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Chapter 1
Introduction

Unbeknownst to the majority of algebraists, ultraproducts have been around in
model-theory for more than half a century, since their first appearance in a pa-
per by Łoś ([65]), although the construction goes even further back, to work of
Skolem in 1938 on non-standard models of Peano arithmetic. Through Kochen’s
seminal paper [61] and his joint work [9] with Ax, ultraproducts also found their
way into algebra. They did not leave a lasting impression on the algebraic com-
munity though, shunned perhaps because there were conceived as non-algebraic,
belonging to the alien universe of set-theory and non-standard arithmetic, a uni-
verse in which most mathematicians did not, and still do not feel too comfortable.

The present book intends to debunk this common perception of ultraprod-
ucts: when applied to algebraic objects, their construction is quite natural, yet
very powerful, and requires hardly any knowledge of model-theory. In particu-
lar, when applied to a collection of rings Aw, where w runs over some infinite
index set W , the construction is entirely algebraic: the ultraproduct of the Aw is
realized as a certain residue ring of the Cartesian product A∞ := ∏Aw modulo
the so-called null-ideal (see below). Any ring arising in this way will be denoted
A�, and called an ultra-ring;1 and the Aw are then called approximations of this
ultra-ring. As this terminology suggests, we may think of ultraproducts as certain
kinds of limits. This is the perspective of [102], which I will not discuss in these
notes.

Whereas the classical Cartesian product performs a parallel computation, so
to speak, within each Aw, the ultraproduct, on the other hand, computes things
generically: elements in the ultraproduct A� satisfy certain algebraic relations if
and only if their corresponding entries satisfy the same relations in the approxima-
tions Aw with probability one. To make this latter condition explicit, an ostensibly
extrinsic component has to be introduced: we must impose some (degenerated)
probability measure on the index set W of the family. The classical way is to
choose a (non-principal) ultrafilter on W , and then say that an event holds with
probability one (or, more informally, almost always) if the set of indices for which
it holds belongs to the ultrafilter. Fortunately, the dependence on the choice of

1 For the rather unorthodox notation, see below.
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ultrafilter/probability measure turns out to be, for all our intents and purposes,
irrelevant, and so ultraproducts behave almost as if they were intrinsically de-
fined.2

Once we have chosen a (non-principal) ultrafilter, we can define the ultraprod-
uct A� as the residue ring of the Cartesian product A∞ := ∏w Aw modulo the
null-ideal of almost zero elements, that is to say, those elements in the product
almost all of whose entries are zero. However, we can make this construction
entirely algebraic, without having to rely on an ultrafilter/probability measure
(although the latter perspective is more useful when we have to prove things about
ultraproducts). Namely, A∞ carries naturally the structure of a Z∞-algebra, where
Z∞ is the corresponding Cartesian power of the ring of integers Z. Given any
minimal prime ideal P in Z∞, the base change A� := A∞/PA∞ is an ultra-ring
(with corresponding null-ideal PA∞). Moreover, all possible ultraproducts of the
Aw arise in this way (see §2.5). Principal null-ideals, corresponding to principal
ultrafilters, have one of the Aw as residue rings, and therefore are of little use.
Hence from now on, when talking about ultra-rings, we always assume that the
null-ideal is not principal—it follows that it is then infinitely generated—and this
is equivalent with the ultrafilter containing all co-finite subsets, and also with P
containing the direct sum ideal

⊕
Z. Perhaps even more surprisingly familiar is

the alternative definition given in §2.6 (communicated to me by Macintyre): an
ultra-ring is simply a stalk at a point x of a sheaf of rings on a Boolean scheme,
where a scheme is called Boolean if each residue field is isomorphic to F2 (and the
null-ideal is non-principal if and only if the prime ideal of x is infinitely generated).

I already alluded to the main property of ultraproducts: they have the same
(first-order) properties than almost all their approximations Aw; this is known
to model-theorists as Łoś’ Theorem. Although it may not always be easy to de-
termine whether a property carries over, that is to say, is first-order, this is the
case if it is expressible in arithmetic terms. Arithmetical here refers to algebraic
formulas between ring elements, ‘first-order objects,’ but not between ‘higher-
order objects,’ like ideals or modules. For instance, properties such as being a
domain, reduced, normal, local, or Henselian, are easily seen to be preserved.
Among those that do not carry over, is, unfortunately, the Noetherian property.
Ultra-rings, therefore, are hardly ever Noetherian; the ultraproduct construction
takes us outside our category! In particular, tools from commutative algebra seem
no longer applicable. However, as we will show, there is still an awful lot, espe-
cially in the local case, that does carry through, with a few minor adaptations
of the definitions. In fact, we will introduce two variant constructions that are
designed to overcome altogether this obstacle. I have termed these chromatic prod-
ucts, for they, too, are denoted using musical notation: the protoproduct A�, and
the cataproduct A�. The latter is defined as soon all Aw are Noetherian local rings
of bounded embedding dimension (that is to say, whose maximal ideal is gener-

2 This does not mean that ultraproducts of the same rings, but with respect to different ultrafil-
ters, are necessarily isomorphic.
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ated by n elements, for some n independent from w). Its main advantage over the
ultraproduct itself, of which it is a further residue ring, is that a cataproduct is
always Noetherian and complete. To define protoproducts, we need some addi-
tional data on the approximations, namely, some uniform grading, analogous to
polynomial degree. Although protoproducts do not need to be Noetherian, they
often are. In case both are defined, we get a chromatic scale of homomorphisms
A� → A� → A�.

However, as we shall see, it is in combination with certain flatness results that
ultraproducts, and more generally chromatic products, acquire their real power.
Already in their 1984 paper [86], Schmidt and van den Dries observed how a cer-
tain flatness property of ultraproducts, discovered five years prior to this by van
den Dries in [25], translates into the existence of uniform bounds in polynomial
rings (see our discussion in §4.2). This paper was soon followed by others exploit-
ing this new method: [11,23,84]. The former two papers brought in a third theme
that we will encounter in this book on occasion: Artin Approximation (see §7.1).
So germane to almost every single application of ultraproducts is flatness, that I
have devoted a separate chapter, Chapter 3, to it. It contains several flatness re-
sults, old and new,3 that will be of use later in the book. Prior to this chapter,
I introduce first our main protagonist, the ultra-ring, and prove some elemen-
tary facts. Noteworthy is a model-theoretic version of the Lefschetz Principle,
Theorem 2.4.3, which will provide the basis of most transfer results from pos-
itive to zero characteristic: we may realize the field of complex numbers as an
ultraproduct of fields of positive characteristic!

The subsequent chapters—except for Chapter 5, which is a brief survey
on classical tight closure theory—then contain deeper results and proper-
ties of ultra-rings. Since an ultraproduct averages or captures the generic
behavior of its approximations, it should not come as a surprise that as a
tool, it is particularly well suited to derive uniformity results. This is done
in Chapter 4, whose material is both thematically and chronologically the
closest to its above mentioned paradigmatic forebear [86]. A second, more
profound application of the method to commutative algebra is described
in Chapters 6 and 7: we use ultraproducts to give an alternative treatment
of tight closure theory in characteristic zero. Tight closure theory, intro-
duced by Hochster and Huneke in an impressive array of beautiful articles—
[47,48,50,53,51], to name only a few—is an extremely powerful tool, which relies
heavily on the algebraicity of the Frobenius in positive characteristic, and as such
is primarily a positive characteristic tool. Without going into details (these can
be found in Chapter 5), one associates, using the p-th power Frobenius homo-
morphisms, to any ideal a in a ring of characteristic p > 0, its tight closure a∗, an
overideal contained in the integral closure of a, but often much closer or “tighter”
to the original a. What really attracted people to the method was not only the

3 Some of the well-known criteria are given here with a new proof; see, for instance, §3.3.6 on
the Local Flatness Criterium.
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apparent ease with which deep, known results could be reproved, but also its
new, and sometimes unexpected applications, both in commutative algebra and
algebraic geometry, derived almost all by means of fairly elementary arguments.

Although essentially a positive characteristic method, its authors also con-
ceived of tight closure theory in characteristic zero in [54], by a generic reduction
to positive characteristic. In fact, this reduction method, using Artin Approxi-
mation, as well as the method in positive characteristic itself were both inspired
by the equally impressive work of Peskine and Szpiro [75] on Intersection Conjec-
tures, and Hochster’s own early work on big Cohen-Macaulay modules ([56]) and
homological conjectures ([43,44]). However, to develop the method in characteris-
tic zero some extremely deep results on Artin Approximation4 were required, and
the elegance of the positive characteristic method was entirely lost. No wonder! In
characteristic zero, there is no Frobenius, nor any other algebraic endomorphism
that could take over its role. To the rescue, however, come our ultraproducts.
Keeping in mind that an ultraproduct is some kind of averaging process, it follows
that the ultraproduct of rings of different positive characteristic is an ultra-ring of
characteristic zero, for which reason we call it a Lefschetz ring. Furthermore, the
ultraproduct of the corresponding Frobenius maps—one of the many advantages
of ultraproducts, they can be taken of almost anything!—yields an ultra-Frobenius
on this Lefschetz ring. Notwithstanding that it is no longer a power map, this
ultra-Frobenius can easily fulfill the role played by the Frobenius in the positive
characteristic theory. The key observation now is that many rings of characteris-
tic zero—for instance, all Noetherian local rings, and all rings of finite type over
a field—embed in a Lefschetz ring via a faithfully flat homomorphism. Flatness
is essential here: it guarantees that the embedded ring preserves its ideal structure
within the Lefschetz ring, which makes it possible to define the tight closure of
its ideals inside that larger ring. In this manner, we can restore the elegant argu-
ments from the positive characteristic theory, and prove the same results with the
same elegant arguments as before. The present theory of characteristic zero tight
closure is the easiest to develop for rings of finite type over an algebraically closed
field, and this is explained in Chapter 6. The general local case is more compli-
cated, and does require some further results on Artin Approximation, although
far less deep than the ones Hochster and Huneke need for their theory. In fact,
conversely, one can deduce certain Artin Approximation results from the fact that
any Noetherian local ring has a faithfully flat Lefschetz extension (see in partic-
ular §7.1.4). Chapter 7 only develops the parts necessary to derive all the desired
applications; for a more thorough treatment, one can consult [6].

In a parallel development, Hochster and Huneke’s work on tight closure also
led them to their discovery of canonically defined, big balanced Cohen-Macaulay
algebras in positive characteristic: any system of parameters in a excellent local
domain of positive characteristic becomes a regular sequence in the absolute
integral closure of the ring. The same statement is plainly false in characteristic

4 The controversy initially shrouding these results is a tale on its own.
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zero, and the authors had to circumvent this obstruction again using complicated
reduction techniques. Using ultraproducts, one constructs, quite canonically, big
balanced Cohen-Macaulay algebras in characteristic zero simply by (faithfully
flatly) embedding the ring inside a Lefschetz ring and then taking the ultraprod-
uct of the absolute integral closures of the positive characteristic approximations
of this Lefschetz ring. With aid of these new techniques, I was able to give new
characterizations of rational and log-terminal singularities. Furthermore, exploit-
ing the canonical properties of the ultra-Frobenius, I succeeded in settling some of
the conjectures that hitherto had remained impervious to tight closure methods.
All these results, unfortunately, fall outside the scope of this book, and the reader
is referred to the articles [94, 95, 99], or to the survey paper [100].

The next two chapters, Chapter 8 on cataproducts, and Chapter 9 on proto-
products, develop the theory of the chromatic products mentioned already above.
Most of the applications are on uniform bounds. For instance, we discuss some
of the characterizations from [101] of several ring-theoretic properties of Noethe-
rian local rings, such as being analytically unramified, Cohen-Macaulay, unmixed,
etc., in terms of uniform behavior of two particular ring-invariants: order (with
respect to the maximal ideal) and degree. This latter invariant measures to which
extent an element is a parameter of the ring, and is a spin-off of our analysis of
the dimension theory for ultra-rings (Krull dimension is one of the many invari-
ants that are not preserved under ultraproducts, requiring a different approach via
systems of parameters). Protoproducts, on the other hand, are designed to study
rings with a generalized grading, called proto-grading, and most applications are
again on uniform bounds in terms of these. This is in essence a formalization of
the method coming out of the aforementioned [86].

In the last chapter, we discuss some open problems, commonly known as homo-
logical conjectures. Whereas these are now all settled in equal characteristic, either
by the older methods, or by the recent tight closure methods, the case when the
Noetherian local ring has different characteristic than its residue field, the mixed
characteristic case, is for the most part still wide open (other than the recent break-
through in dimension three by Heitman [40] and Hochster [46]). We will settle
some of them, at least asymptotically, meaning, for large enough residual char-
acteristic. This is still far from a complete solution, and our asymptotic results
would only gain considerable interest if the actual conjectures turned out to be
false. The method is inspired by Ax and Kochen’s solution of a problem posed
by Artin about C2-fields, historically the first application of ultraproducts outside
logic (see §10.1.2). Their main result, generalized latter by Eršhov ([29,30]), is that
an ultraproduct of mixed characteristic discrete valuation rings of different resid-
ual characteristics is isomorphic to an ultraproduct of equal characteristic discrete
valuation rings. So, we can transfer results from equal characteristic, the known
case, to results in mixed characteristic. However, the fact that properties only hold
with probability one in an ultraproduct accounts for the asymptotic nature of our
results. In §10.3, I propose a variant method, using cataproducts instead. Here
the asymptotic nature can also be expressed in terms of the ramification index,
that is to say, the order of the residual characteristic, rather than just the residual
characteristic itself. Although this gives often more general results, in terms of
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more natural invariants, some of the homological problems still elude treatment.
We conclude with a result, Theorem 10.3.7, showing how these asymptotic results
could nonetheless lead to a positive solution of the corresponding full conjecture,
provided we understand the growth rate of these uniform bounds better.

This book also includes two appendices, which contain some applications of
the present theory, but also some material used at various points in the main
text. Appendix A gives a new construction for the Henselization of a Noetherian
local ring. The constructive nature of the process allows us then to define a proto-
grading on this Henselization, called the etale proto-grade, and apply the theory
from Chapter 9 to the ring of algebraic power series rings. Appendix B discusses
Boolean rings and some of their generalizations (J-rings, n-Boolean and ω -Boolean
rings, periodic rings). In particular, we prove, by means of ultraproducts, some
representation theorems analogous to Stone’s theorem for Boolean rings, which
seem to have been unnoticed hitherto.

Notations and Conventions We follow the common convention to letN, Z, Zp,
Q, Qp, R, and C denote respectively, the natural numbers, the integers, the ring
of p-adic integers, the field of rational, of p-adic, of real, and of complex numbers.
The q-element field, for q a power of a prime number p, will be denoted Fq;
its algebraic closure is denoted Falg

p . The complement of a set D ⊂ W is denoted
−D, and more generally, the difference between two subsets D,E ⊆W is denoted
D−E.

All rings are assumed to be commutative. More often than not, the image of an
element a ∈ A under a ring homomorphism A →B is still denoted a. In particular,
IB denotes the ideal generated by the images of elements in the ideal I ⊆ A, and
J∩A denotes the ideal of all elements in A whose image lies in the ideal J ⊆ B.



Chapter 2
Ultraproducts and Łoś’ Theorem

In this chapter, W denotes an infinite set, always used as an index set, on which
we fix a non-principal ultrafilter.1 Given any collection of (first-order) structures
indexed by W , we can define their ultraproduct. However, in this book, we will
be mainly concerned with the construction of an ultraproduct of rings, an ultra-
ring for short, which is then defined as a certain residue ring of their Cartesian
product. From this point of view, the construction is purely algebraic, although
it is originally a model-theoretic one (we only provide some supplementary back-
ground on the model-theoretic perspective). We review some basic properties
(deeper theorems will be proved in the later chapters), the most important of
which is Łoś’ Theorem, relating properties of the approximations with their ul-
traproduct. When applied to algebraically closed fields, we arrive at a result that
is pivotal in most of our applications: the Lefschetz Principle (Theorem 2.4.3),
allowing us to transfer many properties between positive and zero characteristic.

2.1 Ultraproducts

We start with the classical definition of ultraproducts via ultrafilters; for different
approaches, see §§2.5 and 2.6 below.

2.1.1 Ultrafilters

By a (non-principal) ultrafilter W on W , we mean a collection of infinite subsets of
W closed under finite intersection, with the property that for any subset D ⊆W ,
either D or its complement −D belongs to W. In particular, the empty set does
not belong to W, and if D ∈ W and E is an arbitrary set containing D, then also

1 We will drop the adjective ‘non-principal’ since these are the only ultrafilters we are interested
in; if we want to talk about principal ones, we just say principal filter; and if we want to talk
about both, we say maximal filter.
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8 2 Ultraproducts and Łoś’ Theorem

E ∈ W, for otherwise −E ∈ W, whence /0 = D∩−E ∈ W, contradiction. Since
every set in W must be infinite, it follows that any co-finite set belongs to W.
The existence of ultrafilters follows from the Axiom of Choice, and we make this
set-theoretic assumption henceforth. It follows that for any infinite subset of W ,
we can find an ultrafilter containing this set.

More generally, a proper collection of subsets of W is called a filter if it is closed
under intersection and supersets. Any ultrafilter is a filter which is maximal with
respect to inclusion. If we drop the requirement that all sets in W must infinite,
then some singleton must belong to W; such a filter is called principal, and these
are the only other maximal filters. A maximal filter is an ultrafilter if and only if it
contains the Frechet filter consisting of all co-finite subsets (for all these properties,
see for instance [81, §4] or [57, §6.4]).

In the remainder of these notes, unless stated otherwise, we fix an ultrafilter
W on W , and (almost always) omit reference to this fixed ultrafilter from our
notation. No extra property of the ultrafilter is assumed, with the one exception
described in Remark 8.1.5, which is nowhere used in the rest of our work anyway.
Ultrafilters play the role of a decision procedure on the collection of subsets of W
by declaring some subsets ‘large’ (those belonging to W) and declaring the remain-
ing ones ‘small’. More precisely, let ow be elements indexed by w ∈W , and let P
be a property. We will use the expressions almost all ow satisfy property P or ow

satisfies property P for almost all w as an abbreviation of the statement that there
exists a set D in the ultrafilter W, such that property P holds for the element ow,
whenever w ∈ D. Note that this is also equivalent with the statement that the set
of all w ∈W for which ow has property P , lies in the ultrafilter (read: is large).

2.1.2 Ultraproducts

Let Ow be sets, for w ∈ W . We define an equivalence relation on the Cartesian
product O∞ := ∏Ow, by calling two sequences (aw) and (bw), for w ∈ W , equiv-
alent, if aw and bw are equal for almost all w. In other words, if the set of indices
w∈W for which aw = bw belongs to the ultrafilter. We will denote the equivalence
class of a sequence (aw) by

ulim
w→∞

aw, or ulimaw, or a�.

The set of all equivalence classes on ∏Ow is called the ultraproduct of the Ow and
is denoted

ulim
w→∞

Ow, or ulimOw, or O�.

If all Ow are equal to the same set O, then we call their ultraproduct the ultrapower
O� of O. There is a canonical map O → O�, sometimes called the diagonal embed-
ding, sending an element o to the image of the constant sequence o in O�. To see
that it is an injection, assume o′ has the same image as o in O�. This means that
for almost all w, and hence for at least one, the elements o and o′ are equal.
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Note that the element-wise and set-wise notations are reconciled by the fact
that

ulim
w→∞

{ow} = {ulim
w→∞

ow}.
The more common notation for an ultraproduct one usually finds in the literature
is O∗; in the past, I also have used O∞, which in this book is reserved to denote
Cartesian products. The reason for using the particular notation O� in these notes
is because we will also introduce the remaining chromatic products O� and O� (at
least for certain local rings; see Chapters 9 and 8 respectively).

We will also often use the following terminology: if o is an element in an
ultraproduct O�, then any choice of elements ow ∈ Ow with ultraproduct equal to
o will be called an approximation of o. Although an approximation is not uniquely
determined by the element, any two agree almost everywhere. Below we will
extend our usage of the term approximation to include other objects as well.

2.1.3 Properties of Ultraproducts

For the following properties, the easy proofs of which are left as an exercise, let
Ow be sets with ultraproduct O�.

2.1.1 If Qw is a subset of Ow for each w, then ulimQw is a subset of O�.

In fact, ulimQw consists of all elements of the form ulimow, with almost all ow

in Qw.

2.1.2 If each Ow is the graph of a function f w : Aw → Bw, then O� is the graph of
a function A� → B�, where A� and B� are the respective ultraproducts of Aw

and Bw. We will denote this function by

ulim
w→∞

f w or f �.

Moreover, we have an equality

ulim
w→∞

( f w(aw)) = (ulim
w→∞

f w)(ulim
w→∞

aw), (2.1)

for aw ∈ Aw.

2.1.3 If each Ow comes with an operation ∗w : Ow ×Ow → Ow, then

∗� := ulim
w→∞

∗w

is an operation on O�. If all (or, almost all) Ow are groups with multipli-
cation ∗w and unit element 1w, then O� is a group with multiplication ∗�

and unit element 1� := ulim1w. If almost all Ow are Abelian groups, then
so is O�.
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2.1.4 If each Ow is a (commutative) ring under the addition +w and the
multiplication ·w, then O� is a (commutative) ring with addition +� and
multiplication ·�.

In fact, in that case, O� is just the quotient of the product O∞ := ∏Ow modulo
the null-ideal, the ideal consisting of all sequences (ow) for which almost all ow

are zero (for more on this ideal, see §2.5 below). From now on, we will drop
subscripts on the operations and denote the ring operations on the Ow and on O�

simply by + and ·.
2.1.5 If almost all Ow are fields, then so is O�. More generally, if almost each Ow

is a domain with field of fractions Kw, then the ultraproduct K� of the Kw

is the field of fractions of O�.

Just to give an example of how to work with ultraproducts, let me give the
proof: if a ∈ O� is non-zero, with approximation aw (recall that this means that
ulimaw = a), then by the previous description of the ring structure on O�, almost
all aw will be non-zero. Therefore, letting bw be the inverse of aw whenever this
makes sense, and zero otherwise, one verifies that ulimbw is the inverse of a. 	

2.1.6 If Cw are rings and Ow is an ideal in Cw, then O� is an ideal in C� :=

ulimCw. In fact, O� is equal to the subset of all elements of the form ulimow

with almost all ow ∈ Ow. Moreover, the ultraproduct of the Cw/Ow is iso-
morphic to C�/O�. If almost every Ow is generated by e elements, then so
is O�.

In other words, the ultraproduct of ideals Ow ⊆ Cw is equal to the image of
the ideal ∏Ow in the product C∞ := ∏Cw under the canonical residue homomor-
phism C∞ →C�. As for the last assertion, suppose o1w, . . . ,oe(w),w generate Ow, for
each w, and let oi� be the ultraproduct of the oi,w, where we put the latter equal
to 0 if i > e(w). The ideal generated by the oi� can be strictly contained in O� (an
example is the ideal of infinitesimals, defined below in 2.4.13), but it is equal to it
if almost all ew are equal, say, to e. Indeed, any element o� of O� is an ultraprod-
uct of elements ow ∈ Ow, which therefore can be written as a linear combination
ow = r1wo1w + · · ·+ re,woe,w, for some ri,w ∈ Cw. Let ri� ∈ C� be the ultraproduct
of the ri,w, for i = 1, . . . ,e. By Łoś’ Theorem (see Theorem 2.3.2 below), we have
o� = r1�o1� + · · ·+ re�oe�.

2.1.7 If f w : Aw → Bw are ring homomorphisms, then the ultraproduct f � is
again a ring homomorphism. In particular, if σw is an endomorphism on
Aw, then the ultraproduct σ � is a ring endomorphism on A� := ulimAw.

2.2 Model-theory in Rings

The previous examples are just instances of the general principle that ‘alge-
braic structure’ carries over to the ultraproduct. The precise formulation of this
principle is called Łós’ Theorem (Łoś is pronounced ‘wôsh’) and requires some



2.2 Model-theory in Rings 11

terminology from model-theory. However, for our purposes, a weak version of
Łoś’ Theorem (namely Theorem 2.3.1 below) suffices in almost all cases, and its
proof is entirely algebraic. Nonetheless, for a better understanding, the reader is
invited to indulge in some elementary model-theory, or rather, an ad hoc version
for rings only (if this not satisfies him/her, (s)he should consult any textbook,
such as [57, 67, 81]).

2.2.1 Formulae

By a quantifier free formula without parameters in the free variables ξ =
(ξ1, . . . ,ξn), we will mean an expression of the form

ϕ(ξ ) :=
m∨

j=1

f1 j = 0∧ . . .∧ fs j = 0∧g1 j �= 0∧ . . .∧gt j �= 0, (2.2)

where each fi j and gi j is a polynomial with integer coefficients in the variables
ξ , and where ∧ and ∨ are the logical connectives and and or. If instead we al-
low the fi j and gi j to have coefficients in a ring R, then we call ϕ(ξ ) a quantifier
free formula with parameters in R. We allow all possible degenerate cases as well:
there might be no variables at all (so that the formula simply declares that certain
elements in Z or in R are zero and others are non-zero) or there might be no equa-
tions or no negations or perhaps no conditions at all. Put succinctly, a quantifier
free formula is a Boolean combination of polynomial equations using the connec-
tives ∧, ∨ and ¬ (negation), with the understanding that we use distributivity and
De Morgan’s Laws to rewrite this Boolean expression in the (disjunctive normal)
form (2.2).

By a formula without parameters in the free variables ξ , we mean an expression
of the form

ϕ(ξ ) := (Q1 ζ1) · · · (Qp ζp)ψ(ξ ,ζ ),

where ψ(ξ ,ζ ) is a quantifier free formula without parameters in the free variables
ξ and ζ = (ζ1, . . . ,ζp) and where Qi is either the universal quantifier ∀ or the
existential quantifier ∃. If instead ψ(ξ ,ζ ) has parameters from R, then we call
ϕ(ξ ) a formula with parameters in R. A formula with no free variables is called a
sentence.

2.2.2 Satisfaction

Let ϕ(ξ ) be a formula in the free variables ξ = (ξ1, . . . ,ξn) with parameters from
R (this includes the case that there are no parameters by taking R = Z and the
case that there are no free variables by taking n = 0). Let A be an R-algebra and let
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a = (a1, . . . ,an) be a tuple with entries from A. We will give meaning to the ex-
pression a satisfies the formula ϕ(ξ ) in A (sometimes abbreviated to ϕ(a) holds in
A or is true in A) by induction on the number of quantifiers. Suppose first that
ϕ(ξ ) is quantifier free, given by the Boolean expression (2.2). Then ϕ(a) holds in
A, if for some j0, all fi j0(a) = 0 and all gi j0(a) �= 0. For the general case, suppose
ϕ(ξ ) is of the form (∃ζ )ψ(ξ ,ζ ) (respectively, (∀ζ )ψ(ξ ,ζ )), where the satisfac-
tion relation is already defined for the formula ψ(ξ ,ζ ). Then ϕ(a) holds in A, if
there is some b ∈ A such that ψ(a,b) holds in A (respectively, if ψ(a,b) holds in
A, for all b ∈ A). The subset of An consisting of all tuples satisfying ϕ(ξ ) will be
called the subset defined by ϕ , and will be denoted ϕ(A). Any subset that arises in
such way will be called a definable subset of An.

Note that if n = 0, then there is no mention of tuples in A. In other words, a
sentence is either true or false in A. By convention, we set A0 equal to the singleton
{ /0} (that is to say, A0 consists of the empty tuple /0). If ϕ is a sentence, then the
set defined by it is either { /0} or /0, according to whether ϕ is true or false in A.

2.2.3 Constructible Sets

There is a connection between definable subsets and Zariski-constructible subsets,
where the relationship is the most transparent over algebraically closed fields, as
we will explain below. In general, we can make the following observations.

Let R be a ring. Let ϕ(ξ ) be a quantifier free formula with parameters from
R, given as in (2.2). Let Σϕ(ξ ) denote the constructible subset of An

R = Spec(R[ξ ])
consisting of all prime ideals p which, for some j0, contain all fi j0 and do not
contain any gi j0 . In particular, if n = 0, so that A0

R is by definition Spec(R), then
the constructible subset Σϕ associated to ϕ is a subset of Spec(R).

Let A be an R-algebra and assume moreover that A is a domain (we will never
use constructible sets associated to formulae if A is not a domain). For an n-tuple
a over A, let pa be the (prime) ideal in A[ξ ] generated by the ξi − ai, where ξ =
(ξ1, . . . ,ξn). Since A[ξ ]/pa ∼= A, we call such a prime ideal an A-rational point of
A[ξ ]. It is not hard to see that this yields a bijection between n-tuples over A and
A-rational points of A[ξ ], which we therefore will identify with one another. In
this terminology, ϕ(a) holds in A if and only if the corresponding A-rational point
pa lies in the constructible subset Σϕ(ξ ) (strictly speaking, we should say that it lies
in the base change Σϕ(ξ ) ×Spec(R) Spec(A), but for notational clarity, we will omit
any reference to base changes). If we denote the collection of A-rational points
of the constructible set Σϕ(ξ ) by Σϕ(ξ )(A), then this latter set corresponds to the
definable subset ϕ(A) under the identification of A-rational points of A[ξ ] with
n-tuples over A. If ϕ is a sentence, then Σϕ is a constructible subset of Spec(R)
and hence its base change to Spec(A) is a constructible subset of Spec(A). Since
A is a domain, Spec(A) has a unique A-rational point (corresponding to the zero-
ideal) and hence ϕ holds in A if and only if this point belongs to Σϕ .
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Conversely, if Σ is an R-constructible subset of An
R, then we can associate to it a

quantifier free formula ϕΣ (ξ ) with parameters from R as follows. However, here
there is some ambiguity, as a constructible subset is more intrinsically defined
than a formula. Suppose first that Σ is the Zariski closed subset V(I), where I is
an ideal in R[ξ ]. Choose a system of generators, so that I = ( f1, . . . , fs)R[ξ ] and
set ϕΣ (ξ ) equal to the quantifier free formula f1(ξ ) = · · ·= fs(ξ ) = 0. Let A be an
R-algebra without zero-divisors. It follows that an n-tuple a is an A-rational point
of Σ if and only if a satisfies the formula ϕΣ . Therefore, if we make a different
choice of generators I = ( f ′1, . . . , f ′s)R[ξ ], although we get a different formula ϕ ′,
it defines in any R-algebra A without zero-divisors the same definable subset, to
wit, the collection of A-rational points of Σ . To associate a formula to an arbitrary
constructible subset, we do this recursively by letting ϕΣ ∧ϕΨ , ϕΣ ∨ϕΨ and ¬ϕΣ
correspond to the constructible sets Σ ∩Ψ , Σ ∪Ψ and −Σ respectively.

We say that two formulae ϕ(ξ ) and ψ(ξ ) in the same free variables ξ =
(ξ1, . . . ,ξn) are equivalent over a ring A, if they hold on exactly the same tuples
from A (that is to say, if they define the same subsets in An). In particular, if ϕ and
ψ are sentences, then they are equivalent in A if they are simultaneously true or
false in A. If ϕ(ξ ) and ψ(ξ ) are equivalent for all rings A in a certain class K , then
we say that ϕ(ξ ) and ψ(ξ ) are equivalent modulo the class K . In particular, if Σ is
a constructible subset in An

R, then any two formulae associated to it are equivalent
modulo the class of all R-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsets of An

R and quantifier free
formulae with parameters from R up to equivalence.

2.2.4 Quantifier Elimination

For certain rings (or classes of rings), every formula is equivalent to a quantifier
free formula; this phenomenon is known under the name Quantifier Elimination.
We will only encounter it for the following class.

Theorem 2.2.1 (Quantifier Elimination for Algebraically Closed Fields). If
K is the class of all algebraically closed fields, then any formula without parameters is
equivalent modulo K to a quantifier free formula without parameters.

More generally, if F is a field and K (F) the class of all algebraically closed fields
containing F , then any formula with parameters from F is equivalent modulo K (F)
to a quantifier free formula with parameters from F .

Proof (Sketch of proof ). These statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that the projection of a
constructible subset is again constructible. I will only explain this for the first
assertion. As already observed, a quantifier free formula ϕ(ξ ) (without parame-
ters) corresponds to a constructible set Σϕ(ξ ) in An

Z
and the tuples in Kn satisfying

ϕ(ξ ) are precisely the K-rational points Σϕ(ξ )(K) of Σϕ(ξ ). The key observa-
tion is now the following. Let ψ(ξ ,ζ ) be a quantifier free formula and put
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γ(ξ ) := (∃ζ )ψ(ξ ,ζ ), where ξ = (ξ1, . . . ,ξn) and ζ = (ζ1, . . . ,ζm). Let Ψ := ψ(K)
be the subset of Kn+m defined by ψ(ξ ,ζ ) and let Γ := γ(K) be the subset of Kn

defined by γ(ξ ). Therefore, if we identify Kn+m with the collection of K-rational
points of An+m

K , then
Ψ = Σψ(ξ ,ζ )(K).

Moreover, if p : An+m
K → A

n
K is the projection onto the first n coordinates then

p(Ψ) = Γ . By Chevalley’s Theorem (see for instance [27, Corollary 14.7] or
[39, II. Exercise 3.19]), p(Σψ(ξ ,ζ )) (as a subset in An

Z
) is again constructible, and

therefore, by our previous discussion, of the form Σχ(ξ ) for some quantifier free
formula χ(ξ ). Hence Γ = Σχ(ξ )(K), showing that γ(ξ ) is equivalent modulo K
to χ(ξ ). Since χ(ξ ) does not depend on K, we have in fact an equivalence of
formulae modulo the class K . To get rid of an arbitrary chain of quantifiers, we
use induction on the number of quantifiers, noting that the complement of a set
defined by (∀ζ )ψ(ξ ,ζ ) is the set defined by (∃ζ )¬ψ(ξ ,ζ ), where ¬(·) denotes
negation.

For some alternative proofs, see [57, Corollary A.5.2] or [67, Theorem 1.6]. 	


2.3 Łoś’ Theorem

Thanks to Quantifier Elimination (Theorem 2.2.1), when dealing with alge-
braically closed fields, we may forget altogether about formulae and use con-
structible subsets instead. However, we will not always be able to work just in
algebraically closed fields and so we need to formulate a general transfer principle
for ultraproducts. For most of our purposes, the following version suffices:

Theorem 2.3.1 (Equational Łoś’ Theorem). Suppose each Aw is an R-algebra, and
let A� denote their ultraproduct. Let ξ be an n-tuple of variables, let f ∈ R[ξ ], and
let aw be n-tuples in Aw with ultraproduct a�. Then f (a�) = 0 in A� if and only if
f (aw) = 0 in Aw for almost all w.

Moreover, instead of a single equation f = 0, we may take in the above statement
any system of equations and negations of equations over R.

Proof. Let me only sketch a proof of the first assertion. Suppose f (a�) = 0. One
checks (do this!), making repeatedly use of (2.1), that f (a�) is equal to the ultra-
product of the f (aw). Hence the former being zero simply means that almost all
f (aw) are zero. The converse is proven by simply reversing this argument. 	


On occasion, we might also want to use the full version of Łoś’ Theorem,
which requires the notion of a formula as defined above. Recall that a sentence is
a formula without free variables.

Theorem 2.3.2 (Łoś’ Theorem). Let R be a ring and let Aw be R-algebras. If ϕ is a
sentence with parameters from R, then ϕ holds in almost all Aw if and only if ϕ holds
in the ultraproduct A�.



2.4 Ultra-rings 15

More generally, let ϕ(ξ1, . . . ,ξn) be a formula with parameters from R and let aw

be an n-tuple in Aw with ultraproduct a�. Then ϕ(aw) holds in almost all Aw if and
only if ϕ(a�) holds in A�.

The proof is tedious but not hard; one simply has to unwind the definition of
formula (see [57, Theorem 9.5.1] for a more general treatment). Note that A� is
naturally an R-algebra, so that it makes sense to assert that ϕ is true or false in A�.
Applying Łoś’ Theorem to a quantifier free formula proves Theorem 2.3.1.

2.4 Ultra-rings

An ultra-ring is simply an ultraproduct of rings. Probably the first examples of
ultra-rings appearing in the literature are the so-called non-standard integers, that
is to say, the ultrapowers Z� of Z,2 and the hyper-reals, that is to say, the ultra-
power R� of the reals, which figure prominently in non-standard analysis (see, for
instance, [36, 80]). Ultra-rings will be our main protagonists, but for the moment
we only establish some very basic facts about them.

2.4.1 Ultra-fields

Let Kw be a collection of fields and K� their ultraproduct, which is again a field by
2.1.5 (or by an application of Łoś’ Theorem). Any field which arises in this way
is called an ultra-field.3 Since an ultraproduct is either finite or uncountable, Q is
an example of a field which is not an ultra-field.

2.4.1 If for each prime number p, only finitely many Kw have characteristic p,
then K� has characteristic zero.

Indeed, for every prime number p, the equation pξ − 1 = 0 has a solu-
tion in all but finitely many of the Kw and hence it has a solution in K�, by
Theorem 2.3.1. We will call an ultra-field K� of characteristic zero which arises
as an ultraproduct of fields of positive characteristic, a Lefschetz field (the name is
inspired by Theorem 2.4.3 below); and more generally, an ultra-ring of character-
istic zero given as the ultraproduct of rings of positive characteristic will be called
a Lefschetz ring (see §7.2.1 for more).

2 Logicians study these under the guise of models of Peano arithmetic, where, instead of Z�, one
traditionally looks at the sub-semi-ring N�, the ultrapower of N (see, for instance, [63]). Caveat:
not all non-standard models are realizable as ultrapowers.
3 In case the Kw are finite but of unbounded cardinality, their ultraproduct K� is also called a
pseudo-finite field; in these notes, however, we prefer the usage of the prefix ultra-, and so we
would call such fields instead ultra-finite fields.
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2.4.2 If almost all Kw are algebraically closed fields, then so is K�.

The quickest proof is by means of Łoś’ Theorem, although one could also give
an argument using just Theorem 2.3.1.

Proof. For each n ≥ 2, consider the sentence σn given by

(∀ζ0, . . . ,ζn)(∃ξ )ζn = 0 ∨ ζnξ n + · · ·+ ζ1ξ + ζ0 = 0.

This sentence is true in any algebraically closed field, whence in almost all Kw,
and therefore, by Łoś’ Theorem, in K�. However, a field in which every σn holds
is algebraically closed. 	


We have the following important corollary which can be thought of as a model-
theoretic Lefschetz Principle (here Falg

p is the algebraic closure of the p-element
field Fp; and, more generally, Falg denotes the algebraic closure of a field F).

Theorem 2.4.3 (Lefschetz Principle). Let W be the set of prime numbers, endowed
with some ultrafilter. The ultraproduct of the fields Falg

p is isomorphic with the field C
of complex numbers, that is to say, we have an isomorphism

C∼= ulim
p→∞

F
alg
p

Proof. Let F� denote the ultraproduct of the fields Falg
p . By 2.4.2, the field F� is

algebraically closed, and by 2.4.1, its characteristic is zero. Using elementary set
theory, one calculates that the cardinality of F� is equal to that of the continuum.
The theorem now follows since any two algebraically closed fields of the same
uncountable cardinality and the same characteristic are (non-canonically) isomor-
phic by Steinitz’s Theorem (see [57] or Theorem 2.4.7 below). 	

Remark 2.4.4. We can extend the above result as follows: any algebraically closed
field K of characteristic zero and cardinality 2κ , for some infinite cardinal κ , is
a Lefschetz field. Indeed, for each p, choose an algebraically closed field K p of
characteristic p and cardinality κ . Since the ultraproduct of these fields is then an
algebraically closed field of characteristic zero and cardinality 2κ , it is isomorphic
to K by Steinitz’s Theorem (Theorem 2.4.7). Under the generalized Continuum
Hypothesis, any uncountable cardinal is of the form 2κ , and hence any uncount-
able algebraically closed field of characteristic zero is then a Lefschetz field. We
will tacitly assume this, but the reader can check that nowhere this assumption is
used in an essential way.

Remark 2.4.5. Theorem 2.4.3 is an embodiment of a well-known heuristic prin-
ciple in algebraic geometry regarding transfer between positive and zero charac-
teristic, which Weil [113] attributes to Lefschetz. Essentially metamathematical
in nature, there have been some attempts to formulate this principle in a formal,
model-theoretic language in [10,28]; for a more general version than ours, see [32,
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Theorem 8.3]. In fact, Theorem 2.4.3 is a special instance of model-theoretic com-
pactness applied to the theory of algebraically closed fields. For instance, the next
result, due to Ax [8], is normally proven using compactness, but here is a proof
using Theorem 2.4.3 instead:

2.4.6 If a polynomial map Cn → C
n is injective, then it is surjective.

Indeed, by the Pigeon Hole Principle, the result is true if we replace C by any
finite field; since Falg

p is a union of finite fields, the assertion remains true over it;
an application of Theorem 2.4.3 then finishes the proof. 	

Theorem 2.4.7 (Steinitz’s Theorem). If K and L are algebraically closed fields
of the same characteristic and the same uncountable cardinality, then they are
isomorphic.

Proof (Sketch of proof ). Let k be the common prime field of K and L (that is to say,
either Q in characteristic zero, or Fp in positive characteristic p). Let Γ and Δ
be respective transcendence bases of K and L over k. Since K and L have the same
uncountable cardinality, Γ and Δ have the same cardinality, and hence there exists
a bijection f : Γ →Δ . This naturally extends to a field isomorphism k(Γ )→ k(Δ).
Since K is the algebraic closure of k(Γ ), and similarly, L of k(Δ), this isomorphism
then extends to an isomorphism K → L. 	


The previous results might lead the reader to think that the choice of ultrafilter
never matters. As we shall see later, for most of our purposes this is indeed true,
but there are many situations were the ultrafilter determines the ultraproduct. For
instance, consider the ultraproduct of fields Fw, where Fw is either F2 or F3. Since
almost all Fw are therefore equal to one, and only one, among these two fields, so
will their ultraproduct be (to see the latter, note that there is a first-order sentence
expressing that a field has exactly two elements, and now use the model-theoretic
version of Łoś’ Theorem, Theorem 2.3.2). More precisely, the ultraproduct is
equal to F2 if and only if the set I2 of indices w for which Fw = F2 belongs to
the ultrafilter. If I2 is infinite, then there exists always an ultrafilter containing it,
and if I2 is also co-finite, then there exists another one not containing I2, so that
in the former case, the ultraproduct is equal to F2, and in the latter case to F3.
We will prove a theorem below, Theorem 2.5.4, which tells us exactly all possible
ultraproducts a given collection of rings can produce (see also Theorem 2.6.4).

2.4.2 Ultra-rings

Let Aw be a collection of rings. Their ultraproduct A� will be called, as already
mentioned, an ultra-ring.

2.4.8 If each Aw is local with maximal ideal mw and residue field kw := Aw/mw,
then A� is local with maximal ideal m� := ulimmw and residue field k� :=
ulimkw.
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Indeed, a ring is local if and only if the sum of any two non-units is again a
non-unit. This statement is clearly expressible by means of a sentence, so that by
Łoś’ Theorem (Theorem 2.3.2), A� is local. Again we can prove this also directly,
or using the equational version, Theorem 2.3.1. The remaining assertions now
follow easily from 2.1.6. In fact, the same argument shows that the converse is
also true: if A� is local, then so are almost all Aw. 	


Recall that the embedding dimension of a local ring is the minimal number of
generators of its maximal ideal. The next result is therefore immediate from 2.1.6
and 2.4.8.

2.4.9 If Aw are local rings of embedding dimension e, then so is A�. 	

As being a domain is captured by the fact that the equation ξ ζ = 0 has no

solution by non-zero elements; and being reduced by the fact that the equation
ξ 2 = 0 has no non-zero solutions, we immediately get from Łoś’ Theorem:

2.4.10 Almost all Aw are domains (respectively, reduced) if and only if A� is a
domain (respectively, reduced). 	


In particular, using 2.1.6, we see that an ultraproduct of ideals is a prime
(respectively, radical, maximal) ideal if and only if almost all ideals are prime (re-
spectively, reduced, maximal).

2.4.11 If Iw are ideals in the local rings (Aw,mw), such that in (A�,m�), their
ultraproduct I� is m�-primary, then almost all Iw are mw-primary.

Recall that an ideal I in a local ring (R,m) is called m-primary if its radical is
equal to m. So, mN

� ⊆ I� for some N, and therefore, mw ⊆ Iw for almost all w, by
Łoś’ Theorem. 	


Note that here the converse may fail to hold: not every ultraproduct of
mw-primary ideals need to be m�-primary (see Proposition 2.4.17 for a partial
converse). For instance, the ultraproduct of the mw is no longer mR�-primary in
the ultrapower R� (see 8.1.3). An ideal in an ultra-ring is called an ultra-ideal, if it
is an ultraproduct of ideals.4

2.4.12 Any finitely generated, or more generally, any finitely related ideal a in an
ultra-ring A� is an ultra-ideal, and A�/a is again an ultra-ring.

Let A� be the ultraproduct of rings Aw. Recall that an ideal a is called finitely
related, if it is of the form (I : J) with I and J finitely generated. Suppose
I = ( f1, . . . , fn)A� and J = (g1, . . . ,gm)A�. Choose fiw,giw ∈ Aw with ultraproduct
equal to fi and gi respectively, and put

aw := (( f1w, . . . , fnw)Aw : (g1w, . . . ,gmw)Aw).

4 In the literature, such ideals are often called internal ideals.
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It is now an easy exercise on Łoś’ Theorem, using 2.1.6, that a is the ultraproduct
of the aw, and A�/a the ultraproduct of the Aw/aw. 	


Not every ideal in an ultra-ring is an ultra-ideal; for an example, see the
discussion at the start of §4.2. Another counterexample is provided by the fol-
lowing ideal, which will play an important role in the study of local ultra-rings
(see Proposition 2.4.19 for an example).

Definition 2.4.13 (Ideal of Infinitesimals). For an arbitrary local ring (R,m),
define its ideal of infinitesimals, denoted IR, as the intersection

IR :=
⋂

n≥0

mn.

The m-adic topology on R is Hausdorff (=separated) if and only if IR = 0.
Therefore, we will refer to the residue ring R/IR as the separated quotient of R.
In commutative algebra, the ideal of infinitesimals hardly ever appears simply
because of:

Theorem 2.4.14 (Krull’s Intersection Theorem). If R is a Noetherian local ring,
then IR = 0.

Proof. This is an immediate consequence of the Artin-Rees Lemma (for which
see [69, Theorem 8.5] or [7, Proposition 10.9]), or of its weaker variant proven
in Theorem 8.2.1 below. Namely, for x ∈ IR, there exists, according to the latter
theorem, some c such that xR∩mc ⊆ xm. Since x ∈ mc by assumption, we get
x ∈ xm, that is to say, x = ax with a ∈ m. Hence (1−a)x = 0. As 1−a is a unit in
R, we get x = 0. 	


It would be dishonest to claim that the above yields a non-standard proof of
Krull’s theorem via Theorem 8.2.1, as the latter proof uses the flatness of cat-
aproducts (Theorem 8.1.15), which is obtained via Cohen’s Structure Theorems,
and therefore, ultimately relies on Krull’s Intersection Theorem. The exact con-
nection between both results is given by Theorem 8.2.3.

Corollary 2.4.15. In a Noetherian local ring (R,m), every ideal is the intersection
of m-primary ideals.

Proof. For I ⊆ R an ideal, an application of Theorem 2.4.14 to the ring R/I shows
that I is the intersection of all I +mn, and the latter are indeed m-primary. 	


Most local ultra-rings have a non-zero ideal of infinitesimals.

2.4.16 If Rw are local rings with non-nilpotent maximal ideal, then the ideal of
infinitesimals of their ultraproduct R� is non-zero. In particular, R� is not
Noetherian.

Indeed, by assumption, we can find non-zero aw ∈ mw (let us for the moment
assume that the index set is equal to N) for all w. Hence their ultraproduct a� is
non-zero and lies inside IR�

. 	
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As we shall see later, being Noetherian is not preserved under ultraproducts.
However, under certain restrictive conditions, of which the field case (2.1.5) is
a special instance, we do have preservation (this also gives a more quantitative
version of 2.4.11):

Proposition 2.4.17. An ultraproduct A� of rings Aw is Artinian of length l if and
only if almost all Aw are Artinian of length l.

Proof. By the Jordan-Holder Theorem, there exist elements a0 = 0,a1, . . . ,al = 1
in A� such that

a0A� � (a0,a1)A� � (a0,a1,a2)A� � · · ·� (a0, . . . ,al)A� = A�

is a maximal chain of ideals. Choose, for each i = 0, . . . , l, elements aiw ∈Aw whose
ultraproduct is ai. By Łoś’ Theorem, for a fixed i < l, almost all inclusions

(a0w, . . . ,aiw)Aw ⊆ (a0w, . . . ,ai+1w)Aw (2.3)

are strict. This shows that almost all Aw have length at least l. If almost all of them
would have length bigger than l, then for at least one i, we can insert in almost
all inclusions (2.3) an ideal Iw different from both ideals. By Łoś’ Theorem, the
ultraproduct I� of the Iw would then be strictly contained between (a0, . . . ,ai)A�

and (a0, . . . ,ai+1)A�, implying that A� has length at least l + 1, contradiction. 	

Proposition 2.4.18. An ultra-Dedekind domain, that is to say, an ultraproduct of
Dedekind domains, is a Prüfer domain.

Proof. Recall that a domain is Prüfer if any localization at a maximal ideal is a
valuation ring. By [34, §1.4], this equivalent with the property that every finitely
generated ideal is projective, and so we verify the latter. Let Aw be Dedekind
domains, that is to say, one-dimensional normal domains, and let A� be their ul-
traproduct. Let I� be a finitely generated ideal. By 2.4.12, we can find non-zero
ideals Iw ⊆ Aw such that their ultraproduct equals I�. Since each Iw is generated by
at most two elements we can find a split exact sequence

0 → Jw → A2
w → Iw → 0

for some submodule Jw ⊆ A2
w. Since ultraproducts commute with direct sums, we

get an isomorphism I� ⊕ J�
∼= A2

� , where J� is the ultraproduct of the Jw, showing
that I� is projective. 	

Proposition 2.4.19. An ultra-discrete valuation ring V �, that is to say, an ultraprod-
uct of discrete valuation rings V w, is a valuation domain. Its ideal of infinitesimals IV �

is an infinitely generated prime ideal, and the separated quotient V �/IV �
—in Chapter 8

we will call this the cataproduct V � of the V w—is again a discrete valuation ring.
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Proof. Recall that a valuation ring is a domain such that for all a in the field
of fractions of V , at least one of a or 1/a belongs to V . By 2.1.5, the field of
fractions K� of V � is the ultraproduct of the field of fractions Kw of the V w. Let
aw ∈ Kw be an approximation of a ∈ K�. For almost each w, either aw or 1/aw

belongs to V w. Therefore, by Łoś’ Theorem, either a ∈ V � or 1/a ∈ V �, proving
the first claim. If IV �

is finitely generated, then it is principal, say, of the form
b�V �, since V � is a valuation domain. Let bw ∈V w be an approximation of b�, and
let cw := bw/πw, where πw is a uniformizing parameter of V w. Since, for each n,
almost all bw have order at least n, almost all cw have order at least n− 1. Hence
their ultraproduct c� also belongs to IV �

= b�V �. Let π � be the ultraproduct of
the πw, so that it generates the maximal ideal m� of V � by the proof of 2.4.9. By
Łoś’ Theorem, b�/π � = c�, so that b� ∈ c�m� ⊆ b�m�, contradiction. Finally, to
show that V � := V �/IV �

is a discrete valuation ring, and hence, in particular, IV �

is prime, observe that for any non-zero element a in V �, there is a largest n such
that a ∈ mn

� = πn
�V �. The assignment a �→ n is now easily seen to be a discrete

valuation. 	

The previous proof in fact shows that an ultraproduct of valuation rings is

again a valuation ring.

2.4.3 Ultrapowers

An important instance of an ultra-ring is the ultrapower A� of a ring A. It is
easy to see that the diagonal embedding A → A� is a ring homomorphism. We
will see in the next chapter that this embedding is often flat (see Corollary 3.3.3
and Theorem 3.3.4). However, an easy application of Łoś’ Theorem immediately
yields that this map is at least cyclically pure. Recall that a homomorphism A→ B
is called cyclically pure, if IB∩A = I for all ideals I ⊆ A. Examples of cyclically pure
homomorphisms are, as we shall see, faithfully flat (Proposition 3.2.5) and split
maps (see 5.5.4). It follows from Proposition 2.4.17 that the ultrapower of an
Artinian ring is again Artinian. However, by 2.4.16 and Theorem 2.4.14, these
are the only rings whose ultrapower is Noetherian. The next result is immediate
from 2.1.6 and its proof:

2.4.20 If I is a finitely generated ideal in a ring A, then its ultrapower in the
ultrapower A� of A is equal to IA�. In particular, the ultrapower of A/I
is A�/IA�.

The following is a counterexample if I is not finitely generated: let A be the
polynomial ring over a field in countably many variables ξi, and let I be the ideal
generated by all these variables. The ultraproduct f of the polynomials f w :=
ξ1 + · · ·+ξw is an element in the ultrapower I� of I but does not belong to IA�, for
if it were, then f must be a sum of finitely many generators of I, say, ξ1, . . . ,ξi,
and therefore by 2.1.6, so must almost all f w be, a contradiction whenever w > i.
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2.4.4 Ultra-exponentiation

Let A� be an ultra-ring, given as the ultraproduct of rings Aw. Let N� be the
ultrapower of the natural numbers, and let α ∈ N� with approximations αw. The
ultra-exponentiation map on A with exponent α is defined as follows. Given x ∈ A,
let xw ∈ Aw be an approximation of x, that is to say, ulimxw = x, and set

xα := ulimxαw
w .

One easily verifies that this definition does not depend on the choice of approx-
imation of x nor of α: if x′w and α′

w are also respectively approximations of x
and α, then almost all xw and x′w are the same, and so are almost all αw and α′

w,
whence almost all xαw

w are equal to (x′w)α′
w , and, therefore, they have the same

ultraproduct. By Łoś’ Theorem, ultra-exponentiation satisfies the same rules as
regular exponentiation:

(xy)α = xα · yα and xα · xβ = xα+β and (xα)β = xα·β

for all x,y ∈ A� and all α,β ∈ N�.
If A is local and x a non-unit, then xα is an infinitesimal for any α in N� not

in N. In these notes, the most important instance will be the ultra-exponentiation
map obtained as the ultraproduct of Frobenius maps. More precisely, let A� be
a Lefschetz ring, say, realized as the ultraproduct of rings Ap of characteristic p
(here we assumed for simplicity that the underlying index set is just the set of
prime numbers, but this is not necessary). On each Ap, we have an action of the
Frobenius, given as Fp(x) := xp (for more, see §5.1).

Definition 2.4.21 (Ultra-Frobenius). The ultraproduct of these Frobenii yields
an endomorphism F� on A�, called the ultra-Frobenius, given by F�(x) := xπ, where
π ∈N� is the ultraproduct of all prime numbers. Since each Frobenius is an endo-
morphism, so is any ultra-Frobenius by 2.1.7. In particular, we have

(x + y)π = xπ + yπ

for all x,y ∈ A�.

2.5 Algebraic Definition of Ultra-rings

Let Aw, for w ∈ W , be rings with Cartesian product A∞ := ∏w Aw and direct sum
A(∞) :=

⊕
Aw. Note that A(∞) is an ideal in A∞. Call an element a ∈ A∞ a strong

idempotent if each of its entries is either zero or one. In other words, an element
in A∞ is a strong idempotent if and only if it is the characteristic function 1D

of a subset D ⊆ W . For any ideal a ⊆ A∞, let a◦ be the ideal generated by all
strong idempotents in a, and let Wa be the collection of subsets D ⊆ W such
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that 1− 1D ∈ a. Using the identities (1− 1D)(1− 1E) = 1− 1E for D ⊆ E and
1−1D∩E = 1E(1−1D)+ 1−1E, one verifies that Wa is a filter.

2.5.1 Given an ideal a⊆ A∞, the filter Wa is maximal if and only if a is a prime
ideal; it is principal if and only if the ideal a◦ is principal, if and only if a
does not contain the ideal A(∞).

Indeed, given an idempotent e, its complement 1− e is again idempotent, and
the product of both is zero, that is to say, they are orthogonal. It follows that any
prime ideal contains exactly one among e and 1−e. Hence, if a is prime, then Wa

consists of those subsets D ⊆W such that 1D /∈ a. Since 1−1D is the characteristic
function of the complement of D, it follows that either D or its complement
belongs to Wa. Moreover, if D∈Wa and D⊆E, then 1D ·1E = 1D does not belong
to a, whence neither does 1E , showing that E ∈ Wa. This proves that Wa is a
maximal filter. It is not hard to see that if a◦ is principal, then it must be generated
by the characteristic function of the complement of a singleton, and hence Wa

must be principal (the other direction is immediate). The last equivalence is left
as an exercise to the reader. 	


We can now formulate the following entirely algebraic characterization of an
ultra-ring.

2.5.2 Let P be a prime ideal of A∞ containing the direct sum ideal A(∞). The
ultraproduct of the Aw with respect to the ultrafilter WP is equal to A∞/P◦,
that is to say, P◦ is the null-ideal determined by WP. Furthermore, any
ultra-ring having the Aw as approximations is of the form A∞/P◦, for some
prime ideal P containing A(∞).

Let n be the null-ideal determined by WP, that is to say, the collection of
sequences in A∞ almost all of whose entries are zero. If D ∈ WP, then almost all
entries of 1− 1D are zero, and hence 1− 1D ∈ n. Since this is a typical generator
of P◦, we get P◦ ⊆ n. Conversely, suppose a = (aw) ∈ n. Hence aw = 0 for all w
belonging to some D ∈ WP. Since 1−1D ∈ P◦ and a = a(1−1D), we get a ∈ P◦.

Conversely, if W is an ultrafilter with corresponding null-ideal n ⊆ A∞, then
one easily checks that any prime ideal P containing n satisfies n = P◦. 	


In fact, if P ⊆ Q are prime ideals, then P◦ = Q◦, showing that already all
minimal prime ideals of A∞ determine all possible ultrafilters.

Corollary 2.5.3. If all Aw are domains, then A� is the coordinate ring of an irre-
ducible component of Spec(A∞/A(∞)). More precisely, the residue rings A∞/G, for
G ⊆ A∞ a minimal prime containing A(∞), are precisely the ultraproducts A� hav-
ing the domains Aw for approximations. Moreover, these irreducible components are
then also the connected components of Spec(A∞/A(∞)), that is to say, they are mutually
disjoint.

Proof. Since the ultraproduct A� determined by G is equal to A∞/G◦ by 2.5.2,
and a domain by 2.4.10, the ideal G◦ must be prime. By minimality, G◦ = G.
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To prove the last assertion, let G1 and G2 be two distinct minimal prime ideals of
A∞ containing A(∞). Suppose G1 +G2 is not the unit ideal. Hence there exists a
maximal ideal M ⊆ A∞ such that G1,G2 ⊆ M, and hence

G1 = G◦
1 = M◦ = G◦

2 = G2,

contradiction. Hence G1 +G2 = 1, showing that any two irreducible components
of Spec(A∞/A(∞)) are disjoint. 	


Note that the connected components of Spec(A∞), apart from the Spec(A�),
are the Spec(Aw) corresponding to the principal (maximal) filters. In the following
structure theorem, Z∞ := ZW denotes the Cartesian power of Z. Any Cartesian
product A∞ := ∏Aw is naturally a Z∞-algebra.

Theorem 2.5.4. Any ultra-ring is a base change of a ring of non-standard integers
Z�. More precisely, the ultra-rings with approximation Aw are precisely the rings of the
form A∞/GA∞, where G is a minimal prime of Z∞ containing the direct sum ideal.

Proof. If P is a prime ideal in A∞ containing the direct sum ideal A(∞), then the
generators of P◦ already live in Z∞, and generate the null-ideal in Z∞ correspond-
ing to the ultrafilter WP. By Corollary 2.5.3, the latter ideal therefore is a minimal
prime ideal G ⊆ Z∞ of Z(∞). Since GA∞ = P◦, one direction is clear from 2.5.2.
Conversely, again by Corollary 2.5.3, any minimal prime ideal G ⊆ Z∞ is the
null-ideal determined by the ultrafilter WG, and one easily checks that the same
is therefore true for its extension GA∞. 	


2.6 Sheaf-theoretic Definition of Ultra-rings

We say that a topological Hausdorff space X admits a Hausdorff compactification
X∨, if X ⊆ X∨ such that for every compact Hausdorff space Y and every continu-
ous map f : X → Y , there is a unique map f∨ : X∨ → Y extending f . Since this is
a universal problem, a Hausdorff compactification is unique, if it exists.

Proposition 2.6.1. Every infinite discrete space X has a Hausdorff compactification.

Proof. Let X∨ be the Stone-Čech compactification of X consisting of all maximal
filters on X . We identify the principal filters with their generators, so that X be-
comes a subset of X∨. For a subset U ⊆ X , let τ(U) ⊆ X∨ consist of all maximal
filters containing U . For any U ⊆ X , we have

X∨− τ(U) = τ(X −U), (2.4)

by the ultrafilter condition. We define a topology on X by taking the τ(U), for
U ⊆ X , as a basis of open subsets. This works, since the intersection of two basic
opens τ(U1) and τ(U2) is the basic open τ(U1 ∩U2). Note that U ⊆ τ(U) with
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equality if and only if U is finite. In fact, by the definition of the embedding
X ⊆ X∨, we have τ(U)∩X = U , and hence the topology induced on X is just the
discrete topology. In particular, every non-empty open has a non-empty intersec-
tion with X , showing that X is a dense (open) subset of X∨.

To see that X∨ is Hausdorff, take two distinct points in X∨, that is to say,
distinct maximal filters on X . In particular, there exists a subset U ⊆ X belong-
ing to one but not the other. Hence τ(U) and τ(X −U) are disjoint opens, each
containing exactly one of these two points. To prove compactness, we need to
verify that the finite intersection property holds, that is to say, that any collection
of non-empty closed subsets which is closed under finite intersections, has non-
empty intersection. By (2.4), any basic open subset is also closed, that is to say, is a
clopen, and hence any closed subset is an intersection of basic opens. Without loss
of generality, we may therefore assume that {τ(Ui)}i is a collection of non-empty
closed subsets which is closed under finite intersections, and we have to show that
their intersection is also non-empty. Since X ∩τ(Ui) = Ui, it follows that the {Ui}i

are closed under finite intersections. Let Y be the collection of all subsets U ⊆ X
such that some Ui is contained in U . One checks that Y is a filter, whence is con-
tained in some maximal filter W. By construction, Ui ∈ W, for all i, showing that
W lies in the intersection of all τ(Ui).

Finally, we verify the universal property. Let f : X → Y be an (automatically
continuous) map with Y a compact Hausdorff space and fix a point in X∨, that
is to say, a maximal filter W on X . Let FW be the intersection of all closures
clos( f (U)), where U runs over all subsets in W. Since any finite intersection

clos( f (U1))∩·· ·∩ clos( f (Us)),

for Ui ∈W contains the (non-empty) image of U1∩·· ·∩Us ∈W under f , and since
Y is compact, FW is non-empty. Suppose y and y′ are two distinct elements in FW.
Since Y is Hausdorff, we can find disjoint opens V and V ′ containing respectively
y and y′. In particular, their pre-images f−1V and f−1V ′ are disjoint, and so one
of them, say f−1V cannot belong to W. It follows that X − f−1V belongs to W
and hence FW is contained in the closure of f (X − f−1V ) = f (X)−V . Since V is
an open containing y ∈ FW, it must therefore have non-empty intersection with
f (X)−V , contradiction. Hence FW is a singleton, and we now define f∨(W) to
be the unique element belonging to FW. Immediate from the definitions we get
that f∨(W) = f (W) in case W∈ X , that is to say, is principal. So remains to show
that f∨ is continuous.

To this end, let V ⊆ Y be open and W ∈ X∨ a point in ( f∨)−1(V ). We need
to find an open containing W and contained in ( f∨)−1(V ). By construction,
the intersection of all clos( f (U)) with U ∈ W is contained in V . By compact-
ness, already finitely many of the clos( f (U)) have an intersection contained in
V (since their complements together with V form an open cover of Y ). Letting
U ∈ W be the intersection of these finitely many members of W, then, as above,
clos( f (U)) ⊆ V . To see that τ(U) ⊆ ( f∨)−1(V ), take Y ∈ τ(U). So U ∈ Y and
hence, per construction, f∨(Y) ∈ clos( f (U)) ⊆V . 	
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If U is infinite, then intersecting each set in W ∈ τ(U) with U yields a maximal
filter on U , so that we get an induced map τ(U)→U∨. It is not hard to show that
this is in fact an homeomorphism. Since U is dense in U∨, we showed that the
closure of U in X∨ is just τ(U) = U∨. Let Aw be rings, indexed by w ∈ X . Define
a sheaf of rings A on X by taking for stalk Aw := Aw in each point w ∈ X (note
that since X is discrete, this completely determines the sheaf A ). Let i : X → X∨
be the above embedding and let A ∨ := i∗A be the direct image sheaf of A under
i. By general sheaf theory, this is a sheaf on X∨. For instance, on a basic open
τ(U) the ring of sections of A ∨ is A (τ(U)∩X) = A (U), and the latter is just the
Cartesian product of all Aw for w ∈U .

2.6.2 The stalk of A ∨ in a boundary point W ∈ X∨ −X is isomorphic to the
ultraproduct ulimAw with respect to the ultrafilter W.

Indeed, by definition of stalk, A ∨
W is the direct limit of all A ∨(V ) where V

runs over all open subsets of X∨ containing W. It suffices to take the direct limit
over all basic opens τ(U) containing W, that is to say, for U ∈ W. Now, as we
already observed above,

A ∨(τ(U)) = A (U) = ∏
w∈U

Aw
∼= A∞/(1−1U)A∞.

Hence this direct limit is equal to the residue ring of A∞ modulo the ideal gen-
erated by all 1− 1U for U ∈ W, that is to say, by 2.5.2, modulo the null-ideal
corresponding to W. 	

2.6.3 Under the identification of P(X) with the Cartesian power (F2)∞ (see

Example B.2.3), the assignment p �→ Wp defined in §2.5 yields a home-
omorphism between the affine scheme Spec(P(X)) and X∨. Infinitely
generated prime ideals then correspond to ultrafilters.

The only thing to observe is that the inverse image of the basic open τ(U)
for U ⊆ X is the basic open D(1−U) in Spec(P(X)). Note that if we view X∨
as the set of maximal filters, and hence as a subset of P(X), then p is sent to its
complement under this homeomorphism. 	


Let us call a scheme X Boolean if it admits an open covering by affine schemes
of the form SpecB with B a Boolean ring (see Proposition B.1.5 for some basic
properties of Boolean rings). Equivalently, any section ring is Boolean, and this
is also equivalent by (B.1.5.vii) to all stalks having two elements. In particular,
Spec(P(W )) is Boolean, for any set W . We call x ∈ X a finite point if the prime
ideal associated to x is finitely generated, whence principal by (B.1.5.iii); in the
remaining case, we call x an infinite point. By (B.1.5.x), the infinite points form
a closed subset with ideal of definition the ideal generated by all atoms. We call
X atomless if every point is infinite, and by (B.1.5.x) this is equivalent with any
section ring of an open subset being atomless. The dichotomy between finite and
infinite points is robust by Corollary B.1.8, in the sense given in 2.6.5 below.
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Theorem 2.6.4. Let A be a sheaf of rings on a Boolean scheme X . If x ∈ X is infinite,
then the stalk Ax is an ultra-ring. If X is the affine scheme of a power set ring P(W ),
then Ax is the ultraproduct of the stalks Ay at finite points y ∈ X with respect to the
ultrafilter given as the image of x under the homeomorphism X ∼= W∨ from 2.6.3.

Proof. Let us first show this in the case X is Spec(P(W )). Infinite points cor-
respond to ultrafilters by 2.6.3, and the result follows by 2.6.2. In the general
case, since stalks are local objects, we may assume that X is an affine scheme
with Boolean coordinate ring B. By the Stone Representation Theorem (see
Theorem B.2.7 below for a proof), there exists a faithfully flat embedding B ⊆
C := P(W ) for some W (we will actually show that one can take W equal to an
ultrapower of N). Since x is infinite, B must be infinite by (B.1.5.viii), whence so
must W be. Let Y := Spec(C). We need:

2.6.5 If f : Y → X is a dominant morphism of Boolean schemes and x ∈ X is
infinite, then there exists an infinite y ∈Y with f (y) = x.

Indeed, we may reduce to the affine case, in which case we have an injective
homomorphism B →C between Boolean rings and a non-principal maximal ideal
p ⊆ B corresponding to x. The fiber f−1(x) has coordinate ring C/pC. If C/pC
is infinite, then it contains a non-principal maximal ideal by (B.1.5.viii), and its
pre-image in C must then also be non-principal, so that we are done in this case.
So assume C/pC is finite and any maximal ideal containing pC is principal. Since
C/pC is finite, pC is the intersection of the finitely many maximal ideals con-
taining p by (B.1.5.vi). Hence pC is an intersection of principal ideals whence
is principal by (B.1.5.iii). Since B → C is an embedding, p must be principal by
Corollary B.1.8, contradiction. 	


So, returning to the case at hand, there exists an infinite y ∈Y such that f (y) =
x. Let f−1A be the inverse image of A under the morphism f : Y → X . Since
( f−1A )y is isomorphic to Ax and the former is an ultra-ring by the above, so is
therefore the latter. 	


In particular, any stalk over an atomless Boolean scheme is an ultra-ring!



Chapter 3
Flatness

To effectively apply ultraproducts to commutative algebra, we will use, as our
main tool, flatness. Since it is neither as intuitive nor as transparent as many other
concepts from commutative algebra, we review quickly some basic facts, and then
discuss some flatness criteria that will be used later on. Flatness is an extremely
important and versatile property, which underlies many deeper results in com-
mutative algebra and algebraic geometry. In fact, I dare say that many a theorem
or conjecture in commutative algebra can be recast as a certain flatness result;
an instance is Proposition 6.4.6. With David Mumford, the great geometer, we
observe:

“The concept of flatness is a riddle that comes out of algebra, but which technically is
the answer to many prayers.”

[22, p. 214]

3.1 Flatness

Flatness is in essence a homological notion, so we start off with reviewing some
homological algebra.

3.1.1 Complexes

Recall that by a complex, over some ring A, we mean a (possibly infinite) sequence

of A-module homomorphisms Mi
di→ Mi−1, for i ∈ Z, such that the composition of

any two consecutive maps is zero. We often simply will say that

. . .
di+1→ Mi

di→ Mi−1
di−1→ Mi−2

di−2→ . . . (M•)

is a complex. The di are called the boundary maps of the complex, and often are
omitted from the notation. Of special interest are those complexes in which all
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modules from a certain point on, either on the left or on the right, are zero (which
forces the corresponding maps to be zero as well). Such a complex will be called
bounded from the left or right respectively. In that case, one often renumbers so
that the first non-zero module is labeled with i = 0. If M• is bounded from the left,
one also might reverse the numbering, indicate this notationally by writing M•,
and refer to this situation as a co-complex (and more generally, add for emphasis
the prefix ‘co-’ to any object associated to it).

3.1.2 Homology

Since the composition di+1 ◦ di is zero, we have in particular an inclusion
Im(di+1) ⊆ Ker(di). To measure in how far this fails to be an equality, we define
the homology H•(M•) of M• as the collection of modules

Hi(M•) := Ker(di)/ Im(di+1).

If all homology modules are zero, M• is called exact. More generally, we say that

M• is exact at i (or at Mi) if Hi(M•) = 0. Note that M1
d1→ M0 → 0 is exact (at

zero) if and only if d1 is surjective, and 0 → M0
d0→ M−1 is exact if and only if d0 is

injective. An exact complex is often also called an exact sequence. In particular, this
terminology is compatible with the nomenclature for short exact sequences. If M•
is bounded from the right (indexed so that the last non-zero module is M0), then
the cokernel of M• is the cokernel of d1 : M1 → M0. Put differently, the cokernel
is simply the zero-th homology module H0(M•). We say that M• is acyclic, if all
Hi(M•) = 0 for i > 0. In that case, the augmented complex obtained by adding the
cokernel of M• to the right is then an exact sequence.

We will use the following property of ultraproducts on occasion, and although
its proof is straightforward, it is instructive for learning to work with ultraprod-
ucts:

Theorem 3.1.1. [Ultraproduct Commutes with Homology] For each w, let M•w be a
complex over a ring Aw and let M•� and A� be the respective ultraproducts. Then M•�

is a complex over A� and its i-th homology Hi(M•�) is isomorphic to the ultraproduct
of the i-th homologies Hi(M•w).

Proof. It suffices to prove this at a fixed spot i, and so we may assume that M•w is
the complex

Fw
ew→ Gw

dw→ Hw.

Taking ultraproducts, we get a diagram M•� of homomorphism of A�-modules
(we leave it to the reader to verify that the ultraproduct construction extends to
the category of modules):

F �

e�→ G�

d�→ H�
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and it is an easy exercise on Łoś’ Theorem that d� ◦ e� = 0 since all dw ◦ ew = 0.
In other words, M•� is a complex. Let Iw and Zw be respectively the image of
ew and the kernel of dw, and let I� and Z� be their respective ultraproducts. The
homology of M•w is given by Zw/Iw, and we have to show that the homology
of M•� is isomorphic to the ultraproduct of the Zw/Iw. An element x� ∈ G� with
approximations xw ∈ Gw belongs to Z� (respectively, to I�) if and only if almost
all dw(xw) = 0 in Hw (respectively, there exist yw ∈ Fw such that xw = ew(yw) for
almost all w) if and only if d�(x�) = 0, that is to say, x� lies in the kernel of d�

(respectively, x� = e�(y�) where y� ∈ F� is the ultraproduct of the yw, that is to say,
x� lies in the image of e�). Since the ultraproduct of the Zw/Iw is isomorphic to
Z�/I� by the module analogue of 2.1.6, the claim follows. 	


3.1.3 Flatness

Let A be a ring and M an A-module. Recall that ·⊗A M, that is to say, tensoring
with respect to M, is a right exact functor, meaning that given an exact sequence

0 → N2 → N1 → N0 → 0 (3.1)

we get an exact sequence

N2 ⊗A M → N1 ⊗A M → N0 ⊗A M → 0. (3.2)

See [7, Proposition 2.18], where one also can find a good introduction to tensor
products. We now call a module M flat if any short exact sequence (3.1) remains
exact after tensoring, that is to say, we may add an additional zero on the left of
(3.2). Put differently, M is flat if and only if N′ ⊗A M → N ⊗A M is injective when-
ever N′ → N is an injective homomorphism of A-modules. By breaking down a
long exact sequence into short exact sequences, we immediately get:

3.1.2 An exact complex remains exact after tensoring with a flat module.

Well-known examples of flat modules are free modules, and more generally
projective modules. In particular, A[ξ ], being free over A, is flat as an A-module.
The same is true for the power series ring A[[ξ ]]. Any localization of A is flat, and
more generally, any localization of a flat module is again flat. In fact, flatness is
preserved under base change in the following sense:

3.1.3 If M is a flat A-module, then M/IM is a flat A/I-module for each ideal
I ⊆ A. More generally, if A → B is any homomorphism, then M ⊗A B is a
flat B-module.

Immediate from the definition and fact that tensoring with M ⊗A B over B is
the same as tensoring with M over A. 	
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3.1.4 Tor modules

Let M be an A-module. A projective resolution of M is a complex P•, bounded from
the right, in which all the modules Pi are projective, and such that the augmented
complex

Pi → Pi−1 → ··· → P0 → M → 0

is exact. Put differently, a projective resolution of M is an acyclic complex P•
of projective modules whose cokernel is equal to M. Tensoring this augmented
complex with a second A-module N, yields a (possibly non-exact) complex

Pi ⊗A N → Pi−1 ⊗A N → ··· → P0 ⊗A N → M⊗A N → 0.

The homology of the non-augmented part P•⊗N (that is to say, without the final
module M⊗N), is denoted

TorA
i (M,N) := Hi(P• ⊗A N).

As the notation indicates, this does not depend on the choice of projective
resolution P•. Moreover, we have for each i an isomorphism TorA

i (M,N) ∼=
TorA

i (N,M) ([27, Appendix 3] or [69, Appendix B]). Since tensoring is right ex-
act, TorA

0 (M,N) ∼= M ⊗A N. The next result is a general fact of ‘derived functors’
(Tor is indeed the derived functor of the tensor product as discussed for instance
in [69, Appendix B]).

3.1.4 Given a short exact sequence of A-modules

0 → N′ → N → N′′ → 0,

we get for every A-module M, a long exact sequence

· · · → TorA
i+1(M,N′′)

δi+1→ TorA
i (M,N′) →

TorA
i (M,N) → TorA

i (M,N′′) δi→ TorA
i−1(M,N′) → . . .

where the δi are the so-called connecting homomorphisms, and the re-
maining maps are induced by the original maps.

3.1.5 Tor-criterion for Flatness

We can now formulate a homological criterion for flatness (see for instance [69,
Theorem 7.8]; more flatness criteria will be discussed in §3.3 below).
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Theorem 3.1.5. For an A-module M, the following are equivalent

3.1.5.i. M is flat;
3.1.5.ii. TorA

i (M,N) = 0 for all i > 0 and all A-modules N;
3.1.5.iii. TorA

1 (M,A/I) = 0 for all finitely generated ideals I ⊆ A. 	

For Noetherian rings we can even restrict the test in (3.1.5.iii) to prime ideals

(but see also Theorem 3.3.18 below, which reduces the test to a single ideal):

Corollary 3.1.6. Let A be a Noetherian ring and M an A-module. If TorA
1 (M,A/p)

vanishes for all prime ideals p⊆ A, then M is flat. More generally, if, for some i ≥ 1, ev-
ery TorA

i (M,A/p) vanishes for p running over the prime ideals in A, then TorA
i (M,N)

vanishes for all (finitely generated) A-modules N.

Proof. The first assertion follows from the last by (3.1.5.iii). The last assertion,
for finitely generated modules, follows from the fact that every such module N
admits a prime filtration, that is to say, a finite ascending chain of submodules

0 = N0 ⊆ N1 ⊆ N2 ⊆ ·· · ⊆ Ne = N (3.3)

such that each successive quotient Nj/Nj−1 is isomorphic to the (cyclic) A-module
A/p j for some prime ideal p j ⊆ A, for j = 1, . . . ,e (see [69, Theorem 6.4]).
By induction on j, one then derives from the long exact sequence (3.1.4) that
TorA

i (M,Nj) = 0, whence in particular TorA
i (M,N) = 0. To prove the result for N

arbitrary, one reduces to the case i = 1 by taking syzygies of M, and then applies
Theorem 3.1.5. 	


3.2 Faithful Flatness

We call an A-module M non-degenerated, if mM �= M for all (maximal) ideals m
of A. By Nakayama’s Lemma, we immediately get:

3.2.1 Any finitely generated module over a local ring is non-degenerated. 	


3.2.1 Faithfully Flat Homomorphisms

Of particular interest are the non-degenerated modules which are moreover flat,
called faithfully flat modules. One has the following homological characterization
of faithful flatness (see [69, Theorem 7.2] for a proof):

3.2.2 For an A-module M to be faithfully flat, it is necessary and sufficient that
an arbitrary complex N• is exact if and only if N• ⊗A M is exact. 	


It is not hard to see that any free or projective module is faithfully flat. On the
other hand, no proper localization of A is faithfully flat. The analogue of 3.1.3
holds: the base change of a faithfully flat module is again faithfully flat.



34 3 Flatness

3.2.3 If M is a faithfully flat A-module, then M ⊗A N is non-zero, for every
non-zero A-module N.

Indeed, let N �= 0 and choose a non-zero element n ∈ N. Since I := AnnA(n)
is then a proper ideal, it is contained in some maximal ideal m ⊆ A. Note that
An ∼= A/I. Tensoring the induced inclusion A/I ↪→ N with M gives by assumption
an injection M/IM ↪→ M⊗A N. The first of these modules is non-zero, since IM ⊆
mM �= M, whence so is the second, as we wanted to show. 	


In most of our applications, the A-module has the additional structure of an
A-algebra. In particular, we call a ring homomorphism A → B (faithfully) flat if B
is (faithfully) flat as an A-module. Since by definition a local homomorphism of
local rings (R,m) → (S,n) is a ring homomorphism with the additional property
that m ⊆ n, we get immediately:

3.2.4 Any local homomorphism which is flat, is faithfully flat. 	

Proposition 3.2.5. A faithfully flat map is cyclically pure, whence, in particular, in-
jective.

Proof. We need to show that if A → B is faithfully flat, and I ⊆ A an ideal, then
I = IB∩ A. For I equal to the zero ideal, this just says that A → B is injective.
Suppose this last statement is false, and let a ∈ A be a non-zero element in the
kernel of A → B, that is to say, a = 0 in B. However, by 3.2.3, the module aA⊗A B
is non-zero, say, containing the non-zero element x. Hence x is of the form ra⊗b
for some r ∈ A and b ∈ B, and therefore equal to r⊗ab = r⊗0 = 0, contradiction.

To prove the general case, note that B/IB is a flat A/I-module by 3.1.3. It is
clearly also non-degenerated, so that applying our first argument to the natural ho-
momorphism A/I → B/IB yields that it must be injective, which precisely means
that I = IB∩A. 	


We can paraphrase the previous result as faithful flatness preserves the ideal struc-
ture of a ring. In particular, from its definition as the ascending chain condition
on ideals, we get immediately the following Noetherianity criterion:

Corollary 3.2.6. Let A → B be a faithfully flat, or more generally, a cyclically pure
homomorphism. If B is Noetherian, then so is A. 	


A similar argument shows:

3.2.7 If R → S is a faithfully flat, or more generally, a cyclically pure homomor-
phism of local rings, and if I ⊆ R is minimally generated by e elements,
then so is IS.

Clearly, IS is generated by at most e elements. By way of contradiction, sup-
pose it is generated by strictly fewer elements. By Nakayama’s Lemma, we may
choose these generators already in I. So there exists an ideal J ⊆ I, generated
by less than e elements, such that JS = IS. However, by cyclic purity, we have
J = JS∩R = IS∩R = I, contradicting that I requires at least e generators. 	


If A → B is a flat or faithfully flat homomorphism, then we also will call
the corresponding morphism Y := Spec(B) → X := Spec(A) flat or faithfully flat
respectively.



3.2 Faithful Flatness 35

Theorem 3.2.8. A morphism Y → X of affine schemes is faithfully flat if and only if
it is flat and surjective.

Proof. Let A → B be the corresponding homomorphism. Assume A → B is faith-
fully flat, and let p⊆ A be a prime ideal. Surjectivity of the morphism amounts to
showing that there is at least one prime ideal of B lying over p. The base change
Ap → Bp is again faithfully flat, and hence in particular pBp �= Bp. In other words,
the fiber ring Bp/pBp is non-empty, which is what we wanted to prove (indeed,
take any maximal ideal n of Bp/pBp and let q := n∩B; then verify that q∩A = p.)

Conversely, assume Y → X is flat and surjective, and let m be a maximal ideal
of A. Let q ⊆ B be a prime ideal such that m = q∩A. Hence mB ⊆ q �= B, showing
that B is non-degenerated over A. 	


3.2.2 Flatness and Regular Sequences

A finite sequence (x1, . . . ,xn) in a ring A is called pre-regular, if each xi is a non-zero
divisor on A/(x1, . . . ,xi−1)A; if (x1, . . . ,xn)A is moreover a proper ideal, then we
say that (x1, . . . ,xn) is a regular sequence. If (x1) is a regular sequence, that is to say,
a non-zero divisor and a non-unit, then we also express this by saying that x1 is an
A-regular element

Proposition 3.2.9. If A → B is a flat homomorphism and x is an A-pre-regular se-
quence, then x is also B-pre-regular. If A → B is faithfully flat, and x is an A-regular
sequence, then x is also B-regular.

Proof. We induct on the length n of x := (x1, . . . ,xn). Assume first n = 1. Mul-
tiplication by x1, that is to say, the homomorphism A

x1→ A, is injective, whence
remains so after tensoring with B by 3.1.3. It is not hard to see that the resulting
homomorphism is again multiplication B

x1→ B, showing that x1 is B-pre-regular.
For n > 1, the base change A/x1A → B/x1B is flat, so that by induction (x2, . . . ,xn)
is B/x1B-pre-regular. Hence we are done, since x1 is B-pre-regular by the pre-
vious argument. The last statement now follows from this, since then B is
non-degenerated, and hence, in particular, xB �= B. 	


Tor modules behave well under deformation by a regular sequence in the
following sense.

Proposition 3.2.10. Let x be a regular sequence in a ring A, and let M and N be two
A-modules. If x is M-regular and xN = 0, then we have for each i an isomorphism

TorA
i (M,N) ∼= TorA/xA

i (M/xM,N).

Proof. By induction on the length of the regular sequence, we may assume that we
have a single A-regular and M-regular element x. Put B := A/xA. From the short
exact sequence

0 → A
x→ A → B → 0
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we get after tensoring with M, a long exact sequence of Tor-modules as in 3.1.4.
Since TorA

i (A,M) vanishes for all i, so must each TorA
i (M,B) in this long exact

sequence for i > 1. Furthermore, the initial part of this long exact sequence is

0 → TorA
1 (M,B) → M

x→ M → M/xM → 0

proving that TorA
1 (M,B) too vanishes as x is M-regular. Now, let P• be a projective

resolution of M. The homology of P̄• := P• ⊗A B is by definition TorA
i (M,B), and

since we showed that this is zero, P̄• is exact, whence a projective resolution of
M/xM. Hence we can calculate TorB

i (M/xM,N) as the homology of P̄•⊗B N (note
that by assumption, N is a B-module). However, the latter complex is equal to
P• ⊗A N (which we can use to calculate TorA

i (M,N)), and hence both complexes
have the same homology, as we wanted to show. 	


3.2.3 Scalar Extensions

Recall that a homomorphism (R,m) → (S,n) of local rings is called unramified, if
mS = n, or equivalently, if the closed fiber S/mS is trivial. A homomorphism which
is at the same time faithfully flat and unramified is sometimes called formally
etale, although some authors in addition require that the residue field extension be
separable. To not cause any confusion, we will call such a homomorphism a scalar
extension (see below for the terminology). By [37, 0III 10.3.1], for any Noetherian
local ring R and any extension l of its residue field, there exists a scalar extension
of R with residue field l; we will reprove this in Theorem 3.2.13 below.

Proposition 3.2.11. Consider the following commutative triangle of local homo-
morphisms between Noetherian local rings

�
�

�
�

�
��

�
�
�
�
�
���

(R,m)

(S,n) (T,p)g

f h (3.4)

If any two are scalar extensions, then so is the third.

Proof. It is clear that the composition of two scalar extensions is again scalar.
Assume g and h are scalar extensions. Then f is faithfully flat by an easy argument
using 3.2.2, and mT = p = nT . Since g is faithfully flat, we get mS = mT ∩ S =
nT ∩S = n by Proposition 3.2.5, showing that f is also a scalar extension. Finally,
assume f and h are scalar extensions. Let

. . .Rb2 → Rb1 → R → R/m → 0 (3.5)
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be a free resolution of R/m. Since S is flat over R, tensoring yields a free resolution

. . .Sb2 → Sb1 → S → S/mS → 0. (3.6)

By assumption S/mS is the residue field l of S. Therefore, TorS•(T, l) can be calcu-
lated as the homology of the complex

. . .T b2 → T b1 → T → T/mT → 0 (3.7)

obtained from (3.6) by the base change S→ T . However, (3.7) can also be obtained
by tensoring (3.5) over R with T . Since T is flat over R, the sequence (3.7) is
exact, whence, in particular, TorS

1(T, l) = 0. By the Local Flatness Criterion (see
Corollary 3.3.22 below), T is flat over S. Since n = mS and p = mT , we get p = nT ,
showing that g, too, is a scalar extension. 	


The following are examples of scalar extensions (for the notion of catapower,
see Chapter 8; for the proof of (3.2.12.iii), see Corollary 3.3.3 and Theorem 8.1.15
below).

3.2.12 Let R be a Noetherian local ring.

3.2.12.i. The natural map R → R̂, given by completion, is a scalar exten-
sion.

3.2.12.ii. Any etale map is a scalar extension.
3.2.12.iii. The diagonal embeddings R → R� and R → R� are scalar ex-

tensions, where R� and R� are respectively an ultrapower and a
catapower of R. 	


The next result, which extends Cohen’s Structure Theorems, explains the ter-
minology (for a version in mixed characteristic case, see [102]).

Theorem 3.2.13. Let (R,m) be a Noetherian local ring of equal characteristic with
residue field k. Every extension k ⊆ l of fields can be lifted to a faithfully flat extension
R → R l̂ inducing the given extension on the residue fields, such that R l̂ is a complete
local ring with maximal ideal mR l̂ and residue field l. In other words, R → R l̂ is a
scalar extension.

In fact, R l̂ is a solution to the following universal property: any complete Noethe-
rian local R-algebra T with residue field l has a unique structure of a local R l̂ -algebra.
In particular, R l̂ is uniquely determined by R and l up to isomorphism, and is called
the complete scalar extension of R along l.

Proof. By Cohen’s Structure Theorems, the completion R̂ of R is isomorphic to
k[[ξ ]]/a for some ideal a and some tuple of indeterminates ξ . Put

R l̂ := l[[ξ ]]/al[[ξ ]],

that is to say, R l̂ is the n-adic completion of R̂⊗k l, where n := m(R̂⊗k l). It is now
easy to check that this ring has the desired properties.
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To prove the universal property, let T be any complete Noetherian local
R-algebra, given by the local homomorphism R → T . By the universal property
of completions, we have a unique extension k[[ξ ]]/a ∼= R̂ → T , and by the uni-
versal properties of tensor product and completion, this uniquely extends to a
homomorphism R l̂ = l[[ξ ]]/al[[ξ ]]→ T . 	


Note that complete scalar extension is actually a functor, that is to say, any
local homomorphism R → S of Noetherian local rings whose residue fields are
subfields of l extends to a local homomorphism R l̂ → S l̂ . In particular, complete
scalar extension commutes with homomorphic images:

(R/a) l̂
∼= R l̂/aR l̂, (3.8)

for all ideals a ⊆ R. Scalar extensions preserve many good properties:

3.2.14 If R → S is a scalar extension, then R and S have the same dimension, and
one is regular (respectively, Cohen-Macaulay) if and only if the other is.

Indeed, the equality of dimension follows from (3.16) (see our discussion
below). Since both have also the same embedding dimension by 3.2.7, the claim
about regularity follows. In general, let x be a system of parameters in R. It follows
that x = (x1, . . . ,xd) is also a system of parameters in S. So if R is Cohen-Macaulay,
x is an R-regular whence S-regular sequence, by Proposition 3.2.9, proving that S
is Cohen-Macaulay. The converse follows from the fact that each R/(x1, . . . ,xi)R
is a subring of S/(x1, . . . ,xi)S by Proposition 3.2.5. 	


3.3 Flatness Criteria

Because flatness will play such a crucial role in our later work, we want several
ways of detecting it. In this section, we will see six such criteria.

3.3.1 Equational Criterion for Flatness

Our first criterion is very useful in applications (see for instance Theorem 4.4.3),
and works without any hypothesis on the ring or module. To give a streamlined
presentation, let us introduce the following terminology: given an A-module N,
and tuples bi in An, by an N-linear combination of the bi, we mean a tuple in Nn

of the form n1b1 + · · ·+nsbs where ni ∈ N. Of course, if N has the structure of an
A-algebra, this is just the usual terminology. Given a (finite) homogeneous linear
system of equations

L1(t) = · · · = Ls(t) = 0 (L )
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over A in the n variables t, we denote the A-submodule of Nn consisting of all
solutions of L in N by SolN(L ), and we let fL : Nn → Ns be the map given by
substitution x �→ (L1(x), . . . ,Ls(x)). In particular, we have an exact sequence

0 → SolN(L ) → Nn fL→ Ns. (†L /N)

Theorem 3.3.1. A module M over a ring A is flat if and only if every solution in
M of a homogeneous linear equation in finitely many variables over A is an M-linear
combination of solutions in A. Moreover, instead of a single linear equation, we may
take any finite, linear system of equations in the above criterion.

Proof. We will only prove the first assertion, and leave the second for the reader.
Let L = 0 be a homogeneous linear equation in n variables with coefficients in A.
If M is flat, then the exact sequence (†L/A) remains exact after tensoring with M,
that is to say,

0 → SolA(L)⊗A M → Mn fL→ M,

and hence by comparison with (†L/M), we get

SolM(L) = SolA(L)⊗A M.

From this it follows easily that any tuple in SolM(L) is an M-linear combination
of tuples in SolA(L), proving the direct implication.

Conversely, assume the condition on the solution sets of linear forms holds.
To prove that M is flat, we will verify condition (3.1.5.iii) in Theorem 3.1.5. To
this end, let I := (a1, . . . ,ak)A be a finitely generated ideal of A. Tensor the exact
sequence 0 → I → A → A/I → 0 with M to get by 3.1.4 an exact sequence

0 = TorA
1 (A,M) → TorA

1 (A/I,M) → I ⊗A M → M. (3.10)

Suppose y is an element in I ⊗M that is mapped to zero in M. Writing y = a1 ⊗
m1 + · · ·+ ak ⊗ mk for some mi ∈ M, we get a1m1 + · · ·+ akmk = 0. Hence by
assumption, there exist solutions b(1), . . . ,b(s) ∈ Ak of the linear equation a1t1 +
· · ·+ aktk = 0, such that

(m1, . . . ,mk) = n1b(1) + · · ·+ nsb(s)

for some ni ∈ M. Letting b( j)
i be the i-th entry of b( j), we see that

y =
k

∑
i=1

ai ⊗mi =
k

∑
i=1

s

∑
j=1

ai ⊗n jb
( j)
i =

s

∑
j=1

(
k

∑
i=1

aib
( j)
i )⊗n j =

s

∑
j=1

0⊗n j = 0.

Hence I ⊗A M → M is injective, so that TorA
1 (A/I,M) must be zero by (3.10).

Since this holds for all finitely generated ideals I ⊆ A, we proved that M is flat
by (3.1.5.iii). 	
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It is instructive to view the previous result from the following perspective. To a
homogeneous linear equation L = 0, we associated an exact sequence (†L/N). The
image of fL is of the form IN where I is the ideal generated by the coefficients of
the linear form defining L. In case N = B is an A-algebra, this leads to the following
extended exact sequence

0 → SolB(L) → Bn fL→ B → B/IB → 0. (‡IB)

This justifies calling SolB(L) the module of syzygies of IB (one checks that it only
depends on the ideal I). Therefore, we may paraphrase the equational flatness
criterion for algebras as follows:

3.3.2 A ring homomorphism A → B is flat if and only if taking syzygies com-
mutes with extension in the sense that the module of syzygies of IB is the
extension to B of the module of syzygies of an arbitrary ideal I ⊆ A.

Here is one application of the equational flatness criterion.

Corollary 3.3.3. The diagonal embedding of a Noetherian ring inside its ultrapower
is faithfully flat.

Proof. Let A be a ring and A� an ultrapower of A. Recall that A → A� is given by
sending an element a ∈ A to the ultraproduct ulimw→∞ a of the constant sequence.
If m ⊆ A is a maximal ideal, then mA� is its ultraproduct by 2.4.20, whence again
maximal by Łoś’ Theorem (Theorem 2.3.1), showing that A� is non-degenerated.
To show it is also flat, we use the equational criterion. Let L = 0 be a homogeneous
linear equation with coefficients in A. Let a ∈ An

� be a solution of L = 0 in A�.
Write a as an ultraproduct of tuples aw ∈ An. By Łoś’ Theorem, almost each aw ∈
SolA(L). Hence a lies in the ultrapower of SolA(L). By Noetherianity, SolA(L) is
finitely generated, and hence, its ultrapower is simply the A�-module generated by
SolA(L), so that we are done by Theorem 3.3.1. 	


3.3.2 Coherency Criterion

We can turn this into a criterion for coherency. Recall that a ring A is called
coherent, if the solution set of any homogeneous linear equation over A is finitely
generated. Clearly, Noetherian rings are coherent. We have:

Theorem 3.3.4. A ring A is coherent if and only if the diagonal embedding into one
of its ultrapowers is flat.

Proof. The direct implication is proven by the same argument that proves
Corollary 3.3.3, since we really only used that A is coherent in that argument.
Conversely, suppose A → A� is flat. Towards a contradiction, assume L is a linear
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form (in n indeterminates) over A whose solution set SolA(L) is infinitely gen-
erated. In particular, we can choose a sequence aw, for w = 1,2, . . . , in SolA(L)
which is contained in no finitely generated submodule of SolA(L). The ultra-
product a� ∈ An

� of this sequence lies in SolA�
(L) by Łoś’ Theorem. Hence, by

Theorem 3.3.1, there exists a finitely generated submodule H ⊆ SolA(L) such that
a� ∈ H ·A�. Therefore, almost all a j lie in H by Łoś’ Theorem, contradiction. 	


3.3.3 Quotient Criterion for Flatness

The next criterion is derived from our Tor-criterion (Theorem 3.1.5):

Theorem 3.3.5. Let A → B be a flat homomorphism, and let I ⊆ B be an ideal. The
induced homomorphism A → B/I is flat if and only if aB∩ I = aI for all finitely
generated ideals a ⊆ A.

Moreover, if A is Noetherian, we only need to check the above criterion for a a
prime ideal of A.

Proof. From the exact sequence 0 → I → B→ B/I → 0 we get after tensoring with
A/a an exact sequence

0 = TorA
1 (B,A/a)→ TorA

1 (B/I,A/a)→ I/aI → B/aB

where we used the flatness of B for the vanishing of the first module. The kernel
of I/aI → B/aB is easily seen to be (aB∩ I)/aI. Hence TorA

1 (B/I,A/a) vanishes if
and only if aB∩ I = aI. This proves by Theorem 3.1.5 the stated equivalence in
the first assertion; the second assertion follows by the same argument, this time
using Corollary 3.1.6. 	


To put this criterion to use, we need another definition (for another applica-
tion, see Theorem 8.2.1 below). The (A-)content of a polynomial f ∈ A[ξ ] (or a
power series f ∈ A[[ξ ]]) is by definition the ideal generated by its coefficients.

Corollary 3.3.6. Let A be a Noetherian ring, let ξ be a finite tuple of indeterminates,
and let B denote either A[ξ ] or A[[ξ ]]. If f ∈ B has content one, then B/ f B is flat
over A.

Proof. The natural map A → B is flat. To verify the second criterion in
Theorem 3.3.5, let p ⊆ A be a prime ideal. The forward inclusion p f B ⊆ pB∩ f B
is immediate. To prove the other, take g ∈ pB∩ f B. In particular, g = f h for some
h ∈ B. Since p ⊆ A is a prime ideal, so is pB (this is a property of polynomial
or power series rings, not of flatness!). Since f has content one, f /∈ pB whence
h ∈ pB. This yields g ∈ p f B, as we needed to prove. 	
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3.3.4 Cohen-Macaulay Criterion for Flatness

To formulate our next criterion, we need a definition.

Definition 3.3.7 (Big Cohen-Macaulay Modules). Let R be a Noetherian local
ring, and let M be an arbitrary R-module. We call M a big Cohen-Macaulay module,
if there exists a system of parameters in R which is M-regular. If moreover every
system of parameters is M-regular, then we call M a balanced big Cohen-Macaulay
module.

It has become tradition to add the somehow redundant adjective ‘big’ to em-
phasize that the module is not necessarily finitely generated. It is one of the
greatest open problems in homological algebra to show that every Noetherian
local ring has at least one big Cohen-Macaulay module, and, as we shall see, this
is known to be the case for any Noetherian local ring containing a field (see
§6.4 and §7.4).1 A Cohen-Macaulay local ring is clearly a balanced big Cohen
Macaulay module over itself, so the problem of the existence of these modules is
only important for deriving results over Noetherian local rings with ‘worse than
Cohen-Macaulay’ singularities.

Once one has a big Cohen-Macaulay module, one can always construct, us-
ing completion, a balanced big Cohen-Macaulay module from it (see for instance
[17, Corollary 8.5.3]). Here is a criterion for a big Cohen-Macaulay module to
be balanced taken from [6, Lemma 4.8] (recall that a regular sequence is called
permutable if any permutation is again regular).

Proposition 3.3.8. A big Cohen-Macaulay module M over a Noetherian local ring
is balanced, if every M-regular sequence is permutable. 	


If R is a Cohen-Macaulay local ring, and M a flat R-module, then M is a balanced
big Cohen-Macaulay module, since every system of parameters in R is R-regular,
whence M-regular by Proposition 3.2.9. We have the following converse:

Theorem 3.3.9. If M is a balanced big Cohen-Macaulay module over a regular local
ring, then it is flat. More generally, over an arbitrary local Cohen-Macaulay ring, if
M is a balanced big Cohen-Macaulay module of finite projective dimension, then it is
flat.

Proof. The first assertion is just a special case of the second since any module
over a regular local ring has finite projective dimension. For simplicity, we will
just prove the first, and leave the second as an exercise for the reader. So let M
be a balanced big Cohen-Macaulay module over the d-dimensional regular local
ring R. Since a finitely generated R-module N has finite projective dimension,

1 A related question is even open in these cases: does there exist a ‘small’ Cohen-Macaulay
module, that is to say, a finitely generated one, if the ring is moreover complete? There are
counterexamples to the existence of a small Cohen-Macaulay module if the ring is not complete.
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all TorR
i (M,N) = 0 for i � 0. Let e be maximal such that TorR

e (M,N) �= 0 for some
finitely generated R-module N. If e = 0, then we are done by Theorem 3.1.5. So,
by way of contradiction, assume e ≥ 1. By Corollary 3.1.6, there exists a prime
ideal p ⊆ R such that TorR

e (M,R/p) �= 0. Let h be the height of p. Choose a system
of parameters (x1, . . . ,xd) in R such that p is a minimal prime of I := (x1, . . . ,xh)R.
Since (the image of) p is then an associated prime of R/I, we get a short exact
sequence

0 → R/p → R/I →C → 0

for some finitely generated R-module C. The relevant part of the long exact Tor
sequence from 3.1.4, obtained by tensoring the above exact sequence with M, is

TorR
e+1(M,C) → TorR

e (M,R/p) → TorR
e (M,R/I). (3.12)

The first module in (3.12) is zero by the maximality of e. The last module is zero
too since it is isomorphic to TorR/I

e (M/IM,R/I) = 0 by Proposition 3.2.10 and
the fact that (x1, . . . ,xd) is by assumption M-regular. Hence the middle module in
(3.12) is also zero, contradiction. 	


We derive the following criterion for Cohen-Macaulayness:

Corollary 3.3.10. If X is an irreducible affine scheme of finite type over a field K,
and φ : X → A

d
K is a Noether normalization, that is to say, a finite and surjective

morphism, then X is Cohen-Macaulay if and only if φ is flat.

Proof. Suppose X = Spec(B), so that φ corresponds to a finite and injective homo-
morphism A → B, with A := K[ξ1, . . . ,ξd ] and B a d-dimensional affine domain.
Let n be a maximal ideal of B, and let m := n∩A be its contraction to A. Since flat-
ness is a local property, it suffices to show that Am → Bn is flat. Since A/m→ B/n
is finite and injective, and since the second ring is a field, so is the former by [69,
§9 Lemma 1]. Hence m is a maximal ideal of A, and Am is regular. Choose an
ideal I := (x1, . . . ,xd)A whose image in Am is a parameter ideal. Since the natural
homomorphism A/I → B/IB is finite, the latter ring is Artinian since the former
is (note that A/I = Am/IAm). It follows that IBn is a parameter ideal in Bn.

Now, if B, whence also Bn is Cohen-Macaulay, then (x1, . . . ,xd), being a sys-
tem of parameters in Bn, is Bn-regular. This proves that Bn is balanced big
Cohen-Macaulay module over Am, whence is flat by Theorem 3.3.9.

Conversely, assume X → A
d
K is flat. Therefore, Am → Bn is flat, and hence

(x1, . . . ,xd) is a Bn-regular sequence by Proposition 3.2.9. Since we already showed
that this sequence is a system of parameters, we see that Bn is Cohen-Macaulay.
Since this holds for all maximal prime ideals of B, we proved that B is
Cohen-Macaulay. 	

Remark 3.3.11. The above argument proves the following more general result in
the local case: if A ⊆ B is a finite and faithfully flat extension of local rings with
A regular, then B is Cohen-Macaulay. For the converse, we can even formulate a
stronger criterion; see Theorem 3.3.26 below.
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We conclude with an application of the above Cohen-Macaulay criterion:

Corollary 3.3.12. Any hypersurface in An
K is Cohen-Macaulay.

Proof. Recall that a hypersurface Y is an affine closed subscheme of the form
Spec(A/ f A) with A := K[ξ1, . . . ,ξn] and f ∈ A. Moreover, Y has dimension n−1,
whence its Noether normalization is of the form Y →A

n−1
K . In fact, after a change

of coordinates, we may assume that f is monic in ξn of degree d. It follows that
A/ f A is free over A′ := K[ξ1, . . . ,ξn−1] with basis 1,ξn, . . . ,ξ d−1

n . Hence A/ f A is
flat over A′, whence Cohen-Macaulay by Corollary 3.3.10. 	


3.3.5 Colon Criterion for Flatness

Recall that (I : a) denotes the colon ideal of all x ∈ A such that ax ∈ I. Colon ideals
are related to cyclic modules in the following way:

3.3.13 For any ideal I ⊆ A and any element a ∈ A, we have an isomorphism
a(A/I)∼= A/(I : a).

Indeed, the homomorphism A → A/I : x �→ ax has image a(A/I) whereas its
kernel is (I : a). We already saw that faithfully flat homomorphisms preserve the
ideal structure of a ring. Using colon ideals, we can even give the following crite-
rion:

Theorem 3.3.14. A homomorphism A → B is flat if and only if

(IB : a) = (I : a)B

for all elements a ∈ A and all (finitely generated) ideals I ⊆ A.

Proof. Suppose A → B is flat. In view of 3.3.13, we have an exact sequence

0 → A/(I : a) → A/I → A/(I + aA)→ 0 (3.13)

which, when tensored with B gives the exact sequence

0 → B/(I : a)B → B/IB
f→ B/(IB + aB)→ 0.

However, the kernel of f is easily seen to be a(B/IB), which is isomorphic to
B/(IB : a) by 3.3.13. Hence the inclusion (I : a)B ⊆ (IB : a) must be an equality.

In view of Theorem 3.1.5, we need to show that TorA
1 (B,A/J) = 0 for every

finitely generated ideal J ⊆ A to prove the converse. We induct on the minimal
number s of generators of J, where the case s = 0 trivially holds. Write J = I +aA
with I an ideal generated by s−1 elements. Tensoring (3.13) with B, we get from
3.1.4 an exact sequence

0 = TorA
1 (B,A/I) → TorA

1 (B,A/J) δ→ B/(I : a)B → B/IB
g→ B/JB → 0,
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where the first module vanishes by induction. As above, the kernel of g is easily
seen to be B/(IB : a), so that our assumption on the colon ideals implies that δ is
the zero map, whence TorA

1 (B,A/J) = 0 as we wanted to show. 	

Here is a nice ‘descent type’ application of this criterion:

Corollary 3.3.15. Let A → B → C be homomorphisms whose composition is flat.
If B→C is cyclically pure, then A→B is flat. In fact, it suffices that B→C is cyclically
pure with respect to ideals extended from A, that is to say, that JB = JC∩B for all
ideals J ⊆ A.

Proof. Given an ideal I ⊆ A and an element a ∈ A, we need to show in view of
Theorem 3.3.14 that (IB : a) = (I : a)B. One inclusion is immediate, so take y
in (IB : a). By the same theorem, we have (IC : a) = (I : a)C, so that y lies in
(I : a)C∩B whence in (I : a)B by cyclical purity. 	


The next criterion will be useful when dealing with non-Noetherian algebras
in the next chapter. We call an ideal J in a ring B finitely related, if it is of the form
J = (I : b) with I ⊆ B a finitely generated ideal and b ∈ B.

Theorem 3.3.16. Let A be a Noetherian ring and B an arbitrary A-algebra. Suppose
P is a collection of prime ideals in B such that every proper, finitely related ideal of B
is contained in some prime ideal belonging to P . If A → Bp is flat for every p ∈ P ,
then A → B is flat.

Proof. By Theorem 3.3.14, we need to show that (IB : a) = (I : a)B for all I ⊆ A
and a ∈ A. Put J := (I : a). Towards a contradiction, let x be an element in (IB : a)
but not in JB. Hence (JB : x) is a proper, finitely related ideal, and hence contained
in some p ∈ P . However, (IBp : a) = JBp by flatness and another application of
Theorem 3.3.14, so that x ∈ JBp, contradicting that (JB : x) ⊆ p. 	


We can also derive a coherency criterion due to Chase ([21]):

Corollary 3.3.17. A ring is coherent if and only if every finitely related ideal is
finitely generated.

Proof. The direct implication is a simple application of the coherency condition.
For the converse, suppose every finitely related ideal is finitely generated. We
will prove that R → R� is flat, where R� is an ultrapower of R, from which it
follows that R is coherent by Theorem 3.3.4. To prove flatness, we use the Colon
Criterion, Theorem 3.3.14. To this end, let I ⊆ R be finitely generated and let
a ∈ R. We have to show that if b lies in (IR� : a) then it already lies in (I : a)R�.
Let bw be an approximation of b. By Łoś’ Theorem, almost each bw ∈ (I : a). By
assumption, the colon ideal (I : a) is finitely generated, say by f1, . . . , fs, and hence
we can find ciw such that bw = c1w f1 + · · ·+ csw fs. Let ci ∈ R� be the ultraproduct
of the ciw, for each i = 1, . . . ,s. By Łoś’ Theorem, b = c1 f1 + · · ·+ cs fs, showing
that it belongs to (I : a)R�. 	
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3.3.6 Local Criterion for Flatness

For finitely generated modules, we have the following criterion:

Theorem 3.3.18 (Local Flatness Theorem–Finitely Generated Case). Let R be
a Noetherian local ring with residue field k. If M is a finitely generated R-module whose
first Betti number vanishes, that is to say, if TorR

1 (M,k) = 0, then M is flat.

Proof. Take a minimal free resolution

· · · → F1 → F0 → M → 0

of M, that is to say, such that the kernel of each boundary map di : Fi → Fi−1

lies inside mFi. Therefore, since tensoring this complex with k yields the zero
complex, the rank of Fi is equal to the i-th Betti number of M, that is to say,
the vector space dimension of TorR

i (M,k). In particular, F1 has rank zero, so that
M ∼= F0 is free whence flat. 	


There is a much stronger version of this result, where we may replace the
condition that M is finitely generated over R by the condition that M is finitely
generated over a Noetherian local R-algebra S (see for instance [69, Theorem 22.3]
or [27, Theorem 6.8]). We will present here a new proof, for which we need to
make some further definitions. The method is an extension of the work in [93],
which primarily dealt with detecting finite projective dimension.

Let A be a (not necessarily Noetherian) ring, and let modA be the class of all
finitely presented A-modules. We will call a subclass N ⊆ modR a deformation class
if it is closed under isomorphisms, direct summands, extensions, and deforma-
tions, that is to say, if it is closed under the following respective rules:2

3.3.18.i. if N belongs to N and M ∼= N, then M belongs to N;
3.3.18.ii. if N ∼= M⊕M′ belongs to N, then so do M and M′;
3.3.18.iii. if 0→ K → M → N → 0 is an exact sequence in modR with K,N ∈ N,

then also M ∈ N;
3.3.18.iv. if x is an M-regular element in the Jacobson radical of A and M/xM

belongs to N, then so does M.

Recall that the Jacobson radical of A is the intersection of all its maximal ideals;
equivalently, it is the ideal of all x such that 1 + ax is unit for all a. Condi-
tion 3.3.18.iv holds vacuously, if the Jacobson radical is equal to the nilradical,
the ideal of all nilpotent elements. Clearly, modA itself is a deformation class. We
leave it as an easy exercise to show that:

3.3.19 Any intersection of deformation classes is again a deformation class. In
particular, any class K ⊆ modA sits inside a smallest deformation class,
called the deformation class of K. 	


2 A class satisfying the first three conditions is called a net in [93].
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Let us call a subclass K ⊆ modA deformationally generating, if its
deformation class is equal to modA, and quasi-deformationally generating, if its
deformation class contains all cyclic modules of the form A/I with I ⊆ A finitely
generated. One easily shows, by induction on the number of generators, that if A
is coherent, deformationally generating and quasi-deformationally generating are
equivalent notions.

Proposition 3.3.20. If R is a Noetherian local ring, then its residue field is deforma-
tionally generating.

Proof. We need to show that any finitely generated module M belongs to the
deformation class N generated by the residue field. Since any module generated by
n elements is the extension of two modules generated by less than n elements, an
induction on n using (3.3.18.iii) reduces to the case n = 1, that is to say, M = R/a.
Suppose the assertion is false, and let a be a maximal counterexample. If a is not
prime, then for p a minimal prime ideal p of a, we have an exact sequence

0 → R/p → R/a → R/a′ → 0

for some a′ ⊆ R strictly containing a. The two outer modules belong to N by
maximality, whence so does the inner one by (3.3.18.iii), contradiction. Hence a
is a prime ideal, which therefore must be different from the maximal ideal of R.
Let x be an element in the maximal ideal not in a. By maximality R/(a+ xR) be-
longs to N, whence so does R/a by (3.3.18.iv), since x is R/a-regular, contradiction
again. 	


The main flatness criterion of this section is:

Theorem 3.3.21. Let A → B be a homomorphism sending the Jacobson radical of A
inside that of B, and let K ⊆ modA be quasi-deformationally generating. A coherent
B-module Q is flat over A if and only if TorA

1 (Q,M) = 0 for all M ∈ K.

Proof. One direction is immediate, so we only need to show the direct implica-
tion. Define a functor F on modR, by F (M) := TorA

1 (Q,M). By Theorem 3.1.5,
it suffices to show that F vanishes on each A/I with I ⊆ A finitely generated. This
will follow as soon as we can show that F (M) = 0 for all M in the deformation
class N of K. By induction on the rules (3.3.18.i)–(3.3.18.iv), it will suffice to show
that each new module M in N obtained from an application of one of these rules
vanishes again on F . The case of rule (3.3.18.i) is trivial; for (3.3.18.ii), we use that
F is additive; and for (3.3.18.iii), we are done by the long exact sequence of Tor
(3.1.4). So remains to verify the claim for rule (3.3.18.iv), that is to say, assume
x is an M-regular element in the Jacobson radical of A such that F (M/xM) = 0.
Applying 3.1.4 to the exact sequence

0 → M
x→ M → M/xM → 0

we get part of a long exact sequence

F (M) x→ F (M) → F (M/xM) = 0. (3.14)



48 3 Flatness

Since M is finitely presented, we have an exact sequence

F → Am → An → M → 0

with F some (possibly infinitely generated) free A-module. Tensoring with Q
yields a complex

F ⊗A Q → Qm → Qn → M⊗A Q → 0 (3.15)

whose first homology is by definition F (M). Since Q is a coherent module, so
is any direct sum of Q by [35, Corollary 2.2.3], and hence the kernel of the mor-
phism Qm →Qn in (3.15) is finitely generated by [35, Corollary 2.2.2]. Since F (M)
is a quotient of this kernel, it, too, is finitely generated. By (3.14), we have an equal-
ity F (M) = xF (M). By assumption, x belongs to the Jacobson radical of B, and
hence, by Nakayama’s Lemma, F (M) = 0, as we needed to show. 	


Combining Proposition 3.3.20 with Theorem 3.3.21 immediately gives the fol-
lowing well-known flatness criterion:

Corollary 3.3.22 (Local Flatness Criterion). Let R→ S be a local homomorphism
of Noetherian local rings, and let k be the residue field of R. If M is a finitely generated
S-module such that TorR

1 (M,k) = 0, then M is flat over R. 	

To extend this local flatness criterion to a larger class of rings, we make the

following definition. Let us call a local ring R ind-Noetherian, if it is a direct limit
of Noetherian local subrings Ri, indexed by a directed poset I, such that each
Ri →R is a scalar extension (that is to say, faithfully flat and unramified; see §3.2.3).
Clearly, any Noetherian local ring is ind-Noetherian (by taking Ri = R).

Lemma 3.3.23. An ind-Noetherian local ring is coherent and has finite embedding
dimension.

Proof. Let (R,m) be ind-Noetherian. Since m is in particular extended from a
Noetherian local ring, it is finitely generated. We use Corollary 3.3.17 to prove
coherency. To this end we must show that a finitely related ideal (a : b) is finitely
generated. Since a and b are finitely generated, there exists a Noetherian local
subring S ⊆ R and ideals I,J ⊆ S such that S → R is a scalar extension, and a = IR
and b = JR. Theorem 3.3.14 yields that (I : J)R = (IR : JR) = (a : b), whence in
particular, is finitely generated. 	

3.3.24 If R → S is essentially of finite type and R is ind-Noetherian, then so is S.

Indeed, S is isomorphic to the localization of R[x]/( f1, . . . , fs)R[x] with respect
to the ideal generated by the variables and by the maximal ideal of R. Hence, there
is a directed subset J ⊆ I such that f1, . . . , fs are defined over each R j with j ∈ J. It
is now easy to see that the appropriate localization S j of R j[x]/( f1, . . . , fs)R j[x]
forms a directed system with union equal to S, and each S j → S is a scalar
extension. 	
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Corollary 3.3.25. Let R→ S be a local homomorphism of ind-Noetherian rings. If Q
is a finitely presented S-module such that TorR

1 (Q,k) = 0, where k is the residue field of
R, then Q is flat over R. If Q is moreover Noetherian, then so is R.

Proof. In view of Theorem 3.3.21, to prove the first assertion, we need to
show that k is quasi-deformationally generating (note that S is coherent by
Lemma 3.3.23, whence so is the finitely presented S-module Q). Let a ⊆ R be
a finitely generated ideal. Choose a Noetherian local subring T and an ideal I ⊆ T
such that T ⊆ R is a scalar extension, and IR = a. By Proposition 3.3.20, the mod-
ule T/I belongs to the deformation class of T -modules generated by the residue
field l of T . Since each of the rules (3.3.18.i)–(3.3.18.iv) are preserved by faithfully
flat extensions, T/I⊗T R = R/a lies in the deformation class of l ⊗T R ∼= k, where
the latter isomorphism follows from the unramifiedness of T → R.

To prove that R is Noetherian, under the additional assumption that Q is Noe-
therian, let a0 ⊆ a1 ⊆ a2 ⊆ . . . be a chain of ideals in R. Choose i such that
aiQ = a jQ for all j ≥ i. Hence ai/a j ⊗Q = 0, for j ≥ i, and since Q is faithfully
flat, as it is non-degenerated by 3.2.1, we get ai/a j = 0 by 3.2.3. 	


3.3.7 Dimension Criterion for Flatness

If (R,m) → (S,n) is a local homomorphism of Noetherian local rings, then we
have the following dimension inequality, with equality when R → S is flat (see
[69, Theorem 15.1]):

dim(S) ≤ dim(R)+ dim(S/mS). (3.16)

Recall that we call S/mS the closed fiber of R → S: it defines the locus of all prime
ideals in S which lie above m. Conversely, equality in (3.16) often implies flatness.
We first discuss one well-known criterion, and then prove one new one.

Theorem 3.3.26. Let (R,m)→ (S,n) be a homomorphism of Noetherian local rings,
with R regular and S Cohen-Macaulay. Then R → S is flat if and only if we have
equality in (3.16).

Proof. One direction holds always, as we discussed above. So assume we have
equality in (3.16), that is to say, e = d + h where d, h, and e, are the respective
dimension of R, the closed fiber S/mS, and S. Let (x1, . . . ,xd) be a system of pa-
rameters of R. Since S/mS has dimension h = e− d, there exist xd+1, . . . ,xe in S
such that their image in S/mS is a system of parameters. Hence (x1, . . . ,xe) is a sys-
tem of parameters in S, whence is an S-regular sequence. In particular, (x1, . . . ,xd)
is S-regular, showing that S is a balanced big Cohen-Macaulay R-module, and
therefore is flat by Theorem 3.3.9. 	


For our last criterion, which generalizes a flatness criterion due to Kollár [62,
Theorem 8], we impose some regularity condition on the closed fiber, weakening
instead the conditions on the rings themselves.
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Theorem 3.3.27. Let R → S be a local homomorphism of Noetherian local rings.
Assume R is either an excellent normal local domain with perfect residue field, or
an analytically irreducible domain with algebraically closed residue field. If the closed
fiber is regular, of dimension dim(S)−dim(R), then R → S is faithfully flat.

Proof. Let d and e be the respective dimensions of R and S. We will induct on the
dimension h := e−d of the closed fiber. If h = 0, then R → S is in fact unramified.
It suffices to prove this case under the additional assumption that both R and S are
complete. Indeed, if R → S is arbitrary, then R̂ → Ŝ satisfies again the hypotheses
of the theorem and therefore would be faithfully flat. Hence R → S is faithfully
flat by Proposition 3.2.11.

So assume R and S are complete and let l be the residue field of S. Either as-
sumption on R implies that R l̂ is again a domain, of the same dimension as R (we
leave this as an exercise to the reader; see [102, Corollary 3.10 and Proposition
3.11]). By the universal property of complete scalar extensions (Theorem 3.2.13—
note that this result also holds in mixed characteristic, although we did not
provide a proof in these notes; see [102, Corollary 3.3]), we get a local R-algebra
homomorphism R l̂ → S. By [69, Theorem 8.4], this homomorphism is surjective.
It is also injective, since R l̂ and S have the same dimension and R l̂ is a domain.
Hence R l̂

∼= S, so that R → S is a scalar extension, whence faithfully flat.
For the general case, h > 0, let R̃ be the localization of R[ξ ] at the ideal m̃

generated by m and the variables ξ := (ξ1, . . . ,ξh). By assumption, R̃ has the same
dimension as S. Let y be an h-tuple whose image in the closed fiber is a regular
system of parameters, that is to say, which generates n(S/mS). Let R̃ → S be the
R-algebra homomorphism given by sending ξ to y. Hence n = mS + yS = m̃S, so
that by the case h = 0, the homomorphism R̃ → S is flat, whence so is R → S. 	


The requirement on R that we really need is that any complete scalar ex-
tension is again a domain, and for this, it suffices that the complete scalar
extension over the algebraic closure of the residue field of R is a domain
(see [102, Proposition 3.11]).



Chapter 4
Uniform Bounds

In this chapter, we will discuss our first application of ultraproducts: the existence
of uniform bounds over polynomial rings. The method goes back to A. Robinson,
but really gained momentum by the work of Schmidt and van den Dries in [86],
where they brought in flatness as an essential tool. Most of our applications will
be concerned with affine algebras over an ultra-field. For such an algebra, we con-
struct its ultra-hull as a certain faithfully flat ultra-ring. As we will also use this
construction in our alternative definition of tight closure in characteristic zero
in Chapter 6, we study it in detail in §4.3. In particular, we study transfer be-
tween the affine algebra and its approximations. We conclude in §4.4 with some
applications to uniform bounds, in the spirit of Schmidt and van den Dries.

4.1 Ultra-hulls

Let us fix an ultra-field K, realized as the ultraproduct of fields Kw for w ∈W . For
a concrete example, one may take K := C and K p := Falg

p by Theorem 2.4.3 (with
W the set of prime numbers). We make the construction of the ultra-hull in three
stages.

4.1.1 Ultra-hull of a Polynomial Ring

In this section, we let A := K[ξ ], where ξ := (ξ1, . . . ,ξn) are indeterminates. We
define the ultra-hull (called the non-standard hull in the earlier papers [88,89,92]) of
A as the ultraproduct of the Aw := Kw[ξ ], and denote it U(A). The inclusions Kw ⊆
Aw induce an inclusion K ⊆ U(A). Let ξi also denote the ultraproduct ulimw ξi

of the constant sequence ξi. By Łoś’ Theorem, Theorem 2.3.1, the ξi are alge-
braically independent over K. Hence, we may view them as indeterminates over
K in U(A), thus yielding an embedding A = K[ξ ]⊆U(A). To see why this is called
an ultra-hull, let us introduce the category of ultra-K-algebras: a K-algebra B� is

H. Schoutens, The Use of Ultraproducts in Commutative Algebra,
Lecture Notes in Mathematics 1999, DOI 10.1007/978-3-642-13368-8_4,

© Springer-Verlag Berlin Heidelberg 2010
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called an ultra-K-algebra if it is the ultraproduct of Kw-algebras Bw; a morphism of
ultra-K-algebras B� → C� is any K-algebra homomorphism obtained as the
ultraproduct of Kw-algebra homomorphisms Bw → Cw. It follows that any ultra-
K-algebra is a K-algebra. The ultra-hull U(A) is clearly an ultra-K-algebra. We have:

4.1.1 The ultra-hull U(A) satisfies the following universal property: given an
ultra-K-algebra B�, and a K-algebra homomorphism A → B�, there exists
a unique ultra-K-algebra homomorphism U(A) → B� extending A → B.

Indeed, by assumption, B� is the ultraproduct of Kw-algebras Bw. Let bi�

be the image of ξi under the homomorphism A → B�, and choose biw ∈ Bw

whose ultraproduct equals bi�. Define Kw-algebra homomorphisms Aw → Bw by
the rule ξi �→ biw. The ultraproduct of these homomorphisms is then the required
ultra-K-algebra homomorphism U(A) → B�. Its uniqueness follows by an easy
application of Łoś’ Theorem. 	


An intrinsic characterization of A as a subset of U(A) is provided by the next
result (in the terminology of Chapter 9, this exhibits A as a certain protoproduct):

4.1.2 An ultraproduct f � ∈ U(A) belongs to A if and only if its approximations
f w ∈ Aw have bounded degree, meaning that there is a d such that almost
all f w have degree at most d.

Indeed, if f ∈ A has degree d, then we can write it as f = ∑ν uνξ ν for some
uν ∈ K, where ν runs over all n-tuples with |ν| ≤ d. Choose uν w ∈ Kw such that
their ultraproduct is uν , and put

f w := ∑
|ν|≤d

uν wξ ν . (4.1)

An easy calculation shows that the ultraproduct of the f w is equal to f , viewed as
an element in U(A). Conversely, if almost each f w has degree at most d, so that
we can write it in the form (4.1), then

ulim
w→∞

f w = ∑
|ν|≤d

(ulim
w→∞

uν w)ξ ν

is a polynomial (of degree at most d). 	


4.1.2 Ultra-hull of an Affine Algebra

More generally, let C be a K-affine algebra, that is to say, a finitely generated
K-algebra, say of the form C = A/I for some ideal I ⊆ A. We define the ultra-
hull of C to be U(A)/IU(A), and denote it U(C). It is clear that the diagonal
embedding A ⊆ U(A) induces by base change a homomorphism C → U(C). Less
obvious is that this is still an injective map, which we will prove in Corollary 4.2.3
below. To show that the construction of U(C) does not depend on the choice of
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presentation C = A/I, we verify that U(C) satisfies the same universal property
4.1.1 as U(A): any K-algebra homomorphism C → B� to some ultra-K-algebra
B� extends uniquely to a homomorphism U(C) → B� of ultra-K-algebras (recall
that any solution to a universal property is necessarily unique). To see why the
universal property holds, apply 4.1.1 to the composition A � A/I = C → B� to
get a unique extension U(A)→ B�. Since any element in I is sent to zero under the
composition A → B�, this homomorphism factors through U(A)/IU(A), yielding
the required homomorphism U(C) → B� of ultra-K-algebras. Uniqueness follows
from the uniqueness of U(A) → B�.

Since IU(A) is finitely generated, it is an ultra-ideal by 2.4.12, that is to say,
an ultraproduct of ideals Iw ⊆ Aw, and the ultraproduct of the Cw := Aw/Iw is
equal to U(C) = U(A)/IU(A) by 2.1.6. If C = A′/I′ is a different presentation
of C as a K-algebra (with A′ a polynomial ring in finitely many indetermi-
nates), and C′

w := A′
w/I′w the corresponding Kw-algebras, then their ultraproduct

U(A′)/I′U(A′) is another way of defining the ultra-hull of C, whence it must be
isomorphic to U(C). Without loss of generality, we may assume A ⊆ A′ and hence
Aw ⊆ A′

w. Since U(A)/IU(A) ∼= U(C) ∼= U(A′)/I′U(A′), the homomorphisms
Aw ⊆ A′

w induce homomorphisms Cw → C′
w, and by Łoś’ Theorem, almost all

are isomorphisms. This justifies the usage of calling the Cw approximations of C
(in spite of the fact that they are not uniquely determined by C).

4.1.3 The ultra-hull U(·) is a functor from the category of K-affine algebras to the
category of ultra-K-algebras.

The only thing which remains to be verified is that an arbitrary K-
algebra homomorphism C → D of K-affine rings induces a homomorphism of
ultra-K-algebras U(C) → U(D). However, this follows from the universal prop-
erty applied to the composition C → D →U(D), admitting a unique extension so
that the following diagram is commutative

�

�

�
�

DC

U(D).U(C)

(4.2)

	


4.1.3 Ultra-hull of a Local Affine Algebra

Recall that a K-affine local ring R is simply the localization Cp of a K-affine alge-
bra C at a prime ideal p. Let us call R geometric, if p is a maximal ideal m of C.
A geometric K-affine local ring, in other words, is the local ring of a closed point
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on an affine scheme of finite type over K. Note that a local K-affine algebra is in
general not finitely generated as a K-algebra; one usually says that R is essentially
of finite type over K. The next result will enable us to define the ultra-hull of a
geometric affine local ring; we shall discuss the general case in §4.3.2 below (see
Remark 4.3.5):

4.1.4 Let C be a K-affine algebra. If m is a maximal ideal in C, then mU(C) is a
maximal ideal in U(C), and C/m ∼= U(C)/mU(C).

By our previous discussion, U(L) := U(C)/mU(C) is the ultra-hull of the field
L := C/m. By the Nullstellensatz, the extension K ⊆ L is finite, and from this, it is
easy to see that L is an ultra-field. By the universal property, L is equal to its own
ultra-hull, and hence mU(C) is a maximal ideal. 	


We can now define the ultra-hull of a local K-affine algebra R = Cm as the
localization U(R) := U(C)mU(C). Note that U(R) is again an ultra-ring: let Cw

be approximations of C, and let mw ⊆ Cw be ideals whose ultraproduct is equal
to mU(C). Since the latter is maximal, so are almost all mw. For those w, set
Rw := (Cw)mw (and arbitrary for the remaining w). One easily verifies that U(R) is
then isomorphic to the ultraproduct of the Rw, and for this reason we call the Rw

again an approximation of R. We can formulate a similar universal property which
is satisfied by U(R), and then show that any local homomorphism R → S of local
K-affine algebras induces a unique homomorphism U(R) → U(S). Moreover, any
two approximations agree almost everywhere. In particular, for homomorphic
images we have:

4.1.5 If I ⊆C is an ideal in a K-affine (local) ring, then U(C/I) = U(C)/IU(C).

We extend our nomenclature also to elements and ideals: if a ∈C is an element
or I ⊆ C is an ideal, and aw ∈ Cw and Iw ⊆ Cw are such that their ultraproduct
equals a ∈ U(C) and IU(C) respectively, then we call the aw and the Iw approx-
imations of a and I respectively. In particular, by 4.1.4, the approximations of a
maximal ideal are almost all maximal. The same holds true with ‘prime’ instead
of ‘maximal’, but the proof is more involved, and we have to postpone it until
Theorem 4.3.4 below.

4.2 The Schmidt-van den Dries Theorem

The ring U(A) is highly non-Noetherian. In particular, although each mU(A) is a
maximal ideal for m a maximal ideal of A = K[ξ ], these are not the only maximal
ideals of U(A). To see an example, choose, for each w, a polynomial f w ∈ Aw in
ξ1 of degree w with distinct roots in Kw (assuming Kw has at least size w), and
let f ∈ U(A) be their ultraproduct. Let a be the ideal generated by all f/h where
h runs over all elements in A such that f ∈ hU(A). Since f has infinitely many
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roots,1 a is not the unit ideal, and hence is contained in some maximal ideal M
of U(A). However, for the same reason, a cannot be inside a maximal ideal of the
form mU(A) with m ⊆ A, showing that M is not of the latter form. In fact, M is
not even an ultra-ideal.

Nonetheless, the maximal ideals that are extended from A ‘cover’ enough of
U(A) in order to apply Theorem 3.3.16. More precisely:

4.2.1 If almost all Kw are algebraically closed, then any proper finitely related
ideal of U(A) is contained in some mU(A) with m ⊆ A a maximal ideal.

Indeed, this is even true for any proper ultra-ideal I ⊆ U(A). Namely, let I
be the ultraproduct of ideals Iw ⊆ Aw. By Łoś’ Theorem, almost each Iw is a
proper ideal whence contained in some maximal ideal mw. By the Nullstellen-
satz, we can write mw as (ξ1 −u1w, . . . ,ξn −unw)Aw for some uiw ∈ Kw. Let ui ∈ K
be the ultraproduct of the uiw, so that the ultraproduct of the mw is equal to
(ξ1 −u1, . . . ,ξn −un)U(A), and by Łoś’ Theorem it contains I. 	


It is necessary that almost all Kw are algebraically closed. For instance, if all
Kw are equal to Q (whence K is the ultrapower Q�), and we let mw be the ideal in
Q[ξ ] generated by the w-th cyclotomic polynomial, then the ultraproduct m� of
the mw is principal but contains no non-zero element of Q�[ξ ].

Theorem 4.2.2. For any K-affine algebra, the diagonal embedding C →U(C) is faith-
fully flat, whence in particular injective.

Proof. If we have proven this result for the ultra-hull U(A) of A, then it will
follow from 3.1.3 for any C → U(C), since the latter is just a base change
C = A/I → U(A)/IU(A) = U(C), where C = A/I is some presentation of C. The
non-degeneratedness of U(A) is immediate from 4.1.4. So remains to show the flat-
ness of A → U(A), and for this we may assume that K and all Kw are algebraically
closed. Indeed, if K′ is the ultraproduct of the algebraic closures of the Kw, then
A → A′ := K′[ξ ] is flat by 3.1.3. By Łoś’ Theorem, the canonical homomorphism
U(A) → U(A′) is cyclically pure with respect to ideals extended from A, where
U(A′) is the ultra-K′-hull of A. Hence if we showed that A′ →U(A′) is flat, then so
is A → U(A) by Corollary 3.3.15. Hence we may assume all Kw are algebraically
closed. By Theorem 3.3.16 in conjunction with 4.2.1, we only need to show that
R := Am → U(R) = U(A)mU(A) is flat for every maximal ideal m ⊆ A. After a
translation, we may assume m = (ξ1, . . . ,ξn)A. By Łoś’ Theorem, (ξ1, . . . ,ξn) is
an U(A)-regular sequence whence U(R)-regular. This proves that U(R) is a big
Cohen-Macaulay R-module. By Proposition 3.3.8 it is therefore a balanced big
Cohen-Macaulay module, since any regular sequence in U(R) is permutable
by Łoś’ Theorem, because this is so in the Noetherian local rings (Aw)mw

(see [69, Corollary to Theorem 16.3]). Hence U(R) is flat over R by
Theorem 3.3.9. 	


1 Notwithstanding that f is only an ultra-polynomial, we may view it by 2.1.2 as a function on
K�, and a root of f then means an element u ∈ K� such that f (u) = 0 (which means that, for any
approximation uw ∈ Kw of u, almost all f w(uw) = 0 are zero).
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Immediately from this and the cyclic purity of faithfully flat homomorphisms
(Proposition 3.2.5) we get:

Corollary 4.2.3. The diagonal embedding C →U(C) is injective, and IU(C)∩C = I
for any ideal I ⊆C. 	


4.3 Transfer of Structure

We will use ultra-hulls in our definition of tight closure in characteristic zero
(see §6), and to this end, we need to investigate more closely the relation between
an affine algebra and its approximations. We start with the following far reaching
generalization of 4.1.4.

4.3.1 Finite Extensions

Proposition 4.3.1. If C → D is a finite homomorphism of K-affine algebras, then
U(D) ∼= U(C)⊗C D, and hence U(C) → U(D) is also finite.

Proof. Since D is finite as a module over C, the tensor product U(C)⊗C D is finite
over U(C), whence an ultra-K-algebra. By the universal property of the ultra-hull
of D, we therefore have a unique homomorphism U(D) → U(C)⊗C D of ultra-
K-algebras. On the other hand, by the universal property of tensor products, we
have a unique homomorphism U(C)⊗C D → U(D). It is no hard to see that the
latter is in fact a morphism of ultra-K-algebras. By uniqueness of both homomor-
phisms, they must therefore be each other’s inverse. 	

Corollary 4.3.2. If C is an Artinian K-affine algebra, then C ∼= U(C).

Proof. Since C is a direct product of local Artinian rings ([27, Corollary 9.1]),
and since ultra-hulls are easily seen to commute with direct products, we may
assume C is moreover local, with maximal ideal m, say. Let L := C/m, so that
L ∼= U(L) by 4.1.4. Note that the vector space dimension of C over L is equal to
the length of C. In any case, C is a finite L-module, so that by Proposition 4.3.1
we get U(C) = U(L)⊗L C = C. 	

Corollary 4.3.3. The dimension of a K-affine algebra is equal to the dimension of
almost all of its approximations.

Proof. Let C be an n-dimensional K-affine algebra, with approximations Cw.
The assertion is trivial for C = A a polynomial ring. By Noether normalization
(see for instance [27, Theorem 13.3]), there exists a finite extension A ⊆C. The in-
duced homomorphism U(A)→U(C) ∼= U(A)⊗A C is finite, by Proposition 4.3.1,
and injective since A → U(A) is flat by Theorem 4.2.2. By Łoś’ Theorem, almost
all Aw → Cw are finite and injective. Hence almost all Cw have dimension n by
[27, Proposition 9.2.]. 	
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4.3.2 Prime Ideals

We return to our discussion on the behavior of prime ideals under the ultra-hull,
and we are ready to prove the promised generalization of 4.1.4 (this was originally
proven in [86] by different means).

Theorem 4.3.4. A K-affine algebra C is a domain if and only if U(C) is, if and only if
almost all of its approximations are. In particular, if p is a prime ideal in an arbitrary
K-affine algebra D, then pU(D) is again a prime ideal, and so are almost all of its
approximations pw.

Proof. By Łoś’ Theorem, almost all Cw are domains if and only if U(C) is a
domain. If this holds, then C too is a domain since it is a subring of U(C) by
Corollary 4.2.3. Conversely, assume C is a domain, and let A ⊆ C be a Noether
normalization of C, that is to say a finite and injective extension. Let Aw ⊆ Cw

be the corresponding approximations implied by Proposition 4.3.1. Let pw be a
prime ideal in Cw of maximal dimension, and let p� be their ultraproduct, a prime
ideal in U(C). An easy dimension argument shows that pw ∩Aw = (0) and hence
by Łoś’ Theorem, p� ∩U(A) = (0). Let p := p� ∩C. Since p∩A is contained in
p� ∩U(A), it is also zero. Hence A → C/p is again finite and injective. Since C is
a domain, an easy dimension argument yields that p = 0. On the other hand, we
have an isomorphism U(C) = U(A)⊗A C, so that by general properties of tensor
products

U(C)/p� = U(A)/(p�∩U(A))⊗A/(p�∩A) C/(p�∩C) = U(A)⊗A C = U(C)

showing that p� is zero, whence so are almost all pw. Hence almost all Cw are
domains, and hence by Łoś’ Theorem, so is U(C).

The last assertion is immediate from the first applied to C := D/p. 	

Remark 4.3.5. This allows us to define the ultra-hull of an arbitrary local K-affine
algebra Cp as the localization U(C)pU(C).

To show that a local affine algebra has the same dimension as almost all of its
approximations, we introduce a new dimension notion. Let (R,m) be a local ring
of finite embedding dimension (that is to say, with a finitely generated maximal
ideal).

Definition 4.3.6 (Geometric Dimension). We define the geometric dimension of
R, denoted geodim(R), as the least number of elements generating an m-primary
ideal.

As the (Krull) dimension dim(R) equals the dimension of the topological
space V := Spec(R), it is essentially a topological invariant. On the other hand,
geodim(R) is the least number of equations defining the closed point x corre-
sponding to the maximal ideal m, and hence is a geometric invariant. It is a well-
known result from commutative algebra that for Noetherian local rings (Krull)
dimension equals geometric dimension (see, for instance, [69, Theorem 13.4]).
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The next result shows that this is no longer true if one drops the Noetherianity
condition, since ultra-rings are in general infinite dimensional (for some calcula-
tions of their prime spectrum, see [72, 73, 74]).

Proposition 4.3.7. If (R,m) is a d-dimensional local K-affine algebra, then U(R) has
geometric dimension d.

Proof. We induct on the dimension d, where the case d =0 follows from
Corollary 4.3.2. So assume d > 0, and let x be a parameter in R. Hence, R/xR
has dimension d − 1, so that by induction, U(R/xR) has geometric dimension
d − 1. Since U(R/xR) = U(R)/xU(R) by 4.1.5, we see that U(R) has geometric
dimension at most d. By way of contradiction, suppose its geometric dimension
is at most d − 1. In particular, there exists an mU(R)-primary ideal N generated
by d − 1 elements. Put n := N ∩ R, and let n be such that mnU(R) ⊆ N. By
faithful flatness, that is to say, by Corollary 4.2.3, we have an inclusion mn ⊆ n,
showing that n is m-primary. Hence R/n ∼= U(R/n) = U(R)/nU(R) by Corol-
lary 4.3.2. Hence U(R)/N is a homomorphic image of R/n whence equal to
it by definition of n. In conclusion, N = nU(R). Since R has geometric dimen-
sion d, the m-primary ideal n requires at least d generators. Since R → U(R)
is flat by Theorem 4.2.2, also nU(R) requires at least d generators by 3.2.7,
contradiction. 	


We can now extend the result from Corollary 4.3.3 to the local case as well:

Corollary 4.3.8. The dimension of a local K-affine algebra R is equal to the dimen-
sion of almost all of its approximations Rw. Moreover, if x is a sequence in R with
approximations xw, then x is a system of parameters if and only if almost all xw are.

Proof. The second assertion follows immediately from the first and Łoś’ The-
orem. By Proposition 4.3.7, the geometric dimension of U(R) is equal to d :=
dim(R). Let Rw be approximations of R, so that their ultraproduct equals U(R). If
I is an mU(R)-primary ideal generated by d elements, then its approximation Iw

is an mw-primary ideal generated by d elements for almost all w by 2.4.11. Hence
almost all Rw have (geometric) dimension at most d.

Let p0 � · · · � pd = m be a chain of prime ideals in R of maximal length. By
faithful flatness (in the form of Corollary 4.2.3), this chain remains strict when
extended to U(R), and by Theorem 4.3.4, it consists again of prime ideals. Hence
if piw ⊆ Rw are approximations of pi, then by Łoś’ Theorem, we get a strict chain
of prime ideals p0w � · · ·� pdw = mw for almost all w, proving that almost all Rw

have dimension at least d. 	

Note that it is not true that if xw are systems of parameters in the approxima-

tions, then their ultraproduct (which in general lies outside R) does not necessarily
generate an mU(R)-primary ideal.
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4.3.3 Singularities

Now that we know how dimension behaves under ultra-hulls, we can investigate
singularities.

Theorem 4.3.9. A local K-affine algebra is respectively regular or Cohen-Macaulay if
and only if almost all its approximations are.

Proof. Let R be a d-dimensional local K-affine algebra, and let Rw be its approx-
imations. If R is regular, then its embedding dimension is d, whence so is the
embedding dimension of U(R), and by Łoś’ Theorem, then so is the embed-
ding dimension of Rw for almost each w, and conversely. Corollary 4.3.8 then
proves the assertion for regularity. As for the Cohen-Macaulay condition, let x
be a system of parameters with approximation xw. Hence almost each xw is a
system of parameters in Rw by Corollary 4.3.8. If R is Cohen-Macaulay, then x
is an R-regular sequence, hence U(R)-regular by flatness (see Proposition 3.2.9),
whence almost each xw is Rw-regular by Łoś’ Theorem, and almost all Rw are
Cohen-Macaulay. The converse follows along the same lines. 	


4.4 Uniform Bounds

In this last section, we discuss some applications of ultraproducts to the study of
rings. The results as well as the proof method via ultraproducts are due to Schmidt
and van den Dries from their seminal paper [86], and were further developed in
[84, 88, 89, 98].

4.4.1 Linear Equations

The proof of the next result is very typical for an argument based on ultraprod-
ucts, and will be the template for all future proofs.

Theorem 4.4.1 (Schmidt-van den Dries). For any pair of positive integers (d,n),
there exists a uniform bound b := b(d,n) with the following property. Let k be a field,
and let f0, . . . , fs ∈ k[ξ ] be polynomials of degree at most d in at most n indeterminates
ξ such that f0 ∈ ( f1, . . . , fs)k[ξ ]. Then there exist g1, . . .gs ∈ k[ξ ] of degree at most b
such that f0 = g1 f1 + · · ·+ gs fs.

Proof. By way of contradiction, suppose this result is false for some pair (d,n).
This means that we can produce counterexamples requiring increasingly high de-
grees. Before we write these down, observe that the number s of polynomials in
these counterexamples can be taken to be the same by Lemma 4.4.2 below (by
adding zero polynomials if necessary). So, for each w ∈ N, we can find counterex-
amples consisting of a field Kw, and polynomials f0w, . . . , fsw ∈ Aw := Kw[ξ ] of
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degree at most d, such that f0w can be written as an Aw-linear combination of
the f1w, . . . , fsw, but any such linear combination involves a polynomial of de-
gree at least w. Let fi be the ultraproduct of the fiw. This is again a polynomial
of degree d in A by 4.1.2. Moreover, by Łoś’ Theorem, f0 ∈ ( f1, . . . , fd)U(A).
We use the flatness of A → U(A) via its corollary in 4.2.3, to conclude that
f0 ∈ ( f1, . . . , fs)U(A)∩A = ( f1, . . . , fs)A. Hence we can find polynomials gi ∈ A
such that

f0 = g1 f1 + · · ·+ gs fs. (4.3)

Let e be the maximum of the degrees of the gi. By 4.1.2 again, we can choose
approximations giw ∈ Aw of each gi, of degree at most e. By Łoś’ Theorem, (4.3)
yields for almost all w that f0w = ∑i giw fiw, contradicting our assumption. 	

Lemma 4.4.2. Any ideal in A generated by polynomials of degree at most d requires

at most b :=
(d + n

n

)
generators.

Proof. Note that b is equal to the number of monomials of degree at most d in n
variables. Let I := ( f1, . . . , fs)A be an ideal in A with each fi of degree at most d.
Choose some (total) ordering < on these monomials (e.g., the lexicographical
ordering on the exponent vectors), and let l( f ) denote the largest monomial ap-
pearing in f with non-zero coefficient, for any f ∈ A of degree at most d (where
we put l(0) := −∞). If l( fi) = l( f j) for some non-zero fi, f j with i < j, then
l(u fi − v f j) < l( fi) for some non-zero elements u,v ∈ K, and we may replace the
generator f j by the new generator u fi − v f j. Doing this recursively for all i, we
arrive at a situation in which all non-zero fi have different l( fi), and hence there
can be at most b of these. 	


We can reformulate the result in Theorem 4.4.1 to arrive at some further gener-
alizations. The ideal membership condition in that theorem is really about solving
an (inhomogeneous) linear equation in A: the equation f0 = f1t1 + · · ·+ fsts, where
the ti are the unknowns of this equation (as opposed to ξ , which are indetermi-
nates). One can then easily extend the previous argument to arbitrary systems of
equations: there exists a uniform bound b := b(d,n) such that for any field k, and
for any linear system of equations λ1 = · · · = λs = 0 with λi ∈ k[ξ , t] of ξ -degree
at most d and t-degree at most one, where ξ is an n-tuple of indeterminates and t
is a finite tuple of variables, if the system admits a solution in k[ξ ], then it admits
a solutions all of whose entries have degree at most b. In the homogeneous case
we can say even more:

Theorem 4.4.3. For any pair of positive integers (d,n), there exists a uniform bound
b := b(d,n) with the following property. Over a field k, any homogeneous linear sys-
tem of equations with coefficients in k[ξ1, . . . ,ξn] all of whose coefficients have degree
at most d, admits a finite number of solutions of degree at most b such that any other
solution is a linear combination of these finitely many solutions.

Proof. The proof once more is by contradiction. Assume the statement is false for
the pair (n,d). Hence we can find for each w ∈ N, a field Kw, and a linear system
of homogeneous equations
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λ1w(t) = · · · = λsw(t) = 0 (L w)

in the variables t = (t1, . . . ,tm) with coefficients in Aw, such that the module of
solutions SolAw(L w) ⊆ Ak

w requires at least one generator one of whose entries
is a polynomial of degree at least w. Here, we may again take the number m of
t-variables as well as the number s of equations to be the same in all counterexam-
ples, by another use of Lemma 4.4.2. The ultraproduct of each λiw is, as before by
4.1.2, an element λi ∈ A[t] which is a linear form in the t-variables (and has degree
at most d in ξ ). By the equational criterion for flatness, Theorem 3.3.1, the flat-
ness of A→U(A), proven in Theorem 4.2.2, amounts to the existence of solutions
b1, . . . ,bl ∈ SolA(L ) such that any solution of the homogeneous linear system L
of equations λ1 = · · · = λs = 0 in U(A) lies in the U(A)-module generated by the
bi. Let e be the maximum of the degrees occurring in the bi. In particular, we
can find approximations biw ∈ Am

w of bi whose entries all have degree at most e.
I claim that almost each SolAw(L w) is equal to the submodule Hw generated by
b1w, . . . ,bl w, which would then contradict our assumption.

To prove the claim, one inclusion is clear, so assume by way of contradiction
that we can find for almost all w a solution qw ∈ SolAw(L w) outside Hw. Let
q� ∈ U(A)m be its ultraproduct (note that this time, we cannot guarantee that
its entries lie in A since the degrees might be unbounded). By Łoś’ Theorem,
q� ∈ SolU(A)(L ), whence can be written as an U(A)-linear combination of the bi.
Writing this out and using Łoś’ Theorem once more, we conclude that qw lies in
Hw for almost all w, contradiction. 	


4.4.2 Primality Testing

The next result, with a slightly different proof from the original, is also due to
Schmidt and van den Dries.

Theorem 4.4.4 (Schmidt-van den Dries). For any pair of positive integers (d,n),
there exists a uniform bound b := b(d,n) with the following property. Let k be a field,
and let p be an ideal in k[ξ1, . . . ,ξn] generated by polynomials of degree at most d.
Then p is a prime ideal if and only if for any two polynomials f ,g of degree at most b
which do not belong to p, neither does their product.

Proof. One direction in the criterion is obvious. Suppose the other is false for the
pair (d,n), so that we can find for each w ∈ N, a field Kw and a non-prime ideal
aw ⊆ Aw generated by polynomials of degree at most d, such that any two poly-
nomials of degree at most w not in aw have their product also outside aw. Taking
ultraproducts of the generators of the aw of degree at most d gives polynomials
of degree at most d in A by 4.1.2, and by Łoś’ Theorem if a ⊆ A is the ideal they
generate, then aU(A) is the ultraproduct of the aw. I claim that a is a prime ideal.
However, this implies that almost all aw must be prime ideals by Theorem 4.3.4,
contradiction.
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To verify the claim, let f ,g /∈ a. We want to show that f g /∈ a. Let e be the
maximum of the degrees of f and g. Choose approximations f w,gw ∈Aw of degree
at most e, of f and g respectively. By Łoś’ Theorem, f w,gw /∈ aw for almost all w.
For w≥ e, our assumption then implies that f wgw /∈ aw, whence by Łoś’ Theorem,
their ultraproduct f g /∈ aU(A). A fortiori, then neither does f g belong to a, as we
wanted to show. 	


The pattern by now must become clear: prove that a particular property of
ideals is preserved under ultra-hulls, and use this to deduce uniform bounds. For
instance, one can easily derive from Theorem 4.3.4 that:

Proposition 4.4.5. The image of a radical ideal in the ultra-hull remains radical. 	

Since the radical of an ideal is the intersection of its minimal overprimes, we

derive from this the following uniform bounds property:

Theorem 4.4.6. For any pair of positive integers (d,n), there exists a uniform bound
b := b(d,n) with the following property. Let k be a field, and let I be an ideal in
k[ξ1, . . . ,ξn] generated by polynomials of degree at most d. Then its radical J := rad(I)
is generated by polynomials of degree at most b. Moreover, Jb ⊆ I and I has at most
b distinct minimal overprimes, all of which are generated by polynomials of degree at
most b. 	


Similarly, we can use Theorem 3.3.14, the Colon Criterion, to show that there
exists a uniform bound b := b(d,n) such that for any field k, any ideal I ⊆ k[ξ ]
generated by polynomials of degree at most d, and any a ∈ k[ξ ] of degree at most
d in the n indeterminates ξ , the ideal (I : a) is generated by polynomials of degree
at most b.

Realizing a finitely generated module as the cokernel of a matrix (acting
on a free module) and using that ultraproducts commute with homology
(Theorem 3.1.1), one can extend all the previous bounds to modules as well.
This was the route taken in [88]. Without proof, I state one of the results of that
paper proven by this technique.

Theorem 4.4.7 ([88, Theorem 4.5]). For any triple of positive integers (d,n, i),
there exists a uniform bound b := b(d,n, i) with the following property. Let k be a
field, let B be an affine algebra of the form k[ξ1, . . . ,ξn]/I with I an ideal generated by
polynomials of degree at most d, and let M and N be finitely generated B-modules real-
ized as the cokernel of matrices of size at most d and with entries of degree at most d.
If M ⊗A N has finite length, then the i-th Betti number, that is to say, the length of
TorA

i (M,N), is bounded by b. Similarly, if HomA(M,N) has finite length, then the i-th
Bass number, that is to say, the length of ExtiA(M,N), is at most b. 	


4.4.3 Comments

Our proof of the flatness of ultra-hulls (Theorem 4.2.2) is entirely differ-
ent from the original proof of Schmidt and van den Dries, which uses an
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induction on the number of indeterminates based on classical arguments of
Hermann from constructive commutative algebra. The present approach via big
Cohen-Macaulay algebras has the advantage that one can extend this method to
many other situations, like Theorem 7.1.6 below. Yet another approach, through
a coherency result due to Vasconcelos, can be found in [5].

As already mentioned, some of the bounds proven here were already
established by Hermann [42], based on work of Seidenberg [103, 104, 105] on
constructions in algebra. Using Groebner bases, Buchberger obtained in [18] the
same result, but by an explicit description of an algorithm (e.g., one that calcu-
lates the polynomials gi in Theorem 4.4.1). This led to a direct implementation
into various algebraic software programs, which was not practically feasible in
the case of Hermann’s explicit proof using elimination theory, in view of the ex-
ponential growth of degrees of polynomials involved in this elimination process.
Model-theoretic proofs, such as the ones in this book, lack even more practical
implementation, but they provide sometimes extra information. For instance,
we show that there exist uniform bounds that are independent of the base field.
With some additional work, it is sometimes possible to show that the bounds are
recursive (see, for instance, [11]). But even these abstract methods can sometimes
lead to explicit bounds, as is evident from Schmidt’s work [84, 85].



Chapter 5
Tight Closure in Positive Characteristic

In this chapter, p is a fixed prime number, and all rings are assumed to have
characteristic p, unless explicitly mentioned otherwise. We review the notion of
tight closure due to Hochster and Huneke (as a general reference, we will use [59]).
The main protagonist in this elegant theory is the p-th power Frobenius map.
We will focus on five key properties of tight closure, which will enable us to prove,
virtually effortlessly, several beautiful theorems. Via these five properties, we can
give a more axiomatic treatment, which lends itself nicely to generalization, and
especially to a similar theory in characteristic zero (see Chapters 6 and 7).

5.1 Frobenius

The major advantage of rings of positive characteristic is the presence of an
algebraic endomorphism: the Frobenius. More precisely, let A be a ring of char-
acteristic p, and let Fp, or more accurately, Fp,A, be the ring homomorphism
A → A : a �→ ap, called the Frobenius on A. Recall that this is indeed a ring homo-
morphism, where the only thing to note is that the coefficients in the binomial
expansion

Fp(a + b) =
p

∑
i=0

(p
i

)
aibp−i = Fp(a)+ Fp(b)

are divisible by p for all 0 < i < p whence zero in A, proving that Fp is additive.
When A is reduced, Fp is injective whence yields an isomorphism with its

image Ap := Im(Fp) consisting of all p-th powers of elements in A (and not to be
confused with the p-th Cartesian power of A). The inclusion Ap ⊆ A is isomorphic
with the Frobenius on A because we have a commutative diagram

�
�

�
�

�
��

�
�
�
�
�
���

A

Ap A⊆

∼= Fp (5.1)
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When A is a domain, then we can also define the ring A1/p as the subring of the
algebraic closure of the field of fractions of A consisting of all elements b satisfying
bp ∈ A. Hence A ⊆ A1/p is integral. Since, Fp(A1/p) = A and Fp is injective, we get
A1/p ∼= A. Moreover, we have a commutative diagram

�
�

�
�

�
��

�
�
�
�
�
���

A

A1/p A∼=

⊆ Fp (5.2)

showing that the Frobenius on A is also isomorphic to the inclusion A ⊆ A1/p.
It is sometimes easier to work with either of these inclusions rather than with
the Frobenius itself, especially to avoid notational ambiguity between source and
target of the Frobenius (instances where this approach would clarify the argument
are the proofs of Theorem 5.1.2 and Corollary 5.1.3 below).

Often, the inclusion Ap ⊆ A is even finite, and hence so is the Frobenius itself.
One can show, using Noether normalization or Cohen’s Structure Theorems that
this is true when A is respectively a k-affine algebra or a complete Noetherian local
ring with residue field k, and k is perfect, or more generally, (k : kp) < ∞.

5.1.1 Frobenius Transforms

Given an ideal I ⊆ A, we will denote its extension under the Frobenius by Fp(I)A,
and call it the Frobenius transform of I. Note that Fp(I)A ⊆ I p, but the inclusion
is in general strict. In fact, one easily verifies that

5.1.1 If I = (x1, . . . ,xn)A, then Fp(I)A = (xp
1 , . . . ,xp

n)A.

If we repeat this process, we get the iterated Frobenius transforms Fn
p(I)A of I,

generated by the pn-th powers of elements in I, and in fact, of generators of I. In
tight closure theory, the simplified notation

I[pn] := Fn
p(I)A

is normally used, but for reasons that will become apparent once we defined
tight closure as a difference closure (see §6.1.1), we will use the ‘heavier’ nota-
tion. On the other hand, since we fix the characteristic, we may omit p from the
notation and simply write F : A → A for the Frobenius.
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5.1.2 Kunz Theorem

The next result, due to Kunz, characterizes regular local rings in positive charac-
teristic via the Frobenius. We will only prove the direction that we need.

Theorem 5.1.2 (Kunz). Let R be a Noetherian local ring. If R is regular, then
Fp is flat. Conversely, if R is reduced and Fp is flat, then R is regular.

Proof. We only prove the direct implication; for the converse see [68, §42]. Let x
be a system of parameters of R, whence an R-regular sequence. Since F(x) is also
a system of parameters, it too is R-regular. Hence, R, viewed as an R-algebra via F,
is a balanced big Cohen-Macaulay algebra, whence is flat by Theorem 3.3.9. 	

Corollary 5.1.3. If R is a regular local ring, I ⊆ R an ideal, and a ∈ R an arbitrary
element, then a ∈ I if and only if F(a) ∈ F(I)R.

Proof. One direction is of course trivial, so assume F(a) ∈ F(I)R. However, since
F is flat by Theorem 5.1.2, the contraction of the extended ideal F(I)R along F is
again I by Proposition 3.2.5, and a lies in this contraction (recall that F(I)R∩R
stands really for F−1(F(I)R).) 	


5.2 Tight Closure

The definition of tight closure, although not complicated, is not that intuitive
either. The idea is inspired by the ideal membership test of Corollary 5.1.3.
Unfortunately, that test only works over regular local rings, so that it will be no
surprise that whatever test we design, it will have to be more involved. Moreover,
the proposed test will in fact fail in general, that is to say, the elements satisfying
the test form an ideal which might be strictly bigger than the original ideal. But
not too much bigger, so that we may view this bigger ideal as a closure of the
original ideal, and as such, it is a ‘tight’ fit.

In the remainder of this section, A is a Noetherian ring, of characteristic p.
A first obvious generalization of the ideal membership test from Corollary 5.1.3
is to allow iterates of the Frobenius: we could ask, given an ideal I ⊆ A, what are
the elements x such that Fn(x) ∈ Fn(I)A for some power n? They do form an ideal
and the resulting closure operation is called the Frobenius closure. However, its
properties are not sufficiently strong to derive all the results tight closure can.

The adjustment to make in the definition of Frobenius closure, although mi-
nor, might at first be a little surprising. To make the definition, we will call
an element a ∈ A a multiplier, if it is either a unit, or otherwise generates an
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ideal of positive height (necessarily one by Krull’s Principal Ideal Theorem).
Put differently, a is a multiplier if it does not belong to any minimal prime ideal
of A. In particular, the product of two multipliers is again a multiplier. In a do-
main, a situation we can often reduce to, a multiplier is simply a non-zero element.

The name ‘multiplier’ comes from the fact that we will use such elements to
multiply our test condition with. However, for this to make sense, we cannot
just take one iterate of the Frobenius, we must take all of them, or at least all
but finitely many. So we now define: an element x ∈ A belongs to the tight closure
clA(I) of an ideal I ⊆ A, if there exists a multiplier c ∈ A and a positive integer N
such that

cFn(x) ∈ Fn(I)A (5.3)

for all n ≥ N. Note that the multiplier c and the bound N may depend on x and I,
but not on n. We will write cl(I) for clA(I) if the ring A is clear from the context.
In the literature, tight closure is invariably denoted I∗, but again for reasons that
will become clear in the next chapter, our notation better suits our purposes. Let
us verify some elementary properties of this closure operation:

5.2.1 The tight closure of an ideal I in a Noetherian ring A is again an ideal, it
contains I, and it is equal to its own tight closure. Moreover, we can find
a multiplier c and a positive integer N which works simultaneous for all
elements in cl(I) in criterion (5.3).

It is easy to verify that cl(I) is closed under multiples, and contains I. To show
that it is closed under sums, whence an ideal, assume x,x′ ∈ A both lie in cl(I),
witnessed by the equations (5.3) for some multipliers c and c′, and some positive
integers N and N′ respectively. However, cc′Fn(x + x′) then lies in Fn(I)A for all
n ≥ max{N,N′}, showing that x + x′ ∈ cl(I) since cc′ is again a multiplier. Let
J := cl(I) and choose generators y1, . . . ,ys of J. Let ci and Ni be the corresponding
multiplier and bound for yi. It follows that c := c1c2 · · ·cs is a multiplier such that
(5.3) holds for all n ≥ N := max{N1, . . . ,Ns} and all x ∈ J, since any such element
is a linear combination of the yi. In particular, cFn(J)A ⊆ Fn(I)A for all n ≥ N.
Hence if z lies in the tight closure of J, so that dFn(z)∈Fn(J)A for some multiplier
d and for all n ≥ M, then cd Fn(z) ∈ Fn(I)A for all n ≥ max{M,N}, whence z ∈
cl(I) = J. The last assertion now easily follows from the above analysis. In the
sequel, we will therefore no longer make the bound N explicit and instead of “for
all n ≥ N” we will just write “for all n � 0”.

Example 5.2.2. It is instructive to look at some examples. Let K be a field of char-
acteristic p > 3, and let A := K[ξ ,ζ ,η ]/(ξ 3 −ζ 3 −η3)K[ξ ,ζ ,η ] be the projective
coordinate ring of the cubic Fermat curve. Let us show that ξ 2 is in the tight clo-
sure of I := (ζ ,η)A. For a fixed e, write 2pe = 3h + r for some h ∈ N and some
remainder r ∈ {1,2}, and let c be the multiplier ξ 3. Hence

cFe(ξ 2) = ξ 3(h+1)+r = ξ r(ζ 3 + η3)h+1.
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A quick calculation shows that any monomial in the expansion of (ζ 3 +η3)h+1 is
a multiple of either Fe(ζ ) or Fe(η), showing that (5.3) holds for all e, and hence
that (ξ 2,ζ ,η)A ⊆ cl(I).

It is often much harder to show that an element does not belong to the tight
closure of an ideal. Shortly, we will see in Theorem 5.3.6 that any element outside
the integral closure is also outside the tight closure. Since (ξ 2,ζ ,η)A is integrally
closed, we conclude that it is equal to cl(I).

Example 5.2.3. Let A be the coordinate ring of the hypersurface in A3
K given by

the equation ξ 2−ζ 3−η7 = 0. By a similar calculation as in the previous example,
one can show that ξ lies in the tight closure of (ζ ,η)A.

A far more difficult result is to show that this is not true if we replace η7

by η5 in the above equation. In fact, in this new coordinate ring A′, any ideal is
tightly closed, that is to say, in the terminology from Definition 5.2.7 below, A′
is F-regular, but this is a deep fact, following from it being log-terminal (see the
discussion following Theorem 5.5.6).

It is sometimes cumbersome to work with multipliers in arbitrary rings, but
in domains they are just non-zero elements. Fortunately, we can always reduce to
the domain case when calculating tight closure:

Proposition 5.2.4. Let A be a Noetherian ring, let p1, . . . ,ps be its minimal primes,
and put Āi := A/pi. For all ideals I ⊆ A we have

clA(I) =
s⋂

i=1

clĀi
(IĀi)∩A. (5.4)

Proof. The same equations which exhibit x as en element of clA(I) also show that
it is in clĀi

(IĀi) since any multiplier in A remains, by virtue of its definition, a
multiplier in Āi (moreover, the converse also holds: by prime avoidance, we can
lift any multiplier in Āi to one in A). So one inclusion in (5.4) is clear.

Conversely, suppose x lies in the intersection on the right hand side of (5.4).
Let ci ∈ A be a multiplier in A (so that its image is a multiplier in Āi), such that

ciFn
Āi

(x) ∈ Fn
Āi

(I)Āi

for all n � 0. This means that each ciFn
A(x) lies in Fn

A(I)A + pi for n � 0.
Choose for each i, an element ti ∈ A inside all minimal primes except pi, and
let c := c1t1 + · · ·+ csts. A moment’s reflection yields that c is again a multiplier.
Moreover, since tipi ⊆ n, where n := nil(R) is the nilradical of A, we get

cFn
A(x) ∈ Fn

A(I)A +n
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for all n� 0. Choose m such that npm
is zero, whence also the smaller ideal FA(n).

Applying Fm
A to the previous equations, yields

Fm
A (c)Fm+n

A (x) ∈ Fm+n
A (I)A

for all n � 0, which means that x ∈ clA(I) since Fm
A (c) is again a multiplier. 	


We will encounter many operations similar to tight closure, and so we formally
define:

Definition 5.2.5 (Closure Operation). A closure operation on a ring A is any
order-preserving, increasing, idempotent endomorphism on the set of ideals of A
ordered by inclusion.

For instance, taking the radical of an ideal is a closure operation, and so is
integral closure discussed below. Tight closure too is a closure operation on A,
since it clearly also preserves inclusion: if I ⊆ I′, then cl(I) ⊆ cl(I′). An ideal that
is equal to its own tight closure is called tightly closed. Recall that the colon ideal
(I : J) is the ideal of all elements a ∈ A such that aJ ⊆ I; here I ⊆ A is an ideal,
but J ⊆ A can be any subset, which, however, most of the time is either a single
element or an ideal. Almost immediately from the definitions, we get

5.2.6 If I is tightly closed, then so is (I : J) for any J ⊆ A. 	

One of the longest outstanding open problems in tight closure theory was its

behavior under localization: do we always have

clA(I)Ap
?= clAp(IAp) (5.5)

for every prime ideal p ⊆ A. Recently, Brenner and Monsky have announced (see
[15]) a negative answer to this question. The full extent of this phenomenon is not
yet understood, and so one has proposed the following two definitions (the above
cited counterexample still does not contradict that both notions are the same).

Definition 5.2.7. A Noetherian ring A is called weakly F-regular if each of its
ideals is tightly closed. If all localizations of A are weakly F-regular, then A is called
F-regular.

5.3 Five Key Properties of Tight Closure

In this section we derive five key properties of tight closure, all of which admit
fairly simple proofs. It is important to keep this in mind, since these five properties
will already suffice to prove in the next section some deep theorems in commuta-
tive algebra. In fact, as we will see, any closure operation with these five properties
on a class of Noetherian local rings would establish these deep theorems for
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that particular class (and there are still classes for which these statements remain
conjectural). Moreover, the proofs of the five properties themselves rest on a few
simple facts about the Frobenius, so that this will allow us to also carry over our
arguments to characteristic zero in Chapters 6 and 7.

The first property, stated here only in its weak version, is merely an observa-
tion. Namely, any equation (5.3) in a ring A extends to a similar equation in any
A-algebra B. In order for the latter to calculate tight closure, the multiplier c ∈ A
should remain a multiplier in B, and so we proved:

Theorem 5.3.1 (Weak Persistence). Let A → B be a ring homomorphism, and let
I ⊆ A be an ideal. If A → B is injective and B is a domain, or more generally, if A → B
preserves multipliers, then clA(I) ⊆ clB(IB). 	


The remarkable fact is that this is also true if A → B is arbitrary and A is
of finite type over an excellent Noetherian local ring (see [59, Theorem 2.3]). We
will not need this stronger version, the proof of which requires another important
ingredient of tight closure theory: the notion of a test element. A multiplier c ∈ A
is called a test element for A, if for every a ∈ cl(I), we have cFn(a) ∈ Fn(I)A for
all n. The existence of test elements is not easy, and lies outside the scope of these
notes, but once one has established their existence, many arguments become even
more streamlined.

Theorem 5.3.2 (Regular Closure). In a regular local ring, every ideal is tightly
closed. In fact, a regular ring is F-regular.

Proof. Let R be a regular local ring. Since any localization of R is again regular,
the second assertion follows from the first. To prove the first, let I be an ideal
and x ∈ cl(I). Towards a contradiction, assume x /∈ I. In particular, we must have
(I : x) ⊆ m. Choose a non-zero element c such that (5.3) holds for all n � 0. This
means that c lies in the colon ideal (Fn(I)R : Fn(x)), for all n � 0. Since F is flat
by Theorem 5.1.2, the colon ideal is equal to Fn(I : x)R by Theorem 3.3.14. Since
(I : x) ⊆ m, we get c ∈ Fn(m)R ⊆ mpn

. Since this holds for all n � 0, we get c = 0
by Theorem 2.4.14, clearly a contradiction. 	

Theorem 5.3.3 (Colon Capturing). Let R be a Noetherian local domain which is
a homomorphic image of a Cohen-Macaulay local ring, and let (x1, . . . ,xd) be a system
of parameters in R. Then for each i, the colon ideal ((x1, . . . ,xi)R : xi+1) is contained
in cl((x1, . . . ,xi)R).

Proof. Let S be a local Cohen-Macaulay ring such that R = S/p for some prime
ideal p ⊆ S of height h. By prime avoidance, we can lift the xi to elements in
S, again denoted for simplicity by xi, and find elements y1, . . . ,yh ∈ p such that
(y1, . . . ,yh,x1, . . . ,xd) is a system of parameters in S, whence an S-regular sequence.
Since p contains the ideal J := (y1, . . . ,yh)S of the same height, it is a minimal
prime of J. Let J = g1 ∩ ·· · ∩gs be a minimal primary decomposition of J, with
g1 the p-primary component of J. In particular, some power of p lies in g1, and
we may assume that this power is of the form pm for some m. Choose c inside all
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gi with i > 1, but outside p (note that this is possible by prime avoidance). Putting
everything together, we have

cFm(p) ⊆ cppm ⊆ J. (5.6)

Fix some i, let I := (x1, . . . ,xi)S and assume zxi+1 ∈ IR, for some z ∈ S. Lifting this
to S, we get zxi+1 ∈ I +p. Applying the n-th power of Frobenius to this for n > m,
we get Fn(z)Fn(xi+1) ∈ Fn(I)S + Fn(p)S. By (5.6), this means that cFn(z)Fn(xi+1)
lies in Fn(I)S+Fn−m(J)S. Since the Fn−m(y j) together with the Fn(x j) form again
an S-regular sequence, we conclude that

cFn(z) ∈ Fn(I)S + Fn−m(J)S ⊆ Fn(I)S + J

whence cFn(z) ∈ Fn(I)R for all n > m. By the choice of c, it is non-zero in R, so
that the latter equations show that z ∈ cl(IR). 	


The condition that R is a homomorphic image of a regular local ring is sat-
isfied either if R is a local affine algebra, or, by Cohen’s Structure Theorems, if
R is complete. These are the two only cases in which we will apply the previous
theorem. With a little effort, one can extend the proof without requiring R to be
a domain (see for instance [59, Theorem 3.1]).

Theorem 5.3.4 (Finite Extensions). If A → B is a finite, injective homomorphism
of domains, and I ⊆ A be an ideal, then clB(IB)∩A = clA(I).

Proof. One direction is immediate by Theorem 5.3.1. For the converse, there
exists an A-module homomorphism ϕ : B → A such that c := ϕ(1) �= 0, by
Lemma 5.3.5 below. Suppose x ∈ clB(IB)∩A, so that for some non-zero d ∈ B,
we have d Fn(x) ∈ Fn(I)B for n � 0. Since B is finite over A, some non-zero mul-
tiple of d lies in A, and hence without loss of generality, we may assume d ∈ A.
Applying ϕ to these equations, we get

cd Fn(x) ∈ Fn(I)A

showing that x ∈ clA(I), since cd is a multiplier. 	

Lemma 5.3.5. If A ⊆ B is a finite extension of domains, then there exists an A-linear
map ϕ : B → A with ϕ(1) �= 0.

Proof. Suppose B is generated over A by the elements b1, . . . ,bs. Let K and L be
the fields of fractions of A and B respectively. Since B is a domain, it lies inside the
K-vector subspace V ⊆ L generated by the bi. Choose an isomorphism γ : V → Kt

of K-vector spaces. After renumbering, we may assume that the first entry of γ(1)
is non-zero. Let π : Kt → K be the projection onto the first coordinate, and let
d ∈ A be the common denominator of the π(γ(bi)) for i = 1, . . . ,s. Now define an
A-linear homomorphism ϕ by the rule ϕ(y) = dπ(γ(y)) for y ∈ B. Since y is an
A-linear combination of the bi and since dπ(γ(bi)) ∈ A, also ϕ(y) ∈ A. Moreover,
by construction, ϕ(1) �= 0. 	




5.4 Integral Closure 73

Note that a special case of Theorem 5.3.4 is the fact that tight closure measures
the extent to which an extension of domains A ⊆ B fails to be cyclically pure:
IB∩ A is contained in the tight closure of I, for any ideal I ⊆ A. In particular,
in view of Theorem 5.3.2, this reproves the well-known fact that if A ⊆ B is an
extension of domains with A regular, then A ⊆ B is cyclically pure. The next
and last property involves another closure operation, integral closure. It will be
discussed in more detail below (§5.4), and here we just state its relationship with
tight closure:

Theorem 5.3.6 (Integral Closure). For every ideal I ⊆ A, its tight closure is
contained in its integral closure. In particular, radical ideals, and more generally
integrally closed ideals, are tightly closed.

Proof. The second assertion is an immediate consequence of the first. We verify
condition (5.4.1.iv) below to show that if x belongs to the tight closure clA(I),
then it also belongs to the integral closure Ī. Let A →V be a homomorphism into
a discrete valuation ring V , such that its kernel is a minimal prime of A. We need
to show that x ∈ IV . However, this is clear since x ∈ clV (IV ) by Theorem 5.3.1
(note that A→V preserves multipliers), and since clV (IV ) = IV , by Theorem 5.3.2
and the fact that V is regular. 	


It is quite surprising that there is no proof, as far as I am aware of, that a prime
ideal is tightly closed without reference to integral closure.

5.4 Integral Closure

The integral closure Ī of an ideal I is the collection of all elements x ∈ A satisfying
an integral equation of the form

xd + a1xd−1 + · · ·+ ad = 0 (5.7)

with a j ∈ I j for all j = 1, . . . ,d. We say that I is integrally closed if I = Ī. Since
clearly Ī ⊆ rad(I), radical ideals are integrally closed. It follows from either char-
acterization (5.4.1.ii) or (5.4.1.iv) below that Ī is an ideal.

Theorem 5.4.1. Let A be an arbitrary Noetherian ring (not necessarily of character-
istic p). For an ideal I ⊆ A and an element x ∈ A, the following are equivalent

5.4.1.i. x belongs to the integral closure, Ī;
5.4.1.ii. there is a finitely generated A-module M with zero annihilator such that

xM ⊆ IM;
5.4.1.iii. there is a multiplier c ∈ A such that cxn ∈ In for infinitely many

(respectively, for all sufficiently large) n;
5.4.1.iv. for every homomorphism A →V into a discrete valuation ring V with

kernel equal to a minimal prime of A, we have x ∈ IV .
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Proof. We leave it to the reader to show that x lies in the integral closure of an ideal
I if and only if it lies in the integral closure of each I(A/p), for p a minimal prime
of A. Hence we may moreover assume that A is a domain. Suppose x satisfies an
integral equation (5.7), and let J := xd−1A + xd−2I + · · ·+ Id. An easy calculation
shows that xJ ⊆ IJ, proving (5.4.1.i) ⇒ (5.4.1.ii). Moreover, by induction, xnJ ⊆
InJ, and hence for any non-zero element c ∈ J, we get cxn ∈ In, proving (5.4.1.iii).
Note that in particular, xnId ⊆ In for all n. The implication (5.4.1.ii) ⇒ (5.4.1.i) is
proven by a ‘determinantal trick’: apply [69, Theorem 2.1] to the multiplication
with x on M. To prove (5.4.1.iii) ⇒ (5.4.1.iv), suppose there is some non-zero c∈A
such that cxn ∈ In for infinitely many n. Let A⊆V be an injective homomorphism
into a discrete valuation ring V , and let v be the valuation on V . Hence v(c)+
nv(x) ≥ nv(I) for infinitely many n, where v(I) is the minimum of all v(a) with
a ∈ I. It follows that v(x) ≥ v(I), and hence x ∈ IV .

Remains to prove (5.4.1.iv) ⇒ (5.4.1.i), so assume x ∈ IV for every embedding
A ⊆ V into a discrete valuation ring V . Let I = (a1, . . . ,an)A, and consider the
homomorphism A[ξ ] → Ax given by ξi �→ ai/x, where ξ := (ξ1, . . . ,ξn). Let B be
its image, so that A ⊆ B ⊆ Ax (one calls B the blowing-up of I + xA at x). Let m :=
(ξ1, . . . ,ξn)A[ξ ]. I claim that mB = B. Assuming the claim, we can find f ∈ m
such that f (a/x) = 1 in Ax, where a := (a1, . . . ,an). Write f = f1 + · · ·+ fd in its
homogeneous parts f j of degree j, so that

1 = x−1 f1(a)+ · · ·+ x−d fd(a).

Multiplying with xd , and observing that f j(a) ∈ I j, we see that x satisfies an inte-
gral equation (5.7), and hence x ∈ Ī.

To prove the claim ex absurdum, suppose mB is not the unit ideal, whence is
contained in a maximal ideal n of B. Let (x1, . . . ,xn) be a generating tuple of n.
Let R be the Bn-algebra generated by the fractions xi/x1 with i = 1, . . . ,n (the
blowing-up of Bn at n). Since nR = x1R, there exists a height one prime ideal
p in R containing nR. Let V be the normalization of Rp. It follows that V is a
discrete valuation ring (see [69, Theorem 11.2]) containing Bn as a local subring.
In particular, A ⊆V , and mV lies in the maximal ideal πV . Since ξi �→ ai/x, we get
ai ∈ xπV for all i, and hence IV ⊆ xπV , contradicting that x ∈ IV . 	


From this we readily deduce:

Corollary 5.4.2. A domain A is normal if and only if each principal ideal is inte-
grally closed if and only if each principal ideal is tightly closed. 	


In one of our applications below (Theorem 5.5.1), we will make use of the
following nice application of the chain rule:

Proposition 5.4.3. Let K be a field of characteristic zero, and let R be either the
power series ring K[[ξ ]], the ring of convergent power series K{ξ} (assuming K is a
normed field), or the localization of K[ξ ] at the ideal generated by the indeterminates
ξ := (ξ1, . . . ,ξn). If f is a non-unit, then it lies in the integral closure of its Jacobian
ideal Jac( f ) := (∂ f/∂ξ1, . . . ,∂ f/∂ξn)R.
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Proof. Recall that K{ξ} consists of all formal power series f such that f (u) is
a convergent series for all u in a small enough neighborhood of the origin. Put
J := Jac( f ). In view of (5.4.1.iv), we need to show that given an embedding R ⊆V
into a discrete valuation ring V , we have f ∈ JV . Since completion is faithfully flat,
we may replace V by its completion, and hence already assume V is complete. By
Cohen’s Structure Theorems, V is a power series ring κ [[ζ ]] in a single variable
over a field extension κ of K. Viewing the image of f in κ [[ζ ]] as a power series
in ζ , the multi-variate chain rule yields

df
dζ

=
n

∑
i=1

∂ f
∂ξi

· dξi

dζ
∈ JV.

However, since f has order e ≥ 1 in V , its derivative df/dζ has order e− 1, and
hence f ∈ (df/dζ )V ⊆ JV . Note that for this to be true, however, the character-
istic needs to be zero. For instance, in characteristic p, the power series ξ p would
already be a counterexample to the proposition. 	


Since the integral closure is contained in the radical closure, we get that some
power of f lies in its Jacobian ideal Jac( f ). A famous theorem due to Briançon-
Skoda states that in fact already the n-th power lies in the Jacobian, where n is the
number of variables. We will prove this via an elegant tight closure argument in
Theorem 5.5.1 below.

5.5 Applications

We will now discuss three important applications of tight closure. Perhaps surpris-
ingly, the original statements all were in characteristic zero (with some of them
in their original form plainly false in positive characteristic), and their proofs re-
quired deep and involved arguments, some even based on transcendental/analytic
methods. However, they each can be reformulated so that they also make sense
in positive characteristic, and then can be established by surprisingly elegant
tight closure arguments. As for the proofs of their characteristic zero counter-
parts, they must wait until we have developed the theory in characteristic zero in
Chapters 6 and 7 (or one can use the ‘classical’ tight closure in characteristic zero
discussed in §5.6).

5.5.1 The Briançon-Skoda Theorem

We already mentioned this famous result, proven first in [16].

Theorem 5.5.1 (Briançon-Skoda). Let R be either the ring of formal power series
C[[ξ ]], or the ring of convergent power series C{ξ}, or the localization of the
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polynomial ring C[ξ ] at the ideal generated by ξ , where ξ := (ξ1, . . . ,ξn) are some
indeterminates. If f is not a unit, then f n ∈ Jac( f ) := (∂ f/∂ξ1, . . . ,∂ f/∂ξn)R.

This theorem will follow immediately from the characteristic zero analogue
of the next result (with l = 1), in view of Proposition 5.4.3; we will do this in
Theorem 6.2.5 below.

Theorem 5.5.2 (Briançon-Skoda—Tight Closure Version). Let A be a Noethe-
rian ring of characteristic p, and I ⊆ A an ideal generated by n elements. Then we
have for all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if A is a regular local ring, then the integral closure of In+l−1 lies
inside Il for l ≥ 1.

Proof. For simplicity, I will only prove the case l = 1 (which gives the orig-
inal Briançon-Skoda theorem). Assume z lies in the integral closure of In. By
(5.4.1.iii), there exists a multiplier c ∈ A such that czk ∈ Ikn for all k � 0. Since
I := ( f1, . . . , fn)A, we have an inclusion Ikn ⊆ ( f k

1 , . . . , f k
n )A. Hence with k equal

to pm, we get cFm(z) ∈ Fm(I)A for all m � 0. In conclusion, z ∈ cl(I). The last
assertion then follows from Theorem 5.3.2. 	


5.5.2 The Hochster-Roberts Theorem

We will formulate the next result without defining in detail all the concepts
involved, except when we get to its algebraic formulation. A linear algebraic group
G is an affine subscheme of the general linear group GL(K,n) over an algebraically
closed field K such that its K-rational points form a subgroup of the latter group.
When G acts (as a group) on a closed subscheme X ⊆An

K (more precisely, for each
algebraically closed field L containing K, there is an action of the L-rational points
of G(L) on X(L)), we can define the quotient space X/G, consisting of all orbits
under the action of G on X , as the affine space Spec(RG), where RG denotes the
subring of G-invariant sections in R := Γ (X ,OX) (the action of G on X induces
an action on the sections of X , and hence in particular on R). For this to work
properly, we also need to impose a certain finiteness condition: G has to be lin-
early reductive. Although not usually its defining property, we will here take this
to mean that there exists an RG-linear map R → RG which is the identity on RG,
called the Reynolds operator of the action. For instance, if K =C, then an algebraic
group is linearly reductive if and only if it is the complexification of a real Lie
group, where the Reynolds operator is obtained by an integration process. This
is the easiest to understand if G is finite, when the integration is just a finite sum
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ρ : R → RG : a �→ 1
|G| ∑

σ∈G

aσ ,

where aσ denotes the result of σ ∈ G acting on a ∈ R. In fact, as indicated by
the above formula, a finite group is linearly reductive over a field of positive
characteristic, provided its cardinality is not divisible by the characteristic. If
X is non-singular and G is linearly reductive, then we will call X/G a quotient
singularity.1 The celebrated Hochster-Roberts theorem now states:

Theorem 5.5.3. Any quotient singularity is Cohen-Macaulay.

To state a more general result, we need to take a closer look at the Reynolds
operator. A ring homomorphism A → B is called split, if there exists an A-linear
map σ : B → A which is the identity on A (note that σ need not be multiplicative,
that is to say, is not a ring homomorphism, only a module homomorphism).
We call σ the splitting of A → B. Hence the Reynolds operator is a splitting of
the inclusion RG ⊆ R. The only property of split maps that will matter is the
following:

5.5.4 A split homomorphism A → B is cyclically pure.

See the discussion at the beginning of §2.4.3 for the definition of cyclic purity.
Let a ∈ IB∩A with I = ( f1, . . . , fs)A an ideal in A. Hence a = f1b1 + · · ·+ fsbs for
some bi ∈ B. Applying the splitting σ , we get by A-linearity a = f1σ(b1)+ · · ·+
fsσ(bs) ∈ I, proving that A is cyclically pure in B. 	


We also need the following result on the preservation of cyclic purity under
completions:

Lemma 5.5.5. Let R and S be Noetherian local rings with respective completions R̂
and Ŝ. If R → S is cyclically pure, then so is its completion R̂ → Ŝ.

Proof. The homomorphism S→ Ŝ is faithfully flat, hence cyclically pure; thus the
composition R → S → Ŝ is cyclically pure. So from now on we may suppose that
S = Ŝ. It suffices to show that R̂ → S is injective, since the completion of R/a is
equal to R̂/aR̂, for any ideal a in R. Let a ∈ R̂ be such that a = 0 in S, and for each i
choose ai ∈ R such that a ≡ ai mod miR̂, where m is the maximal ideal of R. Then
ai lies in miS, hence by cyclical purity, in mi. Therefore a ∈ miR̂ for all i, showing
that a = 0 in R̂ by Krull’s Intersection Theorem (Theorem 2.4.14). 	


We can now state a far more general result, of which Theorem 5.5.3 is just a
special case.

Theorem 5.5.6. If R → S is a cyclically pure homomorphism and if S is regular, then
R is Cohen-Macaulay.

1 The reader should be aware that other authors might use the term more restrictively, only
allowing X to be affine space An

K , or G to be finite.
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Proof. The problem is clearly local, and so we assume that (R,m) and (S,n) are
local. By Lemma 5.5.5, we may further reduce to the case that R and S are both
complete. We split the proof in two parts: we first show that R is F-regular (see
Definition 5.2.7), and then show that any complete local F-regular domain is
Cohen-Macaulay.

5.5.7 A cyclically pure subring of a regular ring is F-regular.

Indeed, since both cyclic purity and regularity are preserved under localization,
we only need to show that every ideal in R is tightly closed. To this end, let
I ⊆ R and x ∈ cl(I). Hence x lies in the tight closure of IS by (weak) persis-
tence (Theorem 5.3.1), and therefore in IS by Theorem 5.3.2. Hence by cyclic
purity, x ∈ I = IS∩R, proving that R is weakly F-regular. Note that we actually
proved that a cyclically pure subring of a (weakly) F-regular ring is again (weakly)
F-regular.

5.5.8 A complete local F-regular domain is Cohen-Macaulay.

Assume R is F-regular and let (x1, . . . ,xd) be a system of parameters in R. To show
that xi+1 is R/(x1, . . . ,xi)R-regular, assume zxi+1 ∈ (x1, . . . ,xi)R. Colon Capturing
(Theorem 5.3.3) yields that z lies in the tight closure of (x1, . . . ,xi)R, whence in
the ideal itself since R is F-regular. 	

Remark 5.5.9. In fact, R is then also normal (this follows easily from 5.5.7 and
Corollary 5.4.2). A far more difficult result is that R is then also pseudo-rational
(a concept that lies beyond the scope of these notes; see for instance [59, 99]
for a discussion of what follows). This was first proven by Boutot in [14] for
C-affine algebras by means of deep vanishing theorems. The positive characteris-
tic case was proven by Smith in [108] by tight closure methods, where she also
showed that pseudo-rationality is in fact equivalent with the weaker notion of
F-rationality (a local ring is F-rational if some parameter ideal is tightly closed). I
proved the general characteristic zero case in [99] by means of ultraproducts. In
fact, being F-regular is equivalent under the Q-Gorenstein assumption with hav-
ing log-terminal singularities (see [38, 95]; for an example see Example 5.2.3). It
should be noted that ‘classical’ tight closure theory in characteristic zero (see §5.6
below) is not sufficiently versatile to derive these results: so far, only our present
ultraproduct method seems to work.

5.5.3 The Ein-Lazardsfeld-Smith Theorem

The next result, although elementary in its formulation, was only proven recently
in [26] using quite complicated methods (which only work over C), but then soon
after in [55] by an elegant tight closure argument (see also [90]), which proves the
result over any field K.
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Theorem 5.5.10. Let V ⊆ K2 be a finite subset with ideal of definition I := I(V ).
For each k, let Jk(V ) be the ideal of all polynomials f having multiplicity at least k at
each point x ∈V . Then J2k(V ) ⊆ Ik, for all k.

To formulate the more general result of which this is just a corollary, we need
to introduce symbolic powers. We first do this for a prime ideal p: its k-th symbolic
power is the contracted ideal p(k) := pkRp ∩R. In general, the inclusion pk ⊆ p(k)

may be strict, and, in fact, p(k) is the p-primary component of pk. If a is a radical
ideal (we will not treat the more general case), then we define its k-th symbolic
power a(k) as the intersection p

(k)
1 ∩ ·· · ∩ p

(k)
s , where the pi are all the minimal

overprimes of a. The connection with Theorem 5.5.10 is given by:

5.5.11 The k-th symbolic power of the ideal of definition I := I(V ) of a finite subset
V ⊆ K2 is equal to the ideal Jk(V ) of all polynomials that have multiplicity
at least k at any point of V .

Indeed, for x ∈ V , let m := mx be the corresponding maximal ideal. By defini-
tion, a polynomial f has multiplicity at least k at each x ∈ V , if f ∈ mkAm for all
maximal ideals m containing I. The latter condition simply means that f ∈ m(k),
so that the claim follows from the definition of symbolic power. 	


Hence, in view of this, Theorem 5.5.10 is an immediate consequence of the
following theorem (at least in positive characteristic; for the characteristic zero
case, see Theorems 6.2.6 and 7.2.4 below):

Theorem 5.5.12. Let A be a regular domain of characteristic p. Let a⊆A be a radical
ideal and let h be the maximal height of its minimal overprimes. Then we have an
inclusion a(hn) ⊆ an, for all n.

Proof. We start with proving the following useful inclusion:

a(hpe) ⊆ Fe(a)A (5.8)

for all e. Let p1, . . . ,pm be the minimal prime ideals of a. We first prove (5.8) locally
at one of these minimal primes p. Since Ap is regular and aAp = pAp, we can find
fi ∈ a such that aAp =( f1, . . . , fh)Ap. By definition of symbolic powers, a(hpe)Ap =
ahpe

Ap. On the other hand, ahpe
Ap consists of monomials in the fi of degree hpe,

and hence any such monomial lies in Fe(a)Ap. This establishes (5.8) locally at p.
To prove this globally, take z ∈ a(hpe). By what we just proved, there exists si /∈ pi

such that siz ∈ Fe(a)A for each i = 1, . . . ,m. For each i, choose an element ti in
all p j except pi, and put s := t1s1 + · · ·+ smtm. It follows that s multiplies z inside
Fe(a)A, whence a fortiori, so does Fe(s). Hence

z ∈ (Fe(a)A : Fe(s)) = Fe(a : s)A

where we used Theorem 3.3.14 and the fact that F is flat on A by Theorem 5.1.2.
However, s does not lie in any of the pi, whence (a : s) = a, proving (5.8).
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To prove the theorem, let f ∈ a(hn), and fix some e. We may write pe = an + r
for some a,r ∈ N with 0 ≤ r < n. Since the usual powers are contained in the
symbolic powers, and since r < n, we have inclusions

ahn f a ⊆ ahr f a ⊆ a(han+hr) = a(hpe) ⊆ Fe(a)A (5.9)

where we used (5.8) for the last inclusion. Taking n-th powers in (5.9) shows that
ahn2

f an lies in the n-th power of Fe(a)A, and this in turn lies inside Fe(an)A.
Choose some non-zero c in ahn2

. Since pe ≥ an, we get cFe( f ) ∈ Fe(an)A for all e.
In conclusion, f lies in cl(an) whence in an by Theorem 5.3.2. 	


One might be tempted to try to prove a more general form which does not
assume A to be regular, replacing an by its tight closure. However, we used the
regularity assumption not only via Theorem 5.3.2 but also via Kunz’s Theorem
that the Frobenius is flat. Hence the above proof does not work in arbitrary rings.

5.6 Classical Tight Closure in Characteristic Zero

To prove the previous three theorems in a ring of equal characteristic zero,
Hochster and Huneke also developed tight closure theory for such rings. One of
the precursors to tight closure theory was the proof of the Intersection Theorem
by Peskine and Szpiro in [75]. They used properties of the Frobenius together
with a method to transfer results from characteristic p to characteristic zero,
which was then generalized by Hochster in [43]. This same technique is also used
to obtain a tight closure theory in equal characteristic zero, as we will discuss
briefly in this section. However, using ultraproducts, we will bypass in Chapters 6
and 7 this rather heavy-duty machinery, to arrive much quicker at proofs in equal
characteristic zero.

Let A be a Noetherian ring containing the rationals. The idea is to associate to
A some rings in positive characteristic, its reductions modulo p, and calculate tight
closure in the latter. More precisely, let a ⊆ A be an ideal, and z ∈ A. We say that
z lies in the HH-tight closure of a (where “HH” stands for Hochster-Huneke), if
there exists a Z-affine subalgebra R ⊆ A containing z, such that (the image of) z
lies in the tight closure of I(R/pR) for all primes numbers p, where I := a∩R.

It is not too hard to show that this yields a closure operation on A (in the sense
of Definition 5.2.5). Much harder is showing that it satisfies all the necessary prop-
erties from §5.3. For instance, to prove the analogue of Theorem 5.3.2, one needs
some results on generic flatness, and some deep theorems on Artin Approxima-
tion (see for instance [59, Appendix 1] or [54]; for a brief discussion of Artin
Approximation, see §7.1 below). In contrast, using ultraproducts, one can avoid
all these complications in the affine case (Chapter 6), or get by with a more ele-
mentary version of Artin Approximation in the general case (Chapter 7).



Chapter 6
Tight Closure in Characteristic Zero.
Affine Case

We will develop a tight closure theory in characteristic zero which is different
from the Hochster-Huneke approach discussed briefly in §5.6. In this chapter we
treat the affine case, that is to say, we develop the theory for algebras of finite type
over an uncountable algebraically closed field K of characteristic zero; the gen-
eral local case will be discussed in Chapter 7. Recall that under the Continuum
Hypothesis, any uncountable algebraically closed field K of characteristic zero is
a Lefschetz field, that is to say an ultraproduct of fields of positive characteristic,
by Theorem 2.4.3 and Remark 2.4.4. In particular, without any set-theoretic as-
sumption, C, the field of complex numbers, is a Lefschetz field. The idea now
is to use the ultra-Frobenius, that is to say, the ultraproduct of the Frobenii
(see Definition 2.4.21), in the same manner in the definition of tight closure as
in positive characteristic. However, the ultra-Frobenius does not act on the affine
algebra but rather on its ultra-hull, so that we have to introduce a more general
setup. It is instructive to do this first in an axiomatic manner (§6.1) and then spe-
cialize to the situation at hand (§6.2). We briefly discuss a variant construction in
§6.3, and conclude in §6.4 with another example how ultraproducts can be used
to transfer constructions from positive to zero characteristic, to wit, the balanced
big Cohen-Macaulay algebras of Hochster and Huneke.

6.1 Difference Hulls

A ring C together with an endomorphism σ on C is called a difference ring, and
for emphasis, we denote this as a pair (C,σ). If (C,σ) and (C′σ ′) are differ-
ence rings, and ϕ : C → C′ a ring homomorphism, then we call ϕ a morphism
of difference rings if it commutes with the endomorphisms, that is to say, if
ϕ(σ(a)) = σ ′(ϕ(a)) for all a ∈C. The example par excellence of a difference ring
is any ring of positive characteristic endowed with his Frobenius. We will now re-
formulate tight closure from this perspective, but anticipating already the fact that
the ultra-Frobenius acts only on a certain overring of the affine algebra, to wit,
its ultra-hull defined in §4.1. Since we also want the theory to be compatible with
ring homomorphisms (‘Persistence’), we need to work categorically. Let C be a
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category of Noetherian rings closed under homomorphic images (at this point we
do not need to make any characteristic assumption). Often, the category will also
be closed under localization, and we will tacitly assume this as well. In summary,
C is a collection of Noetherian rings so that for any A in C any localization S−1A
and any residue ring A/I belongs again to C (and the canonical maps A → S−1A
and A → A/I are morphisms in C).

Definition 6.1.1 (Difference hull). A difference hull on C is a functor D(·) from
C to the category of difference rings, and a natural transformation η from the
identity functor to D(·) with the following three properties:

6.1.1.i. each ηA : A → D(A) is faithfully flat;
6.1.1.ii. the endomorphism σA of D(A) preserves D(A)-regular sequences;
6.1.1.iii. for any ideal I ⊆ A, we have σA(I) ⊆ I2D(A).

Spelling out this functoriality, we have, therefore, for each A in C, a differ-
ence ring D(A) with endomorphism σA and a faithfully flat ring homomorphism
ηA : A → D(A), and for each morphism A → B in C, an induced morphism of
difference rings D(A) → D(B) such that the diagram

�

�

�
�

D(A)A

D(B)B ηB

ηA

(6.1)

commutes. Since ηA is in particular injective (Proposition 3.2.5), we will hence-
forth view A as a subring of D(A) and omit ηA from our notation.

6.1.1 Difference Closure

Given a difference hull D(·) on some category C, we define the difference closure
clD(I) of an ideal I ⊆ A of a member A of C as follows: an element z ∈ A belongs
to clD(I) if there exists a multiplier c ∈ A and a number N ∈N such that

cσn(z) ∈ σn(I)D(A) (6.2)

for all n ≥ N. Here, σn(I)D(A) denotes the ideal in D(A) generated by all σn(y)
with y ∈ I, where σ is the endomorphism of the difference ring D(A). It is crucial
here that the multiplier c already belongs to A, although the membership relations
in (6.2) are inside the bigger ring D(A). We leave it as an exercise to show that the
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difference closure is indeed a closure operation in the sense of Definition 5.2.5.
An ideal that is equal to its difference closure will be called difference closed.

Example 6.1.2 (Frobenius hull). It is clear that our definition is inspired by the
membership test (5.3) for tight closure, and indeed, this is just a special case.
Namely, for a fixed prime number p, let Cp be the category of all Noetherian
rings of characteristic p and let D(·) be the functor assigning to a ring A the dif-
ference ring (A,FA). It is easy to see that this makes D(·) a difference hull in the
above sense, and the difference closure with respect to this hull is just the tight
closure of the ideal; we will refer to this construction as the Frobenius hull.

In the next section, we will view tight closure in characteristic zero as a differ-
ence closure too. For the remainder of this section, we fix a category C endowed
with a difference hull D(·), and study the corresponding difference closure on the
members of C. For a given member A of C, we let σA, or just σ , be the endomor-
phism of D(·). In fact, we are mostly interested in the restriction of σ to A, and
we also denote this homomorphism by σ (of course, this restriction is no longer
an endomorphism).

6.1.2 Five Key Properties of Difference Closure

To derive the necessary properties of this closure operation, namely the analogues
of the five key properties of §5.3, we again depart from a flatness result, the ana-
logue of Kunz’s Theorem (Theorem 5.1.2).

Proposition 6.1.3. If A is a regular local ring in C, then σ : A → D(A) is faithfully
flat.

Proof. By Theorem 3.3.9, it suffices to show that D(A) is a balanced big Cohen-
Macaulay algebra via σ . To this end, let (x1, . . . ,xd) be an A-regular sequence.
Since A ⊆ D(A) is by assumption faithfully flat, (x1, . . . ,xd) is D(A)-regular by
Proposition 3.2.9. By condition (6.1.1.ii), the sequence (σ(x1), . . . ,σ(xd)) is also
D(A)-regular, as we wanted to show. 	

Corollary 6.1.4. Any ideal of a regular ring in C is difference closed.

Proof. Suppose first that (R,m) is a regular local ring in C, and z lies in the differ-
ence closure of an ideal I ⊆ R. Hence, with c and N as in (6.2), the multiplier c
lies in (σn(I)D(R) : σn(z)) for n ≥ N, and hence by flatness (Proposition 6.1.3)
and the Colon Criterion (Theorem 3.3.14), it lies in σn(I : z)D(R). If z does not
belong to I, then (I : z)⊆m, and hence c belongs to σn(m)D(R) which in turn lies
inside m2n

D(R) by condition (6.1.1.iii). By faithful flatness, c therefore lies in m2n
,

for every n ≥ N, contradicting, in view of Krull’s Intersection Theorem 2.4.14,
that it is a multiplier.

For the general case, assume z lies in the difference closure of an ideal I in
a regular ring A in C. By weak persistence (see 6.1.6 below) and the local case,
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z ∈ IAm for any maximal ideal m of A. It follows that (I : z) cannot be a proper
ideal, whence z ∈ I. 	

Remark 6.1.5. Let us call a difference hull simple if instead of condition (6.1.1.iii)
we have the stronger condition that σ(I) is contained in all powers of ID(A),
for I ⊆ A. In that case, we can define a variant of the difference closure, called
simple difference closure, by requiring condition (6.2) to hold only for n = 1, that
is to say, a single test suffices. Inspecting the above proof, one sees that for a
simple difference hull, any ideal I in a regular ring is equal to its simple difference
closure. We leave it to the reader to show that simple difference closure satisfies
all the properties below of its non-simple counterpart.

Weak persistence holds for the same reasons as it does for tight closure, so for
the record we state:

6.1.6 If A → B is an injective morphism in C with A and B domains, then
clD(I) ⊆ clD(IB).

For the next result, we need the following strengthening of condition (6.1.1.ii):

Lemma 6.1.7. Let D(R) be a difference hull of a local ring R in C with endomor-
phism σ . If (x1, . . . ,xh) is an R-regular sequence, then (σ e1(x1), . . . ,σ eh(xh)) is a
D(R)-regular sequence, for any e1, . . . ,eh ≥ 0.

Proof. Let e be maximum of the ei. Since the sequence (x1, . . . ,xh) is R-regular, it
is D(R)-regular by (6.1.1.i). By repeated use of (6.1.1.ii), the sequence

(σ e(x1), . . . ,σ e(xh))

is a permutable D(R)-regular sequence. By condition (6.1.1.iii), we can find zi ∈
D(R) such that σ e(xi) = ziσ ei(xi). The assertion now follows from Lemma 6.1.8
below. 	

Lemma 6.1.8. In any ring A, if (a1b1, . . . ,ahbh) is a permutable A-regular sequence,
then so is (a1, . . . ,ah).

Proof. Since there is nothing to prove if all bi are units, we may induct on the num-
ber of bi which are not a unit. Therefore, it suffices to prove that if (a1b1, . . . ,ahbh)
is A-regular, then so is

(a1b1, . . . ,aN−1bN−1,aN ,aN+1bN+1, . . . ,ahbh). (6.3)

To this end, we have to show that the i-th element in the sequence (6.3) is not
a zero-divisor modulo the first i− 1 elements. This is part of the hypothesis for
i < N and immediate for i = N, for any factor of a non zero-divisor is also a non
zero-divisor. So we may assume N < i. Suppose

zaibi ∈ (a1b1, . . . ,aN−1bN−1,aN ,aN+1bN+1, . . . ,ai−1bi−1)A.
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Multiplying with bN , we obtain that zbNaibi lies in (a1b1, . . . ,ai−1bi−1)A. Since
aibi is not a zero-divisor modulo this latter ideal, zbN lies already in this ideal.
Therefore, if we put

I := (a1b1, . . . ,aN−1bN−1,aN+1bN+1, . . . ,ai−1bi−1)A,

then for some r ∈ A, we have zbN + raNbN ∈ I. Since the original sequence is
permutable, aNbN is not a zero-divisor modulo I. Therefore, neither is bN , as it is
a factor. It follows that z+ raN ∈ I, whence z ∈ I + aNA, as required. 	

Proposition 6.1.9 (Colon Capturing). Let R be a Noetherian local domain which
is a homomorphic image of a Cohen-Macaulay local ring in C, and let (x1, . . . ,xd) be
a system of parameters in R. Then for each i, the colon ideal ((x1, . . . ,xi)R : xi+1) is
contained in clD((x1, . . . ,xi)R).

Proof. Let S be a local Cohen-Macaulay ring in C such that R = S/p for some
prime ideal p ⊆ S, and assume the xi already belong to S. As in the proof
of Theorem 5.3.3, we can find an S-regular sequence (y1, . . . ,yh,x1, . . . ,xd) with
y1, . . . ,yh ∈ p, an element c /∈ p, and a number m ∈ N such that

cp2m ⊆ J := (y1, . . . ,yh)S. (6.4)

Let τ denote the endomorphism of D(S). By assumption, the canonical epimor-
phism S → R induces a morphism of difference rings D(S)→D(R). In particular,
pD(R) = 0.

Fix for some i, let I := (x1, . . . ,xi)S and assume zxi+1 ∈ IR for some z∈ S. Hence
zxi+1 ∈ I + p. Applying τn to this for n > m, we get τn(z)τn(xi+1) ∈ τn(I)D(S)+
τn(p)D(S). By (6.4) and (6.1.1.iii), this means that

cτn(z)τn(xi+1) ∈ τn(I)D(S)+ τn−m(J)D(S).

Since the τn−m(y j) together with the τn(x j) form a D(S)-regular sequence by
Lemma 6.1.7, we conclude that

cτn(z) ∈ τn(I)D(S)+ τn−m(J)D(S) ⊆ τn(I)D(S)+ JD(S).

Therefore, under the induced morphism D(S) → D(R), we get

cσn(z) ∈ σn(I)D(R)

for all n > m, showing that z ∈ clD(IR). 	

As in positive characteristic, a slight modification of the proof allows us to

omit the domain condition. To prove the remaining two properties (the ana-
logues of Theorems 5.3.4 and 5.3.6 respectively), some additional assumptions
are needed. To compare with integral closure, we have to make a rather technical
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assumption on the underlying category C. We say that C has the Néron property
if for any homomorphism A →V with A in C and V a discrete valuation ring (not
necessarily belonging to C), there exists a faithfully flat extension V → W and a
morphism A → R in C with R ∈ C a regular local ring such that the following
diagram commutes

�

�

�
�

VA

W.R

(6.5)

Clearly the Frobenius hull in prime characteristic trivially satisfies this property
since we then may take R = V = W .

Proposition 6.1.10. If C is a difference hull satisfying the Néron property, then the
difference closure of any ideal is contained in its integral closure.

Proof. Let I ⊆ A be an ideal of a ring A in C, and let z ∈ A be in the differ-
ence closure of I. In order to show that z lies in the integral closure of I, we
use criterion (5.4.1.iv). To this end, let A → V be a homomorphism into a dis-
crete valuation ring V whose kernel is a minimal prime of A. We need to show
that z ∈ IV . Since C has the Néron property, we can find a faithfully flat exten-
sion V → W and a morphism A → R in C with R a regular local ring, yielding
a commutative diagram (6.5). By assumption, there exists a multiplier c ∈ A and
a number N such that (6.2) holds in D(A). Since c does not lie in the kernel of
A → V , its image in R must, a fortiori, be non-zero. Hence the same ideal mem-
bership relations viewed in D(R) show that z lies in the difference closure of IR.
By Corollary 6.1.4, this implies that z already lies in IR whence in IW . By faithful
flatness and Proposition 3.2.5, we get z ∈ IV , as we wanted to show. 	


Let us say that the difference hull D(·) commutes with finite homomorphisms
if for each finite homomorphism A → B in C, the canonical homomorphism
D(A)⊗A B → D(B) is an isomorphism of D(A)-algebras. Once more, this prop-
erty holds trivially for the Frobenius hull.

Proposition 6.1.11. If D(·) commutes with finite homomorphisms, and if A ⊆ B is
a finite extension of domains, then clD(I) = clD(IB)∩A for any ideal I ⊆ A.

Proof. As in the proof of Theorem 5.3.4, we have an A-linear map ϕ : B → A
with ϕ(1) �= 0. By base change, this yields a D(A)-linear map D(A)⊗A B → D(A),
whence a D(A)-linear map D(B)→ D(A). The remainder of the argument is now
as in the proof of Theorem 5.3.4, and is left to the reader. 	
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6.2 Tight Closure

Our axiomatic treatment in terms of difference closure now only requires us
to identify the appropriate difference hull. For the remainder of this chapter,
K denotes a fixed algebraically closed Lefschetz field, and CK is the category of
affine K-algebras (that is to say, the algebras essentially of finite type over K).
By definition, we can realize K as an ultraproduct of fields K p of characteris-
tic p, where for simplicity we index these fields by their characteristic although
this is not necessary. We remind the reader that K = C is an example of a
Lefschetz field (Theorem 2.4.3). As difference hull, we now take the ultra-hull
as defined in §4.1, viewing it as a difference ring by means of its ultra-Frobenius
(see Definition 2.4.21).

Theorem 6.2.1. The category CK has the Néron property, and the ultra-hull consti-
tutes a simple difference hull which commutes with finite homomorphisms.

Proof. We defer the proof of the Néron property to Proposition 6.2.2 below.
The ultra-hull is functorial by 4.1.3. Property (6.1.1.i) holds by Theorem 4.2.2,
and the two remaining properties (6.1.1.ii) and (6.1.1.iii) hold trivially. By Łoś’
Theorem, the ultra-hull is a simple difference hull as defined in Remark 6.1.5; and
it commutes with finite homomorphisms by Proposition 4.3.1. 	

Proposition 6.2.2. The category CK has the Néron property.

Proof. Assume A →V is a homomorphism from a K-affine ring A into a discrete
valuation ring V . Replacing A by its image in V , we may view A as a subring of V .
By Cohen’s Structure Theorems, the completion of V is isomorphic to L[[t]] for
some field L extending K and for t a single indeterminate. Let L̄ be the algebraic
closure of L and put W := L̄[[t]]. By base change, the natural homomorphism
V → W is faithfully flat. The image of A in W has the same (uncountable) cardi-
nality as K, whence is already contained in a subring of the form k[[t]] with k an
algebraically closed subfield of L̄ of the same cardinality as K. By Theorem 2.4.7,
we have an isomorphism k ∼= K, and so we may assume that the composition
A →W factors through K[[t]]. Let B′ be the A-subalgebra of W generated by t, and
let B be its localization at tW ∩B′, so that B is a local V0-affine algebra, where V0 is
the localization of K[t] at the ideal generated by t. By Néron p-desingularization
(see for instance [3, §4]), the embedding B ⊆ K[[t]] factors through a regular local
V0-algebra R. Since R is then also a K-affine local algebra, it satisfies all the required
properties. 	


The difference closure obtained from this choice of difference hull on CK will
simply be called again tight closure (in the paper [92] it was called non-standard
tight closure). For ease of reference, we repeat its definition here: an element z in
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a K-affine ring A belongs to the tight closure of an ideal I ⊆ A if there exists a
multiplier c ∈ A such that

cFn
� (z) ∈ Fn

� (I)U(A) (6.6)

for all n� 0. We will denote the tight closure of I by clA(I) or simply cl(I), and we
adopt the corresponding terminology from positive characteristic. Immediately
from Theorem 6.2.1, the fact that a local K-affine algebra is a residue ring of a
regular ring (namely, of a localization of polynomial ring), and the results in the
previous section we get:

Theorem 6.2.3. Tight closure on K-affine rings satisfies the five key properties:

6.2.3.i. if A → B is an extension of K-affine domains, or more generally, a ho-
momorphism of K-affine rings preserving multipliers, then clA(I) ⊆
clB(IB) for every ideal I ⊆ A;

6.2.3.ii. if A is a K-affine regular ring, then any ideal in A is tightly closed, and
in fact, A is F-regular;

6.2.3.iii. if R is a local K-affine algebra and (x1, . . . ,xd) a system of parameters in
R, then ((x1, . . . ,xi)R : xi+1) ⊆ cl((x1, . . . ,xi)R) for all i;

6.2.3.iv. the tight closure of an ideal is contained in its integral closure;
6.2.3.v. if A ⊆ B is a finite extension of K-affine domains, then clA(I) =

clB(IB)∩A.
	


Of all five properties, only (6.2.3.iv) relies on a deeper theorem, to wit Néron
p-desingularization (which, nonetheless, is a much weaker form of Artin Approx-
imation than needed for the HH-tight closure as discussed in §5.6). Is there a more
elementary argument, at least for proving that tight closure is inside the radical of
an ideal? On the other hand, property (6.2.3.v) is not such a very impressive fact
in characteristic zero since any finite extension of a Noetherian normal domain
containing the rationals is split (see also the discussion following Theorem 6.4.1
below).

Since the ultra-hull is a simple difference hull, we can also define simple tight
closure by requiring that (6.6) only holds for n = 1 (this was termed non-standard
closure in [92]); it is a closure operation satisfying the five key properties of
Theorem 6.2.3. As already remarked, these five properties form the foundation
for deriving several deep theorems, as we now will show.

Theorem 6.2.4 (Hochster-Roberts—Affine Case). If R→ S is a cyclically pure ho-
momorphism of local K-affine algebras and if S is regular, then R is Cohen-Macaulay.

The argument is exactly as in positive characteristic: one shows first that R
is weakly F-regular, and then that any weakly F-regular ring is Cohen-Macaulay
because we have Colon Capturing (in fact, one can prove an analogue of this
result in any difference hull). Note that by our discussion in §5.5.2, we have now
completed the proof of Theorem 5.5.3 (to prove the result, we may always extend
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the base field to a Lefschetz field). The next result, however, cannot be proven—it
seems—within the more general framework of difference hulls, although its tight
closure proof is still elementary.

Theorem 6.2.5 (Briançon-Skoda—Affine Case). Let A be a K-affine ring, and let
I ⊆ A be an ideal generated by n elements. If I has positive height, then we have for all
l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if A is a K-affine regular local ring, then the integral closure of In+l−1

lies inside Il for all l ≥ 1.

Proof. Again we only proof the case l = 1. Let z be in the integral closure of In,
and let Ap, zp and I p be approximations of A, z and I respectively. The integral
equation (similar to (5.7)), say, of degree d, witnessing that z lies in the integral
closure of In, shows by Łoś’ Theorem that almost each zp satisfies a similar integral
equation of degree d, and hence, in particular, zp belongs to the integral closure
of In

p. By the argument in the proof of Theorem 5.4.1, for those p we have

Idn
p zk

p ∈ Ikn
p

for all k. As in the proof of Theorem 5.5.2, this implies that Idn
p Fe

p(zp) is contained
in Fe

p(I p)Ap for all e. Taking ultraproducts then yields

IdnFe
�(z) ⊆ Fe

�(I)U(A).

Since I has positive height, we can find by prime avoidance a multiplier c ∈ Idn.
In particular, cFe

�(z) ∈ Fe
�(I)U(A) for all e, whence z ∈ cl(I), as we wanted to

show. The last assertion then follows from Theorem 6.2.3. 	

We would of course prefer a version in which no assumption on I needs

to be made. This indeed exists, but requires an intermediary closure opera-
tion, ultra-closure (see §6.3). The argument is almost identical to the above; see
[92, Theorem 9.2]. Using the previous result, we have now proven the polynomial
case in the Briançon-Skoda theorem (Theorem 5.5.1). The last of our applications,
the Ein-Lazardsfeld-Smith Theorem, can neither be carried out in the purely ax-
iomatic setting of difference closure, but relies on some additional properties of
the ultra-hull.

Theorem 6.2.6. Let A be a K-affine regular domain, and let a⊆ A be a radical ideal,
given as the intersection of finitely many prime ideals of height at most h. Then for all
n, we have an inclusion a(hn) ⊆ an.

Proof. Let z ∈ a(hn), and let Ap, zp and ap be approximations of A, z and a re-
spectively. By Theorem 4.3.9, almost all Ap are regular, and by Corollary 4.3.3
and Theorem 4.3.4, almost each ap is the intersection of finitely many prime
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ideals of height at most h. As in the proof of Theorem 5.5.12, for those p

we therefore have ahn2

p Fe
p(zp) ⊆ Fe

p(a
n
p)Ap for all e. Taking ultraproducts then

yields ahn2
Fe

�(z) ⊆ Fe
�(a

n)U(A), showing that z lies in cl(an) whence in an by
Theorem 6.2.3. 	


6.3 Ultra-closure

In the two last proofs, we derived some membership relations in the approxima-
tions of an affine algebra and then took ultraproducts to get the same relations
in its ultra-hull. However, each time the relations in the approximations already
established tight closure membership in those rings. This suggests the following
definition. Let A be a K-affine algebra, I ⊆ A an ideal and z∈ A. We say that z lies in
the ultra-closure ultra-cl(I) of I (called the generic tight closure in [92, 95]), if zp lies
in the tight closure of I p for almost all p, where Ap, zp and I p are approximations
of A, z and I respectively. Put differently

ultra-cl(I) = (ulim
p→∞

clAp(I p))∩A,

where we view the ultraproduct of the tight closures as an ideal in U(A).
With little effort one shows:

Proposition 6.3.1. Ultra-closure is a closure operation satisfying the five key proper-
ties listed in Theorem 6.2.3.

To relate ultra-closure with tight closure, some additional knowledge of the
theory of test elements (see the discussion following Theorem 5.3.1) is needed.
Since we did not discuss these in detail, I quote the following result without proof.

Proposition 6.3.2 ([92, Proposition 8.4]). Given a K-affine algebra A, there exists
a multiplier c ∈ A with approximation cp ∈ Ap such that cp is a test element in Ap for
almost all p. 	

Theorem 6.3.3. The ultra-closure of an ideal is contained in its tight closure (and
also in its simple tight closure).

Proof. Let z ∈ ultra-cl(I), with I an ideal in a K-affine algebra A. Let Ap, zp and I p

be approximations of A, z and I respectively. By definition, almost each zp lies in
the tight closure of I p. Let c be a multiplier as in Proposition 6.3.2, with approx-
imations cp. For almost all p for which cp is a test element, we get cp Fe

p(zp) ∈
Fe

p(I p)Ap for all e ≥ 0. Taking ultraproducts then yields cFe
�(z) ∈ Fe

�(I)U(A) for
all e, showing that z lies in the (simple) tight closure of I. 	


Without proof, we state the following comparison between our theory and
the classical theory due to Hochster and Huneke (see §5.6); for a proof see
[92, Theorem 10.4].

Proposition 6.3.4. The HH-tight closure of an ideal is contained in its ultra-closure,
whence in its tight closure. 	
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6.4 Big Cohen-Macaulay Algebras

Although the material in this section is strictly speaking not part of tight closure
theory, the development of the latter was germane to the discovery by Hochster
and Huneke of Theorem 6.4.1 below.

6.4.1 Big Cohen-Macaulay Algebras in Prime Characteristic

Recall that the absolute integral closure A+ of a domain A with field of fractions
F , is the integral closure of A inside an algebraic closure of F . Since algebraic
closure is unique up to isomorphism, so is absolute integral closure. Nonetheless
it is not functorial, and we only have the following quasi-functorial property:
given a homomorphism A → B of domains, there exists a (not necessarily unique)
homomorphism A+ → B+ making the diagram

�

�

�
�

BA

B+A+

(6.7)

commute.

Theorem 6.4.1 ([49]). For every excellent local domain R in characteristic p, the
absolute integral closure R+ is a balanced big Cohen-Macaulay algebra.

The condition that a Noetherian local ring is excellent is for instance satisfied
when R is either K-affine or complete (see [69, §32]). The proof of the above result
is beyond the scope of these notes (see for instance [59, Chapters 7& 8]) although
we will present a ‘dishonest’ proof shortly. It is quite a remarkable fact that the
same result is completely false in characteristic zero: in fact any extension of a
normal domain is split, and hence provides a counterexample as soon as R is not
Cohen-Macaulay. One can use the absolute integral closure to define a closure
operation in an excellent local domain R of prime characteristic as follows. For
an ideal I, let the plus closure of I be the ideal I+ := IR+ ∩R. One can show that
I+ is a closure operation in the sense of Definition 5.2.5, satisfying the five key
properties listed in Theorem 6.2.3. Moreover, unlike tight closure, it is not hard
to show that it commutes with localization.

Proposition 6.4.2. In an excellent local domain R of prime characteristic, the plus
closure of an ideal I ⊆ R is contained in its tight closure.

Proof. Let z ∈ I+. By definition, there exists a finite extension R ⊆ S ⊆ R+ such
that z ∈ IS (note that R+ is the direct limit of all finite extensions of R by local
domains). Hence z ∈ cl(I) by Theorem 5.3.4. 	
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It was conjectured that plus closure always equals tight closure. In view of [15],
this now seems unlikely, since plus closure is easily seen to commute with local-
ization, whereas tight closure apparently does not (see our discussion of (5.5)).
Nonetheless, Smith has verified a special case of the conjecture for an important
class of ideals:

Theorem 6.4.3 ([107]). Any ideal generated by part of a system of parameters in an
excellent local domain of prime characteristic has the same plus closure as tight closure.

Remark 6.4.4. The main ingredient in the proof of Proposition 6.4.2 is the
following fact, which is immediate from Lemma 5.3.5: the dual of R+ as an
R-module is non-zero, that is to say, there exists a non-zero R-module mor-
phism R+ → R. Hochster ([45, Theorem 10.5]) has proven this to be true for any
big Cohen-Macaulay algebra over a complete local ring of positive characteristic.
Using this fact in the same way as in the proof of Theorem 5.3.4, he shows that if
B is a balanced big Cohen-Macaulay algebra over a Noetherian local ring of posi-
tive characteristic, then IB∩R is contained in the tight closure of an ideal I ⊆ R. In
fact, conversely, any element in the tight closure of I lies in IB, for some balanced
big Cohen-Macaulay R-algebra B ([45, Theorem 11.1]).

Proof of Theorem 6.4.1 (Affine or Complete Case) Assuming Theorem 6.4.3

The proof we will present here is dishonest in the sense that Smith made heavily
use of Theorem 6.4.1 to derive her result. However, here is how the converse
direction goes. Let (x1, . . . ,xd) be a system of parameters in a local domain R of
characteristic p which is either affine or complete, and suppose zxi+1 ∈ IR+ for
some z ∈ R+ and I := (x1, . . . ,xi)R. Hence there already exists a finite extension
R ⊆ S ⊆ R+ containing z such that zxi+1 ∈ IS. Since R ⊆ S is finite, (x1, . . . ,xd) is
also a system of parameters in S. In either case, Colon Capturing applies (see the
remark following Theorem 5.3.3) and we get z ∈ cl(IS). By Theorem 6.4.3, this
implies that z lies in the plus closure of IS, whence in IS+. However, it is not hard
to see that R+ = S+, proving that (x1, . . . ,xd) is an R+-regular sequence. 	

6.4.5 If R is an excellent regular local ring of prime characteristic, then R+ is

faithfully flat over R.

This follows immediately from Theorem 6.4.1 and the Cohen-Macaulay cri-
terion for flatness (Theorem 3.3.9). Interestingly, it also provides an alternative
strategy to prove Theorem 6.4.1:

Proposition 6.4.6. Let k be a field of positive characteristic. Suppose we can show
that any k-affine (respectively, complete) regular local ring has a faithfully flat absolute
integral closure, then the absolute integral closure of any k-affine (respectively, complete
Noetherian) local domain is a balanced big Cohen-Macaulay algebra.

Proof. I will only treat the affine case and leave the complete case as an exer-
cise. Let R be a local k-affine domain, and let x be a system of parameters in R.
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By Noether normalization with parameters ([27, Theorem 13.3]), we can find a
k-affine regular local subring S ⊆ R containing x, such that S ⊆ R is finite and
xS is the maximal ideal of S. By assumption, S+ is faithfully flat over S, and
hence (x1, . . . ,xd) is an S+-regular sequence by Proposition 3.2.9. Finiteness yields
S+ = R+, and so we are done. 	


6.4.2 Big Cohen-Macaulay Algebras in Characteristic Zero

As already mentioned, if R is a K-affine local domain of characteristic zero, then
R+ will in general not be a big Cohen-Macaulay algebra. However, we can still
associate to any such R (in a quasi-functorial way) a canonically defined balanced
big Cohen-Macaulay algebra as follows. Let Rp be an approximation of R. By
Theorem 4.3.4, almost all Rp are domains. Let B(R) be the ultraproduct of the
R+

p . To show that this is independent from the choice of approximation, we will
give an alternative, more intrinsic description of B(R). Let N� be the ultrapower
of the set of natural numbers, and let t be an indeterminate. For an element
f ∈U(R[t]), define its ultra-degree α ∈N� (with respect to t) to be the ultraproduct
of the t-degrees αp of the f p, where f p is an approximation of f . Call an element
f ∈ U(R[t]) ultra-monic if there exists α ∈ N� such that f − tα has ultra-degree
strictly less than α (see §2.4.4 for ultra-exponentiation). By a root of g ∈ U(R[t])
in a Lefschetz field L containing K we mean an element a ∈ L such that g ∈
(t − a)U(RL[t]), where RL := R⊗K L and its ultra-hull is taken in the category
CL. One now easily shows that there exists an algebraically closed Lefschetz field
L containing K such that B(R) is isomorphic to the ring of all a ∈ L that are a
root of some ultra-monic element in U(RL[t]). Moreover, this ring is independent
from the choice of L.

By Łoś’ Theorem, there is a canonical homomorphism R → B(R).

Theorem 6.4.7. If R is a K-affine local domain, then B(R) is a balanced big
Cohen-Macaulay algebra over R.

Proof. Since almost each approximation Rp is a K p-affine (whence excellent) local
domain, R+

p is a balanced big Cohen-Macaulay Rp-algebra by Theorem 6.4.1. Let
x be a system of parameters of R, with approximation xp. By Corollary 4.3.8,
almost each xp is a system of parameters in Rp, whence an R+

p -regular sequence.
By Łoś’ Theorem, x is therefore B(R)-regular, as we wanted to show. 	


Hochster and Huneke ([52]) arrive differently at balanced big Cohen-Macaulay
algebras in characteristic zero, via their lifting method discussed in §5.6. However,
their construction, apart from being rather involved, is far less canonical. In con-
trast, although it appears that B(R) depends on R, we have in fact:

6.4.8 For each d, there exists a ring Bd such that for any K-affine local domain
R, we have B(R) ∼= Bd if and only if R has dimension d. In other words,
Bd is a balanced big Cohen-Macaulay algebra for R if and only if R has
dimension d.
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Indeed, by Noether normalization, R is finite over the localization of K[ξ ] at
the ideal generated by the indeterminates ξ := (ξ1, . . . ,ξd). By Łoś’ Theorem,
the approximation Rp is finite over the corresponding localization of K p[ξ ]. If
Sp is the absolute integral closure of this localization, then Sp = R+

p . Hence the
ultraproduct of the Sp only depends on d and is isomorphic to B(R). 	


In analogy with plus closure, we define the B-closure clB(I) of an ideal I in
a K-affine local domain R as the ideal IB(R)∩ R. As in positive characteristic,
it is a closure operation satisfying the five key properties of Theorem 6.2.3. Using
Proposition 6.4.2 and Łoś’ Theorem, together with Theorem 6.3.3 we get:

6.4.9 For any ideal I in a K-affine local domain R, we have inclusions clB(I) ⊆
ultra-cl(I) ⊆ cl(I). 	


Like tight closure theory, the existence of balanced big Cohen-Macaulay
algebras does have many important applications. To illustrate this, we give an
alternative proof of the Hochster-Roberts Theorem, as well as a proof of the
Monomial Conjecture (as far as I am aware of, no tight closure argument proves
the latter). We will treat only the affine characteristic zero case here, but the
same argument applies in positive characteristic, and, once we have developed the
theory in Chapter 7, for arbitrary equicharacteristic Noetherian local rings.

Alternative Proof of Theorem 6.2.4

Let R → S be a cyclically pure homomorphism of K-affine local domains with S
regular, and let x := (x1, . . . ,xd) be a system of parameters in R. To show that this
is an R-regular sequence, assume zxi+1 ∈ I := (x1, . . . ,xi)R. Since x is B(R)-regular
by Theorem 6.4.7, we get z ∈ IB(R). By quasi-functoriality (after applying Łoś’
Theorem to (6.7)) we get a homomorphism B(R) → B(S) making the diagram

�

�

�
�

SR

B(S)B(R)

(6.8)

commute. In particular, z ∈ IB(S). Since S is regular, S → B(S) is flat by the
Cohen-Macaulay criterion for flatness (Theorem 3.3.9) and Theorem 6.4.7. Hence
z belongs to IS by Proposition 3.2.5 whence to I by cyclical purity. 	


As promised, we conclude with an application of the existence of big Cohen-
Macaulay algebras to one of the homological conjectures (for further discussion,
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especially the still open mixed characteristic case, see Chapter 10). Let us call a
tuple (x1, . . . ,xd) in a ring R monomial, if for all k, we have

(x1 · · ·xd)k−1 /∈ (xk
1, . . . ,x

k
d)R. (6.9)

We say that the Monomial Conjecture holds for a Noetherian local ring R, if R
satisfies the hypothesis in the next result:

Theorem 6.4.10 (Monomial Conjecture). If R is a local K-affine algebra, then any
system of parameters is monomial.

Proof. Let (x1, . . . ,xd) be a system of parameters, let x be the product of the xi, and
suppose xk−1 ∈ Ik := (xk

1, . . . ,x
k
d)R for some k. Let p be a d-dimensional prime ideal.

Since (x1, . . . ,xd) is then also a system of parameters in R/p, and xk−1 ∈ Ik(R/p),
we may after replacing R by R/p assume that R is a domain. Hence (x1, . . . ,xd)
is B(R)-regular by Theorem 6.4.7. However, it is easy to see that for a regular
sequence we can never have xk−1 ∈ IkB(R), that is to say, regular sequences are
always monomial. 	

Remark 6.4.11. By an argument on local cohomology, one can show that given
any system of parameters (x1, . . . ,xd) in a Noetherian local ring R, there exists
some t such that (xt

1, . . . ,x
t
d) is monomial [17, Remark 9.2.4(b)]. Hence the real

issue as far as the Monomial Conjecture is concerned is the fact that one can
always take t = 1.



Chapter 7
Tight Closure in Characteristic Zero.
Local Case

The goal of this chapter is to extend the tight closure theory from the previous
chapter to include all Noetherian rings containing a field. However, the theory
becomes more involved, especially if one wants to maintain full functoriality.
We opt in these notes to forego this cumbersome route (directing the interested
reader to the joint paper [6] with Aschenbrenner), and only develop the theory
minimally as to still obtain the desired applications. In particular, we will only
focus on the local case.

From our axiomatic point of view, we need to define a difference hull on the
category of Noetherian local rings containing Q. The main obstacle is how to
define an ultra-hull-like object, on which we then have automatically an action
of the ultra-Frobenius. By Cohen’s Structure Theorems, the problem can be re-
duced to constructing a difference hull for the power series ring R := K[[ξ ]] in a
finite number of indeterminates ξ over an algebraically closed Lefschetz field K.
A candidate presents itself naturally: let U(R) be the ultraproduct of the K p[[ξ ]],
where the K p are algebraically closed fields of characteristic p whose ultraproduct
is K. However, unlike in the polynomial case, there is no obvious homomorphism
from R to U(R), and in fact, the very existence of such a homomorphism implies
already some form of Artin Approximation. It turns out, however, that we can
embed R in an ultrapower of U(R), and this is all we need, since the latter is
still a Lefschetz ring. So we start with a discussion of this construction, and its
underlying tool, Artin Approximation.

7.1 Artin Approximation

7.1.1 Constructing Algebra Homomorphisms

In this section, we study the following problem: Given two A-algebras S and T ,
when is there an A-algebra homomorphism S → T ? We will only provide a so-
lution to the weaker version in which we are allowed to replace T by one of its
ultrapowers. Since we want to apply this problem when T is equal to U(R), we
will merely have replaced one type of ultraproduct with another.

H. Schoutens, The Use of Ultraproducts in Commutative Algebra,
Lecture Notes in Mathematics 1999, DOI 10.1007/978-3-642-13368-8_7,

© Springer-Verlag Berlin Heidelberg 2010
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Theorem 7.1.1. For a Noetherian ring A, and A-algebras S and T , the following are
equivalent:

7.1.1.i. every system of polynomial equations with coefficients from A which is
solvable in S, is solvable in T ;

7.1.1.ii. for each finitely generated A-subalgebra C of S, there exists an A-algebra
homomorphism ϕC : C → T ;

7.1.1.iii. there exists an A-algebra homomorphism η : S → T �, where T � is some
ultrapower of T .

Proof. Suppose that (7.1.1.i) holds, and let C ⊆ S be an A-affine subalgebra. Hence
C is isomorphic to A[ξ ]/I with ξ a finite tuple of indeterminates and I some
ideal in A[ξ ]. Let x be the image of ξ in S, so that x is a solution of the system
of equations f1 = · · · = fs = 0, where I = ( f1, . . . , fs)A[ξ ]. By assumption, there
exists therefore a solution y of this system of equations in T . Hence the A-algebra
homomorphism A[ξ ] → T given by sending ξ to y factors through an A-algebra
homomorphism ϕC : C → T , proving implication (7.1.1.i) ⇒ (7.1.1.ii).

Assume next that (7.1.1.ii) holds. Let W be the collection of all A-affine subal-
gebras of S (there is nothing to show if S itself is A-affine, so we may assume W
is in particular infinite). For each finite subset Σ ⊆ S let 〈Σ〉 be the subset of W
consisting of all A-affine subalgebras C ⊆ S containing Σ . Any finite intersection
of sets of the form 〈Σ〉 is again of that form. Hence we can find an ultrafilter on
W containing each 〈Σ〉, where Σ runs over all finite subsets of S. Let T � be the
ultrapower of T with respect to this ultrafilter. For each A-affine subalgebra C ⊆ S,
let ϕ̃C : S → T be the map which coincides with ϕC on C and which is identically
zero outside C. (This is of course no longer a homomorphism.) Define η : S → T �

to be the restriction to S of the ultraproduct of the ϕ̃C. In other words,

η(x) := ulim
C→∞

ϕ̃C(x)

for any x ∈ S. Remains to verify that η is an A-algebra homomorphism. For
x,y ∈ S, we have for each C ∈ 〈{x,y}〉 that

ϕ̃C(x + y) = ϕC(x + y) = ϕC(x)+ ϕC(y) = ϕ̃C(x)+ ϕ̃C(y),

since ϕ̃C and ϕC agree on elements in C. Since this holds for almost all C, Łoś’
Theorem yields η(x + y) = η(x)+ η(y). By a similar argument, one also shows
that η(xy) = η(x)η(y) and η(ax) = aη(x) for a∈ A, proving that η is an A-algebra
homomorphism.

Finally, suppose that η : S → T � is an A-algebra homomorphism, for some
ultrapower T � of T . Let f1 = · · · = fs = 0 be a system of polynomial equations
with coefficients in A, and let x be a solution in S. Since η is an A-algebra homo-
morphism, η(x) is a solution in T �. Hence by Łoś’ Theorem, this system must
have a solution in T , proving (7.1.1.iii) ⇒ (7.1.1.i). 	
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Remark 7.1.2. One can also get, with almost the same argument, embeddings
rather than just homomorphisms: the following are equivalent for algebras S and
T over a Noetherian ring A:

7.1.2.i. every finite system of polynomial equations and negations of equa-
tions with coefficients from A which is solvable in S, is solvable
in T ;

7.1.2.ii. given an A-affine subalgebra C ⊆ S and finitely many non-zero elements
c1, . . . ,cn of C there exists an A-algebra homomorphism C → T sending
each ci to a non-zero element of T ;

7.1.2.iii. there exists an embedding S → T � of A-algebras into an ultrapower T �

of T .

We will use this criterion below to construct Lefschetz hulls; for another applica-
tion, see Theorem B.2.7 below.

7.1.2 Artin Approximation

We already got acquainted with Artin Approximation in our discussion of
HH-tight closure, or in the guise of Néron p-desingularization as used in
Proposition 6.2.2. The time has come, therefore, to present a more detailed
discussion. Let (R,m) be a Noetherian local ring. We say that R satisfies the Artin
Approximation property if any system of polynomial equations f1 = · · · = fs = 0
(in finitely many indeterminates) with coefficients in R which is solvable in the
completion R̂ is already solvable in R. By some easy manipulations, we can for-
mulate some stronger versions that are often useful in applications. Given finitely
many congruence relations fi ≡ 0 mod mci R̂ with fi ∈ R[ξ ], one can turn these
in to a system of equations, such that the congruences are solvable in R̂ or R if
and only if the equations are. More precisely, let m = (x1, . . . ,xe)R. For each i and
each e-tuple j of non-negative integers whose entries sum up to ci, let ζi,j be a new
indeterminate, and consider the polynomial

gi := fi(ξ )− ∑
|j|=ci

ζi,jx
j

with coefficients in R. By assumption, the system of equations g1 = · · · = gs = 0
has a solution in R̂, whence, by Artin Approximation, in R, which in turn means
that the congruences fi ≡ 0 mod mci have a common solution in R.

A similar trick can be applied to a system of equations and negations of equa-
tions: if we have a solution of f1 = · · · = fs = 0 and g �= 0 in R̂, then by the Krull’s
Intersection Theorem (Theorem 2.4.14), there is some c such that this solution is
also a solution to the negated congruence g �≡ 0 mod mcR̂. Since R/mcR∼= R̂/mcR̂,
we can find some r ∈ R not in mc, such that the given solution satisfies g− r ≡ 0
mod mcR̂. By the previous case, we can find a solution in R of f1 = · · · = fs = 0
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and the congruence g ≡ r �= 0 mod mc, which therefore in particular is a solution
to g �= 0. In conclusion, Artin Approximation is equivalent with either of the
following two apparently stronger conditions:

7.1.2.a. any system of polynomial equations and negations of equations over R
which is solvable in R̂ is already solvable in R;

7.1.2.b. given some c and a system of equations over R with a solution x̂ in
R̂, we can find a solution x in R such that x ≡ x̂ mod mcR̂, that is to
say, a solution in R̂ can be ‘approximated’ arbitrarily close by solutions
in R.

The last condition also explains the name of this property; the first condi-
tion can be paraphrased for model-theorists simply as R is existentially closed in
R̂. Immediately from Theorem 7.1.1, or rather by the embedding version of
Remark 7.1.2, we get:

7.1.3 A Noetherian local ring R has the Artin Approximation property if and
only if its completion embeds in some ultrapower of R. 	


Not any Noetherian local ring can have the Artin Approximation property:

Proposition 7.1.4. A Noetherian local ring (R,m) with the Artin Approximation
property is Henselian.

Proof. Recall that this means that R satisfies Hensel’s Lemma: any simple root
ā in R/m of a monic polynomial f ∈ R[t] lifts to a root in the ring itself (see
Appendix A). By Hensels’ Lemma (Theorem A.1.1), we can find such a root in R̂,
and therefore by Artin Approximation (in the guise of (7.1.2.b) above), we then
also must have a root in R itself. 	


Artin conjectured in [3] that the converse also holds if R is moreover excellent
(it can be shown that any ring having the Artin Approximation property must be
excellent). Although one has now arrived at a positive solution by means of very
deep tools ([76, 109, 111]), the ride has been quite bumpy, with many false proofs
appearing in print during the intermediate decades. Luckily, we only need this in
the following special case due to Artin himself, admitting a fairly simple proof
(which nonetheless is beyond the scope of these notes).

Theorem 7.1.5 ([3, Theorem 1.10]). The Henselization k[ξ ]∼, with k a field and ξ
a finite tuple of indeterminates, admits the Artin Approximation property. 	


The Henselization k[ξ ]∼ of k[ξ ] is the ‘smallest’ Henselian local ring contained
in k[[ξ ]], and in this case, is equal to the ring of algebraic power series; see A.3.4.

7.1.3 Embedding Power Series Rings

From now on, unless stated otherwise, K denotes an arbitrary ultra-field, given
as the ultraproduct of fields Km (for simplicity we assume m ∈ N). We fix a tu-
ple of indeterminates ξ := (ξ1, . . . ,ξn), define A := K[ξ ] and R := K[[ξ ]], and let
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m := (ξ1, . . . ,ξn)Z[ξ ]. Similarly, for each m, we let Am := Km[ξ ] and Rm := Km[[ξ ]],
and in accordance with our notation from §4.1, we denote their respective ul-
traproducts by U(A) and U(R). By Łoś’ Theorem, we get a homomorphism
U(A) → U(R) so that U(R) is in particular an A-algebra, but unlike the affine
case, it is no longer clear how to make U(R) into an R-algebra. Note that U(R)
is only quasi-complete (see the proof of Theorem 8.1.4), so that limits are not
unique. In particular, although the truncations fn ∈ A of a power series f ∈ R
form a Cauchy sequence in U(R), there is no obvious choice for their limit.

Theorem 7.1.6. There exists an ultrapower L(R) of U(R) and a faithfully flat
A-algebra homomorphism ηR : R → L(R).

Proof. We start with proving the existence of an A-algebra homomorphism ηR

from R to some ultrapower of U(R). To this end, we need to show in view of
Theorem 7.1.1 that any polynomial system of equations L over A which is solv-
able in R, is also solvable in U(R). By Theorem 7.1.5, the system has a solution y in
A∼. Since the complete local rings Rm are Henselian (Theorem A.1.1), so is U(R)
by Łoś’ Theorem. By the universal property of Henselization, Theorem A.2.3,
the canonical homomorphism A → U(R) extends to a (unique) A-algebra homo-
morphism A∼ →U(R). Hence the image in U(R) of y is a solution of L in U(R),
as we wanted to show.

Let L(R) be the ultrapower of U(R) given by Theorem 7.1.1 with corre-
sponding A-algebra homomorphism η : R → L(R). Since η(ξi) = ξi, for all i, the
maximal ideal of L(R) is generated by the ξ , and so η is local. By the Cohen-
Macaulay criterion for flatness (Theorem 3.3.9), it suffices to show that L(R) is a
balanced big Cohen-Macaulay algebra. Since ξ is an Rm-regular sequence, so is its
ultraproduct η(ξ ) = ξ in L(R). This proves that L(R) is a big Cohen-Macaulay
algebra, and we can now use Proposition 3.3.8 and Łoś’ Theorem, to conclude
that it is balanced, and hence that η : R → L(R) is faithfully flat. 	


Being an ultrapower of an ultraproduct, L(R) = U(R)�, itself is an ultra-ring.
More precisely:

7.1.7 There exists an index set W and an N-valued function assigning to each
w ∈W an index m(w), such that

L(R) = ulim
w→∞

Rm(w).

7.1.4 Strong Artin Approximation

We say that a local ring (S,n) has the strong Artin Approximation property if the
following holds: given a system L of polynomial equations f1 = · · · = fs = 0
with coefficients in S, if L has an approximate solution in S modulo nm for all m,
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then L has a (true) solution in S. Here by an approximate solution of L modulo
an ideal a ⊆ S, we mean a tuple x in S such that the congruences f1(x) ≡ ·· · ≡
fs(x) ≡ 0 mod a hold, that is to say, a solution of L in S/a.

We start with the following observation regarding the connection between R
and its Lefschetz hull L(R) (this will be explored in more detail in §8.1 where we
will call the separated quotient the cataproduct of the Rm).

Proposition 7.1.8. The separated quotient U(R)/IU(R) of U(R) is isomorphic to R =
K[[ξ ]]; similarly, the separated quotient L(R)/IL(R) is isomorphic to K�[[ξ ]], where K�

is some ultrapower of K.

Proof. The proof of both statements is similar, and so we will only prove the
first (for the second, we let K� be the ultraproduct of the Km(w) given by 7.1.7 ).
We start by defining a homomorphism U(R) → R as follows. Given f ∈ U(R),
choose approximations f m ∈ Rm and expand each as a power series

f m = ∑
ν∈Nn

aν,mξ ν

for some aν,m ∈ Km. Let aν ∈ K be the ultraproduct of the aν,m and define

f̃ := ∑
ν∈Nn

aνξ ν ∈ R.

One checks that the map f �→ f̃ is well-defined (that is to say, independent of the
choice of approximation), and is a ring homomorphism. It is not hard to see that
it is moreover surjective. So remains to show that its kernel equals the ideal of
infinitesimals IU(R). Suppose f̃ = 0, whence all aν = 0. For fixed d, almost all
aν,m = 0 whenever |ν| < d. Hence f m ∈ mdRm for almost all m, and therefore
f ∈ mdU(R) by Łoś’ Theorem. Since this holds for all d, we see that f ∈ IU(R).
Conversely, any infinitesimal is easily seen to lie in the kernel by simply reversing
this argument. 	


In [11]—a paper the methods of which were germane for the development of
the present theory—the following ultraproduct argument was used to derive a
strong Artin Approximation result.

Theorem 7.1.9 (Becker-Denef-van den Dries-Lipshitz). The ring R := K[[ξ ]], for
K an arbitrary algebraically closed ultra-field and ξ a finite tuple of indeterminates,
has the strong Artin Approximation.

Proof. Let L be a system of equations over R, and for each m, let xm be an
approximate solution of L modulo mmR. Let R� be some ultrapower of R, and
let x be the ultraproduct of the xm. By Łoś’ Theorem, x is an approximate solu-
tion of L modulo any mmR�, whence modulo IR�

, the ideal of infinitesimals of
R�. By Proposition 7.1.8, the separated quotient R�/IR�

is isomorphic to K�[[ξ ]],
where K� is the ultrapower of K. The image of x in K�[[ξ ]] is therefore a solution
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of the system L . Let k ⊆ K be a countable algebraically closed subfield such that
L is already defined over k, and let L⊆K� be the algebraic closure of the field gen-
erated over k by all the coefficients of the entries in the image of x in K�[[ξ ]]. Since
L has the same cardinality as K, they are isomorphic as fields by Theorem 2.4.7,
and in fact, by a simple modification of its proof, these fields are isomorphic over
their common countable subfield k. In particular, the image of x under the in-
duced k[[ξ ]]-algebra isomorphism of L[[ξ ]] with K[[ξ ]], gives the desired solution
of L in R = K[[ξ ]]. 	


Any version in which the same conclusion as in the strong Artin Approxima-
tion property can be reached just from the solvability modulo a single power nN of
the maximal ideal n, where N only depends on (some numerical invariants of) the
system of equations, is called the uniform strong Artin Approximation property.
In [11], the uniform strong Artin Approximation for certain Henselizations was
derived from the Artin Approximation property of those rings via ultraproducts.
To get a uniform version in more general situations, additional restrictions have
to be imposed on the equations (see [3, Theorem 6.1] or [11, Theorem 3.2]) and
substantially more work is required [23, 24]. We will here only present a more
restrictive version in which the equations have polynomial coefficients as well.

Theorem 7.1.10 (Uniform Strong Artin Approximation). For any pair of posi-
tive integers (d,n), there exists a bound b := b(d,n) with the following property. Let k
be a field, put A := k[ξ ] with ξ an n-tuple of variables, and let m be the ideal generated
by these variables. Let L be a polynomial system of equations with coefficients from A,
in at most n indeterminates t, such that each polynomial in L has total degree (with
respect to both ξ and t) at most d. If L admits an approximate solution in A modulo
mbA, then it admits a true solution in k[[ξ ]].

Proof. Towards a contradiction, assume such a bound does not exist for the pair
(d,n), so that for each m ∈ N we can find a counterexample consisting of a field
Km, and of polynomials fim for i = 1, . . . ,s over this field of total degree at most d
in the indeterminates ξ and t, such that viewed as a system L m of equations in the
unknowns t, it has an approximate solution xm in Am := Km[ξ ] modulo mmAm but
no actual solution in Rm := Km[[ξ ]]. Note that by Lemma 4.4.2 we may assume
that the number of equations s is independent from m. Let K and U(R) be the
ultraproduct of the Km and Rm respectively, and let fi and x be the ultraproduct
of the fim and xm respectively. By 4.1.2, the fi are polynomials over K, and by Łoś’
Theorem, fi(x) ≡ 0 mod IU(R). By Proposition 7.1.8, we have an epimorphism
U(R) → R. In particular, the image of x in R is a solution of the system L given
by f1 = · · · = fs = 0.

Since we have an A-algebra homomorphism R → L(R) by Theorem 7.1.6,
the image of x in L(R) remains a solution of the system L , and hence by Łoś’
Theorem, we can find for almost each w, a solution of L m(w) in Rm(w), contra-
dicting our assumption on the systems L m. 	


Note that the above proof only uses the existence of a homomorphism from R
to some ultrapower of U(R), showing that mere existence is already a highly non-
trivial result, and hence it should not come as a surprise that we needed at least
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some form of Artin Approximation to prove the latter. Of course, by combining
this with Theorem 7.1.5, we may even conclude that L has a solution in A∼, thus
recovering the original result [3, Theorem 6.1] (see also [11, Theorem 3.2]). If
instead we use the filtered version of Theorem 7.1.6, to be discussed briefly after
Proposition 7.3.2 below, we get filtered versions of this uniform strong Artin
Approximation property, as explained in [6]. Here is an example of such a result,
generalizing [11, Theorem 4.3] (which only treats the case s = 1):

Theorem 7.1.11. For any pair of positive integers (d,n), there exists a bound b :=
b(d,n) with the following property. Let k be a field and let L be a polynomial system
of equations in at most n indeterminates t with coefficients in A := k[ξ ] with ξ an
n-tuple of variables, such that the total degree (with respect to ξ and t) is at most d. If L
has an approximate solution (x1, . . . ,xn) in A modulo mbA with x1, . . . ,xl depending
only on ξ1, . . . ,ξs, for some l,s, then there exists a solution (y1, . . . ,yn) in k[[ξ ]] with
y1, . . . ,yl depending only on ξ1, . . . ,ξs.

Proof (Sketch). As always, we start with assuming towards a contradiction that
there exist counterexamples L m over Am := Km[[ξ ]] of degree at most d with
an approximate solution modulo mmAm whose first l entries belong to A′

m :=
Km[ξ1, . . . ,ξs], but having no solution in Rm := Km[[ξ ]] whose first l entries belong
to R′

m := Km[[ξ1, . . . ,ξs]]. By Proposition 7.3.2 below, one gets a commutative
diagram of corresponding Lefschetz hulls

�

�

�
�

RR′

L(R)L(R′)

(7.1)

where R := K[[ξ ]] and R′ = K[[ξ1, . . . ,ξs]], and where K is the ultraproduct of the
Km. Using the existence of these embeddings in the same way as in the proof of
Theorem 7.1.10, one obtains the desired contradiction. 	


We conclude with the non-linear analogue of Theorem 4.4.3. We cannot simply
expect the same conclusion as in the linear case to hold: there is no uniform
bound on the degree of polynomial solutions in terms of the degrees of the system
of equations (a counterexample is discussed in [89, Theorem 9.1]). However, we
can recover bounds when we allow for power series solutions. Of course degree
makes no sense in this context, and so we introduce the following substitute. By
§A.2, a power series y lies in the Henselization A∼ if there exists an N-tuple y
in R with first coordinate equal to y, and a Hensel system H , consisting of N
polynomials f1, . . . , fN ∈ A[t] in the N unknowns t such that the Jacobian matrix
Jac(H ) evaluated at x is invertible in R. We say that y has etale proto-grade as
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most d (see §9 for the nomenclature), if we can find such a Hensel system of size
N ≤ d with all fi of total degree at most d in ξ and t (see §A.3 for more details).

Theorem 7.1.12. For any pair of positive integers (d,n), there exists a uniform
bound b := b(d,n) with the following property. Let k be a field and put A := k[ξ ]
with ξ an n-tuple of variables. Let L be a system of polynomial equations in A[t] in
at most n indeterminates t, such that each polynomial in L has total degree (with
respect to ξ and t) at most d. If L is solvable in k[[ξ ]], then it has a solution in A∼ of
etale complexity at most b.

Proof. Suppose no such bound on the etale complexity exists for the pair (d,n),
yielding for each m a counterexample consisting of a field Km, and a system of
polynomial equations L m over Km of total degree at most d with a solution
ym in the power series ring Rm, such that, however, any solution in A∼

m has
etale complexity at least m (notation as before). Let L be the ultraproduct of
the L m, a system of polynomial equations over K by 4.1.2 (and an application
of Lemma 4.4.2), and let y be the ultraproduct of the ym, a solution of L in
U(R) by Łoś’ Theorem. By Proposition 7.1.8, under the canonical epimorphism
U(R) → R, we get a solution of L in R, whence in A∼ by Theorem 7.1.5. Let H
be a Hensel system for this solution x viewed as a tuple in A∼ (note that one can
always combine Hensel systems for each entry of a tuple to a Hensel system for
the whole tuple; see the discussion preceding A.2.2), and let d be its total degree.
Since the ultraproduct H� of the A∼

m is a Henselian local ring containing A by Łoś’
Theorem, the universal property of Henselizations (Theorem A.2.3) yields an
A-algebra homomorphism A∼ → H�. Viewing therefore x as a solution of L in
H�, we can find approximations xm in A∼

m which are solutions of L m for almost
each m. If we let H m be an approximation of H , then by Łoś’ Theorem, for
almost all m, it is a Hensel system for xm of degree at most d, thus contradicting
our assumption. 	


7.2 Tight Closure

For the remainder of this chapter, we specify the previous theory to the case
that K is an algebraically closed Lefschetz field, given as the ultraproduct of the
algebraically closed fields K p of characteristic p.

7.2.1 Lefschetz Hulls

In particular, L(R) is a Lefschetz ring, given as the ultraproduct of the power series
rings Rp(w) := K p(w)[[ξ ]], where p(w) is equal to the underlying characteristic.
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The ultraproduct F� of the Fp(w) acts on L(R), making it a difference ring. This
immediately extends to homomorphic images:

Corollary 7.2.1. The assignment R/I �→ L(R/I) := L(R)/IL(R) constitutes a
difference hull on the category of all homomorphic images of R. 	


Note that any complete Noetherian local ring with residue field K and
embedding dimension at most n is a homomorphic image of R by Cohen’s
Structure Theorems. However, a local homomorphism between two such rings is
not necessarily an epimorphism, so that the previous statement is much weaker
than obtaining a difference hull on the category of complete Noetherian local
rings with residue field K. We will address this issue further in §7.3 below. For
now, we will extend our construction to include any Noetherian local ring S of
equal characteristic zero. Our definition though will depend on some choices.
We start by taking K sufficiently large so that it contains the residue field k of S
as a subfield. Let S K̂ be the complete scalar extension of S along K as given by
Theorem 3.2.13. By Cohen’s Structure Theorems, we may write S K̂ as R/a for
some ideal a ⊆ R = K[[ξ ]] (assuming that the number n of indeterminates ξ is at
least the embedding dimension of S). We now define L(S) := L(S K̂)= L(R)/aL(R).
Since S → S K̂ is faithfully flat by Theorem 3.2.13, this assignment is a difference
hull on the category of all homomorphic images of S by Corollary 7.2.1, called a
Lefschetz hull of S (for another type of Lefschetz hull, see §7.4.1 below).

7.2.2 Tight Closure

The tight closure of an ideal I ⊆ S is by definition the difference closure of I with
respect to a (choice of) Lefschetz hull, and is again denoted clS(I) or simply cl(I)
(although technically speaking, we should also include the Lefschetz hull in the
notation). In other words, z ∈ cl(I) if and only if there exists a multiplier c ∈ S
such that

cFe
�(z) ∈ Fe

�(I)L(S) (7.2)

for all e � 0 (again we suppress the embedding ηS : S → L(S) in our notation).
By our axiomatic treatment of difference closure, we therefore immediately

obtain the five key properties of Theorem 6.2.3 for the category of all residue
rings of S. However, this category is a severely limited category, and the only two
properties that do not rely on any functoriality with respect to general homomor-
phisms are:

7.2.2 Any regular local ring of equal characteristic zero is F-regular, and any
complete local domain S (or more generally, any equidimensional homo-
morphic image of a Cohen-Macaulay local ring) of equal characteristic zero
admits Colon Capturing: for any system of parameters (x1, . . . ,xd) in S,
we have ((x1, . . . ,xi)S : xi+1) ⊆ cl((x1, . . . ,xi)S) for all i.
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Inspecting the proofs of Theorems 6.2.5 and 6.2.6, we see that these carry over
immediately to the present case, and hence we can now state:

Theorem 7.2.3 (Briançon-Skoda—local case). Let S be a Noetherian local ring of
equal characteristic zero, and let I ⊆ S be an ideal generated by n elements. If I has
positive height, then we have for all l ≥ 1 an inclusion

In+l−1 ⊆ cl(Il).

In particular, if S is moreover regular, then the integral closure of In+l−1 lies inside
Il for all l ≥ 1. 	

In particular, we also proved the original version of the Briançon-Skoda theorem
(Theorem 5.5.1).

Theorem 7.2.4. Let S be a regular local ring of equal characteristic zero, and let
a ⊆ S be the intersection of finitely many prime ideals of height at most h. Then for all
n, we have an inclusion a(hn) ⊆ an. 	


7.3 Functoriality

Unfortunately, the last of our three applications, the Hochster-Roberts Theorem,
requires functoriality beyond the one provided by Corollary 7.2.1. To this end,
we briefly discuss how to extend some form of functoriality to the category of
all Noetherian local rings of equal characteristic zero. As we will see shortly,
functoriality requires a ‘filtered’ version of Theorem 7.1.1. To show that this
version holds for power series rings over K, we require the following more so-
phisticated Artin Approximation result due to Rotthaus (its proof is still relatively
simple in comparison with those of the general Artin Conjecture needed in the
Hochster-Huneke version). As before, R := K[[ξ ]], and ζ is another finite tuple of
indeterminates.

Theorem 7.3.1 ([82]). The Henselization R[ζ ]∼ of the localization of R[ζ ] at the
maximal ideal generated by all the indeterminates admits the Artin Approximation
property.

We extend the terminology used in §4.1: given an ultra-ring C�, realized as the
ultraproduct of rings Cw, then by an ultra-C�-algebra, we mean an ultraproduct D�

of Cw-algebras Dw. If almost each Cw is local and Dw is a local Cw-algebra (meaning
that the canonical homomorphism Cw → Dw is a local homomorphism), then we
call D� an ultra-local C�-algebra. Similarly, a morphism of ultra-(local) C�-algebras is
by definition an ultraproduct of (local) Cw-algebra homomorphisms.

For our purposes, we only will need the following quasi-functorial version of
the Lefschetz hull.
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Proposition 7.3.2. Let S be a Noetherian local ring of equal characteristic zero with
a given choice of Lefschetz hull ηS : S → L(S). For every Noetherian local S-algebra T
whose residue field embeds in K, there exists a choice of Lefschetz hull ηT : T → L(T )
on T , having in addition the structure of an ultra-local L(S)-algebra.

Proof. By taking an isomorphic copy of the S-algebra T , we may assume that the
induced homomorphism on the residue fields is an inclusion of subfields of K. In
that case, one easily checks that the complete scalar extension S K̂ → T K̂ of the
canonical homomorphism S → T is in fact a K-algebra homomorphism. Taking
n sufficiently large, S K̂ and T K̂ are homomorphic images of R = K[[ξ ]], and the
K-algebra homomorphism S K̂ → T K̂ lifts to a K-algebra endomorphism ϕ of R.
So without loss of generality, we may assume S = T = R. Let x := (x1, . . . ,xn) be
the image of ξ under ϕ , so that in particular, each xi is a power series without
constant term. Note that the K-algebra local homomorphism ϕ is completely
determined by this tuple, namely ϕ( f ) = f (x) for any f ∈ R. Let R′ := R[[ζ ]],
where ζ is another n-tuple of indeterminates, and put R′

p := Rp[[ζ ]]. Note that ϕ
is isomorphic to the composition

R ⊆ R′ � R′/J ∼= K[[ζ ]] ∼= R,

where the first map is just inclusion, and where J is the ideal generated by all
ξi−xi. Since Lefschetz hulls commute with homomorphic images, we reduced the
problem to finding a Lefschetz hull ηR′ : R′ → L(R′), together with a morphism
L(R) → L(R′) of ultra-local K-algebras extending the inclusion R ⊆ R′.

By Theorem 7.1.6, there exists some ultrapower of U(R) which is faithfully
flat over R. Since we will have to further modify this ultrapower, we denote it
by Z�. Recall that it is in fact an ultraproduct of the Rp by 7.1.7. Let Z′

� denote
the corresponding ultraproduct of the R′

p(w). In particular, we get a morphism
Z� → Z′

� of ultra-local K-algebras. Moreover, Z′
� is an R-algebra via the compo-

sition R → Z� → Z′
�, whence also an R[ζ ]-algebra, since in Z′

�, the indeterminates
ζ remain algebraically independent over R. We will obtain L(R′) as a (further)
ultrapower of Z′

� from an application of Theorem 7.1.1, which at the same time
then also provides the desired R-algebra homomorphism R′ → L(R′). So, given
a polynomial system of equations L with coefficients in R having a solution in
R′, we need to find a solution in Z′

�. By Theorem 7.3.1, we can find a solution in
R[ζ ]∼, since R′ is the completion of the latter ring. By the universal property
of Henselizations (see Theorem A.2.3), we get a local R[ζ ]-algebra homomor-
phism R[ζ ]∼ → Z′

�, and hence via this homomorphism, we get a solution for
L in Z′

�, as we wanted to show. Let R′ → L(R′) be the homomorphism given by
Theorem 7.1.1, which is then faithfully flat by (the proof of) Theorem 7.1.6. Let
L(R) be the corresponding ultrapower of Z�, so that R → L(R) too is faithfully
flat. Moreover, the homomorphism Z� → Z′

� then yields, after taking ultra-
powers, a morphism of ultra-local K-algebras L(R) → L(R′). We leave it to the
reader to verify that it extends the inclusion R ⊆ R′, and admits all the desired
properties. 	
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In [6], a much stronger form of functoriality is obtained, by making the
ad hoc argument in the previous proof more canonical. In particular, we con-
struct ηR : R → L(R) in such way that it maps each of the subrings K[[ξ1, . . . ,ξi]]
to the corresponding subring of L(R) of all elements depending only on the
indeterminates ξ1, . . . ,ξi, that is to say, the ultraproduct of the K p(w)[[ξ1, . . . ,ξi]]
(our treatment of the inclusion R ⊆ R′ in the previous proof is a special instance
of this). However, this is not a trivial matter, and caution has to be exercised as to
how much we can preserve. For instance, in [6, §4.33], we show that ‘unnested’
subrings cannot be preserved, that is to say, there cannot exist an ηR which maps
any subring K[[ξi1 , . . . ,ξis ]] into the corresponding subring of all elements depend-
ing only on the indeterminates ξi1 , . . . ,ξis (the concrete counterexample requires
n = 6, and it would be of interest to get already a counterexample for n = 2).

Proposition 7.3.2 is sufficiently strong to get the following form of weak per-
sistence: if S → T is a local homomorphism of Noetherian local domains of equal
characteristic zero, then we can define tight closure operations clS(·) and clT (·)
on S and T respectively, such that clS(I) ⊆ clT (IT ) for all I ⊆ S (see the argument
in the next proof).

Theorem 7.3.3 (Hochster-Roberts). If S → T is a cyclically pure homomor-
phism of Noetherian local rings of equal characteristic, and if T is regular, then S
is Cohen-Macaulay.

Proof. We already dealt with the positive characteristic case, so assume the charac-
teristic is zero. Since the completion of a cyclically pure homomorphism is again
cyclically pure by Lemma 5.5.5, we may assume S and T are complete, and by
Proposition 7.3.2, we may assume that L(T ) is an ultra-L(S)-algebra (by taking
K sufficiently large). Let (x1, . . . ,xd) be a system of parameters in S, and assume
zxi+1 ∈ I := (x1, . . . ,xi)S. By Colon Capturing (7.2.2), we get z ∈ cl(I), so that
(7.2) holds for all e � 0. However, we may now view these relations also in L(T )
via the S-algebra homomorphism L(S) → L(T ), showing that z ∈ cl(IT ). By 7.2.2
therefore, z ∈ IT whence by cyclic purity, z ∈ I, as we wanted to show. 	


We can now also tie up another loose end, the last of our five key properties,
namely the connection with integral closure (recall that (6.2.3.v) is not really an
issue in characteristic zero; see the discussion after Theorem 6.4.1):

Theorem 7.3.4. The tight closure of an ideal lies inside its integral closure.

Proof. Let I ⊆ S be an ideal in a Noetherian local ring (S,n) of equal characteristic
zero, and let z ∈ cl(I). Since the integral closure of I is equal to the intersection of
the integral closures of all I +nk, we may reduce to the case that I is n-primary. In
view of (5.4.1.iv), we need to show that z ∈ IV , for every homomorphism S →V
into a discrete valuation ring V with kernel a minimal prime ideal of S. There
is nothing to show if nV = V whence IV = V , so that we may assume S → V
is local. Moreover, by a similar cardinality argument as in Proposition 6.2.2, we
may replace V by a sub-discrete valuation ring whose residue field embeds in K.
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By Proposition 7.3.2, there exists a Lefschetz hull L(V ) on V which is an ultra-
local L(S)-algebra. In particular, z lies in the tight closure of IV with respect to
this choice of Lefschetz hull, and so we are done by an application of 7.2.2 to the
regular ring V . 	


7.4 Big Cohen-Macaulay Algebras

As in the affine case, we can also associate to each Noetherian local domain of
equal characteristic zero a balanced big Cohen-Macaulay algebra. However, to
avoid some complications caused by the fact that the completion of a domain
need not be a domain, I will only discuss this in case S is a complete Noetherian
local domain with residue field K (for the general case, see [6, §7]). But even in this
case, the Lefschetz hull defined above does not have the desired properties: we do
not know whether the approximations of S are again domains. So we discuss first
a different construction of a Lefschetz hull.

7.4.1 Relative Hulls

Fix some Noetherian local ring (S,n) with residue field k contained in K, and let
L(S) be a Lefschetz hull for S with approximations Sw. We want to construct a
Lefschetz hull on the category of S-affine algebras, extending the Lefschetz hull de-
fined on §7.2.1. Let us first consider the polynomial ring B := S[ζ ] in finitely many
indeterminates ζ . Let LS(B) be defined as the ultraproduct of the Bw := Sw[ζ ],
so that LS(B) is an ultra-L(S)-algebra. The homomorphism S → LS(B) extends
naturally to a homomorphism B → LS(B), since the ζ remain algebraically inde-
pendent over L(S). We call LS(B) the relative Lefschetz hull of B (with respect to the
Lefschetz hull S→ L(S)). Similarly, if C = B/I is an arbitrary S-affine algebra, then
we define LS(C) as the residue ring LS(B)/ILS(B), and we call this the relative Lef-
schetz hull of C (with respect to the choice of Lefschetz hull L(S)). By base change
the homomorphism B → LS(B) induces a homomorphism C → LS(C). Moreover,
LS(C) is an ultra-L(S)-algebra, since I is finitely generated. More precisely, ILS(B)
is the ultraproduct of ideals Iw ⊆ Bw, and LS(C) is equal to the ultraproduct of the
Bw/Iw, called therefore relative approximations of C.

This new hull agrees with the old one on the base ring: L(S) = LS(S). It is in-
structive to calculate LS(B)/nLS(B) = LS(B/nB) = LS(k[ζ ]), where k is the residue
field of S. Since nS K̂ is the maximal ideal in S K̂ , we get L(S)/nL(S) = L(k) = L(K),
and this field is just an ultrapower of U(K). Note that, by construction, K is
equal to its own ultra-hull U(K). Hence the relative approximations of LS(B/nB)
are equal to Bw/nwBw = K p(w)[ζ ], showing that LS(B/nB) is the ultrapower of
U(K[ζ ]). Next, suppose T is a local S-affine algebra, say of the form Bp/IBp, with
p ⊆ B a prime ideal containing I. Moreover, since we assume that S → T is local,
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nB⊆ p. In order to define the relative Lefschetz hull LS(T ) of T as the localization
of LS(B/IB) with respect to pLS(B/IB), we need:

7.4.1 If p is a prime ideal in B containing nB, then pLS(B) is prime.

We need to show that LS(B)/pLS(B) = LS(B/p) is a domain. Since B/p is a
homomorphic image of B/nB, it suffices to show that p extends to a prime ideal
in LS(B/nB). By Theorem 4.3.4, the extension of p to U(K[ζ ]) remains prime.
Since LS(B/nB) is an ultrapower of U(K[ζ ]), the extension of p to the former is
again prime by Łoś’ Theorem. 	


To prove that these are well-defined objects, that is to say, independent of the
choice of presentation C = B/I (or its localization), one easily proves a similar
universal property as for ultra-hull:

7.4.2 Any S-algebra homomorphism C → D� with D� an ultra-L(S)-algebra,
extends uniquely to a morphism LS(C) → D� of ultra-L(S)-algebras.
Similarly, any local L(S)-algebra homomorphism T → D� with D� an
ultra-local L(S)-algebra, extends uniquely to a morphism LS(T ) → D� of
ultra-local L(S)-algebras. 	


Proposition 7.4.3. On the category of S-affine algebras, LS(·) is a difference hull.

Proof. Let T be a local S-affine algebra (we leave the global case as an exer-
cise for the reader). Clearly, the ultra-Frobenius F� acts on each LS(T ), making
the latter into a difference ring. So remains to show that the canonical map
T → LS(T ) is faithfully flat. By Cohen’s Structure Theorems, S K̂ is a homomor-
phic image of R := K[[ξ ]]. A moment’s reflection shows that LS(T ) = LR(T K̂),
so that by an application of Theorem 3.2.13, we may reduce to the case that
S = R. By another application of Cohen’s structure theorem, T is a homomor-
phic image of a localization of R[ζ ], and hence without loss of generality, we
may assume that T is moreover regular. Flatness of T → LR(T ) then follows
from the Cohen-Macaulay criterion of flatness in the same way as in the proof of
Theorem 4.2.2. 	


7.4.2 Big Cohen-Macaulay Algebras

For the remainder of this section, S is a complete Noetherian local domain with
residue field K. By Cohen’s Structure Theorems, we can find a finite extension
R ⊆ S (for an appropriate choice of n and R := K[[ξ ]] as before). The Lefschetz
hull we will use for S to construct a balanced big Cohen-Macaulay algebra is the
relative hull LR(S) (with respect to a fixed Lefschetz hull for R). Let Sw be the
relative approximations of S with respect to this choice of Lefschetz hull, that is
to say, Sw are the complete local K p(w)-algebras whose ultraproduct is LR(S). By
the above discussion, LR(S) is a domain, whence so are almost all Sw. Let B(S)
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be the ultraproduct of the S+
w , so that B(S) is in particular an ultra-LR(S)-algebra

whence an S-algebra. It is now straightforward to prove:

Theorem 7.4.4. For each complete Noetherian local domain S with residue field K,
the S-algebra B(S) is a balanced big Cohen-Macaulay algebra. 	


Theorem 7.4.5 (Monomial Conjecture). The Monomial Conjecture holds for any
Noetherian local ring S of equal characteristic, that is to say, any system of parameters
is monomial.

Proof. I will only explain the equal characteristic zero case; the positive
characteristic case is analogous, using instead Theorem 6.4.1. Towards a con-
tradiction, suppose (x1, . . . ,xd) is a counterexample, that is to say, a system of
parameters which fails (6.9) for some k. After taking a complete scalar extension
(which preserves the system of parameters), we may assume that S is complete
with residue field K. After killing a prime ideal of maximal dimension (which
again preserves the system of parameters), we then may assume moreover that
S is a domain. The counterexample then also holds in B(S), contradicting that
(x1, . . . ,xd) is a B(S)-regular sequence by Theorem 7.4.4. 	


As before, we can also define the B-closure of an ideal I ⊆ S by the rule clB(I) :=
IB(S)∩S and prove that it satisfies the five key properties.



Chapter 8
Cataproducts

One of the main obstacles in the study of ultra-rings is the absence of the
Noetherian property, forcing us to modify several definitions from Commuta-
tive Algebra. This route is further pursued in [101]. However, there is another
way to circumvent these problems: the cataproduct A�, the first of our chromatic
products. We will mainly treat the local case, which turns out to yield always a
Noetherian local ring. The idea is simply to take the separated quotient of the ul-
traproduct with respect to the maximal adic topology. The saturatedness property
of ultraproducts—well-known to model-theorists—implies that the cataproduct is
in fact a complete local ring. Obviously, we do no longer have the full transfer
strength of Łoś’ Theorem, although we shall show that many algebraic properties
still persist, under some mild conditions. We conclude with some applications
to uniform bounds. Whereas the various bounds in Chapter 4 were expressed in
terms of polynomial degree, we will introduce a different notion of degree here,1

in terms of which we will give the bounds. Conversely, we can characterize many
local properties through the existence of such bounds.

8.1 Cataproducts

Recall from 2.4.9 that the ultraproduct of local rings of bounded embedding di-
mension is again a local ring of finite embedding dimension. In this chapter, we
will be mainly concerned with the following subclass.

Definition 8.1.1 (Ultra-Noetherian Ring). We call a local ring R� ultra-
Noetherian if it is the ultraproduct of Noetherian local rings of bounded
embedding dimension, that is to say, of Noetherian local rings Rw such that
the embedding dimension of Rw is at most e, for some e independent of w.

The Noetherian local rings Rw will be called approximations of R� (note
the more liberal use of this term than in the previous chapters, which,

1 In spite of the nomenclature, and unlike proto-grade, to be introduced in the next chapter, this
new degree is not a generalization of polynomial degree.
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however, should not cause any confusion). It is important to keep in mind
that approximations are not uniquely determined by R�. A good example of this
phenomenon is exhibited by Corollary 10.1.2 below.

Recall from Definition 4.3.6 that for a local ring (S,n) of finite embedding di-
mension, its geometric dimension geodim(S) is the least number d of elements
x1, . . . ,xd ∈ n such that S/(x1, . . . ,xd)S is Artinian, that is to say, such that
(x1, . . . ,xd)S is n-primary. Any tuple (x1, . . . ,xd) with this property is then called
a system of parameters of R.2 Any element of R which belongs to some system of
parameters will be called a parameter. We immediately get:

8.1.2 The geometric dimension of a local ring is at most its embedding dimen-
sion, whence in particular is finite for any ultra-Noetherian local ring. The
geometric dimension of an ultra-Noetherian local ring is larger than or
equal to the (geometric) dimension of its Noetherian approximations.

We only need to verify the second assertion. Let x be a system of parameters,
say of length d, in an ultra-Noetherian local ring R�, and choose d-tuples xw in
the approximations Rw whose ultraproduct is equal to x. By assumption, R�/xR�

is Artinian, say of length l. By 2.1.6, the Rw/xwRw are approximations of R�/xR�,
and hence almost all are Artinian by Proposition 2.4.17. Hence almost all Rw have
(geometric) dimension at most d. 	


To see that this latter inequality can be strict, let Rn := K[[ξ ]]/ξ nK[ξ ] with
ξ a single indeterminate over the field K; the ultraproduct R� of these Artinian
rings has geometric dimension at least one since ξ is a parameter (and, in fact,
geodim(R�) = 1; see 8.1.3 below). To study this phenomenon as well as fur-
ther properties of ultra-Noetherian local rings, we first introduce a new kind of
product:

8.1.1 Cataproducts

In 2.4.16 we saw that most ultra-Noetherian rings are not Noetherian (in
model-theoretic terms this means that the class of Noetherian local rings of
fixed embedding dimension is not first-order definable). However, there is a
Noetherian local ring closely associated to any ultra-Noetherian local ring. Fix an
ultra-Noetherian local ring

R� := ulim
w→∞

Rw,

and define the cataproduct of the Rw as the separated quotient of R�, that is to say,

R� := R�/IR�
,

2 In [91,97,101] such a tuple was called generic.
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where IR�
is the ideal of infinitesimals of R�. If all Rw are equal to a fixed

Noetherian local ring (R,m), then we call R� the catapower of R. In this case, the
natural, diagonal embedding R → R� induces a natural homomorphism R → R�.
Since mR� is the maximal ideal of R�, likewise, mR� is the maximal ideal of R�. The
relationship between the rings Rw and their cataproduct R� is much less strong
than in the ultraproduct case, as the following example illustrates.

8.1.3 The catapower of a Noetherian local ring (R,m) is isomorphic to the
cataproduct of the Artinian local rings R/mn.

Indeed, if R� and S� denote the ultrapower of R and the ultraproduct of the
R/mn respectively, then, by 2.1.7, we get a surjective homomorphism R� → S�.
However, any element in the kernel of this homomorphism is an infinitesimal, so
that the induced homomorphism R� → S� is an isomorphism. 	


Nonetheless, as before, we will still refer to the Rw as approximations of R�, and
given an element x ∈ R�, we call any choice of elements xw ∈ Rw whose ultraprod-
uct is a lifting of x to R�, an approximation of x.

Theorem 8.1.4. The cataproduct of Noetherian local rings of bounded embedding
dimension is complete and Noetherian.

Proof. In almost all our applications,3 the ultrafilter lives on a countable index
set W , but nowhere did we exclude larger cardinalities. For simplicity, however,
I will assume countability, and treat the general case in a separate remark below.
Hence, we may assume W = N. Let (R�,m) be the ultraproduct of Noetherian
local rings Rw of embedding dimension at most e. It follows that R� too has em-
bedding dimension at most e. Let us first show that R� is quasi-complete (note
that it is not Hausdorff in general, because IR�

�= 0). To this end, we have to show
that any Cauchy sequence a has a limit in R�. Without loss of generality, we may
assume that a(n)≡ a(n+1) mod mnR�. Choose approximations aw(n) ∈ Rw such
that

a(n) = ulim
w→∞

aw(n)

for each n ∈ N. By Łoś’ Theorem, we have for a fixed n that

aw(n) ≡ aw(n + 1) mod mn
w (8.1)

for almost all w, say, for all w in Dn. I claim that we can modify the aw(n) in such
way that (8.1) holds for all n and all w. More precisely, for each n there exists an
approximation ãw(n) of a(n), such that

ãw(n) ≡ ãw(n + 1) mod mn
w (8.2)

for all n and w. We will construct the ãw(n) recursively from the aw(n). When
n = 0, no modification is required (since by assumption m0

w = Rw), and hence we

3 A notable exception is the construction of a Lefschetz hull given in Theorem 7.1.6.
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set ãw(0) := aw(0) and ãw(1) := aw(1). So assume we have defined already the
ãw( j) for j ≤ n such that (8.2) holds for all w. Now, for those w for which (8.1)
fails for some j ≤ n, that is to say, for w /∈ (D0 ∪·· ·∪Dn), let ãw(n+1) be equal to
ãw(n); for the remaining w, that is to say, for almost all w, we make no changes:
ãw(n+1) := aw(n+1). It is now easily seen that (8.2) holds for all w, and ãw(n) is
another approximation of a(n), for all n, thus establishing our claim.

So we may assume (8.1) holds for all n and w. Define b := ulimaw(w). Since
aw(w) ≡ aw(n) mod mn

w for all w ≥ n, Łoś’ Theorem yields b ≡ a(n) mod mnR�,
showing that b is a limit of a.

Since the cataproduct R� of the Rw is a homomorphic image of R�, it is again
quasi-complete. By construction, R� is Hausdorff and therefore even complete,
that is to say, every Cauchy sequence has a unique limit. Since R� has finite em-
bedding dimension, it is therefore Noetherian by [69, Theorem 29.4]. 	

Remark 8.1.5. In order for the above argument to work for arbitrary index sets W ,
we need to make one additional assumption on the ultrafilter W: it needs to be
countably incomplete, meaning that there exists a function f : W →N such that for
each n, almost all f (w) are greater than or equal to n. Of course, if W = N such
a function exists, namely the identity will already work. Countably incomplete
ultrafilters exist on any infinite set. In fact, it is a strong set-theoretic condition
to assume that not every ultrafilter is countably incomplete! Now, the only place
where we need this assumption is to build the limit element b. This time we
should take it to be the ultraproduct of the aw( f (w)). The reader can verify that
this one modification makes the proof work for any index set.

Example 8.1.6. Whereas ultraproducts are impossible to compute, due to their
non-constructive nature, cataproducts are much more accessible. Proposi-
tion 7.1.8 is just one instance, and below, we will present more evidence to
corroborate this claim. Here is another, easy example: let Kw be fields with ultra-
product (whence cataproduct) equal to K�. If Rw is the localization of Kw[ξ ] at
the ideal generated by the variables ξ = (ξ1, . . . ,ξn), then their cataproduct R� is
equal to K�[[ξ ]]. Indeed, using 8.1.2, it is not hard to see that R� has dimension n
and that the variables generate its maximal ideal. Hence R� is regular, and since it
is complete by the previous theorem, and has residue field K�, the claim follows
from Cohen’s Structure Theorems for complete regular local rings.

Proposition 8.1.7. Let R� be an ultra-Noetherian local ring and let R� be the cor-
responding cataproduct, that is to say, its separated quotient. For any ideal I ⊆ R�,
its m-adic closure is equal to I + IR�

. In particular, the separated quotient of R�/I is
R�/IR�.

Proof. It suffices to show the first assertion. Clearly, I + IR�
is contained in the

m-adic closure of I. To prove the other inclusion, assume a lies in the m-adic
closure of I. Hence its image in R� lies in the m-adic closure of IR�, and this is just
IR� by Theorem 2.4.14, since R� is Noetherian by Theorem 8.1.4. Therefore, a
lies in IR�∩R� = I +IR�

. 	
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In particular, if Rw are approximations of R�, and Iw ⊆ Rw are ideals with
ultraproduct I ⊆ R�, then the cataproduct of the Rw/Iw is equal to R�/IR�.

8.1.2 Dimension Theory for Cataproducts

From a model-theoretic point of view, Łoś’ Theorem determines which prop-
erties are preserved in ultraproducts: the first-order ones. Since cataproducts are
residue rings, they, therefore, inherit any positive first-order property from their
approximations. However, we do not want to derive properties of the cataprod-
uct via a syntactical analysis, but instead use an algebraic approach. The first issue
to address is the way dimension behaves under cataproducts. We already men-
tioned that the geometric dimension of an ultra-Noetherian ring can exceed that
of its components (see 8.1.2 and its discussion). The same phenomenon occurs for
cataproducts because we have:

8.1.8 For an ultra-Noetherian local ring (R�,m) its geometric dimension is equal
to the dimension of its separated quotient R�, that is to say, ultraproduct and
cataproduct have the same geometric dimension.

Let x := (x1, . . . ,xd) be a system of parameters in R� (recall that this means
that (x1, . . . ,xd)R� is an m-primary ideal, with d the geometric dimension
of R�). So S� := R�/xR� is an Artinian local ring, whence, by Krull’s Intersec-
tion Theorem ( Theorem 2.4.14), must be equal to its separated quotient S�.
Proposition 8.1.7 yields S� = R�/xR�, showing that R� has geometric dimension
at most d. Since R� is Noetherian by Theorem 8.1.4, it has therefore dimension
at most d. Moreover, we may reverse the argument, for if S� is Artinian, then
necessarily S� = S�. 	


To investigate when the dimension of a cataproduct is equal to the dimension
of almost all of its approximations, we need to introduce a new invariant.

Definition 8.1.9 (Parameter Degree). Given a local ring (R,m) of finite em-
bedding dimension, its parameter degree, denoted pardeg(R), is by definition the
least possible length of the residue rings R/xR, where x runs over all systems of
parameters.

Note that by definition of geometric dimension, the parameter degree of R is
always finite. Closely related to this invariant, is the degree4 degR(x) of an element
x ∈ R, defined as follows: if x is a unit, then we set degR(x) equal to zero, and if x
is not a parameter, then we set degR(x) equal to ∞; in the remaining case, we let
degR(x) be the parameter degree of R/xR. We leave it as an exercise to show that:

4 Hopefully, this will not cause confusion with the notion degree of a polynomial, as the present
notion is always used in a local context whereas the latter is only used in an affine context.
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8.1.10 Let R be a d-dimensional Noetherian local ring, or more generally, a local
ring of geometric dimension d, and let x ∈ R. Then the degree of x is equal
to the minimal length of any residue ring of the form R/(xR + I), where I
runs over all ideals generated by d−1 non-units.

In [101, Proposition 2.2 and Theorem 3.4], we prove the following generaliza-
tion of Theorem 8.1.4:

8.1.11 The completion of a local ring R of finite embedding dimension is Noethe-
rian, and has dimension equal to the geometric dimension of R; moreover,
both rings have the same Hilbert polynomial. 	


We define the multiplicity of R to be the leading coefficient of its Hilbert poly-
nomial times d! (this coincides with the classical definition in the Noetherian
case). The multiplicity of R is always at most its parameter degree, and provided
R is Noetherian with infinite residue field, both are equal if and only if R is Coh-
en-Macaulay (see [96, Lemma 3.3] for the Noetherian case, and [101, Lemma 6.10]
for a generalization).

Theorem 8.1.12. Let Rw be d-dimensional Noetherian local rings of embedding di-
mension at most e. Their cataproduct R� has dimension d if and only if almost all
Rw have bounded parameter degree (that is to say, pardeg(Rw) ≤ r, for some r and for
almost all w).

Proof. Assume that almost all Rw have parameter degree at most r, so that
their exists a d-tuple xw in Rw such that Sw := Rw/xwRw has length at most
r. Hence the cataproduct S� has length at most r by Proposition 2.4.17.
By Proposition 8.1.7, the cataproduct S� is isomorphic to R�/xR�, where x is
the ultraproduct of the xw. Hence R�, being Noetherian by Theorem 8.1.4, has
dimension at most d, whence equal to d by 8.1.2 and 8.1.8.

Conversely, suppose R� has dimension d. Let x be a system of parameters of R�

with approximation xw, and let r be the length of R�/xR�. By Proposition 2.4.17,
almost all Rw/xwRw have length at most r. It follows that almost each xw is a
system of parameters, and hence that Rw has parameter degree at most r. 	


8.1.3 Catapowers

Let us apply the previous results to catapowers. In the next result, the first state-
ment is immediate from Theorem 8.1.4 and Proposition 8.1.7; the second follows
immediately from Theorem 8.1.12.

Corollary 8.1.13. Let R be a Noetherian local ring with catapower R�. For any ideal
I ⊆R, the catapower of R/I is R�/IR�. Moreover, R and R� have the same dimension. 	

Corollary 8.1.14. The catapower of a regular local ring is again regular (of the same
dimension).



8.1 Cataproducts 119

Proof. Let (R,m) be a d-dimensional regular local ring. If d = 0, then R is a field,
and R� is equal to the ultrapower R� whence a field. So we may assume d > 0. Let
x be a minimal generator of m. Hence R/xR is regular of dimension d−1, so that
by induction, its catapower is also regular of dimension d−1. But this catapower
is just R�/xR� by Corollary 8.1.13. It follows that mR� is generated by at most d
elements. Since R� has dimension d by Corollary 8.1.13, it is regular. 	


To further explore the connection between a ring and its catapower, we require
a flatness result.

Theorem 8.1.15. For each Noetherian local ring R, the induced homomorphism R→
R� into its catapower R� is faithfully flat.

Proof. Since R → R� is local, we only need to verify flatness. Moreover, since R�

is complete by Theorem 8.1.4, we get (R̂)� = R� by a double application of 8.1.3,
whence an induced homomorphism R̂ → R�. As R → R̂ is flat, we only need to
show that R̂ → R� is flat, and hence we may already assume that R is complete.

Suppose first that R is moreover regular. By Corollary 8.1.14, so is then R�.
In particular, the generators of m form an R�-regular sequence, so that R� is flat
over R by Theorem 3.3.9. For R arbitrary, R = S/I for some regular local ring S
and some ideal I ⊆ S by Cohen’s Structure Theorems. By our previous argument
the ultrapower S� of S is flat, whence so is R = S/I → S�/IS� = R� by 3.1.3 (where
we used Corollary 8.1.13 for the last equality). 	


The reader who is willing to use some heavier commutative algebra can prove
the following stronger fact:

Corollary 8.1.16. If R is an excellent local ring, then the diagonal embedding R →
R� is regular.

Proof. For the notion of excellence and regular maps, see [69, §32]. By Theorem
8.1.15, the map R → R� is flat. It is also unramified (see §3.2.3), since mR� is the
maximal ideal of R�. If R is a field k, then R� is just its ultrapower k�. Using
Maclane’s Criterion for Separability, it is not hard to show that the extension
k → k� is separable. This shows in view of Corollary 8.1.13 that for R arbitrary,
R → R� induces a separable extension of residue fields. Hence R → R� is formally
etale by [69, Theorem 28.10], whence regular by [2]. 	


We can now generalize the fact that catapowers preserve regularity
(Corollary 8.1.14) to:

Corollary 8.1.17. If R is an excellent local ring, then R is regular, normal, reduced
or Cohen-Macaulay, if and only if R� is.

Proof. Immediate from Corollary 8.1.16 and the fact that regular maps preserve
these properties in either direction (see [69, Theorem 32.2]). 	

Corollary 8.1.18. If R is a complete Noetherian local domain, then so is its
catapower R�.
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Proof. Let S be the normalization of R (that is to say, the integral closure of
R inside its field of fractions). By [69, §33], the extension R ⊆ S is finite, and
S is also a complete Noetherian local ring. I claim that the induced homomor-
phism of catapowers R� → S� is again finite and injective. Since S� is normal by
Corollary 8.1.17, it is a domain, whence so is its subring R�.

So remains to prove the claim. By the weak Artin-Rees Lemma applied to the
finite R-module S (see Remark 8.2.2 below), we can find for each m a uniform
bound e(m) such that me(m)S∩R ⊆ mm. Let n be the maximal ideal of S. Since
S/mS is finite over R/m by base change, it is Artinian, and hence nl ⊆ mS for
some l. Together with the weak Artin-Rees bound, this yields

nle(m) ∩R ⊆ mm (8.3)

for all m.
Let S� be the ultrapower of S, so that S� is a finite R�-module. The inclusion

IR�
⊆ IS�

∩R� is clear, and we need to prove the converse, for then R� → S� will
be injective. So let z ∈ R� be such that it is an infinitesimal in S�, and let zw ∈ R
be approximations of z. Fix some m. Since z ∈ nle(m)S�, by Łoś’ Theorem zw ∈
nle(m) for almost all w, whence zw ∈ mm by (8.3). By another application of Łoś’
Theorem, we get z ∈ mmR�, and since this holds for all m, we get z ∈ IR�

, as we
wanted to show. 	


We conclude with a generalization of Proposition 7.1.8:

Theorem 8.1.19. Let R be a Noetherian local ring of equal characteristic, with
residue field k, and let R� and k� be their respective catapowers. Then R� is isomor-
phic to the complete scalar extension R k̂�

over k�.

Proof. Since a ring and its completion have the same complete scalar extensions,
we may assume R is complete. By Cohen’s Structure Theorems, R is a homomor-
phic image of a power series ring k[[ξ ]], with ξ an n-tuple of indeterminates. Since
complete scalar extensions (by (3.8)) as well as catapowers (Corollary 8.1.13) com-
mute with homomorphic images, we may assume R = k[[ξ ]]. So remains to show
that R�

∼= k�[[ξ ]]. However, this is clear by Cohen’s structure theorem, since R�

is regular by Corollary 8.1.14, with residue field k�, and having dimension n by
Corollary 8.1.13. 	


8.1.4 Cataproducts in the Non-local Case

Although below, we will only be interested in cataproducts of Noetherian lo-
cal rings of bounded embedding dimension, precisely because we can now apply
our tools from commutative algebra to them, it might be of interest to define
cataproducts in general. For this, we must rely on the alternative description of
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ultraproducts from §2.5. Given a collection of rings Aw, with Cartesian product
A∞ := ∏Aw, choose a maximal ideal M in A∞ containing the direct sum ideal
A(∞) :=

⊕
Aw. We define the (M-) cataproduct of the Aw as the M-adic separated

quotient of A∞, that is to say, the ring A� := A∞/M∞, where M∞ is the intersec-
tion of all powers of M. Note that M◦ ⊆ M∞, showing that A� is a residue ring
of A� = A∞/M◦. Theorem 8.1.4 is the essential ingredient to prove that both def-
initions agree in the local case. To prove the analogue of Theorem 8.1.4 in this
more general setup, we make the following definition: a maximal ideal M of A∞ is
called algebraic if it contains a product ∏mw of maximal ideals mw ⊆ Aw (whence
in particular contains the direct sum ideal A(∞)); the corresponding cataproduct is
then also called algebraic.

Theorem 8.1.20. Any algebraic cataproduct is a complete local ring. More precisely,
if M is an algebraic maximal ideal of the product A∞ := ∏Aw, then the corresponding
M-cataproduct A� is a complete local ring with maximal ideal MA�.

Proof. Let mw ⊆ Aw be maximal ideals whose product m := ∏mw is contained in
M. Let us first show that

M = m+M◦. (8.4)

Indeed, in the ultraproduct A� := A∞/M◦ (see 2.5.2) the extended ideal mA� is
equal to the ultraproduct of the mw, whence by Łoś’ Theorem is maximal. Since
it is contained in the maximal ideal MA�, both ideals must be the same, proving
(8.4). Since M◦ is idempotent (as it is generated by idempotents), we immediately
get from this that

Mn = mn +M◦,

for all n. In particular, the MA�-adic topology is the same as the mA�-adic one, and
we have

A� = A∞/M∞ = A�/m∞A�.

To prove that A� is complete, it suffices therefore to show that A� is m-adically
quasi-complete. A minor modification of the argument in Theorem 8.1.4 easily ac-
complishes this (nowhere did we explicitly use that the Rw were local, of bounded
embedding dimension). It follows from [69, Theorem 8.14] that A� is local with
maximal ideal mA� = MA�. 	


If all Aw are local, then any maximal ideal M ⊆ A∞ is algebraic, since A� =
A∞/M◦ is local, with maximal ideal mA� by Łoś’ Theorem. Hence, MA�, being
also a maximal ideal, must be equal to mA�, and hence m ⊆ M, proving that the
latter is algebraic. To construct a non-algebraic maximal ideal, take any ultra-
ring admitting a maximal ideal which is not an ultra-ideal; its pre-image in the
Cartesian product is then non-algebraic by the previous argument. Although one
could replace the maximal ideal M in the above construction by an arbitrary
prime ideal containing A(∞), I do not know what this more general notion of
cataproduct would entail. In any case, it is not hard to see that an algebraic prime
ideal is always maximal.
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Corollary 8.1.21. If there is a uniform bound on the number of generators of the
maximal ideals of all Aw, then any algebraic cataproduct is Noetherian.

Proof. With notation as in the previous proof, mA� is finitely generated by Łoś’
Theorem, whence so is mA�. The result now follows from [69, Theorem 29.4],
since A� is complete by Theorem 8.1.20. 	


The corollary applies in particular to the approximations Aw of an affine alge-
bra A over a Lefschetz field (see Chapter 4), for if A is generated, as an algebra, by
at most n elements, then so is almost each Aw, and, by the Nullstellensatz, each
maximal ideal is then generated by at most n elements.

8.2 Uniform Behavior

In Chapter 4 we amply illustrated how ultraproducts can be used to prove several
uniformity results. This section contains more results derived by this technique.

8.2.1 Weak Artin-Rees

The Artin-Rees Lemma is an important tool in commutative algebra, especially
when using ‘topological’ arguments. There is a weaker form of Artin-Rees, which
is often really the only property one uses and which we can now prove easily by
non-standard methods.

Theorem 8.2.1. Let (R,m) be a Noetherian local ring, and let a⊆ R be an ideal. For
each l, there exists a uniform bound e := e(a, l) such that

a∩me ⊆ mla.

Proof. Suppose not, so that for some l, none of the intersections a∩mn is con-
tained in mla. Hence we can find elements an ∈ a∩mn outside mla. Let R� and R�

be the respective ultrapower and catapower of R. The diagonal embeddings R→R�

and R→R� are both flat by Corollary 3.3.3 and Theorem 8.1.15 respectively. Since
R� = R�/IR�

, the quotient criterion, Theorem 3.3.5, yields aR�∩IR�
= aIR�

. Let a

be the ultraproduct of the an, so that by Łoś’ Theorem, a ∈ aR�∩IR�
= aIR�

. The
latter ideal is in particular contained in amlR�, and hence by Łoś’ Theorem once
more, an ∈ mla for almost all n, contradiction. 	

Remark 8.2.2. Using the fact that M/N admits a finite prime filtration (3.3), for
N ⊆ M finitely generated modules over R, we get a module version of the above
result: there exists for each l, a uniform bound e := e(N,M, l) such that

N ∩meM ⊆ mlN.
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We may turn the previous result into a Noetherianity criterion:

Theorem 8.2.3. For a coherent local ring (R,m) of finite embedding dimension the
following are equivalent:

8.2.3.i. R is Noetherian;
8.2.3.ii. every finitely generated ideal is m-adically closed;
8.2.3.iii. for every finitely generated ideal a and every l, there exists some e :=

e(a; l) such that a∩me ⊆ aml ;
8.2.3.iii’ for every finitely generated ideal a, the m-adic topology on a coincides

with its induced topology as a subspace a ⊆ R.

Proof. The equivalence of (8.2.3.iii) and (8.2.3.iii’) is immediate from the
definitions. The implication (8.2.3.i) ⇒ (8.2.3.ii) is Krull’s Intersection Theo-
rem (Theorem 2.4.14), and (8.2.3.i) ⇒ (8.2.3.iii) is just Theorem 8.2.1.

We will simultaneously prove both converses. Observe first that in either case,
R is separated. Indeed, this is clear in case (8.2.3.ii) since the closure of the zero
ideal is IR. In case (8.2.3.iii), let x ∈ IR and choose e such that xR∩me ⊆ xm.
Since x lies in the former ideal, it belongs to the latter, and hence x = ax for some
a ∈ m. Since R is local, 1−a is a unit, showing that x = 0 and hence that IR = 0.
Let R� be the catapower of R, that is to say, R� = R�/IR�

(which is then also the
completion of R�), where R� is the ultrapower of R. By 8.1.11, regardless whether
R is Noetherian, R� is. Hence, if we can show that R → R� is faithfully flat, the
assertion follows from Corollary 3.2.6.

By Theorem 3.3.4, the diagonal embedding R → R� is flat. The quotient cri-
terium (Theorem 3.3.5) then yields the desired flatness of R → R�, provided we
can show that aR�∩IR�

= aIR�
, for every finitely generated ideal a := ( f1, . . . , fs)R.

One direction in this inclusion is clear, so assume x ∈ aR�∩IR�
. Let xw ∈ R be ap-

proximations of x. There is nothing to show if x = 0, so that without loss of
generality, we may assume all xw are non-zero. By separatedness, there is some
n(w) such that xw belongs to mn(w)a but not to mn(w)+1a. Let yiw ∈mn(w) such that

xw = y1w f1 + · · ·+ ysw fs,

and let yi be the ultraproduct of the yiw. By Łoś’ Theorem, x = y1 f1 + · · ·+ ys fs,
so we need to show that yi ∈ IR�

. Assume this fails, say, for i = 1, so that y1 /∈mlR�

for some l. I claim that, in either case, almost all xw belong to mla. In particular,
l ≤ n(w), for almost all w, whence almost all y1w belong to ml . This in turn implies
by Łoś’ Theorem that y1 ∈ mlR�, contradiction.

So remains to prove the claim. Assuming (8.2.3.iii), there exists e such that
a∩me ⊆mla. Since x ∈ aR�∩meR�, Łoś’ Theorem yields that almost all xw belong
to a∩me whence to mla. So assume (8.2.3.ii) holds. Let S� and S� be respec-
tively the ultrapower and catapower of S := R̂. For the same reason as above, S is
Noetherian, so that the natural map S → S� is faithfully flat by Theorem 8.1.15.
By Corollary 3.3.3, so is the map S → S�. Hence by Theorem 3.3.5, we have
aS� ∩ IS�

= aIS�
. In particular, x ∈ aIS�

. By Łoś’ Theorem, almost each xw
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lies in amlS. Since aml is finitely generated, it is adically closed, and hence
amlS∩R = aml by Proposition 8.1.7 (or, rather its analogue for arbitrary local
rings of finite embedding dimension which is proven in the same manner using
8.1.11 instead). Therefore, almost each xw lies in aml, as we needed to show. 	


8.2.2 Uniform Arithmetic in a Complete Noetherian Local Ring

In what follows, our invariants are allowed to take values in N := N∪{∞}. An
n-ary numerical function is by definition a map F : N

n → N such that F(x) = ∞
if and only if x does not belong to Nn. The restriction of a numerical function
N

n → N to Nn is N-valued, and conversely, any N-valued function has a unique
extension to a numerical function. By the order, ordR(x), of an element x in a
local ring (R,m), we mean the supremum of all m such that x ∈ mm (so that in
particular ordR(x) = ∞ if and only if x ∈ IR).

Theorem 8.2.4. A complete Noetherian local ring R is a domain if and only if there
exists a binary numerical function F such that

ordR(xy) ≤ F(ordR(x),ordR(y)) (8.5)

for all x,y ∈ R.

Proof. Assume first that (8.5) holds for some F . If x and y are non-zero, then
their order is finite by Theorem 2.4.14, whence F(ord(x),ord(y)) is finite per
definition. In particular, xy must be non-zero, showing that R is a domain.

Conversely, assume towards a contradiction that no such function F can be
defined on a pair (a,b) ∈ N2. This implies that there exist for each n, elements
xn and yn in R of order at most a and b respectively, but such that their product
xnyn has order at least n. Let R� and R� be the ultrapower and catapower of R re-
spectively, and let x and y be the ultraproducts of xn and yn respectively. It follows
from Łoś’ Theorem that ordR�

(x) ≤ a and ordR�
(y) ≤ b, and hence in particular,

x and y are non-zero in R�. By Corollary 8.1.18, the catapower R� is again a do-
main. In particular, xy is a non-zero element in R�, and hence has finite order, say,
c, by Theorem 2.4.14. However, then also ordR�

(xy) = c whence ordR(xnyn) = c
for almost all n by Łoś’ Theorem, contradiction. 	

Remark 8.2.5. It is not hard to show that an arbitrary Noetherian local ring R
admits a numerical function with the above property if and only if its completion
does. It follows that R is analytically irreducible (meaning that its completion
is a domain) if and only if a numerical function as above exists. Theorem 8.2.4
was first proven by Rees [78] via a valuation argument. By [112, Theorem 3.4]
and [58, Proposition 2.2], we may take F linear, or rather, of the form F(a,b) :=
cmax{a,b}, for some c ∈ N (one usually expresses this by saying that R has c-
bounded multiplication).
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Theorem 8.2.6. A d-dimensional Noetherian local ring (R,m) is Cohen-Macaulay if
and only if there exists a binary numerical function G such that

ordR/I(xy) ≤ G(degR/I(x),ordR/I(y)) (8.6)

for all x,y ∈ R and all ideals I ⊆ R generated by part of a system of parameters of
length d−1.

Proof. Suppose a function G satisfying (8.6) exists, and let (z1, . . . ,zd) be a system
of parameters in R. Fix some i and let y∈ (J : zi+1) with J := (z1, . . . ,zi)R. We need
to show that y ∈ J. For each m, let Im := J + (zm

i+2, . . . ,z
m
d )R, and put x := zi+1.

Since xy ∈ J ⊆ Im, the left hand side in (8.6) for I = Im is infinite, whence so
must the right hand side be. However, x is a parameter in R/Im, and therefore has
finite degree. Hence, the second argument of G must be infinite, that is to say,
ordR/Im(y) = ∞. In other words, y ∈ Im, and since this holds for all m, we get y ∈ J
by Theorem 2.4.14, as we wanted to show.

Conversely, towards a contradiction, suppose R is Cohen-Macaulay but no
such function G can be defined on the pair (a,b) ∈ N2. This means that there
exist elements xn,yn ∈ R and a d −1-tuple zn which is part of a system of param-
eters in R, such that degSn

(xn) ≤ a and ordSn(yn) ≤ b, but xnyn has order at least
n in Sn := R/znR. Let R� and R� be the respective ultrapower and catapower of R.
Since R is Cohen-Macaulay, so is R� by Corollary 8.1.17. Let x, y and z be the ul-
traproduct of the xn, yn and zn respectively. By Proposition 8.1.7, the cataproduct
of the Sn is equal to S� := R�/zR�. Since each Sn has dimension one, and parameter
degree at most a by assumption on xn, the dimension of S� is again one by Theo-
rem 8.1.12. Since R� has dimension d by 8.1.8, the d−1-tuple z is part of a system
of parameters in R�, whence is R�-regular. This in turn implies that S� = R�/zR�

is Cohen-Macaulay. Moreover, by Łoś’ Theorem, y has order b in R�/zR� whence
also in S�, and x has degree a in S�. In particular, x is a parameter in S� whence
S�-regular. On the other hand, by Łoś’ Theorem, xy is an infinitesimal in R�/zR�,
whence zero in S�. Since x is S�-regular, y is zero in S�, contradicting that its order
in that ring is b. 	


In [101, §12], similar characterizations are obtained by this method for other
ring-theoretic properties, such as (quasi-)unmixed, analytically unramified, nor-
mal, . . . . We leave it to the reader to verify that a Noetherian local ring is regular
if and only if order and degree coincide (the proof is straightforward and makes
no use of ultraproducts).



Chapter 9
Protoproducts

In Chapter 4, we used ultraproducts to derive uniform bounds for various
algebraic operations, where the bounds are given in terms of the degrees of
the polynomials involved. This was done by constructing a faithfully flat embed-
ding of the polynomial ring A into an ultraproduct U(A) of polynomial rings,
called its ultra-hull. Moreover, A is characterized as the subring of U(A) of all
elements of finite degree. In this chapter, we want to put these uniformity results
in a more general context, by replacing the degree on A by what we will call a
proto-grading. However, as the notion of ultra-hull is no longer available, we must
replace the latter by the ultrapower A�. Moreover, there now may be elements of
finite proto-grade in A� outside A, leading to the notion of the protopower A� of A,
sitting in between A and its ultrapower, and these embeddings may or may not be
(faithfully) flat. The existence of uniform bounds in terms of the proto-grading
follow from good properties of this protopower. This can be extended to several
rings simultaneously by using protoproducts instead.

9.1 Protoproducts

Whereas as cataproducts are homomorphic images of ultraproducts, protoprod-
ucts will be subrings. To define them, we need to formalize the notion of the
degree of a polynomial.

9.1.1 Proto-graded Rings

By a pre-proto-grading Γ•(A) on a ring A, we mean an ascending chain of subsets

Γ0(A) ⊆ Γ1(A) ⊆ Γ2(A) ⊆ . . .

and a unary function F : N→ N such that the sum and the product of any two
elements in Γn(A) lies in ΓF(n)(A), and such that for any unit u ∈ A, if u lies in
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Γn(A), then its inverse lies in ΓF(n)(A). The following terminology will prove to
be quite convenient when discussing proto-gradings: we will say that an element
x ∈ A has proto-grade at most n, if it lies in Γn(A). The minimal value n such that x
has proto-grade at most n will occasionally be called the proto-grade of x, allowing
the case that x lies in no Γn(A), in which case it is said to have infinite proto-grade.
Therefore, albeit less accurate, we may say that a proto-graded ring is one whose
arithmetic (addition, product, and inverse) is uniformly bounded with respect to
its proto-grade. If we want to emphasize the function F , we call Γ•(A) a pre-proto-
F -grading. We call Γ•(A) a proto-F -grading, or simply a proto-grading, if moreover
the union of all Γn(A) is equal to A, that is to say, if there are no elements of
infinite proto-grade. It is easy to show that:

9.1.1 If Γ•(A) is a pre-proto-F -grading on A, then the collection of all elements of
finite proto-grade forms a subring A′ of A, called the proto-graded subring
associated to the pre-proto-grading, and Γn(A′) := Γn(A) defines a proto-F -
grading on this subring.

A proto-graded ring (A,Γ ) is a ring endowed with a proto-grading Γ•(A). Two
proto-gradings Γ•(A) and Θ•(A) are equivalent if there exists a unary function
G such that Γn(A) ⊆ ΘG(n)(A) and Θn(A) ⊆ ΓG(n)(A) for all n. For all intent and
purposes, as we shall see, we may replace any proto-grading by an equivalent one.
For instance, since any proto-grading is equivalent with a proto-grading Γ•(A)
such that 0,±1 ∈ Γ0(A), there is no harm in assuming this already from the start.

The trivial proto-grade is given by letting all Γn(A) be equal to A. The following
standard structures all are instances of a proto-grade, the second one lending its
name to the concept:

9.1.1.i. Any polynomial ring A := Z[ξ ] over an arbitrary ring Z is proto-
graded by letting Γn(A) consist of all elements of degree at most
n. We refer to this as the affine proto-grading on A. Note that in
particular Z = Γ0(A), or put differently, all coefficients have proto-
grade zero.

9.1.1.ii. Any N-graded ring A = ⊕nAn is proto-graded by letting Γn(A) be
equal to the direct sum A0 ⊕A1 ⊕·· ·⊕An.

9.1.1.iii. For a given subring A of R, let Γn(A) be the set of all elements a ∈ A
of absolute value at most n. In order for this to be a proto-grading,
we need to exclude the possibility that there exist units in A con-
verging to zero. For instance, if A is not dense at zero (that is to say,
if there exists ε > 0 such that A∩ [−ε,ε] = {0}), then the absolute
value yields a proto-grade on A.

We can easily extend the first example as follows:

9.1.2 Let (A,Γ ) be a proto-graded ring, an assume A is either reduced or
Noetherian. Let ξ be a (finite) tuple of indeterminates, and put B := A[ξ ].
Let Γn(B) be the set of all polynomials of degree at most n each coefficient of
which has proto-grade at most n. Then Γ•(B) is a proto-grading on B, called
the extended degree proto-grade.
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To prove this, it suffices, by induction, to treat the case that ξ is a single
variable. Note that, in general, if A is F -proto-graded, then it is also F ′-proto-
graded, for any F ′ such that F(n) ≤ F ′(n). Hence we may assume without loss
of generality that 2n ≤ F(n) and F is monotone. Let G(n) := Fn(n), where Fn

denotes the n-fold composition of F , and let f ,g ∈ B of proto-grade at most n.
Clearly, f + g has proto-grade at most F(n). As for the product, note that f g has
degree at most 2n, and any coefficient in f g is a sum of n+1 products aib j, with ai

and b j respective coefficients of f and g. Hence each term in this sum has proto-
grade at most F(n), and the total sum therefore has proto-grade at most G(n). If
A is reduced, then the only units in B are constants, and the assertion is proven.
If A is Noetherian, then n := nil(A) has finite nilpotency, that is to say, nN = 0 for
some N. If f = a0 + a1ξ + · · ·+ adξ d is a unit, then so is a0 and all ai for i > 0
belong to n. Multiplying f with the inverse of a0, which increases the proto-grade
up to at most F(n), we may assume a0 = 1. Hence ( f −1)N = 0. Expanding this
expression shows that the inverse of f is of the form f N−1 −N f N−2 + · · ·±1. Each
term has proto-graded at most G(n) by our previous argument, so their sum has
proto-grade at most GN(n). In conclusion, B is proto-graded with respect to the
function n �→ FnN(n). 	


In particular, the affine proto-grading on A[ξ ] is the extended degree proto-
grading where A is given the trivial proto-grading. By (9.1.1.iii), we may view the
ring of integers Z as a proto-graded ring. The degree proto-grading, as defined
in 9.1.2, on Z[ξ ] extending this absolute value proto-grading will be called the
Kronecker proto-grading on Z[ξ ], and will be studied further in §9.3.

9.1.2 The Category of Proto-graded Rings

A morphism of proto-graded rings (A,Γ )→ (B,Θ) is a ring homomorphism A → B
for which there exists a unary function G : N→ N such that Γn(A) ⊆ ΘG(n)(B),
for all n. In particular, if Γ and Γ ′ are equivalent proto-gradings on A, then the
identity on A induces an isomorphism of proto-graded rings. These definitions
give rise to the category of proto-graded rings.

Let (A,Γ ) be a proto-F -graded ring, and let ϕ : A → B be a ring homomor-
phism. We define the push-forward of Γ by the rule Γn(B) := ϕ(Γn(A)) for all n.
In general, Γ•(B) is only a pre-proto-F -grading, since elements outside the image
of the homomorphism have infinite proto-grade. In particular, the push-forward
is a proto-grading if ϕ is surjective, that is to say, if B is of the form A/I for some
ideal I ⊆ A. We call this proto-grading the residual proto-grading on A/I. In regard
to localizations, we can show:

9.1.3 Let (A,Γ ) be a proto-graded rings and let S ⊆ A be a multiplicative subset.
There exists a natural proto-grading on the localization S−1A, such that the
natural map A → S−1A is a morphism of proto-gradings.
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Indeed, suppose Γ is a proto-F -grading. On B := S−1A, define a proto-grading
by the rule that x/s has proto-grade at most n, for x ∈ A and s ∈ S, if both x and
s have proto-grade at most n. It is now easy to verify that this yields a proto-G-
grading on B, where G = F ◦F. 	


In view of 9.1.2, we can now extend a given proto-grading on a ring A to any
A-affine algebra B. Namely, write B as A[ξ ]/I and give B the residual proto-grading
of the extended degree proto-grading on A[ξ ] (and similarly, for local A-affine al-
gebras, using 9.1.3). We leave it to the reader to verify that any two presentations
of B as an A-affine algebra yield equivalent proto-gradings. In case the base ring
Z is trivially proto-graded, then we refer to the thus obtained proto-grading
on a (local) Z-affine algebra B as the Z-affine proto-grading, or simply, the affine
proto-grading on B.

9.1.3 Protopowers

Let (A,Γ ) be a pre-proto-graded ring, and let A� be some ultrapower of A. We
define a pre-proto-grading on A� by letting Γn(A�) be the ultrapower of Γn(A)
(viewed as a subset of A�). The protopower A� of A is defined as the proto-graded
subring associated to this pre-proto-grading, that is to say,

A� :=
⋃

n

Γn(A�).

By 9.1.1, the protopower is again a ring, and Γ induces a proto-grading on A�. The
following characterization of A� easily follows from Łoś’ Theorem:

9.1.4 An element in the ultrapower A� lies in the protopower A� if and only if
for some n, almost all of its approximations have proto-grade at most n.

We may express this more simply by saying that x ∈ A� belongs to A� if and
only if some (equivalently, any) approximation of x has uniformly bounded proto-
grade. In case A is proto-graded, the case we will be in almost all the time, we have
a natural diagonal embedding A ⊆ A�. Thus, we have completed the chromatic
scale of a proto-graded Noetherian local ring A: there exist natural local A-algebra
homomorphisms

A ↪→ A� ↪→ A� � A�. (9.1)

9.1.4 Protoproducts

To define protoproducts, we need to make an assumption on the sequence of
(pre-)proto-graded rings Aw. We say that the Aw are uniformly proto-graded if there
exists a unary function F, such that the (pre-)proto-grading on Aw is equivalent
with a (pre-)proto-F -grading Γ•(Aw) for (almost) all w. If this is the case, let A� be
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the ultraproduct of the Aw, and for each n, let Γn(A�) be the subset of A� given as
the ultraproduct of the Γn(Aw). By Łoś’ Theorem, Γ•(A�) is a pre-proto-F -grading
on A�. The associated proto-graded subring A� is called the protoproduct of the
Aw. One checks that this definition does not depend on the choice of the unary
function F , or the particular equivalent proto-F -grading. Of course, a protopower
is just a special instance of a protoproduct where all the rings are equal to a single
proto-graded ring. The protoproduct of trivially proto-graded rings is just their
ultraproduct, so that protoproducts generalize the notion of ultraproduct.

Lemma 9.1.5. The protoproduct of uniformly proto-graded local rings is a local ring.

Proof. Let (Rm,mw) be proto-F -graded local rings, and let (R�,m�) be their ultra-
product. I claim that m�∩R� is the unique maximal ideal of the protoproduct R�.
To this end, we have to show that if x ∈ R� does not belong to m�, then it is in-
vertible in R�. Let xw be an approximation of x. In particular, almost all xw are
units, and have proto-grade at most n, for some n independent of w. Hence their
respective inverses yw have proto-grade at most F(n). The ultraproduct y of the
yw lies therefore also in R�. By Łoś’ Theorem, xy =1 holds in R�, whence also in
the subring R�, as we wanted to show. 	


9.1.6 Let Aw be uniformly proto-graded rings with protoproduct A� and ultra-
product A�, and let Iw ⊆ Aw be ideals with ultraproduct I� ⊆ A�. The
protoproduct B� of the Bw := Aw/Iw viewed in their residual proto-grading
is equal to A�/(I�∩A�).

Since the ultraproduct of the Bw is equal to A�/I� by 2.1.6, an element x ∈ A�

viewed as an element of A�/I� has an approximation xw of bounded proto-grade
in Bw if and only if almost all xw have proto-grade at most n, for some n. This in
turn is equivalent with x ∈ A�. Hence B� is equal to the image of A� in A�/I�, and
this is just A�/(I�∩A�). 	


Applied to a single proto-graded ring A and a single finitely generated ideal
I ⊆ A (so that its ultrapower is just IA� by 2.4.20), we proved:

9.1.7 Let A be a proto-graded ring with protopower A� and ultrapower A�, and
let I ⊆ A be a finitely generated ideal. The protopower of A/I is equal to
A�/(IA�∩A�). 	


Protoproducts commute with the formation of a polynomial ring in the fol-
lowing sense:

Proposition 9.1.8. Let Aw be uniformly proto-graded rings, which we assume to be
either reduced or Noetherian, let ξ be a finite tuple of indeterminates, and view each
Bw := Aw[ξ ] with its extended degree proto-grading. If A� and B� are the respective
protoproducts of Aw and Bw, then B� = A�[ξ ].

Proof. Note that it follows from the proof of 9.1.2 (which requires for the ring to
be either reduced or Noetherian) that all Bw are also uniformly proto-graded,
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so that it makes sense to talk about their protoproduct. Let A� ⊆ B� be the
ultraproducts of the Aw and Bw respectively. By definition of the extended degree
proto-grading, an element f in the ultraproduct B� of the Bw has an approximation
f w of bounded proto-grade if and only if, for some n, almost all f w have degree
at most n with coefficients of proto-grade at most n in Aw. Hence such an f be-
longs to A�[ξ ] by an argument similar to the one used for 4.1.2. Moreover, by
Łoś’ Theorem, the coefficients of f are then all in Γn(A�), showing that f ∈ A�[ξ ].
Reversing the argument yields the converse inclusion. 	


For instance, the protopower of Z[ξ ] with respect to its Kronecker proto-
grading is Z[ξ ] itself, whereas with respect to its affine proto-grading we get
Z�[ξ ], where Z� is the ultrapower of Z. It is instructive to revisit our construction
of an ultra-hull in this new formalism: let K be the ultraproduct of fields Kw,
each of which we view with its trivial proto-grading. In particular, the protoprod-
uct of the Kw is just K, and hence by the above result, the protoproduct of the
Aw := Kw[ξ ] in their affine proto-grading, is A := K[ξ ], whereas the ultraproduct
of the Aw is the ultra-hull U(A) of A.

9.1.5 Algebraic Protoproducts

As an illustration of our definitions, let me present the Lefschetz Principle
(Theorem 2.4.3) in a new light, to wit, as an ultraprotoproduct. Given an extension
of fields K ⊆ L, we say that an element x ∈ L has K-algebraic proto-grade at most n,
if it satisfies some (non-zero) polynomial of degree n with coefficients in K. From
the fact that x+ y, xy, and 1/x all belong to K(x,y), it follows that this constitutes
a proto-grade on L. The corresponding proto-graded subring is simply L∩Kalg. If
K is the prime field of L, then we simply refer to this proto-grade as the algebraic
proto-grade on L.

9.1.9 The algebraic protoproduct of all finite fields of characteristic p is Falg
p .

Indeed, the ultrapower of all finite fields of characteristic p contains each of
these finite fields, whence their union Falg

p , and the result now follows from
the definition and the previous observation regarding the proto-graded subring.
Hence we may paraphraze the Lefschetz Principle as:

9.1.10 The field of complex numbers is an ultraproduct of the algebraic protoprod-
uct of all finite fields.

9.2 Uniform Bounds

In Chapter 4, the main tool for deriving uniform bounds was the faithful flatness
of the ultra-hull. In the more general setup of proto-gradings, this is no longer
a property holding automatically, but rather an hypothesis, and so we have to
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investigate when it is satisfied. Ideally, we should derive uniform bounds for a class
of uniformly proto-graded rings (with the bounds only depending on some nu-
merical invariants of the ring and the data), and for this we need good properties
of protoproducts. An example of this method will be discussed in §10.2 in the next
chapter. In this chapter, however, we content ourselves with bounds that work for
a single proto-graded ring, for which it suffices to work with protopowers.

In what follows, A is a proto-graded ring, with proto-grading Γ•(A), pro-
topower A�, and ultrapower A�. We need to study the properties of the inclusions
A ⊆ A� ⊆ A�. Since A → A� is cyclically pure (see the discussion in §2.4.3), so is
A ⊆ A�. We may ask under which conditions will A ⊆ A� be faithfully flat, and we
will see some examples below. However, keeping the example of an ultra-hull in
the above discussion in mind, the more important question is the nature of the
embedding A� ⊆ A� (recall that this is the analogue of the embedding A ⊆ U(A) of
the ultra-hull). Unlike the ultra-hull case, this embedding may fail to be faithfully
flat, an a priori obstruction for deriving uniform bounds à la Chapter 4, and so
we make the following definition.

Definition 9.2.1. A proto-grading on a ring A is called respectively flat, non-
degenerated, faithfully flat, or cyclically pure, if the natural embedding A� ⊆ A� has
the corresponding property.

To better formulate the next results, we introduce the following terminology.
Let A be a proto-graded ring, with A� and A� its respective protopower and ultra-
power. An ideal I ⊆ A is said to have proto-grade at most n, if it can be generated
by n elements of proto-grade at most n (note the bound on the number of gen-
erators!). In particular, for any n ≥ 1, an element has proto-grade at most n if
and only if the ideal it generates has proto-grade at most n. The usefulness of this
concept is exhibited by the following result:

9.2.2 Let Iw ⊆ A be ideals of proto-grade at most n, for some n independent from
w. Then there exists a finitely generated ideal I ⊆ A� such that IA� is equal
to the ultraproduct I� of the Iw.

Indeed, if f1w, . . . , fnw are generators of Iw of proto-grade at most n, and if
f1, . . . , fn ∈ A� are their respective ultraproducts, belonging therefore to the sub-
ring A�, then, in view of 2.1.6, we may take I := ( f1, . . . , fn)A�. 	


A note of caution: the ideal I is not necessarily equal to I� ∩ A�, nor even
uniquely determined by the Iw. We will return to this issue in Definition 9.4.1
below.

9.2.1 Noetherian Proto-gradings

Trivial proto-gradings are automatically faithfully flat, for then protopower
and ultrapower agree. However, to derive meaningful bounds, some finiteness
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assumptions are required, the most natural of which is that the protopower
should also be Noetherian. Let us therefore call a proto-grading Noetherian if its
protopower A� is a Noetherian ring. If the proto-grading on A is Noetherian, then
A itself must also be Noetherian by Corollary 3.2.6, since A → A� is cyclically
pure. The trivial proto-grading shows that the converse fails in general. So of real
interest to us will be those proto-gradings which are at the same time Noetherian
and faithfully flat. The example par excellence, of course, is the ultra-hull as
discussed above. For technical purposes, we also need the following definition: a
proto-grading on A is coherent if A� is a coherent ring (see §3.3.2).

Noetherianity of the proto-grading is characterized by the existence of certain
uniform bounds as the following generalization of a theorem due to Seidenberg
in [103] shows.

Theorem 9.2.3. For a proto-graded ring A, the following are equivalent:

9.2.3.i. the proto-grading is Noetherian;
9.2.3.ii. there exists for each function λ : N→ N, a bound n := n(λ ) with the

property that given a sequence of elements fi of proto-grade at most λ (i)
for all i∈N, then for some i≤ n, we can write fi = q0 f0 + · · ·+qi−1 fi−1

with all q j of proto-grade at most n.

Proof. By way of contradiction, assume that A� is Noetherian, but that for
some λ , no such bound exists. Therefore, we can find for each w, a counterex-
ample consisting of the following data: elements fiw ∈ A of proto-grade at most
λ (i), for i ≤ w, such that no fiw can be written as a linear combination of
the f0w, . . . , fi−1w with coefficients of proto-grade at most w. For i > w, set fiw

equal to zero, and, for each i, let fi be the ultraproduct of the fiw, so that by
construction, fi ∈ A�. Since A� is Noetherian, the ideal generated by all the fi

is equal to ( f0, . . . , fm−1)A� for some m. In particular, there exist qi ∈ A� such
that fm = q0 f0 + · · ·+ qm−1 fm−1. Choose n ≥ m such that all qi for i < m have
proto-grade at most n. Hence, by Łoś’ Theorem, fmw is a linear combination of
f0w, . . . , fm−1,w with coefficients of proto-grade at most n, for almost all w, con-
tradicting our assumption for w > n.

Conversely, assume that (9.2.3.ii) holds but that there exists an infinite strictly
ascending chain of ideals a0 � a1 � a2 � . . . in A�. Choose for each i, an element
fi in ai but not in ai−1. Let I be the ideal in A� generated by these fi. For each i,
choose λ (i) so that fi has proto-grade at most λ (i). Let fiw be an approximation
of fi of proto-grade at most λ (i). By assumption, there is a bound n := n(λ ) such
that for some i ≤ n and some q jw of proto-grade at most n, we have

fiw = q0w f0w + · · ·+ qi−1,w fi−1,w.

Let q j ∈ A� be the ultraproduct of the q jw. Since there are only finitely many
possibilities for i ≤ n, there is one such which holds for almost all w. For this i,
we have therefore by Łoś’ Theorem that

fi = q0 f0 + · · ·+ qi−1 fi−1 (9.2)
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in A�. Since all elements in (9.2) belong to the subring A�, this equation itself holds
in this subring, showing that fi ∈ ai−1, contradiction. 	


Applying this to a constant function yields:

Corollary 9.2.4. If A has a Noetherian proto-grading, then for any n there exists n′ ≥
n with the property that any ideal generated by elements of proto-grade at most n is
generated already by n′ of these generators, that is to say, is an ideal of proto-grade at
most n′. 	


We already mentioned that the affine proto-grading on a polynomial ring K[ξ ]
over a field K is Noetherian, and in this case, one can give a more explicit bound
in the previous Corollary 9.2.4: namely we may take n′ equal to the number of
monomials of degree at most n in the ξ (Lemma 4.4.2). Nonetheless, I am not
aware of such an explicit characterization for other functions λ in Theorem 9.2.3,
that is to say, for the result that: for each field K, any function λ admits a uniform
bound n, such that if fi are polynomials in ξ over K of degree at most λ (i), then for
some i ≤ n, the polynomial fi is a linear combination of the previous f j with coeffi-
cients themselves polynomials of degree at most n. In §A.3, we will show that the ring
of algebraic power series K[[ξ ]]alg over a field K admits a faithfully flat, Noethe-
rian proto-grading, called the etale proto-grading. In particular, we can apply the
previous bounds to this situation, but even the bound given by Corollary 9.2.4
seems no longer to admit a straightforward argument; see Theorem A.3.5.

Corollary 9.2.5. Let A have a Noetherian proto-grading and let ξ be a finite tuple of
indeterminates. For each function λ : N→N, there exists a uniform bound n := n(λ )
with the property that given a sequence of polynomials fi, for i ∈ N, of degree at most
λ (i) all of whose coefficients have proto-grade at most λ (i) as well, then for some i ≤ n,
we can write fi = q0 f0 + · · ·+ qi−1 fi−1 with all q j polynomials of degree at most n
having coefficients of proto-grade at most n.

Proof. Let A� be the protopower of A, which by assumption is Noetherian. Since A
itself is in particular Noetherian, the extended degree proto-grading on B := A[ξ ]
is well-defined by 9.1.2. By Proposition 9.1.8, the protopower of B is A�[ξ ], again a
Noetherian ring. Therefore the extended degree proto-grading is Noetherian and
the bound now follows from Theorem 9.2.3. 	


Another example of a Noetherian proto-grading to which we may apply the
previous corollary is the Kronecker proto-grading on Z (since the protopower is
trivial), yielding:

Corollary 9.2.6. Given a tuple of indeterminates ξ , for each function λ : N→ N,
there exists a uniform bound n := n(λ ) with the property that if fi are polynomials
of degree at most λ (i) with integer coefficients of absolute value at most λ (i), for all i∈
N, then for some i≤ n, we can write fi = q0 f0 + · · ·+qi−1 fi−1 with all q j polynomials
of degree at most n having integer coefficients of absolute value at most n. 	
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9.2.2 Non-degenerated Proto-gradings

By Lemma 9.1.5, any proto-grading on a local ring is non-degenerated. We can
characterize non-degenerated proto-gradings by a uniformity result:

Theorem 9.2.7. A proto-grading on a ring A is non-degenerated if and only if for
each pair (n,s) there exists a uniform bound b := b(n,s) with the property that if
( f1, . . . , fs)A is the unit ideal, with each fi of proto-grade at most n, then there exist gi

of proto-grade at most b such that 1 = f1g1 + · · ·+ fsgs.
If the proto-grading is non-degenerated and Noetherian, then b can be taken to be

independent from s.

Proof. The last assertion follows from the first and Corollary 9.2.4. Suppose first
that proto-grading is non-degenerated, so that the natural embedding A� → A� is
non-degenerated, but towards a contradiction, suppose no bound exists for the
pair (n,s). Hence for each w, we have a counterexample consisting of s elements
fiw of proto-grade at most n generating the unit ideal, but any linear combination
of the fiw equal to 1 requires at least one of the coefficients to have proto-grade
at least w. Let fi be the ultraproduct of the fiw. By construction, fi ∈ A�, and by
Łoś’ Theorem, ( f1, . . . , fs)A� = A�. Since A� → A� is non-degenerated, this implies
that ( f1, . . . , fs)A� = A�. Choose gi ∈ A� such that f1g1 + · · ·+ fsgs = 1, and let m
be large enough so that all gi have of proto-grade at most m. For each i, choose an
approximation giw of gi of proto-grade at most m. Since by Łoś’ Theorem,

f1wg1w + · · ·+ fswgsw = 1 (9.3)

for almost all w, we get the desired contradiction for any of those w > m.
Conversely, suppose a uniform bound b as above exists for all pairs (n,s), and

let I be an ideal in A� such that IA� = A�. We want to show that I = A�. By assump-
tion, there exist f1, . . . , fs ∈ I and h1, . . . ,hs ∈ A� such that f1h1 + · · ·+ fshs = 1.
Choose n large enough so that all fi have proto-grade at most n. Let fiw be an ap-
proximation of fi of proto-grade at most n. By Łoś’ Theorem, ( f1w, . . . , fsw)A = A
for almost all w, and hence by assumption, we can find giw of proto-grade at most
b satisfying (9.3), for some b independent of w. By construction, the ultraproduct
gi of giw belongs to A�, and by Łoś’ Theorem, f1g1 + · · ·+ fsgs = 1 in A�, whence
already in the subring A�, as we wanted to show. 	


For affine proto-gradings (recall that these are essentially given by the degree),
being non-degenerated is already a very restrictive assumption as the next result
shows (recall that a ring A is called von Neumann regular if for each non-zero x
there exists a non-zero y ∈ A such that xy2 = y, and that this is equivalent with A
being absolutely flat, meaning that any A-module is flat):
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Theorem 9.2.8. For a reduced ring A, the following are equivalent:

9.2.8.i. A is von Neumann regular;
9.2.8.ii. the A-affine proto-grading on A[ξ ] is non-degenerated, for all finite tuples

ξ of indeterminates;
9.2.8.iii. every A-affine proto-grading is non-degenerated.

Proof. The equivalence of (9.2.8.i) and (9.2.8.ii) is an immediate consequence of
Theorem 9.2.7 and the characterization of von Neumann regularity given in the
proof of [83, Proposition 5]. The equivalence of (9.2.8.ii) and (9.2.8.iii) follows by
base change. 	


In view of Proposition 9.1.8, condition (9.2.8.ii) is equivalent with the canon-
ical map A�[ξ ] → B� being non-degenerated, where B� is the ultrapower of A[ξ ].
For a non-reduced example where this property holds, let A be an Artinian local
ring: the embedding A�[ξ ]→ B� is then in fact faithfully flat by [98, Theorem 1.2]
(note that A� is again an Artinian local ring). In our current terminology, any
affine proto-grading over an Artinian local ring is Noetherian and faithfully flat.

A reduced Noetherian ring is von Neumann regular if and only if it is a direct
sum of fields. In particular, the affine proto-grading on A := Z[ξ ] is degener-
ated. This is exemplified by the following ideal: let ω := ulimn→∞ n ∈ N�, and
let I := (1− 2ξ ,2ω)A� (recall that A� = Z�[ξ ] by Proposition 9.1.8). Since each
(1− 2ξ ,2n)A is the unit ideal, so is IA� by Łoś’ Theorem. However, in order to
write 1 as linear combination of 1−2ξ and 2n, we require polynomials of degree
at least n, namely,

(1−2ξ )(∑
i<n

(2ξ )i)+ 2n(ξ n) = 1,

and so I is proper ideal in A�.
If we replace the condition of being non-degenerated in Theorem 9.2.7 by the

stronger assumption that the proto-grading is cyclically pure, then virtually an
identical proof yields:

Theorem 9.2.9. A proto-grading on a ring A is cyclically pure if and only if for each
pair (n,s), there exists a uniform bound b := b(n,s) such that if f0, . . . , fs are elements
in A of proto-grade at most n, with f0 in the ideal generated by the remaining fi, then
f0 = f1g1 + · · ·+ fsgs for some gi of proto-grade at most b.

Moreover, the bound m can be chosen independent from s if the proto-grading is
cyclically pure and Noetherian. 	


9.2.3 Flat Proto-gradings

The following theorem generalizes the results in §4.4.1.

Theorem 9.2.10. For a proto-graded ring A, consider the following conditions:

9.2.10.i. for each n there exists a uniform bound n′ such that if I,J ⊆ A are ideals
of proto-grade at most n, then their colon ideal (I : J) is generated
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a. by elements of proto-grade at most n′;
b. by n′ elements of proto-grade at most n′, that is to say, (I : J) has

proto-grade at most n′;

9.2.10.ii. for each triple (n,s,m), there exists a bound n′′ := n′′(n,s,m) such that
if L is a homogeneous linear system of s equations in m variables with
coefficients of proto-grade at most n, then the A-module of solutions of
L is generated

a. by solutions with entries of proto-grade at most n′′;
b. by n′′ solutions with entries of proto-grade at most n′′;

9.2.10.iii. for each n, there exists a bound n′′′ with the property that if I is an ideal
of proto-grade at most n, then its module of syzygies is generated

a. by syzygies with entries of proto-grade at most n′′′;
b. by n′′′ syzygies with entries of proto-grade at most n′′′.

If the proto-grading is flat, then (9.2.10.ia), (9.2.10.iia) and (9.2.10.iiia) hold. If the
proto-grading is moreover Noetherian, or more generally, coherent, then the proto-
grading is flat if and only if (9.2.10.iib) holds if and only if (9.2.10.iiib) holds. If on
the other hand, the proto-grading is cyclically pure, then (9.2.10.ib) holds if and only if
the proto-grading is faithfully flat and coherent.

Proof. Note that in view of (‡IB), conditions (9.2.10.iiia) and (9.2.10.iiib) are
a special instance of (9.2.10.iia) and (9.2.10.iib) respectively, with s = 1 and
m = n. We start by proving that flatness implies (9.2.10.ia). By way of contradic-
tion, assume that for some n, no bound as asserted exists. Hence for each w, we can
construct a counterexample consisting of two ideals Iw and Jw of proto-grade at
most n, such that (Iw : Jw) cannot be generated by elements of proto-grade at most
w. In particular, there exists f w ∈ (Iw : Jw) not belonging to the ideal generated by
all elements in (Iw : Jw) of proto-grade at most w. Let A� and A� be the respective
protopower and ultrapower of A. By 9.2.2, we can find finitely generated ideals
I,J ⊆ A� (in fact, of proto-grade at most n), such that IA� and JA� are the respec-
tive ultraproducts of the Iw and Jw. By Łoś’ Theorem, the ultraproduct f ∈ A� of
the f w belongs to (IA� : JA�). By assumption, A� → A� is flat, so that f ∈ (I : J)A�

by Theorem 3.3.14. Let g1, . . . ,gs ∈ (I : J) be such that f is a linear combination
in A� of the gi, and choose N ≥ n large enough so that all gi have proto-grade at
most N. Let giw be an approximation of gi. Hence by Łoś’ Theorem, almost each
giw has proto-grade at most N and belongs to (Iw : Jw). Moreover, almost each
f w is a linear combination of the giw, contradicting our assumption whenever
w > N. If A� is coherent, then by Corollary 3.3.17, we may choose the gi so that
they generate (I : J). In that case, any element in (Iw : Jw) is a linear combination
of the approximations giw, that is to say, has proto-grade at most N for almost all
w, from which we can now derive (9.2.10.ib) by a similar ad absurdum argument.
That flatness implies (9.2.10.iia) and, under the additional coherency assumption,
(9.2.10.iib) are proven in the same way, using instead Theorem 3.3.1.
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To prove that (9.2.10.iiib) yields flatness, we will verify the equational criterion
for flatness as stated in Theorem 3.3.1. To this end, let x be a solution in A� of a
linear equation a1t1 + · · ·+ asts = 0 with ai ∈ A�. Choose n ≥ s sufficiently large
such that each ai has proto-grade at most n, and choose approximations aiw of each
ai of proto-grade at most n, and an approximation xw of x. By Łoś’ Theorem, xw

is a solution of a1wt1 + · · ·+aswts = 0, and hence in view of (‡IB) and (9.2.10.iiib),
there exists some n′′′ such that xw is a linear combination of n′′′ solutions all of
whose entries have proto-grade at most n′′′. Hence the ultraproduct of these n′′′
solutions are solutions of a1t1 + · · ·+asts = 0 in A�, and x is an A�-linear combina-
tion of these solutions, as we wanted to show.

So remains to show is that if (9.2.10.ib) holds and the proto-grading is cyclically
pure, then it is also flat and coherent. To show that A� → A� is flat, we verify the
colon criterion (Theorem 3.3.14). Let I := (h1, . . . ,hs)A� be a finitely generated
ideal, and let a ∈ A�. We need to show that (IA� : a) = (I : a)A�. Choose n ≥ s so
that both I and a have proto-grade at most n. Let Iw := (h1w, . . . ,hsw)A and aw

be approximations of proto-grade at most n of I and a respectively. By (9.2.10.ib),
almost all (Iw : aw) have proto-grade at most n′, say, generated by the n′ elements
fiw of proto-grade at most n′. By Theorem 9.2.9, there exists a bound n′′ only de-
pending on n′ whence on n, and elements gi jw of proto-grade at most n′′ such that

aw fiw = gi1wh1w + · · ·+ giswhsw

for all i = 1, . . . ,n′ and all w. Taking the respective ultraproducts of the fiw and
gi jw yield elements fi and gi j in A�. Moreover, by Łoś’ Theorem, we have, for all i,
an identity a fi = gi1h1 + · · ·+ gishs in A�, whence in the subring A�. This shows
that fi ∈ (I : a). On the other hand, an easy argument on Łoś’ Theorem shows
that (IA� : a) = ( f1, . . . , fn′)A�, from which it follows that (IA� : a) = (I : a)A�, as
we wanted to show. This also shows that (I : a) is finitely generated, from which
it follows that A� is coherent by Corollary 3.3.17. 	


Combining the previous results then easily yields:

Theorem 9.2.11. Let A be a ring with a Noetherian, faithfully flat proto-grading.
There exists, for each n, a uniform bound n′, such that if I = ( f1, . . . , fs)A is an ideal
of proto-grade at most n, then the module of syzygies of I is generated by n′ syzygies
with entries of proto-grade at most n′. Moreover, if f ∈ I and has proto-grade at most
n, then there exist gi of proto-grade at most n′ such that f = g1 f1 + · · ·+ fsgs. 	


We conclude this section with a uniform version of Krull’s Intersection Theo-
rem (Theorem 2.4.14).

Theorem 9.2.12. Let (R,m) be a local ring with a faithfully flat, Noetherian proto-
grading. For each n, there exists a uniform bound e := e(n) with the property that
for any f0, . . . , fs of proto-grade at most n, if f0 lies in ( f1, . . . , fs)R +me then f0 lies
already in ( f1, . . . , fs)R.

Proof. Suppose that for some n, no such bound exists, so that for each w, we
can find a counterexample consisting of an ideal Iw generated by elements of
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proto-grade at most n and an element f w of proto-grade at most n, so that f w

lies in Iw +mw but not in Iw. By Corollary 9.2.4, the Iw are generated by at most
n′ elements of proto-grade at most n′, for some n′ only depending on n. By 9.2.2,
there exists I ⊆ R� such that IR� is the ultraproduct of the Iw. By Łoś’ Theorem,
the ultraproduct f of the f w does not belong to IR�, whence a fortiori f /∈ I.
On the other hand, by Łoś’ Theorem, f ∈ IR� +mNR� for every N. By assump-
tion R� → R� is faithfully flat, so that f belongs to I + mNR�, for all N. Since
R� is Noetherian, Krull’s Intersection Theorem (Theorem 2.4.14) yields f ∈ I,
contradiction. 	


9.3 Proto-gradings Over the Integers

In this section, we will discuss briefly the existence of some bounds over the
integers originally due to Seidenberg (for instance, the bound proven in Corol-
lary 9.3.1 below is shown to be actually doubly exponential in [103]), with
improved bounds given by Aschenbrenner (the same bound is proven to be
polynomial in [4]). More precisely, let A := Z[ξ ], viewed in its Kronecker proto-
grading. Since A = A� ⊆ A� is faithfully flat by Corollary 3.3.3, the Kronecker
proto-grading is faithfully flat, and therefore an application of Theorem 9.2.11
yields:

Corollary 9.3.1. There exists for each pair (m,n) a uniform bound b := b(m,n), such
that if I = ( f1, . . . , fs)A, with A = Z[ξ1, . . . ,ξm], is an ideal of Kronecker proto-grade
at most n (that is to say, generated by n polynomials of degree at most n with coefficients
of absolute value at most n), then the module of syzygies of I is generated by b syzygies
with entries of Kronecker proto-grade at most b. Moreover, if f has Kronecker proto-
grade at most n and belongs to I, then there exist gi of Kronecker proto-grade at most
b such that f = g1 f1 + · · ·+ fsgs. 	


We already argued that the above is false if we take the degree proto-grading
on Z[ξ ], since this proto-grading fails to be non-degenerated. However, Aschen-
brenner observed that (9.2.10.iib) holds in this case, proving that the degree
proto-grading is flat. I will give here an independent, direct proof of flatness, and
hence via (9.2.10.iib), recover Aschenbrenner’s result. We prove this in greater
generality, as we will need this later to prove Theorem 10.2.2.

Theorem 9.3.2. Let Zw be principal ideal domains with ultraproduct equal to Z�. If
A� and A� are respectively the protoproduct and ultraproduct of the Aw := Zw[ξ ], then
the canonical map A� → A� is flat.

Proof. By Proposition 9.1.8, the protoproduct A� is equal to Z�[ξ ], so that we
have to show that Z�[ξ ]→ A� is flat. We will do this by means of the Tor criterion
(Theorem 3.1.5), that is to say, by showing that

T := TorA�
1 (A�,A�/I)
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vanishes for every finitely generated ideal I ⊆ A�. Towards a contradiction,
suppose that τ is a non-zero element in T . Let Qw be the field of fractions of
Zw, and let Q� be their ultraproduct, so that by Łoś’ Theorem, it is the field
of fractions of Z�. Viewing each Bw := Qw[ξ ] in its affine proto-grading, their
protoproduct B� is equal to Q�[ξ ] = A� ⊗Z�

Q�. Moreover, since any polynomial
in Bw is of the form a f with a ∈ Qw and f ∈ Aw, the ultraproduct B� of the Bw is
equal to A�⊗Z�

Q�. Since B� → B� is faithfully flat by Theorem 4.2.2, and since this
is just the base change of A� → A� over Q� by our previous calculations, we get
T ⊗Z�

Q� = 0. Therefore, there exists some non-zero a ∈ Z� such that aτ = 0 in T .
Since all Zw are Dedekind domains, Z� is a Prüfer domain by Proposition 2.4.18.
By [83, Proposition 3] or [34, Corollary 7.3.4], the polynomial ring A� = Z�[ξ ]
is therefore coherent. In particular, I has a finitely generated module of syzygies,
and hence there exists an exact sequence

Am
�

d2→ An
�

d1→ A� → A�/I → 0.

By definition of Tor-modules (see §3.1.4), we can calculate T as the homology of
the tensored complex

Am
�

d2→ An
�

d1→ A�.

In particular, τ is the image of a tuple x ∈ An
� such that d1(x) = 0. Moreover, x

does not belong to Im(d2), but ax does. Let aw ∈ Zw, xw ∈ An
w and diw be approxi-

mations of a, x and di respectively, yielding for almost all w a complex

Am
w

d1w→ An
w

d2w→ Aw.

By Theorem 3.1.1, almost each xw lies in the kernel of d1w and not in the image of
d2w, whereas awxw does lie in that image. Since each Zw is a unique factorization
domain, we can find tuples yw and prime elements pw ∈ Zw, such that almost each
yw lies in the kernel of d1w but not in the image of d2w, yet pwyw does. Let π ∈ Z�

and y ∈ An
� be the respective ultraproducts of the pw and the yw. Since y lies in

the kernel of d1 but outside the image of d2 by Łoś’ Theorem, its image in T is a
non-zero element, annihilated by π .

On the other hand, since each Zw has dimension one, Zw/pwZw is a field,
whence so is their ultraproduct Z�/πZ�. Therefore, the base change A�/πA� →
A�/πA� is faithfully flat by Theorem 4.2.2. Since π is A�-regular by Łoś’ Theorem,
we get a short exact sequence

0 → A�
π→ A� → A�/πA� → 0 (9.4)

and a degenerated spectral sequence

TorA�/πA�
i−1 (A�/πA�,A�/(I : π)) → TorA�

i (A�/πA�,A�/I)

→ TorA�/πA�
i (A�/πA�,A�/(I + πA�))



142 9 Protoproducts

For i = 2, the two outer modules are zero by the flatness of A�/πA� → A�/πA�,
whence so is the inner module. Therefore, the relevant part of the long exact Tor
sequence (3.1.4) associated to (9.4) becomes

0 = TorA�
2 (A�/πA�,A�/I) → T

π→ T

showing that π is T -regular, contradicting the fact that πy = 0 in T . 	

The present proof seems to require that Z is a unique factorization domain,

but perhaps this can be circumvented by using [98, Theorem 2] instead of
Theorem 4.2.2, so that we may derive Corollary 9.3.3 for any Dedekind domain,
or even for any Prüfer domain, thus recovering the result in [5, Theorem A]. In
view of Theorem 9.2.10, the previous result applied in the ultrapower case, yields:

Corollary 9.3.3. Let Z be a principal ideal domain and ξ a finite tuple of indeter-
minates. For each n, there exists a uniform bound n′ such that

9.3.3.i. the module of syzygies of any ideal in Z[ξ ] generated by polynomials of
degree at most n, is generated by n′ many tuples all of whose entries have
degree at most n′;

9.3.3.ii. the Z[ξ ]-module of solutions of any homogeneous linear system over
Z[ξ ] of at most n equations in at most n variables with coefficients of
proto-grade at most n, is generated by n′ solutions with entries of proto-
grade at most n′.

	

Similarly, Theorem 9.3.2 applied with all Zw equal to Z together with

Theorem 9.2.10 yields:

Corollary 9.3.4. In Z[ξ ], the module of syzygies of a tuple of polynomials of degree
at most n is generated by n′ tuples whose entries have degree at most n′, for some n′
only depending on n and the number of indeterminates. 	


9.4 Prime Bounded Proto-gradings

Let A be a proto-graded ring, with protopower A� and ultrapower A�. Since the
proto-grading may fail to be cyclically pure, not every ideal of A� is the contrac-
tion of an ideal of A�. Among the contracted ideals in A�, the following class is
particularly nice:

Definition 9.4.1. An ideal a ⊆ A� is called finitary if it is of the form IA� ∩A� for
some finitely generated ideal I ⊆ A�.

Note that a finitary ideal need not be finitely generated. If the proto-grading
is cyclically pure and Noetherian, then any ideal in the protopower is finitary.
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Any finitely generated ideal I ⊆ A� admits an approximation Iw ⊆ A, that is to
say, ideals whose ultraproduct is equal to IA�. We can extend this construction to
finitary ideals of the form a := IA�∩A� with I ⊆ A� finitely generated, by defining
an approximation Iw of a to be any approximation of I. This makes sense since
aA� = IA�. Note that for some n, almost all Iw have proto-grade at most n. This
construction also admits the following converse:

Definition 9.4.2. Given an n and a collection of ideals Iw ⊆ A of proto-grade at
most n, we call I� := I� ∩A� their protoproduct, where I� is the ultraproduct of
the Iw.

Note that I� is finitary by 9.2.2, with approximation Iw, and that I�A� = I�. Un-
like the ideal given by 9.2.2, the protoproduct is uniquely determined by the Iw.
The next definition generalizes the uniform primality results obtained previously
in the case of a polynomial ring over a field (see §4.4.2).

Definition 9.4.3. We call the proto-grading on A prime bounded if the extension
of any finitary prime ideal of A� remains prime in A�.

An easy example of a prime bounded proto-grading is the Kronecker proto-
grading on Z[ξ ]: since the protopower is then just Z[ξ ] (by Proposition 9.1.8), the
result follows from the general fact that any prime ideal in a ring remains prime in
its ultrapower. In view of Theorem 4.3.4, the degree proto-grading on a polyno-
mial ring over a field is prime bounded. For an example where it is necessary that
p be finitary, see the example following Corollary 9.4.9. The property of being
prime bounded is again characterized by a certain uniformity result:

Theorem 9.4.4 (Uniform Primality). For a proto-graded ring A, the following are
equivalent:

9.4.4.i. The proto-grading is prime bounded;
9.4.4.ii. for each n, there exists a uniform bound n′ with the following property:

given an ideal I of proto-grade at most n, the ideal is prime if and only
if for any two elements f and g of proto-grade at most n′, if both do not
belong to I, then neither does their product.

Proof. Suppose the proto-grading is prime bounded, but no bound as in (9.4.4.ii)
exists. Hence for some n, we can find non-prime ideals Iw ⊆ A of proto-grade at
most n, having the property that if a product of two elements of proto-grade at
most w belongs to Iw, then already one of them belongs to Iw. Let a := I� be the
protoproduct of the Iw, that is to say, let I� be the ultraproduct of the Iw, and put
a := I� ∩A�. I claim that a is prime. Indeed, suppose we have elements f ,g ∈ A�

such that f g ∈ a. Choose n′ large enough so that f and g have both proto-grade
at most n′. Let f w,gw be respective approximations of f and g of proto-grade at
most n′. Since f g ∈ I�, almost each f wgw lies in Iw. For those w which are also
bigger than n′, we then have by assumption that one of the two, say f w, belongs
to Iw. It follows that f lies in I�, whence in a, proving the claim. By definition of
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prime boundedness, aA� = I� is then also a prime ideal. However, since the latter
ideal is the ultraproduct of the Iw, almost all of these ideals must be prime ideals
by Łoś’ Theorem, contradiction.

Conversely, suppose a bound to test primality as asserted in (9.4.4.ii) exists and
let p be a finitary prime ideal in A�. We want to show that pA� is also prime. Let
pw ⊆ A be an approximation of p. If almost no pw is prime, then, since almost
all have uniformly bounded proto-grade, there exists by (9.4.4.ii), some n′ and
elements f w,gw ∈ A of proto-grade at most n′ not belonging to pw but whose
product does. If f ,g are their respective ultraproducts, then f and g already lie
in A�. Moreover, by Łoś’ Theorem, f and g do not belong to pA� but their product
does. Since p is finitary, it is equal to pA� ∩A�, and hence f g ∈ p. Therefore, at
least one among f or g belongs to the prime ideal p, contradiction. Hence almost
all pw must be prime ideals, whence so is their ultraproduct pA�, as we wanted to
show. 	


Theorem 9.4.5. Let A be a ring with a faithfully flat, prime bounded, Noetherian
proto-grading, then there exists for each n a uniform bound e := e(n), such that for
any choice of elements a1, . . . ,as of proto-grade at most n, the ideal I := (a1, . . . ,as)
A has at most e minimal prime ideals, each of proto-grade at most e, its radical rad I
has proto-grade at most e, and (rad I)e lies inside I.

Proof. We will prove all properties simultaneously. Assume no bound exists for
some n, so that we can construct, after an application of Corollary 9.2.4, for
each w, a counterexample Iw of proto-grade at most n with radical Jw, so that,
respectively, Jw cannot be realized as the intersection of w prime ideals of proto-
grade at most w, or has proto-grade at least w, or (Jw)w is not contained in Iw.
Let a be the protoproduct of the Iw, and let b be its radical. Since the protopower
A� is by assumption Noetherian, we can find some e such that be ⊆ a. From the
inclusions beA� ⊆ aA� ⊆ bA�, we conclude that both aA� and bA� have the same
radical. Let pi be the (finitely many) minimal prime ideals of a. Since b = p1

∩·· ·∩ps and A� → A� is flat by assumption, [69, Theorem 7.4] yields

bA� = p1A� ∩·· ·∩psA�. (9.5)

Furthermore, each pi is finitary (since by faithful flatness it is equal to piA� ∩A�),
and hence by prime boundedness, piA� is again a prime ideal. In particular, (9.5)
shows that the extended ideal bA� is also radical.

Let bw and piw be approximations of b and pi respectively. By Łoś’ Theorem,
bw = p1w ∩·· ·∩psw, almost all piw are prime, and almost all bw are radical. More-
over, by Łoś’ Theorem, be

w ⊆ Iw ⊆ bw, for almost all w. This shows that almost
each bw is equal to the radical Jw of Iw and the piw are minimal prime ideals of Iw,
contradicting either of our assumptions. 	


The next result provides a larger class of prime bounded proto-gradings, to
which we therefore may apply the previous results.
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Theorem 9.4.6. Let Zw be domains of dimension at most d, and let Z� be their ultra-
product. Let ξ be a finite tuple of indeterminates and let A� be the ultraproduct of the
Aw := Zw[ξ ]. Let I ⊆ Z�[ξ ] be a finitely generated ideal. If p := IA� ∩Z�[ξ ] is prime,
then so is pA�.

In particular, the affine proto-grade on a polynomial ring over a finite dimensional
domain Z is prime bounded.

Proof. Since the Aw are uniformly proto-graded, their protoproduct A� is equal to
Z�[ξ ] by Proposition 9.1.8. In particular, the last assertion follows from the first,
by taking Zw = Z for all w. To prove the first, we induct on d, where the case d = 0
is trivial. Let p be as in the statement, that is to say, a finitary prime ideal of A�,
and let q := p∩Z�. Choose an approximation pw ⊆ Aw of p, and let qw := pw∩Zw.
By Łoś’ Theorem, the ultraproduct of the qw is equal to

pA�∩Z� = (pA�∩A�)∩Z� = p∩Z� = q.

Assume first that q is zero, whence, by Łoś’ Theorem, so are almost all qw.
Let Q� be the field of fractions of Z�. In other words, Q� is the ultraproduct of
the Qw, where Qw is the field of fractions of Zw. Since p∩Z� = (0), the extended
ideal pQ�[ξ ] is also prime. Let B� be the ultrapower of the polynomial ring Q[ξ ].
By Theorem 4.3.4, the extension pB� remains prime. Hence we are done in this
case if we can show that

pA� = pB�∩A�.

To this end, let f be in the right hand side and let f w ∈ Aw be an approximation
of f . It follows that almost each f w lies in pwQw[ξ ]. Hence, for some non-zero
sw ∈ Zw, we have sw f w ∈ pw for almost all w. Since sw cannot belong to pw, as
almost all qw are zero, we must have f w ∈ pw, and therefore f ∈ pA�, as we wanted
to show.

In the remaining case, almost all Z̄w := Zw/qw have dimension strictly less
than d. Since A�/qA� is then the ultraproduct of the polynomial rings Z̄w[ξ ],
our induction hypothesis yields that p(A�/qA�) is prime, whence so is pA� as we
wanted to show. 	


It is worthwhile to formulate the application of Theorem 9.4.4 to the second
part of Theorem 9.4.6 separately:

Theorem 9.4.7. For every finite-dimensional domain A, for every finite tuple of in-
determinates ξ , and for every positive integer n, there exists a uniform bound n′ with
the following property: given an ideal p ⊆ A[ξ ] generated by n polynomials of degree
at most n, if for any two polynomials of degree at most n′ outside p, neither does their
product belong to p, then p is prime. 	


Lemma 9.4.8. Let A be a faithfully flat, Noetherian proto-graded ring with pro-
topower A�. Any associated prime ideal of A� is the extension of an associated prime
ideal of A, whence its extension to the ultrapower A� remains prime.



146 9 Protoproducts

Proof. Let p be an associated prime of A�, say, p = AnnA�
(a). Let aw ∈ A be an

approximation of a, so that almost all aw have proto-grade at most n, for some n.
By Łoś’ Theorem, almost all AnnA(aw) are non-zero. Since A is Noetherian, it
has only finitely many associated primes. Since any minimal prime of a non-zero
AnnA(aw) is an associated prime of A, we conclude that there exists an associated
prime q of A which is minimal over almost all AnnA(aw). Remains to show that
p = qA�.

By (9.2.10.ib), there is a uniform bound n′ only depending on n′, so that each
(AnnA(aw) : q) has proto-grade at most n′. Choose an element sw of this colon
ideal, of proto-grade at most n′ and outside AnnA(aw). Hence, if s is the ultraprod-
uct of the sw, then s∈ A�, and by Łoś’ Theorem, sa �= 0, so that s /∈ p. For y∈ q, we
have swawy = 0, so that by Łoś’ Theorem, say = 0, that is to say, sy∈ p. Since s /∈ p,
we get y ∈ p, showing that qA� ⊆ p. To prove the other inclusion, let x ∈ p and
choose xw ∈ A so that their ultraproduct is x. Since ax = 0, Łoś’ Theorem yields
awxw = 0 for almost all w. In particular, xw ∈ AnnA(aw) ⊆ q, so that by another
application of Łoś’ Theorem, x ∈ qA�. Finally, by faithful flatness of A� → A�, we
get x ∈ qA�. The final assertion is now immediate from Łoś’ Theorem, since qA�

is the ultrapower of q, whence prime.

Since the maximal ideal of the protopower of a Noetherian local ring is fini-
tary and extends to the maximal ideal of the ultrapower, by Lemma 9.1.5, we get
immediately from Lemma 9.4.8:

Corollary 9.4.9. Any faithfully flat, Noetherian proto-grade on a one-dimensional
Noetherian local ring is prime bounded. 	


Here is an example of a prime bounded proto-grading which is degenerated:
the affine proto-grading on Z[ξ ] with ξ a single variable. Namely, in Z�[ξ ], let p
be the ideal generated by 1− 2ξ and the intersection of all powers 2n

Z�[ξ ]. One
checks that p is a prime ideal, but its extension to the ultrapower A� of Z[ξ ] is
the unit ideal. In particular, this implies that p cannot be a finitary ideal.

We finish this section with a uniform elimination result. To this end, we must
first prove some form of transfer result:

Proposition 9.4.10. Let A have a Noetherian, faithfully flat, prime bounded proto-
grading and let a ⊆ A� be an ideal in the protopower, with approximation aw ⊆ A.

9.4.10.i. a is prime (radical) if and only if almost all aw are prime (radical).
9.4.10.ii. a has height h if and only if almost all aw have height h.

Proof. Note that since the proto-grading is Noetherian and faithfully flat, a is
finitary. If a is prime, then so is aA� by prime boundedness, and hence by Łoś’
Theorem, so are almost all aw. Conversely, if almost all aw are prime, then so is
their ultraproduct aA�, whence so is a = aA�∩A�.

If a is radical, then it can be written as a = p1 ∩·· ·∩ps with all pi prime ideals
in A�. Choose an approximation piw of the pi. Since

aA� = p1A� ∩·· ·∩psA�
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by flatness and [69, Theorem 7.4], Łoś’ Theorem yields aw = p1w ∩ ·· · ∩ psw, for
almost all w. By the previous case, almost all piw are prime, showing that almost
all aw are radical. Conversely, suppose almost all aw are radical and an ∈ a. Choose
aw ∈ R whose ultraproduct is a. By Łoś’ Theorem, aw contains an

w, whence aw, for
almost all w. Hence a lies in aA�, and hence by faithful flatness, in a, showing that
a is radical.

To prove (9.4.10.ii), assume first that a is prime, and hence, by the previous
argument, so are then almost all aw. We induct on the height h of a. If h = 0, then
a is a minimal prime of A� and hence the extension of a minimal prime of A by
Lemma 9.4.8. It follows that almost all aw are equal to this minimal prime, and the
assertion is clear in this case. So assume h > 0 and choose a height h−1 prime ideal
p inside a. If pw is an approximation of p, then by induction almost all are height
h− 1 prime ideals. By Łoś’ Theorem, pw � aw, so that almost all aw have height
at least h. Choose some a in a but not in p and let aw ∈ A be an approximation.
In particular, a is a minimal prime of p+aA�. Let gw be a minimal prime ideal of
pw + awA contained in aw (note that by Łoś’ Theorem, aw lies in aw, for almost
all w). By the Krull’s Principal Ideal Theorem, almost all gw have height h. Choose
n sufficiently large so that a and a both have proto-grade at most n, whence so do
almost all aw and aw. By Theorem 9.4.5, therefore, almost all gw have proto-grade
at most n′, for some n′ depending only on n. Let g be their protoproduct, that is
to say, the ideal g� ∩A�, where g� is the ultraproduct of the gw. By (9.4.10.i), the
ideal g is prime. By Łoś’ Theorem and faithful flatness, p+ aA� ⊆ g ⊆ a, so that
g and a, both being minimal prime ideals of p+ aA�, must be equal. Hence also
almost all gw = aw are equal, whence have height h. This proves (9.4.10.ii) for a a
prime ideal.

Assume finally that a is arbitrary, of height h, and let p be a minimal prime
of a, with approximation pw. By Łoś’ Theorem and what we already established,
pw is a height h prime ideal containing aw, for almost all w. It follows that almost
each aw has height at most h. If almost all aw would have height less than h, then
we can choose for each w, a minimal prime gw of aw of that height and of proto-
grade at most n, for some n independent from w, by Theorem 9.4.5, so that by the
same argument as before, the protoproduct of these gw would be a prime ideal of
height less than h containing a, contradiction. 	


Proposition 9.4.11. Let A have a Noetherian, flat proto-grading. For each n, there
exists n′ such that if I and J are ideals of proto-grade at most n, then I ∩ J has proto-
grade at most n′.

Proof. Suppose the assertion is false for some n, so that we can construct coun-
terexamples consisting, for each w, of two ideals Iw,Jw ⊆ A of proto-grade at most
n such that Iw ∩Jw has proto-grade at least w. Let I�,J� ⊆ A� and I�,J� ⊆ A� be the
respective protoproducts and ultraproducts of Iw,Jw ⊆ A. Since A� is by assump-
tion Noetherian, there exist finitely many fi ∈ A� such that I�∩J� = ( f1, . . . , fs)A�.
Let n be the maximum of the proto-grades of the fi and choose, for each i,
an approximation fiw ∈ A of fi of proto-grade at most n. Since A� → A� is flat,
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[69, Theorem 7.4] yields

( f1, . . . , fs)A� = I�A�∩ J�A� = I� ∩ J�

and hence by Łoś’ Theorem, ( f1w, . . . , fsw)Aw = Iw ∩ Jw, contradicting our as-
sumptions for w > n,s. 	


Theorem 9.4.12 (Uniform Elimination). Let A have a Noetherian, faithfully flat,
prime bounded proto-grading. Let ξ be a finite tuple of indeterminates and view A[ξ ]
in its extended degree proto-grading. For each n, there exists a uniform bound n′ so
that any radical ideal P ⊆ A[ξ ] of proto-grade at most n contracts to an ideal P∩A
of proto-grade at most n′.

Proof. By induction on the number of indeterminates, we only need to treat
the case that ξ is a single variable. Since any radical ideal is the intersection
of prime ideals, and their number is bounded by Theorem 9.4.5, we may by
Proposition 9.4.11 reduce to the case that P is a prime ideal. Suppose that for
some n, no bound as claimed exists. Hence we can find prime ideals Pw ⊆ A[ξ ]
of proto-grade at most n such that gw := Pw ∩A has proto-grade at least w. Let B�

denote the ultrapower of A[ξ ]. Recall that the protopower of A[ξ ] is equal to A�[ξ ]
by Proposition 9.1.8. Let P� and P := P� ∩A�[ξ ] be the respective ultraproduct
and protoproduct of the Pw and put p := P∩A�. Whence both P and p are prime
ideals. Choose an approximation pw ⊆ A of p. It follows from Proposition 9.4 and
Łoś’ Theorem that almost each pw is a prime ideal contained in gw, of proto-grade
at most n, for some n independent of w.

If g� is the ultraproduct of the gw, then by Łoś’ Theorem,

g� = PB�∩A�. (9.6)

Let h be the height of P. By [27, Exercise 10.2], the contraction p has height h
if and only if P = pA�[ξ ]. Assuming that this is the case, we have by (9.6) that
g� = pB�∩A�. However, by Łoś’ Theorem, this means that gw = pwA[ξ ]∩A = pw,
contradicting that the gw have unbounded proto-grade.

The remaining possibility is for p to have height h−1. By Proposition 9.4, then
so have almost all pw. We already observed that pw �= gw, and so gw has height at
least h. On the other hand, almost all Pw have height h by Proposition 9.4, so that
by another application of [27, Exercise 10.2], we have Pw = gwA[ξ ]. It follows that
almost all gw then have proto-grade at most n, contradiction. 	




Chapter 10
Asymptotic Homological Conjectures
in Mixed Characteristic

In this final chapter, we discuss some of the homological conjectures. Although
now theorems in equal characteristic, many remain conjectures in mixed char-
acteristic. Whereas there may be no consensus as to which conjectures count as
‘homological’, an extensive list of them together with their interconnections, can
be found in Hochster’s authoritative treatise [43].

We already encountered one of these conjectures—and proved it in equal char-
acteristic; see Theorems 6.4.10 and 7.4.5—, when discussing big Cohen-Macaulay
algebras: the Monomial Conjecture. In fact, Hochster has established most of
the homological conjectures in equal characteristic by means of the existence of
big Cohen-Macaulay modules. Hence probably the ‘mother’ of all homological
conjectures in mixed characteristic is the very existence of a (balanced) big Cohen-
Macaulay module (or, preferably, algebra); the best result to date is the existence
of these up to dimension three (see [46], based upon the positive solution of the
Direct Summand Conjecture in mixed characteristic in dimension three due to
Heitmann [40]).

The ultraproduct method is a priori—but see §10.3.3—insufficiently power-
ful to derive the full versions of these conjectures from their equal characteristic
counterparts. As the idea is to transfer the proven theorems in equal character-
istic to the mixed characteristic case via ultraproducts, but as properties only
hold almost everywhere on the approximations, we will only be able to de-
duce ‘asymptotic’ versions. This roughly amounts to the conjecture holding for
a particular ring of mixed characteristic provided its residue characteristic is suf-
ficiently large with respect to some other invariants associated to the particular
problem. The first successful implementation of this strategy goes back to the
work of Ax-Kochen ([9]), in which they solve a conjecture of Artin over the p-
adics (see Theorem 10.1.3 below). Using the same method, I derived asymptotic
versions of various homological conjectures in mixed characteristic in [91, 97],
where the lower bounds on the residue characteristic are in terms of the degrees
of the polynomials defining the data. In the terminology of these notes, this is
in essence a protoproduct method, and will be discussed in §10.2. However, as in
[101], using cataproducts instead, lower bounds in terms of much more natural
invariants (dimension, multiplicity, etc.) can be derived, and this will be discussed
in §10.3. We conclude with a discussion how our asymptotic bounds can even
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lead to a solution of the full conjectures. Since most of the arguments are outside
the scope of these notes, we will most of the time only discuss the method, and
leave the details of the proofs to the cited sources.

10.1 The Ax-Kochen-Eršhov Principle

10.1.1 Ax-Kochen-Eršhov Principle

One normally states this model-theoretic principle in terms of valued fields, but
for our purposes, it is more natural to phrase it as a certain Lefschetz Principle
for discrete valuation rings, formulated as an isomorphism of certain ultra-discrete
valuation rings (recall that the latter are simply ultraproducts of discrete valuation
rings; see Proposition 2.4.19). In this formalism, the principle states:

Theorem 10.1.1 ([9,29,30]). If V and V ′ are two Henselian ultra-discrete valuation
rings of the same uncountable cardinality with isomorphic residue fields of character-
istic zero, then V ∼= V ′.

We will use this principle in the following form. For each p, let V p be a
complete discrete valuation ring of mixed characteristic, with residue field kp of
characteristic p. Let ξ be a single indeterminate, and put

V eq
p := kp[[ξ ]] (10.1)

We have:

Corollary 10.1.2. The ultraproduct of all V p is isomorphic to that of all V eq
p .

Proof. As stated, one might need to assume the Continuum Hypothesis, but this
can be avoided by taking an ultraproduct with respect to a larger underlying set
than just the prime numbers. All we need is that the ultraproduct V � of the V p has
the same cardinality as the ultraproduct W � of the V

eq
p , and so we will for sake of

simplicity just assume this. Since the residue field of both V � and W � is the field of
characteristic zero k�, given as the ultraproduct of the kp, the desired isomorphism
now follows immediately from Proposition 2.4.19 and Theorem 10.1.1. 	


10.1.2 Artin’s Problem

A field K is called C2 if for every homogeneous polynomial f (ξ ) ∈ K[ξ ] of degree
d in more than d2 variables ξ , there exists a non-trivial solution in K. Lang proved
in [64] that the field of fractions of Fp[[ξ ]] is C2, and Artin conjectured that the
field of p-adics Qp too is C2. However, some counterexamples to the latter conjec-
ture were found, and the optimal result is now:
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Theorem 10.1.3. For each d, there is a bound d′ so that if p is a prime number bigger
than d′, then any homogeneous equation of degree d in more than d2 variables has a
non-trivial solution in Qp.

Proof. The existence of a non-trivial solution of f = 0 in Qp yields after
clearing denominators a non-trivial solution in ring of p-adic integers, Zp.
By Corollary 10.1.2, the ultraproduct of all Zp is equal to the ultraproduct
of the Fp[[ξ ]]. Since the assertion can be formulated by a first-order sentence (de-
pending on d), which holds for all Fp[[ξ ]], it holds in their ultraproduct, whence
in almost all Zp, by a double application of Łoś’ Theorem (here, one needs the
full, model-theoretic version, Theorem 2.3.2). This shows that the exceptional
set of prime numbers for this fixed d must lie outside any ultrafilter. Since any
infinite set belongs to at least one ultrafilter, this exceptional set of prime numbers
must be finite. 	


10.2 Asymptotic Homological Conjectures via Protoproducts

The extent to which Artin’s question has been answered is indicative of what
follows: the truth of a certain property can only be established for sufficiently
large p, depending on the complexity of the data. This is best described using the
formalism of proto-gradings from Chapter 9.

10.2.1 Affine Proto-grade

We will work inside the class ADVR of local affine algebras over a complete discrete
valuation ring. More precisely, a local ring (R,m) belongs to ADVR, if its a local
V -affine algebra with V a complete discrete valuation ring. Recall that this means
that R is a localization of a finitely generated V -algebra with respect to a prime
ideal containing the maximal ideal of V . We will view R with its V -affine proto-
grading. For instance, if R is the localization of V [ξ ] at the maximal ideal generated
by the uniformizing parameter of V and the indeterminates ξ , then Γn(R) consists
of all fractions f/g with f ,g ∈V [ξ ] of degree at most n and g(0) a unit in V .

Although any sequence of rings in ADVR is uniformly proto-graded, and hence
their protoproduct is well-defined, we cannot expect in general for it to capture
much of the information stored in the sequence. For instance, let S be the lo-
calization of V [ξ ,ζ ] at the maximal ideal generated by the indeterminates and
the uniformizing parameter of the discrete valuation ring V , let f n := ξ n − ζ n−1,
and put Rn := S/ f nS. By 9.1.6, the protoproduct R� of the Rn is isomorphic to
S�/ f S� ∩ S�, where S� is the protopower of S and f the ultraproduct of the f n.
Since no multiple of f has finite degree, whence finite proto-grade, f S� ∩ S� = 0,
showing that S� = R�. Of course, what goes wrong in this example is that the f n

have unbounded proto-grade.
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As we will shall see shortly, we can avoid this phenomenon by introducing
the following terminology. For an arbitrary member R of ADVR, say of the form
(V [ξ ]/I)p, we say that R itself has affine proto-grade at most n, if the number of
indeterminates ξ is at most n, and both I and p have proto-grade at most n (re-
call that the latter means that they are generated by at most n elements of degree
at most n).1 There is some ambiguity here in our definition of the affine proto-
grade of a ring, because different affine presentations might yield different values.
However, since we are only interested in uniform behavior, this will not matter.
Depending on the situation, we will also make explicit what it means for some ad-
ditional data to have bounded affine proto-grade. For instance, a homomorphism
ϕ : R → S of rings in ADVR has proto-grade at most n, if both R and S are of the
form (V [ξ ]/I)p and (W [ζ ]/J)q, with V and W complete discrete valuation rings,
with ξ and ζ tuples of indeterminates of size at most n, and with I, J, p and q
ideals (with the latter two prime) of proto-grade at most n, such that R → S is
induced by a homomorphism V [ξ ] → W [ζ ] sending V inside W , and each ξ to a
polynomial of degree at most n. Put differently, there is a homomorphism V →W
which induces a homomorphism R′ := R⊗V W → S making S into a local affine
R′-algebra of proto-grade at most n. In particular, if Rw → Sw are morphisms in
ADVR of proto-grade at most n, then under the induced map among the ultra-
products R� → S�, the image of the protoproduct R� of the Rw lies inside the
protoproduct S� of the Sw. In other words, we showed:

10.2.1 Given morphisms Rw → Sw in ADVR of proto-grade at most n, they induce
a homomorphism R� → S� between the protoproducts. 	


10.2.2 Approximations and Transfer

The method to derive asymptotic properties is a mixture of the methods from
Chapter 4, using ultra-hulls, and Chapter 9, using protoproducts. Crucial to either
method in deriving bounds was a certain flatness result, which in the present
context becomes:

Theorem 10.2.2. If Rw are members of ADVR of affine proto-grade at most n, for
some n, then their protoproduct R� is a local V �-affine algebra, with V � an ultra-discrete
valuation ring, and the canonical map R� → R� to the ultraproduct is faithfully flat.

Proof. Since R� → R� is by construction local, we only need to show its flatness.
Since this is a local question, I claim that we may reduce to the following case: for
each w, let V w be a complete discrete valuation ring, and let Aw := V w[ξ ], viewed
with its affine proto-grading, then the natural homomorphism A� → A� is flat.
Indeed, assuming this flatness result, let Iw ⊆ pw have affine proto-grade at most
n, so that Rw = (Aw/Iw)pw . By 9.2.2, there exist ideals I ⊆ p ⊆ A� whose extension

1 In the articles [91, 97] the affine proto-grade of R was called its (degree) complexity.
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to A� are the ultraproducts of respectively the Iw and pw. Since each pw contains
the uniformizing parameter πw of V w, an application of Theorem 4.3.4 over the
fields V w/πwV w yields that p is prime. By base change, (A�)p → (A�)pA�

is then
faithfully flat. By 9.1.6, the protoproduct of the Aw/Iw is equal to A�/(IA� ∩A�).
Since

I(A�)pA�
∩ (A�)p = I(A�)p

by faithful flatness, we showed that R� = (A�/I)p. Since R� = (A�/IA�)pA�
, flatness

follows by base change. Note that A� = V �[ξ ] by Proposition 9.1.8, where V � is
the ultraproduct of the V w, proving that R� is a local V �-affine algebra.

So remains to show that A� → A� is flat, and this follows from Theorem 9.3.2.
	


As we have observed before, the converse process of constructing an ultra-
product is taking approximations. This also applies here. Let as above V w be
complete discrete valuation rings with ultraproduct V �. Given a local V �-affine al-
gebra R := (V �[ξ ]/I)p, with ξ a finite tuple of indeterminates, I a finitely generated
ideal, and p a prime ideal lying above the maximal ideal of V � and containing I, we
define the approximations of R as follows. Put Aw := V w[ξ ], and let Iw ⊆ pw ⊆ Aw

be respective approximations of I and p. By the argument in the above proof, al-
most each pw is prime. Moreover, if R has affine proto-grade at most n, then almost
all Iw and pw have proto-grade at most n. Hence almost all Rw := (V w[ξ ]/Iw)pw

are well-defined members of ADVR and have proto-grade at most n. It is easy to
check that their protoproduct R� is equal to R. We will therefore refer to the Rw

as approximations of R. These approximations, however, depend on the choice of
components V w of V �, a fact that has to be borne in mind.

We can also look at this construction from an ultra-hull perspective as follows.
In this point of view, the ultraproduct R� of the Rw functions as an ultra-hull
of R, called the ultra-V �-hull of R. By Theorem 10.2.2, this ultra-hull is faith-
fully flat. Note that V � is no longer Noetherian, which will account for some
of the difficulties below in developing the theory, but it is still a valuation ring
by Proposition 2.4.19, of embedding dimension one since its maximal ideal is
generated by the ultraproduct π of the uniformizing parameters πw. In particular,
V �/πV � is a field whence Noetherian, and hence any ideal in the above protoprod-
uct R� containing π is finitely generated. This applies in particular to the maximal
ideal of the protoproduct, showing that the protoproduct has finite embedding
dimension.

10.2.3 Let R� and R� respectively be the protoproduct and ultraproduct of local
affine V w-algebras Rw of affine proto-grade at most n, and let π be the ul-
traproduct of the uniformizing parameters of the V w. Then R�/πR� is the
ultra-hull, in the sense of §4.1, of R�/πR�.

Indeed, we established in the proof of Theorem 10.2.2 that R� is a local V �-
affine algebra of the form (V �[ξ ]/I)p, where V � is the ultraproduct of the V w

and p a prime ideal containing π . Hence R�/πR� is a local k�-affine algebra where
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k� := V �/πV � is the ultraproduct of the residue fields kw of the V w. From the con-
struction of I and p, it follows that the Rw/πwRw are approximations of R�/πR�,
and since their ultraproduct is equal to R�/πR�, the latter is the ultra-hull of
R�/πR�. 	


10.2.3 Equal and Mixed Characteristic Approximations

Let us specialize to the case we will encounter shortly. For each prime number p,
let V p be a complete discrete valuation ring of mixed characteristic with residue
characteristic p, and let V � be their ultraproduct. Let Rp be a local V p-affine alge-
bra of affine proto-grade at most n, and let R� be their protoproduct. As we just
proved, R� is a local V �-affine algebra with approximations Rp and ultra-V �-hull
R�. By Corollary 10.1.2, we may realize V � also as the ultraproduct of the com-
plete discrete valuation rings V eq

p of equal characteristic p (see (10.1)). Hence from
this point of view, R� has approximations defined over the various V eq

p , which
we therefore denote by R

eq
p , and call equal characteristic approximations of the Rp

(note that they have also bounded affine proto-grade). From this point of view,
we then also may refer to the original Rp as mixed characteristic approximations
of R�. The ultraproduct of the Req

p will be denoted Req
� . To distinguish it from R�,

we will call Req
� the equal characteristic ultra-hull of R�, and R� its mixed character-

istic ultra-hull. Similarly, if x ∈ R�, then an equal characteristic approximation of x
means an approximation of x viewed as an element in Req

� , that is to say, elements
xp ∈ Req

p with ultraproduct equal to x. Since by construction R� is also the proto-
product of the R

eq
p , the canonical embedding R� → R

eq
� is again faithfully flat by

Theorem 10.2.2. Of course, we may also reverse the process, going from equal to
mixed characteristic instead.

The fact that both ultra-hulls are faithfully flat over the (common) proto-
product will guarantee a fair amount of transfer between the Rp and their equal
characteristic approximations. The following result is but an example of this.

Theorem 10.2.4. For some n and for each prime number p, let Rp be a local V p-affine
algebra of affine proto-grade at most n over a mixed characteristic complete discrete
valuation ring V p of residue characteristic p, and let Req

p be an equal characteristic
approximation of the Rp. Almost all Rp are regular if and only if almost all Req

p are
regular.

Proof. Because of symmetry, it suffices to show only one direction, and so we may
assume that almost all Rp are regular. Since by assumption each Rp has embedding
dimension less than or equal to its affine proto-grade n, there are only finitely
many possibilities for its dimension, and hence almost all Rp will have the same
dimension, say, d. Let xp be a regular system of parameters of Rp. Note that in
particular each xp is an Rp-regular sequence (of length d) minimally generating
the maximal ideal. By construction, we may choose its entries to be of proto-
grade (=degree) at most n, for all p. Hence their ultraproduct x := (x1, . . . ,xd)
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has entries in the protoproduct R�. By faithful flatness, moreover, xR� = xR� ∩R�

is the maximal ideal of R�. Let R
eq
p be equal characteristic approximations of the

Rp, let R� and Req
� be the respective ultraproducts of Rp and Req

p , and let xeq
p :=

(x1
eq
p , . . . ,xd

eq
p ) be equal characteristic approximations of x, that is to say, tuples

in Req
p whose ultraproduct is equal to x, where we view the latter as a tuple over

Req
� via the canonical embedding R� → Req

� . By Łoś’ Theorem, almost each xeq
p

generates the maximal ideal of Req
p . So remains to show that almost each xeq

p is
a regular sequence, whence a regular system of parameters. Fix some i ≤ d, let
Ieq

p := (x1
eq
p , . . . ,xi−1,

eq
p )Req

p , and, towards a contradiction, assume zeq
p xi

eq
p ∈ Ieq

p , for
some z

eq
p not in I

eq
p . Let I := (x1, . . . ,xi−1)R�. Since x is an R�-regular sequence by

Łoś’ Theorem, (IR� : xi) = IR�. Since R� → R� is faithfully flat by Theorem 10.2.2,
we also have (IR� : xi) = (I : xi)R� by Theorem 3.3.14. Faithful flatness then yields
(I : xi) = I. On the other hand, by Łoś’ Theorem, the ultraproduct z ∈ Req

� of
the zeq

p belongs to (IReq
� : xi) but not to IReq

� . Since also R� → Req
� is faithfully flat,

another application of Theorem 3.3.14 yields (IReq
� : xi) = (I : xi)R

eq
� , which is then

equal to IReq
� by what we just proved. Hence, z lies in IReq

� , contradiction. 	


To formulate analogous transfer results for arbitrary rings, we have to also face
the complications encountered in Chapter 8, where the ultraproduct (and hence
the protoproduct and the equal characteristic approximations) may have larger
geometric dimension than the components. To control this bad behavior, one has
to also bound the parameter degree. In the present setup, this is in fact easier, as the
below domain case (Proposition 10.2.6) shows; we refer to [97, §6] for a discussion
of the general case. A second complication arises from the fact that protoproducts
are hardly ever Noetherian. The same obstacle for ultraproducts was overcome
by passing to the cataproduct, that is to say, by taking the separated quotient, and
so we will follow the same strategy. This leads to the following notion:

10.2.4 Cataprotoproducts

Let Rw be V w-algebras in ADVR of proto-grade at most n and let R� be their proto-
product. We define their cataprotoproduct as the separated quotient R�� := R�/IR�

.

10.2.5 The cataprotoproduct R�� of V w-algebras of bounded proto-grade Rw is a
Noetherian local ring, equal to R�/IV �

R�, where V � is the ultraproduct of
the V w. Moreover, if R� is a domain, then R�� has the same dimension as
almost all Rw.

Indeed, by Proposition 2.4.19, the cataproduct V � := V �/IV �
of the discrete

valuation rings V w is a discrete valuation ring, whence in particular Noetherian.
Since R�/IV �

R� is finitely generated over V �, it too is Noetherian. Hence, IV �
R� =

IR�
by Theorem 2.4.14 and R�� is Noetherian. To calculate its dimension in case

R� is a domain, note that π is R�-regular since R� → R� is flat by Theorem 10.2.2,
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where π is the ultraproduct of the uniformizing parameters πw of the V w. By
Łoś’ Theorem, almost all πw are therefore Rw-regular. Let us show that π is also
R��-regular: if x ∈ R� is such that πx ∈ IR�

= IV �
R�, then for each n, almost all

πwxw ∈ πn
wRw, where xw ∈ Rw are approximations of x of bounded proto-grade.

Since almost each πw is Rw-regular, xw ∈ πn−1
w Rw, for every n, and hence, by Łoś’

Theorem, x ∈ IR�
. Since x ∈ R� and R� → R� is flat, we get x ∈ IR�

, showing that π
is R��-regular.

Suppose almost all Rw have dimension d, whence almost all Rw/πwRw have di-
mension d−1. By 10.2.3, the Rw/πwRw are approximations of R�/πR�

∼= R��/πR��,
and therefore the latter also has dimension d−1 by Corollary 4.3.3. Since π is R��-
regular, R�� has therefore also dimension d. 	

Proposition 10.2.6. For some n and for each prime number p, let Rp be a local V p-
affine algebra of affine proto-grade at most n over a mixed characteristic complete
discrete valuation ring V p of residue characteristic p, and let Req

p be an equal char-
acteristic approximation of the Rp. Then almost all Rp are domains if and only if
almost all Req

p are. Moreover, if this is the case, then almost all Rp and Req
p have the

same dimension.

Proof. The second assertion follows from the first and 10.2.5 since both approxi-
mations have the same protoproduct whence cataprotoproduct. So, it suffices to
show that the protoproduct R� is a domain if and only if its approximations (of
either type) are. Since R� ⊆ R�, one direction in the equivalence is immediate.
So assume R� is a domain, and we need to show that then so is R�. Let V � be the
ultraproduct of the V p, let π ∈ V � be a generator of its maximal ideal with ap-
proximations π p ∈ V p, and let Q� be the field of fractions of V �. If π = 0 in R�,
then R� is in fact a local affine algebra over the residue field V �/πV �, and hence
R� is a domain by Theorem 4.3.4. Moreover, the Rp are then the approximations
of R�, whence almost all have dimension d by Corollary 4.3.3. So we may assume
π �= 0 in R�. Since R� is a domain, π is then R�-regular. I claim that R� is there-
fore torsion-free over V �. Indeed, suppose x ∈ R� is annihilated by some non-unit
a ∈ V �. Let ap ∈ V p and xp ∈ Rp be approximations of a and x respectively. By
Łoś’ Theorem, almost each ap is a non-unit and annihilates xp. Hence, π pxp = 0,
which in turn by Łoś’ Theorem implies that πx = 0. Since π is R�-regular, we get
x = 0, as claimed.

In particular, R�⊗V �
Q� is again a domain. By Theorem 4.3.4 once more, R�⊗V �

Q� being the ultra-hull of R� ⊗V �
Q�, is a domain too. On the other hand, since

R� → R� is faithfully flat, R� is torsion-free over V � by Theorem 3.3.14. Hence the
natural map R� → R�⊗V �

Q� is injective, showing that R� is a domain. 	


As a further illustration of the connection between mixed and equal character-
istic approximations, we prove:

10.2.7 With notation as before, the cataproduct of the Rp is isomorphic to the
cataproduct of the equal characteristic approximations Req

p . In fact, their
cataproduct is equal to the completion of their protoproduct.
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It suffices to prove the second assertion, so let R�, R��, R� and R� be the equal
characteristic chromatic products of the Rp. The map R� → R� induces by base
change a map R�� → R�, leading to a chromatic square

�

�

�
�

R�R�

R�.R��

(10.2)

At the cost of adding some extra variables representing the generators of its max-
imal ideal—which at most doubles the affine proto-grade—we may write each Rp

as the localization of V p[ξ1, . . . ,ξs]/I p with respect to the prime ideal generated
by π p and the first i variables ξ1, . . . ,ξi, for some ideal I p of affine proto-grade at
most n. Replacing V p then by the discrete valuation ring given as the completion
of V p[ξi+1, . . . ,ξs] with respect to the ideal generated by π p, we may assume that
i = s. By a similar calculation as in Example 8.1.6, the cataproduct R� is equal to
V �[[ξ ]]/IV �[[ξ ]], where I ⊆V �[ξ ] is the protoproduct of the I p. On the other hand,
R� is the localization of V �[ξ ]/I at the ideal generated by π and the variables, and
hence the cataprotoproduct R�� is the corresponding localization of V �[ξ ]/IV �[ξ ],
showing that the completion of the latter is equal to R�. Since R� and R�� have the
same completion, the result follows. 	


10.2.5 Asymptotic Direct Summand Conjecture

Let P be a property of Noetherian local rings and some additional finite amount
of data (to be made precise in each case). In the terminology of affine proto-grade
(see §10.2.1), we can now define what it means for a property to hold asymptoti-
cally.

Definition 10.2.8. We will say that property P holds asymptotically in mixed
characteristic, if for each n, there exists n′ only depending on n, such that a Noethe-
rian local ring of mixed characteristic R in ADVR satisfies P provided its residue
characteristic p is at least n′, where R and the additional data have affine proto-
grade at most n.

We will illustrate this terminology by means of the Direct Summand
Conjecture, which states that given a finite extension of local rings R → S, if
R is regular, then R is a direct summand of the R-module S (the reader should
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convince him/herself that this is weaker than saying that R → S is split). The
Direct Summand Conjecture is related to another of the homological conjec-
tures, to wit the Monomial Conjecture, which we already encountered before
(see Theorems 6.4.10 and 7.4.5, and also 10.2.13 below):

Theorem 10.2.9 (Direct Summand Conjecture). If S is a Noetherian local ring
for which the Monomial Conjecture holds, then for any finite extension R ⊆ S with R
regular, R is a direct summand of S.

In particular, the Direct Summand Conjecture holds for any Noetherian local ring
of equal characteristic.

Proof. The second assertion follows from the first, in view of Theorem 7.4.5.
To prove the first, one shows that R is a direct summand of S if and only if some
regular system of parameters of R is monomial when viewed as a tuple in S; see
[17, Lemma 9.2.2]. 	


In mixed characteristic, the Direct Summand Conjecture is still wide open, but
we can now show:

Theorem 10.2.10. The Direct Summand Conjecture holds asymptotically in mixed
characteristic.

Proof. Let us be more precise as to the exact statement. There exists for each n
a uniform bound n′ with the following property. Let V be a complete discrete
valuation ring of mixed characteristic, let R and S be local V -affine algebras of
affine proto-grade at most n, such that R ⊆ S is a finite extension and R is regular.
Now, if the residue characteristic of R is at least n′, then R is a direct summand
of S. Here we must view the affine proto-grade of S via its presentation as a finite
R-module. In order to prove this, we suppose by way of contradiction that no such
bound exists for n. Hence we can find for each prime number p a counterexample
consisting of a complete discrete valuation ring V p of residue characteristic p, and
local V p-affine algebras Rp ⊆ Sp of affine proto-grade at most n with Rp regular
and Sp finitely generated as an Rp-module, such that Rp is not a direct summand
of Sp. Let R� ⊆ S� be the respective protoproducts. It is not hard to show that
this is again a finite extension. Let V � be the ultraproduct of the V p, so that by
the above discussion R� and S� are local V �-affine algebras. Let Req

p and Seq
p be

the equal characteristic approximations of the Rp and Sp respectively, and let Req
�

and S
eq
� be their respective ultraproducts. By Theorem 10.2.4, almost all R

eq
p are

regular. Moreover, it is not hard to show that Req
p → Seq

p is a finite extension for
almost all p. By Theorem 10.2.9, almost each Req

p is a direct summand of Seq
p , and

by Łoś’ Theorem, this in turn implies that Req
� is a direct summand of Seq

� . By
faithful flatness (Theorem 10.2.2), this then yields that R� is a direct summand of
S�, whence R� is a direct summand of S�, and by Łoś’ Theorem, we finally arrive
at the contradiction that almost each Rp is a direct summand of Sp. 	
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10.2.6 The Asymptotic Weak Monomial Conjecture
and Big Cohen-Macaulay Algebras

To prove an asymptotic version of the Monomial Conjecture, we introduce
the following terminology. Let (R,m) be a local ring of finite embedding di-
mension. Recall that the Monomial Conjecture holds in R if every system of
parameters is monomial, that is to say, satisfies (6.9) (see the discussion preced-
ing Theorem 6.4.10). By a strong system of parameters x in R, we mean a system
of parameters of R which is also part of a minimal system of generators of m. In
other words, if R has geometric dimension d and embedding dimension e, then
a d-tuple x is a strong system of parameters if and only if R/xR is an Artinian
local ring of embedding dimension e− d. We say that the weak Monomial Con-
jecture holds in R if some strong system of parameters is monomial. Even this
weak version is not known to hold in general for Noetherian local rings of mixed
characteristic (the monomial systems of parameters given by Remark 6.4.11 never
generate the maximal ideal when t > 1).

Before we prove an asymptotic version of this weaker conjecture, we must in-
troduce big Cohen-Macaulay algebras in the present setup. We call an R-algebra B
a big Cohen-Macaulay algebra if some system of parameters is a B-regular sequence,
and a balanced big Cohen-Macaulay algebra if any system of parameters is B-regular.
The Monomial Conjecture holds in any local ring admitting a balanced big Coh-
en-Macaulay algebra by the argument in proof of Theorem 6.4.10. In the course
of our proof, we also will encounter an ‘ultra’ version of this conjecture: we say
that a tuple (x1, . . . ,xd) in an ultra-Noetherian local ring R is ultra-monomial, if

(x1 · · ·xd)α−1 /∈ (xα
1 , . . . ,xα

d )R

for every positive ultra-integer α ∈ N� (see §2.4.4 for the definition of ultra-
exponentiation). We say that the weak ultra-Monomial Conjecture holds in R, if
R admits a strong system of parameters x which is ultra-monomial; and the ultra-
Monomial Conjecture holds in R, if any system of parameters is ultra-monomial.

Proposition 10.2.11. For some n and for each prime number p, let Rp be a local
V p-affine domain of affine proto-grade at most n over a mixed characteristic complete
discrete valuation ring V p of residue characteristic p. Then the protoproduct R� of the
Rp admits a balanced big Cohen-Macaulay algebra B(R�). In particular, the Monomial
Conjecture holds in R�.

Furthermore, B(R�) := B(R�)⊗R�
R� is a big Cohen-Macaulay algebra over the

ultraproduct R� of the Rp, and the weak ultra-Monomial Conjecture holds in R�.

Proof. Let Req
p be equal characteristic approximations of the Rp. By

Proposition 10.2.6, almost all Req
p are domains, and hence almost each (Req

p )+

is a balanced big Cohen-Macaulay algebra by Theorem 6.4.1. Let B(R�) be the
ultraproduct of the (Req

p )+. Let d be the geometric dimension of R�, and let x be
a system of parameters in R� with equal characteristic approximation xeq

p (so that
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each xeq
p is a d-tuple in Req

p ). By Proposition 10.2.6 (and using the same argument
as in the proof of Corollary 4.3.8), almost all R

eq
p as well as R� have geometric

dimension d. In particular, x is also a system of parameters in R�, which is strong
if and only if the original system is. Furthermore, by 2.4.11, almost each xeq

p is
a system of parameters in Req

p , whence (Req
p )+-regular. By Łoś’ Theorem, x is

therefore B(R�)-regular, as we wanted to show. The second assertion follows since
any (permutable) regular sequence is monomial.

Since R� → R� is flat by Theorem 10.2.2, so is the base change B(R�) → B(R�).
Since x is B(R�)-regular, it is also B(R�)-regular by Proposition 3.2.9. This proves
that B(R�) is a big Cohen-Macaulay algebra over R�. It is not clear whether this
is in fact a balanced big Cohen-Macaulay algebra (as we only proved regularity
for systems of parameters coming from R�), but we will construct such an algebra
for a large class of ultra-rings, which includes the present case, in 10.3.2 below.
Contrary to our present construction, the latter will no longer contain R� as a
subring.

Finally, assume x is strong. I claim that, since x = (x1, . . . ,xd) is B(R�)-regular
by our previous discussion, so is any ‘ultra-exponential power’ of x, that is to
say, any tuple of the form xβ := (xβ1

1 , . . . ,xβd
d ) for β := (β1, . . . ,βd) ∈ Nd

� . Indeed,
letting β p ∈ Nd be an approximation of β , then (xeq

p )β p is (Req
p )+-regular, for all

those p for which xeq
p is (Req

p )+-regular. The claim then follows from Łoś’ The-
orem. Moreover, any permutation of these ultra-exponential powers is then also
B(R�)-regular, since any permutation of x is also a strong system of parameters. By
flatness, all ultra-exponential powers xβ are permutable B(R�)-regular sequences.
It is not hard to see, that x must therefore be ultra-monomial in B(R�), whence in
R�. 	

Remark 10.2.12. Since any local V �-affine algebra is a protoproduct, any such al-
gebra therefore admits a balanced big Cohen-Macaulay algebra.

Theorem 10.2.13. The weak Monomial Conjecture holds asymptotically for do-
mains of mixed characteristic.

Proof. Suppose not, so that for some n, we can find for each p, a mixed charac-
teristic complete discrete valuation ring V p of residue characteristic p, and a local
V p-affine domain Rp of affine proto-grade at most n, such that any strong system
of parameters fails to be monomial. Let R� and R� be the respective protoproduct
and ultraproduct of the Rp. Let x be a strong system of parameters in R� with
approximation xp. By Proposition 10.2.6, almost all Rp and R� have the same ge-
ometric dimension as well as the same embedding dimension. Therefore, almost
each xp is a strong system of parameters in Rp. Hence, by assumption, almost
each xp fails to satisfy (6.9) for at least one exponent, say k = α p. Let α ∈ N� be
the ultraproduct of the α p, so that by Łoś’ Theorem, we have

(x1 · · ·xd)α−1 ∈ (xα
1 , . . . ,xα

d )R�,

contradicting the last statement in Proposition 10.2.11. 	
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In the papers [91, 97] many more homological conjectures are proven to hold
asymptotically, including the Hochster-Roberts Conjecture, and we conclude
with a brief discussion of the latter. To this end, we need to study the singularity
theory of ultra-rings. This is done in greater generality in [91, 97, 101], but here
we only discuss what we need to prove an asymptotic version of the conjecture.

10.2.7 Pseudo-singularities

Let (R,m) be a local ring. For our purposes, we define the (naive) depth of R as
the maximal length of an R-regular sequence—in a more general setup this is the
wrong definition,2 but it is fine if R is an ultra-ring, the only case we are interested
in. We call R pseudo-regular if it has the same depth as embedding dimension, and
pseudo-Cohen-Macaulay if it has the same depth as geometric dimension. Equiva-
lently, R is respectively pseudo-regular or pseudo-Cohen-Macaulay, if there exists
an R-regular sequence which generates the maximal ideal, respectively, which
is a system of parameters. In particular, a pseudo-regular local ring is pseudo-
Cohen-Macaulay. Note that in the Noetherian case, these two conditions simply
become regular and Cohen-Macaulay, respectively. It is an easy consequence of
Łoś’ Theorem that an ultraproduct of regular local rings of the same dimension
is pseudo-regular. As for an ultraproduct R� of Cohen-Macaulay local rings Rw, it
is necessary that both their dimension and their multiplicity be bounded, say by
d and l respectively, for R� to be pseudo-Cohen-Macaulay. Indeed, in that case, we
can choose a system of parameters xw of length d in each Rw such that Rw/xwRw

has length at most l, and hence, so does their ultraproduct R�/x�R� by Propo-
sition 2.4.17, where x� is the ultraproduct of the xw. Hence R� has geometric
dimension d by 8.1.2, and since x� is R�-regular by Łoś’ Theorem, R� is pseudo-
Cohen-Macaulay.

Example 10.2.14. A note of caution: a pseudo-regular local ring need not be a
domain. Let (V,π) be a discrete valuation ring with ultrapower V �. Let J ⊆V � be
the ideal generated by all πω−i for i = 0,1, . . . , where

πω−i := ulim
n→∞

πn−i.

Although J is contained in IV �
, it is not equal to it: the ultraproduct

z := ulim
n→∞

π int(n/2)

2 The correct definition of the depth of R is n−h, where h is the largest value i for which the i-th
Koszul homology Hi(x;R) is non-zero, and where x is an n-tuple generating the maximal ideal.
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does not belong to J (where int(r) denotes the integer part of a real number r).
Nonetheless z2 ∈ J, showing that R :=V �/J is not a domain, and, in fact, not even
reduced. However, π is R-regular, for if πx ∈ J for some x ∈V �, then πx = πω−iu
for some unit u ∈ V �, and hence x ∈ πω−i−1V � ⊆ J. Since π also generates the
maximal ideal of R, the latter is pseudo-regular. Since J is not an ultra-ideal, R is
not an ultra-ring (and neither is it a local affine V �-algebra, since I is infinitely
generated).

As before, let Rp be a local V p-affine algebra of affine proto-grade at most n over
a mixed characteristic complete discrete valuation ring V p of residue characteristic
p, and let R� and R� be their respective protoproduct and ultraproduct. Let V � be
the ultraproduct of the V p, so that R� is a local V �-affine algebra, and let π be a
generator of the maximal ideal of V �. We have the following two transfer results.

Proposition 10.2.15. Almost all Rp are regular if and only if R� is a pseudo-regular
domain.

Proof. Since regular local rings are always domains, and since their protoprod-
uct lies inside their ultraproduct, the former is a domain, because the latter is by
Łoś’ Theorem. This proves the necessity of the domain condition. In particular,
almost all Rp have dimension d ≤ n, equal to the geometric dimension of R� by
Proposition 10.2.6. If almost each Rp is regular, then there exists an Rp-regular se-
quence xp of length d generating the maximal ideal. Moreover, the entries of this
regular sequence, by definition of proto-grade, may be chosen to have proto-grade
at most n. Hence the ultraproduct x� of the xp lies already in R�, and generates the
latter’s maximal ideal by the flatness of R� →R� (see the proof of Theorem 10.2.4).
Moreover, by Łoś’ Theorem, x� is an R�-regular, whence R�-regular sequence. Con-
versely, if x is a regular sequence of length d generating the maximal ideal of R�,
then it is R�-regular by flatness, and hence almost all its approximations are regu-
lar sequences generating the maximal ideal, that is to say, almost all Rp are regular.
	


Together with our previous discussion, this shows that all chromatic powers of
a regular local ring in ADVR are pseudo-regular.

Proposition 10.2.16. If R� is a domain, then almost all Rp are Cohen-Macaulay if
and only if R� is pseudo-Cohen-Macaulay.

Proof. As in the previous proof, the domain condition allows us to assume that R�

and almost all Rp have geometric dimension d. If R� is pseudo-Cohen-Macaulay,
that is to say, has depth d, then so does R�, by flatness, whence so do almost all Rp

by Łoś’ Theorem, proving that they are Cohen-Macaulay. To complete the proof,
we now simply reverse this argument. 	


We also need a flatness result:

Theorem 10.2.17. If R� is pseudo-regular, then the natural map R� → B(R�) is faith-
fully flat.
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Proof. We will use the equational criterion for flatness, Theorem 3.3.1. Let L be
a linear form in n indeterminates with coefficients in R� and let b be a solution in
B := B(R�) of L = 0. Let Req

p , Leq
p and beq

p be equal characteristic approximations
of R�, L and b respectively. By Łoś’ Theorem, beq

p is a solution in (Req
p )+ of the

linear equation Leq
p = 0. By Corollary 9.3.3, we can find tuples a1

eq
p , . . . ,as

eq
p over

Req
p generating the module of solutions of Leq

p = 0, all of proto-grade at most c, for
some c independent from p and s. Let a1, . . . ,as be the respective ultraproducts,
which are therefore defined over R�. By Łoś’ Theorem, L(ai) = 0, for each i. On
the other hand, almost all Req

p are regular, by (the equal characteristic variant of)
Proposition 10.2.15. Therefore, R

eq
p → (Req

p )+ is flat by Theorem 3.3.9. Hence we
can write beq

p as a linear combination over (Req
p )+ of the ai

eq
p . By Łoś’ Theorem,

b is then a B-linear combination of the solutions ai, showing that R� → B is flat
whence faithfully flat. 	


Proposition 10.2.18. Let R → S be a local homomorphism of local V �-affine
domains, and put R̄ := R/πR and S̄ := S/πS. If R̄ → S̄ is cyclically pure and S
is pseudo-regular, then R is pseudo-Cohen-Macaulay.

Proof. If π = 0 in R, then R and S are equal characteristic Noetherian local rings,
a case already dealt with (Theorem 7.3.3). In the remaining case, π is R-regular,
whence part of a system of parameters of R by the argument in the proof of
10.2.5 (note, contrary to the Noetherian case, not every regular element is a pa-
rameter!). So we may choose a system of parameters (x1 := π ,x2, . . . ,xd) of R. By
Remark 10.2.12, this system of parameters is B(R)-regular, and we want to show
that it is in fact R-regular. So suppose rxi ∈ J := (x1, . . . ,xi−1)R for some i ≥ 1 and
some r ∈ R, and we need to show r ∈ J. The case i = 1 is immediate, since R is a
domain, and so we may assume π ∈ J. Since x is B(R)-regular, r belongs to JB(R)
whence to JB(S), since we have a commutative diagram

�

�

�
�

SR

B(S)B(R)

(10.3)

by the same argument proving (6.8). By Theorem 10.2.17, the map S → B(S) is
flat, whence cyclically pure, and so r ∈ JB(S)∩ S = JS. Finally, since R̄ → S̄ is
cyclically pure, r ∈ JS̄∩ R̄ = JR̄, whence r ∈ J, as we wanted to show. 	


Theorem 10.2.19. For each n, there exists a uniform bound n′ such that if R → S is a
cyclically pure homomorphism of affine proto-grade at most n of mixed characteristic
local rings in ADVR, and if S is regular, then R is Cohen-Macaulay provided its residue
characteristic is at least n′.
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Proof. Suppose the assertion is false for n, so that we can find, for each p, a
mixed characteristic, complete discrete valuation ring V p of residue characteristic
p, and a cyclically pure homomorphism Rp → Sp of mixed characteristic local V p-
domains of affine proto-grade at most n (that is to say, the rings have proto-grade
at most n and the morphism between them is given by elements of proto-grade
at most n), with Sp regular but Rp not Cohen-Macaulay. Let R� and S� be the re-
spective protoproducts of the Rp and Sp. By our assumption on the proto-grade,
we have, by 10.2.1, an induced homomorphism R� → S�. By Proposition 10.2.15,
the protoproduct S� is pseudo-regular. I claim that R�/πR� → S�/πS� is cyclically
pure, where π is the ultraproduct of uniformizing parameters of the V p. Assum-
ing the claim, R� is then pseudo-Cohen-Macaulay by Proposition 10.2.18, whence
almost all Rp are Cohen-Macaulay by Proposition 10.2.16, contradiction.

So, remains to prove the claim, and to this end, it suffices to show that if I ⊆ R�

is an ideal containing π , then IS� ∩R� = I. Let r ∈ IS� ∩R�, and choose approxi-
mations I p ⊆ Rp and rp ∈ Rp of I and r respectively. By Łoś’ Theorem, rp lies in
I pSp ∩Rp and the latter is equal to I p by assumption. Hence r ∈ IR�, where R�

is the ultraproduct of the Rp, and hence, by faithful flatness of R� → R� (Theo-
rem 10.2.2), we get r ∈ I, as we wanted to show. 	


For a variant of this result, which holds only for R of dimension three, but
without any restriction on its proto-grade, see Theorem 10.3.5 below.

10.3 Asymptotic Homological Conjectures via Cataproducts

We now discuss a second method for obtaining asymptotic properties in mixed
characteristic, via cataproducts. Moreover, this method, when applicable, will give
sharper results, where the residue characteristic has to be only large with respect
to some more natural invariants than the affine proto-grade, and where in fact we
no longer need to assume that the ring is affine. Moreover, there is a second ver-
sion, where this time not the residue characteristic, but the ramification index (see
below) has to be sufficiently large. Unfortunately, asymptotic versions of some of
the homological conjectures, like the Direct Summand and the Monomial Con-
jecture that were treated by the previous method, elude at present treatment by
the cataproduct method.

10.3.1 Ramification

Let us first discuss how to go from mixed to equal characteristic by means of
cataproducts. One way, of course, is already quite familiar to us: the cataproduct
of local rings of different residue characteristic has (residue) characteristic zero.
However, there is a second way. Given a local ring (R,m) of residue character-
istic p, we call the m-adic order of p its ramification index, that is to say, the
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ramification index of R is the largest n such that p ∈ mn. If the ramification index
is one, we call R unramified, and if the ramification index is infinite (that is to
say, p is an infinitesimal, including the case that p = 0, the equal characteristic
case), we say that it is infinitely ramified. Since a Noetherian local ring does not
have non-zero infinitesimals, being infinitely ramified is the same as having equal
characteristic, but not so for arbitrary local rings, and here lies the clue to obtain
equal characteristic cataproducts:

10.3.1 Let Rw be mixed characteristic local rings of bounded embedding dimen-
sion, with residue characteristic p. If the Rw have unbounded ramification
index (that is to say, if, for all n, almost all Rw have ramification index at
least n), then the cataproduct R� has equal characteristic p.

Indeed, the ultraproduct is infinitely ramified by Łoś’ Theorem, whence the
cataproduct has equal characteristic p, as it is Noetherian by Theorem 8.1.4.
Balanced big Cohen-Macaulay algebras are available in this setup too:

10.3.2 If an ultra-Noetherian local ring R has either equal characteristic or is in-
finitely ramified, then it admits a balanced big Cohen-Macaulay algebra
B(R).

Indeed, under either assumption, the separated quotient R� is an equal char-
acteristic Noetherian local ring by Theorem 8.1.4. If p is a maximal dimensional
prime ideal in R�, then any system of parameters in R remains one in R� whence in
R�/p, and therefore is B(R�/p)-regular by Theorem 7.4.4. Hence B(R) := B(R�/p)
yields the desired balanced big Cohen-Macaulay algebra. 	


10.3.2 Asymptotic Improved New Intersection Conjecture

The last of the homological conjectures that we will discuss is an ‘intersec-
tion’ conjecture. The original conjecture, called the Intersection Conjecture was
proven by Peskine and Szpiro in [75], using properties of the Frobenius in posi-
tive characteristic, and lifting the result to characteristic zero by means of Artin
Approximation (virtually the same lifting technique as for HH-tight closure dis-
cussed in §5.6). Hochster and others (see, for instance, [31, 43, 44, 56]) formulated
and subsequently proved generalizations of this result in equal characteristic,
called ‘new’ and ‘improved’ intersection theorems. In fact, the New Intersection
Theorem (whence also the original one) was established in mixed characteristic
as well by Roberts in [79]. However, the most general of them all, the so-called
Improved New Intersection Conjecture is only known to hold in equal character-
istic. It is concerned with the length of a finite free complex with finite homology.
Its asymptotic version reads:

Theorem 10.3.3 (Asymptotic Improved New Intersection Theorem). For each
triple of non-negative integers (m,r, l), there exists a uniform bound e(m,r, l) with the
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following property. Let R be a Noetherian local ring of mixed characteristic and let
F• be a finite complex of finitely generated free R-modules. Assume R has embedding
dimension at most m and each module in F• has rank at most r.

If each Hi(F•), for i > 0, has length at most l and if H0(F•) has a minimal generator
generating a submodule of length at most l, then the dimension of R is less than or
equal to the length of the complex F•, provided R has either residue characteristic or
ramification index at least e(m,r, l).

Proof. We will give the proof modulo one result, Theorem 10.3.4 below. Since
the dimension of R is at most m, there is nothing to show for complexes of length
m or higher. Suppose the result is false for some triple (m,r, l), so that we can find
for each w a counterexample consisting of a dw-dimensional mixed characteristic
Noetherian local ring Rw of embedding dimension at most m such that each Rw

has either residue characteristic or ramification index at least w, and a complex Fw•
of length sw ≤ m consisting of finitely generated free Rw-modules of rank at most
r such that all its higher homology has length at most l and such that its cokernel
admits a minimal generator μw generating a submodule of length at most l, but
such that sw < dw. Let R� and R� be the respective ultraproduct and cataproduct
of the Rw, and let μ , s and d be the ultraproduct of the μw, sw and dw respectively.
In particular, s < d ≤ m and almost all sw and dw are equal to s and d respectively.
By 8.1.2, the geometric dimension of R� is at least d. Let F• be the ultraproduct
of the complexes Fw•. Since the ranks are at most r, each module in F• will be a
free R�-module of rank at most r. Since ultraproducts commute with homology
(Theorem 3.1.1) and preserve uniformly bounded length by the module version
of Proposition 2.4.17, the higher homology Hi(F•) has finite length (at most l)
and so has the R�-submodule of H0(F•) generated by μ . In particular, F• is acyclic
when localized at a non-maximal prime ideal, so that s is at least the geometric
dimension of R� by Theorem 10.3.4 below, and hence s ≥ d, contradiction. 	


For the homological terminology used in the next result, see §3.1.2.

Theorem 10.3.4. Let (R,m) be an ultra-Noetherian local ring, and assume R has
either equal characteristic or is infinitely ramified. Let F• be a finite complex of finitely
generated free R-modules, and let M be its cokernel. If F• is acyclic when localized at
any prime ideal of R different from m, and if there exists a non-zero minimal generator
of M whose annihilator is m-primary, then the geometric dimension of R is less than
or equal to the length of F•.

Proof. The proof is really just a modification of the classical proof (see [101,
Corollary 10.9] for details). As with most homological conjectures, they become
easy to prove if the ring is moreover Cohen-Macaulay, and in this particu-
lar instance, this is because of the Buchsbaum-Eisenbud Acyclicity Criterion
([17, Theorem 9.1.6]). It was Hochster’s ingenious observation that instead of the
ring being Cohen-Macaulay, it suffices for the proofs to go through that there
exists a balanced big Cohen-Macaulay module. In the present situation, this is
indeed the case due to 10.3.2. 	
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We conclude with a variant of the asymptotic Hochster-Roberts Theorem
(see Theorem 10.2.19). Since big Cohen-Macaulay algebras are known to exist
in dimension three, this theorem is therefore valid when R ⊆ S both have dimen-
sion at most three. If we allow arbitrary dimension for S, then we can get the
following asymptotic result. To compare this with Theorem 10.2.19, note that we
only require for S to have bounded affine proto-grade as an R-algebra.

Theorem 10.3.5. For each triple (p,d, l) with p a prime number, there exists a uni-
form bound r := r(p,d, l) with the following property. Let R be a mixed characteristic
three-dimensional Noetherian local ring with parameter degree at most l and resid-
ual characteristic p. If there exists a cyclically pure regular local R-algebra S having
proto-grade at most d, and if the ramification index of R is at least r, then R is Cohen-
Macaulay.

Proof. By way of contradiction, suppose the assertion is false for some triple
(p,d, l). Hence, there exists for each w, a mixed characteristic three-dimensional
Noetherian local ring (Rw,mw) with parameter degree at most l and ramification
index at least w, and a regular, local Rw-algebra Sw of proto-grade at most d, such
that Rw → Sw is cyclically pure but Rw is not Cohen-Macaulay. Let Iw be a pa-
rameter ideal in Rw such that Rw/Iw has length at most l. By [46], each Rw admits
a balanced big Cohen-Macaulay algebra Bw. In view of Lemma 10.3.6 below, we
will have reached our desired contradiction once we show that

IwRw = IwBw ∩Rw, (10.4)

for almost all w, as Rw is then Cohen-Macaulay for those w.
To prove (10.4) by way of contradiction, suppose xw is in IwBw∩Rw but not in

Iw. Let (R�,m), x, and I be the respective ultraproducts of (Rw,mw), xw, and Iw.
By [17, Corollary 8.5.3], the m-adic completion B of the ultraproduct B� of the
Bw is a balanced big Cohen-Macaulay over the cataproduct R� of the Rw. By Łoś’
Theorem, x lies in IB� but not in I. Moreover, R� = R�/IR�

has equal characteristic
p by 10.3.2. It follows from Remark 6.4.4 that IB∩R� lies in the tight closure of
IR�. By 10.2.5, the cataprotoproduct S�� is a regular local ring. I claim that R� → S��

is cyclically pure. Assuming this claim, R� is then F-regular by 5.5.7, and hence
IB∩R� = IR�. Since x ∈ IB∩R� = IR� and since IR�

⊆ I, we get x ∈ I, whence by
Łoś’ Theorem, almost each xw lies in Iw, contradiction.

So remains to prove the claim, and since any ideal is the intersection of m-
primary ideals by the Krull’s Intersection Theorem (Theorem 2.4.14), it suffices
to show that aS�� ∩R� = aR� for any m-primary ideal a ⊆ R�. Let y ∈ R� be such
that its image in R� lies in aS��. Since IR�

⊆ a and since S�� = S�/IV �
S� by 10.2.5,

we get y ∈ aS�, where S� is the protoproduct of the Sw. In particular, y ∈ aS�.
Taking approximations yw ∈ Rw of y, Łoś’ Theorem yields that almost all yw lie in
awSw, whence by cyclical purity in aw. Łoś’ Theorem in turn then yields y ∈ aR�,
as we wanted to show.

In the previous proof, we used the following Cohen-Macaulay characteriza-
tion. It should be noted that if in this criterion we require that it holds for all
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balanced big Cohen-Macaulay algebras, we get, at least in positive characteristic, a
characterization of F-rationality, whence of pseudo-rationality by Remarks 5.5.9
and 6.4.4.

Lemma 10.3.6. A Noetherian local ring R is Cohen-Macaulay if and only if there
exists a system of parameters x in R and a balanced big Cohen-Macaulay algebra B
over R such that xR = xB∩R.

Proof. If R is Cohen-Macaulay, then we may take B = R. To prove the converse,
let us first show by downward induction on i ≤ d that Ii = IiB∩R, where Ii :=
(x1, . . . ,xi)R and x = (x1, . . . ,xd). The case i = d is just our assumption, so that we
may take i < d and assume we already established that I j+1 = I j+1B∩R. Let z be
an element of Ji := IiB∩R. By our induction hypothesis, z ∈ Ii+1, say z = y+axi+1

with y ∈ Ii and a ∈ R. Since axi+1 = z− y ∈ IiB and x is a B-regular sequence, a lies
in IiB whence in Ji. In conclusion, we showed that Ji = Ii + xi+1Ji, so that by
Nakayama’s Lemma, Ji = Ii, as claimed.

To complete the proof, we must show that x is R-regular. To this end, suppose
zxi+1 ∈ Ii for some z ∈ R. Since x is B-regular, z lies in IiB whence in Ii, by what
we just proved. 	


10.3.3 Towards a Proof of the Improved New Intersection
Theorem

Although our methods can in principle only prove asymptotic versions, a better
understanding of the uniform bounds can in certain cases lead to a complete so-
lution of the conjecture. To formulate such a result, let us say that a numerical
function f grows sub-linearly if there exists some 0 ≤ α < 1 such that f (n)/nα

remains bounded when n goes to infinity.

Theorem 10.3.7. Suppose that for each pair (m,r) the numerical function fm,r(l) :=
e(m,r, l) grows sub-linearly, where e is the bound given by Theorem 10.3.3, then the
Improved New Intersection Theorem holds.

Proof. Let Im,r,l be the collection of counterexamples with invariants (m,r, l),
that is to say, all mixed characteristic Noetherian local rings R of embedding di-
mension at most m, admitting a finite free complex F• of rank at most r such
that each Hi(F•), for i > 0, has length at most l and H0(F•) has a minimal gener-
ator generating a submodule of length at most l, but such that the length of F•
is strictly less than the dimension of R. We have to show that Im,r,l is empty for
all (m,r, l), so by way of contradiction, assume it is not for the triple (m,r, l). For
each n, let f (n) be the supremum of the ramification indexes of counterexamples
in Im,r,n (and equal to 0 if there is no counterexample). By Theorem 10.3.3, this
supremum is always finite. By assumption, f grows sub-linearly, so that for some
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positive real numbers c and α < 1, we have f (n)≤ cnα , for all n. In particular, for
n larger than the (1−α)-th root of clα

f (l) , we have

f (ln) < n f (l). (10.5)

Let (R,m) be a counterexample in Im,r,l of ramification index f (l), witnessed by
the finite free complex F• of length strictly less than the dimension of R. Since the
completion of R will be again a counterexample in Im,r,l of the same ramification
index, we may assume R is complete, whence by Cohen’s Structure Theorems of
the form R = V [[ξ ]]/I for some complete discrete valuation ring V , some tuple
of indeterminates ξ , and some ideal I ⊆ V [[ξ ]]. Let n � 0 so that (10.5) holds,
and let W := V [t]/(tn − π)V [t], where π is a uniformizing parameter of V . Let
S := W [[ξ ]]/IW [[ξ ]], so that R → S is faithfully flat and S has the same dimension
and embedding dimension as R. By construction, the ramification index of S is
equal to n f (l). By faithful flatness, F•⊗R S is a finite free complex of length strictly
less than the dimension of S, with homology equal to H•(F•)⊗R S. I claim that if
H is an R-module of length a, then H ⊗R S has length na. Assuming this claim, it
follows that S belongs to Im,r,nl , and hence its ramification index is by definition
at most f (ln), contradicting (10.5).

The claim is easily reduced by induction to the case a = 1, that is to say, when
H is equal to the residue field R/m = V/πV = k. In that case, H ⊗R S = S/mS =
W/πW , and this is isomorphic to k[t]/tnk[t], a module of length n. 	




Appendix A
Henselizations

In this appendix, I have gathered some facts about Henselizations that can be
found scattered in the literature (some sources dealing more extensively with
Henselizations are [70,71,77,106]). Hensel observed that solving an equation over
the p-adics can be reduced to finding a root in the residue field, provided this root
is simple. This property, now known as Hensel’s Lemma—and a ring satisfying it,
is called Henselian—, extends easily to any complete local ring; see Theorem A.1.1.
Although any Noetherian local ring admits a uniquely defined, smallest complete
overring, its completion—which inherits many of the good properties of the orig-
inal ring, and in particular is Henselian—, the process introduces transcendental
elements. The Henselization of a local ring is much closer to it than its comple-
tion, since it is a direct limit of finite etale extensions. As Eisenbud remarks

“ . . . [i]t can thus be used to give the same microscopic view of a variety as the comple-
tion, but without passing out of the category of algebraic varieties.”

[27, p. 186]

The main objective of this appendix is to give a direct construction of the
Henselization which, to my knowledge, never appeared in print.1

A.1 Hensel’s Lemma

A very important algebraic tool in studying local properties of a variety, or equiv-
alently, properties of Noetherian local rings, is the completion R̂ of a Noetherian
local ring R. It is again a Noetherian local ring, which inherits many of the prop-
erties of the original ring, and in fact, there is natural homomorphism R → R̂,
which is flat and unramified (recall that the latter means that the maximal ideal
of R extends to the maximal ideal of its completion R̂). Whereas there is no

1 Jan Denef, who was my promotor at the time, suggested the construction to me in 1981, which
I then subsequently worked out and wrote up as part of my license thesis [87].
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known classification of arbitrary Noetherian local rings, we do have many struc-
ture theorems, due mostly to Cohen, for complete Noetherian local rings. In
particular, the equal characteristic complete regular local rings are completely clas-
sified by their residue field k and their dimension d: any such ring is isomorphic to
the power series ring k[[ξ1, . . . ,ξd ]]. Also extremely useful is the fact that we have
an analogue of Noether normalization for complete Noetherian local domains:
any such ring admits a regular subring over which it is finite. Another nice prop-
erty of complete local rings is the following formal version of Newton’s method
for finding approximate roots.

Theorem A.1.1 (Hensel’s Lemma). Let (R,m) be a complete local ring with
residue field k. Let f ∈ R[t] be a monic polynomial in the single variable t, and let
f̄ ∈ k[t] denote its reduction modulo mR[t]. For every simple root u ∈ k of f̄ = 0, we
can find a ∈ R such that f (a) = 0 and u is the image of a in k.

Proof. Let a1 ∈ R be any lifting of u. Since f̄ (u) = 0, we get f (a1)≡ 0 mod m. We
will define elements an ∈R recursively such that f (an)≡ 0 mod mn and an ≡ an−1

mod mn−1 for all n > 1. Suppose we already defined a1, . . . ,an satisfying the above
conditions. Consider the Taylor expansion

f (an + t) = f (an)+ f ′(an)t + gn(t)t2 (A.1)

where gn ∈ R[t] is some polynomial. Since the image of an in k is equal to u, and
since f̄ ′(u) �= 0 by assumption, f ′(an) does not lie in m whence is a unit, say,
with inverse un. Define an+1 := an −un f (an). Substituting t = −un f (an) in (A.1),
we get

f (an+1) ∈ (un f (an))2R ⊆ m2n,

as required.
To finish the proof, note that the sequence an is by construction Cauchy, and

hence by assumption admits a limit a ∈ R (whose residue is necessarily again equal
to u). By continuity, f (a) is equal to the limit of the f (an) whence is zero. 	


There are sharper versions of this result, where the root in the residue field need
not be simple (see [27, Theorem 7.3]), or even involving systems of equations (see
[13, §4.6]; but see also the next section).

A local ring satisfying the hypothesis of the above theorem is normally called a
Henselian ring, although we will deviate from that practice in the next section. For
some equivalent definitions, we refer once more to the literature [70, 71, 77, 106].
From a model-theoretic point of view, it is more convenient to work with
Henselian local rings than with complete ones, since they form a first-order de-
finable class (as is clear from the defining condition).

As with completion, there exists a ‘smallest’ Henselian overring. More pre-
cisely, for each Noetherian local ring R, there exists a Noetherian local R-algebra
R∼, its Henselization, satisfying the following universal property: any local ho-
momorphism R → H with H a Henselian local ring, factors uniquely through an
R-algebra homomorphism R∼ → H. Below, we will show the existence of such a
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Henselization by giving a concrete construction of R∼. Note that Theorem A.1.1
and the universal property imply that R∼ is a subring of R̂, and in particular, the
latter is the completion of the former.

A.2 Construction of the Henselization

Let (R,m) be a Noetherian local ring. By a Hensel system over R of size N, we mean
a pair (H ,a) consisting of a system H (t) of N polynomial equations h1, . . . ,hN ∈
R[t] in the N unknowns t := (t1, . . . ,tN), and an approximate solution a modulo
m in R (meaning that hi(a) ≡ 0 mod m for all i), such that associated Jacobian
matrix

Jac(H ) :=

⎛

⎜
⎜
⎜
⎝

∂h1/∂ t1 ∂h1/∂ t2 . . . ∂h1/∂ tN
∂h2/∂ t1 ∂h2/∂ t2 . . . ∂h2/∂ tN

...
...

. . .
...

∂hN/∂ t1 ∂hN/∂ t2 . . . ∂hN/∂ tN

⎞

⎟
⎟
⎟
⎠

(A.2)

evaluated at a is invertible over R, that is to say, the Jacobian determinant
det(Jac(H )) evaluated at a is a unit in R. We express the latter condition also
by saying that a is a non-singular approximate solution. An N-tuple s in some lo-
cal R-algebra S is called a solution of the Hensel system (H ,a), if it is a solution
of the system H and s ≡ a mod mS. Note that (H ,s) is then a Hensel system
over S, and therefore, we sometimes call H a Hensel system, without mentioning
the (approximate) non-singular solution. A Hensel system of size N = 1 is just a
Hensel equation together with a solution in the residue field, as in the statement
of Hensel’s lemma. In fact, R satisfies Hensel’s lemma if and only if any Hensel
system over R has a solution in R. The proof of this equivalence is not that easy
(one can give for instance a proof using standard etale extensions as in [70]).

Instead, we alter out definition by calling a local ring R Henselian, if any Hensel
system (of any size) over R has a solution in R. In conclusion, being Henselian in
the new sense implies that in the old sense, and the converse also holds, but is
harder to prove. An easy modification of the proof of Theorem A.1.1, left to the
reader, shows that complete local rings are Henselian in this new sense. In fact,
using multivariate Taylor expansion, we obtain the following stronger version.

A.2.1 Any Hensel system (H ,a) over R admits a unique solution in the
completion R̂. 	


We call an element r ∈ R̂ a Hensel element (over R) if there exists a Hensel
system (H ,a) over R such that r is the first entry of the unique solution of this
system in R̂. We will express this by saying that H is a Hensel system for r. Note
that if r = (r1, . . . ,rN) is a solution of a Hensel system H over R, then any ri is
a Hensel element. This is true by definition for r1. For i > 1, let H ′ be obtained
by interchanging the unknowns t1 and ti, as well as, h1 with hi. It follows that H ′
is a Hensel system for (ri,r2, . . . ,ri−1,r1,ri+1, . . . ,rN), showing that ri is a Hensel
element.
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Let R∼ be the subset of R̂ of all Hensel elements. For given Hensel elements
r and r′, we construct from their associated Hensel systems (H (t),a) and
(H ′(t ′),a′) of size N and N′ respectively, a new Hensel system for r + r′ as
follows: let N′′ := N + N′ + 1, let t ′′ be the N′′-tuple of unknowns (u, t, t ′), with
u a single variable, and consider the system H ′′ of N′′ equations in t ′′ given by
the equation u = t1 + t ′1, and the systems H (t) and H ′(t ′). One checks that
(H ′′,a1 + a′1,a,a′) is a Hensel system—since its Jacobian determinant is the
product of the Jacobian determinants of H and H ′—whose unique solution in
R̂ has first entry equal to r + r′, showing that the latter is again a Hensel element.
The same argument can be used to prove that the product of Hensel elements is
again a Hensel element. With little effort one actually shows:

A.2.2 The collection of all Hensel elements is a local ring R∼ with maximal ideal
mR∼. Moreover, R∼ is Henselian, with completion equal to R̂.

Indeed, let m∼ := mR̂∩R∼. To show that R∼ is local with maximal ideal m∼, it
suffices to show that any element r ∈R∼ not in m∼ is a unit in R∼. Since r does not
belong to mR̂, it has an inverse in R̂. Using an auxiliary variable u and the equation
t1u = 1, it is now not hard to show that 1/r is an Hensel element. In particular, R,
R∼ and R̂ all have the same residue field k. To prove that R∼ is Henselian, we must
verify the multivariate Hensel lemma, that is to say, let (H̃ (t),a) be a Hensel
system over R∼. Since R∼ and R have the same residue field, we may choose a
in R. By A.2.1, there exists a unique solution r over R̂ of this Hensel system.
Remains to show that r has its entries already in R∼, and to this end, it suffices by
the above discussion to construct a Hensel system over R of which r is part of a
solution.

Let s = (s1, . . . ,sd) be the tuple of coefficients in R∼ of the equations H̃ (listed
in a fixed order), and let H (t,u) be obtained from H̃ by replacing each of these
coefficients by a new variable ui, so that H̃ (t) = H (t,s). For each si, choose
bi ∈ R such that si ≡ bi mod mR̂. Let (Hi(ui,ti),(bi,ci)) be a Hensel system for
each Hensel element si, with ti a finite tuple of auxiliary unknowns and ci a tu-
ple of the corresponding length in R, for i = 1, . . . ,d. One easily checks that the
system G in the unknowns t,u1,t1, . . . ,ud,td at the tuple c := (a,b1,c1, . . . ,bd,cd)
given by H and all Hi is a Hensel system, since the Jacobian determinant of
(G ,c) is the product of the Jacobian determinants of (H ,a) and the (Hi,(bi,ci)).
By A.2.1, the unique solution of this Hensel system in R̂ must be of the form
(r,s1,r1, . . . ,sd ,rd), for some ri in R̂, showing that r ∈ R∼. 	


It is unfortunately less easy to prove that R∼ is also Noetherian, and we post-
pone the discussion until after we proved our main result:

Theorem A.2.3. The ring R∼ satisfies the universal property of Henselization: any
Henselian local R-algebra S admits a unique structure of R∼-algebra.

Proof. We need to show that there exists a (unique) R-algebra homomorphism
R∼ → S. Given r ∈ R∼, let (H ,a) be a Hensel system admitting a solution with
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first entry r. Since a is an approximate solution of H in R, it remains so in S.
By (the revised) definition of Henselian, the approximate solution a lifts uniquely
to a solution s in S. We define the image of r in S now as the first entry of this
solution s. Uniqueness guarantees firstly that this is an R-algebra homomorphism,
an secondly that it is unique. 	


Returning to the issue of Noetherianity, we will use the local flatness criterion
discussed §3.3.6. We start with the flatness of the Henselization:

Proposition A.2.4. For any ideal I ⊆ R, the Henselization of R/I is isomorphic to
R∼/IR∼. Moreover, R → R∼ is faithfully flat, whence a scalar extension, and R∼ is
ind-Noetherian.

Proof. Let S := R/I. It is not hard to show that any homomorphic image of
a Henselian local ring is again Henselian. Hence R∼/IR∼ is Henselian, and
the universal property of Henselizations then yields a unique homomorphism
S∼ → R∼/IR∼. The composition of this homomorphism with R∼/IR∼ → R̂/IR̂ is
injective, since the latter is the completion of S. Hence S∼ →R∼/IR∼ must also be
injective. To prove surjectivity, let r ∈ R∼ and let H be a Hensel system for r. The
reduction modulo I of this Hensel system therefore has a unique solution in S∼,
and by uniqueness, the first entry of this solution must map to the image of r
in R∼/IR∼. This proves the first assertion, and in particular that IR̂∩R∼ = IR∼,
for any ideal I ⊆ R. The second assertion then follows from the flatness of R → R̂
and Corollary 3.3.15. Since R → R∼ is unramified by A.2.2, it is therefore a scalar
extension (see §3.2.3).

So remains to show that R∼ is ind-Noetherian (defined after Corollary 3.3.22).
Let x be a finite tuple in R∼. As already remarked before, we can find a Hensel
system H (t) over R such that x is part of its unique solution. Hence, if Sx is
the localization of R[t]/(H ) with respect to the ideal generated by m, then x is
already a tuple in Sx. It follows from the construction of R∼, that S∼x = R∼. In
particular, Sx → R∼ is a scalar extension by what we just proved, and R∼ is the
direct limit of the Sx. 	

Theorem A.2.5. The Henselization of a Noetherian local ring is again Noetherian.

Proof. It suffices to show that R∼ → R̂ is faithfully flat, since R̂ is Noetherian. To
obtain flatness, it suffices in view of Corollary 3.3.25 and Proposition A.2.4 to
show that TorR∼

1 (R̂,k) = 0, where k is the residue field of R. To this end, let

Rm → Rn → R → k → 0 (A.3)

be an exact sequence. By Proposition A.2.4, tensoring with R∼ yields an exact
sequence

(R∼)m → (R∼)n → R∼ → k → 0.

By definition, TorR∼
1 (R̂,k) is the homology of the complex obtained from tensor-

ing this exact sequence with R̂, that is to say, of the complex
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(R̂)m → (R̂)n → R̂ → k → 0.

However, this latter complex is actually exact since it is obtained from tensoring
(A.3) with the flat extension R̂, showing that TorR∼

1 (R̂,k) = 0. 	


A.3 Etale Proto-grade

We conclude with a proto-graded version of the previous construction by con-
structing a proto-grading on the Henselization of a proto-graded Noetherian local
ring (R,m), and giving conditions under which this proto-grading is Noetherian
and faithfully flat. Define a proto-grading on R∼ by the condition that a Hensel
element y ∈ R∼ has proto-grade at most n if it admits a Hensel system (H ,u) of
length N ≤ n, in which all polynomials have degree at most n, and all coefficients
as well as all entries of u have proto-grade at most n.

A.3.1 This yields a proto-grading on R∼, called the etale proto-grading on R∼,
extending the proto-grading on R. Moreover, R → R∼ is a morphism of
proto-graded rings.

The fact that this is a proto-grading follows from the proof that R∼ is a ring,
since we explicitly constructed Hensel systems for sums, products, and inverses
(of units). Since t −a is a Hensel system of a ∈ R, its etale proto-grade is equal to
its proto-grade in R, and the last assertion is now immediate. 	


The following result enables us to calculate protopowers:

Proposition A.3.2. If R is a proto-graded Noetherian local ring and R∼ is viewed
with its etale proto-grading extending the proto-grading on R, then we have an iso-
morphism

(R∼)�
∼= (R�)

∼.

Proof. A special instance of the above isomorphism is the fact that if R is
Henselian, then so is R�. We prove this first, and so, let (H ,u) be a Hensel sys-
tem over R� of proto-grade at most n, say. Choose approximations H w and uw

over R of proto-grade at most n, with respective ultraproduct H and u. By Łoś’
Theorem, almost all (H w,uw) are Hensel systems. Since R is Henselian by as-
sumption, these Hensel systems have a (unique) solution xw. By definition, the xw

have etale proto-grade at most n, and hence their ultraproduct x lies in R�. By Łoś’
Theorem, x is then a solution of the Hensel system (H ,u).

Let R now be an arbitrary proto-graded Noetherian local ring. The embedding
R → R∼ induces an embedding R� → (R∼)�. By our previous argument, (R∼)�
is Henselian, whence by the universal property of a Henselization, we have a
unique R�-algebra embedding (R�)∼ → (R∼)�. To see that this is surjective, let x be
an element in (R∼)�, say of etale proto-grade at most n. Choose an approximation
xw ∈ R∼ of proto-grade at most n. Hence, almost each xw is the first entry of the
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unique solution xw of a Hensel system (H w,uw) over R of proto-grade at most n.
Since the ultraproduct (H ,u) of the (H w,uw) is a Hensel system of proto-grade
at most n, whence defined over R�, the ultraproduct x of the xw is a solution of
etale proto-grade at most n, belonging therefore to (R�)∼. Since x is its first entry,
x ∈ (R�)∼, as we wanted to show. 	

Theorem A.3.3. If R is a local ring with a Noetherian proto-grading, then the etale
proto-grading on R∼ is also Noetherian. If R is moreover regular and the proto-grading
on R is faithfully flat, then the etale proto-grading on R∼ is also faithfully flat.

Proof. The first assertion follows from Proposition A.3.2 and Theorem A.2.5. To
prove the second assertion, assuming that (R,m) is moreover regular, we first show
that R� is also regular, by induction on the dimension d of R. Since the proto-grade
is faithfully flat, (R/I)� = R�/IR� for all ideals I ⊆ R by 9.1.7. Applied to I = x1R,
where m = (x1, . . . ,xd)R, we have by induction that (R/x1R)� = R�/x1R� is regular,
whence so is R�, since x1 is R�-regular (as R → R� is flat). Since R� → (R�)∼ is a
scalar extension by Proposition A.2.4, also (R�)∼ is regular by 3.2.14. Hence, in
view of Proposition A.3.2, we proved that (R∼)� is regular. Since (x1, . . . ,xd) is
an (R∼)�-regular sequence by the flatness of R∼ → (R∼)� (using Theorem A.2.5
and Corollary 3.3.3), the Cohen-Macaulay criterion for flatness (Theorem 3.3.9)
together with Proposition 3.3.8, yields the desired flatness of (R∼)� → (R∼)�. 	


Let k be a field and ξ a finite tuple of indeterminates. For simplicity, we denote
the Henselization of the localization of k[ξ ] with respect to the variables also by
k[ξ ]∼. A power series f ∈ k[[ξ ]] is called algebraic if it is a root of a non-zero
polynomial in one variable with coefficients in k[ξ ]. We denote the subring of
algebraic power series by k[[ξ ]]alg. The following result is well-known (see, for
instance, [3, 77]).

A.3.4 For any field k, the ring k[[ξ ]]alg is equal to the Henselization k[ξ ]∼ of
k[ξ ]m, where m is the maximal ideal generated by the indeterminates.

In particular, viewing k[ξ ] with its affine proto-grade given by degree (see
(9.1.1.i)), we get an etale proto-grade on k[[ξ ]]alg: an algebraic power series f has
proto-grade at most n, if there exists a Hensel system in k[ξ , t] for f of size at
most n, such that the total degree of each polynomial in the system is at most n.
Theorem 9.2.11, in conjunction with Theorem A.3.3 and Corollary 9.2.4, applied
to this etale proto-grade on the ring of algebraic power series, immediately yields:

Theorem A.3.5. For each pair (n,m) there exists a uniform bound n′ := n′(n,m)
with the property that if k is an arbitrary field, R := k[[ξ ]]alg the ring of algebraic power
series with ξ an m-tuple of indeterminates, and I := ( f1, . . . , fs)R an ideal generated
by elements fi of etale proto-grade at most n, then I is generated by at most n′ of the
fi, and its module of syzygies is generated by n′ syzygies with entries of proto-grade at
most n′. Moreover, if f ∈ I has etale proto-grade at most n, then there exist algebraic
power series gi of etale proto-grade at most n′ such that f = g1 f1 + · · ·+ fsgs. 	
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In fact, we can now even give a non-linear version (as already mentioned,
ideal membership amounts to solving a linear equation), which also extends
Theorem 7.1.10 to arbitrary coefficients over the algebraic power series ring (and
a similar argument using Theorem 7.1.6 would then also yield a uniform analogue
of the next result).

Theorem A.3.6. For each pair (n,m) there exists a uniform bound n′ := n′(n,m)
with the property that if k is an arbitrary field, R := k[[ξ ]]alg the ring of algebraic
power series with ξ an m-tuple of indeterminates, and if f1 = · · · = fs = 0, with
fi ∈ R[t], is a polynomial system of s ≤ n equations in at most n unknowns t, of
(extended) etale proto-grade at most n and admitting a solution in formal power series,
then it admits an algebraic solution of etale proto-grade at most n′.

Proof. Suppose no such bound holds for the pair (m,n), yielding for each w, a
counterexample over a ring of algebraic power series Rw := Kw[[ξ ]]alg, consisting
of an n-tuple of equations fw in Rw[t] of extended etale proto-grade at most n, and
a solution yw in Kw[[ξ ]] of this system of equations (viewed as a system of equa-
tions in the unknowns t), but no such solution in algebraic power series of etale
proto-grade at most w exists. Let K be the ultraproduct of the Kw, and let y�, f�,
and S� be the respective ultraproducts of the yw, fw and Kw[[ξ ]]. By definition of
the extended etale proto-grade (see 9.1.2), the fw are polynomials of degree at most
n with coefficients of etale proto-grade at most n, and hence their ultraproduct f�
lies in K[[ξ ]]alg[t]. Moreover, by Łoś’ Theorem, y� is a solution of this system of
equations in S�, whence in S�

∼= K[[ξ ]], by Proposition 7.1.8. Hence, by Theo-
rem 7.1.5, we can find a solution z of this system of equations in K[[ξ ]]alg. Let N
be its etale proto-grade. By Proposition A.3.2, the ring K[[ξ ]]alg is just the proto-
product of the Rw, and hence by Łoś’ Theorem, the approximations of z yield a
counterexample for any w bigger than N. 	




Appendix B
Boolean Rings

We mentioned Boolean rings in our sheaf-theoretic construction of an
ultraproduct, Theorem 2.6.4. In this appendix, we generalize the notion of a
Boolean ring to an n-Boolean ring, replacing the condition that all elements are
idempotent by the condition that they are all n-potent (see below for definitions).
The Stone Representation Theorem gives a description of Boolean rings in terms
of power set rings. We give a proof, using the embedding theorems into ultra-
powers from §7.1.3, in the more general context of n-Boolean rings, recovering
in particular Henkin’s version [41] of the Stone Representation Theorem [110].
In §B.3, we prove a similar result for an ω -Boolean ring, that is to say, a ring in
which all elements are potent (but possibly of unbounded potency).1 Not sur-
prisingly, to control this unboundedness, we have to use protoproducts instead
of ultraproducts. The last section then deals with a generalization studied already
by Chacron, Bell, et al. ([19, 20, 12]), to wit, periodic rings.

B.1 n-Boolean Rings

A ring is called torsion if it has positive characteristic, that is to say, if d = 0 in R
for some 0 �= d ∈N (not necessarily prime). Any such ring admits a decomposition
as a finite direct sum of rings of prime power characteristic, its so-called primary
components:

B.1.1 If R has torsion, say, of characteristic pe1
1 · · · pes

s , with pi distinct primes and
e1 ≥ 1, then R ∼= R1 ⊕·· ·⊕Rs, with the characteristic of Ri equal to pei

i . If
R is reduced, then all ei = 1.

Indeed, for each i, let di be the product of all q j := p
ej
j except for i = j and put

Ri := diR. Since Ri
∼= R/AnnR(di), we may view it as a ring of characteristic qi.

1 This type of rings already occurs in [33], without any special name; elsewhere they are referred
to as J-rings, after Jacobson [60], who proved that they are always commutative. In [1], the name
n-Boolean refers to a different generalization of Boolean rings.
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Since the di are relatively prime, there exist ri ∈ N such that 1 = r1d1 + · · ·+ rsds.
For any x ∈ R, let xi := ridix. It follows that xi ∈ Ri, and x = x1 + · · ·+ xn. Since
xix j = 0 for i �= j, the result follows readily. 	


Recall that an element x in a ring R is called nilpotent if xn = 0 for some n ∈N.
By the reduction, Rred, of a ring we mean the residue ring R/n, where n is the
nilradical of R, that is to say, the ideal of all nilpotent elements. Let n ≥ 2. We say
that an element x in a (commutative) ring R is n-potent, if xn = x. The least such
n≥ 2 is called the potency of x. Instead of 2-potent, one usually says idempotent. We
will call an element potent if it is n-potent for some n, that is to say, if it has finite
potency. We define the potency of an ideal as the maximal potency of its members.
In order to discuss potencies, the following terminology will be helpful. We say
that m pre-divides n if m−1 divides n−1, for m,n ∈ N. We may also express this
by saying that m is a pre-divisor of n, or that n is a pre-multiple of m. Similarly,
we define the least common pre-multiple and the greatest common pre-divisor of m
and n in the obvious way. Note that 2 pre-divides any number, whereas 1 only
pre-divides itself.

Lemma B.1.2. Let R be a ring, m,n ≥ 2 integers, and x ∈ R.

B.1.2.i. If x is m-potent, then it is n-potent for any pre-multiple n of m.
B.1.2.ii. If x is n-potent, and m pre-divides n then x

n−1
m−1 is m-potent.

B.1.2.iii. If x is both m-potent and n-potent, then it is also d-potent, where d is
the greatest common pre-divisor of m and n.

Proof. Let (m−1)d = n−1, whence n = m+(d−1)(m−1). Multiplying xm = x
with xm−1 yields x2m−1 = xm = x. Continuing in this way, we get xn = x. To prove
(B.1.2.ii), observe that

(xd)m = xn−1+d = xn · xd−1 = x · xd−1 = xd .

To prove (B.1.2.iii), suppose m ≤ n and we induct on n. If m = n, we are done,
so we may assume m < n. Multiplying x = xm with xn−m we get xn−m+1 = xn = x.
Since the greatest common pre-divisor of (n−m+1) and m is also d, we are done
by induction. 	


By an n-Boolean ring B, we mean a ring in which every element is n-potent.
Hence a 2-Boolean ring is just a Boolean ring, and any Boolean ring is n-Boolean
for any n. If p is prime, then Z/pZ is p-Boolean, since it is invariant under
the Frobenius. Let us call a ring B properly n-Boolean if it is n-Boolean, but not
m-Boolean for any m < n, that is to say, if B contains an element of potency n. It
follows from Galois theory that any finite field Fq is properly q-Boolean. Imme-
diately from Lemma B.1.2, we get:

Corollary B.1.3. Let B be a ring, and m,n ≥ 2.

B.1.3.i. If B is m-Boolean, then it is n-Boolean for any pre-multiple n of m.
B.1.3.ii. If B is both m-Boolean and n-Boolean, then it is also d-Boolean, where

d is the greatest common pre-divisor of m and n. 	
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Note that, in general, the characteristic of an n-Boolean ring can be larger
than n. For instance, Z/6Z is a 3-Boolean ring, and more generally, Z/2pZ is
p-Boolean, for every odd prime number p. We also observe that Z/15Z and
Z/30Z are 5-Boolean but not 3-Boolean. To determine the possible characteris-
tics, let α(n) be the greatest common divisor of all kn −k, for k ∈N. For instance,
α(2) = 2, α(3) = 6, α(4) = 2, and α(5) = 30. Note that by Fermat’s Little
Theorem, α(p) is divisible by p if p is prime, but from the previous examples,
it is clear that in general it will be bigger. We will compute it in Corollary B.1.9
below, but for now we observe:

Lemma B.1.4. If B is an n-Boolean ring, then its characteristic is a divisor of α(n).
Moreover, α(n) is always square-free.

Proof. Let d be the characteristic of B. For each k, since kn −k is zero in B, it must
be divisible by d. To see the last assertion, we check that α(n) has p-adic order
at most one, that is to say, is not divisible p2, for any prime p. However, this is
immediate since α(n) is a divisor of pn − p, which has p-adic order one. 	


In a Boolean ring B, one defines a partial order as follows: a ≤ b if ab = a, for
a,b∈ B. An element which is minimal among the non-zero elements of B is called
an atom. Note that any multiple of an atom a is either zero or a itself, so that a is
an atom if and only if aB has cardinality two. We call a Boolean ring atomless, if it
has no atoms. In case B is a power set ring P(W ) (see Example B.2.3), the order
is given by inclusion, and so, atoms are precisely singletons. Moreover, the set of
finite subsets is an ideal in B (by (B.1.5.x) below) whose residue ring is an example
of an atomless Boolean ring.

Unlike Boolean rings, we cannot define a partial order on an n-Boolean ring
B, for n > 2. Instead, we look at ideals with respect to inclusion. We call an ideal
atomic, if it is a minimal non-zero ideal. The sum of all atomic ideals is called the
ideal of finite elements. We call an element x ∈ B an atom if it is idempotent and
generates an atomic ideal. Note that this definition agrees with the older one in
Boolean rings. In the next result, we gathered some basic facts about n-Boolean
rings (recall that a prime ideal is called an associated prime if it is of the form
Ann(x)).

Proposition B.1.5. Let B be an n-Boolean ring, x,y ∈ B elements, I ⊆ B an ideal,
and p ∈ SpecB a prime ideal.

B.1.5.i. xiB = xB for all i > 0, and any ideal is idempotent, that is to say, I = I2;
B.1.5.ii. x is idempotent if and only if it is of the form yn−1;
B.1.5.iii. xB∩yB = xyB and xB+ yB = (xn−1 + yn−1− xn−1yn−1)B. In particu-

lar, every finitely generated ideal is principal;
B.1.5.iv. the annihilator of xB is equal to (1− xn−1)B. It is a prime ideal if and

only if xB is atomic;
B.1.5.v. x is a unit in B if and only if xn−1 = 1 if and only if x is not a zero-

divisor;
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B.1.5.vi. any residue ring of B is n-Boolean. In particular, I is radical, whence
equal to an intersection of prime ideals;

B.1.5.vii. p is maximal with residue field a finite field of size at most n, isomorphic
to Bp. In particular, B and any of its subrings have (Krull) dimension
zero (one says that B is hereditarily zero-dimensional);

B.1.5.viii. if I is atomic, then it contains at most n elements, any non-zero ele-
ment is a generator, and I contains a unique atom. Moreover, I with its
induced addition and multiplication is isomorphic to a finite field Fq,
for some prime power q = pm pre-dividing n (with p dividing α(n)),
and q is the potency of I;

B.1.5.ix. any two distinct atoms are orthogonal, that is to say, their product is
equal to zero;

B.1.5.x. p is associated if and only if it is finitely generated, whence principal,
if and only if it does not contain all finite elements. The ideal of finite
elements is generated by all atoms and defines the closed subset of SpecB
consisting of all non-principal prime ideals;

B.1.5.xi. there exists a non-principal prime ideal if and only if B is infinite. In
particular, B is Noetherian if and only if B is finite if and only if 1 is a
finite element;

B.1.5.xii. any B-module is flat, that is to say, B is absolutely flat, whence von
Neumann regular.

Proof. The inclusion xiB ⊆ xB is immediate. To prove the other inclusion, choose
k such that nk ≥ i, and observe that x = xnk−i · xi ∈ xiB, proving the first part of
(B.1.5.i). Similarly, I2 ⊆ I and, for the converse, if x ∈ I then x ∈ x2B ⊆ I2 by
the first assertion. If x is idempotent, then x = xn−1, and the converse of (B.1.5.ii)
follows immediately from (B.1.2.ii) with m = 2. To prove (B.1.5.iii), let z∈ xB∩yB.
If we write z = ax = by, then z = ax = axn = byxn−1 ∈ xyB. The second equality
follows from the identity

(xn−1 + yn−1− xn−1yn−1)x = x + xyn−1− xyn−1 = x

and the analogous identity for y. One direction in the first assertion of (B.1.5.iv) is
clear since x(1−xn−1) = x−x = 0, so assume ax = 0. Hence a = a(1−xn−1)∈ (1−
xn−1)B. This also proves (B.1.5.v), for if x is a unit, then 0 = Ann(x) = (1−xn−1)B.
To prove the direct inclusion in the second assertion in (B.1.5.iv), assume Ann(x)
is prime. Given a non-zero ideal aB contained in xB, we need to show that x ∈ aB.
By (B.1.5.iii), we have axB = aB∩xB = aB, showing that a /∈ Ann(x). Since a(1−
an−1) = 0 and Ann(x) is prime, 1−an−1 ∈ Ann(x), showing that x = xan−1 ∈ aB.
Conversely, suppose xB is atomic, and we need to show that if a and b do not
belong to Ann(x) then neither does their product. From ax �= 0 and bx �= 0 and
the fact that xB is atomic, we get axB = xB = bxB and hence abxB = xB �= 0, so
that, a fortiori, abx �= 0.

The first assertion in (B.1.5.vi) is clear. Applying the observation that an n-
Boolean ring is reduced to B/I, shows that I is radical. Since B̄ := B/p is n-Boolean,



B.1 n-Boolean Rings 183

any element in B̄ satisfies the equation ξ n − ξ = 0. However, in a domain, this
equation can have at most n solutions, showing that B̄ has cardinality at most n.
As any finite domain is a field, p is maximal. If x ∈ pBp, then 1− xn−1 is a unit
in Bp killing x by (B.1.5.iv), showing that pBp = 0 and hence Bp

∼= B/p, thus
completing the proof of (B.1.5.vii). To prove (B.1.5.viii), suppose I is atomic. Since
I must be principal, it is isomorphic to F := B/Ann(I). Since Ann(I) is maximal
by (B.1.5.iv) and (B.1.5.vii), the cardinality of I is at most n by (B.1.5.vii) and F
is a field. If x is a non-zero element in I, then the inclusion xB ⊆ I must be an
equality, proving the second assertion in (B.1.5.viii). In particular, y := xn−1 is a
non-zero idempotent in I by (B.1.5.ii), whence an atom. To show that y is the
unique atom in I, suppose z is another non-zero idempotent in I. By what we just
proved, yB = zB, so that y = az and z = by, for some a,b ∈ B. Multiplying the first
equality with z, we get zy = az2 = az = y, and similarly, multiplying the second
with y yields zy = by2 = by = z, and hence z = y. To prove the last assertion in
(B.1.5.viii), let q be the cardinality of the field F (recall that q = pm for some m,
with p the characteristic of F). Let I× := I −{0} and let x ∈ I×. We argued that
y := xn−1 is the unique atom of I. Multiplying with x, we get xy = xn = x. It is now
easy to check that I× is a multiplicative group with unit element y and that the
isomorphism I = yB ∼= F sending x = xy to the residue of x in F yields a group
isomorphism between I× and the multiplicative group of F. Since the latter is
cyclic, so is the former. In particular, there exists x ∈ I× such that the powers of x
generate I×. Since x has therefore potency q, so does I. If q does not pre-divide n,
then x has potency at most d < q by Lemma B.1.2, with d the greatest common
pre-divisor of q and n, contradiction. Finally, since the characteristic of B divides
α(n) by Lemma B.1.4, so must p, concluding the proof of (B.1.5.viii). To prove
(B.1.5.ix), let x and y be distinct atoms. By (B.1.5.viii), they generate different
atomic ideals xB �= yB, and hence their intersection, equal to xyB by (B.1.5.iii),
must be a proper subideal of either atomic ideal, whence equal to zero, showing
that xy = 0.

The first equivalence in (B.1.5.x) is immediate by (B.1.5.iii) and (B.1.5.iv). To
prove the second, let zB be an arbitrary atomic ideal. If p is not an associated
prime, then zp cannot be zero, lest p is contained in Ann(z) whence by maxi-
mality, equal to it. Let a ∈ p be such that az �= 0. Since zB is atomic, zB = azB
and hence belongs to p. Conversely, if every atomic ideal is contained in p, then
p cannot be associated, since otherwise by the above, p = Ann(x) = (1− xn−1)B
with xB atomic, and so 1 = x +(1− xn−1) ∈ p, contradiction. The last assertion
in (B.1.5.x) is then clear from the above and (B.1.5.viii). By (B.1.5.x), in order to
prove (B.1.5.xi), it suffices to show that 1 is a finite element if and only if B is
finite, if and only if every ideal is principal. If 1 = a1 + · · ·+ as is a sum of atomic
elements ai, then B = a1B + · · ·+ asB. Since each aiB is finite by (B.1.5.viii), so
is B. Assume next that B is finite, then any ideal is finitely generated, whence
principal by (B.1.5.iii). Finally, if every maximal ideal is principal, then the ideal
of finite elements must be the unit ideal by (B.1.5.x). This cycle of implications
concludes the proof of (B.1.5.xi). Finally, (B.1.5.xii) follows from (B.1.5.vii) since
each localization at a prime ideal is a field. Alternatively, by (B.1.5.iii), any finitely



184 B Boolean Rings

generated ideal I ⊆ B is principal, say, of the form xB, and B ∼= xB ⊕B/xB by
(B.1.5.iv). In particular, B/I, being a direct summand of B, is projective, whence
flat, and hence TorB

1 (B/I, ·) is identical zero. Absolute flatness now follows from
Theorem 3.1.5. 	

Remark B.1.6. Gilmer [33] showed that condition (B.1.5.xii) together with the
first assertion of (B.1.5.vii) implies in turn that B is n-Boolean.

Corollary B.1.7. Any embedding of n-Boolean rings is faithfully flat.

Proof. Let B →C be an injective homomorphism of n-Boolean rings. The flatness
of this homomorphism follows from (B.1.5.xii), so remains to show that C is
non-degenerated. Suppose not, so that there exists a proper ideal I ⊆ B such that
IC = C. It follows that there must already exist a finitely generated ideal I with
this property. Since I is principal by (B.1.5.iii), its generator a must be a unit in C.
In particular, an−1 = 1 in C by (B.1.5.v). Since B →C is injective, already an−1 = 1
in B, showing that a is a unit in B. 	

Corollary B.1.8. Let B→C be an injective homomorphism of n-Boolean rings. Then
an ideal I ⊆ B is principal if and only if its image IC in C is.

Proof. For the non-trivial direction, assume I = yC for some y ∈ C. Hence there
exist a1, . . . ,an ∈ I such that y is a linear combination of these elements, that
is to say, belongs to (a1, . . . ,an)C. By (B.1.5.iii), this ideal is generated by a sin-
gle element a belonging to I. Hence IC = aC and therefore by faithful flatness
(Corollary B.1.7), we get I = IC∩B = aC∩B = aB. 	

Corollary B.1.9. For each n, the number α(n) is equal to the product of all prime
numbers p pre-dividing n.

Proof. If p pre-divides n, then we can write n− 1 = (p− 1)d for some d. Hence
kn ≡ (kp−1)d · k ≡ k mod p for each k, by Fermat’s Little Theorem, showing that
p divides each kn − k, whence α(n).

Conversely, if p divides α(n), then by construction, Z/pZ is n-Boolean. Let
d be the greatest common pre-divisor of p and n. Hence, Z/pZ is d-Boolean, by
Corollary B.1.3. Since Z/pZ is properly p-Boolean, we must have p = d, as we
wanted to show. Since α(n) is square-free by Lemma B.1.4, we are done. 	


Immediately from B.1.1 and the fact that an n-Boolean ring is reduced, we get:

Corollary B.1.10. Any n-Boolean ring is a finite direct sum of n-Boolean rings of
prime characteristic. 	

Proposition B.1.11. Let n be even. Any n-Boolean ring has characteristic 2. In par-
ticular, if n is not a power of two, then there are no properly n-Boolean rings.

Proof. By Corollary B.1.9, since n − 1 is odd, the only prime number p pre-
dividing n is p = 2. 	
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For each n, let Bn be the collection of all finite fields whose cardinality pre-
divides n. Note that any field in Bn is n-Boolean by Corollary B.1.3.

Theorem B.1.12. For each n, a finite n-Boolean ring B is a direct sum of fields be-
longing to Bn.

Proof. Let a1, . . . ,as be the atoms of B. By (B.1.5.xi), any element is a linear com-
bination of the ai, and by (B.1.5.ix), any two are orthogonal. In other words, B,
as a ring, is isomorphic to the direct product a1B⊕ ·· ·⊕ asB, and by (B.1.5.viii),
each direct summand is a field belonging to Bn. 	

Remark B.1.13. The number of atoms, whence the number of direct summands,
is equal to the length �(B) of the Artinian ring B.

Corollary B.1.14. A finite p-Boolean ring B of characteristic p, for p a prime num-
ber, is isomorphic as a ring to Fs

p, where s = �(B). More generally, a finite pm-Boolean
ring of characteristic p is isomorphic to a finite direct sum of fields of characteristic p.

Proof. The second assertion is immediate from Theorem B.1.12. For the first,
observe that the only field in Bp of characteristic p is Fp, since p is the maximal
cardinality by (B.1.5.viii), so that the result follows from Remark B.1.13. 	


Together with Corollary B.1.10, this reproves the main theorem in [66].

B.2 Stone Representation Theorem

Given a fixed ring U , we say that a ring R is U -like, if every finitely generated
subring of R embeds, as a ring, in a finite direct product Us. This definition
applies to the current situation as follows. Define the universal n-Boolean ring
Bn as the direct sum of all fields in Bn. Immediately from Theorem B.1.12 and
Corollary B.1.7, we get:

B.2.1 If B is a finite n-Boolean ring, then there exists a faithfully flat embedding
B → B

s
n, where s = �(B). 	


This embedding is in general not unique, since finite fields which are not prime
fields have non-trivial isomorphisms. However, if p is prime, then the isomor-
phism between a finite p-Boolean ring B of characteristic p and Fl

p, with l = �(B),
is canonical up to a permutation of the factors, since the atoms of B are unique
and Fp has no non-trivial automorphisms.

Corollary B.2.2. A ring is n-Boolean if and only if it is Bn-like.

Proof. Suppose B is n-Boolean. Let V be a finitely generated subring of B. Since V
is in particular Noetherian, it is finite by (B.1.5.xi), and hence, by B.2.1, embeds
in some direct product Bs

n, showing that B is Bn-like. Conversely, suppose B is Bn-
like, and take some x∈B. Let V be the subring of B generated by x. By assumption,
it is a subring of Bs

n for some s, whence is n-Boolean. In particular, x is n-potent,
showing that B is n-Boolean. 	
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Table B.1 Cardinalities
of n-Boolean fields
n q = pm pre-divisor of n

3 2,3
5 2,3,5
7 2,3,4,7
9 2,3,5,9
11 2,3,11
13 2,3,4,5,7,13
15 2,3,8
17 2,3,5,9,17
19 2,3,4,7,19
21 2,3,5,11
23 2,3,23
25 2,3,4,5,7,9,13,25
27 2,3,27

Table B.1 calculates the cardinalities of the finite fields in Bn for some odd val-
ues of n. Note that if n is odd, then 2 and 3 are always present in this list, as they
pre-divide any odd number. The case n = 13 shows nonetheless that even if we as-
sume that 2 and 3 are invertible, there can still be characteristics other than n, even
if n is prime. Comparing n = 5 with n = 25 shows that more characteristics can
appear when we take powers. In comparison, the list for 125 is q = 2,3,5,32,125.

Given a ring C, recall that we previously denoted an infinite Cartesian product
of C by C∞. Since we will work over various index sets, we amend this notation by
as follows: the Cartesian power over the index set X will be denoted C∞(X). Note
that C∞(X) can be identified with the ring of all maps f : X →C, with addition and
multiplication given component-wise.

Example B.2.3. We already remarked that for a set X , the power set ring P(X),
with addition given by the symmetric difference and multiplication by intersec-
tion is a Boolean ring. We may view it as a Cartesian power (F2)∞(X), by letting C
be the two-element field F2, identifying a subset with its characteristic function.

If C is U -like, then so is any Cartesian power of C. Note that an ultrapower of
a Cartesian power is no longer a Cartesian power, but we do have:

Lemma B.2.4. Let U be a finite ring. For each set X , the ultrapower of the Cartesian
power U∞(X) embeds into the Cartesian power U∞(X�), where X � is the corresponding
ultrapower of X .

Proof. Note that since U is finite, it is equal to its own ultrapower. Let C� be
the ultrapower of C := U∞(X). Viewing C as the collection of maps X → U , given
f ∈C�, choose maps f w : X →U with ultraproduct equal to f . Define f � : X � →U
as follows. For x ∈ X �, choose approximations xw ∈ X of x, and let f �(x) be the
ultraproduct (in U ) of the elements f w(xw). Put differently, f �(x) is the unique
value in U equal to almost all f w(xw). The assignment f �→ f � yields a map C� →
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U∞(X�). Since addition and multiplication are defined componentwise, one easily
checks that C� →U∞(X�) is a homomorphism. Suppose f ∈C� is not identical zero,
whence neither are almost all f w. In particular, for almost each w, there exists
xw ∈ X such that f w(xw) �= 0. It follows that f �(x) �= 0, where x is the ultraproduct
of the xw, proving that f � is non-zero, and hence C� → U∞(X�) is injective, as we
wanted to show. 	

Theorem B.2.5 (Stone Representation). Let U be a finite ring. A ring is U -like if
and only if it is a subring of a Cartesian power of U . More precisely, B is U -like if and
only if it admits an embedding into U∞(N�), for some ultrapower N� of N.

Proof. One direction is immediate since a subring of a U -like ring is U -like. For
the opposite direction, assume B is U -like. We will show, using Remark 7.1.2,
that there exists an embedding of B into some ultrapower C� of C := U∞(N). Since
C� is a subring of U∞(N�) by Lemma B.2.4, this completes the proof. We want to
verify the validity of (7.1.2.ii). Let V be a finitely generated subring of B. Hence
V embeds in some finite direct product Us, whence into C, showing that (7.1.2.ii)
holds, whence also (7.1.2.iii). 	


The finiteness of U is important here, and we will see in the next section how
in certain instances, we can circumvent this restriction.

Theorem B.2.6. Let n≥ 2. A ring is n-Boolean if and only if it is a subring of a Carte-
sian power of the universal n-Boolean ring Bn. More precisely, B is n-Boolean if and
only if it admits a faithfully flat embedding into Bn∞(N�), for some ultrapowerN� ofN.

If q = pm is a prime power, then a ring of characteristic p is q-Boolean if and only
if it is a subring of a Cartesian power of Fq.

Proof. The first assertion is immediate by Theorem B.2.5 with U = Bn, and
Corollary B.2.2. Faithful flatness follows from Corollary B.1.7. The last assertion
follows from the fact that the only q-Boolean rings of characteristic p are the
subfields of Fq by finite field theory (such a field must be a subfield of the field
of invariants of the q-Frobenius map acting on Falg

p , and this field of invariants is
precisely Fq). 	


The special case when n = 2, yields a version of the Stone Representation
Theorem for Boolean rings a la Henkin [41], since B2 = F2.

Theorem B.2.7 (Stone Representation). For each Boolean ring B, there exists an
ultrapower N� of N and a faithfully flat embedding B → P(N�). 	


B.3 ω-Boolean Rings

We say that a ring B is ω -Boolean if each element is potent (with possibly dif-
ferent potency). In particular, n-Boolean rings are ω -Boolean. For an example of
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an ω -Boolean ring that for no n is n-Boolean, take the algebraic closure Falg
p of

Fp: every element is pm-potent for some m, but m can be arbitrarily large. Unlike
n-Boolean rings, ω -Boolean rings are no longer closed under taking ultraprod-
ucts. For instance, by Theorem 2.4.3, the ultraproduct of the ω -Boolean fields
F

alg
p is equal to C, which clearly fails to be ω -Boolean. In fact, already any infinite

Cartesian product of ω -Boolean rings is no longer ω -Boolean.

Lemma B.3.1. For an ω -Boolean ring B, the following properties hold:

B.3.1.i. B is torsion;
B.3.1.ii. if B is finitely generated, then it is n-Boolean, for some n. In fact, a

finite ring is ω -Boolean if and only if it is reduced, if and only if it is
n-Boolean, for some n;

B.3.1.iii. any ideal in B is radical, any prime ideal is maximal, each localization
at a prime ideal is a field, and B is hereditarily zero-dimensional;

B.3.1.iv. B is von Neumann regular, and any injective homomorphism between
ω -Boolean rings is faithfully flat;

Proof. Since 2n−2 is zero in B, for some n > 1, we get (B.3.1.i). Let d be the char-
acteristic of B. Since each generator has finite potency, it is integral over Z/dZ,
and hence B is finite as a Z/dZ-module, whence finite. If n is the least common
pre-multiple of all m, where m runs over all the finitely many potencies of ele-
ments in B, then B is n-Boolean by (B.1.2.i), proving the first assertion in (B.3.1.ii).
We already observed that an ω -Boolean ring must be reduced, so suppose B is re-
duced and finite. In particular, it is Artinian, and hence a direct sum of local
Artinian rings. Since the latter are reduced, they must be (finite) fields, whence,
in particular, ω -Boolean. The first assertion in (B.3.1.iii) is clear, as B̄ := B/I is
ω -Boolean, whence reduced, for any ideal I ⊆ B. If I is prime, so that B̄ is a do-
main, it must have prime characteristic, say p. Since any element is potent whence
algebraic over Fp, it is contained in Falg

p . The result now follows since any subring
of Falg

p is a field. By the same argument as in (B.1.5.vii), any localization of B at a
prime ideal is then also a field, showing that B is absolutely flat, proving the first
half of (B.3.1.iv). Suppose C is a degenerated ω -Boolean B-algebra. Hence it must
already be degenerated over a finitely generated subalgebra V ⊆ B. Therefore, V
cannot be a subring of C by Corollary B.1.7, whence a fortiori, neither can B,
proving (B.3.1.iv). 	


By B.1.1, a ring is ω -Boolean if and only if its primary components are. In
analogy with our previous nomenclature, we say that a ring is finite-like (also
called locally finite), if every finitely generated subring is finite, or, equivalently, if
it is a direct limit of finite rings. By a subquotient of a ring A, we mean any ring of
the form C/I with C ⊆ A a subring and I ⊆C an ideal.

Corollary B.3.2. For a ring B, the following are equivalent:

B.3.2.i. B is ω -Boolean;
B.3.2.ii. B is reduced and finite-like;
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B.3.2.iii. any subquotient of B is reduced;
B.3.2.iv. any ideal in any subring of B is idempotent.

Proof. Let us first show that in arbitrary ring R, every ideal is idempotent if and
only if every ideal is radical. For the direct implication, let I be an ideal and
x2 ∈ I. Since xR = x2R is idempotent, we get x ∈ I, proving that I is radical. For
the converse, let I be any ideal and x ∈ I. Hence x2 ∈ I2, and since I2 is radical, we
get x ∈ I2, showing that I ⊆ I2. This then also proves that (B.3.2.iii) and (B.3.2.iv)
are equivalent. Applying either of the last two conditions to the prime subring of
B, that is to say, the subring generated by 1, it is clear that B must be torsion and
reduced in any of the four cases. Taking primary components, we may therefore
assume that R has characteristic p. The equivalence of (B.3.2.i) and (B.3.2.ii) is
immediate from (B.3.1.ii). Implication (B.3.2.i) ⇒ (B.3.2.iii) is immediate from
(B.3.1.iii). To prove the converse, let x ∈ B and let V be the subring generated by
x, that is to say, the image of Fp[ξ ] in B under the map sending ξ to x. Since Fp[ξ ]
does not satisfy (B.3.2.iii), the kernel of this map must be non-zero. This implies
that x is integral over Fp. Therefore, V is finite, whence ω -Boolean by (B.3.1.ii),
showing that x is potent. 	


As already observed, it suffices to study ω -Boolean rings of prime characteris-
tic. In that case, we can be more explicit:

Lemma B.3.3. Any element in an ω -Boolean ring B of characteristic p is pm-potent
for some m. More generally, a potent element in a reduced ring R of characteristic p is
pm-potent, for some m.

Proof. We only need to show the second assertion since B is reduced. Let V be the
Fp-subalgebra of R generated by x. Since x is potent, V is integral over Fp, whence
finite. Since it is reduced, it is isomorphic to a direct sum of fields, necessarily of
characteristic p. Hence, for q = pm sufficiently large, all these fields are q-Boolean,
whence so is their direct sum V , and hence x is q-potent. 	

Example B.3.4. Without the assumption that R is reduced, the second assertion is
false. For instance, in the ring R := F3[ξ ]/ξ 2

F3[ξ ], the element ξ + 1 is 4-potent,
but for any power q of 3, we have (ξ + 1)q = ξ q + 1 = 1.

Corollary B.3.5. A ring of characteristic p is ω -Boolean if and only if it is Falg
p -like.

Proof. One direction is clear, since Falg
p is ω -Boolean. Conversely, if B is

ω -Boolean, then any finitely generated subring is q-potent for some power q
of p by (B.3.1.ii) and Lemma B.3.3, and hence, by B.2.1, embeds in a finite direct
product (Falg

p )s. 	

Lemma B.3.3 suggests the following proto-grading. On a reduced ring R of

characteristic p, we define a pre-proto-grading, called the potency proto-grade, by
the condition that x has proto-grade at most n, if it is ps-potent for some s ≤ n.
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Note that by (B.1.2.i), an element has potency proto-grade at most n if it is pn!-
potent, since ps pre-divides pn! for any s ≤ n. To verify that this constitutes a
pre-proto-grading, observe that if x is pm-potent and y is pn-potent, then x+ y and
xy are q := pmn-potent. Indeed, q is a pre-multiple of both pm and pn, and hence
x and y are both q-potent by (B.1.2.i). Therefore, x + y and xy have proto-grade
at most mn since (x + y)q = xq + yq = x + y and (xy)q = xqyq = xy. The subring
of all elements of finite potency proto-grade is called the potency subring of R,
and is denoted ω(R). It follows immediately from Lemma B.3.3 that ω(R) is the
largest ω -Boolean subring of R. Using B.1.1 and the fact that the sum of mutually
orthogonal potent elements is again potent, we may generalize all this to any
reduced torsion ring R:

B.3.6 In a reduced torsion ring, the potent elements form a subring ω(R). 	


Since rings of characteristic p are uniformly proto-graded with respect to po-
tency, we can define their protoproduct, and we have:

B.3.7 The protoproduct R� of rings Rw of characteristic p is equal to the potency
subring ω(R�) of their ultraproduct R�. 	


For instance, the protopower of Falg
p is Falg

p itself, since the collection of ele-
ments of proto-grade at most n in Falg

p is Fpn . Using this observation, one easily
shows:

B.3.8 For each set X , the potency subring of the Cartesian power (Falg
p )∞(X) is the

direct limit of the Cartesian powers (Fpn)∞(X), for n → ∞. 	


Theorem B.3.9. A ring B of characteristic p is ω -Boolean if and only if there is a
faithfully flat map from B into the direct limit of the (Fpn)∞(N�)

, where N� is some
ultrapower of N.

Proof. One direction is again clear. We can imitate the proof of Theorem B.2.5,
to obtain an embedding of B into an ultrapower C� of C := (Falg

p )∞(N), since any
finitely generated subring is pn-Boolean, for some n, by (B.3.1.ii). However, since
a homomorphism sends potent elements to potent elements, the image of the em-
bedding B→C� must lie in ω(C�), that is to say, B embeds into the protopower C�.
So, in view of B.3.8 and the fact that potent elements are sent to potent elements, it
remains to show that C� embeds into the Cartesian power (Falg

p )∞(N�)
. Let f ∈C�,

having proto-grade at most N. Hence there exist approximations f w ∈ (Falg
p )∞(N)

of f of proto-grade at most N, that is to say, with q := pN , almost all f w ∈ (Fq)∞(N).
By Lemma B.2.4, we can then view f as an element in (Fq)∞(N�)

, and this is clearly

a subring of (Falg
p )∞(N�)

, as we wanted to show. 	
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B.4 Periodic Rings

It follows from Example B.3.4 that in an arbitrary (non-reduced) ring, the set
of potent elements is in general not closed under addition. To circumvent this
problem, we generalize the notion of potency: an element x in a ring R is called
periodic, if there exist 0 < m < n such that xn = xm, that is to say, if the multiplica-
tive set of all powers of x is finite. Potent and nilpotent elements are periodic, and
these are essentially the source of all periodic elements, at least in torsion rings:

Lemma B.4.1. In a torsion ring R, an element is periodic if and only if it is a sum of
a nilpotent and a potent element if and only if its image in Rred is potent.

Proof. Let R be a torsion ring. Since the sum of potent, nilpotent or periodic
orthogonal elements is again of the same respective type, we may reduce to the
primary case by B.1.1, and hence assume that R has characteristic pm, with p
prime. Let x be a periodic element in R. Assume first that R is reduced (whence
of characteristic p). We want to show that x is potent. Let V be the subalgebra
generated by x. Since x satisfies some equation ξ i+ j − ξ i for i, j > 0, it is integral
over Fp. Therefore, V is finite, and hence n-Boolean by (B.3.1.ii), and, in fact,
q-Boolean for some power q of p by Lemma B.3.3, concluding the proof in the
reduced case. Assume next that R is arbitrary, and let Rred := R/n be the reduction
of R, where n is the nilradical of R. Since the image of x is periodic in Rred, whence
q-potent for some power q := pe, by the reduced case, we have x−xq = a for some
a ∈ n. So remains to show that xq is potent. It is well-known that the p-adic order

of the binomial
(q

r

)
is equal to e minus the p-adic order of r. Hence, if the p-adic

order of r is at most e−m, then
(q

r

)
is zero in R. In other words, in R, we have an

identity
(ξ + ζ )q = ξ q + ζ pe−m+1

f (ξ ,ζ ) (B.1)

for some polynomial f ∈ Z[ξ ,ζ ]. Increasing q if necessary (by taking some pre-
multiple, see (B.1.2.i)), we may assume ape−m+1

= 0, and hence

xq = (xq + a)q = (xq)q + ape−m+1
f (x,a) = xq2

,

by (B.1), showing that xq is potent.
For the converse, we are left with showing that if x = y + a is the sum of a

potent y and a nilpotent a, then it is periodic. Applying the direct application
to the potent whence periodic element y, we can write it as y = yq + b such that
yq is q-potent and b is nilpotent. Taking q sufficiently large, we may assume that
the pe−m+1-th powers of a, a + b, and b are all zero. Hence, by (B.1) applied to
x = yq + a + b, we get xq = yq2

. Since yq = yq2
by assumption, we get xq = yq and

taking q-th powers gives xq2
= yq2

= yq = xq, showing that x is periodic. 	
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We generalize the definition of ω(R) to an arbitrary torsion ring R as the
collection of all periodic elements; this agrees with our previous definition for
reduced rings by Lemma B.4.1. Using the criterion from Lemma B.4.1 in con-
junction with B.3.6, we get:

Corollary B.4.2. In a torsion ring R, the periodic elements form a subring ω(R).
	


The example Q[[ξ ]]/ξ 2
Q[[ξ ]] shows that the previous results are false in non-

torsion rings: the sum of the potent element 1 and the nilpotent element ξ is not
periodic. Following Chacron [19], we call a ring R periodic if all of its elements are
periodic. Clearly, ω -Boolean rings are periodic. Since 2n −2m = 0 in R, for some
m �= n, a periodic ring must have torsion. In view of the primary decomposition
given by B.1.1, it suffices therefore to study periodic rings of prime power char-
acteristic. The following is the Stone Representation Theorem for (commutative)
periodic rings (some equivalencies were already proven in [33]).

Theorem B.4.3. For a ring R of prime power characteristic q = pm, the following
are equivalent:

B.4.3.i. R is periodic;
B.4.3.ii. the reduction Rred of R is ω -Boolean;
B.4.3.iii. every element of R is the sum of a potent and a nilpotent element;
B.4.3.iv. R is finite-like;
B.4.3.v. R is integral over Z/qZ;
B.4.3.vi. R is hereditarily zero-dimensional;
B.4.3.vii. the reduction Rred of R embeds into the direct limit of all (Fpn)∞(N�)

,
where N� is some ultrapower of N.

Proof. The equivalence of (B.4.3.i) and (B.4.3.iii) is given by Lemma B.4.1. The
equivalence of (B.4.3.ii) and (B.4.3.vii) is given by Theorem B.3.9. Since peri-
odic elements are integral, (B.4.3.i) implies (B.4.3.v). The equivalence of (B.4.3.v)
and (B.4.3.iv), is clear since any finitely generated integral subring is finite over
Z/qZ, whence finite. Since finite rings are zero-dimensional, this then also shows
(B.4.3.v) ⇒ (B.4.3.vi). Assume next (B.4.3.vi), and let B be a finitely generated
subring of R. Since B is Noetherian and by assumption zero-dimensional, it is
Artinian, and hence of finite length over Z/qZ. Therefore, B itself is finite, prov-
ing (B.4.3.iv). If R is finite-like, then so is its reduction Rred, and hence the latter is
ω -Boolean by Corollary B.3.2, proving (B.4.3.iv) ⇒ (B.4.3.ii). Finally, the impli-
cation (B.4.3.ii) ⇒ (B.4.3.iii) is given by Lemma B.4.1. 	

Remark B.4.4. Without requiring q to be a prime power, all conditions, except
the last one, (B.4.3.vii), are still equivalent by B.1.1. It follows from (B.4.3.v) that
in an arbitrary ring R of characteristic d, the subring ω(R) of periodic elements is
equal to the integral closure of Z/dZ in R.
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equivalent ∼e, 13, 14
quantifier free ∼, 11–15
quantifier free ∼ with parameters, 11, 13
quantifier free ∼ without parameters, 11,

13
satisfaction of a ∼, 12, 13, 15

F-rational, 78, 168
F-regular, 69–71, 78, 88, 106, 167

weakly ∼, 70, 78, 88
Frobenius, 3, 4, 22, 65–68, 71, 72, 80, 81, 165,

180, 187
∼ transform, 66, 67

Frobenius closure, 67
Frobenius hull, 83, 86

Galois theory, 180
generic element, see parameter
generic tight closure, see ultra-closure
geometric dimension, 57, 58, 114, 117, 118,

155, 159–162, 166
Gilmer, 184
graded ring, 128
Groebner basis, 63

Hausdorff compactification, 24
Heitman, 5
Henkin, 179, 187

Hensel, 171
Hensel element, 173, 174, 176
Hensel system, 104, 105, 173–177

solution of ∼, 173–177
Henselian, 2, 100, 101, 105, 150, 171–176
Henselization, 6, 100, 103, 104, 107, 171, 172,

174–177
universal property of ∼, 101, 105, 108,

172, 174–176
hereditarily zero-dimensional, 182, 188, 192
Hermann, 63
Hilbert polynomial, 118
Hochster, 3–5, 65, 80, 81, 91–93, 149, 165, 166
Hochster-Roberts Theorem, 76, 77, 88, 94,

107, 109, 161, 167
homological conjectures, 4–6, 42, 94, 149,

161, 166
asymptotic ∼, 5, 149, 151–169
direct summand conjecture, 149, 157, 158,

164
intersection conjectures, 4, 80, 165, 168
monomial conjecture, 94, 95, 112, 149,

158, 159, 164
ultra-monomial conjecture, 159
weak monomial conjecture, 159, 160
weak ultra-monomial conjecture, 159

homology, 29–32, 36, 37, 48, 141, 165, 166,
169, 175

Huneke, 3, 4, 65, 80, 81, 91, 93
hyper-reals, 15
hypersurface, 44, 69

ideal of finite elements, 181–183
ideal of infinitesimals, 10, 19, 20, 22, 102, 115,

116, 120, 122, 123, 125, 155, 161,
165, 167

idempotent, 23, 121, 179–182, 189
strong ∼, 22

ind-Noetherian, 48, 49, 175
infinitely ramified, 165, 166
infinitesimal, see ideal of infinitesimals
integral closure, 3, 69, 70, 73, 75, 76, 85, 86,

88, 89, 107, 109, 192
internal ideal, see ultra-ideal
intersection conjecture, see under homological

conjectures

Jacobian ideal, 74–76
Jacobian matrix, 104, 173

determinant of ∼, 173, 174
Jacobson, 179
Jacobson radical, 46, 47
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Jordan-Holder Theorem, 20
J-ring, see under Boolean

Kochen, 1, 5, 149
Koszul homology, 161
Krull’s Intersection Theorem, 19, 71, 77, 83,

99, 116, 117, 123–125, 139, 140,
155, 167

Krull’s Principal Ideal Theorem, 68, 147
Kunz’s Theorem, 67, 71, 79, 80, 83

Lang, 150
Lefschetz, 16
Lefschetz field, 15, 16, 81, 87, 89, 93, 97, 105,

122
Lefschetz hull, 99, 102, 104, 106–108, 110,

111, 115
relative ∼, 110, 111, 153, 154

Lefschetz Principle, 3, 7, 16, 51, 132, 150
Lefschetz ring, 4, 5, 15, 22, 97, 105
length, 20, 56, 62, 114, 117, 118, 161, 166–169,

185, 192
lexicographical ordering, 60
linear algebraic group, 76
linear combination, 10, 38, 39, 60, 61, 68, 72,

134–139, 163, 184, 185
linear system, 38–40, 59–61, 138, 139, 142,

163
linearly reductive, 76, 77
local cohomology, 95
locally finite, see finite-like
Łoś, 1
Łoś’ Theorem, 2, 7, 10, 11, 14–22, 31, 40,

41, 45, 51–53, 55–62, 87, 89, 93,
94, 98, 101–103, 105, 111, 113,
115–117, 120–125, 130–132, 134,
136–141, 144–148, 151, 155, 156,
158, 160–165, 167, 176, 178

equational ∼, 11, 14–16, 18

Macintyre, 2
Maclane’s Criterion for Separability, 119
mixed characteristic, 5, 37, 50, 95, 149, 150,

154, 156–160, 162–168
model-theory, 1–3, 7, 10–14, 16, 63, 113, 114,

117, 150, 151, 172
monomial conjecture, see under homological

conjectures
Monsky, 70
multiplicity, 79, 118, 149, 161

multiplier, 67–73, 76, 82, 83, 86, 88–90,
106

Mumford, 29

Nakayama’s Lemma, 33, 34, 48, 168
Néron p-desingularization, 87, 88, 99
net, see under deformation
new improved intersection conjecture, see

under homological conjectures
Newton’s method, 172
nilpotent, 180, 191, 192
nilradical, 46, 69, 180, 191
Noether normalization, 43, 44, 56, 57, 66, 93,

94, 172
non-degenerated, 33–35, 40, 49, 55, 133, 136,

137, 140, 146, 184, 188
non-principal ultrafilter, see ultrafilter
non-standard analysis, 15
non-standard closure, see under tight closure
non-standard integers, 15
non-standard tight closure, see tight closure in

characteristic zero
normal, 2, 20, 50, 74, 78, 88, 91, 119, 120,

125
normalization, 120
null-ideal, 1, 2, 10, 23, 24, 26
Nullstellensatz, 54, 55, 122
numerical function, 124, 125, 168

∼ growing sub-linearly, 168

order, 5, 21, 124, 125, 164, 181, 191

parameter, 4, 5, 38, 42, 43, 49, 50, 58, 59, 67,
71, 78, 85, 88, 92–95, 109, 112, 114,
117, 118, 125, 159, 161, 163, 165,
168

∼ ideal, 43, 78, 167
monomial ∼, 95, 158–160
regular ∼, 154, 155, 158
strong ∼, 159, 160
ultra-monomial ∼, 159, 160
uniformizing ∼, 21, 151, 153, 156, 164,

169
parameter degree, 117, 118, 125, 155, 167
Peano arithmetic, 1, 15
periodic, 6, 179, 191, 192
periodic ring, 191–192
persistence, see under tight closure
Peskine, 4, 80, 165
Pigeon Hole Principle, 17
plus closure, 91, 92, 94
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point
finite ∼, 26
infinite ∼, 26, 27

potency, see potent, 180
potency subring, 190
potent, 179, 180, 182, 183, 187–192

n−∼, 179, 180, 185, 189, 190
pre-divisor, 180, 182, 184, 186, 190

greatest common ∼, 180, 183, 184
pre-multiple, 180, 190, 191

least common ∼, 180, 188
primary, 18, 19, 58, 79, 109, 114, 117, 167, 191

∼ decomposition, 71, 179, 188–190, 192
prime avoidance, 71, 72, 89
prime filtration, 33, 122
principal ideal domain, 140, 142
projective dimension, 42, 46
proto-grade, 3, 5, 6, 113, 127–148, 154,

162–164, 176, 177, 189, 190
∼ of an ideal, 133, 135, 137–140, 143, 144,

147, 152, 153, 157
∼d subring, 128, 130–132
affine ∼, 128–130, 132, 135–137, 141, 144,

146, 151, 177
affine ∼ of an algebra, 152–160, 162–164,

167
algebraic ∼, 132
coherent ∼, 134, 138, 139
cyclically pure ∼, 133, 137–139, 142, 143
equivalent ∼s, 128, 130, 131
etale ∼, 6, 104, 105, 135, 176–178
extended degree ∼, 129–131, 135, 140,

143, 148
faithfully flat ∼, 133–135, 137–140,

144–146, 148, 176, 177
flat ∼, 133, 138–140, 147
infinite ∼, 128, 129, 151, 190
Kronecker ∼, 129, 132, 135, 140, 143
Noetherian ∼, 134–139, 143–148, 155,

176, 177
non-degenerated ∼, 133, 136, 137, 140
potency ∼, 189
pre-∼, 127, 130, 190
prime bounded ∼, 143, 144, 146, 148
push-forward of a ∼, 129
residual ∼, 129–131
trivial ∼, 128–134
uniformly ∼d, 130, 131, 133, 144, 145,

151, 154, 155, 190
proto-grading, see proto-grade
protopower, 127, 130–133, 135, 138, 142–146,

148, 151, 176, 190
protoproduct, 2, 3, 5, 52, 127–149, 151–160,

162, 164, 167, 179, 190

Prüfer domain, 20, 141, 142
pseudo-Cohen-Macaulay, see under Cohen-

Macaulay
pseudo-finite field, 15
pseudo-rational, 78, 168
pseudo-regular, see under regular
push-forward, see under proto-grade

Q-Gorenstein, 78
quantifier, 12, 14

existential ∼, 11
universal ∼, 11

Quantifier Elimination, 13, 14
quasi-complete, 101, 115, 116, 121
quotient singularity, 77
quotient space, 76

ramification index, 5, 164–169
rational point, 12, 13
reduction, 180, 191, 192
Rees, 124
regular, 38, 42, 43, 49, 59, 67, 71–73,

76–80, 83, 86–89, 92–94, 106, 107,
109–111, 116, 118–120, 125, 154,
157, 158, 161–164, 167, 172, 177

pseudo-∼, 161–164
pseudo-∼ with zero-divisors, 161

regular map, 119
regular sequence, 4, 35, 38, 42, 43, 46, 47, 49,

55, 59, 67, 71, 72, 78, 82–85, 92–95,
101, 112, 119, 125, 141, 154–156,
159–163, 165, 168, 177

permutable ∼, 42, 55, 84, 160
pre-∼, 35

resolution
free ∼, 37, 46
projective ∼, 32, 36

Reynolds operator, 76, 77
Roberts, 165
Robinson, 51
Rotthaus, 107

scalar extension, 36–38, 48–50, 175, 177
complete ∼, 37, 38, 50, 106, 108, 112,

120
Schmidt, 3, 51, 54, 59, 61–63
Seidenberg, 63, 134, 140
sentence, 11–14, 16–18
separable, 119
separated quotient, 19, 20, 102, 113, 114, 116,

117, 121, 155, 165
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singularities
log-terminal ∼, 5, 69, 78
rational ∼, 5

Skolem, 1
Smith, 78, 92
spectral sequence, 141
split, 21, 77, 88, 91, 158
splitting, 77
stalk, 2, 26, 27
Steinitz’s Theorem, 16, 17, 103
Stone, 6
Stone Representation Theorem, 27, 179, 187,

192
Stone-Čech compactification, see Hausdorff

compactification
subquotient, 188, 189
symbolic power, 79, 80
system of parameters, see parameter
syzygies, 33, 40, 138–142, 177
Szpiro, 4, 80, 165

test element, 71, 90
tight closure, 3–5, 51, 56, 65–81, 83, 84, 87,

91, 92, 94, 97, 106, 167
∼ in characteristic zero, 3, 4, 65, 71, 75,

78, 80, 83, 87–90, 105–110
∼ in finite extensions, 72, 88, 90, 91, 94
∼ in regular rings, 71, 73, 76, 78, 80, 88,

90, 91, 94, 106
colon capturing, 71, 78, 88, 90–92, 94, 106,

109
HH ∼, 4, 75, 78, 80, 81, 88, 90, 99, 107,

165
persistence, 71, 78, 81, 83, 84, 88, 90, 91,

94, 109
simple ∼, 88, 90

tightly closed, see tight closure
Tor

∼ long exact sequence, 32, 33, 36, 39, 41,
43, 44, 47, 142

∼-module, 32, 35, 141
torsion, 179, 188–192
torsion-free, 156
transfer, 3, 5, 7, 14, 16, 51, 56, 59, 80, 89, 93,

149, 154, 155, 162

U -like, 185–187, 189
ultra-K-algebra, 52, 53, 56, 107–112
ultra-closure, 89, 90
ultra-Dedekind domain, 20
ultra-degree, 93
ultra-discrete valuation ring, 20, 150, 152

ultra-exponentiation, 22, 93, 159, 160
ultra-field, 15, 51, 54, 100, 102
ultra-finite field, 15
ultra-Frobenius, 4, 5, 22, 81, 87, 97, 111
ultra-hull, 51–57, 59, 62, 81, 87–90, 93, 110,

111, 127, 132–134, 152–154, 156
equal characteristic ∼, 154
mixed characteristic ∼, 154

ultra-ideal, 18, 19, 53, 55, 121, 162
ultra-monic, 93
ultra-Noetherian, 113, 114, 116, 117, 159, 165,

166
ultra-polynomial, 55
ultra-ring, 1–5, 7, 15, 17–19, 22, 23, 27, 51, 54,

58, 101, 107, 113, 121, 160–162
∼s as stalks, 27

ultrafilter, 2, 7, 8, 16, 17, 22–27, 98, 115, 116,
151

countably incomplete ∼, 116
ultrapower, 8, 15, 21, 22, 27, 37, 40, 45, 93,

97–99, 101–103, 108, 110, 111, 115,
119, 120, 122–125, 127, 130–133,
137, 138, 142, 143, 145, 146, 148,
161, 179, 186, 187, 190, 192

ultraproduct, 1–27, 29, 31, 40, 41, 51–55,
58–62, 78, 80, 81, 87, 89, 90, 93,
94, 97, 98, 100–105, 107–111,
113–118, 121–125, 127, 131–134,
136, 138–141, 143–156, 158–164,
166, 167, 176, 177, 179, 186, 188,
190

∼ commutes with homology, 30, 62, 141,
166

ultraprotoproduct, 132
uniform bound, 3, 5, 6, 51, 59–63, 104, 105,

113, 120, 122, 127, 132, 134–137,
139, 140, 142–146, 148, 149, 158,
163, 165, 167, 168, 177, 178

recursive ∼, 63
unique factorization domain, 141, 142
unmixed, 5, 125
unramified, 36, 48–50, 119, 165, 171, 175

valuation ring, 20, 21, 153
valued field, 150
van den Dries, 3, 51, 54, 59, 61, 62
vanishing theorem, 78
Vasconcelos, 63
von Neumann regular, 136, 137, 182, 188

Weil, 16
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Equations Driven by Rough Paths, Ecole d’Été de Proba-
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Poland 2006. Editors: V. Capasso, M. Lachowicz (2008)
Vol. 1941: S.M.J. Haran, Arithmetical Investigations.
Representation Theory, Orthogonal Polynomials, and
Quantum Interpolations (2008)
Vol. 1942: S. Albeverio, F. Flandoli, Y.G. Sinai, SPDE in
Hydrodynamic. Recent Progress and Prospects. Cetraro,
Italy 2005. Editors: G. Da Prato, M. Rckner (2008)
Vol. 1943: L.L. Bonilla (Ed.), Inverse Problems and Imag-
ing. Martina Franca, Italy 2002 (2008)
Vol. 1944: A. Di Bartolo, G. Falcone, P. Plaumann,
K. Strambach, Algebraic Groups and Lie Groups with
Few Factors (2008)
Vol. 1945: F. Brauer, P. van den Driessche, J. Wu (Eds.),
Mathematical Epidemiology (2008)
Vol. 1946: G. Allaire, A. Arnold, P. Degond, T.Y. Hou,
Quantum Transport. Modelling, Analysis and Asymp-
totics. Cetraro, Italy 2006. Editors: N.B. Abdallah,
G. Frosali (2008)
Vol. 1947: D. Abramovich, M. Mariño, M. Thaddeus,
R. Vakil, Enumerative Invariants in Algebraic Geo-
metry and String Theory. Cetraro, Italy 2005. Editors:
K. Behrend, M. Manetti (2008)
Vol. 1948: F. Cao, J-L. Lisani, J-M. Morel, P. Mus, F. Sur,
A Theory of Shape Identification (2008)
Vol. 1949: H.G. Feichtinger, B. Helffer, M.P. Lamoureux,
N. Lerner, J. Toft, Pseudo-Differential Operators. Quan-
tization and Signals. Cetraro, Italy 2006. Editors: L.
Rodino, M.W. Wong (2008)
Vol. 1950: M. Bramson, Stability of Queueing Networks,
Ecole d’Eté de Probabilits de Saint-Flour XXXVI-2006
(2008)
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