
Chapter 5
Tight Closure in Positive Characteristic

In this chapter, p is a fixed prime number, and all rings are assumed to have
characteristic p, unless explicitly mentioned otherwise. We review the notion of
tight closure due to Hochster and Huneke (as a general reference, we will use [59]).
The main protagonist in this elegant theory is the p-th power Frobenius map.
We will focus on five key properties of tight closure, which will enable us to prove,
virtually effortlessly, several beautiful theorems. Via these five properties, we can
give a more axiomatic treatment, which lends itself nicely to generalization, and
especially to a similar theory in characteristic zero (see Chapters 6 and 7).

5.1 Frobenius

The major advantage of rings of positive characteristic is the presence of an
algebraic endomorphism: the Frobenius. More precisely, let A be a ring of char-
acteristic p, and let Fp, or more accurately, Fp,A, be the ring homomorphism
A → A : a �→ ap, called the Frobenius on A. Recall that this is indeed a ring homo-
morphism, where the only thing to note is that the coefficients in the binomial
expansion

Fp(a + b) =
p

∑
i=0

(p
i

)
aibp−i = Fp(a)+ Fp(b)

are divisible by p for all 0 < i < p whence zero in A, proving that Fp is additive.
When A is reduced, Fp is injective whence yields an isomorphism with its

image Ap := Im(Fp) consisting of all p-th powers of elements in A (and not to be
confused with the p-th Cartesian power of A). The inclusion Ap ⊆ A is isomorphic
with the Frobenius on A because we have a commutative diagram
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A

Ap A⊆

∼= Fp (5.1)
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66 5 Tight Closure in Positive Characteristic

When A is a domain, then we can also define the ring A1/p as the subring of the
algebraic closure of the field of fractions of A consisting of all elements b satisfying
bp ∈ A. Hence A ⊆ A1/p is integral. Since, Fp(A1/p) = A and Fp is injective, we get
A1/p ∼= A. Moreover, we have a commutative diagram
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A

A1/p A∼=

⊆ Fp (5.2)

showing that the Frobenius on A is also isomorphic to the inclusion A ⊆ A1/p.
It is sometimes easier to work with either of these inclusions rather than with
the Frobenius itself, especially to avoid notational ambiguity between source and
target of the Frobenius (instances where this approach would clarify the argument
are the proofs of Theorem 5.1.2 and Corollary 5.1.3 below).

Often, the inclusion Ap ⊆ A is even finite, and hence so is the Frobenius itself.
One can show, using Noether normalization or Cohen’s Structure Theorems that
this is true when A is respectively a k-affine algebra or a complete Noetherian local
ring with residue field k, and k is perfect, or more generally, (k : kp) < ∞.

5.1.1 Frobenius Transforms

Given an ideal I ⊆ A, we will denote its extension under the Frobenius by Fp(I)A,
and call it the Frobenius transform of I. Note that Fp(I)A ⊆ I p, but the inclusion
is in general strict. In fact, one easily verifies that

5.1.1 If I = (x1, . . . ,xn)A, then Fp(I)A = (xp
1 , . . . ,xp

n)A.

If we repeat this process, we get the iterated Frobenius transforms Fn
p(I)A of I,

generated by the pn-th powers of elements in I, and in fact, of generators of I. In
tight closure theory, the simplified notation

I[pn] := Fn
p(I)A

is normally used, but for reasons that will become apparent once we defined
tight closure as a difference closure (see §6.1.1), we will use the ‘heavier’ nota-
tion. On the other hand, since we fix the characteristic, we may omit p from the
notation and simply write F : A → A for the Frobenius.



5.2 Tight Closure 67

5.1.2 Kunz Theorem

The next result, due to Kunz, characterizes regular local rings in positive charac-
teristic via the Frobenius. We will only prove the direction that we need.

Theorem 5.1.2 (Kunz). Let R be a Noetherian local ring. If R is regular, then
Fp is flat. Conversely, if R is reduced and Fp is flat, then R is regular.

Proof. We only prove the direct implication; for the converse see [68, §42]. Let x
be a system of parameters of R, whence an R-regular sequence. Since F(x) is also
a system of parameters, it too is R-regular. Hence, R, viewed as an R-algebra via F,
is a balanced big Cohen-Macaulay algebra, whence is flat by Theorem 3.3.9. ��
Corollary 5.1.3. If R is a regular local ring, I ⊆ R an ideal, and a ∈ R an arbitrary
element, then a ∈ I if and only if F(a) ∈ F(I)R.

Proof. One direction is of course trivial, so assume F(a) ∈ F(I)R. However, since
F is flat by Theorem 5.1.2, the contraction of the extended ideal F(I)R along F is
again I by Proposition 3.2.5, and a lies in this contraction (recall that F(I)R∩R
stands really for F−1(F(I)R).) ��

5.2 Tight Closure

The definition of tight closure, although not complicated, is not that intuitive
either. The idea is inspired by the ideal membership test of Corollary 5.1.3.
Unfortunately, that test only works over regular local rings, so that it will be no
surprise that whatever test we design, it will have to be more involved. Moreover,
the proposed test will in fact fail in general, that is to say, the elements satisfying
the test form an ideal which might be strictly bigger than the original ideal. But
not too much bigger, so that we may view this bigger ideal as a closure of the
original ideal, and as such, it is a ‘tight’ fit.

In the remainder of this section, A is a Noetherian ring, of characteristic p.
A first obvious generalization of the ideal membership test from Corollary 5.1.3
is to allow iterates of the Frobenius: we could ask, given an ideal I ⊆ A, what are
the elements x such that Fn(x) ∈ Fn(I)A for some power n? They do form an ideal
and the resulting closure operation is called the Frobenius closure. However, its
properties are not sufficiently strong to derive all the results tight closure can.

The adjustment to make in the definition of Frobenius closure, although mi-
nor, might at first be a little surprising. To make the definition, we will call
an element a ∈ A a multiplier, if it is either a unit, or otherwise generates an
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ideal of positive height (necessarily one by Krull’s Principal Ideal Theorem).
Put differently, a is a multiplier if it does not belong to any minimal prime ideal
of A. In particular, the product of two multipliers is again a multiplier. In a do-
main, a situation we can often reduce to, a multiplier is simply a non-zero element.

The name ‘multiplier’ comes from the fact that we will use such elements to
multiply our test condition with. However, for this to make sense, we cannot
just take one iterate of the Frobenius, we must take all of them, or at least all
but finitely many. So we now define: an element x ∈ A belongs to the tight closure
clA(I) of an ideal I ⊆ A, if there exists a multiplier c ∈ A and a positive integer N
such that

cFn(x) ∈ Fn(I)A (5.3)

for all n ≥ N. Note that the multiplier c and the bound N may depend on x and I,
but not on n. We will write cl(I) for clA(I) if the ring A is clear from the context.
In the literature, tight closure is invariably denoted I∗, but again for reasons that
will become clear in the next chapter, our notation better suits our purposes. Let
us verify some elementary properties of this closure operation:

5.2.1 The tight closure of an ideal I in a Noetherian ring A is again an ideal, it
contains I, and it is equal to its own tight closure. Moreover, we can find
a multiplier c and a positive integer N which works simultaneous for all
elements in cl(I) in criterion (5.3).

It is easy to verify that cl(I) is closed under multiples, and contains I. To show
that it is closed under sums, whence an ideal, assume x,x′ ∈ A both lie in cl(I),
witnessed by the equations (5.3) for some multipliers c and c′, and some positive
integers N and N′ respectively. However, cc′Fn(x + x′) then lies in Fn(I)A for all
n ≥ max{N,N′}, showing that x + x′ ∈ cl(I) since cc′ is again a multiplier. Let
J := cl(I) and choose generators y1, . . . ,ys of J. Let ci and Ni be the corresponding
multiplier and bound for yi. It follows that c := c1c2 · · ·cs is a multiplier such that
(5.3) holds for all n ≥ N := max{N1, . . . ,Ns} and all x ∈ J, since any such element
is a linear combination of the yi. In particular, cFn(J)A ⊆ Fn(I)A for all n ≥ N.
Hence if z lies in the tight closure of J, so that dFn(z)∈Fn(J)A for some multiplier
d and for all n ≥ M, then cd Fn(z) ∈ Fn(I)A for all n ≥ max{M,N}, whence z ∈
cl(I) = J. The last assertion now easily follows from the above analysis. In the
sequel, we will therefore no longer make the bound N explicit and instead of “for
all n ≥ N” we will just write “for all n  0”.

Example 5.2.2. It is instructive to look at some examples. Let K be a field of char-
acteristic p > 3, and let A := K[ξ ,ζ ,η ]/(ξ 3 −ζ 3 −η3)K[ξ ,ζ ,η ] be the projective
coordinate ring of the cubic Fermat curve. Let us show that ξ 2 is in the tight clo-
sure of I := (ζ ,η)A. For a fixed e, write 2pe = 3h + r for some h ∈ N and some
remainder r ∈ {1,2}, and let c be the multiplier ξ 3. Hence

cFe(ξ 2) = ξ 3(h+1)+r = ξ r(ζ 3 + η3)h+1.
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A quick calculation shows that any monomial in the expansion of (ζ 3 +η3)h+1 is
a multiple of either Fe(ζ ) or Fe(η), showing that (5.3) holds for all e, and hence
that (ξ 2,ζ ,η)A ⊆ cl(I).

It is often much harder to show that an element does not belong to the tight
closure of an ideal. Shortly, we will see in Theorem 5.3.6 that any element outside
the integral closure is also outside the tight closure. Since (ξ 2,ζ ,η)A is integrally
closed, we conclude that it is equal to cl(I).

Example 5.2.3. Let A be the coordinate ring of the hypersurface in A
3
K given by

the equation ξ 2−ζ 3−η7 = 0. By a similar calculation as in the previous example,
one can show that ξ lies in the tight closure of (ζ ,η)A.

A far more difficult result is to show that this is not true if we replace η7

by η5 in the above equation. In fact, in this new coordinate ring A′, any ideal is
tightly closed, that is to say, in the terminology from Definition 5.2.7 below, A′
is F-regular, but this is a deep fact, following from it being log-terminal (see the
discussion following Theorem 5.5.6).

It is sometimes cumbersome to work with multipliers in arbitrary rings, but
in domains they are just non-zero elements. Fortunately, we can always reduce to
the domain case when calculating tight closure:

Proposition 5.2.4. Let A be a Noetherian ring, let p1, . . . ,ps be its minimal primes,
and put Āi := A/pi. For all ideals I ⊆ A we have

clA(I) =
s⋂

i=1

clĀi
(IĀi)∩A. (5.4)

Proof. The same equations which exhibit x as en element of clA(I) also show that
it is in clĀi

(IĀi) since any multiplier in A remains, by virtue of its definition, a
multiplier in Āi (moreover, the converse also holds: by prime avoidance, we can
lift any multiplier in Āi to one in A). So one inclusion in (5.4) is clear.

Conversely, suppose x lies in the intersection on the right hand side of (5.4).
Let ci ∈ A be a multiplier in A (so that its image is a multiplier in Āi), such that

ciFn
Āi

(x) ∈ Fn
Āi

(I)Āi

for all n  0. This means that each ciFn
A(x) lies in Fn

A(I)A + pi for n  0.
Choose for each i, an element ti ∈ A inside all minimal primes except pi, and
let c := c1t1 + · · ·+ csts. A moment’s reflection yields that c is again a multiplier.
Moreover, since tipi ⊆ n, where n := nil(R) is the nilradical of A, we get

cFn
A(x) ∈ Fn

A(I)A +n
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for all n 0. Choose m such that npm
is zero, whence also the smaller ideal FA(n).

Applying Fm
A to the previous equations, yields

Fm
A (c)Fm+n

A (x) ∈ Fm+n
A (I)A

for all n  0, which means that x ∈ clA(I) since Fm
A (c) is again a multiplier. ��

We will encounter many operations similar to tight closure, and so we formally
define:

Definition 5.2.5 (Closure Operation). A closure operation on a ring A is any
order-preserving, increasing, idempotent endomorphism on the set of ideals of A
ordered by inclusion.

For instance, taking the radical of an ideal is a closure operation, and so is
integral closure discussed below. Tight closure too is a closure operation on A,
since it clearly also preserves inclusion: if I ⊆ I′, then cl(I) ⊆ cl(I′). An ideal that
is equal to its own tight closure is called tightly closed. Recall that the colon ideal
(I : J) is the ideal of all elements a ∈ A such that aJ ⊆ I; here I ⊆ A is an ideal,
but J ⊆ A can be any subset, which, however, most of the time is either a single
element or an ideal. Almost immediately from the definitions, we get

5.2.6 If I is tightly closed, then so is (I : J) for any J ⊆ A. ��
One of the longest outstanding open problems in tight closure theory was its

behavior under localization: do we always have

clA(I)Ap
?= clAp(IAp) (5.5)

for every prime ideal p ⊆ A. Recently, Brenner and Monsky have announced (see
[15]) a negative answer to this question. The full extent of this phenomenon is not
yet understood, and so one has proposed the following two definitions (the above
cited counterexample still does not contradict that both notions are the same).

Definition 5.2.7. A Noetherian ring A is called weakly F-regular if each of its
ideals is tightly closed. If all localizations of A are weakly F-regular, then A is called
F-regular.

5.3 Five Key Properties of Tight Closure

In this section we derive five key properties of tight closure, all of which admit
fairly simple proofs. It is important to keep this in mind, since these five properties
will already suffice to prove in the next section some deep theorems in commuta-
tive algebra. In fact, as we will see, any closure operation with these five properties
on a class of Noetherian local rings would establish these deep theorems for
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that particular class (and there are still classes for which these statements remain
conjectural). Moreover, the proofs of the five properties themselves rest on a few
simple facts about the Frobenius, so that this will allow us to also carry over our
arguments to characteristic zero in Chapters 6 and 7.

The first property, stated here only in its weak version, is merely an observa-
tion. Namely, any equation (5.3) in a ring A extends to a similar equation in any
A-algebra B. In order for the latter to calculate tight closure, the multiplier c ∈ A
should remain a multiplier in B, and so we proved:

Theorem 5.3.1 (Weak Persistence). Let A → B be a ring homomorphism, and let
I ⊆ A be an ideal. If A → B is injective and B is a domain, or more generally, if A → B
preserves multipliers, then clA(I) ⊆ clB(IB). ��

The remarkable fact is that this is also true if A → B is arbitrary and A is
of finite type over an excellent Noetherian local ring (see [59, Theorem 2.3]). We
will not need this stronger version, the proof of which requires another important
ingredient of tight closure theory: the notion of a test element. A multiplier c ∈ A
is called a test element for A, if for every a ∈ cl(I), we have cFn(a) ∈ Fn(I)A for
all n. The existence of test elements is not easy, and lies outside the scope of these
notes, but once one has established their existence, many arguments become even
more streamlined.

Theorem 5.3.2 (Regular Closure). In a regular local ring, every ideal is tightly
closed. In fact, a regular ring is F-regular.

Proof. Let R be a regular local ring. Since any localization of R is again regular,
the second assertion follows from the first. To prove the first, let I be an ideal
and x ∈ cl(I). Towards a contradiction, assume x /∈ I. In particular, we must have
(I : x) ⊆ m. Choose a non-zero element c such that (5.3) holds for all n  0. This
means that c lies in the colon ideal (Fn(I)R : Fn(x)), for all n  0. Since F is flat
by Theorem 5.1.2, the colon ideal is equal to Fn(I : x)R by Theorem 3.3.14. Since
(I : x) ⊆ m, we get c ∈ Fn(m)R ⊆ mpn

. Since this holds for all n  0, we get c = 0
by Theorem 2.4.14, clearly a contradiction. ��
Theorem 5.3.3 (Colon Capturing). Let R be a Noetherian local domain which is
a homomorphic image of a Cohen-Macaulay local ring, and let (x1, . . . ,xd) be a system
of parameters in R. Then for each i, the colon ideal ((x1, . . . ,xi)R : xi+1) is contained
in cl((x1, . . . ,xi)R).

Proof. Let S be a local Cohen-Macaulay ring such that R = S/p for some prime
ideal p ⊆ S of height h. By prime avoidance, we can lift the xi to elements in
S, again denoted for simplicity by xi, and find elements y1, . . . ,yh ∈ p such that
(y1, . . . ,yh,x1, . . . ,xd) is a system of parameters in S, whence an S-regular sequence.
Since p contains the ideal J := (y1, . . . ,yh)S of the same height, it is a minimal
prime of J. Let J = g1 ∩ ·· · ∩gs be a minimal primary decomposition of J, with
g1 the p-primary component of J. In particular, some power of p lies in g1, and
we may assume that this power is of the form pm for some m. Choose c inside all



72 5 Tight Closure in Positive Characteristic

gi with i > 1, but outside p (note that this is possible by prime avoidance). Putting
everything together, we have

cFm(p) ⊆ cppm ⊆ J. (5.6)

Fix some i, let I := (x1, . . . ,xi)S and assume zxi+1 ∈ IR, for some z ∈ S. Lifting this
to S, we get zxi+1 ∈ I +p. Applying the n-th power of Frobenius to this for n > m,
we get Fn(z)Fn(xi+1) ∈ Fn(I)S + Fn(p)S. By (5.6), this means that cFn(z)Fn(xi+1)
lies in Fn(I)S+Fn−m(J)S. Since the Fn−m(y j) together with the Fn(x j) form again
an S-regular sequence, we conclude that

cFn(z) ∈ Fn(I)S + Fn−m(J)S ⊆ Fn(I)S + J

whence cFn(z) ∈ Fn(I)R for all n > m. By the choice of c, it is non-zero in R, so
that the latter equations show that z ∈ cl(IR). ��

The condition that R is a homomorphic image of a regular local ring is sat-
isfied either if R is a local affine algebra, or, by Cohen’s Structure Theorems, if
R is complete. These are the two only cases in which we will apply the previous
theorem. With a little effort, one can extend the proof without requiring R to be
a domain (see for instance [59, Theorem 3.1]).

Theorem 5.3.4 (Finite Extensions). If A → B is a finite, injective homomorphism
of domains, and I ⊆ A be an ideal, then clB(IB)∩A = clA(I).

Proof. One direction is immediate by Theorem 5.3.1. For the converse, there
exists an A-module homomorphism ϕ : B → A such that c := ϕ(1) �= 0, by
Lemma 5.3.5 below. Suppose x ∈ clB(IB)∩A, so that for some non-zero d ∈ B,
we have d Fn(x) ∈ Fn(I)B for n  0. Since B is finite over A, some non-zero mul-
tiple of d lies in A, and hence without loss of generality, we may assume d ∈ A.
Applying ϕ to these equations, we get

cd Fn(x) ∈ Fn(I)A

showing that x ∈ clA(I), since cd is a multiplier. ��
Lemma 5.3.5. If A ⊆ B is a finite extension of domains, then there exists an A-linear
map ϕ : B → A with ϕ(1) �= 0.

Proof. Suppose B is generated over A by the elements b1, . . . ,bs. Let K and L be
the fields of fractions of A and B respectively. Since B is a domain, it lies inside the
K-vector subspace V ⊆ L generated by the bi. Choose an isomorphism γ : V → Kt

of K-vector spaces. After renumbering, we may assume that the first entry of γ(1)
is non-zero. Let π : Kt → K be the projection onto the first coordinate, and let
d ∈ A be the common denominator of the π(γ(bi)) for i = 1, . . . ,s. Now define an
A-linear homomorphism ϕ by the rule ϕ(y) = dπ(γ(y)) for y ∈ B. Since y is an
A-linear combination of the bi and since dπ(γ(bi)) ∈ A, also ϕ(y) ∈ A. Moreover,
by construction, ϕ(1) �= 0. ��



5.4 Integral Closure 73

Note that a special case of Theorem 5.3.4 is the fact that tight closure measures
the extent to which an extension of domains A ⊆ B fails to be cyclically pure:
IB∩ A is contained in the tight closure of I, for any ideal I ⊆ A. In particular,
in view of Theorem 5.3.2, this reproves the well-known fact that if A ⊆ B is an
extension of domains with A regular, then A ⊆ B is cyclically pure. The next
and last property involves another closure operation, integral closure. It will be
discussed in more detail below (§5.4), and here we just state its relationship with
tight closure:

Theorem 5.3.6 (Integral Closure). For every ideal I ⊆ A, its tight closure is
contained in its integral closure. In particular, radical ideals, and more generally
integrally closed ideals, are tightly closed.

Proof. The second assertion is an immediate consequence of the first. We verify
condition (5.4.1.iv) below to show that if x belongs to the tight closure clA(I),
then it also belongs to the integral closure Ī. Let A →V be a homomorphism into
a discrete valuation ring V , such that its kernel is a minimal prime of A. We need
to show that x ∈ IV . However, this is clear since x ∈ clV (IV ) by Theorem 5.3.1
(note that A→V preserves multipliers), and since clV (IV ) = IV , by Theorem 5.3.2
and the fact that V is regular. ��

It is quite surprising that there is no proof, as far as I am aware of, that a prime
ideal is tightly closed without reference to integral closure.

5.4 Integral Closure

The integral closure Ī of an ideal I is the collection of all elements x ∈ A satisfying
an integral equation of the form

xd + a1xd−1 + · · ·+ ad = 0 (5.7)

with a j ∈ I j for all j = 1, . . . ,d. We say that I is integrally closed if I = Ī. Since
clearly Ī ⊆ rad(I), radical ideals are integrally closed. It follows from either char-
acterization (5.4.1.ii) or (5.4.1.iv) below that Ī is an ideal.

Theorem 5.4.1. Let A be an arbitrary Noetherian ring (not necessarily of character-
istic p). For an ideal I ⊆ A and an element x ∈ A, the following are equivalent

5.4.1.i. x belongs to the integral closure, Ī;
5.4.1.ii. there is a finitely generated A-module M with zero annihilator such that

xM ⊆ IM;
5.4.1.iii. there is a multiplier c ∈ A such that cxn ∈ In for infinitely many

(respectively, for all sufficiently large) n;
5.4.1.iv. for every homomorphism A →V into a discrete valuation ring V with

kernel equal to a minimal prime of A, we have x ∈ IV .
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Proof. We leave it to the reader to show that x lies in the integral closure of an ideal
I if and only if it lies in the integral closure of each I(A/p), for p a minimal prime
of A. Hence we may moreover assume that A is a domain. Suppose x satisfies an
integral equation (5.7), and let J := xd−1A + xd−2I + · · ·+ Id. An easy calculation
shows that xJ ⊆ IJ, proving (5.4.1.i) ⇒ (5.4.1.ii). Moreover, by induction, xnJ ⊆
InJ, and hence for any non-zero element c ∈ J, we get cxn ∈ In, proving (5.4.1.iii).
Note that in particular, xnId ⊆ In for all n. The implication (5.4.1.ii) ⇒ (5.4.1.i) is
proven by a ‘determinantal trick’: apply [69, Theorem 2.1] to the multiplication
with x on M. To prove (5.4.1.iii) ⇒ (5.4.1.iv), suppose there is some non-zero c∈A
such that cxn ∈ In for infinitely many n. Let A⊆V be an injective homomorphism
into a discrete valuation ring V , and let v be the valuation on V . Hence v(c)+
nv(x) ≥ nv(I) for infinitely many n, where v(I) is the minimum of all v(a) with
a ∈ I. It follows that v(x) ≥ v(I), and hence x ∈ IV .

Remains to prove (5.4.1.iv) ⇒ (5.4.1.i), so assume x ∈ IV for every embedding
A ⊆ V into a discrete valuation ring V . Let I = (a1, . . . ,an)A, and consider the
homomorphism A[ξ ] → Ax given by ξi �→ ai/x, where ξ := (ξ1, . . . ,ξn). Let B be
its image, so that A ⊆ B ⊆ Ax (one calls B the blowing-up of I + xA at x). Let m :=
(ξ1, . . . ,ξn)A[ξ ]. I claim that mB = B. Assuming the claim, we can find f ∈ m
such that f (a/x) = 1 in Ax, where a := (a1, . . . ,an). Write f = f1 + · · ·+ fd in its
homogeneous parts f j of degree j, so that

1 = x−1 f1(a)+ · · ·+ x−d fd(a).

Multiplying with xd , and observing that f j(a) ∈ I j, we see that x satisfies an inte-
gral equation (5.7), and hence x ∈ Ī.

To prove the claim ex absurdum, suppose mB is not the unit ideal, whence is
contained in a maximal ideal n of B. Let (x1, . . . ,xn) be a generating tuple of n.
Let R be the Bn-algebra generated by the fractions xi/x1 with i = 1, . . . ,n (the
blowing-up of Bn at n). Since nR = x1R, there exists a height one prime ideal
p in R containing nR. Let V be the normalization of Rp. It follows that V is a
discrete valuation ring (see [69, Theorem 11.2]) containing Bn as a local subring.
In particular, A ⊆V , and mV lies in the maximal ideal πV . Since ξi �→ ai/x, we get
ai ∈ xπV for all i, and hence IV ⊆ xπV , contradicting that x ∈ IV . ��

From this we readily deduce:

Corollary 5.4.2. A domain A is normal if and only if each principal ideal is inte-
grally closed if and only if each principal ideal is tightly closed. ��

In one of our applications below (Theorem 5.5.1), we will make use of the
following nice application of the chain rule:

Proposition 5.4.3. Let K be a field of characteristic zero, and let R be either the
power series ring K[[ξ ]], the ring of convergent power series K{ξ} (assuming K is a
normed field), or the localization of K[ξ ] at the ideal generated by the indeterminates
ξ := (ξ1, . . . ,ξn). If f is a non-unit, then it lies in the integral closure of its Jacobian
ideal Jac( f ) := (∂ f/∂ξ1, . . . ,∂ f/∂ξn)R.
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Proof. Recall that K{ξ} consists of all formal power series f such that f (u) is
a convergent series for all u in a small enough neighborhood of the origin. Put
J := Jac( f ). In view of (5.4.1.iv), we need to show that given an embedding R ⊆V
into a discrete valuation ring V , we have f ∈ JV . Since completion is faithfully flat,
we may replace V by its completion, and hence already assume V is complete. By
Cohen’s Structure Theorems, V is a power series ring κ [[ζ ]] in a single variable
over a field extension κ of K. Viewing the image of f in κ [[ζ ]] as a power series
in ζ , the multi-variate chain rule yields

df
dζ

=
n

∑
i=1

∂ f
∂ξi

· dξi

dζ
∈ JV.

However, since f has order e ≥ 1 in V , its derivative df/dζ has order e− 1, and
hence f ∈ (df/dζ )V ⊆ JV . Note that for this to be true, however, the character-
istic needs to be zero. For instance, in characteristic p, the power series ξ p would
already be a counterexample to the proposition. ��

Since the integral closure is contained in the radical closure, we get that some
power of f lies in its Jacobian ideal Jac( f ). A famous theorem due to Briançon-
Skoda states that in fact already the n-th power lies in the Jacobian, where n is the
number of variables. We will prove this via an elegant tight closure argument in
Theorem 5.5.1 below.

5.5 Applications

We will now discuss three important applications of tight closure. Perhaps surpris-
ingly, the original statements all were in characteristic zero (with some of them
in their original form plainly false in positive characteristic), and their proofs re-
quired deep and involved arguments, some even based on transcendental/analytic
methods. However, they each can be reformulated so that they also make sense
in positive characteristic, and then can be established by surprisingly elegant
tight closure arguments. As for the proofs of their characteristic zero counter-
parts, they must wait until we have developed the theory in characteristic zero in
Chapters 6 and 7 (or one can use the ‘classical’ tight closure in characteristic zero
discussed in §5.6).

5.5.1 The Briançon-Skoda Theorem

We already mentioned this famous result, proven first in [16].

Theorem 5.5.1 (Briançon-Skoda). Let R be either the ring of formal power series
C[[ξ ]], or the ring of convergent power series C{ξ}, or the localization of the
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polynomial ring C[ξ ] at the ideal generated by ξ , where ξ := (ξ1, . . . ,ξn) are some
indeterminates. If f is not a unit, then f n ∈ Jac( f ) := (∂ f/∂ξ1, . . . ,∂ f/∂ξn)R.

This theorem will follow immediately from the characteristic zero analogue
of the next result (with l = 1), in view of Proposition 5.4.3; we will do this in
Theorem 6.2.5 below.

Theorem 5.5.2 (Briançon-Skoda—Tight Closure Version). Let A be a Noethe-
rian ring of characteristic p, and I ⊆ A an ideal generated by n elements. Then we
have for all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if A is a regular local ring, then the integral closure of In+l−1 lies
inside Il for l ≥ 1.

Proof. For simplicity, I will only prove the case l = 1 (which gives the orig-
inal Briançon-Skoda theorem). Assume z lies in the integral closure of In. By
(5.4.1.iii), there exists a multiplier c ∈ A such that czk ∈ Ikn for all k  0. Since
I := ( f1, . . . , fn)A, we have an inclusion Ikn ⊆ ( f k

1 , . . . , f k
n )A. Hence with k equal

to pm, we get cFm(z) ∈ Fm(I)A for all m  0. In conclusion, z ∈ cl(I). The last
assertion then follows from Theorem 5.3.2. ��

5.5.2 The Hochster-Roberts Theorem

We will formulate the next result without defining in detail all the concepts
involved, except when we get to its algebraic formulation. A linear algebraic group
G is an affine subscheme of the general linear group GL(K,n) over an algebraically
closed field K such that its K-rational points form a subgroup of the latter group.
When G acts (as a group) on a closed subscheme X ⊆ A

n
K (more precisely, for each

algebraically closed field L containing K, there is an action of the L-rational points
of G(L) on X(L)), we can define the quotient space X/G, consisting of all orbits
under the action of G on X , as the affine space Spec(RG), where RG denotes the
subring of G-invariant sections in R := Γ (X ,OX) (the action of G on X induces
an action on the sections of X , and hence in particular on R). For this to work
properly, we also need to impose a certain finiteness condition: G has to be lin-
early reductive. Although not usually its defining property, we will here take this
to mean that there exists an RG-linear map R → RG which is the identity on RG,
called the Reynolds operator of the action. For instance, if K = C, then an algebraic
group is linearly reductive if and only if it is the complexification of a real Lie
group, where the Reynolds operator is obtained by an integration process. This
is the easiest to understand if G is finite, when the integration is just a finite sum
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ρ : R → RG : a �→ 1
|G| ∑

σ∈G

aσ ,

where aσ denotes the result of σ ∈ G acting on a ∈ R. In fact, as indicated by
the above formula, a finite group is linearly reductive over a field of positive
characteristic, provided its cardinality is not divisible by the characteristic. If
X is non-singular and G is linearly reductive, then we will call X/G a quotient
singularity.1 The celebrated Hochster-Roberts theorem now states:

Theorem 5.5.3. Any quotient singularity is Cohen-Macaulay.

To state a more general result, we need to take a closer look at the Reynolds
operator. A ring homomorphism A → B is called split, if there exists an A-linear
map σ : B → A which is the identity on A (note that σ need not be multiplicative,
that is to say, is not a ring homomorphism, only a module homomorphism).
We call σ the splitting of A → B. Hence the Reynolds operator is a splitting of
the inclusion RG ⊆ R. The only property of split maps that will matter is the
following:

5.5.4 A split homomorphism A → B is cyclically pure.

See the discussion at the beginning of §2.4.3 for the definition of cyclic purity.
Let a ∈ IB∩A with I = ( f1, . . . , fs)A an ideal in A. Hence a = f1b1 + · · ·+ fsbs for
some bi ∈ B. Applying the splitting σ , we get by A-linearity a = f1σ(b1)+ · · ·+
fsσ(bs) ∈ I, proving that A is cyclically pure in B. ��

We also need the following result on the preservation of cyclic purity under
completions:

Lemma 5.5.5. Let R and S be Noetherian local rings with respective completions R̂
and Ŝ. If R → S is cyclically pure, then so is its completion R̂ → Ŝ.

Proof. The homomorphism S→ Ŝ is faithfully flat, hence cyclically pure; thus the
composition R → S → Ŝ is cyclically pure. So from now on we may suppose that
S = Ŝ. It suffices to show that R̂ → S is injective, since the completion of R/a is
equal to R̂/aR̂, for any ideal a in R. Let a ∈ R̂ be such that a = 0 in S, and for each i
choose ai ∈ R such that a ≡ ai mod miR̂, where m is the maximal ideal of R. Then
ai lies in miS, hence by cyclical purity, in mi. Therefore a ∈ miR̂ for all i, showing
that a = 0 in R̂ by Krull’s Intersection Theorem (Theorem 2.4.14). ��

We can now state a far more general result, of which Theorem 5.5.3 is just a
special case.

Theorem 5.5.6. If R → S is a cyclically pure homomorphism and if S is regular, then
R is Cohen-Macaulay.

1 The reader should be aware that other authors might use the term more restrictively, only
allowing X to be affine space A

n
K , or G to be finite.
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Proof. The problem is clearly local, and so we assume that (R,m) and (S,n) are
local. By Lemma 5.5.5, we may further reduce to the case that R and S are both
complete. We split the proof in two parts: we first show that R is F-regular (see
Definition 5.2.7), and then show that any complete local F-regular domain is
Cohen-Macaulay.

5.5.7 A cyclically pure subring of a regular ring is F-regular.

Indeed, since both cyclic purity and regularity are preserved under localization,
we only need to show that every ideal in R is tightly closed. To this end, let
I ⊆ R and x ∈ cl(I). Hence x lies in the tight closure of IS by (weak) persis-
tence (Theorem 5.3.1), and therefore in IS by Theorem 5.3.2. Hence by cyclic
purity, x ∈ I = IS∩R, proving that R is weakly F-regular. Note that we actually
proved that a cyclically pure subring of a (weakly) F-regular ring is again (weakly)
F-regular.

5.5.8 A complete local F-regular domain is Cohen-Macaulay.

Assume R is F-regular and let (x1, . . . ,xd) be a system of parameters in R. To show
that xi+1 is R/(x1, . . . ,xi)R-regular, assume zxi+1 ∈ (x1, . . . ,xi)R. Colon Capturing
(Theorem 5.3.3) yields that z lies in the tight closure of (x1, . . . ,xi)R, whence in
the ideal itself since R is F-regular. ��
Remark 5.5.9. In fact, R is then also normal (this follows easily from 5.5.7 and
Corollary 5.4.2). A far more difficult result is that R is then also pseudo-rational
(a concept that lies beyond the scope of these notes; see for instance [59, 99]
for a discussion of what follows). This was first proven by Boutot in [14] for
C-affine algebras by means of deep vanishing theorems. The positive characteris-
tic case was proven by Smith in [108] by tight closure methods, where she also
showed that pseudo-rationality is in fact equivalent with the weaker notion of
F-rationality (a local ring is F-rational if some parameter ideal is tightly closed). I
proved the general characteristic zero case in [99] by means of ultraproducts. In
fact, being F-regular is equivalent under the Q-Gorenstein assumption with hav-
ing log-terminal singularities (see [38, 95]; for an example see Example 5.2.3). It
should be noted that ‘classical’ tight closure theory in characteristic zero (see §5.6
below) is not sufficiently versatile to derive these results: so far, only our present
ultraproduct method seems to work.

5.5.3 The Ein-Lazardsfeld-Smith Theorem

The next result, although elementary in its formulation, was only proven recently
in [26] using quite complicated methods (which only work over C), but then soon
after in [55] by an elegant tight closure argument (see also [90]), which proves the
result over any field K.



5.5 Applications 79

Theorem 5.5.10. Let V ⊆ K2 be a finite subset with ideal of definition I := I(V ).
For each k, let Jk(V ) be the ideal of all polynomials f having multiplicity at least k at
each point x ∈V . Then J2k(V ) ⊆ Ik, for all k.

To formulate the more general result of which this is just a corollary, we need
to introduce symbolic powers. We first do this for a prime ideal p: its k-th symbolic
power is the contracted ideal p(k) := pkRp ∩R. In general, the inclusion pk ⊆ p(k)

may be strict, and, in fact, p(k) is the p-primary component of pk. If a is a radical
ideal (we will not treat the more general case), then we define its k-th symbolic
power a(k) as the intersection p

(k)
1 ∩ ·· · ∩ p

(k)
s , where the pi are all the minimal

overprimes of a. The connection with Theorem 5.5.10 is given by:

5.5.11 The k-th symbolic power of the ideal of definition I := I(V ) of a finite subset
V ⊆ K2 is equal to the ideal Jk(V ) of all polynomials that have multiplicity
at least k at any point of V .

Indeed, for x ∈ V , let m := mx be the corresponding maximal ideal. By defini-
tion, a polynomial f has multiplicity at least k at each x ∈ V , if f ∈ mkAm for all
maximal ideals m containing I. The latter condition simply means that f ∈ m(k),
so that the claim follows from the definition of symbolic power. ��

Hence, in view of this, Theorem 5.5.10 is an immediate consequence of the
following theorem (at least in positive characteristic; for the characteristic zero
case, see Theorems 6.2.6 and 7.2.4 below):

Theorem 5.5.12. Let A be a regular domain of characteristic p. Let a⊆A be a radical
ideal and let h be the maximal height of its minimal overprimes. Then we have an
inclusion a(hn) ⊆ an, for all n.

Proof. We start with proving the following useful inclusion:

a(hpe) ⊆ Fe(a)A (5.8)

for all e. Let p1, . . . ,pm be the minimal prime ideals of a. We first prove (5.8) locally
at one of these minimal primes p. Since Ap is regular and aAp = pAp, we can find
fi ∈ a such that aAp =( f1, . . . , fh)Ap. By definition of symbolic powers, a(hpe)Ap =
ahpe

Ap. On the other hand, ahpe
Ap consists of monomials in the fi of degree hpe,

and hence any such monomial lies in Fe(a)Ap. This establishes (5.8) locally at p.
To prove this globally, take z ∈ a(hpe). By what we just proved, there exists si /∈ pi

such that siz ∈ Fe(a)A for each i = 1, . . . ,m. For each i, choose an element ti in
all p j except pi, and put s := t1s1 + · · ·+ smtm. It follows that s multiplies z inside
Fe(a)A, whence a fortiori, so does Fe(s). Hence

z ∈ (Fe(a)A : Fe(s)) = Fe(a : s)A

where we used Theorem 3.3.14 and the fact that F is flat on A by Theorem 5.1.2.
However, s does not lie in any of the pi, whence (a : s) = a, proving (5.8).
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To prove the theorem, let f ∈ a(hn), and fix some e. We may write pe = an + r
for some a,r ∈ N with 0 ≤ r < n. Since the usual powers are contained in the
symbolic powers, and since r < n, we have inclusions

ahn f a ⊆ ahr f a ⊆ a(han+hr) = a(hpe) ⊆ Fe(a)A (5.9)

where we used (5.8) for the last inclusion. Taking n-th powers in (5.9) shows that
ahn2

f an lies in the n-th power of Fe(a)A, and this in turn lies inside Fe(an)A.
Choose some non-zero c in ahn2

. Since pe ≥ an, we get cFe( f ) ∈ Fe(an)A for all e.
In conclusion, f lies in cl(an) whence in an by Theorem 5.3.2. ��

One might be tempted to try to prove a more general form which does not
assume A to be regular, replacing an by its tight closure. However, we used the
regularity assumption not only via Theorem 5.3.2 but also via Kunz’s Theorem
that the Frobenius is flat. Hence the above proof does not work in arbitrary rings.

5.6 Classical Tight Closure in Characteristic Zero

To prove the previous three theorems in a ring of equal characteristic zero,
Hochster and Huneke also developed tight closure theory for such rings. One of
the precursors to tight closure theory was the proof of the Intersection Theorem
by Peskine and Szpiro in [75]. They used properties of the Frobenius together
with a method to transfer results from characteristic p to characteristic zero,
which was then generalized by Hochster in [43]. This same technique is also used
to obtain a tight closure theory in equal characteristic zero, as we will discuss
briefly in this section. However, using ultraproducts, we will bypass in Chapters 6
and 7 this rather heavy-duty machinery, to arrive much quicker at proofs in equal
characteristic zero.

Let A be a Noetherian ring containing the rationals. The idea is to associate to
A some rings in positive characteristic, its reductions modulo p, and calculate tight
closure in the latter. More precisely, let a ⊆ A be an ideal, and z ∈ A. We say that
z lies in the HH-tight closure of a (where “HH” stands for Hochster-Huneke), if
there exists a Z-affine subalgebra R ⊆ A containing z, such that (the image of) z
lies in the tight closure of I(R/pR) for all primes numbers p, where I := a∩R.

It is not too hard to show that this yields a closure operation on A (in the sense
of Definition 5.2.5). Much harder is showing that it satisfies all the necessary prop-
erties from §5.3. For instance, to prove the analogue of Theorem 5.3.2, one needs
some results on generic flatness, and some deep theorems on Artin Approxima-
tion (see for instance [59, Appendix 1] or [54]; for a brief discussion of Artin
Approximation, see §7.1 below). In contrast, using ultraproducts, one can avoid
all these complications in the affine case (Chapter 6), or get by with a more ele-
mentary version of Artin Approximation in the general case (Chapter 7).
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