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Preface

The 10th International Conference on Intelligent Tutoring Systems, ITS 2010, contin-
ued the bi-annual series of top-flight international conferences on the use of advanced
educational technologies that are adaptive to users or groups of users. These highly
interdisciplinary conferences bring together researchers in the learning sciences,
computer science, cognitive or educational psychology, cognitive science, artificial
intelligence, machine learning, and linguistics. The theme of the ITS 2010 conference
was Bridges to Learning, a theme that connects the scientific content of the confer-
ence and the geography of Pittsburgh, the host city. The conference addressed the use
of advanced technologies as bridges for learners and facilitators of robust learning
outcomes.

We received a total of 186 submissions from 26 countries on 5 continents: Austra-
lia, Brazil, Canada, China, Estonia, France, Georgia, Germany, Greece, India, Italy,
Japan, Korea, Mexico, The Netherlands, New Zealand, Pakistan, Philippines, Saudi
Arabia, Singapore, Slovakia, Spain, Thailand, Turkey, the UK and USA. We accepted
61 full papers (38%) and 58 short papers. The diversity of the field is reflected in the
range of topics represented by the papers submitted, selected by the authors. The most
popular topics among the accepted (full and short) papers were: empirical studies of
learning with advanced learning technologies (34 accepted papers), educational data
mining (EDM) and machine learning (28), evaluation of systems (23), pedagogical
agents (21), natural language interaction (20), affect (19), intelligent games (16),
pedagogical strategies (15), models of learners, facilitators, groups and communities
(15), and domain-specific: mathematics (15). Of course, many papers covered multi-
ple topics.

We are delighted that five outstanding and world-renowned researchers accepted
our invitation to give invited talks during the conference. Abstracts of their presenta-
tions are included in this set of proceedings. Chee-Kit Looi from the National Institute
of Education (Singapore) shared insights into comprehensive initiatives in Singapore’s
education system, which involve partnerships between researchers and classroom
practice. Stacy Marsella from the Institute of Creative Technologies (University of
Southern California) spoke about the role of emotion and emotion modeling in sys-
tems with virtual characters. Alexander Renkl from the University of Freiburg
(Germany) suggested a way of reconciling theoretical views on learning held by pro-
ponents of socio-constructivist approaches with cognitively oriented approaches and
discussed implications for the design of ITS. Steven Ritter from Carnegie Learning,
Inc. (Pittsburgh, USA) spoke about the third wave of ITS, which takes advantage of
the large user base of real-world ITS for purposes of data mining and end-user author-
ing. Finally, Beverly Woolf, from the University of Massachusetts, Ambherst,
described the emergence of social and caring computer tutors, which respond to both
affect and cognition.
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The proceedings contain 17 short papers within the important Young Researchers
Track (YRT). This track represents the future of our field. It provides a forum in
which PhD students present and discuss their work during its early stages, with men-
toring from more senior members of the community. All submissions were carefully
reviewed by experts. The proceedings also include 18 abstracts of Interactive Events
that during the conference showcased an interesting mixture of mature systems and
late-breaking developments in ITS and related tools for authoring, assessment, data
analysis, etc. Rounding out the scientific program of the conference were six work-
shops and three tutorials.

All full papers and short papers included in the proceedings were stringently peer-
reviewed. Reflecting the strength of the ITS community, we received a large number
of submissions of very high quality. The review process rested significantly on the
outstanding team of international experts from 24 countries who made up the Program
Committee, the Senior Program Committee and the Advisory Board. Reviewers
started the process by bidding on abstracts, ensuring that they were reviewing in areas
of their particular interest and expertise. Conflicts of interest were identified so that no
paper was assigned to a reviewer who is a close collaborator or colleague of any of the
paper's authors. Each paper received at least three reviews. One of the reviewers was a
member of the Senior Program Committee, who was also responsible for leading an
online discussion of the paper and then writing a meta-review. Criteria for reviews of
papers were: relevance, originality, significance, evaluation, related work, organiza-
tion and readability. The final decisions for acceptance were made by the Program Co-
chairs who, working in concert, carefully studied the reviews, discussion and meta-
reviews, often initiating additional discussion among reviewers. In some cases, we
(the Program Co-chairs) sought additional reviewers. For the most difficult decisions,
we also read the papers. In making the hard decisions on accepting full papers, we
were largely driven by the reviews and meta-reviews. Where the scores were close, we
took into account all review criteria, and in our final decision weighed the relative
importance of a paper's strengths and weaknesses. We also considered the different
classes of contributions: for example, a full paper describing a new system designed
to improve learning should include a sound evaluation or at minimum a convincing
pilot study. For short papers, the novelty and potential of the work were key require-
ments. Due to the large number of high-quality submissions, our choices were diffi-
cult. This is a very pleasing situation for the ITS community and augurs well for the
future as some of the papers we could not accept have the promise to be excellent
future publications.

The quality of the reviews was extremely high, which was critical in enabling us to
distinguish the highest quality work for acceptance as full papers. In addition,
high-quality reviews are critical for researchers as feedback on their research and their
papers, regardless of whether they are accepted for publication or not. For example,
many reviews pointed to additional relevant literature, identified particular strengths
and gave concrete advice on how to address weaknesses. We believe that authors of
many of the rejected papers will be able to use this feedback to produce excellent
papers in the future. We worked very hard to select the Program Committee, the Sen-
ior Program Committee and the Advisory Board so we could meet these goals. We are
pleased to announce the following Outstanding Reviewer Awards: Ivon Arroyo,
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Kevin Ashley, Ryan Baker, Joseph Beck, Gautam Biswas, Sydney d'Mello, Peter
Brusilovsky, Vania Dimitrova, Neil Heffernan, Akihiro Kashihara, Brent Martin,
H. Chad Lane, James Lester, Diane Litman, Rose Luckin, Stellan Ohlsson, Niels
Pinkwart, Steven Ritter, Ido Roll, Carolyn Rosé, Peter Sloep, John Stamper and
Gerhard Weber.

A scientific conference of the size of ITS 2010 can only succeed due to contribu-
tions of many people who generously donate their time. Of great significance are the
contributions of the large number of people who helped with the review process: the
Advisory Board, the Senior Program Committee, the Program Committee, as well as
people who volunteered as reviewers. We are extremely grateful to them for the time
and effort they put in. Special thanks are due to the people who volunteered to organ-
ize workshops and tutorials, which made up a key part of the scientific program of the
conference. We also thank the Chairs for Workshops / Tutorials, Young Researcher
Track / Doctoral Consortium, Interactive Events, and Panels, all of whom had a major
influence on the scientific program. The Local Arrangements Chairs devoted countless
hours of preparation to make the conference actually happen successfully “on the
ground.” The Volunteers / Outings Chairs recruited and organized dozens of students
not only to help run the conference but to lead small-group outings tailored to individ-
ual interests in the ITS spirit. The Conference Treasurer organized our budget meticu-
lously, the Sponsorship Chair increased it handsomely, and the Publicity Chair got the
word out widely. Lynnetta Miller of Carnegie Mellon deserves special recognition for
contributing in multiple guises (conference secretary, artist, webmaster). A special
word of thanks is due to Carolyn Manley of Carnegie Mellon's Conference and Event
Services, who among other things administered (along with programmer Alex Lang)
the online registration system. We would like to thank Kevin Ashley, Vania Dimi-
trova, Ben du Boulay, Claude Frasson, Art Graesser, Alan Lesgold, James Lester,
Roger Nkambou, Beverly Woolf, and other past organizers of ITS and AIED confer-
ences for their kind assistance and sage advice. We are very grateful to Jo Bodnar of
Carnegie Mellon and student volunteers Matthew Easterday, Richard Gluga, and Mi-
chael Lipschultz for the very significant role they played in assembling the proceed-
ings. And we would like to thank our sponsors, listed later, whose support for the
conference we gratefully acknowledge.

Our final thanks must be to the authors whose papers appear in these volumes.
They have contributed many exciting new ideas and a comprehensive body of care-
fully validated work that will serve as an advanced technology bridge to improved
learning in real educational settings.

April 2010 Vincent Aleven
Judy Kay
Jack Mostow
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Can Research-Based Technology Change School-Based
Learning? Perspectives from Singapore

Chee-Kit Looi

National Institute of Education, Nanyang Technological University, Singapore
cheekit.looi@nie.edu.sg

We start with the broad realization that despite decades of research work in
technology-mediated learning that have produced many exciting systems and
studies, we have not seen many pervasive, sustainable and scalable improve-
ments in actual classroom practice. Nonetheless, there are some countries and
regions in the world in which such systemic approaches to innovating educa-
tional reforms in the classrooms hold the promise of impacting real world prac-
tice. In this talk, we would like to present the case of Singapore where such a
realistic possibility can be actualized through a coherent program that spans the
spectrum of many critical dimensions: from policy imperatives to school
ground-up efforts, from research to impacting practice, from one research pro-
ject in a classroom to sustainability and scaling up, from mere usage to cultural
and epistemological shifts of the stakeholders, and from technology experimen-
tation to providing robust technology infrastructures. Addressing these dimen-
sions provide the conditions for technology to have an impact. Situations where
technology works include those where students use technology all the time,
where technology is truly personal, where the curriculum leverages the affor-
dances of technologies, or where it is easy for teachers or students to add to the
repertoire of technology-enabled activities. In Singapore, we have embarked on
a journey in the Learning Sciences Lab to conduct school-based research to de-
velop models of how to enact effective innovations and how to sustain their
routine use in schools. I will discuss some of the innovations we are working
on, and the issues and challenges we still face to achieve adoptability in
schools, challenges that the ITS community might well be able to address.
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Modeling Emotion and Its Expression

Stacy Marsella

Institute for Creative Technologies, University of Southern California, 13274 Fiji Way,
Marina del Rey, CA 90292, USA
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Emotion and its expression play a powerful role in shaping human behavior. As
research has revealed the details of emotion’s role, researchers and developers
increasingly have sought to exploit these details in a range of applications.
Work in human-computer interaction has sought to infer and influence a user’s
emotional state as a way to improve the interaction. Tutoring systems, health in-
terventions and training applications have sought to regulate or induce specific,
often quite different, emotional states in learners in order to improve learning
outcomes. A related trend in HCI work is the use of emotions and emotional
displays in virtual characters that interact with users in order to motivate, en-
gender empathy, induce trust or simply arouse.

Common to many of these applications is the need for computational models
of the causes and consequences of emotions. To the extent that emotion’s im-
pact on behavior can be modeled correctly in artificial systems, it can facilitate
interactions between computer systems and human users. In this talk, I will give
an overview of some of the applications that seek to infer and influence a user’s
emotions. I will then go into detail on how emotions can be modeled computa-
tionally, including the theoretical basis of the models, how we validate models
against human data and how human data are also used to inform the animation
of virtual characters.
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Active Learning in Technology-Enhanced Environments:
On Sensible and Less Sensible Conceptions of ‘“Active”
and Their Instructional Consequences

Alexander Renkl

Department of Psychology, University of Freiburg, D-79085 Freiburg
renkl@psychologie.uni-freiburg.de

Usually ITSs or, more generally, technology-enhanced learning environments
are designed to afford active learning in order to optimize meaningful knowl-
edge construction. However, researchers in learning and instruction hold differ-
ent conceptions of “active learning.” Most socio-constructivist approaches have
adopted an active responding stance. They regard visible, open learning activi-
ties such as solving complex problems, hands-on activities, or argument with
peers as necessary for effective learning. This view, however, is challenged by
empirical evidence and has theoretical problems. If we assume that learning
takes place in the individual learner’s mind, then what the mind does, and not
overt behavior, is central. Accordingly, the active processing stance—the typi-
cal stance of most cognitively-oriented educational psychologists—regards ef-
fective learning as knowledge construction resulting from actively processing
to-be-learned content. Although active processing might be necessary for
knowledge construction, it can become unfocused. In hypermedia environ-
ments, for example, learners may focus on peripheral information, which may
delay or even prevent the acquisition of important content. Against this back-
ground, I have recently proposed a modification of the active processing stance.
The focused processing stance claims that it is crucial that the learners’ active
processing is related not only to the learning content but to the central concepts
and principles to be learned (e.g., mathematical theorems, physics laws).

The focused processing stance is of special relevance to technology-
enhanced learning environments. Many features of these environments that are
meant as supportive might actually induce learning-irrelevant additional de-
mands to the learners (e.g., decisions when to use different help facilities), or
these features might be sub-optimally used (e.g., overuse of help). Hence, these
“supportive” features can distract from the central concepts and principles to be
learned. In this talk I will present instructional procedures and findings from
three lines of research that are relevant in helping learners focus on central con-
cepts and principles: (a) Replacing problem-solving demands by worked solu-
tions in the beginning of the learning process in order to reduce unproductive
problem-solving attempts; (b) informing the learners of the intended function of
a learning environment’s “supportive” features in order to optimize their use;
(c) prompting by specifically-designed questions in order to focus the learners’
attention on the central principles of the learning domain. The findings confirm
that it is crucial not only to induce active learner involvement but also to sup-
port focused processing in order to optimize learning outcomes.
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Riding the Third Wave

Steven Ritter
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Intelligent tutoring systems work falls into three waves. The first wave involves
basic research on technical implementation, including authoring systems and tu-
toring architectures. Second wave work takes this technological development
beyond the laboratory. This work involves deep analysis of domain knowledge
and empirical validation of systems. The emerging “third wave” takes advan-
tage of widespread use of systems to refine and improve their effectiveness.
Work in this area includes data mining and end-user authoring.

Although many types of systems have followed this evolution, intelligent tu-
toring systems are uniquely positioned among educational software to take ad-
vantage of the third wave. The architecture and authoring work from the first
wave and the ability to incorporate domain knowledge and test pedagogical ap-
proaches in the second wave make us well positioned to ride this third wave.

In this talk, I will describe Carnegie Learning’s experience in riding these
waves. We have taken intelligent tutoring systems for mathematics originally
developed at Carnegie Mellon to scale with over 500,000 users per year, and are
now riding the third wave to leverage this user base and improve the effective-
ness and utility of our systems.
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Social and Caring Tutors
ITS 2010 Keynote Address

Beverly Park Woolf
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University of Massachusetts
bev@cs.umass.edu

Abstract. If computers are to interact naturally with humans, they must express
social competencies and recognize human emotion. This talk describes the role
of technology in responding to both affect and cognition and examines research
to identify student emotions (frustration, boredom and interest) with around
80% accuracy using hardware sensors and student self-reports. We also discuss
“caring” computers that use animated learning companions to talk about the
malleability of intelligence and importance of effort and perseverance. Gender
differences were noted in the impact of these companions on student affect as
were differences for students with learning disabilities. In both cases, students
who used companions showed improved math attitudes, increased motivation
and reduced frustration and anxiety over the long term. We also describe social
tutors that scaffold collaborative problem solving in ill-defined domains. These
tutors use deep domain understanding of students’ dialogue to recognize (with
over 85% accuracy) students who are engaged in useful learning activities.
Finally, we describe tutors that help online participants engaged in situations
involving differing opinions, e.g., in online dispute mediation, bargaining, and
civic deliberation processes.

Keywords: Social computing, collaborative problem solving, intelligent tutors,
wireless sensors, student emotion, pedagogical agents, affective feedback, gen-
der differences, special needs populations.

1 Introduction

Affect is a central component of human cognition and strongly impacts student learn-
ing [1-4]. If computers are to interact naturally with humans, they must recognize
affect and express social competencies. Affect has begun to play an important role in
intelligent tutors [5-6] and affective tutors seem to increase the effectiveness of tuto-
rial interactions and, ultimately learning. The field of affective tutors investigates
techniques for enabling computers to recognize, model, understand and respond effec-
tively to student emotion. One goal of affective computing is to recognize affect or
identify the affective state of people from a variety of physical cues that are produced
in response to affective changes in the individual [7]. This talk describes the role of

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 5-@ 2010.
© Springer-Verlag Berlin Heidelberg 2010



6 B.P. Woolf

technology in automatic recognition of and response to user affect. It provides three
examples of social computing in which affective interventions encourage learning,
lessen humiliation and provide support and motivation that outweighs or distracts
from the unpleasant aspects of failure. Section 2 describes the first example system
that includes real-time automatic recognition of emotions exhibited during learning.
Section 3 describes automatic generation of appropriate responses to student emotion
and Section 4 discusses experiments with affective tutors. Section 5 describes a sec-
ond example of social computing, support of online collaboration, and Section 6
briefly introduces the third example, a tutor for online social deliberation.

2 Automatic Recognition of Student Affect

The first example of a social tutor is one that embeds affective support into tutoring
applications. Prior research has focused on automated detection of affective states as a
first step towards this goal [5, 8-10]. Currently there is no gold standard for either
labeling a person’s emotional state or for responding to it. Our sensor platform of four
physiological sensors (Fig. 1), placed on each student’s chair, mouse, monitor, and
wrist, conveyed information to the tutor about
student posture, movement, grip tension,
arousal, and facially expressed mental states.
The platform is unobtrusive enough to be used
by students in a typical setting and resource-
conscious enough to run on average computer
labs available to students [11]. These sensors
collect raw data about physical activity and the
state of a student. The challenge remains to
map this data into models of emotional states
and use this information productively.
Experiments showed that when sensor data ~ ¥ig. 1. Sensors used in the classroom
supplements a user model based on tutor logs, (clockwise): mental state camera, Skl,n
conductance bracelet, pressure sensi-
the model reflects a larger percentage of the tive mouse, pressure sensitive chair
students’ self-concept than does a user model
based on the tutor logs alone [11]. The best
classifier of each emotion in terms of accuracy ranges from 78% to 87.5%. By using
Stepwise Regression we isolated key features for predicting user emotional responses
to four categories of emotion. These results are supported by cross validation, and
show improvement using a very basic classifier. We showed that students’ self-
reports can be automatically inferred from physiological data that is streamed to the
tutoring software in real educational settings. Fluctuating student reports were related
to longer-term affective variables (e.g., value mathematics and self-concept) and these
latter variables, in turn, are known to predict long-term success in mathematics, e.g.,
students who value math and have a positive self-concept of their math ability
perform better in math classes [12].
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3 Automatic Response to Student Affect

Once a student’s emotion has been recognized, the next issue is to respond to improve
student motivation and learning. Providing empathy or support strongly correlates
with learning [12, 13] and the presence of someone who cares, or at least appears to
care, can be motivating. Various studies have linked interpersonal relationships be-
tween teachers and students to motivational outcomes [7, 14]. Can this noted human
relationship be reproduced, in part, by apparent empathy from a computer character?
Apparently the answer is yes [15]. People seem to relate to computers in the same
way they relate to humans and

some relationships are identical
: . ®
to real social relationships [16]. i
or example, students continue -

to engage in frustrating tasks on '| |I

a computer significantly longer o
after an empathetic comput-
ational response [17], and have ﬁ

| RY

immediately lowered stress

level (via skin conduct-ance) “ m
after empathy and after apology
[18].

Pedagogical agents have been  Fig, 2. Affective learning companions act out their
developed to improve learning emotion and talk with students expressing full sentences
and impact affect [19, 20]. Our  of cognitive, meta-cognitive and emotional feedback
gendered learning companions
(LC) are empathetic in that they visually reflect the last emotion reported by the stu-
dent (queried within the system every five minutes) [21, 22]; they emphasize the
importance of perseverance, express emotions and offer strategies (e.g., “Use the help
function™), see Fig. 2 [11, 22]. The characters are highly positive, in the sense that
they displayed encouraging gestures (e.g., excitement and confidence). Negative
gestures (appearing frustrated or bored) were not effective and were eliminated by the
researchers. Mimicking student self-reported emotion is a form of a non-verbal empa-
thetic response (e.g., learning companions appeared excited in response to student
excitement, see Fig. 3, right). Companions occasionally expressed non-verbal behav-
iors of positive valence only (e.g., looking interested), the underlying goal being to
make them appear life-like and engaged and to impart some of their enthusiasm to the
students.

Companions act out their emotion and talk with students expressing full sentences
of metacognitive and emotional feedback. They are non-intrusive—they work on their
own computer to solve the problem at hand, and react only after the student has an-
swered the question. Companions respond with some of Carole Dweck’s [23] recom-
mendations about disregarding success and valuing effort. This adds a new dimension
to the traditional feedback regarding success/no-success generally given to students.
Affective companions support students motivationally, by emphasizing the impor-
tance of effort and perseverance and the idea that intelligence is malleable instead of a
fixed trait [23].
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Learning companions delivered approximately 50 different messages emphasizing
the malleability of intelligence and the importance of effort and perseverance. The
messages also include metacognitive help related to effective strategies for solving
math problems and effective use the tutor. The learning companions’ interventions are
tailored to a given student’s needs according and ultimately will be selected based on
two models of affect and effort embedded in the tutor. The effort model uses interac-
tion features to provide information on the degree of effort a student invests in gener-
ating a problem solution. An affect model assesses a student’s emotional state; based
on linear regression, this model is derived from data obtained from a series of studies
described in [11, 21]. Ultimately, the interventions will be tailored according to the
tutor’s affective student model. However, we are currently still validating the models
and algorithms for deciding which intervention to provide and when, and thus relied
on an effort model only to assign
messages.

The characters provided support by
responding to the effort exerted by
students rather than to the student’s
emotions. Characters were either un-
impressed when effort was not exerted,
or simply ignored that the student
solved the problem. They also offered
praise to students who exerted effort
while problem-solving, even if their
answers were wrong, highlighting that
the goal is to lessen the importance of
performance in favor of learning.

Fig. 3. The Wayang Tutor with the female
affective learning companion

4 Experiments with Affective Tutors

Our affect recognition and response software is stand-alone and can provide affective
input to any tutor and can generate responses from any tutor. We conducted several
empirical evaluations to dynamically identify student emotion during learning, iden-
tify emotions through classifiers and then respond to students using companions.

Currently we are using affect systems in tandem with Wayang Outpost, a multime-
dia tutoring system for high school geometry and algebra [21, 22, 24]. Problems are
presented one at a time, each consisting of the problem statement with four or five
solution options directly below it. Students select an answer and the tutor provides
immediate visual feedback by coloring the answer green or red, for correct or incor-
rect respectively. Within each topic section, Wayang adjusts the difficulty of prob-
lems depending on past student performance.

We conducted several series of experiments involving sensors, learning compan-
ions and Wayang Outpost [21, 22]. One study involved 35 students in a public high
school in Massachusetts; another involved 29 students in the University of Massachu-
setts; and the final study involved 29 undergraduates from Arizona State University.
Another set of studies quantitatively analyzed the benefit of learning companions on
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affective and cognitive outcomes. The subjects included one hundred and eight (108)
students from two high schools (one low and the other high achieving) in Massachu-
setts and involved 9th and 10th graders. Two thirds of the students were assigned to a
learning companion of a random gender, and one-third to the no learning companion
condition. Wayang has been used with thousands of students in the past and has dem-
onstrated improved learning gains in state standard exams [11, 21, 24]

Overall results suggest a general advantage of learning companions (both the fe-
male and male ones) for some affective outcomes. Students reported significantly less
frustration and more interest (less boredom) when learning companions were used
compared to the no learning companion condition. At the same time, students receiv-
ing the female learning companion reported significantly higher self-concept and
liking of math at posttest time. Students receiving the female companion also reported
higher confidence towards problem solving and in post-tutor surveys. While signifi-
cant results are limited to affective outcomes—Ilearning companions did not impact
learning—we are impressed given the short exposure of students to the tutoring sys-
tem. We carried out Analyses of Covariance (ANCOVA) for each of the affective and
behavioral dependent variables (post-tutor and within tutor). Results showed that all
students demonstrated math learning after working with Wayang, with low-achieving
students learning more than high achieving students across all conditions. Learning
companions successfully induced positive student behaviors that have been correlated
to learning, specifically, students spent more time on hinted problems [24]. The bene-
ficial effect of learning companions was mainly on affective outcomes, particularly on
confidence.

Gender Studies. While learning companions (LC) afford affective advantages for all
students, several significant effects in the ANCOVAs indicated a higher benefit
of learning companions for female students. In the case of the emotional outcomes
just mentioned (confidence and frustration, in particular), the effects are stronger for
females than for males. Females’ confidence was improved but not confidence for
males. It is important to note that these gender effects on emotions (within or after
the tutor) are not due to females starting out feeling worse, as our analyses account for
that baseline pretest emotion as a covariate. Females especially perceived the learning
experience with Wayang significantly better when learning companions were present,
while the opposite happened for males, who actually reported worse perceptions of
learning when learning companions were present. Female students in the LC condi-
tion also had more productive behaviors in the tutor: they spent more time than did
males on ‘“helped problems” compared to females in the no-LC condition; they
“gamed” less when characters were present (a significant interaction effect revealed
that the opposite happens for males).

Studies with Low-achieving Students. Low-achieving students were defined as
those who scored lower than median grade on the math pretest [24]. Low-achieving
students disliked math more, valued it less, had worse perception of their math ability,
and reported feeling worse when solving math problems. Since low achieving stu-
dents (both with and without disabilities) struggle with math, our conjecture was that
all low achievers could require additional affective support. Thus, the first goal of the
study was to examine the affective needs of both low achieving and learning disability
students in our data (15% of subjects).
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Low-achieving students who received LCs improved their confidence while using
the tutor and more than students with no LCs, while their counterparts in the no-LC
condition tended to decrease their confidence. Some differential effects suggest that
learning companions are essential for low-achieving students’ affect. When LCs are
present, low achieving students report positive affect nearly as much as do high-
achieving students and it is only when learning companions are absent that a large gap
exists between these student groups. This affective gap reduces when learning com-
panions are present. This result is found for several outcome variables: self-concept,
perceptions of learning, frustration, and excitement.

S Supporting Student Collaboration

The second example of social computing comes from a tutor that supports online
peer-to-peer collaboration. Social computers should recognize and promote dialogue
among groups of people engaged
in free-entry text discussion; they
should recognize the content of
group work, help participants
maintain proper focus, provide
appropriate feedback and center
participants’ work as needed.

We developed tools that enable
students to work together within
Rashi, an inquiry learning system | &
that supports authentic learning | oo Johnsonts Htabook
experiences by considering real-
world inquiry problems. The tutor
provides case descriptions for
students to investigate, along with
information about how to approach
each problem [25, 26]. In the Rashi
Human Biology Tutor, students
evaluate patients and generate
hypotheses about their medical
condition. Patients’ complaints
form an initial set of data from
which students begin the diagnostic
process. Students can interview the
virtual patient (Fig. 4, top),
perform a physical examination, or
run lab tests.

Tools leverage the information
provided by students to help the
tutor recognize the students’ focus.
During collaboration, users view each others' notebooks (Fig. 4, bottom), and drag
and drop both data and hypotheses from others’ notebooks to their own. This

New.. | Details Delete... Match ‘ Compare...

¢ [ Patient has the flu
1™ Patiant compiians of haadache

Iypothesis Information

hypothesis: |Patiznt has the flu |

long descr. |

rating: |7 Possitie .4 matchec match

Source UserTags oeTa[I
]

Lab_Resulls_fol =

Fig. 4. Students “interview” the patient in the Rashi
system (top) and record their hypotheses for a diag-
nosis along with evidence supporting and refuting
that evidence in the notebook (bottom)
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supports a variety of collaborative activities ranging from students working in tightly
knit groups, where each student takes on a role and contributes in a specific manner,
to students working mostly independently but sharing ideas and thoughts when reach-
ing an impasse. The system also provides a chat facility that enables students to
discuss issues with members of their group, see Fig. 5. Several features, including
text coloring, filtering, and new message notifications increase the usability and qual-
ity of the discussion tools. Within the chat feature a group member can click on a chat
subject and be quickly taken to related work in a group member’s notebook.
In order to recognize the

content of group work and help f\“{;;‘:‘yi 3:)‘1 you find anything
participants maintain proper Sammy: no brain damage and no alcohol at the time
Anne:  He has no enemies on campus. Chest appears to be normal
fOCl.lS, the SyStem matches Sammy: no spinal damage either
student statements to expert Anne: 511 lk;l is hllls he_igl;l_; Krlljes appear to be normal but there is
. slight swelling in his ankles

knowledge base elements. This Anne:  Normal heart sounds
: : . Sammy: no toxins
18 accomPIIShed by usnlg the Anne:  Normal heart sounds and normal chest exam
search engine library, Lucene, to Sammy: he claims have no asthma ,
. . .. Anne:  weak heart pulse rate, lungs sound wheezing
index the individual elements Sammy: we found pulmonary problems so something is screwed up with
f th k 1 d b 1 his lungs and it aint asthma or his phisical or sexual activity

rom € nowle ge ase a Ong Anne: its anaphlactic shock

Wlth their associated keywords. Sammy: wc.found out he was running blcforc he passcd. out and he 1< a
. runner so he got tired sat down and leaned against the tree which cant descirbe
Rashi uses the expert knowledge  the mark on his head.
base to recognize (with 88%
success rate) when students are
discussing content relevant to the
problem and to correctly link
(with 70% success) that content
with an actual topic [26]. Subsets of the data indicate that even better results are
possible. This research provides solid support for the concept of using a knowledge
base to recognize content in free-entry text discussion and to support students
engaged in problem-solving activities.

The addition of collaboration software also offers unique opportunities to recog-
nize situations where students might be helpful to each other. We hope to allow
students to support each other at crucial points in time in the conversation [26]. When
attempting to intelligently encourage collaboration, the tutor reasons about all stu-
dents work at the same time. It supports collaboration by, for example, providing a
“Suggested Topics” list adjoining the chat window, populated with items that are
related to a group’s current work according to the expert knowledge base. Students
can then see the connections and gaps in their collective work. The system also de-
tects a specific moment at which an intervention should be given. What opportunities
will be recognized as appropriate times for prompting students to discuss the argu-
ment with one another? We are taking precautions to avoid interventions that would
be disruptive or counter-productive if the tutoring system were to be mistaken about
its content recognition abilities.

Fig. 5. Actual chat conversation among middle
school students (grades 5-6) involved in a Rashi
discourse to diagnose a patient. Their discussion is
thoughtful and on-task.

6 Supporting Online Social Deliberation

The third and final example of social computing is about supporting online social
deliberation, especially as it relates to dispute resolution and collaborative inquiry.
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This software, which is still in progress, will model and monitor deliberative proc-

esses skills while people are either in collaboration or involved in settling disputes.

Applications will be for online dispute resolution and collaborative learning, such as

seen in Rashi. We intend to improve participants’ trust in the quality and legitimacy

of these processes and will implement separate tools for facilitators and participants.
An example of one application

of this software is to work with ACME SALES: Yes —

p artiCip ants trylng to Settle their back that he won Ihea\feehegleemior ey eage
. e omaiing aontct
differences after failing in an eBay Marty: As lindicated, had ACME fuly disclosed ~all problems withthis veicle. |
transaction. 20% Of the eBay dis- would not haveb\d onit.. . .The bottom line is indeed simply that ]
o o momes cxchange
1 ] 1 paid for the vehicle additional expenses
putes require the intervention of rembised dTor the yehicle. as wellas the addiional expenses |

. . incurred related to this yglj Q le.. . Had ACME agreed to paying the
human med]ators WhO prOV]de $10,297.94 | offered to accepl they would not received a negative feedback .

structure for the dispute resolution

Net Neutral: We all agree to return  the vehicle. Now we can focus on on what

Conversation’ The Online proj eCt amount is reasonable. ACME, what do you think is a reasonable amount?
WIH ldentlfy the content Of the ACME SALES: He bought the vehicle Ms isGand he should fully read the auction
diSCuSSiOn, see F]g 6’ Scaffold next time. We will only reimburse him for the winning cost of the vehicle .

Net Neutral: | see that ACME is offering to  refund the purchase price $9297.94
Marty: ACME failed to disclose *major* vehicle defects. ACME should have
*honestly* described the vehicle.. . $10,632.24 is the minimum | will accept.

these situations, add structure to
the dialogue and focus attention
on social processes.

We will test the hypothesis that ~ Fig. 6. Actual conversation among eBay partici-

online users produce more positive  pants after a failed negotiation. A human mediator
results when supported by (NetNeutral) helped frame the discussion and settle

scaffolding that draws attention to the disagreement. Keywords that the software
important skills and features of should be able to recognize are underlined.

social deliberative processes and

by adaptive coaching that provides explicit hints and expert advice. Positive results are
defined as helping people to gain both basic and reflective deliberation skills, e.g., the
ability to separate facts from opinions and to form logical arguments. The software will
integrate artificial intelligence techniques into dialogue environments, prompt or re-
mind people, drawing their attention to important features of the deliberative situation
and provide interventions (e.g., visualization tools and process structures).

7 Discussion and Future Work

This talk described three examples of social and caring computer environments and
the role of technology in automatic recognition of and response to human affect. The
first example described real-time automatic recognition of emotions, automatic gen-
eration of responses to student emotion and experiments with affective tutors. The
second example described a tutor that supports collaboration among students and
the third was software for online social deliberation. These systems contribute to the
growing body of work on affective reasoning for computers and represent a first step
towards development of social and caring software.

We propose that tutors that can reason about and respond to human affect will ul-
timately be able to identify desirable (e.g. flow) and non-desirable (e.g., boredom)
student states. Different interventions can be tested to keep students in desirable states
as long as possible (e.g., a confused student might be invited to slow down, reread the
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problem and ask for hints). Part of this approach includes user models that provide
instructional recommendations and algorithms based on tutor predictions.

There are a number of places for improvement in affective tutors. For example, the
impact of specific pedagogical actions on student learning should be investigated and
used to quantitatively gauge the influence of competing tutorial strategies on learning.
Additionally, summary information of sensor values used in our experiments may be
improved by considering the time series of each of these sensors.

Research on affective tutors may ultimately lead to delicate recommendations
about the type of support to provide for individual students. Should male students
receive affective support at all? Should all females be provided with learning compan-
ions? Should students with learning disabilities use learning companions? These are
hard questions to answer from initial and limited experiments. While preliminary
results suggest that high school females will affectively benefit more than high school
males, we cannot conclude that males in general should not receive affective learning
companions. Further studies with larger number of students might result in more nu-
anced recommendations about how to modulate the feedback to individualize instruc-
tion in affective tutors.
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Abstract. Collaborative filtering (CF) is a technique that utilizes how users are
associated with items in a target application and predicts the utility of items
for a particular user. Temporal collaborative filtering (temporal CF) is a
time-sensitive CF approach that considers the change in user-item interactions
over time. Despite its capability to deal with dynamic educational applications
with rapidly changing user-item interactions, there is no prior research of tem-
poral CF on educational tasks. This paper proposes a temporal CF approach to
automatically predict the correctness of students’ problem solving in an intelli-
gent math tutoring system. Unlike traditional user-item interactions, a student
may work on the same problem multiple times, and there are usually multiple
interactions for a student-problem pair. The proposed temporal CF approach ef-
fectively utilizes information coming from multiple interactions and is com-
pared to i) a traditional CF approach, ii) a temporal CF approach that uses a
sliding-time-window but ignores old data and multiple interactions and iii) a
combined temporal CF approach that uses a sliding-time-window together with
multiple interactions. An extensive set of experiment results show that using
multiple-interactions significantly improves the prediction accuracy while using
sliding-time-windows doesn’t make a significant difference.

Keywords: performance prediction, intelligent tutoring systems, temporal col-
laborative filtering.

1 Introduction

Collaborative information filtering, or collaborative filtering (CF), is an important
technology that utilizes how users of a system are associated with items in an applica-
tion to predict the utility of items for a particular user. Specific type of items and
associations differ by target applications (e.g., buying books at Amazon, reading news
at Google, and renting CDs at Netflix, etc.). CF techniques have been applied mainly
in many e-commerce systems for business purposes. Recently, they have also been
used for educational applications such as legal argumentation [10], educational re-
source recommendation [13], writing skills training [4] and eLearning [8]. An impor-
tant issue with many applications is that users’ behaviors change over time and a

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 15@ 2010.
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Table 1. Statistics about the number of times each worksheet is repeated

Repetition Worksheet Name
Statistics Equal Group Multiplicative Compare Mixed
W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3
Mean 22 4 16 15 13 33 14 12 13 1.1 1
Std. Dev. 18 2 05 07 05 29 09 06 09 03 O

static CF approach may not always be optimal to anticipate users’ future behaviors.
Temporal collaborative filtering (temporal CF) is a CF approach that adapts itself to
the constantly changing system dynamics (i.e., user-item associations). Temporal CF
has gained substantial interests in business applications such as movie recommenda-
tion [5], [6], [7]. However, despite its capability to deal with dynamic educational
applications with rapidly changing user-item interactions, temporal CF has not been
applied to educational tasks yet.

To the best of our knowledge there is no prior research of temporal CF on the au-
tomatic detection of whether a student will be able to correctly answer a question with
a high-level student model (i.e., without using any expert knowledge of the domain).
Prior research utilized combinations of features such as time, mouse tracking and
performance related features [1], [3], [11]; most of which are extracted while a stu-
dent is solving the problem. However, it is not possible to predict whether a student
will be able to solve a problem before the problem is presented to the student (i.e.,
enough data is collected) which limits the utilization of the student model. For exam-
ple, related prior research was not able to give an early feedback to the student de-
pending on his likelihood to solve the problem or change the problem with an easier
or harder one. Prior work on temporal CF focused on business applications such as
movie recommendation [5], [6], [7]. A simple and popular approach in the prior work
of temporal CF (to deal with rapidly changing user-item associations) is the utilization
of sliding time windows, which uses new data in a current sliding window and dis-
cards (or assigns decreasing weights on) old data [5][12]. However, unlike a tradi-
tional CF based application (e.g., a user votes for a movie only once), a student has
multiple interactions with a task/problem in a problem solving environment and this
data is ignored by traditional CF approaches or temporal CF approaches such as
sliding window.

This paper proposes a novel temporal CF approach that can automatically predict
the correctness of students’ problem solving in an intelligent math tutor by utilizing
the information coming from multiple interactions. The new approach is compared to
i) a traditional CF approach, ii) a temporal CF approach that uses sliding time window
but ignores old data and multiple interactions and iii) a novel hybrid temporal CF
approach that uses a sliding-time window together with multiple interactions. We
show that using multiple interactions significantly improves the prediction accuracy.
It is also shown that although using sliding time window has been shown to be effec-
tive in prior research [5], [12]; it doesn’t make a significant difference in this work.
Furthermore, a novel hybrid approach combining the proposed temporal CF together
with the temporal CF using sliding time windows is found to be not significantly
different than using the proposed temporal CF approach of only utilizing multiple
interactions. Finally, the Pearson Correlation Coefficient (PCC) method is found to be
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not significantly different than the Vector Similarity (VS) while calculating the
similarity between two users, although PCC has been shown to be more effective than
VS in other applications (e.g., in business domain) [2].

2 Data

Data from a study conducted in fall 2008 and partly in spring 2009 in a nearby elemen-
tary school was used in this work. The study was conducted in mathematics classrooms
using a math tutoring software (that has been developed by the authors). The tutoring
software teaches problem solving skills for Equal Group (EG) and Multiplicative
Compare (MC) problems. These two problem types are a subset of the most important
mathematical word problem types that represent about 78% of the problems in a fourth
grade mathematics textbook [9]. In the tutoring system; first, a conceptual instruction
session is studied by a student followed by problem solving sections to test their under-
standing. Both of conceptual instruction and problem solving parts require students to
work one-on-one with the tutoring software and if students fail to pass a problem solv-
ing session, they have to repeat the corresponding conceptual instruction and the prob-
lem solving session. Details about the number of repetitions of each worksheet (by all
students) are given in Table 1. Space limitations preclude discussing in detail but the
tutoring software has a total of 4 conceptual instruction sessions and 11 problem solv-
ing worksheets that have 12 questions each (4 for Equal Group worksheets, 4 for Mul-
tiplicative Compare worksheets, 3 Mixed worksheets each of which include 6 EG & 6
MC problems). The software is supported with animations, audio (with more than 500
audio files), instructional hints, exercises etc.

The study with the tutoring system included 10 students among which 3 students
have learning disabilities, 1 student has emotional disorder and 1 student has emo-
tional disorder combined with a mild intellectual disability. Students used the tutor for
several class sessions of 30 minutes (on average 18.7 sessions per student with stan-
dard deviation of 3.23 sessions) during which their interaction with the tutoring sys-
tem was logged in a centralized database. A total of 2388 problems (corresponding to
a total of 199 worksheets) were solved with 1670 problems correctly solved (with
average 167.0 and std. deviation. 23.1) and 718 incorrectly solved (with average 71.8
and std. deviation 32.5). Data from 9 students was used as training data to build the
models for making predictions for the remaining 1 student (who is used as the test
data) at each configuration. That is, all 10 students are used as the test data alterna-
tively and the data from other 9 students is used as training data. The averages of the
results for all configurations are reported.

3 Methods and Modeling Approaches

3.1 Collaborative Filtering Framework

Predicting correctness of problem solving with a high-level student model (i.e., with-
out using any expert knowledge of the domain) can be treated as a collaborative filter-
ing problem, which models students’ likelihood to solve problems. The collaborative
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filtering framework in this work can be defined as follows: assume there are M stu-
dents and L. worksheets in the system, where each of the worksheets has K questions.
Note that M is 10, L is 11 and K is 12 in this work. Let w}, be the I"" worksheet by m™
student, 7(w},) be the total number of repetitions of I worksheet by m™ student, w"
be the n'" repetition of I"™ worksheet by m™ student, w,;"(i) be the i problem in that
worksheet and s( W,lﬁn(l')) be the student’s score on the problem (i.e., 1 means the
student solved the problem correctly and 0 means the student solved the problem
incorrectly). A first step in CF is to calculate the similarities between students. There
are two common techniques for this task: Pearson Coefficient Correlation (PCC) and
Vector Similarity (VS). PCC can be calculated as follows:

Sk Bho s (s(wh (D) = 5w (whe () ) = ST

(1)
(Eh ZEA GO 00) =S [Eh T (s (W) = 50w

Sim(u,ut) =

where Sim(u,u?) is the similarity score between students u and u', s(w,) is the average
score of student u on all problems. The vector similarity (VS) can be calculated as
follows:
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After the similarity between users are calculated, prediction for a problem can be
computed by using the sum of the scores of training users on the problem weighted by
the similarity between users as follows:

=1 Sim(w, u) (s(wi (k) — s(wy,) (3)
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Note that the above CF approach ignores the multiple interactions (i.e., repetitions of
worksheets) and only uses the latest scores of a student on a worksheet (e.g., in the
same way it uses the latest rating of a user on a movie). Therefore the repetition in-

dex, that should be included as follows s(w,i’r(w’l‘)(k)> for a problem s(w!(k)), is omit-

ted in the formulas for simplicity.

To predict the correctness of problem solving for a test worksheet of a student, all
of the previous worksheets (i.e., the worksheets that are already solved and available
for use) of that student are used in this modeling approach.

This modeling approach will serve as a baseline and will be referred as
Mod_Baseline_All.

3.2 Temporal Collaborative Filtering with Sliding Time Window

Temporal collaborative filtering is a time-sensitive CF approach that adapts itself to
the rapidly changing user-item interactions. The user-item associations in many
applications change with time as user’s behavior can change over time. One of the
simple temporal CF approaches to deal with changing dynamics is to favor newer data
than older data for having an up-to-date model of the users’ behavior. Sliding time
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windows (and their variants) that only use the newest data is a popular approach,
which has been followed in prior research [5], [12]. To the best of our knowledge, this
is the first work utilizing sliding time windows on an application in the education
domain. In this work, the sliding time window is defined as using the last x work-
sheets for x € {1,2,3,4}. Sliding time window approach will be referred as
Mod_Baseline_ Window.

3.3 Temporal Collaborative Filtering with Multiple Interactions and a Hybrid
Approach

Unlike traditional user-item interactions, students can work on a problem several
times. In most CF based systems, users don’t interact with the items multiple times,
therefore a CF approach or a temporal CF approach don’t take into account the infor-
mation coming from multiple interactions that happen in educational environments
such as tutoring systems with problem solving activities. To predict a student’s per-
formance on a problem, the use of the student’s past performance on the same prob-
lem is a valuable source of data that should not be ignored. By utilizing this data, it
becomes possible not only to compare the latest performances of students’ on other
problems (like in CF or temporal CF approaches) but also to compare the learning
curves by comparing their first, second, etc. trials on the same problems. In this work,
the temporal CF approach that utilizes multiple interactions can be calculated with the
following changes over the VS and prediction formulas as follows: the new vector
similarity (VS):

L) s (i) s (wir)

L T(Wfﬁ) K in 2 L T(Wif) K Ln z
Shy T B s (W) B B, K s (Wit )

Sim(u,ut) =
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So, if the test student is working on worksheet Wflt for the (r(wlit) +1)™ time,
her/his 1% trial on the worksheet is compared with other students’ first trial on the
same worksheet, her/his second trial is compared with others’ second trial, and her/his
r(wit)th trial is compared with other students’ r(wit)th trial. In the traditional ap-
proach only the latest trials of the test student on previous worksheets (i.e., lyrep, <1

lprev
and ')

) is compared with only the latest trials of other students on those

)

worksheets (i.e., w, ). An important thing to note is the dimension mismatch

problem that can happen when two students have different number of trials on a
worksheet which may cause r(wlit) > r(w,)) where there is no corresponding trial of

worksheet w/! from student u to compare with student u'. In such a case, the approach

I
used in this paper is as follows: w)™(k) = wl'r(W”)(k) forn > r(wﬁ). That is, for in-

u
stance, if the third trial of a test user’s worksheet is being compared and a training
user has repeated that worksheet only twice, her/his third (or more) trial is assumed to
be the same with her/his second (i.e., last) trial. This approach is better than just com-
paring r(w)™ trials only, for two reasons: i) as the difference r(wlit) — r(w)) be-

comes bigger, the proposed approach punishes the similarity more (and since similar
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students should have similar repetition behaviors this should be the case) and ii) stu-
dents solve a worksheet until they master the worksheet and get enough score on the
worksheet and therefore their last trial is a good representation of their final status
(after their last trial) on that worksheet.

After the new similarity between users is calculated, the new prediction formula
becomes:

l,T(WL t)

— Yty Sim(u, u)(s (wu (k)> - s(wy) (5)
s< lm(wut)(k)) =S +

w N
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So to predict the r(wit)th repetition of a worksheet of a test user, only the data from
r(wit)th repetitions of training students are used, rather than using the data from their
final (ie., r(wb)™ repetitions. This modeling approach will be referred as
Mod_MultInt_All.

To better evaluate the effect of sliding time windows approach, we also propose a
novel hybrid approach combining the proposed temporal CF (i.e., Mod_MultInt_All)
together with the temporal CF approach that uses sliding time windows. This hybrid
temporal CF approach will be referred as Mod_MultInt_ Window.

4 Experimental Methodology: Evaluation Metric

Mean Absolute Error (MAE) has been used as a popular evaluation metric in the prior
work [2], [5]; and is calculated by looking at the mean absolute deviation of a test
student’s predicted scores from her/his actual score on the problems. In this work, the
MAE of a test worksheet w'" (i.e., the n™ repetition of I"™ worksheet by m™ student)
can be computed as:

Y1

s (win0) - s (wi"@)| ©)

MAE(w.™) = R

where K is the number of problems in a worksheet, s(w’ff\(k)) is student’s predicted
score on the problem (i.e., 1 if predicted to be correctly solved, O otherwise) and
s (wf;"(k)) is student’s actual score (i.e., 1 or 0) on the problem.

Note that while predicting a test worksheet for a user, all of the previous work-
sheets or part of them (i.e., in the sliding window approach) are used for calculating
the similarity between users. For instance, if the 3 repetition of MC worksheet 2 is
the test worksheet; then Mod_Baseline_All will use only the final repetitions of all
previous worksheets (i.e., last repetition of EG worksheets 1,2,3,4 and MC worksheet
1). On the other hand Mod_MultInt_All will use the previous repetitions of the test
worksheet together with all repetitions of all previous worksheets (i.e., all repetitions
of EG worksheets 1,2,3,4 and MC worksheet 1 together with 1*' and 2™ repetitions of
MC worksheet 2). Sliding window versions of both approaches only utilize the last k
of the training worksheets (explained above) depending on the window size. There-
fore each worksheet is predicted separately and the MAE is calculated for each
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Table 2. Results of the Mod_Baseline_All, Mod_Baseline_Window, Mod_MultInt_All and
Mod_MultInt_Window CF approaches in comparison to each other for two similarity configu-
rations: i) Pearson Correlation Coefficient (PCC) and ii) Vector Space (VS) and for four
window sizes. The window size is the number of past worksheets used for calculating the
similarity between students. The performance is evaluated with the MAE.

Similarity Metric

Methods Pearson Correlation Vector Space
Coefficient (PCC) (VS)
Mod_Baseline_All 0.309 0.308
1 0.296 0.306
Mod_Baseline_Window | Window 2 0.319 0.309
Size 3 0.296 0.306
4 0.296 0.306
Mod_MultInt_All 0.268 0.269
Mod_MultInt_Window Window 1 0.265 0.286
Size 2 0.275 0.285
3 0.270 0.282
4 0.275 0.283

predicted worksheet of a student separately. The average of the MAEs for all test
worksheets of a student (i.e., all worksheets except the first worksheet, namely EG
worksheet 1) is the MAE of that student. The mean of the MAEs of all students is the
final MAE; and this final MAE is reported in this work.

5 Experiment Results

This section presents the experimental results of the methods that are proposed in
Methods and Models section. All the methods were evaluated on the dataset as
described in Data section (i.e., Section 2).

5.1 The Performance of Temporal CF with Sliding Time Window
(i.e., Mod_Baseline_Window)

The first set of experiments was conducted to evaluate the effectiveness of the temporal
CF approach of using sliding time windows. More specifically, Mod_Baseline_Window
and Mod_Multlnt_Window CF approaches are compared to Mod_Baseline_All and
Mod_MultInt_All CF approaches (details about which are given in Section 3) with each
other on the prediction of problem solving task for four different window sizes. Their
performance can be seen in Tables 2. It can be seen that the Mod_Baseline_Window
approach slightly outperforms Mod_Baseline_All approach for window sizes 1, 3 & 4;
and Mod_Baseline_All approach slightly outperforms Mod_Baseline_Window
approach for window size 2. Similarly the Mod_Multlnt Window approach slightly
outperforms Mod_MultInt_All approach for window size 1 (with PCC) and
Mod_MultInt_All approach slightly outperforms Mod_MultInt_Window approach for
window sizes more than 2 (and window size 1 with VS). Paired t-tests have been ap-
plied for this set of experiments and the improvement gained by using the sliding-time
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Table 3. Results of the Mod_Multint_All and Mod_Multlnt Window CF approaches are
shown in comparison to Mod_Baseline_All and Mod_Baseline_Window CF approaches for
two similarity configurations: i) Pearson Corrleation Coefficient (PCC) and ii) Vector Space
(VS). The performance is evaluated with the MAE.

Similarity Metric
Methods Pearson Correlation Vector Space
Coefficient (PCC) (VS)
Mod_Baseline_All 0.309 0.308
Mod_Multint_All 0.268 0.269
Mod_Baseline_Window 0.296 0.306
Mod_MultInt_Window 0.266 0.286

window or using different window sizes has been found to be not significant (i.e.,
p-value is more than 0.01) in most of the configurations (there are some significant
differences in favor of and against using time windows at the same time, so it is not
possible to see a consistent and significant dominance of either approach over each
other). To the best of our knowledge this is the first work using sliding time windows
for an educational application (specifically for predicting the correctness of problem
solving). Results discussed above show that, sliding time windows (or their variants),
despite their positive effect on the applications of temporal CF over business applica-
tions [5], [12]; should be carefully considered.

5.2 The Performance of Temporal CF with Multiple Interactions and the
Hybrid Approach (i.e., Mod_MultInt_All and Mod_MultInt_Window)

The second set of experiments was conducted to evaluate the effectiveness of the
temporal CF approach of using multiple interactions and the hybrid temporal CF
approach of using multiple interactions together with the sliding time windows. More
specifically, Mod_MultInt_All and Mod_MultInt_Window (with window size 1) CF
approaches are compared to Mod_Baseline_All and Mod_Baseline_Window (with
window size 1) CF approaches (details about which are given in detail in Section 3)
with each other. Their performance can be seen in Table 3. It can be seen that both of
Mod_MultInt_All and Mod_Multlnt_Window approaches significantly (with p-value
less than 0.001) outperform Mod_Baseline_All and Mod_Baseline_Window ap-
proaches respectively. This explicitly shows that utilizing the information coming
from the multiple interactions (i.e., repetitions of worksheets) is a much better ap-
proach than the default CF approach of using the latest user-item interactions for
predicting correctness of problem solving.

The hybrid approach of utilizing sliding time window together with multiple inte-
ractions (i.e., Mod_MultInt_Window) has not been found to be significantly different
than Mod_MultInt_All approach (i.e., p-value is more than 0.01). This is consistent
with the results reported in the previous section. To better see the robustness of the
Mod_MultInt_All approach, the average of PCC and VS results of the
Mod_MultInt_All approach is shown in comparison to Mod_Baseline_All approach
in Table 4 for all the test worksheets (i.e., all worksheets except EG worksheet 1). It
can be seen that Mod_Multlnt_All approach is robust across all worksheets and
performs consistently better than the Mod_Baseline_All approach almost for all
worksheets. It should also be noted that Mod_MultIint_All achieves comparable
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Table 4. Results of the Mod_Baseline_All and Mod_MultInt_All CF approaches in comparison
to each other for all test worksheets (i.e., for all worksheets except the 1* worksheet, namely
EG Worksheet 1). The performance is evaluated with the MAE and the average of PCC and VS
based results are reported.

Test Worksheets
Methods Equal Group Multiplicative Compare Mixed

W2 W3 W4 W1 W2 W3 W4 W1 W2 W3
Mod_Baseline_All 046 035 038 0.13 031 028 0.39 034 0.18 0.28

Mod_MultInt_All 044 030 034 0.09 029 024 029 027 021 021

performance with prior work on the prediction of problem solving with P scores of
0.780 (for PCC) and 0.778 (for VS) [1], [3].

5.3 The Effect of Using Different Similarity Metrics (i.e., PCC and VS)

The third set of experiments was conducted to evaluate the effectiveness of the two
popular similarity metrics: i) Pearson Correlation Coefficient (PCC) and ii) Vector
Similarity (VS). It can be seen in Tables 2 and 3 that although the PCC seems to per-
form slightly better than the VS, the difference in their performance is not found to be
significant (i.e., p-value is more than 0.01) for most cases. This is different from the
prior work of CF in business domain, where PCC has been shown to perform better
than VS [2]. This difference can be explained by the fact that in prior work such as
movie recommendation, users’ have different voting behaviors (i.e., some users tend
to vote higher for all movies and some tend to vote lower). PCC can better deal with
this user bias. Yet, in applications where user-item interactions are not user-voluntary
such as this work; VS can perform comparable to PCC [2].

6 Conclusion and Future Work

This paper proposes a novel temporal CF approach to predict the correctness of stu-
dents’ problem solving in an intelligent math tutor by utilizing the multiple interac-
tions. Several modeling approaches with different configurations are studied for this
application through extensive experiments. Empirical results show that a temporal CF
approach utilizing the information coming from multiple interactions between student-
problem pairs is much more effective than a CF approach that does not utilize this
information. A temporal CF approach that uses a sliding time window is found to be
not effective, although it has been shown to be an effective CF approach in business
applications such as movie recommendation. Furthermore, a novel hybrid approach
combining the proposed temporal CF together with the temporal CF using sliding time
windows is found to be not significantly different than using the proposed temporal CF
approach of only utilizing multiple interactions. Finally the common Pearson Correla-
tion Coefficient similarity metric is found to be not significantly more effective than
the common Vector Similarity, although PCC has been shown to be significantly more
effective than VS in business applications such as movie recommendation [2].

There are several possibilities to extend the research. First, it is possible to design
sophisticated CF algorithms that model the combination of temporal CF algorithms
proposed in this work and some problem features such as irrelevant information and
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readability intelligently (e.g., via mixture models). Second, data from more students
and different applications can be used to assess the robustness of the proposed algo-
rithms. Future work will be conducted mainly in those directions.
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Abstract. Intelligent tutors have become increasingly accurate at detecting
whether a student knows a skill at a given time. However, these models do not
tell us exactly at which point the skill was learned. In this paper, we present a
machine-learned model that can assess the probability that a student learned a
skill at a specific problem step (instead of at the next or previous problem step).
Implications for knowledge tracing and potential uses in “discovery with mod-
els” educational data mining analyses are discussed, including analysis of which
skills are learned gradually, and which are learned in “eureka” moments.

Keywords: Educational Data Mining, Bayesian Knowledge Tracing, Student
Modeling, Intelligent Tutoring Systems.

1 Introduction

In recent years, educational data mining and knowledge engineering methods have led
to increasingly precise models of students’ knowledge as they use intelligent tutoring
systems. The first stage in this progression was the development of Bayes Nets and
Bayesian frameworks that could infer the probability that a student knew a specific
skill at a specific time from their pattern of correct responses and non-correct res-
ponses (e.g. errors and hint requests) up until that time [cf. 13, 18, 25].

In recent years, a second wave of knowledge modeling has emerged, which at-
tempts to predict student knowledge more precisely based on information beyond just
correctness. Beck et al [8] differentiated help requests from errors — however, doing
so did not significantly improve predictive power. Baker, Corbett, & Aleven [3, 4]
extended Bayesian Knowledge Tracing with contextualized estimation of the proba-
bility that the student guessed or slipped, leading to better prediction of future cor-
rectness. More recent work has suggested that the exact framework from [3, 4] leads
to poorer prediction of post-test scores, but that information on contextual slip can be
used in other fashions to predict post-test scores more precisely than existing methods
[6]. Other knowledge tracing frameworks have attempted to model performance on
problems or problem steps that involve multiple skills at the same time [cf. 21, 22],
and have focused on predicting a student’s speed of response in addition to just
correctness [cf. 20].

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 252010.
© Springer-Verlag Berlin Heidelberg 2010
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Creating more precise models of student learning has several benefits. First of all,
to the extent that student practice is assigned based on knowledge assessments [cf.
13], more precise knowledge models will result in better tailoring of practice to indi-
vidual student needs [cf. 10]. Second, models of student knowledge have become an
essential component in the development of models of student behavior within
intelligent tutoring systems, forming key components of models of many constructs,
including models of appropriate help use [1], gaming the system [5, 27], and off-task
behavior [2, 11]. More precise knowledge models can form a more reliable compo-
nent in these analyses, and reduce the noise in these models.

However, while these extensions to educational data mining have created the po-
tential for more precise assessment of student knowledge at a specific time, these
models do not tell us when the knowledge was acquired. In this paper, we will intro-
duce a model that can infer the probability that a student learned a skill at a specific
step during the problem-solving process. Note that this probability is not equal to
P(T) in standard Bayesian Knowledge Tracing (a full explanation will be given later
in this paper). Creating a model that can infer this probability will create the potential
for new types of analyses of student learning, as well as making existing types of
analyses easier to conduct. For example, this type of approach may allow us to study
the differences between gradual learning (such as strengthening of a memory associa-
tion [cf.20]) and learning given to “eureka” moments, where a skill is suddenly un-
derstood [cf. 17]. Do different skills lead to each type of learning?

To give another example, studying which items are most effective (and in which
order they are most effective) [cf. 9, 23] will be facilitated with the addition of a con-
crete numerical measure of immediate learning. Similarly, studying the relationship
between behavior and immediate learning is more straightforward with a concrete
numerical measure of immediate learning. Prior methods for studying these relation-
ships have required either looking only at the single next performance opportunity [cf.
12], a fairly coarse learning measure, or have required interpreting the difference
between model parameters in Bayesian Knowledge Tracing [cf. 8], a non-trivial sta-
tistical task. Creating models of the moment of learning may even enable distinctions
between behaviors associated with immediate learning and behaviors associated with
learning later on, and enable identification of the antecedents of later learning. For
example, perhaps some types of help lead to better learning, but the difference is only
seen after additional practice has occurred.

In the following sections, we will present an approach for labeling data in terms of
student immediate learning, a machine-learned model of student immediate learning
(and indicators of goodness of fit), and an example of the type of “discovery with
models” analysis that this type of model enables. In that analysis, we will investigate
whether learning is differentially “spiky” between different skills, with learning
occurring abruptly for some skills, and more gradually for other skills.

2 Data

The analyses discussed in this paper are conducted on data from 232 students’ use of a
Cognitive Tutor curriculum for middle school mathematics [16], during the 2002-2003
school year. All of the students were enrolled in mathematics classes in one middle
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school in the Pittsburgh suburbs which used Cognitive Tutors two days a week as part
of their regular mathematics curriculum, year round. None of the classes were com-
posed predominantly of gifted or special needs students. The students were in the 6™,
7™ and 8" grades (approximately 12-14 years old), but all used the same curriculum (it
was an advanced curriculum for 6™ graders, and a remedial curriculum for 8" graders).

Each of these students worked through a subset of 35 different lessons within the
Cognitive Tutor curriculum, covering a diverse selection of material from the middle
school mathematics curriculum. Middle school mathematics, in the United States,
generally consists of a diverse collection of topics, and these students’ work was rep-
resentative of that diversity, including lessons on combinatorics, decimals, diagrams,
3D geometry, fraction division, function generation and solving, graph interpretation,
probability, and proportional reasoning. These students made 581,785 transactions
(either entering an answer or requesting a hint) on 171,987 problem steps covering
253 skills. 290,698 additional transactions were not included in either these totals or
in our analyses, because they were not labeled with skills, information needed to
apply Bayesian Knowledge Tracing.

3 Detecting the Moment of Learning

In this paper, we introduce a model that predicts the probability that a student has
learned a specific skill at a specific problem step. We refer to this probability as P(J),
short for “Just Learned”. This model is developed using a procedure structurally similar
to that in [3, 4], using a two-step process. First, predictions of student knowledge from
standard Bayesian Knowledge Tracing are combined with data from future correctness
and applications of Bayes’ Theorem. This process generates labels of the probability
that a student learned a skill at a specific problem step. Then a model is trained, using a
broader feature set with absolutely no data from the future, to predict the labeled data.

3.1 Labeling Process

The first step of our process is to label each first student action on a step in the data
set with the probability that the student learned the skill at that time, to serve as inputs
to a machine learning algorithm. We label each student problem step (N) with the
probability that the student learned the skill at that step. Specifically, our working
definition of “learning at step N” is learning the skill between the instant after the
student enters their first answer for step N, and the instant that the student enters their
first answer for step N+1.

We label step N using information about the probability the student knew the skill
before answering on step N (from Bayesian Knowledge Tracing) and information on
performance on the two following steps (N+1, N+2). Using data from future actions
gives information about the true probability that the student learned the skill during
the actions at step N. For instance, if the student probably did not know the skill at
step N (according to Bayesian Knowledge Tracing), but the first attempts at steps
N+1 and N+2 are correct, it is relatively likely that the student learned the skill at step
N. Correspondingly, if the first attempts to answer steps N+1 and N+2 are incorrect, it
is relatively unlikely that the student learned the skill at step V.
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We assess the probability that the student learned the skill at step N, given infor-
mation about the actions at steps N+1 and N+2 (which we term A, ,,), as:

P(J)=P(~L, " T1A12)

Note that this probability is assessed as P(~L, M T), the probability that the student did
not know the skill and learned it, rather than P(7T"). Within Bayesian Knowledge Trac-
ing, the semantic meaning of P(T) is actually P(T | ~L,): P(T) is the probability that
the skill will be learned, if it has not yet been learned. P(7T)’s semantics, while highly
relevant for some research questions [cf. 8, 16], are not an indicator of the probability
that a skill was learned at a specific moment. This is because the probability that a
student learned a skill at a specific step can be no higher than the probability that they
do not currently know it. P(T), however, can have any value between 0 and 1 at any
time. For low values of P(L,), P(T) will approximate the probability that the student
just learned the skill P(J), but for high values of P(L,), P(T) can take on extremely
high values even though the probability that the skill was learned at that moment is
very low.
We can find P(J)’s value with a function using Bayes’ Rule:

P(Ai142| ~Ly" T) * P(~Ly"T)

P(NLnAT| A+1+2) = P(A1122)
+1+

The base probability P(~L, * T) can be computed fairly simply, using the student’s
current value for P(~L,) from Bayesian Knowledge Tracing, and the Bayesian Know-
ledge Tracing model’s value of P(T) for the current skill:

P(~Ln"T) = P(~Ly)P(T)

The probability of the actions at time N+1 and N+2, P(A,1,), is computed as a func-
tion of the probability of the actions given each possible case (the skill was already
known, the skill was unknown but was just learned, or the skill was unknown and was
not learned), and the contingent probabilities of each of these cases.

P(Ay142) = P(Ay142 | Ly) P(Ly) + P(Ay142] ~Ly T) P(~L, *T)
+ P(Ay142] ~Ly~T) P(~L,"~T)

The probability of the actions at time N+I and N+2, in each of these three cases, is a
function of the Bayesian Knowledge Tracing model’s probabilities for guessing (G),
slipping (S), and learning the skill (T'). Correct answers are notated with a C and non-
correct answers (e.g. errors or help requests) are notated with a ~C.

P(A4142 = C,C| Ly) = P(~S)? P(A4142 = C,~C| Ly) = P(S)P(~S)
P(A+1+2 = ""C, CI Ln) = P(S)P("’S) P(A+1+2 = ""C, ""CI Ln) = P(S)Z
P(A4142 = C,C| ~L,"T) = P(~S)? P(A4142 = C,~C| ~L,"T) = P(S)P(~S)

P(A4142 = ~C,Cl ~Lpy"T) = P(S)P(~S)  P(A4142 = ~C,~C| ~L,"T) = P(S)?
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P(Ai142 = C,C| ~Ly"~T) = P(G)P(~T)P(G) + P(G)P(T)P(~S)
P(Ai142 = C,~C| ~Ly"~T) = P(G)P(~T)P(~G) + P(G)P(T)P(S)
P(Ai142 = ~C,C| ~Ly"~T) = P(~G)P(~T)P(G) + P(~G)P(T)P(~S)
P(Ai142 = ~C,~C| ~Ly"~T) = P(~G)P(~T)P(~G) + P(~G)P(T)P(S)

Once each action is labeled with estimates of the probability P(J) that the student
learned the skill at that time, we use these labels to create machine-learned models
that can accurately predict P(J) at run-time. The original labels of P(J) were devel-
oped using future knowledge, but the machine-learned models predict P(J) using only
data about the action itself (no future data).

3.2 Features

For each problem step, we used a set of 25 features describing the first action on prob-
lem step N. The features used in the final model are shown in Table 1. 23 of those
features were previously distilled to use in the development of contextual models of
guessing and slipping [cf. 3, 4]. These features had in turn been used in prior work to
develop automated detectors of off-task behavior [2] and gaming the system [5].

The 24™ and 25" features were used in prior models of gaming the system and off-
task behavior, but not in prior contextual models of guessing and slipping. These
features are the probability that the student knew the skill before the first attempt on
action N, P(L,.;), and the probability that the student knew the skill after the first
attempt on action N, P(L,). There are some arguments against including these fea-
tures, as P(~L,) is part of the construct being predicted, P(~L, » T). However, the
goal of this model is to determine the probability of learning, moment-by-moment,
and the students’ current and previous knowledge levels, as assessed by Bayesian
Knowledge Tracing, are useful information towards this goal. In addition, other pa-
rameters in the model will be more interpretable if these terms are included. Without
these terms, it would be difficult to determine if a parameter was predicting T or ~L,,.
With these terms, we can have greater confidence that parameters are predictive of
learning (not just whether the skill was previously unknown), because L, is already
accounted for in the model. However, in accordance with potential validity concerns
stemming from including P(L,_;) and P(L,) in the model, we will also present good-
ness-of-fit statistics from a model not including these features.

While it is possible that features tailored to researchers’ intuitions of what sorts of
behaviors ought to predict moment-to-moment learning might perform better than
these re-used features, the repeated utility of these features in model after model sug-
gests that these features capture constructs of general applicability. Nonetheless, it
will be valuable to consider additional features in future models of P(J). An addition-
al aspect to consider with regards to the features is which actions the features are
distilled for. As these features involve the first action at problem step N, they
represent the student’s behavior at the moment right before learning, more than the
student’s behavior exactly at the moment of learning (which takes place in our model
after the first action of problem step N and before the first action of problem step
N+1, as previously discussed). As such, the model’s features should perhaps be inter-
preted as representing immediate antecedents of the moment of learning, as opposed
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to the exact characteristics of the moment of learning itself. Despite this limitation of
our feature set, the model is still accurate at identifying the moment of learning (as
discussed below). However, extending the model with a new set of features relevant
to subsequent actions on problem step N (e.g. the second action to the last action) may
improve model accuracy and interpretability.

3.3 Machine Learning

Given the labels and the model features for each student action within the tutor, two
machine-learned models of P(J) were developed. As discussed above, one model used
all 25 features, the other model only used the 23 features from [3, 4]. Linear regres-
sion was conducted within RapidMiner [19]. All reported validation is batch 6-fold
cross-validation, at the student level (e.g. detectors are trained on five groups of stu-
dents and tested on a sixth group of students). By cross-validating at this level, we
increase confidence that detectors will be accurate for new groups of students. Linear
Regression was tried both on the original feature sets and on interaction terms of the
features; slightly better cross-validated performance was obtained for the original
feature sets, and therefore we will focus on the models obtained from this approach.

3.4 Results

The model with 25 features, shown in Table 1, achieved a correlation of 0.446 to the
labels, within 6-fold student-level cross-validation. The model with only 23 features
achieved a weaker correlation of 0.301.

We can compute the statistical significance of the difference in correlation in a
way that accounts for the non-independence between students, by computing a test of
the significance of the difference between two correlation coefficients for correlated

Table 1. The machine learned model of the probability of learning at a specific moment. In the
unusual case where output values fall outside the range {0,1}, they are bounded to O or 1.

Feature P(J) =
Answer is correct -0.0023
Answer is incorrect + 0.0023
Action is a help request - 0.00391
Response is a string +0.01213
Response is a number +0.01139
Time taken (SD faster (-) / slower (+) than avg across all students) +0.00018
Time taken in last 3 actions (SD off avg across all students) + 0.000077
Total number of times student has gotten this skill wrong total - 0.000073
Number of times student requested help on this skill, divided by number of problems -0.00711
Number of times student made errors on this skill, divided by number of problems +0.0013
Total time taken on this skill so far (across all problems), in seconds + 0.0000047
Number of last 5 actions which involved same interface element - 0.00081
Number of last 8 actions that involved a help request +0.00137
Number of last 5 actions that were wrong + 0.00080
At least 3 of last 5 actions involved same interface element & were wrong -0.037
Number of opportunities student has already had to use current skill - 0.0000075
F24: The probability the student knew the skill, after the current action (L,) -0.053
F25: The probability the student knew the skill, before the current action (L,.;) + 0.00424
Constant Term +0.039
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samples [cf. 14] for each student, and then aggregating across students using Stouf-
fer’s Z [23]. According to this test, the difference between the two models is highly
statistically significant, Z=116.51, p<0.0001.

Although correlation was acceptable, one limitation of this model is that it
tended to underestimate values of P(J) that were relatively high in the original la-
bels. While these values remained higher than the rest of the data (hence the mod-
el’s reasonable correlation to the labels), they were lower, in absolute terms, than
the original labels. This problem could be addressed by weighting the (rarer) high
values more heavily during model-fitting, although this approach would likely re-
duce overall correlation.

As with any multiple-parameter linear regression model (and most other model
frameworks as well), interpretability of the meaning of any parameter in specific is
not entirely straightforward. This is because every parameter must be considered in
the context of all of the other parameters — often a feature’s sign can flip based on the
other parameters in the model. Hence, significant caution should be taken before
attempting to interpret specific parameters as-is. It is worth noting that approaches
that attempt to isolate specific single features [cf. 8] are significantly more interpreta-
ble than the internal aspects of a multiple parameter regression model such as this
one. It is also worth remembering that these features apply to the first action of prob-
lem step N whereas the labels pertain to the student’s learning between the first action
of problem step N and the first action of problem step N+1. Hence, the features of this
model can be interpreted more as representing the antecedents of the moment of
learning than as representing the moment of learning itself — though they do accurate-
ly predict the moment of learning.

One interesting aspect of this model (and the original labels) is that the overall
chance of learning a skill on any single step is relatively low within this tutor. How-
ever, there are specific circumstances where learning is higher. Many of these cir-
cumstances correlate to time spent, and the student’s degree of persistence in attempt-
ing to respond. Larger numbers of past errors appear to predict more current learning
than larger numbers of past help requests, for instance. This result appears at a surface
level to be in contrast to the findings from [8], but is potentially explained by the
difference between learning from requesting help once — the grain-size studied in [8]
— and learning from requesting the same help sequence many times. It may be that
learning from errors [cf. 26] is facilitated by making more errors, but that learning
from help does not benefit from reading the same help multiple times.

4 Studying the Spikiness of Student Learning

A key way that the model presented here can be scientifically useful is through its
predictions, as components in other analyses. Machine-learned models of gaming the
system, off-task behavior, and contextual slip have proven useful as components in
many other analyses [cf. 2, 12, 27]. Models of the moment of student learning may
turn out to be equally useful.
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Fig. 1. A relatively “spiky” graph of a student’s performance on a specific skill, indicating
eureka learning (left), and a relatively smooth graph, indicating more gradual learning (right).
The X axis shows how many problem steps have involved the current skill, and the Y axis
shows values of P(J).

One research area that models of the moment of student learning may shed light on
is the differences between gradual learning (such as strengthening of a memory asso-
ciation [cf. 20]) and learning given to “eureka” moments, where a skill is understood
suddenly [cf. 17]. Predictions of momentary learning for a specific student and skill
can be plotted, and graphs which are “spiky” (e.g. which have sudden peaks of learn-
ing) can be distinguished from flatter graphs, which indicate more gradual learning.
Examples of students experiencing gradual learning and eureka learning are shown in
Figure 1. Note that the graph on the left in Figure 1 shows two spikes, rather than just
one spike, a fairly common pattern in our data. Understanding why some spiky graphs
have two spikes, and others have just one, will be an important area for future investi-
gation. The degree to which learning involves a eurcka moment can be quantified
through a measure of “spikiness”, defined as the maximum value of P(J) for a stu-
dent/skill pair, divided by the average value of P(J) for that same student/skill pair.
This measure of spikiness is bounded between 1 (minimum spikiness) and positive
infinity (maximum spikiness).

Spikiness may be influenced by the number of opportunities to practice a skill, as
more opportunities may (by random variation) increase the potential maximum value
of P(J). Therefore, to compare spikiness between skills, we only consider skills prac-
ticed at least 6 times, and only consider the first 20 steps relevant to that skill. Spiki-
ness values range for skills between {1.12, 113.52}, M=8.55, SD=14.62. A valuable
area of future work would be to study what characterizes the skills that have high
spikiness and low spikiness. Spikiness values range for students between {2.22,
21.81}, M=6.81, SD=3.09, considerably less spikiness (on the whole) than the differ-
ences in spikiness seen between skills. Interestingly, however, a student’s spikiness is
a good predictor of their final knowledge; the correlation between a student’s average
final P(L,) and their average spikiness is a very high 0.71, which is statistically signif-
icantly different than chance, F(1,228)=230.19, p<0.0001. This result suggests that
learning spikes may be an early predictor of whether a student is going to achieve
good learning of specific material.
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5 Discussion and Conclusions

In this paper, we have presented a first model of P(J), the probability that a student
learned a specific skill on a specific opportunity to practice and learn that skill.
Though this model builds off of past attempts to contextualize student modeling [e.g.
3, 4] and to study the impact of different events on learning [e.g. 8, 23], this model is
distinct from prior models of student learning, focusing on assessing the likelihood of
learning on individual problem steps. We show that the model achieves acceptable
correlation to the labels of this construct; there is still considerable room for im-
provement, potentially achievable through broadening the feature set.

We also show that the model’s assessments of P(J) can be used to distill a second-
ary measure, the “spikiness” of learning, defined as the maximum momentary learn-
ing, divided by the average momentary learning. We find that a student’s spikiness is
an excellent predictor of their final knowledge, and that skills have greater variance in
spikiness than students. Studying which aspects of skills predicts spikiness may be a
valuable tool for further research into what types of skills are learned gradually or
through “eureka” experiences. In addition, given the correlation between spikiness
and final knowledge, models of P(J) are likely to prove useful for student knowledge
modeling, as contextual guess and slip have been [e.g. 3, 4], and in the long term may
lead to more effective adaptation by Intelligent Tutoring Systems.
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Abstract. Student modeling is very important for ITS due to its ability to make
inferences about latent student attributes. Although knowledge tracing (KT) is a
well-established technique, the approach used to fit the model is still a major is-
sue as different model-fitting approaches lead to different parameter estimates.
Performance Factor Analysis, a competing approach, predicts student perform-
ance based on the item difficulty and student historical performances. In this
study, we compared these two models in terms of their predictive accuracy and
parameter plausibility. For the knowledge tracing model, we also examined dif-
ferent model fitting algorithms: Expectation Maximization (EM) and Brute
Force (BF). Our results showed that KT+EM is better than KT+BF and compa-
rable with PFA in predictive accuracy. We also examined whether the models’
estimated parameter values were plausible. We found that by tweaking PFA, we
were able to obtain more plausible parameters than with KT.

Keywords: Student modeling, Knowledge tracing, Performance Factors Analy-
sis, Expectation Maximization, Machine learning, Model fitting approaches.

1 Introduction

Student modeling is one of the major issues for Intelligent Tutoring System as it has
been widely used for making inferences about the student’s latent attributes. Its work-
ing mechanism is to take observations of a student’s performance (e.g. the correctness
of the student response in a practice opportunity) or a student’s actions (e.g. the time
he stayed for a question), and then use those to estimate the student’s underlying hid-
den attributes, such as knowledge, goals, preferences, and motivational state, etc.
Those attributes are unable to be determined directly, thus student modeling tech-
niques have always attracted a great deal of attention.

In ITS, student modeling has two common usages. The first, and most frequently
used one, is to predict student behaviors, such as student performance in the next
practice opportunity. The second one is to obtain plausible and explainable parameter
estimates, where plausibility concerns how believable the parameters are, often tested
by comparing them to some external gold standards. Being explainable indicates the
parameter estimates produced by the model have practical meanings, which can help
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researchers know more about learning. Consequently, student models are evaluated
by how well they predict student’s behaviors, as well as by parameter plausibility [1].

1.1 Knowledge Tracing Model

There are a variety of student models. The knowledge tracing model [2] shown in Fig.
1, has been broadly used. It is based on a 2-state dynamic Bayesian network where
student performance is the observed variable and student knowledge is the latent. The
model takes student performances and uses them to estimate the student’s level of
knowledge. There are two performance parameters: slip and guess, which mediate
student knowledge and student performance. The guess parameter represents the fact
that the student may sometimes generate a correct response in spite of not knowing
the correct skill. The slip parameter acknowledges that even students who understand
a skill can make an occasional careless mistake. There are also two learning parame-
ters. The first is initial knowledge (KO), the likelihood the student knows the skill
when he first uses the tutor. The second is the learning rate, the probability a student
will acquire a skill as a result of an opportunity to practice it.

Initial Knowledge Student Learn: Student _ Student
> Knowledge (Ko) 71 Knowledge (K;) Knowledge (K,)
* Guess/ slip * *
Student Student Student
Performance (Cy) Performance (C,) Performance (C,)

Fig. 1. Knowledge tracing model

As pointed out in [3, 4], KT suffers two major problems with trying to estimate pa-
rameters: local maxima and multiple global maxima. The first one is common to
many error surfaces and has known solutions such as multiple restart. The second
difficulty is known as identifiability and means that for the same model structure,
given the same data, there are multiple (differing) sets of parameter values that fit the
data equally well. Based on statistical methods, there is no way to differentiate which
set of parameters is preferable to the others. Consequently, for the KT model, differ-
ent model fitting approaches lead to different parameter estimation outcomes.

1.2 Performance Factor Analysis

Recently, a new alternative student modeling approach was presented by Pavlik et al.
[5], Performance Factor Analysis (PFA). PFA is a variant of learning decomposition
[6], and is based on reconfiguring Learning Factor Analysis (LFA) [7]. Briefly speak-
ing, it takes the form of standard logistic regression model with the student perform-
ance as dependent variable. It reconfigures LFA on its independent variables, by
dropping the student variable and replacing the skill variable with the question iden-
tity (i.e. one parameter per question). The model estimates a parameter for each item
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representing the item’s difficulty, and also two parameters for each skill reflecting the
effects of the prior successes and prior failures achieved for that skill.

Previous work compared KT and PFA models, and found PFA to be superior. In
this study, we ran replication study, but also focusing on the impacts when using
different model fitting approaches for KT. In addition, we attempted and tested differ-
ent methods of handling multiple-skill problems. We present our comparison results
based on both predictive accuracy and parameter plausibility.

2 Methodology

2.1 Model Fitting Approaches for Knowledge Tracing Model

Aside from student models, there are also a variety of model fitting approaches. Dif-
ferent approaches have various criteria to fit the data, and thus produce different
parameter estimates and further lead to different predictive abilities. Therefore, we
explored the impact of modeling fitting approach on model accuracy and plausibility.

The Expectation Maximization (EM) algorithm is a model fitting approach for KT.
It finds a set of parameters that maximize the data likelihood (i.e. the probability of
observing the student performance data). EM processes student performance as a
piece of evidence with time order, and uses this evidence for the expectation step
where the expected likelihood is calculated. The model then computes the parameters
which maximize that expected likelihood. The algorithm, by accessing more evi-
dence, iteratively runs these two steps until it finds the final best fitting parameters.
There is no guarantee of finding a global, rather than a local, maxima.

Recently, the brute force approach has been proposed for estimating parameters for
KT. The algorithm uses exhaustive search for finding the best set of parameters over a
reasonable sampling of the entire parameter space. Contrary to EM that maximizes
the data likelihood, it attempts to minimize the sum of squared error (SSE). Origi-
nally, KT’s parameters are continuous, so that there is no way to compose a finite
search space, which, however, is a must for an exhaustive search. We used source
code provided by Ryan Baker, which resolves the issue by only considering two
decimal places of precision. In this way, the parameter space is reduced from infinity
to 99* possible parameter sets for each skill (i.e. there are four parameters for each
skill and each of them has 99 possible values ranging from 0.01 to 0.99). Initially,
every parameter starts from the value of 0.01 and is incremented by 0.01 on every
iteration. Ultimately, for each skill, it finds the lowest SSE, and the corresponding set
of parameters for that skill. The major drawback is that the method suffers from a
severe computational cost problem due to the large search space, so most of the time
the search space is cut down even smaller by setting searching boundaries. In order to
make a careful comparison, we followed the same protocol as Pavlik et al. followed
[5]. Specifically, we used the same set of bounded ceiling values for the four parame-
ters, so that the maximum probabilities of initial knowledge, guess, slip and learning
are 0.85, 0.3, 0.1 and 0.3, respectively.

Conjugate Gradient Descent, an optimization method used to solve systems of
equations, is used to estimate parameters in the CMU cognitive tutors. Chang et al. [8]
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found that EM produces models with higher predictive accuracy than Conjugate Gra-
dient Descent.

Unlike the KT model, the family of learning decomposition models is based on the
form of standard logistic regression, so that the model fitting procedure is ensured to
reach global maxima; thus resulting in unique best fitting parameters. Consequently,
for PFA, the model fitting approach is not an issue.

2.2 Problem with Multiple Skill Questions in KT Model

The KT framework has a major problem: when there is more than one skill involved
in a question, the model lacks the ability to handle all the skills simultaneously,
because KT works by looking at historical observations on a skill. However, in some
tutors, a question is usually designed to require multiple skills to achieve a correct
answer. If a student model cannot take this common phenomenon well, its ability
of making plausible parameter estimates and accurate prediction is likely to be
weakened.

A common solution is to attach performance on the problem with all skills needed
to solve it, by listing the performance in all of those skills’ historical observations
[e.g., 10]. Thus, a multiple skill question is split into multiple single skill questions.
This strategy enables parameter estimation to proceed, but increases the probability of
over fitting and also results in an accompanying problem: multiple predicted perform-
ances. Each split performance is associated with a particular skill that has its own set
of parameters. We then are able to use those parameters to calculate the predicted
performance. However, those calculated values are probably not equivalent across all
of the skills, which means for the same student, on the same practice opportunity, our
models make different claims about how likely he is to produce a correct response.
Given the conflicting predictions, some means of making a prediction is needed.

In this study, we attempted two approaches to address the problem. The first is
similar to [9] and inspired by the joint probability in Probability Theory. The prob-
ability a student generates a correct answer in a multi-skill question is dependent on
his ability to achieve correctness in all required skills. Therefore, we multiplied each
skill's predicted performance together and assign the product as the new predicted
performance for all corresponding observations. Yet, the reasonableness of this
method relies on an assumption, which is how likely a student can answer correctly
for one skill must be independent of the probability that he responds correctly in an-
other skill. Although this independence assumption sounds strong, most student mod-
eling approaches adopt it for simplicity (e.g. Knowledge Tracing).

The second approach, on the other hand, takes the minimum probability of the pre-
dicted performances as the final value. The intuition behind this strategy is the likeli-
hood a student gets a correct answer is dominated by his knowledge of his weakest
skill.

The above strategies are necessary options for KT due to its lack of ability to han-
dle multi-skill performances. However, it is not the case for PFA, which does have the
ability to handle with multi-skill performances. Therefore in this study, in addition to
repeating multiple skill questions like we do for KT, we also examined PFA using the
data that still keeps the original multi-skill performances.
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2.3 Data Set

For this study, we used data from ASSISTment, a web-based math tutoring system.
The data are from 343 twelve- through fourteen- year old 8th grade students in urban
school districts of the Northeast United States. They were from four classes. These
data consisted of 193,259 problems completes in ASSISTment during Nov. 2008 to
Feb. 2009. Performance records of each student were logged across time slices for
104 skills (e.g. area of polygons, Venn diagram, division, etc).

3 Results

We used Bayesian Network Toolkit for Student Modeling (BNT-SM) [8] to perform the
EM algorithm for the knowledge tracing model to estimate the model parameters. We
used Ryan Baker’s unpublished java code to accomplish the brute force model fitting
method. We also replicated the PFA model using the same model settings as in [5],
except where noted below. We fit the three models with the data that contains split
performances (i.e. problems that require multiple skills). For PFA, we also examined it
by fitting the original data which keeps multi-skill questions as a single unit. We re-
ferred the PFA model handling multi-skill performances as PFA_M and the other as
PFA_S. We did 4-fold crossvalidation and tested our models on the unseen students,
which is different from what Pavlik, et al. did. They conducted 7-fold crossvalidation
and tested their models on seen students’ unseen performances. We prefer to hold out at
the student level since that results in a more independent test set. Another aspect in
which our approach differed from Pavlik's is that we did not restrict the impact of a
correct response to be non-negative, that is, skill could have negative “learning rates.”

3.1 Main Model Comparisons: Predictive Accuracy

Predictive accuracy is the measure of how well the instantiated model fits the data.
We used three metrics to examine the model predictive performance on the unseen
test set: Mean Squared Error (MSE), R? and AUC (Area Under Curve) of ROC curve.
We also reported the number of parameters produced by each model.

Table 1. Crossvalidated predictive accuracy comparison among three main models

MSE R? AUC # of parameters
KT + EM 0.215 0.072 0.661 416
KT + BF 0.223 0.036 0.656 416
PFA_S 0.220 0.048 0.673 1013

Table 1 shows the results of the comparison for the three metrics. The values are
calculated by averaging corresponding numbers obtained in the 4-fold crossvalida-
tion. R? values seem considerably low, however, typically models that predict per-
formance on individual trials achieve low R* values [10, e.g. 6]. If instead we model
aggregate trials we have an R? of 0.88; so our skill model is reasonably accurate and
our data register student learning.
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Although most numbers seem very close, KT+EM outperforms KT+BF in all three
metrics, and PFA_S seems to beat KT+BF as well. To examine whether the differ-
ences are statistically reliable, for every two models, we did a 2 tailed paired t-test
based on the results from the crossvalidation. Only between KT+BF and KT+EM, we
found the differences are significant in all three metrics (p<0.01 in MSE and R*;
p=0.02 in AUC). We failed to find any reliable differences between PFA_S and
KT+BF, even though the mean values appear a trend suggesting PFA_S is probably
better than KT+BF. Compared to PFA_S, KT+EM wins in the first two metrics, but
does worse on the third one. Besides, none of the statistical test results suggests there
are any significant differences between these two models. We noticed that PFA pro-
duced more parameters than KT, which seems inconsistent with the results reported in
[5].But, given that the number of parameters in PFA = 2*# of skills + # of items,
while the number of parameters in KT is 4*# of skills. Consequently having fewer
items favors PFA, while fewer skills benefits KT.

One reason for the lack of reliable difference could be the relatively low statistical
power of the t-tests. Four independent observations (one for each fold of the cross
validation) provide low power to differentiate samples. Although further research
needs to perform the comparisons based on larger samples, for now we maintain a
conservative view of KT+EM is comparable with PFA_S.

KT+EM provides more accurate predictions than KT+BF. We think this conse-
quence is caused by the range restrictions used on the search space. In contrast, EM
derives its estimations without such range restrictions, so it is more likely for EM to
produce more plausible parameter estimates which further are used to yield more
accurate prediction.

One aspect hindering the performance of PFA_S is that the PFA model is designed
to handle problems that require multiple skills. Hence, it is more reasonable to
inspect PFA’s performance when it works in its natural way. To make a fair compari-
son, we trained and tested PFA using the same data sets as we used for the other mod-
els, but without splitting multi-skill performances.

Table 2. Crossvalidated comparisons among PFA with different model settings

R’ AUC
PFA_S (base line) 0.048 0.673
PFA_M 0.047 0.680
PFA_S_bounded 0.066 0.681
PFA_M_bounded 0.074 0.690

As seen in the first two rows of Table 2, generally PFA_M results in comparable
performances, although the difference in AUC is statistically reliable at p<0.01. This
implies that PFA works better when used in its original spirit for handling multiple
skill questions. However, compared to KT+EM, shown in Table 1, we only found
little evidence to support it is good at multi-skill questions (its AUC value is higher,
but not reliably so). Therefore, again we failed to be able to show that the true
PFA can reliably outperform this version of KT+EM that also attempts to deal with
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multi-skill questions. We do not present MSE in Table 2 since PFA_S and PFA_M
use slightly different datasets, it is not appropriate to compare MSE.

One drawback of PFA models is they could produce negative learning rates due to
over fitting, so in the original work [3], the researchers set 0 as the lower bound. We
were unable to get our model fitting software (SPSS 17.0) to replicate this procedure'.
Since PFA’s lack of better predictive performance could result from loosing this con-
straint, we next manually checked which skills had negative learning rates, substituted
0 in, and then re-ran the model predicting procedure on the test data using the altered
parameters. We found almost half of the skills had negative learning rates. The results
shown in the last two rows of Table 2 indicate both two bounded models indeed
achieved higher predictive accuracy (p<0.01 in all two metrics, compared to PFA_S),
suggesting that the negative learning rates were not accurate and the result of overfit-
ting. Considering the number of negative learning rates produced at first, it seems
that setting bounded value is necessary for PFA.

3.2 Comparing Approaches to the Problem of Multi-skill Questions

Given the problem of multi-skill questions in KT, we compared the two proposed
approaches for predicting performance (multiplication and min()) with the default
model (making multiple, different predictions, on student performance on a problem,
one for each skill).

Table 3. Crossvalidated comparisons of the min models and the default models

MSE R® AUC
KT BF 0.223 0.036 0.656
KT_BF_min 0.220 0.046 0.670
KT_EM 0.215 0.072 0.661
KT_EM_min 0.214 0.073 0.676

We found the approach of calculating the product results in worse predictive accu-
racy in all attempted models, and do not report it here. However, taking the minimum
value of the predicted performances provides more accurate models. As shown in
Table 3, the min models are generally better than the default models, with the AUC
values are reliably different in every pair of the comparisons.

The problem of multi-predicted performances also influences PFA, when it takes
the data with manually split performances. Therefore, we applied the two approaches
on PFA_S and PFA_S_bounded as well. We found that min model didn’t consistently
work well for PFA.

3.3 Parameter Plausibility

Predictive accuracy is a desired property, but ITS researchers are also interested in
interpreting models to make scientific claims. Therefore, we prefer models with more

"If any readers know how to coerce SPSS’s logistic regression function to do so, they are
invited to contact us.
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plausible parameters when we want to use those for scientific study. We followed the
technique in [4]: using external measurement to evaluate parameter plausibility.

The students in our study had taken a 33-item algebra pre-test before using
ASSISTment. Taking the pre-test as external measure of incoming knowledge, we
calculated the correlation between the students’ initial knowledge estimated by the
models and their pretest scores.

In other to acquire student’s initial knowledge parameter, we used KT to model the
students instead of skills (see [4] for details). Since PFA has no student parameter by
default, we tweaked it to include student as an additional independent variable. In
Table 4, we see that the PFA model that fit by the data keeping multi-skill perform-
ances produces the strongest correlation. Even, PFA_S, modified to behave like KT
with respect to multiple skill questions, the number still remains the largest (0.886)
compared to the rest. KT+BF surprisingly shows a higher ability to estimate plausible
parameters than KT+EM. One thing to notice is this correlation is produced by
KT+BF with bounded parameter values, thus if the search space is enlarged, it might
be able to derive potentially better parameter estimates. The KT+EM is reliably dif-
ferent (P<0.05) from PFA_S and PFA_M; none of the other differences is reliable.

Table 4. Comparison of parameter plausibility

KT+BF KT+EM PFA S PFA M
Correlation 0.865 0.827 0. 886 0.906

4 Contributions and Future Work

This paper examines and compares the different model fitting approaches of estimat-
ing parameters for the knowledge tracing model. We are able to extend the result that
EM produces more predictive models than conjugate gradient descent [3]; we are now
able to say, at least for our dataset, that EM also has better predictive accuracy than
the brute force algorithm. Others [11] have found brute force outperforms EM, so
more work is needed here. Furthermore, we inspect the parameter plausibility pro-
duced by the models with these two fitting methods and found brute force estimates
more plausible parameters.

This work also replicates the comparison between PFA and KT [5]. This replica-
tion is non-trivial, as there are concerns that a research finding is less likely to be true
than its statistical test results suggest [12]. It suggests that independent replication
should be given great importance as it extends the original work by changing the
researchers’ biases in terms of what is important to measure and how to measure it. In
this case, our replication differed somewhat as we found that PFA is comparable to
KT. We also examine the PFA’s predictive performances given different model set-
tings. PFA with bounded learning rates that directly models multi-skill questions
outperforms the other models. In addition, by tweaking PFA to endow it with a pow-
erful ability to capture individual differences, the model produces highly plausible
student parameters.

We also attempt two methods to solve the problem of multi-skill questions. Since
regular KT has no ability to deal with such questions, we compared using the skill
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with the lowest knowledge vs. the product for predicting performances on multiple
skill questions. We found some evidence to support that using the knowledge of the
least known skill (the “weakest link” in solving the problem) is somewhat better than
the default models in both KT+EM and KT+BF.

There are several interesting unresolved questions. First, brute force is a new, and
thus relatively unexplored, model fitting approach for KT. Therefore, there are several
open issues. Setting bounded values for parameter estimation is important and some-
what necessary, as removing bounds can seriously reduce the algorithm’s perform-
ance (due to over fitting, observed in some preliminary experiments). How to select
reasonable ceiling values is a difficult issue, especially when the approach is applied
to a new tutor environment. Second, it might be possible to speed up the algorithm by
first performing coarse-grained search with BF, and after locating the promising re-
gions use a fine-grained search. In some ways this process is similar to beam search in
that both maintain a list of promising regions to explore further.

Although this study failed to find PFA outperforms KT, one of our hypotheses is
that perhaps PFA works better in the circumstance where questions for a particular
skill vary greatly in difficulty. In this case, the question difficulty parameters in PFA
might be able to differentiate student performance better and further achieve high
predictive accuracy. One line of research is to consider integrating this concept with
KT. Since it makes sense to be aware of the question difficulty when using a model to
fit student performances, it potentially helps the KT model capture more variance in
the data, leading to more plausible parameters and more accurate predictions.

5 Conclusions

PFA is an alternative approach to KT. In this study, we failed to show there are any
real differences in predictive accuracy between PFA and a version of KT that attempts
to deal with multi-skill questions. We were able to show that for fitting KT, EM
achieves significantly higher predictive accuracy than brute force. We also found that,
for multi-skill problems, considering the skill with the lowest proficiency was the
superior approach for predictive accuracy.

Parameter plausibility is another comparison object in this study. We showed that
PFA is the best method for estimating student knowledge parameters, as PFA without
any bounded values resulted in negative learning rates in half of the skills in our data-
set. For KT, brute force found more plausible parameters than EM, and has the poten-
tial ability to achieve even higher plausibility as the current results were obtained
based on the limited search space.

In conclusion, researchers can use either PFA or KT. PFA works well with the
provision that restricting learning rates to be non-negative. However, the use of KT
requires a careful consideration of model fitting approaches for parameter estimation
and the methods for the handling of multi-skill problems, as performance varies.
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Abstract. This paper presents a novel Automatic Question Generation
(AQG) approach that generates trigger questions as a form of support
for students’ learning through writing. The approach first automatically
extracts citations from students’ compositions together with key content
elements. Next, the citations are classified using a rule-based approach
and questions are generated based on a set of templates and the content
elements. A pilot study using the Bystander Turing Test investigated dif-
ferences in writers’ perception between questions generated by our AQG
system and humans (Human Tutor, Lecturer, or Generic Question). It is
found that the human evaluators have moderate difficulties distinguish-
ing questions generated by the proposed system from those produced by
human (F-score=0.43). Moreover, further results show that our system
significantly outscores Generic Question on overall quality measures.

Keywords: Automatic Question Generation, Natural Language Pro-
cessing, Academic Writing Support.

1 Introduction

Many studies have shown that most learners have problems recognizing their
own knowledge deficits and ask very few questions [I]. Questions are useful to
recognize learners’s knowledge deficits and improve their learning. When stu-
dents are asked to prepare a literature review or write an essay, it is often not
only to develop disciplinary communication skills but to learn and reason from
multiple documents, a skill often called sourcing (i.e., citing sources as evidences
to support their arguments) and information integration (i.e., presenting the
evidences in a cohesive and persuasive way).

Simple generic questions are often provided for students to trigger reflection,
for example:

— Have you clearly identified the contributions of the literature reviewed?
— Have you identified the research methods used in the literature reviewed?

Reynolds and Bonk [2] showed that a group of students given generic trigger
questions performs better than those students who receive no trigger questions
in a writing activity. However, such questions are too general and not likely
to provide strong support in the process of writing on a specific topic. More
content-related questions need to be asked and most academics would ask such
questions in the process of providing feedback to students.

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 45 2010.
© Springer-Verlag Berlin Heidelberg 2010
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In the field of Automatic Question Generation (AQG), most of AQG systems
[34lJ5] focus on the text-to-question task, where a set of content-related questions
are generated based on a given text. Usually, the answers to the generated ques-
tions are contained in the text. For example, Heilman and Smith [4] presented an
AQG system to generate factual questions with an ‘overgenerating and ranking’
strategy based on natural language processing techniques, such as Name Entity
Recognizer and Wh-movement Rules, and a statistical ranking component for
scoring questions based on features. The target applications of such systems are
reading comprehension and vocabulary assessment which may not be suitable
for academic writing.

The aim of this study is to scaffold students’ reflection on their academic
writing with content-related trigger questions which are automatically generated
from citations using Natural Language Processing techniques. Table [I] shows
examples of generated questions according to the citation category.

Table 1. An Example of Content-Related Trigger Questions produced by AQG system

Category Question

Opinion  Why did Cannon challenge this view mentioning that physiological
changes were not sufficient to discriminate emotions? (What evi-
dence is provided by Cannon to prove the opinion?) Does any other
scholar agree or disagree with Cannon?

Result Does Davis objectively show that this classification accuracy gets
higher from about 70 % up to 98 % while actors express emotions
and computers perform the...? (How accurate and valid are the mea-
surements?) How does it relate to your research question?

System In the study of Macdonald, why does workbench tool provide feedback
on spelling, style and diction by analyzing English prose and suggest-
ing possible improvements? What are the strength and limitations of
the system? Does it relate to your research question?

The remainder of the paper is organized as follows: section [2] provides a brief
review of the literature focusing on writing support systems and several AQG
systems relevant to our approach. Section [J] describes the system design and
architecture while section M details a pilot study we conducted to assess the
quality of the generated questions. Section [Bl discusses the results we obtained
and gives suggestions on future work.

2 Related Area

Research into ways of supporting academic writing includes Sourcer’s Apprentice
Intelligent Feedback mechanism (SAIF) [6], a computer assisted essay writing
tool used to detect plagiarism, uncited quotations, lack of citations, and limited
content integration problems using a rule-based approach and Latent Semantic
Analysis (LSA).



Automatic Question Generation for Literature Review Writing Support 47

Glosser [7], an automated feedback system for students’ writing, provides feed-
back on four aspects of the writing: structure, coherence, topics, and concept
visualization. Glosser uses text mining and computational linguistics algorithms
that quantify features of the text (supportive content) and a set of trigger ques-
tions. The set of trigger questions in Glosser is limited as they must be predefined
for each course and they are too general.

AUTOQUEST [3], one of the earliest automatic question generation systerms,
uses pure syntactic pattern-matching approach to generate content-related ques-
tions in order to improve the independent study of any textual material. Recent
advances in Natural Language Processing made it possible for more advanced
computational question generation models to be proposed: multi-choice question
generation [§], factual question generator [94], and medical concept question
generator [5]. One of the most relevant works to ours is by Kunichika et. al.
[10] who proposed an AQG approach based on both the syntactic and semantic
information extracted from the original text. Their approach is based on DCG
(Definite Clause Grammar) for grammar and reading comprehension assessment
about a story. The extracted syntactic features include subject, predicate verb,
modal verb, auxiliary verb, object, voice, tense which were used to transform
declarative sentences into interrogative sentences (subject-auxiliary-Inversion).
They used three predefined grammatical categories: noun, verb, and preposition
to determine the interrogative pronoun for the question. Their empirical results
showed that 80% of questions were considered as appropriate for novices to learn
English and 93% questions are semantically correct.

3 System Design and Architecture

In this section we provide an overview of the system’s pipeline architecture shown
in Figure [Tl and describe each step in detail. The input to the system is a litera-
ture review paper and the output is a set of generated questions. The question
generation process follows 3 steps shown in Figure [T}

Step 1. Pre-processing. The aim of Step 1 is to extract citations from papers.
Powley and Dale [I1] define 5 types of citation styles: Textual Syntactic, Textual
Parenthetical, Prosaic, Pronominal, and Numbered.

Literature /" Syntactic & Semantic

Review | Extract Citations = Citations ) Extract Features - v |
| - catures /
Stcp 3 Enquiry Sentence— -
) features
e uestion Match Patte / . ™
[ Questions Generates Q - VAL CANe, { Rule Repository )
\ / Generator Question Template \ L

Fig. 1. System Architecture
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A pattern matching technique was used to extract Textual Syntactic and
Textual Parenthetical citation style. The regular expression code is shown below.

\ ([a-zA-Z]*x\s*\d{4}\) I\ ([p.]+\s*\d{1,4}\) I\ ([a-zA-Z] +\s* [a-zA-Z] *
\s* [a-zA-Z]*x\Wx\d{4} |\ ([")I*x\d{4}\s7\)

A state of art Named Entity Tagger (NER), LBJ [12], was used to identify
citations with Prosaic style and a simple Pronoun Resolver, finding the nearest
Name Entity appearing before the pronoun, was used to identify citations with
Pronominal style. In the current implementation the Numbered citation style
(as in this paper) is not recognized.

Step 2. Extracting Syntactic and Semantic features. Syntactic features include
subject, predicate verb, auxiliary verb (e.g. be, am, will, have and can) and pred-
icate, voice and tense which are essential to perform subject-auxiliary inversion.
We use Tregex on the Phrase Structure Tree derived from the original citation to
extract syntactic features. The Stanford Parser is used to parse a sentence into
a Phrase Structure Tree. Tregex is a powerful pattern matching technique which
can match an individual word, regular expression, a POS tag or group of POS
tags such as a Noun Phrase (NP) or Verb Phrase (VP). The following Tregex
expressions are used to extract simple Subject, Predicate Verb, and Predicate
from a sentence.

Subject: NP > (S > ROOT) Predicate Verb: /~VB/ > ( VP > ( S >R0O0T))
Predicate : VP > (S > ROOT)

According to the predicate verb or auxiliary verb we can determine the tense of
the sentence and get the verb lemma by using WordNet. We also use the Stanford
Parser to derive the Type Dependency relations from a sentence in order to
detect the voice of sentences. For example, the nsubjpass dependency between
the governor (predicate verb) and dependency (subject) indicates passive voice.

The semantic features include the name of the author and the citation cat-
egory (one of ’Opinion’, 'Result’, ’Aim of Study’, 'System’ or "Method’), based
on a taxonomy of conceptual citation categories proposed by Lehnert et al [13].
For example, Result: a result is claimed in the referenced paper; e.g. “In [Cohen
87], it is shown that PAs are Turing-equivalent...”

We use the LBJ NER Tagger to detect authors’ names and a rule-based ap-
proach to classify the citations. There are many learning materials for academic
writing [I4] which define three categories of reporting verbs: opinion, aim of study
and result. Such reporting verb lists are used in our system to determine the cor-
responding citation category by matching the predicate verb in a citation with a
verb in one of the categories. The matching verb category provides the citation
category. If they are no match, a sentiment analysis step is used to detect whether
the citation may fall in the Opinion citation category. SENTIWORDNET [I5]
is used to determine whether the citation contains sentiment words. Tregex ex-
pression patterns were developed to detect citations in the System and Method
categories. Examples of two Tregex expression patterns are shown below:

Method: VP>(S>R00T)<<, (use|apply)<<(NP<<-(method|approachl|))
System: NP > (S > ROOT) << (system|tool)
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Table 2. The Rule Definition for Patterns and Templates

Pattern Category Question Template

Rule

1 Reporting Verb Opinion Why +subject auxiliary inversion()? What evidence is provided
by +subject+ to prove the opinion? Does any other scholar agree
or disagree with +subject+ 7

2 Reporting Verb Aim Why does +subject+ conduct this study to +predicate+7? What
is the research question formulated by +subject+7 What is +sub-
ject+s contribution to our understanding of the problem?

3 Reporting Verb Result  subject auxiliary inversion()? Is the analysis of the data accurate
and relevant to the research question?” How does it relate to your
research question?

4 Tregex Rules Method In the study of +subject+, why +subject auxiliary inversion()?
Which dataset does +subject4 use for this experiment? Could
the problem have been approached more effectively from another
perspective?

Tregex Rules System In the study of +subject+, why +subject auxiliary inversion()?
What are the strength and limitations of the system? Does it
relate to your research question?

ot

According to Hyland’s citation study [16], there are three main grammatical ways
to refer to sources: using reporting verbs, using nouns, and using passive con-
structions. Sometimes, syntactic structure transformations were needed in order
to perform the subject-auxiliary inversion in our final stage. For example, Wall-
raff’s opinion is that there is a rate of growth... The citer use the noun:opinion
to refer to the resource as the citee’s opinion. This sentence will be transformed
into: Wallraff states that there is a rate of growth...

Step 3. Generation. This is the final step in generating questions with our
template-based approach. Once the semantic and syntactic features extracted
from a citation match the predefined patterns in our repository of templates the
corresponding questions are generated. Table[2shows the five rules defined in our
Rule Repository. Rules 1, 2, or 3, are fired when a citation contains a reporting
verb and and fall in one of the following citation categories: Opinion, Result,
or Aim of Study, respectively. Rules 4 or 5 are fired when a citation is of type
System or Method. We also defined two addition rules, 6 and 7. Rule 6 is fired
when a citation does not contain a reporting verb but contains sentiment words.
Rule 7 is similar to Rule 6 except the citation does not contain a sentiment
word. For example, a citation is extracted in Step 1: Cannon (Cannon 1927)
challenged this view mentioning that, physiological changes were not sufficient
to discriminate emotions. Step 2 identifies the citation category as Opinion by
matching the predicate verb (challenge) with an entry in our reporting verb
database. Step 3 applies Rule 1 to generate a question by matching the pattern
that requires the citation contain a reporting verb and of of type Opinion. Table
([ shows the generated questions.

4 Pilot Study

We explored the ability of our AQG system to generate quality questions by
comparing automatically generated questions to those produced by humans. Like
the Bystander Turing Test conducted by Person and Graesser [17], our judges
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were asked to rate each question along several dimesions of quality. Also, we
conducted an evaluation in which judges were asked to ascertain whether the
question was generated by a human (lecturer, tutor, generic) or a system. The
major difference between the test carried out by Person and Graesser and our
evaluation is the application context: we focus on questions for academic writing
while they used a snippets of tutorial dialog. Also, our judges were the writers
of the source content based on which the questions were generated while their
judges did not know the content before the experiment. This is an advantage of
our methodology because our judges were experts on the content the questions
asked about. Section [£1] describes the participants and procedure we used in
the pilot study. Section reports the AQG system performance in terms of the
semantic correctness of the generated question as well as the accuracy relative
to the citation extraction step. Section 3] shows the results along 5 dimensions
of quality and of the Bystander Turing test. Section [B] discusses these results.

4.1 Participants and Procedure

A pilot study was conducted on six participants (postgraduate students) from
the Faculty of Engineering from whom six literature reviews were collected.
The reviews were used the source content for generating the questions. A total
of twenty questions (5 each) were generated by the tutor, by a lecturer with
expertise in the topic, by our system, and also using generic questions. Each
student-author acted as an evaluator in our experiments.

Students were asked to rate the quality of questions generated from his/her
literature review paper. Five quality measures inspired by Heilman and Noah [4]
were used to evaluate each question: This question is correctly written (QM1); This
question is clear (QM2); This question is appropriate to the context (QMS3); This
question makes me reflect about what I have written (QM4); This is a useful ques-
tion (QMS5). The agreement with each of these statements was marked by the eval-
uators using a Likert scale were 1 was ‘strongly disagree’ and 5 ‘strongly agree’.

4.2 System Performance Evaluation and Result

We first assess our system’s ability to extract citations from the source content.
The dataset contains 1,088 sentences including 221 citations. Table Bl shows that
145 citations have been extracted and the recall is 0.66 in average.

Table 3. Citation Extraction Result
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Total

Number of Citations 18 22 12 50 16 29 74 221
Number of Retrieved Citations 10 12 7 27 10 17 62 145
Recall 0.56 0.55 0.58 0.54 0.63 0.59 0.84 0.66

Table @ illustrates 161 questions generated and the average semantic correct-
ness: 60%. Two human annotators reached substantial agreement as measured
by Cohen’s kappa coefficient (0.61).
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Table 4. Question Generation Result

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Total
Number of Generated Questions 10 9 14 7 6 17 98 161
Number of Correct Questions 6 9 9 4 4 10 56 97
Precision 0.6 1 0.64 0.57 0.67 0.59 0.57 0.60

4.3 Question Quality Evaluation and Result

Each of the 20 questions, randomly selected, was evaluated by the student-
authors. Because we have six authors, 120 questions were evaluated. A one-
way ANOVA setting the confidence interval at 95% was conducted to exam-
ine whether there are statistical difference in Overall, QM1, QM2, QM3, QM4
or QM5 among questions generated by the lecturer, Tutor, AQG system and
Generic. The ANOVA yielded a significant difference in Overall (F(3,596)=2.63,
P<0.05 ), QM3(F(3, 116)=4.085, P<0.05 ), QM4(F(3, 116)=8.65, P<0.05,
QM5(F (3, 116)=5.305, P<0.05) and no significant difference in QM1(F(3,116)=
2.69, P>0.05) and QM2 (F(3,116)= 2.335, P>0.05). Follow-up Fishers least sig-
nificant difference (LSD) tests with 95% confidence interval were performed to
determine whether significant differences occurred between the mean scores for
each pair of treatments. Figure [ illustrates the comparisons of mean scores
and Table B shows that the questions from AQG system significantly outscored
Generic Questions in Overall (0.346>LSD=0.283) and QM5 (0.733>LSD=0.633),
while questions from the tutor significantly outscored AQG system in QM3
(0.667>LSD=0.593), QM4 (1>LSD=0.648) and Overall (0.6>LSD=0.283).
There are no statistically significant differences between questions generated by
the lecturer and AQG system. Also, we did not observe any significant differences
between the Tutor and AQG system in QM 5 (0.533<LSD=0.633).

The quality of each rule was also evaluated. Fig. Bl shows the average scores.
Rule 5 got the highest score (4.3), Rule 4 and Rule 6 took the second place (3.9)
and Rule 7 reached the lowest score (3.0). It was also found that Rules 1, 2, 3, 4
and 7 decreased from Quality Measure 4, 5 to Quality Measure 1,2,3 while Rule
5 was stable in along all five quality measures.

Each evaluator was asked to ascertain who wrote this question: Lecturer, Tu-
tor, System or other. In order to clearly evaluate the participants’ classification
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Fig. 2. Comparisons of normalized mean scores
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Fig. 3. Comparisons of scores for each rule

Table 5. Fisher’s least significant difference (LSD) tests with 95% confidence interval

Lecturer v. AQG Tutor v. AQG AQG v.GQ

QM3(LSD=0.593) 0.067 0.667 0.367
QM4(LSD=0.648) 0.333 1 0.633
QM5(LSD=0.633) 0.133 0.533 0.733
Overall(LSD=0.283) 0.047 0.6 0.346

Table 6. Confusion Matrix (Average)

Response
m Tutor Lecturer AQG System

Tutor 0.7 2.7 1.6
Lecturer 0.8 1.2 3
AQG 1.4 1.0 2.6

ability between a Human and a System, we did not take the Generic Question
into consideration. Therefore, only 15 questions evaluated by a participant were
considered. We use the balanced F-score to evaluate the classification result and
F-score is defined as follows: F-score=2*Precision*Recall/(Precision+Recall).
Table[6] shows the participants’ average performance on the classification, which
found that they achieved F-score of 0.43 on AQG system, F-score of 0.24 on
Lecturer and F-score of 0.18 on Tutor category.

5 Discussion

This paper presents a novel Automatic Question Generation approach to sup-
port literature review writing and also describes a pilot study evaluating the
system performance along several dimensions—the Citation Extraction Ability
and Semantic Correctness of the generated questions and Question Quality—and
comparing it with humans and generic questions.

The study has a few limitations including a relatively small number of subjects
(6) and questions (120). Furthermore, it only evaluates a set of very specific types
of questions that refer to only one aspect (citations) out of the many involved
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in literature review. In a real teaching scenario, the human assessors (tutor and
lecturer) would prepare questions on other issues besides the citations. For the
future, we plan on having pedagogical experts involved to help with the ques-
tion formulation as well as with the evaluation. Despite these shortcomings, we
believe that the dataset is large enough and the evaluation meaningful because
we use real academic writings, i.e. student-written literature review papers, as
our dataset and the evaluators have higher education background and are very
familiar with the source content, as being the authors of the review papers used,
and thus being in a better position than others to judge quality of questions.

Within these limitations, this pilot study suggests that the AQG system can
produce questions that are as helpful to promote students’ reflection on their
academic writing as those by human tutors. The most significant finding from
this pilot study was that writers found it moderately difficult to distinguish
between questions generated by humans and automatically generated questions.
This claim is supported by the fact that students perceive approximately as much
value in automatically generated questions as in those written by the lecturer.

As we had expected, the AQG system outscored Generic Questions because
the content-related questions were more helpful than the generic questions. Sur-
prisingly, we found that our AQG system slightly outperformed the Lecturer,
which may be explained by some factors. First, students may intend to give
higher scores to a Lecturer. Second, it took a lot of effort for a lecturer to create
30 questions in total for six literature review papers across different topics. This
might affect the lecturer’s performance on creating pertinent questions. Finally,
the length of template-questions, longer on average than questions generated by
the lecturer, may affect the evaluation.

There are two main reasons for generating incorrect semantic questions(40%
inaccuracy):1 The NER component and 2: Citation Category Classifier. Because
the LBJ NER tagger was primarily trained on News Text Corpora it might
affect its the performance on academic articles. Our current Citation Category
Classifier is based on a rule-based approach which is simple but not scalable. As
we can see from Figure Bl and Table @ we may need to add extra patterns to
Rule 5 to generate more questions while also improving the question templates
in Rules 1, 2, 3 and 4 in order to achieve higher scores on Quality Measures
4 and 5. In addition, more citation categories might be explored which could
improve the performance for Rule 6 and Rule 7.

Future work will focus on ranking the generated questions, combining a Ma-
chine Learning approach with a rule-based approach to improve the citation
category classification, training the LBJ NER tagger on a large collection of
academic papers, and upgrading the taxonomy of citation category in our sys-
tem. It is also planned to integrate the AQG system into our peer review system
which will be used for students in Research Method course next semester.
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Abstract. Identifying effective tutorial dialogue strategies is a key issue for in-
telligent tutoring systems research. Human-human tutoring offers a valuable
model for identifying effective tutorial strategies, but extracting them is a chal-
lenge because of the richness of human dialogue. This paper addresses that
challenge through a machine learning approach that 1) learns tutorial strategies
from a corpus of human tutoring, and 2) identifies the statistical relationships
between student outcomes and the learned strategies. We have applied hidden
Markov modeling to a corpus of annotated task-oriented tutorial dialogue to
learn one model for each of two effective human tutors. We have identified sig-
nificant correlations between the automatically extracted tutoring modes and
student learning outcomes. This work has direct applications in authoring data-
driven tutorial dialogue system behavior and in investigating the effectiveness
of human tutoring.

Keywords: Tutorial dialogue, natural language, tutoring strategies.

1 Introduction

A key issue in intelligent tutoring systems research is identifying effective tutoring
strategies to support student learning. It has been long recognized that human tutoring
offers a valuable model of effective tutorial strategies, and a rich history of tutorial
dialogue research has identified some components of these strategies [1-4]. An impor-
tant research direction is to use dialogue corpora to create models that can assess
strategies’ differential effectiveness [5, 6]. There is growing evidence that tutorial
dialogue structure can be automatically extracted from corpora of human tutoring, and
that the resulting models can illuminate relationships between tutorial dialogue struc-
ture and student outcomes such as learning and motivation [7-11]. This paper takes a
step beyond the previous work by identifying relationships between student learning
and automatically extracted tutoring strategies, or modes. This modeling framework
for extracting tutoring strategies and analyzing their differential effectiveness has
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direct applications in authoring data-driven tutorial dialogue system behavior and in
research regarding the effectiveness of human tutors.

2 Related Work

Identifying effective tutoring strategies has long been a research focus of the intelli-
gent tutoring systems community. Empirical studies of human and computer tutoring
have revealed characteristics of novice and expert tutors [12, 13], Socratic and
didactic strategies [14], collaborative dialogue patterns in tutoring [15], and interrela-
tionships between affect, motivation, and learning [1, 16]. As a rich form of commu-
nication, tutorial dialogue is not fully understood: recent work suggests that the
interactivity facilitated by human tutoring is key to its effectiveness [6], and other
research indicates that students can learn effectively by watching playbacks of past
tutoring sessions [17]. Such findings contribute to our understanding of tutoring phe-
nomena, but also raise questions about the relative effectiveness of different tutoring
approaches.

To shed further light on this issue, an important line of research involves modeling
the specific relationships between different types of tutoring interactions and learning
[5]. Some studies have investigated how shallow measures, such as average student
turn length, correlate with learning in typed dialogue [18-20]. Analysis at the dialogue
act and bigram levels has uncovered significant relationships with learning in spoken
dialogue [7]. Recently, we have seen a growing emphasis on applying automatic
techniques to investigate learning correlations across domains and modalities [21] and
for devising optimal local strategies [9, 22]. Our work contributes to this line of inves-
tigation by applying hidden Markov models (HMMs) in a novel way to characterize
the effectiveness of tutorial dialogue. HMMs have been applied successfully to such
tasks as modeling student activity patterns [23, 24], characterizing the success of
collaborative peer dialogues [25], and learning human-interpretable models of tutor-
ing modes [8]. For tutorial dialogue, the doubly stochastic structure of HMMs (Sec-
tion 5.1) is well suited to capturing local dependencies and to extracting structures
whose components are distributed across entire tutoring sessions.

3 Tutoring Study

The corpus that serves as the basis for this work was collected during a human-human
tutoring study. The goal of this study was to produce a sizeable corpus of effective
tutoring from which data-driven models of task-oriented tutorial dialogue could be
learned. In keeping with this goal, the study features two paid tutors who had
achieved the highest average student learning gains in two prior studies [10, 26]. Tu-
tor A was a male computer science student in his final semester of undergraduate
studies. Tutor B was a female third-year computer science graduate student. An initial
analysis of the corpus suggested that the tutors took different approaches; for exam-
ple, Tutor A was less proactive than Tutor B [27]. As we describe below, the two
tutors achieved similar learning gains.
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Students were drawn from four separate sections, or modules, of the same univer-
sity computer science course titled “Introduction to Programming — Java”. They par-
ticipated on a voluntary basis in exchange for a small amount of course credit. A total
of 61 students completed tutoring sessions, constituting a participation rate of 64%.
Ten of these sessions were omitted due to inconsistencies (e.g., network problems,
students performing task actions outside the workspace sharing software). The first
three sessions were also omitted because they featured a pilot version of the task that
was modified for subsequent sessions. The remaining 48 sessions were utilized in the
modeling and analysis presented here.

In order to ensure that all interactions between tutor and student were captured,
participants reported to separate rooms at a scheduled time. Students were shown an
instructional video that featured an orientation to the software and a brief introduction
to the learning task. This video was also shown to the tutors at the start of the study.
After each student completed the instructional video, the tutoring session commenced.
The students and tutors interacted using software with a textual dialogue interface and
a shared task workspace that provided tutors with read-only access. Students com-
pleted a learning task comprised of a programming exercise that involved applying
concepts from recent class lectures including for loops, arrays, and parameter passing.
The tutoring sessions ended when the student had completed the three-part program-
ming task or one hour had elapsed.

Students completed an identical paper-based pretest and posttest designed to gauge
learning over the course of the tutoring session. These free-response instruments were
written by the research team and revised according to feedback from an independent
panel of three computer science educators, with between three and twenty years of
classroom experience. This panel assessed the difficulty of each question and the
degree to which it addressed the targeted learning concepts.

According to a paired sample r-test, the tutoring sessions resulted in a statistically
significant average learning gain as measured by posttest minus pretest (mean=7%;
p<0.0001). There was no significant difference between the mean learning gains by
tutor (mean,=6.9%, meanp=8.6%; p=0.569). Analysis of the pretest scores indicates
that the two groups of students were equally prepared for the task: Tutor A’s students
averaged 79.5% on the pretest, and Tutor B’s students averaged 78.9% (t-test
p=0.764).

4 Corpus Annotation

The raw corpus contains 102,315 events. 4,806 of these events are dialogue messages.
The 1,468 student utterances and 3,338 tutor utterances were all subsequently anno-
tated with dialogue act tags (Section 4.1). The remaining events in the raw corpus
consist of student problem-solving traces that include typing, opening and closing
files, and executing the student’s program. The entries in this problem-solving data
stream were manually aggregated into significant student work events (Section 4.2),
resulting in 3,793 tagged task actions.
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4.1 Dialogue Act Annotation

One human tagger applied the dialogue act annotation scheme (Table 1) to the entire
corpus. A second tagger annotated a randomly selected subset containing 10% of the
utterances. The resulting Kappa was 0.80, indicating substantial agreement."

Table 1. Dialogue act annotation scheme

Dialogue Act Tutor Example Student Example
Statement Arrays in java are indexed starting at 0. I'm going to do this method first.
Question Which one do you want to start with? What index do arrays in java start at?

Assessing Question
Positive Feedback

Positive Content

Do you know how to declare an array?
Right.
Yep, your array is the right size.

Does my loop look right?
Yes.

Yes, | know how to declare an array.

Feedback
Negative Feedback | No. No.

Negative Content
Feedback

Lukewarm Feedback | Almost.

No, that variable needs to be an integer. No, I've learned about objects but not

arrays.
Sort of.

Lukewarm Content | It’s almost right, but your loop will go out | I'm not sure how to declare an array.

Feedback of bounds.
Extra-Domain Somebody will be there soon. Can I take off these headphones?
Grounding Ok. Thanks.

4.2 Task Annotation

Student task actions were recorded at a low level (i.e., individual keystrokes). A hu-
man judge aggregated these events into problem-solving chunks that occurred be-
tween each pair of dialogue utterances and annotated the student work for subtasks
and correctness. The task annotation protocol was hierarchically structured and, at its
leaves, included more than fifty low-level subtasks. After tagging the subtask, the
judge tagged the chunk for correctness. The correctness categories were Correct
(fully conforming to the requirements of the learning task), Buggy (violating the
requirements of the learning task), Incomplete (on track but not yet complete), and
Dispreferred (functional but not conforming to the pedagogical goals of the task).

One human judge applied this protocol to the entire corpus, with a second judge
tagging 20% of the data that had been selected via random sampling stratified by tutor
in order to establish reliability of the tagging scheme. Because each judge independ-
ently played back the events and aggregated them into problem-solving chunks, the
two taggers often identified a different number of events in a given window. Any
unmatched subtask tags were treated as disagreements. The simple Kappa statistic for
subtask tagging was 0.58, indicating moderate agreement. However, because there is
a sense of ordering within the subtask tags (i.e., the ‘distance’ between subtasks /a
and /b is smaller than the ‘distance’ between subtasks /a and 3b), it is also meaning-
ful to consider the weighted Kappa statistic, which was 0.86, indicating almost perfect
agreement. To calculate agreement on the task correctness tag, we considered all task
actions for which the two judges agreed on the subtask tag. The resulting Kappa

! Throughout this paper we employ a set of widely used agreement categories for interpreting
Kappa values: fair, moderate, substantial, and almost perfect [29].
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statistic was 0.80, indicating substantial agreement. At the current stage of work, only
the task correctness tags have been included as input to the HMMs; incorporating
subtask labels is left to future work.

5 Hidden Markov Models

The annotated corpus consists of sequences of dialogue and problem-solving actions,
with one sequence for each tutoring session. Our modeling goal was to extract tutor-
ing modes from these sequences in an unsupervised fashion (i.e., without labeling the
modes manually), and to identify relationships between these modes and student
learning. Findings from an earlier analysis [27] suggested that the two tutors em-
ployed different strategies than each other; therefore, we disaggregated the data by
tutor and learned two models. In prior work we found that identifying dependent pairs
of dialogue acts and joining them into a single bigram observation during preprocess-
ing resulted in models that were more interpretable [28]. In the current work we found
that this preprocessing step produced a better model fit in terms of HMM log likeli-
hood; the resulting hybrid sequences of unigrams and bigrams were used for training
the models reported here.

5.1 Modeling Framework

In our application of HMMs to tutorial dialogue, we treat the hidden states as tutorial
strategies, or modes, whose structure is learned during model training.” These states
are characterized by emission probability distributions, which map each hidden state
onto the observable symbols. The transition probability distribution determines tran-
sitions between hidden states, and the initial probability distribution determines the
starting state [30]. Model training is an iterative process that terminates when the
model parameters have converged or when a pre-specified number of iterations have
been completed. Our training algorithm varied the number of hidden states from two
to twenty and selected the model size that achieved the best average log-likelihood fit
across ten stratified subsets of the data.

5.2 Best-Fit HMMs

The best-fit HMM for Tutor A’s dialogues features eight hidden states. Figure 1 de-
picts a subset of the transition probability diagram with nodes representing hidden
states (tutoring modes). Inside each node is a histogram of its emission probability
distribution. For simplicity, only five of the eight states are displayed in this diagram;
each state that was omitted mapped to less than 5% of the observed data sequences
and was not significant in the correlational analysis. We have interpreted and named
each tutoring mode based on its structure. For example, State 4 is dominated by cor-
rect task actions; therefore, we name this state Correct Student Work. State 6 is com-
prised of student acknowledgements, pairs of tutor statements, some correct task

% The notion that tutorial dialogue strategies, or modes, constitute a portion of the underlying
structure of tutorial dialogue is widely accepted. However, describing these hidden states as
tutoring modes is an interpretive choice because the HMMs were learned in an unsupervised
fashion.
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actions, and assessing questions by both tutor and student; we label this state Student
Acting on Tutor Help. The best-fit model for Tutor B’s dialogues features ten hidden
states. A portion of this model, consisting of all states that mapped to more than 5%

of observations, is displayed in Figure 2.
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5.3 Model Interpretation

Some tutoring modes with similar structures were identified by both models. Both
models feature a Correct Student Work mode characterized by the student’s success-
ful completion of a subtask. This state maps to 38% of observations with Tutor A and
29% of observations with Tutor B. In both cases the Correct Student Work mode
occurs more frequently than any other mode. Each of the next three most frequently
occurring modes maps onto 10-15% of the observations. For Tutor A, one such mode
is Tutor Explanations with Feedback, while for Tutor B a corresponding mode is
Tutor Explanations with Assessing Questions. In both cases, the mode involves tutors
explaining concepts or task elements. A key difference is that with Tutor A, the
explanation mode includes frequent negative content feedback or positive content-free
feedback, while for Tutor B the explanation mode features questions in which the
tutor aims to gauge the student’s knowledge. A similar pattern emerges with each
tutor’s next most frequent mode: for Tutor A, this mode is Student Work with Tutor
Positive Feedback; for Tutor B, the mode is Student Work with Tutor Assessing Ques-
tions. These corresponding modes illuminate a tendency for Tutor A to provide
feedback in situations where Tutor B chooses to ask the student a question. For Tutor
A, the only mode that featured assessing questions was Student Acting on Tutor Help,
which as we will discuss, was positively correlated with student learning.

5.4 Correlations with Student Outcomes

With the learned models in hand, the next goal was to identify statistical relationships
between student learning and the automatically extracted tutoring modes. The models
presented above were used to map each sequence of observed dialogue acts and task
actions onto the set of hidden states (i.e., tutoring modes) in a maximum likelihood
fashion. The transformed sequences were used to calculate the frequency distribution
of the modes that occurred in each tutoring session (e.g., State 0=32%,
State 1 = 15%...State 8 = 3%). For each HMM, correlations were generated between
the learning gain of each student session and the relative frequency vector of tutoring
modes for that session to determine whether significant relationships existed between
student learning and the proportion of discrete events (dialogue and problem solving)
that were accounted for by each tutoring mode. For Tutor A, the Student Acting on
Tutor Help mode was positively correlated with learning (r=0.51; p<0.0001). For
Tutor B, the Tutor Content Feedback mode was positively correlated with learning
(r=0.55; p=0.01) and the Work in Progress mode was negatively correlated with
learning (r=-0.57; p=0.0077).

6 Discussion

We have identified significant correlations between student learning gains and the
automatically extracted tutoring modes modeled in the HMMs as hidden states. While
students who worked with either tutor achieved significant learning on average, each
group of students displayed a substantial range of learning gains. The correlational
analysis leveraged this data spread to gain insight into which aspects of the tutorial
interaction were related to higher or lower learning gains.
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For Tutor A, the relative frequency of the Student Acting on Tutor Help mode was
positively correlated with student learning. This mode was characterized primarily by
student acknowledgments and also featured tutor explanations, correct student work,
positive tutor feedback, and assessing questions from both tutor and student. The
composition of this tutoring mode suggests that these observed events possess a
synergy that, in context, contributed to student learning. In a learning scenario with
novices, it is plausible that only a small subset of tutor explanations were grasped by
the students and put to use in the learning task. The Student Acting on Tutor Help
mode may correspond to those instances, in contrast to the Correct Student Work
mode in which students may have been applying prior knowledge.

For Tutor B, the Tutor Content Feedback mode was positively correlated with stu-
dent learning. This mode was relatively infrequent, mapping to only 7% of tutoring
events. However, as noted in Section 5.3, providing direct feedback represents a
departure from this tutor’s more frequent approach of asking assessing questions of
the student. Given the nature of the learning task and the corresponding structure of
the learning instrument, students may have identified errors in their work and grasped
new knowledge most readily through this tutor’s direct feedback.

For Tutor B, the Work in Progress mode was negatively correlated with learning.
This finding is consistent with observations that in this tutoring study, students did not
easily seem to operationalize new knowledge that came through tutor hints, but rather,
often needed explicit constructive feedback. The Work in Progress mode features no
direct tutor content feedback. Tutor questions and explanations (which are at a more
abstract level than the student’s solution) in the face of incomplete student work may
not have been an effective tutoring approach in this study.

7 Conclusion and Future Work

We have collected a corpus of human-human tutorial dialogue, manually annotated it
with dialogue acts and task actions, and utilized HMMs to extract the tutoring modes
present in the corpus in an unsupervised fashion. We have examined two by-tutor
HMMs and identified correlations between these models and student learning. This
work extends findings that have correlated learning with highly localized structures
such as unigrams and bigrams of dialogue acts [7, 10]. Using HMMs, we have corre-
lated student learning with automatically extracted tutoring modes whose structure
was learned from tutoring sessions. This work takes a step toward fully automatic
extraction of tutorial strategies from corpora, a contribution that has direct application
in human tutoring research. The approach also has application in tutorial dialogue
system development, for example, by producing a data-driven library of system
strategies.

A promising direction for future work involves learning models that more fully
capture the tutorial phenomena that influence learning. There seems to be significant
room for improvement in this regard, as evidenced by the fact that relatively few of
the automatically extracted tutorial dialogue modes were correlated with learning.
Continuing work on rich dialogue act and task annotation and deep linguistic analysis
of dialogue utterances are important directions. Additionally, future work should
leverage details of the task structure to a greater extent by considering regularities
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within tasks and subtasks as part of an augmented model structure in order to more
fully capture details of the tutorial interaction.
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Abstract. The unpredictability of spoken responses by young children (6-7
years old) makes them problematic for automatic speech recognizers. Aist and
Mostow proposed predictable response training to improve automatic
recognition of children’s free-form spoken responses. We apply this approach
in the context of Project LISTEN’s Reading Tutor to the task of teaching
children an important reading comprehension strategy, namely to make up their
own questions about text while reading it. We show how to use knowledge
about strategy instruction and the story text to generate a language model that
predicts questions spoken by children during comprehension instruction. We
evaluated this model on a previously unseen test set of 18 utterances totaling
137 words spoken by 11 second grade children in response to prompts the
Reading Tutor inserted as they read. Compared to using a baseline trigram
language model that does not incorporate this knowledge, speech recognition
using the generated language model achieved concept recall 5 times higher — so
much that the difference was statistically significant despite small sample size.

Keywords: children’s free-form spoken responses, predictable response train-
ing, automatic speech recognition, language model, self-questioning strategy for
reading comprehension, Project LISTEN’s Reading Tutor.

1 Introduction

Speech is a natural way for humans to communicate. Intelligent tutoring system de-
velopers have started to treat automatic speech recognition (ASR) as a desirable way
to enhance human-computer interaction [1-3]. Compared to typing [4], verbal input is
especially convenient for children in the early years of elementary schools (i.e., first
and second grades, roughly ages 6-7). Unlike older students, young children have
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trouble typing accurately or quickly. Compared to multiple choice interfaces, a
speech interface is less distracting, and it allows a broader range of input.

However, recognizing children’s free-form speech is a tricky problem [5, 6].
Acoustic parameters of children’s speech, such as formants, are harder to capture and
more variable than those of adult speech [7]. Besides, children are creative in syntac-
tic-lexical use of language, and their speech can be ungrammatical [8], which in-
creases the unpredictability of the speech.

To reduce this unpredictability, we apply predictable response training [9]. We
then exploit knowledge of predictable responses in the language model of a speech
recognizer. We develop this approach in a Reading Tutor that teaches young children
to generate questions about story texts (also known as “self-questioning”). Teaching
this strategy has been shown to improve children’s reading comprehension [10, 11].

The rest of this paper is organized as follows. Section 2 introduces predictable
response training for self-questioning. Section 3 and 4 respectively describe how to
generate and improve a language model that exploits such training. Section 5 reports
results. Section 6 summarizes contributions, limitations, and future work.

2 Predictable Response Training in Self-questioning Instruction

Our self-questioning instruction [12] attempts to teach a young child to wonder about
text while reading it aloud to Project LISTEN’s Reading Tutor [13]. In a self-
questioning activity, the Reading Tutor prompts the child now and then to ask a
question out loud about the text, and records the free-form spoken responses.

Unpublished data from a previous study [14] found considerable variation in chil-
dren’s responses to self-questioning prompts such as What else are you wondering
about rainbows? Ask a question out loud. Out of 23 recorded responses, only one
response was a grammatical question relevant to the text (Does a rainbow come out
when it snows?). The rest contained only classroom background noise, did not take a
question form (e.g. Nothing, Thank god I could make a promise about rainbow), were
ungrammatical (e.g., How they get the colors where they come from yada yada I'm
done), or were irrelevant to the text (Why do you ask so many questions).

To reduce the unpredictability of children’s responses in self-questioning, we built
predictable response training into the instruction. We train three types of questions,
namely Why, How, and What. Our instruction guides students to compose questions
in multiple steps, so as to elicit predictable segments. We decompose a question
about a fictional text into a question stem (e.g., Why was), a character to ask about
(e.g., the country mouse), and a question completer (e.g., surprised). We follow an
instructional model that gradually transfers responsibility from tutor to student [15]:

(1) Describe the strategy: the tutor introduces the strategy of self-questioning and
explains an important component of a question, namely the question stem:
Tutor': I'm going to tell you about a reading strategy called QUESTIONING.

QUESTIONING means you ask YOURSELF questions WHILE you read.

! Tutor prompts: italics = spoken; boldface = displayed; bold italics = both; * = elicits speech.
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Asking yourself questions while you read can help you understand better. A good way to
start a question is with a question word. These are some good question words: why, who,
where, when, what, and how.

(2) Model the strategy: the tutor models the strategy with an example question.
Tutor: This part of the story makes me think of this question:
“Why was the country mouse surprised?”

[Student reads more text]

(3) Scaffold the strategy: To help the child make a question, the tutor provides
multiple choices for all or some question segments.

Tutor:  Let’s make a question about ___ (the town mouse; the country mouse; the man of
the house; the cat).

Student: [In the on-screen menu of 4 choices, the student clicks on the country mouse.]
Tutor:  Let’s ask a ___ (what; why; how) question.
Student: [The student chooses why.]

Tutor:  Let’s complete your question: Why did the country mouse___ (decide to send the
cat; try to taste everything before his tummy was full; run)?

Student: [The student chooses decide to send the cat.]

* Tutor: Ok, now | want you to read your question out loud before you continue the story.
Student reads aloud: Why did the country mouse decide to send the cat?
[Student reads more text]

After the child chooses a character to ask about and a question type, the tutor asks him
or her to complete the question by saying the whole question out loud.

Student: [The student chooses the cat and how.]

* Tutor: Now finish your question by saying the whole thing out loud, and completing the rest.
Student: How did the cat see the mice?

[Student reads more text]

(4) Prompt the use of the strategy: the tutor prompts the child to ask a question with-
out assistance.

* Tutor: Think of a question to ask about the story, and say it out loud.
Student: Why did the two mice come out?

The inserted tutor prompts typically total around 1 minute of instruction.

3 Core Language Model

Speech recognition uses an acoustic model of how sounds represent words, and a
language model of how words are combined into utterances. Generally, the better the
acoustic model captures how users pronounce words, and the better the language
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model captures how users construct utterances out of words, the better the recogni-
tion. Thus, researchers seeking to improve speech recognition performance typically
focus on improving the acoustic model, the language model, or both. Researchers
also seek to improve audio quality and reduce the range of likely ways to say things
within the user’s task. This paper focuses on language modeling approaches that
exploit knowledge of a constrained range of likely utterances.

To exploit predictable response training, we build into the language model ques-
tions generated automatically from the text. Our question generator [12] combines a
question stem with two other segments it extracts from the text — a character to ask
about, and a question completer. Our language model generator then compiles the
resulting questions into a finite state grammar (FSG). Fig. 1 shows an example lan-
guage model that incorporates the questions from step (3) in Section 2.

Fig. 2. A fragment of core language model with disfluency modeling. Dotted arrows represent
repetition; dashed arrows represent early termination.

Modeling disfluency. Disfluency, a common phenomenon in children’s speech [6],
includes hesitations, filled pauses (e.g., uh, um), repetition (e.g., How did how did the
cat see the mice?), and early termination (e.g., Why did the cat). To model hesitations
and filled pauses, we exploit the recognizer’s ability to insert silences and noises
between words, using a noise dictionary including every phoneme. To model repeti-
tion, we add transition arcs from segment boundaries to previous segment boundaries.
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To model early termination, we add transition arcs from segment junctions to the end
state. Fig. 2 shows part of the resulting “core language model.”

4 Enhancing Robustness of the Language Model

For guidance to help us improve the core language model, we used a 168-word corpus
from a spring 2009 pilot test of self-questioning instruction generated for Aesop’s
fable “The Country Mouse and the Town Mouse.” This corpus consists of 12 re-
sponses by 7 second graders to self-questioning prompts starred with * in Section 2.

In principle, we could train a language model directly from questions spoken by
trained students, but practically speaking we’d need a substantially larger corpus. For
the related task of recognizing children’s spontaneous summarization, Hagen et al. [1]
trained language models from 10 stories and different numbers of students’ summa-
ries. They reported needing at least 40 summaries to achieve better recognition than
the initial language model trained from 10 stories.

The language model predicts both the content of the questions and their form. Pre-
dictable response training mainly elicits the form of children’s questions, with limited
possibilities for the question stem and character, but the question completer segment
is more open-ended both in the words it can use and the order they can occur.

Expanding the vocabulary with story words and common words. There is a
tradeoff between the coverage and precision of the language model. As ASR vocabu-
lary grows, coverage of children’s speech increases, but so does the risk of misrecog-
nition. Hence we want only words likely to appear in children’s responses. Children’s
questions can reach beyond vocabulary output by our question generator: the core
language model vocabulary covers only 38% of the 60 word types in our 168-word
pilot corpus. To improve coverage, we add the Dolch list [16] of 220 words common
in children’s books. We expect children’s questions to be about story text, so we add
all the story words. We further expand the resulting vocabulary by using a morphol-
ogy generator to add all inflections of each verb.

Interpolating the language model with more general language models. To boost
robustness, we tried interpolating the core language model with broader models: a
unigram model, a part of speech (POS) bigram model, and a trigram model.

We trained the unigram model on 158,079 words in 673 children’s stories from
Project LISTEN. We incorporated it by inserting a self-looping state in the core FSG
to allow any sequence of words after the character segment, using the unigram prob-
ability for each word. We give the transition into this state a low weight (.0001) as a
penalty so as to give such sequences lower probabilities than generated questions.

Our POS-bigram language model approximates bigram probability P(w, | w;) as
P(POS(w,) | POS(w)), e.g. P(mice | the) as P(NNS | DT), where NNS means a plural
noun, and DT means a determiner. We tagged all 673 stories using the Stanford POS
tagger, and trained a bigram model on the resulting POS sequences using the SRILM
language modeling toolkit [17]. To incorporate this model in the FSG, we added a
state for each POS tag. We assigned the transition from the character segment to the
VB (verb) state the probability .0001, and transitions between POS states their POS
bigram probabilities. We tagged each word with its most frequent POS. Thus this
model approximates P(find the mice) as .0001 * P(DT | VB) * P(NNS | DT).
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To construct a trigram language model, we first extracted from the 976,992,639
Google 3-grams [18] the 727,348 consisting solely of the 477 words in predicted
questions, the story, and the Dolch list. Next, we approximated our FSG in trigram
form by enumerating predicted questions and a subset of their disfluent forms (re-
stricting repetition to 2 times) and collecting their trigram counts. We multiplied
them by 1000 to weight them more heavily, added them to the Google n-gram counts,
and used the combined counts to train our interpolated trigram language model.

5 Evaluation and Results

We conducted ASR experiments to evaluate predictable response training by compar-
ing language models that exploit such training against a baseline that does not.

5.1 Evaluation Metrics

To evaluate how many words our model correctly recognizes, we report word accu-
racy (WA), measured as the number of correctly recognized words divided by the
total number of words in the human transcript. WA penalizes substitutions and dele-
tions by the ASR; word error rate (WER) additionally penalizes insertions.

Concept coverage. From an application point of view, WA is not the ultimate objec-
tive function. The more important goal is to extract spoken meaning, not to transcribe
the exact words spoken, especially function words such as the and of. We therefore
ignore function words, and measure precision and recall of concepts, which we opera-
tionalize as word classes defined by word stems — i.e., two words denote the same
concept if they share the same stem. If a child says the same thing twice and the
speech recognizer hears it only once, concept precision and recall are unaffected.

Upper bound of a language model. Given the acoustic model, how well can a lan-
guage model possibly do in terms of ASR accuracy? To obtain a rough upper bound
on ASR accuracy, we did a “cheating experiment” using a FSG language model con-
sisting of just the 12 transcribed word sequences from our pilot set.

5.2 Evaluation Results on Pilot Data

Table 1 shows results for the various language models described in Sections 3 and 4.
As a baseline, we trained a trigram language model on the same 673 stories, but re-
stricted its vocabulary to the words from “The Country Mouse and the Town Mouse.”
Exploiting predictable response training increased WA from 8.9% (WER 118%) for
the baseline model to as high as 73.2% (WER 57.1%) for the core language model
interpolated with a POS bigram model. To evaluate how well the speech recognizer
performs with different vocabularies, we report recall of concepts from the core lan-
guage model, from the story, and from all transcribed responses. The core LM +
POS-bigram model achieved the highest all-concept recall — significantly higher (de-
spite the small sample size) than the baseline model that did not exploit this training
(n = 12 responses, p < 0.001 on a paired T-test, Cohen’s d = 1.362). To our surprise,
it actually beat the cheating model on 2 of the 3 recall measures, presumably due to
greater flexibility in recognizing speech atypical of the acoustic models.
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Table 1. ASR results on pilot data (168 words). The baseline model is a trigram LM trained
on children’s stories. The Core LM covers automatically generated questions and disfluency.
The next three models interpolate it with n-gram models to cover question completers better.
This and subsequent tables show the highest non-cheating value(s) in each column in boldface.

Recall
Language Model Word Accuracy Core LM Story All Precision
concepts concepts concepts
Baseline (3-gram) 8.9% 16.7% 17.6% 11.7% 81.8%
Core Language Model 67.9% 92.6 % 80.4% 64.9% 65.8%
Core LM + unigram 68.5% 92.6 % 80.4% 64.9% 69.4%
Core LM + POS-bigram 73.2% 88.9% 88.2% 68.9% 57.0%
Core LM + Google 3gram 42.3% 59.3% 56.9% 42.9% 57.9%
Cheaﬁng Experiment 89.3% 87.0% 86.3% 84.4% 87.8%

5.3 Improving Precision by Reducing Insertions

Most ASR errors were insertions caused by background speech and noise. To im-
prove precision, we tried two approaches: (1) post-processing ASR output to filter
out low-confidence words; (2) tightening search by lexicalizing question segments.
Table 2 shows their effects on the output of the Core LM+POS-bigram model.

Table 2. Improving precision on pilot data (168 words)

Recall Precision
Configuration Word Accuracy Core LM Story All
concepts concepts concepts
Core LM+POS-bigram 73.2% 88.9% 88.2% 68.9% 57.0%
Confidence thresholding 64.3% 79.6% 82.3% 62.3% 72.7%
HMM filter 57.2% 74.1% 70.6% 57.1% 75.9%
Lexicalized model 47.5% 94.4 % 78.4% 66.2% 76.1%

Confidence thresholding. The speech recognizer we used assigns each hypothesized
word a confidence score between 0 and 1 to indicate how likely it was recognized
correctly. To separate correctly recognized words from misrecognized words with
maximum accuracy, we chose a threshold on the confidence score that minimized the
sum of false positive rate plus false negative rate.

Training an HMM sequential model for filtering. The confidence score rates each
hypothesis word independent of its context. However, misrecognized words tend to
appear in a row, and so do correctly recognized words. A sequential model, such as a
Hidden Markov Model (HMM), can capture this characteristic.

Our HMM filter combines the confidence score with an intensity threshold to filter
out background speech and noise, which typically have a lower intensity than student
speech into a close-talking headset microphone. Since the speech recognizer may
have trouble distinguishing background speech or noise from user speech, a threshold
on intensity can help indicate which regions of the signal to ignore. Most of our re-
cordings start with silence and speech by the Reading Tutor. Thus, to set an intensity
threshold, the first 0.5 seconds of speech is assumed to be a silence or noise region.
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Then the threshold is set to be the average intensity of this noise region plus 20 times
its standard deviation. We classify regions that exceed the intensity threshold as
foreground speech. We used this classification and the confidence score for each
hypothesis word as feature vectors to train an HMM with two states (each with a 2-
dimensional Gaussian emission distribution and diagonal covariance matrix). We
expect these two states to represent correct and incorrect recognition.

Lexicalizing the language model. User-testing showed that children often paused
between question segments and within question completers, but not within question
stem and character segments, as in Why did ... the man of the house ... try to hurt
things, um, the mice? These pauses suggest a high cognitive load [19] when starting a
new segment or thinking up a question completer.

To exclude unlikely pauses from the language model, we lexicalized question
stems and character segments. Thus the stem Why did mapped to a single lexical item
why-did, and the character segment the man of the house to the-man-of-the-house.

5.4 Results on Unseen Test Data

Table 3 shows results on 18 self-questioning responses by 11 students, collected after
the analyses reported above. Even with so little data, the difference between all-
concept recall for Core LM+POS-bigram and the baseline was again sufficiently
dramatic (5x) to be statistically significant (n = 18, p < 0.0001, Cohen’s d = 1.364).
The baseline and POS-bigram models had WER 93.4% and 64.2%, respectively.

Table 3. Results on unseen test data (137 words)

Recall Precision
Configuration Word Accuracy Core LM Story All
concepts concepts concepts
Baseline 6.6% 14.0% 17.5% 10.3% 46.7%
Core LM 60.6% 80.0 % 77.5% 58.8% 50.6%
Core LM+POS-bigram 40.9% 68.0% 65.0% 50.0% 54.8%
Confidence filter 38.5% 64.0% 57.5% 49.7% 84.4%
HMM filter 31.2% 50.0% 50.0% 43.4% 75.6%
Lexicalized model 54.7% 78.0% 75.0% 57.4% 73.6%

Both overall and story-concept recall on unseen data were encouraging, but lower
than on the pilot data we used to tune the language model weight, repetition weight,
vocabulary, filler word penalty, silence penalty, and filter model parameters. This
tuning likely overfit the small amount of pilot data we used for development.

6 Contributions, Limitations, and Future Work

This paper describes a 2-part approach to improve ASR of children’s free-form spo-
ken responses. One part trains children to make more predictable responses. Ideally
we could evaluate this part by comparing speech with versus without predictable
response training as the only manipulation, but the training is inextricably interwoven
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with the strategy instruction itself, and ASR performance reported earlier on free-
form responses elicited by different instruction [14] was very low.

The other part generates language models to exploit this predictability by integrat-
ing constraints on expected content and form, not just interpolating n-gram models
from different sources [20]. We constrain content by limiting vocabulary to the story,
questions generated from it, common words, and verb inflections. We constrain form
based on the instruction and on word order in the story and other text.

We demonstrated ASR accuracy 5-fold higher than for a baseline language model,
tested various methods to improve precision and recall, and compared their effects.
Future work includes generalizing to other text, and to tasks besides self-questioning.

As a reviewer of this paper pointed out, predictable response training may itself
have educational benefits. A direct benefit to the student comes from the schema that
gives rise to the predictability: the same scaffold that makes responses predictable
also makes them easier for the student to generate, and hence to learn. An indirect
benefit is to facilitate assessment: predictable responses are easier to score. This
paper has shown how to exploit predictable response training in ASR, paving the way
to realize this benefit in intelligent tutors that listen to children not just read but talk.
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Abstract. Tutoring systems typically contain or generate a set of approved so-
lutions to problems presented to students. Student solutions that don’t match the
approved ones, but are otherwise partially correct, receive little acknowledg-
ment as feedback, stifling broader reasoning. Additionally, feedback mecha-
nisms rely on having the student model, which requires extensive effort to
build. This paper provides an alternative to the traditional ITS architecture by
using a hint generation strategy that bypasses the student model and instead
leverages off of the domain ontology. Concept hierarchy and co-occurrence be-
tween concepts in the domain ontology are drawn upon to ascertain partial cor-
rectness of a solution and guide student reasoning towards the correct solution.
We describe the strategy incorporated in a tutoring system for medical PBL,
wherein the widely available UMLS is deployed as the domain ontology.
Evaluation of expert agreement with system generated hints on a 5-point likert
scale resulted in an average score of 4.44 (r = 0.9018, p < 0.05). Hints contain-
ing partial correctness feedback scored significantly higher than those without it
(Wilcoxon Rank Sum, p < 0.001).

Keywords: Ontology, hint generation, student model, intelligent tutoring
systems, medical PBL, UMLS, knowledge acquisition bottleneck.

1 Introduction

Tutoring systems normally contain either a set of approved solutions or, a mechanism
that generates approved solutions to problems presented to the students. Evaluation of
the student solution and feedback returned is tailored to be effective only within the
knowledge confines of the approved solutions. Tutoring systems are typically unable
to assess the partial correctness of student solutions when they fall outside the scope
of the approved ones. Moreover, for the purpose of solution representation, students
are restricted to the choice of domain concepts from a custom built repository which
is often quite narrow. Such characteristics lend themselves to a tutoring approach that
is fairly brittle and quite opposed to how a human tutor would behave. A human tutor
on the other hand, allows a diverse choice of domain concepts, assesses where the
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student solution lies in the broad knowledge space, acknowledges the partially correct
aspects of the solution and guides the students back to the correct solution. Thus in
order for a tutoring system to exhibit robust tutoring, it needs a broad knowledge base
to allow students to explore a large space of novel solutions and work creatively,
while still being able to steer them towards a correct solution if they get off track.

An ontology presents great potential for reuse and as a knowledge base that could
be exploited for reasoning purposes. Several tutoring systems have employed ontolo-
gies [1, 2, 3], but they require extensive effort in encoding the relevant knowledge
into the ontology. The Constraint Acquisition System [4] uses a more feasible
method of encoding the ontology constraints by learning from examples, but its initial
design still needs to be defined manually.

The construction of a tutoring system typically requires knowledge acquisition in
the three areas of domain model, student model and pedagogical model. Acquiring
and encoding the relevant knowledge can lead to a large overhead in the development
time of a tutoring system [5, 6]. Attempts to expand the system and reuse the existing
domain model for the rapid addition of new problems or cases are often hindered by
the daunting task of acquiring the burdensome student model.

While the importance of the student model has been advocated [7], the design of
some tutoring systems has excluded the student model based on the needs of the tutor-
ing task [8]. Similar to Andes [8], our system too, does not use assessment to select
the next task to be offered to the student. Because of the extensive effort required in
designing, tutoring systems often excel in one or two of the three models mentioned
above and maintain a more simplified form of the remaining ones [9].

The development time for a tutoring system has also come under scrutiny in the
comparison between Model Tracing (MT) and Constraint Based Modeling (CBM)
[10, 11]. Kodaganallur et al., [10] and Mitrovic et al., [11] have acknowledged the
tradeoff between the reduction in development time and the quality of hints generated.
The development time required to add a case is expected to vary based on the nature
of the task domain. For the domain of statistical hypothesis testing, Kodaganallur et
al., [10] report the development time of 5 person-days for problem modeling and 18
person-days for encoding the relevant knowledge in the case of CBM, whereas the
development time was greater for MT. CBM simplifies the creation of new cases and
has a reduced development time; however, its hints are not as effective and special-
ized as those in MT [10, 11].

In order to ease the knowledge acquisition bottleneck, Martin & Mitrovic [12]
adopt a CBM approach, where the student model is an overlay of the domain model
constraints. Their student model simply contains a score of the times a constraint has
been satisfied or violated during problem solving. However, defining and encoding
the constraints is still a burdensome task. Defining the constraints would be even a
greater burden and challenge for an ill-defined domain such as medical PBL [13].

In the ill-defined domain of medical PBL, students may arrive at a solution from a
variety of reasoning paths [14], making it a daunting task to build the student model.
Based on our previous experience with the COMET system for medical PBL [15], it
takes about one person-month to build the cognitive student model for each problem
scenario. Modeling the diverse set of reasoning paths would be even more challenging
if the system is expected to be robust in its tutoring approach by allowing students to
explore a much broader solution space as mentioned above.
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We extend our work on expanding the plausible solution space by deploying the
widely available knowledge source, the Unified Medical Language System (UMLS)
[16], as the domain ontology in a tutoring system for medical PBL [17]. In this paper
we present a strategy for alleviating the overhead required to expand the tutoring
system in adding new cases, by sidestepping the student model. We exploit the struc-
ture of the domain ontology to assess the partial correctness of student solutions and
generate hints that are relevant to the student activity during problem solving. Fur-
thermore, the time and effort required to add a new problem scenario to the tutoring
system is reduced to 4-5 person-hours.

2 Related Work

The concept of partial correctness has been discussed in the context of tutoring sys-
tems [3, 18], wherein a part of the solution is explicitly recognized as correct. Our
notion of partial correctness is different and is assessed through knowledge inference
rather than explicitly encoded knowledge. Fiedler & Tsovaltzi [18] employ a domain
ontology for tutoring mathematics theorem proving. The domain ontology of concepts
contains some objects and relations defined as anchoring points, which serve as the
basis for the content of the generated hints. Our hint generation strategy is different
and draws inferences from the structure of the existing domain ontology at run-time
without recourse to explicit encoding of knowledge into the ontology.

The design of medical tutoring systems built to date, have typically been based on
customized knowledge bases that offer students a limited set of medical terms and
concepts, to form their solution. The CIRCSIM-Tutor [3] teaches cardiovascular
physiology by describing a perturbation of a cardiovascular condition, and initiating a
question answer dialog with the student. The scope of hypothesis (solution) represen-
tation is narrow, as students are confined to assigning values to a small set of vari-
ables for forming their hypothesis. The SlideTutor [1] teaches dermatopathology by
presenting a visual slide as a problem scenario and asks students to classify the dis-
eases. Solutions accepted by the tutoring system are based on the ontology custom-
ized for the system. Thus students are not allowed to present alternative plausible
hypotheses that may lie beyond the scope of this customized ontology.

The ReportTutor [19] teaches students diagnostic report writing by presenting a
virtual slide and asking the students to write their report using a natural language
interface. The pedagogical module refers to the expert model to see the list of goals
that need to be accomplished and provides feedback based on the goals on the stack.
The system does not make use of an explicit student model. Their work is similar to
ours in generating hints without differentiating between two students having different
knowledge levels performing the same exercise.

3 Medical PBL and System Prototype

In a typical PBL session in the medical domain, a problem scenario is presented to a
group of 6-8 students, who form their hypothesis in the form of a causal graph, where
graph nodes represent hypothesis concepts and directed edges (causal links) represent



78 H. Kazi, P. Haddawy, and S. Suebnukarn

cause effect relationships between respective concepts. The hypothesis graph is based
on the Illness Script, where hypothesis nodes may represent enabling conditions,
faults or consequences [20]. Enabling conditions are factors that trigger the onset of a
medical condition, e.g., aging, smoking, etc.; faults are the bodily malfunctions that
result in various signs and symptoms, e.g., pneumonia, diabetes, etc.; consequences
are the signs and symptoms that occur as a result of the diseases or disorders, e.g.,
fatigue, coughing, etc.
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Fig. 1. System Prototype Interface

Our work is based on the extension of the COMET system [15] designed to cover
medical PBL for various domains. In the COMET system, each problem scenario is
first referred to human domain experts who provide an expert solution that is eventu-
ally encoded into the system. Student solutions are compared against this expert solu-
tion for evaluation. Thus a plausible student solution that does not match the expert
solution is not entertained. The system allows students to form their hypothesis by
choosing medical concepts from a repository manually encoded into the system. Stu-
dents are given feedback based on the current state of their knowledge, which is
assessed against a cognitive student model [15].

In our new system METEOR (Medical Tutor Employing Ontology for Robust-
ness), problem solutions collected from experts are combined with UMLS tables to
form the domain model. The pedagogical module of the system comprises a hint gen-
eration mechanism that leverages off of the UMLS concept hierarchy and provides
students a measure of partial correctness of their hypotheses. Assessment of student
solutions is not used to select the next step or task to be offered to the students. Fur-
thermore, the hint generation employs the rich domain knowledge of the UMLS in
lieu of a student model. Thus the design of our tutoring system does not include a
student model.

The problem representation in METEOR is the same as that in COMET of a di-
rected acyclic graph for forming the hypothesis. The student user is provided with a
workspace as a hypothesis board to form the hypothesis, along with a text chat pane
that returns hints to guide the student in clinical reasoning, as shown in Figure 1. The
student chooses concepts from the UMLS Metathesaurus [16] as hypothesis nodes
and draws edges between nodes, using a mouse. The problem solving activity begins
as the student is presented a problem scenario, such as the one shown in Figure 1.
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After studying the above problem scenario related to diabetes, the student hypothe-
sizes that Diabetes Mellitus is a cause of Hyperglycemia, which is shown to be a
cause of Diabetic Neuropathy, as shown in Figure 1.

4 System Domain Model

The UMLS [16] is a widely available medical knowledge source and is essentially a
collation of various medical ontologies and terminologies (MeSH, SNOMED-CT,
Gene Ontology, etc). The broad and diverse UMLS contains about two million medi-
cal concepts covering various medical domains [16].

The system domain model comprises UMLS tables and an additional table that is
henceforth referred to as the expert knowledge base. The expert knowledge base is
encoded with the help of human domain experts, and it contains causal relationship
between various medical concepts, such as:

Hyperglycemia = Decreased Glucose Transport into Cells

Diabetic Neuropathies > Numbness

Decreased Glucose Transport into Cells > Fatigue

The expert knowledge base is formed through the collation of expert solutions to
various problem scenarios. On average each expert solution leads to the addition of
about 70-80 causal links to the expert knowledge base. The construction of an expert
solution requires about 3-4 hours. Since each solution is in the form of a hypothesis
graph, the collation of different solutions implies the incremental addition of the
causal links in each solution, to the expert knowledge base.

5 Pedagogy of Assessment and Feedback

The hints generated by the system are composed of two elements: assessment of the
partial correctness of the student solution and guidance towards a correct solution.
Each hypothesis causal link drawn by the student is evaluated by the system through a
strategy that accepts plausible solutions beyond the scope of the explicitly encoded
ones [17]. If the link is found to be acceptable, the system allows the directed edge
(causal link) to be drawn; otherwise the system disallows the edge to be drawn and
returns an appropriate hint as feedback to the student. If the causal relationship drawn
by the student is essentially correct but requires additional intermediate nodes in be-
tween, then the system disallows the edge to be drawn and encourages the student to
describe the underlying mechanism. For example, considering the diabetes case de-
scribed above, if the student draws the link: hyperglycemia—> numbness, the system
would respond with the hint: “Yes, but...Think of the underlying mechanism as to
why hyperglycemia causes numbness.” On the other hand, if the student were to
draw the reverse link: numbness—>hyperglycemia, the system would respond with the
hint: ““On the contrary, think of hyperglycemia as a cause of numbness.”

If the student link does not fall into any of the cases described above, the system
makes use of a heuristic method to assess its partial correctness and deliver a hint to
guide the student towards the correct link. The purpose of partial correctness feedback
is to inform the student how close his/her solution is to be accepted. The hint
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pre-amble containing the partial correctness feedback is phrased as one of the follow-
ing: 1. “You are very close”, 2. “You are somewhat close”, 3. “You are a little far
off”, 4. “You are quite far off”, 5. “Hmm... Not sure. They may be a causal relation
between the two”, and 6. “Hmm... Can’t say about the relation between the two.”

5.1 Example 1: Partial Correctness through Semantic Distance

Imagine a situation related to the diabetes case mentioned above, where a student tries
to draw a causal link: hyperlipidemia > diabetic neuropathy. Suppose the expert
knowledge base does not recognize this link, however it recognizes that there is an
expert link: hyperglycemia > diabetic neuropathy. In other words, what should have
been hyperglycemia has been hypothesized by the student to be hyperlipidemia.

In order to assess the partial correctness of the student link, the system tries to find
the semantic distance between hyperlipidemia and hyperglycemia. The semantic dis-
tance is measured by employing a modified version of the method described by Al-
Mubaid & Nguyen [21]. Parent-child relationships from the UMLS Metathesaurus are
used to construct the isa hierarchy of both nodes between which semantic distance is
to be measured, as shown in Figure 2(a). Based on the value of the semantic distance,
the system judges whether the nodes are very close, somewhat close, little far, or quite
far. In this case, the system finds the two nodes to be somewhat close.

5.1.1 Guidance towards the Correct Solution

In order to guide the student towards the correct solution, the system examines the
parent-child hierarchy to judge the commonality between the student link and the
correct expert link. The system tries to find the lowest node in the hierarchy that is a
common ancestor to both concepts in question: hyperlipidemia and hyperglycemia.
The system finds that metabolic diseases is a common ancestor to both the concepts,
as shown in Figure 2(a). Thus the system infers that the student knows that a kind of
metabolic disease leads to diabetic neuropathy, however the student is not clear
which kind. The hint content is framed to guide the student reasoning from its current
position to the correct solution. This reasoning path of the hint content is shown in the
dotted arrow in Figure 2(a), which leads from hyperlipidemia round the common
ancestor towards hyperglycemia. Based on the assessment of partial correctness and
the reasoning path en route the correct solution, the system responds with the hint:
“You are somewhat close. For causes of diabetic neuropathy ... Instead of hyper-
lipidemia, think about other kinds of metabolic diseases. Think of A
heterogeneous group of disorders characterized by glucose intolerance”.

Here, ‘A heterogeneous group of disorders characterized by glucose intolerance’ is
the definition in UMLS for the concept: glucose metabolism disorder. In other words
the system gives the hint template: “Instead of <student node>, think about other
kinds of <common ancestor> and <definition of next child in line from the common
ancestor towards the expert node>".

If the student draws the link, renal glomerular disease > diabetic neuropathy, the
system measures the semantic distance between hyperglycemia and renal glomerular
disease and finds the two nodes to be a little far off. The hint is framed: “You are a
little far off. For causes of diabetic neuropathy ... Instead of renal glomerular
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disease, think more specifically about other kinds of Disorder of body system.
Think of Abnormally high BLOOD GLUCOSE level, beyond the normal range.”

If the student draws the link glucose metabolism disorder = diabetic neuropathy,
the system measures the semantic distance between hyperglycemia and glucose
metabolism disorder and finds the two nodes to be very close and accepts the student
link by giving the hint: “You are very close. I was thinking of hyperglycemia >
diabetic neuropathy, but glucose metabolism disorder is also acceptable. Good.”

o | Vascular Diseases | | MetabolicDiseases |

il ) “‘x\\“ fia

H | Arteriosclerosis I

Isa

Isa Glucose Metabolism

Disorders

Glucose Metabolism

Hyperlipidemia _ | Vascular Wall Degeneration |

Disorders A
; I‘?/- '\I::a ., - TT.\'il
; [ Hypercholesteremia | I Hyperglycemia I‘ ¥ I Endothelial Degeneration I l Hyperglycemia I
Fig. 2. (a) Concept Hierarchy: Example 1 (b) Concept Hierarchy: Example 2

5.2 Example 2: Partial Correctness through Co-occurrence Frequency

Imagine a situation related to a heart attack case, where a student tries to draw a
causal link: hyperlipidemia > hyperglycemia. The system does not find this link to be
acceptable, however, it finds an expert causal link: hyperlipidemia > endothelial
degeneration. In other words what should have been endothelial degeneration has
been hypothesized by the student to be hyperglycemia.

The system tries to find a common ancestor to both hyperglycemia and endothelial
degeneration, but is unable to find one. In this situation, the system cannot assess the
partial correctness through the semantic distance measure. As a weaker measure, it
checks to see if the UMLS has any information regarding the co-occurrence of
hyperlipidemia and hyperglycemia in medline citations. If the normalized co-
occurrence frequency is found to be greater than zero, the system forms the hint pre-
amble: “Hmm... There may be a causal relation between hyperlipidemia and
hyperglycemia.” Otherwise the following hint pre-amble is formed: “Hmm... Can’t
say about the causal relation between hyperglycemia and hyperlipidemia.”

5.2.1 Guidance towards the Correct Solution

In order to guide the student towards the correct solution, the system adopts an ap-
proach similar to the one described for Example 1. Since there is no common ancestor
in this case, the system tries to direct the student towards endothelial degeneration by
starting from a few ancestors above, as shown in Figure 2(b). The hint is framed as:
“For effect of hyperlipidemia ... Instead of hyperglycemia, think of kinds of vascu-
lar diseases and thickening and loss of elasticity of arterial walls.”

Here, ‘Thickening and loss of elasticity of arterial walls’ is the definition in UMLS
for the concept arteriosclerosis. In other words the system gives the hint template:
“Instead of <student node>, think about kinds of <great grandfather of expert node>
and <definition of grandfather of expert node>".
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6 Results

We classified the different kinds of hints and randomly selected 30 system generated
hints from student log files, which were evenly distributed across the hint classes.
Five faculty members from Thammasat University having more than five years of
experience in using PBL in teaching medicine, were asked to rate the sample of hints
on a 5-point likert scale: 1 (strongly disagree) to 5 (strongly agree). For each sample,
experts were shown the causal link drawn by the student and the corresponding expert
link as the correct solution, along with the hint generated by the system, as shown in
Figure 3 (a). In order to evaluate the utility of the partial correctness feedback, experts
were presented two versions of the same hint. As shown in Figure 3 (a), hint from
Tutor A contains the pre-amble of partial correctness feedback, for example “You are
somewhat close’, whereas the Tutor B hint is without this feedback pre-amble.

Hints containing partial correctness led to an average score of 4.44 (r = 0.9018, p <
0.05), whereas those without it led to an average score of 3.58 (r = 0.8463, p < 0.05).
Hints with partial correctness scored significantly higher than those without it (Wil-
coxon Rank Sum, p < 0.001). In order to measure the percentage of expert agreement
with hints, we collapsed the rating scale to Agree (4 or 5) and Disagree (1, 2 or 3);
results of agreement with each of the five experts are shown in Figure 3 (b).

Expert Link Student Link B With Partial Correctness
Pneumonia—> Lobar Pneumonia Pneumonia—>Dyspnea Without Partial Correctness
Hint From Tutor A 100

You are somewhat close
For effects of Pneumonia...
Instead of Dyspnea, think more specifically about other
kinds of Respiration Disorders. Think of A febrile disease
caused by STREPTOCOCCUS PNEUMONIAE
5:4:-3-2-1

Hint From Tutor B
For effects of Pneumonia...
Instead of Dyspnea, think more specifically about other
kinds of Respiration Disorders. Think of A febrile disease

Percentage of Agreement
w
o
|

caused by STREPTOCOCCUS PNEUMONIAE 1 2 3 4 5
5:4-3-2-1 Experts
Fig. 3. (a) Sample of Hint for Evaluation (b) Percentage of Agreement

7 Discussion

The overall average score of 4.44 and high percentages of agreement indicate strong
expert acceptance of the system generated hints. The expert, who agreed with the
system hints the most, agreed 93% of the time, whereas the expert with least agree-
ment agreed 83% of the time. Furthermore, the hints including the element of partial
correctness scored significantly higher than those without it, which shows that the
experts found the partial correctness feedback to be very useful.

According to one PBL expert, some of the content in the sample of hints was even
better than what an average PBL tutor would be able to conceive of. This is because
not all PBL tutors are experts in all of the PBL cases. Their knowledge about concepts
is sometimes lacking in certain areas and they are not always able to conceive of the
right description for a particular concept. In fact, this is also possible in the case of
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UMLS, where the definition text is missing for some concepts. It is worth noting that
hints that contained the concept definition text scored higher than those where this
text was missing in UMLS. Thus in domain areas where UMLS had knowledge gaps,
the generated hints were not as good. This reflects some similarity between the hint
leveraging off of UMLS and the hints produced by a human expert.

8 Conclusions

In this paper we have described how to ease the bottleneck of expanding a tutoring
system. We have described how an existing broad knowledge source such as the
UMLS, can be deployed as the domain ontology and its structure leveraged to assess
the partial correctness of the student solution and generate hints based on the context
of the student activity. Compared to the previous version of COMET, the time for the
development and encoding of a new problem scenario has been drastically reduced
from one person-month to 4-5 person-hours.

We have described the system implementation in the context of medical PBL, but
the techniques could easily be applied to other domains where the task involves causal
relationships and the domain ontology also contains a textual definition of the con-
cepts. The techniques could be particularly relevant for other ill-defined domains,
which require greater flexibility in assessment and feedback.

In interpreting the results of the proposed techniques, it is worth noting that the
domain ontology has not been crafted specially for the task of medical PBL. A pur-
pose built domain ontology is likely to yield better results, especially when its utility
for hint generation is considered at the time of design.

Inference techniques applied to a large knowledge source such as UMLS, can be
quite taxing on the processing power and result in delayed system response. Further-
more, our hint generation strategy leveraging off an existing knowledge source does
not take into account the possibility of students having misconceptions at the ontology
level, which could be addressed in a future study.

We intend to evaluate the impact of hints containing partial correctness on the stu-
dent learning outcomes and have students evaluate the generated hints too. Finally we
would like to compare and examine the tradeoffs between the clinical reasoning gains
acquired through METEOR and through COMET, especially in light of the fact that
as previous studies have shown, a feedback strategy such as the one proposed in this
paper, may not be as effective as those that stem from a carefully captured cognitive
student model. Nonetheless the tradeoff may be worth it, if one considers the long
term ramifications in adding new cases for the large scale deployment of tutoring
systems for instructional purposes.
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Abstract. Many of the most important learning goals can only be
achieved over several years. Our CUSP system helps achieve this over the
3-to-5 years of a university degree: it enables each teacher to map their
own subject design to institutional learning goals; it creates both sub-
ject and degree-level models. It tackles the semantic mapping challenges
using a highly flexible lightweight approach. We report its validation for
102 degrees and 1237 subject sessions. CUSP makes a contribution to
understanding how to model long term learning of generic skills, using
a lightweight semantic mapping based on multiple sets of externally de-
fined learning goals. The work contributes to understanding of how to
create comprehensive models of long term learning within degrees that
are practical in real environments.

Keywords: Curriculum Mapping, Graduate Attributes, Accreditation
Competencies, Learner Model.

1 Introduction

University degrees typically aim to build learners generic skills, such as written
and spoken communication, team work and design and problem solving. These
are highly valued both within learning institutions and by outside groups, no-
tably employers. Learners need to develop these skills progressively, over several
years, aided by a suitable sequence of learning experiences.

To ensure such long term learning over a whole degree, designers of each sub-
ject must appreciate how their subject fits into the full curriculum. Also, those
responsible for each degree must ensure that generic skills are developed via a se-
ries of learning activities across subjects. This is quite complex, especially where
students have flexibility to select elective subjects that match their background,
interests and goals.

Despite the importance of learning generic skills, it is difficult to rigorously
classify the skills learned in each subject. For this, we need to define two aspects:
the generic skill; and the level of that skill. I'TS research has typically dealt with
fine grained ontological models for learning design, such as [10]. This is not
adequate for our goals to model long term learning of generic skills.

A central problem is that the semantic model describing the learning pro-
gression must be agreed upon and used by several groups of people. Firstly, the
lecturer responsible for teaching a particular subject must understand just what
is required from their subject; otherwise they may fail to keep it true to the

V. Aleven, J. Kay, and J. Mostow (Eds.): ITS 2010, Part I, LNCS 6094, pp. 85 2010.
© Springer-Verlag Berlin Heidelberg 2010
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curriculum. Secondly, people at the faculty level must understand the curricu-
lum design well enough to assess if it does develop the faculty’s required generic
attributes. Outside the university, accreditation bodies must be convinced that
their stated learning requirements are met. Importantly, universities and accred-
itation bodies each define their own descriptions of generic skills.

For example, our Bachelor of Software Engineering (BSE) degree, must meet
curriculum requirements defined in:

1. Engineering Australia (EA) Stage 1 Accreditation competencies,

2. Association of Computing Machinery learning objective recommendations,
3. Australian Computer Society skill recommendations and

4. University of Sydney Faculty of Engineering Graduate Attributes.

Note the different terms: skills, competencies, learning objectives, attributes. For
the rest of the paper, we refer to these as attributes.

Another challenge comes from subject choice. Any allowed elective subjects
must enable the student to achieve required attributes. Students must do them
in the correct sequence, for progressive learning. So, curriculum designer must
identify the attributes learned in each subject in designing a degree.

So far we have considered a single degree. A university can offer many. For ex-
ample, in 2010, our university will offer over 600 degrees and over 13,000 subject
sessions. Many must meet external accreditation, vocational and institutional
attributes like those of the BSE.

We now describe how we have tackled this problem of modeling subjects and
degrees. The next section describes related work, followed by our approach and
the user view of our CUSP system. We then report its validation. We conclude
with lessons learned and future work.

2 Related Work

The need for better support for designing and maintaining university degrees
is recognized: as described by Mulder et. al. [§] for European standards-based
design of university curricula. They report on various projects from England,
Germany, France and Netherlands, noting the need for quality control, the lack
of support tools for this and the challenge of multiple descriptions of the learning
goals as we discussed above. McKenney et. al. [7] describe the multi-phased
nature of this process and they reiterate the need for better tools to support
curriculum designers.

Koper [6] explored approaches to modeling curriculum elements via a meta-
model, in EML (Educational Modeling Language)ﬁ. With an e-Learning focus,
subjects were represented as collections of reusable learning objects (LOs). It
is unclear how this can scale to the degree level. While various other modeling
standards (e.g. IEEE LOM, IMS LIP, SCORM, HR-XML, IMS-RDCEOQO) deal
with parts of a whole degree, they do not help with the degree design complexity
problems or multiple attribute framework semantic mapping challenges.

! Educational modeling Language, http://www.learningnetworks.org/?q=EML
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Ontological approaches to such mappings have been attempted in various
forms by Mizoguchi [10] (also using EML and IMS-LD), Van Assche [1], Paquette
et. al. in the LORNET TELOS project [9] and others. These are promising, but
cannot meet our goals. Paquette et. al. express this concern: “what is yet to be
proven is that the general approach presented here can be used at different levels
by average design practitioners and learners”. Kalz et. al. |5] also share this view:
“the design and implementation of competence ontologies is still a very complex
and time-consuming task”.

Bittencourt et. al. [2] explore use of semantic web technologies to improve cur-
riculum quality and support the design process. They conclude, however, that “a
large-scale use of SW for education is still a futuristic vision rather than a con-
crete scenario” and the implementation of ontologies is sometimes “more an art
rather than technology”. Winter et. al. [11] also realize the strengths and limita-
tions of traditional ITS systems with “carefully crafted” content and ontologies
vs. e-Learning systems that are typically standards based but have “content
crafter by normal authors”. To support lifelong learning, domain-specific ontolo-
gies will need to be mapped to each other but “in a realistic setting...this may
be difficult to do” [11].

A limited implementation of attribute-to-subject mapping was employed by
Calvo and Carroll |4] in their Curriculum Central (CC) system. It had a single
attribute framework, to map a large set of subjects to these attributes. However,
it could not deal with the critical external accreditation or vocational attributes,
nor the complexity of elective subject choices.

Bull & Gardner [3] mapped multiple choice questions, in several subjects,
to UK SPEC Standards for Professional Engineering attributes (UK-SpecIAL).
As students complete online questions, the system builds open learner models,
enabling students to see their learning progress, and which subjects could provide
the missing attributes. This gave students a valuable big-picture view. However,
the system lacks the generality we need, i.e. mapping across all forms of learning
activities and assessments and supporting multiple sets of learning attributes.

3 Approach

Our approach is to create lightweight, two part models, based on attribute defini-
tions and level definitions. These support models with the semantic relationships
between any sets of attributes. We took this approach for modeling generic skills,
due to the generality of their attribute definitions with the level definitions be-
ing sub-concepts that are also broad. This approach seemed promising for our
multiple goals, notably the pragmatics of meeting the needs of teaching staff,
institutions and accreditation.

Taking the institutional goals as the base model, we establish a set of attribute
definitions from the established set of graduate attributes. This is an important
decision: we consider the foundation should come from the institution’s own
goals. In our case, this has just 7 top-level attributes, most covering generic
skills. For example, Design and Problem Solving Skills, one of the 7 top-level
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attributes, is defined as the Ability to work both creatively and systematically in
developing effective, sustainable solutions to complex practical problems.

To model progression in learning, we assigned 4 or 5 level definitions for each
attribute. This gives a coarse set of levels for key stakeholders to agree on, both
for the levels and for classifying learning activities. This granularity is meaningful
to model progression over the 3 to 5 years of a degree.

To incorporate other attribute frameworks into the base model, the curriculum
designer maps their attributes against the base model attribute definitions and
level definitions. So, for example, the EA Accreditation Competency statement
“experience in personally conducting a major design exercise to achieve a substan-
tial engineering outcome to professional standards’ maps to our faculty Design and
Problem Solving Skills attribute at Level 8. Additional frameworks can be system-
atically incorporated into the model by repeating this process. This means that
subject lecturers map their subject assessments and learning activities to the insti-
tutional base model. They can ignore other attributes sets, minimizing demands
on them. A big-picture view of a degree can be extracted from the model for any
of the attribute frameworks, simply by resolving the semantic relationships.

4 CUSP User View

CUSP3 implements this approach, with interfaces to manage the modeling pro-
cesses. Figure [l illustrates part of the base model, with the two level hierarchy of
attribute definitions such as Fundamentals of Science and Engineering and an
associated level definition, expanded in the figure. It aims to avoid restrictions
on the structure of an attribute set. Attributes can be arbitrarily nested, or flat.
Each attribute can be given a code, a label and a description and it can have
any number of levels, each with their own descriptions. Clicking the yellow "E’
control next to an attribute or level brings up the floating Equivalence editor
(bottom-right of Figure [Ml). This enables curriculum designers to define many-
to-many semantic relationships between attributes or levels from different sets.
The mappings are accessible and editable from either side.

We now describe the lecturer view for individual subjects. A lecturer can define
a high level subject outline with information such as a handbook description,
prerequisite/prohibition subject requirements, teaching methods & activities,
learning outcomes, assessment tasks, resources and scheduling information. The
fields are on the tabs for easy navigation as shown in Figure 2

This shows a set of 5 attributes from our Faculty of Engineering Graduate
Attribute Framework. Each maps to a specific level (clicking the attribute brings
up full textual descriptions). The lecturer provides a free-form description stating
how the attribute is supported by the subject. The subject attributes are further
mapped (by lecturers) to learning outcomes and indirectly to assessments (each
assessment can be mapped to one or more weighted learning outcomes).

On the degree side, a degree coordinator links a degree to any number of
attribute frameworks. Our Bachelor of Software Engineering degree links to the

2 Course & Unit of Study Portal - course being a degree and unit of study a subject.
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Fig. 1. Example of attributes from Faculty of Engineering Graduate Attribute Frame-
work, with floating equivalent editor bottom-right
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Fig. 2. Attributes linked to a subject and described by lecturers via development
methods

Faculty of Engineering Attribute Framework and the EA Accreditation Stage 1
Competency Standards. The degree structure is then defined in terms of core
and elective subjects, streams and recommended elective blocks.

We now have multiple attribute frameworks captured in the system, as well
as the semantic relationships between attributes and levels, the mappings of
attributes to subjects, learning activities and assessments, and the degree core/
elective subject structures. These are all the pieces we need to start building our
big-picture view of full 3-to-5 year degrees.

Figure B shows our Bachelor of Software Engineering degree in terms of the
Faculty of Engineering Attribute Framework. The left column of the matrix
has 7 top-level attributes and along the top are columns for each level defined.
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Fig. 3. Overview of the BSE degree in terms of planned, practiced and assessed attributes

Clicking an attribute in the left column brings up the full descriptive text for
reference. In the cells of the matrix lists of subjects that develop the attribute
at the corresponding level. The plus/minus markers next to each subject code
differentiate between planned, practiced and assessedd attributes. The red Adw.
Recommended subject label in Design and Problem Solving Skills, Level 4 rep-
resents a subject recommended elective block (the placement of this block in the
matrix is based on a CP threshold formula). The two drop-down boxes at the
top allow the selection between different report types and, importantly, between
the different attribute frameworks linked to the degree.

Switching to the EA Accreditation attribute framework regenerates the report
as shown Figure[dl We now see the EA Accreditation competencies along the left
column and the relevant subject codes in the right column. The EA attributes
do not have any levels and hence no additional cells to the right. The list is
easily scrollable however and an accreditation review panel could easily look at
this to see which subjects support each attribute and if there are any knowledge
gaps. Clicking on the subject takes the user to the full outline describing the
precise attribute mappings. Notice that this report is generated by exercising
our semantic equivalence mappings. We could easily map additional attribute
frameworks to our BSE degree and generate similar reports.

3 Here planned means material is in the curriculum but there are no linked learning
activities or assessments, practiced means there are activities but no assessments.
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Degree Programs - BE » Bachelor of Engineering (Electrical) - 2010 & =

Semesters | Streams | UnitBlocks || Aftribute Sets

Program Attributes: | Compare | [ Stage 1 Competency Standards for Professional Engneers |« | ¥ Equivalents | Show
Legend:

All units are planned (i e attribute linked to unit).

- units are practiced (i.e. attribute linked to methodis).

+units are assessed (i.e. aftribute linked to assessmentis).

PE1: KNOWI EDGE BASE

PE1.1: K of science and
fundamentals

PE1.1a: Sound knowledge of mathematics to | ELEC1103 -+
the level required for fluency in the MATHZ061 -
techniques of analysis and synthesis that are
relevant to the broad field of engineering. and
to y related fields

PE1.1b: Sound basic knowledge of the ENGG1805 - +
physical sciences, life sciences. and MATH1001
information sciences underpinning the broad | MATH1002 -
field of engineering and potentially related MATH1003 -

fields. and appreciation of scientific method | MATH1005 -
PHYS1001 -

Fig. 4. Switch to the EA Stage 1 Accreditation Competency Framework

The chart visualization in FigureBlis another big-picture view of our BSE de-
gree. Along the x-axis we have the 7 faculty attributes. Along the y-axis we have
the percentage distribution of each attribute in terms of assessments. That is, the
BSE degree devotes roughly 22% of all assessment tasks to Design and Problem
Solving Skills. Fach column is further broken down into the corresponding at-
tribute levels, which are color-coded. A mouse-over reveals the precise percentage
distribution of each level.

5 Validation

The CUSP system has been deployed to three Faculties, namely Engineering,
Architecture, Design and Planning, and Health Sciences. It has been populated
with 8 generic attribute sets, 278 individual attributes, 102 degrees, 886 subjects,
1237 subject sessions, 3849 learning outcomes and 2418 assessment items. Alto-
gether 2189 of the 2418 assessment items have been mapped to specific subject
learning outcomes which were in turn aligned to the relevant generic attributes
for the subject. The capture of outcomes, assessments and graduate attribute
relationships has relied upon a combination of lecturer and administrative staff
input. Outcome and assessment mappings have been reviewed and adjusted by
degree coordinators or other experienced staff wherever possible. Quality of map-
pings varies widely from subject to subject and degree to degree but the data
has been sufficient to begin generating some quality review reports through the
system itself.

We conducted a test to validate the equivalence mapping approach as de-
scribed in Section 4. To make this test more effective we performed it on two
very different professionally accredited degrees: a 2-year Masters degree and a
4-year Bachelor degree; each in a different faculty. Subjects for each degree were
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Program Attribute Assessment Distribution
—Level 1l —Level2 —Level 3 —Level4 —Level5

35.29

31.85

28.21

24.77

21.24

17.7

14.186

10.62:

7.08

3.54

Fig.5. A stacked column chart showing percentage distribution of assessed faculty
attributes

mapped against the relevant faculty’s primary attribute framework, which was
in turn mapped, via equivalence relationships, to a second framework comprised
of competency standards required for accreditation.

A report compiling subject learning outcomes under accreditation compe-
tency headings was generated for each degree. A recent graduate of each de-
gree was asked to examine each outcome and determine in each case whether
it represented a meaningful contribution to the competency descriptor under
which it appeared. In cases where the match was not confirmed, the learning
outcome mapping to the faculty graduate attribute framework was checked,
by a curriculum expert, to determine whether the failure came from origi-
nal data entry (learning outcome mapped to incorrect generic attribute/level),
or from an equivalence mapping error (learning outcome mapped to correct
generic attribute/level, but accreditation competency equivalence mapped to
incorrect generic attribute level), or an attribute translation error (learning out-
come mapped to correct generic attribute/level with correct equivalence map-
ping, but mismatch with learning outcome). All three failure types were found,
as shown in Table [I] below.

The Masters degree had a high match ratio between learning outcomes and
equivalence attribute mappings (92.28%), with only 4.56% of mismatches due to
attribute translation errors (i.e. loss of context in cross-mapping more granular
accreditation competencies to more generic faculty attributes, which are then
mapped to more granular subject learning outcomes). The Bachelor degree did
not fair as well with only a 49.63% match ratio between learning outcomes and
accreditation attributes. The primary cause of this low ratio was due to incorrect
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Table 1. Learning Outcomes matching accreditation competency descriptors as re-
solved via attribute equivalence mappings for two professional degrees

Masters % Bachelor %

Learning outcome mapping relationships 285 544

Relationships confirmed 263 92.28 270 49.63
Relationships not confirmed 22 7.72 274 50.37
Failure at learning outcome source 8 2.82 208 38.24
Error in equivalence settings 1 035 27 4.96
Attribute grouping hard to translate 13 4.56 38 6.99

mappings between learning outcomes and the core faculty attribute framework.
The attribute translation failure rate was only 6.99%. This degree, related sub-
jects and core faculty attribute mappings were imported from an earlier system
which had no accreditation competency equivalences defined, whereas the Mas-
ters was a newly created degree and hence had more accurate data.

This validation exercise shows our light-weight approach does not provide
perfect mappings between degree subjects and multiple attribute frameworks.
Equivalence translation errors sometimes appear due to the multi-level mapping
of attributes at different granularities. The mappings are, however, valid to a
large extent when data is correctly entered. High mismatches can be identified
via the reporting tools which signal the need for further evaluation to determine
the source of failure, which is valuable for long term degree quality control.

6 Conclusions and Future Work

We have described our approach to support design of flexible degrees that are
accountable in terms of ensuring that important generic skills and accreditation
requirements are met over the full 3-to-5 year duration. We have implemented
this in CUSP and reported its use to map multiple attribute frameworks to indi-
vidual degrees, and map attributes to each core or elective subject that is part of
a degree. The CUSP reporting tools give lecturers and degree coordinators a big
picture view of entire degrees. This helps identify knowledge gaps, accreditation
requirement gaps, and progressive learning inconsistencies.

We have validated our approach by deploying the system on a large scale in a
live university environment with real data. The system is in active use with 102
degrees, 1237 subject sessions and 8 different attribute frameworks. From the
evidence of Table[I] the equivalence mapping tool is certainly not a mechanism
for eliminating all errors or weakness in curriculum design and documentation
but rather tends to amplify the impact of any errors present. In doing so, it
provides a sensitive test of quality in all the elements concerned.

While CUSP has demonstrated the value of our approach for curriculum de-
signers, at the level of the subject and the degree, we plan to extend our ap-
proach to incorporate available assessment data within each subject to create
detailed individual student models. To do this, we will move beyond our current
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mapping of attributes to assessments via learning outcomes. This will allow us
to explore the value of personalized attribute progress matrices for students in
terms of making more informed subject enrollment decisions, personal reflection
and gaining a better understanding of the governing factors influencing their
degree. It will also provide a basis for longitudinal data mining of the learner
models to improve understanding of the causes of student difficulties.

Acknowledgments. The CUSP Project is supported by the University of Syd-
ney’s Teaching Improvement and Equipment Scheme (TIES).

References

1]

2]

3]
[4]

[5]

[6]
[7]

8]

[9]

[10]

[11]

Assche, F.V.: Linking learning resources to curricula by using competencies. In:
First International Workshop on LO Discovery & Exchange (2007)

Bittencourt, I., Isotani, S., Costa, E., Mizoguchi, R.: Research directions on Se-
mantic Web and education. Journal of Scientia-Interdisciplinary Studies in Com-
puter Science 19(1), 59-66 (2008)

Bull, S., Gardner, P.: Highlighting learning across a degree within an independent
open learner model. ATIED 200, 275-282 (2009)

Calvo, R., Carroll, N., Ellis, R.: Curriculum central: A portal system for the aca-
demic enterprise. IJICEELL 17(1), 43-56 (2007)

Kalz, M., van Bruggen, J., Rusman, E., Giesbers, B., Koper, R.: Positioning of
learners in learning networks with content, metadata and ontologies. Interactive
Learning Environments 15(2), 191-200 (2007)

Koper, R.: Modeling units of study from a pedagogical perspective: the pedagogical
meta-model behind EML. In: OTEC (2001)

McKenney, S., Nieveen, N., van den Akker, J.: Computer support for curriculum
developers: CASCADE. JETRD 50(4), 25-35 (2002)

Mulder, M., Weigel, T., Collins, K., Bibb, B.: The concept of competence in the
development of vocational education and training in selected EU member statesa
critical analysis. JVET 59(1), 67-78 (2007)

Paquette, G., Rosca, 1., Mihaila, S., Masmoudi, A.: TELOS, a Service-Oriented
framework to support learning and knowledge management. In: E-Learning Net-
worked Environments and Architectures: A Knowledge Processing Perspective, p.
434 (2007)

Psych, V., Bourdeau, J., Mizoguchi, R.: Ontology development at the conceptual
level for Theory-Aware ITS authoring systems. In: AIED, pp. 491-493 (2003)
Winter, M., Brooks, C., Greer, J.: Towards best practices for semantic Web student
modelling. In: Proceedings: 12th ICAIED, pp. 694-701. IOS Press, Amsterdam
(2005) (Citeseer)



Eliciting Informative Feedback in Peer Review:
Importance of Problem-Specific Scaffolding

Ilya M. Goldin'? and Kevin D. Ashley"*”

! Intelligent Systems Program
2 Learning Research & Development Center
3 School of Law
University of Pittsburgh
Pittsburgh, PA
{goldin,ashley}@pitt.edu

Abstract. In a controlled experiment using Comrade, a computer-supported
peer review system, student reviewers offered feedback to student authors on
their written analyses of a problem scenario. In each condition, reviewers re-
ceived a different type of rating prompt: domain-related writing composition
prompts or problem/issue specific prompts. We found that the reviewers were
sensitive to the type of rating prompts they saw and that their ratings of authors’
work were less discriminating with respect to writing composition than to prob-
lem-specific issues. In other words, when students gave each other feedback re-
garding domain-relevant writing criteria, their ratings correlated to a much
greater extent, suggesting that such ratings are redundant.

Keywords: computer-supported peer review, ill-defined problem-solving.

1 Introduction

Computer-supported peer review deserves the attention of ITS researchers as an in-
structional activity that seems to bring many benefits to both students and educators.
[1] For instance, students benefit in that receiving feedback from multiple peers’ on
the first draft of an assignment can lead them to improve the quality of their second
drafts even more than receiving feedback from an expert. [2] Student authors receive
an extra channel of feedback in addition to and distinct from assessment by the in-
structor or self-assessment [3], and, in playing both roles of author and reviewer,
students may learn from engaging in an authentic activity in the many professional
domains that institutionalize peer review. One advantage to educators is that when
students give each other feedback, they free the educator to focus on other tasks (such
as providing struggling students with individual attention).

When augmented with Al techniques, computer-supported peer review may pro-
vide ITS research with methods for addressing ill-defined problems even in writing-
intensive courses. Ill-defined problem-solving presents a test case for Intelligent
Tutoring System technology. [4] ITS have been used for problem-solving when a
student’s answer or solution procedure can be compared against a gold standard, in
domains such as geometry and physics. [5, 6] In contrast, ill-defined problems may
have no correct answer, or multiple defensible answers, or no way to define a priori
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what constitutes an acceptable response. So long as an ITS cannot assess a student’s
answer, it cannot update its representation of what the student does and does not
know, the so-called student model. This precludes it from tutoring the student through
guidance, feedback and selection of new problems. Writing-intensive courses often
focus on problems that are ill-defined. These problems are usually distinguished by a
goal that can be perceived only through analysis and refinement, and by allowing
multiple acceptable solution paths. Solvers may frame ill-defined problems differently
according to their knowledge, beliefs, and attitudes, thereby yielding different repre-
sentations for the problem in terms of relevant facts and applicable operators. [7]
Analyses of ill-defined problems are often in free-form text since they require argu-
ments and justifications for one solution over others. They exist in many domains, and
they are central to domains such as law, where practitioners must map statutes and
precedents to the facts of new cases, as the law students had to in the peer-reviewed
exercise in the experiment described below.

Free-form student answers to ill-defined problems may be difficult for a computer
to interpret, but not for a student’s peers. In our computer-supported peer-review
system, called Comrade, Al techniques are used to aggregate the feedback that peer
reviewers give each other into a student model that estimates attainment of learning
objectives. Comrade asks reviewers to provide written feedback as well as numeric
ratings of peer work. In this paper, we examine an important aspect of the feasibility
of Comrade’s design, namely the extent to which student peer reviewers are sensitive
to different types of rating prompts. As students evaluate each other's written work,
these prompts serve as a scaffold, focusing the reviewers on different aspects of the
work. In addition, as Comrade compiles a student model based on the students’ feed-
back, it needs to know whether the reviewers’ ratings provide useful information.

A variety of peer review systems has been developed in support of teaching in
many domains and according to different instructional strategies and demands. [2, 8-
13] Some systems, including SWoRD [2], CPR [8], and Comrade, allow the instructor
to specify the rubric according to which reviewers evaluate the peer author’s work.
The designers of SWoRD purposefully focused prompts on three criteria (insight,
logic, and style) that could be applied to writing in any domain. For example, a do-
main-independent rating point from a SWoRD rubric on the logic of the argument
was “All but one argument strongly supported or one relatively minor logical flaw in
the argument.” ' It is also possible for a rubric to be highly specific to the assignment.
In one deployment of CPR, the rubric contained the question “Does the summary
state that the study subject was the great tit (Parus major) or the Wytham population
of birds? AND does the summary further state that the sample size was 1,104 (egg)
clutches, 654 female moms, or 863 identified clutches?” [15]

Given the variety of possible strategies that can be employed in creating prompts
for peer review, and given the fact that prompts influence the experience of both re-
viewers and authors, it is important to determine whether some kinds of prompts
are more valuable than others. For example, it is desirable to avoid prompts that
yield redundant information. It is also possible that some prompts can scaffold re-
viewers in acquiring domain knowledge better than others. In the work described
here, we compared the effects of two types of rating prompts: prompts that focus on

! For an example of a full SWoRD rubric, see the appendix to [14].
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domain-relevant aspects of writing composition versus prompts that focus on issues
directly pertaining to the problem and to the substantive issues under analysis. We
considered that when an instructor gives a student a rubric to assess another’s paper,
interacting with this rubric can cause the student to focus on those issues that are
made prominent in the rubric. For example, if the rubric looks at domain-independent
issues of writing composition, that communicates to the reviewer that the instructor
sees various discourse features as important. We then articulated two kinds of
prompts which may be particularly useful to the reviewer. Prompts that focus on writ-
ing in the domain can communicate to the reviewer the importance of various do-
main-specific discourse features, while prompts that relate to the subject of the essay
under review can emphasize critical elements of the assignment.

In section 2 of this paper, we describe the Comrade system and the two kinds of
prompts (domain writing versus problem/issue specific) it delivered to students in a
controlled experiment involving peer-review of a take-home midterm examination
essay. In section 3, we present empirical evidence that student peer reviewers are
sensitive to the two types of rating prompts and that their ratings of each other's work
are less discriminating with respect to writing composition than problem-specific
issues. As discussed in section 4, this is pedagogically important. When students give
each other feedback regarding domain-relevant writing criteria, their ratings corre-
lated to a much greater extent, suggesting that the ratings are redundant. We discuss
the significance of these results for the design, implementation, and evaluation of
intelligent tutoring systems that employ peer review as a mechanism for teaching
skills of ill-defined problem-solving.

2 Methods

Hypotheses. Our first hypothesis is that peer reviewers are sensitive to the difference
between prompts that focus them on writing in the domain (from now, “domain-
writing prompts”) vs. prompts that focus them on details of the assignment (from
now, “problem-specific prompts”). This hypothesis is operationally defined in our
study as a between-subjects manipulation with two conditions: domain-writing
prompts and problem-specific prompts. To test this hypothesis, we first introduce a
definition:

Consider that peer review can be seen as a directed graph. Let every student be
viewed as a node. When the student acts as a reviewer, there are outbound edges from
this student to the peer authors whose work she is reviewing. When the student acts as
an author, there are inbound edges to this student from the other students reviewing
her work. Thus, the ratings received by a student are that student’s inbound ratings,
and the ratings given by a student are that student’s outbound ratings.

If peer reviewers are not sensitive to variations in rating prompts, then peer au-
thors’ inbound ratings according to different prompts will be highly correlated; if
reviewers are sensitive, peer authors’ inbound ratings will not be highly correlated.

Our second hypothesis is that when a rubric supports a reviewer in evaluating an-
other student’s work, the rubric may act as a scaffold in focusing the reviewer on key
domain concepts, thus making it more likely that the reviewer will understand these
concepts. We compared student understanding of key domain concepts before and
after reviewing in terms of performance on an objective test, as described below.
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Participants. All 58 participants were second or third year students at a major US law
school, enrolled in a course on Intellectual Property law. Students were required to
take a midterm examination and to participate in the subsequent peer-review exercise.
For purposes of ensuring comparability of conditions and interpreting results, the
participants’ Law School Admission Test (LSAT) scores, and instructor-assigned
scores on the midterm were collected (48 of 58 students opted to allow their LSAT
scores to be used). The participants were randomly assigned to one of the two condi-
tions in a manner balanced with respect to their LSAT scores. For simplicity of analy-
sis, an author could only receive reviews from reviewers in the same condition.

Participants were asked to perform a good-faith job of reviewing. The syllabus in-
dicated, “a lack of good-faith participation in the peer-reviewing process as evidenced
by a failure to provide thoughtful and constructive peer reviews may result in a lower
grade on the mid-term.”

Apparatus. As noted, we hypothesize that different kinds of ratings prompts focus
reviewers on different aspects of the author’s work. In this paper, we only examine
reviewer responses to rating prompts, although reviewers also gave written evalua-
tions of the same dimensions of peer work that they rated numerically. We collected

Table 1. Domain-writing rating prompts. Reviewers rated peer work on four criteria pertaining
to legal writing.

Issue 1 - fails to identify any relevant IP issues; raises only irrelevant issues
Identification 3 - identifies few relevant IP issues, and does not explain them clearly;
(“issue”) raises irrelevant issues
5 - identifies and explains most (but not all) relevant IP issues; does not
raise irrelevant issues
7 - identifies and clearly explains all relevant IP issues; does not raise
irrelevant issues
Argument 1 - fails to develop any strong arguments for any important IP issues
Development 3 - develops few strong, non-conclusory arguments, and neglects

(“‘argument”)

counterarguments

5 - for most IP issues, applies principles, doctrines, and precedents;
considers counterarguments

7 - for all IP issues, applies principles, doctrines, and precedents;
considers counterarguments

Justified 1 - does not assess strengths and weaknesses of parties’ legal positions;
Overall fails to propose or justify an overall conclusion
Conclusion 3 - neglects important strengths and weaknesses of parties’ legal position;

(“conclusion”)

proposes but does not justify an overall conclusion

5 - assesses some strengths and weaknesses of the parties’ legal positions;
proposes an overall conclusion

7 - assesses strengths and weaknesses of parties’ legal positions in detail;
recommends and justifies an overall conclusion

Writing 1 - lacks a message and structure, with overwhelming grammatical prob-
Quality lems
(“writing”) 3 - makes some topical observations but most arguments are unsound

5 - makes mostly clear, sound arguments, but organization can be difficult
to follow
7 - makes insightful, clear arguments in a well-organized manner
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Table 2. Problem-specific rating prompts. Reviewers rated peer work on five problem-specific
writing criteria (the claims), which all used the same scale.

Claims: Smith v. Barry for breach of the nondisclosure/noncompetition agreement
(“nda”)
Smith v. Barry and VG for trade-secret misappropriation (“tsm’)
Jack v. Smith for misappropriating Jack’s idea for the I-phone-based
instrument-controller interface (“ideal”)
Barry v. Smith for misappropriating Barry’s idea for the design of a Jimi-
Hydrox-related look with flames for winning (“idea2”)
Estate of Jimi Hydrox v. Smith for violating right-of-publicity (“rop”)
Rating scale: 1 - does not identify this claim
3 - identifies claim, but neglects arguments pro/con and supporting facts;
some irrelevant facts or arguments
5 - analyzes claim, some arguments pro/con and supporting facts; cites some
relevant legal standards, statutes, or precedents
7 - analyzes claim, all arguments pro/con and supporting facts; cites relevant
legal standards, statutes, or precedents

ratings according to Likert scales (7 points, grounded at 1,3,5,7). Each condition
received a different set of rating prompts, either domain-writing (Table 1), or prob-
lem-specific (Table 2).

The researchers conducted the study via Comrade, a web-based application for
peer review. For purposes of this study, Comrade was configured to conduct peer
review in a manner that approximates the formal procedures of academic publication.
In the tradition of the SWoRD and CPR systems, peer review in the classroom usually
involves the following sequence of activities:

1. Students write essays.
Essays are distributed to a group of N student peers for review.
The peer reviewers submit their feedback to the essay authors.

The authors give “back reviews” to the peer reviewers.

ok v

The authors write new drafts of their essays.

Steps 2-5 can be repeated for multiple drafts of the same essay. In SWoRD, reviewers
generate feedback (step 3) according to instructor-specified criteria, and authors
evaluate the feedback they receive (step 4). Papers are chosen using an algorithm that
ensures that the reviewing workload is distributed fairly, and that all authors receive a
fair number of reviews. Conventionally, all students act as both authors and review-
ers. As authors, they may write in response to the same domain problem or different
problems. As reviewers, they may formulate their feedback in different formats, in-
cluding written comments and numeric ratings.

For this study, we followed phases 1 through 4, and omitted phase 5. In addition,
students took a pretest (described below) between phases 1 and 2, and a posttest
between phases 2 and 3. After authors gave back-reviews in phase 4 and before back-
reviews were delivered to reviewers, all students were invited to fill out a survey.
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Procedure. As stated, the participants’ activities in our study proceeded in five
phases, with a pretest and posttest before and after the reviewing.

Just prior to the peer-review exercise, participants completed writing a mid-term,
open-book, take-home examination. It comprised one essay-type question, and stu-
dents were limited to writing no more than four double-spaced or 1.5-spaced typed
pages. Students had 3 days to answer the exam question.

As is typical of law school essay exams, the question presented a fairly complex
(2-page, 1.5-spaced) factual scenario and asked students “to provide advice concern-
ing [a particular party’s] rights and liabilities given the above developments.” The
instructor designed the facts of the problem to raise issues involving many of the legal
claims and concepts (e.g., trade secret law, shop rights to inventions, right of public-
ity, passing off) that were discussed in the first part of the course. Each claim involves
different legal interests and requirements and presents a different framework for view-
ing the problem. Students were expected to analyze the facts, identify the claims and
issues raised, make arguments pro and con resolution of the issue in terms of the con-
cepts, rules, and cases discussed in class, and make recommendations accordingly.
Since the instructor was careful to include factual weaknesses as well as strengths for
each claim, the problem was ill-defined; strong arguments could be made for and
against each party’s claims.

Based roughly on the legal claims, concepts, and issues addressed in the exam
question, the instructor also designed a multiple choice test in two equivalent forms
(A and B), each with 15 questions. The test was intended to assess whether student
reviewers learned from the peer-reviewing experience. The questions addressed
roughly the same legal claims and concepts as the exam, but not in the same way as
the exam, involving completely different facts, and in a multiple choice format rather
than in essay form. After preparing the tests, the instructor invited several particularly
strong students who had taken the same course in prior years to take the test. The
instructor then revised the test based on these students’ answers to multiple choice
questions and other feedback.

On Day 1, students uploaded their anonymized midterm exam answers to Comrade
from wherever they had an Internet connection. From Day 3 to 7, students logged in
to review the papers of the other students. Each student received four papers to re-
view, and each review was predicted to take about 2 hours. Before a student began
reviewing, and again before he received his reviews from other students, each student
completed a multiple choice test as the pretest and posttest. To control for differences
between the test forms, half of the students in each condition received form A as the
pretest and form B as the posttest; the other half received them in the opposite order.
On Day 8, students logged in to receive reviews from their classmates. On Day 10,
students provided the reviewers with back-reviews explaining whether the feedback
was helpful. Students also took a brief survey on their peer review experience.

3 Results

Sensitivity to Prompts. We computed every peer author’s mean inbound peer rating
for each rating prompt across the reviewers. For example, for a student in the domain-
writing condition, we took four means across reviewers, namely for the prompts
"issue", "argument", "writing", and "conclusion" (see Table 1). We examined the
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distribution of mean inbound peer ratings for each rating prompt to determine the
extent to which these different rating prompts yielded non-redundant information
from reviewers. Mean inbound peer ratings ranged from a low of 1.86 (problem-
specific condition, “idea2” prompt) to a high of 5.54 (domain-writing condition,
“writing” prompt) on a 7-point Likert scale (Table 3), showing that peer reviewers do
respond to different prompts with different answers.
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Fig. 1. Frequency of inbound ratings per dimension. dg = domain-writing dimensions, ps =
problem-specific.

In particular, they distinguish less among various aspects of writing composition
than they do among problem-specific issues. This becomes apparent by visualizing
the frequency of the inbound ratings, as in Figure 1. All the ratings in response to
domain-writing prompts tend to the right on the X axis, while the problem-specific
ratings have no consistent distribution. Within each condition, we computed pairwise
correlations of the mean inbound peer ratings for the prompts in that condition. The
mean pairwise correlation among domain-writing ratings is 0.68, while the mean
pairwise correlation among ratings in response to problem-specific prompts is 0.15.
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Table 3. Mean inbound peer ratings for each rating dimension

Dimension argument  conclusion  issue writing
(Domain-Writing)
Mean (SD) 5.23 5.34 5.33 5.54
(1.02) (0.838) (0.93) (0.98)
Dimension ideal idea2 nda rop tsm
(Problem-Specific)
Mean (SD) 4.83 1.86 4.26 2.65 4.59
(0.995) (0.878) (1.34) (2.02) (1.12)

Learning Outcomes. We measured student comprehension of some aspects of do-
main knowledge before and after students gave feedback to each other. Neither the
ratings that authors received with respect to domain writing skills nor those related to
problem-specific issues were predictive of their performance on pre-test or post-test.
For each kind of rating prompt, we used a linear regression to model pre-/post-test
performance as a function of mean inbound peer ratings. In each case, the linear mod-
els predicted less than 1% of the variance in test performance.

4 Discussion

Our aim is to understand how peer review can bring value to the classroom, and to
emphasize those elements of peer review that benefit learners the most. We have
presented evidence that student peer reviewers are sensitive to the difference between
two types of rating prompts, domain-writing and problem-specific, and that their
ratings of each other's work are less discriminating with respect to the former than to
the latter. This is likely to be pedagogically important. Since peer reviewers’ ratings
of different aspects of domain-specific writing composition are highly correlated, they
are likely to communicate redundant information to authors, and soliciting these rat-
ings is not an effective use of the reviewers’ time. On the other hand, if problem-
specific support to reviewers leads to ratings that do not correlate with each other,
such ratings are not redundant, and more likely to be informative. In particular, the
problem-specific support relates to legal claims, each of which provides a different
framework for analyzing the ill-defined problem. The different problem-specific re-
views may thus lead authors to frame the problem in different ways, and the exercise
of reading and making sense of the somewhat divergent problem-specific suggestions
is likely to be pedagogically fruitful. [16, 17] One direction for future research is to
examine whether peer authors respond differently to feedback on writing versus on
problem-specific aspects by looking at back-reviews (the authors’ responses to
reviewers) and subsequent drafts, and by surveying students. If problem-specific
support is indeed valuable, this suggests that intelligent and adaptive support for peer
review may also benefit students.

Our study complements the research of Wooley [18], which showed that students’
subsequent writing improves when they give ratings and written comments, and not
only numeric ratings. Subsequent writing quality was operationally defined as expert-
assigned scores of student essays. In both conditions of our experiment, reviewers
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gave feedback as ratings and as written comments. Having thus controlled for the
effect identified by Wooley, we found that giving feedback did not contribute to stu-
dent understanding of key domain concepts, as measured by an objective test. It is
possible that our objective test was not sensitive to what students were learning from
the act of giving feedback, and it remains for future work to examine in detail the
written comments that students give each other, and to look for signs that the prompts
seen by students have an effect in the reviewers’ and authors’ subsequent writing.
Author understanding of domain-independent feedback is a critical mediating factor
in what feedback authors actually implement in a subsequent draft. [14] Our study
suggests that feedback regarding problem-specific aspects may be more useful to
authors than feedback on writing composition; making feedback more useful may
lead to greater implementation as well.

Although we found that giving feedback in response to either kind of prompt did
not contribute to student understanding of key domain concepts, many others have
found that prompts can indeed support learning. Renkl and colleagues found positive
learning outcomes for students who received metacognitive scaffolding through
prompts rather than the support of “cognitive” task-oriented prompts. [19, 20] We
explore metacognitive support for peer review in another study. In related work, King
describes several discourse patterns that can benefit learning outcomes in settings
such as problem solving and peer tutoring. [21] Another way to encourage learning in
peer reviewers could be to ensure that all students review low-quality work. [22]

These results have significance for the design, implementation, and evaluation of
intelligent tutoring systems that employ peer review as a mechanism for teaching
skills of ill-defined problem-solving. For instance, we expect the problem-specific
ratings to be especially useful for Comrade; as it compiles a student model based on
the students’ feedback, it needs to know whether the reviewers’ ratings provide useful
information. We plan to investigate its impact on reviewers and authors in future
work.
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Abstract. This paper focuses on microworlds, a special type of Ex-
ploratory Learning Environment, where students freely interact with the
system to create their own models and constructions. Most microworlds
developed so far provide integrated scaffolds to help students’ learning
process, but the nature of the interaction makes it difficult to design,
develop and evaluate explicit adaptive support according to students’
needs. Building on previous work in the field, this paper proposes a lay-
ered approach that simplifies the development and allows both formative
and summative evaluation of the different components of the system. As
a case study, we present the development of intelligent support for a mi-
croworld in the MiGen project, and discuss its evaluation that includes
both technical and pedagogical experts of the team.

Keywords: exploratory environments, architecture, evaluation.

1 Introduction

Microworlds (or model-building systems [I]) are a special type of Exploratory
Learning Environments (ELEs), in which students undertake tasks by construct-
ing and exploring models. This has several benefits to the learning process: e.g.
students usually get more engaged with the activity, and they have a sense of
ownership over their learning [2]. Research in the learning sciences (e.g. [3])
suggests that freedom of exploration without a proper degree of support can be
problematic. Moreover, taking into account that teachers have a limited capacity
to support students introduces a clear need for computer-based support.
However, the nature of the students’ interactions in microworlds, and the
constructivist intentions behind their design, make the already challenging and
costly problems of ITS design, development, and evaluation (c.f. [4]) even more
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difficult. In this paper, we present our approach which is driven by the follow-
ing challenges: (i) the need to break down into tractable problems the complex
process of monitoring and reacting to students’ interactions in such an uncon-
strained environment, (ii) the high cost of communication between several kinds
of experts (e.g. computer and learning scientists) which are required to tackle
this problem, (iii) the difficulty to evaluate the different components and the
system overall. Building on former work in the field (see Section 2), and inspired
from successful methodologies in robotics [5] and adaptive systems [6], we pro-
pose a layered approach to development and evaluation. This is presented in
Section 3. Such a layered approach separates the different conceptual scopes in
the design process. Additionally, as discussed in Section 4, it eases the evaluation
process which needs to include members of the design team with different back-
grounds. A separated, focused, and early evaluation of the different components
of the system facilitates the detection of problems at a stage where the system
components can be modified and tuned.

2 Related Work

Our layered module-based approach has been influenced by the subsumption
architecture used in robotics [5], where complicated intelligent behaviour is or-
ganised into layers of simple behaviour modules. The problem presents several
similarities: unstructured input data, difficulty of representation, and real-time
action requirements. In the field of ITS, one of the few attempts to provide in-
telligent support in microworlds is presented in [7]. In contrast to our approach,
the separation of the intelligent feedback components in layers is not explicit
in that paper. However, the authors make an attempt to separate analysis and
aggregation employing pedagogical agents and a voting mechanism. Regarding
encapsulation of the feedback layer a particularly relevant example is []]. Their
‘bar codes’, that encapsulate pedagogical situations, are conceptually similar to
the classes of feedback strategies that we employ as inputs to our feedback layer.

In relation to evaluation, our approach recognises that it is a difficult prob-
lem (c.f. [9]). The case of microworlds, with the unstructured interaction and
their complex relationship to learning, makes the problem even more challeng-
ing. Therefore, we believe that the appropriate evaluation in such a case needs
to borrow ideas from several fields, including software engineering [I0JI1], ar-
tificial intelligence [5], AI in Education [I2JI3], adaptive systems [I4J6/T5], and
HCI [16]. In particular, as discussed in more detail in Section 4, layered evalua-
tion methodologies [6IT5] fit perfectly with our approach.

Architectural approaches [I7/I8] and design patterns(e.g. [19]) for ITS that
have focused on reusability are also relevant to our work. However, to the best
of our knowledge, none of these approaches employs a conceptual separation of
concerns to facilitate early evaluation of the system or to ease the communication
between technical and non-technical members of the research team. It is these
concerns that guide the approach we present in the next section.
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3 Layered Approach for Development of ISEE

Examining both the architectural and evaluation approaches mentioned in Sec-
tion 2, we consider four conceptual layers in the development and evaluation of
intelligent support in microworlds. This conceptualisation is general enough, as
it does not make any assumptions about the microworlds or the exact computa-
tional techniques used in the different layers, while, at the same time, provides
a useful guide for the development and evaluation of Intelligent Support in Ex-
ploratory Environments (ISEE). The details of the four layers are presented
below. Fig. [[l depicts the information flow from the lower to upper layers. The
loop through the user represents how the learning feedback influences the actions
of the students as they interact with the microworld.

Feedback Layer —  preee
j
Aggregation Layer i
Computational Analysis Layer
[cama] [cam2] [cam3] — — — — — — — Stu?ent
* o
Microworld R

Fig. 1. Layered design and evaluation of intelligent support

3.1 Microworld Layer: The Expresser

The lower layer represents the microworld or the exploratory environment itself.
The students interact freely with the environment, usually trying to perform
some kind of task given in advance. The exploratory nature of the environment
provides a high number of possible courses of action. Some of these courses
of action will lead to the completion of the task, some will make some partial
progress in that direction, and some of them will be off-task (e.g. playful be-
haviour). As a case study, Figure 2] shows the eXpresser microworld developed
in the context of the MiGen project. eXpresser encourages students to build pat-
terns out of square tiles and to find general algebraic expressions underpinning
them.

Figure [ illustrates some of the core aspects of the eXpresser. In order to
represent the generalities they perceive, students can use numbers that can be
‘unlocked’ to become variables. Locked and unlocked numbers can be used in
expressions. This microworld gives a lot of freedom to students to construct
their patterns in a multitude of different but equivalent ways. For a detailed
description of the eXpresser the interested reader is referred to [20].
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Fig. 2. Constructing a pattern in eXpresser and describing it with a rule. Main features:
(A) An ‘unlocked’ number that acts like a variable is given the name ‘reds’ and signifies
the number of red (dark grey) tiles in the pattern. (B) Building block to be repeated to
make a pattern. (C) Number of repetitions (i.e. the value of the variable ‘reds’). (D,E)
Number of grid squares to translate B to the right and down after each repetition. (F)
Local rule: units of colour needed. (G) General rule: gives the total number of units of
colour required to paint the whole pattern (if correct, solves the task). (H) Help-seeking
area with drop down menus and (I) suggestion box for feedback provision.

3.2 Computational Analysis

On top of the microworld layer, there is a layer composed of several compu-
tational analysis modules (CAM). Every module concentrates on a particular
aspect of the actions of the student, and tries to solve a different well-defined
problem. Therefore, every module filters the data provided by the environment
to use only those that are needed, and uses different Al techniques adapted
to the particular problem that it solves. Given the unstructured nature of the
data provided by most microworlds, the specificity of the computational analy-
sis modules eases their development. As an example, the computational analysis
modules used in MiGen are summarised in Table [

This focus on small, specific problems also facilitates the reuse of modules
among systems based on different microworlds. Although there is always a certain
level of coupling between the analysis module and the microworld, modules that
tackle well-defined and general problems can be used across different systems.
For example, the construction evaluation module has been reused from previous
work on a microworld called ShapeBuilder (c.f. [21]).

3.3 Aggregation Layer

The output of the different modules on the computational analysis layer is frag-
mented and unsuitable of being used directly for providing feedback. There is a
need for an additional layer that interprets the combination of the output of the
different modules.
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Table 1. Computational analysis modules in MiGen

Name Function

Apparent  Solution Returns true if the construction on the screen has the same
Detector appearance as a solution.

Construction Evalua- Given a set of expected solutions and common mistakes, returns
tor a similarity measurement to each of them

Rhythm Detector Detects rhythm in the actions of the student, because rhyth-
mic repetition of patterns can give an understanding of implicit
structures in the students’ minds [20]

Clutter Detector Detects spurious elements in the construction of the students,
that may distract them in their thinking

Generality Verifier  Verifies whether the solution given by the student is able to
generate all possible expected patterns. If yes, returns true; if
not, returns a counterexample.

General Rule Verifier Returns true if the rule (i.e. formula) provided is always valid

Inactivity Detector Detects students’ inactivity

Unlock Detector Detects whether students are using at least one variable (i.e.
unlocked number)

This aggregation of information happens on the third layer. There can be more
than one aggregation components, each of them using the output of modules
from the lower layer and/or the information of the student model, each of them
dealing with different aspects of the feedback.

In MiGen the aggregation requirements have been derived by a knowledge
elicitation process, more details of which are provided in [22]. In our case, the
aggregation layer is implemented using a rule-based approach because, it fits our
requisites and it is easier to maintain and scrutinise. The layer takes the output
of the modules in the layer underneath and follows a series of rules to produce
a feedback class that can be sent to the feedback layer.

An example of such a rule takes the output of four different modules: Apparent
Solution Detector, Construction Evaluator, Unlock Detector, and General Rule
Verifier. The output of the first three is combined to check that the student
has built a construction that looks like a solution, that the construction is very
similar (maybe equal) to one of the expected solutions to the task, and that they
have already unlocked some numbers (so that the eXpresser can show several
instances of the construction). Then, if in spite of all this, the final expression is
not correct, a feedback strategy StrategyGeneralRuleFromLocalRule is called. In
its abstract form, this strategy aims to help students develop a simple heuristic:
that the general expression can be found by adding all the local expressions that
are on the canvas. Other examples of feedback strategies appear in [22].

Input to the rules comes from the analysis modules and from the user model.
Rules can either produce calls for an abstract feedback strategy (to be instan-
tiated at the upper layer) or update the student model. When several rules fire
simultaneously, there must be a policy of priorities between them. The interested
reader is referred to [23] for an example of a a multi criteria decision making
process to generate priorities depending on the context.
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3.4 Feedback Layer

The last layer of the architecture is the feedback layer. This layer is responsible
of producing the actual feedback that will be presented to the student based
on the output of the other three layers plus the student model. The feedback
layer combines the output from the aggregation layer (i.e., the feedback strategy
to be followed) and the information in the student model (i.e., characteristics
and other historical information with regard to their short-term interaction) to
create an adequate instance of the feedback to be presented.

In MiGen, this layer takes care of presentational aspects (e.g. appropriate
location of feedback and use of figures) and student adaptation (e.g. not pre-
senting recent feedback, co-locating images and text with current constructions).
In particular, inspired by the typical approaches in the field, the feedback layer
is responsible for scaffolding consistent with the principles discussed in [24]. Ac-
cordingly, the feedback layer adapts the feedback provided in order to provide
gradually more specific help but not more than the system’s belief about the
minimal help required to ensure progress.

In our implementation this is achieved first by grading the feedback accord-
ing to the following three types: ‘nudge’ questions, comments and suggestions
and subsequently the degree of intervention on the students’ construction. In
particular, 'nudge’ questions are rhetorical questions designed to draw students’
attention to a specific aspect of their construction or a recent action that might
have introduced a problem (e.g., ‘Did you notice how this [|] changed when you
unlocked the number’?). Comments provide a factual remark on the current
state of the microworld or of the students’ problem solving process towards a
specific task (e.g. ‘The pattern cannot be animated, there are no unlocked num-
bers’). Suggestions provide a direct hint towards a plan or an idea proposed for
the students’ consideration (e.g., ‘It seems you are repeating this building block
[image]. Try to make the pattern using this [image].”’). Finally, the last level,
usually consists of a direct action in students’ canvas, designed either to help
them improve their construction or to change something that might help them
think what to do further. Again, these were co-designed by the research team
with teachers. More examples and specific details of strategies appear in [22].
We intend that in the future it will be possible for teachers (or appropriate task
designers) to define their own adaptive scaffolds for the tasks they develop.

4 Evaluating Intelligent Support

Evaluating intelligent support in microworlds entails particular challenges that
arise from the fact that a complete interaction with the microworld requires
a significant amount of time. Students need to be introduced to the system
through tutorial sessions, and subsequently interact with a variety of tasks. This
introduces a series of issues which are difficult to control or factor out. These and
other general problems have been discussed in detail (e.g. [9]). Our concern lies
both in a ‘cause attribution’ problem (that is, the difficulty to identify what to
regard as the cause behind unexpected results) and the need for early detection
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Table 2. Evaluation of intelligent support on every layer

Layer Responsibilities Experts involved Evaluation Dependencies
!; Direct interaction with the Pedagogical in Pedagogical  Does not use the
§ student, providing a certain design, technical validity, us- output of other
g level of freedom. Provision in implementa- ability and layers. Can be
= of integrated feedback. Out- tion. HCI tested indepen-
put: log of actions dently.
Analysis of student’s actions Technical Whitebox and Uses the output
Output: variable, depending blackbox eval- of the microworld.
on ITS module uation. For Depending on
some modules, the module,

gold-standard. gold-standard
validation can be
performed inde-
pendently or needs
to be tested along
with microworld.

Computational Analysis

g Aggregation of the output Technical Sensitivity Uses the output
= of the computational anal- analysis. Gold- of the two for-
éo ysis modules to generate standard. mer layers and the
o) feedback strategy classes. user model. Can
< Output: feedback strategy be tested indepen-
classes dently.
f% Generation of expressions of Pedagogical — in Gold-standard Uses the output
ES feedback based on feedback design, technical validation us- of the other lay-
8 classes and information from in implementa- ing wizard-of- ers and the user
= the user model. Output: all tion oz techniques model. Can be
expressions of explicit feed- tested indepen-
back for the student. dently.

of errors. For example, students’ interpretation of feedback, particularly in such
a complex environment, is full of confounding factors varying from interface (e.g.,
the look and feel of the messages) to technical issues (e.g., a wrong weight in an
algorithm), and from cognitive (e.g., their perception) to educational (e.g., the
design of the pedagogical strategy of the system). Waiting until the whole system
is assembled to detect these problems are extremely costly: detecting the causes
of problems is difficult, and their resolution may need at that stage an amount of
resources that is not available. Early and focused detection of problems is crucial.

This requires following a layered evaluation methodology (c.f. [I4]), which
closely matches our development approach and compartmentalises the scope of
the evaluation. The layered separation of scopes means that components of each
layer can be tested individually, before they are integrated in the holistic eval-
uation scheme for the whole system. This is summarised on Table 2l In MiGen
in particular, our approach to evaluating the system is driven by replicated
data from students’ interactions and an adaptation of traditional wizard-of-o0z
techniques, as explained in [22].
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The first layer refers to the evaluation of the microworld itself. In our approach
we assume that this has been conducted in advance, ensuring that it achieves an
appropriate level of usability. Otherwise, it might compromise the purpose of the
whole system. Accordingly, it must be checked that the microworld is adequate
for its pedagogical purpose; that is, that the metaphors used clearly express the
concepts involved and do not favour misconceptions in the student’s mind.

The computational analysis modules need to be tested in two steps. The
first step involves only technical skills, and consists of white-box and black-
box tests that check that the functionality of the modules agrees with their
specification. A series of scenarios has to be generated by the development team
to test the modules. These scenarios can be gathered directly from real studies,
but some situations (e.g. if the microworld is being developed in parallel) may
require the use of scenarios based on artificial data. The second step involves
additional elicitation of knowledge from pedagogical experts through a process
of gold-standard validation: several scenarios are shown to experts, asking them
for a diagnosis; their answers are then checked against the answers given by
the modules, testing their accuracy (see an example related to the Construction
Evaluator module on Figure[]). Depending of the nature of the analysis modules,
gold-standard validation is not always needed, e.g. there is no subjective decision
in the output of the Generality Detector.

Fig. 3. Gold standard evaluation of the Construction Evaluator. Pedagogical experts
are asked which figures are the most and less similar to the first one. Results are
compared with the output of the Construction Evaluator module.

The aggregation layer is important to produce adequate feedback, and it is
paramount to check that the aggregation mechanism is robust. The effect of
varying the inputs of the underlying layers on the output of the aggregation
layer must be ascertained by following a form of sensitivity analysis. In MiGen
we are particularly concerned in the effect that different values stored in the
student model have on the feedback strategy proposed by the rule based system.
This demonstrates to us whether the layer lacks some pedagogical expertise. Ad-
ditionally, we need to evaluate its output given the likely educational outcomes
according to pedagogical experts.

The feedback layer is responsible of directly interacting with the student.
Therefore, it involves a lot of subjective aspects regarding feedback, that need
to be evaluated with the help of pedagogical experts. There is an important
obstacle at this stage: it is difficult for experts to accommodate their expertise in
different contexts, e.g. a tutor may be expert in providing feedback to students
face-to-face, but the communication capacity of a computer-based system is
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much lower than that. We have developed a process to gradually accommodate
the feedback techniques that human experts follow into a computer interface;
a detailed explanation of our Communication Capacity Tapering methodology
is provided in [22]. As a result of this process, a series of scenarios is produced
where the feedback provided by human tutors can be compared to that provided
by the system in the same situation (defined by a feedback strategy and the
information in the user model), thus detecting differences.

Once this formative evaluation process of the different layers has been com-
pleted, the different components can be assembled together. This enables a sum-
mative evaluation, which assesses the pedagogical validity of the whole system.

5 Conclusions and Future Work

This paper presents an approach to designing and evaluating intelligent support
for microworlds in particular and exploratory or other environments in general.
The approach increases the tractability of the solution by defining four con-
ceptual layers that can help compartmentalise the design and evaluation. This
separation of concerns has three advantages. First, it allows parallel development
of different aspects of the intelligent support. Second, it facilitates the commu-
nication between researchers in interdisciplinary teams. In MiGen, this allowed
the different researchers to concentrate in a problem of their expertise at a time.
Finally, and most important, early evaluation of separated components results
in a more robust and useful system before evaluating the whole system with
students in classrooms. At that point, detecting and correcting problems in such
a complex system can be difficult at best and too costly at worst. As an added
benefit, a layered approach facilitates the reuse of components between systems.
Modules tackle very well-defined and general problems, so they can be useful
for different systems. Nevertheless, we plan to study the possibility of using our
modules in other systems. Reuse of intelligent components in microworlds is a
process that is not well understood and demands further investigation.
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Abstract. Exploratory Learning Environments (ELE) facilitate scientific in-
quiry tasks in which learners attempt to develop or uncover underlying scien-
tific or mathematical models. Unlike step-based Intelligent Tutoring Systems
(ITS), and due to task characteristics and pedagogical philosophy, ELE offer lit-
tle support at the domain level. Lacking adequate support, ELE often fail to de-
liver on their promise. We describe the Invention Lab, a system that combines
the benefits of ELE and ITS by offering adaptive support in a relatively uncon-
strained environment. The Invention Lab combines modeling techniques to as-
sess students' knowledge at the domain and inquiry levels. The system uses this
information to design new tasks in real time, thus adapting to students’ needs
while maintaining critical features of the inquiry process. Data from an in-class
evaluation study illustrates how the Invention Lab helps students develop so-
phisticated mathematical models and improve their scientific inquiry behavior.
Implications for intelligent support in ELE are discussed.

Keywords: intelligent tutoring systems; exploratory learning environments; in-
vention as preparation for learning; model tracing; constraint-based modeling.

1 Introduction

Exploratory Learning Environments (ELE) facilitate inquiry tasks in which students
are instructed to develop or uncover an underlying scientific or mathematical model
[1]. Adhering to constructivist instructional principles [2], ELE give the learners more
responsibility over controlling the learning process, compared with step-based prob-
lem-solving environments [3]. For example, students in ELE are expected to analyze
data, raise hypotheses, monitor their progress, and in general, behave the way scien-
tists do [1,2]. This is hypothesized to enhance transfer [4], facilitate acquisition of
meta-cognitive and self-regulation skills [5], and increase motivation [6]. However,
classroom evaluations have repeatedly demonstrated that students often exhibit un-
productive inquiry behaviors, subsequently failing to acquire the desired learning
goals [1]. These disappointing outcomes have led to an increased interest in support-
ing students while working with ELE [6,7].

In order to support students at the domain-independent inquiry level, many ELE
scaffold the inquiry process using cognitive tools [8]. For example, Rashi, Smithtown,
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and SimQuest include inquiry notebooks with templates in which students raise hy-
potheses, document observations, make conjectures, etc. [5,6,9]. Using cognitive tools
to scaffold the inquiry process decreases the rate of unproductive behaviors and
makes the inquiry process visible, thus helping students internalize the desired inquiry
skills [10]. Cognitive tools can also be used to label students' inputs and linearize the
inquiry process, making it easier for the ELE to trace students' progress in the task.
Consequently, a number of ELE give students feedback on their domain-independent
inquiry behavior. For example, Rashi gives feedback to students who make circular
arguments [9], the Science Learning Spaces gives feedback on experimental designs
that do not use the control of variables strategy [11], and ACE prompts students who
have not explored the interaction space sufficiently [12].

While domain-independent support of the general inquiry cycle is important, evi-
dence suggests that students are also in need for support at the domain level [7]. To do
that, ELE should evaluate the content of students' actions. Many Intelligent Tutoring
Systems (ITS) evaluate students' responses by tracing their actions using a compre-
hensive set of rules that outlines common correct or buggy solution paths (termed
model tracing, [3,13]). However, applying a similar mechanism to ELE faces a two-
fold challenge. First, ELE should evaluate answers that vary a lot in content and com-
plexity, compared with most step-based ITS. For example, Figure 1 shows an inquiry
task in which studen