS due to its ability to make 
inferences about latent student attributes. Although knowledge tracing (KT) is a 
well-established technique, the approach used to fit the model is still a major is-
sue as different model-fitting approaches lead to different parameter estimates. 
Performance Factor Analysis, a competing approach, predicts student perform-
ance based on the item difficulty and student historical performances. In this 
study, we compared these two models in terms of their predictive accuracy and 
parameter plausibility. For the knowledge tracing model, we also examined dif-
ferent model fitting algorithms: Expectation Maximization (EM) and Brute 
Force (BF). Our results showed that KT+EM is better than KT+BF and compa-
rable with PFA in predictive accuracy. We also examined whether the models’ 
estimated parameter values were plausible. We found that by tweaking PFA, we 
were able to obtain more plausible parameters than with KT.    

Keywords: Student modeling, Knowledge tracing, Performance Factors Analy-
sis, Expectation Maximization, Machine learning, Model fitting approaches. 

1   Introduction 

Student modeling is one of the major issues for Intelligent Tutoring System as it has 
been widely used for making inferences about the student’s latent attributes. Its work-
ing mechanism is to take observations of a student’s performance (e.g. the correctness 
of the student response in a practice opportunity) or a student’s actions (e.g. the time 
he stayed for a question), and then use those to estimate the student’s underlying hid-
den attributes, such as knowledge, goals, preferences, and motivational state, etc. 
Those attributes are unable to be determined directly, thus student modeling tech-
niques have always attracted a great deal of attention.  

In ITS, student modeling has two common usages. The first, and most frequently 
used one, is to predict student behaviors, such as student performance in the next 
practice opportunity. The second one is to obtain plausible and explainable parameter 
estimates, where plausibility concerns how believable the parameters are, often tested 
by comparing them to some external gold standards. Being explainable indicates the 
parameter estimates produced by the model have practical meanings, which can help 
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researchers know more about learning. Consequently, student models are evaluated 
by how well they predict student’s behaviors, as well as by parameter plausibility [1]. 

1.1   Knowledge Tracing Model 

There are a variety of student models. The knowledge tracing model [2] shown in Fig. 
1, has been broadly used. It is based on a 2-state dynamic Bayesian network where 
student performance is the observed variable and student knowledge is the latent. The 
model takes student performances and uses them to estimate the student’s level of 
knowledge. There are two performance parameters: slip and guess, which mediate 
student knowledge and student performance. The guess parameter represents the fact 
that the student may sometimes generate a correct response in spite of not knowing 
the correct skill. The slip parameter acknowledges that even students who understand 
a skill can make an occasional careless mistake. There are also two learning parame-
ters. The first is initial knowledge (K0), the likelihood the student knows the skill 
when he first uses the tutor. The second is the learning rate, the probability a student 
will acquire a skill as a result of an opportunity to practice it. 

Student 
Knowledge (K0)

Student 
Performance (C0)

Student 
Knowledge (K1)

Student 
Performance (C1)

Student 
Knowledge (Kn)

Student 
Performance (Cn)

Initial Knowledge

Guess/ slip

Learn

 

Fig. 1. Knowledge tracing model 

As pointed out in [3, 4], KT suffers two major problems with trying to estimate pa-
rameters: local maxima and multiple global maxima. The first one is common to 
many error surfaces and has known solutions such as multiple restart.  The second 
difficulty is known as identifiability and means that for the same model structure, 
given the same data, there are multiple (differing) sets of parameter values that fit the 
data equally well. Based on statistical methods, there is no way to differentiate which 
set of parameters is preferable to the others. Consequently, for the KT model, differ-
ent model fitting approaches lead to different parameter estimation outcomes.  

1.2   Performance Factor Analysis 

Recently, a new alternative student modeling approach was presented by Pavlik et al. 
[5], Performance Factor Analysis (PFA). PFA is a variant of learning decomposition 
[6], and is based on reconfiguring Learning Factor Analysis (LFA) [7]. Briefly speak-
ing, it takes the form of standard logistic regression model with the student perform-
ance as dependent variable. It reconfigures LFA on its independent variables, by 
dropping the student variable and replacing the skill variable with the question iden-
tity (i.e. one parameter per question). The model estimates a parameter for each item 
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representing the item’s difficulty, and also two parameters for each skill reflecting the 
effects of the prior successes and prior failures achieved for that skill. 

Previous work compared KT and PFA models, and found PFA to be superior. In 
this study, we ran replication study, but also focusing on the impacts when using 
different model fitting approaches for KT. In addition, we attempted and tested differ-
ent methods of handling multiple-skill problems. We present our comparison results 
based on both predictive accuracy and parameter plausibility. 

2   Methodology 

2.1   Model Fitting Approaches for Knowledge Tracing Model 

Aside from student models, there are also a variety of model fitting approaches. Dif-
ferent approaches have various criteria to fit the data, and thus produce different  
parameter estimates and further lead to different predictive abilities. Therefore, we 
explored the impact of modeling fitting approach on model accuracy and plausibility.   

The Expectation Maximization (EM) algorithm is a model fitting approach for KT. 
It finds a set of parameters that maximize the data likelihood (i.e. the probability of 
observing the student performance data). EM processes student performance as a 
piece of evidence with time order, and uses this evidence for the expectation step 
where the expected likelihood is calculated. The model then computes the parameters 
which maximize that expected likelihood. The algorithm, by accessing more evi-
dence, iteratively runs these two steps until it finds the final best fitting parameters. 
There is no guarantee of finding a global, rather than a local, maxima.   

Recently, the brute force approach has been proposed for estimating parameters for 
KT. The algorithm uses exhaustive search for finding the best set of parameters over a 
reasonable sampling of the entire parameter space. Contrary to EM that maximizes 
the data likelihood, it attempts to minimize the sum of squared error (SSE). Origi-
nally, KT’s parameters are continuous, so that there is no way to compose a finite 
search space, which, however, is a must for an exhaustive search. We used source 
code provided by Ryan Baker, which resolves the issue by only considering two 
decimal places of precision. In this way, the parameter space is reduced from infinity 
to 994 possible parameter sets for each skill (i.e. there are four parameters for each 
skill and each of them has 99 possible values ranging from 0.01 to 0.99). Initially, 
every parameter starts from the value of 0.01 and is incremented by 0.01 on every 
iteration. Ultimately, for each skill, it finds the lowest SSE, and the corresponding set 
of parameters for that skill. The major drawback is that the method suffers from a 
severe computational cost problem due to the large search space, so most of the time 
the search space is cut down even smaller by setting searching boundaries. In order to 
make a careful comparison, we followed the same protocol as Pavlik et al. followed 
[5]. Specifically, we used the same set of bounded ceiling values for the four parame-
ters, so that the maximum probabilities of initial knowledge, guess, slip and learning 
are 0.85, 0.3, 0.1 and 0.3, respectively. 

Conjugate Gradient Descent, an optimization method used to solve systems of 
equations, is used to estimate parameters in the CMU cognitive tutors. Chang et al. [8] 
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found that EM produces models with higher predictive accuracy than Conjugate Gra-
dient Descent.  

Unlike the KT model, the family of learning decomposition models is based on the 
form of standard logistic regression, so that the model fitting procedure is ensured to 
reach global maxima; thus resulting in unique best fitting parameters. Consequently, 
for PFA, the model fitting approach is not an issue. 

2.2   Problem with Multiple Skill Questions in KT Model 

The KT framework has a major problem: when there is more than one skill involved 
in a question, the model lacks the ability to handle all the skills simultaneously,  
because KT works by looking at historical observations on a skill. However, in some 
tutors, a question is usually designed to require multiple skills to achieve a correct 
answer. If a student model cannot take this common phenomenon well, its ability  
of making plausible parameter estimates and accurate prediction is likely to be  
weakened. 

A common solution is to attach performance on the problem with all skills needed 
to solve it, by listing the performance in all of those skills’ historical observations 
[e.g., 10]. Thus, a multiple skill question is split into multiple single skill questions. 
This strategy enables parameter estimation to proceed, but increases the probability of 
over fitting and also results in an accompanying problem: multiple predicted perform-
ances. Each split performance is associated with a particular skill that has its own set 
of parameters. We then are able to use those parameters to calculate the predicted 
performance. However, those calculated values are probably not equivalent across all 
of the skills, which means for the same student, on the same practice opportunity, our 
models make different claims about how likely he is to produce a correct response. 
Given the conflicting predictions, some means of making a prediction is needed.   

In this study, we attempted two approaches to address the problem. The first is 
similar to [9] and inspired by the joint probability in Probability Theory. The prob-
ability a student generates a correct answer in a multi-skill question is dependent on 
his ability to achieve correctness in all required skills.  Therefore, we multiplied each 
skill's predicted performance together and assign the product as the new predicted 
performance for all corresponding observations. Yet, the reasonableness of this 
method relies on an assumption, which is how likely a student can answer correctly 
for one skill must be independent of the probability that he responds correctly in an-
other skill. Although this independence assumption sounds strong, most student mod-
eling approaches adopt it for simplicity (e.g. Knowledge Tracing). 

The second approach, on the other hand, takes the minimum probability of the pre-
dicted performances as the final value. The intuition behind this strategy is the likeli-
hood a student gets a correct answer is dominated by his knowledge of his weakest 
skill.   

The above strategies are necessary options for KT due to its lack of ability to han-
dle multi-skill performances. However, it is not the case for PFA, which does have the 
ability to handle with multi-skill performances. Therefore in this study, in addition to 
repeating multiple skill questions like we do for KT, we also examined PFA using the 
data that still keeps the original multi-skill performances. 
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2.3   Data Set 

For this study, we used data from ASSISTment, a web-based math tutoring system. 
The data are from 343 twelve- through fourteen- year old 8th grade students in urban 
school districts of the Northeast United States. They were from four classes. These 
data consisted of 193,259 problems completes in ASSISTment during Nov. 2008 to 
Feb. 2009. Performance records of each student were logged across time slices for 
104 skills (e.g. area of polygons, Venn diagram, division, etc).  

3   Results 

We used Bayesian Network Toolkit for Student Modeling (BNT-SM) [8] to perform the 
EM algorithm for the knowledge tracing model to estimate the model parameters. We 
used Ryan Baker’s unpublished java code to accomplish the brute force model fitting 
method. We also replicated the PFA model using the same model settings as in [5], 
except where noted below. We fit the three models with the data that contains split 
performances (i.e. problems that require multiple skills). For PFA, we also examined it 
by fitting the original data which keeps multi-skill questions as a single unit. We re-
ferred the PFA model handling multi-skill performances as PFA_M and the other as 
PFA_S. We did 4-fold crossvalidation and tested our models on the unseen students, 
which is different from what Pavlik, et al. did. They conducted 7-fold crossvalidation 
and tested their models on seen students’ unseen performances. We prefer to hold out at 
the student level since that results in a more independent test set.  Another aspect in 
which our approach differed from Pavlik's is that we did not restrict the impact of a 
correct response to be non-negative, that is, skill could have negative “learning rates.” 

3.1   Main Model Comparisons: Predictive Accuracy 

Predictive accuracy is the measure of how well the instantiated model fits the data. 
We used three metrics to examine the model predictive performance on the unseen 
test set: Mean Squared Error (MSE), R2 and AUC (Area Under Curve) of ROC curve. 
We also reported the number of parameters produced by each model. 

Table 1. Crossvalidated predictive accuracy comparison among three main models 

 MSE R2 AUC # of parameters 

KT + EM 0.215 0.072 0.661 416 
KT + BF 0.223 0.036 0.656 416 
PFA_S 0.220 0.048 0.673 1013 

 
Table 1 shows the results of the comparison for the three metrics. The values are 

calculated by averaging corresponding numbers obtained in the 4-fold crossvalida-
tion. R2 values seem considerably low, however, typically models that predict per-
formance on individual trials achieve low R2 values [10, e.g. 6]. If instead we model 
aggregate trials we have an R2 of 0.88; so our skill model is reasonably accurate and 
our data register student learning.  
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Although most numbers seem very close, KT+EM outperforms KT+BF in all three 
metrics, and PFA_S seems to beat KT+BF as well. To examine whether the differ-
ences are statistically reliable, for every two models, we did a 2 tailed paired t-test 
based on the results from the crossvalidation. Only between KT+BF and KT+EM, we 
found the differences are significant in all three metrics (p<0.01 in MSE and R2; 
p=0.02 in AUC). We failed to find any reliable differences between PFA_S and 
KT+BF, even though the mean values appear a trend suggesting PFA_S is probably 
better than KT+BF. Compared to PFA_S, KT+EM wins in the first two metrics, but 
does worse on the third one. Besides, none of the statistical test results suggests there 
are any significant differences between these two models. We noticed that PFA pro-
duced more parameters than KT, which seems inconsistent with the results reported in 
[5].But, given that the number of parameters in PFA = 2*# of skills + # of items, 
while the number of parameters in KT is 4*# of skills.  Consequently having fewer 
items favors PFA, while fewer skills benefits KT.   

One reason for the lack of reliable difference could be the relatively low statistical 
power of the t-tests. Four independent observations (one for each fold of the cross 
validation) provide low power to differentiate samples. Although further research 
needs to perform the comparisons based on larger samples, for now we maintain a 
conservative view of KT+EM is comparable with PFA_S. 

KT+EM provides more accurate predictions than KT+BF. We think this conse-
quence is caused by the range restrictions used on the search space. In contrast, EM 
derives its estimations without such range restrictions, so it is more likely for EM to 
produce more plausible parameter estimates which further are used to yield more 
accurate prediction.  

One aspect hindering the performance of PFA_S is that the PFA model is designed 
to handle problems that require multiple skills.  Hence, it is more reasonable to  
inspect PFA’s performance when it works in its natural way. To make a fair compari-
son, we trained and tested PFA using the same data sets as we used for the other mod-
els, but without splitting multi-skill performances.  

Table 2. Crossvalidated comparisons among PFA with different model settings 

 R2 AUC 

PFA_S (base line) 0.048 0.673 
PFA_M 0.047 0.680 
PFA_S_bounded 0.066 0.681 
PFA_M_bounded 0.074 0.690 

As seen in the first two rows of Table 2, generally PFA_M results in comparable 
performances, although the difference in AUC is statistically reliable at p<0.01. This 
implies that PFA works better when used in its original spirit for handling multiple 
skill questions. However, compared to KT+EM, shown in Table 1, we only found 
little evidence to support it is good at multi-skill questions (its AUC value is higher, 
but not reliably so). Therefore, again we failed to be able to show that the true  
PFA can reliably outperform this version of KT+EM that also attempts to deal with 
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multi-skill questions. We do not present MSE in Table 2 since PFA_S and PFA_M 
use slightly different datasets, it is not appropriate to compare MSE. 

One drawback of PFA models is they could produce negative learning rates due to 
over fitting, so in the original work [3], the researchers set 0 as the lower bound. We 
were unable to get our model fitting software (SPSS 17.0) to replicate this procedure1. 
Since PFA’s lack of better predictive performance could result from loosing this con-
straint, we next manually checked which skills had negative learning rates, substituted 
0 in, and then re-ran the model predicting procedure on the test data using the altered 
parameters. We found almost half of the skills had negative learning rates. The results 
shown in the last two rows of Table 2 indicate both two bounded models indeed 
achieved higher predictive accuracy (p<0.01 in all two metrics, compared to PFA_S), 
suggesting that the negative learning rates were not accurate and the result of overfit-
ting.  Considering the number of negative learning rates produced at first, it seems 
that setting bounded value is necessary for PFA.   

3.2   Comparing Approaches to the Problem of Multi-skill Questions  

Given the problem of multi-skill questions in KT, we compared the two proposed 
approaches for predicting performance (multiplication and min()) with the default 
model (making multiple, different predictions, on student performance on a problem, 
one for each skill). 

Table 3. Crossvalidated comparisons of the min models and the default models 

 MSE R2 AUC 

KT_BF 0.223 0.036 0.656 
KT_BF_min 0.220 0.046 0.670 
KT_EM 0.215 0.072 0.661 
KT_EM_min 0.214 0.073 0.676 

 
We found the approach of calculating the product results in worse predictive accu-

racy in all attempted models, and do not report it here. However, taking the minimum 
value of the predicted performances provides more accurate models. As shown in 
Table 3, the min models are generally better than the default models, with the AUC 
values are reliably different in every pair of the comparisons. 

The problem of multi-predicted performances also influences PFA, when it takes 
the data with manually split performances. Therefore, we applied the two approaches 
on PFA_S and PFA_S_bounded as well. We found that min model didn’t consistently 
work well for PFA. 

3.3   Parameter Plausibility 

Predictive accuracy is a desired property, but ITS researchers are also interested in 
interpreting models to make scientific claims. Therefore, we prefer models with more 

                                                           
1 If any readers know how to coerce SPSS’s logistic regression function to do so, they are 

invited to contact us. 
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plausible parameters when we want to use those for scientific study. We followed the 
technique in [4]: using external measurement to evaluate parameter plausibility. 

The students in our study had taken a 33-item algebra pre-test before using  
ASSISTment. Taking the pre-test as external measure of incoming knowledge, we 
calculated the correlation between the students’ initial knowledge estimated by the 
models and their pretest scores. 

In other to acquire student’s initial knowledge parameter, we used KT to model the 
students instead of skills (see [4] for details). Since PFA has no student parameter by 
default, we tweaked it to include student as an additional independent variable. In 
Table 4, we see that the PFA model that fit by the data keeping multi-skill perform-
ances produces the strongest correlation. Even, PFA_S, modified to behave like KT 
with respect to multiple skill questions, the number still remains the largest (0.886) 
compared to the rest. KT+BF surprisingly shows a higher ability to estimate plausible 
parameters than KT+EM. One thing to notice is this correlation is produced by 
KT+BF with bounded parameter values, thus if the search space is enlarged, it might 
be able to derive potentially better parameter estimates. The KT+EM is reliably dif-
ferent (P<0.05) from PFA_S and PFA_M; none of the other differences is reliable.   

 

Table 4. Comparison of parameter plausibility 
 

 KT+BF KT+EM PFA_S PFA_M 

Correlation 0.865 0.827 0. 886 0.906 

4   Contributions and Future Work 

This paper examines and compares the different model fitting approaches of estimat-
ing parameters for the knowledge tracing model. We are able to extend the result that 
EM produces more predictive models than conjugate gradient descent [3]; we are now 
able to say, at least for our dataset, that EM also has better predictive accuracy than 
the brute force algorithm. Others [11] have found brute force outperforms EM, so 
more work is needed here. Furthermore, we inspect the parameter plausibility pro-
duced by the models with these two fitting methods and found brute force estimates 
more plausible parameters.   

This work also replicates the comparison between PFA and KT [5]. This replica-
tion is non-trivial, as there are concerns that a research finding is less likely to be true 
than its statistical test results suggest [12]. It suggests that independent replication 
should be given great importance as it extends the original work by changing the 
researchers’ biases in terms of what is important to measure and how to measure it. In 
this case, our replication differed somewhat as we found that PFA is comparable to 
KT. We also examine the PFA’s predictive performances given different model set-
tings. PFA with bounded learning rates that directly models multi-skill questions 
outperforms the other models. In addition, by tweaking PFA to endow it with a pow-
erful ability to capture individual differences, the model produces highly plausible 
student parameters. 

We also attempt two methods to solve the problem of multi-skill questions. Since 
regular KT has no ability to deal with such questions, we compared using the skill 
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with the lowest knowledge vs. the product for predicting performances on multiple 
skill questions. We found some evidence to support that using the knowledge of the 
least known skill (the “weakest link” in solving the problem) is somewhat better than 
the default models in both KT+EM and KT+BF.   

There are several interesting unresolved questions. First, brute force is a new, and 
thus relatively unexplored, model fitting approach for KT. Therefore, there are several 
open issues. Setting bounded values for parameter estimation is important and some-
what necessary, as removing bounds can seriously reduce the algorithm’s perform-
ance (due to over fitting, observed in some preliminary experiments). How to select 
reasonable ceiling values is a difficult issue, especially when the approach is applied 
to a new tutor environment. Second, it might be possible to speed up the algorithm by 
first performing coarse-grained search with BF, and after locating the promising re-
gions use a fine-grained search. In some ways this process is similar to beam search in 
that both maintain a list of promising regions to explore further.   

Although this study failed to find PFA outperforms KT, one of our hypotheses is 
that perhaps PFA works better in the circumstance where questions for a particular 
skill vary greatly in difficulty. In this case, the question difficulty parameters in PFA 
might be able to differentiate student performance better and further achieve high 
predictive accuracy. One line of research is to consider integrating this concept with 
KT. Since it makes sense to be aware of the question difficulty when using a model to 
fit student performances, it potentially helps the KT model capture more variance in 
the data, leading to more plausible parameters and more accurate predictions. 

5   Conclusions 

PFA is an alternative approach to KT. In this study, we failed to show there are any 
real differences in predictive accuracy between PFA and a version of KT that attempts 
to deal with multi-skill questions. We were able to show that for fitting KT, EM 
achieves significantly higher predictive accuracy than brute force. We also found that, 
for multi-skill problems, considering the skill with the lowest proficiency was the 
superior approach for predictive accuracy.   

Parameter plausibility is another comparison object in this study. We showed that 
PFA is the best method for estimating student knowledge parameters, as PFA without 
any bounded values resulted in negative learning rates in half of the skills in our data-
set. For KT, brute force found more plausible parameters than EM, and has the poten-
tial ability to achieve even higher plausibility as the current results were obtained 
based on the limited search space.  

In conclusion, researchers can use either PFA or KT. PFA works well with the 
provision that restricting learning rates to be non-negative. However, the use of KT 
requires a careful consideration of model fitting approaches for parameter estimation 
and the methods for the handling of multi-skill problems, as performance varies.   
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Abstract. This paper presents a novel Automatic Question Generation

(AQG) approach that generates trigger questions as a form of support

for students’ learning through writing. The approach first automatically

extracts citations from students’ compositions together with key content

elements. Next, the citations are classified using a rule-based approach

and questions are generated based on a set of templates and the content

elements. A pilot study using the Bystander Turing Test investigated dif-

ferences in writers’ perception between questions generated by our AQG

system and humans (Human Tutor, Lecturer, or Generic Question). It is

found that the human evaluators have moderate difficulties distinguish-

ing questions generated by the proposed system from those produced by

human (F-score=0.43). Moreover, further results show that our system

significantly outscores Generic Question on overall quality measures.

Keywords: Automatic Question Generation, Natural Language Pro-

cessing, Academic Writing Support.

1 Introduction

Many studies have shown that most learners have problems recognizing their
own knowledge deficits and ask very few questions [1]. Questions are useful to
recognize learners’s knowledge deficits and improve their learning. When stu-
dents are asked to prepare a literature review or write an essay, it is often not
only to develop disciplinary communication skills but to learn and reason from
multiple documents, a skill often called sourcing (i.e., citing sources as evidences
to support their arguments) and information integration (i.e., presenting the
evidences in a cohesive and persuasive way).

Simple generic questions are often provided for students to trigger reflection,
for example:
– Have you clearly identified the contributions of the literature reviewed?
– Have you identified the research methods used in the literature reviewed?

Reynolds and Bonk [2] showed that a group of students given generic trigger
questions performs better than those students who receive no trigger questions
in a writing activity. However, such questions are too general and not likely
to provide strong support in the process of writing on a specific topic. More
content-related questions need to be asked and most academics would ask such
questions in the process of providing feedback to students.

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 45–54, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In the field of Automatic Question Generation (AQG), most of AQG systems
[3,4,5] focus on the text-to-question task, where a set of content-related questions
are generated based on a given text. Usually, the answers to the generated ques-
tions are contained in the text. For example, Heilman and Smith [4] presented an
AQG system to generate factual questions with an ‘overgenerating and ranking’
strategy based on natural language processing techniques, such as Name Entity
Recognizer and Wh-movement Rules, and a statistical ranking component for
scoring questions based on features. The target applications of such systems are
reading comprehension and vocabulary assessment which may not be suitable
for academic writing.

The aim of this study is to scaffold students’ reflection on their academic
writing with content-related trigger questions which are automatically generated
from citations using Natural Language Processing techniques. Table 1 shows
examples of generated questions according to the citation category.

Table 1. An Example of Content-Related Trigger Questions produced by AQG system

Category Question

Opinion Why did Cannon challenge this view mentioning that physiological
changes were not sufficient to discriminate emotions? (What evi-
dence is provided by Cannon to prove the opinion?) Does any other
scholar agree or disagree with Cannon?

Result Does Davis objectively show that this classification accuracy gets
higher from about 70 % up to 98 % while actors express emotions
and computers perform the...? (How accurate and valid are the mea-
surements?) How does it relate to your research question?

System In the study of Macdonald, why does workbench tool provide feedback
on spelling, style and diction by analyzing English prose and suggest-
ing possible improvements? What are the strength and limitations of
the system? Does it relate to your research question?

The remainder of the paper is organized as follows: section 2 provides a brief
review of the literature focusing on writing support systems and several AQG
systems relevant to our approach. Section 3 describes the system design and
architecture while section 4 details a pilot study we conducted to assess the
quality of the generated questions. Section 5 discusses the results we obtained
and gives suggestions on future work.

2 Related Area

Research into ways of supporting academic writing includes Sourcer’s Apprentice
Intelligent Feedback mechanism (SAIF) [6], a computer assisted essay writing
tool used to detect plagiarism, uncited quotations, lack of citations, and limited
content integration problems using a rule-based approach and Latent Semantic
Analysis (LSA).
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Glosser [7], an automated feedback system for students’ writing, provides feed-
back on four aspects of the writing: structure, coherence, topics, and concept
visualization. Glosser uses text mining and computational linguistics algorithms
that quantify features of the text (supportive content) and a set of trigger ques-
tions. The set of trigger questions in Glosser is limited as they must be predefined
for each course and they are too general.

AUTOQUEST [3], one of the earliest automatic question generation systems,
uses pure syntactic pattern-matching approach to generate content-related ques-
tions in order to improve the independent study of any textual material. Recent
advances in Natural Language Processing made it possible for more advanced
computational question generation models to be proposed: multi-choice question
generation [8], factual question generator [9,4], and medical concept question
generator [5]. One of the most relevant works to ours is by Kunichika et. al.
[10] who proposed an AQG approach based on both the syntactic and semantic
information extracted from the original text. Their approach is based on DCG
(Definite Clause Grammar) for grammar and reading comprehension assessment
about a story. The extracted syntactic features include subject, predicate verb,
modal verb, auxiliary verb, object, voice, tense which were used to transform
declarative sentences into interrogative sentences (subject-auxiliary-Inversion).
They used three predefined grammatical categories: noun, verb, and preposition
to determine the interrogative pronoun for the question. Their empirical results
showed that 80% of questions were considered as appropriate for novices to learn
English and 93% questions are semantically correct.

3 System Design and Architecture

In this section we provide an overview of the system’s pipeline architecture shown
in Figure 1 and describe each step in detail. The input to the system is a litera-
ture review paper and the output is a set of generated questions. The question
generation process follows 3 steps shown in Figure 1:

Step 1. Pre-processing. The aim of Step 1 is to extract citations from papers.
Powley and Dale [11] define 5 types of citation styles: Textual Syntactic, Textual
Parenthetical, Prosaic, Pronominal, and Numbered.

Fig. 1. System Architecture
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A pattern matching technique was used to extract Textual Syntactic and
Textual Parenthetical citation style. The regular expression code is shown below.

\([a-zA-Z]*\s*\d{4}\)|\([p.]+\s*\d{1,4}\)|\([a-zA-Z]+\s*[a-zA-Z]*

\s*[a-zA-Z]*\W*\d{4}|\([^)]*\d{4}\s?\)

A state of art Named Entity Tagger (NER), LBJ [12], was used to identify
citations with Prosaic style and a simple Pronoun Resolver, finding the nearest
Name Entity appearing before the pronoun, was used to identify citations with
Pronominal style. In the current implementation the Numbered citation style
(as in this paper) is not recognized.

Step 2. Extracting Syntactic and Semantic features. Syntactic features include
subject, predicate verb, auxiliary verb (e.g. be, am, will, have and can) and pred-
icate, voice and tense which are essential to perform subject-auxiliary inversion.
We use Tregex on the Phrase Structure Tree derived from the original citation to
extract syntactic features. The Stanford Parser is used to parse a sentence into
a Phrase Structure Tree. Tregex is a powerful pattern matching technique which
can match an individual word, regular expression, a POS tag or group of POS
tags such as a Noun Phrase (NP) or Verb Phrase (VP). The following Tregex
expressions are used to extract simple Subject, Predicate Verb, and Predicate
from a sentence.

Subject: NP > (S > ROOT) Predicate Verb: /^VB/ > ( VP > ( S >ROOT))

Predicate : VP > (S > ROOT)

According to the predicate verb or auxiliary verb we can determine the tense of
the sentence and get the verb lemma by using WordNet. We also use the Stanford
Parser to derive the Type Dependency relations from a sentence in order to
detect the voice of sentences. For example, the nsubjpass dependency between
the governor (predicate verb) and dependency (subject) indicates passive voice.

The semantic features include the name of the author and the citation cat-
egory (one of ’Opinion’, ’Result’, ’Aim of Study’, ’System’ or ’Method’), based
on a taxonomy of conceptual citation categories proposed by Lehnert et al [13].
For example, Result: a result is claimed in the referenced paper; e.g. “In [Cohen
87], it is shown that PAs are Turing-equivalent...”

We use the LBJ NER Tagger to detect authors’ names and a rule-based ap-
proach to classify the citations. There are many learning materials for academic
writing [14] which define three categories of reporting verbs: opinion, aim of study
and result. Such reporting verb lists are used in our system to determine the cor-
responding citation category by matching the predicate verb in a citation with a
verb in one of the categories. The matching verb category provides the citation
category. If they are no match, a sentiment analysis step is used to detect whether
the citation may fall in the Opinion citation category. SENTIWORDNET [15]
is used to determine whether the citation contains sentiment words. Tregex ex-
pression patterns were developed to detect citations in the System and Method
categories. Examples of two Tregex expression patterns are shown below:

Method: VP>(S>ROOT)<<,(use|apply)<<(NP<<-(method|approach|))

System: NP > (S > ROOT) << (system|tool)
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Table 2. The Rule Definition for Patterns and Templates

Rule
Pattern Category Question Template

1 Reporting Verb Opinion Why +subject auxiliary inversion()? What evidence is provided
by +subject+ to prove the opinion? Does any other scholar agree
or disagree with +subject+ ?

2 Reporting Verb Aim Why does +subject+ conduct this study to +predicate+? What
is the research question formulated by +subject+? What is +sub-
ject+s contribution to our understanding of the problem?

3 Reporting Verb Result subject auxiliary inversion()? Is the analysis of the data accurate
and relevant to the research question? How does it relate to your
research question?

4 Tregex Rules Method In the study of +subject+, why +subject auxiliary inversion()?
Which dataset does +subject+ use for this experiment? Could
the problem have been approached more effectively from another
perspective?

5 Tregex Rules System In the study of +subject+, why +subject auxiliary inversion()?
What are the strength and limitations of the system? Does it
relate to your research question?

According to Hyland’s citation study [16], there are three main grammatical ways
to refer to sources: using reporting verbs, using nouns, and using passive con-
structions. Sometimes, syntactic structure transformations were needed in order
to perform the subject-auxiliary inversion in our final stage. For example, Wall-
raff’s opinion is that there is a rate of growth... The citer use the noun:opinion
to refer to the resource as the citee’s opinion. This sentence will be transformed
into: Wallraff states that there is a rate of growth...

Step 3. Generation. This is the final step in generating questions with our
template-based approach. Once the semantic and syntactic features extracted
from a citation match the predefined patterns in our repository of templates the
corresponding questions are generated. Table 2 shows the five rules defined in our
Rule Repository. Rules 1, 2, or 3, are fired when a citation contains a reporting
verb and and fall in one of the following citation categories: Opinion, Result,
or Aim of Study, respectively. Rules 4 or 5 are fired when a citation is of type
System or Method. We also defined two addition rules, 6 and 7. Rule 6 is fired
when a citation does not contain a reporting verb but contains sentiment words.
Rule 7 is similar to Rule 6 except the citation does not contain a sentiment
word. For example, a citation is extracted in Step 1: Cannon (Cannon 1927)
challenged this view mentioning that, physiological changes were not sufficient
to discriminate emotions. Step 2 identifies the citation category as Opinion by
matching the predicate verb (challenge) with an entry in our reporting verb
database. Step 3 applies Rule 1 to generate a question by matching the pattern
that requires the citation contain a reporting verb and of of type Opinion. Table
1 shows the generated questions.

4 Pilot Study

We explored the ability of our AQG system to generate quality questions by
comparing automatically generated questions to those produced by humans. Like
the Bystander Turing Test conducted by Person and Graesser [17], our judges



50 M. Liu, R.A. Calvo, and V. Rus

were asked to rate each question along several dimesions of quality. Also, we
conducted an evaluation in which judges were asked to ascertain whether the
question was generated by a human (lecturer, tutor, generic) or a system. The
major difference between the test carried out by Person and Graesser and our
evaluation is the application context: we focus on questions for academic writing
while they used a snippets of tutorial dialog. Also, our judges were the writers
of the source content based on which the questions were generated while their
judges did not know the content before the experiment. This is an advantage of
our methodology because our judges were experts on the content the questions
asked about. Section 4.1 describes the participants and procedure we used in
the pilot study. Section 4.2 reports the AQG system performance in terms of the
semantic correctness of the generated question as well as the accuracy relative
to the citation extraction step. Section 4.3 shows the results along 5 dimensions
of quality and of the Bystander Turing test. Section 5 discusses these results.

4.1 Participants and Procedure

A pilot study was conducted on six participants (postgraduate students) from
the Faculty of Engineering from whom six literature reviews were collected.
The reviews were used the source content for generating the questions. A total
of twenty questions (5 each) were generated by the tutor, by a lecturer with
expertise in the topic, by our system, and also using generic questions. Each
student-author acted as an evaluator in our experiments.

Students were asked to rate the quality of questions generated from his/her
literature review paper. Five quality measures inspired by Heilman and Noah [4]
were used to evaluate each question: This question is correctly written (QM1);This
question is clear (QM2);This question is appropriate to the context (QM3); This
question makes me reflect about what I have written (QM4);This is a useful ques-
tion (QM5). The agreement with each of these statements was marked by the eval-
uators using a Likert scale were 1 was ‘strongly disagree’ and 5 ‘strongly agree’.

4.2 System Performance Evaluation and Result

We first assess our system’s ability to extract citations from the source content.
The dataset contains 1,088 sentences including 221 citations. Table 3 shows that
145 citations have been extracted and the recall is 0.66 in average.

Table 3. Citation Extraction Result

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Total

Number of Citations 18 22 12 50 16 29 74 221

Number of Retrieved Citations 10 12 7 27 10 17 62 145

Recall 0.56 0.55 0.58 0.54 0.63 0.59 0.84 0.66

Table 4 illustrates 161 questions generated and the average semantic correct-
ness: 60%. Two human annotators reached substantial agreement as measured
by Cohen’s kappa coefficient (0.61).
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Table 4. Question Generation Result

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Total

Number of Generated Questions 10 9 14 7 6 17 98 161

Number of Correct Questions 6 9 9 4 4 10 56 97

Precision 0.6 1 0.64 0.57 0.67 0.59 0.57 0.60

4.3 Question Quality Evaluation and Result

Each of the 20 questions, randomly selected, was evaluated by the student-
authors. Because we have six authors, 120 questions were evaluated. A one-
way ANOVA setting the confidence interval at 95% was conducted to exam-
ine whether there are statistical difference in Overall, QM1, QM2, QM3, QM4
or QM5 among questions generated by the lecturer, Tutor, AQG system and
Generic. The ANOVA yielded a significant difference in Overall (F(3,596)=2.63,
P<0.05 ), QM3(F(3, 116)=4.085, P<0.05 ), QM4(F(3, 116)=8.65, P<0.05,
QM5(F(3, 116)=5.305, P<0.05) and no significant difference in QM1(F(3,116)=
2.69, P>0.05) and QM2 (F(3,116)= 2.335, P>0.05). Follow-up Fishers least sig-
nificant difference (LSD) tests with 95% confidence interval were performed to
determine whether significant differences occurred between the mean scores for
each pair of treatments. Figure 2 illustrates the comparisons of mean scores
and Table 5 shows that the questions from AQG system significantly outscored
Generic Questions in Overall (0.346>LSD=0.283) and QM5 (0.733>LSD=0.633),
while questions from the tutor significantly outscored AQG system in QM3
(0.667>LSD=0.593), QM4 (1>LSD=0.648) and Overall (0.6>LSD=0.283).
There are no statistically significant differences between questions generated by
the lecturer and AQG system. Also, we did not observe any significant differences
between the Tutor and AQG system in QM 5 (0.533<LSD=0.633).

The quality of each rule was also evaluated. Fig. 3 shows the average scores.
Rule 5 got the highest score (4.3), Rule 4 and Rule 6 took the second place (3.9)
and Rule 7 reached the lowest score (3.0). It was also found that Rules 1, 2, 3, 4
and 7 decreased from Quality Measure 4, 5 to Quality Measure 1,2,3 while Rule
5 was stable in along all five quality measures.

Each evaluator was asked to ascertain who wrote this question: Lecturer, Tu-
tor, System or other. In order to clearly evaluate the participants’ classification

Fig. 2. Comparisons of normalized mean scores
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Fig. 3. Comparisons of scores for each rule

Table 5. Fisher’s least significant difference (LSD) tests with 95% confidence interval

Lecturer v. AQG Tutor v. AQG AQG v.GQ

QM3(LSD=0.593) 0.067 0.667 0.367

QM4(LSD=0.648) 0.333 1 0.633

QM5(LSD=0.633) 0.133 0.533 0.733

Overall(LSD=0.283) 0.047 0.6 0.346

Table 6. Confusion Matrix (Average)

�������Real

Response
Tutor Lecturer AQG System

Tutor 0.7 2.7 1.6

Lecturer 0.8 1.2 3

AQG 1.4 1.0 2.6

ability between a Human and a System, we did not take the Generic Question
into consideration. Therefore, only 15 questions evaluated by a participant were
considered. We use the balanced F-score to evaluate the classification result and
F-score is defined as follows: F-score=2*Precision*Recall/(Precision+Recall).
Table 6 shows the participants’ average performance on the classification, which
found that they achieved F-score of 0.43 on AQG system, F-score of 0.24 on
Lecturer and F-score of 0.18 on Tutor category.

5 Discussion

This paper presents a novel Automatic Question Generation approach to sup-
port literature review writing and also describes a pilot study evaluating the
system performance along several dimensions—the Citation Extraction Ability
and Semantic Correctness of the generated questions and Question Quality—and
comparing it with humans and generic questions.

The study has a few limitations including a relatively small number of subjects
(6) and questions (120). Furthermore, it only evaluates a set of very specific types
of questions that refer to only one aspect (citations) out of the many involved
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in literature review. In a real teaching scenario, the human assessors (tutor and
lecturer) would prepare questions on other issues besides the citations. For the
future, we plan on having pedagogical experts involved to help with the ques-
tion formulation as well as with the evaluation. Despite these shortcomings, we
believe that the dataset is large enough and the evaluation meaningful because
we use real academic writings, i.e. student-written literature review papers, as
our dataset and the evaluators have higher education background and are very
familiar with the source content, as being the authors of the review papers used,
and thus being in a better position than others to judge quality of questions.

Within these limitations, this pilot study suggests that the AQG system can
produce questions that are as helpful to promote students’ reflection on their
academic writing as those by human tutors. The most significant finding from
this pilot study was that writers found it moderately difficult to distinguish
between questions generated by humans and automatically generated questions.
This claim is supported by the fact that students perceive approximately as much
value in automatically generated questions as in those written by the lecturer.

As we had expected, the AQG system outscored Generic Questions because
the content-related questions were more helpful than the generic questions. Sur-
prisingly, we found that our AQG system slightly outperformed the Lecturer,
which may be explained by some factors. First, students may intend to give
higher scores to a Lecturer. Second, it took a lot of effort for a lecturer to create
30 questions in total for six literature review papers across different topics. This
might affect the lecturer’s performance on creating pertinent questions. Finally,
the length of template-questions, longer on average than questions generated by
the lecturer, may affect the evaluation.

There are two main reasons for generating incorrect semantic questions(40%
inaccuracy):1 The NER component and 2: Citation Category Classifier. Because
the LBJ NER tagger was primarily trained on News Text Corpora it might
affect its the performance on academic articles. Our current Citation Category
Classifier is based on a rule-based approach which is simple but not scalable. As
we can see from Figure 3 and Table 4, we may need to add extra patterns to
Rule 5 to generate more questions while also improving the question templates
in Rules 1, 2, 3 and 4 in order to achieve higher scores on Quality Measures
4 and 5. In addition, more citation categories might be explored which could
improve the performance for Rule 6 and Rule 7.

Future work will focus on ranking the generated questions, combining a Ma-
chine Learning approach with a rule-based approach to improve the citation
category classification, training the LBJ NER tagger on a large collection of
academic papers, and upgrading the taxonomy of citation category in our sys-
tem. It is also planned to integrate the AQG system into our peer review system
which will be used for students in Research Method course next semester.
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Abstract. Identifying effective tutorial dialogue strategies is a key issue for in-
telligent tutoring systems research. Human-human tutoring offers a valuable 
model for identifying effective tutorial strategies, but extracting them is a chal-
lenge because of the richness of human dialogue. This paper addresses that 
challenge through a machine learning approach that 1) learns tutorial strategies 
from a corpus of human tutoring, and 2) identifies the statistical relationships 
between student outcomes and the learned strategies. We have applied hidden 
Markov modeling to a corpus of annotated task-oriented tutorial dialogue to 
learn one model for each of two effective human tutors. We have identified sig-
nificant correlations between the automatically extracted tutoring modes and 
student learning outcomes. This work has direct applications in authoring data-
driven tutorial dialogue system behavior and in investigating the effectiveness 
of human tutoring. 

Keywords: Tutorial dialogue, natural language, tutoring strategies. 

1   Introduction 

A key issue in intelligent tutoring systems research is identifying effective tutoring 
strategies to support student learning. It has been long recognized that human tutoring 
offers a valuable model of effective tutorial strategies, and a rich history of tutorial 
dialogue research has identified some components of these strategies [1-4]. An impor-
tant research direction is to use dialogue corpora to create models that can assess 
strategies’ differential effectiveness [5, 6]. There is growing evidence that tutorial 
dialogue structure can be automatically extracted from corpora of human tutoring, and 
that the resulting models can illuminate relationships between tutorial dialogue struc-
ture and student outcomes such as learning and motivation [7-11]. This paper takes a 
step beyond the previous work by identifying relationships between student learning 
and automatically extracted tutoring strategies, or modes. This modeling framework 
for extracting tutoring strategies and analyzing their differential effectiveness has 
                                                           
∗ Corresponding author. 



56 K.E. Boyer et al. 

 

direct applications in authoring data-driven tutorial dialogue system behavior and in 
research regarding the effectiveness of human tutors. 

2   Related Work 

Identifying effective tutoring strategies has long been a research focus of the intelli-
gent tutoring systems community. Empirical studies of human and computer tutoring 
have revealed characteristics of novice and expert tutors [12, 13], Socratic and  
didactic strategies [14], collaborative dialogue patterns in tutoring [15], and interrela-
tionships between affect, motivation, and learning [1, 16]. As a rich form of commu-
nication, tutorial dialogue is not fully understood: recent work suggests that the  
interactivity facilitated by human tutoring is key to its effectiveness [6], and other 
research indicates that students can learn effectively by watching playbacks of past 
tutoring sessions [17]. Such findings contribute to our understanding of tutoring phe-
nomena, but also raise questions about the relative effectiveness of different tutoring 
approaches.  

To shed further light on this issue, an important line of research involves modeling 
the specific relationships between different types of tutoring interactions and learning 
[5]. Some studies have investigated how shallow measures, such as average student 
turn length, correlate with learning in typed dialogue [18-20]. Analysis at the dialogue 
act and bigram levels has uncovered significant relationships with learning in spoken 
dialogue [7]. Recently, we have seen a growing emphasis on applying automatic 
techniques to investigate learning correlations across domains and modalities [21] and 
for devising optimal local strategies [9, 22]. Our work contributes to this line of inves-
tigation by applying hidden Markov models (HMMs) in a novel way to characterize 
the effectiveness of tutorial dialogue. HMMs have been applied successfully to such 
tasks as modeling student activity patterns [23, 24], characterizing the success of 
collaborative peer dialogues [25], and learning human-interpretable models of tutor-
ing modes [8]. For tutorial dialogue, the doubly stochastic structure of HMMs (Sec-
tion 5.1) is well suited to capturing local dependencies and to extracting structures 
whose components are distributed across entire tutoring sessions.  

3   Tutoring Study 

The corpus that serves as the basis for this work was collected during a human-human 
tutoring study. The goal of this study was to produce a sizeable corpus of effective 
tutoring from which data-driven models of task-oriented tutorial dialogue could be 
learned. In keeping with this goal, the study features two paid tutors who had 
achieved the highest average student learning gains in two prior studies [10, 26]. Tu-
tor A was a male computer science student in his final semester of undergraduate 
studies. Tutor B was a female third-year computer science graduate student. An initial 
analysis of the corpus suggested that the tutors took different approaches; for exam-
ple, Tutor A was less proactive than Tutor B [27]. As we describe below, the two 
tutors achieved similar learning gains. 
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Students were drawn from four separate sections, or modules, of the same univer-
sity computer science course titled “Introduction to Programming – Java”. They par-
ticipated on a voluntary basis in exchange for a small amount of course credit. A total 
of 61 students completed tutoring sessions, constituting a participation rate of 64%. 
Ten of these sessions were omitted due to inconsistencies (e.g., network problems, 
students performing task actions outside the workspace sharing software). The first 
three sessions were also omitted because they featured a pilot version of the task that 
was modified for subsequent sessions. The remaining 48 sessions were utilized in the 
modeling and analysis presented here. 

In order to ensure that all interactions between tutor and student were captured, 
participants reported to separate rooms at a scheduled time. Students were shown an 
instructional video that featured an orientation to the software and a brief introduction 
to the learning task. This video was also shown to the tutors at the start of the study. 
After each student completed the instructional video, the tutoring session commenced. 
The students and tutors interacted using software with a textual dialogue interface and 
a shared task workspace that provided tutors with read-only access. Students com-
pleted a learning task comprised of a programming exercise that involved applying 
concepts from recent class lectures including for loops, arrays, and parameter passing. 
The tutoring sessions ended when the student had completed the three-part program-
ming task or one hour had elapsed.  

Students completed an identical paper-based pretest and posttest designed to gauge 
learning over the course of the tutoring session. These free-response instruments were 
written by the research team and revised according to feedback from an independent 
panel of three computer science educators, with between three and twenty years of 
classroom experience. This panel assessed the difficulty of each question and the 
degree to which it addressed the targeted learning concepts. 

According to a paired sample t-test, the tutoring sessions resulted in a statistically 
significant average learning gain as measured by posttest minus pretest (mean=7%; 
p<0.0001). There was no significant difference between the mean learning gains by 
tutor (meanA=6.9%, meanB=8.6%; p=0.569). Analysis of the pretest scores indicates 
that the two groups of students were equally prepared for the task: Tutor A’s students 
averaged 79.5% on the pretest, and Tutor B’s students averaged 78.9% (t-test 
p=0.764).  

4   Corpus Annotation 

The raw corpus contains 102,315 events. 4,806 of these events are dialogue messages. 
The 1,468 student utterances and 3,338 tutor utterances were all subsequently anno-
tated with dialogue act tags (Section 4.1). The remaining events in the raw corpus 
consist of student problem-solving traces that include typing, opening and closing 
files, and executing the student’s program. The entries in this problem-solving data 
stream were manually aggregated into significant student work events (Section 4.2), 
resulting in 3,793 tagged task actions.  
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4.1   Dialogue Act Annotation 

One human tagger applied the dialogue act annotation scheme (Table 1) to the entire 
corpus. A second tagger annotated a randomly selected subset containing 10% of the 
utterances. The resulting Kappa was 0.80, indicating substantial agreement.1 

Table 1. Dialogue act annotation scheme 

 
 

4.2   Task Annotation  

Student task actions were recorded at a low level (i.e., individual keystrokes). A hu-
man judge aggregated these events into problem-solving chunks that occurred be-
tween each pair of dialogue utterances and annotated the student work for subtasks 
and correctness. The task annotation protocol was hierarchically structured and, at its 
leaves, included more than fifty low-level subtasks. After tagging the subtask, the 
judge tagged the chunk for correctness. The correctness categories were Correct 
(fully conforming to the requirements of the learning task), Buggy (violating the  
requirements of the learning task), Incomplete (on track but not yet complete), and 
Dispreferred (functional but not conforming to the pedagogical goals of the task). 

One human judge applied this protocol to the entire corpus, with a second judge 
tagging 20% of the data that had been selected via random sampling stratified by tutor 
in order to establish reliability of the tagging scheme. Because each judge independ-
ently played back the events and aggregated them into problem-solving chunks, the 
two taggers often identified a different number of events in a given window. Any 
unmatched subtask tags were treated as disagreements. The simple Kappa statistic for 
subtask tagging was 0.58, indicating moderate agreement. However, because there is 
a sense of ordering within the subtask tags (i.e., the ‘distance’ between subtasks 1a 
and 1b is smaller than the ‘distance’ between subtasks 1a and 3b), it is also meaning-
ful to consider the weighted Kappa statistic, which was 0.86, indicating almost perfect 
agreement. To calculate agreement on the task correctness tag, we considered all task 
actions for which the two judges agreed on the subtask tag. The resulting Kappa  
                                                           
1 Throughout this paper we employ a set of widely used agreement categories for interpreting 

Kappa values: fair, moderate, substantial, and almost perfect  [29]. 
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statistic was 0.80, indicating substantial agreement. At the current stage of work, only 
the task correctness tags have been included as input to the HMMs; incorporating 
subtask labels is left to future work. 

5   Hidden Markov Models  

The annotated corpus consists of sequences of dialogue and problem-solving actions, 
with one sequence for each tutoring session. Our modeling goal was to extract tutor-
ing modes from these sequences in an unsupervised fashion (i.e., without labeling the 
modes manually), and to identify relationships between these modes and student 
learning. Findings from an earlier analysis [27] suggested that the two tutors em-
ployed different strategies than each other; therefore, we disaggregated the data by 
tutor and learned two models. In prior work we found that identifying dependent pairs 
of dialogue acts and joining them into a single bigram observation during preprocess-
ing resulted in models that were more interpretable [28]. In the current work we found 
that this preprocessing step produced a better model fit in terms of HMM log likeli-
hood; the resulting hybrid sequences of unigrams and bigrams were used for training 
the models reported here. 

5.1   Modeling Framework 

In our application of HMMs to tutorial dialogue, we treat the hidden states as tutorial 
strategies, or modes, whose structure is learned during model training.2 These states 
are characterized by emission probability distributions, which map each hidden state 
onto the observable symbols. The transition probability distribution determines tran-
sitions between hidden states, and the initial probability distribution determines the 
starting state [30]. Model training is an iterative process that terminates when the 
model parameters have converged or when a pre-specified number of iterations have 
been completed. Our training algorithm varied the number of hidden states from two 
to twenty and selected the model size that achieved the best average log-likelihood fit 
across ten stratified subsets of the data.  

5.2   Best-Fit HMMs  

The best-fit HMM for Tutor A’s dialogues features eight hidden states. Figure 1 de-
picts a subset of the transition probability diagram with nodes representing hidden 
states (tutoring modes). Inside each node is a histogram of its emission probability 
distribution. For simplicity, only five of the eight states are displayed in this diagram; 
each state that was omitted mapped to less than 5% of the observed data sequences 
and was not significant in the correlational analysis. We have interpreted and named 
each tutoring mode based on its structure. For example, State 4 is dominated by cor-
rect task actions; therefore, we name this state Correct Student Work. State 6 is com-
prised of student acknowledgements, pairs of tutor statements, some correct task  
                                                           
2 The notion that tutorial dialogue strategies, or modes, constitute a portion of the underlying 

structure of tutorial dialogue is widely accepted. However, describing these hidden states as 
tutoring modes is an interpretive choice because the HMMs were learned in an unsupervised 
fashion. 
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actions, and assessing questions by both tutor and student; we label this state Student 
Acting on Tutor Help. The best-fit model for Tutor B’s dialogues features ten hidden 
states. A portion of this model, consisting of all states that mapped to more than 5% 
of observations, is displayed in Figure 2. 

 

Fig. 1. Subset of HMM transition diagram for Tutor A. Histograms represent emission prob-
ability distributions. (Emission and transition probabilities < 0.05 are not displayed.). 

 

Fig. 2. Subset of HMM transition diagram for Tutor B. Histograms represent emission prob-
ability distributions. (Emission and transition probabilities < 0.05 are not displayed). 
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5.3   Model Interpretation 

Some tutoring modes with similar structures were identified by both models. Both 
models feature a Correct Student Work mode characterized by the student’s success-
ful completion of a subtask. This state maps to 38% of observations with Tutor A and 
29% of observations with Tutor B. In both cases the Correct Student Work mode 
occurs more frequently than any other mode. Each of the next three most frequently 
occurring modes maps onto 10-15% of the observations. For Tutor A, one such mode 
is Tutor Explanations with Feedback, while for Tutor B a corresponding mode is 
Tutor Explanations with Assessing Questions. In both cases, the mode involves tutors 
explaining concepts or task elements. A key difference is that with Tutor A, the  
explanation mode includes frequent negative content feedback or positive content-free 
feedback, while for Tutor B the explanation mode features questions in which the 
tutor aims to gauge the student’s knowledge. A similar pattern emerges with each 
tutor’s next most frequent mode: for Tutor A, this mode is Student Work with Tutor 
Positive Feedback; for Tutor B, the mode is Student Work with Tutor Assessing Ques-
tions. These corresponding modes illuminate a tendency for Tutor A to provide  
feedback in situations where Tutor B chooses to ask the student a question. For Tutor 
A, the only mode that featured assessing questions was Student Acting on Tutor Help, 
which as we will discuss, was positively correlated with student learning. 

5.4   Correlations with Student Outcomes 

With the learned models in hand, the next goal was to identify statistical relationships 
between student learning and the automatically extracted tutoring modes. The models 
presented above were used to map each sequence of observed dialogue acts and task 
actions onto the set of hidden states (i.e., tutoring modes) in a maximum likelihood 
fashion. The transformed sequences were used to calculate the frequency distribution 
of the modes that occurred in each tutoring session (e.g., State 0 = 32%, 
State 1 = 15%...State 8 = 3%). For each HMM, correlations were generated between 
the learning gain of each student session and the relative frequency vector of tutoring 
modes for that session to determine whether significant relationships existed between 
student learning and the proportion of discrete events (dialogue and problem solving) 
that were accounted for by each tutoring mode. For Tutor A, the Student Acting on 
Tutor Help mode was positively correlated with learning (r=0.51; p<0.0001). For 
Tutor B, the Tutor Content Feedback mode was positively correlated with learning 
(r=0.55; p=0.01) and the Work in Progress mode was negatively correlated with 
learning (r=-0.57; p=0.0077).  

6   Discussion 

We have identified significant correlations between student learning gains and the 
automatically extracted tutoring modes modeled in the HMMs as hidden states. While 
students who worked with either tutor achieved significant learning on average, each 
group of students displayed a substantial range of learning gains. The correlational 
analysis leveraged this data spread to gain insight into which aspects of the tutorial 
interaction were related to higher or lower learning gains.  
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For Tutor A, the relative frequency of the Student Acting on Tutor Help mode was 
positively correlated with student learning. This mode was characterized primarily by 
student acknowledgments and also featured tutor explanations, correct student work, 
positive tutor feedback, and assessing questions from both tutor and student. The 
composition of this tutoring mode suggests that these observed events possess a  
synergy that, in context, contributed to student learning. In a learning scenario with 
novices, it is plausible that only a small subset of tutor explanations were grasped by 
the students and put to use in the learning task. The Student Acting on Tutor Help 
mode may correspond to those instances, in contrast to the Correct Student Work 
mode in which students may have been applying prior knowledge.  

For Tutor B, the Tutor Content Feedback mode was positively correlated with stu-
dent learning. This mode was relatively infrequent, mapping to only 7% of tutoring 
events. However, as noted in Section 5.3, providing direct feedback represents a  
departure from this tutor’s more frequent approach of asking assessing questions of 
the student. Given the nature of the learning task and the corresponding structure of 
the learning instrument, students may have identified errors in their work and grasped 
new knowledge most readily through this tutor’s direct feedback.  

For Tutor B, the Work in Progress mode was negatively correlated with learning. 
This finding is consistent with observations that in this tutoring study, students did not 
easily seem to operationalize new knowledge that came through tutor hints, but rather, 
often needed explicit constructive feedback. The Work in Progress mode features no 
direct tutor content feedback. Tutor questions and explanations (which are at a more 
abstract level than the student’s solution) in the face of incomplete student work may 
not have been an effective tutoring approach in this study. 

7   Conclusion and Future Work 

We have collected a corpus of human-human tutorial dialogue, manually annotated it 
with dialogue acts and task actions, and utilized HMMs to extract the tutoring modes 
present in the corpus in an unsupervised fashion. We have examined two by-tutor 
HMMs and identified correlations between these models and student learning. This 
work extends findings that have correlated learning with highly localized structures 
such as unigrams and bigrams of dialogue acts [7, 10]. Using HMMs, we have corre-
lated student learning with automatically extracted tutoring modes whose structure 
was learned from tutoring sessions. This work takes a step toward fully automatic 
extraction of tutorial strategies from corpora, a contribution that has direct application 
in human tutoring research. The approach also has application in tutorial dialogue 
system development, for example, by producing a data-driven library of system 
strategies.  

A promising direction for future work involves learning models that more fully 
capture the tutorial phenomena that influence learning. There seems to be significant 
room for improvement in this regard, as evidenced by the fact that relatively few of 
the automatically extracted tutorial dialogue modes were correlated with learning. 
Continuing work on rich dialogue act and task annotation and deep linguistic analysis 
of dialogue utterances are important directions. Additionally, future work should 
leverage details of the task structure to a greater extent by considering regularities 



 Characterizing the Effectiveness of Tutorial Dialogue with Hidden Markov Models 63 

 

within tasks and subtasks as part of an augmented model structure in order to more 
fully capture details of the tutorial interaction.  
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Abstract. The unpredictability of spoken responses by young children (6-7 
years old) makes them problematic for automatic speech recognizers.  Aist and 
Mostow proposed predictable response training to improve automatic 
recognition of children’s free-form spoken responses.  We apply this approach 
in the context of Project LISTEN’s Reading Tutor to the task of teaching 
children an important reading comprehension strategy, namely to make up their 
own questions about text while reading it.  We show how to use knowledge 
about strategy instruction and the story text to generate a language model that 
predicts questions spoken by children during comprehension instruction. We 
evaluated this model on a previously unseen test set of 18 utterances totaling 
137 words spoken by 11 second grade children in response to prompts the 
Reading Tutor inserted as they read.  Compared to using a baseline trigram 
language model that does not incorporate this knowledge, speech recognition 
using the generated language model achieved concept recall 5 times higher – so 
much that the difference was statistically significant despite small sample size. 

Keywords: children’s free-form spoken responses, predictable response train-
ing, automatic speech recognition, language model, self-questioning strategy for 
reading comprehension, Project LISTEN’s Reading Tutor. 

1   Introduction 

Speech is a natural way for humans to communicate.  Intelligent tutoring system de-
velopers have started to treat automatic speech recognition (ASR) as a desirable way 
to enhance human-computer interaction [1-3].  Compared to typing [4], verbal input is 
especially convenient for children in the early years of elementary schools (i.e., first 
and second grades, roughly ages 6-7).  Unlike older students, young children have 
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trouble typing accurately or quickly.  Compared to multiple choice interfaces, a 
speech interface is less distracting, and it allows a broader range of input.   

However, recognizing children’s free-form speech is a tricky problem [5, 6].  
Acoustic parameters of children’s speech, such as formants, are harder to capture and 
more variable than those of adult speech [7].  Besides, children are creative in  syntac-
tic-lexical use of language, and their speech can be ungrammatical [8], which in-
creases the unpredictability of the speech. 

To reduce this unpredictability, we apply predictable response training [9].  We 
then exploit knowledge of predictable responses in the language model of a speech 
recognizer.  We develop this approach in a Reading Tutor that teaches young children 
to generate questions about story texts (also known as “self-questioning”). Teaching 
this strategy has been shown to improve children’s reading comprehension [10, 11].   

The rest of this paper is organized as follows.  Section 2 introduces predictable  
response training for self-questioning. Section 3 and 4 respectively describe how to 
generate and improve a language model that exploits such training.  Section 5 reports 
results.  Section 6 summarizes contributions, limitations, and future work.  

2   Predictable Response Training in Self-questioning Instruction 

Our self-questioning instruction [12] attempts to teach a young child to wonder about 
text while reading it aloud to Project LISTEN’s Reading Tutor [13].  In a self-
questioning activity, the Reading Tutor prompts the child now and then to ask a  
question out loud about the text, and records the free-form spoken responses. 

Unpublished data from a previous study [14] found considerable variation in chil-
dren’s responses to self-questioning prompts such as What else are you wondering 
about rainbows? Ask a question out loud. Out of 23 recorded responses, only one 
response was a grammatical question relevant to the text (Does a rainbow come out 
when it snows?).  The rest contained only classroom background noise, did not take a 
question form (e.g. Nothing, Thank god I could make a promise about rainbow), were 
ungrammatical (e.g., How they get the colors where they come from yada yada I'm 
done), or were irrelevant to the text (Why do you ask so many questions).  

To reduce the unpredictability of children’s responses in self-questioning, we built 
predictable response training into the instruction.  We train three types of questions, 
namely Why, How, and What.  Our instruction guides students to compose questions 
in multiple steps, so as to elicit predictable segments.  We decompose a question 
about a fictional text into a question stem (e.g., Why was), a character to ask about 
(e.g., the country mouse), and a question completer (e.g., surprised).  We follow an 
instructional model that gradually transfers responsibility from tutor to student [15]:    

(1) Describe the strategy:  the tutor introduces the strategy of self-questioning and 
explains an important component of a question, namely the question stem: 
Tutor1:  I'm going to tell you about a reading strategy called QUESTIONING. 
     QUESTIONING means you ask YOURSELF questions WHILE you read.   

                                                           
1 Tutor prompts: italics = spoken; boldface = displayed; bold italics = both; * = elicits speech. 
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     Asking yourself questions while you read can help you understand better.  A good way to 
start a question is with a question word. These are some good question words:  why, who, 
where, when, what, and how. 

(2) Model the strategy:  the tutor models the strategy with an example question. 
Tutor:  This part of the story makes me think of this question:   

  “Why was the country mouse surprised?” 

[Student reads more text] 

(3) Scaffold the strategy:  To help the child make a question, the tutor provides  
multiple choices for all or some question segments. 

Tutor: Let’s make a question about ___ (the town mouse; the country mouse; the man of 
the house; the cat).  

Student: [In the on-screen menu of 4 choices, the student clicks on the country mouse.] 

Tutor: Let’s ask a ___ (what; why; how) question. 

Student:    [The student chooses why.] 

Tutor: Let’s complete your question: Why did the country mouse___ (decide to send the 
cat; try to taste everything before his tummy was full; run)? 

Student: [The student chooses decide to send the cat.] 

* Tutor: Ok, now I want you to read your question out loud before you continue the story.   

Student reads aloud: Why did the country mouse decide to send the cat? 

[Student reads more text] 

After the child chooses a character to ask about and a question type, the tutor asks him 
or her to complete the question by saying the whole question out loud. 

Student:    [The student chooses the cat and how.] 

* Tutor:  Now finish your question by saying the whole thing out loud, and completing the rest. 

Student:  How did the cat see the mice? 

[Student reads more text] 

(4) Prompt the use of the strategy:  the tutor prompts the child to ask a question with-
out assistance. 

* Tutor: Think of a question to ask about the story, and say it out loud. 

Student: Why did the two mice come out? 

The inserted tutor prompts typically total around 1 minute of instruction. 

3   Core Language Model 

Speech recognition uses an acoustic model of how sounds represent words, and a 
language model of how words are combined into utterances.  Generally, the better the 
acoustic model captures how users pronounce words, and the better the language 
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model captures how users construct utterances out of words, the better the recogni-
tion.  Thus, researchers seeking to improve speech recognition performance typically 
focus on improving the acoustic model, the language model, or both.  Researchers 
also seek to improve audio quality and reduce the range of likely ways to say things 
within the user’s task.  This paper focuses on language modeling approaches that 
exploit knowledge of a constrained range of likely utterances. 

To exploit predictable response training, we build into the language model ques-
tions generated automatically from the text.  Our question generator [12] combines a 
question stem with two other segments it extracts from the text – a character to ask 
about, and a question completer.  Our language model generator then compiles the 
resulting questions into a finite state grammar (FSG).  Fig.  1 shows an example lan-
guage model that incorporates the questions from step (3) in Section 2.  

 

Fig. 1. Example language model 
 

Fig. 2. A fragment of core language model with disfluency modeling. Dotted arrows represent 
repetition; dashed arrows represent early termination. 

Modeling disfluency.  Disfluency, a common phenomenon in children’s speech [6],   
includes hesitations, filled pauses (e.g., uh, um), repetition (e.g., How did how did the 
cat see the mice?), and early termination (e.g., Why did the cat).  To model hesitations 
and filled pauses, we exploit the recognizer’s ability to insert silences and noises 
between words, using a noise dictionary including every phoneme.  To model repeti-
tion, we add transition arcs from segment boundaries to previous segment boundaries.  
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To model early termination, we add transition arcs from segment junctions to the end 
state.  Fig.  2 shows part of the resulting “core language model.” 

4   Enhancing Robustness of the Language Model 

For guidance to help us improve the core language model, we used a 168-word corpus 
from a spring 2009 pilot test of self-questioning instruction generated for Aesop’s 
fable “The Country Mouse and the Town Mouse.” This corpus consists of 12 re-
sponses by 7 second graders to self-questioning prompts starred with * in Section 2. 

In principle, we could train a language model directly from questions spoken by 
trained students, but practically speaking we’d need a substantially larger corpus.  For 
the related task of recognizing children’s spontaneous summarization, Hagen et al. [1] 
trained language models from 10 stories and different numbers of students’ summa-
ries.  They reported needing at least 40 summaries to achieve better recognition than 
the initial language model trained from 10 stories. 

The language model predicts both the content of the questions and their form.  Pre-
dictable response training mainly elicits the form of children’s questions, with limited 
possibilities for the question stem and character, but the question completer segment 
is more open-ended both in the words it can use and the order they can occur. 

Expanding the vocabulary with story words and common words.  There is a 
tradeoff between the coverage and precision of the language model.  As ASR vocabu-
lary grows, coverage of children’s speech increases, but so does the risk of misrecog-
nition.  Hence we want only words likely to appear in children’s responses. Children’s 
questions can reach beyond vocabulary output by our question generator:  the core 
language model vocabulary covers only 38% of the 60 word types in our 168-word 
pilot corpus.  To improve coverage, we add the Dolch list [16] of 220 words common 
in children’s books. We expect children’s questions to be about story text, so we add 
all the story words.  We further expand the resulting vocabulary by using a morphol-
ogy generator to add all inflections of each verb.   

Interpolating the language model with more general language models.  To boost 
robustness, we tried interpolating the core language model with broader models:  a 
unigram model, a part of speech (POS) bigram model, and a trigram model. 

We trained the unigram model on 158,079 words in 673 children’s stories from 
Project LISTEN.  We incorporated it by inserting a self-looping state in the core FSG 
to allow any sequence of words after the character segment, using the unigram prob-
ability for each word.  We give the transition into this state a low weight (.0001) as a 
penalty so as to give such sequences lower probabilities than generated questions. 

Our POS-bigram language model approximates bigram probability P(w2 | w1) as 
P(POS(w2) | POS(w1)), e.g. P(mice | the) as P(NNS | DT), where NNS means a plural 
noun, and DT means a determiner. We tagged all 673 stories using the Stanford POS 
tagger, and trained a bigram model on the resulting POS sequences using the SRILM 
language modeling toolkit [17].  To incorporate this model in the FSG, we added a 
state for each POS tag.  We assigned the transition from the character segment to the 
VB (verb) state the probability .0001, and transitions between POS states their POS 
bigram probabilities.  We tagged each word with its most frequent POS. Thus this 
model approximates P(find the mice) as .0001 * P(DT | VB) * P(NNS | DT). 
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To construct a trigram language model, we first extracted from the 976,992,639 
Google 3-grams [18] the 727,348 consisting solely of the 477 words in predicted 
questions, the story, and the Dolch list.  Next, we approximated our FSG in trigram 
form by enumerating predicted questions and a subset of their disfluent forms (re-
stricting repetition to 2 times) and collecting their trigram counts.  We multiplied 
them by 1000 to weight them more heavily, added them to the Google n-gram counts, 
and used the combined counts to train our interpolated trigram language model. 

5   Evaluation and Results 

We conducted ASR experiments to evaluate predictable response training by compar-
ing language models that exploit such training against a baseline that does not.     

5.1   Evaluation Metrics 

To evaluate how many words our model correctly recognizes, we report word accu-
racy (WA), measured as the number of correctly recognized words divided by the 
total number of words in the human transcript.  WA penalizes substitutions and dele-
tions by the ASR; word error rate (WER) additionally penalizes insertions.  

Concept coverage.  From an application point of view, WA is not the ultimate objec-
tive function.  The more important goal is to extract spoken meaning, not to transcribe 
the exact words spoken, especially function words such as the and of.  We therefore 
ignore function words, and measure precision and recall of concepts, which we opera-
tionalize as word classes defined by word stems – i.e., two words denote the same 
concept if they share the same stem.  If a child says the same thing twice and the 
speech recognizer hears it only once, concept precision and recall are unaffected. 

Upper bound of a language model.  Given the acoustic model, how well can a lan-
guage model possibly do in terms of ASR accuracy?  To obtain a rough upper bound 
on ASR accuracy, we did a “cheating experiment” using a FSG language model con-
sisting of just the 12 transcribed word sequences from our pilot set. 

5.2   Evaluation Results on Pilot Data 

Table 1 shows results for the various language models described in Sections 3 and 4.  
As a baseline, we trained a trigram language model on the same 673 stories, but re-
stricted its vocabulary to the words from “The Country Mouse and the Town Mouse.”  
Exploiting predictable response training increased WA from 8.9% (WER 118%) for 
the baseline model to as high as 73.2% (WER 57.1%) for the core language model 
interpolated with a POS bigram model.  To evaluate how well the speech recognizer 
performs with different vocabularies, we report recall of concepts from the core lan-
guage model, from the story, and from all transcribed responses.  The core LM + 
POS-bigram model achieved the highest all-concept recall – significantly higher (de-
spite the small sample size) than the baseline model that did not exploit this training 
(n = 12 responses, p < 0.001 on a paired T-test, Cohen’s d = 1.362).  To our surprise, 
it actually beat the cheating model on 2 of the 3 recall measures, presumably due to 
greater flexibility in recognizing speech atypical of the acoustic models. 
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Table 1. ASR results on pilot data (168 words).  The baseline model is a trigram LM trained 
on children’s stories. The Core LM covers automatically generated questions and disfluency.  
The next three models interpolate it with n-gram models to cover question completers better.   
This and subsequent tables show the highest non-cheating value(s) in each column in boldface. 

Recall 
Language Model Word Accuracy Core LM 

concepts 
Story 

concepts 
All 

concepts 
Precision 

Baseline (3-gram) 8.9% 16.7% 17.6% 11.7% 81.8% 
Core Language Model 67.9% 92.6% 80.4% 64.9% 65.8% 
Core LM + unigram 68.5% 92.6% 80.4% 64.9% 69.4% 
Core LM + POS-bigram 73.2% 88.9% 88.2% 68.9% 57.0% 
Core LM + Google 3gram 42.3% 59.3% 56.9% 42.9% 57.9% 

Cheating Experiment 89.3% 87.0% 86.3% 84.4% 87.8% 

5.3   Improving Precision by Reducing Insertions 

Most ASR errors were insertions caused by background speech and noise.  To im-
prove precision, we tried two approaches:  (1) post-processing ASR output to filter 
out low-confidence words; (2) tightening search by lexicalizing question segments.  
Table 2 shows their effects on the output of the Core LM+POS-bigram model. 

Table 2. Improving precision on pilot data (168 words) 

Recall 
Configuration Word Accuracy Core LM 

concepts 
Story 

concepts 
All 

concepts 

Precision 
 

Core LM+POS-bigram 73.2% 88.9% 88.2% 68.9% 57.0% 
Confidence thresholding 64.3% 79.6% 82.3% 62.3% 72.7% 
HMM filter 57.2% 74.1% 70.6% 57.1% 75.9% 
Lexicalized model 47.5% 94.4% 78.4% 66.2% 76.1% 

 

Confidence thresholding.  The speech recognizer we used assigns each hypothesized 
word a confidence score between 0 and 1 to indicate how likely it was recognized 
correctly.  To separate correctly recognized words from misrecognized words with 
maximum accuracy, we chose a threshold on the confidence score that minimized the 
sum of false positive rate plus false negative rate. 

Training an HMM sequential model for filtering.  The confidence score rates each 
hypothesis word independent of its context.  However, misrecognized words tend to 
appear in a row, and so do correctly recognized words.  A sequential model, such as a 
Hidden Markov Model (HMM), can capture this characteristic. 

Our HMM filter combines the confidence score with an intensity threshold to filter 
out background speech and noise, which typically have a lower intensity than student 
speech into a close-talking headset microphone.  Since the speech recognizer may 
have trouble distinguishing background speech or noise from user speech, a threshold 
on intensity can help indicate which regions of the signal to ignore.  Most of our re-
cordings start with silence and speech by the Reading Tutor.  Thus, to set an intensity 
threshold, the first 0.5 seconds of speech is assumed to be a silence or noise region.  



72 W. Chen, J. Mostow, and G. Aist 

 

Then the threshold is set to be the average intensity of this noise region plus 20 times 
its standard deviation.  We classify regions that exceed the intensity threshold as  
foreground speech.  We used this classification and the confidence score for each 
hypothesis word as feature vectors to train an HMM with two states (each with a 2-
dimensional Gaussian emission distribution and diagonal covariance matrix). We 
expect these two states to represent correct and incorrect recognition. 

Lexicalizing the language model.  User-testing showed that children often paused 
between question segments and within question completers, but not within question 
stem and character segments, as in Why did … the man of the house … try to hurt 
things, um, the mice? These pauses suggest a high cognitive load [19] when starting a 
new segment or thinking up a question completer. 

To exclude unlikely pauses from the language model, we lexicalized question 
stems and character segments.  Thus the stem Why did mapped to a single lexical item 
why-did, and the character segment the man of the house to the-man-of-the-house.  

5.4   Results on Unseen Test Data 

Table 3 shows results on 18 self-questioning responses by 11 students, collected after 
the analyses reported above.  Even with so little data, the difference between all-
concept recall for Core LM+POS-bigram and the baseline was again sufficiently 
dramatic (5x) to be statistically significant (n = 18, p < 0.0001, Cohen’s d = 1.364).  
The baseline and POS-bigram models had WER 93.4% and 64.2%, respectively. 

Table 3. Results on unseen test data (137 words) 

Recall 
Configuration Word Accuracy Core LM 

concepts 
Story 

concepts 
All 

concepts 

Precision 
 

Baseline 6.6% 14.0% 17.5% 10.3% 46.7% 
Core LM 60.6% 80.0% 77.5% 58.8% 50.6% 
Core LM+POS-bigram 40.9% 68.0% 65.0% 50.0% 54.8% 
Confidence filter 38.5% 64.0% 57.5% 49.7% 84.4% 
HMM filter 31.2% 50.0% 50.0% 43.4% 75.6% 
Lexicalized model 54.7% 78.0% 75.0% 57.4% 73.6% 

 

Both overall and story-concept recall on unseen data were encouraging, but lower 
than on the pilot data we used to tune the language model weight, repetition weight, 
vocabulary, filler word penalty, silence penalty, and filter model parameters.  This 
tuning likely overfit the small amount of pilot data we used for development. 

6   Contributions, Limitations, and Future Work 

This paper describes a 2-part approach to improve ASR of children’s free-form spo-
ken responses.  One part trains children to make more predictable responses.  Ideally 
we could evaluate this part by comparing speech with versus without predictable 
response training as the only manipulation, but the training is inextricably interwoven 
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with the strategy instruction itself, and ASR performance reported earlier on free-
form responses elicited by different instruction [14] was very low. 

The other part generates language models to exploit this predictability by integrat-
ing constraints on expected content and form, not just interpolating n-gram models 
from different sources [20].  We constrain content by limiting vocabulary to the story, 
questions generated from it, common words, and verb inflections.  We constrain form 
based on the instruction and on word order in the story and other text. 

We demonstrated ASR accuracy 5-fold higher than for a baseline language model, 
tested various methods to improve precision and recall, and compared their effects. 
Future work includes generalizing to other text, and to tasks besides self-questioning. 

As a reviewer of this paper pointed out, predictable response training may itself 
have educational benefits.  A direct benefit to the student comes from the schema that 
gives rise to the predictability:  the same scaffold that makes responses predictable 
also makes them easier for the student to generate, and hence to learn.  An indirect 
benefit is to facilitate assessment:  predictable responses are easier to score.  This 
paper has shown how to exploit predictable response training in ASR, paving the way 
to realize this benefit in intelligent tutors that listen to children not just read but talk. 
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Abstract. Tutoring systems typically contain or generate a set of approved so-
lutions to problems presented to students. Student solutions that don’t match the 
approved ones, but are otherwise partially correct, receive little acknowledg-
ment as feedback, stifling broader reasoning. Additionally, feedback mecha-
nisms rely on having the student model, which requires extensive effort to 
build. This paper provides an alternative to the traditional ITS architecture by 
using a hint generation strategy that bypasses the student model and instead 
leverages off of the domain ontology. Concept hierarchy and co-occurrence be-
tween concepts in the domain ontology are drawn upon to ascertain partial cor-
rectness of a solution and guide student reasoning towards the correct solution. 
We describe the strategy incorporated in a tutoring system for medical PBL, 
wherein the widely available UMLS is deployed as the domain ontology. 
Evaluation of expert agreement with system generated hints on a 5-point likert 
scale resulted in an average score of 4.44 (r = 0.9018, p < 0.05). Hints contain-
ing partial correctness feedback scored significantly higher than those without it 
(Wilcoxon Rank Sum, p < 0.001). 

Keywords: Ontology, hint generation, student model, intelligent tutoring  
systems, medical PBL, UMLS, knowledge acquisition bottleneck. 

1   Introduction 

Tutoring systems normally contain either a set of approved solutions or, a mechanism 
that generates approved solutions to problems presented to the students. Evaluation of 
the student solution and feedback returned is tailored to be effective only within the 
knowledge confines of the approved solutions. Tutoring systems are typically unable 
to assess the partial correctness of student solutions when they fall outside the scope 
of the approved ones. Moreover, for the purpose of solution representation, students 
are restricted to the choice of domain concepts from a custom built repository which 
is often quite narrow. Such characteristics lend themselves to a tutoring approach that 
is fairly brittle and quite opposed to how a human tutor would behave. A human tutor 
on the other hand, allows a diverse choice of domain concepts, assesses where the 
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student solution lies in the broad knowledge space, acknowledges the partially correct 
aspects of the solution and guides the students back to the correct solution. Thus in 
order for a tutoring system to exhibit robust tutoring, it needs a broad knowledge base 
to allow students to explore a large space of novel solutions and work creatively, 
while still being able to steer them towards a correct solution if they get off track. 

An ontology presents great potential for reuse and as a knowledge base that could 
be exploited for reasoning purposes. Several tutoring systems have employed ontolo-
gies [1, 2, 3], but they require extensive effort in encoding the relevant knowledge 
into the ontology.  The Constraint Acquisition System [4] uses a more feasible 
method of encoding the ontology constraints by learning from examples, but its initial 
design still needs to be defined manually. 

The construction of a tutoring system typically requires knowledge acquisition in 
the three areas of domain model, student model and pedagogical model. Acquiring 
and encoding the relevant knowledge can lead to a large overhead in the development 
time of a tutoring system [5, 6]. Attempts to expand the system and reuse the existing 
domain model for the rapid addition of new problems or cases are often hindered by 
the daunting task of acquiring the burdensome student model. 

While the importance of the student model has been advocated [7], the design of 
some tutoring systems has excluded the student model based on the needs of the tutor-
ing task [8]. Similar to Andes [8], our system too, does not use assessment to select 
the next task to be offered to the student. Because of the extensive effort required in 
designing, tutoring systems often excel in one or two of the three models mentioned 
above and maintain a more simplified form of the remaining ones [9].  

The development time for a tutoring system has also come under scrutiny in the 
comparison between Model Tracing (MT) and Constraint Based Modeling (CBM) 
[10, 11]. Kodaganallur et al., [10] and Mitrovic et al., [11] have acknowledged the 
tradeoff between the reduction in development time and the quality of hints generated. 
The development time required to add a case is expected to vary based on the nature 
of the task domain. For the domain of statistical hypothesis testing, Kodaganallur et 
al., [10] report the development time of 5 person-days for problem modeling and 18 
person-days for encoding the relevant knowledge in the case of CBM, whereas the 
development time was greater for MT. CBM simplifies the creation of new cases and 
has a reduced development time; however, its hints are not as effective and special-
ized as those in MT [10, 11]. 

In order to ease the knowledge acquisition bottleneck, Martin & Mitrovic [12] 
adopt a CBM approach, where the student model is an overlay of the domain model 
constraints. Their student model simply contains a score of the times a constraint has 
been satisfied or violated during problem solving. However, defining and encoding 
the constraints is still a burdensome task. Defining the constraints would be even a 
greater burden and challenge for an ill-defined domain such as medical PBL [13]. 

In the ill-defined domain of medical PBL, students may arrive at a solution from a 
variety of reasoning paths [14], making it a daunting task to build the student model. 
Based on our previous experience with the COMET system for medical PBL [15], it 
takes about one person-month to build the cognitive student model for each problem 
scenario. Modeling the diverse set of reasoning paths would be even more challenging 
if the system is expected to be robust in its tutoring approach by allowing students to 
explore a much broader solution space as mentioned above. 
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We extend our work on expanding the plausible solution space by deploying the 
widely available knowledge source, the Unified Medical Language System (UMLS) 
[16], as the domain ontology in a tutoring system for medical PBL [17]. In this paper 
we present a strategy for alleviating the overhead required to expand the tutoring 
system in adding new cases, by sidestepping the student model. We exploit the struc-
ture of the domain ontology to assess the partial correctness of student solutions and 
generate hints that are relevant to the student activity during problem solving. Fur-
thermore, the time and effort required to add a new problem scenario to the tutoring 
system is reduced to 4-5 person-hours. 

2   Related Work 

The concept of partial correctness has been discussed in the context of tutoring sys-
tems [3, 18], wherein a part of the solution is explicitly recognized as correct. Our 
notion of partial correctness is different and is assessed through knowledge inference 
rather than explicitly encoded knowledge. Fiedler & Tsovaltzi [18] employ a domain 
ontology for tutoring mathematics theorem proving. The domain ontology of concepts 
contains some objects and relations defined as anchoring points, which serve as the 
basis for the content of the generated hints. Our hint generation strategy is different 
and draws inferences from the structure of the existing domain ontology at run-time 
without recourse to explicit encoding of knowledge into the ontology. 

The design of medical tutoring systems built to date, have typically been based on 
customized knowledge bases that offer students a limited set of medical terms and 
concepts, to form their solution. The CIRCSIM-Tutor [3] teaches cardiovascular 
physiology by describing a perturbation of a cardiovascular condition, and initiating a 
question answer dialog with the student. The scope of hypothesis (solution) represen-
tation is narrow, as students are confined to assigning values to a small set of vari-
ables for forming their hypothesis. The SlideTutor [1] teaches dermatopathology by 
presenting a visual slide as a problem scenario and asks students to classify the dis-
eases. Solutions accepted by the tutoring system are based on the ontology custom-
ized for the system. Thus students are not allowed to present alternative plausible 
hypotheses that may lie beyond the scope of this customized ontology.  

The ReportTutor [19] teaches students diagnostic report writing by presenting a 
virtual slide and asking the students to write their report using a natural language 
interface. The pedagogical module refers to the expert model to see the list of goals 
that need to be accomplished and provides feedback based on the goals on the stack. 
The system does not make use of an explicit student model. Their work is similar to 
ours in generating hints without differentiating between two students having different 
knowledge levels performing the same exercise. 

3   Medical PBL and System Prototype 

In a typical PBL session in the medical domain, a problem scenario is presented to a 
group of 6-8 students, who form their hypothesis in the form of a causal graph, where 
graph nodes represent hypothesis concepts and directed edges (causal links) represent 
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cause effect relationships between respective concepts. The hypothesis graph is based 
on the Illness Script, where hypothesis nodes may represent enabling conditions, 
faults or consequences [20]. Enabling conditions are factors that trigger the onset of a 
medical condition, e.g., aging, smoking, etc.; faults are the bodily malfunctions that 
result in various signs and symptoms, e.g., pneumonia, diabetes, etc.; consequences 
are the signs and symptoms that occur as a result of the diseases or disorders, e.g., 
fatigue, coughing, etc. 

Text Chat Pane

Hypothesis Board

Problem
Scenario

 

Fig. 1. System Prototype Interface 

Our work is based on the extension of the COMET system [15] designed to cover 
medical PBL for various domains. In the COMET system, each problem scenario is 
first referred to human domain experts who provide an expert solution that is eventu-
ally encoded into the system. Student solutions are compared against this expert solu-
tion for evaluation. Thus a plausible student solution that does not match the expert 
solution is not entertained. The system allows students to form their hypothesis by 
choosing medical concepts from a repository manually encoded into the system. Stu-
dents are given feedback based on the current state of their knowledge, which is  
assessed against a cognitive student model [15]. 

In our new system METEOR (Medical Tutor Employing Ontology for Robust-
ness), problem solutions collected from experts are combined with UMLS tables to 
form the domain model. The pedagogical module of the system comprises a hint gen-
eration mechanism that leverages off of the UMLS concept hierarchy and provides 
students a measure of partial correctness of their hypotheses. Assessment of student 
solutions is not used to select the next step or task to be offered to the students. Fur-
thermore, the hint generation employs the rich domain knowledge of the UMLS in 
lieu of a student model. Thus the design of our tutoring system does not include a 
student model.  

The problem representation in METEOR is the same as that in COMET of a di-
rected acyclic graph for forming the hypothesis. The student user is provided with a 
workspace as a hypothesis board to form the hypothesis, along with a text chat pane 
that returns hints to guide the student in clinical reasoning, as shown in Figure 1. The 
student chooses concepts from the UMLS Metathesaurus [16] as hypothesis nodes 
and draws edges between nodes, using a mouse. The problem solving activity begins 
as the student is presented a problem scenario, such as the one shown in Figure 1. 
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After studying the above problem scenario related to diabetes, the student hypothe-
sizes that Diabetes Mellitus is a cause of Hyperglycemia, which is shown to be a 
cause of Diabetic Neuropathy, as shown in Figure 1. 

4   System Domain Model 

The UMLS [16] is a widely available medical knowledge source and is essentially a 
collation of various medical ontologies and terminologies (MeSH, SNOMED-CT, 
Gene Ontology, etc). The broad and diverse UMLS contains about two million medi-
cal concepts covering various medical domains [16].  

The system domain model comprises UMLS tables and an additional table that is 
henceforth referred to as the expert knowledge base. The expert knowledge base is 
encoded with the help of human domain experts, and it contains causal relationship 
between various medical concepts, such as: 

Hyperglycemia  Decreased Glucose Transport into Cells 
Diabetic Neuropathies  Numbness 
Decreased Glucose Transport into Cells  Fatigue 
The expert knowledge base is formed through the collation of expert solutions to 

various problem scenarios. On average each expert solution leads to the addition of 
about 70-80 causal links to the expert knowledge base. The construction of an expert 
solution requires about 3-4 hours. Since each solution is in the form of a hypothesis 
graph, the collation of different solutions implies the incremental addition of the 
causal links in each solution, to the expert knowledge base. 

5   Pedagogy of Assessment and Feedback 

The hints generated by the system are composed of two elements: assessment of the 
partial correctness of the student solution and guidance towards a correct solution. 
Each hypothesis causal link drawn by the student is evaluated by the system through a 
strategy that accepts plausible solutions beyond the scope of the explicitly encoded 
ones [17]. If the link is found to be acceptable, the system allows the directed edge 
(causal link) to be drawn; otherwise the system disallows the edge to be drawn and 
returns an appropriate hint as feedback to the student. If the causal relationship drawn 
by the student is essentially correct but requires additional intermediate nodes in be-
tween, then the system disallows the edge to be drawn and encourages the student to 
describe the underlying mechanism. For example, considering the diabetes case de-
scribed above, if the student draws the link: hyperglycemia  numbness, the system 
would respond with the hint: “Yes, but…Think of the underlying mechanism as to 
why hyperglycemia causes numbness.” On the other hand, if the student were to 
draw the reverse link: numbness hyperglycemia, the system would respond with the 
hint: “On the contrary, think of hyperglycemia as a cause of numbness.” 

If the student link does not fall into any of the cases described above, the system 
makes use of a heuristic method to assess its partial correctness and deliver a hint to 
guide the student towards the correct link. The purpose of partial correctness feedback 
is to inform the student how close his/her solution is to be accepted. The hint  
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pre-amble containing the partial correctness feedback is phrased as one of the follow-
ing: 1. “You are very close”, 2. “You are somewhat close”, 3. “You are a little far 
off”, 4. “You are quite far off”, 5. “Hmm… Not sure. They may be a causal relation 
between the two”, and 6. “Hmm… Can’t say about the relation between the two.” 

5.1   Example 1: Partial Correctness through Semantic Distance 

Imagine a situation related to the diabetes case mentioned above, where a student tries 
to draw a causal link: hyperlipidemia  diabetic neuropathy. Suppose the expert 
knowledge base does not recognize this link, however it recognizes that there is an 
expert link: hyperglycemia  diabetic neuropathy. In other words, what should have 
been hyperglycemia has been hypothesized by the student to be hyperlipidemia.  

In order to assess the partial correctness of the student link, the system tries to find 
the semantic distance between hyperlipidemia and hyperglycemia. The semantic dis-
tance is measured by employing a modified version of the method described by Al-
Mubaid & Nguyen [21]. Parent-child relationships from the UMLS Metathesaurus are 
used to construct the isa hierarchy of both nodes between which semantic distance is 
to be measured, as shown in Figure 2(a). Based on the value of the semantic distance, 
the system judges whether the nodes are very close, somewhat close, little far, or quite 
far. In this case, the system finds the two nodes to be somewhat close. 

5.1.1   Guidance towards the Correct Solution 
In order to guide the student towards the correct solution, the system examines the 
parent-child hierarchy to judge the commonality between the student link and the 
correct expert link. The system tries to find the lowest node in the hierarchy that is a 
common ancestor to both concepts in question: hyperlipidemia and hyperglycemia. 
The system finds that metabolic diseases is a common ancestor to both the concepts, 
as shown in Figure 2(a). Thus the system infers that the student knows that a kind of 
metabolic disease leads to diabetic neuropathy, however the student is not clear 
which kind. The hint content is framed to guide the student reasoning from its current 
position to the correct solution. This reasoning path of the hint content is shown in the 
dotted arrow in Figure 2(a), which leads from hyperlipidemia round the common 
ancestor towards hyperglycemia. Based on the assessment of partial correctness and 
the reasoning path en route the correct solution, the system responds with the hint: 
“You are somewhat close. For causes of diabetic neuropathy … Instead of hyper-
lipidemia, think about other kinds of metabolic diseases. Think of A 
heterogeneous group of disorders characterized by glucose intolerance”.  

Here, ‘A heterogeneous group of disorders characterized by glucose intolerance’ is 
the definition in UMLS for the concept: glucose metabolism disorder. In other words 
the system gives the hint template: “Instead of <student node>, think about other 
kinds of <common ancestor> and <definition of next child in line from the common 
ancestor towards the expert node>”. 

If the student draws the link, renal glomerular disease  diabetic neuropathy, the 
system measures the semantic distance between hyperglycemia and renal glomerular 
disease and finds the two nodes to be a little far off. The hint is framed: “You are a 
little far off. For causes of diabetic neuropathy … Instead of renal glomerular 
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disease, think more specifically about other kinds of Disorder of body system. 
Think of Abnormally high BLOOD GLUCOSE level, beyond the normal range.”  

If the student draws the link glucose metabolism disorder  diabetic neuropathy, 
the system measures the semantic distance between hyperglycemia and glucose  
metabolism disorder and finds the two nodes to be very close and accepts the student 
link by giving the hint: “You are very close. I was thinking of hyperglycemia  
diabetic neuropathy, but glucose metabolism disorder is also acceptable. Good.” 

        

     Fig. 2. (a) Concept Hierarchy: Example 1                   (b) Concept Hierarchy: Example 2 

5.2   Example 2: Partial Correctness through Co-occurrence Frequency 

Imagine a situation related to a heart attack case, where a student tries to draw a 
causal link: hyperlipidemia  hyperglycemia. The system does not find this link to be 
acceptable, however, it finds an expert causal link: hyperlipidemia  endothelial 
degeneration. In other words what should have been endothelial degeneration has 
been hypothesized by the student to be hyperglycemia.  

The system tries to find a common ancestor to both hyperglycemia and endothelial 
degeneration, but is unable to find one. In this situation, the system cannot assess the 
partial correctness through the semantic distance measure. As a weaker measure, it 
checks to see if the UMLS has any information regarding the co-occurrence of 
hyperlipidemia and hyperglycemia in medline citations. If the normalized co-
occurrence frequency is found to be greater than zero, the system forms the hint pre-
amble: “Hmm… There may be a causal relation between hyperlipidemia and 
hyperglycemia.” Otherwise the following hint pre-amble is formed: “Hmm… Can’t 
say about the causal relation between hyperglycemia and hyperlipidemia.” 

5.2.1   Guidance towards the Correct Solution 
In order to guide the student towards the correct solution, the system adopts an ap-
proach similar to the one described for Example 1. Since there is no common ancestor 
in this case, the system tries to direct the student towards endothelial degeneration by 
starting from a few ancestors above, as shown in Figure 2(b). The hint is framed as: 
“For effect of hyperlipidemia … Instead of hyperglycemia, think of kinds of vascu-
lar diseases and thickening and loss of elasticity of arterial walls.” 

Here, ‘Thickening and loss of elasticity of arterial walls’ is the definition in UMLS 
for the concept arteriosclerosis. In other words the system gives the hint template: 
“Instead of <student node>, think about kinds of <great grandfather of expert node> 
and <definition of grandfather of expert node>”. 
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6   Results 

We classified the different kinds of hints and randomly selected 30 system generated 
hints from student log files, which were evenly distributed across the hint classes. 
Five faculty members from Thammasat University having more than five years of 
experience in using PBL in teaching medicine, were asked to rate the sample of hints 
on a 5-point likert scale: 1 (strongly disagree) to 5 (strongly agree). For each sample, 
experts were shown the causal link drawn by the student and the corresponding expert 
link as the correct solution, along with the hint generated by the system, as shown in 
Figure 3 (a). In order to evaluate the utility of the partial correctness feedback, experts 
were presented two versions of the same hint. As shown in Figure 3 (a), hint from 
Tutor A contains the pre-amble of partial correctness feedback, for example ‘You are 
somewhat close’, whereas the Tutor B hint is without this feedback pre-amble. 

Hints containing partial correctness led to an average score of 4.44 (r = 0.9018, p < 
0.05), whereas those without it led to an average score of 3.58 (r = 0.8463, p < 0.05). 
Hints with partial correctness scored significantly higher than those without it (Wil-
coxon Rank Sum, p < 0.001). In order to measure the percentage of expert agreement 
with hints, we collapsed the rating scale to Agree (4 or 5) and Disagree (1, 2 or 3); 
results of agreement with each of the five experts are shown in Figure 3 (b). 

Expert Link
Pneumonia Lobar Pneumonia

Student Link
Pneumonia Dyspnea

Hint From Tutor A
You are somewhat close
For effects of Pneumonia...
Instead of Dyspnea, think more specifically about other
kinds of Respiration Disorders. Think of A febrile disease
caused by STREPTOCOCCUS PNEUMONIAE

5 · 4 · 3 · 2 · 1
Hint From Tutor B

For effects of Pneumonia...
Instead of Dyspnea, think more specifically about other
kinds of Respiration Disorders. Think of A febrile disease
caused by STREPTOCOCCUS PNEUMONIAE

5 · 4 · 3 · 2 · 1  

          Fig. 3. (a) Sample of Hint for Evaluation                      (b) Percentage of Agreement 

7   Discussion 

The overall average score of 4.44 and high percentages of agreement indicate strong 
expert acceptance of the system generated hints. The expert, who agreed with the 
system hints the most, agreed 93% of the time, whereas the expert with least agree-
ment agreed 83% of the time. Furthermore, the hints including the element of partial 
correctness scored significantly higher than those without it, which shows that the 
experts found the partial correctness feedback to be very useful. 

According to one PBL expert, some of the content in the sample of hints was even 
better than what an average PBL tutor would be able to conceive of. This is because 
not all PBL tutors are experts in all of the PBL cases. Their knowledge about concepts 
is sometimes lacking in certain areas and they are not always able to conceive of the 
right description for a particular concept. In fact, this is also possible in the case of 



 Leveraging a Domain Ontology to Increase the Quality of Feedback 83 

UMLS, where the definition text is missing for some concepts. It is worth noting that 
hints that contained the concept definition text scored higher than those where this 
text was missing in UMLS. Thus in domain areas where UMLS had knowledge gaps, 
the generated hints were not as good. This reflects some similarity between the hint 
leveraging off of UMLS and the hints produced by a human expert. 

8   Conclusions 

In this paper we have described how to ease the bottleneck of expanding a tutoring 
system. We have described how an existing broad knowledge source such as the 
UMLS, can be deployed as the domain ontology and its structure leveraged to assess 
the partial correctness of the student solution and generate hints based on the context 
of the student activity. Compared to the previous version of COMET, the time for the 
development and encoding of a new problem scenario has been drastically reduced 
from one person-month to 4-5 person-hours. 

We have described the system implementation in the context of medical PBL, but 
the techniques could easily be applied to other domains where the task involves causal 
relationships and the domain ontology also contains a textual definition of the con-
cepts. The techniques could be particularly relevant for other ill-defined domains, 
which require greater flexibility in assessment and feedback. 

In interpreting the results of the proposed techniques, it is worth noting that the 
domain ontology has not been crafted specially for the task of medical PBL. A pur-
pose built domain ontology is likely to yield better results, especially when its utility 
for hint generation is considered at the time of design. 

Inference techniques applied to a large knowledge source such as UMLS, can be 
quite taxing on the processing power and result in delayed system response. Further-
more, our hint generation strategy leveraging off an existing knowledge source does 
not take into account the possibility of students having misconceptions at the ontology 
level, which could be addressed in a future study. 

We intend to evaluate the impact of hints containing partial correctness on the stu-
dent learning outcomes and have students evaluate the generated hints too. Finally we 
would like to compare and examine the tradeoffs between the clinical reasoning gains 
acquired through METEOR and through COMET, especially in light of the fact that 
as previous studies have shown, a feedback strategy such as the one proposed in this 
paper, may not be as effective as those that stem from a carefully captured cognitive 
student model. Nonetheless the tradeoff may be worth it, if one considers the long 
term ramifications in adding new cases for the large scale deployment of tutoring 
systems for instructional purposes. 
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Abstract. Many of the most important learning goals can only be

achieved over several years. Our CUSP system helps achieve this over the

3-to-5 years of a university degree: it enables each teacher to map their

own subject design to institutional learning goals; it creates both sub-

ject and degree-level models. It tackles the semantic mapping challenges

using a highly flexible lightweight approach. We report its validation for

102 degrees and 1237 subject sessions. CUSP makes a contribution to

understanding how to model long term learning of generic skills, using

a lightweight semantic mapping based on multiple sets of externally de-

fined learning goals. The work contributes to understanding of how to

create comprehensive models of long term learning within degrees that

are practical in real environments.

Keywords: Curriculum Mapping, Graduate Attributes, Accreditation

Competencies, Learner Model.

1 Introduction

University degrees typically aim to build learners generic skills, such as written
and spoken communication, team work and design and problem solving. These
are highly valued both within learning institutions and by outside groups, no-
tably employers. Learners need to develop these skills progressively, over several
years, aided by a suitable sequence of learning experiences.

To ensure such long term learning over a whole degree, designers of each sub-
ject must appreciate how their subject fits into the full curriculum. Also, those
responsible for each degree must ensure that generic skills are developed via a se-
ries of learning activities across subjects. This is quite complex, especially where
students have flexibility to select elective subjects that match their background,
interests and goals.

Despite the importance of learning generic skills, it is difficult to rigorously
classify the skills learned in each subject. For this, we need to define two aspects:
the generic skill; and the level of that skill. ITS research has typically dealt with
fine grained ontological models for learning design, such as [10]. This is not
adequate for our goals to model long term learning of generic skills.

A central problem is that the semantic model describing the learning pro-
gression must be agreed upon and used by several groups of people. Firstly, the
lecturer responsible for teaching a particular subject must understand just what
is required from their subject; otherwise they may fail to keep it true to the
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curriculum. Secondly, people at the faculty level must understand the curricu-
lum design well enough to assess if it does develop the faculty’s required generic
attributes. Outside the university, accreditation bodies must be convinced that
their stated learning requirements are met. Importantly, universities and accred-
itation bodies each define their own descriptions of generic skills.

For example, our Bachelor of Software Engineering (BSE) degree, must meet
curriculum requirements defined in:

1. Engineering Australia (EA) Stage 1 Accreditation competencies,
2. Association of Computing Machinery learning objective recommendations,
3. Australian Computer Society skill recommendations and
4. University of Sydney Faculty of Engineering Graduate Attributes.

Note the different terms: skills, competencies, learning objectives, attributes. For
the rest of the paper, we refer to these as attributes.

Another challenge comes from subject choice. Any allowed elective subjects
must enable the student to achieve required attributes. Students must do them
in the correct sequence, for progressive learning. So, curriculum designer must
identify the attributes learned in each subject in designing a degree.

So far we have considered a single degree. A university can offer many. For ex-
ample, in 2010, our university will offer over 600 degrees and over 13,000 subject
sessions. Many must meet external accreditation, vocational and institutional
attributes like those of the BSE.

We now describe how we have tackled this problem of modeling subjects and
degrees. The next section describes related work, followed by our approach and
the user view of our CUSP system. We then report its validation. We conclude
with lessons learned and future work.

2 Related Work

The need for better support for designing and maintaining university degrees
is recognized: as described by Mulder et. al. [8] for European standards-based
design of university curricula. They report on various projects from England,
Germany, France and Netherlands, noting the need for quality control, the lack
of support tools for this and the challenge of multiple descriptions of the learning
goals as we discussed above. McKenney et. al. [7] describe the multi-phased
nature of this process and they reiterate the need for better tools to support
curriculum designers.

Koper [6] explored approaches to modeling curriculum elements via a meta-
model, in EML (Educational Modeling Language)1. With an e-Learning focus,
subjects were represented as collections of reusable learning objects (LOs). It
is unclear how this can scale to the degree level. While various other modeling
standards (e.g. IEEE LOM, IMS LIP, SCORM, HR-XML, IMS-RDCEO) deal
with parts of a whole degree, they do not help with the degree design complexity
problems or multiple attribute framework semantic mapping challenges.
1 Educational modeling Language, http://www.learningnetworks.org/?q=EML

http://www.learningnetworks.org/?q=EML
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Ontological approaches to such mappings have been attempted in various
forms by Mizoguchi [10] (also using EML and IMS-LD), Van Assche [1], Paquette
et. al. in the LORNET TELOS project [9] and others. These are promising, but
cannot meet our goals. Paquette et. al. express this concern: “what is yet to be
proven is that the general approach presented here can be used at different levels
by average design practitioners and learners”. Kalz et. al. [5] also share this view:
“the design and implementation of competence ontologies is still a very complex
and time-consuming task”.

Bittencourt et. al. [2] explore use of semantic web technologies to improve cur-
riculum quality and support the design process. They conclude, however, that “a
large-scale use of SW for education is still a futuristic vision rather than a con-
crete scenario” and the implementation of ontologies is sometimes “more an art
rather than technology”. Winter et. al. [11] also realize the strengths and limita-
tions of traditional ITS systems with “carefully crafted” content and ontologies
vs. e-Learning systems that are typically standards based but have “content
crafter by normal authors”. To support lifelong learning, domain-specific ontolo-
gies will need to be mapped to each other but “in a realistic setting...this may
be difficult to do” [11].

A limited implementation of attribute-to-subject mapping was employed by
Calvo and Carroll [4] in their Curriculum Central (CC) system. It had a single
attribute framework, to map a large set of subjects to these attributes. However,
it could not deal with the critical external accreditation or vocational attributes,
nor the complexity of elective subject choices.

Bull & Gardner [3] mapped multiple choice questions, in several subjects,
to UK SPEC Standards for Professional Engineering attributes (UK-SpecIAL).
As students complete online questions, the system builds open learner models,
enabling students to see their learning progress, and which subjects could provide
the missing attributes. This gave students a valuable big-picture view. However,
the system lacks the generality we need, i.e. mapping across all forms of learning
activities and assessments and supporting multiple sets of learning attributes.

3 Approach

Our approach is to create lightweight, two part models, based on attribute defini-
tions and level definitions. These support models with the semantic relationships
between any sets of attributes. We took this approach for modeling generic skills,
due to the generality of their attribute definitions with the level definitions be-
ing sub-concepts that are also broad. This approach seemed promising for our
multiple goals, notably the pragmatics of meeting the needs of teaching staff,
institutions and accreditation.

Taking the institutional goals as the base model, we establish a set of attribute
definitions from the established set of graduate attributes. This is an important
decision: we consider the foundation should come from the institution’s own
goals. In our case, this has just 7 top-level attributes, most covering generic
skills. For example, Design and Problem Solving Skills, one of the 7 top-level
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attributes, is defined as the Ability to work both creatively and systematically in
developing effective, sustainable solutions to complex practical problems.

To model progression in learning, we assigned 4 or 5 level definitions for each
attribute. This gives a coarse set of levels for key stakeholders to agree on, both
for the levels and for classifying learning activities. This granularity is meaningful
to model progression over the 3 to 5 years of a degree.

To incorporate other attribute frameworks into the base model, the curriculum
designer maps their attributes against the base model attribute definitions and
level definitions. So, for example, the EA Accreditation Competency statement
“experience in personally conducting a major design exercise to achieve a substan-
tial engineering outcome to professional standards’ maps to our faculty Design and
Problem Solving Skills attribute at Level 3. Additional frameworks can be system-
atically incorporated into the model by repeating this process. This means that
subject lecturers map their subject assessments and learning activities to the insti-
tutional base model. They can ignore other attributes sets, minimizing demands
on them. A big-picture view of a degree can be extracted from the model for any
of the attribute frameworks, simply by resolving the semantic relationships.

4 CUSP User View

CUSP2 implements this approach, with interfaces to manage the modeling pro-
cesses. Figure 1 illustrates part of the base model, with the two level hierarchy of
attribute definitions such as Fundamentals of Science and Engineering and an
associated level definition, expanded in the figure. It aims to avoid restrictions
on the structure of an attribute set. Attributes can be arbitrarily nested, or flat.
Each attribute can be given a code, a label and a description and it can have
any number of levels, each with their own descriptions. Clicking the yellow ’E’
control next to an attribute or level brings up the floating Equivalence editor
(bottom-right of Figure 1). This enables curriculum designers to define many-
to-many semantic relationships between attributes or levels from different sets.
The mappings are accessible and editable from either side.

We now describe the lecturer view for individual subjects. A lecturer can define
a high level subject outline with information such as a handbook description,
prerequisite/prohibition subject requirements, teaching methods & activities,
learning outcomes, assessment tasks, resources and scheduling information. The
fields are on the tabs for easy navigation as shown in Figure 2.

This shows a set of 5 attributes from our Faculty of Engineering Graduate
Attribute Framework. Each maps to a specific level (clicking the attribute brings
up full textual descriptions). The lecturer provides a free-form description stating
how the attribute is supported by the subject. The subject attributes are further
mapped (by lecturers) to learning outcomes and indirectly to assessments (each
assessment can be mapped to one or more weighted learning outcomes).

On the degree side, a degree coordinator links a degree to any number of
attribute frameworks. Our Bachelor of Software Engineering degree links to the
2 Course & Unit of Study Portal - course being a degree and unit of study a subject.
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Fig. 1. Example of attributes from Faculty of Engineering Graduate Attribute Frame-

work, with floating equivalent editor bottom-right

Fig. 2. Attributes linked to a subject and described by lecturers via development

methods

Faculty of Engineering Attribute Framework and the EA Accreditation Stage 1
Competency Standards. The degree structure is then defined in terms of core
and elective subjects, streams and recommended elective blocks.

We now have multiple attribute frameworks captured in the system, as well
as the semantic relationships between attributes and levels, the mappings of
attributes to subjects, learning activities and assessments, and the degree core/
elective subject structures. These are all the pieces we need to start building our
big-picture view of full 3-to-5 year degrees.

Figure 3 shows our Bachelor of Software Engineering degree in terms of the
Faculty of Engineering Attribute Framework. The left column of the matrix
has 7 top-level attributes and along the top are columns for each level defined.
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Fig. 3. Overviewof the BSEdegree in terms of planned, practiced and assessed attributes

Clicking an attribute in the left column brings up the full descriptive text for
reference. In the cells of the matrix lists of subjects that develop the attribute
at the corresponding level. The plus/minus markers next to each subject code
differentiate between planned, practiced and assessed3 attributes. The red Adv.
Recommended subject label in Design and Problem Solving Skills, Level 4 rep-
resents a subject recommended elective block (the placement of this block in the
matrix is based on a CP threshold formula). The two drop-down boxes at the
top allow the selection between different report types and, importantly, between
the different attribute frameworks linked to the degree.

Switching to the EA Accreditation attribute framework regenerates the report
as shown Figure 4. We now see the EA Accreditation competencies along the left
column and the relevant subject codes in the right column. The EA attributes
do not have any levels and hence no additional cells to the right. The list is
easily scrollable however and an accreditation review panel could easily look at
this to see which subjects support each attribute and if there are any knowledge
gaps. Clicking on the subject takes the user to the full outline describing the
precise attribute mappings. Notice that this report is generated by exercising
our semantic equivalence mappings. We could easily map additional attribute
frameworks to our BSE degree and generate similar reports.
3 Here planned means material is in the curriculum but there are no linked learning

activities or assessments, practiced means there are activities but no assessments.
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Fig. 4. Switch to the EA Stage 1 Accreditation Competency Framework

The chart visualization in Figure 5 is another big-picture view of our BSE de-
gree. Along the x-axis we have the 7 faculty attributes. Along the y-axis we have
the percentage distribution of each attribute in terms of assessments. That is, the
BSE degree devotes roughly 22% of all assessment tasks to Design and Problem
Solving Skills. Each column is further broken down into the corresponding at-
tribute levels, which are color-coded. A mouse-over reveals the precise percentage
distribution of each level.

5 Validation

The CUSP system has been deployed to three Faculties, namely Engineering,
Architecture, Design and Planning, and Health Sciences. It has been populated
with 8 generic attribute sets, 278 individual attributes, 102 degrees, 886 subjects,
1237 subject sessions, 3849 learning outcomes and 2418 assessment items. Alto-
gether 2189 of the 2418 assessment items have been mapped to specific subject
learning outcomes which were in turn aligned to the relevant generic attributes
for the subject. The capture of outcomes, assessments and graduate attribute
relationships has relied upon a combination of lecturer and administrative staff
input. Outcome and assessment mappings have been reviewed and adjusted by
degree coordinators or other experienced staff wherever possible. Quality of map-
pings varies widely from subject to subject and degree to degree but the data
has been sufficient to begin generating some quality review reports through the
system itself.

We conducted a test to validate the equivalence mapping approach as de-
scribed in Section 4. To make this test more effective we performed it on two
very different professionally accredited degrees: a 2-year Masters degree and a
4-year Bachelor degree; each in a different faculty. Subjects for each degree were
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Fig. 5. A stacked column chart showing percentage distribution of assessed faculty

attributes

mapped against the relevant faculty’s primary attribute framework, which was
in turn mapped, via equivalence relationships, to a second framework comprised
of competency standards required for accreditation.

A report compiling subject learning outcomes under accreditation compe-
tency headings was generated for each degree. A recent graduate of each de-
gree was asked to examine each outcome and determine in each case whether
it represented a meaningful contribution to the competency descriptor under
which it appeared. In cases where the match was not confirmed, the learning
outcome mapping to the faculty graduate attribute framework was checked,
by a curriculum expert, to determine whether the failure came from origi-
nal data entry (learning outcome mapped to incorrect generic attribute/level),
or from an equivalence mapping error (learning outcome mapped to correct
generic attribute/level, but accreditation competency equivalence mapped to
incorrect generic attribute level), or an attribute translation error (learning out-
come mapped to correct generic attribute/level with correct equivalence map-
ping, but mismatch with learning outcome). All three failure types were found,
as shown in Table 1 below.

The Masters degree had a high match ratio between learning outcomes and
equivalence attribute mappings (92.28%), with only 4.56% of mismatches due to
attribute translation errors (i.e. loss of context in cross-mapping more granular
accreditation competencies to more generic faculty attributes, which are then
mapped to more granular subject learning outcomes). The Bachelor degree did
not fair as well with only a 49.63% match ratio between learning outcomes and
accreditation attributes. The primary cause of this low ratio was due to incorrect
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Table 1. Learning Outcomes matching accreditation competency descriptors as re-

solved via attribute equivalence mappings for two professional degrees

Masters % Bachelor %

Learning outcome mapping relationships 285 544

Relationships confirmed 263 92.28 270 49.63

Relationships not confirmed 22 7.72 274 50.37

Failure at learning outcome source 8 2.82 208 38.24

Error in equivalence settings 1 0.35 27 4.96

Attribute grouping hard to translate 13 4.56 38 6.99

mappings between learning outcomes and the core faculty attribute framework.
The attribute translation failure rate was only 6.99%. This degree, related sub-
jects and core faculty attribute mappings were imported from an earlier system
which had no accreditation competency equivalences defined, whereas the Mas-
ters was a newly created degree and hence had more accurate data.

This validation exercise shows our light-weight approach does not provide
perfect mappings between degree subjects and multiple attribute frameworks.
Equivalence translation errors sometimes appear due to the multi-level mapping
of attributes at different granularities. The mappings are, however, valid to a
large extent when data is correctly entered. High mismatches can be identified
via the reporting tools which signal the need for further evaluation to determine
the source of failure, which is valuable for long term degree quality control.

6 Conclusions and Future Work

We have described our approach to support design of flexible degrees that are
accountable in terms of ensuring that important generic skills and accreditation
requirements are met over the full 3-to-5 year duration. We have implemented
this in CUSP and reported its use to map multiple attribute frameworks to indi-
vidual degrees, and map attributes to each core or elective subject that is part of
a degree. The CUSP reporting tools give lecturers and degree coordinators a big
picture view of entire degrees. This helps identify knowledge gaps, accreditation
requirement gaps, and progressive learning inconsistencies.

We have validated our approach by deploying the system on a large scale in a
live university environment with real data. The system is in active use with 102
degrees, 1237 subject sessions and 8 different attribute frameworks. From the
evidence of Table 1, the equivalence mapping tool is certainly not a mechanism
for eliminating all errors or weakness in curriculum design and documentation
but rather tends to amplify the impact of any errors present. In doing so, it
provides a sensitive test of quality in all the elements concerned.

While CUSP has demonstrated the value of our approach for curriculum de-
signers, at the level of the subject and the degree, we plan to extend our ap-
proach to incorporate available assessment data within each subject to create
detailed individual student models. To do this, we will move beyond our current
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mapping of attributes to assessments via learning outcomes. This will allow us
to explore the value of personalized attribute progress matrices for students in
terms of making more informed subject enrollment decisions, personal reflection
and gaining a better understanding of the governing factors influencing their
degree. It will also provide a basis for longitudinal data mining of the learner
models to improve understanding of the causes of student difficulties.
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Abstract. In a controlled experiment using Comrade, a computer-supported 
peer review system, student reviewers offered feedback to student authors on 
their written analyses of a problem scenario. In each condition, reviewers re-
ceived a different type of rating prompt: domain-related writing composition 
prompts or problem/issue specific prompts. We found that the reviewers were 
sensitive to the type of rating prompts they saw and that their ratings of authors’ 
work were less discriminating with respect to writing composition than to prob-
lem-specific issues. In other words, when students gave each other feedback re-
garding domain-relevant writing criteria, their ratings correlated to a much 
greater extent, suggesting that such ratings are redundant. 

Keywords: computer-supported peer review, ill-defined problem-solving. 

1   Introduction 

Computer-supported peer review deserves the attention of ITS researchers as an in-
structional activity that seems to bring many benefits to both students and educators. 
[1] For instance, students benefit in that receiving feedback from multiple peers’ on 
the first draft of an assignment can lead them to improve the quality of their second 
drafts even more than receiving feedback from an expert. [2] Student authors receive 
an extra channel of feedback in addition to and distinct from assessment by the in-
structor or self-assessment [3], and, in playing both roles of author and reviewer, 
students may learn from engaging in an authentic activity in the many professional 
domains that institutionalize peer review. One advantage to educators is that when 
students give each other feedback, they free the educator to focus on other tasks (such 
as providing struggling students with individual attention).  

When augmented with AI techniques, computer-supported peer review may pro-
vide ITS research with methods for addressing ill-defined problems even in writing-
intensive courses. Ill-defined problem-solving presents a test case for Intelligent  
Tutoring System technology. [4] ITS have been used for problem-solving when a 
student’s answer or solution procedure can be compared against a gold standard, in 
domains such as geometry and physics. [5, 6] In contrast, ill-defined problems may 
have no correct answer, or multiple defensible answers, or no way to define a priori 
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what constitutes an acceptable response. So long as an ITS cannot assess a student’s 
answer, it cannot update its representation of what the student does and does not 
know, the so-called student model. This precludes it from tutoring the student through 
guidance, feedback and selection of new problems. Writing-intensive courses often 
focus on problems that are ill-defined. These problems are usually distinguished by a 
goal that can be perceived only through analysis and refinement, and by allowing 
multiple acceptable solution paths. Solvers may frame ill-defined problems differently 
according to their knowledge, beliefs, and attitudes, thereby yielding different repre-
sentations for the problem in terms of relevant facts and applicable operators. [7] 
Analyses of ill-defined problems are often in free-form text since they require argu-
ments and justifications for one solution over others. They exist in many domains, and 
they are central to domains such as law, where practitioners must map statutes and 
precedents to the facts of new cases, as the law students had to in the peer-reviewed 
exercise in the experiment described below. 

Free-form student answers to ill-defined problems may be difficult for a computer 
to interpret, but not for a student’s peers. In our computer-supported peer-review 
system, called Comrade, AI techniques are used to aggregate the feedback that peer 
reviewers give each other into a student model that estimates attainment of learning 
objectives. Comrade asks reviewers to provide written feedback as well as numeric 
ratings of peer work. In this paper, we examine an important aspect of the feasibility 
of Comrade’s design, namely the extent to which student peer reviewers are sensitive 
to different types of rating prompts. As students evaluate each other's written work, 
these prompts serve as a scaffold, focusing the reviewers on different aspects of the 
work. In addition, as Comrade compiles a student model based on the students’ feed-
back, it needs to know whether the reviewers’ ratings provide useful information. 

A variety of peer review systems has been developed in support of teaching in 
many domains and according to different instructional strategies and demands. [2, 8-
13] Some systems, including SWoRD [2], CPR [8], and Comrade, allow the instructor 
to specify the rubric according to which reviewers evaluate the peer author’s work. 
The designers of SWoRD purposefully focused prompts on three criteria (insight, 
logic, and style) that could be applied to writing in any domain. For example, a do-
main-independent rating point from a SWoRD rubric on the logic of the argument 
was “All but one argument strongly supported or one relatively minor logical flaw in 
the argument.” 1 It is also possible for a rubric to be highly specific to the assignment. 
In one deployment of CPR, the rubric contained the question “Does the summary 
state that the study subject was the great tit (Parus major) or the Wytham population 
of birds? AND does the summary further state that the sample size was 1,104 (egg) 
clutches, 654 female moms, or 863 identified clutches?” [15] 

Given the variety of possible strategies that can be employed in creating prompts 
for peer review, and given the fact that prompts influence the experience of both re-
viewers and authors, it is important to determine whether some kinds of prompts  
are more valuable than others. For example, it is desirable to avoid prompts that  
yield redundant information. It is also possible that some prompts can scaffold re-
viewers in acquiring domain knowledge better than others. In the work described 
here, we compared the effects of two types of rating prompts: prompts that focus on 

                                                           
1 For an example of a full SWoRD rubric, see the appendix to [14]. 
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domain-relevant aspects of writing composition versus prompts that focus on issues 
directly pertaining to the problem and to the substantive issues under analysis. We 
considered that when an instructor gives a student a rubric to assess another’s paper, 
interacting with this rubric can cause the student to focus on those issues that are 
made prominent in the rubric. For example, if the rubric looks at domain-independent 
issues of writing composition, that communicates to the reviewer that the instructor 
sees various discourse features as important. We then articulated two kinds of 
prompts which may be particularly useful to the reviewer. Prompts that focus on writ-
ing in the domain can communicate to the reviewer the importance of various do-
main-specific discourse features, while prompts that relate to the subject of the essay 
under review can emphasize critical elements of the assignment. 

In section 2 of this paper, we describe the Comrade system and the two kinds of 
prompts (domain writing versus problem/issue specific) it delivered to students in a 
controlled experiment involving peer-review of a take-home midterm examination 
essay. In section 3, we present empirical evidence that student peer reviewers are 
sensitive to the two types of rating prompts and that their ratings of each other's work 
are less discriminating with respect to writing composition than problem-specific 
issues. As discussed in section 4, this is pedagogically important. When students give 
each other feedback regarding domain-relevant writing criteria, their ratings corre-
lated to a much greater extent, suggesting that the ratings are redundant. We discuss 
the significance of these results for the design, implementation, and evaluation of 
intelligent tutoring systems that employ peer review as a mechanism for teaching 
skills of ill-defined problem-solving. 

2   Methods 

Hypotheses. Our first hypothesis is that peer reviewers are sensitive to the difference 
between prompts that focus them on writing in the domain (from now, “domain-
writing prompts”) vs. prompts that focus them on details of the assignment (from 
now, “problem-specific prompts”). This hypothesis is operationally defined in our 
study as a between-subjects manipulation with two conditions: domain-writing 
prompts and problem-specific prompts. To test this hypothesis, we first introduce a 
definition: 

Consider that peer review can be seen as a directed graph. Let every student be 
viewed as a node. When the student acts as a reviewer, there are outbound edges from 
this student to the peer authors whose work she is reviewing. When the student acts as 
an author, there are inbound edges to this student from the other students reviewing 
her work. Thus, the ratings received by a student are that student’s inbound ratings, 
and the ratings given by a student are that student’s outbound ratings. 

If peer reviewers are not sensitive to variations in rating prompts, then peer au-
thors’ inbound ratings according to different prompts will be highly correlated; if 
reviewers are sensitive, peer authors’ inbound ratings will not be highly correlated. 

Our second hypothesis is that when a rubric supports a reviewer in evaluating an-
other student’s work, the rubric may act as a scaffold in focusing the reviewer on key 
domain concepts, thus making it more likely that the reviewer will understand these 
concepts. We compared student understanding of key domain concepts before and 
after reviewing in terms of performance on an objective test, as described below. 
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Participants. All 58 participants were second or third year students at a major US law 
school, enrolled in a course on Intellectual Property law. Students were required to 
take a midterm examination and to participate in the subsequent peer-review exercise. 
For purposes of ensuring comparability of conditions and interpreting results, the 
participants’ Law School Admission Test (LSAT) scores, and instructor-assigned 
scores on the midterm were collected (48 of 58 students opted to allow their LSAT 
scores to be used). The participants were randomly assigned to one of the two condi-
tions in a manner balanced with respect to their LSAT scores. For simplicity of analy-
sis, an author could only receive reviews from reviewers in the same condition. 

Participants were asked to perform a good-faith job of reviewing. The syllabus in-
dicated, “a lack of good-faith participation in the peer-reviewing process as evidenced 
by a failure to provide thoughtful and constructive peer reviews may result in a lower 
grade on the mid-term.” 

Apparatus. As noted, we hypothesize that different kinds of ratings prompts focus 
reviewers on different aspects of the author’s work. In this paper, we only examine 
reviewer responses to rating prompts, although reviewers also gave written evalua-
tions of the same dimensions of peer work that they rated numerically. We collected 
 
Table 1. Domain-writing rating prompts. Reviewers rated peer work on four criteria pertaining 
to legal writing. 

Issue  
Identification 
(“issue”)  
 

1 - fails to identify any relevant IP issues; raises only irrelevant issues 
3 - identifies few relevant IP issues, and does not explain them clearly; 
raises irrelevant issues 
5 - identifies and explains most (but not all) relevant IP issues; does not 
raise irrelevant issues 
7 - identifies and clearly explains all relevant IP issues; does not raise 
irrelevant issues 

Argument 
Development 
(“argument”) 
 

1 - fails to develop any strong arguments for any important IP issues 
3 - develops few strong, non-conclusory arguments, and neglects  
counterarguments 
5 - for most IP issues, applies principles, doctrines, and precedents;  
considers counterarguments 
7 - for all IP issues, applies principles, doctrines, and precedents;  
considers counterarguments 

Justified 
Overall 
Conclusion 
(“conclusion”) 
 

1 - does not assess strengths and weaknesses of parties’ legal positions; 
fails to propose or justify an overall conclusion 
3 - neglects important strengths and weaknesses of parties’ legal position; 
proposes but does not justify an overall conclusion 
5 - assesses some strengths and weaknesses of the parties’ legal positions; 
proposes an overall conclusion 
7 - assesses strengths and weaknesses of parties’ legal positions in detail; 
recommends and justifies an overall conclusion 

Writing 
Quality 
(“writing”) 
 

1 - lacks a message and structure, with overwhelming grammatical prob-
lems 
3 - makes some topical observations but most arguments are unsound 
5 - makes mostly clear, sound arguments, but organization can be difficult 
to follow 
7 - makes insightful, clear arguments in a well-organized manner 
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Table 2. Problem-specific rating prompts. Reviewers rated peer work on five problem-specific 
writing criteria (the claims), which all used the same scale. 

Claims: Smith v. Barry for breach of the nondisclosure/noncompetition agreement 
(“nda”) 
Smith v. Barry and VG for trade-secret misappropriation (“tsm”) 
Jack v. Smith for misappropriating Jack’s idea for the I-phone-based 
instrument-controller interface (“idea1”) 
Barry v. Smith for misappropriating Barry’s idea for the design of a Jimi-
Hydrox-related look with flames for winning (“idea2”) 
Estate of Jimi Hydrox v. Smith for violating right-of-publicity (“rop”) 

Rating scale: 1 - does not identify this claim 
3 - identifies claim, but neglects arguments pro/con and supporting facts; 
some irrelevant facts or arguments 
5 - analyzes claim, some arguments pro/con and supporting facts; cites some 
relevant legal standards, statutes, or precedents 
7 - analyzes claim, all arguments pro/con and supporting facts; cites relevant 
legal standards, statutes, or precedents 

ratings according to Likert scales (7 points, grounded at 1,3,5,7). Each condition  
received a different set of rating prompts, either domain-writing (Table 1), or prob-
lem-specific (Table 2). 

The researchers conducted the study via Comrade, a web-based application for 
peer review. For purposes of this study, Comrade was configured to conduct peer 
review in a manner that approximates the formal procedures of academic publication. 
In the tradition of the SWoRD and CPR systems, peer review in the classroom usually 
involves the following sequence of activities: 

1. Students write essays. 

2. Essays are distributed to a group of N student peers for review.  

3. The peer reviewers submit their feedback to the essay authors. 

4. The authors give “back reviews” to the peer reviewers. 

5. The authors write new drafts of their essays. 

Steps 2-5 can be repeated for multiple drafts of the same essay. In SWoRD, reviewers 
generate feedback (step 3) according to instructor-specified criteria, and authors 
evaluate the feedback they receive (step 4). Papers are chosen using an algorithm that 
ensures that the reviewing workload is distributed fairly, and that all authors receive a 
fair number of reviews. Conventionally, all students act as both authors and review-
ers. As authors, they may write in response to the same domain problem or different 
problems. As reviewers, they may formulate their feedback in different formats, in-
cluding written comments and numeric ratings.  

For this study, we followed phases 1 through 4, and omitted phase 5. In addition, 
students took a pretest (described below) between phases 1 and 2, and a posttest  
between phases 2 and 3. After authors gave back-reviews in phase 4 and before back-
reviews were delivered to reviewers, all students were invited to fill out a survey. 
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Procedure. As stated, the participants’ activities in our study proceeded in five 
phases, with a pretest and posttest before and after the reviewing. 

Just prior to the peer-review exercise, participants completed writing a mid-term, 
open-book, take-home examination. It comprised one essay-type question, and stu-
dents were limited to writing no more than four double-spaced or 1.5-spaced typed 
pages. Students had 3 days to answer the exam question.  

As is typical of law school essay exams, the question presented a fairly complex 
(2-page, 1.5-spaced) factual scenario and asked students “to provide advice concern-
ing [a particular party’s] rights and liabilities given the above developments.” The 
instructor designed the facts of the problem to raise issues involving many of the legal 
claims and concepts (e.g., trade secret law, shop rights to inventions, right of public-
ity, passing off) that were discussed in the first part of the course. Each claim involves 
different legal interests and requirements and presents a different framework for view-
ing the problem. Students were expected to analyze the facts, identify the claims and 
issues raised, make arguments pro and con resolution of the issue in terms of the con-
cepts, rules, and cases discussed in class, and make recommendations accordingly. 
Since the instructor was careful to include factual weaknesses as well as strengths for 
each claim, the problem was ill-defined; strong arguments could be made for and 
against each party’s claims. 

Based roughly on the legal claims, concepts, and issues addressed in the exam 
question, the instructor also designed a multiple choice test in two equivalent forms 
(A and B), each with 15 questions. The test was intended to assess whether student 
reviewers learned from the peer-reviewing experience. The questions addressed 
roughly the same legal claims and concepts as the exam, but not in the same way as 
the exam, involving completely different facts, and in a multiple choice format rather 
than in essay form. After preparing the tests, the instructor invited several particularly 
strong students who had taken the same course in prior years to take the test. The 
instructor then revised the test based on these students’ answers to multiple choice 
questions and other feedback. 

On Day 1, students uploaded their anonymized midterm exam answers to Comrade 
from wherever they had an Internet connection. From Day 3 to 7, students logged in 
to review the papers of the other students. Each student received four papers to re-
view, and each review was predicted to take about 2 hours. Before a student began 
reviewing, and again before he received his reviews from other students, each student 
completed a multiple choice test as the pretest and posttest. To control for differences 
between the test forms, half of the students in each condition received form A as the 
pretest and form B as the posttest; the other half received them in the opposite order. 
On Day 8, students logged in to receive reviews from their classmates. On Day 10, 
students provided the reviewers with back-reviews explaining whether the feedback 
was helpful. Students also took a brief survey on their peer review experience. 

3   Results 

Sensitivity to Prompts. We computed every peer author’s mean inbound peer rating 
for each rating prompt across the reviewers. For example, for a student in the domain-
writing condition, we took four means across reviewers, namely for the prompts  
"issue", "argument", "writing", and "conclusion" (see Table 1). We examined the 



 Eliciting Informative Feedback in Peer Review 101 

 

distribution of mean inbound peer ratings for each rating prompt to determine the 
extent to which these different rating prompts yielded non-redundant information 
from reviewers. Mean inbound peer ratings ranged from a low of 1.86 (problem-
specific condition, “idea2” prompt) to a high of 5.54 (domain-writing condition, 
“writing” prompt) on a 7-point Likert scale (Table 3), showing that peer reviewers do 
respond to different prompts with different answers. 
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Fig. 1. Frequency of inbound ratings per dimension. dg = domain-writing dimensions, ps = 
problem-specific. 

In particular, they distinguish less among various aspects of writing composition 
than they do among problem-specific issues. This becomes apparent by visualizing 
the frequency of the inbound ratings, as in Figure 1. All the ratings in response to 
domain-writing prompts tend to the right on the X axis, while the problem-specific 
ratings have no consistent distribution. Within each condition, we computed pairwise 
correlations of the mean inbound peer ratings for the prompts in that condition. The 
mean pairwise correlation among domain-writing ratings is 0.68, while the mean 
pairwise correlation among ratings in response to problem-specific prompts is 0.15. 
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Table 3. Mean inbound peer ratings for each rating dimension 

Dimension 
(Domain-Writing) 

argument conclusion issue writing  

Mean (SD) 5.23 
(1.02) 

5.34 
(0.838) 

5.33 
(0.93) 

5.54 
(0.98) 

 

Dimension 
(Problem-Specific) 

idea1 idea2 nda rop tsm 

Mean (SD) 4.83 
(0.995) 

1.86 
(0.878) 

4.26 
(1.34) 

2.65 
(2.02) 

4.59 
(1.12) 

Learning Outcomes. We measured student comprehension of some aspects of do-
main knowledge before and after students gave feedback to each other. Neither the 
ratings that authors received with respect to domain writing skills nor those related to 
problem-specific issues were predictive of their performance on pre-test or post-test. 
For each kind of rating prompt, we used a linear regression to model pre-/post-test 
performance as a function of mean inbound peer ratings. In each case, the linear mod-
els predicted less than 1% of the variance in test performance. 

4   Discussion 

Our aim is to understand how peer review can bring value to the classroom, and to 
emphasize those elements of peer review that benefit learners the most. We have 
presented evidence that student peer reviewers are sensitive to the difference between 
two types of rating prompts, domain-writing and problem-specific, and that their 
ratings of each other's work are less discriminating with respect to the former than to 
the latter. This is likely to be pedagogically important. Since peer reviewers’ ratings 
of different aspects of domain-specific writing composition are highly correlated, they 
are likely to communicate redundant information to authors, and soliciting these rat-
ings is not an effective use of the reviewers’ time. On the other hand, if problem-
specific support to reviewers leads to ratings that do not correlate with each other, 
such ratings are not redundant, and more likely to be informative. In particular, the 
problem-specific support relates to legal claims, each of which provides a different 
framework for analyzing the ill-defined problem. The different problem-specific re-
views may thus lead authors to frame the problem in different ways, and the exercise 
of reading and making sense of the somewhat divergent problem-specific suggestions 
is likely to be pedagogically fruitful. [16, 17] One direction for future research is to 
examine whether peer authors respond differently to feedback on writing versus on 
problem-specific aspects by looking at back-reviews (the authors’ responses to  
reviewers) and subsequent drafts, and by surveying students. If problem-specific 
support is indeed valuable, this suggests that intelligent and adaptive support for peer 
review may also benefit students. 

Our study complements the research of Wooley [18], which showed that students’ 
subsequent writing improves when they give ratings and written comments, and not 
only numeric ratings. Subsequent writing quality was operationally defined as expert-
assigned scores of student essays. In both conditions of our experiment, reviewers 
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gave feedback as ratings and as written comments. Having thus controlled for the 
effect identified by Wooley, we found that giving feedback did not contribute to stu-
dent understanding of key domain concepts, as measured by an objective test. It is 
possible that our objective test was not sensitive to what students were learning from 
the act of giving feedback, and it remains for future work to examine in detail the 
written comments that students give each other, and to look for signs that the prompts 
seen by students have an effect in the reviewers’ and authors’ subsequent writing. 
Author understanding of domain-independent feedback is a critical mediating factor 
in what feedback authors actually implement in a subsequent draft. [14] Our study 
suggests that feedback regarding problem-specific aspects may be more useful to 
authors than feedback on writing composition; making feedback more useful may 
lead to greater implementation as well. 

Although we found that giving feedback in response to either kind of prompt did 
not contribute to student understanding of key domain concepts, many others have 
found that prompts can indeed support learning. Renkl and colleagues found positive 
learning outcomes for students who received metacognitive scaffolding through 
prompts rather than the support of “cognitive” task-oriented prompts. [19, 20] We 
explore metacognitive support for peer review in another study. In related work, King 
describes several discourse patterns that can benefit learning outcomes in settings 
such as problem solving and peer tutoring. [21] Another way to encourage learning in 
peer reviewers could be to ensure that all students review low-quality work. [22] 

These results have significance for the design, implementation, and evaluation of 
intelligent tutoring systems that employ peer review as a mechanism for teaching 
skills of ill-defined problem-solving. For instance, we expect the problem-specific 
ratings to be especially useful for Comrade; as it compiles a student model based on 
the students’ feedback, it needs to know whether the reviewers’ ratings provide useful 
information. We plan to investigate its impact on reviewers and authors in future 
work. 
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Abstract. This paper focuses on microworlds, a special type of Ex-

ploratory Learning Environment, where students freely interact with the

system to create their own models and constructions. Most microworlds

developed so far provide integrated scaffolds to help students’ learning

process, but the nature of the interaction makes it difficult to design,

develop and evaluate explicit adaptive support according to students’

needs. Building on previous work in the field, this paper proposes a lay-

ered approach that simplifies the development and allows both formative

and summative evaluation of the different components of the system. As

a case study, we present the development of intelligent support for a mi-

croworld in the MiGen project, and discuss its evaluation that includes

both technical and pedagogical experts of the team.

Keywords: exploratory environments, architecture, evaluation.

1 Introduction

Microworlds (or model-building systems [1]) are a special type of Exploratory
Learning Environments (ELEs), in which students undertake tasks by construct-
ing and exploring models. This has several benefits to the learning process: e.g.
students usually get more engaged with the activity, and they have a sense of
ownership over their learning [2]. Research in the learning sciences (e.g. [3])
suggests that freedom of exploration without a proper degree of support can be
problematic. Moreover, taking into account that teachers have a limited capacity
to support students introduces a clear need for computer-based support.

However, the nature of the students’ interactions in microworlds, and the
constructivist intentions behind their design, make the already challenging and
costly problems of ITS design, development, and evaluation (c.f. [4]) even more
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difficult. In this paper, we present our approach which is driven by the follow-
ing challenges: (i) the need to break down into tractable problems the complex
process of monitoring and reacting to students’ interactions in such an uncon-
strained environment, (ii) the high cost of communication between several kinds
of experts (e.g. computer and learning scientists) which are required to tackle
this problem, (iii) the difficulty to evaluate the different components and the
system overall. Building on former work in the field (see Section 2), and inspired
from successful methodologies in robotics [5] and adaptive systems [6], we pro-
pose a layered approach to development and evaluation. This is presented in
Section 3. Such a layered approach separates the different conceptual scopes in
the design process. Additionally, as discussed in Section 4, it eases the evaluation
process which needs to include members of the design team with different back-
grounds. A separated, focused, and early evaluation of the different components
of the system facilitates the detection of problems at a stage where the system
components can be modified and tuned.

2 Related Work

Our layered module-based approach has been influenced by the subsumption
architecture used in robotics [5], where complicated intelligent behaviour is or-
ganised into layers of simple behaviour modules. The problem presents several
similarities: unstructured input data, difficulty of representation, and real-time
action requirements. In the field of ITS, one of the few attempts to provide in-
telligent support in microworlds is presented in [7]. In contrast to our approach,
the separation of the intelligent feedback components in layers is not explicit
in that paper. However, the authors make an attempt to separate analysis and
aggregation employing pedagogical agents and a voting mechanism. Regarding
encapsulation of the feedback layer a particularly relevant example is [8]. Their
‘bar codes’, that encapsulate pedagogical situations, are conceptually similar to
the classes of feedback strategies that we employ as inputs to our feedback layer.

In relation to evaluation, our approach recognises that it is a difficult prob-
lem (c.f. [9]). The case of microworlds, with the unstructured interaction and
their complex relationship to learning, makes the problem even more challeng-
ing. Therefore, we believe that the appropriate evaluation in such a case needs
to borrow ideas from several fields, including software engineering [10,11], ar-
tificial intelligence [5], AI in Education [12,13], adaptive systems [14,6,15], and
HCI [16]. In particular, as discussed in more detail in Section 4, layered evalua-
tion methodologies [6,15] fit perfectly with our approach.

Architectural approaches [17,18] and design patterns(e.g. [19]) for ITS that
have focused on reusability are also relevant to our work. However, to the best
of our knowledge, none of these approaches employs a conceptual separation of
concerns to facilitate early evaluation of the system or to ease the communication
between technical and non-technical members of the research team. It is these
concerns that guide the approach we present in the next section.
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3 Layered Approach for Development of ISEE

Examining both the architectural and evaluation approaches mentioned in Sec-
tion 2, we consider four conceptual layers in the development and evaluation of
intelligent support in microworlds. This conceptualisation is general enough, as
it does not make any assumptions about the microworlds or the exact computa-
tional techniques used in the different layers, while, at the same time, provides
a useful guide for the development and evaluation of Intelligent Support in Ex-
ploratory Environments (ISEE). The details of the four layers are presented
below. Fig. 1 depicts the information flow from the lower to upper layers. The
loop through the user represents how the learning feedback influences the actions
of the students as they interact with the microworld.

Fig. 1. Layered design and evaluation of intelligent support

3.1 Microworld Layer: The Expresser

The lower layer represents the microworld or the exploratory environment itself.
The students interact freely with the environment, usually trying to perform
some kind of task given in advance. The exploratory nature of the environment
provides a high number of possible courses of action. Some of these courses
of action will lead to the completion of the task, some will make some partial
progress in that direction, and some of them will be off-task (e.g. playful be-
haviour). As a case study, Figure 2 shows the eXpresser microworld developed
in the context of the MiGen project. eXpresser encourages students to build pat-
terns out of square tiles and to find general algebraic expressions underpinning
them.

Figure 2 illustrates some of the core aspects of the eXpresser. In order to
represent the generalities they perceive, students can use numbers that can be
‘unlocked’ to become variables. Locked and unlocked numbers can be used in
expressions. This microworld gives a lot of freedom to students to construct
their patterns in a multitude of different but equivalent ways. For a detailed
description of the eXpresser the interested reader is referred to [20].
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Fig. 2. Constructing a pattern in eXpresser and describing it with a rule. Main features:

(A) An ‘unlocked’ number that acts like a variable is given the name ‘reds’ and signifies

the number of red (dark grey) tiles in the pattern. (B) Building block to be repeated to

make a pattern. (C) Number of repetitions (i.e. the value of the variable ‘reds’). (D,E)

Number of grid squares to translate B to the right and down after each repetition. (F)

Local rule: units of colour needed. (G) General rule: gives the total number of units of

colour required to paint the whole pattern (if correct, solves the task). (H) Help-seeking

area with drop down menus and (I) suggestion box for feedback provision.

3.2 Computational Analysis

On top of the microworld layer, there is a layer composed of several compu-
tational analysis modules (CAM). Every module concentrates on a particular
aspect of the actions of the student, and tries to solve a different well-defined
problem. Therefore, every module filters the data provided by the environment
to use only those that are needed, and uses different AI techniques adapted
to the particular problem that it solves. Given the unstructured nature of the
data provided by most microworlds, the specificity of the computational analy-
sis modules eases their development. As an example, the computational analysis
modules used in MiGen are summarised in Table 1.

This focus on small, specific problems also facilitates the reuse of modules
among systems based on different microworlds. Although there is always a certain
level of coupling between the analysis module and the microworld, modules that
tackle well-defined and general problems can be used across different systems.
For example, the construction evaluation module has been reused from previous
work on a microworld called ShapeBuilder (c.f. [21]).

3.3 Aggregation Layer

The output of the different modules on the computational analysis layer is frag-
mented and unsuitable of being used directly for providing feedback. There is a
need for an additional layer that interprets the combination of the output of the
different modules.
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Table 1. Computational analysis modules in MiGen

Name Function

Apparent Solution

Detector

Returns true if the construction on the screen has the same

appearance as a solution.

Construction Evalua-

tor

Given a set of expected solutions and common mistakes, returns

a similarity measurement to each of them

Rhythm Detector Detects rhythm in the actions of the student, because rhyth-

mic repetition of patterns can give an understanding of implicit

structures in the students’ minds [20]

Clutter Detector Detects spurious elements in the construction of the students,

that may distract them in their thinking

Generality Verifier Verifies whether the solution given by the student is able to

generate all possible expected patterns. If yes, returns true; if

not, returns a counterexample.

General Rule Verifier Returns true if the rule (i.e. formula) provided is always valid

Inactivity Detector Detects students’ inactivity

Unlock Detector Detects whether students are using at least one variable (i.e.

unlocked number)

This aggregation of information happens on the third layer. There can be more
than one aggregation components, each of them using the output of modules
from the lower layer and/or the information of the student model, each of them
dealing with different aspects of the feedback.

In MiGen the aggregation requirements have been derived by a knowledge
elicitation process, more details of which are provided in [22]. In our case, the
aggregation layer is implemented using a rule-based approach because, it fits our
requisites and it is easier to maintain and scrutinise. The layer takes the output
of the modules in the layer underneath and follows a series of rules to produce
a feedback class that can be sent to the feedback layer.

An example of such a rule takes the output of four different modules: Apparent
Solution Detector, Construction Evaluator, Unlock Detector, and General Rule
Verifier. The output of the first three is combined to check that the student
has built a construction that looks like a solution, that the construction is very
similar (maybe equal) to one of the expected solutions to the task, and that they
have already unlocked some numbers (so that the eXpresser can show several
instances of the construction). Then, if in spite of all this, the final expression is
not correct, a feedback strategy StrategyGeneralRuleFromLocalRule is called. In
its abstract form, this strategy aims to help students develop a simple heuristic:
that the general expression can be found by adding all the local expressions that
are on the canvas. Other examples of feedback strategies appear in [22].

Input to the rules comes from the analysis modules and from the user model.
Rules can either produce calls for an abstract feedback strategy (to be instan-
tiated at the upper layer) or update the student model. When several rules fire
simultaneously, there must be a policy of priorities between them. The interested
reader is referred to [23] for an example of a a multi criteria decision making
process to generate priorities depending on the context.



110 S. Gutierrez-Santos, M. Mavrikis, and G. Magoulas

3.4 Feedback Layer

The last layer of the architecture is the feedback layer. This layer is responsible
of producing the actual feedback that will be presented to the student based
on the output of the other three layers plus the student model. The feedback
layer combines the output from the aggregation layer (i.e., the feedback strategy
to be followed) and the information in the student model (i.e., characteristics
and other historical information with regard to their short-term interaction) to
create an adequate instance of the feedback to be presented.

In MiGen, this layer takes care of presentational aspects (e.g. appropriate
location of feedback and use of figures) and student adaptation (e.g. not pre-
senting recent feedback, co-locating images and text with current constructions).
In particular, inspired by the typical approaches in the field, the feedback layer
is responsible for scaffolding consistent with the principles discussed in [24]. Ac-
cordingly, the feedback layer adapts the feedback provided in order to provide
gradually more specific help but not more than the system’s belief about the
minimal help required to ensure progress.

In our implementation this is achieved first by grading the feedback accord-
ing to the following three types: ‘nudge’ questions, comments and suggestions
and subsequently the degree of intervention on the students’ construction. In
particular, ’nudge’ questions are rhetorical questions designed to draw students’
attention to a specific aspect of their construction or a recent action that might
have introduced a problem (e.g., ‘Did you notice how this [↓] changed when you
unlocked the number’?). Comments provide a factual remark on the current
state of the microworld or of the students’ problem solving process towards a
specific task (e.g. ‘The pattern cannot be animated, there are no unlocked num-
bers’). Suggestions provide a direct hint towards a plan or an idea proposed for
the students’ consideration (e.g., ‘It seems you are repeating this building block
[image]. Try to make the pattern using this [image].’). Finally, the last level,
usually consists of a direct action in students’ canvas, designed either to help
them improve their construction or to change something that might help them
think what to do further. Again, these were co-designed by the research team
with teachers. More examples and specific details of strategies appear in [22].
We intend that in the future it will be possible for teachers (or appropriate task
designers) to define their own adaptive scaffolds for the tasks they develop.

4 Evaluating Intelligent Support

Evaluating intelligent support in microworlds entails particular challenges that
arise from the fact that a complete interaction with the microworld requires
a significant amount of time. Students need to be introduced to the system
through tutorial sessions, and subsequently interact with a variety of tasks. This
introduces a series of issues which are difficult to control or factor out. These and
other general problems have been discussed in detail (e.g. [9]). Our concern lies
both in a ‘cause attribution’ problem (that is, the difficulty to identify what to
regard as the cause behind unexpected results) and the need for early detection
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Table 2. Evaluation of intelligent support on every layer

Layer Responsibilities Experts involved Evaluation Dependencies

M
ic

ro
w

o
rl
d Direct interaction with the

student, providing a certain

level of freedom. Provision

of integrated feedback. Out-

put: log of actions

Pedagogical in

design, technical

in implementa-

tion.

Pedagogical

validity, us-

ability and

HCI

Does not use the

output of other

layers. Can be

tested indepen-

dently.

C
o
m

p
u
ta

ti
o
n
a
l
A

n
a
ly

si
s

Analysis of student’s actions

Output: variable, depending

on ITS module

Technical Whitebox and

blackbox eval-

uation. For

some modules,

gold-standard.

Uses the output

of the microworld.

Depending on

the module,

gold-standard

validation can be

performed inde-

pendently or needs

to be tested along

with microworld.

A
g
g
re

g
a
ti
o
n Aggregation of the output

of the computational anal-

ysis modules to generate

feedback strategy classes.

Output: feedback strategy

classes

Technical Sensitivity

analysis. Gold-

standard.

Uses the output

of the two for-

mer layers and the

user model. Can

be tested indepen-

dently.

F
e
e
d
b
a
ck Generation of expressions of

feedback based on feedback

classes and information from

the user model. Output: all

expressions of explicit feed-

back for the student.

Pedagogical in

design, technical

in implementa-

tion

Gold-standard

validation us-

ing wizard-of-

oz techniques

Uses the output

of the other lay-

ers and the user

model. Can be

tested indepen-

dently.

of errors. For example, students’ interpretation of feedback, particularly in such
a complex environment, is full of confounding factors varying from interface (e.g.,
the look and feel of the messages) to technical issues (e.g., a wrong weight in an
algorithm), and from cognitive (e.g., their perception) to educational (e.g., the
design of the pedagogical strategy of the system). Waiting until the whole system
is assembled to detect these problems are extremely costly: detecting the causes
of problems is difficult, and their resolution may need at that stage an amount of
resources that is not available. Early and focused detection of problems is crucial.

This requires following a layered evaluation methodology (c.f. [14]), which
closely matches our development approach and compartmentalises the scope of
the evaluation. The layered separation of scopes means that components of each
layer can be tested individually, before they are integrated in the holistic eval-
uation scheme for the whole system. This is summarised on Table 2. In MiGen
in particular, our approach to evaluating the system is driven by replicated
data from students’ interactions and an adaptation of traditional wizard-of-oz
techniques, as explained in [22].
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The first layer refers to the evaluation of the microworld itself. In our approach
we assume that this has been conducted in advance, ensuring that it achieves an
appropriate level of usability. Otherwise, it might compromise the purpose of the
whole system. Accordingly, it must be checked that the microworld is adequate
for its pedagogical purpose; that is, that the metaphors used clearly express the
concepts involved and do not favour misconceptions in the student’s mind.

The computational analysis modules need to be tested in two steps. The
first step involves only technical skills, and consists of white-box and black-
box tests that check that the functionality of the modules agrees with their
specification. A series of scenarios has to be generated by the development team
to test the modules. These scenarios can be gathered directly from real studies,
but some situations (e.g. if the microworld is being developed in parallel) may
require the use of scenarios based on artificial data. The second step involves
additional elicitation of knowledge from pedagogical experts through a process
of gold-standard validation: several scenarios are shown to experts, asking them
for a diagnosis; their answers are then checked against the answers given by
the modules, testing their accuracy (see an example related to the Construction
Evaluator module on Figure 3). Depending of the nature of the analysis modules,
gold-standard validation is not always needed, e.g. there is no subjective decision
in the output of the Generality Detector.

Fig. 3. Gold standard evaluation of the Construction Evaluator. Pedagogical experts

are asked which figures are the most and less similar to the first one. Results are

compared with the output of the Construction Evaluator module.

The aggregation layer is important to produce adequate feedback, and it is
paramount to check that the aggregation mechanism is robust. The effect of
varying the inputs of the underlying layers on the output of the aggregation
layer must be ascertained by following a form of sensitivity analysis. In MiGen
we are particularly concerned in the effect that different values stored in the
student model have on the feedback strategy proposed by the rule based system.
This demonstrates to us whether the layer lacks some pedagogical expertise. Ad-
ditionally, we need to evaluate its output given the likely educational outcomes
according to pedagogical experts.

The feedback layer is responsible of directly interacting with the student.
Therefore, it involves a lot of subjective aspects regarding feedback, that need
to be evaluated with the help of pedagogical experts. There is an important
obstacle at this stage: it is difficult for experts to accommodate their expertise in
different contexts, e.g. a tutor may be expert in providing feedback to students
face-to-face, but the communication capacity of a computer-based system is
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much lower than that. We have developed a process to gradually accommodate
the feedback techniques that human experts follow into a computer interface;
a detailed explanation of our Communication Capacity Tapering methodology
is provided in [22]. As a result of this process, a series of scenarios is produced
where the feedback provided by human tutors can be compared to that provided
by the system in the same situation (defined by a feedback strategy and the
information in the user model), thus detecting differences.

Once this formative evaluation process of the different layers has been com-
pleted, the different components can be assembled together. This enables a sum-
mative evaluation, which assesses the pedagogical validity of the whole system.

5 Conclusions and Future Work

This paper presents an approach to designing and evaluating intelligent support
for microworlds in particular and exploratory or other environments in general.
The approach increases the tractability of the solution by defining four con-
ceptual layers that can help compartmentalise the design and evaluation. This
separation of concerns has three advantages. First, it allows parallel development
of different aspects of the intelligent support. Second, it facilitates the commu-
nication between researchers in interdisciplinary teams. In MiGen, this allowed
the different researchers to concentrate in a problem of their expertise at a time.
Finally, and most important, early evaluation of separated components results
in a more robust and useful system before evaluating the whole system with
students in classrooms. At that point, detecting and correcting problems in such
a complex system can be difficult at best and too costly at worst. As an added
benefit, a layered approach facilitates the reuse of components between systems.
Modules tackle very well-defined and general problems, so they can be useful
for different systems. Nevertheless, we plan to study the possibility of using our
modules in other systems. Reuse of intelligent components in microworlds is a
process that is not well understood and demands further investigation.
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Abstract. Exploratory Learning Environments (ELE) facilitate scientific in-
quiry tasks in which learners attempt to develop or uncover underlying scien-
tific or mathematical models. Unlike step-based Intelligent Tutoring Systems 
(ITS), and due to task characteristics and pedagogical philosophy, ELE offer lit-
tle support at the domain level. Lacking adequate support, ELE often fail to de-
liver on their promise. We describe the Invention Lab, a system that combines 
the benefits of ELE and ITS by offering adaptive support in a relatively uncon-
strained environment. The Invention Lab combines modeling techniques to as-
sess students' knowledge at the domain and inquiry levels. The system uses this 
information to design new tasks in real time, thus adapting to students’ needs 
while maintaining critical features of the inquiry process. Data from an in-class 
evaluation study illustrates how the Invention Lab helps students develop so-
phisticated mathematical models and improve their scientific inquiry behavior. 
Implications for intelligent support in ELE are discussed. 

Keywords: intelligent tutoring systems; exploratory learning environments; in-
vention as preparation for learning; model tracing; constraint-based modeling. 

1   Introduction 

Exploratory Learning Environments (ELE) facilitate inquiry tasks in which students 
are instructed to develop or uncover an underlying scientific or mathematical model 
[1]. Adhering to constructivist instructional principles [2], ELE give the learners more 
responsibility over controlling the learning process, compared with step-based prob-
lem-solving environments [3]. For example, students in ELE are expected to analyze 
data, raise hypotheses, monitor their progress, and in general, behave the way scien-
tists do [1,2]. This is hypothesized to enhance transfer [4], facilitate acquisition of 
meta-cognitive and self-regulation skills [5], and increase motivation [6]. However, 
classroom evaluations have repeatedly demonstrated that students often exhibit un-
productive inquiry behaviors, subsequently failing to acquire the desired learning 
goals [1]. These disappointing outcomes have led to an increased interest in support-
ing students while working with ELE [6,7].  

In order to support students at the domain-independent inquiry level, many ELE 
scaffold the inquiry process using cognitive tools [8]. For example, Rashi, Smithtown, 
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and SimQuest include inquiry notebooks with templates in which students raise hy-
potheses, document observations, make conjectures, etc. [5,6,9]. Using cognitive tools 
to scaffold the inquiry process decreases the rate of unproductive behaviors and 
makes the inquiry process visible, thus helping students internalize the desired inquiry 
skills [10]. Cognitive tools can also be used to label students' inputs and linearize the 
inquiry process, making it easier for the ELE to trace students' progress in the task. 
Consequently, a number of ELE give students feedback on their domain-independent 
inquiry behavior. For example, Rashi gives feedback to students who make circular 
arguments [9], the Science Learning Spaces gives feedback on experimental designs 
that do not use the control of variables strategy [11], and ACE prompts students who 
have not explored the interaction space sufficiently [12]. 

While domain-independent support of the general inquiry cycle is important, evi-
dence suggests that students are also in need for support at the domain level [7]. To do 
that, ELE should evaluate the content of students' actions. Many Intelligent Tutoring 
Systems (ITS) evaluate students' responses by tracing their actions using a compre-
hensive set of rules that outlines common correct or buggy solution paths (termed 
model tracing, [3,13]).  However, applying a similar mechanism to ELE faces a two-
fold challenge. First, ELE should evaluate answers that vary a lot in content and com-
plexity, compared with most step-based ITS. For example, Figure 1 shows an inquiry 
task in which students are asked to invent a method for calculating variability. Every 
algebraic procedure is a potential response to this task, and thus should be evaluated 
by the system. For instance, one common error that students often make is to use the 
range function as a measure of variability (using "range" implies that variability is 
determined only by the extreme values). However, students may use different morphs 
of range, such as "range+1" or "2*range" (all example methods in this paper are taken 
from students' inventions during the classroom studies). While simplifying students' 
methods algebraically may simplify the modeling task, it often fails to capture stu-
dents' misconceptions. For example, several students added up the distances between 
all subsequent pairs of numbers, which is mathematically equivalent to range: (a1-
a2)+(a2-a3)+…+(an-1-an)=a1-an. However, this method reveals a different conceptual 
error compared with range, since the more complex (yet mathematically equivalent) 
method uses all data points (and not merely the extreme values) to determine range. 

 
The Bouncers Trampoline Company tests their  
trampolines by dropping a 100 lb. weight from 15 feet. 
They measure how many feet the weight bounces back 
into the air. They do several trials for each trampoline, 
and measure only the first bounce in each trial. Here 
are the results for two of their trampolines: 

 
Create a method for determining which trampoline is 
more consistent. You should use the same method to 
evaluate both trampolines. Your method should give a 
single value for each trampoline. Write your method in 
steps so that other people can apply it. 

B
ouncing height (ft) 

Fig. 1. An example of an invention task. Data is presented in the form of contrasting cases that
direct students' attention to deep features of the domain.  
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In addition to the virtually intractable interaction space, ELE should also deal with 
an under-defined solution space. This means that not all classes of solutions (whether 
correct or not) can be defined in advance. While most step-based ITS assume that a 
solution that is not part of the cognitive model is incorrect [13], this assumption can-
not be made with inquiry tasks, in which students may develop methods that do not 
correspond to classes of solutions identified in advance by the expert modeler.  

Due to these challenges, most ELE do not assess students' knowledge at the do-
main level. Those who do often limit the vocabulary students can use and map the 
entire solution space. For example, SimQuest evaluates the complete subset of poten-
tial experiments that can support or refute each stated hypothesis [6]. Similarly, Eco-
Lab and Smithtown map all possible nodes in the interaction space [5,14]. Naturally, 
this approach is not scalable for ELE that facilitate complex tasks or that allow for a 
large variety of inputs. 

In addition to the challenge of analyzing students’ errors, ELE designers face the 
challenge of responding to these errors, that is, designing effective domain-level sup-
port that does not undermine the exploratory nature of the inquiry task [6]. While ITS 
often set sub-goals for students and give them immediate feedback on errors [3,13], 
the pedagogical philosophy behind ELE suggests that students, and not external 
agents, should have responsibility over these tasks [2]. Therefore, many ELE offer no 
support at the domain level [7]. Other ELE give students immediate feedback, thus 
potentially hindering the benefits of inquiry learning [5]. A better solution would be 
to support students by adapting the task to their demonstrated proficiencies. For ex-
ample, EcoLab directs students to one of three canned sets of directions and hints 
[14]. While this approach adheres to the pedagogical principles of ELE, having 
canned versions of the tasks is not a scalable solution. Adapting the task to a wide 
range of knowledge deficits, as students demonstrate in a wide range of situations, 
remains to be solved. 

This paper addresses the two research questions outlined above. First, we describe 
a novel approach for evaluating students' knowledge at the domain level in ELE. We 
demonstrate this approach using the Invention Lab, an ELE for invention tasks. Sec-
ond, we describe how the Invention Lab adapts the task to students' demonstrated 
proficiencies, thus supporting students while maintaining the exploratory nature of the 
task. Last, we illustrate how intelligent support can aid learning at the domain and 
scientific reasoning levels using log-files from a classroom evaluation of the lab. 

2   The Invention Lab 

The Invention Lab facilitates a type of inquiry activities called invention tasks.  In 
invention tasks students are asked to invent novel methods for calculating target prop-
erties of data [4,15]. Figure 2 shows the Trampoline problem (from Figure 1) as it 
appears in the lab. In this example students are asked to invent a method for compar-
ing the variability of two datasets. Invention tasks use contrasting cases to direct stu-
dents' attention to deep features of the domain [4]. For example, the contrasting cases 
in Figure 2 (region (2c)) share the same average and sample size, but differ in their 
range. Following the invention attempt, students receive direct instruction on the 
canonical solutions for the same problem, and practice applying these solutions to  
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Fig. 2. The Invention Lab interface. Students are first asked to rank the contrasting cases (1). 
Upon successful ranking, the system asks the students to invent a method that will reflect their 
ranking (2a). The students express their method in steps (2b), using points from the contrasting 
cases (2c), and using basic functions (2d). Last, students evaluate their method (3) and revise it 
as needed. Students repeat the cycle using different contrasting cases. 

 

different problems. The instruction and practice are done outside the lab. For exam-
ple, the invention task from Figure 2 is followed by direct instruction on mean  
absolute deviation (the average distance from the mean). Multiple classroom studies 
have shown that invention tasks followed by direct instruction and practice lead to 
more robust learning compared with direct instruction and practice alone [4,15]. This 
effect was also termed "productive failure" [16], since the benefits of invention tasks 
were found even though most students failed to invent valid methods.  

The Invention Lab facilitates invention tasks at the middle- and high-school levels. 
We first describe the interaction flow in the Invention lab from the students' point of 
view. We then describe the intelligent components of the system. 

Students begin their invention activity by ranking two given contrasting cases ac-
cording to the target concept (e.g., the data for Trampoline B is less spread out; region 
(1) in Figure 2). This qualitative ranking serves as the baseline against which students 
can later evaluate their inventions [4]. 

Upon successful ranking students move on to the design phase (region (2a)). In this 
phase students design a method for calculating the spread of the data. In previous 
studies we found that students prefer to express their methods as a sequence of steps 
(rather than a unified formula, see Figure 3). The lab retains this characteristic by 
supporting design in steps (region (2b) in Figure 2). Each step has the simple form of 
number - operator - number. While students need to invent a general method, they 
need not express it as such. Instead, in order to reduce cognitive load, students  
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Fig. 3. A method designed by a student on paper (left) and the same method in the lab (right) 

 

demonstrate their method by instantiating it using the given contrasting cases. For 
example, in order to "design" range, students enter "9-1" in the left graph by clicking 
on the "9" data-point (region (2c)), choosing the minus sign, and clicking on the "1" 
data-point. Students can also add basic functions to their methods (sum, average, 
median, and count; region (2d)). Last, students can add and delete steps, and use the 
results from previous steps in a current step.  

Students apply their method to both contrasting cases and then submit it. No feed-
back is given during the design phase with the single exception of checking upon 
submission whether the same method was applied to both contrasting cases. 

The evaluation phase (region (3) in Figure 2) asks students to compare the out-
comes of their methods to their initial ranking. Feedback on evaluation incorporates 
an intelligent novice model, in that students are given the opportunity to notice the 
limitations of their method and revise it prior to receiving feedback [17]. When the 
invented method fails to generate the correct ranking (as established in the qualitative 
analysis), the system points that out and prompts the students to revise their method. 
When the method generates the correct ranking the system analyzes the method and 
identifies conceptual errors (for example, using range does not take into account other 
data points). The system uses this information to generate new contrasting cases that 
target the identified knowledge gaps. The number of ranking > design > evaluation 
cycles is not limited, and tasks are designed to engage students for 30 minutes. Stu-
dents usually use the lab in pairs, though no explicit support for collaboration was 
implemented.  

2.1   Intelligent Support in the Invention Lab 

Support at the inquiry level. The Invention Lab scaffolds the inquiry process using 
cognitive tools (such as the step-based formula builder). The explicit scaffold of the 
inquiry process (i.e., ranking -> design -> evaluation) makes it a good candidate for 
applying a model-tracing approach. By tracing students' actions using a cognitive 
model of the inquiry process, the Invention Lab can give students adaptive and do-
main-independent feedback on their progress in the inquiry process. For example, 
when students fail to notice that predictions derived from their methods do not match 
their initial ranking, the tutor responds by explicitly pointing out that “your answer to 
the last question is not the same as your initial prediction."  

Identifying errors at the domain level. As described above, evaluating students' 
methods at the domain level is particularly challenging. The virtually intractable in-
teraction space makes it hard to trace students’ actions, and the under-defined solution 
space makes it hard to evaluate complete solutions as a whole. Therefore, instead of 
pre-defining the complete set of solution classes, we chose to define the set of  
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requirements from a valid solution (without defining the solutions themselves). This 
is done using Constraint-Based Modeling (CBM, [18]). CBM is a modeling approach 
that evaluates whether students' answers satisfy (or violate) a set of domain-specific 
constraints. Each constraint is associated with a characteristic that is required from all 
correct solutions. Therefore, all methods that violate a specific constraint reflect a 
similar knowledge gap. This quality of CBM makes it suitable for ill-defined domains 
and tasks [19]. The Invention Lab uses CBM to test whether the invented methods 
capture the deep features of the domain. For example, valid solutions should use all 
data points to calculate variability. However, many of the methods described above 
use only the extreme data points (e.g., range). The Invention Lab need not represent 
all the possible ways of demonstrating this knowledge gap. Rather, it can identify 
when the only arguments used by a method are the extreme values. Therefore, one of 
the constraints in the Invention Lab specifies that students should not use only the 
extreme values. A comprehensive list of 6 target features with 14 common errors (i.e., 
violated constraints) was compiled based on students’ inventions in a previous paper-
and-pencil study [4]. Table 1 shows a subset of these features. Notice that each solu-
tion can violate more than one constraint. Additional constraints help the lab give 
feedback on general mathematical errors, such as inconclusive methods. 

To the extent that every algebraic method (at the middle school level) can be ex-
pressed using the Invention Lab interface and every invention can be analyzed ac-
cording to the features described above, the cognitive model of the lab can analyze 
any method. Both components of the cognitive model (model tracing and CBM) were 
implemented with 59 production rules written in Jess using the Cognitive Tutor Au-
thoring Tools [20]. The entire cognitive model could have also been implemented 
using a CBM approach.    

 

Table 1. Analyzing methods using constraints. The four bottom rows show methods invented 
by students during the classroom studies, when applied to sample data ({2,4,4,7,8}). 

Target feature  
(constraint): 

Variability is determined by 
all data points 

Variability 
depends on 
sample size 

Variability 
depends on 
distances 

Common conceptual 
errors (violations): 

Method uses 
only extreme 

values 

Method uses a 
sequential 

subset of points 

Method does 
not control 
for sample 

size 

Method does 
not calculate 

distances 

Range * 2  
(8-2)*2 = 16 

X  X  

Largest gap  
(7-4) = 3 

 X X  

# of close points 
N({2,4,4}) = 3 

 X X X 

(Min+max) / # of points 
(2+8) / 5 = 2 

X   X 
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Designing domain level support. Like many other ITS, the Invention Lab uses its 
evaluation of students' knowledge to adapt the task to students' demonstrated profi-
ciencies. The Invention Lab does so by giving students contrasting cases that direct 
students’ attention to the limitations of their previous methods and help them encode 
the deep structure of the domain. However, using canned contrasting cases may not be 
the right way to go. Students in the Invention Lab reveal their conceptual errors in 
different ways, when analyzing different data. Canned contrasting cases may lead 
students to create a collection of ad-hoc methods, resulting in scattered bits of knowl-
edge. Instead, the Invention Lab designs in real time new contrasting cases to match 
students' needs. Each common conceptual error has an associated method for generat-
ing new contrasting cases that target that error. The process is designed to ensure that 
new sets of cases are easy to compare with regard to the target concept (so ranking 
will be simple), and that the most recent lacking method would fail on them. For ex-
ample, if the student uses only extreme values, the system will generate two new 
cases that share the same range but have distinctive variability. Last, the process uses 
the recent set of cases, to help students build upon their prior experiences and create 
more cohesive knowledge. Table 2 demonstrates this process.  

Table 2. An example for the contrasting-cases generation algorythm. Steps 1 and 2 are generic. 
Step 3 changes based on the target conceptual error. The given example targets the use of only 
extreme values to determine variability. 

 Case A Case B Comments 

Original task    

Original cases: 1 3 5 7 9 3 4 5 6 7  

Invented method: range 9 - 1 = 8 7 - 3 = 4  

New task    

1. Keep the case with the higher
variability from the previous cycle 

1 3 5 7 9
 

 This encourages students to transfer 
from previous experiences 

2. Copy the values that were used
by the student in her previous
method to the other case 

1 3 5 7 9 1         9 This ensures that the pervious method 
fails to distinguish between the cases 
in the new set. 

3. Populate the other case with 
values that are halfway between
the original case and the average  

1 3 5 7 9 1 4 5 6 9 
 

This ensures that the two sets have 
distinct variability, the same average, 
and are easy to judge perceptually. 
(Halfway between 3 and average is 4; 
Halfway between 5 and average is 5; 
Halfway between 7 and average is 6) 

 

2.2   Evaluating the Invention Lab 

The Invention Lab was evaluated with 92 students in a public middle school in the 
Pittsburgh area. While the outcomes of the study are outside the scope of this paper, 
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log files from the study offer us a window into students' learning with the lab1. The 
following example spans the first 20 minutes of one pair of students trying to invent a 
method for calculating variability.  

First, the students receive the contrasting cases shown in Figure 2: (Trampoline A: 
1,3,5,7,9; Trampoline B: 3,4,5,6,7). The students rank the cases correctly ("Trampo-
line B has lower variability"), and "invent" range (Trampoline A: "9-1=9"; Trampo-
line B: "7-3=4").  

The lab analyzes the method and chooses what feature to focus on next. In this 
case, the highest priority is to help the students understand that variability is deter-
mined by more than merely the extreme values. The lab generates new contrasting 
cases that fix range and keep one of the previous cases intact (Trampoline A: 
1,3,5,7,9; Trampoline B: 1,4,5,6,9; see Table 2).  

The students rank the cases correctly ("Trampoline B has lower variability"), and 
begin their design by applying the previously successful method, range. (Trampoline 
A: "9-1=8"; Trampoline B: "9-1=8"). The students fail to notice that range gives the 
same result for both contrasting cases, which does not match their initial ranking. 
Therefore, the students receive detailed feedback from the system ("your answer to 
the last question is not the same as your initial prediction. Please check your 
method").  

The students then attempt several central tendency measures (such as mean and 
median), however, these methods fail to generate correct ranking (since the contrast-
ing cases share the same mean and median). This time around the students notice the 
failure of their methods and do not submit them for evaluation. 

The students then try range again, and scrap the method before submitting it. 
At this point, the log-files reveal a mini a-ha moment, when the students realize 

that they can extrapolate range to the second-furthest pair of points in each graph. 
They first list the two distances without relating them to one another (Trampoline A, 
step 1: "9-1=8", step 2: "7-3=4"; Trampoline B, step 1: "9-1=8", step 2: "6-4=2"). 
They submit this method, at which point the system prompts them that their method is 
inconclusive, since it does not assign a single value for each graph. The students, 
possibly encouraged by their success to extrapolate distance to other numbers, apply 
the concept of distance to the distances themselves. In other words, they subtract step 
2 from step 1: (Trampoline A, step 1: "9-1=8", step 2: "7-3=4", step 3: "step1-
step2=4"; Trampoline B, step 1: "9-1=8", step 2: "6-4=2", step 3: "step1-step2=6"). 
The students submit this method, but then realize its shortcoming – the method pre-
dicts that Trampoline A has lower variability, which is different from their initial 
ranking. They delete the method before approving it and resume the drawing board. 

The students invent few additional methods before trying to add up the distances: 
(Trampoline A, step 1: "9-1=8", step 2: "7-3=4", step 3: "step1+step2=12"; Trampo-
line B, step 1: "9-1=8", step 2: "6-4=2", step 3: "step1+step2=10"). This method 
produces the desired ranking, thus concluding the current cycle.  

This snippet of interaction reveals an interesting learning trajectory. First, we can 
see that the cognitive model of the lab identifies valid features, and its contrasting 

                                                           
1 Results, to be detailed elsewhere, show that students who designed methods in the Invention 

Lab acquired more robust learning compared with students who were not instructed to design 
new methods. These results echo the findings of an earlier paper-and-pencil study [23]. 



 The Invention Lab 123 

cases generator creates contrasting cases that achieve their goal. Second, we can see 
how students' thinking unfolds, and how their mental models of spread evolve (in-
cluding the a-ha moment before extrapolating range). Last, in addition to students' 
progression at the domain level, the students came across rich experiences at the sci-
entific inquiry level. The students improved their tendency and ability to evaluate 
their methods. They also encountered the limitations of inconclusive methods that do 
not give a single number, and found that the same method always gives the same 
result when applied to the same data. Other log files demonstrate the ability of the 
Invention Lab to interpret novel methods. For example, several students have contin-
ued the line of reasoning demonstrated above, and designed a method that averages 
all "recursive ranges" (i.e., distances between highest and lowest, second highest and 
second lowest, etc.) We did not anticipate this solution, which is not a common meas-
ure of spread. However, upon closer examination, we concluded that recursive-range 
is a valid measure of spread. Indeed, when encountered by the Invention Lab, the lab 
concluded that this method satisfies all required constraints2.  

3   Summary and Contributions 

We describe the Invention Lab, an ELE for facilitating invention tasks. The lab uses a 
hybrid of modeling techniques: it applies a model tracing approach to trace students' 
inquiry behavior, and applies a CBM approach to evaluate domain-level inputs. The 
Invention Lab also creates contrasting cases in real time. This allows the system to 
adapt its tasks to individual students without reducing critical features of the inquiry 
process. Last, we demonstrate how the combination of scaffold and feedback at the 
inquiry and domain levels helps students develop sophisticated mathematical models 
and improves their understanding of scientific reasoning. While the lab supports one 
type of inquiry tasks, invention activities, it demonstrates the feasibility of adding 
intelligent support at the domain and inquiry levels to ELE, thus bridging two schools 
of thought in the field of educational technologies.   
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Abstract. In a Exploratory Learning Environment users acquire knowledge 
while freely experiencing the environment. In this setting, it is often hard to 
identify actions or behaviors as correct or faulty, making it hard to provide 
adaptive support to students who do not learn well with these environments. In 
this paper we discuss an approach that uses Class Association Rule mining and 
a Class Association Rule Classifier to identify relevant interaction patterns and 
build student models for online classification.  

We apply the approach to generate a student model for an ELE for AI algo-
rithms and present preliminary results on its effectiveness.  

Keywords: Educational Data Mining, Student Modeling, Exploratory Learning 
Environments. 

1   Introduction 

Exploratory learning environments (ELEs) provide functionalities such as interactive 
simulations and visualizations for student-led exploration of a target domain. The idea 
is to promote active discovery of knowledge, which in turns triggers deeper under-
standing of the target domain than more controlled instruction. Research however, has 
suggested that the pedagogical effectiveness of an ELE is highly dependent on the 
student who uses it: while some students appreciate the independence afforded by of 
this learning activity, others suffer from the lack of structure and would benefit from 
more guidance during interaction [1]. Such findings highlight the need for ELEs to 
provide adaptive support for students with diverse abilities or learning styles.  

One of the challenges of providing this support is the difficulty in identifying  
student behaviors that warrant interventions vs. behaviors that indicate an effective 
learner. Traditional approaches based on creating datasets of human-labeled patterns 
[2][3] that can be used to classify new users are often unfeasible, because they need a 
priori definitions of relevant behaviors when there is limited knowledge of what these 
behaviors may be.   

In this paper, we explore an alternative approach that relies on mining Class Asso-
ciation Rules to automatically identify common interaction behaviors and then uses 
these rules to build a user model based on a Class Association Rule Classifier. In  
previous work, we presented a version of the approach that used clustering algorithms 
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to first identify learner types based on the potential effectiveness of their interaction 
behaviors, and then to classify new students in real time based on these clusters [11]. 
While the approach showed good classification accuracy in terms of the student’s 
learning outcomes, it does not allow the system to isolate the specific behaviors that 
cause a given student to learn effectively or not from the environment. The approach 
based on association rules and a class association rule classifier that we present in this 
paper has a finer classification granularity, and thus it is better suited at guiding  
adaptive interventions to improve interaction effectiveness. We test the approach on 
AISpace[4], an ELE that uses interactive visualizations to help students understand 
Artificial Intelligence (AI) algorithms.  

Several other researchers have looked at using association rules in ITS. To our 
knowledge, however, ours is the first attempt at using this approach for on-line stu-
dent modeling with an ELE. In [5], logged data from students interaction with an ITS 
for the SQL database were mined using association rules to discover error patterns 
that can help teachers improve their presentation of this topics. In [6], the authors use 
association rules to discover similarities among exercises in terms of solution diffi-
culty by mining logs of student solutions in an ITS. [7] uses association rules for the 
off-line analysis of students usage of a web based educational system spanning a 
complete university course, once the course is complete. Further off-line processing 
of the rules generates recommendations for teachers as to which usage patterns are 
more relevant for course revision.  

The paper is structure has follows. We first describe our general approach to detect 
and recognize relevant interaction patterns in ELEs. We then introduce the ELE we 
used in this research. Next, we describe association rules and how they are used in our 
approach, and we presents results on their effectiveness in identifying effective and 
ineffective learners in AISpace. We conclude with a discussion of future work. 

2   General Student Modeling Approach 

Our student modeling approach for ELEs  divides the modeling process into two ma-
jor phases: offline identification and online recognition.  

In the offline phase, raw, unlabelled data from student interaction with the target 
environment is first collected and then preprocessed. The result of preprocessing is a 
set of feature vectors representing individual students in terms of their interaction be-
havior. These vectors are then used as input to an unsupervised clustering algorithm 
that groups them according to their similarity. The resulting groups, or ‘clusters’, rep-
resent students who interact similarly with the environment. These clusters are then 
analyzed to determine which interaction behaviors are effective or ineffective for 
learning. The analysis consists of first identifying how the different clusters relate to 
learning outcomes, and then isolating in each cluster those behaviors that are respon-
sible for the learning effects. Understanding the effectiveness of students’ interaction 
behaviors with an ELE is useful in itself to increase educator awareness of the peda-
gogical benefits of these environments, as well as to reveal to developers how the 
ELE can be improved [8][9][10]. However, our long-term goal is to use the interac-
tion behaviors to guide automatic ELE adaptations while a student is interacting with 
the system. Thus, in the online recognition phase, the clusters identified in the offline 
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phase are used directly in a classifier user model. The user model’s classifications and 
the learning behaviors identified by cluster analysis can eventually be used to inform 
an adaptive ELE component to encourage effective learning behaviors and prevent 
detrimental ones. 

In our previous investigations of this approach [11], the identification of behaviors 
that influence learning outcomes in each cluster was done by hand, using formal sta-
tistical tests to evaluate cluster similarities and dissimilarities along each of the fea-
ture dimensions. The outcome of this step is useful to help educators and developers 
gain insights on the different learning behaviors and design appropriate adaptive in-
terventions targeting them. It was not, however, directly used during on-line learner 
recognition. For this phase, we devised an online k-means classifier, trained on the 
clusters identified in the offline phase. This classifier incrementally updates the classi-
fication of a new student into one of the clusters from the offline phase, as the student 
interacts with the target ELE. While this classifier showed very good performance in 
predicting student learning outcomes with two different ELEs, it can’t identify which 
behaviors caused the classification at any given time. For instance, when applied to 
the ELE that we describe later in this paper, this approach identifies two clusters, one 
of high learners and one of low learners. Each cluster includes a variety of behaviors 
that can impact learning but the classifier can’t tell which behaviors are responsible 
for the student’s classification as student actions come in. This limits the ability of the 
approach to support adaptive interventions that target the relevant behaviors (e.g. dis-
courage superficial browsing of functionalities). To address this limitation, we have 
introduced the use of Class Association Rules, described in the next section.  

3   Using Class Association Rules for Learner Classification in ELEs 

Association rules were originally devised for finding the hidden connections between 
items in a transaction database[12], and are generally used to find co-occurrence pat-
terns in data. The connections are expressed as rules X --> Y, indicating that when X 
occurs, Y occurs with a given probability greater than zero. This probability is called 
the confidence of the rule conf(R), which essentially represents the strength of the  
correlation between X and Y. Algorithms for generating association rules use this 
measure, along with a measure of the relevance of a rule in a dataset, to select a set of 
appropriate rules among a usually very large pool of candidates. The measure of rele-
vance is commonly known as support of the rule sup(R), computed as the percentage 
of datapoints satisfying both X and Y in the dataset. 

The use of association rules to construct a classifier is called Associative classifica-
tion mining or Associative Classification [13]. Algorithms for Associative Classifica-
tion usually operate by first generating a complete set of class association rules 
(CARs) from training data, and then by pruning this initial set to obtain a subset of 
rules that constitute the classifier. When a new unknown object (a student in our case) 
is presented to the classifier, it is compared to a number of CARs and its class is pre-
dicted. The selection of the representative subset of CARs is one of the crucial steps 
in Associative Classification, entailing understanding what is the best number of 
CARs needed for classification, as well as which measures to use to select them.  
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We use Associative classification to increase the grain size of the on-line classifi-
cation in the student modeling approach we described in Section 2. The overall ap-
proach is modified as follows. We still rely on an off-line clustering algorithm for 
generating the clusters that form the basis for the classifier, and each cluster is labeled 
with the overall learning performance of the corresponding student group. The off-
line phase is then augmented by performing Associative Classification within each 
cluster, thus obtaining a set of CARs that, for each cluster, link specific interaction 
behaviors with learning outcomes. During on-line classification, user interaction be-
haviors are tracked and updated after each action, as before. This time, however, they 
are matched against all available CARs and a classification is selected based on the 
cluster that has the highest percentage of matched rules. Thus, at any given point of 
the interaction, our student models generates a prediction of both the current student’s 
learning success, as well as the behaviors that influence it.  

In the rest of the paper, we provide details on the approach and its effectiveness in 
the context of its usage for modeling students as they interact with the ELE known as 
AISpace CSP applet, described in the next section. 

4   The AISpace CSP Applet 

The ELE we use as a testbed for our approach is the Constraint Satisfaction Problem 
(CSP) Applet, one of a collection of interactive tools for learning common Artificial 
Intelligence algorithms, called AIspace [4]. Algorithm dynamics are demonstrated via 
interactive visualizations on graphs by the use of color and highlighting, and graphical 
state changes are reinforced through textual messages (see Figure 1 for an example). 

A CSP consists of a set of variables, variable domains and a set of constraints on 
legal variable-value assignments. The goal is to find an assignment that satisfies all 
constraints. The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm for 
solving CSPs represented as networks of variable nodes and constraint arcs. AC-3 it-
eratively makes individual arcs consistent by removing variable domain values incon-
sistent with a given constraint until all arcs have been considered and the network is 
consistent. Then, if there remains a variable with more than one domain value, a pro-
cedure called domain splitting can be applied to that variable to split the CSP into dis-
joint cases so that AC-3 can recursively solve each case or sub-network. 

The CSP applet provides several mechanisms for interactive execution of the AC-3 
algorithm, accessible through the toolbar shown at the top of Figure 1 or through di-
rect manipulation of graph elements. Here we provide a brief description of these 
mechanisms necessary to understand the results of applying our student modeling  
approach to this environment: 

• Fine Stepping. Cycles through three detailed algorithm steps: selecting an 
arc, testing it for consistency, and removing variable domain values when 
necessary. 

• Direct Arc Clicking. Allows the user to decide which arc to test, and then 
performs three Fine Steps on that arc to make it consistent. 

• Auto Arc Consistency (Auto AC). Automatically Fine Steps through the  
network. 
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Fig. 1. CSP applet with example CSP 

• Stop. Stops Auto AC. 
• Domain Splitting (DS). Allows the user to select a variable domain to split, 

and specify a sub-network for further application of AC-3. 
• Backtracking. Recovers the alternative sub-network set aside by DS. 
• Resetting. Resets the CSP network to its initial state. 

Currently, AI space does not provide any explicit support on how to use the available 
mechanisms to learn at best from the interactive visualizations delivered by its ap-
plets. Research, however, shows that students may benefit from this support, since 
unaided exploration of interactive visualizations often fails to help students learn[11]. 
In the following sections, we describe the application of the modeling approach de-
scribed in Section 3 to create a classifier user model that can detect suboptimal stu-
dent interactions with the CSP applet and guide adaptive interventions aimed at  
improving them. 

5   Modeling Student Interaction with the CSP Applet 

The data we use for this research was obtained from a previous experiment investigat-
ing the effects of studying sample problems with the CSP applet. We use the follow-
ing data collected from 24 students who participated in the study: time-stamped logs 
of user interactions with the applet, and learning gains computed from pre and post 
tests administered to the study participants. From the logged data we obtained 1931 
actions of users over 205.3 minutes. In the off-line phase, in order to find clusters of 
students who interact with the CSP Applet in similar ways, each student must be rep-
resented by a multidimensional data point or ‘feature vector’. From the logged user 
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study data, we computed 24 feature vectors corresponding to the 24 study partici-
pants. The feature vectors had 21 dimensions, resulting from deriving three features 
for each of the seven actions described in the previous section: (1) action frequency, 
(2) the average latency after an action (reported as avg in tables), and (3) the standard 
deviation of the latency after an action (reported as STD in tables). The latency di-
mensions are intended to measure if and how a student is reflecting on action results. 
Specifically, the second dimension is an indicator of student reflection, and the third 
dimension is an indicator of reflection selectiveness since varied latency may indicate 
planned rather than impulsive or inattentive behavior (e.g., consistently rushing 
through actions vs. selectively attending to the results of actions).  

After forming the feature vector representation of the data, the next step in the off-
line phase is to perform clustering on the feature vectors to discover patterns in the 
students’ interaction behaviors. After experimenting with various clustering algo-
rithms (including EM and hierarchical clustering) we chose k-means[14] for this  
dataset. K-means converges to different local optima depending on the selection of the 
initial cluster centroids and so in this research we execute 25 trials (with randomly 
selected initial cluster centroids) and use the highest quality clusters (based on 
Fisher’s criterion [15]) as the final cluster set. We also experimented with k set to 2, 3 
and 4, and obtained the best results for k = 2. More details on cluster generation can 
be found in [11].  

When we compared average learning gains between the two clusters found by  
k-means, we found that one cluster (4 students) had statistically significantly higher 
learning gains (7 points) than the other cluster (20 students, 3.08 points gain). Hereafter, 
we will refer to these clusters as ‘HL’ (high learning) cluster, and ‘LL’ (low learning) 
cluster respectively. 

5.1   CARs and Multiple Class Association Rule Classifier 

The next step in the student modeling process is to generate CARs to identify, for 
each cluster, the interaction behaviors that best characterize its students. In this work, 
we used the Hotspot algorithm in Weka [16], which inspects the training data and 
generates the association rules corresponding to a class label in the form of a tree.  
Table 1 shows the CARs generated for the HL and LL clusters, where we report the 
preconditions for each rule but leave out the consequence (Label HL for the high 
learners cluster and LL for the low learners cluster). Table 1 also shows, for each rule, 
its level of confidence (conf), and support within its cluster (supp).  

It should be noted that the attribute values mentioned in the rules in table 1 are dis-
crete, while our original dimensions are continuous. Although CAR algorithms work 
with both discrete and continuous values, using continuous values in our dataset 
would produce a large number of very fine-grained rules, unsuitable for classification. 
We thus discretized our attributes using the equal-width method proposed in [17], 
which consists of dividing the range of observed values into k equally bins. For the 
time being we selected k=2, thus discretizing each attribute into HIGH and LOW val-
ues, although we plan to experiment with a higher number of bins to see how that  
affects the accuracy of the classifier. 
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Table 1. CARs for HL and LL clusters (STD refers to standard deviation, Avg referes to 
average) 

Rules for HL cluster 
 
Rule 1:   Stop Pause STD = HIGH; conf=100%; supp =50% 
Rule 2:  Fine Step Pause STD = HIGH; conf=80% supp =100% 
 |Rule 3 Fine Step Pause STD = HIGH &  Fine Step frequency = LOW  
        conf=100%   supp=100% 
 |Rule 4 Fine Step Pause STD = HIGH & Domain Split Pause STD = LOW  
        conf=100% supp =100% 
 
Rules for LL cluster 
 
 Rule 1   Fine Step Pause STD = LOW; conf=100%; supp =100% 
 Rule 2   Stop frequency = LOW; conf= 95% ; supp =95% 
 |  Rule 3 Stop frequency = LOW &  Fine Step Pause Avg = 'LOW 
         conf=100%   supp=100% 
 |  Rule 4 Stop frequency = LOW & Reset Pause Avg = 'LOW 
        conf=100%   supp=100% 

 
The Hotspot algorithm has three parameters that influence the type and number of 

rules generated: the minimum level of support requested for a rule to be considered 
relevant; the branching factor of the tree, influencing how many new rules can be 
generated from an existing one by adding a new condition to its current set; the mini-
mum improvement in confidence requested for creating a new branch in the tree. 

We kept the default values for minimum improvement (0.01) and branching factor 
(2), while we used the minimum level of support within each cluster as a criterion to 
filter the number of rules generated [18]. Essentially, for each cluster we need to find 
a few rules that characterize as many elements in the cluster as possible and provide 
an easily understandable explanation of students’ behaviors for each learning out-
come. After experimenting with various levels of support, we selected 50% for both 
the HL and the LL cluster, i.e., a rule has to involve at least half of the students in the 
cluster to be generated. 

The CARs produced are shown in Table 1. They indicate that, for instance, high 
learners show more selective attention when observing the workings on the CSP algo-
rithm in the applet (see high values for standard deviation in latency after stopping a 
running of Autosolve in Rule 1, and in latency during fine stepping in Rules 2-4). 
Low learners, on the other hand, are characterized by non-selective attention during 
fine stepping (see low standard deviation for pausing times during stepping in rule 1). 
Rule 2 represents a different detrimental behavior, i.e. short latency during stepping 
and limited usage of stopping during autosolving, indicating that the student is not 
taking the time to analyze the workings of the algorithm.  

After producing the CARs for each cluster, the CARs were used as input to a clas-
sifier based on multiple class association rules. This classifier can generate a predic-
tion in terms of high or low learning for a new user after each user action in the CSP 
applet. For each new action, all the related feature dimensions are recomputed  
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(e.g., action frequency and the various latency dimensions), and the updated feature 
vector is matched against all existing CARs. The final classification is generated by 
selecting the cluster with the highest percentage of matched rules. 

5.2   Evaluation 

To evaluate our approach, we used the same methodology followed in [11] and based 
on a 24-fold leave-one-out cross validation (LOOCV). In each fold, we removed one 
student’s data from the set of N available feature vectors, used k-means to re-cluster 
the reduced feature vector set and generated CARs for each newly generated cluster.  
Next, the removed student’s data (the test data) was fed into the CAR Classifier 
trained on the reduced set, and online predictions were made for the incoming actions 
as described above. Model accuracy is evaluated by checking after every action 
whether the current student is correctly classified into the cluster to which he/she was 
assigned in the offline phase. The percentage of correct classifications is shown in 
Figure 2 as a function of the percentage of student actions seen by the model (solid 
line labeled ‘Overall’ in the figure’s legend). The figure also shows the model’s per-
formance in classifying HL students into the HL cluster (dotted line), LL students into 
the LL cluster (dashed line), and the performance of a base-line most-likely classifier.  
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Fig. 2. Classifier accuracy (y axis) as a function of observed actions (x-axis) 

The classifier performs very well in identifying LL learners (100% accuracy after 
seeing about 30 actions), while it performs poorly with the HL learners. This is not 
surprising, since the HL cluster used to derive the CARs rule for this group contains 
on average only 3 data points during LOOCV. The high performance on the LL clus-
ter, on the other hand, is very encouraging, because this cluster, although much larger 
than HL, still includes a relatively limited number of datapoints (20 on average). Still, 
we managed to learn from this dataset a CAR classifier that is very good at detecting 
students with suboptimal learning behaviors, indicating that overall performance can 
be significantly improved by collecting a richer dataset for model training.  

It is interesting to compare the performance of our CAR Classifier with the per-
formance of the previous k-means classifier [11]. That classifier had slightly lower 
accuracy on LL (constantly above 90% but never reaching100%) but scored much 
better than the CAR classifier in classifying HL, converging to about 75% accuracy 
after seeing about 40% of the available actions. These results suggests that the k-mean 
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classifier learns more reliably from small datasets that the CAR classifier, but the 
price to pay is no information on which behaviors are responsible for a user’s classifi-
cation at any given point of the interaction. The CAR classifier, on the other hand, can 
help identify these behaviors after every user action by providing the rules that were 
matched to generate the classification. This information can be used to provide adap-
tive hints to correct behaviors that can be detrimental for learning. For instance,  if 
Rule 3 below fires to classify a student   as  low learner   (see Table 1) 

 
Rule 3 Stop frequency = LOW and  Fine Step Pause Avg = 'LOW 
 

the ELE can try to make the learner stop more often when running the CSP algorithm 
in autosolve mode, and pause more in between stepping actions to reflect on the out-
come of each step of the algorithm 

6   Conclusions and Future Work 

We presented a student modeling approach that uses Class Association Rules and a 
Class Association Rule Classifier to discover and monitor student behaviors that can 
impact learning during interaction with an ELE. Modeling student interactions with 
ELEs is important to provide adaptive support for those students who do not learn 
well in absence of more structured instruction. It is also challenging, because in these 
environments it can be hard to identify a priory actions or behaviors as correct or 
faulty. We have provided initial results showing that our approach can identify these 
behaviors, and have discussed implications for providing adaptive support in ELE. 
One line of future work, thus, is to implement this adaptive support. In parallel, we 
want to refine our student modeling approach by experimenting with alternative tech-
niques for selecting the set of relevant association rules (e.g. based on a variety of 
functions of support and confidence). We also want to see how our approach performs 
on larger datasets and how it transfers to different ELEs, for instance the ELE for 
mathematical functions that we used to test transfer of the first version of our  
approach without association rules [11]. 
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Abstract. This paper addresses how the peer review system (FD Commons on 
WEB) was used as an analytical tool to identify key principles and criteria for 
assessing teaching and learning in higher education. The focus of this study was 
to understand various reviewers’ viewpoints of educational events during “les-
son study” by examining type of knowledge shared by reviewers. We present 
the overview of our Peer Review Process Project and report on five pilot studies 
conducted during spring term 2009. The successive trials revealed the following 
three points: (1) the lecture summary content differed between reviewers de-
pending on specialty and teaching experience, (2) reviewers wrote more com-
ments concerning lecture quality than basic teaching skills, (3) as keywords for 
self-reflection, lecturers used content information rather than pedagogical 
points. 

Keywords: Lesson Study, e-Teaching Portfolio, the Quality of Teaching and 
Students’ Learning, Japanese Higher Education. 

1   Community Practice for Common Assessment 

Several recent projects involving peer review of teaching might be classified as com-
munities of practice in professional settings [1]. For example, the Peer Review of 
Teaching Project headquartered at the University of Nebraska, the Visible Knowledge 
Project of Georgetown University, and the Carnegie Foundation's Knowledge Media 
Laboratory (KML) have all explored alternative genres to enable scholars of teaching 
and learning to document their work online in ways not possible in regular print. The 
KML encourages viewers of their galleries to view online portfolios to snapshots for 
ideas to improve their teaching, and to use the portfolios as “launching points for 
discussions and reflections, peer review of teaching and learning, collaborative inquir-
ies, and further investigations” [2].  

Researches have found that collaborative professional communities of teachers 
support ongoing professional reform and student achievement [3]-[4]. In particular, 
collaborative professional communities enhance teachers’ ability to meet the  
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increasingly diverse learning needs of students [2], [4]-[6]. In Japan and the U.S. 
several national and local projects involving peer review of teaching might be clas-
sified as “community of practice.” These activities are based on some consensus 
about what constitutes teaching excellence and on providing those conducting the 
reviews with good evidence on which to base their judgment. 

Hatch [7] notes that as more faculty make presentations of their teaching publicly 
available via the web, there are increased opportunities to view the experiences of 
many different teachers working in many different disciplines and contexts. 
Through this process, educators will provide opportunities for others to generalize 
from those experiences, and to develop, explore, and challenge new ideas and theo-
ries about teaching and learning. Such rich representations by new media and net-
work support to build the “Teaching Commons,” which are communities of educa-
tors committed to pedagogical inquiry and innovation who come together to ex-
change ideas about teaching and learning, and use those ideas to meet the chal-
lenges of educating students for personal, professionals, and civic life in the twenty-
first century [6]. All who are committed to this teaching mission need ways to make 
new pedagogical practices, tool, and understandings broadly available, not only by 
building their teaching but also by ensuring access thorough new media and net-
work. Another trend, called “electronic teaching portfolios,” can enhance the ability 
of teaching portfolios to provide rich presentations of college teaching and learning. 
A teaching portfolio is a collection of materials that document teaching perform-
ance [8]. It brings together information about a professor's most significant teaching 
accomplishments. If any teaching portfolio is stored on and accessed through elec-
tronic media, it qualifies as an electronic teaching portfolio. Most importantly, by 
placing a teaching portfolio on the web, a faculty member takes a crucial step to-
ward making his or her teaching public and available for others to comment on and 
learn from [9]. 

2   Lesson Study in Japanese Primary and Secondary Education 

Unfortunately, in the context of university education, it is difficult for lecturers to 
learn from each other and to break the pervasive isolation of professionals. Recently, 
higher education institutions have provided various institutional programs for educat-
ing and developing academic staff members: development of teaching philosophies, 
campaigns to raise awareness of certain key components, strategic use of experts such 
as educational developers and teaching fellows, and funding for projects aimed at 
specific issues. This traditional faculty development approach, however, is sometimes 
problematic. One reason is that faculty members have few incentives and little time to 
pursue these professional development efforts; even when faculty members recognize 
the scholarship of teaching and its difficulties, they often are pulled in other directions 
because, at many academic institutions, research and publishing are valued more 
highly than teaching [10]. Another reason is that workshops and seminars tend to be 
isolated, generic, and decontextualized. Therefore, the models of instruction used for 
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many faculty development efforts are not conducive to helping faculty members 
change their approach to brushing up on teaching skills.  

Because of inherent problems with ‘top-down’ models of faculty development, 
more effective strategies should be utilized, based upon individual contacts between 
staff at all levels, a mentor/developer, and students at the faculty’s institution. In other 
words, a more bottom-up approach is needed in order to organize a faculty learning 
community and effect real change in teaching strategies for a greater number of aca-
demic staff members. The most effective way to improve teaching/learning activities 
is the rooted in the real-world context of practice [11]. Engagement in professional 
development requires teachers to examine their own practice, promotes reflection, and 
provides opportunities for socializing. 

“Lesson study (Jyugyo kenkyu),” however, is a popular professional development 
approach in Japan whereby school teachers collaborate in order to improve instruction 
and learning by studying content, instruction, and how students solve problems and 
reach for understanding [4] From engaging in “lesson study,” teachers feel connected 
to each other and to a body of knowledge that they generate, share, and continuously 
refine. In other words, it is a highly justified activity, which allows teachers to come 
together to develop their pedagogical knowledge and skills. 

In this paper, we report on the ongoing effects of Tokyo University of Agriculture 
and Technology’s Center for Higher Education to conduct “lesson study” by use of a 
peer review system (FD Commons on WEB). This system development realizes 
ubiquitous peer reviewing and reuse of comments of reviewers for assessment of 
teaching/learning in higher education. Moreover, the database of reviewer annotation 
has capability of reusing collected comments in order to suggest weak and strong 
points of class lectures and to design the rubric to evaluate lectures as e-teaching 
portfolio. This paper will also present an overview of our peer review project and 
five pilot studies conducted in 2009. By presenting results of our trials, we hope  
to gain new insights regarding best practices for learning and teaching in higher 
education. 

3   Overview of the Peer Review System Development 

The main objectives of this project are to support the peer review process and to 
restore and retrieve key concepts with multimedia information for the purpose of 
constructing e-teaching portfolio. We developed a class lecture recording application 
(FD Commons: http://www.tuat.ac.jp/~fd_tools) for reviewers allowing them to 
multicast to streaming video, images, and text from tablet PCs and PDAs [12],[13]. 
This project aims to provide teachers with online and offline peer review opportuni-
ties that are necessary to and relevant to their teaching/learning improvement as 
shown in Fig.1. Moreover, the database of reviewer comments is capable of reusing 
collected comments in order to suggest weak and strong points in class lectures and 
to design a rubric to evaluate lectures for assessment of teaching/learning in higher 
education. 
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Fig. 1. Project Overview 

3.1   Knowledge Sharing System for Peer Review Process  

The project have designed and developed the system (FD Commons Ver. 3) can assist 
the peer-reviewers and students monitors to review the class rlectures and to record 
and retrieve the reviews comments on video lactures. The following fuctions are 
realised by use of InkML technology and multmedia networking technology 
(DirectShow) [13]. 

 

1) Collecting comments effectively from peer reviewers outside and students in 
class by tablets PC over networks. Both peer reviewers and student monitors 
can check the multi screens and write comments and annotation on the video 
lectures and ppt slides by use of tablet PCs. 

2) Develop application for viewing reviewers’ annotations to streaming class 
lecture as time sequence data of pen-tip coordinates.  

The collected annotations are used to suggest weak and strong points of class lectures 
for teaching/learning evaluation. Moreover, they are used to make the rubric to evalu-
ate the quality of teaching/learning for self-reflection and lesson study [14]-[15]. 
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Fig. 2. Screenshot of FD Commons (Ver. 3) 
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In the next phase, we have designed and developed the "FD Commons on WEB" to 
promote knowledge sharing between reviewers and teachers. The system developed 
using a Web server with PHP and JavaScript, which realized integrated video stream-
ing, snapshots with annotations for review lectures as shown in Fig.3. The data of 
class lectures were originally recorded and stored as part of FD Commons ver.3, how-
ever, they are currently distributed as part of the next FD Commons on WEB. The 
system architecture consists of three servers; a www server, a database server, and a 
streaming server. The streaming server delivers the class lecture movies linked to the 
annotations and comments by the request of its browser client, which are controlled 
and identified by the meta data on the database server.   

 

Fig. 3. Screenshots FD Commons on WEB 

 

Such convenient representations by networking will support the building of 
“Teaching Commons,” which are communities of educators committed to pedagogi-
cal inquiry and innovation who come together to exchange ideas about teaching and 
learning. By placing a knowledge sharing system on the web, a faculty member takes 
a crucial step toward making his or her teaching public and available for others to 
comment on and learn from each other [9]. 

3.2   Pilot Studies for Evaluating the Peer Review Process  

This evaluation study continued our inquiry on how to best implement lesson study in 
using FD Commons on WEB. This evaluation was based on data collected in a quali-
tative and quantitative studies conducted with three reviewers at Tokyo University of 
Agriculture and Technology during spring term 2009.  

In order to determine any differences in identifying educational events in use of 
FD Commons, the novice teachers and faculty developer comments are compared 
on three main "perspectives" in Version 3 and one perspective including basic 
teaching skill factors, which are usually recorded and checked in end-of-term  
questionnaire. The following two research questions were investigated in this pilot 
studies.  
 



140 Y. Kato and M. Ishikawa 

 

1) By using a pen-based device, do reviewers write more comments and mark more 
points on class lecture videos, in comparison with the usual end-of-term questionnaire? 
2) Are there any differences in comments made by novice teachers and the faculty 
developer when using FD Commons? 

3.3   Participants  

In the pilot studies, we investigated the effects and operability of the peer review 
system on three reviewers. All were faculty members at Tokyo University of Agricul-
ture and Technology. One teacher (Reviewer A) was an instructional designer from 
our Educational Development Center (faculty developer) and has experienced "lesson 
study" at another university. The other two teachers were academic staff specializing 
in Biology (Reviewer B) and Physics (Reviewer C). Both reviewers were in charge of 
conducting a Good Practice Project (GP) supported by Japanese Ministry of Educa-
tion, Culture, Sports, Science and Technology. In each trial, two reviewers took note 
of the contextual focus on the lesson and recorded the sequence of activities during 
lesson study in use of FD Commons.  

In total, five trials were conducted from April to June 2009, as shown in Table 1. 
Regarding research the second question, Reviewer B and C were assigned to novice 
teachers group with respect to their teaching experience. 

Table 1. Pilot Study of FD Commons  

Date Class  Class Size 
(level) 

Reviewer A 
(Teaching Experience) 

Reviewer B&C 
(Teaching Experience) 

1 April 28, 
2009 

Plant 
Physiology 

80 students 
(Undergraduate) 

Instructional Design 
(15 Yrs) 

Biology   (1 Yr) 

2 May 18, 
2009 

Vegetation 
Management 

90 students  
(Undergraduate) 

Instructional Design 
(15 Yrs) 

Physics   (3 Yrs) 

3 May 20, 
2009 

Plant  
Physiology 

70 students 
(Undergraduate) 

Instructional Design 
(15 Yrs) 

Biology   (1 Yr) 

4 May 25, 
2009 

Vegetation 
Management 

90 students 
(Undergraduate) 

Instructional Design 
(15 Yrs) 

Biology   (1 Yr) 

5 June 10, 
2009 

Plant 
Physiology 

70 students 
(Undergraduate) 

Instructional Design
(15 Yrs) 

Biology   (1 Yr) 

3.4   Data Source and Analysis  

To answer the research questions, "by using a pen-based device, do reviewers write 
more comments and mark more points on class lecture videos, in comparison with the 
usual end-of-term questionnaire? " and "are there any differences in comments made 
by novice teachers and the faculty developer when using FD Commons? ", we used 
the content analysis approach. To measure the differences between evaluation instru-
ments or reviewers’ use of FD Commons, "Snap Shots" data from different sessions 
of the same class (Plant Physiology) were collected on April 28, May 20, and June 10. 
Based on the types of comments, each "Snap Shot" was classified into one of four 
categories: interaction, content, methodology, and basic teaching skills as shown in 
Table 2.  
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The first three categories were designed as stamps of previous FD Commons [12]-
[15]. These three "perspectives", interaction, content, and methodology, need to be 
drawn on to record the properties of educational events adequately and clearly during 
the review of class lectures [16]. According to Hirayama’s categories for qualitative 
class analysis, these three perspectives (interaction, content, and methodology) are 
called as "high inference items" because of the reviewer’s insights and experiences. 
One additional category was used to check basic teaching skills, including oral  
presentation, writing on the blackboard, and lecture pace added in Version 3. These 
perspectives on basic teaching skills were used to collect student feedback on the 
effectiveness of the course and teachers as part of the usual end-of-term questionnaire. 
Hirayama [16] called it "low inference item", because it is transparent and easily 
identified by reviewers. 

Table 2. Observation Guideline: Categories of Leaning Events 

Categories  
Interaction 

(High Inference Items) 
Students’ and teacher social behavior, student participation etc. 

Content 
(High Inference Items) 

Students’ understanding of content, levels, validation, and varia-
tion of content  

Methodology 
(High Inference Items) 

Levels, validation, and variation of methodology, student motiva-
tion 

Basic Skills 
(Low Inference Items) 

Basic lecture skills 
(oral presentation, writing on the blackboard, and lecture pace) 

 
To address the first research question, we used content analysis approach to inves-

tigate the difference between reviewers’ comments and student survey results. The 
total number of "Snap Shots" was 255. As shown in Table 3, 37.6% of the recorded 
comments on "Snap Shots" were related to lecture content and 29.0% related to the 
interaction between teacher and students during class activities. Only 12.2% men-
tioned basic teaching skills, which are usually covered by end-of-term questionnaires. 
The results indicated that use of FD Commons promoted more variation of comments 
than student evaluation survey.  

Table 3. Comments on Class Lectures by Four Categories 

 Interaction between 
teacher and students 

(%) 

Lecture content 
(%) 

Methodology 
(%) 

Basic teaching skills 
(Voice, Writing, Pace) 

(%) 

Total 
(%) 

All 
reviewers 

74 
(29.0) 

96 
(37.6) 

54 
(21.2) 

31 
(12.2) 

255 
(100.0) 

 
Regarding the second research question, the data were analyzed using Chi-square 

contingency table tests. There was a significant difference between the faculty devel-
oper and novice teachers in how they evaluated class lectures (χ2 = 14.13, d.f. =3, p< 
.01). As shown in Table 4, residual analysis showed a significant difference with 
respect to the categories of "Lecture content" and "Methodology" (p< .01). No signifi-
cant difference was found for the "Interaction" and "Basic teaching skills" categories. 
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The results indicated that a faculty developer (Reviewer A) is more likely than novice 
teachers to report comments regarding methodology. Novice teachers (Reviewers B & 
C) are more likely to focus on lecture content. 

Table 4. Comments on Class Review by Category 

 Interaction between 
teacher and students 

(%) 

Lecture content 
(%) 

Methodology 
(%) 

Basic teaching skills 
(Voice, Writing, Pace) 

(%) 

Total 
(%) 

FD 45 
(40.3) 

39** 
(52.3) 

38** 
(29.5) 

17 
(16.9) 

139 
(100.0) 

Novice 29 
(33.7) 

57** 
(43.7) 

16** 
(24.5) 

14 
(14.1) 

116 
(100.0) 

 74 96 54 31 255 
**p<. 01, Expected value (in parentheses). 

3.5   Lecturers’ Self-reflection toward Reviewers’ Comments 

With respect to reviewers’ comment on FD Commons, we got the following 
comments form the lecturers during the lesson study following class observation: 
 

1) Reviewer B, recommended on the weak and strong points of my lecture. Espe-
cially, as keywords for my self-reflection in preparing my next class lecture, I used 
his comments on content rather than pedagogical issues. He likely has the similar 
viewpoint as students because he just finished his Ph.D. course and knows the content 
well. (Professor, Plant Physiology as lecturer)  
 

2) Unintentionally, I checked green stamps (for positive points) for class observation. 
One of the reviewers used stamps with regard to basic skills many times during the 
class reviewing. I think the faculty developer made comments from the viewpoints of 
students’ understanding. (Professor, Vegetation Management as lecturer). 

4   Conclusions 

In this study, we reported on ongoing system development and five evaluation studies 
for investigating the usability and effects of FD Commons. We endeavored to deter-
mine whether FD Commons can record and restore the useful comments for educa-
tional improvement. Specifically, we examined differences between student survey 
and FD Commons in identification of educational events. The results indicate that 
greater variation in comments was found when FD Commons was used. More impor-
tantly, this finding also suggested that the use of FD Commons might promote more 
variation in comments than student evaluation surveys. 

Second, we examined the differences between novice teachers and faculty devel-
oper in identifying educational events when using of FD Commons. The content 
analysis of “Snap Shots” suggested a significant difference in the "Property of lecture 
content" and "Methodology" categories. The results indicate that FD Commons is 
capable of suggesting weak and strong points in class lectures as qualitative feedback 
from different reviewers' perspectives. When using FD Commons, more details of 
class lecture may be analyzed and discussed by peer faculty and student monitors, 
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which contributes to an understanding of teacher performance, best practice, and 
student learning in higher education.  

As with any other research, the limitation of our work should be noted. The first 
limitation of the study was the small quantity of data being analyzed. This is due to 
the fact that we discontinued the FD Commons (Version 3) based on evaluation stud-
ies. Now we have developed FD Commons on WEB, and plan to conduct new evalua-
tion studies. Further studies with lager sizes would be useful to verify our findings.      

In future studies, we will develop a database of reviewer annotations as teaching 
portfolios capable of reusing collected comments to design a rubric to evaluate  
lectures as an e-teaching portfolio. The collected annotations are used to suggest weak 
and strong points of class lectures for teaching/learning evaluation. When using  
FD Commons in our institution, we hope to construct "Teaching Commons," a  
community of educators and student mentors committed to pedagogical inquiry and 
innovation. 
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Abstract. Collaborative activities, like peer tutoring, can be beneficial for stu-
dent learning, but only when students are supported in interacting effectively. 
Constructing intelligent tutors for collaborating students may be an improve-
ment over fixed forms of support that do not adapt to student behaviors. We 
have developed an intelligent tutor to improve the help that peer tutors give to 
peer tutees by encouraging them to explain tutee errors and to provide more 
conceptual help. The intelligent tutor must be able to classify the type of peer 
tutor utterance (is it next step help, error feedback, both, or neither?) and the 
quality (does it contain conceptual content?). We use two techniques to improve 
automated classification of student utterances: incorporating domain context, 
and incorporating students’ self-classifications of their chat actions. The domain 
context and self-classifications together significantly improve classification of 
student dialogue over a baseline classifier for help type. Using domain features 
alone significantly improves classification over baseline for conceptual content. 

Keywords: intelligent tutoring, computer-supported collaborative learning, 
adaptive collaborative learning systems, peer tutoring. 

1   Introduction 

Student participation in online collaborative classroom activities can increase both 
group performance and individual learning outcomes. However, these positive effects 
are not always found [1], in part because when left to their own devices students may 
not interact in ways that lead them to benefit from collaboration. One common tech-
nique for improving computer-mediated collaborative interaction is scripting, where 
the collaboration is structured so that students take on particular roles and go through 
designated phases in order to increase the effectiveness of their collaboration [see 2 
for review]. Although scripts have been shown to be effective, they have been criti-
cized for over-structuring the collaboration for some students, decreasing these stu-
dents’ motivation, while under-structuring the collaboration for others, failing to pro-
vide them with sufficient support [3]. It has been theorized that an intelligent tutor for 
collaboration that is responsive to student needs and to the current interaction state 
might be more effective [4], and, in fact, adaptive support for collaboration has been 
demonstrated to be an improvement over no support and fixed support at increasing 
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learning [5, 6]. Despite these potential advantages, intelligent tutoring for collabora-
tive learning is still at an early phase, and few classroom-ready systems have been 
developed and evaluated. 

A key component of improving collaborative interactions is supporting students in 
conducting productive dialogues. Thus, developing mechanisms for assessing student 
dialogues has been a focus of research in this area. One way of assessing student 
dialogue is through self-classification, where students are asked to indicate the type of 
statement that they are making before or after they compose it. For example, students 
may select a sentence starter like “We need to work together on this…” to begin their 
utterance. Based on the starters that students select, the system can make inferences 
about what students are saying, and use these inferences to provide feedback [e.g., 7]. 
However, students do not consistently select sentence starters or classifiers that match 
the content of their utterances, and therefore the inferences that the system makes 
based on those labels can be inaccurate [8]. Consequently, researchers have been 
moving towards using machine classification to assess student dialogue as it occurs in 
order to provide students with assistance. So far this technology has been used in 
limited ways in intelligent tutoring for collaborative learning; for instance, for classi-
fying the topic of conversation [6], or for assessing student accuracy when they use 
sentence starters [8]. As the quality of student dialogue contributes to how students 
benefit from collaboration, improving our ability to automatically classify student 
utterances would increase our ability to target support to those utterances. 

We have developed an intelligent tutor for collaborative learning by extending the 
Cognitive Tutor Algebra, an existing successful intelligent tutoring system, to support 
two students of similar abilities in tutoring each other in algebra. Within the context 
of providing intelligent support for peer tutoring, we explore two different approaches 
for improving the accuracy of dialogue classification: incorporating information about 
the domain context, and incorporating student self-classifications. Firstly, we use 
information about the domain context of the interaction as additional features for a 
machine learning classifier. This context includes information directly taken from the 
students’ problem-solving behavior (e.g., a student has just taken a incorrect step in 
the problem), information about how student dialogue relates to the problem-solving 
context (e.g., a student has referred to another student’s incorrect step), and informa-
tion about the history of the interaction (e.g., a student has referred to another stu-
dent’s incorrect steps 10 times over the course of the whole interaction). There is a 
precedent for this approach: The few adaptive collaborative learning systems that 
have used domain information have shown gains both in the variety of support that 
those systems provide and in the effects of support [e.g., 9], but they have not applied 
these models to the classification of collaborative dialogue. However, this approach 
has been applied successfully in asynchronous collaborative contexts [10], and  
domain features have been successfully used to enhance the ability of automatic clas-
sifiers in other fields [e.g., 11]. Secondly, we use student self-classifications of their 
own chat dialogue as a potential feature for improving the accuracy of the machine 
classifier. As described above, it is common in adaptive collaborative learning sys-
tems to ask students to classify their own utterances. While these classifications are 
not always accurate, they may still be relevant for assisting the machine classifier in 
labeling the utterance.  
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In this paper, we explore how incorporating information on the domain context and 
self-classification features might improve the classification of peer tutor dialogue. We 
describe the details of our collaborative learning system, the model of peer tutoring 
that we are trying to support, and our data collection procedure. We then describe the 
classification approaches we compare: baseline classification of student dialogue 
based solely on text features (B), baseline classification with additional domain fea-
tures (B+D), baseline classification with additional self-classification features 
(B+SC), and baseline with problem-solving and self-classification features 
(B+D+SC). We discuss the results of comparing the classifiers and their implications. 

2   Context 

We attempt to automatically classify student dialogue within the context of an intelli-
gent tutoring system for reciprocal peer tutoring, called APTA (the Adaptive Peer 
Tutoring Assistant). APTA provides an interface for one student to tutor another stu-
dent on algebra problems, and then provides the peer tutor with assistance on how to 
be a better tutor. To do so, APTA maintains a model of good peer tutoring and com-
pares student actions to the model. Accurately assessing the quality of student chat 
actions enables this comparison to be made and effective assistance to be given. In the 
following section, we describe the functionality of APTA in more detail, to make it 
clear which aspects of student dialogue we are trying to assess and why. 

2.1   APTA: Adaptive Peer Tutoring Assistant 

Reciprocal peer tutoring is a collaborative learning activity where two students of 
similar abilities take turns tutoring each other. It has been shown to improve student 
learning over unscripted collaboration and individual learning [12], and is an effective 
intervention even for low-ability students [13]. We have constructed a peer tutoring 
addition to the Cognitive Tutor Algebra (CTA), a successful intelligent tutoring sys-
tem for high school mathematics [14]. In our peer tutoring script, students are given a 
task like “Solve for x,” for an equation like “ax + by = c.” Students go through two 
phases: a preparation phase and a collaboration phase. In the preparation phase, peer 
tutors solve problems using the CTA, receiving hints and error feedback when neces-
sary. During the collaboration phase, students are grouped into pairs and collaborate 
at different computers, taking turns being peer tutors and peer tutees. Peer tutees solve 
the same problems as their tutor solved in the preparation phase, using the same equa-
tion solver interface. Peer tutors can see their peer tutee’s actions, but cannot solve the 
problem themselves. Instead, they can mark the peer tutee’s actions right or wrong, 
and interact with the tutee in a chat tool, where they can give help and feedback. We 
augmented the chat tool with sentence classifiers, asking peer tutors to label their 
utterances as a prompt (“asks for explanation”), error feedback (“explains why 
wrong”), a hint (“gives hint”), or an explanation (“explains next step”). Peer tutors 
had to select a classifier before they typed in an utterance, but they could also choose 
to click a neutral classifier (“comments”).  
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As most students are novice tutors and need support to collaborate effectively, they 
receive two different types of assistance from the system as part of the script (see 
Figure 1). First, we have augmented the script with adaptive domain support for the 
peer tutor. If the peer tutor marks a correct tutee action wrong in the interface, or an 
incorrect action right, the cognitive tutor will intervene by indicating that the step was 
marked incorrectly, and providing feedback on what to do next. The peer tutor can 
also request a domain hint from the cognitive tutor at any time.  Second, we aug-
mented the script with adaptive interaction support for the peer tutor. This support 
primarily takes the form of reflective prompts delivered to both students in the chat 
window such as, “Tutor, you might want to explain that further”, and “Tutee, did you 
understand what the tutor just said?” For these prompts to be effective, they must 
contain relevant information and be presented at moments when the peer tutor can 
apply them to the interaction. Therefore, we maintain both a model of good peer tu-
toring and a running assessment of the actual quality of the students’ tutoring. 

 

Fig. 1. Two forms of assistance in the Adaptive Peer Tutoring Assistant (APTA). Peer tutors 
are provided with domain support and interaction support. 

2.2   Modeling Reciprocal Peer Tutoring 

To provide support for the peer tutor role in reciprocal peer tutoring, we have con-
structed a production-rule model for peer tutor help-giving. Our production rule 
model focuses on three help-giving skills, derived from the following research. Tutors 
have been found to benefit from the tutoring activity by reflecting on their existing 
knowledge as they observe tutee problem-solving steps and errors, and then construct-
ing new knowledge as they compose explanations [15]. In order for tutees to benefit 
from the activity, peer tutor help should be given at impasses, should target tutee level 
of understanding, should explain errors, should provide assistance for the next-step, 
and should be conceptual & elaborated [16]. The first skill in our model prescribes 
that the peer tutor should give help when needed, which we operationalize as giving 
help after tutee help requests and errors, but not after correct steps (S1: Help When 
Needed). The second skill prescribes that the peer tutor should give relevant help for 
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the tutee’s specific needs. For example, after a tutee error, the peer tutor should re-
spond by prompting tutees to self-explain and then, if necessary, explaining the tutee 
mistake (S2: Appropriate Help). Finally, the peer tutor should explain the rationale 
behind problem-solving steps, rather than simply saying what to do. In particular, 
when peer tutors give help on the next step, they are expected to use hints and expla-
nations that reference relevant domain concepts (S3: Conceptual Help).  

We assess these collaboration skills using Bayesian knowledge tracing, and pro-
vide feedback based on the assessment [17]. In order to determine whether peer tutors 
are displaying the above three skills, we need to classify two aspects of the help peer 
tutors give in their dialogue with tutees:   

1. Help type. Are peer tutors giving next-step help, error feedback, both, or no help 
at all? Using the classified help type in conjunction with the problem-solving 
context (e.g., knowing whether the tutee has just made a correct step, incorrect 
step, or help request) can help us decide whether tutors are giving the appropriate 
kind of help (S2) when it is needed (S1). 

2. Conceptual content. Are peer tutors giving help that explains concepts rather 
than simply stating what to do next? Being able to identify this aspect lets us 
know whether tutors are providing enough conceptual help (S3).  

By accurately classifying these aspects of student dialogue, we can develop intelligent 
support for peer tutoring that enables us to improve peer tutor performance on the 
above three help-giving skills. 

2.3   Corpus and Data Coding 

We used a corpus drawn from a classroom study we conducted comparing adaptive 
support for peer tutoring to fixed support for peer tutoring. As part of the study, stu-
dents participated in two supported peer tutoring sessions; one in which they acted as 
the tutor, and one in which they acted as the tutee. We have a total of 84 tutoring 
sessions from both conditions, consisting of an average of 21.77 tutor lines of dia-
logue per session (SD = 10.25). Two raters coded tutor utterances for help type and 
conceptual content. We computed interrater reliability on 20% of the data, and the 
remainder of the data was coded by one rater and checked by the second. All dis-
agreements were resolved through discussion. We segmented the dialog by chat mes-
sages, creating a new segment every time students hit enter. First, each help segment 
was coded for help type by determining whether it consisted of previous-step help 
relating to an action tutees had already taken (e.g., “no need to factor because there is 
only one g”; kappa = 0.83), and whether it consisted of next-step help relating to a 
future action in the problem (e.g., “how would you get rid of 2h?”; kappa = 0.83). If 
the help segment contained both categories, its help type was labeled “both”, and if it 
contained neither category (e.g., “on to the next problem”), its help type was labeled 
“none”. Second, each help segment was coded for whether it contained a concept 
(e.g., “add ax” was purely instrumental help, while “add ax to cancel out the –ax” was 
conceptual). Kappa for conceptual help was 0.72. In our dataset, 935 tutor instances 
were coded as “none”, 764 were coded as “next-step help”, 83 were coded as “previ-
ous-step help”, and 47 were coded as “both”; 1654 instances were coded as non-
conceptual help, and 165 were coded as conceptual help. 
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3   Method 

3.1   Baseline Classification 

We generated baseline machine classifiers for help type and conceptual content using 
Taghelper Tools, state of the art text-classification technology designed for coding 
collaborative dialogue [18]. Taghelper automatically extracts several dialogue fea-
tures for use in machine classification, including unigrams, bigrams, line length, and 
punctuation. In our dataset, Taghelper generated 641 features. We used a chi-squared 
feature selection algorithm to rank the most predictive features, and selected 150 
features for help type and 125 features for conceptual content. We used 10-fold cross 
validation to train a support vector machine classifier for each dimension. 

3.2   Incorporating Domain Features 

We augmented the dialogue features generated by Taghelper with domain context 
features. After assembling the problem-solving context, text substitution, and history 
features described below, we again used a chi-squared feature selection algorithm to 
rank the most predictive features. We used 10-fold cross validation to train a support 
vector machine classifier for help type and conceptual content. 
 

Problem-Solving Context. In general, features describing the tutee’s problem-
solving progress may provide information about the type and quality of the help peer 
tutors tend to give (e.g., peer tutors may be more likely to give error feedback after 
the tutee has made an error). Thus, we added a total of 10 features for the classifier, 
created using information from the CTA models of student problem-solving. This 
information included whether the last step taken on the problem was correct or incor-
rect, the student’s progress in the problem (i.e. the number of correct, incorrect, and 
total steps taken), and the student’s problem-solving momentum (e.g. the number of 
incorrect steps the student had made in a row). 

 

Text Substitutions. We then added features representing whether peer tutors referred 
to problem-solving elements in their utterances (e.g., “subtract x” refers to a specific 
problem-solving action). By treating different references to the problem as members 
of a higher-level category, we can compensate for a lack of training data and enable 
the classifier to transfer between different units of the problem. More specifically, we 
extracted a list of problem-related actions from the CTA menu options that tutees 
were able to select in the unit (e.g., {factor, distribute, add, subtract}), and a list of 
problem-related variables from the problem-statement (e.g., x = a + b would return 
{x,a,b}). We then substituted specific occurrences of a problem-related action or term 
in the text with general terms (see the “Substituted Text” column in Table 1), and 
used the new text as input into Taghelper. We also added a feature that indicated that 
a substitution had been made (“Action Present” and “Term Present” in Table 1). 

Further, by tracking which specific aspects of the problem tutee utterances referred 
to, we hoped to be able to better identify the target of the help given by the peer tutor. 
Thus, we added a feature representing whether the substituted terms referred to the 
tutee’s last correct step or last incorrect step (e.g., in the second row of Table 1, “add 
x to the left side” sets the Term Present feature to “last-correct”, indicating that there 
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is a term in the problem which refers to the last correct step). We also made substitu-
tions based on whether peer tutors referenced terms that appeared in the problem-
solving hints generated by the cognitive tutor. We created a list of verbs and nouns 
found in the hints, and then substituted a generic “concept” word for these words (as 
in the third row of Table 1). We added an additional feature representing whether a 
concept term had been substituted. Finally, we created substitution features to indicate 
whether multiple substitutions of the different types had occurred. The presence of 
multiple substitutions in an utterance makes it more likely that a reference to the prob-
lem actually occurred. This approach emphasized those utterances where multiple 
substitutions were done, while deemphasizing utterances where only a single substitu-
tion took place. Overall, we added 7 text substitution features. 

Table 1. Selected features created from particular tutor utterances. If the tutee's last action was 
“factor x”, and this action was correct, the following are the substitutions that would be made. 

Chat Text Substituted 
Text 

Action 
Present 

Term 
Present 

Term-
Concept 
Present 

Action-
Term 

Present 
now factor now action last-correct no no no 
add x to the 
left side 

action term to 
the left side 

yes last-correct no yes 

isolate the p concept the 
term 

no yes yes no 

 
 

Substitution History. Finally, we added 6 history features in an attempt to provide 
holistic information about the overall quality of the interaction. The history features 
were based on the numbers of each type of substitution made; features were created 
for what percent of the peer tutor's total number of utterances referred to a concept, 
what percent referred to a correct or incorrect action, and what percent referred to a 
correct or incorrect term. We also included a simple yes/no feature as to whether or 
not a substitution of a specific type was made at any point, under the rationale that 
somebody who has given a certain kind of help in the past would be more likely to 
give that kind of help in the future. All history features were updated with each tutor 
utterance; that is, history features were only computed based on all utterances that had 
occurred prior to the current utterance, so that the algorithm could be applied to a 
learning situation as it unfolds. We based the history features on the substitutions 
rather than on the machine classifications to avoid being stuck in a state where, for 
example, because the machine has not yet classified an utterance as conceptual help, it 
is likely to never classify an utterance as conceptual help. 

3.4   Adding Self-classification 

In addition to creating domain features, we also added two features that involved 
students’ self-classification of their actions. As described in Section 2, before com-
posing an utterance peer tutors were asked to label their utterance as a prompt, error 
feedback, a hint, an explanation, or a comment. The label selected by the peer tutor, 
as well as their overall use of sentence classifiers, may be predictive of the type of 
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help the peer tutor gave in a particular utterance. We added the self-classification 
specified by the tutor and the number of non-comment sentence classifiers used by the 
tutor in total as features in the machine classification.   

4   Results 

We hypothesized that both the domain features (B+D) and the self-classification 
(B+SC) would lead to an improvement over the baseline classification (B), with a 
classifier containing all three sets of features being the most effective (B+D+SC). We 
compared Cohen’s kappa for all classifiers in the Weka Experimenter using 10 repeti-
tions of 10-fold cross-validation (see Table 2) [19]. We use kappa instead of percent 
accuracy due to the imbalanced frequency distribution between categories (for exam-
ple, there was over 10 times more non-conceptual help utterances than conceptual 
help utterances). Weka uses paired t-tests corrected for dependence between samples 
to compare classifiers. For help type, B+D+SC was significantly better than the B 
classifiers (p < .05). For conceptual help, only B+D was significantly better than base-
line (p < .05). It is encouraging that the help type kappa for BS+D+SC approached the 
kappa we achieved for human interrater reliability, and that the conceptual help kappa 
improved substantially between the B and B+D. 

Table 2. Kappas for the baseline (B), baseline plus self-classification (B+SC), baseline plus 
domain (B+D), and baseline plus self-classification plus domain feature sets (B+D+SC). Kap-
pas are reported for both the help type and conceptual help classifications. 

  Help Type Kappa  Conceptual Help Kappa 
Classifier  M SD  M SD 
B  .78* .04  .59* .10 
B + SC  .78* .04  .60* .10 
B + D  .80* .04  .66* .10 
B + D + SC  .81* .04  .65* .11 

 
Examining which features were ranked highly by the chi-squared feature selection 

algorithm for the B+D+SC feature set, we can see that our domain context features 
consisted of 7 of the top 10 features for the help type classification, and 7 of the top 
10 features for the conceptual help classification (see Table 3). In addition, one highly 
ranked feature for help type was the sentence classifier used, part of the SC feature 
set. Overall, for the help type classifier, only 3 of the domain context features created 
were not selected to be part of the machine classifier, and 2 of these features related to 
the number of correct steps that had recently been taken by the tutee. It is interesting 
that while incorrect problem-solving actions appeared somewhat predictive of the 
type of help given, correct problem-solving actions did not. This result makes sense, 
as it is more likely that tutors would refer to a previous incorrect step than to a previ-
ous correct step. For the conceptual help classifier, 14 of the 25 conceptual help  
features were not selected, suggesting that conceptual help classification is less  
dependent on domain context. 
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Table 3. The top ten ranked features in chi-squared feature selection for help type and concep-
tual help for the baseline plus problem-solving plus self-classification feature set 

Rank  Help Type Kappa  Conceptual Help Kappa 
1  action present  concept present 
2  “action”  “concept” 
3  term present  concept & term present 
4  “term”  “concept_term” 
5  “BOL_action”  line length 
6  action & term present  “you_concept” 
7  classifier used  percent concepts used 
8  “term_EOL”  “how_do” 
9  “BOL_undo”  “you” 
10  “undo”  “term_by” 

5   Conclusion 

The focus of this paper was to increase the accuracy of automated classification of 
peer tutor utterances in order to improve the ability of an intelligent tutoring system 
for peer tutoring to provide appropriate support. To do so, we explored the use of 
domain context features, extracted from individual domain models found in the Cog-
nitive Tutor Algebra, as input into dialogue classifiers to augment automatically ex-
tracted text features. We also examined whether student self-classifications of their 
own utterances might improve the machine classification. We found that domain 
context features in combination with self-classifications significantly improved the 
accuracy of an automated classifier with respect to help type, but only domain context 
improved the accuracy of conceptual content classification.  

We incorporated three different types of domain context features into the ma-
chine classifier: problem-solving context, text substitutions, and substitution his-
tory. Of those features, relevant text substitution and substitution history features 
were highly related to the machine classification for each dimension; for example, 
substitutions of references to tutee actions were highly predictive of help type, 
while substitutions of references to concepts were highly predictive of conceptual 
help. In contrast, self-classifications were less effective; they appeared to augment 
the results of the help-type classifications, but inhibit the results of the conceptual 
help classification. This result is not unexpected, as the self-classifications that 
students made were far more relevant to the help type dimension than to the con-
ceptual help dimension. Perhaps student self-classifications that were more related 
to whether the utterance included conceptual help would have a positive effect on a 
conceptual help classifier. 

These results make the argument for an emphasis on designing adaptive support 
for collaboration that is rooted in problem-solving context. If domain context in-
formation can improve the accuracy of automated collaborative dialogue classifica-
tion, it would make sense for intelligent tutoring systems for collaborative learning 
to incorporate domain models. While domain models are difficult to build from 
scratch, integrating adaptive collaborative learning systems with existing individual 
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intelligent tutoring systems may be a way to leverage sophisticated domain infor-
mation in order to improve the effectiveness of intelligent tutoring for collaborative 
learning. 
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Abstract.  Tutorial Dialog has been shown to be effective in supporting both 
individual as well as group learners. However, unlike the case with individual 
learners, teams of learners often ignore and abuse the automated tutors. Both 
theory and empirical work in the area of small group communication argue that 
group participants display both task as well as socio-emotional behaviors during 
interactions. However, in connection with automated conversational agents, the 
effects of socio-emotional behaviors are much less well understood, especially 
in the case of multi-party interactions. In this paper, we will describe an evalua-
tion of a socially capable conversational tutor that supports teams of three (or 
more) learners in a design task. This tutor is evaluated in comparison with a so-
cially neutral baseline agent and human capability “gold standard” tutors dem-
onstrating that the socially capable tutor achieves significantly higher learning 
gains than the neutral, purely task focused tutor and learning gains not signifi-
cantly different from the human capability “gold standard” tutors. 

Keywords: social interaction, tutorial dialog, conversational agents, collabora-
tive learning, small group communication. 

1   Introduction 

Conversational Tutors are autonomous agents that interact with users via spoken or 
written conversation. Automated tutoring is a widely studied application of language 
technologies to education. Conversational tutors have been developed for a variety of 
educational domains including algebra, calculus, computer literacy, engineering, 
foreign languages, geometry, physics, reading and research methods. Numerous 
evaluations show that these tutors can be effective support for learners [1][2][3]. 

While most of the work on conversational tutors has focused on one-on-one tutor-
ing involving only one learner, use of such tutors in collaborative learning situations 
involving two or more human students has been investigated. Our previous work [2] 
has shown that tutors in a collaborative learning situations can lead to over one letter 
grade improvement. Other work [4][5][6][7] has explored a variety of interaction 
patterns / tactics that can be used in multi-party educational situations. 

However, despite the effective support that automated tutors offer to students 
learning in groups, it has been reported that groups of students often ignore and abuse 
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the tutor, unlike the case where students are individually tutored [2][8]. We reason 
that the presence of other students in collaborative learning scenarios causes the tutors 
to compete for the attention of the students. Since the tutors do not participate in so-
cial interaction that makes up the bulk of formative interaction in the group, they are 
pushed to the periphery of the learning group. 

Research in the area of small group communication has shown that humans employ 
both task related strategies as well as social interaction strategies while interacting in 
groups. However, research on conversational tutors has focused on presenting only 
task related information, i.e., lessons and instructions in case of tutors. In this paper 
we report the first study in our investigation on the effects that conversational agents 
in general can achieve if they are equipped with social conversational skills. 

The rest of the paper is organized as follows: In the next section, we motivate so-
cial interaction strategies for agents based on relevant literature from small group 
communication research. Section 3 describes our flexible architecture and implemen-
tation details for a tutor with social conversational skills. Results from the evaluation 
of the tutor against a baseline as well as human tutors are presented in section 4, and 
then we conclude with a discussion of current directions. 

2   Small Group Communication 

Theoretical and empirical study of group interaction processes has been of interest in 
sociology and communications research communities since the 1950’s. McGrath [9] 
reviews various theories that address the functions of group interaction processes. Of 
particular interest among these are the theories proposed by Robert F. Bales [10] and 
Wilfred R. Bion [11]. Both of these theories propose that two fundamental processes 
operate within groups, i.e., instrumental (task related) vs. expressive (socio-
emotional) in the case of Bales and work vs. emotion in the case of Bion. Over atten-
tion on one of these processes causes lapses on the other. Hence, interaction shifts 
between these two in order to keep the group functional. 

In the case of conversational tutors, the task (or work) related interactions include 
aspects like instructing students about the task, delivering appropriate interventions in 
suitable form (e.g. socratic dialog, hints), providing feedback and other such tactics 
[12]. Some studies [13] [14] have evaluated the effect of these task related conversa-
tional behaviors in tutorial dialog scenarios. Work in the area of affective computing 
and its application to tutorial dialog has focused on identification of students’ emo-
tional states [15] and using those to improve choice of task related behavior by tutors. 
However, there has been only limited study of expressive (socio-emotional) aspects of 
the tutor’s conversations with learning groups. Besides focusing on the expressive 
behavior of the tutor, the novelty of this work lies in the use of small group communi-
cation as a context for designing tutor behavior. 

2.1   Social Behavior for Conversational Tutors 

As discussed earlier, current state-of-the-art conversational tutors do not perform the 
socio-emotional function of interaction that is known to be a fundamental aspect of 
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group interaction. Hence, we hypothesize that socially capable tutors will be able to 
perform better in collaborative learning scenarios. In order to further specify social 
capability, we use the interaction process analysis (IPA) schema developed by Bales 
[19]. Besides the influence and popularity of IPA over the last five decades, our 
choice is based on the unit of analysis on which IPA is applied, i.e., individual utter-
ances compared to Bion’s units of analysis (sessions) that are typically much larger 
(10-50 utterances). 

IPA identifies three positive socio-emotional interaction categories: showing soli-
darity, precipitating tension release, and agreeing. We have mapped these categories 
to practically implementable conversational strategies, which are distinguishable from 
each other and are relevant to interactive situation employed in our experiment. This 
mapping is shown in Table 1 below. 

Table 1. Social Interaction Strategies based on three of Bales’ Socio-Emotional Interaction 
Categories 

1.   Showing Solidarity: Raises other's status, gives help, reward 
1a. Do Introductions: Introduce and ask names of all participants 
1b. Be Protective & Nurturing: Discourage teasing 
1c. Give Reassurance: When student is discontent, asking for help 
1d. Complement / Praise: To acknowledge student contributions 
1e. Encourage: When group or members are inactive 
1f. Conclude Socially 
 
2.   Precipitating Tension Release: Jokes, laughs, shows satisfaction 
2a. Expression of feeling better: After periods of tension, work pressure 
2b. Be cheerful 
2c. Express enthusiasm, elation, satisfaction: On completing significant task steps 
 
3.   Agreeing: Shows passive acceptance, understands, concurs, complies 
3a. Show attention: To student ideas as encouragement 
3b. Show comprehension / approval: To student opinions and orientations 

 
Each strategy is implemented as an instantiation of a conversational behavior. Most 

of these strategies are realized as prompts, triggered by rules based on agent plan, 
discourse and context features. For example, strategy 1e is triggered when one or 
more students in the group are found to be inactive for over 5 minutes. In this event, 
the tutor chooses to raise the status of the inactive students by eliciting contributions 
from them through a prompt like: Do you have any suggestions Mike? We did a pilot 
evaluation with 6 subjects to ensure that the strategies were perceived as we expected.  

3   Overview of Socially Capable Tutors 

The interaction between the students and tutor in the experiment presented in this 
paper is situated in a freshmen engineering course. In this course college students 
learn about basic mechanical engineering concepts like force, moment, stress, etc. The 
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students interact with the tutor as part of a computer-aided design competition where 
the students are asked to design a better wrench with consideration to ease of use, 
safety and material cost. Students could interact with each other and the tutor using a 
text-based chat room that includes a shared whiteboard [16]. 

Table 2. Excerpt of a tutor providing a lesson to a team of four students 

 Speaker Contribution 
64 Tutor Intuitively, if you wanted to make the wrench easier to use, would 

you make it longer or shorter? 
67 S5 Longer 
70 Tutor That's right. A longer wrench is better. 
72 Tutor Why is a longer wrench easier to use though! Let's look at the  

concept of Moment. 
73 Tutor When you use a wrench to turn a bolt, do you want a higher or lower 

moment? 
74 S16 Higher 

 
The task of the tutor is to provide lessons on the underlying theoretical concepts 

while the students work through a worksheet to explore various design choices. An 
excerpt of a lesson on the concept about the relationship between the length of a 
wrench and its ease of use is shown in Table 2 above. Besides performing its task 
related functions, the tutor also employs the social interaction strategies listed in the 
previous section. We have implemented this tutor using the Basilica architecture [17]. 

Using the Basilica architecture, conversational agents are modeled as a network of 
behavioral components. Each component implements a behavior that could be a 
combination of perception, thought and action. The Basilica architecture allows a 
developer to build agents by adding behavioral components incrementally. Since each 
component is not tightly coupled to all others, it provides the flexibility to easily 
change a single behavior. Also, it allows components to be reused between agent/tutor 
implementations for different tasks. Further, each component is fully programmable 
and not restricted to a small set of acts and operators, as is the case with most other 
dialog/conversational system architectures. This makes Basilica a suitable choice for 
an architecture to build agents with novel rich behavior like the social behavior we 
investigate here.  The technical details of the implementation of the Avis agent are 
discussed in a separate publication [19]. 

Table 3 shows an excerpt of an actual conversation between a team of three stu-
dents and our tutor agent Avis. Names are changed to preserve anonymity. Turn 142 
concludes a lesson about the relationship of stress and ease of use of a wrench. As that 
plan step is completed, Avis decides to compliment (strategy 1d) one of the students 
in turn 144 for participating in the discussion. Following that turn, Avis is able to 
proceed to the next step as we see from turn 150 onwards. Also note that one of the 
students exhibits enthusiasm about their team’s designs in turns 143 and 146. The 
tutor exhibits cheerfulness (strategy 2b) in turn 145 and 147 to reciprocate the  
student’s enthusiasm. 
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Table 3. Excerpt of an conversation between three students and Avis (Tutor) 

 Speaker Contribution 
139 Tutor One last thing on this topic, Does more (or less) stress in a wrench 

make it easier to use? 
140 S95 no change? 
141 Tutor You are correct about that.. Stress doesn't determine ease of use. 
142 Tutor It's the moment achieved by the wrench that determines the ease of use. 
143 S89 yay! 
144 Tutor It's good to have your contributions in the discussion Jackie :-) 
145 Tutor Go team :-) 
146 S89 Go team yay 
147 Tutor I am happy to be working with our team 
148 S89 Me too 
150 Tutor Unfortunately maximum stress (12800) in our design1 is … 

 
As mentioned earlier, the amount of social behavior the tutor can perform is regu-

lated using a social ratio parameter that is set at 20% for our social tutors. This is 
based on the percentage of positive socio-emotional turns reported in Bales’ empirical 
experiments with small groups. Note that the social ratio parameter is only the upper 
limit of the percentage of social turn. 

4   Evaluation 

The rest of the paper describes the procedures and results from a controlled experi-
ment we conducted to validate our hypothesis mentioned in section 2.1. 

4.1  Design 

We designed a study with three conditions. In the experimental condition (Social), 
students interacted with a tutor that was equipped with the eleven social interaction 
strategies, unlike the control condition (Task) which is our lower baseline condition. 
In a third (gold standard) condition, a human tutor was allowed to perform social 
interaction while the students interacted with a tutor similar to the Task condition. The 
human tutors were instructed to not give any task related information/instructions. 
They were asked to trigger appropriate social prompts (from the same list the auto-
mated tutor uses) when they thought it was appropriate. Human tutors were allowed 
to make modifications to the prompts before triggering them. They were also allowed 
to type in new prompts. 

In all three conditions, students would receive the same task related information 
(instructions / lessons / feedback) through the automated tutor. Based on the examples 
in Table 2, we notice that in the task condition, the tutor has features (like asking 
questions and giving feedback) that most common tutors do. The time allotted for the 
interaction is the same for each group. The only manipulation in this design is the 
amount of social interaction that varies from minimal (Task) to computationalizable 
(Social) to ideal (Human). According to our hypothesis, socially capable tutors used 
in the Social and the Human conditions will perform better than the Task condition. 



 Socially Capable Conversational Tutors Can Be Effective 161 

4.2   Procedure and Outcome Measures 

We conducted a between-subjects experiment during a college freshmen computer-
aided engineering lab project. 98 mechanical engineering students enrolled in the lab 
participated in the experiment, which was held over six sessions spread evenly be-
tween two days. The two days of the experiment were separated by two weeks. Stu-
dents were grouped into teams of three to four individuals. Each group communicated 
using a private chatroom [8]. No two members of the same group sat next to each 
other during the lab. The groups were evenly distributed between the three conditions 
in each session. 

Table 4. Items about Tutor and Learning Task rated by students on a 7-point Likert Scale 

Q1 I liked the tutor very much. 

Q2 The tutor was very cordial and friendly during the discussion 

Q3 The tutor was providing very good ideas for the discussion 

Q4 The tutor kept the discussion at a very comfortable level socially 

Q5 The tutor was part of my team 

Q6 The tutor received the ideas and suggestions I contributed to the discussion positively 

Q7 I am happy with the discussion we had during the design challenge 

Q8 My group was successful at meeting the goals of the design challenge 

Q9 The design challenge was exciting and I did my best to come up with good designs 

 
Each session started with a follow along tutorial of computer-aided analysis where 

the students analyzed a wrench they had designed in a previous lab. A pre-test with 11 
questions (7 multiple choice questions and 4 brief explanation questions) was admin-
istered after the analysis tutorial. The experimental manipulation happened during the 
Collaborative Design Competition after the pre-test. Students were asked to work as a 
team to design a better wrench taking three aspects into consideration: ease of use, 
material cost, and safety. Students were instructed to make three new designs and 
calculate success measures for each of the three aspects under consideration. They 
were also told that a tutor will help them with the first and the second designs so that 
they are well prepared to do the final design. No additional details about the tutor 
were given. Besides receiving lab credit, students were told that every member of the 
team that learns the most will receive a $10 gift card as prize. 

After the students spent 35 minutes on the design competition, a post-test was ad-
ministered. Following the test, student filled out a perception survey. The survey 
comprised of eighteen items to be rated on a seven point Likert-scale ranging from 
Strongly Disagree (1) to Strongly Agree (7). Six of the items were based on Burke’s 
survey [18] rephrased to elicit ratings about the tutor’s behavior. Three questions were 
designed to elicit ratings of task satisfaction, satisfaction with group discussion and 
perceived task legitimacy. These questions are shown in Table 4. The other questions 
were about group climate and perceptions of other group members. 
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4.3   Results and Analysis 

Learning Outcomes. Using an ANOVA, we saw that there was no significant differ-
ences (p = 0.680) between pre-test scores for the three conditions (Task, Social,  
Human). To evaluate the effect of the tutor’s social capability on the post-test 
achievement, we used an ANCOVA model with day of the experiment and the condi-
tion as independent variables. Pre-test score was used as a covariate. We found a 
significant main effect of the condition variable F(2, 93) = 10.56, p < 0.001. A pair-
wise Tukey test post-hoc analysis revealed that both the Human and Social conditions 
were significantly better than Task condition. This is consistent with our hypothesis. 
The Social and Human conditions were not significantly different on this measure. 
The relative effect sizes with respect to the Task condition was 0.93 standard devia-
tions (σ) for the Human condition and 0.71σ for the Social condition. There was no 
main effect of day of experiment on this outcome. 
 

 

Fig. 1. Average ratings for the Tutor (Q1-Q6) and the Learning Task (Q7-Q9) 

Perception Ratings. Figure 1 shows the average ratings by the students for the sur-
vey items. Using condition and day of the experiment as independent variables in an 
ANOVA, we modeled the ratings for the items. There was a significant main effect of 
condition (p < 0.05) on the first five items. There was no significant difference on the 
item about tutor agreeing with the students (Q6). Also, there was no main effect of 
day of experiment on these outcomes. Pairwise Tukey test post-hoc analysis showed 
the only tutors in the Human condition were significantly (p < 0.05) better than Task 
condition for the first five questions (Q1-Q5). The tutor in Social condition was rated 
significantly (p < 0.05) better only for Q2 (being friendly) and marginally better (p < 
0.08) for Q5 (being part of the team). The social tutors were not significantly better 
than our lower baseline (Task) on the other four items (Q1, Q3, Q4, Q6). 

On the task satisfaction item (Q8) there was significant main effect of both condi-
tion F(2,92) = 4.91, p < 0.01 as well as day of experiment F(1, 92) = 11.57, p < 0.001. 
The Social condition was the worst of the three conditions on this measure. However, 
only the difference between Human and Social conditions was significant. There were 
no main effects on Q7 and Q9. 
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4.4   Analysis and Discussion 

In order to compare our implementation of the social tutors and human tutors, we 
counted the instances of actual display of social behaviors by those tutors. The turns 
were classified as one of seven behaviors listed in Table 5 based on the social prompt 
closest to the turn. Table 5 also shows the average turn counts for the seven types of 
social behavior for the two types of tutors. All the differences between the tutors 
shown in Table 5 are significant. We note that except the number of turns related to 
tension release strategies (2a, 2b, 2c), the human tutors performed significantly more 
social turns. Also, we note that the human tutors performed additional social behav-
iors that were not part of the social strategies implemented in our social tutors on 
some occasions. Both the Pushing and Being Antagonist behavior classify as negative 
socio-emotional interaction categories in Bales’ IPA scheme [10]. 

Table 5. Average number of social behavior turns displayed by tutor 

Behavior Strategy Social Human 
Doing Introductions 1a 2.67 3.80 
Being Friendly 1b-1e 5.61 8.10 
Doing Conclusions 1f 0.97 1.80 
Trying to Release Tension 2a-2c 5.81 1.77 
Agreeing 3a-3b 1.78 4.90 
Pushing   0.57 
Being Antagonist   1.23 

5   Conclusion 

First and foremost, the study presented in this paper shows that conversational tutors 
used in collaborative learning scenarios can be improved significantly by making 
them socially capable while keeping the task (tutoring) related behavior the same. 
Specifically, we have shown that a tutor with human-level social capability can 
achieve a 0.93σ of learning effect compared to a tutor without any social interaction 
capability. We also see that our upper baseline (Human) tutors are perceived signifi-
cantly better on five out of six items on a survey. 

Furthermore, we have described an approach to bridge research in small group 
communication and conversational tutors using the flexibility provided by the Basil-
ica architecture for developing such interactive agents. The first implementation of a 
tutor with social interaction capabilities using this approach showed a significant 
learning effect of 0.71σ compared to the baseline. However, on perception metrics, 
this implementation of the tutor did not perform significantly better than the baseline. 

Overall, the results presented here show a promise in further pursuing this line of 
investigation. Several improvements need to be made to our current set of social in-
teraction strategies and their implementation to match human performance both on the 
performance as well as perception measures to ensure the observed effects can be 
consistently manifested in deployable conversational tutors. Our next step in that 
direction is guided by the observation that tutors in the Human condition performed 
many more social interaction turns than our implementation of the social tutors. This 
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suggests that insufficient amount of social behavior performed by our social tutors 
could be a reason for their inferior perception compared to the human tutors. 
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Abstract. Previous studies on the Politeness Effect show that using politeness 
strategies in tutorial feedback can have a positive impact on learning (McLaren 
et al. 2010; Wang and Johnson 2008; Wang et al. 2005). While prior research 
efforts tried to uncover the mechanism through which the politeness strategies 
impact the learner, the results were inconclusive. Further, it is unclear how the 
politeness strategies should adapt over time. In this paper, we analyze the video 
tapes of participants’ facial expression while interacting with a polite or direct 
tutor in a foreign language training system. The Facial Action Coding System 
was then used to analyze the facial expressions. Results show that as social dis-
tance decreases over time, polite feedback is received less favorably while the 
preference for direct feedback increases. 

Keywords: politeness effect, facial expression, facial action coding system, 
second language acquisition. 

1   Introduction 

In recent years, there has been rigorous research on pedagogical agents’ ability to 
facilitate learning (Atkinson, 2002; Johnson et al. 1998; Lester et al. 2000; Moreno, 
2005). While some research focused on the agent’s appearance and voice (Baylor, 
2005; Baylor et al. 2003; Graesser et al. 2003; Moreno and Mayer, 2000; Moreno et 
al. 2001), we focused instead on the way agent’s feedback is delivered. We conducted 
a series of studies on the use of politeness strategies in tutorial feedback and showed 
that the pedagogical agent’s use of politeness strategies can promote better learning 
results (Wang et al. 2005; Wang and Johnson, 2008). This politeness effect was later 
tested in real classroom settings (McLaren et al. 2007). The latest study shows that 
individual differences, such as level of domain knowledge, can impact the politeness 
effect (McLaren et al. 2010). While the politeness effect was well studied in terms of 
its impact on learning, it was unclear what may be the mediating factors. In our earlier 
analysis, we hypothesized that motivation, in particular self-efficacy and sense of 
autonomy, are the factors through which politeness operate upon (Wang and Johnson 
2008; Wang et al. 2005). However, results from the analysis were inconclusive.  
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Brown and Levinson (1987) argue that people in all cultures have face wants. The 
notion of face wants refers of two specific kinds of desires: the desire to be unim-
peded in one’s action (negative face), and the desire to be approved of (positive face). 
The use of politeness strategies is to mitigate the threat to face wants and facilitate 
harmonious interaction. An alternative explanation for the politeness effect could 
simply be that the use of politeness strategies puts the learner in an affective state that 
is more suitable for learning. Research on emotion and emotional expression shows 
that people categorize facial expressions of emotions in a similar way across cultures, 
and that people produce simulations of facial expressions that are characteristic of 
each specific emotion (Ekman, 1993). In our study of the politeness effect in a foreign 
language culture training system, we recorded participants’ facial expressions while 
they interacted with the system. In this paper, we present our investigation of learners’ 
affective states through analysis of learners’ facial expressions.  

Another question left unanswered is how adaptive the politeness strategies are over 
time, when used in tutorial feedback.  The proper level of politeness depends on the 
potential threat of a communicative act. In the Brown and Levinson model (1987), 
evaluation of face threat depends upon several factors. First, the relative weight of 
different face threats is culturally dependent. This culture dependency is defined as 
the ranking of impositions by the degree to which they are considered to be interfer-
ing with one’s want of autonomy and approval. Second, the weight of a  
face-threatening act also depends upon the relative power between the speaker and the 
listener. Tutors generally have power relative to learners, so we would generally ex-
pect tutors to make use of weaker politeness strategies when speaking to learners than 
the learners use in reverse. Finally, the weightiness of a face threat depends upon the 
social distance between the two parties. As two people interact over time, their social 
distance often decreases, reducing the severity of face threatening acts and increasing 
the likelihood of actions such as direct requests that lack face-saving features. In tu-
toring sessions, the first two factors, culture and relative power, do not change much 
over time. However, the social distance between the learner and the tutor could de-
crease. If the politeness strategies do not adjust to the change of social distance over 
time, would the learner react to the feedback differently?  

In this paper, we investigate the following research hypotheses:  

H1. Learner affect is a mediating factor between politeness and learning. 

H2. The use of politeness strategies in tutorial feedback needs to adapt to the 
change in social distance between the learner and pedagogical agent over time. 

2   Facial Action Coding System 

To analyze the facial expressions, we used the Facial Action Coding System (FACS) 
(Ekman and Friesen, 1978). The FACS is arguably the most widely used method for 
coding facial expressions in the behavioral sciences. The system describes facial ex-
pressions in terms of 46 component movements, which roughly correspond to the 
individual facial muscle movements. FACS provides an objective and comprehensive 
way to analyze expressions into elementary components. Because it is comprehen-
sive, FACS has proven useful for discovering facial movements that are indicative of 
cognitive and affective states (Ekman and Rosenberg, 2005). 
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Fig. 1. From left to right, pictures of facial display of AU 4 (Brow Lower), AU 9 (Nose Wrin-
kle), AU 10 (Upper Lip Raise) and AU 12 (Lip Corner Puller) 

3   CERT 

The primary limitation to the widespread use of FACS (Ekman and Friesen, 1978) is 
the time required to code. FACS was developed for coding by hand, using human 
experts. It takes over 100 hours of training to become proficient in FACS, and it takes 
approximately 2 hours for human experts to code each minute of video. 

Table 1. Action Units automatically coded by CERT  

Action Unit Description Action Unit Description 
1 Inner Brow Raise 15 Lip Corner Depressor 
2 Outer Brow Raise 17 Chin Raiser 
4 Brow Lowerer 18 Lip Pucker 
5 Upper Lid Raise 20 Lip Stretch 
6 Cheek Raise 23 Lip Tightener 
7 Lids Tight 24 Lip Presser 
9 Nose Wrinkle 25 Lips Part 
10 Upper Lip Raiser 26 Jaw Drop 
12 Lip Corner Puller 27 Mouth Stretch 
14 Dimpler 28 Lips Suck 

 
To analyze the facial expressions more efficiently, we processed our video data 

through the Computer Expression Recognition Toolbox (CERT) developed by the 
University of California at San Diego (Bartlett et al. 2004). CERT is a user independ-
ent fully automatic system for real time recognition of facial actions from the Facial 
Action Coding System (FACS). The current version of CERT produces a 20 channel 
output stream. Each output stream channel consists of one real valued number for an 
Action Unit (AU), for each frame of the video. The real valued number indicates the 
distance to the separating hyper-plane for each classifier Support Vector Machine 
classifier. Previous work showed that the distance to the separating hyper-plane (the 
margin) contained information about Action Unit intensity (Bartlett et al. 2006). The 
20 Action Units CERT output are shown in Table 1. Previous work (Susskind et al. 
2007) shows that CERT performs comparably to human observers in the discrimina-
tion of distinct basic emotion classes and judgments of the similarity between distinct 
basic emotions. 
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In the investigator’s guide to FACS, Ekman and Friesen (1978) describe the Action 
Units that are generally associated with facial expressions of different emotions. For 
example, facial expressions of joy typically include the activation of AU 12  
(Lip Corner Puller) and AU 6 (Cheek Raise). AU 9 (Nose Wrinkle) or AU 10 (Upper 
Lip Raise) is often seen in facial expressions of disgust. Following the investigator’s 
guide, we used AU 6 and AU 12 as indications of positive emotional facial expres-
sions and AU 4, AU 9 and AU 10 as indications of negative emotional facial  
expressions (Figure 1). Positive and negative emotional facial expressions can  
certainly include other Action Units. However, from the actions units that can be 
automatically detected by CERT so far, these are the most commonly associated with 
positive and negative emotional facial expression. 

In the analysis of learner facial expressions when interacting with the AutoTutor, 
McDaniel et al. (2007) correlated the learner reported affective states and FACS cod-
ing from two independent coders. The analysis identified eight Action Units (AU1, 
AU4, AU7, AU12, AU25, AU26, AU43 Eye Closure and AU45 Blink) that signifi-
cantly correlated with five affective states (Boredom, Confusion, Delight, Frustration 
and Neutral). In this paper, we focus on analyzing facial expressions indicated by six 
of these eight Action Units (excluding AU 43 AND 45 since CERT does not output 
these two at the moment) and the ones generally associated with positive and negative 
emotions as described above.  

4   Data Description 

Tactical Iraqi is one of several game-based courses developed by Alelo Inc. It is a 
training system that supports individualized language learning and helps military 
service members quickly acquire functional communication skills. Tactical Iraqi in-
cludes three modules: the Skill Builder, the Mission Game and the Arcade Game. The 
Skill Builder consists of interactive lessons and exercises, and interactive game ex-
periences. Learners use headset microphones to interact with the software, along with 
a keyboard and mouse. Lessons, exercises, and game experiences all involve speaking 
in the target language; speech recognition software is used to interpret the learner’s 
speech. The current study focuses on Skill Builder only. More information on the 
Arcade Game and Mission Game can be found in Johnson (2007). 

To investigate the effect of politeness strategies in tutorial feedback, we created 
two types of feedbacks: polite feedback which is phrased using various politeness 
strategies and direct feedback which is phrased without any politeness strategies. An 
example of direct feedback is “No, that means ‘This is a sergeant.’ Try again.” An 
example of polite feedback is “It’s usually hard to get answers to this question right, 
but that means ‘This is a sergeant.’ How about we try it again?” Details about the 
politeness strategy can be found in Wang and Johnson (2008).  

Sixty-one volunteers (59% women, 41% men) from the greater Los Angeles area 
participated in the study. They were recruited by responding to recruitment posters on 
Craigslist.com and were compensated $40 for three hours of their participation. On 
average, the participants were 38.4 years old (min=21, max=63, std=11.5). The study 
design was a between-subjects experiment with two conditions: Polite (n=31) and 
Direct (n=30), to which participants were randomly assigned.  
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Participants filled out the pre-questionnaire packet and started training in the Skill 
Builder in Tactical Iraqi. Participants in the Polite condition received polite feedback 
while participants in the Direct condition received direct feedback. Participants com-
pleted one hour training in day 1, returned to the lab next day and completed another 
hour of training. At the end of their training in day 2, participants were asked to write 
down the name of the lessons they took in Skill Builder. Then participants filled out 
the post-questionnaire packets and took the quizzes from the lessons they took in Skill 
Builder. The quizzes were constructed by our research team. 

Learning Gains were measured using quizzes at the end of each lesson in the Skill 
Builder. The quizzes contain three types of questions. First type of question is Utter-
ance-Formation questions, where participants answer questions by recording their 
own speech. The second type is Multiple-Choice questions. The third type is Match-
Item questions, where participants match phrases in Iraqi Arabic to translations in 
English. Each correct answer gets 1 point. Participants took quizzes from all the les-
sons that they took during the 2 hour training. 

Two indexes of motivation were measured: self-efficacy and perceived autonomy. 
Self-efficacy was measured both in the pre-training questionnaire (α=.829) and the 
post-training questionnaire (α=.713). Items from the self-efficacy scale are modified 
from the scales published in Boekaerts (2002). The difference between pre and post 
training results allows interpretation of how self-efficacy changes due to the training. 
Sense of autonomy (α=.885) was measured only in the post-training questionnaire. 
The measure was designed by our research team. Example items from the autonomy 
measure include “I feel the system was deciding what I should do next for me.” 

5   Results 

Data from eleven sessions were excluded. Two sessions were excluded because a 
computer crash and a speech recognizer malfunction. One session was excluded be-
cause a participant’s hearing and speech impairment. Four sessions were excluded 
because the participants “cheated” on the post-test. Four other sessions were excluded 
because CERT failed to locate the participant’s face in the video, which is a pre-step 
to facial expression coding. As a result, data from 46 sessions (NPolite = 22, NDirect = 
24) were included in the analysis. In this paper, we focus on the analysis of facial 
expressions. Results on learning and motivation are in Wang and Johnson (2008). 

To process the CERT output, we adopted the statistical method Littlewort and her 
colleagues used to differentiate posed and genuine pain (Littlewort et al. 2007). This 
method strips out the individual variance in CERT output, e.g. different individuals 
have different baselines. It also sums up the overall activity of the Action Unit. We 
calculated the mean of the Z-scores for each participant (speaker only) and each AU 
detector as Z=(x-μ)/σ, where (μ,σ) are the mean and variance for the output of the 
parts of each participant’s video where the face was relatively neutral. Duration of the 
neutral face range from 3 seconds to 37 seconds (100 frames to 1114 frames).  

Overall, we did not find any significant difference on individual Action Units be-
tween the Polite and Direct group. Correlation analyses showed that there was no 
significant correlation between the quiz score, self-efficacy and autonomy with any 
facial Action Units we tested. Previous analysis showed that politeness did not impact 
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the overall quiz score but did help the learner perform better on more difficult and 
complex problems – the Utterance Formation quiz questions (Wang and Johnson, 
2008). Further correlation analysis shows that AU 7 (Lids tight) is positively corre-
lated with the Utterance Formation quiz score (r=.315, p=.033). We followed up with 
a stepwise linear regression using the Utterance Formation quiz score as the depend-
ent variable, the experiment condition and the Action Units as independent variables. 
The model kept AU 7 and excluded the experiment condition and other Action Units. 
The resulting model with AU 7 is statistically significant (F=4.835, p=.033).  Since 
previous study showed that age can significantly impact performance on the recall test 
(Wang and Gratch, 2009), we added age as an independent variable to this model. The 
resulting model with AU 7 and age is statistically significant (F=5.193, p=.01). This 
means that the learner’s age and AU 7 activity are significant predictors of his/her 
performance on difficult and complex problems.  

To investigate whether the learner perceived the politeness strategies of the same 
politeness level differently over time, we conducted a General Linear Model Repeated 
Measure analysis using activation of facial Action Units in the first session and sec-
ond session (day 1 and day 2) as the dependent variable and the experiment condition 
as the independent variable. Results show that there is a significant interaction of AU 
12 activity over time and experiment condition. (pTime=.743, pTime*Condition=.041).  
Figure 2 shows that activation of AU 12 decreases over time for learners in the Polite 
group. But for learners in the Direct group, their AU 12 activity increases from day 1  
 

 

Fig. 2. Activity of AU12 changes differently from the first session (day 1) to second session 
(day 2) for learners in the Polite and Direct group 
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to day 2. AU 12 is strongly correlated with joy and delight (Ekman and Friesen, 1978, 
McDaniel 2007). This means that learners in the Polite condition initially enjoyed the 
polite feedback but found the feedback less enjoyable over time. On the other hand, 
learners in the Direct condition grew increasingly accustomed to the direct feedback 
and perceived it more favorably over time. We did not find any significant interaction 
of AU 6 activity over time and experiment condition. However, the overall level of 
AU 6 activity is significantly correlated with AU 12 activity (p=.003, r=.423).  
 

6   Discussion 

In this paper, we seek to test two hypotheses regarding the politeness effect. First, we 
hypothesize that learner affect could be a mediating factor between politeness and 
learning. This hypothesis was not supported. Results show that there was no signifi-
cant difference on any facial Action Units between the polite and direct conditions. 
However, correlation analysis shows that AU 7 is significantly correlated with per-
formance on difficult and complex problems. AU 7 is more predictive of learner  
performance than experiment manipulation. Previous studies showed that AU 7 is 
positively correlated with confusion and delight, and negatively correlated with bore-
dom and the neutral affective state (McDaniel et al. 2007). This suggests that being in 
the affective states of confusion and delight may be related to learning difficult and 
complex issues.  

The second hypothesis we tested was that the use of politeness strategies in tutorial 
feedback needs to adapt to the change of the social distance between the learner and 
pedagogical agent over time. Results show that, over time, activity of AU 12  
decreases in learners who received polite feedback but increases in learners who  
received direct feedback. The interaction between feedback politeness levels and AU 
6 activity over time was not statistically significant. There is, however, a significant 
correlation between overall activity of AU 6 and AU 12. AU 12 is associated with 
facial expressions of joy and delight (Ekman and Friesen, 1978; McDaniel 2007). 
And AU 6, in addition to AU 12, is the key to the Duchenne smile, which is consid-
ered by many researchers as an indication of genuine spontaneous emotions (Ekman, 
Davidson and Friesen, 1990). These results suggest that the second hypothesis was 
only partially supported. Future analysis of student’s self-report of affective states and 
subjective evaluation of the tutorial feedback could help clarify the influence of  
politeness feedback on student’s affective states.  

The decision to use politeness strategies is mainly based on the need to mitigate 
face threat and the need for efficiency. As the learner becomes more familiar with the 
tutor, the need to mitigate face threat decreases and the need for efficiency increases. 
For learners in the polite group, the use of politeness strategies may become excessive 
over time. For learners in the direct group, the appreciation for efficiency in the feed-
back may increase. This suggests that the design of politeness strategies should adapt 
to the change of relationship between learner and pedagogical agent. Once the social 
distance decreases, the lower politeness level becomes more appropriate and more 
efficient. One possible improvement to this study is to check how the learner’s per-
ception of social distance with the pedagogical agent changes over time.  
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Future work could focus on more fine-grained analysis of facial expressions, e.g. 
analysis of instances where AU 6 and AU 12 coincide, instead of correlating gross 
activities throughout the study. In the current study, we have only two data points to 
show how perception of politeness, through facial expressions, in tutorial feedback 
changes over time. Future studies that expand over weeks or months could demon-
strate whether this change is linear or nonlinear, or when would be the optimal time to 
adjust the politeness level. As facial expression recognition and other affect recogni-
tion techniques became available and more accurate (D’Mello et al. 2007; Zeng et al. 
2009), it would help informing the pedagogical agents how the feedback was received 
and when the politeness level needs to be updated. Future research on the politeness 
effect could use these technologies to dynamically adjust politeness levels and make 
the pedagogical agent more socially intelligent.   
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Abstract. One innovative use of digital games is to facilitate learning skills 
with social components by simulating human behavior with virtual humans. We 
investigate learners' social goals to understand how they help learners learn  
intercultural skills from virtual humans in BiLAT, a virtual world that teaches 
cross-cultural negotiation. We hypothesize that students learn more when they 
approach the simulation as a social interaction rather than taking a trial-and-
error approach perhaps characteristic of video gaming. In a randomized  
controlled experiment with 59 participants, we found that participants improved 
cross-cultural negotiation skills through game play. Our hypothesis that partici-
pants given an explicit social goal would learn more than those given  
task-related goals was not confirmed. We did, however, find a positive relation 
between students’ self-reported social goals, regardless of condition, and their 
learning results. This relation was confirmed through analysis of log data. Al-
though it is still an open question how best to promote students' approaching a 
simulation with a social orientation, the results underline the importance of such 
goals.  

Keywords: social motivation, virtual environments, intelligent agents. 

1   Introduction 

Virtual humans are increasingly being used as pedagogical agents [2], and one of their 
most intriguing roles may be in facilitating the learning of social or interpersonal 
skills, such as conflict resolution, in game-based instructional systems [14]. These 
skills are traditionally taught in environments like business training or foreign lan-
guage classes, using methods like role playing, or lecture and discussion. Unfortu-
nately, these methods are either highly resource-intensive or lack an experiential 
component where learners practice these skills [10]. Computer-based simulations, 
which are growing more realistic, offer a major advantage for social learning by  
providing a cheaper solution to a much larger number of learners. Social learning 
systems have leveraged video game and learning technologies to create immersive 
environments with virtual human characters that simulate interpersonal interactions 
with complex behavioral models (see [11] for a review of intercultural systems). Re-
cent advances in artificial intelligence and cognitive modeling now permit rich model-
ing of affect, culture, and more in virtual humans [e.g., 18]. The virtual humans’ 
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models drive the interaction that theoretically leads to learning. BiLAT, the game-
based system in which we situate this work, is a virtual environment that supports 
learners in developing cross-cultural skills in the context of a negotiation task [8]. In 
this game, virtual humans take on a role that would typically be played by a human 
from another culture, in which they gesture, speak, and behave in ways that would be 
appropriate in that culture. Such games allow us to study the effects of virtual humans 
on social learning. 

Unlike many pedagogical agents in the role of teacher, these virtual humans do not 
provide support for problem solving. Rather, learners benefit from the practice they 
receive through interacting with them, as they would from role-playing practice with a 
human. If we are to make optimal use of virtual humans as agents for social learning, 
it is helpful to understand our interactions with them. Related work supports the hy-
pothesis that humans interact socially with computers. According to a wide-ranging 
series of studies by Reeves and Nass [15], people have an inherent bias that leads 
them to react to media like computers in fundamentally social ways. For example, 
people rate more highly computers that are endowed with a similar “personality” to 
their own. Recently, others have shown similar results investigating virtual humans, 
who can evoke responses that follow social psychology theory in automated processes 
such as proxemics (differences in physical distances between people) [1].  

However, there are contradictory findings when more conscious, cognitive func-
tions are involved [16]. Bailenson, Blascovich, Beall, and Loomis propose that social 
responses to virtual humans are forthcoming in low-level responses such as proxe-
mics, while high-level responses such as having a meaningful conversation are  
governed by the human participants’ belief in the agency of the virtual human [1]. 
Learning may very well be one such high-level area that requires attention and proc-
essing [3]. Okita, Bailenson, and Schwartz [12] found that learners who believed there 
was a human behind an avatar in a virtual environment exhibited better learning, more 
attention, and higher arousal than learners who believed they were interacting with a 
machine. One explanation for this result is that learners believe they are taking a so-
cially relevant action when they interact with a human, and thus pay more attention 
and feel more accountable. It is clear that our social responses to technology are not 
the same in all cases. If learners are to benefit from these interactions it may be  
necessary for them to perceive the agents as social beings. 

Even if learners do not produce social responses naturally, it may be possible to in-
troduce social orientations into human-agent interactions. A significant area of re-
search involves learners’ motivational orientations towards learning environments [5]. 
In a domain like culture that focuses on social interactions, social motivation can have 
a great influence on learning [20]. Motivation is a goal-directed process that instigates 
or sustains behavior [17]. When cultural differences arise, people with different cul-
tural identities are often categorized as members of an “outgroup” [13], which can 
exacerbate biases and lead to social goals like the desire to be seen as superior to the 
outgroup [19]. These motives may be detrimental to learning about a new culture. On 
the other hand, if the learner possesses social goals such as a need for affiliation or the 
desire to conform to social rules, learning may increase. It is an open question 
whether such goals can be explicitly manipulated in a way that improves learning in 
environments like BiLAT, in which learners interact with virtual characters from a 
different culture. 
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Social goals have been studied in human-human contexts that do not focus on 
learning, in a way that might lead to successful interventions for learning purposes. 
Negotiation researchers have shown that having a sense of a shared group identity, as 
indicated by holding social goals such as the desire for affiliation, can lead towards a 
win-win perspective and even increase negotiation outcomes for both parties [e.g., 
21]. Social goals have also been manipulated to reduce outgroup bias in cross-cultural 
contact with successful results [6]. To study goal orientations, researchers give brief 
instructions that encourage specific goals for the task, which has been shown to have 
a significant impact on students’ goals [5]. In the same way, we can give learners 
social goals to influence their orientation towards virtual humans. It is still an open 
question whether providing a social goal to students working with a social simulation 
results in interactions that can be viewed as more social and to better learning. 

In this paper we describe an empirical study that investigates the effects of manipu-
lating learners’ social goals on their learning and gameplay. This research explores 
whether students learn intercultural competence skills from BiLAT, whether learners 
with a social orientation towards virtual humans show increased learning, and 
whether giving learners social goals for interacting with virtual humans increases their 
social orientation. This paper presents a randomized controlled study in which learn-
ers played the game with or without the addition of an explicit social goal introduced 
into the interface of BiLAT.  

2   Game Context 

The environment we use for our investigation is BiLAT [8], a game-based simulation 
for practicing bilateral meetings in a cross-cultural context. BiLAT integrates research 
technologies such as virtual human characters and intelligent tutoring support. Scenar-
ios derived from real-world events drive the game experience. The learner is put into 
the role of a U.S. Army officer tasked with meeting with Iraqi townspeople to accom-
plish peace-keeping and rebuilding missions. The learner is given concrete, negotia-
tion task-related goals for each meeting. 

BiLAT was designed to address learning objectives related to negotiation generally 
as well as the specific cultural knowledge and skills that support more effective nego-
tiations in the Iraqi culture. A primary learning objective is considering the meeting 
counterpart’s interests in order to achieve “win-win” results. To play, learners begin 
by preparing for a meeting in the “prep room.” Here, they learn about the character 
from a variety of sources of varying degrees of trustworthiness, similar to gathering 
such information in a real world situation. Learners then move into the meeting (see 
Fig 1). They communicate with each BiLAT character by selecting from a menu of 
communicative actions that includes greetings, smalltalk, task-related dialog, and 
more. The character responds to players’ actions in both text and synthesized speech 
as well as culturally-appropriate non-verbal behaviors. Guiding each virtual charac-
ter’s responses is an underlying social simulation that contains a model of culture and 
personality. Once the meeting objectives have been obtained, the meeting is complete 
and the player will receive the next set of objectives for the scenario and new charac-
ters who might help them achieve those objectives. It is also possible to have an un-
successful meeting (e.g. by offending the host), in which case the character asks the 
learner to leave and return for another meeting to try again.  
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Fig. 1. A meeting in BiLAT with police captain Farid, with the goal of solving a problem with 
a market in an Iraqi town 

3   Experimental Study 

In the BiLAT environment, we ran a between-subjects randomized controlled study to 
investigate student interactions and learning results with different goals. Participants 
were randomly assigned to either the task condition in which they viewed only task-
related goals, or the social goal group with an additional social goal. The social goal 
learners received was, “Come to understand Farid’s point of view,” where Farid was 
replaced with the name of the current meeting partner. BiLAT displayed this goal as a 
single sentence which learners had to select each time they started a meeting, and 
which was also available in the list of goals throughout the meeting (see Fig 1). This 
social goal was chosen by reflecting on the main focus of both the negotiation and 
cultural learning objectives, which has been found to improve learning: perspective 
taking. Our hypotheses for this study were:  

H1: Students show learning of culture from the system. 
H2: Students in the social goal condition have more social goals for interaction with 

the virtual characters. 
H3: Students with social goals perform better on overall learning measures. 
H4: Students with social goals have more social patterns of interaction with the  

virtual characters.  

Participants were 59 learners (32 males, 27 females, mean age = 20.8, SD = 2.71) 
from two universities who were all U.S. citizens. In a demographics questionnaire 
we asked about participants’ formal negotiation training (M=1.20, SD=0.58) and 
knowledge of Arab cultures (M=1.98, SD=1.22), each using a scale of 1 (none) to 7 
(extensive). 
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3.1   Measures  

Intercultural negotiation is an ill-defined domain and assessment is therefore chal-
lenging. We used two different measures. First, we developed an assessment to test a 
learner’s ability to develop an accurate model of the virtual characters and the tasks in 
the scenario. Specifically, we asked participants to rate the truth of various items 
relating to the task and to the character (e.g., “Farid could be described as a family-
oriented man”). These items were taken from the information participants received in 
the “prep room,” information which they knew might be accurate or misleading. Par-
ticipants evaluated the items as true, false, or unknown. Throughout the course of a 
meeting with a character, successful participants should be able to revise their under-
standing of the character and the task through their interactions, and make more ap-
propriate judgments about the accuracy of the information from the sources in the 
prep room. We called this measure Information Integration. 

For our second measure we used a selection of questions from a validated instru-
ment called the Cultural Assimilator [4]. In this assessment, participants read a sce-
nario about people experiencing a foreign culture and chose the best of four possible 
cultural explanations for the events that occurred. The Cultural Assimilator deals with 
scenarios from both Iraqi and other cultures therefore testing whether students can 
transfer their knowledge to novel situations. We used two versions of the assessment. 
Each contained six items, and in the study pretests and posttests were counter-
balanced with isomorphic items. 

Finally, we wanted to determine whether our manipulation had the desired effect 
on participants’ goals in the game. We therefore asked them to list their goals in free 
text after meeting with a character. 

3.2   Procedure  

Participants began by taking a demographics questionnaire and then watching a video 
about the concepts and skills related to the learning objectives. This video gave  
participants an introduction to the material they then practiced in BiLAT, as well as 
an introduction to using the system. All participants were told in the introductory 
video that interpersonal aspects of the interaction are an important consideration for 
successful negotiations. Participants then took the Culture Assimilator pretest  
assessment.  

Next, they entered the game. They explored the “prep room” to learn about the 
scenario and the first character they were going to meet. Also, the goals for the meet-
ing were introduced, including the social goal for those participants in the social goal 
condition. After leaving the “prep room,” the Information Integration items for that 
character were administered. Participants then saw the meeting goals again and met 
with the first character until an agreement on the negotiation was reached. If the par-
ticipant did not come to an agreement within forty-five minutes, the experimenter 
moved the participant along to the next step. At this point, participants were asked to 
list their goals for the meeting in free text and then took the Information Integration 
items for that character again as a posttest. Following this posttest, participants re-
peated this procedure with a second character who was part of the same scenario. 
Finally, participants took the Culture Assimilator posttest. 
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4   Results 

While 59 participants completed the study, we dropped 5 participants due to computer 
error or complete lack of engagement. In our final analyses, we compared 25 partici-
pants in the social goal group to 29 participants playing with the standard task-related 
game objectives.  

H1 stated that we would observe learning gains from playing the game. To analyze 
the data, we conducted a paired t-test to compare pretest scores to posttest scores 
across all students. On the Information Integration items, participants were given a 
point for each item that matched a subject matter expert’s rating of the information. 
Students showed significant overall learning from pre to post (t(49) = 9.213, p=.004). 
On the Culture Assimilator, participants were given a point for each item that 
matched the most appropriate response from the validated measure. On this measure 
as well there was significant overall learning from pre to post (t(47) = 4.582, p=.038).   

H2 stated that the social goals group would have more social goals for interacting 
with the virtual characters. To investigate, we coded participants’ answers to their 
free-response goals for the meeting. As mentioned above, students in the task condi-
tion saw two task goals. Students in the social condition saw the same two task goals 
and a third (social) goal, “Come to understand Farid’s point of view”.  Interestingly, 
although it was not presented to them, a number of participants in the task condition 
reported a similar or related social goal. Because the main focus of our experiment 
was to investigate the effects of playing the game while holding social goals, we cate-
gorized participants as “no reported social goals” and “reported social goals”, regard-
less of their condition. Two independent coders rated anything that focused on social 
interaction with the virtual character in the “reported social goals” category. Table 1 
has examples of reported social goals from both conditions.  

Table 1. Reported social goals from each condition 

Social goals in task goals condition Social goals in social goal condition 

Establish a good relationship To establish a positive personal  
relationship with Farid 

Build trust Maintaining a strong personal rapport  
with Farid. 

Establish a trustworthy relationship between 
Farid in myself. I wanted to get support and 
unity with the Iraqi police but I also wanted 
to attend to Farid's needs in order to keep 
the relationship open and favorable. 

Building the foundations for a  
long term relationship with Farid. 

 
Reporting a social goal was not significantly related to the demographic character-

istics we measured: age, negotiating experience, knowledge of Arab cultures, or fre-
quency of playing games. Neither did the reported social goal participants have higher 
pretest scores on the Information Integration items or the Culture Assimilator (all p > 
.2). The number of participants with reported social goals was significantly influenced  
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Table 2. Number of participants by condition and reported goals 

Reported goals 
Given 
Condition 

No social Social 
 
 
Total 

Task  20 9 29 
Social  9 16 25 
Total 29 25 54 

 
by condition according to a chi square test (χ2(1, N = 54) = 5.868, p=.015). Table 2 
shows the participants with social goals by condition. 

H3 stated that students with social goals would perform better on overall measures 
of learning. We examined all of the learning results with respect to the learner’s given 
goals (social vs. task). To analyze the data we conducted repeated measures analysis 
of variance (ANOVAs) with condition as the between-subjects factor and test time 
(pretest and posttest) as the within-subject factor. Here, our hypothesis was not con-
firmed. However, because almost a third of all participants did not report their goals 
as we expected based on the condition they were given, we examined all the learning 
results again with respect to the learner’s reported goals from the manipulation check 
(“reported social goals” vs. “no reported social goals”). We added “reported social 
goals” as a between-subjects variable to repeated measures ANOVAs with test time 
(pretest and posttest) as the within-subject factor. On the Information Integration 
items, the ANOVA showed that reported social goals significantly influenced learning 
(F(1,49) = 3.979, p=.052). An ANCOVA model of the Culture Assimilator test also 
showed that reported social goals significantly influenced learning (F(1,47) = 8.314, 
p=.006). On both assessments, learners who reported social goals outperformed learn-
ers who did not report social goals.  

H4 stated that students with social goals would have more social patterns of play in 
the game. To examine this hypothesis, we did an investigation into participants’ ac-
tions taken in the game and compared them across reported goals. Game actions were 
classified by the developers into business, social, opening (e.g., greetings), and clos-
ing (e.g., leave-taking) categories. Participants who reported social goals took sig-
nificantly fewer total actions in the game than participants who did not report social 
goals (see Table 3 for all statistics). Broken down by action type, these participants 
took significantly fewer business actions, while taking a statistically similar number 
 

Table 3. Gameplay differences between “reported social goals” groups; * indicates statistically 
significant difference 
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of social actions. They also held fewer meetings before they achieved their objectives. 
Participants with reported social goals also took significantly fewer unique communi-
cation actions. However, although time on task was not strictly controlled by the  
experimenters, there were no significant differences between groups in the amount of 
time the game was played. 

5   Discussion 

Our four hypotheses were confirmed, although not in the way that we expected. First, 
we found that overall, participants did learn from interacting with the virtual humans 
in BiLAT. Showing that such a system can produce increases on a validated assess-
ment is a win given the current state of evaluation in the field [11]. The results of the 
explicit goals manipulation in the study require closer consideration. Relevant to H2, 
a significantly higher percentage of participants who were explicitly given a social 
goal in the game interface did report having a social goal as a meeting objective than 
those who were not given such a goal. Therefore, some students in the social goal 
condition did appear to be influenced to consider such goals as important. However, a 
third of the students in that condition did not seem to heed the manipulation. These 
students may not have understood how to achieve the social goal they were given, or 
may not have wanted to achieve it. Additionally, unlike other similar learning orienta-
tion manipulations (e.g., [5]), simply attempting to manipulate students’ social goals 
was not beneficial to learning.  

What we saw instead, confirming H3, was that learners with self-reported social 
goals for the interaction had increased learning over learners without such goals. The 
results of this study extend two sets of seemingly conflicting evidence. Okita et al. 
suggest that students need to believe that virtual characters are real to benefit from 
interacting with them [12, 16]. However, the Media Equation [15] suggests that social 
responses to virtual characters are automatic. We saw that participants with self-
reported social goals, regardless of condition, learned more about the scenario and 
characters and were better able to transfer their knowledge to novel situations. Thus, it 
appeared that while learners did not need to be told that the virtual humans were real 
humans to learn, having social goals for the interaction was beneficial. 

Additionally, we saw that students who reported a social goal played the game in a 
qualitatively different way (confirming H4). In an identical amount of time in the 
game, they took fewer actions, which may indicate that they spent more time reflect-
ing on each action to consider their partners’ perspective. They took fewer total ac-
tions relating to business and a higher percentage of social actions than students who 
did not report social goals. Additionally, they took fewer unique actions, signifying 
less exploration of the conversation space (seemingly avoiding dialog actions that 
could potentially be seen as offensive). Together, these patterns seem to present a 
social orientation towards gameplay, where participants hold some theory of mind 
about their virtual partner. This outlook is in contrast to a prominent view of learning 
from gameplay, which involves exploring a risk-free, task-oriented environment for 
discovery (as suggested by the PsychoSocial Moratorium principle and other theories 
of game-based learning) [7, 9]. This principle states that games are a place where 
learners take risks they would not normally be comfortable taking in the real world. In 
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BiLAT, learners might manifest this principle by intentionally offending the virtual 
character, or experimenting with all available actions in an attempt to understand the 
boundaries of acceptable behavior. This type of gameplay would be at odds with a 
social perspective, in which learners would carefully consider their partner’s perspec-
tive, attempt to avoid giving offense, and avoid exploration that would take them into 
unknown territory of culturally acceptable behaviors.  

Our results show that a social orientation towards interaction with virtual humans 
in learning intercultural negotiation and perhaps similarly complex social skills may 
not always happen, but when it does, it is associated with increased learning. Al-
though these results may not apply to domains such as algebra where social skills are 
not critical, the trend in these domains towards social methods of instruction such as 
virtual peer tutoring may make them relevant. The results can guide us towards de-
signing improved ways to support social learning through virtual environments. It 
appears that learning social skills in virtual environments can be more effective if we 
can promote a social orientation. However, presenting explicit social goals is not the 
most effective way of doing so. Instead, our search continues for ways to promote a 
social orientation more implicitly. A second avenue for future research is to investi-
gate those students who arrive at a learning environment already holding social goals. 
Reporting a social goal was not tied to any of the demographics that we measured 
(e.g., prior negotiation training, knowledge of Arab cultures), nor did these partici-
pants appear to be of higher ability based on their pretest scores. It may be that other 
measures such as social intelligence or personality traits can provide a better charac-
terization of these learners. We intend to build a model of how social goals are influ-
enced by and interact with these learner characteristics. Then, we will investigate how 
social goals can be promoted for those students who do not already hold them.  
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Abstract. We present results from an analysis of students’ shallow behaviors, 
i.e., gaming, during their interaction with an Intelligent Tutoring System (ITS). 
The analysis is based on six college classes using the Andes ITS for homework 
and test preparation. Our findings show that student features are a better predic-
tor of gaming than problem features, and that individual differences between 
students impact where and how students game.  

1   Introduction  

Students have long found ways to avoid reasoning about instructional materials, e.g., 
by copying from examples to generate problem solutions [1] or by avoiding effective 
study strategies such as self explaining domain principles [2]. In human tutoring  
contexts, students often passively listen to tutors’ didactic explanations, without pro-
viding substantial follow ups even though more active participation is needed for 
effective learning [3]. These behaviors also occur in students’ interactions with intel-
ligent tutoring systems (ITSs). A name given to shallow reasoning in the context of an 
ITS is gaming, “attempting to succeed in a learning environment by exploiting prop-
erties of the system rather than by learning the material” [4]. Not surprisingly, gam-
ing can be detrimental to learning [5], and so there have been efforts in detecting [6, 
7], understanding [4, 8, 9] and preventing [10, 11] gaming. 

We add to this research by presenting an in-depth analysis of log data correspond-
ing to several years worth of students interacting with Andes, a tutoring system for 
Newtonian physics [12]. To identify gaming episodes in this data, we applied a com-
putational gaming detector that we calibrated with a hand-analysis of the data. Con-
trary to some prior findings (e.g., [4]), we found that gaming is best predicted by 
student features, rather than instructional aspects. This lead us to perform a descrip-
tive analysis of students’ gaming behaviors that focused in part on understanding 
which tutor actions lead students to game. While we found individual differences 
between low and high gamers, high-level hints were one of the most gamed features. 
However, in contrast to other work [4], our analysis suggests that poor hint usability 
may not be the culprit, and so that other factors such as student motivation (or lack of) 
are at play.  

We begin with a survey of related work, and then present our gaming detector, the 
log data analysis and results, and finally a discussion of our findings and future work.  
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2   Related Work  

Several approaches for detecting gaming have been used. Some research has relied on 
human observers for real-time gaming identification [5]. This approach is challenging 
as observers may miss nuances in a fast-paced classroom environment and so others 
have turned to post hoc hand labeling of log data [4]. The latter approach affords the 
human coder time to consider all student actions but is costly, since copious amounts 
of data must be hand labeled. A potential issue with using human coders is that they 
may be inconsistent in identifying gaming episodes, something that machine algo-
rithms for gaming identification address [6, 7, 13, 14].  

A key challenge is understanding what causes gaming. Some researchers propose 
that gaming is due to features of the instructional materials, including (poor) ITS 
design. For instance, Baker et al. [4] found that ITS features, such as unhelpful hints 
and non-intuitive toolbar icons, explained more of the variance in the data than prior 
approaches using student features; a similar result was obtained in [15]. Other work 
focuses on identifying student characteristics that drive gaming. For instance, since 
students game on steps that they do not know [13], it has been proposed that item 
difficulty leads to gaming. Another student characteristic influencing gaming is affect, 
with boredom being the most frequent emotion to precede gaming [8]. There has also 
been research on how performance goal orientation impacts gaming [16]; this work 
failed to find the anticipated link between gaming and performance goals. 

As far as gaming prevention is concerned, a number of strategies have been devel-
oped, including the use of animated agents that show disapproval when gaming  
occurs [17], software design via a mandatory delay before a student can ask for a hint 
[10, 18], and/or by letting students choose the hint level [19].  

3   The Data and Gaming Detector 

The Data. Our data, obtained from the Pittsburgh Learning Center DataShop, corre-
sponds to logs of students using the Andes ITS [12] for assigned class homework and 
test preparation (from six different physics classes over the span of about three years). 
Andes tutors Newtonian physics and is described in detail elsewhere (e.g., [12]); here 
we provide a very brief overview. Students solve problems in the Andes interface by 
drawing diagrams and typing equations. Such a user interface action will be called an 
entry. Andes provides immediate feedback for correctness on students’ entries, by 
coloring the entry red (incorrect) or green (correct). As students solve problems, they 
can ask Andes for a hint; the Andes hint sequence starts out general and ends with a 
bottom-out hint that indicates precisely the step to enter (e.g., “Why don't you con-
tinue with the solution by working on setting the pressure at a point open to the at-
mosphere “ … “Write the equation Pa = Pr0”). To discourage students from always 
going to the bottom-out hint, Andes assigns a score to each problem, which is decre-
mented slightly every time a bottom-out hint is requested. 

The Gaming Detector. After irrelevant actions are removed from the log data, a log 
consists of a time-stamped sequence of tutor-student turn pairs (e.g., tutor indicates an 
entry is incorrect, student responds by asking for a hint). To address our research 
questions, we needed to know which of these turn pairs corresponded to gaming.  
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Table 1. Tutor-Student turn pairs (gamed cells shaded) 

 (a) Student: hint request (b) Student: Entry 
 fast slow fast slow 
(1) Tutor: bottom-out hint Skip hint (S) -  Copy hint (C) -  

(2) Tutor: High-level hint Skip hint (S)  - -  - 

(3) Tutor: Incorrect (Red)  -  - Guess (G)  - 
(4) Tutor: Correct 
(Green) 

No planning (P)  - -   - 

     
 

Given that our data comprised over 900,000 pairs, manual analysis was not feasible. 
Thus, we first hand-analyzed a fragment of the log data to identify rules to detect 
gamed turn pairs, which we then encoded into a computational gaming detector that 
could automatically label the data. We then applied the detector, hand-checking its 
output on a new data fragment, revising as necessary. 

For purposes of this analysis, we considered the following tutor turns: (1) coloring 
an entry red (incorrect), (2) coloring an entry green (correct), (3) giving a bottom-out 
hint, or (4) giving a high-level hint (we did not further subdivide the high-level hints 
since the number and characteristics of such hints varied considerably). We classified 
a student’s turn as either (a) asking for a hint or (b) generating an entry. Thus, there 
are 4*2=8 types of turn pairs (see Table 1). Each turn pair has a time duration associ-
ated with it, which is how long the student paused between seeing the tutor’s turn and 
starting to take action. We assume that turn pairs with long durations are not gaming. 
Of the eight possible turn pairs with short durations (see Table 1), we consider  the 
following five to be gaming: (1-2) Skipping a hint: the tutor presents a hint and the 
student skips the hint by quickly asking for another hint (see ‘S’ cells in Table 1); (3) 
Copying a hint: the tutor presents a bottom-out hint and the student quickly generates 
a solution entry, suggesting a shallow copy of the hint instead of learning of the un-
derlying domain principle1 (see ‘C’ cell, Table 1); (4) Guessing: after the tutor signals 
an incorrect entry, the student quickly generates another incorrect2 entry, suggesting 
s/he is guessing instead of reasoning about why the entry is incorrect (see ‘G’ cell in 
Table 1); (5) Lack of planning: after the tutor signals a correct entry, the student 
quickly asks for a hint, suggesting reliance on hints for planning the solution (see ‘P’ 
cell, Table 1). Note that item 1, skipping hints, does not take into account the possibil-
ity that a student may copy the hint and then reason about it. This was explored in 
[20], by analyzing time after a hint was copied. Time alone, however, does not neces-
sarily indicate that the student is reasoning about the hint, since they may be, for in-
stance, thinking about the next step. Thus, for the time being, we decided to only 
consider time before an entry is generated, as we felt this was more likely to corre-
spond to reasoning about the entry. 

Accurate gaming detection relies on having reasonable time thresholds, one for 
each of the five gamed turn pairs. To set the threshold, we obtained a value for each 

                                                           
1  A high-level hint followed by a fast entry is not gaming since you can’t copy high-level hints. 
2 This is the only student entry where we take into account correctness of the student entry, as 

not doing so might incorrectly classify fixing slips as gaming. 
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pair based on our review of the log file data. As a final check, we obtained a fre-
quency distribution graph for each of the gamed pairs. The graph allowed us to ensure 
that the threshold we chose was not unrealistic (e.g., so high that all students would be 
considered gaming). Note that we were conservative when setting our thresholds: for 
instance, we set the skipping hint threshold T = < 3sec. While this threshold may not 
afford enough time to read all of a hint, it captures instances when students are  
skipping most of the hint.  

4   Results 

Our analysis is based on applying the above-described gaming detector to data from a 
set of 318 unique problems and 286 students. We now describe our results. 

4.1   What Is a Better Predictor of Gaming: Student or Problem? 

As we mentioned above, a central question pertains to what causes gaming, and in 
particular, whether student or problem features better predict gaming. To address this 
question, we obtained the following measures: 

 
  PerGamings p percentage of gaming by a student s on a problem p (1)

 PerGaming s p /N
p= 0

p= N
∑  

i.e., average gaming by a student s across all N 
problems p solved by that student 

(2)

PerGaming s p /M
s= 0

s= M
∑  

i.e., average gaming on a problem p across all M 
students s 

(3)

We used problem as the unit of analysis (see equation 1; equations 2 and 3 rely on it). 
Some research has used lesson as the primary unit of analysis [4]. In fact, the ideal 
unit would correspond to tutor-student turn pairs, as these are when student makes a 
game vs. no-game decision. However, we need a unit of analysis that can be com-
pared across students, so that we can determine whether all students tend to game at 
“the same” place. It would be difficult to determine if turn-pair from one student are 
“the same” as a turn-pair from another student. The smallest unit of analysis that al-
lows simple equivalence across students is the problem. Thus, we chose problems as 
the unit of analysis instead of lesson (too large) or tutor-student turn pairs (not 
equatable; too small). We used percentage of gaming (see equation 1) instead of raw 
values to avoid biasing the analysis towards, for instance, short problems.  

To investigate predictors of gaming we conducted a linear regression analysis, with 
PerGamingsp (equation 1 above) as the dependent variable, and two independent vari-
ables: (1) student, the average gaming by a student s across all N problems p solved 
by that student (equation 2 above), and (2) problem, the average gaming on a problem 
p across all M students s who solved that problem (equation 3 above). The model is 
significant (F=16915, p < 0.001), and accounts for 60.7% of the variance (R2 = .607). 
In this model, both student and problem yield a significant correlation with the  
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dependent variable (student: standardized coefficient=.658, t=152.7, p<0.001; prob-
lem: standardized coefficient=.325, t=74.23, p<0.001). If we enter the independent 
variables separately to analyze the variance explained by each, (1) the student variable 
accounts for 49.6% of the variance, while (2) the problem variable accounts for 
18.6% of the variance.  

To identify the impact of a particular data set (i.e., class/semester), we re-ran the 
regression analysis with a third independent variable, namely data set id. This vari-
able explained only an additional 1% of the variance, showing that data set had at best 
a weak effect on gaming, and so we did not consider it in subsequent analysis. 

Another way to verify whether students are more consistently gaming across prob-
lems or if instead problems are more consistent across students is to randomly sub-
divide students (or problems) into buckets and then check for correlation between the 
buckets. To this end, we created two buckets by randomly assigning students to a 
given bucket. For each bucket, we obtained the average percentage of gaming for 
each problem in that bucket (equation 3 above), and then performed correlation analy-
sis between buckets A and B. We found a high degree of association between the two 
data sets (R2=.89 p < 0.001). That is, if a problem was often gamed by students in 
bucket A, then it was also often gamed by students in bucket B. We used an analo-
gous technique to verify that problems were consistently gamed on between students 
(i.e., obtained two bucket by randomly assigning problems to a given bucket, and 
applied equation 2 above to obtain the average percentage of gaming by a student); 
the analysis yielded a high degree of association (R2=.963, p<0.001). That is, if a 
student tended to game the problems in the A bucket, then that student also tended to 
game problems in the B bucket. Jointly, these analyses show that students are more 
consistent than problems: if a student is a high gamer on one half of the problem, then 
the student is also a high gamer on the other half; in contrast, if a problem is a high-
gaming problem for half the students, then it is less likely to be a high-gaming prob-
lem for the other half. Thus, these analyses support the above regression results.  

Yet another way to test our hypotheses is to examine histograms of gaming fre-
quency. That is, we can look at how many students are high frequency gamers vs. 
middle vs. low frequency gamers. If individual differences among students are com-
pletely unimportant, and all students tend to solve roughly the same set of problems, 
then gaming frequency should be normally distributed. In fact, the distribution is 
significantly different from the normal (Shapiro-Wilks test of normality W=.8, 
p<0.01), and appears bimodal (see Figure 1, left). There seems to be one group of 
students who are frequent gamers, and another group who seldom game. This again 
suggests that individual differences play an important role in gaming frequency. 

On the other hand, if the characteristics of problems are completely unimportant, 
then a histogram of the number of problems (y-axis) gamed at a certain range of fre-
quencies (x-axis) should be normally distributed (Figure 1, right). This is in fact the 
case:  the Shapiro-Wilks test of normality showed that the problem distribution is not 
significantly different from normal (W=.9, p>0.05). Thus, it appears once again that 
characteristics of students are more important than characteristics of problems in 
determining the frequency of gaming.   
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Fig. 1. Student (left) and problem (right) gaming distributions. Each bucket contains students 
(or problems) with a gaming range (e.g., bucket 10 has 5% < gaming < 10%). 

4.2   Gaming Profiles: How Much and Where Are Student Gaming? 

This section presents a descriptive analysis of the data, starting with how much stu-
dents are gaming overall. On average, 22.5% of the tutor-student turn pairs were 
gamed. While this is higher than reported in [5], in that study students were in the 
presence of observers. This may have provided social deterrents for gaming, while in 
our study students were using Andes in private. We then analyzed where the gaming 
was occurring; Table 2 shows the results (the shaded cells indicate gamed turn pairs). 
In general, students most frequently took advantage of the opportunity to game when 
the tutor presented a high-level hint: on average, 18.4% of all actions corresponded to 
gaming on these hints; when given such a hint, students gamed 58.5% of the time.  

 In order to compare the gaming patterns of students who frequently gamed with 
those who infrequently gamed, we divided students into low gamers and high gamers 
based on a median split. On average, low gamers were significantly more likely than 
high gamers to game by guessing (46% vs. 13.2%; F(1,283)=126, p<.01). On the 
other hand, in contrast to low gamers, high gamers had a significantly higher 
proportion of skipped high-level hints (61.6% vs. 43.4%; F(1, 283)=64, p<.01), lack 
of planning (18.5% vs. 8.9%; F(1,283)=159, p<.01) and bottom-out hint copying 
(6.5% vs. 1.7% ; F(1,283)=215, p<.01). 

4.3   Are Hints the Culprit or Is It the Students? 

Over all students’ gaming opportunities (see Table 2), as well as proportion of gaming 
for high gamers, high-level hints elicited the most gaming. Thus, we wanted to ex-
plore how students used hints and if hints were helpful during problem solving. 

Hint Viewing. The most basic analysis is to calculate time students spent on hints. To 
do so, we obtained the latency between the provision of a hint and the next student 
action. On average, students spent 9.2 sec. vs. 5.7 sec. on bottom-out vs. high-level 
hints. High gamers spent significantly less time on hints than low gamers, both on 
bottom-out hints (7.5sec vs. 10.9sec.; F(1, 277)=71, p<.01) and high-level hints 
(3.2sec vs. 8.1sec; F(1,286)=246, p<.01). Since the bottom-out viewing is well above 
the gaming threshold, on average, neither low or high gamers skipped bottom-out 
hints. In contrast, high gamers average viewing time for high-level hints is just above 
the gaming threshold of 3 seconds, showing that in contrast to low gamers, these 
students did not pay much attention to high-level hints. 
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Table 2. Gaming opportunities for each Tutor–Student turn pair. Shown in each cell: (1) the 
mean % of a student response given a tutor action over all 16 possible combinations, (2)
(mean % of a student response for that row’s tutor action).  

 (a) Student: Hint Request (b) Student: Entry 

 fast slow fast slow 
 (1) Tutor: B-O Hint  0.02 (.3)% .2 (2)% 1.8 (23.6)% 5.7 (74)% 

 (2) Tutor: H-L Hint  18.4 (58.5)% 5.8 (18.3)% .7 (2.3)% 6.4 (20.6)% 

 (3) Tutor: Incorrect 2.5 (10.1)% 3 (12.4) % 5.4 (21.9) % 13.6 (55.5)% 
 (4) Tutor: Correct  5.2 (15.6) % 3.7 (10.2)% 14.1 (38.2)% 13.3 (36)% 

Legend: fast: student action < gaming threshold; slow: student action >gaming threshold; B-
O: Bottom-out, H-L: High-level. 

Are Hints Helpful? Prior work suggests that a factor related to gaming is reading 
hints does not influence solution entry success [4]. Sophisticated techniques exist for 
analyzing the utility of help by looking at its impact on future student performance 
[21]. It is not clear, however, how these methods account for gaming, which can make 
it difficult to interpret results (e.g., if a student skips a hint repeatedly, is the hint not 
helpful or is the student unmotivated to use it?). Thus, for the time being, we analyze 
hint impact on short-term performance, i.e., can the student generate an entry after 
seeing a hint. Specifically, for each student, we obtained the percentage of time s/he 
was successful at generating a correct entry after receiving each type of hint (bottom 
out, high level). Note that (1) students may require several attempts to generate a 
correct entry and (2) if hint B is requested after hint A but prior to generating a correct 
entry, then hint A is not counted as “successful” for helping the student.  

If for a moment we don’t consider entry correctness, high gamers tried to generate 
an entry only 18% of the time after receiving a high-level hint, immediately asking for 
another hint the other 82% of the time. Low gamers, on the other hand,  responded to 
a high-level hint with an entry 43% of the time. This is in contrast to bottom-out hints, 
when both low and high gamers responded to the hint with an entry about 97% of the 
time. When students did generate an entry after seeing a bottom-out hint, on average, 
they were successful in 90% of instances (i.e., obtained a correct entry). There was 
little difference between low and high gamers for this analysis (89% vs. 92%, respec-
tively, NS difference). After high-level hints, students generated a correct entry 73% 
of the time. Again, there was little difference between low and high gamers (72% vs. 
73%, respectively, NS difference). This suggests that high-level hints helped students 
generate the solution in about three out of four instances. 

Now let’s look at time and number of attempts needed to produce a correct entry. 
After bottom-out hints, on average students required 1.1 attempts (1.23 for low gam-
ers vs. 1.19 for high gamers, NS), and took 29 sec. to do so (34sec. for low gamers vs. 
23sec. for high gamers, F(284,1)=4, p = .052). After high-level hints, on average 
students required 1.83 attempts; here low gamers needed significantly fewer attempts 
than high gamers (1.66 vs. 2.01, F(1,284)= 17, p<0.001), suggesting that perhaps the 
low gamers were more diligent about applying high-level hints. This conjecture is 
supported by the fact that low-gamers spent significantly longer than high-gamers to 
generate a correct entry after seeing a high-level hint (37 sec vs. 28 sec; F(1,286)=9, 
p<0.01). 
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5   Discussion and Future Work  

A prerequisite for the design of effective interventions to discourage gaming is under-
standing its causes. Past research has shown that both student and instructional as-
pects influence gaming, but to date there does not exist agreement as to which is the 
stronger predictor. Baker et al. [4] argue that it is the latter, i.e., instructional aspects, 
that drive gaming. In contrast, our findings suggest that student features, namely the 
average percentage of gaming by a student over all the problems s/he solved, was a 
stronger predictor of gaming. There are a number of possibilities as to the cause of the 
difference between our findings and those in [4]. First, the Andes system might have 
less instructional variability than the one in [4]. Second, [4] used lesson as the grain-
size, while we used problem, a smaller grain size. We did not use lesson since as 
already described in Section 2 we felt such a large grain size may obscure the results. 
Third, we used data from college students working at home while data in [4] came 
from high school students working in classrooms. When we recently did a preliminary 
analysis on a set of high school honours students using Andes mostly in their class-
room, we found that their gaming levels were lower than those of college students; 
thus it is possible that gaming behaviors differ between these two populations and 
contexts, something that warrants further analysis and validation. A fourth possibility 
pertains to the way the analysis was done. Baker et al. [4] considered lesson features 
(e.g., does a lesson have many problems that use the same number for different quan-
tities), and determined how much gaming variance was associated with each feature. 
Similarly, Baker et al. [15] determined the variance explained by features of students. 
Our analysis did not use problem features or student features, but rather individual 
problems and individual students. Our logic was that if there was something “wrong” 
with a problem, then almost all students should game on that problem; similarly, if 
there was something “wrong” with a student, then that student should game on almost 
all problems. In general, this discrepancy in findings in terms of whether problem or 
student features best predict gaming highlights the need for more work and validation 
of the factors influencing gaming. 

In addition to exploring predictors of gaming, we also analyzed the impact of indi-
vidual differences on how students were gaming. We found that when we looked at 
gaming opportunities over the tutor-student turn pairs, students tended to seize the 
opportunity to game after the tutor presented them with a high level hint. However, 
when we analyzed the proportion of each type of gaming over the total gaming events 
for each class of gamers, in contrast to high-gamers (who primarily skipped hints), the 
low gamers had a higher incidence of guessing on entries. One possible explanation 
for this difference, supported by literature on individual differences in help seeking 
behaviors [22], is that the low gamers preferred to obtain the solution on their own, 
without the tutor’s help. Another possibility relates to Andes’ scoring system. Recall 
that students were penalized for asking for a bottom out hint but were not penalized 
for guessing, and so perhaps the low gamers were simply more concerned about their 
Andes score than high gamers. Our analysis also showed, however, that low gamers 
spent more time with hints and took longer to generate a solution entry after seeing a 
hint. Since no points were awarded for taking time, this suggests that obtaining a 
higher score was not the only incentive for the high-gamers, indicating that perhaps 
these students were motivated and/or diligent in the problem-solving process. Jointly, 
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these findings point to the need to tailor gaming interventions to student characteris-
tics in ITS design. 

Prior research suggests that poor hint usability leads to gaming [4]. To see if this 
was the case in our data, we analyzed how students used hints. We found that when 
the tutor presented a high-level hint, high gamers were quite unlikely to even try gen-
erating a corresponding solution entry, as compared to low gamers. If students did try 
to generate a solution entry, both low and high gamers were moderately successful 
when given a high-level hints. This provides some indication for the utility of these 
hints, suggesting that their abuse may be driven by other factors. It is possible, how-
ever, that students didn’t bother to use the high-level hint at all, and were successful 
because they generated the solution on their own. To have a better understanding of 
hint utility, one could obtain students’ base-rate performance. However, Andes makes 
hints available on demand, and students sometimes abuse these. This makes it less 
clear how to determine this base performance, and is something we leave for future 
work. We also plan to analyze deeper the student (and problem) features that predict 
gaming frequency, as well as analyze how gaming influences learning outcomes – 
although preliminary steps have been taken (e.g., [5]), more work is needed.  
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Abstract. One of the common expectations of ITS designers is that students ef-
ficiently learn from every practice opportunity. However, when students are us-
ing an Intelligent Tutoring System, they can exhibit a variety of behaviors, such 
as “gaming,” which can strongly reduce learning. In this paper, we present a 
new approach to infer the impact of gaming on learning at the fine-grained 
level. We integrated a knowledge tracing model of the student’s knowledge 
with the student’s gaming state (as identified by our gaming detector). We 
found that when gaming, students learn almost nothing (on the order of one-
twelfth to one-fiftieth as efficiently).  A student’s gaming amount is associated 
with aggregate effects on his knowledge and learning, leading to less learning 
even in the practice opportunities where no gaming occurs. In addition, we 
found that students tend to game in those skills on which they have relatively 
low knowledge.  Furthermore, we found that knowing the identity of the student 
is more important than knowing the skill for predicting whether gaming will 
occur. 

Keywords: Gaming, Knowledge tracing, Influences on learning. 

1   Introduction 

With more and more students using Intelligent Tutoring Systems (ITS) in their daily 
study activities, their strategies for how to use ITS are becoming an important issue. 
Although ITS have been shown to have positive effects on helping student learning, 
different strategies of using ITS can lead to different learning outcomes [1, 2, 3, 4]. 
There are a variety of strategies exhibited by students, including “gaming,” receiving 
a great deal of attention. A student is gaming if he is attempting to systematically use 
the tutors' feedback and help methods as a means to obtain a correct answer with little 
or no work [5].  

There have been many prior works showing that gaming behavior is generally as-
sociated with a reduced learning rate. Baker, et al. [3] used a traditional analysis 
method, applying a pretest and a posttest, to show that student gaming results in a 
poorer learning gain. A similar trend has been found by Walonoski, et al. [5] in a 
different computer tutor environment (ASSISTment) and using a different analysis 
method: longitudinal data analysis. However, those previous works explored the im-
pact of gaming on learning by focusing on the long-term effects, thus their conclu-
sions are based on the aggregated data. In other words, during a period of time, the 
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researchers tracked a sequence of student’s performances, and also the conditions of 
whether and how much gaming occurred during that time. They then came to the 
conclusion based on examining the relation between aggregate gaming occurrences 
and student performance. Perhaps the students who game happen to be the ones who 
don’t learn, but gaming is not the direct cause of the poor learning. Recent work by 
Corea, et al. [6] showed gaming has both immediate and aggregate effects on learn-
ing. They assessed whether gaming behavior is associated with immediate poorer 
learning, by applying learning decomposition method [7], where performance on a 
given skill at a given time is predicted based on the number times where the student 
previously engaged in gaming behavior on this skill. They found that the number of 
previous gaming behaviors is associated with less learning. Therefore, lower perform-
ance is predictable in the next problem after the student engages in gaming actions. 
They also pointed out that the apparent immediate impact of gaming, at the step level, 
appears to be due to a lack of learning at that very step where the gaming occurred; in 
other words, by gaming, an opportunity to learn is wasted. 

One of the objectives of this study is to give a closer look at gaming’s impact on 
learning at the fine-grained level, namely, rather than examining the cumulative ef-
fects of gaming on learning during an amount of time, or the immediate effects con-
tributed by the number of gaming behaviors that occurred previously, we aimed to 
track gaming’s quantitative impact on learning at the problem-solving level. We used 
student modeling as our conceptual framework, as it matches our requirements by 
taking observations of a student’s performance and gaming state, and then using those 
to estimate the student’s latent attributes. We chose the knowledge tracing model 
(KT) [8], which is one of the most broadly used student modeling approach. It takes 
student performances as observations and uses those to estimate the student’s level of 
knowledge. Our motivation for using the knowledge tracing model is that we assume 
if a student games on a problem, it negatively impacts the amount of learning from 
that problem. In addition, gaming is a state that varies across time, similarly to student 
knowledge in KT model. Therefore the knowledge tracing model is a good technique 
for our goal of exploring gaming’s impact on learning at the fine-grained level. 

2   Methodology 

2.1   Detection of Gaming 

Student gaming is a kind of behaviors that cannot be determined as precisely as other 
student attributes, such as the correctness of a student’s response. In order to build the 
model for exploring the impact of gaming on learning, we first must have some way 
of informing the model that gaming occurred. For simplicity, rather than treating 
gaming as a latent variable, we used a knowledge-engineering approach and tagged it 
using human-made heuristics.   

In ASSISTment (the computer tutor environment we used), a main question con-
sists of an initial question and a number of helps. There are two approaches for assist-
ing students: hints give information on how to solve the initial question, and scaffolds 
break the initial question into a series of component problems. A particular problem 
will either offer hints or provide scaffolding. 
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Only the initial question’s correctness is recorded as the student’s performance of 
the current practice opportunity. Usually, students perform multiple actions when 
solving a main question. Specifically, if the student generates an incorrect response in 
his first attempt, the system would record this question wrong. Furthermore, the sys-
tem allows the student to do three main kinds of actions: 

1) Answer. A student’s response to the question.   
2) Hint. A student can request a hint.  After seeing a hint message it is optional 

whether the student makes more attempts on the question or asks for additional hints. 
The student could run though all hints until the bottom-out hint where the answer to 
the question is provided. The student must submit the correct answer to proceed.  

3) Scaffold. This event occurs when ASSISTment’s strategy is to scaffold and the 
student submits an incorrect response.  Once scaffolding begins, a student must pro-
ceed through all of the scaffolding steps. A scaffolding question is similar to a main 
question except it doesn’t have its own scaffolding questions. Therefore, in a scaffold-
ing question, the student could do answer and hint actions as well. 

Based on analyzing the patterns of those actions, we constructed a gaming detector 
that contains three criteria. 

• Rapid Guessing: in a question (initial or scaffolding), submit two attempted 
answers less than 2 seconds apart in two successive questions (initial or scaf-
folding). 

• Rapid Response: perform any action after a hint or starting a problem before 
a reasonable amount of time has passed (where “reasonable” is a fast reading 
speed for the content of the hint or problem body. We chose a reading rate of 
400 words per minute).   

• Repeatedly Bottom-out Hinting: reach a bottom out hint on three consecutive 
questions (initial or scaffolding).  

Note: according to these criteria, the majority of actions coded as gaming are associ-
ated with incorrect answers. However, in the knowledge tracing model, the probabil-
ity of learning is independent of the correctness of the response, so the impact of 
gaming behaviors on learning won’t be confounded.   

For each action in a main question, our gaming detector assigned a gaming score 
that ranges between 0 and 1 (0 is not-gaming and 1 is gaming). If there are no previ-
ous records of a student, we assume the student starts with a gaming score of 0. If the 
student does some action (matching at least one of the three gaming criteria is re-
quired) that we think is gaming, the gaming score’s value goes straight to 1. The stu-
dent later can “recover” from a gaming state by performing any non-gaming actions 
(any other actions where none of the criteria is satisfied). With a non-gaming action 
detected, 0.5 is subtracted from the gaming score. Therefore, each main question 
might be associated with multiple gaming scores representing how well the student 
performed in every sub-step of that main question. We then tagged that main question 
using the score calculated by averaging across the gaming scores for all the actions of 
that student within that main question. 

Since we chose the knowledge tracing model as our framework, and since discrete 
variables are more commonly used in Bayesian Networks, we further converted the 
continuous gaming score into a discrete value by selecting 0.5 as the cut-off point. In 
other words, if a main question is tagged with the average gaming score as greater 
than or equal to 0.5, the gaming state is labeled by 1; otherwise, 0 is assigned. 
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Although initially we were interested in gaming behaviors, our gaming detector 
seems to capture broader actions. We realized that’s probably a good thing (see Re-
sults), and probably captures a larger set of actions than just gaming, but we don’t 
(yet) have a good vocabulary for “non-productive behavior,” so stuck with “gaming.” 

2.2   Student Modeling Framework 

Knowledge tracing model 
Knowledge tracing [2], shown in Fig. 1, is an approach for taking student observa-
tions and using those to estimate the student’s level of knowledge.  

 

Student 
Knowledge (K1) 

Student 
Performance (C1) 

Student 
Knowledge (K2) 

Student 
Performance (C2) 

Student 
Knowledge (Kn) 

Student 
Performance (Cn) 

Initial Knowledge 

Guess/slip 

Learn 

 

Fig. 1. Knowledge tracing model 

There are two learning parameters. The first is initial knowledge (K0), the likeli-
hood the student knows the skill when he first uses the tutor. The second learning 
parameter is the learning rate, the probability a student will acquire a skill as a result 
of an opportunity to practice it. In addition to the two learning parameters, there are 
two performance parameters: guess and slip, which mediate student knowledge and 
student performance. In this paper we focus on the learning rather than the perform-
ance parameters.   
 

Modified Knowledge tracing model 
In order to explore the impact of gaming on learning at the problem-solving level, we 
first need to include student gaming state in the student model. We integrated it with 
knowledge tracing by putting in an additional node in the model structure, which 
indicates the gaming variable, shown in Fig. 2. 
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Fig. 2. Modified knowledge tracing model 

The two performance parameters remain invariant after the modification, while the 
two learning parameters are changed. Initial knowledge is transformed from a prior 
probability to a conditional probability, thus there are two initial knowledge rates 
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corresponding to the two given conditions: gaming and not-gaming. They indicate the 
likelihoods the student knows the skill when he first used the tutor, given whether he 
gamed on his first attempt or not. Similarly, the learning rate becomes two numbers 
after conditioning on the gaming state. The two learning rates are our major interests 
in this study. They indicate how much a student learns from a practice opportunity 
when he engages, or does not engage in gaming behaviors in that practice. The differ-
ence between these two, if there is any, should be viewed as the immediate impact of 
gaming behaviors on learning. 

To train the model, we used smoothing [14] to infer the values of the knowledge 
tracing parameters that maximize likelihood of the observed data. Specifically, 
smoothing uses all of the data, even data occurring after a particular time slice, to 
estimate the model parameters.  We can use smoothing since our experiments are 
conducted off line.  In addition to estimating model parameters, smoothing also pro-
vides an estimate of the student’s knowledge at each time step.  This estimate is more 
accurate than a student modeling system used in an online manner, since the online 
system can only use past observations to evaluate the student (i.e. it does not have 
access to what will happen in the future).   

2.3   Data Set 

For this study, we used data from ASSISTment, a web-based math tutoring system. 
The data are from 343 twelve- through fourteen- year old 8th grade students in urban 
school districts of the Northeast United States. They were from four classes. These 
data consisted of 193,259 main problems of ASSISTment usage during Nov. 2008 to 
Feb. 2009. Performance records of each student were logged across time slices for 
106 skills (e.g. area of polygons, Venn diagram, division, etc).  

For each student performance, we applied our gaming detector to identify the gam-
ing state, and then fit the data to the modified knowledge tracing model. We used the 
Bayesian Network Toolkit for Student Modeling (BNT-SM) [9] and the expectation 
maximization (EM) algorithm to optimize data likelihood (i.e. the probability of ob-
serving our student performance data) in order to estimate the model’s parameters. 
We used the smoothing inference method [14] for using future data to estimate more 
plausible parameters. To address the problem of identifiability [10], we set Dirichlet 
priors [11] to initialize the EM algorithm. 

3   Results 

3.1   The Impact of Gaming 

We trained a modified knowledge tracing model for each skill, i.e. observe all the data 
across all students for each skill and derive a set of 6 parameters (initial knowledge | 
gaming, initial knowledge | no-gaming, learning | gaming, learning | no-gaming, and 
guess and slip) for that particular skill.  Thus, for 106 skills, we estimated 106 sets of 
parameters. Then, we calculated the mean values across all the skills (see Table 1). 
We also reported median to minimize the effect of outliers.  
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Table 1. Extended knowledge tracing model’s estimates of the learning parameters  

Across 
Skills 

Percent 
of gaming 

Initial  
knowledge| 
no gaming 

(K0|~G) 

Initial 
knowledge| 

gaming     
(K0|G) 

Learning| 
no gaming 

(L|~G) 

Learning| 
gaming      
(L|G) 

median 0.139 0.527 0.149 0.158 0.003 

mean 0.148 0.540 0.171 0.207 0.017 

SD 0.06 0.137 0.098 0.150 0.042 

 
From Table 1, we see that median and mean values suggest the similar trend that 

when students game in their first attempt with a skill, it is associated with lower initial 
knowledge. Meanwhile, when a gaming behavior occurs, it immediately results in 
much less learning. The median value of L|G is 0.003, which is nearly 0, indicating 
essentially no learning. Although the corresponding mean is higher than the median, 
still, 0.017 is a very small number, especially compared to the counterpart 0.207, 
suggesting students learn approximately 12 times (0.207/0.017) faster when they are 
not gaming.   

Another interesting observation is that, across 106 skills, our detector found that 
students gamed approximately 14% of the time. This number is much higher than what 
Baker reported in [12]. Given the vast difference in learning rates shown in Table 1 for 
gaming vs. non-gaming behaviors (0.158 vs. 0.003 using median,  and 0.207 vs. 0.017 
using mean), it is plausible that our gaming detector successfully captured certain kinds 
of non-productive behaviors. Since this behavior happens 14% of the time and is asso-
ciated with almost no learning, it is certainly a behavior of note and one that we should 
focus on. If the goal of ITS research is to promote student learning, we should care 
about all behaviors that negatively impact learning.  Our view is that it would be a 
better goal for researchers to focus on the question of “what types of behaviors result in 
little or no learning,” rather than specific, named, behaviors.  

3.2   The Impact of Gaming Amount 

After examining the immediate impact of gaming at the level of individual problems, 
we now inspect its aggregate impact at the student level. In other words, are there any 
differences between the students who appeared to game more and the students who 
behaved more seriously?  

In order to make claims about students, we trained one model for each student by 
observing his responses in all questions across all skills. For each student, the model 
estimated a set of learning parameters corresponding to his individual initial knowl-
edge and his learning rate, given whether he was gaming.   

Based on how much a student gamed overall, we divided students into three equal 
sized groups having relatively high, medium and low gaming level. To avoid the 
potential impact of outliers, for each group, we employed the more robust measure of 
central tendency, the median (reported in Table 2).  Also, the mean value and standard 
deviation and range of the amount of gaming of each group are listed. 
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Table 2. Knowledge tracing parameters disaggregated by amount of overall gaming 

Amount of gaming Overall 
amount of 
gaming 

Initial  
knowledge| 
no gaming 
(K0|~G) 

Initial 
knowledge| 

gaming 
(K0|G) 

Learning|  
no gaming 

(L|~G) 

Learning|  
gaming 
(L|G) mean SD range 

High 0.337 0.235 0.114 0.021 33.2% 0.11 19.7% - 85.3% 

Medium 0.538 0.345 0.151 0.049 13.3% 0.03 8.4% -19.6% 
 

Low 0.705 0.358 0.219 0.089 4.1% 0.03 0 - 8.3% 
 

 

As shown in the in Table 2 (first two columns), students who don’t game much 
start with more initial knowledge, or conversely, students behave thoughtlessly on 
skills with low initial knowledge.  One question is whether “low” is defined in abso-
lute or relative terms?  As can be seen in Table 2, low gaming students game with an 
average initial knowledge of 0.358, but when high gaming students are not gaming 
their average initial knowledge is 0.337 (bolded values). Therefore, it appears an 
absolute threshold does not exist, and the low knowledge that determines whether a 
student games is relative.  In other words, students are inclined to game on their rela-
tively weaker skills.  

For learning rate, there is a consistent trend that students who game less learn more 
quickly both when gaming and when not. We noticed for those frequently gaming 
students, even for those skills they don’t appear to game, their initial knowledge is 
still fairly low and the learning rates remain the lowest among the three groups. We 
think those students who are found to game here probably also game in other con-
texts, including before our study. Therefore, they are estimated with lower initial 
knowledge due to the possibility that a lot of practice opportunities were wasted. 
Another possibility for their lower initial knowledge is their learning rate is not as 
high as the serious students’. 

3.3   Which Is More Useful for Predicting Gaming: Student or Skill? 

Prior work inspected lesson vs. student [13], finding that for determining gaming, 
knowing the students has much less predictive power than knowing the tutor lessons. 
Our objective is to compare between student and skill. Is this just the fact that some 
students game more than others? Or are some skills just too hard to solve, so the stu-
dents game on those problems? In order to resolve this problem, we did two 
ANOVAs. For each student, for each skill he attempted, we calculated the percent of 
gaming that occurred across all the questions he solved for that skill. E.g. one row of 
the well-prepared data is “Tom, Venn Diagram, 15%”.    

We assigned percent of gaming as the dependent variable in two models, and stu-
dent as the independent variable in one ANOVA, and skill as the independent in the 
other one. We compared the two models to see which one accounts for more variance 
of the dependent. We found that the R2 from the student ANOVA is 0.61, which is 
more than 5 times greater than the R2 from the skill ANOVA, 0.11. Thus, student is 
more closely related to, and more predictive of gaming than, skill. 
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4   Contributions and Future Work 

This paper makes contributions to our knowledge of gaming/non-productive learning 
behaviors, to how we build classifiers to detect problematic learner behaviors, and to 
student modeling.  

For our knowledge of gaming, we found that students do not learn when they are 
gaming. Although this statement sounds trivial, it has not been demonstrated at the 
fine-grained level (e.g. [6]). Our temporal linkage of gaming behaviors to near-zero 
student learning makes a causal connection between the two much more plausible 
than simple correlational evidence that students who game more tend to have lower 
knowledge. We also found, contrary to [13], the student identity was very predictive 
of whether students chose to game. Such contrary empirical results are to be expected, 
since the result is really about how much variability there is in the student population 
relative to the construct in question. Similarly, our “gaming” detector fired much 
more frequently (about 14% of actions) than is typical [5,13]. This result suggests that 
we were measuring a construct that perhaps included gaming, but also some other 
behaviors that led to almost no learning.   

Scientifically, we have constructed a detector that appears to measure something 
other than gaming. We don’t have a good name for what we’re measuring but, what-
ever it is, it is a powerful predictor of whether a student learns or not. We argue that, 
if what we care about is student learning, then this is the type of research we should 
be pursuing: rather than attempting to build classifiers for various “named” student 
behaviors, instead we should focus when students don’t learn, and focus on naming 
various behavior clusters later.  

Within student modeling, rather than having a detector that operates independently 
of the student model (e.g. [3,5]), we have integrated them into one framework.  Con-
ceptually, this unification is sensible as both knowledge as well as poor behaviors 
should be viewed of as part of the student model.  Pragmatically, this unification 
enables better tracking of student knowledge since we found that students learn  
considerably less in some practice opportunities than in others. In addition, we have 
introduced to the ITS community the concept of using smoothing to achieve more 
accurate student knowledge estimates. This approach does not work for online tutors 
since they do not have future student performance data available, but is a powerful 
technique for post hoc offline analyses.  The use of smoothing is a powerful argument 
for using Bayesian networks as an analytic framework, since they provide such infer-
ence “for free” as a standard reasoning approach.   

There are several interesting, unresolved issues.  First, we found that gaming was 
slightly more likely on skills where the student’s knowledge was relatively, rather 
than absolutely, weak. This result contradicted our expectations. One issue is whether 
there is a deeper meaning behind the result. One possible interpretation is students 
perceive some skills as being their “weak ones”, thus are unwilling to expend effort 
on them. Even good students appear to have such a list, although they had fewer non-
productive behaviors. Better understanding this result and the metacognitive implica-
tions is an interesting piece of research. To our knowledge, no one has investigated 
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this issue before. Will this result replicate across student populations and in different 
tutoring systems?    

Improving the integration of the detector with standard student modeling ap-
proaches would enhance the technique. For example, we could treat gaming as a la-
tent variable, the same as we do for knowledge, and model both of them as latent 
nodes in our graphical model. Estimating two latents from one observable variable, 
correctness, will not work. Therefore, some means of transforming the inputs to our 
detector relating to speeded responses, bottom out hinting, etc. into a stream used by 
the combined student model is needed.  

The graphical model that we used has somewhat troubling semantics. It states that 
gaming on the current problem impacts how much students learn from the prior prob-
lem. Although this statement sounds nonsensical, empirically the support is strong. 
However, a logical next experiment would be to consider models that examine how 
gaming on a problem impacts how much students learn from that problem. Conceptu-
ally, this can be thought of as having an arrow from gaming point to knowledge in the 
next time slice, rather than the current one. An alternate way of thinking about the 
problem is to redefine the gaming node to refer to how much the student gamed on 
the prior, rather than the current, problem. Determining exactly where gaming nega-
tively impacts knowledge would be a useful contribution.  

5   Conclusions 

This paper has presented a novel approach for estimating the impact of gaming at the 
fine-grained level. We integrated student gaming state with the knowledge tracing 
model and used smoothing to take advantage of future data, without any human-made 
heuristics, in order to produce plausible parameter estimates.  

We found that gaming has strong negative impact on learning. When gaming oc-
curs, students basically don’t learn. The amount of gaming has aggregate impact on 
student knowledge and learning as well. In addition, we found that students tend to 
game on those skills on which they have relatively lower incoming knowledge. Thus 
even for those well-behaved students, they may engage in gaming if they are required 
to solve the questions beyond their knowledge. Furthermore, with respecting to  
gaming behavior, we compared the predictive power from knowing the student vs. 
knowing the skill. We have shown that being aware of the student is more helpful for 
predicting whether gaming will occur. Finally it’s worth pointing out that it’s impor-
tant to consider any type of non-productive behavior, and not to focus on known ones, 
as we found 14% of actions are associated with no learning—and that is almost cer-
tainly an underestimate.  
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Abstract. Research Methods Tutor (RMT) is a dialog-based intelligent

tutoring system which has been used by students in Research Methods in

Psychology classes since 2003. Students interact with RMT to reinforce

what they learn in class in five different topics. In this paper, we evaluate

a different population of students and replicate our prior research: despite

the relatively small amount of exposure during the term to RMT com-

pared to other course-related activities, students learn significantly more

on topics covered with RMT [1]. However, we did not find the same ad-

vantage for the dialog-based tutoring mode of RMT over the CAI mode.

When transcript analyses indicated that a small but significant number

of students were gaming the system by entering empty or nonsense re-

sponses, we modified the tutor to require reasonable attempts. This did

lead some students to reform their gaming ways. In other cases, however,

it resulted in disengagement from tutoring at least temporarily because

reasonable answers were not recognized.

Keywords: Dialog-based ITS, Gaming behaviors, Motivation.

1 Introduction

Most collegiate Psychology programs require one or more classes in Research
Methods [2]. Unfortunately, Psychology students find these classes to be espe-
cially difficult. The material is abstract and is normally learned by studying
many specific cases of psychological research and then inferring general princi-
ples which will apply to their own experiments. We developed Research Methods
Tutor (RMT), a dialog-based ITS, to help reinforce the concepts that students
learn in research methods courses by engaging them in conversations about those
topics. In previous research, we showed that RMT is effective. In this paper, we
present data that replicates our previous results with a very different set of
students. In related research, we identified a small, but significant number of
students who were engaging in “gaming the system” behaviors. We also describe
what happened when we modified RMT to encourage these students to re-engage
with the tutor.
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2 RMT in the Field

2.1 The Tutor

RMT was modeled after the AutoTutor system [3] which was designed to follow
the behavior of (non-expert) human tutors [4]. Some basic assumptions of this
approach are:

– The tutor tends to control the dialog, using a variety of dialog moves to
induce the student to provide particular information, and providing it when
the student cannot.

– The tutor has a relatively shallow evaluation of the student’s answers, and
simply compares the student’s response to the expected response to the
current question.

– The tutor seldom gives direct negative feedback, instead preferring to simply
give the expected answer or move to a related question.

– The tutor does not try to create an overall model of the student’s knowledge,
but comes to the tutoring session with a script of topics to cover.

These assumptions allow RMT to engage the student in extended conversations
on the tutoring topics using relatively simple Natural Language Understanding
techniques including LSA and keyword matching [5].

Research with AutoTutor has shown that it can produce remarkable learning
effect sizes of up to 1σ [6]. However, most of this research has been done in a
laboratory setting where research pool participants take a pretest, use the tutor
intensively for some hours, and come back a week later for a second session of
tutoring and the posttest. RMT was created first and foremost with the goal of
providing additional support to our research methods students, and thus, our
evaluations have differed significantly from the lab-based model.

Our participants take the pretest at the beginning of the term when they
start their research methods class. In the first week of class, they are asked to
login to RMT via the web to introduce themselves to the software, and install
extensions for the agent-based version of the system if they can. (If they can’t,
they automatically use the text-only version of the system which provides the
same information but doesn’t use the talking head.) RMT includes five concep-
tual modules: Variables, Reliability, Validity, Experimental Design, and Ethics.1

During the course of the term, the students are assigned to use RMT during the
five weeks in which these topics are covered in class.

We have used two different types of control groups to assess the impacts of
RMT. One control group is students in another section of Research Methods
which is taught by the same instructor but without the use of RMT. Although
students are (obviously) not randomly assigned to sections, we adopted this
approach to minimize whatever carryover effects between conditions that might
occur for students in the same sections. The other control condition (besides

1 Additional modules are currently being developed, including statistics and graph

interpretation.
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no-tutoring) is a computer-aided instruction (CAI) condition in which students
read (or are “read to” by the talking head) short passages of text and then take
a few multiple choice questions. The text in the CAI condition was derived from
the tutoring topics to ensure equivalent conceptual content. For each question
answered in the CAI condition, the student is told whether the answer was
right or wrong, but they are not told what their overall score was and are not
required to achieve any particular level of performance in order to get credit for
completing that CAI module. Students in the RMT classes are randomly split
into two groups. One group gets tutoring for the first, third, and fifth modules,
and CAI for the second and fourth, and the situation is reversed for the other
group. At the end of the term, the students take a post-test which covers the
original topics plus a transfer component.

2.2 Summary of Prior Results

In 2007, RMT was tested with almost 160 students from 5 sections of research
methods classes at DePaul University. We compared the learning gains of tu-
tored and non-tutored students, and performed a within-subjects comparison of
tutoring versus CAI. The details were published in [7,1] and are summarized
here.

Using an ANCOVA with pretest score as covariate, and posttest score as
the dependent variable, we found found that students in RMT classes scored
significantly higher than students in control classes [F (1, 155) = 23.21, p < .01].
Using the learning effect size formula from the National Reading Panel [8], we
calculated that the students in RMT classes learned 0.76σ more than control
students. We were, frankly, astonished to see such a large effect size given the
realities of our evaluation:

– The students only used the system for a combined total of 2–4 hours over
the course of a ten-week term.

– They were interacting with the system primarily from their own homes or
dorm rooms, often late at night, with (presumably) a range of distractions
present.

– All the other class activities (lectures, tests, projects) may well have masked
and/or interfered with whatever was learned from the tutor.

We concluded that RMT was very effective in reinforcing what the students were
learning in the class, by having students engage in dialogs about those concepts.

In our within-subjects comparison of CAI versus tutoring, we found that stu-
dents learned significantly more on topics on which they were tutored than on
those on which they used CAI [F (1, 71) = 4.627, p = .035]. The NRP learning
effect size was 0.34σ. We also checked if there were differences between stu-
dents who used the agent-based mode of the system compared to the text-only
mode. There was a marginally significant advantage of the agent-based mode
[F (1, 74) = 3.701, p = .058]. This result must be interpreted with caution, how-
ever, since students essentially self-selected into this condition; if they couldn’t
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follow the installation instructions or didn’t have their own computer, they were
put into the text-only condition.

2.3 New Learning Evaluations

In 2008, one of us took a faculty position at Chicago State University. This
allowed us to attempt to replicate our evaluations of RMT with a very different
group of students. Although both Chicago State and DePaul are located within
Chicago, the student populations differ significantly. Table 1 summarizes a few
differences.

Table 1. Comparison of student populations

DePaul University Chicago State University

– 40% students of color

– 77% of UG students are under 24

– 99% of incoming freshmen are under

21

– 75% of freshman live on campus

– 98% students of color

– 60% have full-time jobs

– 80% are parents

– Average age of UG student = 26

– 95% of students live off-campus

Before evaluating the CSU students, we created a more concise version of
the pre- and posttest. At 106 questions, our original test was rather onerous
to the students, and we were concerned that they might not be trying their
best on it — especially at the end of the term. The new version of the pretest
had 50 questions, 10 per topic. The new posttest had the same questions plus
five additional questions per topic as a transfer task. These questions presented
experimental scenarios requiring more analytical than conceptual knowledge [9].

Students in the RMT condition (n = 56) took the tests and used the tutor
or CAI as described above, with the exception that, as CSU runs on a semester
schedule, the testing and tutoring took place over the course of 15 weeks instead
of the 10 in DePaul’s quarters. Students in the other section (n = 31) did not
use RMT and served as the non-equivalent control group.

Again, we raised the same primary research question: Do students who use
the tutor show higher learning gains from pretest to posttest than controls? We
used an ANCOVA with the pretest score as the covariate, the condition (RMT,
control) as independent variable, and posttest score as dependent variable. The
results are shown in Table 2. The table gives the mean scores, standard de-
viations, and effect sizes for the RMT and control conditions on the first 50
questions of the posttest (identical to the pretest), the 25 transfer questions,
and on the complete test.

Thus, for overall learning gains, we replicated our prior results showing that
students learn significantly more when they use tutoring and CAI than when
they do not, and achieved impressive effect sizes of 1.4σ, 0.7σ, 1.2σ on the basic
test, transfer test, and complete test respectively.
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Table 2. Evaluation results, 2008, CSU students

Test questions Control RMT F (1, 84) Effect

First 50 19.8 (11.3) 32.5∗∗(7.0) 54.78 1.39
Transfer (25) 9.1 (5.8) 12.9∗∗(4.8) 14.05 0.71
Complete (75) 28.9 (16.7) 45.4∗∗(10.5) 42.99 1.21

Significance level: ∗∗ p ≤ .01.

We also addressed the question, does the dialog-based tutor result in higher
learning gains on the posttest than the CAI version? Using a repeated mea-
sures ANOVA, we compared the scores for each student on tutor modules vs.
CAI modules. Contrary to our prior results, there was no significant difference
between the tutoring and CAI conditions [F (1, 27) = 3.202, p = 0.085]. Tutor
modules produced an average gain per module of 2.5. The average gain for CAI
modules was 2.46.

Our third research question was: Does the agent result in greater learning gains
on the posttest than text-only? Here, too, we found no significant differences be-
tween conditions with the CSU student population [F (1, 26) = 2.247, p = 0.146].
There was a significantly smaller number of students using the agent condition at
CSU (31% compared to 79% of the DePaul students). Two major factors could ex-
plain this: Microsoft has discontinued support for Microsoft Agents, and it doesn’t
work with the newer version of Internet Explorer. Fewer students had their own
computers and were not allowed to install the software on lab computers.

Overall, we showed that use of RMT for tutoring and CAI does provide sig-
nificant learning gains to students at Chicago State University. However, we did
not find the advantage that we had found earlier for tutoring over CAI. One
possible explanation that we wanted to explore was that these students were
more adept in finding ways to “game the system”. This topic is addressed in the
next section.

3 Gaming Behaviors

Identifying and counteracting gaming behaviors has become somewhat of a hot
topic within the ITS community in recent years. When students “game the sys-
tem,” they typically focus their energies on finding ways to circumvent whatever
pedagogical support the system was intended to provide. In this section, we
describe some of the recent research in identifying and correcting gaming behav-
iors. Then we describe our analyses of gaming in RMT, and the steps that we
took to counteract it.

3.1 Related Work

Previous research in off-task or gaming behaviors in interactive learning envi-
ronments has focused on five areas. Examples of the research findings follow:
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1. Analyzing the effects of off-task or gaming behaviors on learning outcomes:
Gaming was the only off-task behavior significantly correlated with learning
gains [10]. Gaming has negative effects on learning both immediately, and
in the aggregate [11].

2. Creating methods for automatically identifying off-task behaviors: Based on
very fast actions, very slow actions, requests for help, and/or errors [12].

3. Determining features of individual learning problems that are correlated with
gaming: [13] found only one of 79 features of cognitive tutor algebra prob-
lems that was significantly correlated with off task behaviors. Students went
off-task much less when they were doing equation-solving. Other factors:
abstract, ambiguous, or unclear problems [14].

4. Determining affective antecedents of gaming in participants: Students tend to
game the system when they dislike the subject matter, have little educational
self-drive, and are frustrated [15].

5. Trying to ascertain effective strategies for counteracting off-task behaviors.
Better understanding of gaming should help reduce it [10,11,12,13,14,15,16],
though there seems to be less empirical evidence supporting such claims.

While much of the recent research on off-task and gaming behaviors has been
done within the context of cognitive tutors and the like, a notable exception is
[16]. The authors call Crystal Island a Narrative-centered learning environment.
It could also be called a serious game. Interestingly, gaming or off-task behavior
within this type of game parallels that in the real world. Students may choose
not to engage in goal-oriented behavior (according to the goal set in the game
scenario), but instead to wander about, exploring the environment. This study
used path analysis to differentiate goal-oriented and non-goal-oriented move-
ments within Crystal Island.

3.2 Identifying Gaming Behaviors in RMT

In a dialog-based ITS, the student’s actions are closer in some ways to those in a
narrative-centered learning environment than in a traditional ITS. The student
can enter absolutely any text in response to the tutor’s questions or prompts. A
cognitive tutor interface provides a limited number of actions. RMT’s interface
is exceedingly simple: besides the talking head or the text which present tutor
utterances, there is only a text input box. What the student types into that box
is only constrained by their educational motivation, their adoption of Gricean
dialog maxims, and, of course, their understanding of the tutor’s intentions and
the intended answer.

While collecting materials for a large corpus analysis study, we noticed a
small, but significant number of student transcript segments which indicated
that the student was making a less-than-valiant attempt to answer the tutor.
Some examples of such utterances are: “asdf,”, “j”, “hello” 60 times in a row,
“help” 10 times in a row, “dude you voice is creepy,” “this is boring,” and “”.

RMT was designed to handle a range of different responses. In addition to
student answers to its questions, RMT recognizes many different ways of ask-
ing it to repeat the question like (e.g. “what”, “come again”), statements about
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the student’s own comprehension (e.g. “dont know”, “do I need to know this?”),
and questions about terminology. Capitalization and punctuation are ignored by
the tutor and usually by the students. RMT includes an automatic spellchecker
that attempts to map unrecognized words into those in its vocabulary. Because
student spelling and word choice are so creative and because natural language
processing in general is intractable, RMT attempts to “understand” student ut-
terances that don’t fall into one of the categories above by comparing them to
a small set of expected answers using LSA and keyword matching. This makes
RMT fairly good at detecting good answers, but not so good at recognizing differ-
ent types of (unexpected) bad answers.2 In particular, RMT can not distinguish
plain old bad answers from creative / unexpected good answers, other requests
than those above, or random character strings. And because RMT is a helpful
interlocutor, bad (non-good) answers prompt the tutor to provide the expected
answer, and then ask a related question. Eventually, when the topic material has
been covered by the tutor or the student, the tutor will provide a summary, and
move on to the next problem.

We looked for evidence of gaming in transcripts of 234 students who used
RMT between 2005 and 2009. Students were identified as extensive gamers if
more than half of their utterances were blank, random strings, or non-responsive
in some other way. Although our initial scan of transcripts indicated substantial
gaming in about 10% of transcripts, only 15 out of 234 (6.4%) were labeled
as extensive gamers. Seven more students showed significant but sub-threshold
levels of gaming.

To examine the effects of gaming behavior on learning, we compared the
learning outcomes of gamers and non-gamers. In marked contrast to previous
research our data showed no significant effects of gaming on learning gains. One
possible explanation is the great difference in the size of the two sets. Further-
more, students who gamed the tutor did not necessarily game the CAI modules.
Module-by-module analyses showed no significant differences, but here the num-
ber of gamed tutor modules was even smaller than the number of gamers overall.
If we combine the gamers with people who did not finish their modules we find
that — although there aren’t significant differences, gamers and non-finishers
together scored lower overall on all outcome measures. They scored significantly
lower on the variables topic.

3.3 Manipulating Gaming

Although the overall extent of gaming was relatively small, it seemed both un-
necessary and easily remedied (potentially). If RMT simply rejected answers
with a similarity score of 0 to expected answers, then it could eliminate both
empty and random responses and maintain its generous behavior for “nice tries”.
We added a third level (:ZERO) of evaluation for student answers, and altered
the transition network which controls the tutors behavior. If a student answer
got a :ZERO evaluation, the tutor would said something like, “I didn’t get that”

2 RMT will trigger a remedial dialog for an expected bad answer.
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or “huh?”, and repeat the previous question. We tested the system’s behavior
on a wide range of answers, and found that it was working as planned, so we
included the modification in the online version of RMT approximately halfway
through the Fall 2009 semester.

At the end of the semester, we examined the transcripts to see if we were
successful in eliminating gaming. To our surprise (and embarrassment) the first
thing we noticed was that a number of students required 2-3 times more turns to
finish some of the topics. There were two culprits. One question had an obscure
expected answer that LSA did not recognize as having any similarity with most
student responses. Two questions expected numerical answers. Because LSA was
trained to ignore numbers, our text pre-processor removed numbers along with
punctuation before strings were spellchecked and compared to expected answers.
When students reached this question, no answer they could give was accepted by
RMT, and it continually repeated the same question. Thus, when we created one
manipulation to attempt to reduce gaming behavior, we inadvertently created
another that could frustrate students and increase gaming behavior.

3.4 Results

This section describes our analyses of the results of this dual manipulation of
gaming behavior. As with the overall comparison of gamers and non-gamers
across the different terms, the students in Fall 2009 showed no significant effects
of gaming on learning gains. Again a relatively small number of students (4 of
39) provided a significant number of non-responsive answers. For two of these
students, the modification of the tutor’s behavior appeared effective in elimi-
nating gaming behavior. On the topics completed before the modification, both
students entered primarily blank or random answers. After the modification,
they answered the questions.

For the problematic questions where the tutor accepted few or no answers,
we coded the students as “frustrated” if after a number of attempts, they began
to enter blank or random responses. Although 6 students appeared to engage
in gaming behavior when frustrated in this way, 4 of them subsequently com-
pleted other tutor modules without gaming. Furthermore, students who were
“frustrated” did not score differently on any of the subtopics or the posttest
overall.

Although there were no significant differences in learning gains between CAI
and tutoring conditions for the CSU students as a whole, in Fall 2009, with
the anti-gaming manipulation, students learned significantly more from the CAI
modules than they did from the tutoring modules. A repeated measures ANOVA
comparing each participant’s scores for the tutor modules to that same partic-
ipant’s score for the CAI modules showed that the scores on the CAI modules
were significantly higher, [F (1, 21) = 7.299, p = 0.013], tutoring mean gain = 2.4
(SE = .34), CAI mean gain = 4.2 (SE = .91).

Although fewer students completed the tutoring topics covered later in the
Fall 2009 semester, this pattern was noted in other terms as well. There was no
significant difference in the rates of topic completion between the terms.
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4 Conclusions and Future Work

In this paper, we described learning results for RMT in two different student
populations. Significantly, these learning gains were recorded in everyday use
of the system, not in a laboratory context. We also described our analyses of
gaming behavior in RMT and our (somewhat unfortunate) attempts to deter
gaming. Analyses of the student transcripts showed that the change did, in fact,
lead to reduction in gaming behavior in some, but not all students who had
previously started gaming the system.

We also had the opportunity to analyze the effects of increased frustration on
users of a dialog-based tutor. Although some students did disengage, for most
it was only temporary. When they went on to other topics, they went back to
interacting with the tutor as they had before.

Although it was too late to help the Fall 2009 students, the “number problem”
was easily fixed, and RMT now accepts numerical answers. The tutor’s behavior
now makes it easier to identify obscure expected answers as well. Previously, the
tutor’s behavior wasn’t markedly different for problematic errors. Now, we can
integrate triggers into RMT that identify when students get stuck on a particular
question, allowing the student to continue on, and alerting us that the expected
answers may need to be changed.

In future work, we would also like to explore the possibility of giving the
student some indicator of the cummulative quality of their responses. We hope
that this could make it more clear to the students the relationship between the
effort they put into answering the questions, and the efficiency with which they
move through the tutoring topics. We would also like to develop a test harness
for the system. This is will be a challenge, however, due to the natural language
input to the system, and the dynamic determination of response and dialog
direction.

References

1. Arnott, E., Hastings, P., Allbritton, D.: Research Methods Tutor: Evaluation

of a dialogue-based tutoring system in the classroom. Behavior Research Meth-

ods 40(3), 672–694 (2008)

2. Perlman, B., McCann, L.I.: The structure of the psychology undergraduate cur-

riculum. Teaching of Psychology 26, 171–176 (1999)

3. Graesser, A., Person, N., Harter, D.: The TRG: Teaching tactics and dialog in

AutoTutor. International Journal of Artificial Intelligence in Education 12, 23–39

(2001)

4. Person, N.K.: An analysis of the examples that tutors generate during naturalistic

one-to-one tutoring sessions. PhD thesis, University of Memphis, Memphis, TN

(1994)

5. Wiemer-Hastings, P., Allbritton, D., Efron, J., Arnott, E.: Research methods tu-

toring in the classroom. In: AIED 2003 - Supplementary Proceedings of the 11th

International Conference on Artificial Intelligence in Education, pp. 388–392. Uni-

versity of Sydney, Sydney (2003)



Squeezing Out Gaming Behavior in a Dialog-Based ITS 213

6. Graesser, A., Jackson, G., Mathews, E., Mitchell, H., Olney, A., Ventura,

M., Chipman, P., Franceschetti, D., Hu, X., Louwerse, M., Person, N.: TRG:

Why/AutoTutor: A test of learning gains from a physics tutor with natural lan-

guage dialog. In: Proceedings of the 25th Annual Conference of the Cognitive

Science Society. Erlbaum, Mahwah (2003)

7. Arnott, E., Hastings, P., Allbritton, D.: RMT in the classroom. In: Proceedings of

the Midwest Artificial Intelligence and Cognitive Science Conference (2007)

8. National Reading Panel: Teaching children to read: An evidence-based assessment

of the scientific research literature on reading and its implications for reading in-

struction. Technical Report NIH 00-4754, National Institute of Child Health &

Human Development, Washington, DC (2008)

9. Bloom, B. (ed.): Taxonomy of educational objectives: The classification of educa-

tional goals: Handbook I, cognitive domain. Longmans, New York (1956)

10. Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z.: Off-task behavior in

the cognitive tutor classroom: When students “game the system”. In: ACM CHI

2004: Computer-Human Interaction, pp. 383–390 (2004)

11. Cocea, M., Hershkovitz, A., Baker, R.: The impact of off-task and gaming behaviors

on learning: Immediate or aggregate? In: Dimitrova, V., Mizoguchi, R., du Boulay,

B. (eds.) Proceedings of the 14th International Conference on Artificial Intelligence

in Education, pp. 507–514. IOS Press, Amsterdam (2009)

12. Baker, R.S.: Modeling and understanding students’ off-task behavior in intelligent

tutoring systems. In: CHI 2007: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pp. 1059–1068. ACM, New York (2007)

13. Baker, R.: Differences between intelligent tutor lessons, and the choice to go off-

task. In: Proceedings of the 2nd International Conference on Educational Data

Mining, pp. 11–20 (2009)

14. Baker, R.S., de Carvalho, A.M., Raspat, J., Aleven, V., Corbett, A.T., Koedinger,

K.R.: Educational software features that encourage and discourage “gaming the

system”. In: Dimitrova, V., Mizoguchi, R., du Boulay, B. (eds.) Proceedings of the

14th International Conference on Artificial Intelligence in Education, pp. 507–514.

IOS Press, Amsterdam (2009)

15. Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., Koedinger, K.: Why

students engage in “gaming the system” behavior in interactive learning environ-

ments. Journal of Interactive Learning Research 19(2), 185–224 (2008)

16. Rowe, J.P., McQuiggan, S.W., Robison, J.L.: Off-task behavior in narrative-

centered learning environments. In: Dimitrova, V., Mizoguchi, R., du Boulay, B.

(eds.) Proceedings of the 14th International Conference on Artificial Intelligence

in Education, pp. 99–106. IOS Press, Amsterdam (2009)



 

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 214–223, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Analogies, Explanations, and Practice: Examining How 
Task Types Affect Second Language Grammar Learning 

Ruth Wylie1, Kenneth Koedinger1, and Teruko Mitamura2 

1 Human-Computer Interaction Institute, 2 Language Technologies Institute 
Carnegie Mellon University, 5000 Forbes Avenue 

Pittsburgh, Pennsylvania 15213 USA 
{rwylie,krk,teruko}@cs.cmu.edu 

Abstract. Self-explanation is an effective instructional strategy for improving 
problem solving in math and science domains. However, our previous studies, 
within the domain of second language grammar learning, show self-explanation 
to be no more effective than simple practice; perhaps the metalinguistic chal-
lenges involved in explaining using one’s non-native language are hampering 
the potential benefits. An alternative strategy is tutoring using analogical com-
parisons, which reduces language difficulties while continuing to encourage 
feature focusing and deep processing. In this paper, we investigate adult English 
language learners learning the English article system (e.g. the difference be-
tween “a dog” and “the dog”). We present the results of a classroom-based 
study (N=99) that compares practice-only to two conditions that facilitate deep 
processing: self-explanation with practice and analogy with practice. Results 
show that students in all conditions benefit from the instruction. However, stu-
dents in the practice-only condition complete the instruction in significantly less 
time leading to greater learning efficiency. Possible explanations regarding the 
differences between language and science learning are discussed. 

Keywords: Intelligent Tutoring Systems, Self-Explanation, Analogical Com-
parisons, Second Language Learning. 

1   Introduction 

Many studies have shown self-explanation to be an effective instructional strategy [1, 
2, 3]. Early work by Chi and colleagues [4] showed that students who spontaneously 
self-explain more, learn more. Later studies showed that students who are prompted 
to self-explain learn more than those who are not prompted [1], and finally, Aleven 
and Koedinger’s work reveals that the advantages of self-explanation prompts persist 
even when students do not generate the self-explanation on their own but instead are 
asked to select the general principle from a menu [2]. Roy and Chi [5] propose that 
the benefits of self-explanation are due to increased involvement in the learning proc-
ess, and that as a result of self-explaining, students focus on the meaningful aspects of 
the material.  

While self-explanation shows great promise in increasing learning, most studies 
have dealt with math and science domains and relatively little work has been done in 
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areas like second language learning. In a previous study, we investigated the effects of 
adding self-explanation prompts to an English as a Second Language (ESL) grammar 
tutor used to teach the English article system (i.e. teaching students when to use “a”, 
“an”, “the”, or no article). Results showed that while prompting for self-explanations 
lead to significant learning gains, there was not a clear advantage for self-explaining 
over simple practice where students did fill-in-the-blank tasks (choosing the best 
article to complete the sentence) without prompts to self-explain [6]. One reason 
could lie in the metalinguistic challenges that students face when doing self-
explanation in their non-native language. For example, many of the article rules con-
tain challenging and domain-specific vocabulary that may be difficult for a non-native 
speaker (e.g. “Use ‘a’ when the noun is general, singular, and begins with a consonant 
sound.”) Thus, we began to look for other instructional strategies that encourage deep 
processing without the extraneous, metalinguistic challenges.  

One candidate is analogical comparison. In a typical analogical comparison prob-
lem, students are presented with two worked examples and asked to compare the 
similarities and differences between them. Analogical comparisons reduce the 
metalinguistic demands compared to prompted self-explanation (i.e. in the analogy 
problems, students don’t have to tackle domain-specific vocabulary words like  
“consonant”), and multiple comparisons provide the added advantage of presenting 
students with more examples of correct article use, which alone may be beneficial for 
language learning [10]. The assumption behind analogical comparisons is that by 
comparing the examples, students will be able to extrapolate the underlying schema of 
the two problems [7]. Like self-explanation, analogy training has proven to be suc-
cessful for a variety of domains and learners. In a study investigating business nego-
tiation training, Gentner, et al. [8] found students who were instructed using analogi-
cal encoding produced better written solutions on posttest items and were able to 
transfer their skills to the more challenging modality of face-to-face negotiation. 
While much of the existing work has looked at students’ mapping schemas from a 
well-understood example to a novel one, there is also evidence that students benefit 
when the two examples are only partially understood [9].  

In this work, we explore the effects of using strategies that encourage deep proc-
essing of the material on students’ learning in the challenging domain of the English 
article system. We begin by describing three problem types (practice, self-
explanation, and analogical comparison). Using these activities, we created three 
computer-based tutoring conditions (practice-only, self-explanation with practice, and 
analogical comparison with practice) and evaluated their effects on knowledge acqui-
sition and learning efficiency in a controlled classroom study.  

2   Problem Types 

This study employed three types of tutored problems: practice, self-explanation, and 
analogical comparison.  For the practice problems (Figure 1), students were given a 
sentence and chose the article (a, an, the, or no article) that best completed the sen-
tence. For the self-explanation problems (Figure 2), students were presented with a 
sentence with the target article highlighted and chose the rule or reason driving the 
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article decision (e.g. “the noun has already been mentioned” or “the noun is general 
and non-count”). For each self-explanation problem, students chose from a menu of 
six rules, always presented in the same order. The order was kept constant to reduce 
the search time students needed to select their answers. In order to align the tutors 
with previous classroom instruction, we used the same vocabulary that was used in 
the students’ textbooks [11]. Similarly, for the analogical comparison problems (Fig-
ure 3), students were given a sentence with the target article highlighted and chose the 
analogous sentence that used the same article rule as the given sentence. For example, 
given the sentence, Last week, I bought a car. Today, the car broke, students should 
choose the sentence Sally found a dog, and the dog is small and black since both the 
given and analogous sentences use the rule that if a noun has already been mentioned 
then “the” is used. There was one analogous sentence for each of the six article rules 
covered in the material. In an attempt to prevent students from developing spurious 
associations, all the analogous sentences were approximately equal in length and used 
similar vocabulary. In addition, the analogous sentences used simple vocabulary and 
were easy to read (Flesch-Kincaid Grade Level = 2.0). The same six analogous sen-
tences were presented in the same order for each of the analogy problems.  

During the instruction phase, students received immediate feedback on their selec-
tions (the answer turned green if it was right, red if it was wrong) and had access to 
on-demand hints. The tutors were developed in Flash using the Cognitive Tutor Au-
thoring Tools [12] and deployed via the web. All student actions were logged and 
time-stamped.  

2.1   Tutoring Conditions 

Three corresponding experimental conditions were created using the above task types: 
practice-only, self-explanation with practice, and analogy with practice.  Students in 
all conditions received 30 identical practice problems. In addition, students in each 
condition received 30 condition-dependent items: students in the self-explanation with 
practice condition received 30 self-explanation problems, students in the analogy with 
practice condition received 30 analogy problems, and students in the practice-only 
condition received 30 additional practice problems. 

Previous research has shown the benefits of interleaving examples with problem-
solving practice [13] and that learning from examples is more beneficial during early 
rather than later stages of skill acquisition [14]; therefore, we had students in the self-
explanation with practice and analogy with practice conditions do more condition 
dependent items in the beginning and then move to interleaved blocks of matched 
practice and condition dependent problems, and finally, end with practice problems. 
More specifically, in the self-explanation with practice condition, the first ten prob-
lems were self-explanation problems; the next forty problems consisted of alternating 
blocks of five practice problems and five explanation problems, and finally, students 
completed ten practice problems. The analogy and practice condition used the same 
structure but students did analogy problems in place of the self-explanation items 
(Table 1).  
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Fig. 1. Example practice problems. In the practice problems, students select the article that best 
completes the sentence. 

 

Fig. 2. Example Self-Explanation Problems. In the explanation problems, students select the 
rule or feature of the sentence that best explains the article use.  

 

Fig. 3. Example Analogy Problems. In the analogy problems, students select the example sen-
tence that uses the same rule as the given sentence.  
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Table 1. Sequence of problem type by condition. Students in the practice-only condition com-
pleted sixty practice items, while students in the analogy and practice and explanation and 
practice conditions also completed sixty items, alternating between blocks of practice and 
analogy or explanation items.  

Item # Practice-only Analogy and Practice Explanation and Practice 
1-5 Analogy Explanation 

6-10 Analogy Explanation 
11-15 Practice Practice 
16-20 Analogy Explanation 
21-25 Practice Practice 
26-30 Analogy Explanation 
31-35 Practice Practice 
36-40 Analogy Explanation 
41-45 Practice Practice 
46-50 Analogy Explanation 
51-55 Practice Practice 
56-60 

Practice 

Practice Practice 

 
We controlled for several factors in the design of the three conditions: all condition 

used the same sixty target sentences, presented in the same order, and the hints pre-
sented the same information, although in slightly different forms. For the practice 
problems, the features of the sentence important for choosing which article to use 
were presented in the first hint; next, students were given the complete rule, and fi-
nally, students were told which article to select. When completing the explanation 
problems, students were first presented with the important features of the sentence, 
and then told which explanation to choose. Finally, for the analogy problems, students 
first saw the important features; second, they were given the example sentence that 
contained the same feature; and, finally, told which example sentence to select. 

3   Classroom Evaluation 

To evaluate the effectiveness of the three tutoring conditions in a real-life setting, a class-
room study was conducted at the University of Pittsburgh’s English Language Institute. 
Students (N=99) were adult English language learners (mean age = 27.9, SD=6.6) and 
participated as part of their regular grammar class. Data collection was completed within 
one 50-minute class period. Genders were equally represented, and students came from a 
variety of first language backgrounds, which were equally distributed across conditions 
(χ2(2, N=99) = 27.2, p = 0.71). After a brief introduction to the tutoring systems, students 
completed a computer-based pretest and were randomly assigned to a tutoring condition: 
practice-only (n=33), analogy with practice (n=34), or self-explanation with practice 
(n=32). Students completed the posttest, which was isomorphic to the pretest, immedi-
ately after finishing the tutoring. Pre and posttest items were identical in form to the 
practice problems students saw during tutoring (i.e. students chose the article that best 
completed the sentence). However, while taking the tests, students did not receive feed-
back on their selections and did not have access to hints.  



 Analogies, Explanations, and Practice 219 

 

3.1   Hypotheses 

In our study, we were primarily concerned with two metrics: learning gains and in-
structional time. We hypothesize that students in the analogical comparison with 
practice condition will demonstrate greater learning gains than those in the practice-
only condition due to increased engagement and deeper processing of the material. In 
addition, we expect students in the analogy with practice condition to show greater 
gains than those in the self-explanation condition due to the reduced linguistic de-
mands of analogies compared to self-explanations (H1). Namely, we believe that the 
concepts governing ESL article usage will be acquired more easily implicitly (i.e. 
through analogies) than explicitly (i.e. through rules and self-explanation). 

While our main goal is to increase student performance, given the limited amount 
of classroom time available, it is also important that the instruction be efficient. We 
hypothesize that students in the practice-only condition will complete the instruction 
faster than those in the other conditions (H2). When making article selections (versus 
choosing explanations or analogies), students only have four options from which to 
choose (a, an, the, or no article), fewer words to read, and practice alone may be less 
cognitively challenging than explaining or choosing analogies.   

3.2   Results 

In H1, we hypothesized that the analogy with practice condition would lead to greater 
learning gains compared to the other conditions. Results of a repeated measures 
analysis of variance (ANOVA) with test score as the dependent measure, test time 
(pretest and posttest) as a within-subject factor, and tutoring condition as a between-
subject factor reveals a significant main effect for test time (F (1,96) = 63.6, p < 
0.001) but no interaction of test time by condition (F (2, 96)=1.30, p = 0.28). Stu-
dents, regardless of condition, demonstrate significant learning gains (Figure 4).  

 

Fig. 4. Students in all three conditions show significant pre to posttest learning gains 

H2 stated that students in the practice-only condition would complete the instruc-
tion faster than those in the analogy with practice and self-explanation with practice 
conditions, and timing results support this hypothesis. An ANOVA with total time  
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spent using the tutor as the dependent variable reveals a significant effect of condition 
(F (2, 96) = 6.44, p = 0.002). Post-hoc Tukey HSD tests reveal that students in the 
practice-only condition complete the instruction the fastest (M=13.4 minutes, 
SD=4.3) and significantly faster than those in the analogy with practice condition 
(p=0.045, M=17.0 minutes, SD=7.5) and the self-explanation with practice condition 
(p=0.002, M=18.6, SD=6.0). No significant difference was found between the time-
on-task of students in the two deep-processing conditions. However, a closer analysis 
of the timing data reveals a more nuanced result. We used a MANOVA with condi-
tion as the independent variable and time to complete the identical practice problems 
and condition dependent problems as the dependent variables. These results revealed 
that students in the practice-only and analogy with practice conditions completed the 
identical practice problems in the same amount of time (practice-only M=6.14, 
SD=18.8, analogy M=6.18, SD=2.06, p=0.99) and significantly faster than students in 
the self-explanation with practice condition (M=7.87, SD=2.29, Tukey HSD 
p=0.003). For the condition-dependent items, students in the practice-only condition 
completed their items the fastest (M=7.21, SD=2.58) and significantly faster than the 
analogy with practice (M=10.78, SD=5.89, p = 0.004) and self-explanation with prac-
tice conditions (M=10.78, SD=4.08, p = 0.004) (Figure 5).  
 

 

Fig. 5. Breakdown of tutor time by problem type. Students in both the practice-only and anal-
ogy with practice conditions completed the identical practice problems faster than students in 
the self-explain with practice condition. In addition, students in the practice-only condition 
completed the condition dependent items significantly faster than students in both the analogy 
with practice and self-explanation with practice conditions. 

We also looked at how much instructional support (e.g. hint requests, incorrect 
steps, etc.) students used while completing the instruction. Hypothetically, students in 
one condition might request more hints or make more incorrect selections, actions that 
would increase the amount of time it takes for the task to be completed. Similarly, 
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some tasks may be more prone to gaming (e.g. systematically going through the menu 
choices in order to get the correct answer [15]), resulting in smaller learning gains. To 
address these issues, we looked at the frequency of hint requests and incorrect answer 
choices. On average students requested hints on only 6.7% of the problems 
(SD=10.5), and an ANOVA showed no significant differences between conditions (F 
(2,96)=0.560, p = 0.573).  With respect to errors, overall, students made an incorrect 
selection on 26.1% of the problems (SD=16.3), and again there were no differences 
between conditions (F (2,96) = 1.32, p = 0.27).  

4   Discussion 

This study addressed the issue of which instructional strategy (practice-only, analogy 
with practice, or self-explanation with practice) is best for learning the English article 
system. The results show that students in all conditions make significant learning 
gains but that practice-only is more efficient than self-explanation and analogical 
comparisons. Students in the practice-only condition learned as much as those in the 
other conditions but required significantly less time to complete the instruction.  
Furthermore, since there were no differences among conditions with respect to in-
structional support (e.g. number of hints requested, amount of incorrect feedback 
received), the greater efficiency is not due to students in one condition spending more 
time reading hints or gaming the system. These results suggest that the extra time it 
takes students to choose the explanation or analogous sentence is not beneficial. 

One way to explain these results is to examine the knowledge type (explicit vs. im-
plicit) and instructional approach (deep processing vs. no deep processing) for each of 
the tutoring conditions (Table 2). First, it is important to note that all conditions were 
equally beneficial when looking at learning gains alone, suggesting that both types of 
knowledge and instructional strategies are beneficial for learning. However, the dif-
ferences between the conditions become more prevalent when looking at the timing 
data. Table 2 suggests an explanation for the timing difference between the condition-
dependent problems. Again, the condition dependent problems used the same  
sentence stimuli but differed in the task students performed. Results show that deep 
processing of the material (e.g. self-explanation or analogy selection) requires more 
time than simple problem solving. Further, since learning gains are constant across 
conditions, it does not seem that the added time required to deeply process the mate-
rial is beneficial for the students. In addition, timing data from the identical practice 
problems (problems that all students, regardless of condition, completed) show that 
students in the analogy with practice and practice-only conditions complete these 
problems significantly faster than students in the self-explanation with practice condi-
tion. Again, Table 2 suggests why this difference occurs; namely, while students in 
the analogy with practice and practice-only conditions are using implicit knowledge; 
students in the self-explanation with practice condition are relying on explicit knowl-
edge to make their article selections. The process of retrieving explicit knowledge is 
more time consuming using implicit knowledge to complete the problems.  
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Table 2. Classification of tutoring condition by knowledge type and instructional approach 

 Deep Processing No Deep Processing 
Implicit Knowledge Analogy Practice  
Explicit Knowledge Self-Explanation   

 
One open question is why do these results differ from the many studies that show 

an advantage for self-explanation and analogical comparisons; what makes second 
language grammar learning different? We propose that it is not the domains that are 
driving these differences but the number of mental steps required to solve the prob-
lem. For example, a typical geometry problem may include a diagram and ask stu-
dents to calculate the value of an unknown angle. To successfully solve this problem, 
students need to develop and execute a rather complicated plan (Figure 6). However, 
a typical English article problem (e.g. Yesterday, I bought new shoes. ___ shoes are 
red.) requires fewer steps: (1) Set goal to choose the article. (2) Select (either implic-
itly or explicitly) the correct rule (If a noun has already been mentioned, use the), and 
(3) apply it (Yesterday, I bought new shoes. The shoes are red). We believe that the 
understanding acquired through deep processing scaffolds the generation of a correct 
knowledge application plan. When this plan involves many mental steps, as in often 
the case in math and science, this scaffolding is necessary and helpful. However, 
when the knowledge application plan is short, the benefits of deep processing de-
crease. Future research should empirically investigate this argument by conducting a 
2x2 experiment which examines the effects of deep processing instructional manipu-
lations on math and language problems with both short and long solution plans. 

 

Fig. 6. Example of a typical geometry problem that requires several mental steps to solve 

In conclusion, this work suggests that repeated practice is more efficient for learn-
ing the English article domain than self-explanation with practice or analogical com-
parisons with practice. It provides a possible explanation for why these findings differ 
from much of the previous work. Future work plans to further investigate these differ-
ences in an attempt to establish boundary conditions for instructional strategies that 
foster effective processing of the material. 
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Abstract. Pedagogical tutorial tactics are policies for a tutor to decide

the next action when there are multiple actions available. When the con-

tents were controlled so as to be the same, little evidence has shown

that tutorial decisions would impact students’ learning. In this paper,

we applied Reinforcement Learning (RL) to induce two sets of tutorial

tactics from pre-existing human interaction data. The NormGain set was

derived with the goal of enhancing tutorial decisions that contribute to

learning while the InvNormGain set was derived with the goal of enhanc-

ing those decisions that contribute less or even nothing to learning. The

two sets were then compared with human students. Our results showed

that when the contents were controlled so as to be the same, different

pedagogical tutorial tactics would make a difference in learning and more

specifically, the NormGain students outperformed their peers.

Keywords: Reinforcement Learning, Human Learning, Intelligent Tu-

toring Systems, Pedagogical Strategy.

1 Introduction

Human one-on-one tutoring is one of the most effective educational interven-
tions in that tutored students often perform significantly better than students
in classroom settings[4]. One hypothesis as to the effectiveness of human one-on-
one tutoring comes from the detailed management of “micro-steps” in tutorial
dialogue[12, 13]. A typical Intelligent Tutoring System (ITS) is step-based[20].
Once a student enters a step, then the tutor gives feedback and/or hints. For
example, in order to solve a physics problem, the student need to apply several
domain principles, some of which may need to be applied multiple times. Each
principle application can be seen as a step in the ITS. In a physics tutor, for
example, applying the definition of Kinetic Energy (KE = 1

2mv2) to solve for
the kinetic energy of a falling rock at T0 is a step. Human tutors, by contrast,
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1. T: So let’s start with determining the value of KE0.
2. T: Which principle will help you calculate the rock’s kinetic energy at

T0? Please provide the name of the principle, not an equation.
{ELICIT}

3. S: Definition of kinetic energy
4. T: Yes, I agree. Now I will write the equation for applying the definition

of kinetic energy to the rock at T0: KE0 = 1/2*m*v0ˆ2 {TELL}

Fig. 1. An example Dialog

often scaffold students via a series of micro-steps leading to the full step. In
the step mentioned above, for instance, a human tutor can take the following
micro-level steps: selecting the principle to apply; writing the corresponding
equation; solving the equation; and engaging in some qualitative discussion about
the principle.

Fig. 1 shows a sample dialog for two micro-steps. In Fig. 1, each numbered line
represents a dialog turn. The labels T and S designate tutor and student turns
respectively. In this example, the tutor and the student first select a principle
(lines 2 & 3) and then write the corresponding equation (line 4). Some of the
tutor turns in Fig. 1 are labeled {ELICIT} or {TELL}. This label designates
a tutorial decision step wherein the tutor has to make a tutorial decision
deciding whether to elicit the requisite information with a question or to tell
the student the information. For example, in line 2, the tutor chooses to elicit
the answer from the student by asking the question, “Which principle will help
you calculate the rock’s kinetic energy at T0? Please provide the name of the
principle, not an equation.” If the tutor elected to tell the students, however,
then he or she would have stated, “To calculate the rock’s kinetic energy at T0,
let’s apply the definition of Kinetic Energy.” Both actions cover the same target
knowledge.

If the effectiveness of human one-on-one tutoring lies in tutors’ ability to scaf-
fold a series of micro-steps leading to a step entry, then we would expect human
tutors to be more effective than step-based tutors as both require students to
enter the same major steps. In several tests of this hypothesis, neither human
tutors nor Natural Language (NL) tutoring systems designed to mimic human
tutors, outperformed step-based systems[10, 22]. All three types of tutors, how-
ever, were more effective than no instruction (e.g., students reading material
and/or solving problems without feedback or hints). One possible conclusion
is that tutoring is effective, but that the micro-steps of human tutors and NL
tutoring systems provide no additional value beyond conventional step-based
tutors[21].

On the other hand, such a conclusion would be premature. It could simply be
that neither human tutors nor their computer mimics are good at making micro-
step decisions. That is, the use of micro-steps is good, but human tutors (and
their mimics) lack the effective pedagogical skills to select appropriately. Indeed,
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although it is commonly assumed that human expert tutors have effective ped-
agogical skills, little evidence has been presented to date demonstrating that. In
order to execute pedagogical skills effectively, it is assumed that tutors should
adapt their behaviors to students’ needs based upon students’ current knowledge
level, general aptitude, emotional state and other salient features. However, pre-
vious research has cast doubt on the assumption. Chi, Roy, and Hausman[8]
found that human tutors do not seem to maintain an accurate model of stu-
dent’s knowledge level during the tutoring process. Similarly, Putnam[17] found
that experienced tutors did not attempt to form detailed models of the stu-
dents’ knowledge before attempting remedial instruction. Rather, each teacher
appeared to move through a general curricular script irrespective of the student’s
state. For the purposes of this paper the term “pedagogical tutorial tactics” will
be used to refer to the policies for selecting the tutorial action at each micro-step
level when there are multiple actions available.

In this study, our primary research question is whether pedagogical tutorial
tactics would impact students’ learning. We focus on two types of tutorial de-
cisions, Elicit vs.Tell (ET) and Justify vs. Skip-Justify (JS). When making ET
decisions the tutor decides whether to elicit the next step from the student or
to tell them the step directly. The JS decisions address points where the tu-
tor may optionally ask students to justify a step they have taken or entry they
have made. Neither decision is well-understood. There are many theories, but
no widespread consensus on how or when an action should be taken[1, 7, 9, 14].

In order to investigate our research question, we applied a general data-driven
methodology, Reinforcement Learning (RL), to induce pedagogical tutorial tac-
tics directly from pre-existing interactivity data. We used an NL Tutoring System
called Cordillera[23]. In order to avoid confounds due to imperfect NL under-
standing, we replaced the NL understanding module with a human wizard. Dur-
ing tutoring, the wizard’s sole task was to match students’ answers to one of the
available responses. The wizard made no tutorial decisions.

Previously we investigated whether the RL-induced pedagogical tutorial tac-
tics would improve students’ learning[6]. This was done by first collecting an Ex-
ploratorydataset in 2007. 64 college students, the Exploratory group, were trained
on a version of Cordillera, called random-Cordillera, where both ET and JS de-
cisions were made randomly. From the Exploratory corpus, we applied RL to in-
duce a set of policies, named DichGain policies. They were named after the fact
that when applying RL, we dichotomized the reward function so that there were
only two levels of reward. The induced DichGain policies were implemented back
to Cordillera and the new version of Cordillera was named DichGain-Cordillera.
Apart from following the policies (random vs. DichGain), the remaining compo-
nents of Cordillera, including the GUI interface, the same training problems, and
the tutorial scripts, were left untouched. DichGain-Cordillera’s effectiveness was
tested by training a new group of 37 college students in 2008. It was shown that
no significant overall difference was found between the two groups on the pretest,
posttest, or the NLGs[6, 5]. There were at least two potential reasons for such
lack of difference. First, it might be caused by limitations in our RL approach;
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for example, in order to induce the DichGain policies, we defined only 18 features
and used a greedy-like procedure to search for a small subset of it as the state
representation[6]. Second, rather than randomly assigning students into the two
groups, the Exploratory data was collected in 2007 while the DichGain data was
collected in 2008.

Therefore, in this study we included multiple training datasets, a larger fea-
ture set and more feature selection approaches in our RL approach and run a
full comparison by random assignment of students to two comparable groups.
More specifically, we induced two sets of tutorial tactics: the Normalized Gain
(NormGain) tactics were derived with the goal of making tutorial decisions that
contribute to students’ learning, while the Inverse Normalized Gain (InvNorm-
Gain) tactics were induced with the goal of making less beneficial, or possibly
useless, decisions. The two sets were then compared by making all students
studying the same materials and training on the Cordillera that covered the
same subject matter and training problems, and used the same tutorial scripts
and user interface. If our application of RL to induce pedagogical tutorial tactics
is effective, then we expect that the NormGain students will outperform their
InvNormGain peers. This would occur if the micro-level decisions on ET and JS
impact learning. In the following, we will briefly describe how we applied RL to
induce the pedagogical tutorial tactics and then describe our study and finally
present our results.

2 Applying RL to Induce Pedagogical Tutorial Tactics

Previous research on using RL has typically used Markov Decision Processes
(MDPs)[18]. MDP is a formal state model, commonly used to model dialogue
data. Formally, an MDP is a 4-tuple (S, A, T, R), where: S = {S1, · · · , Sn} is a
state space; A = {A1, · · · , Am} is an action space represented by a set of action
variables; T : S × A × S → [0, 1] is a set of transition probabilities between
states describing the dynamics of the modeled system (e.g. P (Sj |Si, Ak) is the
probability that the model will transition from state Si to state Sj by taking
action Ak); R : S × A × S → R is a reward model that assigns reward values
to state transitions and models payoffs associated with the transitions. Finally,
π : S → A is a policy.

The central idea behind this approach is to transform the problem of induc-
ing effective pedagogical tactics into computing an optimal policy for choosing
actions in an MDP. Inducing pedagogical tutorial tactics can be easily repre-
sented using an MDP: the states are vector representations composed of rele-
vant student-tutor interaction characteristics; A = {Elicit, T ell} for inducing
ET policies and {Justify, Skip − Justify} for inducing JS policies, and the
reward function is calculated from the system’s success measures and we used
learning gains. Given that a student’s learning gain will not be available until
the entire tutorial dialogue is completed, only terminal dialogue state has non-
zero reward. Once the S, A, R has been defined, the transition probabilities T
are estimated from the training corpus, which is the collection of dialogues, as:
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T = {p(Sj|Si, Ak)}k=1,··· ,m
i,j=1,··· ,n. More specifically, p(Sj |Si, Ak) is calculated by tak-

ing the number of times that the dialogue is in state Si, the tutor took action
Ak, and the dialogue was next in state Sj divided by the number of times the di-
alogue was in Si and the tutor took Ak. The reliability of these estimates clearly
depends upon the size and structure of the training data. Once a complete MDP
is constructed, a dynamic programming approach can be used to learn the opti-
mal control policy π∗ and here we used the toolkit developed by Tetreault and
Litman[19]. The rest of this section presents a few critical details of the process,
but many others must be omitted to save space.

In this study, the reward functions for inducing both the NormGain and the
InvNormGain sets were based on Normalized Learning Gain (NLG). This is
because NLG measures a student’s gain irrespective of his/her incoming com-
petence and we have: NLG = posttest−pretest

1−pretest . Here posttest and pretest refer
to the students’ test scores before and after the training respectively; and 1 is
the maximum score. More specifically, the NormGain tutorial tactics induced by
using the student’s NLG× 100 as the final reward while the InvNormGain ones
was induced by using the student’s (1 −NLG)× 100 as the final reward. Apart
from the reward functions, they were induced using the same general procedure.

2.1 Knowledge Component (KC) Based Pedagogical Strategies

In the learning literature, it is commonly assumed that relevant knowledge in
domains such as math and science is structured as a set of independent but
co-occurring Knowledge Components (KCs) and that these KCs are learned in-
dependently. A KC is “a generalization of everyday terms like concept, principle,
fact, or skill, and cognitive science terms like schema, production rule, miscon-
ception, or facet”[23]. For the purpose of ITSs, these are the atomic units of
knowledge. It is assumed that a tutorial dialogue about one KC will have no
impact on the student’s understanding of any other KCs. This is an idealization,
but it has served ITS developers well for many decades, and is a fundamen-
tal assumption of many cognitive models[2, 16]. When dealing with a specific
KC, the expectation is that the tutor’s best policy for teaching that KC (e.g.,
to Elicit vs. to Tell) would be based upon the student’s mastery of the KC in
question, its intrinsic difficulty, and other relevant, but not necessarily known,
factors specific to that KC. In other words, an optimal policy for one KC might
not be optimal for another. Therefore, one assumption made in this paper is
that inducing pedagogical policies specific to each KC would be more effective
than inducing an overall KC-general policy.

The domain selected for this project is a subset of the physics work-energy
domain, which is characterized by eight primary KCs. Given these independence
assumptions, the problem of inducing a policy for ET decisions and a policy
for JS decisions may be decomposed into 8 sub-problems of each type, one per
KC. More specifically, in order to learn a policy for each KC, we annotated our
tutoring dialogues and action decisions with the KCs covered by each action.
For each KC, the final kappa was ≥ 0.77, fairly high given the complexity of the
task. A domain expert also mapped the pre- and post-test problems to relevant
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KCs. This resulted in a KC-specific NLG score for each student. KC1 does not
arise in any JS decisions and thus only an ET policy was induced for it. For the
remaining seven KCs, a pair of policies, one ET policy and one JS policy, were
induced. So we induced 15 KC-based NormGain and 15 KC-based InvNormGain
policies. There were some decision steps that did not involve any of the eight
primary KCs. For them, two KC-general policies, an ET policy and a JS policy,
were induced. To sum, a total of 17 NormGain and 17 InvNormGain policies
were induced.

2.2 Inducing NormGain and InvNormGain Policies

In order to apply RL to induce pedagogical tutorial tactics, a training corpus is
needed. In this study, we have three training corpora available from the previous
study[6]: the Exploratory corpus collected in 2007, the DichGain corpus collected
in 2008, and a Combined training corpus. In order to examine a range of possible
tactics, we included 50 features based upon six categories of features considered
by previous research[15, 3, 11] to be relevant. We also used a different method of
searching the power set of the 50 features and directly used the NLG × 100 for
inducing NormGain policies and(1−NLG)×100 for inducing InvNormGain ones
instead of dichotomizing the NLGs when inducing DichGain policies previously.

Fig. 2 shows an example of a learned NormGain policy on KC20, “Definition
of Kinetic Enegy”, for ET decisions. The policy involves three features:

[StepDifficulty:] encodes a step’s difficulty level. Its value is estimated from
the Combined Corpus based on the percentage of correct answers given on the
step.
[TutorConceptsToWords:] which represents the ratio of the physics concepts
to words in the tutor’s dialogue. This feature also reflects how often the tutor
has mentioned physics concepts overall.
[TutorAverageWordsSession:] The average number of words in the tutor’s
turn in this session. This feature reflects how verbose the tutor is in the current
session.

[Feature:]
StepDifficulty: [0, 0.38) → 0; [0.38, 1] → 1

TutorConceptsToWords: [0, 0.074) → 0; [0.074, 1] → 1

TutorAverageWordsSession: [0, 22.58) → 0; [22.58,∞) → 1

[Policy:]
Elicit: 0:0:0 0:0:1 1:0:1 1:1:0 1:1:1

Tell: 0:1:0

Else:0:1:1 1:0:0

Fig. 2. A NormGain Policy on KC20 For ET Decisions
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MDP generally requires discrete features and thus all the continuous features
need to be discretized. Fig. 2 listed how each of the three features was discretized.
For example, For StepDifficulty, if its value is above 0.38, it is 1 otherwise, it is 0.
There were 8 rules learned: in 5 situations the tutor should elicit, in one situation
it should tell; in the remaining 2 cases either will do. For example, when all three
features are zero (which means when the current step’s difficulty level is low, the
tutor ratio of physics concepts to words is low, and the tutor is not very wordy
in the current session), then the tutor should elicit as 0:0:0 is listed next to the
[elicit]. As you can see, three features already provide relatively complex tutorial
tactics and the induced policies were not like most of the tutorial tactics derived
from analyzing human tutorial dialogues.

The resulting NormGain and InvNormGain policies were then implemented
back into Cordillera yielding two new versions of the system, named NormGain-
Cordillera and InvNormGain-Cordillera respectively. The induced tutorial
tactics were evaluated on real human subjects to see whether the NormGain
students would out-perform the InvNormGain peers.

3 Methods

3.1 Participants

Data was collected over a period of two months during the summer of 2009.
Participants were 64 college students who received payment for their participa-
tion. They were required to have a basic understanding of high-school algebra.
However, they could not have taken any college-level physics courses. Students
were randomly assigned to the two conditions. Each took from one to two weeks
to complete the study over multiple sessions. In total, 57 students completed the
study (29 in the NormGain group and 28 in the InvNormGain group).

3.2 Domain and Procedure

Our work used the Physics work-energy domain as covered in the first-year col-
lege physics course. The eight primary KCs were: the weight law (KC1), defini-
tion of work (KC14), Definition of Kinetic Energy (KC20), Gravitational Poten-
tial Energy (KC21), Spring Potential Energy (KC22), Total Mechanical Energy
(KC24), Conservation of Total Mechanical Energy (KC27), and Change of Total
Mechanical Energy (KC28).

All participants experienced the identical procedure and materials. More specif-
ically, participants all completed 1) a background survey; 2) read a textbook cov-
ering the target domain knowledge; 3) took a pretest; 4) solved the same seven
training problems in the same order on Cordillera; and 5) finally took a posttest.
The pretest and posttest were identical. Except following the policies (NormGain
vs. InvNormGain), the remaining components of Cordillera, including the GUI
interface, the same training problems, and the tutorial scripts, were identical for
all students.
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3.3 Grading

All tests were graded in a double-blind manner by a single experienced grader.
In a double-blind manner, neither the students nor the grader know who belongs
to which group. For all identified relevant KCs in a test question, a KC-based
score for each KC application was given. We evaluated the student’s competence
in the following sections based on the sum of these KC-based scores. This is
because the KC-based pre- and post-test scores were used to define the reward
functions when applying RL to induce policies. Later analysis showed that the
same findings stand for other scoring rubrics. The tests contained 33 test items
which covered 168 KC occurrences. For comparison purposes all test scores were
normalized to fall in the range of [0,1].

4 Results

Random assignment appears to have balanced the incoming student competence
across conditions. There were no statistically significant differences between the
two conditions in the pre-test scores t(55) = 0.71, p = .484. Additionally, no
significant differences were found between the two conditions on the mathSAT
scores and the total training time spent on Cordillera: t(39) = 0.536, p = 0.595
and t(55) = −.272, p = .787 respectively.

A one-way ANOVA was used to test for learning performance differences be-
tween the pre- and posttests. Both conditions made significant gains from pre-
test to post-test: F (1, 56) = 31.34, p = .000 for the NormGain condition and
F (1, 54) = 6.62, p = .013 for the InvNormGain condition. Table 1 compares the
pre-test, post-test, adjusted-post-test, and NLG scores between the two condi-
tions. In Table 1, the Adjusted Post-test scores were compared between the two
conditions by running an ANCOVA using the corresponding pre-test score as
the covariate. The second and third columns in Table 1 list the means and SDs
σ of the NormGain and InvNormGain groups’ corresponding scores. The fourth
column lists the corresponding statistical comparison and the fifth column lists
the effect size of the comparison and we used Cohen’s d. This is defined as the
mean learning gain of the experimental group minus the mean learning gain of
the control group, divided by the groups’ pooled standard deviation. Table 1
shows that there was no significant difference between the two groups on pre-
test scores. However, there were significant differences between the two groups on

Table 1. NormGain vs. InvNormGain on Various Test Scores

NormGain InvNormGain Stat cohen d
Pretest 0.42 (0.16) 0.39 (0.23) t(55) = 0.71, p = .484 0.15
Posttest 0.65 (0.15) 0.54 (0.20) t(55) = 2.32, p = 0.024 0.65 ∗ ∗
Adjusted Posttest 0.63 (.095) 0.55 (.095) F (1, 54) = 10.689, p = .002 0.86 ∗ ∗
NLG 0.41 (0.19) 0.25 (0.21) t(55) = 3.058, p = 0.003 0.81 ∗ ∗
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the post-test, adjusted-post-test, and NLG scores. Across all measurements, the
NormGain group performed significantly better than the InvNormGain peers.
The effect size, Cohen’s d, was large.

To summarize, our results showed that both groups had significant learning
gains after training on Cordillera. More importantly, although no significant
difference was found in time on task and in the pre-test scores, the NormGain
group out-performed the InvNormGain group on the post-test, adjusted post-
test, and NLG scores regardless of the grading criteria. Therefore, the overall
results show that the micro-level pedagogical tutorial decisions made a significant
difference in the students’ learning.

Later a post-hoc comparison was done across the NormGain, Exploratory
and DichGain groups because the NormGain policies were induced from the
Exploratory and DichGain corpora. Despite the lack of random assignments, no
significant difference was found among the three groups in the pretest. However,
the NormGain group significantly outperformed both groups in the posttest,
adjusted posttest scores, and NLGs[5]. Similarly, a post-hoc comparison was done
across the InvNormGain, Exploratory and DichGain groups but no difference was
found among the three groups on pretest, posttest, adjusted posttest scores or
NLGs. The lack of a significant difference among the InvNormGain, DichGain,
and Exploratory groups seemingly contradicts the initial predictions since the
InvNormGain strategies were specifically induced to enhance those decisions
that contribute less or even none to the students’ learning. Therefore, a lower
performance on the students’ part there than in at least the DichGain group,
which sought to enhance the tutorial decisions that contribute to the students’
learning, was expected. One possible explanation for the lack of difference among
the three groups is that the tutorial tactics employed by the DichGain- and
Random-Cordillera systems were ineffective and thus presented a minimum bar.
By ’ineffective’ it does not mean that they prevented the students from learning
but rather that they were not able to make a positive impact on their learning
above and beyond the baseline provided by Cordillera itself. Here the basic
practices and problems, domain exposure, and interactivity of Cordillera set
a minimum bar of students’ learning that the tactics, however poor, cannot
prevent. This is only a post-hoc explanation not a tested hypothesis, however it
merits further investigation.

5 Conclusion

In this study, students were randomly assigned to balanced conditions and re-
ceived identical training materials and procedures apart from the tutoring tactics
employed. After spending the same amount of time on training, the NormGain
group outperformed the InvNormGain group in terms of posttest scores, the ad-
justed post-test scores and the normalized learning gains. This results support
the hypothesis that micro-step interactive tutorial decisions such as the Elicit vs.
Tell and Justify vs. Skip-justify decisions do affect students’ learning. Therefore,
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future work is needed to investigate the induced NormGain and InvNormGain
tutorial tactics and find out what actually caused these learning differences.

Moreover, this study also suggests that RL is a feasible approach for induc-
ing pedagogical policies by using a relatively small human interaction corpus.
However, it is not trivial. The DichGain tutorial tactics, for example, did not
seem to be more effective than the random decisions in Random-Cordillera. As
future work, we would like to explore the use of richer POMDP models, and do
additional empirical evaluation of the RL approach.

Finally, this study suggests that the fine-grained interaction (micro-steps) of
human tutoring are a potential source of pedagogical power, but human tutors
may not be particularly skilled at choosing the right micro-steps. Given how
much computation we had to perform in order to learn which micro-steps were
best, it is hardly surprising that human tutors have not (yet) acquired similar
skill. This raises an interesting question: Can a NL tutoring system that is ex-
tensively trained be significantly more effective than expert human tutors? This
would be an excellent question for future research.
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Abstract. It is well established that expert human tutors are signifi-

cantly more effective than novice tutors [6]. Moreover, the dialogue moves

of one–to–one expert tutoring sessions can be systematically analyzed

and used to build a computational model that incorporates effective ped-

agogical strategies. Such a model can be successfully integrated into a

computerized tutoring system [24]. The present work examines the role

of gestures and body movements of tutors in one–to–one expert tutoring

sessions. Specifically, we closely examine and characterize the gestures

and movements of expert tutors at the dialogue move level. The goal of

this work is to provide insight into the pedagogical gestures of expert

human tutors so that a computerized animated agent can be employed

to mimic the body language of an expert tutor.

Keywords: gestures, expert tutors, tutoring.

1 Introduction

Human gestures play an important role in communication [20]. Moreover, re-
searchers, [10], have shown that the same areas of the brain are involved in the
production of oral language and expressive gestures. The simultaneous forma-
tion of language and gesture in the human mind to convey a particular thought
further indicates the integral role of gestures in conveying human ideas [20].

Many Intelligent Tutoring Systems (ITSs) rely on animated pedagogical
agents to facilitate learning [12]. The motivation behind using such a character
in a computer–generated learning environment is derived from natural human–
human interaction. As Atkinson [2] points out, an animated pedagogical agent
allows the developer to control where a learner’s attention is focused, provide
feedback through gazing and gestures, and convey emotion. However, empirical
studies involving animated pedagogical agents report mixed results regarding
their benefits. For example, it has been shown that an animated agent provides
greater learning gains and/or better attitudes toward the content [21,22,26] in
contrast to other studies, [1,4,11,19], that report no increase in motivation or
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learning. Clark and Choi [9] explain that these mixed results are largely due to
the design of the studies. We believe that the specific gestures of the pedagogical
agents used in these studies along with the dialogue context of these gestures
may further explain the ambiguity of the agents’ effectiveness. Specifically, ani-
mated agents might give distracting gestures that detract from learning. Thus,
the goal of the present work is to help identify natural gestures that are used in
tutoring pedagogy. Specifically, we are interested in characterizing the gestures
and gaze patterns that an expert tutor employs as a function of the context of
the tutoring dialogue.

This research examines the gestures and movements used in specified tuto-
rial dialogue moves (speech acts) [23]. It is widely accepted that accomplished
human tutors are more effective in terms of learning gains and motivational en-
gagement than novice tutors. Recent research has focused much attention on
investigating the pedagogical dialogue strategies of these expert tutors [7,23].
Person et al. [24] have shown that the pedagogical dialogue moves of tutors can
be characterized and incorporated into a computer generated tutoring system,
AutoTutor. This work is a natural extension of Person et al. [24], and seeks to
uncover the gestures and body movements involved in expert tutoring so that
they may be used to animate a pedagogical agent in a computerized tutoring
system. The system envisioned would be different than others, [8,17], in that
appropriate agent gestures, movements, and gazes would be generated at the
fine–grain dialogue move level.

In this work we use the term “gesture” loosely to refer to a variety of move-
ments, including movements of arms and hands, gaze direction, self–touching
(e.g., scratching an itch), adjustment of posture, and nervous ticks. However,
Roth [25] defines gestures as hand movements that have the following four char-
acteristics: beginning from a rest position, having a peak phase, having a recovery
and preparation phase, and having a tendency to be symmetrical. The ultimate
goal of this work is to develop a compelling, naturalistic animated computer
tutor. Thus, we felt it necessary to capture as many movements of the human
tutors as possible. We group our gestures into different categories so that we
can formally analyze Roth’s “gestures.” It is important to note that some re-
searchers, [16], have shown that arm motions are the only important gestures
used in communication and that all other movements can be treated as back-
ground. Thus, much of the gesture analysis research, [3,25], is limited to hand
motions. We come back to this issue in Section 3. Other researchers, however,
have found that gazing is an important part of human communication [5].

Researchers have proposed different taxonomies of gestures [20,25]. Most ed-
ucation researchers seem to focus on the gesture framework outlined by McNeill
[20]. In this framework, gestures, as defined by Roth [25], can be grouped into
one of four categories, deictic, iconic, metamorphic, and beats. Deitic gestures
are used in pointing. Iconic gestures are representational and have a perceptual
relationship with concrete entities. Metamorphic gestures are similar to ionic,
yet they refer to entities in an imagined scene. Beats are the up and down move-
ment of the hand to emphasize points. Research,[18], has shown that deictic
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gestures do play a role in communication. However, the value of ionic gestures
and metamorphic gestures remains contested [25].

2 Method

2.1 The Expert Tutoring Corpus

Our expert tutoring corpus was comprised of 50 one–to–one tutoring sessions
between an accomplished tutor and a student having difficulty in a particular
math or science course. There were ten different expert tutors in this dataset
in the following areas: algebra, geometry, physics, chemistry, and biology. The
students in our corpus were either recommended by school personnel or volun-
tarily sought professional help. The expert tutors were recruited from public
and private schools in a large urban school district and were recommended by
academic support personnel who have long histories with these tutors and often
refer them to parents and students. Our expert tutors had a minimum of five
years experience of one–to–one tutoring, a secondary teaching license, a degree
in the subject that they tutor, an outstanding reputation as a private tutor, and
an effective track record (i.e., students who work with these tutors show marked
improvement in the subject areas for which they receive tutoring). Videos of
the tutoring sessions were recorded and later transcribed. During the tutoring
sessions, the tutors and students sat together at a desk or table and shared a
common workspace or frame of reference. Thus, relevant books and notebooks
are considered part of the workspace. The dialogue of the transcribed sessions
were coded in two ways: by the detailed tutor and student dialogue moves [23]
and by the broader pedagogically distinct phases known as modes [7].

The 47,256 dialogue moves in the corpus corresponded were classified into 43
different pedagogical categories inspired by previous tutoring research, [13,14].
Of the 43 categories of dialogue moves, there were 27 distinct dialogue moves as-
sociated with the tutors and 16 associated with the student. The tutor dialogue
moves consisted of various forms of information delivery (e.g., direct instruction,
explanation, example), questions and cues to get the student to do the talking
(e.g., hints, prompts, pumps, forced choices), feedback (positive, negative, neu-
tral), motivational moves (general motivation statement, solidarity statement),
humor, and off-topic conversation. The student dialogue moves could be related
to the quality of their answer (e.g., correct answer, partially-correct answer,
error-ridden answer) or to unique actions (e.g., reading aloud or solving a prob-
lem). More detailed descriptions of the dialogue move coding scheme can be
found in [23]. Next, the dialogue of the tutoring sessions were classified accord-
ing its pedagogically distinct phase or dialogue mode. There are eight distinct
modes (Introduction, Lecture, Highlighting, Modeling, Scaffolding, Fading, Off
Topic, Conclusion) that usually endured for several minutes and encompassed
multiple dialogue moves [7]. In particular, we examine the gestures in the Lec-
ture and Scaffolding modes. The Lecture mode is defined as a phase in which the
tutor explicitly dispenses information. In the Scaffolding mode, the tutor and the
student work together on a specified problem and the tutor helps the student
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arrive at the correct answer. The Scaffolding and Lecture modes appeared the
most frequently in our dataset, representing 27.8% and 22.1% of the dialogue
moves, respectively, and 46.4% and 30.2% of turns, respectively. A turn is defined
as a dialogue shift from tutor to student or vice-versa.

2.2 Coding Tutor Gestures

Coding the entire expert tutoring corpus for tutor gestures was not feasible,
therefore we coded a subset of the corpus. We choose 200 turns from each of the
different tutors in the expert tutoring corpus. Of those 200 turns, 100 of the turns
were associated with Lecture mode while the other 100 turns were associated
with the Scaffolding mode. Each set of 100 turns appeared consecutively in the
tutoring dialogue. We counter-balanced the turns across subjects so that some
of the turns were extracted near the beginning of the tutoring session, some near
the the middle, and others toward the end. Thus, our gesture corpus consisted
of 2,000 turns which corresponded to 2,874 dialogue moves. Our coding scheme
consisted of 35 different gestures that fully captured the range of gestures of the
tutors in the expert tutoring corpus. The gestures were coded by move. Thus,
the coder examined the corresponding video sequence of each move and observed
the tutor’s gestures. A move often had more than one gesture associated with it.
The coding scheme was finalized prior to coding all 2,874 moves. These moves
were coded by two of our co–authors and the inter-judge reliability of the coding
system showed a Cohen’s kappa ranging from 0.93–1.0 for each of the 35 different
gesture categories.

We classify each of the 35 gestures or movements into one of seven categories
described below. A sample dialogue coded with our scheme is provided in Table 1.

1. Deictic (point at workspace, hold up workspace). The deictic gestures refer
to pointing gestures.

2. Iconic (animate the subject matter). The iconic gestures illustrate what is
being said and have concrete semantic meaning.

3. Beat(count on fingers, point upwards, fist pump, open hands when explain-
ing). Beat gestures are rhythmic in nature and used to emphasize a certain
aspect of the dialogue.

4. Personal (cross arms across chest, scratch itch, play with pen, cross hands
on desktop, adjust glasses, cough, put hand on face, lean back in chair, tap
fingers, check time on watch, adjust scarf, pet animal, fidget in chair, scratch
head in thought, talk on phone). Personal movements involve self–touching,
nervous ticks, etc.

5. Gaze (look at student, look at workspace, look up to think, look off at a
distance). The gaze is used to indicate where the tutor is looking.

6. Paralinguistic (gesture for student to take notes, shrug shoulders, shake
head no, what do you think (palms up), hand prompt for answer, nod). Par-
alinguistic movements communicate an idea without language.

7. Action (write on workspace, thumb through pages, use computer). This cat-
egory describes movements associated with specific actions that tutors might
often carry out and were not well described by the other categories.
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Table 1. This table provides a sample of Scaffolding dialogue. The columns represent

the transcribed dialogue from the tutoring session, the related dialogue move, and the

tutor’s corresponding gesture, respectively. The speaker is denoted in the first column

with a “T” for Tutor and an “S” for student.

T: What’s going on? What’s the process? new problem point at workspace, look at student, what do you think

S: They’re con- vague answer cross arms, look at student

T: <repeatedly puts hands together> hint animate subject matter, look at student

S: They’re binding. error ridden answer animate subject matter, look at student

S: [I don’t know how to say it.] metacomment animate subject matter, look at student

T: [<laughs>.] other cross arms, fidget in chair, look at student

S: They’re- vague answer cross arms, fidget in chair, look at student

T: Crossing over. provide correct answer nod, cross arms, fidget in chair, look at student

S: Oh. acknowledgment cross arms, fidget in chair, look at student

T: Right? comprehension engaging

question

nod, cross arms, look at workspace, look at student

T: This is crossing over. See what it looks like?

Doesn’t it look like theyre crossing over?

direct instruction point at workspace, animate subject matter, look at

student

S: Mm hmm. acknowledgment animate the subject matter, look at student

T: Yup. positive feedback animate subject matter, nod, look at workspace, look at

student

T: That’s when mom and dad have a have a leg over

each other.

example point at the workspace, look at workspace

T: Crossing over. Theyre exchanging DNA. Ok? And

this is prophase 1. Ok. So, this is the first

round of meiosis and the second round of meiosis.

Ok? First round - second round, [ok.]

direct instruction point at workspace, animation subject matter, look at

workspace, look at student

S: [Mm hmm.] acknowledgment point at workspace, look at workspace

T: So, we started with 4 chromosomes and 2 pairs. direct instruction look at workspace, point at workspace

T: How many would we need to have at the end of

the first round?

new problem point at workspace, what do you think,look at workspace,

look at student

S: 1. 1 and- error ridden answer cross arms, look at student

T: How many chromosomes? simplify problem point at workspace, what do you think, look at student

S: 2. correct answer point at workspace, look at student

T: 2 chromosomes. repetition point at workspace, look at student

T: How many pairs? simplify problem what do you think, look at workspace, look at student

S: 1. correct answer point at workspace, look at student

T: 1. repetition point at workspace, nod, look at student

T: So, what did we do during the first round? simplify problem what do you think, point at workspace, look at workspace

T: What did we split? hint animate subject matter, what do you think, point at

workspace, look at workspace

S: We split the pairs. correct answer animate subject matter, look at student

2.3 Results

In Table 2, we outline the most frequently used dialogue moves and the most
frequently used gestures within that move. The most frequently used gestures
broken down by mode can be seen in Table 3. We performed a multivariate
analysis of variance (MANOVA) on our data with the 35 different gestures as
the dependent variables and tutor, mode, and move as the independent variables.
The multivariate results revealed a main effect of tutor (F (270) = 7.3, p < .01),
mode (F (30) = 1.7, p < .01), and move (F (1260) = 2.9, p < .01). These results,
respectively, indicate that each tutor can be uniquely identified by their gestures,
that tutors use different gestures in the two different modes, and that the tutors
use certain gestures during a specific dialogue move. The tutor by mode, tutor by
move, and mode by move interactions were also significant (F (270) = 4.1, p <
.01; F (7050) = 1.3, p < .01, F (1050) = 1.1, p < .01). Thus, different tutors
systematically use certain gestures in certain modes and these gestures differ
across tutor. The same is true for the dialogue moves. Additionally, specific
gestures are used for moves in a certain mode. The three-way interaction was
also significant, F (4200) = 1.2, p < .01.

We analyzed the gestures according to their categories:
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Table 2. This table shows the most common dialogue moves in our dataset. The

percentage of their appearance is indicated to the right of each moves. The speaker of

the dialogue move is indicated by an T for tutor and S for student. Underneath each

move, the corresponding means (or percent used) and standard deviations of gestures

that appear above a threshold of 10% are reported.

T: Direct Instruction/Explanation (18.8%), Example:so that’s your lateral area

look at workspace .84 (.37) point at workspace .49 (.50)

look at student .38 (.49) write on workspace .27 (.42)

animate subject matter .16 (.37)

S: Acknowledgment (12.6%), Example: yeah ok

look at workspace .56 (.50) look at student .48 (.50)

point at workspace .24 (.43)

T Positive Feedback (8.2%), Example: very good alright

nod .26 (.44) look at student .27 (.45)

put hand on face .12 (.32) point at workspace .11 ( .32)

cross arms .11 (.31) write on workspace .11 (.32)

S: Correct Answer (6.4%), Example: 2 so v equals 4 squared

look at workspace .65 (.48) look at student .43 (.50)

point at workspace .19 (.39 ) write on workspace .14 (.35)

cross arms .13 (.34)

T: Conversational Ok (5.5%), Example: alrighty

look at workspace .76 (.43) look at student .29 (.45)

point at workspace .12 (.33)

T: Simplified Problem(5.0%), Example: what inside the cell would have an electrical charge

look at workspace .76 (.43) what do you think .48 (.50)

point at workspace .40 (.49) look at student .34 (.48)

write on workspace .16 (.36) cross arms .13 (.34)

T: Other (4.4%), Example: does he give you a time limit

look at workspace .74 (.44) look at student .38 (.49)

thumb through pages .16 (.37) point at workspace .20 (.40)

write on workspace .14 (.35)

S: Other (3.4%), Example: yes ma’am

look at workspace .60 (.49) look at student .45 (.50)

point at workspace .14 (.34)

T: Comprehension Gauging Question (3.1%), Example: you see what I’m saying

look at student .72 (.45) look at workspace .33 (.47)

point at workspace .21 (.41)

S: Partially Correct Answer (3.1%), Example: so so that would be 2nd strong or 2nd weakest

look at workspace .85 (.36) look at student .28 (.45)

write on workspace .18 (.39) point at workspace .17 (.38)

cross arms .16 (.37) nod .10 (.31)

1. Deictic. A MANOVA on the deictic gestures with the same independent
measures, tutor, mode, move revealed a significant effect of tutor, F (18) =
5.2, p < .01, and move, F (84) = 3.4, p < .01. Different tutors show different
patterns of pointing to the common workspace. However, pointing was more
likely to occur in specific dialogue moves. There was a significant interac-
tion of tutor and mode (F (18) = 3.0, p < .01) tutor and move (F (470) = 1.1,
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Table 3. This table shows the most common gestures in our dataset broken down by

gesture. For the purposes of space, we left out uncommon gestures. The percentage

used and standard deviations appear beside each mode.

Gestures Lecture (std) Scaffolding (std)

look at workspace .67 (.02) .73 (.02)

look at student .38 (.02) .36 (.02)

point at workspace .21 (.02) .29 (.02)

write on workspace .14 (.01) .13 (.01)

nod .11 (.01) .10 (.01)

cross arms .10 (.01) .08 (.01)

animate subject matter .07 (.01) .05 (.01)

what do you think .07 (.01) .05 (.01)

thumb through pages .05 (.01) .06 (.01)

cross hands .04 (.01) .06 (.01)

put hand on face .03 (.01) .09 (.01)

lean back in chair .03 (.01) .08 (.01)

p = .04), and mode and move, F (70) = 1.9, p < .01. Mode and the three–way
interaction were not significant.

2. Iconic. The analysis of variance on iconic gestures for effects of tutor,
mode, and move also revealed interesting effects. Tutor, move, and the two–
way interaction of tutor and mode were significant (F (54) = 4.0, p < .01,
F (252) = 2.1, p < .01, F (54) = 2.2, p < .01, respectively). Certain tutors
“animated the subject matter” more than others. Interestingly, using ges-
tures to animate the current topic is dependent on the move. There were no
other effects or interactions.

3. Beats. A multivariate analysis on beat gestures involving tutor, mode, and
move conditions showed only a main effect of tutor, F (27) = 2.4, p < .01.
The beats that tutors use seem to uniquely identify the tutor.

4. Personal. A MANOVA on personal gestures found a significant of effect of
tutor, F (117) = 6.8, p < .01, and move, F (546) = 1.3, p < .01. All three
2–way interactions were significant, tutor×mode (F (117) = 1.3, p < .01),
tutor×move ( F (3055) = 1.2, p < .01) and mode×move (F (455) = 1.2, p <
.01). The three–way interaction was also significant, F (1820) = 1.2, p < .01.
Tutors use unique personal gestures in certain moves and modes.

5. Gaze. A multivariate analysis on gaze gestures revealed a main effect of
tutor, mode, and move, (F (27) = 12.1, p < .01, F (3) = 7.7, p < .01,
F (126) = 2.3, p < .01, respectively). The 2–way interactions of tutor and
mode (F (27) = 5.3, p < .01), and tutor and move (F (705) = 1.2, p < .01).

6. Paralinguistic. A MANOVA with the paralinguistic gestures showed a
main effect of tutor, F (54) = 7.5, p < .01, and move, F (252) = 8.2, p < .01.
The 2–way interactions of tutor and mode, F (54) = 3.7, p < .01, and tutor
and move, F (1410) = 2.2, p < .01 had a significant effect on gesture. The
three-way interaction was also significant, F (840) = 1.2, p < .01.



242 B. Williams et al.

7. Action. A MANOVA revealed a significant effect of tutor, F (18) = 8.7, p <
.01, and move, F (84) = 2.0, p < .01. All of the interactions were also
signficant: tutor×mode (F (18) = 8.1, p < .01), tutor×move (F (470) =
1.2, p < .01), mode×move (F (70) = 1.6, p < .0), and tutor×mode×move,
F (280) = 1.3, p < .01.

In particular, we were interested in examining the gestures as outlined by Mc-
Neill [20]. Thus, we used a multivariate analysis looking at beat, deictic, and
iconic gestures. We found a main effect of tutor, F (54) = 4.0, p < .01, move,
F (252) = 2.1, p < .01, and the interaction of tutor and mode, F (54) = 2.2, p <
.01. There were no other effects or interactions. The tutors in our dataset can
be uniquely defined by the combination of beat, deictic, and iconic gestures that
they use. Furthermore, these gestures are related to the pedagogical dialogue
moves. Interestingly, each tutor also had certain gesture patterns depending on
the mode.

We reasoned that tutors could be uniquely identified by their personal ges-
tures. Thus, we ran an additional analysis without these gestures. The MANOVA
revealed a significant effect of tutor, F (153) = 7.2, p < .01, mode, F (17) =
2.2, p < .01, and move, F (714) = .2, p < .01. The interactions of tutor×mode
and tutor×move were significant (F (153) = 4.2, p < .01, F (3995) = 1.5, p < .01,
respectively). The three–way interaction was significant, F (2380) = 1.1, p = .05.

3 Discussion

Our results suggest that expert tutors rely on pedagogical gestures as part of
their tutoring strategy. Interestingly, every gesture category has a significant
effect of dialogue move, except beats. We believe that this provides counter–
support to the claim that only deictic gestures are important. As shown in Table
2, expert tutors spend the most of their time providing direct instruction, [7],
or dispensing information. In this particular move, it seems natural that tutors
often look at the workspace (84%) and the student (38%), point at the workspace
(49%), write on the workspace (27%), and use their hands to “act–out” what
they are currently discussing (16%). Inspection of our data seems to suggests
that biology tutors might “animate the subject matter” more than math tutors.
However, we do not have enough tutors in our corpus to substantiate this effect.
The most popular student dialogue move is acknowledgment. When students
give the tutor acknowledgment (yeah, ok), tutors are likely to be looking at the
student, looking at the workspace, and/or pointing at the workspace. It also
seems natural that when tutors give positive feedback, they might nod. Tutors
also frequently look at the student when the student provides a correct answer.
Interestingly, an expert tutor often accompanies a “simplify problem” dialogue
move with a “what do you think gestures” (elbows bent, palms up).

Examining Table 3 reveals that tutors spend most of their time either looking
at the student or looking at the workspace (Table 3). This suggests the impor-
tance of incorporating gaze into an animated pedagogical agent. This supports
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the theory of Cassell [8] and Johnson et al.[15] that an effective animated con-
versational agent should use gaze in communication. Expert tutors often use
deictic gestures as they are the third most common movement found in our
dataset. Furthermore, we expected that tutors would frequently write on the
workspace. However, we were surprised to see that tutors often “nod.” It is also
important to note that our expert tutors also seem likely to “animate the subject
matter” or give the paralinguistic “what do you think” gesture.

We reasoned that personal movements would be individualized by tutor and
were surprised every group of gestures showed a significant effect of tutor. The
gestures of expert tutors were more individually stylized than we hypothesized.
The results presented here indicate that expert tutors have a certain style or
employ a certain set of gestures that uniquely identifies them.

This work provides insight into the gestures that an expert tutor employs in
one–to–one tutoring. We hope to incorporate these findings into an animated
agent. One of the important lessons of this work is that although tutors are
stylized, they do appear to use certain gestures systematically. In particular,
using gazing, deictic and ionic gestures appropriately and in reference to certain
dialogue moves may increase the effectiveness of these pedagogical agents.
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Abstract. We have developed and evaluated an affect-sensitive version of 
AutoTutor, a dialogue based ITS that simulates human tutors. While the origi-
nal AutoTutor is sensitive to learners’ cognitive states, the affect-sensitive tutor 
is responsive to their affective states as well. This affective tutor automatically 
detects learners’ boredom, confusion, and frustration by monitoring conversa-
tional cues, gross body language, and facial features. The sensed affective states 
guide the tutor’s responses in a manner that helps students regulate their nega-
tive emotions. The tutor also synthesizes affect via the verbal content of its re-
sponses and the facial expressions and speech of an embodied pedagogical 
agent. An experiment comparing the affect-sensitive and non-affective tutors 
indicated that the affective tutor improved learning for low-domain knowledge 
students, particularly at deeper levels of comprehension. We conclude by dis-
cussing the conditions upon which affect-sensitivity is effective, and the condi-
tions when it is not. 

Keywords: affect-sensitive, AutoTutor, supportive, confusion, frustration. 

1   Introduction 

Intelligent tutoring systems (ITSs) such as AutoTutor, Andes physics tutor, and Cog-
nitive Tutor, have come a long way towards modeling and responding to learners’ 
cognitive states. This allows ITSs to implement some of the ideal tutoring strategies 
such as error identification and correction, building on prerequisites, frontier learning 
(expanding on what the learner already knows), student modeling (inferring what the 
student knows and having that information guide tutoring), and building coherent 
explanations [1-7].  

However, ITSs can be more than mere cognitive machines, and the link between 
emotions and learning suggests that they should be affective processors as well [8, 9]. 
Affect-sensitivity is important for ITSs that aspire to model human tutors because it 
has been claimed that expert teachers are able to recognize a student’s emotional state 
and respond in an appropriate manner that has a positive impact on the learning proc-
ess [10, 11]. An affect-sensitive ITS would incorporate assessments of the students’ 
cognitive and affective states into its pedagogical and motivational strategies in order 
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to keep students engaged, boost self-confidence, heighten interest, and presumably 
maximize learning. 

The idea of having a tutoring system detect, respond to, and synthesize affect was 
once a seductive vision [9]. This vision is now a reality as affect-sensitive learning 
environments are coming online [7, 12-18]. However, to our knowledge, there has not 
yet been any evidence demonstrating that, compared to their non-affective counter-
parts, affect-sensitive ITSs yield impressive learning gains, particularly at deeper 
levels of comprehension. 

We have recently developed an affect-sensitive version of AutoTutor, an ITS with 
conversational dialogues [19]. The original AutoTutor has a set of fuzzy production 
rules that are sensitive to the cognitive, but not to the affective states of the learner. 
The affect-sensitive AutoTutor has a set of production rules that map dynamic as-
sessments of learners’ cognitive and affective states with tutor actions to address the 
presence of boredom, confusion, and frustration. The obvious prediction is that com-
pared to the non-affective tutor, learning gains should be superior for the affect-
sensitive version of AutoTutor.  

This hypothesis was tested in the current paper where 84 students completed a 60- 
minute training session with either the regular (non-affective) or the affect-sensitive 
AutoTutor. Scores from knowledge tests administered before and after each tutorial 
session were used to determine if the affect-sensitivity yielded enhanced learning.  

We begin with a brief description of the affect-sensitive AutoTutor. Since the sys-
tem is quite complex and a detailed description is beyond the scope of this paper, we 
focus on a high-level description of the major components of the system. More  
detailed descriptions can be obtained from previous publications [18, 20-22]. 

2   The Affect-Sensitive AutoTutor 

AutoTutor is a dialogue based ITS for Newtonian physics, computer literacy, and 
critical thinking. AutoTutor’s dialogues are organized around difficult questions and 
problems (called main questions) that require reasoning and explanations in the an-
swers. When presented with these questions, students typically respond with answers 
that are only one word to two sentences in length. In order to guide students in their 
construction of an improved answer, AutoTutor actively monitors learners’ knowl-
edge states and engages them in a turn-based dialogue. AutoTutor adaptively manages 
the tutorial dialogue by providing feedback on the learner’s answers (e.g. “good job”, 
“not quite”), pumping the learner for more information (e.g. “What else”), giving 
hints (e.g. “What about X”), prompts (e.g. “X is a type of what “), correcting miscon-
ceptions, answering questions, and summarizing topics. 

AutoTutor can keep the dialogue on track because it is always comparing what the 
student says to anticipated input (i.e., the expectations and misconceptions in the 
curriculum script). This constitutes AutoTutor’s model of the student’s knowledge 
and cognitive states. Pattern matching operations and pattern completion mechanisms 
drive the comparison. These matching and completion operations are based on sym-
bolic interpretation algorithms [23] and statistical semantic matching algorithms [24].  

Boredom, confusion, and frustration are the major negative states that students ex-
perience during interactions with AutoTutor and other learning environments [21, 25]. 
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These are states that, if addressed appropriately, can have a positive impact on learn-
ing outcomes. Therefore, the current version of the affect-sensitive focuses on detect-
ing and responding to boredom, frustration, and confusion. The tutor is called the 
Supportive tutor because it responds to learners’ affective states via empathetic and 
motivational responses that always attribute the source of the negative affect to itself 
or the material, instead of the learners’ themselves. 

2.1   Detecting Affect 

The affect detection system monitors conversational cues, gross body language, and 
facial features to detect boredom, confusion, frustration, and neutral (no affect) (see 
Figure 1). Automated systems that detect these emotions have been integrated into 
AutoTutor and have been extensively described and evaluated in previous publica-
tions [20-22, 25]. Each channel independently provides its own diagnosis of the stu-
dent’s affective state. These individual diagnoses are combined with a decision-level 
fusion algorithm that selects a single affective state and a confidence value of the 
detection. The algorithm relies on a voting rule enhanced with a few simple heuristics. 

 

 

Fig. 1. Monitoring affective states during interactions with AutoTutor 

2.2   Responding to Affect 

An examination of the literature provided some guidance on how best to respond to 
the states of boredom, confusion, and frustration. We considered some major theoreti-
cal perspectives that address the presence of these negative emotions. These included 
attribution theory [26-28], cognitive disequilibrium during learning [29-32], polite-
ness [33, 34], and empathy [35, 36]. In addition to theoretical considerations, the 
assistance of experts in tutoring was enlisted to help create the set of tutor responses.  
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We created a set of production rules that addressed the presence of these negative 
affective states by incorporating perspectives from the psychological theories and from 
the expert’s recommendations. When there was no guidance from theory or expertise, 
the research group added production rules that were intuitively plausible. So in a nut-
shell, the production rules were determined by theory, experts, and intuition.   

The production rules were designed to map dynamic assessments of the students’ 
cognitive and affective states with appropriate tutor actions. There were five parame-
ters in the student model and five parameters in the tutor model. The parameters in the 
student model included: (a) the current affective state detected, (b) the confidence 
level of that affect classification, (c) the previous state detected, (d) a global measure 
of student ability (dynamically updated throughout the session), and (e) the concep-
tual quality of the student’s immediate response. AutoTutor incorporated this  
five-dimensional assessment of the student and responded with: (a) feedback for the 
current answer, (b) an affective statement, (c) the next dialogue move, (d) an emo-
tional display on the face of the tutor agent, and (e) an emotional modulation of the 
voice produced by AutoTutor’s text-to-speech engine.  

 

 

Fig. 2. Affective AutoTutor Interface 

As an example, consider a student that has been performing well overall (high 
global ability), but the most recent contribution was not very good (low current con-
tribution quality). If the current state was classified as boredom, with a high probabil-
ity, and the previous state was classified as frustration, then AutoTutor might say the 
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following: “Maybe this topic is getting old. I'll help you finish so we can try some-
thing new.” This would be a randomly selected phrase from a list that was designed to 
indirectly address the student’s boredom and to try to shift the topic a bit before the 
student became disengaged from the learning experience.  In this sense, the rules were 
context sensitive and were dynamically adaptive to each individual learner.  

A screenshot of the affective AutoTutor is shown in Figure 2. Here the tutor is dis-
playing a skeptical face because it detected that the student was hedging. Alternate 
facial expressions include approval, disapproval, enthusiasm, surprise, empathy, and 
neutral. 

3   Method 

3.1   Participants and Design 

84 participants from a mid south university in the US participated for course credit. 
The experiment had a between-subjects design where participants were randomly 
assigned to either the Regular or the Supportive AutoTutor. Participants in each con-
dition completed two training sessions with the same version of AutoTutor but on two 
different computer literacy topics (hardware, operating systems, the Internet). Partici-
pants did not receive tutoring for the third computer literacy topic; learning gains for 
this topic were used to assess knowledge transfer. The order in which topics were 
covered was counterbalanced across participants with a Latin Square. 

3.2   Content Covered in AutoTutor Sessions 

Participants completed three challenging computer literacy questions in each tutoring 
session. Hence, each participant received training for six questions over both sessions. 
Each problem required approximately three to seven sentences of information for a 
correct answer. The questions required answers that involved inferences and deep 
reasoning, such as why, how, what-if, what if not, and how is X similar to Y? Exam-
ples of these questions are, “How can John’s computer have a virus but still boot to 
the point where the operating system starts?” (hardware question), “How would you 
design an operating system that can manage memory demands from multiple concur-
rent jobs?” (operating systems), and “How will you design a network that will  
continue to function, even if some connections are destroyed? (Internet)”. 

3.3   Knowledge Tests 

Participants were tested on their knowledge of computer literacy topics both before 
and after the tutorial session (pretest and posttest, respectively). The testing materials 
were adapted from computer literacy tests used in previous experiments involving 
AutoTutor [19]. The items were designed to assess deep levels of knowledge (e.g., 
“How does the computer assure that other stored information is not overwritten when 
a save command is given?”) rather than recall of shallow facts (e.g. “What does RAM 
stand for?”).  

Each test had 8 questions on each topic, yielding 24 questions in all. Participants 
completed alternate test versions for pretest and posttest. The two test versions,  
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composed of different questions, tested learners on the same subject matter and con-
tent. The assignment of test versions to pretest versus posttest was counterbalanced 
across participants.  

3.4   Procedure 

Participants were tested individually during a 1.5 to 2 hour session. First, participants 
completed an informed consent and then the pretest. Participants were instructed to 
take a seat at the computer console and to put on a pair of headphones. Next, the gen-
eral features of AutoTutor’s dialogue and pedagogical strategies were described to the 
participant. On the basis of random assignment, participants interacted with either the 
Supportive or the Regular AutoTutor. They were tutored on one computer literacy 
topic until three main questions were successfully answered or the 30-minute training 
period had elapsed (Session 1). They then interacted with the same version of Auto-
Tutor on another computer literacy topic until three main questions were successfully 
answered or the 30-minute training period had elapsed (Session 2). Finally, partici-
pants completed the posttest and were debriefed.  

4   Results and Discussion 

Pretest and posttest scores were computed as the proportion of questions answered 
correctly. Proportional learning gains were computed as (posttest–pretest)/(1-pretest). 
Separate proportional scores were computed for Session 1 and Session 2. We also 
computed proportional learning gains for the topic for which participants received no 
tutoring to assess knowledge transfer. 

There was no significant difference in prior knowledge across conditions (MREG = 
.188, SDREG = .090; MSUP= .177, SDSUP = .080; p  = .557). Participants were assigned 
to either a low or a high prior-knowledge group based on a median split on their pre-
test scores (median = .17). The analyses consisted of 2 (tutor: regular vs. supportive) 
× 2 (prior knowledge: low vs. high) between-subjects ANOVAs for learning gains in 
each session and for knowledge transfer. 

Table 1 shows descriptive statistics on proportional learning gains. The main effect 
for tutor was significant for Session 1, F(1, 80) = 2.53, p = .043. There was a low to 
medium sized effect (d = .375) in favor of the regular AutoTutor. The tutor × prior-
knowledge interaction was also significant, F(1, 80) = 3.91, p = .051 (see Figure 3). 
There was no difference in learning gains across tutors for the low prior-knowledge 
participants (d = .017). However, there was a significant (p = .022) and substantial 
effect (d = .824) in favor of the regular tutor for students with high prior-knowledge. 

There was a different pattern in learning gains for participants’ second AutoTutor 
session. The main effect for tutor was not significant (p = .973), but there was a sig-
nificant tutor × prior-knowledge interaction, F(1, 80) = 5.07, p = .027 (see Figure 3). 
Low prior-knowledge participants learned significantly more from the supportive 
AutoTutor than the regular tutor (d = .713). There was no significant difference in 
learning gains across tutors for the high prior knowledge students. 
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Table 1. Descriptive statistics on proportional learning gains 

 Tutor  
[Main Effect] 

 Tutor × Prior Knowledge 
 [Interaction] 

   Low  High 

Session Version 

 
M SD  M SD  M SD 

Regular  .389 .320  .346 .343  .441 .289 
Supportive  .249 .420  .340 .353  .114 .481 

Session 1 

          
Regular  .377 .328  .382 .247  .370 .413 
Supportive  .407 .386  .549 .221  .198 .480 

Session 2 

          
Regular  .001 .439  .095 .267  -.113 .572 Transfer  
Supportive  .092 .387  .244 .244  -.130 .454 

 

 

Fig. 3. Interactions between prior knowledge and tutor type 

 

Fig. 4. Trends in learning gains across sessions 
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There was no significant effect for tutor (p = .448), nor a significant tutor × prior-
knowledge interaction (p = .338) for topics for which participants received no tutoring 
(transfer topic). However, there was a medium sized effect (d = .583) in favor of the 
supportive tutor for the low prior-knowledge students; this effect might be significant 
with a larger sample. 

Figure 4 portrays the same data in a slightly different way. Low prior-knowledge 
students show a dramatic improvement (p < .05; d = .71) in learning gains from Ses-
sion 1 to Session 2 when interacting with the supportive versus the regular AutoTutor. 
Learning gains between sessions remained approximately consistent for high prior-
knowledge students (p > .05). 

5   General Discussion 

The results of this experiment support a number of conclusions regarding the effec-
tiveness of affect-sensitivity in promoting deep learning gains. First, the supportive 
AutoTutor was more effective than the regular tutor for low-domain knowledge stu-
dents in the second session, but not the first session. These results suggest that it is 
inappropriate for the tutor to be supportive to these students before there has been 
enough context to show there are problems. Simply put, don’t be supportive until the 
students need support. Second, the students with more knowledge never benefited 
from the supportive AutoTutor. These students don’t need the emotional support, but 
rather they need to go directly to the content. Third, there are conditions when emo-
tional support is detrimental, if not irritating to the learner. There appears to be a li-
ability to quick support and empathy compared to no affect-sensitivity. 

The central message is that there is an appropriate time for affect-sensitivity in the 
form of supportive dialogues. Just as there is a “time for telling”; there is a “time for 
emoting.” We could imagine a trajectory where low-knowledge students start out with 
a non-emotional regular tutor until they see there are problems. Then after that they 
need support, as manifested in Session 2 of our study. Regarding high-knowledge 
students, they are perfectly fine working on content for an hour or more and may get 
irritated with an AutoTutor showing compassion, empathy, and care. But later on 
there may be a time when they want a shake-up AutoTutor for stimulation, challenge, 
and a playful exchange. Or maybe even a supportive AutoTutor. These are all ques-
tions to explore for future research. 
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Abstract. We investigate whether high-performing students’ experience of af-
fect (boredom, confusion, delight, flow, frustration, neutrality and surprise) is 
different from that of low-performing students while using Aplusix, an ITS for 
Algebra. We found that students with the highest number of correct answers 
experienced flow the most while students with the lowest number of correct an-
swers experienced confusion and boredom the most. Students who attempted 
the most difficult problems experienced flow the most while students who tried 
the lowest levels experienced more boredom and confusion. Students who took 
the longest time in solving the algebra problems experienced confusion the 
most while students who took the shortest time experienced confusion the least. 
Students who used the most number of steps to solve a problem experienced 
confusion and boredom the most. Students who used the least number of steps 
experienced more flow. 

Keywords: affect, Aplusix, affective profile, learning profile. 

1   Introduction 

Aplusix II: Algebra Learning Assistant is an intelligent tutoring system (ITS) for 
algebra. The system allows a student to solve an algebraic equation on a step-by-step 
basis. At each step, Aplusix provides the student with feedback indicating whether 
indeed a prior step and a current step were mathematically equivalent. Errors are 
immediately visible, prompting the student to make corrections early in the solution 
process. Prior research on Aplusix has shown that it has the capability to increase 
learning by 70% to 250% [2].  

As with many other ITSs, Aplusix tends to track student performance, using this as 
basis for its subsequent interactions with the student. However, learning is not just a 
cognitive process. Learning also involves affect. Piaget (1989, in [8]) wrote that there 
is no cognitive mechanism without the affective element since affectivity motivates 
the intellectual activity.  Thus, in recent years, more and more researchers and educa-
tors have been studying affect and its relationship with learning. 

Affect pertains to a broad class of mental processes, including feelings, emotions, 
moods, and temperament (Dictionary of Psychology, Second Revised Edition., s. v. 
“affect”). Affect is related to motivation in that learners have feelings, emotions, and 
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moods that they bring to bear on a task. “Students are more motivated when they feel 
optimistic about their goals and the chances of meeting them and when students are 
more excited after success, they are more willing to engage in the behavior again” 
[10]. Affect is also related to learning and cognition. The more emotional students 
feel about a piece of material, the more likely they are to remember it [10]. 

We aim to describe the relationship between the affective and learning profiles of 
students while interacting with Aplusix. We use the term “affective state” to refer to 
one emotion, feeling, or mood that a student displays during an observation, while 
term “affective profile” is the percentage of time a student displays each affective 
state during an observation period. For the purposes of this study, focus will be given 
to the affective states boredom, frustration, confusion, flow and delight, following the 
research of Craig et al. [3] and Rodrigo et al [13, 14, 15]. We use the term “learning 
profile” to refer to the number of correct items the student solved, the highest diffi-
culty level he or she attempted, his or her average time to solve an item, and his or her 
average number of steps taken to solve an item. 

2   Methods 

2.1   Research Subjects and Setting 

The participants for the study were first and second year high school students from 
four schools within Metro Manila and one school in Cavite. The students’ age ranged 
from 12 to 15 with an average age of 13.5 and a modal age of 14. One hundred and 
forty students participated in the Aplusix study (83 female, 57 male). They were all 
computer-literate but none of them had previously used Aplusix. In groups of 10, 
participants were asked to use Aplusix for 42 minutes.   

2.2   Aplusix 

Aplusix covers six topics or categories of algebra: numerical calculation, expansion 
and simplification, factorization, solving equations, solving inequalities and solving 
systems of equations or inequalities. Each of these categories is again broken down 
into four to nine levels of difficulty. At the start of an Aplusix tutorial session, the 
student firsts select a problem set.  The ITS presents a problem that the student must 
solve.  Using an advanced editor of algebraic expressions (See Figure 1), the student 
then makes step-by-step calculations towards the solution. Two black parallel bars 
between two steps mean that the two steps are equivalent.  Two red parallel bars with 
an X mean that the two steps are not equivalent. Aplusix also gives reports on the 
student’s progress on the resolution of the problem. The report may include existence 
of errors or of an expression not yet in its simplest form. At any time, the student can 
end the exercise, ask for a hint or for the final answer or solution to be shown [9]. 

2.3   Quantitative Field Observations 

We collected data regarding student affective states using the quantitative field  
observation methods discussed in Baker, et al [1]. The observations were carried out 
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by a team of six observers, working in pairs. The observers were Masters students in 
Education or Computer Science, and all but one had prior teaching experience. The 
observers trained for the task through a series of pre-observation discussions on the 
meaning of the affective categories. Observations were conducted according to a 
guide that gave examples of actions, utterances, facial expressions, or body language 
that would imply an affective state, and practiced the coding categories during an 
unrelated observation prior to this study. 

 

Fig. 1. A screen shot of Aplusix 

Each observation lasted twenty seconds.  Observers stood diagonally behind or in 
front of the student being observed and avoided looking at the student directly, in 
order to make it less clear exactly when an observation was occurring. If two distinct 
affective states were seen during an observation, only the first was coded, and any 
behavior by a student other than the student currently being observed was not coded. 
Since each observation lasted twenty seconds, each student was observed once per 
180 seconds.  The affective categories coded used were those from Rodrigo, et al.’s 
[15] study and were boredom, confusion, delight, surprise, frustration, flow [5] and 
the neutral state. “Flow” refers to full immersion in an activity; the participant is 
focused on a task to the point that he or she is unaware of the passage of time [5].  
The utterances, postures, and facial expressions that were used to identify each state 
were discussed in [15].  

Some of these affective categories may not be mutually exclusive (such as frustra-
tion and confusion), though others clearly are (delight and frustration). For tractabil-
ity, however, the observers only coded one affective state per observation. Thirteen 
pairs of observations were collected per student.  Inter-rater reliability was acceptably 
high: Cohen’s ĸ=0.63. 
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2.4   Aplusix Log Files  

As the student uses Aplusix, the software logs all user interactions. Each exercise is 
recorded in one log.  

Figure 2 shows how a raw log file looks like. The raw log files were processed, 
combined and summarized into a more comprehensible master table of log files, a 
part of which is shown in Table 1. 

 

 

Fig. 2. Sample Raw Log File 

Table 1. Sample Data from the Master Table of the Log Files 

 

The columns in the table are as follows: 
1. School – the name of the participating school 
2. Run – the student’s run or batch number.  Three to four batches of 10 stu-

dents each were observed per school.  The run number ranges from 1 to 4. 
3. Student No. – the identification number of the student within the run taking 

the exercise. The student number ranges from 1 to 10. 
4. Set No. – the set number of the current exercise. A set is composed of a 

group of items under a specific exercise category 
5. Problem No. Within Set – the item number within the set number chosen 
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6. Absolute Problem No. – the item no. relative to all the problems answered by 
the student 

7. Date – the date when the exercise was done. 
8. Time Started – the time when the student started with the specific problem 

(identified by column 5 or 6) 
9.  Level – the degree of difficulty of the topic. 
10. Step No. – the number of the current step 
11.  Duration – the number of seconds describing how long each step was done 
12. Action – the action performed by the student. Terms used are expressed in 

French (Fr.). 
13. Error – the error committed by the student while solving the problem 
14. Etape (Fr.) – the stage or phase of the solution 
15. Expression – the state of the mathematical expression  
16. Etat (Fr.) – the current state or condition of the solution 
17. Cursor – location of the cursor. Examples for Cursor values are: devant (Fr.)-

in front of/ outside, dedans (Fr.) – inside 
18. Selection – selected values in the solution.  
19. Equivalence – indicates whether the equation is correct or not.  
20. Resolution – indicates if the problem has been solved or not.  

 

Only column numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20 were used for this research to 
help identify the learning profile of the students. 

 

2.5   Affective Profile 

The affective profile of each student was derived based on the quantitative field  
observations.  

Table 2. Affective Profile of a Student ABC 

Time Rater 
1 

Rater 
2 

BOR CON DEL FLO FRU SUR NEU Total 

1 NEU FLO    0.5   0.5  
2 FLO FLO    1     
3 FLO FLO    1     
4 FLO FLO    1     
5 FLO FLO    1     
6 FLO CON  0.5  0.5     
7 FLO FLO    1     
8 CON CON  1       
9 FLO FLO    1     
10 FLO FLO    1     
11 FLO FLO    1     
12 FLO FLO    1     
13 FLO FLO    1     

Total   0 or 
0% 

1.5 or 
11.54% 

0 or 
0% 

11 or 
84.62% 

0 or 
0% 

0 or 
0% 

0.5 or 
3.85% 

13 or 
100% 
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To generate the affective profile from the data collection instrument, points were 
given to affective states observed. An affective state noted by both observers will be 
given 1 point for the particular time slice. If the two observers did not agree, 0.5 point 
will be given for each of the observed affective state. The number of times when each 
of the affective states was observed will be divided by 13 (for the 13 time slices) to 
get the percentage of time an affective state has been observed from a student. Table 2 
shows the point system used. From the table, Student ABC can now be described as 
being in the state of flow 84.62% of the time, confused 11.54% of the time and 
showed neutrality 3.85% of the time. 

2.6   Learning Profile 

Using the Aplusix logs, we determined each student’s learning profile, defined as the 
number of problems correctly solved, the highest difficulty level attempted, the average 
time to solve a problem, and the average number of steps used to solve the problem. 

The means and standard deviations of each of the four variables were computed. 
For each of the four variables, we grouped the students into three: those within one 
standard deviation (average group), those above one standard deviation (above aver-
age group) and those below one standard deviation (below average group). We found, 
though, that the above average and below average groups were very small, e.g. less 
than 10 people, as opposed to over 95 people in the average group. We therefore de-
cided to group the students terciles or by dividing the sample into three groups (aver-
age, above average, below average) centered on the median. 

2.7   Comparison  

We then computed for the affective profile of each tercile by taking the average inci-
dence of each affective state of each student within the group.  The affective profiles 
of the terciles were then compared with one another using a One-Way Analysis of 
Variance (ANOVA) with Statistical Package for Social Sciences (SPSS). Table 3 
shows the tercile where the same Student ABC used in Table 2 belongs. 

Table 3. Sample Tercile Group 

Student BOR CON DEL FLO FRU SUR NEU Total 
AAA 0.00% 23.08% 7.69% 69.23% 0.00% 0.00% 0.00% 100.00% 
AAB 0.00% 7.69% 0.00% 92.31% 0.00% 0.00% 0.00% 100.00% 
ABB 0.00% 3.85% 0.00% 96.15% 0.00% 0.00% 0.00% 100.00% 
ABC 0.00% 11.54% 0.00% 84.62% 0.00% 0.00% 3.85% 100.01% 
BBC 7.69% 3.85% 3.85% 76.92% 3.85% 0.00% 3.85% 100.01% 
: : : : : : : : : 
: : : : : : : : : 
YYZ 0.00% 7.69% 0.00% 61.54% 30.77% 0.00% 0.00% 100.00% 
XYZ 0.00% 3.85% 11.54% 84.62% 0.00% 0.00% 0.00% 100.01% 
47 
students 

4.75% 16.53% 5.89% 68.49% 2.70% 0.33% 0.00%  99.67% 
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3   Results and Discussion 

The following ANOVA results were obtained. Scheffe posthoc tests were also done to 
identify which particular groups showed significant differences. 

In terms of correct items solved, the group that scored the highest (above average) 
experienced flow the most (F=3.948; p=0.022) with a mean difference of ± .106014 
between the above and below average groups from the Scheffe posthoc tests. The 
group that scored the lowest experienced (below average) the most boredom 
(F=3.995; p=0.021) with a mean difference of ± .040057 between the above and be-
low average groups. The group that scored the lowest experienced the most confusion 
(F=5.163; p=0.007) with a mean difference of ± .070853 between the above and be-
low average groups.. 

In terms of highest difficulty level attempted, the group that tried the most difficult 
levels (above average) experienced flow the most (F=5.994; p=0.003) with a mean 
difference of ± .125430 between the above and below average groups. The group that 
tried the lowest levels experienced significantly more boredom (F=5.495; p=0.005) 
with a mean difference of ± .045826 between the below average and average groups 
and a mean difference of ± .042088 between the above and below average groups. 
Same with boredom, the group that tried the lowest levels experienced significantly 
more confusion (F=6.006; p=0.003) with a mean difference of ± .073079 between the 
above and below average groups. 

The group that took the longest time in solving (below average) experienced con-
fusion the most while the group that took the shortest time in solving (above average) 
experienced confusion the least (F=4.726; p=0.010) with a mean difference of ± 
.064378 between the above and below average groups. 

Finally, the group that used the most number of steps (below average) experienced 
confusion (F=4.082; p=0.019) with a mean difference of ± .057691 between the above 
and below average groups. The below average group also experienced boredom the 
most (F=3.617; p=0.029) with a mean difference of ± .040382 between the average 
and below average groups. The average group and the group that used the least num-
ber of steps experienced flow more than the group that used the most number of steps 
(F=3.476; p=0.034). 

All learning groups in all categories experienced flow to a great extent. The sig-
nificant differences lie in the degree to which the groups experienced flow. The 
groups that scored the highest based on the number of correct items solved, those who 
tried the most difficult levels and those who took fewer number of steps in solving an 
item experienced significantly  more flow than those in other groups. These findings 
support findings from other studies that indicate that flow is experienced more by 
people who are more motivated, those who are willing to go further, those willing 
reach for higher levels of challenge and are achievers or experts [4, 5, 12]. There are 
also significant differences in the degree to which the learning groups experienced 
confusion. The group that scored the lowest, the group that answered items in the 
lowest levels, the group that took the most number of steps in solving an item and the 
group that used the most time in answering an item experienced significantly more 
confusion than other groups. These are aligned findings from definitions of confusion: 
a feeling of perceptual disorientation and lack of clear thinking [6] or a feeling of not 
knowing, when information is not present in memory [7]. On the other hand,  



262 M.C.V. Lagud and Ma.M.T. Rodrigo 

confusion can also be equated with a constructive form of cognitive dissonance, 
which is positively related to optimum learning gains [3]. This may account for the 
fact that groups with higher levels achievement experienced confusion as well.  

In terms of boredom, the group that scored the lowest, the group that used the most 
number of steps and those who stayed in the lowest difficulty level experienced sig-
nificantly more boredom the other groups. The students may have used repetitive 
steps that contributed to the high quantity of steps used. For one, based from the logs, 
the student who used the highest average of steps (i.e. 403 steps) only tried answering 
three items. This student tended to type numbers and erase them repeatedly—as if he 
was thrashing. According to English & English [6] boredom is felt when doing unin-
teresting activities. Perkins and Hill [11] also discussed the association of boredom 
with subjective monotony. 

4   Conclusion 

The results of this study are consistent with intuition:  Good students tend to experi-
ence more flow, less boredom and less confusion than students who are struggling. 
What makes this study interesting, though, is that it attempts to quantify levels of 
achievement and their associated affective states.  In the design of affective interven-
tions, findings such as these might give ITS designers clues as to how students who 
are performing poorly are feeling.  Designers might therefore arrive at appropriate 
intervention strategies that address not just the students’ cognitive problems but their 
affect-related issues as well. 
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Abstract. We investigate how positive, neutral and negative feedback re-
sponses from an Intelligent Tutoring System (ITS) influences learners’ affect 
and physiology. AutoTutor, an ITS with conversational dialogues, was used by 
learners (n=16) while their physiological signals (heart signal, facial muscle 
signal and skin conductivity) were recorded. Learners were asked to self-report 
the cognitive-affective states they experienced during their interactions with 
AutoTutor via a retrospective judgment protocol immediately after the tutorial 
session.  Statistical analysis (Chi-square) indicated that tutor feedback and 
learner affect were related.  The results revealed that after receiving positive 
feedback from AutoTutor, learners mostly experienced ‘delight’ while surprise 
was experienced after negative feedback. We also classified physiological sig-
nals based on the tutor’s feedback (Negative vs. Non-Negative) with a support 
vector machine (SVM) classifier. The classification accuracy, ranged from 42% 
to 84%, and was above the baseline for 10 learners. 

Keywords: feedback, emotion, affective computing, multimodal interfaces, 
AutoTutor. 

1   Introduction 

The connection between emotions and deep learning has recently received increased 
attention in the interdisciplinary arena that spans psychology, education [1, 2], neuro-
science, and computer science [3-5]. Although several important questions pertaining 
to the affect-cognitive relationship during the learning process still remain unan-
swered [6], there is some evidence that the more typically studied six basic emotions 
[7] (happiness, sadness, surprise, disgust, anger and fear) are not the emotions most 
pertinent to learning, at least not for short learning sessions that last under 2 hours. 
Instead, affective states such as confusion, boredom, flow, curiosity, interest, surprise, 
delight, and frustration have emerged as highly relevant and influential to the learning 
experience; many of these states are frequently experienced during tutorial sessions 
with both Intelligent Tutoring Systems as well as human tutors [4, 8-11].  

Inspired by the inextricable link between affect and learning, some researchers 
have worked to endow ITS with the ability to detect learners’ affective states  
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(e.g. confusion, frustration, etc.), respond to these states, and generate appropriate 
emotional expressions by embodied pedagogical agents. These affect-sensitive ITSs 
aspire to narrow the interaction bandwidth between computer tutors and human tutors 
with the hope that this will lead to an improved user experience and enhanced learn-
ing gains [12-14].  

Accurate affect-detection is clearly an essential challenge to be overcome before 
functional affect-sensitive ITSs can become a reality. Although a number of studies 
have attempted to recognize learners’ affect from facial expressions and speech [15-
17], studies using physiological signals especially in educational contexts are rela-
tively scarce. This is because, physiological sensors are often considered invasive and 
not suitable for learning environments as the sensors might interfere with the primary 
task of learning or problem solving.  Fortunately, concerns pertaining to intrusiveness 
of the sensors, are somewhat less problematic with the recent advent of wearable 
physiological sensors [18]. Therefore, a re-investigation of the possibility of inferring 
a learner’s affective state by monitoring physiological sensors is warranted. It should 
also be noted that although physiological responses to affective events has been a 
century long endeavor, most of the investigations traditionally studied the basic emo-
tions, and little is known about the physiological manifestations of the learning-
centered cognitive-affective states such as confusion and frustration. 

Toward more real-world environment for physiological data collection, and the 
imperative to better understand the role of emotion in learning, we describe a study 
that collected physiological data to investigate the viability of detecting learning-
centered affective states from physiology.  We begin with a discussion of relevant 
affective computing research using physiological signals. 

2   Recognizing Affective States through Physiology 

Some important questions need to be addressed before functional physiological-based 
affect detectors for learning environments can be developed. Perhaps the most vital is 
whether distinct physiological patterns can be associated with particular emotions. 
Although the common answer is an enthusiastic “yes”, the scientific research is much 
more controversial [19]. What is clear, however, is that some physiological correla-
tions of the “basic” emotions can be identified more reliably than others. For example, 
fear has been related to an increase of heart rate, skin conductance level and systolic 
blood pressure [20], while anger has been related to an increase of heart rate, and both 
systolic and diastolic blood pressure [21]. In contrast, the physiology of sadness has 
proven to be difficult to pin-point physiologically, and has been associated with both 
an increase [22] and a decrease [20] in heart rate. Whether the more learning-centered 
emotions would prove to be as physiologically elusive as sadness or more consistent 
like anger awaits further research. 

In addition to these challenges, the situation is more complicated because several 
of the studies investigating the physiology of emotion have adopted experimental 
protocols that have little relevance for ITSs, which have to operate in the real world. 
Pioneering work studying physiological states during ITS interactions by Conati was 
not conclusive on how these studies could be best performed [23]. More recently, 
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recordings with one physiological sensor in naturalistic scenarios have been reported, 
so important progress is being made [24]. 

The current paper reports on a study that investigated the physiological embodi-
ment in response to tutor feedback during learning sessions with AutoTutor, an ITS 
that provides conversational dialogues (described below). In addition to investigating 
the physiological correlates of the affective states we also focus on the feedback that 
the tutor provides to the learners. Focusing on feedback is critical because, in addition 
to being directive (i.e. tells students what needs to be fixed) and facilitative (i.e. helps 
students conceptualize information), feedback can also influence learners’ affective 
and motivational processes [25].  

The present study monitored learners’ cognitive-affective states, their physiologi-
cal signals, and the tutor’s feedback during a 45 minute session with AutoTutor on 
topics in Computer Literacy [26].  AutoTutor is a validated ITS that helps students 
learn topics in Newtonian physics, computer literacy, and critical thinking via a 
mixed-initiative natural language dialogue. AutoTutor’s dialogues are organized 
around difficult questions and problems (called main questions) that require reasoning 
and explanations in the answers. When presented with these questions, students typi-
cally respond with answers that are only one word to two sentences in length. In order 
to guide students in their construction of an improved answer, AutoTutor actively 
monitors learners’ knowledge states and engages them in a turn-based dialogue. 
AutoTutor adaptively manages the tutorial dialogue by providing feedback on their 
answers (e.g. “good job”, “not quite”), probing the learner for more information (e.g. 
“What else”), giving hints (e.g. “What about X”), prompts (e.g. “X is a type of what 
“),correcting misconceptions, answering questions, and summarizing topics. 

Although affect and learning connections have been explored in previous studies 
with AutoTutor [27], the current study focuses specifically on the physiological states 
of the learners. This topic has not been explored in previous studies with AutoTutor. 
In particular, the specific research questions that motivated the current study include: 
(a) What is the relationship between the tutor’s feedback and the learner’s  
self-reported affective states?, (b) What are the physiological correlates of these cog-
nitive-affective states, and (c) How does the tutor’s feedback influence the learners’ 
physiological signals? 

3   Data and Methods 

The participants in this study consisted of 16 paid volunteers, most of whom were 
engineering students, from The University of Sydney. All participants signed an in-
formed consent form approved by a Human Research Ethics Committee. The study 
typically lasted 2.5 hours for each participant.  

Participants completed a 45 minute AutoTutor training session on one out of three 
randomly assigned topics in computer literacy (hardware, Internet, or operating  
systems). During this interactive session, a video of the learner’s face and a video of 
his or her computer screen were recorded. In addition, three physiological sensors 
measured heart activity (electrocardiogram - ECG), face muscle activity (electromy-
ogram - EMG), and galvanic skin response recorded from the tip of the fingers 
(GSR). The physiological signals were acquired using a BIOPAC MP150 system with 
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AcqKnowledge software at a sampling rate of 1,000 Hz for all channels. ECG was 
collected with two electrodes from the wrists and a ground on the left ankle. Only one 
channel of EMG was recorded from a corrugator muscle with two electrodes each 2 
cm apart. GSR was recorded from the index and middle finger (left hand). 

Learners retrospectively provided self-report affect judgments immediately after 
their AutoTutor session. The collection of these self-reported judgments proceeded in 
the following way.  A learner would view a video of himself/herself during the inter-
action simultaneous with a video capture of his/her screen interaction with AutoTutor. 
The videos automatically paused every 20 seconds at which point learners were asked 
to select one o r more affective states from a list of eight states, in addition to an 
“other” category. These states were: confusion, frustration, boredom, 
flow/engagement, curiosity, surprise, delight, and frustration. Fig. 1 reflects the pro-
portional values and 95% confidence interval for the affective states reported by all 
learners. Where more than one state was selected, the learner was then asked to indi-
cate the most pronounced state. The current analysis only considers the more pro-
nounced affective state for each 20-second block.  

 

 
Notes. Fru = Frustration, Con = Confusion, Flo = Flow/engagement, Cur = Curiosity, Bor = Boredom, 
Del = Delight, Sur = Surprise, Neu = Neutral, Oth = Other.  

Fig. 1. Proportional values with 95% confidence interval for affective states reported by all 
learners 

4   Results and Discussion 

AutoTutor’s short feedback (positive, neutral, negative) is manifested in its verbal 
content, intonation, and a host of other non-verbal conversational cues. . Positive 
feedback accompanies correct answers, negative feedback incorrect answers, while 
the tutor provides neutral feedback when the student’s answer lies between these two 
extremes. Although the feedback selection mechanism is more sophisticated that this 
simple description suggests, of greatest relevance is the fact that the feedback evokes 
strong emotional responses from participants [6, 8]; this emotional-elicitation quality 
of the tutor’s feedback is very relevant for the present paper.  
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Our analyses are organized around three questions: (a) how tutor feedback impacts  
the affective state of the student (based on the self-report)?, (b) how tutor feedback 
influences the physiological state of the students?, and (c) how the self-reported affec-
tive states correlate with physiology. These three questions were addressed by  
constructing supervised classifiers. The assumption is that if a classification model 
with accuracy higher than a baseline can be built, then the affective response to a 
stimulus is not random. 

Self-report annotations were synchronized with AutoTutor’s feedback type (mined 
from AutoTutor’s logs) and with corresponding physiological signals. Then, 20-
second blocks for the affect annotations and 10-second blocks after the feedback were 
extracted from the physiological signals.  

The Waikato Environment for Knowledge Analysis (Weka), a data mining package 
[28], was used for the classification of the three pairs of data described here, all based 
on a 10-fold cross validation. The default parameter values were used for classifica-
tion in this study. The ZeroR classifier represents the baseline for classification  
accuracy; differences in baseline accuracy are based on differences in the class distri-
butions of individual learners. Support vector machine (SVM) classifier with a linear 
kernel was utilized for training classification models which is based on John Platt’s 
sequential minimal optimization algorithm for training a support vector machines 
classifier [29]. A feature selection algorithm was used to reduce the dimensionality of 
the physiological data. A chi-square (Χ2) feature selection as implemented in Weka 
was used for selecting the ten most relevant features. The Χ2  feature selection evalu-
ates attributes by computing the value of the chi-squared statistic with respect to the 
class label either feedback or self-report emotion [30].  

4.1   Feedback and Affect  

Affective states of all learners are significantly dependent with AutoTutor feedback. 
A 5 x 9 Chi-square (Χ2) analysis revealed this dependency. A chi square value of 
approximately 165.0 with 32 degrees of freedom (α = 0.05) was obtained. Table 1 
shows the contingency table of all feedback types and self-reported affective states for 
all learners.  

Table 1. A contingency table of 16 learners for all feedback types and affective states (self-
report) 

 Affect 
Feedback Fru Con Flow Cur Bor Del Sur Neu Oth 
Positive 7 7 24 12 19 39 2 27 5 
Neutral Positive 2 12 5 7 2 1 1 7 1 
Neutral 12 22 29 25 30 22 3 34 1 
Neutral Negative 8 5 7 3 6 0 4 3 0 
Negative 57 65 60 41 45 4 29 50 16 

Notes. Fru = Frustration, Con = Confusion, Flow = Flow/engagement, Cur = Curiosity, Bor = Boredom, 
Del = Delight, Sur = Surprise, Neu = Neutral, Oth = Other. 
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Using the data for all learners, the five different feedback types produced by Auto-
Tutor were used to classify the self-reported affective states. The frequency of each 
cognitive-affective state varied: Boredom (102), confusion (111), Delight (66), Frus-
tration (86), Neutral (121), Curiosity (88), Frustration (86), Flow (125), Surprise (39). 
Table 2 gives the classification results for affective states that had accuracy above the 
ZeroR baseline.  As a result the study looked at pairs of cognitive-affective states that 
can best be separated, or in other words, determining the effect of system feedback on 
the cognitive-affective state of the learner using only pairs of cognitive-affective 
states.  The results showed that the pair Delight and Surprise could best be separated 
with a recognition rate of 86.67% and kappa 0.7 where, Delight was related to a posi-
tive feedback and Surprise to a negative feedback. Delight in general was best sepa-
rated from other affective states, whereas, the Delight and Frustration pair had a high 
separation of 82.89 %; frustration is related to a negative feedback as well. Flow, 
Neutral, and Curiosity could not be separated effectively from other classes.  Bore-
dom, Frustration, and Confusion showed weak separation among others.  

Table 2. Classification results for discriminating affect-pairs from feedback  

Affect Pair ZeroR (baseline) 
(% Correct)) 

SVM 
(%Correct) 

Boredom -Confusion  52.1 56.8 

Boredom -Delight 60.7 69.0 

Boredom-Frustration 54.2 57.98 

Confusion-Delight  62.71 73.45 

Confusion-Neutral 52.16 58.62 

Curiosity-Delight 57.14 70.13 

Curiosity-Frustration 50.57 60.34 

Delight - Flow 65.45 69.63 

Delight-Frustration 56.58 82.89 

Delight-Neutral 64.71 67.91 

Delight-Surprise 62.86 86.67 

Flow-Neutral 50.81 53.25 

Frustration -Neutral 58.45 56.04 

4.2   Feedback and Physiology 

The results of SVM classification from the physiological data based on feedback for 
all features and selected features are given in Table 3. For some learners, there were 
data sparseness problems with tutor feedback, which made automatic classification 
unfeasible. In order to alleviate this problem, we grouped AutoTutor’s feedback types 
into two classes; the majority feedback (negative) in a ‘Negative’ class and the rest in 
the ‘Other’ class.  
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Table 3. Physiological data classification based on Feedback, Negative Class Vs. Other Class 

Learner Negative 
Count 

Other  
Count 

ZeroR 
(Baseline)  
(% Correct) 

SVM  
(All features)  
(% Correct) 

SVM  
(10 features)) 
 (% Correct) 

1 24 23 42.55 72.34 63.83 

2 18 18 44.44 47.22 63.89 

3 32 17 65.31 69.39 67.35 

4 26 20 56.52 41.30 50 

5 31 26 54.39 47.37 50.88 

6 19 27 58.70 39.13 56.52 

7 28 35 55.56 57.14 71.43 

8 18 24 57.14 78.57 76.19 

9 20 18 52.63 73.68 84.21 

10 29 35 54.69 50 42.19 

11 23 30 56.60 60.38 66.04 

12 20 21 51.22 60.98 58.54 

13 22 22 45.45 65.91 72.73 

14 18 27 60 53.33 60 

15 25 27 51.92 59.62 61.54 

16 14 24 63.16 57.89 65.79 

Total 367 394 51.77 49.67 52.56 

 
The counts column in Table 3 shows the number of instances for each class. 

Results emphasize differences among learners; 12 learners had classification  
accuracy above the baseline. This suggests that there are physiological patterns 
that can be identified from feedback. It was also noticeable that the learners with 
higher classification accuracy had a mix of ECG, EMG, and SC as selected fea-
tures, while those with low accuracies had only ECG features selected. This im-
plies that multimodal features can increase the classification accuracy in automatic 
affect recognition. The Chi square feature selection improved the classification 
accuracy in most cases, by selecting the most informative features, and discarding 
those features that are redundant or irrelevant to the classification task; however 
for some cases it degraded the classification accuracy due to the loss of some in-
formative features, and this is subject dependent as our results suggest. Further 
investigations are needed to find more efficient feature selection methods. The 
classification for the combined data considering all learners was no better than the 
baseline, which indicates that physiological patterns in response to feedback are 
different among individuals.  
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4.3   Self-report and Physiology 

The second part of the project is to study how physiological patterns could be mapped 
into self-reported cognitive-affective states, in the sense that students during interac-
tion with Autotutor system would experience some emotions that affect their physiol-
ogy. If we were able to build models that can map these physiological changes into 
affective states, we would be able to adapt the tutoring system to students’ current 
emotional state; we hypothesize that such an adaptation will enhance the learning 
experience of students in future development of tutoring systems. For this paper we 
evaluated only standard techniques but results were not significantly above the base-
line so they are not discussed in detail. Hence, a more detailed investigation is re-
quired. Meanwhile it is interesting to consider the issues that would arise when at-
tempts to identify the cognitive-affective states from the physiological signals. 

•The differences between subjects make it unlikely that a classifier trained 
with data from all subjects would be accurate [31]. 

•The cognitive-affective state categories have very skewed distributions and 
training a classifier with highly unbalanced data is more difficult.  

5   Conclusion 

We investigated the impact of an Intelligent Tutoring System’s feedback on learners’ 
self-reported affective states and their physiological states. The results indicated that 
there was a relationship between tutor feedback and self-reported affective states, as 
well as between feedback and physiology. Automatic classifiers achieved accuracies 
above the baseline showing that both affective states and physiology can be predicted 
from the tutor feedback. These results are significant since different feedback types 
(negative or positive) from AutoTutor indicate possible influence in learners’ emo-
tional and physiological states. This suggests that here is some coherence in the way 
that learners physiologically respond to tutor feedback.  

A preliminary study of possible relationships between the affective states and 
physiology did not show significant relationships.  A more thorough study of these 
relationships was planned as the second part of this project. The effect of specific 
stimulus (e.g. a photograph) on subjects’ physiology can provide information to create 
models [32] that can predict learners’ affective states in learning scenarios. As for 
future work, ‘normative databases’ can help to create such models suitable for learn-
ing scenarios.  
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Abstract. We investigate the role of presence in a serious game for intercultural 
communication and negotiation skills by comparing two interfaces: a 3D  
version with animated virtual humans and sound against a 2D version using 
text-only interactions with static images and no sound. Both versions provide 
identical communicative action choices and are driven by the same underlying 
simulation engine. In a study, the 3D interface led to a significantly greater self-
reported sense of presence, but produced significant, but equivalent learning on 
immediate posttests for declarative and conceptual knowledge related to  
intercultural communication. Log data reveals that 3D learners needed fewer in-
teractions with the system than those in the 2D environment, suggesting they 
benefited equally with less practice and may have treated the experience as 
more authentic. 

Keywords: presence, serious games, intercultural competence, virtual humans. 

1   Introduction  

After the release of Avatar, more than 1000 posts appeared on a website from fans 
who wanted to share ideas for how to “cope with the depression of the dream of Pan-
dora being intangible” [1]. The use of high-fidelity 3D animation and sound appar-
ently left some viewers in a state of deep sadness upon realization that Pandora, the 
fictional world depicted in the film, was not their reality. Interestingly, some of the 
more common suggestions on the forum for coping included playing the Avatar video 
game and exploring recreations of Pandora in virtual worlds. 

Examples like this have driven researchers to dig deeper into the psychology of 
immersive experiences and how they relate to entertainment, learning, and addiction.1 
Whether reading a book, watching a movie, or playing a game, people seem capable 
of changing their frame of reference such that narrative or virtual experiences are 
temporarily experienced as reality [2]. This phenomenon has generated enthusiasm 
from many education theorists (e.g., [3]) and researchers (e.g., [4]) who perceive it to 
have potential to enhance learner engagement, motivation to learn, and time-on-task. 
In this paper, we consider the question of whether sense of presence matters in a seri-
ous game for learning intercultural communication skills and how it affects learner 
behaviors within that game. 
                                                           
1 http://mediagrid.org/groups/technology/PIE.TWG/ 
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2   Games, Motivation, Presence, and Learning 

There is a growing body of evidence that educational games, when built on sound 
pedagogical design principles, are effective at promoting learning [5-6]. However, it 
has been suggested that these learning gains are often due to instructional design fea-
tures (e.g., availability of feedback) rather than any unique properties of games [7]. Of 
course, advocates quickly point out that there is more to learning than just cognitive 
gain. A good example comes from Malone and Lepper [8] who focused on nurturing 
intrinsic motivation—the “will to learn” for its own sake, without extrinsic reward. 
They analyzed opinions of elementary school students on a variety of games (circa 
1980) in order to identify which properties were most appealing. A key finding was 
that the children displayed a preference for fantasy contexts that could evoke “mental 
images of physical or social situations not actually present” (p. 240). Further, for 
educational games, they assert that fantasies should be made endogenous, which 
means mastery of the learning content should lead to success in the game. Fantasy, 
something that is not typically considered important in instructional design, has been 
shown to enhance learning and dramatically increase learner motivation [9-10]. 

Fantasy therefore seems like an important element for educational game design, 
but how can we determine whether a learner has chosen to engage the fantasy? An-
swering this question requires a closer look at the learning experience from the 
learner’s point of view. One potential indicator is whether the learner experiences a 
greater sense of presence while using the game. We adopt Lombard and Ditton’s 
definition of presence as “the illusion of non-mediation” in which “a person responds 
as if the medium were not there” [11]. For the purposes of our task domain, intercul-
tural communication, we are specifically interested in social presence—the degree to 
which a learner feels that an interaction with a virtual character is real. 

Most studies examining the role of presence in immersive learning environments 
have not shown a direct link. Crystal Island, a 3D game for teaching microbiology 
and genetics, has been shown to enhance presence, involvement, and motivation, but 
not learning when compared to a comparable non-game-based control [12]. An im-
mersive version of Design-a-Plant [13] was compared with a less immersive counter-
part, but produced no differences in learning. However, personalization did lead to a 
greater sense of social presence with a pedagogical agent, and this positively influ-
enced learning. In a study of the virtual Puget Sound, presence also lead to better 
conceptual understanding of water movement and salinity [14]. The authors hypothe-
size that higher presence may pay off only when the targeted domain knowledge  
directly involves it (e.g., understanding of a physical space in this case). 

3   BiLAT: A Serious Game for Intercultural Communication 

The context for our work is BiLAT, a serious game for practicing the preparation, 
execution, and understanding of bi-lateral meetings in a cultural context. Here, we 
focus on face-to-face meetings between learners and virtual characters, even though 
BiLAT’s overall scope is much broader [15]. Our focus is on basic intercultural 
communicative skills necessary to build trust and reach agreements.  
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Fig. 1. Screenshots from BiLAT, a game for intercultural communication 

In BiLAT, learners meet with one or more characters to achieve a set of pre-
defined objectives. For example, the learner may need to convince a high-ranking 
local official to stop imposing an unjust tax on their people, or reach an agreement 
about who will provide security at a local marketplace. In all cases, the learner is 
required to adhere to Arab business cultural rules, establish a relationship, and apply 
integrative negotiation techniques. Specifically, BiLAT is designed as a practice envi-
ronment for learning win/win negotiation techniques, which suggest learners should 
proactively strive to meet characters’ needs as well their own [16]. To achieve these 
goals, learners must also apply their understanding of the character’s culture to mod-
ify their communicative choices [17]. 

Two screenshots of the BiLAT 3D interface are shown in Figure 1. On the left is 
one of several navigation screens used in the game. On the right is the meeting screen, 
where learners spend much of their time during play. Figure 2 shows an alternative, 
2D version of the BiLAT meeting screen. To take a communicative action in either, 
the learner selects from a menu of conversational actions. The user can engage in 
small talk (e.g., “talk about soccer”), ask questions (e.g., “ask who is taxing the mar-
ket” and “ask if he enjoys travel”), state intentions (e.g., “say you are interested in 
finding a mutually beneficial agreement”), among other possibilities. Physical actions 
are also available (e.g., “remove sunglasses” or “give medical supplies”). There are 
roughly 70 actions for each character in BiLAT. In both interfaces, corresponding 
dialogue text is displayed in a dialogue window and available for the duration of the 
meeting.  

Guidance is provided by an intelligent tutoring system (a “coach”) that monitors 
the meeting and provides unsolicited help [18]. Help can come in the form of feed-
back about a previous action (e.g., explain a reaction from the character by describing 
an underlying cultural difference) or as a hint about what action is appropriate at the 
given time. Further, this coaching support is withdrawn gradually with time and 
learner success (i.e., it is “faded”). These messages appear in the dialogue window of 
BiLAT. After each meeting, the system also guides the learner through an interactive 
review that digs deeper into underlying cultural issues and decisions made by the user 
[15], but in the study reported below, this functionality was disabled since it is not 
available in the 2D interface. 
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Fig. 2. A flash-based, non-immersive interface for BiLAT 

BiLAT characters possess culturally-specific models of how they expect meetings 
to progress. This includes expectations for an opening phase, a social period, a busi-
ness period, and a closing social period. These phases are derived from live role play-
ing sessions with subject-matter experts early in the development of BiLAT [15]. An 
example of a knowledge component taught by BiLAT is to follow the lead of your 
host. If a learner chooses an action that is not appropriate for the current phase of a 
meeting, the character will respond negatively. The intelligent tutoring system pro-
vides support for phase-related problems as well as other culture-related topics [18]. 
Trust, which is directly affected by the ability of the learner to take appropriate and 
effective actions, is a major factor in whether BiLAT characters will be agreeable or 
difficult. It is common for learners to conduct multiple meetings with the same char-
acter to achieve objectives. 

Both interfaces are controlled by the same simulation and differ only in their ap-
pearance and use of sound. Characters in the 3D version respond in a synthesized 
voice with physical gestures. The facial expressions, nonverbal behaviors, and speech 
of the characters are all synced with their utterances [15]. In the 2D interface, charac-
ter images are static and only show their face. No sound is available in the 2D inter-
face which means that learners must read character responses in the dialogue window. 
In both interfaces, coaching messages appear only as text and thus must also be read 
by the learner (if desired). 

4   Method 

In this section we describe an experiment intended to determine how the two inter-
faces differed in terms of their ability to create a sense of presence in the learner, and 
whether this had any impact on learning and learner behaviors. 
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4.1   Participants 

Participants were 46 U. S. Citizens who were college students from universities in 
southern California. They were between 18 and 42 years of age and reported that they 
were able to speak English on a native level. 

4.2   Design 

There was a single independent variable: interface. It was manipulated between-
subjects. One group of participants conducted their meetings in the 3D environment 
(Figure 1), which included simulated speech and animation. The other group used the 
less immersive—but functionally equivalent—2D interface (Figure 2). 

4.3   Procedure 

Pretest. After responding to fliers posted at universities in southern California, par-
ticipants were emailed a link to an online pretest. The pretest had two parts. The first 
part was the Situational Judgment Test (SJT). The SJT presents eight scenarios, each 
of which is followed by three or four possible responses. Participants provided ratings 
(0 = “very poor action,” 5 = “mixed/okay action,” 10 = “very good action”) for each 
of a total of 28 to-be-rated actions (for details on the SJT, see [15]).  

The second part of the pretest comprised seven Cultural Assimilator (CA) items 
[19]. Each presents a scenario and four interpretations, from which the learner is 
asked to choose the best. Fourteen scenarios were selected using a voting process with 
the first two authors and a third intercultural researcher. The selected scenarios in-
volved topics related to interpersonal situations (e.g., explaining why a waiter was 
confused by the behavior of an international customer) and focused on various cul-
tural settings, including Arab, Japanese, Swedish, and more. Participants were 
awarded two points for selecting the best interpretation, one point for selecting a plau-
sible but less culturally sophisticated interpretation, and zero points for selecting the 
weakest explanations [19]. Items were counterbalanced between pre- and posttests 
and the two versions were determined to be roughly equally difficult in a pilot study. 
 

Practice with coaching. After completing the pretest and scheduling an appointment, 
participants arrived at our institute to interact with the BiLAT system. They were 
given printed orientation materials (which contained no instructional content) and 
were randomly assigned to encounter the 2D or 3D interface. They then spent up to 
100 minutes meeting with three virtual Iraqi characters in attempts to solve a problem 
with a fictional U.S.-built marketplace in Iraq. All participants received hints and 
feedback from the coach during these meetings. 
 
Practice without coaching. Next, participants spent up to 30 more minutes meeting 
with a fourth virtual Iraqi character to resolve a problem at a hospital. Participants 
used the same interface as they did when solving the market scenario, but the coach 
provided no hints or feedback during the doctor scenario.  
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Table 1. Summary of results between conditions (means, * = significant) 

Sense of Presence (TPI, self-report) 2D 3D 
Social 2.77 3.49* 
Spatial 2.30 3.21* 

In-game posttest (probability of errors)   
All errors  0.32 0.27 
Phase-mismatch errors 0.18 0.16 

Declarative knowledge (SJT correlation)   
Pretest  0.594 0.516 
Posttest 0.718 0.718 

Cultural knowledge (CA score)    
Pretest 10.17 9.41 
Posttest 10.78 10.36 

 
Presence. Participants then completed the social and spatial subscales of the Temple 
Presence Inventory (TPI), a series of self-report measures intended to capture a user’s 
feelings of non-mediation [11]. For example, an item on the social subscale is “How 
often did you have the sensation that people you saw/heard could also see/hear you?” 
Items were rated from 1 (low) to 7 (high) and those that did not apply to both inter-
faces (e.g., questions about the authenticity of sound) were omitted.  
 

Posttest. After completing the TPI, participants again completed the SJT and the 
counter-balanced CA (the seven previously unused questions). After completing the 
posttest, participants were thanked, compensated, and debriefed. 

5   Results 

5.1   Presence  

Participants’ ratings of presence are shown in Table 1. The 2D interface (M = 2.76, 
SD = 1.04) created less social presence than did the 3D interface (M = 3.49, SD = 
.88). This difference was statistically significant: t(44) = 2.54, p = .02. Similarly, the 
2D interface (M = 2.30, SD = .99) created less spatial presence than did the 3D inter-
face (M = 3.21, SD = .99): t(44) = 3.09, p < .01. These results suggest that our ma-
nipulation of presence was successful.  

5.2   Learning 

Declarative knowledge. The SJT required participants to rate actions based on their 
understanding of Iraqi cultural values. Thus, the SJT was our measure of declarative 
knowledge. Answers previously provided by three subject-matter experts (SMEs) 
were considered “correct.” We defined improved declarative knowledge as an  
increase in participants’ correlation with SMEs from pretest to posttest. Across condi-
tions, SJT scores increased from pretest (M = .56, SD = .20) to posttest (M = .72, SD = 
.13), with a large effect size (d = .92). It appeared that participants became more  
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correlated with SMEs—an interpretation that was supported by a repeated-measures 
ANOVA: F(1, 44) = 40.04, p < .01. This result suggests that BiLAT, with the assis-
tance of the coach, is able to improve the acquisition of declarative knowledge. 

Further, a median-split analysis revealed a greater improvement in SJT scores for 
participants with low SJT pretest scores (M = .28, SD = .14) than for those with high 
SJT pretest scores (M = .04, SD = .12). This difference was reliable: t(44) = 6.27, p < 
.001, d = .93, and is consistent with that the general result that lower-ability students 
tend to benefit most from higher levels of guidance [20]. This further suggests that the 
SJT taps knowledge that is reinforced by coaching. 

Table 1 also suggests that participants’ SJT scores increased (posttest minus pre-
test) more with the 3D interface (M = .20, SD = .18) than with the 2D interface (M = 
.13, SD = .17). However, this difference was unreliable: t(44) = 1.52, p = .14. It may 
appear that between-groups differences on the pretest masked this effect; participants 
assigned to the 2D interface (M = .59, SD = .18) seem to have scored higher than 
those assigned to the 3D interface (M = .52, SD = .21). However, this difference was 
also not reliable: t(44) = 1.33, p = .19. There was also no interaction between interface 
and median-split (p = .88). Thus, although the 3D interface created more presence, it 
did not produce gains in declarative knowledge. 
 

Applied knowledge. As discussed above, the coaching system assesses all actions. 
We defined the learner’s ability to apply knowledge as the probability that s/he would 
select a correct action based on this assessment. To diagnose participants’ knowledge, 
we measured the probability that they would perform an action that was inappropriate 
in general or was a violation of the current meeting phase (experimenter error cor-
rupted the data from two participants). Participants made approximately as many 
errors with the 2D interface (M = .23, SD = .08) as with the 3D interface (M = .22, SD 
= .05): t(42) = .27, p = .79. The same was true for meeting-phase errors; participants 
made approximately as many with the 2D interface (M = .14, SD = .03) as the 3D 
interface (M = .14, SD = .04): t(42) = .09, p = .93. This result suggests that there was 
little difference between the 2D and 3D interface in terms of errors committed. 
 

In-game posttest. As described above, learners interacted with a fourth character 
with no coaching support. Although it was silent, the coaching system continued to 
provide records of the errors analyzed above. Table 1 shows the frequency of these 
errors in the doctor scenario (a software problem corrupted the data from two addi-
tional participants). As can be seen, the 2D interface (M = .31, SD = .10) led to more 
errors than did the 3D interface (M = .27, SD = .10). This difference, however, was 
not reliable: t(40) = 1.54, p = .13. Meeting-phase errors followed a similar pattern. 
The 2D interface (M = .18, SD = .12) led to more errors than did the 3D interface (M 
= .16, SD = .11), but the difference was not reliable: t(40) = .58, p = .56. These values 
were substantially greater than those observed during coached meetings, suggesting 
that coaching may have become a crutch. However, it appeared not to matter whether 
assistance had been delivered by the 2D or 3D interface. 
 

Far-transfer test. The CA required participants to diagnose a short scenario based on 
their general understanding of intercultural interactions. It taps general intercultural 
skills and involves different cultural contexts than those in BiLAT. Table 1 shows 
participants’ CA scores as a function of interface on the pretest (M = 9.80, SD = 2.24) 
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and posttest (M = 10.58, SD =2.10). Although the increase appeared numerically 
small, a repeated-measures ANOVA revealed it to be relatively consistent: F(1, 43) = 
3.35, p = .07 (one participant’s data were lost due to experimenter error). This result is 
consistent with the SJT data; practice with coaching improves declarative knowledge 
and marginally improves the ability to transfer that knowledge to other situations.  

A median-split analysis revealed a greater improvement in CA scores for partici-
pants with low CA pretest scores (M = 1.96, SD = 2.68) than for those with high CA 
pretest scores (M = -1.00, SD = 2.06). This difference was reliable: t(43) = 3.97, p < 
.001, d = .27. As with the SJT, low-performing learners enjoyed greater gains from 
using the system [20]. The decrease for high performers was not reliable and may be 
due to a ceiling effect (the top performers’ average score was 12.06 out of 14 on the 
pretest). Thus, the increase in score for lower-performing learners (pretest score of 
8.30 out of 14) shows that the CA taps knowledge relevant to BiLAT. 

Table 1 also shows that participants’ CA scores improved more with the 3D inter-
face (M = .96, SD = 3.28) than with the 2D interface (M = .61, SD = 2.41). However, 
this difference was unreliable: t(43) = .40, p = .69. There was also no interaction be-
tween interface and median-split (p = .70) suggesting that the 3D interface did not 
promote more general cultural understanding than the 2D interface. 

5.3   Interaction Patterns with Virtual Characters 

We analyzed the data collected over meetings, actions, and time. Recall that multiple 
meetings with the same character are often necessary to succeed in BiLAT. During 
the training period (up to 100 minutes with three characters), participants needed 
more meetings in the 2D interface (M = 13.67, SD = 4.15) than they did in the 3D 
interface (M = 10.30, SD = 2.88): t(42) = 3.14, p < .01. Participants also performed 
more actions in each coached meeting in the 2D interface (M = 17.70, SD = 4.12) than 
they did in the 3D interface (M = 15.09, SD = 2.57): t(42) = 2.55, p = .02. With more 
meetings per session and more actions per meeting, participants in the 2D interface 
performed nearly 50% more actions than did participants in the 3D interface.  

Drilling down into meeting actions, we calculated the amount of time between ac-
tions in each interface. During the training period, participants spent slightly longer 
deciding on their next action in the 3D interface (M = 20.67 sec; SD = 8.75) than they 
did in the 2D interface (M = 17.42, SD = 4.92), but this difference was not reliable: 
t(42) = 1.37, p = .18. During the in-game posttest (no coach), however, participants 
took substantially more time per action in the 3D interface (M = 17.02, SD = 9.63) 
than they did in the 2D interface (M = 11.44, SD = 2.44). This difference was reliable: 
t(40) = 2.46, p = .02. A repeated-measures ANOVA revealed a differential reduction 
in the interval between actions when the coach was deactivated: F(1, 40) = 4.24, p = 
.05. It seems that learners in the 3D system took more care in selecting actions, which, 
along with their higher ratings of social presence, may suggest that they may have 
treated it as a more authentic social interaction. 

5.4   Discussion 

Although learners had a greater sense of presence using the 3D version of BiLAT, we 
are unable to conclude from our data that presence caused any differences in learning. 
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Both interfaces produced similar learning gains on tests of declarative knowledge 
(SJT), in-game success (without coaching), and on a far-transfer test of general cul-
tural knowledge (CA). When we combined conditions in our analysis, we found in-
creases in learning for both the SJT (reliably) and on the CA (marginally), as well as 
significant gains for lower-performing learners on both measures. Since the BiLAT 
simulation engine drove both interfaces, we conclude that the simulated social inter-
actions are responsible for the observed learning gains. This is consistent with well-
known principles of multimedia learning [21], as well as the suggestion that sense of 
presence is most beneficial for learning when domain knowledge specifically de-
mands it [14]. Our analysis of the behavioral data prevents the conclusion that the 3D 
interface and the 2D interface are interchangeable, however. Participants who used 
the 2D interface made decisions more quickly, made more decisions per meeting, and 
had more meetings with each character. Although the average time to take an action 
was not statistically different during training, we did find a significant difference in 
the time participants took to act when coaching was unavailable. 

Why, then, were participants in the 2D interface more prone to act than participants 
who used the 3D interface? One hypothesis is that the 3D interface encourages par-
ticipants to take meetings more seriously—a direct result of the differential presence 
experienced. It is also possible that the 3D interface requires more attention and cog-
nitive resources, thereby increasing the time between actions. It took learners more 
actions per meeting and more meetings per character to build up relationships and 
successfully complete objectives in the 2D interface than in the 3D interface. If we 
had designed the experiment to limit the total number of actions (rather than the total 
amount of time at 100 minutes), then we may have observed greater, reliable differ-
ences in our learning measures.  

Relatedly, these data suggest that characters’ responses and coach feedback in the 
3D interface were more economical in producing learning gains. With fewer actions 
and fewer meetings overall, participants who used the 3D interface nevertheless 
trended toward greater learning gains than those who used the 2D interface. One hy-
pothesis is that learners in the 3D interface may have reflected on their actions more 
often than those in the 2D. As the fidelity of immersive simulations continues to in-
crease, along with their ability to create a sense of presence, it will be worthwhile to 
examine whether there is a concomitant increase in learning along these lines. 

Our study has a number of limitations. Perhaps most critically, we included only 
the meeting component of BiLAT. The full version of the game requires learners to 
understand a broader context, decide which characters to meet with, conduct research 
on characters, select an interpreter, conduct more elaborate negotiations, and review 
their meetings with a reflective tutoring system [15]. Because of time constraints and 
limitations on the flash-based, 2D interface, we were not able to incorporate these 
other components of the full BiLAT system, which may have further enhanced learn-
ing and presence. A second limitation is that no delayed posttest was given to partici-
pants. It is possible that a heightened sense of social presence would enhance reten-
tion of knowledge related to social communication skills (similar to [10]). Finally, we 
note the domain knowledge in this study focused on general communicative skills; 
nonverbal behaviors, tone or rate of speech, or proxemics were not involved. It is 
possible that social presence and 3D interaction hold greater importance for skills 
related to these issues. 
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6   Summary and Conclusion 

In this paper we compared two interfaces that used the same underlying simulation 
engine for the practice of intercultural communication and negotiation skills in a seri-
ous game. The 3D interface used animated characters with sound while the 2D ver-
sion used static images without sound. Participants reported a significantly greater 
sense of presence with the 3D version, but measures of learning revealed that both 
conditions showed significant but statistically equal gains in terms of declarative and 
conceptual understanding of cultural knowledge. Analysis of usage data revealed that 
learners using the 2D interface had significantly more interactions with characters 
than the 3D version. This means 3D users learned equivalently well with fewer inter-
actions. We hypothesize that they may have been more thoughtful in their communi-
cative choices and perhaps treated the virtual meetings as more authentic.  

There are many other factors that should be considered when analyzing learning 
with virtual human role players. For example, it is important to consider whether 
learners independently establish social goals, which has been shown to be an antece-
dent for cultural learning with virtual humans [22]. Another important aspect is the 
relationship between explicit guidance and presence. In future studies, we plan to 
examine different feedback policies and assess their impact on users’ learning and 
feelings of presence. The results from this study will form a baseline for comparing 
other feedback policies and hopefully shed light on identifying optimal levels of pres-
ence in virtual environments for learning. 
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Abstract. The impact of affect on learning has been the subject of increasing 
attention. Because of the differential effects of students’ affective states on 
learning outcomes, there is a growing recognition of the important role that in-
telligent tutoring systems can play in providing affective feedback to students. 
Although we are only beginning to understand the complex interactions be-
tween affect, feedback, and learning, it is evident that affective interventions 
can both positively and negatively influence learning experiences. To investi-
gate how student personality traits can be used to predict responses to affective 
feedback, this paper presents an analysis of a large student affect corpus col-
lected from three separate studies. Student personality profiles augmented with 
goal orientation and empathetic tendency information were analyzed with re-
spect to affect state transitions. The results indicate that student personality pro-
files can serve as a powerful tool for informing affective feedback models. 

Keywords: Affect, Affective Computing, Pedagogical Agents. 

1   Introduction 

Affect has begun to play an increasingly important role in intelligent tutoring systems. 
The intelligent tutoring community has seen the emergence of work on affective stu-
dent modeling [1], characterizing student emotional experiences [2,3], detecting frus-
tration and stress [4,5], detecting student motivation [6], and diagnosing and adapting 
to student self-efficacy [7]. All of this work seeks to increase the fidelity with which 
affective and motivational processes are understood and utilized in intelligent tutoring 
systems in an effort to increase the effectiveness of tutorial interactions and, ulti-
mately, learning.  

This level of emphasis on affect is not surprising given the effects it has been 
shown to have on learning outcomes. Student affective states impact problem-solving 
strategies, the level of engagement exhibited by the student, and the degree to which 
he or she is motivated to continue with the learning process [8,9,10]. All of these 
factors have the potential to impact both how students learn immediately and their 
learning behaviors in the future. Consequently, developing techniques for keeping 
students in an affective state that is conducive to learning has been a focus of recent 
work [11,12,13,14].  
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However, while much work has targeted the development of optimal techniques for 
supporting student affect, the nature of the problem introduces a significant degree of 
uncertainty. In human-human social interaction it is often difficult to determine how 
best to respond to an individual’s affective states. The problem is significantly more 
challenging for computational systems: they must first be able to correctly recognize 
student affective states and then decide how best to respond. Systems may frequently 
encounter situations in which they are uncertain about how to provide affective sup-
port and what the effects of a possible intervention may be. 

Previous work [15] has indicated that poorly selected feedback mechanisms can 
have severe negative consequences for student affective states. In some cases the 
possibility of these negative consequences introduces such a risk that it is preferable 
to avoid giving any affective feedback. While this work has shed light on measures of 
risk and utility when considering affective intervention, systems should also be able to 
weigh an estimated confidence in the success of a particular feedback strategy against 
the risk associated with that strategy to make an informed decision on how to proceed. 

In this paper we investigate the role of student personality, including goal orienta-
tion and empathetic tendencies, in estimating confidence in the benefits of an  
affective intervention strategy. We derive personality profiles categorizing students 
who tend to experience positive benefits or negative consequences of affect feedback 
from a corpus of student affect data spanning three user studies with a narrative-
centered learning environment, CRYSTAL ISLAND. These personality profiles are then 
used to train machine-learned prediction models to determine confidence estimates 
for the expected benefit of a candidate affective intervention. 

2   Background  

A broad range of techniques have been developed to provide appropriate affective 
support. Some of these techniques are based on analyses of human-tutor responses to 
affect [12], while others are based on theoretical models of how to improve student 
performance by valuing effort over success [16]. Other work has focused on respond-
ing to specific student emotions using empathetic or task-based feedback strategies 
[15]. While many of these strategies have been shown to be beneficial in supporting 
student affect, they often do not consider specific student needs. Previous findings 
have suggested that a student’s individual personality characteristics can strongly 
impact which affective states are most beneficial for the student [11] and how the 
student experiences and transitions from these states [17].  

With these findings in mind, we seek to develop personality profiles to predict how 
students will respond to affective feedback and determine how this information can be 
utilized to better inform affective feedback models. We consider three distinct  
measures of student characteristics: personality, goal orientation and empathetic ten-
dencies. These three constructs are expected to have a particular influence on the 
student’s experience of narrative and learning emotions associated with the interactive 
environment as well as their ability to internalize and respond to agents’ attempts to 
provide beneficial affective feedback. 

Personality is an individual’s disposition over a long duration of time, which can 
be distinguished from emotions or moods which are more limited in their duration 
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[18]. The Big 5 Personality Questionnaire [19] decomposes personality into five  
primary categories: openness, conscientiousness, extraversion, agreeableness and 
neuroticism. Of particular interest among these are openness, conscientiousness and 
neuroticism, as these characteristics are likely to impact emotion and learning. Addi-
tionally, because information on affective states is often obtained through self-report, 
we expect to find individuals who score high on openness will display genuine emo-
tions, while others may limit themselves to what they feel comfortable reporting. 

Goal orientation reflects a student’s primary objective when engaged in learning ac-
tivities. Students may either view learning in relation to performance or mastery [20]. 
A performance approach would result in a student wishing to prove her competence 
and achieve better results than other students. A student with a mastery approach, how-
ever, views learning as an attempt to acquire knowledge or a skill, regardless of how 
her ability compares to others. In addition to these categories, students may have 
avoidance strategies in relation to their goals. For example, students with a perform-
ance-avoidance approach would simply try to not overtly fail, rather than try to top 
their fellow student. We expect that these students will differ in their tendency to stay 
negatively or positively focused especially in response to agent feedback.  

Empathetic tendencies refer to an individual’s responses to the situational and af-
fective states of others [21]. These tendencies can be measured using an interpersonal 
reactivity index [22], which includes four subscales: fantasy, perspective taking, em-
pathetic concern and personal distress. Fantasy refers to the tendency to identify with 
fictional characters such as virtual agents, or characters in books and movies. Perspec-
tive taking is an individual’s capacity to see situations from the perspective of another 
individual. Empathetic concern is a tendency to exhibit compassionate emotions to-
wards those in negative situations, while personal distress refers to feelings of stress 
and anxiety over the misfortunes of others. These traits may directly impact the stu-
dent’s perception of the characters and events in a learning environment and how they 
respond to agents’ efforts to provide affective support.  

3   The CRYSTAL ISLAND Environment 

The affect corpus utilized in this analysis was obtained from studies conducted in a 
narrative-centered inquiry-based learning environment, CRYSTAL ISLAND (Figure 1). 
This environment is being created in the domains of microbiology and genetics for 
middle school students. It features a science mystery set on a recently discovered 
volcanic island where a research station has been established to study the unique flora 
and fauna. The user plays the protagonist, Alex, who is attempting to discover the 
source of an unidentified infectious disease at the research station. As members of the 
research team fall ill, it is her task to discover the cause and the specific source of the 
outbreak. She is free to explore the world and interact with other characters while 
forming questions, generating hypothesis, collecting data, and testing her hypotheses. 
She can pick up and manipulate objects, and she can talk with characters to gather 
clues about the source of the disease. In the course of her adventure she must gather 
enough evidence to correctly identify the type and source of the disease that has  
infected the camp members. 
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Fig. 1. The user, Alex, with Jin, the camp nurse, on CRYSTAL ISLAND 

4  Method 

To empirically investigate the differential responses of students in specific affective 
states, we consider cumulative data from three studies of students interacting with 
affect-sensitive virtual agents. These agents were developed to respond to student 
emotion and encourage positive student affect within the learning environment 
through three distinct feedback strategies: (1) task-based feedback, (2) parallel empa-
thetic statements, (3) reactive empathetic statements or by providing no feedback. 
Task-based feedback strategies focused on directing students towards information that 
would aid in improving or maintaining their emotional state (e.g.,“You may want to 
consider reading a book on pathogens. You can find a good book in the lab”). This 
strategy aims to aid both students who are struggling with environmental tasks and 
those lacking the necessary content knowledge without attempting to distinguish 
between the two. Parallel empathetic statements demonstrate an agent’s understand-
ing of the emotional situation and reflect the affective state of the student (e.g.,“I 
know! It’s very frustrating not knowing what is causing the illness!”). In contrast, 
reactive empathetic statements focus on the emotional needs of the student and will 
try to motivate a more positive affective state (e.g.,“I know this is a tough problem, 
but if you keep working at it, I’m sure you’ll get to an answer soon”). Each type of 
feedback is limited to at most three sentences and directly acknowledges the emo-
tional state reported by the student. Additional details on response generation may be 
found in [14]. 

Affect feedback models were iteratively developed over the course of three studies 
to improve the ability of the virtual agents to provide beneficial affective support.  
An affect corpus was obtained by aggregating data collected in these three studies and 
includes data from a total of 115 college students  who interacted with one of the 
three models of agent behavior within the CRYSTAL ISLAND environment.  
Among these students, 89 were male and 26 were female. Ages ranged from 19 to 60 
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(M = 24.63, SD = 4.93). Demographics included 37.4% White, 47.8% Asian or  
Indian, and 14.8% Other (including African American, Hispanic, Other and Non-
Response). 

Participants entered the experiment room where they completed informed consent 
documentation and were seated in front of a laptop computer. They were then given 
an overview of the experiment agenda, and they completed the pre-experiment ques-
tionnaires including the demographics survey, the interpersonal reactivity index  
survey[22], the goal orientation survey [20], and the personality questionnaire [19]. 

Participants were then instructed to review CRYSTAL ISLAND instruction materials. 
These materials consisted of the backstory and task description, character overviews 
and a map of the island, the control sheet, and definition sheet of the self-report emo-
tions. Participants were then further briefed on the controls via a presentation explain-
ing each control in detail. Participants maintained access to the materials, including 
the definition sheet of the self-report emotions, throughout their interaction. Partici-
pants were given thirty-five minutes to solve the mystery.  

When subjects decided to interact with the agents, the following schema was used 
to direct subject-character interactions and virtual character feedback: 

1. The agent queries the subject for a self-reported affective state (Report1) by  
asking the question, “Hi Alex, how are you feeling?” The subject may respond by 
selecting one of the available emotions (anger, anxiety, boredom, curiosity,  
confusion, delight, excitement, flow, frustration). 

2. The agent then responds to the subject’s reported affective state with a random-
ized feedback response. Responses varied between parallel and reactive empathetic 
statements, task-based feedback or no intervention. The relative frequency of these 
feedback strategies varied between studies but is not the focus of this analysis. 

3.  If the student received a feedback response, a follow-up dialog box is then pre-
sented to the subject asking her to respond with the prompt, “… and you respond.” 
The subject is able to choose from four Likert-scaled responses designed to evalu-
ate the appropriateness and effectiveness of the virtual character's response. Sub-
jects can issue responses ranging from (1) “That does not help me at all,” to 
(4) “Thanks, that helped a lot!” 

4. The agent responds with a one-word quip (e.g., “Thanks,” or “Great!”) directed 
towards the subject’s evaluation response (Step 3, when executed). 

5. At the conclusion of the interaction, the agent again asks the subject how she 
feels. The subject is presented a dialog box similar to the one described in Step 1 
without the character greeting. Here, the character prompts the subject with, “How 
are you feeling now?” and the student selects from the same set of emotions (Re-
port2). 

5   Personality-Informed Affect Feedback 

It was hypothesized that individual student traits can provide insight into whether 
students are likely to experience positive or negative affect transitions after experienc-
ing specific types of affective interventions. Therefore, the first step in the analysis 
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was to classify transitions as positive or negative based on their reported affective 
state after receiving feedback (Report2). This was accomplished by considering  
emotions to be positive or negative based on their valence. For instance, curiosity is a 
positive emotional state, while boredom is a negative state. However, this classifica-
tion did not reflect findings on the sometimes positive nature of the state of confusion 
which was therefore considered to be a neutral state. Using this framework,  
transitions were labeled as positive if subjects remained in or transitioned to a more 
positive affective state (Report2 ≥ Report1). Similarly transitions were labeled as  
negative if subjects remained in a negative state or transitioned into a state that was 
more negative than they had experienced prior to the intervention. Using this frame-
work, approximately 67.8% (n=716) transitions were labeled as positive, while the 
remaining 32.2% (n=340) were labeled as negative. 

5.1   Personality Profiles 

We first sought to examine whether or not there existed a personality profile for stu-
dents who tended to experience positive or negative transitions. Exploratory t-tests 
compared the personality characteristics associated with positive and negative affec-
tive transitions. These tests were run on each component of the subscales for person-
ality, empathetic tendencies and goal orientation. Results indicated that there were 
many student characteristics that contributed to a personality profile for positive and 
negative transitions (Table 1). For instance students who experience positive transi-
tions tend to be more agreeable but also less open than students who experience nega-
tive transitions. These students also report experiencing less personal distress and 
greater ability to take the perspective of others. Finally, students experiencing positive 
transitions are more likely to have a performance avoidance approach to learning. 

These results suggest interesting relationships between students’ susceptibility to 
feedback and how they transition in response to it. For example, agreeableness and 
perspective taking are both associated with the ability to relate well with and consider 
the opinions of others. In the case of affective intervention, these students may be 
more willing to consider and internalize the helpful feedback of the virtual characters 
and consequently experience positive affective transitions. Alternatively, students 
who report experiencing higher personal distress may be more likely to remain in 
negative emotions associated with the ill characters of the island and are less likely to 
be consoled by the characters’ interventions. 

5.2   Emotion-Specific Personality Profiles 

We next considered the possibility that these personality profiles may vary when 
transitioning from specific emotions. Therefore we conducted the same analyses on 
transitions from specific emotions. This analysis yielded many of the same traits re-
ported in the overall personality profile, but also showed several emotional states that 
had specific personality profiles (Table 1). For instance, the trend for students experi-
encing positive transitions to be more agreeable was true when students reported an 
initial emotional state of boredom, confusion, or excitement. However, the opposite 
trend was found for students who reported anger. In this case, students who experi-
enced negative transitions scored much higher on the agreeable subscale than students  
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Table 1. Trait tendencies. +/- indicate the direction of the trend, while * indicate a significance 
of p < 0.05 in exploratory t-tests 

Overall 

 Neuroticism - * Personal Distress - 

* Agreeableness +  Perspective Taking + 

* Openness + * Performance Avoidance + 

* Empathetic Concern +      
Emotion Specific 

 Anger    Anxiety   

 Mastery Approach -  Performance Approach + 

 Perspective Taking -     
* Agreeableness -  Confusion   

    Performance Avoidance + 

 Boredom   Fantasy - 

* Conscientiousness + * Agreeableness + 

* Agreeableness +     
    Curiosity   

 Excitement  * Perspective Taking + 

* Perspective Taking + * Openness - 

* Agreeableness +     
    Flow   

 Frustration  * Mastery Approach - 

 Performance Avoidance +  Performance Approach - 

 Fantasy + * Fantasy + 

* Extraversion -  Empathetic Concern + 

 Neuroticism + * Neuroticism - 

 
experiencing negative transitions. This is an interesting anomaly and one that seems 
to contradict the typical characteristics associated with agreeableness, suggesting that 
there may be something unique about the emotional state of anger that warrants fur-
ther investigation. Alternatively, the expected trends were found for students with 
high perspective taking, who were likely to experience positive transitions from emo-
tions such as curiosity and excitement. 

Additional characteristics outside the general profiles were found to be indicative 
of differential responses in specific emotional states as well. For instance, negative 
transitions from frustration were experienced by highly extraverted students. Mean-
while, conscientious students experiencing boredom appeared to be more susceptible 
to characters’ attempts to reengage them and had a stronger tendency to experience 
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positive transitions. Additional results suggest that some students responded particu-
larly negatively to feedback when in a positive state. For example, mastery-approach 
students experiencing flow tended to experience negative transitions as did open stu-
dents experiencing curiosity. This result is particularly interesting since in both of 
these cases, the students are experiencing positive emotional states that are expected 
to be particularly salient for their individual traits. It may be the case that an interrup-
tion of this positive or perhaps optimal state is responsible for this negative transition. 

5.3   Models of Affective Response 

The ultimate goal of this line of investigation is to better inform affective feedback 
models by providing some measure of confidence that an affective intervention strat-
egy will be beneficial to the student. Therefore, we explored machine learning tech-
niques as an automatic and, perhaps, robust means of classifying candidate feedback 
strategies as likely to be beneficial or harmful.  

To this end, naïve Bayes, decision tree, and support vector machine classification 
models were induced using the WEKA machine learning toolkit [23]. All models 
were constructed using a tenfold (within-subjects) cross-validation scheme for pro-
ducing training and testing datasets, a widely used method for obtaining an acceptable 
estimate of error [23]. The learned naïve Bayes model performed at 69.5% predictive 
accuracy, which did not significantly outperform the baseline of 67.8% accuracy. 
However, both the decision tree (72.9%) and support vector machine (73.11%) mod-
els were able to significantly outperform the baseline at p<0.05. Linear regression 
analysis was also performed but did not yield results that outperformed the baseline 
model. 

While these models did offer some improvement over baseline, we predicted that 
inclusion of the previously learned personality profiles would be able to enhance the 
predictive power of these models. Therefore, we created a hybrid model, in which a 
simple naïve Bayes model was created for each reported emotion. These models in-
cluded only the personality traits that had been previously found to have a significant 
difference (p<0.10) in their prevalence with respect to the populations of students 
experiencing positive and negative transitions. Naïve Bayes models were specifically 
chosen for this hybrid as they seemed to be the natural extension from the differenti-
ated probability distributions that make up the personality profiles. They also offer an 
additional benefit of producing probability distributions for each tested item, which 
may be used to create a numeric confidence rating to inform future models. These 
models were again created using ten-fold cross-validation to ensure an appropriate 
measure of predictive accuracy.  

The results of this hybrid model indicated a statistically significant (p<0.05) im-
provement in predictive accuracy over the previously highest performing model, the 
support vector machine. The hybrid model achieved a predictive accuracy of 75.2%. 
Interestingly, the predictive accuracies for transitions from some emotional states are 
significantly higher than others. For instance, the highest predictive accuracy for  
transitions from the state of flow is 84.3% (baseline of 81%). This finding is particu-
larly interesting as the state of flow has been previously identified as a state in which 
attempting affective intervention is particularly risky [15]. This increase in predictive 
accuracy for this state may play a role in mitigating the risk of intervention. In  
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contrast, the lowest predictive accuracy (58.8%, baseline of 52%) is in response to 
students experiencing frustration. While such a low predictive accuracy is less than 
would desired, previous work has suggested that there is little risk in intervening 
during negative states such as frustration. It is unlikely that the student can experience 
harmful side-effects from intervention, so in this case we are less concerned about 
obtaining a good measure of confidence before deciding to pursue an affect interven-
tion strategy. 

5.4   Limitations 

While the results of this analysis are promising, there are several limitations that must 
be considered. First, though the affect corpus included over one thousand affect  
reports from 115 subjects, some affective states are still reported in a very low fre-
quency. In particular, the states of anger and delight were reported with very low 
frequencies (fewer than 30 reports each), so it is unclear how appropriate it is to draw 
conclusions about these states. Additionally, these analyses examined only the  
interactions between personality characteristics and affective states. It would be par-
ticularly interesting to understand how events and progress within the interactive 
environment also contributed to this complex interaction. 

6   Conclusion 

The ability to understand and respond to student affective states during learning has 
been recognized as an important goal for the ITS community. Unfortunately, interven-
ing with student affective states is inherently risky. Therefore, developing affective 
support models that can consider utility, risk and confidence information is an impor-
tant step in ensuring beneficial interactions with students. This paper has shown that 
students’ personality characteristics can impact how students respond to attempts to 
provide affective scaffolding. The personality profiles developed through analysis of 
an affect corpus were able to enhance the predictive capability of models aimed at 
determining whether an intervention strategy was likely to have positive outcomes. 
Additionally, accuracy was especially high in affective states where mitigating risk is 
of highest importance, suggesting that incorporating these models into future affective 
feedback paradigms may add significant benefit. 

In addition to furthering the development of effective feedback models, the analy-
ses of the affect corpus revealed interesting relationships between certain characteris-
tics and emotional states. For instance, we find that goal orientation traits are more 
closely tied with emotions associated with learning rather than other emotional states. 
We additionally find support for the notion that individuals with particular traits have 
unique “optimal” states that should not be interrupted.  

The results of these analyses suggest many interesting directions for future work. 
For instance, certain emotions, such as anger, appeared to have correlations with 
student characteristics that were inconsistent with other emotional states and seemed 
to contradict expectations. Further exploration of these anomalies may reveal interest-
ing information regarding the unique characteristics of each of these emotions.  
Another direction for future work is including event traces for informing models. 
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Detailed information about the student’s progress and experience in the environment 
may help to better inform affective feedback models. Finally, an important next step 
is incorporating these findings into a comprehensive affect feedback model that is 
able to better gauge risk, assess confidence and provide feedback in the most appro-
priate and beneficial manner.  
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Abstract. Technological developments and changes mean that computer-based 
teaching tools rapidly become obsolete or less attractive to students. In teach-
ing, as in other fields, there is a continual need to explore new technologies that 
are attractive, adapted to the personal needs of students and which motivate 
them to learn. Students are struck by the appearance of new technology or 
gadgets and they show an interest in using them. This paper analyses the poten-
tial of Augmented Reality technology in university education. An AR-based 
application has been developed with a view to improving spatial abilities among 
engineering students, thus enabling them to gain a better understanding of engi-
neering graphics subjects. We present a student satisfaction study and an 
evaluation of the efficiency and efficacy of the technology applied to this field 
of education.  

Keywords: augmented reality, usability engineering, spatial ability, engineer-
ing graphics. 

1   Introduction 

Augmented Reality (AR) is a technology that permits one to overlay computer graph-
ics onto the real world. Unlike immersive Virtual Reality, AR interfaces allow users 
to see the real world at the same time as virtual imagery attached to real locations and 
objects.  In an AR interface, the user views the world through a handheld, monitor PC 
or head mounted display (HMD) that is either see-through or overlays graphics on 
video of the surrounding environment. AR interfaces enhance the real world experi-
ence, unlike other computer interfaces that draw users away from the real world and 
onto the screen. AR interface is a visualization technology that can take advantage of 
the limitations offered by other visual means of communication for learning. Tradi-
tional methods of learning spatially-related content by viewing 2D diagrams create a 
sort of resistance to learning at cognitive level. This resistance exists even when 
working with 3D objects on a computer screen because the manipulation of the  
objects in space is made through mouse clicks.  
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Our work is based on the educational Augmented Reality toolkit AR-Dehaes, 
which has been validated to see if it is an effective tool for developing spatial abilities 
in students and for learning the contents of engineering graphics. 

2   Augmented Reality and Education 

An interesting definition of AR has been described by Azuma [1], as a variation of 
Virtual Reality. VR technology completely immerses a user inside a synthetic envi-
ronment. While immersed, the user cannot see the surrounding real world. In contrast, 
AR allows the user to see the real world, with virtual objects superimposed upon or 
composited with the real world. Therefore, AR supplements reality, rather than com-
pletely replacing it. With AR applications it is possible to show to the user a common 
space where virtual and real object coexists in a seamless way. From a technological 
point of view AR applications must fulfill the following three requirements [1]: Com-
bination of real and virtual worlds, real time interaction and accurate 3D registration 
of virtual and real objects.  

The versatility offered by AR technology has made it possible to develop applica-
tions in many fields of education including mathematics, mechanics, medicine, phys-
ics and planning. It is worth mentioning the application Construct 3D [2], designed 
for teaching geometry. This application makes it possible to create geometric scenar-
ios that allow the student and the teacher to interact during the explanation of the 
geometric contents. In the field of medicine, an AR application is used in the training 
of future anaesthetists to simulate the equipment used in the operating theatre [3]. 
Also, among many others, there is an AR application used in nursery education for 
learning the parts of the human body [4]. 

As Billinghurst [5] states, although AR technology is not new, it's potential in edu-
cation is just beginning to be explored. Several EU funded projects such as 
CONNECT [6], CREATE [7] and ARISE [8] are designing and developing AR appli-
cations in order to improve education techniques. They provide good examples of the 
capability of this technology to develop new tools, which based on 3D interactions 
with the user, will make certain concepts easy to learn for the students. 

2.1   The Augmented Book Concept 

One of the most known AR educational applications is the “MagicBook” [9]. The 
“MagicBook” interface uses normal books with AR markers as the main interface 
objects. People can turn the pages of the book, look at the pictures, and read the text 
without any additional technology. However, if they look at the pages through an AR 
display they see 3D virtual models appearing out of the pages, thus introducing an 
interesting way for smoothly transporting users between reality and virtuality using a 
physical object.  

Tallyn et al. [10] make a comparative study of a paper book, a multimedia 
CDROM and an AR book, concluding that book's ergonomics provide a flexible and 
easily accessible interface which engenders fluid collaboration between pairs of chil-
dren, and that these qualities are also observed when children work with the AR book.  
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The augmented book experience only requires adding a webcam to a typical PC 
configuration and the proper software. Using the computer screen to visualize the 
augmented scene is a cost-effective and eye-catching alternative in the educational 
context presented in this paper.  

3   Description of the Learning Tool and Methodology 

Although there are several public libraries with AR capabilities, we decided to de-
velop a software library called HUMANAR in order to ensure the integration of 
Augmented Reality into our applications and to overcome some drawbacks present in 
some public libraries. HUMANAR presents several advantages over other popular 
AR libraries like for example ARToolKit. Among other can be cited: support for 
different marker types (ARToolKit markers and IDbased markers), variable pattern 
size at the template-based markers (e.g. 16x16, 32x32, 64x64… ), adaptive threshold 
for avoiding illumination variations at the scene, graphical interface for camera cali-
bration and pattern creation. The library HUMANAR uses computer vision tech-
niques to calculate the real camera viewpoint relative to a real world marker, that it, it 
calculates the integration of three-dimensional objects codified by the camera and 
captured by the camera in real time. When the marker enters the scene picked up by 
the camera, the fusion of the real world with the virtual object is shown on the screen. 
This requires the application to relate the two worlds (real and virtual) in a single 
system of co-ordinates. 

We have created AR-Dehaes, a toolkit that promotes active learning, and encour-
ages discovery through interactivity and object manipulation controlled by the learner.  
Several researchers [11] report that learners who have active control over novel ob-
jects perform better on later tests of object recognition and mental rotation. Further 
evidence suggests that active exploration and control of novel objects assists the 
learning of 3D structures, better object recognition and improved spatial ability. The 
content proposed in AR-Dehaes is an effective way of improving spatial abilities due 
to mental visual operations students have to carry out. This set of activities contrib-
utes to the development of the spatial factor of the intelligence. 

The AR-Dehaes toolkit is composed by a software application, an explanatory 
video, a notebook and an augmented book (Figure 1). 

─ The software application contains one hundred exercises with three dimensional 
virtual models. 

─ The explanatory video has duration of six minutes. It explains the theoretical 
contents of orthographic views and freehand sketching. 

─ The notebook contains one hundred exercises that have to be solved by the  
students. 

─ The augmented book that provides fiducial markers of virtual three dimensional 
objects.  

AR-Dehaes is designed for students to work on their own, without the help of the 
teacher, although it can also be used in the classroom with a teacher present. The di-
dactic material contains five levels, created according Bloom´s taxonomy [12] and they  
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Fig. 1. Explanatory video, augmented book / notebook, students and teacher using AR-Dehaes 

are organized into five sessions of training with a total duration of nine hours (four 
sessions of two hours and a final session that lasted one hour), see figure 2. Students 
can visualize the three-dimensional model in augmented reality (augmented book) and 
they can check if their freehand sketches correspond to the three-dimensional virtual 
models which they are viewing. AR-Dehaes contain one hundred 3D models to com-
plete ones exercises.  

─ Level 1 (Knowledge). The students have to identify surfaces and vertexes on 
both orthographic and axonometric views of a three-dimensional virtual object, 
which is created on the augmented book (contain three kinds of tasks).  

─ Level 2 (Comprehension). The students have to identify orthographic views of 
the virtual three dimensional models from the exercise book (contain two kinds 
of tasks)..  

─ Level 3 (Application – Analysis). It is devoted to the identification of the spatial 
relationship between objects. This is carried out by means of “recount” exer-
cises, where students are asked to identify how many object are in touch with 
one selected. Also there are exercises about the selection of the minimum num-
ber of views to completely define an object (contain two kinds of tasks). 

─ Level 4 (Synthesis) It has a greater difficulty than the previous levels. There are 
exercises where the students have to sketch a missing orthographic view, know-
ing two orthographic views of a model, using the virtual model as the only input, 
they have to sketch all the orthographic views (contain two kinds of tasks). 

─ Level 5 (Evaluation). The exercises are the most difficult ones for students, be-
cause they require a greater level of spatial ability.  Students are provided with 
three orthographic views of each object, and they have to build in their minds the  
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Level 1.Task 1.2.Identification of surfaces. 
Axonometric projection. 

Level. Task 1.3.Identification of vertexes. 

Level 2. Task 2.2.Identification of wrong orthographic 
views.

Level 3. Task 3.1. Recount 

Level 3. Task 3.2. Selection of the minimum number of 
orthographic views to define an object. 

Level 5. Task 4.1. “Missing view” exercises. 

 

Fig. 2. Examples of several kinds tasks of AR-Dehaes 

corresponding three-dimensional model and then draw a freehand perspective of 
it. Students have one hour to complete six exercises, without any virtual model 
help. This level of the course is used for evaluating the advance of students. 

When they have carried out the proposed isometric drawings, they can be verified. 

4   Pilot Study 

4.1   Improve Spatial Ability 

In order to analyse the impact of the educational content on students, a voluntary 
group of first year mechanical engineering students (24 participants) were called to 
take part in a course with AR-Dehaes for the first week of the academic year. The 
study also considered a control group selected randomly (25 participants), who un-
dergo no kind of spatial skills training. 

Spatial ability as one of the main components of human intelligence is a well stud-
ied topic in psychology, and according to Pellegrino et al [13] we can consider that is 
formed by two sub-components (Spatial Relations and Spatial Visualization). The 
levels of spatial ability were measured before and after the course (table 1) with with 
two widely used measurement tools in this field: MRT (Spatial Relations) and DAT-
5:SR (Spatial Visualization) tests [14,15].  
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Table 1. Measure spatial ability before and after training 

 Pre- test Post- Test Gain 
MRT 

Gain
DAT-5:SR  MRT DAT-5:SR MRT DAT-5:SR 

Experimental 
Group n = 24 

19.67 
(7.91) 

29.17 
(7.29) 

27.71 
(7.83) 

38,46 
(7.05) 

8.04 
(5.31) 

9.29 
(4.08) 

Control 
Group n=25 

17.44 
(9.82) 

28.40 
(10.17) 

22.08 
(9.94) 

33.52 
(11.77) 

4.64 
(4.36) 

5.12 
(7.13) 

 
 

An analysis of covariance (ANCOVA) was used to study it. The ANCOVA 
method allows eliminating the difference of pre-test scores between groups, and then 
the adjusted post-test scores, revealing the real effects of the experimental treatment. 
This statistical procedure also tested the interaction between groups (training AR and 
control). The dependent variables, co-variants, and independent variables were post-
test measurements, pre-test measurements, and type of group, respectively. The suit-
ability of using this analysis was tested by first conducting the analysis using a statis-
tical model containing interaction terms between the covariants (pre-test mean scores 
of MRT and DAT-5:SR) and the independent variables to assess the assumption of 
homogeneity of gradients. The analysis of ANCOVA is summarized in tables 2 and 3. 

Table 2. ANCOVA. Analysis of Covariance for Post-MRT 

Source    Sum Sq Type III Df Mean Square F-Ratio P-Value 
Corrected Model (a) 3 139.087 2 1 569.543 70.259 0.000 
Intercept 722.024 1 722.024 32.321 0.000 
CO-VARIANTS      
Pre-MRT                    2 751.191 1 2 751.191 123.155 0.000 
EFFECTS      
Training Condition 
(AR vs Control)         

166.838 1 166.838 7.468 0.009 

Error 1 027.607 46 22.339     
Total 34 393.000 49      
TOTAL 

(CORRECTED) 
4 166.694 48      

(a)  R squared = 0.753 (R squared corrected = 0.743). 

Table 3. ANCOVA. Analysis of Covariance for Post-DAT-5:SR 

Source    Sum Sq Type III Df   Mean Square F-Ratio P-Value 
Corrected Model (a) 3 208.934 2 1 604.467 47.436 0.000 
Intercept 449.290 1 449.290 13.283 0.001 
CO-VARIANTS      
Pre-DAT-5:SR              2 910.316 1 2 910.316 86.044 0.000 
EFFECTS      
Training Condition    
(AR vs Control)            

221.648 1 221.648 6.553 0.014 

Error 1 555.882 46 33.824     
Total 68 053.000 49      
TOTAL 

(CORRECTED) 
4 764.816 48      

 (a)  R squared = 0.673 (R squared corrected = 0.659). 
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After adjusting for covariates (pre-test scores), it is checked that there was a sig-
nificant difference between control group and training AR group on the gain scores, 
F1,46=7.47, p=0.009 (MRT) and F1,46=6.55, p=0.014 (DAT-5:SR). The p-values are 
well below the 1% of statistical significance. The results of Table 4 show the correc-
tion of the mean post-test value for each kind of course. A comparison of the AR 
training group with the control group revealed a mean difference of 3.721 on MRT 
and 4.259 on DAT-5:SR. 

Table 4. Multiple Range Tests for MRT gain and DAT-5:SR gain by Group 

Level    Count Mean Adjust Std. Error    
AR 24 26.735(a) 0.969    
CONTROL 25 23.014(a) 0.949  95% Confidence Interval 
 
Parameter 

 
B 

 
Std. Error 

 
t 

 
Sig 

Lower 
Bound 

Upper  
Bound 

Intersection 7.141 1.645 4.341 0.000 3.830 10.452 
Pre-MRT 0.857 0.077 11.098 0.000 0.701 1.012 
TRAINING_AR      3.721 1.362 2.733 0.009 0.980 6.462 
CONTROL  GR       0(a) (a). Covariance evaluated Pre-MRT: 18.53 

 
Level    Count Mean Adjust Std. Error    
AR 24 38.112(a) 1.188    
CONTROL 25 33.853(a) 1.164  95% Confidence Interval 
 
Parameter 

 
B 

 
Std. Error 

 
t 

 
Sig 

Lower 
Bound 

Upper  
Bound 

Intersection 8.344 2.953 2.826 0.007 2.400 14.288 
Pre-DAT-5:SR 0.886 0.096 9.276 0.000 0.694 1.079 
TRAINING_AR      4.259 1.664 2.560 0.014 0.910 7.607 
CONTROL  GR       0(a) (a). Covariance evaluated Pre-DAT-5:SR: 28.77 

4.2   Usability Study 

Defining the components of usability according to Bevan [16]: 

─ Efectiveness: “accuracy and completeness.” Error free completion of tasks is 
important in both business and consumer applications. We can say that the ef-
fectiveness of a product depends on how accurately it conducts the tasks and 
achieves the objectives it is designed for.  

─ Efficiency: “resources expended.” How quickly a user can perform work is 
critical for business productivity. 

─ Satisfaction: the extent to which expectations are met. Satisfaction is a success 
factor for any products with discretionary use; it is essential for maintaining 
workforce motivation.   

In order to make reliable estimations of the satisfaction results, eight or ten partici-
pants are necessary and larger samples offer a more significant value of the success 
rate [16]. In our study, the evaluation has been done by all students who have taken 
the training. The effectiveness is measured as the mean value of participants’ answers 
(using a graduated numeric scale) and that the measure of efficiency and satisfaction 
is a value on a qualitative scales that enables users to formulate a reflection-
conclusion on the basis of how the questions are asked. The measures of usability are 
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more reliable when psychometrically validated questionnaires are used. However,  
it is difficult to get hold of questionnaires of this kind that can be adapted to this ex-
perience. In our case, we designed a survey with specifically questions for our experi-
ence, based on the experience of Hornbæk [17] and studies carried out by Company  
et al. [18]. 

In the education context, another aspect of usability is considered; this is known as 
“Learnability”, which is defined as usability measured for the task of achieving ade-
quate performance, for example, by completing a training course or through the use of 
learning materials [16]. Learnability may be considered as an aspect of usability (ef-
fectiveness).  

The design divides the survey into several blocks of questions that measure the 
component parts of usability: Effectiveness of the educational material, Efficiency of 
the contents and the Efficiency of the technology, Satisfaction and Opinion. Respon-
dents used a five level Likert scale to provide their opinion. 

Table 5. Results of efficiency and effectiveness measures 

Effectiveness of the Educational Material                           Mean Value [Std. Error] 
The course material is well and carefully presented (design notebook, Augmented book, 
Software, WebCam) 

4.83[0.08] 

The structure of the course has been comfortable, working in two separate notebooks, one 
for the exercises and the other for the marks. 

4.88[0.07] 

The structure of the course regarding levels and typology of exercises is adequate. 4.63[0.10] 
It is easy to locate the exercises from the Design notebook in the fiducially marks book.  4.58[0.12] 
The size of the notebooks (A5) is adequate to carry out the exercises and manipulate   the 
virtual elements. 

4.67[0.12] 

The formative short videos are clear, with a language and graphics easy to understand. 3.92[0.18] 
The Augmented Reality application has been stable (doesn´t block). 4.25[0.17] 
The formative videos are sufficient to know the theoretical contents. It isn´t necessary any 
other type of explanation to complete the exercises. 

4.21[0.18] 

In the evaluation level there are 6 exercises. How many correct answers did you obtain? 5.71[0.13] 
Efficiency of the contents 

The numbers of exercises proposed are sufficient for the intended working hours. 4.58[0.15] 
I felt myself capable to resolve the exercises presented. 4.75[0.11] 
I have had enough time in each session to complete the exercises marked by the teacher. 4.83[0.10] 

Efficiency of the technology 
The familiarization with gestures and manipulating virtual objects has been easy. 4.46[0.10] 
Upon manipulating the virtual figures there is no delay in the screen, the virtual image 
does not produce “image leaps”. 

3.17[0.20] 

The three-dimensional virtual figures are clear and do not present definition difficulties.  4.33[0.13] 
Utilizing materials (design notebook) and Augmented Reality technology has been easy 
and intuitive. 

4.63[0.10] 

 
The course material and contents have been very well received, as the measure of 

effectiveness has obtained a good result. The students consider that the material is 
well structured, it is well and carefully presented, the augmented reality application is 
stable and the number of exercises to be done in each session is considered sufficient.  
They also consider that the material and the contents are efficient, because they have 
had time to finish the work in the time set without difficulty. To assess the learnabilty 
of the contents, there are 6 exercises to be done, each worth 1 point, scored as fol-
lows: 1 = exercise right and 0 = exercise wrong. The mean value of this test is 5.71,  
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Table 6. Question of Satisfaction 

D1 Augmented Reality technology has been interesting to use in this training. 
D2 Do you think the training you have completed, provided by Augmented Reality, is useful to 

improve spatial skills? 
D3 Could you have done this course on your own?, i.e., without the need for the teacher to be there. 
D4 Do you think that additional theoretical material in this course is necessary? 
D5 Where would you rather do this AR training? 
D6 How do you value the Augmented Reality technology working with three-dimensional models?   

[Excellent-Very bad] 
D7 Augmented Reality technology seems…[Very Interesting-Not very interesting] 
D8 Augmented Reality technology seems…[Very original-Not very original] 
D9 Augmented Reality technology seems…[Very useful-Not very useful] 
D10 Augmented Reality technology seems…[Satisfying – Frustrating] 
D11 Augmented Reality technology seems…[Flexible – Rigid]  
D12 Overall opinion of the course                 [Excellent - Very bad]          

 
so we can consider learnability as effective. AR_Dehaes offers participants speed in 
doing tasks and in learning. AR_Dehaes is efficient. The mean score for effectiveness 
is 4.50 points and 4.40 for efficiency. 

100% of participants believe that the course attains its purpose of improving spatial 
vision and that augmented reality technology is useful for improving it because they 
consider it to be a user-friendly technology for this kind of training. Most of the par-
ticipants consider that they could do the training on their own, without the need for 
any support from the teacher and they believe that the course provides enough theo-
retical material. 

After undergoing this training, the participants state that they would have preferred 
to have done it in a university class room and very few would have preferred to do it 
at home, although they do point out that they could have done it at home without any 
problems. 

 

 

Fig. 3. Results of Satisfaction 
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The participants are very positive about using augmented reality technology to 
work with three-dimensional models. In general, they consider augmented reality 
technology to be interesting, useful and original and they describe it as excellent for 
the kind of activities that they have done. 

Table 7. Results Students opinion 

 YES NO 
Do you believe that the use of three dimensional tools can improve attention and 
motivate you to study the contents of Graphics Engineering subjects? 

100% - 

Do you believe a fast course is suitable to improve engineering student’s graphic 
engineering knowledge? 

91.7% 8,3% 

Would you have preferred this course to have been based on pen a paper sketches? - 100% 

 
They believe that three-dimensional tools will motivate them to study the contents 

of Engineering Graphics and they consider that courses of this kind are right for learn-
ing basic technical drawing. In any event, they prefer tools of this kind to the tradi-
tional drawing techniques. After using AR_Dehaes, they consider this tool to be the 
best way for doing activities of this kind.  

5   Conclusions 

Learning and teaching procedures have to evolve to take into account the high techno-
logical profile that most of students show. In some cases, outdated teaching methods 
create a barrier for some students that are accustomed to interact with modern techno-
logical gadgets and computers. Augmented reality is a cost-effective technology to 
provide students with attractive contents with respect to paper books, giving new life to 
classical paper and pencil exercises. In educational applications, it is of utmost impor-
tance to focus students´ attention on the actual task and to reduce the cognitive over-
head needed to use the application. This motivated us to design a user-friendly system 
and a friendly and agreeable environment. AR-Dehaes has proven to be and efficient 
and effective material for developing spatial abilities and for learning engineering 
graphics contents. In the usability assessment, AR-Dehaes was scored very positively 
by students with regard to both the teaching material and the technology used. The 
software has proven to be robust as no errors have shown up during its use. 
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Abstract. Embodied Pedagogical Agents (EPA) are increasingly employed in 
educational applications, for a variety of users and purposes. However, studies 
have shown that visual appearance, communicative style, and pedagogical roles 
of agents impact their acceptance, trust, and user interaction [1, 2, 3, 4]. In this 
paper, we present a study where 86 primary school children (aged 7-11) chose 
an EPA to ‘accompany’ them in their learning of multiplications in the ITS  
application, Multipliotest. The children used two versions of the software, one 
with an instructor EPA, and another with a learning companion EPA. Addition-
ally, the children selected a visual appearance for each EPA: simplified or  
detailed, and naturalistic (humanoid-shaped) or stylized (smiley-shaped).  
Investigations of the possible relationships between pedagogical roles and vis-
ual appearance with respect to user preference are outlined, along with the study 
limitations, and considerations for future work.  

Keywords: Embodied Pedagogical Agent; visual style; pedagogical role;  
realism; naturalism. 

1   Introduction 

EPAs can be found in educational software in increasing numbers, and under different 
visual representations, different communication styles, or adopting one or more  
different pedagogical roles, within the same application. EPAs are “visually  
represented, computer-generated characters in pedagogical roles, such as virtual  
instructors, mentors, or learning companions” [3], usually embedded within the  
software to aid social and communicative features, [5, 6]. They are used in computer-
assisted learning applications for users ranging from children to elderly people, to 
help them in software navigation, usability, or in learning content or development of 
meta-cognitive skills [2, 7]. 

However, studies showed that visual appearance, communicative style, and peda-
gogical roles of agents impact their acceptance and trust, and change the way people 
interact with them [1, 2, 3, 4]. 
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Consequently, there is sufficient research interest and rationale for investigating 
the effect of design characteristics of EPAs on users. Research on the user interface 
design of agents, and in the design of comics over the past twenty years, has focused 
on the impact of the degree of detail and naturalness of the EPA. These factors affect 
their processing and interpretation by users [8, 9], in addition to self-identification 
processes, and engagement level with the EPA [10, 11]. Other studies have investi-
gated the impact of ‘instructional roles’ on learning and motivation for particular age 
groups [4].  A range of pedagogical roles used in EPAs worldwide, have been  
classified in Haake & Gulz [3] on the dimension of authority. In Haake & Gulz [3], 
three EPA factors were studied with children aged 12-15: visual static appearance, 
communicative style, and pedagogical role. Some interesting and potentially unex-
pected results were found, such as when female students chose ‘learning companions’ 
they preferred more stylized, visual characters. However, as children grow, their in-
terests change. This impacts their ability [12] and willingness [13] to use intelligent 
environments. Therefore, there is value in investigating user’s preferences according 
to their age and cognitive developmental stage. 

In this paper, we present a study where 86 primary school children (aged 7-11) 
chose an EPA to ‘accompany’ them in their learning of multiplications in the ITS 
Multipliotest. The children used two versions of the software, one with an instructor 
EPA, and another with a learning companion EPA.  The children selected a visual 
appearance for each EPA: simplified or detailed, and humanoid-shaped (naturalistic) 
or smiley-shaped (stylized). At the end of the session, they were asked to choose 
which type of EPA they preferred, and the reason why. Section 2 illustrates all aspects 
of the experimental study (study goal, EPA design characteristics, experimental  
design, participants, and research hypothesis). The results (section 3) are illustrated 
with their analysis (section 4) as to the possible relationship of pedagogical visual 
appearance with respect to user preferences. Finally, section 5 describes limitations of 
the study, and considerations for future work. 

2   Design of the Experimental Study 

2.1   Goal of the Study 

In this section, the experimental study performed on June 10th 2007 with three French 
classes from the school ‘Jean Zay’ in France, is presented. The goal of the study was 
to investigate users’ choice of EPA with respect to their visual appearance and  
pedagogical role. In particular, possible relationships between these variables were 
investigated with regards to user preferences. 

2.2   Participants 

86 children aged 7-11 (46 girls, 40 boys) from a French primary school participated in 
the study. The students came from three classes of two levels (one class of CE1, one 
class CE1/CE2, and one class of CE2). The majority of students had no familiarity 
with pedagogical agents comprised of embodied computer characters, but they were 
all familiar with the pictorial representation of naturalistic characters. 
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2.3   Characters’ Visual Appearance and Pedagogical Role 

In Haake & Gulz [3], a theoretical framework is defined to evaluate user’s EPA 
choice along three design aspects: visual static appearance, communicative style, and 
pedagogical role. In this article, we chose to evaluate the impact of two components 
of visual static appearance (degree of detail, degree of naturalism) in relation to the 
EPA’s pedagogical role and the communicative style. The results enable comparison 
with Haake & Gulz’s study as to the user’s preferences, according to the age of the 
child-participants.  

One contribution of this paper is that our participants differ from the Haake & 
Gulz’s study in culture, and more especially in age: they do not belong to the same 
Piagetan stage of cognitive development [12], nor to the same stage in Acuff and 
Reiher’s categorization [13]. Children aged 11-15 years relate more strongly to more 
realistic characters, preferring realistic to fantasy worlds [13], and are able to use 
abstract thinking to solve problems [12]. According to Piaget [12], children aged 7-11 
(within the concrete operational stage) can think logically, but not abstractly. Whilst 
they can distinguish between reality and fantasy, they are developing beyond a stage 
where perception is dominant, and thus potentially misled by what they see. Accord-
ing to Acuff & Reiher [13], the youngest of our age group participants are leaving the 
‘emerging/autonomy’ stage to enter the ‘rule/role’ one. They are no longer dominated 
by a world of fantasy and magic, where there was a need of stimulation associated 
with comfort and love. By the age of 8, their interest shifts gradually from fantasy to 
reality.  

For this reason, when considering the degree of naturalism, we chose to investigate 
the impact the level of anthropomorphism in the design versus a character based on a 
smiley face. This should help gauge children’s interest in interacting with an EPA that 
is more fantasy-like (smiley-shaped), or more redolent of the real world (humanoid-
shaped). The use of children and teachers as participatory-design partners in the de-
sign of the EPA’s visual appearances for the study will aid in producing a sample of 
EPAs comprised of graphical components both familiar and appealing to children of 
this age. 

Visual Appearance: Detailed vs. Simplified, Naturalistic vs. Stylized characters 
The format of the pictorial representations to be utilized in this study arose out of a 
participatory design session with 2 teachers and 20 children aged 7-11, different from 
the child population used thereafter in the study. 

During the participatory design sessions the children first perused a collection of 
pictures taken from Internet picture databases on learning companions and the comic 
literature. Each child then designed their own instructor and a learning companion. 
All of the children chose and drew female characters as instructors. When  
interviewed, they explained that the picture should be as similar to their teacher as 
possible. The participating school consisted entirely of female teachers, and therefore 
we chose to propose only one type of humanoid character for the instructor, with a 
female gender. However, when defining the learning companion, the children drew a 
mixture of female and male child characters, similar to their age. Therefore two char-
acters will represent each naturalistic condition for learning companions, one of male 
and of female gender. 
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The expressive style for the stylized characters is based on Peanuts [15] character-
istics: simplified, whimsy and humoristic, occupying the bottom right corner of 
McCloud’s design space of iconography [11]. On the contrary, the naturalistic charac-
ters’ expressive style is based on ‘Mangas’ and French Comics: cute, emotional, 
friendly, which is higher up and to the left border of McCloud’s diagram. A majority 
of French child design partners read the comics Cédric [16], or watch its everyday TV 
animated movie adaptation, and relate this to children’s everyday life stories at 
school. Consequently, at the end of the participatory design session, the participants 
selected Cédric and his friend Chen for the naturalistic-styled learning companion.  

Figure 1 illustrates the sets of characters the children had to choose from: the four 
characters grouped on the left representing the teacher/instructor characters, and the 
group on the right representing the learning companions. 

Two approaches were taken to the design of the characters used in the study:  
varying the axis ‘degree of naturalism’, and the ‘degree of detail’. Characters 1, 3, 6, 
and 8 made use of a stylized (smiley-shaped) representational form, while the other 
characters (2, 4, 5, 7, 9, 10) made use of a naturalistic one (humanoid-shaped). The 
characters are again separated in terms of level of detail, with the top row  
3D-rendered and detailed, and the bottom row 2D-rendered and simplified. 

 

 

Fig. 1. The four sets of characters used in the study: each different in pedagogical goal and 
visual appearance 

Pedagogical Role: Instructor/Teacher vs. Learning Companion 
From the categorization of EPA roles in the literature [3, 17], and the studies  
undertaken on their impact on ITS [4], we chose to investigate two different EPA 
pedagogical roles: 

- An EPA representing an authoritative instructor, with an instructional role of 
‘expert’ as defined in [4], and mainly task-oriented as designed in [18]. 
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- An EPA representing a non-authoritative, collaborative learning companion, 
with a ‘mentor’ instructional role, and a combined task-and-relation-oriented 
communicative style. 

The two scenarios of use differed in the interaction with the EPA, but were equal in 
terms of pedagogical goal and activity architecture: the children could either choose 
one multiplication (level 1) or all multiplication tables (level 2) simultaneously to test 
their knowledge against. The only restriction in the game was to choose a unique 
activity to perform within level 1 and level 2 activities. Each visual representation of 
the characters was investigated in the scenarios, the interface modulated to integrate 
their design. 

2.4   Research Hypotheses 

The following hypotheses were studied in this experiment:  

Table 1. Hypothesis for the research study 

Hypothesis 1 
Ho1: There is no difference in the number of learning companions versus instructors,  
preferred as an EPA. 
H1: Children will choose the learning companion more than the instructor as the software 
EPA. 
Hypothesis 2 
Ho2: When introduced as a learning companion, there is no difference in the number of 
EPAs being chosen with a humanoid-shaped or smiley-shaped appearance. 
H2: The learning companion version will yield a preference for a smiley-shaped EPA. 
Hypothesis 3 
Ho3: When introduced as an instructor, there is no difference in the number of EPAs being 
chosen with a shaped-shaped or smiley-shaped appearance. 
H3: The instructor version will yield a preference for a humanoid-shaped EPA. 
Hypothesis 4 
Ho4: When introduced as a learning companion, there is no difference in the number of 
EPAs being chosen with high or low levels of detail. 
H4: The learning companion version will yield a preference for an EPA with low levels of 
detail. 
Hypothesis 5 
Ho5: When introduced as an instructor, there is no difference in the number of EPAs being 
chosen with high or low levels of detail. 
H5: The instructor version will yield a preference for an EPA with low levels of detail. 

 
Hypothesis 1 relates to the children’s final choice, at the end of the session, after 

using both instructor and learning companion conditions. The hypothesis is  
concerned with the children’s overall preference for either an instructor or learner. It 
is separated from the other hypotheses, and based on Acuff & Reiher’s definition of 
a developmental stage [13], where children still need support and comfort, and  
respond more positively to working with a digital peer than an instructor telling them 
what to do. 
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Hypotheses 2 to 5 were drawn from theoretical work, field observations when 
working with our participatory-design partners in the definition of the pictorial  
representation, and children’s reactions in usability studies with participants of the 
same age group in the design process of the Multipliotest software design. H4 and H5 
follow McCloud’s theoretical framework [11] where simplified characters amplify the 
meaning of an image, such as the character’s affective components, and therefore 
afford more powerful social-emotional communications. This may help in the rational 
aspects of the EPA presented. 

2.5   Experimental Design and Procedure 

The participants were presented with both versions of the Multipliotest ITS aimed at 
helping children learn multiplications: one version with an instructor, and another 
with a learning companion. The order in which they accessed software was counter-
balanced (half of them beginning with the instructor and then the companion, and vice 
versa). When in front of the software, the children were to choose a character as their 
EPA given the choices presented in Figure 1, and then performed an activity. They 
then followed the same procedure for the other condition. Finally, they were  
requested to choose the EPA they preferred, and explain why it was more appealing to 
them. In this experimental manipulation, the factors ‘pedagogical role’, ‘degree of 
detail’ and ‘degree of naturalism’ of the characters act as independent variables, and 
the user’s choice acts as the dependent variable. 

3   Results 

3.1   Hypothesis 1: Choice of EPAs in ITS: Instructor or Learning Companion? 

A Chi-square ‘goodness to fit’ test demonstrates that there is a significant difference 
(χ2=22.512, df=1, p < 0.001) between the expected and observed frequencies, which 
rejects Ho1: children prefer EPAs in the role of learning companions when working 
on Multipliotest. 

Table 2. Τest data representing the final choice between instructor and learning companion 

Instructor Companion  Total 
21 65 86 

 

3.2   Hypotheses 2 to 5: Associations of Pedagogical Role and Visual Static 
Appearance 

The test data concerning hypotheses 2 to 5 can be presented in frequencies in a three-
dimensional contingency table categorized by the variables: pedagogical role (P), 
visual style: degree of detail (D), and visual style: naturalism (N). 
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Table 3. Test data categorized by the 3 variables: P, D, and N 

  Naturalism  
Pedagogical Role Detail Naturalistic Stylized Total 
Instructor Detailed 5 18 23 

 Simplified 61 2 63 
 Total 66 20 86 

Learning Companion Detailed 0 1 1 
 Simplified 5 80 85 
 Total 5 81 86 
 Column Total 71 101 172 

 
Hypotheses 2 and 3: Association of Pedagogical Role and Level of Naturalism 

 

With the data separated into the two different pedagogical roles of instructor and 
companion, a Chi-square ‘goodness to fit’ test revealed a significant difference in the 
choice of humanoid-shaped/smiley-shaped visual appearance for both pedagogical 
roles.  

We reject Ho2 and Ho3: The instructor version yields a preference for a humanoid-
shaped agent (χ2=24.605, p <0.001), and the learning companions for a more smiley-
shaped appearance (χ2=67.163, p < 0.001). 

Hypotheses 4 and 5: Association of Pedagogical Role and Degree of Details 
 

With the data separated into the two different pedagogical roles of instructor and 
companion, a Chi-square ‘goodness to fit’ test revealed a significant difference in the 
degree of detail chosen in the visual appearance for both pedagogical roles.  

We can see in Table 3 that for the case of a learning companion, all but one child 
chose the simplified version of the companion, represented in Figure 1 by the  
characters 8, 9, and 10.  

We reject Ho4 and Ho5: The instructor  (χ2=18.605, p<0.001) and the learning 
companion (χ2=82.046, p< 0.001) versions yield a preference for agents with low 
levels of detail.  

4   Analysis and Discussion 

4.1   Hypothesis 1: Choice of Pedagogical Role for EPAs in ITS 

At the end of the study the children were asked to provide rationales for the selection 
of the EPA with the pedagogical role they most preferred using within Multipliotest: 
instructor or learning companion.  

The results (H1) show a statistical preference in children’s choice of learning  
companion as EPAs. The reasons behind this choice given by the participants were 
that they could relate more to the learning companion, and ‘trusted’ the characters to 
help them. The instructors were seen as too formal as characters, and most children 
felt ‘judged’ by them. 

Children’s preference for a ‘peer’ feature to a more formal “instructor” one is in 
line with Acuff & Reiher’s [13] categorization of children by developmental stage 
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with children aged 7-11 years: they prefer to work in pairs or in groups, and this holds 
here even though the peer is not physically with them, but digitally represented.  

Teacher’s interviews on the subject revealed that the instructor figures probably 
represented themselves to the children, along with their style of interaction during a 
learning session: In their class, when children work in groups they help each other; 
while when interacting with their instructor, at the teacher’s intervention, they only 
follow the teacher’s instructions and advices, but are not looking for extensive and 
individualized help. 

4.2   Hypothesis 2 and 3: Association of Pedagogical Role and Level of 
Naturalism 

The evaluation of H2 and H3 revealed that children conveyed a preference for more 
naturalistic instructors (humanoid-shaped), and stylized learning companions as 
EPAs.  

Children’s preference for more stylized learning companion is coherent with the 
results of H2 in Haake & Gulz’s study [3]. However, unlike their non-significant 
result when considering the instructor separately, we have here significant results: 
more naturalistic visual appearance is preferred. This could be related to the  
difference in experimental design: in this reported study, children chose the characters 
while distinctively knowing their role, the characters displayed were not the same in 
each condition, and were especially designed with this role in mind. For this reason, 
children may have adopted more naturalistic instructors to be closer to the more  
formal social role of the instructor, i.e. closer to the reality of the class teacher.  

Similarly, the choice of more stylized (smiley-shaped) learning companion could 
be explained by children’s view of the EPA in a more relational social role, like an 
imaginary friend that needs to be more imaginary than realistic. This corresponds with 
Reeves and Nass’s [20] Media Equation theory of transference of real world relational 
strategies into a ‘virtual world’ – aka computerized learning environment.  

The choices made could also relate to the age group of the study participants.  
Children of this age frequently watch animated movies or read comics, where the 
simplification of details emphasize the meaning or semantic association of the images 
[11], therefore bringing the user closer, or more associated with the learning compan-
ion, and keeping a sense of fantasy, detaching themselves from a totally realistic set-
ting unlike older children. 

4.3   Hypothesis 4 and 5: Association of Pedagogical Role and Degree of Detail 

The evaluation of H4 and H5 revealed that children conveyed a preference for simpli-
fied characters for both pedagogical roles. Children’s preference for more simplified 
agents may relate to McCloud’s theory [11] that such design characteristics empha-
sizes social-emotional expression, and facilitate self-identification and immersion into 
the character of the story.  

Results for H3 and H5 concerning the learning companion also correspond with the 
field observations of Haake & Gulz’s study [3], that when the EPA is associated to a 
‘friend’, they tend to select more simplified and cartoonish characters rather than a 
more detailed and naturalistic one. 
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5   Conclusion and Future Work 

This paper reports interesting findings related to the preferences of 7 to 11 year old 
French children on the appearance of EPAs, according to two pedagogical roles:  
instructor and learning companion. 

Some results in this study were similar to Haake & Gulz’s study [3] on older  
children from a different nationality, such as the preference of more stylized EPAs as 
learning companion agents (H2). Other results, however, seemed specifically related 
to our participants’ age group or cultural background (H4, H5), and school learning 
practices (H1). 

Several potential limitations of the study relate to the scope and generality of the 
results. One limitation is that the children tested the interaction with the agent for a 
limited amount of time, and within a specific scenario. Although the study is similar 
in scope to other studies in this area, in advance of making claims about the generality 
of the results, further studies over a longer time period, and under different conditions 
of use are necessary. Furthermore, only two pedagogical roles have been studied here, 
and it would be interesting to investigate other roles used in the design of EPAs 
within ITS applications. Validity of the study results may also be limited to the design 
of EPAs for French children aged 7 to 11 years, a replication of this study with  
different user groups (in age and/or culture) may produce different results.  It is also 
necessary for us to undertake further studies to identify the impacts of the different 
factors of visual appearance and any associated actions of the characters. 

Other future work includes investigating age and gender differences in choices of 
EPA’s appearance, actions and pedagogical roles. We believe this work in the design 
of EPAs for ITS may result in EPAs that are more appropriate for the children. 
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Abstract. The purpose of the current study is to test whether we could create a 
system where students can learn by teaching a live machine-learning agent, 
called SimStudent. SimStudent is a computer agent that interactively learns 
cognitive skills through its own tutored-problem solving experience. We have 
developed a game-like learning environment where students learn algebra equa-
tions by tutoring SimStudent. While Simulated Students, Teachable Agents and 
Learning Companion systems have been created, our study is unique that it 
genuinely learns skills from student input. This paper describes the overview of 
the learning environment and some results from an evaluation study. The study 
showed that after tutoring SimStudent, the students improved their performance 
on equation solving. The number of correct answers on the error detection items 
was also significantly improved. On average students spent 70.0 minutes on tu-
toring SimStudent and used an average of 15 problems for tutoring.  

Keywords: SimStudent, Learning by teaching, tutor-learning effect, algebra 
equation solving, machine learning. 

1   Introduction 

There is ample evidence that students learn when they teach their peers [1]. Such an 
effect of tutor learning has been observed across different subjects, age groups, format 
of tutoring, and so forth. Yet, little is known about when tutors’ learning would be 
facilitated and why. A scientific contribution of the current study is at our exploratory 
effort to study cognitive and social factors for tutor learning. Even when tutor  
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learning is effective, there are practical difficulties to exercise peer tutoring in an 
actual classroom – not only would it be time consuming (the students must take turns) 
but, also, the tutees might not learn as much as tutors do. Thus, on the engineering 
side of our contribution, building an effective and efficient learning environment that 
facilitates tutor learning is one of our primary research goals.  

We have developed a game-like learning environment where students learn by in-
teractively tutoring a computer agent, called SimStudent. SimStudent is a machine-
learning agent that learns cognitive skills from examples and through its own tutored 
problem-solving experiences [2]. Our long-term research goal is to investigate the 
effect of tutor learning with SimStudent as a teachable agent.  

The aim of this paper is to provide an overview of our learning by teaching system 
and discuss results from an evaluation study. The primary research question in the 
current paper addressed whether or not the students learn by teaching SimStudent at 
all, and if so, how effective the system is.  

2   Learning by Teaching 

2.1   Type and Domain of the Proposed Learning by Teaching Environment 

The effect of tutor learning has been studied in many different domains, across ages, 
and in various tutoring settings [3]. Various forms of tutoring have been observed 
including reciprocal teaching [4] and collaborative passage learning [5]. The effect of 
tutor learning has been observed for all age groups including college [6], high school 
[7], middle school [8], and elementary school students [9]. The tutor learning effect 
has been shown to be relatively more effective in math than reading [3, 10].  

In the current study, we focus on one-on-one tutoring where a single student acts as 
a tutor and a computer agent plays the tutee’s role. Although the SimStudent technol-
ogy and the overall framework of the proposed learning environment are domain 
independent, the current learning system is built for algebraic linear equations – one 
of the more challenging subjects in mathematics.  

2.2   Related Studies 

There have been a number of simulated students (also called teachable agents) devel-
oped so far [11-14]. VanLehn et al. [11] developed one of the earliest simulated stu-
dents and demonstrated its benefit for teacher training in physics. Betty’s Brain [15] 
and its variations are the most recent examples of a teachable agent used to study the 
tutor learning effect. Betty’s Brain learns causal relations from a conceptual map 
created by student by entering nodes (each representing a concept) and links (each 
representing a causal relation among the concepts). Students can also quiz Betty’s 
Brain with a problem asking a causal relation (e.g., “If dead organisms increase, what 
happens to the animals?”).  

While Simulated Students, Teachable Agents and Learning Companion systems 
have been created, some were never used with real students and others do not genu-
inely learn from student input. While the VanLehn's system [11] incorporated ma-
chine learning and could be used for theory generation and to analyze instructional 
materials, it was not designed for use with students. On the other hand, while Betty's 
Brain has been used extensively by students and subject to numerous evaluations, it 
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does not have a machine-learning component. Students teach Betty's Brain by editing 
a concept map, but the system does not learn from the concept map any more than 
making straightforward inferences from following the links in the map. This paper 
provides perhaps the first demonstration of a machine learning system being used as a 
teachable agent by real students and with significant pre-to-post learning outcomes. 

3   SimStudent as a Teachable Peer Learner 

3.1   Overview of SimStudent 

The underlying technology for SimStudent’s learning is inductive logic programming 
in the form of programming by demonstration [16, 17].  

There are two learning strategies implemented for SimStudent so far – learning 
from examples and learning by tutored problem solving [18]. The learning strategy 
used for the current research context is learning by tutored problem solving, which 
requires a tutor agent that interactively tutors SimStudent. The tutor agent first poses 
a problem for SimStudent to solve. To solve the problem, SimStudent attempts to 
apply production rules that are already learned. When a rule is applied (i.e., a step is 
performed), the tutor agent provides flagged (binary) feedback that merely shows a 
correctness of the rule application. When the feedback is negative (regardless of the 
accuracy of this tutor feedback), SimStudent attempts to apply another rule.  

When SimStudent cannot perform a step “correctly,” then SimStudent asks the tu-
tor agent for a hint about what to do next.1 The tutor agent then demonstrates the step 
for SimStudent as a hint, which is equivalent to a so-called bottom-out hint.  

SimStudent learns skills by generalizing the examples demonstrated. There are two 
types of examples: a positive example is generated either when the tutor agent pro-
vides affirmative feedback on a step that SimStudent performed, or when the tutor 
agent demonstrates a step as a hint. A negative example is generated when SimStu-
dent receives negative feedback from the tutor agent on a step that SimStudent per-
formed. As a result of generalization, SimStudent generates a production rule that 
covers all positive examples (i.e., an application of the rule yields the same step men-
tioned in a positive example) but does not cover any of the negative examples. In 
other words, SimStudent generates a set of production rules sufficient to solve prob-
lems that share the underlying domain principles that have been demonstrated. 
SimStudent is given a set of background knowledge that allows SimStudent to inter-
pret the examples. See [18] for details of the SimStudent learning algorithm. 

Although, the SimStudent’s learning algorithm is domain independent, we use al-
gebra equation solving for the current study. In a particular tutoring interface used in 
the current study (as shown in Fig. 1), a single equation-solving step is implemented 
with three tutoring steps that are modeled with two skills. For example, 3x+2=8 is 
transformed into 3x=6 by subtracting 2 from both sides, which, by definition, is a 
single equation-solving step. In our tutoring interface, this equation-solving step con-
sists of (a) specifying a transformation skill, which in this case is “subtract 2,” and 
(b) typing in a left- and a right-hand side of the transformed equation. The tutoring 
                                                           
1 The correctness of the step, by definition, is determined by the feedback from the tutor agent. 

Thus, SimStudent could fail to perform a step “correctly” when the tutor agent disconfirms 
the step regardless of the true correctness of the rule application.  
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interface thus has three columns (two under “Equation” and one under “Transforma-
tion”), corresponding to these three steps.  

The above-mentioned examples are accumulated for each of the skills demon-
strated. In other words, when a step is demonstrated, it must be annotated with a skill-
name. Such annotation drastically reduces the complexity of the search space when 
learning rules. There is another piece of information that improves the search – the 
focus of attention (FoA, for short), which is knowledge about where to pay attention 
when performing a step. When tutoring SimStudent, an FoA specifies the elements on 
the tutoring interface. In the tutoring interface shown in Fig. 1, FoA is a set of cells 
representing either the left- or right-hand side of an equation, or a transformation. 
Technically, the FoA composes the left-hand side of a production rule encoding a 
pattern matching for a rule application. Without FoA, SimStudent must search for 
such a pattern matching, which significantly increases the search complexity.  

 

 

Fig. 1. Learning by Teaching environment. Worked-out examples appear in the interface by 
clicking the [Example 1,2, and 3] tabs at the top of the interface. SimStudent is called Lucy in 
this example. 
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An earlier pilot study showed that asking students to annotate a skill name each 
time they demonstrate a step is unnatural and confusing. Likewise, asking the students 
to specify FoA is not practical. Thus, in the current learning by teaching environment, 
both skill names and FoA are implicitly provided to SimStudent using domain de-
pendent ad-hoc heuristics. When a transformation skill is performed, a skill-name is 
given as the same name as the transformation (e.g., “subtract”). When a type-in skill 
is performed following a particular transformation, a skill-name is given as a combi-
nation of the transformation and a fixed post-fix (e.g., “subtract-typein”). An FoA for 
a transformation skill is always the left- and right-hand sides of the equation, upon 
which the transformation was applied. An FoA for a type-in skill is the immediate 
transformation skill and the equation on which the transformation skill was applied.  

3.2   Learning-by-Teaching Environment 

Fig. 1 shows a screenshot of our Learning-by-Teaching learning environment (the 
LBT environment, for short). As shown in the figure, the LBT environment is com-
posed of (1) a tutoring interface, (2) a Curriculum Browser, (3) example problems, 
(4) a communication window, (5) a SimStudent avatar, called Lucy in this example, 
and (6) the buttons to control the flow of tutoring. SimStudent and the student share 
the tutoring interface. 

In the LBT environment, a student performs the role of the tutor agent mentioned 
in section 3.1. The goal of the LBT environment is to tutor SimStudent well enough to 
pass the quiz, which provides a bit of the flavor of an on-line game to the LBT  
environment.  

To pose a problem for SimStudent to solve, the student simply enters an equation 
into the tutoring interface, and clicks the [Solve the Equation] button. The communi-
cation window, the box next to the SimStudent avatar, is used to display a message 
from SimStudent (e.g., a request for feedback on a step performed or a request for a 
hint). The student provides feedback by clicking on a [Yes]/[No] button that also 
appears in the communication window. To provide a “hint,” the student simply  
performs a step in the tutoring interface.  

One obvious question is “What if the student cannot provide a hint?” We have two 
supporting materials for the student to prepare for tutoring. The Curriculum Browser 
shows an overview of the curriculum to learn (“equations with variables on both 
sides,” in the current study). It has descriptions on the goal of the subject, skills to be 
learned, and an example that explains how to solve a typical problem. The Curriculum 
Browser appears when the student clicks on the [Curriculum Browser] button. A set 
of examples is also available when the [Example] button is clicked. Unlike the exam-
ple in the Curriculum Browser, these examples are shown inside the tutoring interface 
with the exact tutoring steps. Thus, the student can learn how to use the tutoring  
interface as well.  

4   Evaluation Study 

To evaluate the LBT environment, we have conducted a lab study. This section de-
scribes the details of the study and the results.  



322 N. Matsuda et al. 

The goal of the study is to measure the degree of tutor learning (the effectiveness) 
and the efficiency and usability of the system. The effectiveness of the study was 
measured as learning gain using pre- and post-tests. For the efficiency and usability, 
we conducted a protocol analysis by video-recording the full learning sessions. 

4.1   Method 

The study involved 12 students ranging from 6th to 8th grade. The participants were 
recruited from local middle schools for monetary compensation.  

All 12 participants followed the same procedure. The total of 12 study sessions 
were run individually. Before a study session began, an experimenter explained to a 
participant that for the whole study session was to think aloud. During the study ses-
sion, the experimenter gave an occasional prompt to the participant to think aloud.  

The participant first took an on-line pre-test (the details of the test are described in 
the next section). The pre-test took 46 minutes on average. The participant then 
watched a 10-minute video to learn how to use the LBT environment. Next, the par-
ticipant was told the goal of the study session – to have Lucy (the name of SimStu-
dent in this particular study as shown in Fig. 1) pass the quiz. The participant then 
tutored Lucy. After an hour, the experimenter told the participants that they were 
welcome to quit the session if they wanted even when Lucy had not passed the quiz.  

Finally, the participants took a post-test. The pre- and post-tests were isomorphic, 
and the difference in the tests was counter-balanced across the participants. After the 
post-test, all of the participants completed a post-study questionnaire (due to space 
limitations, we will not discuss the results of the questionnaire in this paper).  

All of the study sessions, including the pre- and post-tests as well as the tutoring 
sessions, were video recorded. The participants’ activities during the tutoring session 
were logged into an open data repository, called DataShop, maintained by the Pitts-
burgh Science of Learning Center [19].  

4.2   Study Materials 

The pre- and post-tests were implemented as on-line tests authored using the Cogni-
tive Tutor Authoring Tools. When taking a test, the participants were given a piece of 
paper to write down their work. 

The on-line test consists of question items for (1) equation solving, (2) term identi-
fication, (3) what to do next, (4) equivalent expressions, and (5) error identification. 
The equation solving items are to solve equations (e.g., –3y+6 = 8+5y) on paper and 
then only enter the final answer (e.g., y = –1/4) into the on-line test form. The term 
identification questions are to identify variable and constant terms in a given  
expression (e.g., 3 = 4 – 5b). There are six term-identification questions, which are 
implemented as multiple-choice questions with six or seven choices. The what-to-do-
next questions are to identify an appropriate next step for a given equation. There are 
three what-to-do-next questions, are implemented as multiple-choice questions with 
four choices. The equivalent expression questions are to find an expression that is 
equivalent to a given expression (e.g., 4x+3). There are two equivalent-expression 
questions, which are implemented as multiple-choice questions with five choices. The 
error identification questions are to identify the incorrect step in a given worked-out 
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example of equation solving. The participants are also asked to provide a reason why 
the step is incorrect in a free text response. An error-identification question is scored 
as correct when the incorrect step is correctly selected and the corresponding reason is 
correctly provided. There are five error-identification questions with four to six steps.  

4.3   Results 

This section shows the participants’ learning outcomes, the analysis of the tutoring 
activities, and a qualitative analysis of the participants’ think aloud protocols, which 
were recorded during the tutoring sessions.  

4.3.1   Overall Learning Gain 
We first compared the overall test scores, which were computed as a percent of cor-
rect answers to the total number of question items on the test. There was no main 
effect on the test (pre- vs. post-) for the overall test scores – average 0.58 on pre-test 
and 0.61 on post-test (paired-t=2.36, p=0.29). There was, however, a main effect 
found on the test for the equation solving (the average number of equations solved 
correctly increased from 1.5 out of 6 for pre-test to 2.5 for post-test; paired-t=2.36, 
p=0.03) and for the error identification test items (average of 1.38 out of 5 correct on 
pre-test and 2.63 correct on post-test; paired-t=2.36, p=0.01). 

After tutoring SimStudent, the participants had improved their skills with solving 
equations and identifying errors in given solutions, although their conceptual under-
standing related to equation solving (i.e., the scores on the term identification and 
equivalent expressions test items) did not improve significantly.  

4.3.2   Students Activities  
In addition to the test scores, we have analyzed the activity logs recorded during the 
sessions. At the beginning of the experiment, there was a technical issue in logging 
and we excluded the first five participants from the activity analysis.  

On average, the participants spent 70.0 minutes tutoring SimStudent. On average, 
the participants posed 15 problems to SimStudent. Five out of six participants re-
viewed examples an average of 7.8 times (counted as the number of times they 
switched the examples in the tutoring interface). Given that most of the participants 
did not actually know how to solve equations, these results show effectiveness of the 
LBT environment.  

SimStudent requested hints 31.8 times on average during a single tutoring session.  
SimStudent applied rules and asked for their correctness 79.5 times on average. Fi-
nally, the participants quizzed SimStudent 4.3 times on average. In average there were 
1.6 interactions per minutes during the tutoring sessions, which indicates that the 
participants were actively involved in the LBT environment.  

4.3.3   Protocol Analysis 
To see differences in tutoring activities among the students who improved their per-
formance in equation solving and those who did not, we performed a protocol analy-
sis with the videos taken during the tutoring sessions. We divided the students into 
three categories: those who showed significant improvement on the equation solving 
test-items (SI in Table 1), those who showed moderate improvement (not included in  
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Table 1), and those who 
showed minimal improve-
ment (MI). The number of 
the equation solving test-
items correctly solved by SI 
and MI students are shown 
in Table 1. Recall that there 
were six equation-solving 
items on each of the tests.  

It turned out that the SI students used equations in the examples and quiz items for 
tutoring more often than the MI students. The SI students often copied those equations 
to tutor SimStudent, hence more likely tutored SimStudent correctly. On the other 
hand, the MI students tended to make equations by themselves and failed to solve 
them correctly. One particularly interesting finding is that being able to pose equa-
tions for tutoring is one task, but being able to solve them is another. When making a 
new problem, one of the MI students always started with a number in his mind and 
some arithmetic to make another number and then performed those operations to 
construct an equation. For example, he said, “I’ll start with 4, that is an x. If I multiply 
it with 3, I get 12. I’ll add 5, which is 17. So, 3x+5 = 17. This is the equation.” How-
ever, he could not solve equations by reverse engineering them when he did not know 
the “starting” place.  

Another interesting comparison is that the SI students went back and forth between 
examples and the Curriculum Browser contents when they got stuck more often than 
the MI students did. On the other hand, the MI students did not seem to learn much 
from the examples and the contents of the Curriculum Browser. The SI students also 
tended to pose the exact same problems used in the Quiz and examples to tutor 
SimStudent, so that students could at least show SimStudent what to do next without 
getting stuck.  

5   Discussion 

5.1   Learning by Teaching SimStudent 

Overall, the students in the evaluation study did improve their skills in equation solv-
ing after tutoring SimStudent for about 70 min in average. A purpose of the evalua-
tion study was to see if the students learn by teaching SimStudent at all, and so we did 
not compare learning by teaching with other existing interventions. We plan to con-
duct a further study to compare learning by teaching with learning by being tutored, in 
which an existing Algebra I Cognitive Tutor will be used for the control condition.  

5.2   Low Proficiency Students Do Not Learn from Examples 

The protocol analysis often showed that the participants with low proficiency on 
equation solving often got stuck when providing a hint in response to SimStudent’s 
request for what to do next. It is particularly interesting to see that participants could 
pose a problem for tutoring, but could not solve it (as mentioned in 4.3.3).  

Table 1. Number of correctly solved equation-solving test 
items. There were six equation-solving questions.  

 Pre-test Post-test Category 
Student A 0 3 SI 
Student B 1 3 SI 
Student C 0 0 MI 
Student D 1 1 MI  
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The current LBT environment is designed to encourage students to ask a classroom 
teacher or consult a textbook when they get stuck. The learning environment also has 
the Curriculum Browser and example problems. However, it turned out that these 
supplemental materials are not enough for some of the low proficiency participants. In 
particular, these participants apparently needed more direct instruction (as opposed to 
learning from worked-out examples) on how to solve equations.  

5.3   How Would SimStudent’s Prior Knowledge Affect Tutor Learning? 

The current evaluation study used a version of SimStudent that starts with a “tabula 
rasa.” Namely, it does not know anything about equation solving. Therefore, the stu-
dents must start with teaching very basic equations (i.e., one-step equations), which 
forces more time for tutoring. It would be worth investigating how the difference in 
SimStudent’s prior knowledge affects the tutor’s learning outcome. A related issue is 
has to do with the quality of SimStudent’s prior knowledge. A prior study shows that 
differences in the quality of the prior knowledge affects SimStudent’s learning in both 
speed and the types of errors made on the test [20], which would also affect the tutor 
learning.  

6   Conclusion 

In this paper, we presented an on-line, game-like learning environment where students 
learn algebra equations by teaching a computer agent, called SimStudent. A pilot 
study showed that the students did improve their performance on equation solving by 
tutoring SimStudent.  

The study did not confirm that students improved their conceptual understanding 
by teaching. It is an important open question how we could help students learn such 
conceptual knowledge by teaching. We plan to conduct a series of studies in actual 
classroom settings, including a self-explanation study where SimStudent will ask the 
student to provide justifications for the student’s tutoring activities. Such self-
explanation might facilitate conceptual understanding during teaching.  

In the current study, we only focus of equation solving. Both the architecture of the 
LBT environment and the learning algorithm of SimStudent are domain generic. 
Thus, we can apply the proposed framework to other domains to study a generality of 
the tutor learning effect.  
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Abstract. We report the results of a randomized controlled evaluation of the  
effectiveness of pedagogical agents as providers of affective feedback. These 
digital learning companions were embedded in an intelligent tutoring system for 
mathematics, and were used by approximately one hundred students in two 
public high schools. Students in the control group did not receive the learning 
companions. Results indicate that low-achieving students—one third of whom 
have learning disabilities—had higher affective needs than their higher-
achieving peers; they initially considered math problem-solving more frustrat-
ing, less exciting, and felt more anxious when solving math problems.  
However, after they interacted with affective pedagogical agents, low-achieving 
students improved their affective outcomes, e.g., reported reduced frustration 
and anxiety. 

Keywords: Affective feedback, pedagogical agents, special needs populations. 

1   Introduction 

Effective teachers regularly address students’ emotional states and social backgrounds 
[1]. If tutoring systems are to interact naturally and supportively with students, they 
need to provide an environment that recognizes affect and expresses socio-emotional 
competence to address affective challenges and fluctuations in individual affective 
states. In recent years, researchers have made significant improvements in modeling 
students’ affect [2, 3, 4, 19]. While progress has been made, very little empirical re-
search has been conducted on how digital learning environments should respond to 
individual students’ affect and how differences among students impact this process; 
yet for exceptions, see [5, 6]. 

Within digital learning environments, animated pedagogical characters have the 
potential to support students by engaging them through social interaction. Up until 
now, the use of pedagogical agents has mainly focused on the cognitive rather than 
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affective aspects of learning [7]. 
While some effort has been made to 
create affective agents [8, 9], evalua-
tion of their impact in schools is still 
preliminary.  

Here, we report on an evaluation of 
pedagogical agents with about 100 
students in two rural, public high 
schools in the northeastern U.S. We 
focus on the impact of affective learn-
ing companions on low achieving 
students (including ones with disabili-
ties) and begin with a description of 
how such students need affective 
support when learning math. We then 
describe the test bed tutoring system, the learning companions, and the experiments. 
We present the results and conclude with a discussion of implications for intelligent 
tutoring systems. 

2   Learning Disability and Low Achieving Students: Affective 
Needs 

Classroom interventions (e.g., providing extra time on tasks, peer tutoring) that are 
effective for students with learning disabilities (LD) are difficult or impossible to 
sustain in classrooms without additional instructional support, something that schools 
are increasingly unable to provide due to budgetary constraints. Currently, students 
with learning disabilities who require extra resources comprise 13% percent of stu-
dents in USA [10]. To the extent that these students are not being educated to their 
full potential, there is a large negative impact not only in the lives of these students 
but on society at large. 

The under-achievement of students 
with LD in math does appear to have a 
biological basis, and there is evidence 
that many of these students have diffi-
culties with working memory, execu-
tive control and procedural knowledge 
[11, 12]. As a result, many students 
with LD may persist in using counting 
strategies (e.g., finger counting) long 
after their typically achieving peers 
have switched to retrieving answers from memory [13], taking longer to solve math 
problems and performing poorly in math class and high-stake tests [14]. Students with 
LD develop more negative feelings towards math, choose less advanced math classes 
in high school and are later under-prepared for science and math careers. LD is a 
complex multi-factor problem and most educational institutions do not have the tools 
needed to provide cost-effective instruction tailored to each individual. 

 

Fig. 1. The Wayang Tutor with Jane, the fe-
male affective learning companion 

 

Fig. 2. Student’s emotion self-reports within 
the tutor 
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Since low achieving students (both with and without disabilities) struggle with 
math, our conjecture was that all low achievers could require additional affective 
support. Thus, the first goal of the current study was to examine the affective needs of 
both low achieving and learning disability students in our data (15% of subjects). For 
the purpose of this paper we did not separately analyze differences between low-
achieving and learning disability, because as a starting point we wanted to analyze 
what kind of support all low achievers require.  

Table 1. Affective self-reports of high-achieving vs. low-achieving students prior to tutoring 

Affective Criterion 
Means, standard deviations and  

between-subjects test  
Low-achieving: N=64; High-achieving: N=43 

Self-concept of math ability 
(in comparison to other students, 

other subjects, 3 items) 

Low-achieving: M=3.2 SD=1.1 
High-achieving: M=4.1 SD=1.0 

***F(106,1)=18.2, p=.000 

How confident do you feel when 
solving math problems?  

Low-achieving: M=3.1 SD=1.3 
High-achieving: M=4.0 SD=1.3 

***F(105,1)=11.5, p=.001 

How frustrating is it to solve math 
problems?  

Low-achieving: M=3.6 SD=1.2 
High-achieving: M=3.0 SD=1.1 

** F(106,1)=7.6, p=.007 

How exciting is it to solve math 
problems? 

Low-achieving: M=2.2 SD=1.2 
High-achieving: M=2.7 SD=1.4 

*F(106,1)=3.64, p=0.05 

 
Data was collected and mean differences analyzed from a series of affective pretest 

questions given to students before tutoring, Table 1. The pretest covered general atti-
tudes towards math and learning, such as likes/dislikes of math, how much was math 
valued as important, and how students felt when they solved math problems (anxiety, 
confidence, frustration, boredom, excitement). Low-achieving students were defined 
as those who scored lower than median grade on the math pretest. One third of these 
low-achieving students had been previously diagnosed as having a specific learning 
disability in math or reading and had an Individualized Education Plan (IEP), a 
document that identifies a student's academic, physical, social and emotional needs. 
Most students with IEPs (95%) are part of this low-achieving group. Table 1 shows 
that low-achieving students disliked math more, valued it less, had worse perception 
of their math ability, and reported feeling worse when solving math problems. We 
now present our test bed application, Wayang Outpost. 

3   The Testbed Tutoring System: Wayang Outpost 

Wayang Outpost (“Wayang”) is an intelligent tutor that helps students prepare for 
standardized tests that assess general mathematic skills, see Figure 1 [16]. Problems 
are presented one at a time; each problem consists of the problem statement with four 
or five solution options directly below it. Students select an answer and the tutor pro-
vides immediate visual feedback by coloring the answer green or red, for correct or 
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incorrect respectively. Prior to or after selecting an answer, a student may ask for a 
hint, which Wayang displays in progression from general suggestions to the correct 
answer. In addition to this domain-based help, Wayang includes a wide range of 
meta-cognitive and affective support, delivered by learning companions; agents de-
signed to act like peers who care about a student's progress, and offer support and 
advice on how to improve student learning strategies. Wayang includes gendered and 
ethnically different companions allowing us to explore how the gender and the ethnic-
ity of the companion influences outcomes (e.g., learning, attitudes) [17]. The learning 
companions’ interventions are tailored to a given student’s needs according to 
Wayang’s affect and effort models embedded in the tutor.  The effort model provides 
information on the degree of effort a student invests in generating a problem solution. 
A linear regression affect model is used to assess a student’s emotional state; this 
model is derived from data obtained from a series of studies described in [17, 18].  

4   Affective Support Delivered by Wayang’s Learning 
Companions 

Learning companions deliver approximately 50 different messages emphasizing the 
malleability of intelligence and the importance of effort and perseverance (Table 2). 
The messages also include meta-cognitive help related to effective strategies for solv-
ing math problems and effective use of Wayang’s tools. Ultimately, the interventions 
will be tailored according to Wayang’s affective student model.  However, we are 
currently still validating the models and algorithms for deciding which intervention to 
provide and when, and thus relied on the effort model only to assign messages for this 
experiment. This section describes these interventions including attribution and strat-
egy training, as well as effort affirmation. 

The affective support provided by Wayang in this experiment was to train students 
motivationally, by emphasizing the importance of effort and perseverance and the 
idea that intelligence is malleable instead of a fixed trait [19]. The characters provided 
this support by responding to the effort exerted by students rather than to the student’s 
emotions.  Characters were either unimpressed when effort was not exerted, or simply 
ignored that the student solved the problem. They also offered praise to students who 
exerted effort while problem-solving, even if their answers were wrong, highlighting 
that the goal is to lessen the importance of performance in favor of learning.  

The characters were highly positive, in the sense that they displayed encouraging 
gestures (e.g., excitement and confidence). In a separate completed study, which is 
beyond the scope of this paper, characters behaviorally mimicked student self-
reported emotions, which is a form of a non-verbal empathetic response (e.g., learning 
companions appeared excited in response to student excitement, see Figure 2, right). 
In this experiment reported here, the companions occasionally expressed non-verbal 
behaviors of positive valence only, the underlying goal being to make them appear 
life-like and engaged, and to impart some of their enthusiasm to the students. The 
next three types of interventions described are verbal messages tailored according to 
Wayang’s modeling of students’ effort.  
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Table 2. Companions provided several responses based on student effort 

Type Sample message 

Attribution  
(General) 

I found out that people have myths about math, thinking that only 
some people are good in math. Truth is we can all be good in math 
if we try. 

Attribution  
(Effort) 

Keep in mind that when we are struggling with a new skill we are 
learning and becoming smarter! 

Attribution  
(No Effort) 

We will learn new skills only if we are persistent. If we are very 
stuck, let's call the teacher, or ask for a hint! 

Attribution  
(Incorrect) 

When we realize we don't know why the answer was wrong, it 
helps us understand better what we need to practice. 

Effort Affirmation  
(Correct No-effort) 

That was too easy for you. Let's hope the next one is more challenging 
so that we can learn something. 

Effort Affirmation   
(Correct Effort) 

Good job! See how taking your time to work through these questions 
can make you get the right answer? 

Strategic  
(Incorrect) 

Are we using a correct strategy to solve this? What are the different 
steps we have to carry out to solve this one? 

Strategic  
(Correct) 

We are making progress. Can you think of what we have learned in 
the last 5 problems?  

 
Attribution Interventions. Attribution theory proposes that students’ motivation to 
learn is directly rooted in their beliefs about why they succeed or fail at tasks [20]. If 
students can be taught to alter these beliefs, for instance to understand that failure is 
the result of a lack of effort instead of a lack of ability, then their motivation to learn 
and learning outcomes can be significantly improved [21]. For example: 

- General attribution messages encourage students to reflect about myths and math 
learning in general; 

- Effort attribution messages reinforce that effort is a necessary by-product of 
learning, and are specially tailored to situations where students are investing ef-
fort but are struggling; 

- No-effort attribution messages are 
more emphatic than the ones just 
mentioned; they are designed to 
help students realize that effort is 
necessary to learn, and generated 
when students are not investing ef-
fort; 

- Incorrect attribution interventions 
are generated to motivate students 
after they provide an incorrect re-
sponse, by re-formulating how they 
perceive errors. 

Effort-Affirmation Interventions. In contrast to the effort-attribution messages 
described above, which aim to change students' attitude towards effort during problem 
solving and are generated before the student actually starts problem solving, the ef-
fort-affirmation interventions acknowledge effort after students obtain a correct solu-
tion (see Table 2 for examples). These interventions include: 

 

Fig. 3. Jane, the female affective learning 
companion, and Jake, the male affective 
learning companion 
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- Correct no-effort interventions are generated after a student invests no effort but 
obtains a correct solution, to make students realize that praise is not appropriate; 

- Correct-effort affirmations are generated after a student both invests effort and 
obtains the correct solution, to acknowledge the student's effort. 

Strategic Interventions. The final type of intervention we embedded into Wayang 
focuses on meta-cognitive strategies, with the goal of both making students more 
effective problem solvers and motivating them for learning in general.  

- Incorrect strategic messages are generated when students are not succeeding at 
problem solving, to motivate them to change their general problem-solving strat-
egy, i.e., think about why they are not succeeding 

- Correct strategic messages are generated when students are succeeding at prob-
lem solving, to encourage them to evaluate their progress. 

5   The User Study 

The user study was designed to quantitatively evaluate the impact of learning com-
panions on affective and cognitive outcomes for all students. Of the 108 ninth- and 
tenth-grade students, two thirds (72 students) received a learning companion of a 
random gender, and one third (36 students) did not receive a learning companion. We 
obtained complete data, surveys and posttest, for about 95 students. 

At the beginning of the study, students received a math pretest and a survey that 
assessed general attitudes towards math, described in Section 2. The following day 
and for the next three days, students used Wayang instead of their regular math class. 
Every five minutes as well as after completing a problem, students were asked to 
provide information on one of the four target emotions (e.g. “How frustrated do you 
feel?”), see Fig. 2. At the start of each session, the learning companions introduced 
themselves; when students needed help during problem solving, the companions re-
minded students about the “help button” that provided multimedia-based support in 
the form of animations with sound. Characters spoke aloud the messages described in 
the previous section, occasionally at the beginning of a new problem and/or after the 
student submitted a response to a problem.  Students in the control group (no-LC) had 
access to the same cognitive support (e.g., hints, problems read aloud), but no com-
panions and no affective support. 

After students used Wayang for three days, they took a math posttest, and an-
swered the same questionnaire as taken prior to using the tutor. In addition, the ques-
tionnaire included five questions about student perception of the tutor (Did you learn? 
Was the tutor concerned about your learning? Helpful?). We also logged student 
behavior with the tutor, such as success at problem solving, gaming (abuse of hints), 
use of tools, and help. Students’ emotions within the tutor were recorded, as well as 
when students muted the characters (mute button), and whether they abused help by 
rapidly reaching the bottom-out hint, or quick guessed (i.e., rapidly selected options 
until they hit the correct answer). 
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Table 3. General Post-Tutor Outcomes: Main and interaction effects for Affective and 
Cognitive Outcomes. Key: H-A — High-Achieving students; L-A – Low-Achieving students;  
LC — Learning Companions; ∅ — No significant difference across conditions; ∅ MathAbility 
— No significant MathAbility effect or MathAbilityxLC interaction effect. 

 Overall Effect Differential 
Effect (High vs. Low) 

Learning  

Students learned in all  
conditions (paired samples t-test, 

*t(99) = 2.4, p = .019), but no 
significant effect for LC 

L-A students improved more than H-A in 
all conditions 

*F(99,1) = 5.3, p = 0.02 

Perceptions 
of  Wayang 

 
∅ 

When LCs are absent, H-A students 
perceive Wayang better than L-A. 

LCxMathAbility  
**F(96,1)=6.84, p = 0.01 

Liking of 
Mathematics 

Students receiving Jane  
demonstrated higher math liking. 

*F(93,2) = 3.7, p = 0.03 
∅ MathAbility 

Math Ability 
Self-concept 

 

Students receiving Jane showed 
higher posttest self-concept. 

*F(94,2) =3.6, p = 0.03 

When LCs are absent, H-A students had 
higher increase in self-concept than L-A. 

LCxMathAbility: +F(94,3) = 2.3, p = .08 

6   Results, Discussion and Conclusion  

We carried out an Analyses of Covariance (ANCOVA) for each affective and behav-
ioral dependent variable (post-tutor and within tutor) as shown in Tables 3-4. In  
particular, Table 3 shows the results for general post-tutor outcomes, while Table 4 
presents the results for affect-related and other variables measured within the tutor. As 
far as emotions, we include findings both on students’ self-reported emotions within 
the tutor, and post test differences in survey responses (note that in Table 1, we re-
ported how students were feeling before they interacted with Wayang, while Tables 3 
and 4 look at how interaction with Wayang influenced these feelings). Our covariates 
consisted of the corresponding pretest baseline variable (e.g., we accounted for stu-
dents’ pretest baseline confidence when analyzing confidence while using the tutor or 
afterwards). Independent variables corresponded to condition, specifically learning 
companion (LC) present vs. absent and LC type (Female (Jane) vs. Male (Jake) vs. 
no-LC). We analyzed both main effects and interactions for achievement level 
(MathAbility) and conditions over all student data (see second and last columns of 
Tables 3 and 4). In addition, because of the special affective needs of low-achieving 
students, we repeated the ANCOVAs for the low-achieving student population only, 
for a “targeted effect,” Table 4 (third column).  

Results showed that all students demonstrated math learning after working with 
Wayang, with low-achieving students learning more than high achieving students 
across all conditions (Table 3). Learning companions did not affect student learning 
directly, but successfully induced positive student behaviors that have been correlated 
to learning, specifically, students spent more time on hinted problems [15] (see “Pro-
ductive behavior” row, Table 4). The beneficial effect of learning companions was  
 



334 B.P. Woolf et al. 

 

mainly on affective outcomes, particularly on confidence (see “Confidence” row, 
Table 4). Low-achieving students who received learning companions improved their 
confidence while using the tutor and at posttest time more than students with no learn-
ing companions, while their counterparts in the no-LC condition tended to decrease 
their confidence (Figure 4). 

Table 4. Emotions within and after using the tutor. Key: H-A—High Achieving; L-A –Low 
Achieving; ∅ —No significant difference across conditions; ∅MathAbilityxLC —No signifi-
cant MathAbilityxLC interaction effect/MathAbility effect; LC–Learning Companions. 

 Overall Effect 
Targeted Effect on 

Low Achieving  
Students 

Differential 
Effect  

(High vs. Low) 

Frustration 

Less overall  
frustration self-

reported with Jane  
**F(213,2) = 6.1,  

p = .003 

 L-A students have lower 
post-tutor frustration in 
the LC condition than 

no-LC. 
+F(58,1) = 3.4, p=.07 

When LCs are absent, L-A 
students have higher post-
tutor frustration than H-A.  

LC x MathAbility 
+F(93,3) = 2.4, p = .08 

Confidence 

Higher overall 
confidence reported 
in the LC condition 

*F(204,1)=5.3,  p = .02 

L-A students in the LC 
condition have higher 

confidence. 
Within Tutor LC effect: 
**F(108,1)= 7.3, p = .008 
Post-tutor LC effect: 

 *F(56,1)= 3.8, p = .05 and 

H-A students have higher 
confidence than L-A   

students (but esp. when 
companions are absent)  

MathAbility effect within: 
*F(204,1)= 4.1, p = .05 
MathAbility effect  

posttutor: 
*F(91,1) = 5.8, p = .02 

Interest  

Students in the LC 
condition have  
higher overall  

interest at posttest 
time. 

LC main effect: 
+F(94,1) = 3.4, p = .07 

L-A students in the LC 
condition report  
marginally more  

post-tutor interest. 
LC main effect: 

+F(58,1) = 2.7, p =.1 

L-A students report more 
boredom than H-A   
students across all  

conditions 
MathAbility effect 

+F(219,1) = 2.9, p = .09 

Excitement ∅ ∅ 

H-A students report less 
excitement when LCs are 

absent, no difference when 
LC is present.  

MathAbilityxLC within: 
*F(200,1) =  5.2, p=.02  

Productive 
behavior: 

time in hint 
problems 

∅ 

L-A students spend more 
time in hinted problems 

with LCs. 
+F(67, 1) = 2.9, p = 0.095 

∅ MathAbility 

Gaming 
behavior:  

Quick–
guess,  help 

abuse 

∅ ∅ 

L-A students quick-guess 
more than do H-A students  

MathAbility effect: 
**F(109,1) = 5.9, p = 0.017 

No MathAbilityxLC  
interaction effect 
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Learning companions had a 
positive impact for all students 
on some measures, e.g., all 
students receiving the female 
companion improved math 
liking and self-concept of their 
math ability. This was not the 
case for the male learning 
companion, which was muted 
by students twice as much as 
Jane, making it too similar to 
the control version. Some 
differential effects (Table 4, 
last column) suggest that 
learning comp-anions are 
essential for low-achieving 
students’ affect. When LCs are 
present, low achieving stu-
dents report positive affect 
nearly as much as do high-achieving students and it is only when learning compan-
ions are absent that a large gap exists between these student groups. This affective gap 
reduces when learning companions are present. This result is found for several out-
come variables: self-concept, perceptions of learning, frustration, excitement. 

However, learning companions did not manage to change some negative feelings 
and behaviors: low-achieving students did quick-guess more across all conditions 
than high achieving students; low achievement students reported less interest than 
high achieving in all conditions. We did see an increase in productive behaviors that 
lead to learning [16], low-achieving students spent more time in problems where help 
is requested (i.e. students pay more attention to hints). General implications for tutors 
include the possibility of defining features and tool sets that support low-achieving 
students differentially from the rest. In future studies we will analyze separately the 
impact of companions on a large population of students with learning disabilities, 
compared to students without learning disabilities. 
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Fig. 4. Low and high achievement students’ change in 
reported confidence during problem solving 
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Abstract. In previous work, we have developed an advanced medical training 
system based on the cognitive ITS paradigm. In multiple laboratory studies, we 
showed a marked performance improvement among physicians in training. We 
now report on the evaluation of our tutoring system as a potential patient safety 
intervention among practicing community physicians. Fourteen community 
pathologists were matched for years of practice, and then randomly assigned to 
intervention or control groups. Participants in the intervention group used the 
tutoring system for a total of 4-19 (mean 11.5) hours over 1-4 (mean 3.1) 
sessions over a period of  37-138 (mean 86) days. Participants in the control 
group studied standard continuing medical education (CME) materials for a 
similar amount of time over a similar interval. All participants took glass slide 
pre-tests and post-tests, and virtual slide interval tests. Participants in the 
intervention group showed a significant improvement in the completeness of 
their surgical pathology reports when compared to the control group (p<.001, 
RM-ANOVA). There was no significant gain for diagnostic reasoning, likely 
due to the already high performance levels and small number of participants.  

Keywords: Intelligent Tutoring Systems, Intelligent Medical Training Systems, 
Evaluation. 

1   Introduction 

Intelligent Tutoring Systems (ITS) have great potential in medical education [1], but 
there are few ITS evaluated or deployed in clinical settings. Some innovative and well 
known systems such as BioWorld [2] and Rashi [3] use clinical scenarios as a means 
of teaching scientific reasoning to high school and college students. CIRCSIM tutor [4] 
pioneered the combination of simulation and natural language as a means of training, 
teaching medical students to reason about pathophysiology. Other systems have tar-
geted basic procedural skills such as cardiac life support [5], [6] that are typically 
taught to medical students and residents. Although seminal early systems such as 
GUIDON [7] and NEOMYCIN [8] tackled the difficult task of teaching diagnosis, 



Use of a Medical ITS Improves Reporting Performance among Community Pathologists 339 

 

there are few other systems in this area. Furthermore, ITS aimed at physicians in 
practice environments are essentially non-existent. 

In previous work, we have developed such an advanced medical training system in 
Surgical Pathology [9], [10], [11] based on the Cognitive Tutor paradigm. In previous 
evaluations, we have shown learning gains in diagnostic accuracy [12], reporting 
completeness and correctness [13], and metacognition [14]. Prior studies have fo-
cused exclusively on resident and fellow physicians, who are still completing their 
specialty training. Furthermore, all of our previous studies have been performed in the 
laboratory, where we can carefully control for potentially confounding variables. The 
long-term goal of our research program remains the effective use of our systems to 
improve patient care and patient outcomes. An important first step is to show that the 
tutoring system can impact performance of practicing physicians in a practice envi-
ronment subject to the same stressors and variability that would be encountered in the 
workplace. 

For this evaluation, we selected an area of the domain with known clinical impor-
tance and need for patient safety interventions. Cancer of the skin is the most common 
of all cancers, and Melanoma accounts for about 4% of skin cancer cases but causes a 
large majority of skin cancer deaths. The American Cancer Society estimates that the 
number of new Melanomas diagnosed in the United States is increasing, and about 
7,910 people were expected to die of Melanoma during 2006.  Since 1973, the mortal-
ity rate for Melanoma has increased by 50% [15].  False negative diagnostic errors for 
Melanoma are the most frequent diagnostic errors for which patients pursue litigation 
against pathologists, and previous studies have estimated that approximately 10% of 
all pigmented lesions examined are associated with a clinically significant false nega-
tive error related to Melanoma, resulting in significant harm to patients [16].   

2   System Description 

The ITS used in this study was based on the Visual Classification Tutoring system 
that we have previously described. The system contains both a diagnostic tutoring 
component (Figure 1), and a reporting tutoring component (Figure 2). 

Both components followed the cognitive tutor paradigm, providing immediate 
feedback using context-specific help and error messages on intermediate steps. In the 
diagnostic tutoring component, participants used a virtual microscope and provided 
diagnoses and histopathologic features that supported their diagnoses. Both tasks were 
accomplished using tree-based menu selection. In the reporting tutoring component, 
participants entered other key information as free text and also performed certain 
procedural tasks related to determining prognostic factors. These included, for 
example, measuring the deepest tumor to determine the Breslow depth (pictured in Fig. 
2), and assessing the status of the margins. The ITS used a combination of information 
from the viewer and from text entered by the participant to determine the accuracy of 
intermediate steps. Natural language processing methods were used to identify the key 
variables in participant entered text, as previously described [11], [13]. 
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Fig. 1. Diagnostic Tutoring Component 

The current ITS differed in four key ways from systems that we have previously 
evaluated: (1) the student model selected cases specifically for each individual based 
on performance across the initial case set, (2) the pedagogic model provided more 
leeway to these more expert participants than we typically provide to novices and 
intermediates. For example, the tutor allowed participants to skip intermediate steps 
as long as they arrived at the correct diagnosis, (3) each case could include multiple 
slides and multiple special stains that needed to be examined, and (4) after making a 
diagnosis, participants could ask for a consultation, which resulted in display of an 
expert consultant report on the case. 

3   Methods 

Institutional Review Board approval was obtained from both the University of 
Pittsburgh and the University of Colorado for use of human subjects. To minimize 
bias, the group that developed the tutoring system collaborated with an independent 
group of patient safety researchers (LW, SR, and DG) to carry out this summative 
evaluation. Both groups contributed to the overall design of the evaluation, with the 
tutoring system research group taking primary responsibility for the ITS intervention.  
The patient safety research team took primary responsibility for recruitment of  
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subjects and informed consent, assignment of participants to intervention and control 
groups, study execution and monitoring of control subjects, development of a pool of 
cases for assessments, monitoring of the validation of assessments by an outside ex-
pert consultant, development of the continuing medical education (CME) materials 
that approximated the content taught by the tutoring system, and administration of the 
glass slide tests (GSTs). The tutoring system research group took primary responsibil-
ity for modifications to the existing ITS, development of the case set and other tutor-
ing materials for the intervention group, assignment of the case sets for the virtual 
slide tests, training of the intervention groups on use of the tutor, and execution and 
monitoring of the intervention group. The two groups shared responsibility for scor-
ing of assessments, data analysis and interpretation. 

 
 

 
Fig. 2. Reporting Tutoring Component 

3.1   Study Design 

The overall design of the study is shown in Figure 3. We used a repeated measures, 
matched-group design. Baseline assessment included two pre-tests: (1) a glass slide 
test (GST), and (2) a virtual slide test (VST). Participants were given instructions to 
complete four learning sessions, each of which was followed by an interval VST. A 
VST post-test and GST post-test completed the study.  
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Fig. 3. Study Design 

3.2   Participants 

Participants were practicing community pathologists who were recruited by a com-
bination of emails and phone calls made by the project Principal Investigator (DG). 
Because of the difficulty of recruiting participants (who were busy practicing physi-
cians), the inherent variance in the population, and the small number of participants 
anticipated, we elected to match (yoke) participants in order to minimize any poten-
tial difference in existing expertise between the two groups. Participants were 
matched based on the following criteria: 1) years in post-training practice, 2) cur-
rent average approximate number of surgical pathology cases examined per year, 
and 3) current average approximate number of pigmented lesion cases examined per 
year. Paired subjects were then randomly assigned to either intervention or control 
group. 

3.3   Learning Sessions 

After completing the glass and virtual pre-tests, participants were asked to self-
schedule four learning sessions, followed by virtual slide tests, at a roughly one ses-
sion per month interval. For each of four learning sessions, participants were asked to 
spend a total of 4 hours using the ITS (intervention group) or self-study learning ma-
terials (control group). It was recommended that each learning session consist of two 
2-hour blocks within a day or two of each other.  

3.3.1   Intervention Group 
Participants in the intervention group were given a 1 hour training session on the 
tutoring system. Participants in this group used the tutoring system exclusively during 
their learning sessions. 

3.3.2   Control Group 
Participants in the control group used a set of pre-defined materials that included 
much of the information taught by the tutoring system. These materials  included: (1) 
a textbook on diagnosis of melanocytic lesions  (Pathology of Melanocytic Nevi and 
Malignant Melanoma, Barnhill, Piepform, Busam, eds. 2nd edition, Springer, 2004), 
(2) eleven journal articles: divided among four study sessions, and (3) a set of online 
case studies of melanocytic lesions ( http://atlases.muni.cz/) 
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3.4   Assessments 

Two types of assessments were used in this study. Glass slide tests were given 
before and after the entire set of learning sessions (GST pre and GST post), and 
were scored for diagnostic accuracy only. Virtual Slide tests were interval tests 
given before the first learning sessions (VST pre) and after each of the learning 
sessions (VST 1-3 and VST post). Virtual Slide Tests were scored for both diag-
nostic accuracy and for completeness of the written report. Glass slide tests were 
included in order to obtain assessments of diagnostic accuracy using a case exami-
nation method that closely mimics community pathologists’ real life, day-to-day 
practice conditions (which primarily involves examination of glass slides by light 
microscopy). 

3.4.1   Glass Slide Tests 
Both pre-test and post-test glass slide tests consisted of 20 cases, each with one or 
more glass slides containing one or more melanocytic lesions of skin. Both tests con-
tained a diagnostic spectrum of cases, but the pre-test and post-tests included different 
cases. For each glass slide test, the same packet of 20 cases was sequentially sent to 
each subject, which also contained standardized instructions for examining the cases 
and recording a final pathologic diagnosis for each case. 

3.4.2   Virtual Slide Tests 
Virtual Slide Tests were given using a web-based assessment system that provided a 
virtual slide viewer and text boxes for entering answers. The virtual slide viewer en-
abled exploration of a digitized glass slide. Each of the 4 virtual slide tests consisted 
of 8 cases. Each case included a virtual slide and clinical information. Participants 
were asked to provide a complete diagnostic report, including any relevant prognostic 
factors, such as status of the resection margins. 

Four versions (forms) of the virtual slide test (tests A, B, C, and D) were devel-
oped. Each form contained an equivalent number of benign and malignant cases 
across difficulty levels. To minimize order effect, participants were given the forms in 
differing sequences.  Virtual slide pre-tests used different forms for different  
participants. Whatever form a given participant took for the pretest was identical to 
the posttest. Thus, the four form sequences were: (1) A-B-C-D-A, (2) B-C-D-A-B,  
(3) C-D-A-B-C, (4) D-A-B-C-D. 

3.4.3   Scoring of Glass and Virtual Slide Tests 
Glass slide and virtual slide tests were both scored for diagnostic accuracy along three 
dimensions. Virtual slide tests were also scored for reporting completeness. 

For diagnostic accuracy, all reports were scored for accuracy against a consensus 
reference standard developed by two expert dermatopathologists who have extensive 
experience with melanocytic lesions.  Three levels of scoring were used, decreasing in 
level of specificity: (1) specific diagnosis – the answer provided by the participant 
was graded as correct only if it matched the exact diagnosis or a pre-determined 
synonym provided in the reference standard; (2) level of dysplasia – the answer  
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provided by the participant was graded as correct if it matched the level (from a total 
of five levels) provided by the reference standard; (3) clinical management – the an-
swer provided by the participant was graded as correct if it matched the clinical man-
agement guidance (from a total of four categories) provided by the  reference stan-
dard. Diagnostic accuracy was recorded as a dichotomous nominal variable (cor-
rect/incorrect). 

For reporting completeness, the features scored were abstracted from a widely used 
performance standard developed by the College of American Pathologists (CAP) 
protocol [17] for pathology reporting, the use of which is a requirement for accredita-
tion of Cancer Centers by the American College of Surgeons Commission on Cancer. 
These features included: histological type, location, procedure, status of lateral and 
deep margins, ulceration, TNM stage, depth of invasion, tumor infiltrating lympho-
cytes, venous invasion, perineural invasion, tumor regression, mitotic index, Clark’s 
level, growth phase, satellites, pigmentation, and solar elastosis. Greater weight was 
given to items that are required in the CAP protocol. The scoring rubric for each fea-
ture was developed in advance by one of the expert dermatopathologists. Points were 
assigned for presence of the feature (completeness) and for accuracy of the value 
(correctness). The final test score was calculated as the sum of all feature scores. 
Although we did evaluate the correctness of each feature in the report, we did not 
specifically probe for a value for each individual feature - participants were free to 
choose what to include. 

3.5   Data Analysis 

Diagnostic accuracy was analyzed using non-parametric tests. Report scores were 
analyzed by condition and test using Repeated Measures Analyses of Variance. All 
statistical tests were performed using SPSS v17 (SPSS, Inc., Chicago, IL). 

4   Results 

Because 6 of the original 15 participants dropped out, we were not able to make 
comparisons based on matched pairs. Instead, we compaired between groups only. 

4.1   Characteristics of the Participant Group 

A total of 15 community pathologists were recruited to participate in the study, and 9 
completed the entire set of activities. One individual took the GST pretest but com-
pleted no other activities and was replaced early on. Participants in the intervention 
group ranged from 1-22 years experience with a mean of 11 years, and participants in 
the control group ranged from 4-25 years experience, with a mean of 13 years. On 
average, participants in the intervention group signed out 4957 surgical specimens, of 
which 1370 were skin specimens. On average, participants in the control group signed 
out 5986 surgical specimens, of which 666 were skin specimens. 
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4.2   Characteristics of the Learning Sessions 

The actual timing of learning sessions was highly variable. Table 1 shows mean and 
SD for intervals depicted in Figure 3. No systematic differences were identified be-
tween the groups. 

Table 1. Intervals between VST (mean and SD in days) 
[[ 
 

Interval  
Condition A B C D 
Tutor 28.83 ± 6.79 35.80 ± 16.10 16.20 ± 10.21 16.40 ± 14.48 
Control 44.83 ± 22.75 36.20 ± 16.22 36.25 ± 25.24 44.0 ± 32.07 

 

4.3   Diagnostic Accuracy 

Figure 4 shows results for diagnostic accuracy on both GST and VST using specific 
diagnosis (A), dysplasia level (B), and clinical management (C) rubrics. Participants 
in both groups start at a reasonably high level of diagnostic accuracy, and this is 
maintained across the learning sessions. There was no significant gain for either 
group, and no significant difference between groups. 

4.4   Reporting Completeness 

Report scores started low for both groups, and pre-test scores showed no differences 
between groups prior to the learning sessions. To investigate whether the data was 
normally distributed, we performed the Kolmogorov-Smirnov test and rejected the 
hypothesis of non-normality (p=.20). As seen in figure 5, pretest scores were almost 
identical for both groups. Report scores significantly improved over time for the tutor 
group. Repeated measures ANOVA results for report scores across all virtual slide 
tests show a significant main effect of test and condition, as well as a significant in-
teraction between test and condition (effect of test: F=10.286, p<0.001; effect of con-
dition: F=9.409, p=0.018, interaction: F=7.992, p<0.001). These results indicate that 
scores significantly improved over time for the tutor group, but not for the control 
group. Repeated contrasts indicate that the bulk of this effect is seen from VST Pre to 
VST 1 (effect of test: F=19.440, p=0.003; interaction: F=10.029, p=0.016) – other 
contrast results were not significant.  

 

Fig. 4. Diagnostic Accuracy on glass slide tests and virtual slide tests 
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Fig. 5. Reporting completeness on virtual slide tests 

5   Discussion 

To our knowledge, this study represents the first summative evaluation of a medical 
ITS among practicing physicians, and the first study of a medical ITS outside the 
laboratory. Our results indicate that the ITS can move performance of practicing 
community pathologists closer to nationally recognized reporting standards such as 
those provided by the College of American Pathologists. Adherence to standard re-
porting schemata is an important part of ensuring the best possible patient care. Deci-
sions on treatment and prognosis are based on these reports, and missing or incorrect 
elements can delay treatment or result in improper therapy. 

The study did not show a significant difference in diagnostic accuracy between the 
intervention and control groups. Furthermore, there was no apparent learning gain for 
diagnostic accuracy across the learning sessions. This is quite different than several 
previous studies of our tutoring system among residents and fellows, who typically 
experience a significant gain even after 4 hours of tutoring. There are several differ-
ences between studies that could account for the absence of a learning gain for diag-
nostic accuracy. Most importantly, participants in this study started at a much higher 
level of diagnostic accuracy than participants in our other studies. Despite the fact that 
selected cases were considerably more difficult in this study when compared with 
previous studies, it appears that practicing community pathologists are already highly 
skilled in the diagnosis of melanocytic lesions. A second factor is that we purposely 
altered our tutoring system to make it much more lenient in accepting answers. We 
reasoned that practicing community physicians would be less accepting of the more 
rigid system that we have previously evaluated. However, one potential tradeoff for 
our feedback modifications is that it may have decreased the educational effectiveness 
of the intervention. Finally, the small number of participants who we recruited, the 
drop-out of participants from the study, and the inherent variability resulting from a 
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field study where we cannot control other variables as we can in a laboratory, limit our 
ability to detect more subtle differences. Alternatively, the findings may suggest that 
physicians in practice are less likely to be affected by immediate feedback that focuses 
on specific diagnostic criteria rather than a holistic impression or pattern-matching 
approach. Further research is needed to determine whether diagnostic accuracy is truly 
resistant to criteria-based immediate feedback among practicing physicians. 

This was a challenging study to carry out. The availability of participants was quite 
limited, resulting in a study that was clearly under-powered. The high drop-out rate in 
both groups limited our ability to make matched comparisons. Participants completed 
their learning sessions under a wide variety of conditions, and at varying intervals. 
Quality of access to the tutoring system differed because of many factors out of our 
control, such as connection speed and firewall issues. Despite these obstacles, our 
results are encouraging. Although further research is needed to validate these find-
ings, the use of an ITS to bring practicing physicians closer to current practice stan-
dards provides a potential new avenue for patient safety interventions. 
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Abstract. Many tutoring systems allow students to ask for hints when they need 
help solving problems, and this has been shown to be helpful. However, many 
students have trouble knowing when to ask for help or they prefer to guess 
rather than ask for and read a hint. Is it better to give a hint when a student 
makes an error or wait until the student asks for a hint? This paper describes a 
study that compares giving hints proactively when students make errors to re-
quiring students to ask for a hint when they want one. We found that students 
learned reliably more with hints-on-demand than proactive hints. This effect 
was especially evident for students who tend to ask for a high number of hints. 
There was not a significant difference between the two conditions for students 
who did not ask for many hints.   

Keywords: intelligent tutoring systems, interactive learning environments, 
computer-based instruction, hints, help seeking, help design. 

1   Introduction 

Many tutoring systems provide hints-on-demand to support students who need help 
solving problems. One reason to allow the student to control when to ask for help is 
that it is difficult for a tutoring system to decide when to offer help or what kind of 
help to offer. For instance, a tutor would respond differently to an error caused by a 
slip (the student knows the skill but slipped up) or by a misconception or by missing 
background knowledge [1]. Burton and Brown [2] took a constructivist position and 
thought that it was best for students to discover as much of the structure of a problem 
as possible. “Every time the Coach tells the student something, it is robbing him of 
the opportunity to discover it for himself. Many human tutors interrupt far too often 
… and they may be preventing the development in their students of important cogni-
tive skills – the cognitive skills that allow students to detect and use of their own 
errors.” There are advantages to allowing the student to have more control [3, 4] in a 
tutoring system and studies have shown that providing hints-on-demand can improve 
learning [5, 6, 7, 8].  
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Using hints-on-demand depends on student initiative: students are expected to 
ask for a hint when they want one. Students are expected to know when they need 
help, how to find and get help [9]. However, students sometimes don’t ask for 
help when they should. They may try to guess or game the system [10], especially 
on multiple-choice questions, which can be quicker than reading and trying to 
understand a hint. Or students may fear that they will be penalized by the soft-
ware for asking for help. Aleven and Koedinger [11] found that students fre-
quently failed to ask for a hint after multiple errors, and Aleven et al [12] found 
that unproductive help-seeking behavior represented 72% of all student actions 
they observed.  

Given that students often exhibit unproductive help-seeking behavior, perhaps 
tutoring systems should not wait for students to ask for a hint. Perhaps a tutoring 
system should give a student help when the system believes that the student needs 
it and before he/she asks for it. Arroyo et al. [13] reported positive learning gains 
when proactive help was provided to students, especially for low cognitively 
developed students. Murray and VanLehn [14] found that proactive help was 
more effective for some students and could help save time when a student is 
floundering and can “provide valuable information at a time when the student is 
prepared and motivated to learn it, and avoid the negative affective consequences 
of frustration and failure.”  

Which type of help is better? Should we wait for students to ask for help or give 
help when we think they need it? Is there a difference between the two types of help 
based on math ability? The purpose of this randomized controlled study was to com-
pare hints-on-demand to proactive hints and to determine which was more helpful to 
students.  

2   The Tutoring System: The ASSISTment System 

The ASSISTment System [15] aims to assist students in learning the different skills 
needed for the Massachusetts Comprehensive Assessment System (MCAS) test or 
(other state tests) while at the same time assessing student knowledge to provide 
teachers with fine-grained assessment of their students; it assists while it assesses. The 
system assists students in learning different skills through the use of scaffolding ques-
tions, hints, and messages for incorrect answers (also known as buggy messages). 
Assessment of student performance is provided to teachers through real-time reports 
based on statistical analysis.  

Using the web-based ASSISTment System is free and only requires registration on 
the website; no software need be installed. The system is primarily used by middle- 
and high-school teachers throughout Massachusetts who are preparing students for the 
MCAS tests. Currently, there are over 3000 students and 50 teachers that use the 
ASSISTment System as part of their regular math classes and/or for homework. Edu-
cational researchers studying the best practices for tutoring mathematics also use the 
system. 
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3   Methodology 

In this study we focus on “context-sensitive” hints or hints that are pertinent to the 
task at hand and help the student to learn a skill by doing. Each hint is a message that 
provides insights and suggestions for solving a specific problem, and is part of a hint 
sequence of 3-5 hints. Each hint sequence ends with a bottom-out hint, which tells the 
student exactly what to do or gives the student the answer.  

 

Fig. 1. Hints on demand, students ask for each hint by clicking on a hint button. Three hints are 
shown in yellow boxes. 
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3.1   Experiment Design 

There were two conditions in this study: hints-on-demand and proactive hints. Hints-
on-demand presented students with a hint only when they clicked on the hint button 
(see Fig. 1) and proactive hints presented students with a hint whenever they made an 
error (see Fig. 2). Students in the study worked on problems in two topics (symboliza-
tion and slope/intercept) and participated in both conditions in a repeated measures 
design. The experiment design controlled for the order of conditions, the order of 
topics and the order of problems and students were randomly assigned to one of four 
groups (see Table 1). 

Table 1. Students were randomly assigned to one of four groups 

Group 1 Group 2 Group 3 Group 4

First Topic Symbolization Symbolization Slope/Intercept Slope/Intercept

First 
Condition

Hints on 
Demand

Proactive Hints
Hints on 
Demand

Proactive Hints

Second 
Topic Slope/Intercept Slope/Intercept Symbolization Symbolization

Second 
Condition Proactive Hints

Hints on 
Demand

Proactive Hints
Hints on 
Demand

 

3.2   Participants 

This study took place in a typical suburban middle school with 11.5% of students 
qualifying for free or reduced lunch. There were 72 eighth grade students (aged 12-14 
years) who participated in the study during their math enrichment class, 32 females 
and 40 males.  

3.3   Procedure  

Students were familiar with the system and used it regularly in a math enrichment 
class to practice for the MCAS exam. During one class period, students worked on 
problems in the two topics: symbolization and slope/intercept. Students were pre-
sented with four problems in each topic that provided either hints-on-demand or pro-
active hints. A pretest and post-test of four problems each were given before and after 
each topic where students received no feedback on their answers. The pretest and 
post-test problems were the same. 

The experiment took place towards the end of the school year and students had 
been introduced to both topics in their math class. Gain from pretest to post-test was 
used to measure learning. 
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Fig. 2. Proactive hints: hints are presented automatically when a student submits an incorrect 
answer 
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4   Results 

Gain scores from pre- to post-test were used to measure learning. Students learned 
from problems in both topics. The average gain for the Symbolization problem set 
was 12% [t(60) = 3.7, p < 0.001] and the gain for the Slope/Intercept problem set 
was 4% [t(66) = 1.37, p = 0.17]. Of the 72 students who participated in the study, 
61 students completed both conditions and contributed to the repeated measures  
analysis. 

We were interested in determining if there was a difference in the effectiveness of 
each condition based on students’ math ability. Students had completed a practice 
MCAS test and the median score on the test was 75%. A median split on the practice 
MCAS scores was used to split students into “high math ability” or “low math abil-
ity.” However, there was no significant difference found based on an aptitude treat-
ment interaction.  
 

Table 2. Student gains in the two topics 

 N Mean Std. Deviation 
Std. Error 

Mean 
Gain in Slope 67 .0410 .24463 .02989 
Gain in Sym-

bolization 
61 .1208 .24996 .03227 

 
The repeated measures analysis showed that students learned significantly more 

[F(59, 1) = 4.42, p = 0.04] from hints-on-demand and having control over when to 
ask for a hint (mean gain score = 0.137) compared to having the computer control 
when to give a hint (mean gain score = 0.04). The effect size of 0.35 has a 95% 
confidence interval of [0.02 - 0.74]. The results of this analysis can be found in 
Table 3 and Fig. 3.  
 

Table 3. Students gained more with hints-on-demand 

 Math ability Mean Std. Dev. N 
High .0429 .2386 35 
Low .0385 .2201 26 

Gain with 
Proactive 

hints Total .0410 .2290 61 
High .1429 .2521 35 
Low .1282 .3120 26 

Gain with 
on-demand 

hints Total .1366 .2768 61 

 
We looked at the number of hints students requested when they were in the hints-

on-demand condition. Not surprisingly, students with low math ability asked for sig-
nificantly more hints (mean = 11 hints) than students of high math ability (mean = 5.4 
hints), [F(71, 1) = 10.85, p = 0.002]. The median number of hints requested in the  
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Fig. 3. Students of both low and high math ability learned more from hints on demand 

 

 

Fig. 4. Students who tend to ask for many hints do significantly better with hints-on-demand 
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hints-on-demand condition was seven hints and a median split on the number of hints 
requested was used to divide students into two groups: “high number of hints” and 
“low number of hints.” 

For students who asked for a high number of hints, hints-on-demand were signifi-
cantly more helpful than proactive hints [F(29, 1) = 7.358, p = 0.01]. However, for 
students who asked for a low number of hints, there was not a significant difference 
between the two conditions [F(28, 1) = 0.077, p = 0.78], (see Fig. 4).  

The interaction between condition and the number of hints requested, using the 
number of times the bottom-out hint was reached as a covariate, was marginally sig-
nificant [F(56, 1) = 3.199, p = 0.079]. 

We looked at the number of times students reached the bottom-out hint, which 
gives the answer to the problem. The median number of times a student reached the 
bottom-out hint was used to divide students into “low bottom-out hinters” and “high 
bottom-out hinters.” Although students who were low bottom-out hinters learned 
more in both conditions than students who were high bottom-out hinters, both groups 
had higher learning gains with on-demand hints [F(59, 1) = 4.74, p = 0.033]. (See 
Table 4.) 

 

Table 4. Both high and low bottom-out hinters had higher learning gains with on-demand hints 

 bottom_out_hint_level Mean Std. Deviation N 

low bottom-out hinters .0833 .21348 33 

high bottom-out hinters -.0089 .24039 28 

gainProactive 

Total .0410 .22904 61 

low bottom-out hinters .1591 .28517 33 

high bottom-out hinters .1101 .26937 28 

gainDemand 

Total .1366 .27682 61 

5   Conclusion 

In this paper, we described a randomized controlled experiment to compare hints-on-
demand to proactive hints in a tutoring system. We used a repeated measures design 
so all students saw both conditions. We found that middle school students working on 
algebra problems did significantly better with hints-on-demand and having control 
over when to see a hint compared to being shown a hint when they made an error, 
with an effect size of 0.35. We speculate that the students benefitted from having the 
greater learner control of hints-on-demand. 

Interestingly, students who tended to ask for a high number of hints learned sig-
nificantly more with hints-on-demand, but for students who asked for a low number 
of hints there was no significant difference between the two conditions. We do not  
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know the reason for this result. It may be that the students who asked for a high num-
ber of hints had good help-seeking behavior and benefitted from controlling the tim-
ing of help so that they received it at the most useful moment. Proactive help may 
have been distracting or annoying to these students. The students who asked for a low 
number of hints may have been unproductive help-seekers who avoided asking for 
help when they needed it. These students may have benefitted from being shown a 
hint when they needed one.    

If we had to recommend one method of providing help over another, hints-on-
demand seems to be the better choice since it had better results overall, better results 
for high-hinters and little difference for low-hinters. However, this study did have its 
limitations. Students who participated in this study were more familiar with hints-on-
demand as that is the norm in the ASSISTment System and students had been using 
the system throughout the school year. Although we explained to the students that 
they would see the two different types of hints, the proactive hints were unfamiliar 
and perhaps confusing. This study also took place over a very short period of time and 
students had little time to get used to the proactive hints. For future work we would 
like to repeat the experiment over a longer period of time with more students.   
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Abstract. The effect of providing error-flagging support during tests was  
studied in spring 2009 with two tutors on while and for loops. A partial 
crossover design was used for the study and mixed-factor ANOVA was used to 
analyze the students’ score per problem, number of revised problems, effect of 
revision on score and time spent per problem, and finally, the effect of error-
flagging on adaptation and learning. Students scored better on tests with rather 
than without error-flagging support. This can be attributed to the fact that stu-
dents revised their answers on more problems when error-flagging feedback 
was provided. But, they did not necessarily revise more often per problem with 
error-flagging feedback. Students scored the same with revisions as without re-
visions, whether or not error-flagging support was provided. They spent less 
time per problem when error-flagging support was provided, whether or not 
they revised their answers. One explanation for this is that error-flagging may 
speed up the problem-solving process. Finally, if error-flagging feedback is 
provided during pre-test, students solve significantly fewer problems during the 
subsequent practice session which uses the outcome of the pre-test as the basis 
for adaptation. Therefore, providing error-flagging feedback during the pre-test 
improves adaptation. But, it does not result in greater learning - learning was 
not significantly different with versus without error-flagging feedback.  

Keywords: Error-flagging, Testing, Adaptation, Evaluation. 

1   Introduction 

One mechanism proposed to build the student model needed for adaptation in tutors is 
pre-testing (e.g., [1, 5]). In order to be accurate, pre-tests must avoid both false-
positives, when students can solve a problem correctly without knowing the underly-
ing concept, and false-negatives, when they end up incorrectly solving a problem in 
spite of knowing the underlying concept. One approach used by instructional experts 
to minimize false positives is to design pre-test problems that require more than recall 
and recognition, e.g., problems with short-entry rather than multiple-choice answers. 
False negatives can occur when students incorrectly solve a problem because they 
misunderstand the instructions or the user interface, or second-guess themselves. The 
hypothesis of this paper is that providing error-flagging support, i.e., error-detection, 
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but not error-correction support during pre-test can improve student scores, possibly 
by minimizing false-negatives. If so, it would in turn improve adaptation that is based 
on the pre-test.  

The effect of providing error-flagging feedback during testing has been studied 
with mixed results. Multiple studies of paper-and-pencil testing have reported lower 
performance due to increased anxiety (e.g., [3, 6]) or no difference (e.g., [12]) when 
feedback about the correctness of answers was provided. Studies with early Computer 
Assisted Instruction/Testing showed better performance with such feedback during 
testing than without (e.g., [2, 13]). Later studies with computer-based multiple-choice 
testing showed no relative advantage or performance gain from providing such feed-
back [11, 12]. In one of the most recent studies to our knowledge, researchers found 
that there was little difference among the types of feedback provided during testing 
with the ACT Programming Tutor [4]. In earlier preliminary studies using a tutor on 
arithmetic expression evaluation, we had found that error-flagging support helped 
students improve their test scores [8, 9].  

Given the mixed nature of prior results, we revisited the issue of providing error-
flagging feedback during testing. This study differs from many of the earlier studies 
in that the testing was done online; the problems were short-entry rather than multi-
ple-choice in nature; and the outcome of the test was used for adaptation of problem-
solving practice by a conflated software tutor.  

1.1   Experimental Setup 

In spring 2009, two problem-solving software tutors were used to evaluate the effect 
of providing error-flagging support during testing. The tutors were on two introduc-
tory programming concepts: while loops and for loops. The while loop tutor 
targeted 9 concepts and the for loop tutor targeted 10 concepts, such as zero-
iteration execution, and dependent and independent nested loops. The tutors presented 
problems on these concepts, each problem containing a program whose output was to 
be determined by the student. The student entered the output free-hand (as opposed to 
selecting it from a menu of options).   

Each software tutor went through the pre-test-practice-post-test protocol as fol-
lows: 

 

• It first administered a pre-test to evaluate the prior knowledge of students and 
build the student model. The pre-test consisted of one problem per concept – 9 
problems for the while loop tutor and 10 problems for the for loop tutor. Stu-
dents were expected to attempt all the problems, although they had the option to 
discontinue the tutoring session at any time. 

• Subsequently, it provided practice problems on only those concepts on which 
students had solved problems incorrectly during the pre-test [7]; 

• Finally, it administered post-test problems on only those concepts on which stu-
dents had solved sufficient number of problems during practice as indicated by 
the student model. 

 
The three stages were administered back-to-back without any break in between. The 
software tutors allowed 30 minutes for the three stages combined.   
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The evaluations conducted in spring 2009 were in-vivo. The software tutors were 
used by 365 students in the introductory programming course at 12 institutions, which 
were randomly assigned to one of two groups: A or B. Subjects, i.e., students ac-
cessed the tutors over the web, typically, after class. The software tutors remotely 
collected the data for analysis.  

A partial cross-over design was used: students in group A served as control sub-
jects on the while loop tutor and test subjects on the for loop tutor, while students 
in group B served as test subjects on the while loop tutor and control subjects on the 
for loop tutor. Both the groups worked with the while loop tutor before the for 
loop tutor. All else being equal, error-flagging feedback was provided during pre-test 
to students in the test group, but not the control group.  

Error-flagging support was provided while the student was entering the answer to 
each problem, i.e., before the student submitted the answer. With error-flagging feed-
back, whenever the student entered each step in the answer to a problem, the step in 
the answer was displayed with red background if incorrect and green background if 
correct. When incorrect, no facility was provided for the student to find out why the 
step was incorrect, or how it could be corrected. Without error-flagging support, the 
steps in a student’s answer were always displayed with white background. The online 
instructions presented to the students before using each tutor explained the signifi-
cance of the background colors.    

Whether or not the tutor provided error-flagging feedback, students had the option 
to revise their answer as often as necessary before submitting it. This included delet-
ing or editing any step(s) in the answer. Once again, the instructions presented to the 
students before using each tutor explained the user interface facilities provided for 
revising an answer. 

2   Results 

For analysis, only those students were considered who had attempted most of the pre-
test problems, i.e., at least 7 of the 9 problems on the while loop pre-test and at least 
8 of the 10 problems on the for loop pre-test. In order to factor out the effect of the 
difference in the number of problems solved by students, the average score per prob-
lem was considered for analysis, which can range from 0 through 1, rather than the 
total score. Similarly, the average time spent per problem was considered rather than 
the total time spent on the pre-test.  

 
Score Per Problem: A 2 X 2 mixed-factor ANOVA analysis of the score per prob-
lem was conducted with the topic (while versus for loop) as the repeated measure 
and the group (group A with error-flagging on for loop pre-test versus group B with 
error-flagging on while loop pre-test) as the between subjects factor.  

A large significant interaction was found between topic and group [F(1,363) = 
216.563, p < 0.001]. As shown in Table 1, both the groups scored better with  
error-flagging support than without: group A scored 0.624 on while loop pre-test 
without error-flagging support, and went on to score 0.871 on for loop pre-test with 
error-flagging support. The difference was statistically significant [t(289) = 18.578,  
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p < 0.001]. Group B scored 0.842 on while loop pre-test with error-flagging sup-
port, and went on to score 0.667 on for loop pre-test without error-flagging support. 
The difference was statistically significant [t(74) = -7.565, p < 0.001]. So, students 
scored better on tests with rather than without error-flagging support. 

Table 1. Average Pre-test Score with and Without Error-Flagging 

 While loop pre-test for loop pre-test 
Without Error-Flagging 0.624 0.667 
With Error-Flagging 0.842 0.871 

 
Number of Revised Problems: Did the provision of error-flagging support result in 
subjects revising their answers on more problems? In order to answer this question, 
the pre-test problems solved by each student were grouped into those where the stu-
dent revised the answer versus those where the student never revised the answer. The 
2 X 2 mixed-factor ANOVA analysis was repeated on the number of problems on 
which subjects revised their answer, with topic as the repeated measure and group as 
the between subjects factor.  

A significant and large interaction was observed between topic and group 
[F(1,369) = 399.836, p < 0.001]. Group A revised 0.990 problems on while loop 
pre-test when no error-flagging support was provided, and then went on to revise 
5.956 problems on for loop pre-test when error-flagging support was provided, as 
shown in Table 2. The difference was statistically significant [t(293) = -28.686, p < 
0.001]. Group B revised answers on 3.416 problems on while loop pre-test when 
error-flagging feedback was provided, but then, went on to revise only 1.00 problem 
on for loop pre-test when no error-flagging feedback was provided. The difference 
was statistically significant [t(76) = 8.376, p < 0.001]. So, students revised their an-
swers on more problems when error-flagging feedback was provided than when it 
was not. 

Table 2. Number of revised problems with and without Error-Flagging 

 while loop pre-test for loop pre-test 
Without Error-Flagging 0.990 1.000 
With Error-Flagging 3.416 5.956 

 
Number of Revisions per Problem: Did the provision of error-flagging support 
result in subjects revising their answers more often per problem? A univariate analy-
sis of the number of revisions per problem was conducted on while loop pre-test 
data with the problem number (1-9) and error-flagging (without versus with) as fixed 
factors. A significant main effect was found for problem [F(8,680) = 6.223, p < 
0.001], indicating that the number of revisions per problem was not uniform across 
the board, but rather, depended on the problems. A significant main effect was found 
for error-flagging [F(1,680) = 18.98, p < 0.001]: revisions per problem was lower 
with error-flagging (1.566) than without (2.143). But, no significant interaction was 
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found between problem and error-flagging [F(8,680) = 1.146, p = 0.33]. A similar 
analysis was conducted on for loop pre-test data. Once again, a significant main 
effect was found for problem [F(9,2096) = 2.202, p = 0.019]. But, no significant main 
effect was found for error-flagging [F(1,2096) = 0.137, p = 0.711]. The interaction 
between problem and error-flagging was marginally significant [F(9,2096) = 1.828, p 
= 0.059]: revisions per problem were more with error-flagging on some problems, but 
not others. So, error-flagging feedback did not necessarily result in more revisions 
per problem. 
  
Effect of Revision on Score: In order to evaluate the effect of revision on pre-test 
score, a 2 X 2 X 2 mixed-factor ANOVA analysis was conducted of the average score 
per problem, with the topic (while versus for) and revision (without versus with 
revision) as within-subjects factors and group (group A with error-flagging on for 
loop pre-test versus group B with error-flagging on while loop pre-test) as between-
subjects factor.  

No significant main effect was found for revision [F(1,196) = 2.088, p = 0.15]. No 
significant interaction was found between revision and group [F(1,196) = 0.507, p = 
0.477], topic and revision [F(1,196) = 0.423, p = 0.516] or topic, revision and group 
[F(1, 196) = 0.335, p = 0.564]. The score per problem on problems with and without 
revision for the two groups is listed in Table 3. None of the differences in the scores 
between revised and unrevised problems was statistically significant. No ceiling effect 
was observed in the scores either. In other words, students scored the same with revi-
sions as without revisions, whether or not error-flagging support was provided.  

Table 3. Score per problem with versus without revision: Group A got error-flagging feedback 
during for loop pre-test and Group B got error-flagging feedback during while loop pre-test 

 while loop pre-test for loop pre-test 
 No Revision Revised No Revision Revised 
Group A 0.606 0.667 0.865 0.883 
Group B 0.878 0.892 0.672 0.684 

 
Effect of Revision on Time Spent: In order to evaluate the effect of revisions on the 
time spent solving problems, a 2 X 2 X 2 mixed-factor ANOVA analysis of the aver-
age time spent per problem was conducted, with the topic (while versus for) and 
revision (without versus with) as within-subjects factors and group (group A with 
error-flagging on for loop pre-test versus group B with error-flagging on while 
loop pre-test) as between-subjects factor. 

A significant interaction was found between topic and group [F(1,194) = 28.636, p 
< 0.001]. Group A spent 142.629 seconds per problem on while loop pre-test with-
out error-flagging support and went on to spend 97.962 seconds per problem on for 
loop pre-test with error-flagging support, as shown in Table 4. Group B spent 99.467 
seconds per problem on while loop pre-test with error-flagging support and went on 
to spend 114.915 seconds per problem on for loop pre-test without error-flagging 
support. So, students spent less time per problem when error-flagging feedback was 
provided. 
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Table 4. Time spent per problem with and without Error-Flagging 

 while loop pre-test for loop pre-test 
Without Error-Flagging 142.629 114.915 
With Error-Flagging 99.467 97.962 

 
The interaction between topic and group was significant for both revised problems 

[F(1,221) = 9.848, p = 0.002] and unrevised problems [F(1,328) = 56.170, p < 0.001]. 
For revised problems, group A spent 172.084 seconds per problem without error-
flagging feedback on while loop pre-test, followed by 112.781 seconds per problem 
with error-flagging feedback on for loop pre-test. Group B spent 125.168 seconds 
per problem with error-flagging feedback and 129.282 seconds per problem without 
error-flagging feedback as shown in Table 5. For unrevised problems, group A spent 
109.780 seconds per problem without error-flagging support on while loop pre-test, 
followed by 82.866 seconds per problem with error-flagging support on for loop 
pre-test. Group B spent 79.063 seconds per problem with error-flagging support and 
101.499 seconds per problem without error-flagging support as shown in Table 6. So, 
whether or not students revised their answers, they solved problems faster with error-
flagging.  

Table 5. Time spent per problem with and without Error-Flagging on revised problems 

Revised Problems while loop pre-test for loop pre-test 
Without Error-Flagging 172.084 129.282 
With Error-Flagging 125.168 112.781 
Significance t(246) =-3.028, p = 0.003 t(328) = 2.125, p = 0.034 

Table 6. Time spent per problem with and without Error-Flagging on unrevised problems 

Unrevised Problems while loop pre-test for loop pre-test 
Without Error-Flagging 109.780 101.499 
With Error-Flagging 79.063 82.866 
Significance t(368) = -5.301, p < 0.001 t(329) = 3.945, p < 0.001 

 
No significant interaction was observed between revision and group [F(1,194) = 

0.075, p = 0.784]. No significant interaction was found between topic, revision and 
group [F(1,194) = 0.104, p = 0.748]. A significant main effect was found for revision 
[F(1,194) = 59.488, p < 0.001] – students spent an average of 94.183 seconds per 
problem when they did not revise their answer, and 133.304 seconds per problem 
when they did revise their answer. So, students spent more time per problem when 
they revised their answer than when they did not. This is to be expected since revising 
an answer involves undoing and redoing one or more steps in the answer. 
 
Effect of Error-Flagging on Subsequent Adaptation: Since students score better on 
pre-test with error-flagging support, do they solve fewer problems during the subse-
quent practice that uses the results of the pre-test as the basis for adaptation? The 
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number of problems solved during adaptive practice was analyzed using 2 X 2 mixed 
factor ANOVA with topic (while versus for) as within-subjects factor and group 
(group A with error-flagging on for loop pre-test versus group B with error-flagging 
on while loop pre-test) as between-subjects factor. No significant main effect was 
observed for topic [F(1,279) = 0.058, p = 0.810]. (The smaller N is due to the fact that 
some students did not solve any practice problems since they answered all the pre-test 
problems correctly). A significant main effect was observed for group [F(1,279) = 
5.722, p = 0.017]. This is due to the fact that one group solved more problems with 
and without error-flagging than the other group, as shown in Table 7.  

Significant interaction was observed between topic and group [F(1,279) = 25.227, 
p < 0.001]. As shown in Table 7, both the groups solved fewer problems during adap-
tive practice when error-flagging support was provided during the preceding pre-test 
than when it was not provided: group A solved 10.897 practice problems on while 
loop, given no error-flagging support during pre-test, and went on to solve 8.268 
practice problems on for loop, given error-flagging support during pre-test. The 
difference was statistically significant [t(223) = -5.458, p < 0.001]. Group B solved 
10.070 practice problems on while loop, given error-flagging support during pre-
test, and went on to solve 12.965 practice problems on for loop, given no error-
flagging support during pre-test. The difference was statistically significant [t(56) = 
2.674, p = 0.01]. So, students solved significantly fewer problems during adaptive 
practice when error-flagging support was provided during the preceding pre-test than 
when it was not.   

Table 7. Problems Solved During Adaptive Practice with and without Error-Flagging Feedback 
Provided during the Preceding Pre-test 

 while loop practice for loop practice 
Pre-test without Error-Flagging 10.897 12.965 
Pre-test with Error-Flagging 10.070 8.268 

 
Learning: After the adaptive practice, students answered a post-test on only the con-
cepts on which they had solved sufficient number of problems during practice as 
indicated by the student model. The learning of students was measured in terms of 
their pre-test and post-test scores on only those concepts (henceforth referred to as 
learned concepts) on which they had solved problems during all three stages: pre-test, 
adaptive practice and post-test. So, analysis of learning excludes the records of stu-
dents who solved all the problems correctly on the pre-test, and hence, did not solve 
any problems during practice or post-test; and the records of students who ran out of 
time either during practice or post-test, since they were allowed 30 minutes for the 
three stages combined. In other words, only those students were considered for this 
analysis who learned at least one concept using the tutor, and for these students, data 
from only the learned concepts was used. 

A 2 X 2 mixed-factor ANOVA analysis was conducted of the score per problem on 
the learned concepts, with pre-post as repeated measure and error-flagging (with ver-
sus without) as between-subjects factor. On the while loop tutor, a significant main 
effect was observed for pre-post [F(1,98) = 546.021, p < 0.001]: student scores  
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improved from 0.262 on the pre-test to 0.933 on the post-test. A marginally signifi-
cant main effect was observed for error-flagging [F(1,98) = 3.800, p = 0.054]: 0.630 
with error-flagging and 0.565 without error-flagging. No significant interaction was 
observed between pre-post and error-flagging [F(1,98) = 0.404, p = 0.526]: the group 
that got error-flagging feedback scored slightly better than the group that did not, on 
both pre-test and post-test.  

On the for loop tutor, once again, a significant main effect was observed for  
pre-post [F(1,138) = 508.976, p < 0.001]: student scores improved from 0.279 on the 
pre-test to 0.901 on the post-test. No significant main effect was observed for error-
flagging [F(1,138) = 2.731, p = 0.101] and no significant interaction was observed 
between pre-post and error-flagging [F(1,138) = 1.258, p = 0.264]. So, student learn-
ing was not significantly different with versus without error-flagging.  

3   Discussion 

An empirically-driven study was conducted to see whether providing error-flagging 
support, i.e., error-detection, but not error-correction support during tests could im-
prove student scores, possibly by minimizing false-negatives. Since error-flagging 
support could promote revision of incorrect answers by students, the number of prob-
lems on which students revised their answers, the number of revisions per problem, 
and the score and time per problem with versus without error-flagging and with ver-
sus without revisions were all studied. The results of the study could have implica-
tions for adaptation in tutors, and for online testing in general. 

Students scored better on tests with rather than without error-flagging support. This 
can be attributed to the fact that they revised their answers on more problems when 
error-flagging feedback was provided. These revisions could have eliminated false 
negatives, resulting in higher scores. However, students did not necessarily revise 
more often per problem with error-flagging than without – they actually revised less 
often per problem with error-flagging on the while loop pre-test. This counter-
intuitive result suggests that error-flagging does not promote indiscriminate revisions 
of answers by students, i.e., students do not necessarily abuse error-flagging support 
to guess the correct answer through trial and error. Moreover, students scored the 
same per problem with revisions as without revisions, whether or not error-flagging 
support was provided. 

Students spent more time per problem when they revised their answer than when 
they did not. They spent less time per problem when error-flagging feedback was 
provided. For the while loop pre-test, this can be explained based on the fact that 
students revised their answers significantly less often per problem with error-flagging 
(1.566) than without (2.143) [F(1,680) = 18.98, p < 0.001]. One explanation for why 
students revised less often per problem with error-flagging is that given confirmation 
of the correctness of the answer so far, students may forgo some false negatives, revi-
sions that they would have otherwise made, instances where they would have second-
guessed a correct answer that they had already entered.  

But, this does not explain why students spent less time per problem with error-
flagging on for loop pre-test, wherein revisions per problem was not significantly 
different without (2.085) and with error-flagging (1.983) [F(1,2096) = 0.137,  
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p = 0.711]. A 2 X 2 ANOVA of the time spent per problem during for loop pre-test 
with revision (with versus without) as within-subjects factor and error-flagging (with 
versus without) as between-subjects factor found a significant main effect for revision 
[F(1,288) = 37.792, p < 0.001] and error-flagging [F(1,288) = 9.343, p = 0.002], but 
no significant interaction between revision and error-flagging [F(1,288) = 0.284, p = 
0.594]. So, students spent less time per problem with error-flagging (97.088 seconds) 
than without error-flagging (114.666 seconds); they spent less time without revision 
(92.921 seconds) than with revision (118.833 seconds); yet, they did not revise any 
significantly less per problem with error-flagging than without. This suggests that 
with error-flagging feedback, either students revised their answer more quickly, or 
saved time that was attributable to the unrevised parts of the answer, or both.  

Indeed, whether or not students revised their answers, they solved problems faster 
with error-flagging than without. One possible explanation is that students proceed 
more quickly to revise their answer when it is marked incorrect, and proceed more 
quickly to the next step in the answer when it is marked correct by error-flagging 
feedback. In both cases, they save on the time they would have optionally spent re-
considering the correctness of the answer they had just entered. In other words, error-
flagging feedback may have the effect of speeding up the problem-solving process. 
Testing this hypothesis quantitatively is part of our future work. 

If error-flagging feedback is provided during pre-test, students solve significantly 
fewer problems during the subsequent practice session which uses the outcome of the 
pre-test as the basis for adaptation. Therefore, providing error-flagging feedback dur-
ing the pre-test improves adaptation. Any adaptive system that uses a pre-test to build 
the initial student model would benefit from providing error-flagging support during 
the pre-test. However, error-flagging does not result in greater learning - learning was 
not significantly different with versus without error-flagging.  

To further generalize this result, given that it is logistically easier to provide error-
flagging support during online tests (as opposed to pen-and-paper tests), and such 
support helps students score better and answer faster even when the test items are not 
multiple-choice in nature, provision of error-flagging support should be considered in 
all online tests. 

 
Acknowledgments. Partial support for this work was provided by the National Sci-
ence Foundation under grant DUE-0817187.  

References 

1. Aimeur, E., Brassard, G., Dufort, H., Gambs, S.: CLARISSE: A Machine Learning Tool to 
Initialize Student Models. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. 
LNCS, vol. 2363, pp. 718–728. Springer, Heidelberg (2002) 

2. Anderson, R.C., Kulhavy, R.W., Andre, T.: Feedback procedures in programmed instruc-
tion. J. Educational Psychology 62, 148–156 (1971) 

3. Bierbaum, W.B.: Immediate knowledge of performance on multiple-choice tests. J. Pro-
grammed Instruction 3, 19–23 (1965) 

4. Corbett, A.T., Anderson, J.R.: Locus of feedback control in computer-based tutor-
ing: impact on learning rate, achievement and attitudes. In: Proc. SIGCHI Conference on 
Human Factors in Computing Systems, pp. 245–252 (2001) 



368 A.N. Kumar 

 

5. Czarkowski, M., Kay, J.: Challenges of Scrutable Adaptivity. In: Proc. of AI-ED 2003, pp. 
404–406. IOS Press, Amsterdam (2003) 

6. Gilmer, J.S.: The Effects of Immediate Feedback Versus Traditional No-Feedback in a 
Testing Situation. In: Proc. Annual Meeting of the American Educational Research Asso-
ciation, April 1979, pp. 8–12 (1979) 

7. Kumar, A.N.: A Scalable Solution for Adaptive Problem Sequencing and its Evaluation. 
In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 161–171. 
Springer, Heidelberg (2006) 

8. Kumar, A.N.: The Effect of Providing Error-Flagging Support during Testing. In: Woolf, 
B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 799–802. 
Springer, Heidelberg (2008) 

9. Kumar, A.N., Rutigliano, P.: The Effects of Error-Flagging in a Tutor on Expression 
Evaluation. In: 13th International Conference on Artificial Intelligence in Education  
(AI-ED 2007), pp. 599–601 (2007) 

10. Montor, K.: Effect of using a self scoring answer sheet on knowledge retention. J. Educa-
tional Research 63, 435–437 (1970) 

11. Plake, B.S.: Effects of Informed Item Selection on Test Performance and Anxiety for  
Examinees Administered a Self-Adapted Test. Educational and Psychological Measure-
ment 55(5), 736–742 (1995) 

12. Shermis, M.D., Mzumara, H.R., Bublitz, S.T.: On Test and Computer Anxiety: Test  
Performance Under CAT and SAT Conditions. J. Education Computing Research 24(10), 
57–75 (2001) 

13. Tait, K., Hartley, J.R., Anderson, R.C.: Feedback procedures in computer-assisted arithme-
tic instruction. British Journal of Educational Psychology 43, 161–171 (1973) 

 
 



V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 369–378, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Emotions and Motivation on Performance during 
Multimedia Learning: How Do I Feel and Why Do I 

Care? 

Amber Chauncey and Roger Azevedo 

The University of Memphis 
Department of Psychology 

Institute for Intelligent Systems 
400 Innovation Drive 

Memphis, TN 38152, USA 
dchuncey@memphis.edu 

Abstract. This experiment examined the role of emotion and motivation on 
metacognitive judgments and learning performance during multimedia learning. 
A false-biofeedback paradigm was used to induce emotional states and track 
learners’ metacognitive monitoring and control behaviors in a self-paced, line-
arly structured multimedia learning environment. Our results indicate that in-
duced emotional states significantly impact these processes in college students. 
We will discuss the implications for these findings on the design of intelligent 
tutoring systems and multimedia learning environments to help learners achieve 
optimal self-regulation and deep learning. 

Keywords: emotion, motivation, self-regulated learning, multimedia learning, 
metacognition. 

1   Introduction 

Learning about complex science topics with multimedia can be challenging and re-
quires learners to simultaneously monitor and control cognitive, metacognitive,  af-
fective, and motivational processes in order to achieve optimal performance [2,15,16]. 
The cognitive and metacognitive processes used by learners have received a great 
deal of scientific attention and exploration [1,2,16]. However, very little research has 
been devoted to understanding the affective and motivational processes which occur 
during multimedia learning. What research does exist indicates that affective and 
motivational processes have the potential to impact both cognitive and metacognitive 
processes as well as learning outcomes [3,10,13].  
    It is well known that learners who are intrinsically motivated (i.e., see learning as 
pleasurable or as a challenge to achieve a goal) are typically expected to achieve 
deeper conceptual understanding of the learning material and higher performance on 
subsequent assessments [6,9]. However, intrinsic motivation is often impeded when 
negative emotions such as frustration, anger, helplessness, or boredom detract  
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attention away from the task and onto the learner’s emotional states.  When this oc-
curs, it is important for learners to have a mechanism for regulating these emotions so 
that motivation can stay high and optimal learning can occur [14,15]. In a culture 
where learners are increasingly dependent on computer-based learning both in and out 
of the classroom, how can intelligent tutoring systems, hypermedia and multimedia 
learning environments be designed to help learners effectively regulate and manage 
their emotional and motivational states while engaging in learning of complex science 
topics like biology? 
    This experiment used a false-biofeedback paradigm to induce emotional states in 
college students while they used a multimedia learning environment to learn about 
the human circulatory system. While there is no known method that can infallibly 
induce emotions in laboratory experiments, some researchers have employed a 
false-biofeedback paradigm [7]. This non-invasive method involves instructing 
participants to wear an apparatus capable of recording their heart rate and explain-
ing that during the experiment they will hear their own heart rate through head-
phones while they engage in a task. However, rather than hearing their heart rate, 
participants are actually presented with previously recorded samples of accelerated 
and baseline human heart-beats. Previous empirical research has suggested that 
individuals often evaluate their emotional state by their perceived level of physio-
logical arousal [4]. In false biofeedback paradigms, the goal is to induce emotions 
by causing individuals to believe that they are experiencing physiological arousal. 
The assumption is that cognitive appraisals will cause individuals to believe that the 
heart rate they are hearing is their own heart rate, and that this heart rate is indica-
tive of  their current physiological state (i.e., I am anxious, or I am interested). For 
example, when an accelerated heart rate is presented, individuals may evaluate their 
emotional state and conclude that they are anxious or excited. This perception may 
compete with other cognitive processes (such as taking attention away from the 
learning task and onto their emotional state) which may cause shifts in their meta-
cognitive judgments about how well they can learn and understand the material, 
how much effort they exude in learning the material, and their performance on as-
sessments related to the material.  
    The goal of this experiment was to determine if induced emotional states  
could significantly influence participants’ metacognitive judgments and learning 
performance during multimedia learning. The following research questions were 
examined: (1) Can induced emotional states significantly affect participants’  
self-reported subjective emotional states? (2) Can induced emotional states signifi-
cantly affect participants’ metacognitive judgments?; and (3) Can induced  
emotional states significantly affect participants’ learning performance? The foun-
dations for these questions stem from the need for understanding how emotional 
states and motivation impact multimedia learning, and how multimedia learning 
environments can be improved to facilitate adaptive and effective self-regulation of 
these processes. 
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2   Method 

2.1   Participants 

Fifty (N=50) participants from a large public Midsouth university were recruited for 
this experiment. The participants’ mean age was 23.3 years (SD=7.1), and of the 
entire sample there were 34 females (68%). Their mean GPA was 3.13, with a range 
of 2.0-4.0.   

2.2   Stimuli and Software 

A researcher-developed linearly-structured self-paced multimedia learning environ-
ment comprised of 24 slides about the human circulatory system was presented using 
Automated Testing System [8]. ATS is a computer-based testing system used for 
delivering learning content, presenting questions, and recording participants’ meta-
cognitive judgments, study-time allocation, and responses to multiple-choice ques-
tions about the content on each slide (see Figure 1). 

Fig. 1. Screen shot of Automated Testing System, the multimedia learning environment used in 
the experiment 

  
A Reebok Fit Watch 10s strapless heart rate monitor was worn around participants’ 

non-dominant wrist. This heart rate monitor is designed to accurately detect and dis-
play the wearer’s current heart rate. However, because previously-recorded baseline 
and accelerated heart rates were presented to participants, this function was not used 
for this experiment. The purpose of the watch was simply to cause participants to 
believe that their heart rate was being collected, recorded, and presented back to them 
during the session.  
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    The two auditory stimuli (baseline and accelerated heart rates) were presented bin-
aurally through headphones. These stimuli intiated when participants opened a con-
tent slide and played continuously until participants exited the slide by clicking the 
Next arrow on the screen. During baseline trials, participants heard a recording of a 
resting human heart beat (approximately 70 BPM), and during arousal trials, they 
heard a recording of a human heart beat at an accelerated rate (approximately 100 
BPM). During control trials, no auditory stimulus was presented. The presentation of 
these stimuli was counterbalanced throughout the session. 

2.3   Materials and Measures 

The paper and pencil materials for this experiment were a consent form, a demo-
graphic questionnaire, the Affect Grid [12], and a 3-item researcher-developed  
survey. The Affect Grid is a single item scale which serves as a quick means of meas-
uring affective states along the dimensions of valence and arousal. Participants place 
on X somewhere on the grid, and receive one pleasure score and one arousal score. 
These scores are used to identify participants’ emotional state along these two dimen-
sions.  For this experiment, valence was defined as pleasantness vs. unpleasantness, 
and arousal was defined as high motivation vs. low motivation. The researcher-
developed survey was a short 3-item self-report measure which asked participants to 
assess their emotions and behavior during the session. The three questions asked 
participants to report their general emotional state when they heard an accelerated, 
baseline, or no heart rate (i.e., “When my heart rate was accelerated, I generally 
felt:________”). Participants were asked to fill in the blank by choosing from a word 
bank including the following seven emotions: neutral, confused, motivated, bored, 
excited, anxious, and stressed. 

2.4   Experimental Procedure 

Participants first spent as much time as necessary to complete the informed consent 
and demographic questionnaire. After completing these measures, participants spent 
approximately five minutes receiving instructions for using the Affect Grid. They 
were then asked to complete one practice Affect Grid to confirm that they understood 
the instructions. For this task, participants were asked to indicate where the emotion 
frustration would be found on the grid by placing an X in the appropriate box. Any 
confusion about this task was resolved through discussion between the participant and 
the researcher. 
    All participants then watched a six minute video which provided a guided tour of 
the structure of ATS and instructions for the learning session. Following the video, 
participants were instructed to fasten the Reebok heart rate monitor around their non-
dominant wrist. The researcher explained that during the learning session the monitor 
would record and wirelessly transmit their heart rate to a USB drive which fed this 
data to a software package on the computer. Participants were instructed that this 
software package would deliver their heart rate binaurally through headphones at 
various times throughout the session. The researcher explained that they would hear 
their heart rate when they opened a content slide, and that they would no longer hear 
their heart rate after navigating away from that slide. They were also instructed that 
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during some content slides they would not hear their heart rate at all. If participants 
understood all of these instructions, they proceeded to the learning session.  
    The learning session consisted of 24 trials. For each trial, participants completed 
the following six steps using ATS. First, participants were presented with either a 
text-based or inference question and were asked to provide an ease of learning (EOL) 
judgment. Participants used a six-item signal detection scale ranging from one (I 
strongly feel this question will be difficult to answer) to six (I strongly feel this ques-
tion will be easy to answer). Next, participants clicked a button at the bottom of the 
screen to navigate to a content slide. As soon as this slide was opened, participants 
heard either an accelerated, baseline, or no heart rate.  Participants were given as 
much time as desired to study a content slide which contained a paragraph of text and 
a static diagram about the circulatory system. The text-based or inferential question 
remained in the top corner of the screen while participants studied the slide so that 
they did not have to retain the question in working memory while they studied. When 
participants indicated that they were finished studying the slide by clicking an arrow 
at the bottom of the screen, the content slide and question were removed from the 
screen and the auditory stimulus was no longer presented. Participants were then 
asked to make a judgment of learning (JOL) to indicate how well they understood the 
content they just read. Another six-item signal detection scale was used ranging from 
one (I strongly believe I do not understand this content) to six (I strongly believe I do 
understand this content). After making their selection, the text-based or inferential 
question was presented in a new screen along with four multiple choice foils. Partici-
pants were asked to select which of the four options was the most appropriate answer 
by clicking a radio button next to the item. After making their selection, participants 
were asked to make a retrospective confidence judgment (RCJ) to indicate how 
strongly they believed their answer was correct. This six-item signal detection scale 
ranged from one (I strongly believe my answer was incorrect) to six (I strongly be-
lieve my answer was correct). Finally, at the end of each trial, ATS prompted partici-
pants to report their current emotional state by placing an X in the appropriate box on 
an Affect Grid which was sitting on the desk beside them. Participants completed one 
Affect Grid for each trial in the session, yielding 24 total Affect Grid scores. After 
completing this process for each of the 24 trials within the experiment, participants 
completed a heart-rate recognition task in which they listened to ten randomly pre-
sented recordings of either an accelerated or baseline heart-rate and were asked to 
determine whether each recording was accelerated or baseline. The purpose of this 
task was to verify that participants were able to correctly discriminate these two heart-
rates during the session.  All 50 participants successfully completed this task. After 
the heart-rate discrimination task was complete, participants were thanked, compen-
sated, and debriefed. 

2.5   Coding and Scoring 

ATS was designed to collect and record all participant interactions and upload these 
interactions to a log file which was created for each participant. Every log file was 
uploaded to a database for later analysis. The next section describes how this log file 
data was used to code and score participants’ behavior and performance during the 
learning session. 
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2.5.1   Multiple Choice Questions 
For the 24 multiple choice questions, participants were awarded one point for a cor-
rect answer and no points for an incorrect answer.  The range of scores per participant 
was 0-24 since each participant answered 12 text-based and 12 inference questions 
during a learning session. Four mean scores were collected for each participant: the 
mean score for overall performance across all 24 slides, and three mean scores for 
each level of induced emotional state (accelerated, baseline, and no heart rate). 

2.5.2   Metacognitive Judgments 
For each trial within the session, participants provided a response ranging from one to 
six for each of the three metacognitive judgments (EOL, JOL, RCJ). Using these 
responses, four mean scores were calculated for each metacognitive judgment. Par-
ticipants received one overall score for each metacognitive judgment across all 24 
slides, and one mean score for each of the three levels of induced emotional state 
(accelerated, baseline, or no heart rate).   

2.5.3   Affect Grid 
For each of the 24 Affect Grids completed within the session, participants received a 
valence score and an arousal score. The valence score was taken as the number of the 
square selected, with squares numbered along the horizontal dimension. These num-
bers began at the left and counted from one to nine. The arousal score was taken as 
the number of the square selected, with squares numbered along the vertical dimen-
sion. These numbers began at the bottom and counted from one to nine (yielding a 
9x9 grid). Participants received six mean scores: one mean valence score for each of 
the three levels of induced emotional state (accelerated, baseline, or no heart rate), 
and one mean arousal score for each of the three levels of induced emotional state. 

3   Results and Discussion 

3.1   Research Question 1: Can Induced Emotional States Significantly Affect 
Participants’ Self-reported Subjective Emotional States? 

For this analysis, we first conducted two separate one-way repeated measures 
ANOVAs to compare the effect of induced emotional states on participants’ self-
reported subjective emotional states (on the Affect Grid) in accelerated, baseline, and 
no heart rate conditions. The first ANOVA was conducted on participants’ mean 
valance score (pleasantness vs. unpleasantness) for each of the three conditions, and 
the second ANOVA was conducted on participants’ mean arousal score (high motiva-
tion vs. low motivation) for each of the three conditions. We found a significant main 
effect for valence, F (2, 48) = 3.64, p <.05, η2=.07. Post-hoc analyses revealed that 
participants reported significantly more pleasant emotions when they heard an accel-
erated or baseline heart rate than when they heard no heart rate (acceler-
ated=baseline>no heart rate). We also found a significant main effect for arousal, F 
(2, 48) = 11.32, p<.0001, η2=.19. Post-hoc analyses revealed that participants reported 
significantly higher arousal when they heard an accelerated heart rate than when they 
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heard an baseline or no heart rate, and reported significantly higher arousal when they 
heard a baseline heart rate than no heart rate (accelerated>baseline>no heart rate).   
   To further supplement these analyses, we conducted a frequency analysis using the 
mean proportion of participants’ self-reported responses on the three-item researcher 
developed questionnaire to determine which emotional states were most frequently 
reported for each level of induced emotional state. We found that during accelerated 
trials, 45% of participants reported feeling anxious, 21% reported confusion, 10% 
reported excitement, 10% reported feeling motivated, 7% reported feeling frustrated, 
and the remaining 7% reported feeling either stressed or neutral. For baseline trials, 
86% of participants reported feeling neutral, 7% reported feeling motivated, and the 
remaining 7% reported feeling either stressed or frustrated. For control trials, 69% 
reported feeling neutral, 10% reported feeling anxious, 7% reported feeling stressed, 
7% reported feeling motivated, and the remaining 7% reported feeling frustrated or 
confused.  

3.2   Research Question 2: Can Induced Emotional States Significantly Affect 
Participants’ Metacognitive Judgments? 

For this analysis, we conducted a series of one-way repeated measures ANOVAs to 
compare the effect of induced emotional states on metacognitive judgments in accel-
erated, baseline, and no heart rate conditions. First we conducted a separate ANOVA 
for each of the three metacognitive judgments (EOLs, JOLs, RCJs) collected from 
participants throughout the session. We found no significant main effect for EOL 
judgments, F (2, 48) = 1.92, p > .05, η2=.04. This is to be expected, as EOL judg-
ments were prompted before participants received the auditory stimuli and therefore 
no emotion-induction had occurred.  We found a significant main effect for JOLs, F 
(2,48) = 4.96, p = .01, η2=.09. Post-hoc analyses using a Bonferroni correction  
revealed that participants reported significantly higher JOLs when they heard an  
accelerated or baseline heart rate than when they heard no heart rate (acceler-
ated=baseline>no heart rate). We also found a main effect for RCJs, F (2,48) = 23.01, 
p < .0001, η2=.32. Post-hoc analyses using a Bonferroni correction revealed that par-
ticipants made significantly higher RCJs when they heard an accelerated heart rate 
than when they heard a baseline or no heart rate, and significantly higher RCJs when 
they heard a baseline than no heart rate (accelerated>baseline>control).  

3.3   Research Question 3: Can Induced Emotional States Significantly Affect 
Participants’ Learning Performance? 

We conducted a one-way repeated measures ANOVA to compare the effect of in-
duced emotional states on participants’ accuracy on multiple choice questions about 
the science content in accelerated, baseline, and no heart rate conditions. We found a 
significant main effect for induced emotional state, F (2,48) = 23.62, p<.0001, η2=.33. 
Post-hoc analyses using a Bonferroni correction revealed that participants scored 
significantly higher when they heard an accelerated heart rate than a baseline or no 
heart rate, and scored significantly higher when they heard a baseline heart rate than 
no heart rate (accelerated>baseline>no heart rate).  
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3.4   Discussion 

The results of this experiment offer insight into (1) the ways in which learners’ emo-
tional states impact their metacognitive monitoring and performance, and (2) which 
emotions may facilitate multimedia learning, and which emotions may impair learn-
ing. First, the results indicate that learners made significantly higher (i.e., more confi-
dent) metacognitive judgments when they heard an accelerated or baseline heart rate 
compared to no heart rate. While this finding by itself may be difficult to interpret, the 
results from participants’ self-reported emotional states for accelerated, baseline, and 
no heart rate help disambiguate this potentially confusing issue. It is clear that during 
accelerated trials participants were more likely to feel anxious, confused, or excited. 
Previous research [5] indicates that emotional states like confusion can foster motiva-
tion during learning, as learners feel driven to resolve their confusion in order to over-
come an impasse and more deeply process the material. Anxiety has been shown in 
some learners to invoke motivation to invest more effort to avoid poor performance 
[10], and excitement is associated with engagement and interest in the task. These 
emotions are assumed to translate to higher learning performance. Our results provide 
further evidence for this assumption, as participants achieved considerably higher 
scores for accelerated trials than baseline or control. Compared to accelerated trials, 
during baseline and control trials participants were considerably more likely to report 
feeling neutral. Neutrality, which can be defined as a lack of motivation or interest, 
would be expected to lead to decreased learning gains. However, if this is the case, 
then why did learners still perform significantly higher on baseline trials than control 
trials? By examining results from the Affect Grid, we see that participants felt signifi-
cantly more motivated during baseline trials than control trials. Additionally, results 
from the 3-item survey revealed that participants were more likely to report feelings 
of motivation and frustration for baseline trials than control trials. In fact, participants 
were more likely to report feelings of anxiety and stress during control trials, and 
these emotions are presumed to lead to more shallow learning.  
   In sum, our results indicate that when participants heard an accelerated heart rate, 
they were more likely to report feelings of pleasure and motivation, to make higher 
metacognitive judgments, and achieve higher learning performance than when they 
heard a baseline or no heart rate. This highlights the importance of understanding not 
only learners’ cognitive and metacognitive processes, but also learners’ emotional and 
motivational processes and how these processes come together to impact learning.      
   These results supplant the need for intelligent tutoring systems, multimedia and 
hypermedia learning environments to be sensitive to these dynamic and complex 
processes in order to help learners achieve deep learning [1,9].  For example, intelli-
gent tutoring systems which use  pedagogical agents to scaffold learners’ understand-
ing of complex science topics might benefit from the use of physiological measures 
which can detect shifts in learners’ emotional and motivational states on-line. If a 
learner shifts to a negative emotional state (i.e., stress, boredom), a system which is 
sensitive to these shifts could help learners transition out of these emotional states by 
modeling, prompting, and scaffolding appropriate self-regulatory processes. While the 
most optimal way to helping learners regulate their metacognitive, cognitive, emo-
tional, and motivational processes during learning is still unclear, the results from this 
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experiment offer a glimpse into how these processes interact to impact each other and 
to impact learning of complex science.  
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Abstract. We investigate whether four metacognitive metrics derived

from student correctness and uncertainty values are predictive of stu-

dent learning in a fully automated spoken dialogue computer tutoring

corpus. We previously showed that these metrics predicted learning in

a comparable wizarded corpus, where a human wizard performed the

speech recognition and correctness and uncertainty annotation. Our re-

sults show that three of the four metacognitive metrics remain predictive

of learning even in the presence of noise due to automatic speech recogni-

tion and automatic correctness and uncertainty annotation. We conclude

that our results can be used to inform a future enhancement of our fully

automated system to track and remediate student metacognition and

thereby further improve learning.

Keywords: metacognition, learning, correlations, spoken dialogue com-

puter tutor, automatic speech recognition and correctness and uncer-

tainty annotation, natural language processing.

1 Introduction

Metacognition is an important area of intelligent tutoring systems research, both
in and of itself and with respect to its relationship to learning (e.g. [1,2]). Within
tutorial dialogue, one metacognitive state that has received a lot of interest is
student uncertainty. In particular, researchers have hypothesized that student
uncertainty and incorrectness both signal “learning impasses”, i.e. student learn-
ing opportunities [3]. In addition, multiple correlational studies have shown a
link in tutorial dialogue between learning and student uncertainty or the related
state of confusion [4,5,6]. Furthermore, although most computer tutors respond
based only on student correctness, a number of controlled experiments have
investigated the benefits of responding to student uncertainty over and above
correctness during computer tutoring [7,8,9,10,11]. Some of these experiments
have shown that responding to student uncertainty over and above correctness
results in improved tutoring system performance, as measured by student learn-
ing, user satisfaction, and dialogue or learning efficiency.

Drawing on the metacognition literature, we are investigating relationships
between the student states of uncertainty and correctness via complex metacog-
nitive metrics that combine measures of these two states. Other researchers

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 379–388, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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have previously used such metacognitive metrics to investigate multiple dimen-
sions very similar to uncertainty and correctness, and we use and build on this
literature. Our metrics include learning impasse severity [12] and knowledge
monitoring accuracy [13], as well as bias (i.e., over/under confidence) and dis-
crimination (e.g., uncertainty primarily about incorrect answers) [14]. In prior
work, we investigated the relationship between these four metacognitive met-
rics and learning in a wizarded spoken tutoring dialogue corpus, where speech
recognition and uncertainty and correctness annotation were performed in real-
time by a human “wizard” [5,6]. We computed themetacognitive metrics from
the wizard’s annotations. We showed that although student uncertainty during
the tutoring dialogues does not predict learning, average learning impasse sever-
ity, knowledge monitoring accuracy and discrimination were all predictive of
learning.

In this paper, we investigate whether these metacognitive metrics remain pre-
dictive of learning in a comparable corpus that was collected using the fully au-
tomated version of our computer tutor. We computed two sets of metacognitive
metrics: one set computed from the system’s real-time automatic annotations
of uncertainty and correctness, and one set computed from manual annotations
of uncertainty and correctness performed after the experiment was over. Our
results show that almost all of the same metacognitive metrics that predict
learning during the wizarded computer tutoring also predict learning during the
fully automated computer tutoring, using either the automatically-computed or
manually-computed metacognitive metrics. We conclude that these metacogni-
tive metrics are a useful construct for understanding student learning during
spoken dialogue computer tutoring, even in the presence of noise introduced by
fully automated student uncertainty detection and speech and natural language
processing. Our results will be used to track and remediate metacognition in
future system versions and thereby further improve student learning.

2 Spoken Dialogue Computer Tutoring Data

This research uses the ITSPOKE-AUTO corpus, which is a collection of di-
alogues between college students and our spoken dialogue computer tutor, IT-
SPOKE (Intelligent Tutoring SPOKEn dialogue system). ITSPOKE is a
speech-enhanced version of the Why2-Atlas qualitative physics tutor [15].

The ITSPOKE-AUTO corpus is the second of two corpora collected over two
prior controlled experiments evaluating the utility of enhancing ITSPOKE to
respond to learning impasses involving student uncertainty, over and above cor-
rectness [8]. Motivated by research that views uncertainty as well as incorrectness
as signals of “learning impasses” [3] (i.e., opportunities to learn), ITSPOKE was
modified for use in these two experiments so that it associated one of four im-
passe states with every student answer, and could adapt contingently based on
each answer’s impasse state (in the experimental conditions), or based only on
its correctness (in the control conditions). The four impasse states correspond
to all possible combinations of (binary) uncertainty (uncertain (UNC), certain



Metacognition and Learning in Spoken Dialogue Computer Tutoring 381

Nominal State: INCOR CER INCOR UNC COR UNC COR CER

Severity Rank: most (3) less (2) least (1) none (0)

Fig. 1. Different Impasse State Severities

(CER)1) and correctness (incorrect (INCOR), correct (COR)), as shown in
Figure 1. The incorrectness component of each state reflects the actual accuracy
of the student’s answer, while the uncertainty component reflects the tutor’s per-
ception of the student’s awareness of this accuracy. The scalar ranking of impasse
states in terms of severity combines these two components and will be discussed
below. Further details of the adaptive system are discussed elsewhere [7].

For the two experiments, the experimental procedure was as follows: students
(1) read a short physics text, (2) took a multiple-choice pretest, (3) worked
through five problems (1 per dialogue) with a version of the system, (4) took a
survey, and (5) took an isomorphic posttest.

The first corpus, called the ITSPOKE-WOZ corpus [8], contains 405 dialogues
from 81 students, and was collected from the first experiment using a semi-
automatic version of ITSPOKE in which speech recognition and correctness and
uncertainty annotation were performed by a human “wizard”, to test the upper-
bound performance of adapting to uncertainty (i.e. without the noise introduced
by speech and language processing). The wizard listened to the dialogues (with-
out students’ knowledge) and labeled each answer with an uncertainty (UNC,
CER) and a correctness label (INCOR, COR).2 Average pretest and posttest
scores were 0.51 and 0.75, respectively.

The second corpus, called the ITSPOKE-AUTO corpus, contains 360 dia-
logues from 72 students, and was collected from the second experiment using a
fully automated version of ITSPOKE in which all tasks were fully automated.
In particular, student speech was digitized from microphone input and sent to
the Sphinx2 speech recognizer whose stochastic language models were trained
on the ITSPOKE-WOZ corpus and prior ITSPOKE corpora. Correctness was
automatically labeled on the speech recognition output using the TuTalk seman-
tic analyzer [16], which was trained on the ITSPOKE-WOZ corpus. Uncertainty
was automatically labeled on the speech recognition output using an uncertainty
model built with WEKA software from features of the student speech and di-
alogue context, including lexical, pitch, temporal, and energy features as well
as tutor question and gender. The uncertainty model is a logistic regression
equation that was trained on the ITSPOKE-WOZ corpus.

The ITSPOKE-AUTO corpus was manually transcribed after the second
experiment, and the wizard from the first experiment manually labeled each
student turn in the ITSPOKE-AUTO corpus for uncertainty and correctness.
The system’s correctness and uncertainty labels were then compared with the
wizard’s labels: for correctness, this comparison yielded a system accuracy of

1 A ‘certain’ answer may actually be certain or neutral for certainty.
2 In prior ITSPOKE corpora, this wizard displayed interannotator agreement of 0.85

and 0.62 Kappa on correctness and uncertainty, respectively [5].
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ITSPOKE-AUTO1: Let’s begin by looking at the motion of the man and his keys

while he’s holding them. How does his velocity compare to that of his keys?

STUDENT-AUTO1: his also the is the same as that of his keys points force (IN-
COR CER)

STUDENT-MANU1: his velocity is the same as that of his keys while he’s holding them
(COR UNC)

ITSPOKE-AUTO2: Actually... Their velocities must be the same, because the man’s

holding his keys, so they’re not moving with respect to each other. [...] What are the

forces exerted on the man after he releases his keys?

STUDENT-AUTO2: the only force is (INCOR UNC)

STUDENT-MANU2: the only force is (INCOR UNC)

ITSPOKE-AUTO3: Well... Gravity is the only force acting on the man. [...] So what’s

the direction of the force of gravity on the man (e.g., vertically up)?

STUDENT-AUTO3: vertically down (COR CER)

STUDENT-MANU3: vertically down (COR CER)

Fig. 2. Annotated ITSPOKE-AUTO Corpus Excerpt

84.7%, and for uncertainty, this comparison yielded a system accuracy of 80.3%
Speech recognition accuracy measured as 100% - Word Error Rate (WER) was
74.6%. WER is a standard measure for evaluating the performance of auto-
matic speech recognition software. We compute WER using the NIST sclite
program, which uses minimum edit distance to come up with a WER score
by assigning penalties for word insertions, deletions, and substitutions. Average
pretest and posttest scores in the ITSPOKE-AUTO corpus were 0.51 and 0.73,
respectively.3

Figure 2 shows an annotated example of the ITSPOKE-AUTO corpus dia-
logues. STUDENT-AUTO shows the automatically recognized speech and au-
tomatic uncertainty and correctness labels for each student turn, while
STUDENT-MANU shows the corresponding manual transcript and annotations.

3 Metacognitive Performance Metrics

In this section we introduce several ways of combining uncertainty and correct-
ness annotations into quantitative metacognitive performance metrics. All met-
rics were computed on a per student basis (over all five dialogues). In addition,
all metrics were computed twice: once based on the automatic correctness and
uncertainty annotations (-auto), and once based on the corresponding manual
annotations (-manu). Finally, note that our metrics represent inferred (or tutor-
perceived) values rather than actual values, because our uncertainty labeling is
done by the system or a human judge; we discuss this issue in Section 5.
3 Independent repeated measures ANOVA analyses of both corpora showed significant

main effects for repeated test measure, indicating that students learned a significant

amount during both experiments.
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Our first metric is based on a ranking of learning impasses by severity. In
particular, we first associated a scalar impasse severity value with each student
answer in the ITSPOKE-AUTO corpus, and then computed an average impasse
severity. Our impasse severity values were proposed in our earlier work [12] and
are shown in Figure 1. According to our ranking, the most severe type of impasse
(3) occurs when a student is incorrect but not aware of it. States 2 and 1 are of
increasingly lesser severity: the student is incorrect but aware that s/he might
be, and the student is correct but uncertain about it, respectively. Finally, no
impasse exists when a student is correct and not uncertain about it (0). These
severity rankings reflect our assumption that to resolve an impasse, a student
must first perceive that it exists. Incorrectness simply indicates that the student
has reached an impasse, while uncertainty - in a correct or incorrect answer -
indicates that the student perceives s/he has reached an impasse.

The rest of our metacognitive metrics are taken from the metacognitive per-
formance literature. The knowledge monitoring accuracy metric that we use is
the Hamann coefficient (HC) [13]. This metric has previously been used to
measure the accuracy of one’s own knowledge monitoring, called “Feeling of
Knowing”(FOK) [17]. A closely related notion in the metacognition literature is
“Feeling of Another’s Knowing” (FOAK), which refers to monitoring the FOK of
someone else [18], and is very similar to our student uncertainty labeling as per-
formed by the system or a human judge. High and low FOK/FOAK judgments
have also been associated with speaker certainty and uncertainty, respectively,
in prior research [19].

HC measures absolute knowledge monitoring accuracy4, or the accuracy with
which certainty reflects correctness. HC ranges in value from -1 (no knowledge
monitoring accuracy) to 1 (perfect accuracy). As shown below, the numerator
subtracts cases where (un)certainty is at odds with (in)correctness from cases
where they correspond, while the denominator sums over all cases.

HC = (COR CER+INCOR UNC)−(INCOR CER+COR UNC)
(COR CER+INCOR UNC)+(INCOR CER+COR UNC)

Following [20], who investigate the role of immediate feedback and other metacog-
nitive scaffolds in a medical tutoring system, we additionally measure metacog-
nitive performance in terms of bias and discrimination [14]. Bias measures the
overall degree to which confidence matches correctness. Bias scores greater than
and less than zero indicate overconfidence and underconfidence, respectively, with
zero indicating best metacognitive performance. As shown below, the first term
represents the relative proportion of confidet answers (certain cases/all cases);
the second represents the relative proportion of correct answers.

bias = COR CER+INCOR CER
COR CER+INCOR CER+COR UNC+INCOR UNC−

COR CER+COR UNC
COR CER+INCOR CER+COR UNC+INCOR UNC

4 While Gamma (which measures relative monitoring accuracy) is also often used,

there is a lack of consensus regarding the benefits of Gamma versus HC [13], and we

found HC more predictive of learning in our ITSPOKE-WOZ corpus [6].
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Table 1. Prior Correlation Results from ITSPOKE-WOZ Corpus

Measure Mean SD R p

AV Impasse Severity .63 .24 -.56 .00

HC .59 .16 .42 .00

Bias -.02 .12 -.21 .06

Discrimination .42 .19 .32 .00

%C .79 .09 .52 .00

%U .23 .11 -.13 .24

Discrimination measures the ability to discriminate performance in terms of
(in)correctness. Discrimination scores greater than zero indicate higher metacog-
nitive performance. As shown below, the first term represents the proportion of
correct answers judged as certain, and the second term represents the proportion
of incorrect answers judged as certain.

discrimination = COR CER
COR CER+COR UNC − INCOR CER

INCOR CER+INCOR UNC

To illustrate the computation of our four metacognitive performance metrics,
suppose the annotated dialogue excerpt in Figure 2 represented our entire dataset
(from a single student). Then we would have the following values for our
automatically-derived ( auto) metrics for that student:

AV ImpasseSeverity auto = 3+2+0
3 = 5

3

HC auto = (1+1)−(1+0)
(1+1)+(1+0) = 1

3

bias auto = 1+1
1+1+0+1 − 1+0

1+1+0+1 = 2
3 − 1

3 = 1
3

discrimination auto = 1
1+0 − 1

1+1 = 1
1 − 1

2 = 1
2

In prior work [5,6], we showed that these four metacognitive metrics were pre-
dictive of learning in our ITSPOKE-WOZ corpus, where speech recognition, and
uncertainty and correctness annotation were performed by a wizard. We com-
puted the partial Pearson’s correlation between each metacognitive metric and
posttest, after first controlling for pretest to account for learning gain. We also
computed the correlation for the percentage of student turns manually anno-
tated as correct (%C) and as uncertain (%U). Correctness and uncertainty are
useful baselines since they were used to derive the four complex metrics and have
previously been shown to predict learning by ourselves and others (e.g [21]). Ta-
ble 1 summarizes the results of this prior work, showing the mean and standard
deviation of each metric, along with its Pearson’s Correlation Coefficient (R),
and the significance of the correlation (p).

4 Results

Here we investigate whether our four metacognitive metrics are predictive of
learning in our “noisy” ITSPOKE-AUTO corpus, where speech recognition, un-
certainty and correctness annotation were fully automated.
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Comparison of Table 2 and Table 1 shows that with the exception of discrimi-
nation, the two metacognitive metrics (impasse severity and knowledge monitor-
ing accuracy) that are significantly correlated with learning in the ITSPOKE-
WOZ corpus remain correlated with learning in the ITSPOKE-AUTO corpus,
both when derived from the automatic ( auto) and the manual annotations
( manu). In the case of average impasse severity, both the automatically-derived
and manually-derived metrics yield a negative correlation, but the manually-
derived metric (R = -0.50) is closest to the result in the ITSPOKE-WOZ cor-
pus (R = -0.56). In the case of knowledge monitoring accuracy (HC), both
the automatically-derived and manually-derived metrics yield a positive corre-
lation, but the automatically-derived metric (R = 0.35) is closest to the result
in the ITSPOKE-WOZ corpus (R = 0.42). Bias is negatively correlated with
learning as a trend in the ITSPOKE-WOZ corpus; in the ITSPOKE-AUTO cor-
pus the manually-derived bias metric is nearly but not quite a trend while the
automatically-derived bias metric is significant. These results suggest that less
severe impasse states (i.e., impasses that include uncertainty), greater knowledge
monitoring accuracy, and underconfidence about one’s correctness, are all better
for the student from a learning perspective during computer tutoring, even when
the measurement of these metrics must take into account noise due to automatic
uncertainty detection and natural language processing.

Interestingly, the simple uncertainty metric (%U) in and of itself does not
show predictive utility in this data; it is not correlated with learning in the
ITSPOKE-AUTO corpus, nor did it correlate with learning in the ITSPOKE-
WOZ corpus. However, correctness %C does significantly correlate with learning
in both corpora; the manually-derived metric is closer to the ITSPOKE-WOZ
corpus (R = 0.52) than the automatically-derived metric (R = 0.39).

Although these results suggest remediating metacognition can have a positive
impact on learning in both wizarded and fully automated spoken dialogue tutor-
ing, they also raise the question of whether this will be effective over remediat-
ing correctness. We addressed this question via three further analyses. First we

Table 2. Correlation Results from ITSPOKE-AUTO Corpus

Metric Mean SD R p

AV Impasse Severity auto .96 .26 -.40 .00

AV Impasse Severity manu .82 .23 -.50 .00

HC auto .42 .14 .35 .00

HC manu .49 .13 .29 .02

Bias auto .21 .07 -.36 .00

Bias manu .06 .13 -.19 .11

Discrimination auto .19 .10 -.04 .77

Discrimination manu .30 .14 -.03 .81

%C auto .66 .10 .39 .00

%C manu .72 .09 .52 .00

%U auto .13 .07 -.15 .20

%U manu .22 .14 -.13 .28
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computed bivariate Pearson’s correlations between correctness and each metacog-
nitive metric. Correctness was significantly correlated with all metacognitive met-
rics in both the ITSPOKE-WOZ and ITSPOKE-AUTO corpora (both manually
and automatically-derived). This suggests that remediating megacognition will
not add value over remediating correctness. However, we then computed partial
Pearson’s correlations between each metacognitive metric and posttest after con-
trolling for pretest and correctness. In the ITSPOKE-WOZ corpus, all metrics
except bias remained significantly correlated with posttest, but in the ITSPOKE-
AUTO corpus, no metric remained correlated with posttest. Finally, we computed
stepwise linear regressions that allowed the model to select from pretest, correct-
ness and the metacognitive metrics. In the ITSPOKE-WOZ corpus HC was se-
lected for inclusion in the regression model after %C and pretest [6]; this indicates
that knowledge monitoring accuracy adds value over and above correctness for
predicting learning. In the ITSPOKE-AUTO corpus, AV Impasse Severity auto
was selected besides pretest when using automatically-derived metrics, but
%C manu was selected besides pretest when using manually-derived metrics.
These last two analyses suggest that remediating metacognition can add value
over remediating correctness in the “ideal” and the “realistic” conditions of wiz-
arded and fully automated spoken dialogue tutoring, respectively.

5 Conclusions and Future Directions

This paper investigates whether four metacognitive metrics remain predictive of
student learning in a previously collected fully automated spoken dialogue com-
puter tutoring corpus; we previously showed that these metacognitive metrics
predict learning in a comparable wizarded corpus. Our purpose in this study was
to determine whether our prior results could be replicated even in the presence
of noise due to automatic speech recognition and automatic correctness and un-
certainty annotation. Our larger goal is to use our results to track and remediate
metacognition and thereby further improve student learning

Of our four metacognitive metrics, one was introduced in our prior work (im-
passe severity); the other three come from the metacognitive performance liter-
ature (knowledge monitoring accuracy, bias and discrimination). We computed
one set of metacognitive metrics from the system’s real-time automatic annota-
tions of uncertainty and correctness, and another set from subsequent manual
annotations. Our results show that average impasse severity, knowledge monitor-
ing accuracy and bias remain predictive of learning in the fully automated cor-
pus - both when computed from the automatic values and when computed form
the manual values. We conclude that these metacognitive metrics are a useful
construct for understanding student learning during spoken dialogue computer
tutoring, even when their measurement includes noise introduced by fully auto-
mated uncertainty detection and natural language processing. Furthermore our
analyses suggest that remediating metacognitve metrics can add value over and
above remediating correctness; this result is strongest in the “ideal” conditions
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of wizarded tutoring, but our regression results suggest that it also holds in the
“realistic” conditions of fully automated spoken dialogue tutoring.

In future work we plan to use our results to inform a modification of our system
aimed at improving student metacognitive abilities and also thereby improving
student learning. In particular, our results indicate that it feasible to develop
enhancements for our fully automated system that target student metacogni-
tion based on the noisy version of our metacognitive metrics; if our results had
not held for our automatically-derived metrics then we would have to explore
system enhancements that target student metacognition using the much more
time-consuming and expensive wizarded system. Note however that because un-
certainty in our system is labeled by the tutor (either the system or a human
wizard), our metacognitive metrics represent inferred or tutor-perceived values
rather than actual values. It is well known in the affective tutoring literature
that obtaining “actual” values for student/user affective states and attitudes is
difficult; for example, student self-judgments and peer judgments have both been
shown to be problematic (e.g. [22]). Nevertheless, to help measure improvements
in student metacognitive abilities due to our future system modifications, we will
also incorporate “Feeling of Knowing” (FOK) ratings into our testing, whereby
students will provide input on their uncertainty levels. More generally, there
is increasing interest in using intelligent tutoring systems to teach metacogni-
tion, and we plan to build on this literature (e.g. [1,2,20]) with future system
enhancements that target student metacognitive abilities.
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Abstract. Self-directed learning with hypertext-based resources involves navi-
gating the hyperspace to construct knowledge, which requires learners to self-
regulate their navigational learning process. Such self-regulation also involves 
planning the navigation process and reflecting on the knowledge construction 
process. However, it is hard for them to achieve the self-regulation process 
since it is concurrent with the navigational learning process. The main issue  
addressed in this paper is how to promote the self-regulation process and to im-
prove the coordination between navigational learning process and its self-
regulation process in hyperspace, which includes coordinating two different 
self-regulation processes: navigation planning and reflection. Our approach to 
this issue is to provide learners with a cognitive tool called self-regulator with 
which they can reify these coordination processes with self-regulation history. 
The results of the case study we have conducted suggest that the self-regulator 
can promote learners’ self-regulation process to enhance the efficiency and ef-
fectiveness of their navigational learning process. 

Keywords: Self-regulation, cognitive tool, navigational learning. 

1   Introduction 

Self-directed learning with hypermedia/hypertext-based resources involves navigating 
the hyperspace to construct knowledge. Such navigation with knowledge construction 
is called navigational learning. Navigational learning requires learners to regulate 
their learning process by themselves [1], [2]. Such self-regulation process plays a cru-
cial role in promoting efficiency and effects of the learning process [3]. 

On the other hand, the self-regulation process is not so easy for the learners since 
its target is the learning process in their mind and since it is concurrent with the learn-
ing process [2]. In fact, they often get lost in hyperspace spatially and conceptually 
due to the difficulty in monitoring and controlling their navigation and knowledge 
construction process in their mind [2], [4].  

How to address such difficulty in self-regulation becomes an important issue in 
hypermedia/hypertext-based learning environments [5], [6]. There currently exist at 
least two approaches to this issue, which are adaptive hypermedia (AH) and skill de-
velopment ones. The AH approach aims at facilitating navigational learning process 
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by means of adaptive navigation and adaptive presentation support [7], which intend 
to decrease learners’ self-regulation efforts to call their attention to understanding the 
contents of the hypermedia/hypertext-based resources. On the other hand, the skill 
development approach aims at scaffolding their self-regulation process, which en-
courages learners to self-regulate their navigational learning process [3], [6].  

Related work on self-regulation skill development has mainly focused on instruc-
tions/prompts for learners to master strategies of self-regulation [8], [9]. However, 
there is little discussion about how to scaffold self-regulation with some software-
based learning technology [3], [10]. Our approach to the skill development is to  
introduce cognitive tool, which is a computational tool for encouraging learners to 
externalize the process of learning or for visualizing it [11], [12]. Cognitive tool en-
ables the learners to articulate their learning process, which could reduce difficulty of 
self-regulation process. We also expect that cognitive tool could allow them to reify 
the self-regulation process by making the learning process represented on the tool 
operable and controllable [13]. Such reification makes it possible to scaffold  
self-regulation process. 

Self-regulation process in hyperspace involves planning the navigation process 
and reflecting on the knowledge construction process, which are viewed as repre-
sentative self-regulation processes. In order to scaffold the navigation planning and 
reflection, we have developed cognitive tools, which are called navigation Planning 
Assistant PA for short and Interactive History tool IH for short [13]. PA allows 
learners to see through the hyperspace to plan navigation paths to be followed for 
achieving their learning goal. IH also allows learners to review and reconstruct their 
knowledge that they have constructed so far. We have also evaluated these tools 
[13]. The results suggest that each tool contributes to enhancing its own self-
regulation process. 

Although PA and IH respectively focus on scaffolding navigation planning and re-
flection, learners need to fundamentally coordinate these different self-regulation 
processes to self-regulate the navigational learning process. The learners also need to 
seamlessly coordinate the navigational learning process and self-regulation processes. 
In order to improve such coordination, we have integrated the functions provided by 
PA and IH to design a cognitive tool called self-regulator. This paper demonstrates 
the self-regulator that consists of browser and self-regulation history. This history 
enables learners to reify navigation planning, navigation with knowledge construc-
tion, and reflection in a seamless manner. This paper also a case study whose purpose 
was to ascertain the self-regulator could work well. The results suggest that it can 
promote self-regulation process to enhance the efficiency and effectiveness of their 
navigational learning process more than PA and IH. 

2   Navigational Learning in Hyperspace 

Before discussing the self-navigator, let us first reconsider navigational learning and 
its representative self-regulation process in hyperspace. 
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2.1   Navigation and Knowledge Construction 

Hyperspace provided by a hypermedia/hypertext-based resource is generally  
composed of numerous pages. In the hyperspace, learners can navigate pages in a 
self-directed way to learn domain knowledge embedded in navigated pages. The self-
directed navigation process involves making a sequence of the pages, which is called 
navigation path [4]. It also involves constructing knowledge, in which the learners 
would make semantic relationships among the contents learned at the navigated pages 
[2]. Such navigation with knowledge construction is called navigational learning [13]. 
In navigational learning, it is very important to make a navigation path since the 
knowledge construction process is influenced by the navigation path. 

The learners generally start navigating hyperspace with a learning goal. The 
movement between the various pages is often driven by a local goal called navigation 
goal to search for the page that fulfills it. Such navigation goal is also regarded as a 
sub-goal of the learning goal. For instance, a learner may search for the meaning of an 
unknown term to supplement what he/she has learned at the current page. We refer to 
the process of fulfilling a navigation goal as primary navigation process [13]. This is 
represented as a link from the starting page where the navigation goal arises to the 
terminal page where it is fulfilled.  

The knowledge construction process can be modeled as a number of primary navi-
gation processes. In each primary navigation process, the learners would integrate the 
contents learned at the starting and terminal pages. Carrying out several primary navi-
gation processes, they would construct knowledge from the contents they have inte-
grated in each primary navigation process. 

2.2   Self-regulation 

In navigational learning process, learners need to monitor and control their learning 
process. In order to shape a well-balanced knowledge structure, in particular, it is 
necessary for the learners to decide which navigation path to follow from the current 
page for achieving their learning goal. It is also important for them to recollect what 
and why they have navigated so far, and to properly direct the subsequent navigation 
[2]. We call these higher-order cognitive processes self-regulation ones. Land [5] and 
Avezedo et al. [6] classified the self-regulation process into several sub-processes in 
detail. From among them, we have focused on navigation planning and reflection as 
representative self-regulation processes. 

The purpose of the navigation planning is to decide a navigation path representing 
the sequence of the pages to be followed for achieving a learning goal. Navigation 
planning is particularly important for learners to efficiently navigate hyperspace. 
Navigation planning includes the following three tasks:  

1. Setting up a learning goal and sub-goals,  
2. Making navigation path plan for fulfilling the goals, and  
3. Re-planning navigation path according to the results of carrying out the plan.  
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In planning a navigation path, learners first need to consider what they can learn in 
the resource for setting up a learning goal or its sub-goals by getting an overview of 
the whole structure of hyperspace. They then need to plan which navigation path to 
follow for achieving the goals by getting overviews of the pages. They are next ex-
pected to follow this navigation path to navigate the pages included in the path and 
construct knowledge in hyperspace. Afterwards, the learners would decide whether 
the plan needs to be modified or a new plan needs to be made according to whether 
the goals are achieved. In this way, navigation planning process is modeled as re-
peated execution of the three tasks. 

On the other hand, the purposes of reflection are to monitor and control navigation 
with knowledge construction in hyperspace and to review/reconstruct the knowledge 
constructed. In particular, reflection is important for learners to make their knowledge 
well-structured. In this work, we model reflection as review and reconstruction of 
primary navigation processes carried out so far, which includes the following three 
tasks:  

1. Reviewing and re-learning the contents learned at the navigated pages,  
2. Reviewing and reconstructing primary navigation processes carried out, and  
3. Reviewing and reconstructing the relationships among them. 

2.3   Coordination 

In navigational learning, learners usually make a navigation plan to navigate the pages 
according to it, and construct their knowledge to reflect on it. They then follow the 
findings obtained from the reflection process to re-plan or make a new plan for 
achieving the learning goal. 

In this way, learners need to seamlessly coordinate the navigational learning proc-
ess and its self-regulation process, which also includes coordinating the two self-
regulation processes: navigation planning and reflection. However, it is hard for them 
to concurrently carry out navigation planning, navigation with knowledge construc-
tion, and reflection. In order to overcome the difficulty, we have designed and devel-
oped the self-regulator. 

3   Self-regulator 

3.1   Framework 

The self-regulator deals with hypermedia/hypertext-based resources described with 
HTML to support the self-regulation process. It enables learners to reify and  
coordinate the three phases, which are navigation planning, navigation with knowl-
edge construction, and reflection, with the self-regulation history. It provides them 
with functions for each phase shown in Table 1. The functions for navigation plan-
ning except title list correspond to the ones provided by PA. PA provides a hyper-
space map instead of the title list [13]. The functions for reflection also correspond to 
the ones provided by IH.  
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The self-regulator consists of browser and self-regulation history. The self-
regulation history enables learners to manipulate the pages included in it to make 
and execute a navigation plan, carry out and reflect on the primary navigation proc-
esses, and re-plan according to the reflection process in the same window. The self-
regulation history is able to represent the sequence of the pages planned, the pages 
browsed/learned, and a number of primary navigation processes carried out. In this 
way, the self-regulator scaffolds navigation planning, navigation with knowledge 
construction, reflection, and these coordination processes in the same space. 

Table 1. Scaffolding functions provided by self-regulator 

 

3.2   Scaffolding for Navigation Planning 

Fig. 1 shows the user interface for supporting navigation planning, which provides 
title list, page preview, and link list. The title list presents a list of the titles of all 
pages included in a hypermedia/hypertext-based resource as an overview of the 
hyperspace, which is automatically generated from the resource. Clicking any title 
from the title list, learners can have an overview of the page corresponding to the title, 
which the page preview automatically generates by highlighting representative infor-
mation included in the page and dimming the remaining information in the browser. 
The learners are allowed to use the title list and page preview to define a learning 
goal/sub-goal. The page preview also helps the learners to decide from which page 
they start planning a navigation path. In Fig. 1, their learning goal is defined as learn-
ing color tones, and the page vivid tone is previewed.  

When they decide the starting point of the path, they can put the starting page in 
the self-regulation history window. In Fig. 1, the page vivid tone is selected as starting 
page. Each page put in the history window has a link list, which includes anchors of 
the hyperlinks the current page contains. Selecting any one from the list, they can 
have a preview of the page in the browser, to which the selected link points. They can 
then put the page previewed next to the current page, making a sequence of the pages 
that represents a navigation path plan. The history in Fig. 1 includes the sequence 
from the page vivid tone to the page deep tone.  

When the learners are in navigation planning, the user interface of the self-
regulator is framed with blue, which raises awareness about which phase they  
engage in. 
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Fig. 1. User Interface in scaffolding navigation planning 

3.3   Scaffolding for Navigation with Knowledge Construction 

Double-clicking the starting point at the navigation path plan, the learners can start 
navigation and knowledge construction process. The learners are then expected to 
follow the plan to navigate and learn the pages with the browser. The learners can 
use the Next and Back buttons, which are located above the self-regulation  
history, to navigate the pages in the planned order. The learners can accordingly 
concentrate on understanding the contents of the browsed pages. In the history, the 
pages browsed in the browser are changed from the planned pages to the navigated 
ones. The planned pages are colored with blue, and the navigated ones are colored 
with red.  

The learners can also explore pages in the browser, which are not included in  
the plan. The explored pages are put as navigated ones in the history. When they  
want to change or cancel the plan during navigation, they can return to the planning 
phase. 

In carrying out a primary navigation process during navigating the pages with the 
browser, as shown in Fig. 2, the learners can take a note about the contents learned at 
the starting and terminal pages. They can also annotate the history with the primary 
navigation process, which includes annotation of the starting and terminal pages and 
annotation of link between these pages representing the navigation goal. Such page 
and link annotation is conducted with the navigation goal annotation window. In this 
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window, they can define the starting and terminal pages and the navigation goal car-
ried out from the list of the navigation goal classified in advance. The navigation goal 
list currently includes the six navigation goals: Supplement, Elaborate, Compare, Jus-
tify, Rethink, and Apply [13]. Fig. 2 shows the annotation window where the bright 
tone and deep tone are defined as the starting and terminal ones, and where the navi-
gation goal is defined as supplement.  

 

 
Fig. 2. User interface in scaffolding reflection 

3.4   Scaffolding for Reflection 

In the reflection phase, the learners can review and reconstruct their navigational 
learning process by adding/modifying/deleting the notes taken and the primary navi-
gation processes carried out in the same way as the self-regulator provides in the 
phase of navigation with knowledge construction. The self-regulator, in addition, gen-
erates a knowledge map by transforming primary navigation processes into visual 
representation [13]. The nodes in the map correspond to the starting and terminal 
pages included in the primary navigation processes. The relationships between the 
nodes depend on their navigation goals. Such knowledge map allows the learners to 
visually grasp the structure of their knowledge constructed.  

When the learners are in the phase of navigation with knowledge construction or in 
the reflection phase, the user interface of the tool is framed with red. 
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3.5   Sample Use 

Let us here demonstrate a sample use of the self-regulator to present the seamless 
coordination between navigational learning process and its self-regulation process. 
First, a learner sets up a learning goal with the title list and page preview. Afterwards, 
he/she decides a starting page of navigation path, which is put on the self-regulation 
history. He/she then looks at the link list of the starting page to select one from the 
link list. The selected page is previewed in the browser. If he/she does not want to put 
it in the plan, he/she can select another one from the link list to have the page pre-
view. If he/she wants to learn it, it is put in the history. In this manner, he/she can 
make a navigation path plan. It is also possible to make more than one navigation path 
plan.  

After deciding the navigation path plan, the learner executes the plan with the 
browser to navigate the pages in the planned order by using the Next and Back but-
tons and to construct knowledge. In the knowledge construction process, he/she car-
ries out primary navigation processes by annotating the history with them. He/she can 
also take notes about the starting and terminal pages. In case a lot of primary naviga-
tion processes arise, he/she would click the KMap button, which is located above the 
history window, to view the knowledge map. In reconstructing his/her knowledge 
constructed so far, he/she would delete or modify the primary navigation processes, or 
add new primary navigation process.  

In case the reconstructed knowledge is not sufficient for achieving his/her learning 
goal, he/she would return to the planning phase, and make a navigation path plan that 
can complement the insufficiency. He/she would then carry out the plan, construct 
and reconstruct his/her knowledge in a spiral manner.  

From the above sample use, we can say that the self-regulator has a potential for 
scaffolding seamless coordination between navigational learning and self-regulation, 
and between navigation planning and reflection via the same space provided with the 
self-regulation history. 

4   Case Study 

4.1   Preparation and Procedure 

We have had a case study whose purpose was to ascertain if the self-regulator pro-
motes self-regulation process, and enhances the efficiency and effectiveness of their 
navigational learning process compared to using only PA, IH, or browser. 

In this study, we prepared a hypermedia-based resource described with HTML 
whose domain was color. The number of pages included was 70, and the average 
number of links per page except navigational links such as next, back, etc. was 5.1. 

Subjects were 32 graduate and undergraduate students in science and technology 
who had more than three years experience in using Web browser. We set four condi-
tions according to the tools to be used for learning with the resource, which were (a) 
learning with the self-regulator (SR-group), (b) learning with PA (PA-group), (c) 
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learning with IH (IH-group), and (d) learning only with browser (Browser-group). We 
assigned 8 subjects per condition.  

We also prepared pre-test and post-test before and after learning the resource with 
a learning goal. In the pre-test, we prepared 20 problems about color contrast to be 
learned from the resource, which was related to the learning goal. These included 15 
problems (Concept-P) about color concepts embedded in the resource and 5 problems 
(Relationship-P) about the relationships between the concepts. Relationship-P re-
quires combining the contents to be learned in the pages navigated. We prepared 30 
Concept-P problems and 20 Relationship-P problems for the post-test, which in part 
included the problems used in the pre-test.  

After conducting the pre-test, each condition group except Browser-group was first 
given an explanation/demonstration about how to use the assigned tool by means of 
another hypermedia-based resource. Each subject was afterward given the same learn-
ing goal that was to learn basic concepts related to color contrast and color contrast 
effects, and then was required to learn the prepared resource with the assigned tool 
within 30 minutes. He/she was also informed that the post-test was conducted after 
learning.  

In the post-test, he/she was allowed to refer to his/her learning history information 
(self-regulation history and knowledge map for SR-group, navigation history anno-
tated with primary navigation processes and knowledge map for IH-group, and 
browsing history for PA-group and Browser-group) in answering the questions. But, 
he/she was not allowed to refer to the notes taken during his/her learning since the 
contents recorded in the notes could include answers of the questions. 

4.2   Results and Considerations 

In order to ascertain whether the self-regulator worked well, we compared history of 
learning with the hypermedia-based resource and pre-test/post-test scores obtained 
from each group. In case coordination between navigational learning and its self-
regulation process that includes coordinating navigation planning and reflection is 
well improved, navigational learning process is expected to become more efficient, 
convergent, combinative, and goal-oriented. In other words, self-regulated learners 
could more efficiently and precisely select the pages necessary for achieving a learn-
ing goal, and combine the contents learned at the pages. Their browsing/page visit 
would also converge on such pages. In addition, the pages related to the goal 
achievement would be revisited more.  

We used the following data to analyze the efficiency, convergence, combinative-
ness, and goal-orientedness of navigational learning process. The convergence, com-
binativeness, and goal-orientedness can be viewed as indicators of effectiveness of 
navigational learning process. 

- Number of browsing pages and number of distinct pages browsed, 
- Pre-test and post test scores, and 
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Table 2. Average data for analyzing navigational learning process 

 
 

- Precision of correct pages, which we specified as pages necessary for achieving 
       the learning goal, to distinct pages browsed and to revisited pages. 

Table 2 shows the average data for analyzing the convergence (data (a1) and (a2)), 
combinativeness (data (b1) and (b2)), and efficiency/goal-orientedness (data (c1) and 
(c2)) of navigational learning process, which were obtained from histories of using 
the assigned tools and from the results of the pre-and post-tests.  

From the ANOVA analysis with the average numbers of browsing pages (a1) and 
distinct pages browsed (a2) in each condition, there was significant difference be-
tween four conditions (F(3,28)=4.72, p<.01 for (a1); and F(3,28)=16.57, p<.01 for 
(a2)). As the results of the LSD multi-range test for (a1), the average number in SR-
group was significantly lower than the ones in IH-group and Brower-group 
(MSe=4658.46, p<.05). As for (a2), the average number in SR-group was signifi-
cantly lower than the ones in IH-group and Browser-group, and the average number 
in PA-group was also significantly lower than the ones in IH-group and Browser-
group (MSe=120.37, p<.05). These results suggest that the self-regulator and PA 
make navigational learning process (page visit) more convergent, and that the conver-
gence is supported by the tool functions for scaffolding navigation planning.  

As for (b1) shown in Table 2, the results of the ANOVA analysis indicated that 
there was no significant difference between four conditions (F(3,28)= 0.10, p>0.10 
for Concept-P; and F(3,28)= 0.70, p>0.10 for Relationship-P). This suggests that each 
subject seems to have similar background knowledge about the domain embedded in 
the hypermedia-based resource. As for (b2), there was a tendency towards significant 
difference between four conditions as for Relationship-P (F(3,28)= 2.81, p<0.10) al-
though there was no significant difference as for Concept-P (F(3,28)= 2.09, p>0.10). 
From the results of the LSD multi-range test for Relationship-P in (b2), the scores in 
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SR-group and IH-group were significantly higher than the one in Browser-group 
(MSe=7.23, p<.05). These results suggest that the self-regulator and IH make naviga-
tional learning process more combinative, and that the combinativeness is supported 
by the tool functions for scaffolding reflection.  

Let us next analyse the precision of the correct pages to distinct pages browsed (c1) 
and to revisited pages (c2). From the ANOVA analysis after angular transformation, 
there were significant differences between four conditions as for both (c1) and (c2) 
(F(3,28)=9.71, p<.01 for (c1); and F(3,28)=8.25, p<.01 for (c2))). As for the results of 
the LSD multi-range test for (c1), the precision in SR-group and PA-group was sig-
nificantly higher than the ones in IH-group and Browser-group (MSe=107.20, p<.05). 
As for (c2), the precision in SR-group was significantly higher than the other groups 
(MSe=127.57, p<.05). The results of (c1) suggest that the self-regulator and PA make 
navigational learning process more efficient. Such efficiency seems to be supported 
by the tool functions for navigation planning. The results of (c2) also suggest that the 
self-regulator makes navigation process more goal-oriented, which means the revis-
ited pages include more correct pages. Such goal-orientedness seems to be supported 
by the tool functions for reflection. 

From the all above results, we can say that the self-regulator has a potential for 
scaffolding self-regulation process to make navigational learning in hyperspace more 
efficient and effective. 

5   Conclusion 

This paper has described the self-regulator for navigational learning in hyperspace 
whose goal is to scaffold different self-regulation processes and the coordination be-
tween the navigational learning process and its self-regulation processes. It enables 
learners to reify navigation planning and reflection processes by means of self-
regulation history, which also enables the seamless connection between navigational 
learning and its self-regulation.  

Some learners might feel the operations of the self-regulator complicated. But, ac-
complishing navigational learning in mind requires them to make cognitive efforts 
corresponding to the operations. It is consequently necessary to help such learners 
develop their skill in operating the self-regulator. We have addressed this issue with 
learner-adaptable scaffolding (See [10] and [14] in detail.). 
This paper has also reported a case study. The results indicate the possibility that the 
self-regulator could scaffold the self-regulation processes in hyperspace to make 
navigational learning more efficient and effective.  

In future, we will refine the functions and use of the self-regulation tool according 
to the results of more detailed evaluation. We will also seek a solution to the devel-
opment of skill in operating the self-regulator. 
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Abstract. In examine the tutoring protocols of one expert human tutor tutoring 
10 students in solving physics problems, four analyses reveal that he tutored the 
five good learners in different ways than the five poorer learners, resulting also 
in greater adjusted gains for the good learners. This opens up the question of 
whether the tutor is non-optimally adaptive. We introduce a new conceptual 
framework and a new perspective in our coding analyses in order to examine 
how adaptive an expert tutor is. 

1   Introduction 

In this paper, we address a specific question, by analyzing protocol data that were 
collected in a 2008 study of an expert human Tutor tutoring 10 Tutees in solving 
physics problems [1]. Studying a single tutor tutoring 10 students allowed us to exam-
ine tutor variability as a function of the tutees. The study and its major learning results 
from the perspective of the bystander observers were published in [1]. Here, we report 
other analyses of the raw protocols to address specifically the question of whether an 
expert tutor is adaptive. 

The common assumption among tutoring researchers is that tutoring is beneficial 
to all students in part because tutors are adaptive to the needs of the tutees.  Adaptive-
ness can be defined in many ways, but the general idea is that a human tutor is adap-
tive in the sense that she tailors her instruction to the needs of her tutee. Tailoring can 
be defined in a macro way as selecting the appropriate next problem for a student to 
solve [2], such as a more difficult problem if a tutee successfully solved the current 
problem. Using this criterion, we had also examined the choice of problems our Tutor 
had posed to the 10 Tutees. Although the number of problems from which our Tutor 
could have selected were few (4 problems), they nevertheless did vary in difficulty. 
Overall, as we showed in our prior study [1, Pp. 334-335], there were no significant 
differences in whether the Tutor selected and posed the more difficult problems to the 
better tutees, suggesting that the Tutor was not adaptive in the macro level sense. 
Furthermore, the overall finding that the bystander observers could learn as well as 
the Tutees [1] even though the Tutor could not have tailored their instruction toward 
the observers, made us wonder whether tutors are in fact as adaptive as commonly 
believed. 

From a micro perspective, tutoring adaptiveness is usually identified as choosing 
the appropriate next solution step for the student to work on, whether to give a  
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proactive hint or scaffold before the step [3], or deciding on the specificity of the hint 
to pose [4], contingent upon the success of the student in solving the prior step.   
Intelligent tutoring systems generally take this finer-grained approach in defining 
adaptiveness. In short, whether at a more macro problem level or at a more micro 
solution-step level, both approaches to defining adaptiveness view it as a choice of 
what materials to present by the tutor to the tutees.  

In this work, we define adaptiveness from the perspective of the tutee. Instead of 
looking at what content the tutor chose to present to a tutee, we examined instead 
what kind of pedagogical move the tutor made to elicit productive learning activities 
from the tutees. Accordingly, we also attempted to modify our coding from the per-
spective of the tutor to the perspective of the tutee. 

Our perspective is derived from a framework we outlined in [5] to define “active 
learning.” To improve learning, it has been widely proposed in many areas of litera-
ture that students engage in “active learning” as opposed to “passive learning.” For 
example, in educational psychology “active learning” has been broadly defined as 
encouraging learners to pay “attention to relevant information, organizing it into co-
herent mental representations, and integrating representations with other knowledge” 
[6]. In engineering education, “active learning” has been defined as “engaging stu-
dents in the learning process [through] activities that are introduced into the class-
room” [7].  

We have differentiated “active learning” into three different kinds of student activi-
ties—active, constructive, interactive--that can be observed overtly, and defined the 
cognitive processes corresponding to each kind of activities.  For example, active 
activities might include copying a solution from a whiteboard, underlying a sentence 
in a text, or clip-and-pasting a sentence. Constructive activities mean producing some 
new knowledge that was not presented in the instructional materials, such as drawing 
a diagram or a concept map, comparing-and-contrasting two examples or self-
explaining a worked-out example. In these cases, a student is producing something 
beyond what was contained in the instructional materials: such as a diagram, similari-
ties and differences, or self-explanation inferences. Finally, interactive activities in-
volve directly interacting with a peer or a tutor, such that both partners can further 
elaborate, elucidate, scaffold, provide feedback, and so on, to each other. Our frame-
work explains why being “active” promotes more learning than being “passive,” 
which was operationalized as not doing anything overtly. Moreover, we had hypothe-
sized that participating in interactive activities is often (but not always) better for 
learning than participating in constructive activities, which in turn is better than par-
ticipating in active activities, which in turn is better than being passive [5]. We are not 
saying that one must engage in a specific kind of overt activities in order to learn. 
Rather, we are simply proposing that in general, students are more likely to learn 
more by engaging in one kind of learning activities over another kind, and the order-
ing ranks as follows: interactive>constructive>active>passive.  

Since tutorial dialogues involve a tutor conversing with a tutee and expects a re-
sponse from a tutee, should we consider all tutorial dialogues as naturally interactive? 
We propose that if we examine tutorial dialogues from the perspective of a tutee’s 
contributions, then we can clearly differentiate a tutee’s contribution as either passive, 
active, constructive, or interactive, so that not all tutee responses should automatically 
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be considered to be interactive. In particular, if a tutee responds to a tutor’s comment 
with a continuer, such as “ok,” or “uh-huh,” then we can consider a continuer type of 
responses as an active response only. However, if the tutee responds to a tutor’s 
comment with a content-relevant follow-up, then we can consider it a constructive 
response. We further apply the criterion that a tutee’s response is interactive if it initi-
ates some new topic, new direction, and so forth. 

Using this operational definition of tutee’s responses as a way to differentiate   ac-
tive, constructive, and interactive, our assumption is that some tutor moves are more 
likely to promote one kind of responses than another.  In Fig. 1 below, we re-ploted 
the three largest categories of tutor moves—explaining, giving feedback, and scaf-
folding, averaged across 11 tutors, taken from data reported in our 2001 study [8, Fig. 
3], in terms of proportion rather than frequency. Fig. 1 shows that the tutors’ explana-
tions elicited the largest proportion of continuer type of active responses, and a 
smaller proportion of shallow constructive type of follow-up responses. In contrast, 
the tutors’ scaffolding moves elicited the smallest proportion continuer type of re-
sponses and the largest proportion of shallow follow-ups. Feedback moves also elic-
ited proportionately more shallow follow-ups than continuers, but the difference was 
not as pronounced as for scaffolding moves. Overall, all tutor moves elicited compa-
rable and minimal deep follow-ups. Comparing explaining and scaffolding moves 
only in this paper, this suggests that scaffolding was a better tutor move than explain-
ing, because scaffolding moves often elicited some constructive responses from the 
tutees whereas explaining moves were more likely to elicit active responses.   

 
 

 

Fig. 1. The proportion of tutees’ continuer, shallow, and deep follow-up responses to tutors’ 
explanations, feedback and scaffolding moves (taken from Chi, et al. 2001 data) 
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2   The Data of the Current Analyses 

The data analyzed for this paper consisted of an experienced teacher who had taught 
college physics for over 30 years. Moreover, he was in a lab that developed intelligent 
tutoring systems and knew that a good tutor ought to scaffold tutees, thus we consider 
him to be an expert tutor. In the 2008 study [1], this Tutor was asked to tutor 10 dif-
ferent Tutees. A pre-test was administered to the 10 Tutees after they had learned the 
materials in Chapter 5 of a physics text on their own, without feedback. Essentially 
the pre-test measured how well the students could learn the content of Chapter 5 on 
their own, after having learned the first four chapters to mastery. Thus, the pre-test 
was not a test of their prior knowledge about physics, but more of an assessment of 
whether a tutee is a good or a poor learner, when they had to learn unguided. After the 
pre-test, then these 10 students were individually tutored by the Tutor on solving four 
problems pertaining to Chapter 5 content. 

In order to make our codings more manageable and more meaningful, we focus 
here on dialogue protocols segmented into episodes about “critical” nodes. Critical 
nodes were those nodes in a problem space that we thought were more important in 
terms of requiring the solver to generate a specific equation, solution step, or about 
main concepts and principles. The problem space of all possible nodes were identified 
initially by transcribing how our expert Tutor solved each of the problems that he was 
to tutor. All utterances pertaining to a critical node were counted in the node’s epi-
sode. Thus, the tutorial dialogues of all participants have approximately the same 
number of episodes, because the Tutor usually made sure that all critical nodes were 
covered. All the analyses to be reported below used “episode” as the unit of analyses. 

3   Results 

Before describing four analyses to give a view of how adaptive our expert Tutor was, 
we first assert that although tutoring is often considered to be the best instructional 
technique in helping students learn, nevertheless, tutoring is not equally effective with 
all students. We can see tutoring’s differential effectiveness easily in multiple ways. 
For example, the 10 Tutees in our sample varied in their pre-test scores significantly, 
ranging from a low score of around 30% to a high pre-test score of around 60%. And, 
as is the case with many other kinds of interventions, there was a significant correla-
tion between pre-test scores and post-test scores. If we use the data of all 69 partici-
pants across all five treatment groups reported in [1], the correlation between pre-test 
and post-test scores were significant at the p<.0005 level (r=0.648). In focusing here 
on the tutoring condition only, Figure 2 below divides the Tutees into three groups (to 
show the incremental variability): the 3 Low Tutees obtained a pre-test scores be-
tween 30-40%, the 3 Medium Tutees obtained scores between 40-50%, and the 4 
High Tutees obtained scores between 60-70% (all pre-test scores are shown in the 
dark bars). The results show that Tutees learned different amounts, depending on 
whether they had more or less knowledge coming into the tutoring situation after 
having learned the materials in Chapter 5 on their own.  
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The point of Figure 2 is simply to show that the Tutor was not equally effective 
with all Tutees; in fact, he was least effective with the poorest Tutees. This suggests 
that there is room for improvement in terms of what tutors can do to guide a poor 
tutee’s learning. For example, was the Tutor adaptive in making the Tutees more 
constructive rather than merely active? The next four analyses examine the Tutor’s 
adaptiveness from a tutee’s perspective. 

 
 

 

Fig. 2. Dark bars show the pre-test scores of the Tutees, divided into Low, Medium, and High, 
and the lighter-colored bars show how much they improved after tutoring on the same matched 
pre- and post-tests, scored for correct deep solution steps only 
 

3.1   Does an Expert Tutor Jointly Explain or Take over the Coverage of a 
Critical Node? 

Given that we only have 10 Tutees, our analyses henceforth will divide the Tutees 
into two groups: Good versus Poor Tutees. Good Tutees were defined as the five 
Tutees who gained more (on average 25% from pre- to post-test) and made fewer 
errors (on average 56 error steps across 4 problems); and Poor Tutees were defined as 
the five Tutees who gained less (16%) and made many more errors (89 error steps). 
Further details about the Good versus Poor Tutees split are described in [1]. 

Each episode comprised of either a single turn by either the Tutor or the Tutee, or  
multi-turns by both. When it consists of multi-turns, and if both the Tutor and the 
Tutee made substantive contributions, then the node is considered “jointly-covered.” 
However, if only one person (either the Tutor or the Tutee) made substantive contri-
butions in covering (i.e., explaining or solving) a critical node, then we consider that 
node to be independently covered. Thus, while tutoring, a critical node can be  
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covered, whether successfully or unsuccessfully, either by a tutee alone, by a tutor 
alone, or by both of them jointly, when only substantive contributions are considered. 
Based on our framework described above, when the Tutor covered a node alone, then 
the Tutee seems passive. But when the Tutee covered a node alone, then the Tutee 
was constructive. However, when the Tutor-and-Tutee jointly covered a node, then 
the Tutee was likely interactive. As our interactive>constructive>active>passive 
hypothesis suggested above, interactions should facilitate learning more so than being 
constructive, which is better than being passive. 

On average, the majority of the critical nodes (55) were covered by Tutor-and-
Tutee jointly, whereas 32 were covered independently by the Tutor and 16 independ-
ently by the Tutees. Figure 3 shows a breakdown of how the nodes were covered for 
Good and Poor Tutees, and an interesting pattern of differences emerge. It is not sur-
prising to find that Good Tutees were more able to explain/solve a node independ-
ently than Poor Tutees (F(1,8)=50.oo, p<.0005, d=4.21).  However, the Tutor covered 
the critical nodes independently more often for the Poor Tutees than the Good Tutees 
(F(1,8)=98.04, p<.0005, d=5.219), whereas they covered the nodes jointly more often 
with the Good versus the Poor Tutees (F(1,8)=21.00, p=.002, d=2.892).   

 
 

 

Fig. 3. The number of critical nodes covered by the Tutees alone, by the Tutor alone, or jointly 
by both, for Poor (dark bars) and Good (light bars) Tutees 
 

 
In our framework, to maximize learning, a tutor should instead cover the nodes less 

frequently alone, since independent coverage by a Tutor essentially means that the 
Tutor explains didactically to the Tutees, allowing the Tutee to be passive. Moreover, 
the Tutor should encourage more joint coverage with Poorer Tutees than the Good 
Tutees, since joint coverage would encourage the tutees to be interactive. In short, the 
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Tutor was not optimizing his adaptiveness, from the perspective of differentially elic-
iting active, constructive, or interactive responses from the Good and the Poor Tutees.    

To verify whether being interactive (during joint coverage) and being constructive 
(when Tutees cover a node independently) facilitated learning, there ought to be sig-
nificant correlations between the frequency of joint coverage with Tutees learning 
(r=0.457, p=.043), and Tutees’ independent coverage with Tutees’ learning (r=0.640, 
p=.046), but not when the Tutor covered a node alone (n.s.), since the Tutees were 
most likely passive. In fact, the correlation results do support our predictions.  

3.2   Could Poor Tutees Be Helped with More Tutor Scaffolding? 

One could dismiss the results shown in Fig. 3 by pointing out that of course the Tutor 
covered more nodes independently with Poor Tutees and engaged in more joint dia-
logues with the Good Tutees, because the Good Tutees were more capable of inde-
pendent coverage and engaging in joint dialogues with the Tutor. Our point is that to 
be truly adaptive, a tutor could in principle be more responsive to poorer tutees’ in-
ability to respond in joint dialogues, initiate new comments, and cover nodes by 
themselves. But the question is, would it help the Poor Tutees if they did receive more 
scaffolding? 

Our argument is indirectly supported by the results from our 2001 Study 2 [8]. In 
Study 2 [8], tutoring in a conceptual domain (the human circulatory system), the 11 
tutors were suppressed from giving explanations. In fact, they were permitted only to 
scaffold the tutees in a restricted content-free way, with scaffolding prompts such as 
“What does this mean?” The tutees in Study 2 learned just as much from the 11 tutors 
when they were scaffolded, as the tutees in Study 1 when the same tutors tutored 
more naturally. Although this is indirect evidence, it does suggest that all tutees (good 
and poorer ones) could learn when tutors were only permitted to scaffold them. 

To address the same question here, we analyzed the proportion of tutee responses 
that were merely active, such as a continuer, versus more constructive, such as a 
shallow follow-up. Fig. 4a below shows that for the five Good Tutees, they gener-
ated proportionately more active continuer type of response to Tutor’s explanations 
than to Tutor’s scaffolding, whereas they generated more constructive follow-up 
responses to Tutor’s scaffolding than Tutor’s explanations. As before in the data 
collected in the 2001 study [8] and shown in Fig. 1, they did not generate many 
deep follow-ups.  

The very same pattern of tutee responses hold for the Poor Tutees as well, as 
shown in Fig. 4b. They responded to explanations with more continuers than to 
scaffolding, whereas they responded more with shallow follow-ups to scaffolding 
than to explanations. This pattern of results again suggests that a tutor move such as 
scaffolding is advantageous to both Good and Poor Tutees. Nevertheless, the Tutor 
is much more likely to explain to a Poor Tutee than to scaffold a Poor Tutee, and 
conversely, the Tutor is more likely to scaffold a Good Tutee than explain to a 
Good Tutee.  

Even though scaffolding is beneficial to both Good and Poor Tutees, as shown in 
Fig. 4a and 4b, the Tutor gave significantly more explanation statements to the  
Poor Tutees than the Good Tutees (F(3,6)=8.281, p=.015), but in contrast, gave  



408 M.T.H. Chi and M. Roy 

predominantly more scaffolding statements to the Good Tutees than the Poor Tutees 
F(3,6)=7.333, p=.020). In this sense, from the tutee’s perspective, the Tutor was not 
very adaptive. 

 

 
 

Fig. 4a. Good Tutee’s responses to different types of tutor moves 
 
 

 

Fig. 4b. Poor Tutee’s responses to different types of tutor moves 
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3.3   Examples of Tutor Explaining Moves versus Scaffolding Moves 

In this analysis, we want to give specific contrasting examples of how explaining 
versus scaffolding can be coded. One way to code explaining is to determine whether 
the Tutor gave statements that were more telling and directing versus those that made 
open-ended requests. Open-ended requests are more scaffolding-like moves in that 
they are more likely to elicit constructive responses from the tutees. Figure 5 below 
shows that the Tutor gave didactic telling and directing statements more often to Poor 
Tutees than the Good Tutees, and conversely, requested fewer open-ended goals and 
explanations from the Poor Tutees than the Good Tutees.  We recognize that the Tutor 
asked more open-ended requests from the Good Tutees in part because they are more 
able to answer such requests. So the Tutor is adapting, but not in a way that is optimal 
for all the Tutees’ learning. That is, the Tutor should be doing the reverse, asking the 
Poor Tutees more open-ended questions so the Poor Tutees can be more constructive.  
 

 

Fig. 5. Telling and directing statements versus open-ended requests made by the Tutor to Poor 
(dark bars) and Good (light bars) Tutees 

3.4   Coding from the Tutees’ Perspective: Was the Tutor Adaptive in 
Optimizing Tutees’ Interactive Responses During Joint Dialogues? 

The prior analyses, as many others have done in the literature, typically coded from 
the perspective of the Tutor, in terms of starting out with what the Tutor said. This is 
understandable given that tutors typically lead the dialogues. However, coding from a 
tutor’s perspective cannot give us a true sense of a tutee’s interactivity, since a tutee is 
obliged to give a response. Moreover, interactivity in the prior coverage analysis as 
shown in Fig. 3, was operationalized merely as both the Tutor and the Tutees having 
made substantive contributions. In order to operationalize interactiveness independent 
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of Grice’s conversational obligation and using a strict criterion, in this analysis, we 
coded from the Tutees’ perspective, in that we coded the joint dialogues starting with 
what a Tutee initiated. Initiate means that the tutees commented on a new idea, a new 
topic, or a question that were not a follow-up, and so forth. We operationalized such 
tutee initiating moves as being interactive. Using this strict criterion and perspective, 
we coded four types of interactive dialogues, using the Tutee as the starting point. 

  
a) Tutee initiate, Tutor revoice 
b) Tutee initiate, Tutor scaffold 
c) Tutee initiate with a question, Tutor answers 
d) Tutee makes a meta-comment, Tutor responds.  

 
The only tutor move that is novel in the above analysis is tutor “revoicing.” In the 
literature, “revoicing” is defined as a paticular kind of re-utterance of a teacher’s 
contribution by a student or as a teachers’ redecoration of a students response [9]. 
Here, we treat revoicing as a repetition of parts of a tutee’s utterances, but not neces-
sarily verbatim. And such revoicing moves are typically undertaken by the Tutor 
when a Tutee makes a correct move. In essence, revoicing is a positive feedback 
move that is not discussed in the tutoring literature. Here are two examples: 
 

 Tutee: First the gravity is pulling down [This is a tutee-initiated statement.] 
 Tutor: Pulling it down. [Tutor revoiced.] 
 
 Tutee: Weight is..the mass times..acceleration due to gravity and that’s force.  
 Tutor: Right. Right. [Tutor giving correct feedback.] 
 Tutee: Ok. 
 Tutor: So weight is the force. [Tutor revoiced.] 
 

In contrast, feedback moves are typically given to errors. In the tutoring literature, 
feedback is identified either as a negative response (“that was incorrect” or “no”), a 
corrective positive response, that is giving the correct answer or equation (such as “it 
should be F=ma”), or it could be an elaborated corrective response (such as giving a 
reason for the answer) [1]. In general, about 80%-90% of both Good and Poor Tutees’ 
errors are responded to with either a negative feedback, a corrective feedback, or an 
elaborated feedback. Elaborative feedback obviously is the best kind since it gives 
more information and justification with respect to the feedback. Here is an example of 
an error, followed by both a corrective and elaborative feedback: 
 

 Tutee: FN would be…would FN be mass of A plus mass of B? Or? 
 Tutor: Again you…a force cannot be mass. [Corrective feedback]. 

           These are two distinct quantities. [Elaborative feedback]. 
 

In our prior analysis [1, Table 5] we found the Poor Tutees received proportionately 
more corrective than elaborative feedback, whereas the Good Tutees received propor-
tionately more elaborative feedback than corrective feedback. We had interpreted this 
difference to suggest that the Tutor was not as adaptive as one would like, since 
Poorer Tutees could have benefitted more from elaborative feedback.  
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In the current coding from the tutee’s perspective, we found a significant overall 
difference between the percentage of critical nodes episodes that contained Tutee 
initiated statements for the Good Tutees (27.5%) than the Poor Tutees (6.43%, 
F(1,7)=29.851, p=.011). Moreover, there was a significant overall difference between 
Good and Poor Tutees for the proportion of their initiatives that were revoiced (18% 
for Good versus 5% for Poor, F(1,7)=11.87, p=.011). Although it is not surprising that 
Good Tutees can initiate more (since they know more), what is surprising is that the 
Tutor revoiced Good Tutees’ initiatives more often than the Poor Tutees’ initiatives. 
We surmise that the Good Tutees’ initiations were more correct than the Poor Tutees’ 
initiations, therefore the Good Tutees’ initiations were more likely to be revoiced. 
Nevertheless, this is an important feedback move that is subtle, overlooked by the 
tutoring literature, and could potentially be overwhelmingly beneficial to the Good (as 
well as the Poor) Tutees. See Fig. 6, first pair of columns.  

In addition to revoicing, Good Tutees’ initiations were also followed significantly 
more often by scaffolding moves, consistent with the results reported above for 11 
tutors of the prior study [1].  There were no differences between the Good and Poor 
Tutees in the frequency of the Tutor’s responses to Tutees’ questions or meta-
comments they initiated. In short, dialogues with Good Tutees were more interactive 
largely because the Good Tutees initiated more frequently, and their initiations were 
taken-up by the Tutor, whereas Good and Poor Tutees’ questions and meta-comments  
were responded to equally appropriately by the Tutor. The question is how should a 
tutor encourage more initiations from a poor tutee.  

 
 

 

Fig. 6. The Tutor’s responses to Good and Poor Tutees’ initiatives 
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4   Discussion and Future Work  

An implicit assumption among tutoring researchers and ITS developers is that tutor-
ing is effective because in part a tutor is adaptive. Adaptiveness has been defined 
from the perspective of the tutor, in terms of a tutor’s appropriate selection of a prob-
lem or a hint that is tailored to the tutee. We examined adaptiveness instead in terms 
of the kind of moves a tutor makes from the perspective of whether a move elicited 
passive, active, constructive or interactive responses from the tutees. We consider a 
tutoring move to be a “good” kind of moves if they elicit more active, constructive or 
interactive responses. We found that our expert Tutor tended to provide a greater 
number of good tutoring moves (such as scaffolding, asking open-ended questions, 
revoicing) to the Good Tutees than the Poor Tutees, and conversely, provided a 
greater number of less-effective tutoring moves (such as explaining, telling and di-
recting) to the Poor Tutees than the Good Tutees. This pattern of tutor moves suggests 
that the Tutor was not optimizing the poorer tutees’ learning, therefore, the Tutor was 
basically maladaptive. Granted that poorer tutees were incapable of offering more 
initiatives and responses to scaffoldings, our position is that our evidence suggests 
that they could if tutors gave them more guidance in doing so. We surmise that be-
cause tutors have a bias in wanting to get the correct knowledge or solutions out there, 
they have the inclination of telling and directing the tutees when they struggle, rather 
than help them get through their struggling. The results reported here suggest that 
future analyses may benefit from taking the perspective of the tutees, in order to un-
derstand their contributions in enhancing learning from tutoring. 
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Abstract. Previous research demonstrates that multiple representations can en-
hance students’ learning. However, learning with multiple representations is 
hard. Students need to acquire representational fluency with each of the  
representations and they need to be able to make connections between the rep-
resentations. It is yet unclear how to balance these two aspects of learning with 
multiple representations. In the present study, we focus on a key aspect of this 
question, namely the temporal sequencing of representations when students 
work with multiple representations one-at-a-time. Specifically, we investigated 
the effects of blocking versus interleaving multiple representations of fractions 
in an intelligent tutoring system. We conducted an in vivo experiment with 296 
5th- and 6th-grade students. The results show an advantage for blocking repre-
sentations and for moving from a blocked to an interleaved sequence. This ef-
fect is especially pronounced for students with low prior knowledge. 

Keywords: Multiple representations, fractions, intelligent tutoring system, 
blocked vs. interleaved practice, classroom evaluation. 

1   Introduction 

The ultimate goal of the work presented in this paper is to generate a set of research-
validated principles about how multiple representations best support robust learning 
in a real-world domain, and to build an intelligent tutoring system (ITS) that reflects 
these principles and helps students overcome their difficulties with fractions. We 
report on a study that is a first step in that direction. 

We focus on a domain in which multiple graphical representations are often used: 
fractions [1]. Understanding fractions is foundational for learning algebra and more 
advanced mathematics [2], yet fractions pose a significant challenge for students in 
the elementary and middle grades, and even for college students and pre-service 
teachers [3].  In a recent study, we provide experimental evidence that students work-
ing with multiple graphical representations of fractions learn better than students who 
work with only a single graphical representation, although only when prompted to 
explain how the graphical representations (e.g., half a pie) of fractions relate to the 
symbolic representation (e.g., 1/2)  [4]. The current study builds on this work; we now 
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turn to the question of how best to temporally sequence multiple representations. For 
now, we focus on instruction that presents students with only a single graphical repre-
sentation for each problem. (In future research we will include problems that involve 
multiple graphical representations at a time.)  

Several studies in cognitive and educational psychology have demonstrated that the 
use of multiple representations can lead to more robust learning in complex domains 
[5,6]. However, providing students with multiple representations is not always benefi-
cial [5], which has been attributed to the fact that learning with multiple representa-
tions requires several interrelated cognitive competencies [7]. Perhaps most  
obviously, students need to understand the format and properties of the particular 
representations and they need to be able to use them appropriately; that is, they need 
to acquire representational fluency with each representation [8]. In addition, students 
can only benefit from learning with multiple representations if they are able to make 
comparisons across representations and translate between them; in other words, they 
need to acquire representational flexibility [9,10]. 

 At this point, it is an open question what the best balance is between supporting 
the acquisition of representational fluency and representational flexibility, and to what 
degree each facilitates the other. It stands to reason that representational fluency and 
connection making mutually influence the acquisition of one another. Fluency may 
facilitate the acquisition of representational flexibility. When learning to work with a 
new representation, it may help to connect it to one with which one is already fluent. 
But representational flexibility may also facilitate the development of fluency; a bur-
geoning understanding of one representation may help make sense of (and develop 
fluency with) a second, new, representation, even when that first representation is not 
yet fully understood. Little is known at this point about the relative strength of these 
mutual influences, which makes it harder to design effective instruction for learning 
with multiple representations. 

In the study presented in this paper, we consider a key aspect of instruction with 
multiple representations, namely the temporal sequencing of representations. We ask 
what temporal sequence leads to more robust learning when learners work with mul-
tiple representations presented one-at-a-time: should practice with different represen-
tations be blocked (e.g., Pie-Pie-Pie, NL-NL-NL, Set-Set-Set) or interleaved (e.g., 
Pie-NL-Set, Pie-NL-Set, Pie-NL-Set)?  

We assume that students develop fluency with a given representation as they work 
with that representation (e.g., during problem solving). We also assume that when 
representations are presented one-at-a-time, students are (somewhat) likely to sponta-
neously compare representations at the points where they switch from one representa-
tion to another. When practice with representations is blocked, students have the op-
portunity to build up fluency with one representation before the next one is intro-
duced. When they (spontaneously) make connections between representations in the 
blocked condition, it is likely therefore that they are fluent with all of these represen-
tations except one (the one they are currently learning). In other words, this condition 
promotes fluency before connection making. On the other hand, when practice with 
different representations is interleaved, students build up fluency with representations 
in parallel; they may start making connections between representations even before 
they are fluent with any of them. The interleaved condition therefore facilitates con-
nection making before fluency. 
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If cross-representational comparisons between different graphical representations 
strongly rely on students’ fluency with at least one of the representations being com-
pared, then students should learn best when practice with each of the representations 
is blocked – at least until they acquire sufficient representational fluency. If on the 
other hand, useful comparisons can be made even between representations students 
are not yet fluent with, then the interleaved condition should support more robust 
learning. Indeed, several studies have shown that interleaving practice with tasks that 
structurally differ from one another leads to better learning outcomes than blocked 
practice [11,12]. We know of no studies however that compared the blocking and 
interleaving of different external representations. 

We investigated how multiple representations should be sequenced temporally in 
the context of a proven intelligent tutoring system (ITS) technology, namely, Cogni-
tive Tutors [13]. Specifically, we developed a set of example-tracing tutors for  
fractions learning. Example-tracing tutors are a type of tutors that are behaviorally 
similar to Cognitive Tutors, but that rely on examples of correct and incorrect solution 
paths rather than on a cognitive model of student behavior. We created these tutors 
with the Cognitive Tutor Authoring Tools (CTAT [14]). We used these tutors in an in 
vivo experiment (i.e., a rigorously controlled experiment in a real educational setting). 

Students in all conditions worked on the same problems, but practice with the dif-
ferent representations of fractions was blocked across problems to varying degrees. 
We used four conditions: blocked, moderate, interleaved, and increased. We hypothe-
size that spontaneous cross-representational comparison making builds on representa-
tional fluency, and thus predict that the increased condition will yield the best  
learning results. Additionally, we explore whether low and high prior knowledge 
students differ regarding which condition is most beneficial. 

2   Methods 

2.1   Material and Fractions Tutors 

The tutors used in the study included three different graphical representations of frac-
tions: pie charts (see Figure 1), numberlines (see Figure 2, top), and sets (see Figure 2, 
bottom). Each graphical representation emphasizes certain aspects of the different 
interpretations of fractions [15]. The pie chart as a part-whole representation depicts 
fractions as parts of an area that are partitioned into equally-sized pieces. The num-
berline is considered a measurement representation and thus emphasizes that fractions 
can be compared in terms of their magnitude, and that they fall between whole num-
bers. Finally, the set is a ratio representation and presents fractions in the context of 
discrete objects that have several features. 

We employed different orders of graphical representations in addition to the 
blocked versus interleaved factor. Students never worked with the set representation 
first, because the set appears to be the representation students are least familiar with. 
We randomly assigned students to one of four different orders of representations: Pie 
chart – numberline – set, pie chart – set – numberline, numberline – pie chart – set, or 
numberline – set – pie chart. 
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The fractions tutor covered fraction identification, fractions as division, equivalent 
fractions, ordering fractions, and fraction addition. One graphical representation was 
presented at a time, but across the whole sequence of tutor problems, all graphical 
representations were crossed with all topics, except for obvious mismatches. 

 

Fig. 1. Example of equivalent fractions problems with the pie chart 

 

Fig. 2. Example of equivalent fractions problems with the numberline (top) and sets (bottom)  

Before solving a problem symbolically, students were asked to perform the same 
steps by manipulating the graphical representations. For instance, students could par-
tition them into smaller sections (for the numberline), pieces (for the pie chart), or 
objects (for the set). Figure 1 shows an example of equivalent fractions problems with 
the pie chart. Figure 2 shows corresponding problems with the numberline (top) and 
set representation (bottom). The tutors provided students with realistic cover stories 
for each problem. Students received error feedback and hints on all problem-solving 
steps. Error feedback messages were designed to make students reconsider their an-
swer by either reminding them of a previously-introduced principle, or by providing 
them with an explanation for their error. Hint messages usually had three levels. First, 
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students received a clarification of the goal (e.g., “You now added all pieces into the 
same pie chart. Before you know what fraction of the whole cake you won, you need 
to divide the pie chart into equally sized pieces.”). They were then given conceptually 
oriented help, by reminding them of a specific concept (e.g., “The pieces are part of 
the same cake. Therefore, you keep the same denominator in the sum fraction.”). 
Finally, students received explicit instructions regarding the next step (e.g., “Please 
divide the pie chart into four pieces.”).  

Students were prompted to self-explain their problem solution. We found this pro-
cedure to be effective in an earlier experimental study [4]. Students selected their 
answer from a drop-down menu, as shown in Figure 1. Previous research shows that 
asking students to select their answers from a menu rather than to explain in their own 
words, promotes a self-explanation effect [16]. 

2.2   Experimental Design and Procedure  

A total of 269 5th- and 6th-grade students from three different schools in the United 
States participated in the study during their regular mathematics instruction. All stu-
dents worked with a set of ITS for fractions (example-tracing tutors, as mentioned) 
designed and created specifically for this study. Students were randomly assigned to 
one of four conditions that varied regarding the degree to which practice with the 
representations was blocked versus interleaved: blocked, moderate, interleaved, or 
increased.  

Students in the blocked condition encountered the representations in three blocks: 
They first worked through the whole sequence of topics with the first graphical repre-
sentation (corresponding to 36 problems), then with a second representation, and 
finally with the last representation. In the moderate condition, the blocks were much 
smaller: students switched representations after every third problem. Students in the 
interleaved condition switched representations after every single problem. And fi-
nally, in the increased condition, the length of the blocks was gradually reduced from 
twelve problems at the beginning to a single problem at the end. 

We assessed students’ knowledge of fractions three times. On the first day, stu-
dents completed a 30-minute pre-test. They then worked on the fractions tutor, for a 
total of 5 hours, spread across five to six (depending on specific school schedules) 
consecutive days. The day following the tutor sessions, students completed a 30-
minute post-test. Seven days later, we gave students an equivalent delayed post-test. 

2.3   Test Instruments 

Students’ understanding of fractions was assessed with respect to representational 
knowledge and operational knowledge. By representational knowledge, we mean the 
ability to interpret representations of fractions and to use them to make sense of  
fractions. In our specific test, we asked students to identify and order fractions using 
different graphical representations some of which students were not familiar with 
(meaning that they did not encounter them in the set of tutor problems) to assess their 
representational knowledge. Operational knowledge describes the ability to solve 
fractional tasks procedurally, by applying algorithms. The operational test items in 
our test assessed students’ ability to convert and add fractions with and without the 
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help of graphical representations. Test items were adapted from standardized national 
tests and from examples from the fractions literature. We randomly assigned students 
to different versions of the fractions test at the pre-test, the immediate and the delayed 
post-test. We validated the theoretical structure of the test with a confirmatory factor 
analysis using data from a large sample in a pilot study of the test instruments. The 
test’s theoretical structure was replicated with data from the presented experiment. 

3   Results 

Students who stayed in their assigned condition, who were present for all test days, 
and who did not work on the tutoring system during the weekend were included in the 
analysis, yielding a total of N = 215. Neither the number of excluded students differed 
between experimental conditions, χ² (3, N = 269) = 1.21, p > .10, nor did the number 
of problems completed (F < 1), or the time spent on the tutor problems (F < 1).  

A hierarchical linear model (HLM; [17]) with four nested levels was used to ana-
lyze the data. At level 1, we modeled performance for each of the three tests for each 
student. At level 2, we accounted for differences between students. At level 3, we 
modeled differences between classes, and at level 4 accounted for differences between 
schools. In addition, we used post-hoc comparisons to clarify the effect of blocking 
versus interleaving. The reported p-values are adjusted using the Bonferroni correc-
tion. Since there was no effect for order of representation (F < 1), only the results for 
blocked versus interleaved practice with the representations are reported. 

Table 1. Rel. means and standard deviations (in brackets) for representational and operational 
knowledge at pre-test, immediate post-test, delayed post-test by low and high prior knowledge 

  Blocked Moderate Interleaved Increased 

 low prior knowledge     

representational knowledge .39 (.12) .38 (.17) .35 (.15) .42 (.13) 
pre-test 

operational knowledge .22 (.15) .28 (.14) .26 (.16) .27 (.14) 

representational knowledge .50 (.24) .49 (.20) .36 (.23) .55 (.23) immediate 
post-test operational knowledge .37 (.27) .33 (.31) .26 (.26) .31 (.26) 

representational knowledge .51 (.25) .27 (.30) .29 (.27) .50 (.26) delayed 
post-test operational knowledge .29 (.27) .27 (.28) .26 (.20) .36 (.27) 

 high prior knowledge     

representational knowledge .78 (.11) .77 (.14) .77 (.11) .70 (.09) 
pre-test 

operational knowledge .75 (.16) .81 (.15) .76 (.16) .76 (.15) 
representational knowledge .78 (.21) .70 (.22) .72 (.17) .67 (.16) immediate 

post-test operational knowledge .84 (.22) .73 (.33) .68 (.34) .75 (.23) 
representational knowledge .72 (.19) .58 (.32) .53 (.34) .67 (.25) delayed 

post-test operational knowledge .76 (.28) .68 (.29) .67 (.34) .65 (.36) 
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3.1   Learning Effects 

First, we looked at student learning across conditions across the three test times. The 
tendency for the overall effect for test was in the opposite than the predicted direction, 
so that the overall hypothesis of a learning effect was not confirmed. Post-hoc com-
parisons showed a significant gain from pre-test to immediate post-test on representa-
tional knowledge for the blocked condition (p < .01).  

To clarify this result, we split the data into groups based on median performance in 
the pre-test. Table 1 shows the means and standard deviations for representational and 
operational knowledge by test and condition for low and high prior knowledge stu-
dents. For the low prior knowledge group, the results showed a significant improve-
ment from pre-test to immediate post-test for representational knowledge in the 
blocked and increased conditions, which for the increased condition was also signifi-
cant at the delayed post-test (ps < .05). No significant differences were found for 
operational knowledge.  

3.2   Effects of Blocked versus Interleaved Representations 

We had predicted an advantage for the increased condition at the immediate and the 
delayed post-test. The results partly support this hypothesis. We found a significant 
interaction effect between test time and blocked versus interleaved practice, for repre-
sentational knowledge, F(6, 422) = 5.54, p < .01, and operational knowledge, F(6, 
422) = 2.19, p < .05. Post-hoc comparisons showed that regarding representational 
knowledge, students in the blocked condition significantly outperformed students in 
the interleaved condition at the immediate post-test (p < .05). At the delayed post-test, 
both the blocked and the increased condition performed significantly better than the 
interleaved and moderate condition (ps < .01). As for operational knowledge, the 
post-hoc comparisons did not reveal statistically significant differences. 

The analysis of the effects of blocked versus interleaved practice in the low and 
high prior knowledge groups further clarifies these results. An interaction between 
condition and the prior knowledge groups was significant for representational knowl-
edge at both the immediate post-test, F(4, 201) = 17.56, p < .01, and the delayed post-
test, F(4, 202) = 6.08, p < .01, as well as for operational knowledge at the immediate 
post-test, F(4, 199) = 21.74, p < .01, and the delayed post-test, F(4, 198) = 17.90,  
p < .01. Post-hoc comparisons showed that for representational knowledge at the 
immediate post-test, the advantage of the blocked condition and the increased condi-
tion over the interleaved condition was only significant for the low prior knowledge 
group (ps < .01), but not for the high prior knowledge group. At the delayed post-test, 
the advantage of the blocked condition and the increased condition over the inter-
leaved condition, as well as the advantage of the blocked condition over the moderate 
condition reached the level of significance for both the low and high prior knowledge 
groups (ps < .01). The advantage of the increased condition over the moderate condi-
tion, in contrast, was significant only for the low prior knowledge group (p < .01). 
Post-hoc comparisons on operational knowledge revealed a significant advantage for 
the increased condition over the blocked condition in the low prior knowledge group 
for immediate and delayed post-test (p < .01). At the delayed post-test, this advantage 
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was also significant when compared to the interleaved and moderate conditions  
(ps < .01). No further differences were found on operational knowledge. 

4   Discussion and Conclusion 

We found evidence that our tutoring system improves understanding of fractions for 
low prior knowledge students in the blocked and increased conditions. This finding in 
part confirms our hypothesis that the increased condition will yield the best learning 
results. The reason why our data does not provide evidence for learning in the high 
prior knowledge group may be that the fractions tutor could not add to their under-
standing because it provided practice on rather basic fractions concepts and proce-
dures. In fact, the test scores in the high prior knowledge group show that students in 
the high prior knowledge group already had a relatively good understanding of frac-
tions at the pre-test. 

The results on blocked versus interleaved practice support our hypothesis that 
moving from a blocked scheme towards an interleaved scheme for learning with  
multiple representations yields the best learning results. The blocked and increased 
conditions showed more robust learning than the interleaved and moderate conditions. 
At the level of cognitive processes, the study thus provides some support for the no-
tion that representational fluency facilitates the acquisition of representational flexi-
bility more so than the other way around. While it is important to note that we did not 
directly support connection making between the different representations, this finding 
may have implications for the design of curricula that make use of multiple represen-
tations at a time. It seems reasonable to believe that instruction explicitly supports 
connection making between different representations will be most beneficial after 
students have acquired a good understanding of each individual representation’s  
format.  

The advantage of blocked and increased representations was significant for repre-
sentational knowledge, but not for operational knowledge. One possible explanation 
is that the tutoring system supports learning of representational knowledge better than 
the learning of operations. Indeed, we do not find a significant learning gain on opera-
tional knowledge. We expected that a deep understanding of graphical representations 
of fractions would be conducive to a better conceptual understanding of operations, 
but our data does not support this view. Another explanation is that students are able 
to gain an abstract understanding of fractions operations regardless of whether a 
blocked or interleaved design is being used. In fact, the symbolic operations presented 
in the fractions tutoring system do not change depending on which graphical repre-
sentation is used to illustrate it. We are currently analyzing the tutor logs to clarify 
whether the graphical representations in the tutoring system helped students under-
stand fractions operations.  

The fact that the interleaved condition yields the best learning results supports the 
interpretation that providing the opportunity for spontaneous comparison-making is 
beneficial to students who already acquired representational fluency. To the extent 
that students in the high prior knowledge group have representational fluency, should 
the interleaved conditions then not be most suitable for their needs? In fact, we classi-
fied students as low versus high prior knowledge students based on their performance 
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in the pre-test, which included many representational test items, so that it seems rea-
sonable to assume that they came in with a higher degree of representational fluency. 
The fact that we did not find an advantage for the interleaved condition for high prior 
knowledge students may be due to their performance being at ceiling for representa-
tional knowledge. 

In conclusion, our study provides preliminary evidence that the acquisition of rep-
resentational fluency should get higher weight in early instruction that makes use of 
multiple representations, compared to representational flexibility. One caveat is that 
the results were obtained with instructional material in which students encounter  
representations one-by-one, and connection making occurs only to the extent that 
students spontaneously engage in it. One could argue that the most extreme case of 
presenting multiple representations in temporal proximity is in fact presenting them 
simultaneously. In future studies, we will investigate whether the results generalize to 
situations in which students encounter multiple representations side-by-side, and in 
which the learning environment provides explicit support for connection making.  

Our findings stand in contrast to earlier findings from a variety of domains which 
demonstrate an advantage for interleaved practice over blocked practice [12]. The 
difference between our studies and prior research is that we are investigating the ef-
fects of blocked versus interleaved practice with graphical representations as opposed 
to blocked versus interleaved practice of different problem types.  

Our results may have implications for the design of instruction that directly sup-
ports connection making between multiple representations: It is likely that connec-
tion-making tasks will be most effective after students have had the opportunity to 
acquire fluency with the representations. While most studies on learning with multiple 
representations have emphasized the importance of helping students in making con-
nections between the different representations [9], more attention should be paid to 
how to best support students’ acquisition of representational fluency which appears to 
be an important foundation for the acquisition of representational fluency. Our find-
ings are in line with Ainsworth’s framework on learning with multiple representations 
[8] who points out that students often have difficulty in understanding the format of a 
new representation, as well as to understand how to use them appropriately in subse-
quent learning tasks. And while it seems logical that students have to acquire this 
understanding before they can relate different representations to one another, we 
know of no experimental evidence for this assertion, prior to this study.  

Acknowledgements 

This work was supported by the Pittsburgh Science of Learning Center which is 
funded by the National Science Foundation, award number SBE-0354420. We would 
like to thank Ken Koedinger, Mitchell Nathan, and Jay Raspat for their support, the 
students and teachers at Barrett Elementary School, Park Elementary School, and 
Francis McClure Intermediate School, Kyle Cunningham, Brett Leber, Jonathan Se-
wall, Alida Skogsholm, and Martin van Velsen for their technical support, Adriana 
Baker, Laura Butler, Jessica Kalka, Gail Kusbit, and Shawn Snyder for their help in 
implementing this study, Brian Junker, Fabian Hölzenbein, Howard Seltman, and 
Cassandra Studer for their support with the statistical analysis. 



422 M.A. Rau, V. Aleven, and N. Rummel 

 

References 

[1] Moss, J., Case, R.: Developing children’s understanding of the rational numbers: A new 
model and an experimental curriculum. Journal for Research in Mathematics Educa-
tion 30, 122–147 (1999) 

[2] National Mathematics Advisory Board Panel. Foundations for Success: Report of the Na-
tional Mathematics Advisory Board Panel, U.S. Government Printing Office (2008) 

[3] Kaminski, E.: Promoting Mathematical Understanding: Number Sense in Action. Mathe-
matics Education Research Journal 14, 133–149 (2002) 

[4] Rau, M.A., et al.: Intelligent tutoring systems with multiple representations and selfex-
planation prompts support learning of fractions. In: 14th International Conference on Ar-
tificial Intelligence in Education Brighton, UK (2009) 

[5] Ainsworth, S.E., et al.: Analysing the Costs and Benefits of Multi-Representational 
Learning Environments. In: van Someren, M.W., et al. (eds.) Learning with Multiple 
Representations. Pergamon, Oxford (1998) 

[6] Schnotz, W., Bannert, M.: Construction and interference in learning from multiple repre-
sentation. Learning and Instruction 13, 141–156 (2003) 

[7] Ainsworth, S.: Designing effective multi-representational learning environments. In: 
ESRC Centre for Research in Development, Instruction & Training Department of Psy-
chology, Nottingham, vol. 58 (1999) 

[8] Ainsworth, S.: DeFT: A conceptual framework for considering learning with multiple 
representations. Learning and Instruction 16, 183–198 (2006) 

[9] de Jong, T., et al.: Acquiring knowledge in science and mathematics: The use of multiple 
representations in technology-based learning environments. In: Van Someren, M.W., et 
al. (eds.) Learning with Multiple Representations, Oxford (1998) 

[10] Spiro, R.J., Jehng, J.C.: Cognitive flexibility and hypertext: Theory and technology for 
the nonlinear and multidimensional traversal of complex subject matter. In: Nix, D., 
Spiro, R.J. (eds.) Cognition, education and multimedia: Exploring ideas in high technol-
ogy, pp. 163–205. Lawrence Erlbaum Associates, Hillsdale (1990) 

[11] Schmidt, R.A., Bjork, R.A.: New conceptualizations of practice: Common principles in 
three paradigms suggest new concepts for training. Psychological Science 3, 207–217 
(1992) 

[12] de Croock, M.B.M., Van Merrienboer, J.J.G.: High versus low contextual interference in 
simulation-based training of troubleshooting skills: Effects on transfer performance and 
invested mental effort. Computers in Human Behavior 14, 249–267 (1998) 

[13] Koedinger, K.R., Corbett, A.: Cognitive Tutors: Technology Bringing Learning Sciences 
to the Classroom. In: Sawyer, R.K. (ed.) The Cambridge handbook of: The learning sci-
ences, New York, NY, US, pp. 61–77. Cambridge University Press, Cambridge (2006) 

[14] Aleven, V., et al.: Example-tracing tutors: A new paradigm for intelligent tutoring sys-
tems. Document submitted for publication (under review) 

[15] Charalambous, C.Y., Pitta-Pantazi, D.: Drawing on a Theoretical Model to Study Stu-
dents’ Understandings of Fractions. Educational Studies in Mathematics 64, 293–316 
(2007) 

[16] Aleven, V., Koedinger, K.R.: The need for tutor dialog to support self-explanation. In: 
Rose, C.P., Freedman, R. (eds.) Building Dialogue Sstems for Tutorial Applications. Pa-
pers from the 2000 AAAI Fall Symposium, pp. 65–73. AAAI Press, Menlo Park (2000) 

[17] Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models: Applications and Data 
Analysis Methods, 2nd edn. Sage Publications, Newbury Park (2002) 

 



V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 423–432, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Improving Math Learning through Intelligent  
Tutoring and Basic Skills Training  

Ivon Arroyo1, Beverly Park Woolf1, James M. Royer2, Minghui Tai3, and Sara English3 

1 Department of Computer Science 
2 Department of Psychology 

3 School of Education 
University of Massachusetts, Amherst Mass. 01002  

{bev,ivon}@cs.umass.edu, royer@psych.umass.edu, 
minghui_tai@yahoo.com, senglish@educ.umass.edu 

Abstract. We studied the effectiveness of a math fact fluency tool integrated 
with an intelligent tutor as a means to improve student performance in math 
standardized tests. The study evaluated the impact of Math Facts Retrieval 
Training (MFRT) on 250 middle school students and analyzed the main effects 
of the training by itself and also as a supplement to the Wayang Tutoring Sys-
tem on easy and hard items of the test. Efficacy data shows improved student 
performance on tests and positive impact on mathematics learning. We also re-
port on interaction effects of MFRT with student gender and incoming math 
ability.  

Keywords: Math Fluency, Intelligent Tutoring Systems, Classroom Experi-
ments. 

1   Motivation 

Memory retrieval is an important skill in mathematics development since problem 
solving takes place in a cognitive system constrained by a limited capacity of working 
memory [1]. Many students have problems in mathematics in part because they are 
slow and/or inaccurate in retrieval of simple math facts from memory. Training the 
speed and accuracy of math fact retrieval (MFR) skills has been shown to be effective 
for students with learning disabilities, who may show number processing inefficien-
cies [2]. We studied how to impact students’ learning through training this mathe-
matical fluency, using software modules that supplement a traditional mathematics 
tutoring system. 

One hypothesis is that training math facts retrieval would help female students 
in particular. An affective gender gap towards mathematics increases as children 
progress through the school system, and despite equal performance in mathematics 
classes and on individual mathematics projects [3][4], girls lose interest in  
math-related careers [4][5]. In addition, girls have consistently under-performed 
boys on time-based standardized tests in mathematics (e.g. SAT-M) and this  
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underperformance has been particularly pronounced among higher-than-average-
achieving girls [6]. 

The cognitive difference of girls’ underachievement in timed tests compared to 
males has been mainly attributed to differences in spatial abilities [7], memory re-
trieval skills [8] and strategy use. Gender differences in strategy use have been found 
in the first grades of elementary school, suggesting that girls continue to use concrete 
strategies to solve arithmetic problems (finger counting) while boys move on to using 
retrieval from memory [10]. Continuing to use concrete strategies like these make 
math tougher for girls when they move on to more abstract topics and timed tests. 
Gender differences in mathematics performance do not appear to be biological [11], 
as even those basic skills can be trained and computational fluency can be enhanced 
with software-based interventions [12]. However, the advantages of using computer-
based tools to train mathematics fact retrieval skills and their impact on mathematics 
achievement have not yet been fully investigated. 

In addition, students with mild cognitive disabilities, and/or emotional distur-
bances also are under-represented in mathematics-intensive careers and fail to take 
additional mathematics classes. Learning disabilities (LD) do appear to have a bio-
logical basis and there is evidence that students with LD have concrete difficulties 
with working memory as well as executive control of math problems and procedural 
knowledge [1]. As a result, many students with LD may also persist in using counting 
strategies (e.g., finger counting)[13], take longer to solve arithmetic problems and 
perform poorly in classrooms and on high-stakes standards-based tests [6]. This popu-
lation is poorly reached by traditional methods and has a large negative impact on 
society in terms of lost potential by not being educated to their maximum potential. 
Learning disability is a complex multi-factor problem and educational institutions do 
not provide potent cost-effective instruction tailored to the individual.  

 

Fig. 1. The Wayang Tutoring System. Gendered affective learning companions talk to students 
about the need to practice and to exert effort. 
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2   The Math Fact Retrieval Hypothesis 

The math fact retrieval (MFR) hypothesis suggests that the speed of math fact re-
trieval, defined as an individual’s ability to “automatically retrieve correct answers to 
addition, subtraction, multiplication and division problems,” is a source of this gap 
[8]. If students can quickly and automatically retrieve math facts while taking a 
mathematics test, for example, they will have more cognitive capacity to devote to 
higher-level problem-solving activities and will also be able to complete the test more 
quickly. This hypothesis has been explored as one source for the math performance 
gap for women and low performing students. The speed of math-fact retrieval is a 
significant predictor of middle school students’ performance on mathematics tests and 
of college students’ performance on the mathematics portion of a standardized college 
admissions test [8]. Males are not inherently faster than females at retrieving facts 
from memory, as females tend to show an advantage when retrieval speed was meas-
ured for word-naming and sentence understanding tasks (i.e., verbal processing tasks 
instead of mathematics tasks). In addition, the gap can be reduced, as a group of par-
ticipants were allowed to practice math fact retrieval before measuring their speed, 
and the gap seemed to disappear among both Chinese students living in the U.S. and 
Chinese students living in Hong Kong, though not for a group of U.S. students [8].  

We hypothesized that training students in mathematics fact retrieval (MFR) every 
day before using the Wayang math tutoring system would improve their learning, 
because it would free up cognitive resources that could be used for learning new math 
skills. We used a fact retrieval drill and practice system to provide interventions that 
emphasized fast and accurate mathematics fact retrieval along with an intelligent  
tutor, as described next.  

3   The Wayang Tutor and MFR Training Software 

The Wayang Outpost multimedia web-based math tutoring software is an adaptive 
multimedia tutoring system that teaches students how to solve geometry, statistics and 
algebra problems of the type that commonly appear on standardized tests [14]. To 
answer problems in the Wayang interface, students choose a solution from a list of 
multiple choice options, see Figure 1. Wayang provides immediate feedback on stu-
dents’ entries by coloring them red or green in the interface. As students solve a prob-
lem, they can ask the tutor for hints that are displayed in a progression from general 
suggestions to bottom-out solution. In addition to this domain-based help, the tutor 
provides a wide range of meta-cognitive and affective support, delivered by learning 
companions or agents designed to act like peers who care about a student's progress 
and offer support and advice [15,16]. The learning companions’ interventions are 
tailored to each student’s needs according to two models [16]. A simple effort model 
is used to assess the degree of effort a student invests to develop a problem solution, 
and is based on time per action. A linear regression affect model is used to assess a 
student’s emotional state; this model is derived from data obtained from sensors, 
models and surveys [16][18].  
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General results showed that low performing students who used Wayang improved 
at standardized tests compared to matched groups that did not use the tutoring  
software. In addition, students of lower than median math ability learned more than 
students of high ability. Similarly positive results indicate that, while all students im-
prove their liking of and self-concept in math when they used affective pedagogical 
agents in the tutor, women high school students responded to affective pedagogical 
agents better than did male students.  

The Math Facts Retrieval Training software is commercially available based on 
more than 20 years of laboratory research with problem learners [17]. The software 
provides training and assessment. In the training phase, students study full digital 
pages of math facts (e.g. two operand addition/subtraction/multiplication/division of 
at most two digit numbers). Students click on each item to hear the answer (to learn or 
confirm that their guess was right). In the assessment phase, students are tested for 
their accuracy and speed (at the millisecond level). Students speak out the answer 
aloud and immediately hit the space bar, after which the correct answer is spoken 
back to the student. Students were instructed to code if their answers were right or 
wrong. Cheating was not an issue as the goal was to have students think of the an-
swers in their head and hear the feedback. At the end of the assessment session, stu-
dents saw a line chart that showed their progress (in speed and accuracy) compared to 
the previous assessment session, Figure 2. Students frequently became faster as they 
worked on more pages and progress charts showed their decline in speed, which was 
a motivation to “go for another round.” While students generally demonstrate ceiling 
effects on accuracy, MFR speed predicts performance on SAT-M problems [8]. This 
software for math fluency was based on similar software for reading fluency, created 
with a similar working memory limitation hypothesis and especially used with chil-
dren who had dyslexia. 

 

Fig. 2. Student accuracy (left) and speed (right)  as displayed in progress charts in the Math 
Facts Retrieval Training Software 
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4   Empirical Studies Using the Tutor and Basic Skills Training  

A Spring 2009 study evaluated the impact of using the Wayang Tutor and Math Facts 
Retrieval Training with 250 middle School students enrolled in a public school in 
Western Massachusetts, United States. The objective was to analyze the main effects 
of MFR by itself and as a supplement to the Wayang Math Tutoring System.  

 
Conditions and Subjects. Middle schools students (7th and 8th graders) were randomly 
assigned to one of four conditions: 1) Use of Wayang Tutor after working on the 
MFR Training software for 15 minutes (Wayang-MFR); 2) use of Wayang Tutor 
alone (Wayang-noMFR); 3) Use of the MFR Training software (noWayang-MFR) 
and then use of other modules and web sites (e.g., National Library of Virtual  
Manipulatives) that did not tutor; and 4) classroom instruction instead of software 
instruction or use of  math web sites (noWayang-noMFR). All students had similar 
exposure time to the software or math class. The existence of six classes of each grade 
created a challenge to match classes to each condition. As a result, either two 7th 
grade classes and one 8th grade class were assigned to the same condition, or two 8th 
grade classes and one 7th grade class.  

 
Procedure. The first and last (fourth) day of the study, students completed a mathe-
matics mock standardized test (counterbalanced, so that half of students received test 
A for the pretest and the other half received test B for pretest; the last day tests were 
reversed for the posttest). Tests A and B were similar in difficulty and consisted of a 
combination of easy, medium and hard items that addressed skills covered throughout 
the tutoring system. Students also completed a pretest of computation items (addition, 
subtraction, multiplication and division) online and their accuracy and speed to an-
swer was recorded. The last day, students completed a math facts retrieval posttest 
within the MFR software. Speed and accuracy at individual items and averages across 
items were recorded. Students also completed the mock-standardized test that they 
had not taken the first day (A or B). Students using the MFR software used the quiz-
game modules, drilling on single digit multiplication tables, single digit addition, 
double and single digit subtraction, and double digit by single digit division, in the 
fashion described in the previous section, for about 15 minutes every day. Students 
using the Wayang software were directed to the tutoring module (after MFR training 
in the case of the Wayang-MFR group), where they progressed through 9 topics, prac-
ticing in each of the problems assigned via an adaptive pedagogical module. Students 
were encouraged to request hints via the help button and to remember that the goal 
was to learn from the software. Students with learning disabilities were identified by 
the fact that they had Individual Educational Plans (IEP) [18].  

 
Expected Outcomes. We expected the following outcomes: 1) improved performance 
on the mock-standardized posttest for the cohort who received MFR training, com-
pared to those who did not; 2) improved performance for students in the Wayang 
conditions compared to the no-Wayang conditions; 3) improved performance for fe-
male students doing MFR training, compared to those females who did not train 
MFR; 4) improved performance for low achievement and students with LD doing 
MFR training, compared low achievement students who did not train MFR.  
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    However, realistically, we were hesitant to predict that 15 minute blocks of MFR 
training during 2-3 days would produce improved results at retrieval. In addition, we 
were also concerned that taking time away from Wayang for MFR training would be 
detrimental to learning from Wayang.  

5   Experimental Results 

Despite of the limited exposure time to Wayang, the two groups that received tutoring 
during days 1, 2 and 3, improved in the math test by an overall 3%. This is not much 
compared to our past studies, but it is reasonable considering that the average student 
went through half of the topics in the system, and that it was the first time that 
Wayang was used with middle school students (7th and 8th grades). Interestingly, stu-
dents in the no-Wayang groups actually decreased performance, indicating perhaps 
that students in general did not want to take yet another test and were less careful dur-
ing the posttest than during the pretest (see Figure 3). The effect size for Wayang vs. 
no-Wayang groups (Cohen’s d) was 0.39.  

 The group with highest scores at posttest time was the Wayang-MFR group, 
which  received both Wayang and MFR training. Wayang helped students improve 
(or maintain, in the case of easy items) their math test performance compared to the 
no-Wayang control groups. An ANCOVA for posttest percent correct, with pretest 
score as a covariate and Wayang [yes/no] and MFR[yes/no] as fixed factors, revealed 
the following:  a significant effect for Wayang on posttest performance (F(222,1)=3.8, 
p=.05), a non-significant effect on Math Fact Retrieval Training (p=.97), and a  

 

 

Fig. 3. Pretest and Posttest performance on easy items of the test 
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significant interaction effect for Wayang x MFR (F(222,1)=7.9, p=.005) suggesting a 
differential impact of a combination of MFR Training and Wayang on student  
improvement.  

We analyzed the improvement of students for easy and hard items separately, in 
part, because, students did quite well in the pretest (the overall test was too easy for 
them).  We  generated two pretest and posttest scores for the half “easier” and 
“harder” items of each of the tests, depending on general performance at each item at 
pretest time, across the whole population of students. Items in the test were split into 
easy and hard items depending on pretest performance at each item, across the whole 
population,  and scores were computed separately --as if there were two pre and post-
tests, an easy and a hard one (see Figures 3 and 4). In addition, because we wanted to 
analyze the impact of the interventions on gender and students with learning disabil-
ity, we analyzed the following fixed factors: Wayang, MFR, Gender and MathAbility 
[low or high achievement1].  

For EASY items, an ANCOVA revealed a significant effect for Wayang alone 
(F(221,1)=10.6, p=.001); a non-significant effect for MFR alone (F(221,1)=.1, p=.7); 
a significant main effect for MathAbility (F(221,1)=14.7, p<.001); and a significant 
interaction effect for WayangxMFR (F(221,1)=5.1, p=.025). While a significant in-
teraction effect reveals that at least two of the means are different (corresponding to 
the four groups defined by the combinations of MFR[yes/no] and Wayang[yes/no]), it 
is not clear which group(s) are better and which are worse. Bonferroni confidence 
intervals allow to answer specific questions such as whether one of the treatments is 
better than the rest, or whether two of the groups are better than the other two. For 
instance, Bonferroni confidence intervals revealed that the Wayang-MFR group had 
significantly highest improvement (higher than the other three groups), and that both 

                                                           
1 Math Ability was determined by a median split on the overall math pretest performance. 88% 
of students with an identified learning disability were part of the low achievement group. More 
than one third (35%) of students in the low achievement group had a learning disability, while 
only 4% students in the high achievement group had a learning disability (not necessarily math 
related). 

 

Fig. 4. Pretest and Posttest Performance on Hard items of the test 
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Wayang groups scored higher on easy items of the posttest than the no-Wayang 
groups. However, confidence intervals also revealed that the Wayang-MFR group did 
not do significantly better than Wayang-noMFR group, suggesting that MFR Training 
does not help to significantly improve performance on easy items. Wayang seems 
better at doing that. 

For HARD items, the ANCOVA revealed again a significant effect for Wayang 
(F(222,1)=6.8, p=.01); a non-significant effect for MFR alone (F(222,1)=.5, p=.5; and 
a significant effect for Wayang x MFR (F(222,1)=6.8, p=.009). Confidence intervals 
revealed that the Wayang-MFR group had significantly highest improvement than the 
other three groups on hard items, and that both Wayang groups scored higher at hard 
items than the other two no-Wayang groups. Bonferroni confidence intervals also 
revealed that the Wayang-MFR group did do better than the Wayang-noMFR group, 
suggesting that MFR training did help to improve performance on hard items for stu-
dents who used Wayang.  

An interpretation of these results is that being more math fluent (thanks to the 
MFR training) frees up cognitive resources that are essential to approach hard math 
problems. Easy items don’t require as many cognitive resources, so the math fluency 
training did not make a difference in performance at these easy items. 

The advantage of the Wayang-MFR group can be attributed to MFR training only 
if students in the MFR groups had gotten faster at retrieving those simple math facts 
from memory. Thus, we analyzed the gain in MFR posttest speed and accuracy of 
students who received Math Facts training compared to those who did not, Figure 5. 
Given that pretest and posttest accuracy was at ceiling (reasonably, students were 
highly accurate at simple arithmetic operations), we analyzed only speed --whether 
students had gotten faster. We ran an ANCOVA for Math Facts Speed Posttest (a 
mean speed for all items in the MFR Posttest for each student) with Math Facts Speed 
Pretest as a covariate, and MFR[Yes/No] and Wayang[Yes/No] as fixed factors. The 
result was a highly significant effect for MFR (F(197, 1)=13.9, p<.001). Figure 5, 
shows that students who received MFR training were faster to answer those simple 
math facts at posttest time. A significant effect for Wayang (F(197,1)=8.6, p=.023) 
was unexpected, and suggests that using Wayang helps students be more math fluent, 
faster at retrieving simple math facts from memory.  

 

Fig. 5. Students who received MFR Training became faster at responding to simple arithmetic 
questions. Means and SD. 
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6   Discussion 

Despite the limited exposure to the software (3 days), the Math Facts Retrieval Train-
ing software combined with the Wayang tutor effectively improved students perform-
ance on a standardized test and specifically improved learning on hard questions. 
Hard items on these tests generally involved several steps and much computation, and 
MFR training probably freed up memory resources that were used to think about the 
problem. In addition, a ceiling effect for easy items might have made that score harder 
to improve.  

While the Wayang main effect did not surprise us, as we had evidence that 
Wayang can improve performance for standardized test items even with short 
amounts of exposure, the improvement in students’ speed to retrieve simple arithme-
tic operation answers from memory due to Wayang was unexpected. The repeated 
need of computation to solve these problems may be attributed to the math facts re-
trieval speed improvement.  

Math Facts Retrieval Training alone (without Wayang) did not help middle school 
students perform better at standardized test items, suggesting that MFR training 
should be supplemented with appropriate instruction on the test topics for such train-
ing to have a real impact on math standardized tests scores. Wayang tutoring seemed 
better than the alternative math computer activities that students used in the no-
Wayang groups. The fact that the noWayang-noMFR group did somewhat better than 
the noWayang-MFR group can be partly attributed to classroom instruction: a large 
group of the students in the noWayang-noMFR group had their regular math class, 
and the teacher covered some of the same topics taught by the tutor during math class. 

The lack of gender effects, math ability effects, or interaction effects involving 
gender or math ability suggest that MFR Training was highly effective for all  
students, not only for females or low achieving students. We conclude that MFR 
Training software is an invaluable supplement to traditional math intelligent tutoring 
software, for students of all levels, both females and males. We plan to continue to 
include this basic skills training within our mathematics intelligent tutoring system. 
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