
On Automated Program Construction

and Verification

Rudolf Berghammer1 and Georg Struth2

1 Institute of Computer Science, Christian-Albrechts-University of Kiel, Germany
rub@informatik.uni-kiel.de

2 Department of Computer Science, University of Sheffield, UK
g.struth@dcs.shef.ac.uk

Abstract. A new approach for automating the construction and ver-
ification of imperative programs is presented. Based on the standard
methods of Floyd, Dijkstra, Gries and Hoare, it supports proof and refu-
tation games with automated theorem provers, model search tools and
computer algebra systems combined with “hidden” domain-specific al-
gebraic theories that have been designed and optimised for automation.
The feasibility of this approach is demonstrated through fully automated
correctness proofs of some classical algorithms: Warshall’s transitive clo-
sure algorithm, reachability algorithms for digraphs, and Szpilrajn’s algo-
rithm for linear extensions of partial orders. Sophisticated mathematical
methods that have been developed over decades could thus be integrated
into push-button engineering technology.

1 Introduction

Programs without bugs is one of the great ideals of computing. It motivated
decades of research on program construction and verification. A commonality
of most approaches to program correctness is the combination of mathematical
models of programs with mechanised program analysis tools. It requires inte-
grating the science of programming into the engineering of programs.

Provably correct programs can be obtained in different ways: Program con-
struction or synthesis means deriving executable programs from mathematical
models or specifications, so that a program is correct if its derivation is sound.
Program verification means proving that a given program satisfies a set of as-
sertions provided by the programmer, usually by demonstating that whenever it
initially meets certain constraints (a precondition) it will satisfy a certain prop-
erty (a postcondition) upon termination. In the presence of loops, invariants
must be maintained during their execution.

Models for programs and their properties have been based on different mathe-
matical formalisms. Relational calculi are among the most ubiquitous ones. They
form the basis of established methods like Alloy [16], B [1] or Z [22]. Tool sup-
port has usually been integrated through interactive theorem provers or finitist
methods such as model checkers or SAT-solvers. To be useful in practice, mod-
elling languages must be simple but expressive, and tool support should be as

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 22–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Automated Program Construction and Verification 23

invisible and automatic as possible. These requirements are incompatible and
need to be balanced to yield methods that are lightweight yet powerful.

Our main contribution is an approach to the construction and verification of
imperative programs which aims at this balance in a novel way through computer
enhanced mathematics. Its backbone is a combination of off-the-shelf automated
theorem proving systems (ATP systems), model generators and computer alge-
bra systems with domain-specific algebras that are designed and optimised for
automation. This combination allows automatic program correctness proofs, but
it also supports program development at a more fundamental level through the
inference of specification statements and algorithmic properties in a game of
proof and refutation. While algebraic theories and automation technology can
largely be hidden behind an interface, developers can focus on the conceptual
level and use simple intuitive relational languages for modelling and reasoning.

A second contribution is the demonstration of the potential and feasibility of
this approach through partial correctness proofs of some classical algorithms:

• Warshall’s algorithm for the transitive closure of a relation,
• two reachability algorithms for directed graphs,
• Szpilrajn’s algorithm for linear extensions of partial orders.

While Warshall’s and Szpilrajn’s algorithm are constructed from specifications,
the reachability algorithms are verified. In our current scenario, assertions must
be provided by the developer for verification. Similarly, for program construction,
we do not automatically synthesise invariants or abduce preconditions, but we
provide automated tool support for developing and formally justifying these
tasks. In particular, in both cases, all proof obligations are discharged fully
automatically. We use different domain-specific algebras at the dark side of the
interface, and also discover a new refinement law for reflexive transitive closures
in our case studies. All ATP proofs in this paper can be found at a web site [13].

We build on decades of work on formal methods, logics and algebras for pro-
grams, ATP technology, and program construction. At the engineering side, our
use of relational calculi is inspired by formal methods like Alloy, B or Z; our ap-
proach to program correctness is essentially that of Dijkstra and Gries [11] and
closely related to Hoare logic [12]. We use the ATP system Prover9 and the model
generator Mace4 [19] in our proof experiments, but most other state-of-the-art
ATP systems and model generators would yield a similar performance. For test-
ing and visualising relational programs we use the RelView computer algebra
system [5]. At the mathematical side, we use Tarski’s relation algebras [24] and
various reducts, such as idempotent semirings, Kleene algebras or domain semir-
ings [8,17]. Our case studies build on previous manual calculational correctness
proofs in relation algebra [3,6], but most of our new proofs are different, some-
times simpler, and valid in a larger class of models.

The power and main novelty of our approach lies in the balance of all these
theories, methods and tools. However, presently, we have not much to show
beyond the proof of concept. Further work will be needed to transform our ideas
into program construction and verification tools that will be useful for teaching
and software development practice.

24 R. Berghammer and G. Struth

2 A Simple Relational Modelling Language

For constructing and verifying programs we do not assume much more than an
intuitive conceptual and operational understanding of binary relations and sets
with their fundamental operations and properties, as needed for basic modelling
with Alloy or RelView. To obtain a uniform readable syntax, and to make
it easy to replay our automation experiments, we use a notation that can be
processed by Prover9 and Mace4 although it deviates from most textbooks.

As usual, a binary relation x on a set A is a subset of the Cartesian prod-
uct A×A, a set of ordered pairs on A. Our approach extends to heterogeneous
relations of type A×B, but this would only overload the presentation. As sets,
relations form Boolean algebras and inherit the Boolean operations + of union
or join, ∗ of intersection or meet and ′ of complementation; there is an empty
relation 0 and a universal relation U = A×A. The relative product x; y of two
binary relations x and y is formed by the ordered pairs (a, b) with (a, c) ∈ x
and (c, b) ∈ y for some c ∈ A. The converse x∧ of a binary relation x is formed
by the ordered pairs (b, a) with (a, b) ∈ x. The identity relation 1 consists of all
ordered pairs (a, a) with a ∈ A.

Apart from these basics we assume that readers are familiar with the algo-
rithmics of finite binary relations as presented in undergraduate textbooks [7].
Briefly, finite binary relations can be represented as directed graphs (digraphs)
— ordered pairs corresponding to vertices linked by arrows — and implemented
via the algebra of Boolean adjacency matrices. The relational operations are
reflected in the matrix algebra: join by matrix sum, relative product by matrix
product, conversion by matrix transposition; the identity relation by the diago-
nal matrix, the empty relation by the zero matrix, and the universal relation by
the matrix in which each element is 1. Sets can either be implemented as vectors,
as row-constant matrices or as subidentity matrices with ones at most along the
diagonal. The multiplication of a matrix with a vector corresponds to computing
the preimage (a set) of a set with respect to a relation. The matrix representa-
tion provides an important intuition for our case studies; all our programs can
be implemented directly as matrix algorithms in the RelView tool.

Only a few additional concepts are needed for our case studies. The reflexive
transitive closure and the transitive closure of a relation x are

rtc(x) =
∑

i≥0

xi and tc(x) =
∑

i≥1

xi,

with powers xi defined inductively. The domain d(x) and range r(x) of x are
defined as the sets

d(x) = {a ∈ A : ∃b ∈ A.(a, b) ∈ x},
r(x) = {b ∈ A : ∃a ∈ A.(a, b) ∈ x}.

Throughout this paper, we will call singleton sets points and single ordered
pairs atoms. The technicalities of reasoning with relations are delegated as far
as possible to tools. They are hidden from developers behind an interface.

On Automated Program Construction and Verification 25

3 The Dark Side of the Interface

For automated program construction and verification, the relational concepts
discussed in the previous section must be implemented in domain-specific theo-
ries that are suitable and optimised for automated proof search. Developers are
not supposed to see these theories in detail, they are hidden behind an interface.
We use variants and reducts of relation algebras (in the sense of Tarski [18,21,24])
as domain-specific theories in our case studies.

A relation algebra is a structure (R, +, ∗,′ , 0, U, ; , 1, ∧) that satisfies the fol-
lowing axioms taken from Maddux’s textbook [18].

x+y=y+x & x+(y+z)=(x+y)+z & x=(x’+y’)’+(x’+y)’.

x;(y;z)=(x;y);z & x;1=x & (x+y);z=(x;z)+(y;z).

(x^)^=x & (x+y)^=x^+y^ & (x;y)^=y^;x^ & x^;(x;y)’+y’=y’.

These axioms are effectively executable by Prover9 and Mace4 [15]; complete
input files can be found in a proof data base [13]. The first line contains Hunt-
ington’s axioms for Boolean algebras, the second line those for relative products,
and the third line those for conversion. The following standard definitions are
always included in our input files.

x*y=(x’+y’)’ & x<=y <-> x+y=y & 0=x*x’ & U=x+x’.

% x!=0 -> U;(x;U)=U.

The first equation defines meet via De Morgan’s law. The second formula defines
the standard order of the algebra. The next two equations define the least and
the greatest element of the algebra. Tarski’s axiom in the second line is needed
for proving one single auxiliary lemma in this paper. Apart from this, it has not
been used and is therefore commented out.

Following Ng [20], we axiomatise the reflexive transitive closure rtc(x) of a
binary relation x as a least fixed point:

1+x;rtc(x)=rtc(x) & z+x;y<=y -> rtc(x);z<=y.

1+rtc(x);x=rtc(x) & z+y;x<=y -> z;rtc(x)<=y.

The transitive closure tc(x) of x is defined as tc(x)=x;rtc(x). The expressions
rtc(x) and tc(x) can now be used at the developer’s side of the interface for
modelling and reasoning about programs, whereas the implementation of these
concepts in relation algebra at the dark side of the interface is used for automated
reasoning with Prover9 and Mace4, but need not concern the developer.

It is standard to model sets in relation algebras either as vectors or as subiden-
tities (elements below 1). We present the first alternative for relation algebras
and the second one for Kleene algebras below. Both allow us to implement points
and atoms. In fact, we only need weak points, which are points or zero, and weak
atoms, which are atoms or zero.

inj(x) <-> x;x^<=1. % def injection

vec(x) <-> x=x;U. % def vector

wpoint(x) <-> vec(x) & inj(x). % def weak point

watom(x) <-> wpoint(x;U) & wpoint(x^;U). % def weak atom

26 R. Berghammer and G. Struth

At the developer’s side of the interface, set(x) <-> vec(x) can be used for
typing sets, and the predicates wpoint and watom type (weak) points and (weak)
atoms. The right-hand sides of these definitions implement these concepts. They
can again be hidden. Implementation details are not needed to understand our
case studies; a discussion can be found in the literature [21].

Finally, the domain of a relation x is implemented as d(x)=1*x;U, and the
range r(x)=d(x^) as the domain of the converse of x.

The calculus of relations can effectively be automated [15]. But experiments
show that ATP systems still have difficulties with proving correctness of com-
plex programs from the axioms of relation algebras and auxiliary concepts alone.
Domain-specific and problem-specific theories and assumption sets must be en-
gineered for applications. Adding assumptions requires libraries of verified re-
lational properties [13]. Enhancing proof search requires reducts of relation al-
gebras. Variants of idempotent semirings and Kleene algebras are known to be
very suitable in this respect [8,14]. All verified facts about binary relations can,
of course, safely be used as independent assumptions with these reducts.

An idempotent semiring is a structure (S, +, ; , 0, 1) that satisfies the axioms

x+y=y+x & x+(y+z)=(x+y)+z & x+0=x & x+x=x.

x;(y;z)=(x;y);z & x;1=x & 1;x=x & x;0=0 & 0;x=0.

x;(y+z)=x;y+x;z & (x+y);z=x;z+y;z.

x<=y <-> x+y=y.

An idempotent semiring expanded by the reflexive transitive closure operation
axiomatised above is a Kleene algebra. Conversion can now be axiomatised as

(x^)^=x & (x+y)^=x^+y^ & (x;y)^=y^;x^ & x<=x;(x^;x).

The universal relation can be axiomatised as x<=U.
Sets can again be modelled as vectors or as subidentities, but, in contrast to

relation algebras, the subalgebras of all subidentities in idempotent semirings or
Kleene algebras are not necessarily Boolean algebras.

The simplest approach — and best suited for ATP — uses domain semirings
and Kleene algebras with domain [8]. Domain is axiomatised via an antidomain
operation:

a(x);x=0 & a(x;a(a(y)))=a(x;y) & a(a(x))+a(x)=1.

Intuitively, the antidomain a(x) of a relation x is the set of all elements which are
not in the domain d(x) of x, hence d(x)=a(a(x)). Axiomatic details are again
not important, but the following two properties are essential for understanding
our implementation of sets across the interface: First, the set d(S) of all domain
elements of S is precisely the set of all x ∈ S that satisfy x = d(x). Second d(S)
forms a Boolean algebra among the subidentities of S and the meet operation is
multiplication. In this setting, we can therefore type set(x) <-> d(x)=x.

The notion of range is dual to that of domain. Its axiomatisation only requires
swapping the order of multiplication.

In the context of domain semirings, points can be implemented via rectangular
relations. The corresponding axioms are

On Automated Program Construction and Verification 27

rctangle(x) <-> x;(U;x)=x.

wpoint(x) <-> set(x) & rctangle(x).

Intuitively, a relation is rectangular if it is equal to the cartesian product of its
domain and range, and this explains why points are rectangular sets1. In some
sense, rectangles can be understood as generalised points.

4 Automation Technology Review

In this section we briefly sketch the Dijkstra-Gries approach to program devel-
opment and discuss the three tools used for its automation behind the interface.

The Dijkstra-Gries Approach. As mentioned in the introduction, program con-
struction means that a program is derived from a specification, and program
verification means that a given program is proved to be correct with respect to
a given specification. For imperative programs, specifications usually consist of
preconditions, postconditions and invariants which model the inductive proper-
ties implemented in the body of a loop. The correctness of a simple while loop
is implied by the following proof obligations:

1. The invariant is established by the initialisation (before the loop starts)
2. Each execution of the loop’s body preserves the invariant, as long as the

guard of the loop is true.
3. The invariant establishes the postcondition if the guard of the loop is false.
4. The loop terminates.

We will automatically analyse the first three proof obligations in our case studies,
hence prove partial program correctness. We do not formally consider termination
(total correctness) since this requires a different kind of analysis.

For program verification, the precondition, the postcondition and the invariant
are added as assertions to the given program code, and the proof obligations can
then be generated and analysed automatically. This approach is based on the
seminal work of Floyd and Hoare [10,12].

For program construction, the invariant is hypothesised as a modification
of the postcondition and the proof obligations are then established step by step
together with the synthesis of the program: the guard of its loop, the initialisation
of the variables to establish the invariant and the assignments in the loop’s
body to maintain it. Based on the fundamental principle that “a program and
its correctness proof should be developed hand-in-hand with the proof usually
leading the way” ([11], p. 164), the approach has been pioneered by Dijkstra [9],
and elaborated by Gries [11] and others into a variety of techniques.

1 The usual definition of rectangles in relation algebras uses only x;U ; x ≤ x, and we
could automatically verify that this is equivalent to x; U ; x = x. In Kleene algebra,
in contrast, the equational definition is strictly stronger than the original one; they
are separated by a three element counterexample found by Mace4.

28 R. Berghammer and G. Struth

Tools for Proofs and Refutations. To automate all synthesis and verification
proofs, we use the ATP system Prover9 [19]. The main reason is that its input
syntax is very readable and that the model generator Mace4 [19] is based on the
same syntax. This makes it particularly easy to replay our proof experiments.
The interplay of ATP systems and model generators is essential for our games
of proof and refutation in program construction.

Prover9 is complete for first-order logic with equality; it allows reasoning
with relation algebra and all reducts we consider. It takes a set of assumptions
and a proof goal and uses sophisticated proof search and redundancy elimination
strategies combined with complex heuristics to deduce the goal from the assump-
tions. We use the tool entirely as a black box and as push-button technology.
Prover9 is only a semi-decision procedure. In theory it can prove all first-oder
theorems, but may run forever on non-valid proof goals. In practice, however, it
often runs out of steam without proving a theorem. On success, Prover9 outputs
a proof (which is usually not revealing for humans). Mace4 searches for finite
models. It accepts essentially the same input as Prover9, and tries to construct
a model of the assumptions that fails the proof goal, that is, a counterexample.

Prover9 and Mace4 support infix and postfix notation for algebraic operators
and precedence declarations. For relation algebra, we use the following code:

op(500, infix, "+"). % join

op(480, infix, "*"). % meet

op(300, postfix, "’"). % complementation

op(450, infix, ";"). % composition

op(300, postfix, "^"). % conversion

Operations with a lower number bind more strongly than those with a higher
number. For Kleene algebra, we use the following declaration:

op(500, infix, "+").

op(490, infix, ";").

Assumptions and goals must be put into the following environment:

formulas(assumptions). ... end_of_list.

formulas(goal). ... end_of_list.

Examples for input and output files, and the complete set of proofs for our case
studies, can be found in a proof database [13]. We have so far verified more than
500 theorems of relation algebras and Kleene algebras, including more or less all
“textbook theorems”.

In our experiments, to demonstrate the robustness of the approach, we always
use the weakest possible assumption set, ideally the theory axioms and basic
definitions alone, at the expense of long running times. Adding the right lemmas
would usually bring proof search down to a few seconds.

Besides Prover9 and Mace4 we also use the RelView system [5]. This is an in-
teractive and graphics-oriented special purpose computer algebra system for the
visualisation and manipulation of binary relations, and for relational prototyping
and programming. RelView is optimised for very large objects, for instance,

On Automated Program Construction and Verification 29

membership relations, which is especially important for prototyping. It uses an
efficient internal implementation of relations via reduced ordered binary decision
diagrams [4]. RelView provides predefined operations and tests for modelling
and analysing relations in the lightweight style sketched in Section 2. (We do
not use the RelView modelling language since it clashes with Prover9 syntax.)
Relational functions and programs can be built from these operations. Relational
functions are introduced as usual in mathematics, and relational programs are
essentially while-programs based on relational datatypes.

Within our approach, the main applications of RelView are specification
testing and support for reasoning with concrete finite binary relations. Specifi-
cation testing includes mainly the evaluation of relational specifications and the
comparison of the results obtained with original specifications in another for-
malism, or even the intuitive notion of the problem, in order to find weaknesses
or inconsistencies. Support for relational reasoning is very important in program
construction for finding and analysing loop invariants, that is, whether a candi-
date for an invariant satisfies or violates a proof obligation in some special cases.
RelView allows developers to experiment with programs and assertions and to
visualise this information via graphical representations of relations. Particularly
useful for program construction and verification is the fact that the tool allows
testing validity of arbitrary Boolean combinations of relational inclusions via an
ASSERT command and that the relations needed can be randomly generated.

5 Synthesis of Warshall’s Algorithm

As a first case study, we construct Warshall’s classical algorithm [25] for com-
puting the transitive closure of a finite binary relation — a digraph — from
its specification. We carefully separate the developer’s view from the domain-
specific theory — in this case Kleene algebra with domain — and the automation
technology at the dark side of the interface. We also aim at illustrating how a
proof and refutation game with Prover9, Mace4 and RelView is essential in
this construction.

We use the Dijkstra-Gries framework to derive a simple while-program from
a given precondition and postcondition, inferring the loop invariant, the guard
of the loop and the variable assignments along the way. This development is
inspired by a previous manual correctness proof in relation algebra [3].

Initial Specification. Consider the following program construction task:

Given a finite binary relation x, find a program with a relational variable
y that stores the transitive closure of x after its execution.

We aim at a while-program of the following schematic form:

... y:=x ...

while ... do

... y:=? ... od

30 R. Berghammer and G. Struth

The precondition and postcondition are evident from the above specification:

pre(x) <-> x=x.

post(x,y) <-> y=tc(x).

The formula x = x expresses for Prover9 that the precondition is always true.
This is the case because the input relation x can be arbitrary. The proof obli-
gations from Section 4 guide us through the synthesis of the initialisation, the
guard and the body of the loop.

Developing the Invariant. The most important ingredient of our construction is
still missing: Warshall’s insight that makes the algorithm work.

Initially, compute only those paths contributing to the transitive closure
of x that traverse no inner vertices. Then iteratively add inner vertices
and compute the local transitive closure restricted to each new inner-
vertex set incrementally from that of its predecessor set. Terminate when
all possible new inner vertices have been added.

How the incremental computation can be achieved will concern us later, but the
invariant of the algorithm should by now be evident:

The variable y must maintain the transitive closure of x restricted to
each set v of inner vertices that is constructed along the way.

Formally, for Prover9, we obtain:

inv(x,y,v) <-> (set(v) -> y=rtc(x;v);x).

Note that (x; v)k; x yields the first and last points of x-paths with k inner vertices
from the set v, and that sets are implemented as subidentities via domain.

Initialisation, and Guard. According to the specification, the set variable v
should be initialised as v:=0 and the loop should terminate when v = 1, or, even
better, when v = d(x), that is, when all vertices from which x is enabled have
been visited. The guard of the loop should therefore be v!= d(x) (or v!= 1).
We can justify these assumptions by verifying the following proof obligations.

Theorem 1. The invariant is established by the initialisation (if the precondi-
tion holds); it establishes the postcondition when the guard of the loop is false.

Proof. Using Kleene algebra with domain (behind the interface) we proved

pre(x) -> inv(x,x,0).

inv(x,y,v) & v=1 -> post(x,y).

inv(x,y,v) & v=d(x) -> post(x,y).

Since Prover9 can only handle one non-equational proof goal at a time, two goals
always need to be commented out. The assumption file contains the axioms
for Kleene algebras with domain, and the definition of set, transitive closure,
precondition, postcondition and invariant, as listed above. The proofs of the
first and the third goal were instantaneous and very short. The proof of the
second goal was slightly harder. It required about 18s and has 129 steps. ��

On Automated Program Construction and Verification 31

Termination and Development of the Loop. We now consider termination of
the algorithm, and synthesise the body of the loop by considering the proof
obligation that the invariant be preserved when executing the loop. This means
synthesising assignments to the set variable v and the relational variable y:

• The assignment to v is obvious from the above discussion. We add a single
new point p to the set v; v:=v+p.

• The assignment of y should, if possible, increment y, which stores the tran-
sitive closure of x restricted to v, by the transitive closure computed incre-
mentally with respect to y and p. So we postulate y:=y+f(y,p).

Our program should then have the following form:

y,v:=x,0

while v!=d(x) do

p:=point(v’)

y,v:=y+f(y,p),v+p od

Here, point is a choice function that returns some point from the complement
set of v, which is taken at the set level. It satisfies the axiom

wpoint(point(x)) & point(x)!=0.

but this is not needed in our development apart from termination. At the dark
side of the interface, v′ is translated to a(v). Now, the assignment v:=v+p with
v and p disjoint enforces termination of the loop. This is the only part of the
proof which we do not automate. It remains to determine y+f(y,p).

We compare the value y before and after the assignment to v. Before the
assignment, y = rtc(x; v); x. After the assignment v:=v+p we have the value

y = rtc(x; (v + p)); x = rtc(x; v + x; p).

So we could try to refine the reflexive transitive closure of this sum into a sum
of reflexive transitive closures.

Consider rtc(a+ b) for arbitrary relations a and b. First, the most straightfor-
ward refinement into rtc(a) + rtc(b) can be refuted by a six-element counterex-
ample. Hence we need to consider this expression in more detail.

Obviously, rtc(a + b) represents arbitrary alternating sequences of a and b,
hence should be equal to rtc(rtc(a); rtc(b)). This has already been verified by
ATP [13]. Such sequences could form either one single a-block (possibly empty),
or alternating blocks of a and b. But b = x; p is not an arbitrary relation. In
the matrix model, the point p projects x onto a matrix in which only one single
non-zero row. This can be visualised in experiments with RelView. In other
words, b is a rectangle and we conjecture the following more general fact.

Lemma 2. Let x, y be elements of a relation algebra in which Tarski’s axiom
holds. If y is rectangular, then x; y is rectangular.

Proof. Using the axioms of relation algebras, Tarski’s axiom and the above def-
inition of rectangles, we proved rctangle(y) -> rctangle(x;y) by ATP. ��

32 R. Berghammer and G. Struth

Interestingly, Lemma 2 does not hold in all Kleene algebras (Mace4 found a
three-element counterexample) or for relation algebras without Tarski’s axiom.
But we can safely add it as an independent assumption.

The fact that b = x; p is a rectangle has some impact on the alternating
blocks of a and b. Intuitively, rectangles can be seen as generalised points. Many
of their properties can be conjectured by thinking about points in the first place
and then proved or refuted by Prover9 and Mace4. First, b; b = b ∗ b = b, hence
all b-blocks must have length one. Second, b; rtc(a); b ≤ b, since in the left-hand
side of this inequality, all inputs and outputs are projected onto the rectangle b.
Hence, if b is rectangular, the developer might conjecture that rtc(a + b) can be
refined to rtc(a) + rtc(a); b; rtc(a). And indeed we can prove the following new
refinement law for reflexive transitive closures that is of general interest.

Proposition 3. Let x, y be elements of a Kleene algebra with greatest element,
and let y be rectangular. Then

rtc(x + y) = rtc(x) + rtc(x); y; rtc(x).

Proof. By ATP, using the Kleene algebra axioms and the definitions of universal
relation and rectangle. The ≥-proof took less than 10s. The ≤-proof took about
30s; it has 56 steps. ��
Proposition 3 allows us to refine the term (x; v + x; p) in the assignment of y
since x; p is rectangular by Lemma 2. We can therefore incrementally compute
the transitive closure of x restricted to inner vertices in v+p from that restricted
to inner vertices in v by updating the relational variable y to y + y; p; y.

Lemma 4. Let x, v, p be elements of a relation algebra in which Tarski’s axiom
holds, let p be rectangular, and let y = rtc(x; v); x. Then

rtc(x; (v + p)); x = y + y; p; y.

Proof. Using the idempotent semiring axioms, the refinement law from Propo-
sition 3, and the equation from Lemma 2, we could automatically prove

rctangle(z) -> rtc(x;(v+z));x=rtc(x;v);x+(rtc(x;v);((x;z);rtc(x;v)));x.

in less than 15s. Note that Prover9 would not accept p as an implicitly universally
quantified variable. Setting y = rtc(x; v); x then yields the result. ��
We have thus formally justified the assignment y:=y+y;p;y, which is another
key insight in Warshall’s algorithm. We derived it from a general refinement law
for reflexive transitive closures. Based on this formal development we can now
prove explicitly and in declarative style the remaining proof obligation.

Theorem 5. Executing the loop preserves the invariant if the guard of the loop
is true.

Proof. We attempted to prove the formula

wpoint(w) & inv(x,y,v) & y!=d(x) -> inv(x,y+y;(w;y),v+w).

On Automated Program Construction and Verification 33

from the axioms of Kleene algebras with domain, the definition of weak point,
and the decomposition law from the proof of Lemma 4. However, Mace4 imme-
diately found a three-element counterexample, so we needed to strengthen the
assumptions. Adding the independent assumption x;U=d(x);U, which we auto-
matically verified in relation algebras, yielded a short proof in less than 15s. ��
A proof of Theorem 5 from the axioms of Kleene algebra and x; U = d(x); U
within reasonable time bounds did not succeed. Alternatively, we have found a
less elegant and generic proof of Theorem 5 based on a decomposition of points
instead of rectangles.

Partial Correctness. The result of the construction is summed up in the main
theorem of this section.

Theorem 6. The following variant of Warshall’s transitive closure algorithm is
(partially) correct:

y,v:=x,0

while v!=d(x) do

p:=point(v’)

y,v:=y+y;p;y,v+p od

The proof of this theorem has been fully automated in every detail, and the
algorithm has been shown to be correct by construction. Kleene algebra alone
did not suffice for this analysis. We used two additional independent assump-
tions that hold in relation algebras. One even required Tarski’s axiom. Mace4 is
instrumental for indicating when such assumptions are needed. Finding the right
assumptions of course requires some background knowledge, but could be au-
tomated. A tool could blindly try combinations of previously verified relational
lemmas from a given library.

To appreciate the complexity of proof search involved, it should be noted that
most of the proofs involving transitive closures in this section are essentially
inductive. With our algebraic axiomatisation of (reflexive) transitive closures of
binary relations, these inductions could be captured calculationally in a first-
order setting and therefore be automated.

In conclusion, the construction of Warshall’s algorithm required some gen-
eral familiarity with relations and some operational understanding of reflexive
transitive closures. For the operational understanding, testing the loop invariant
and developing the refinement law for reflexive transitive closures, experiment-
ing with Mace4 and RelView was very helpful. But for the synthesis of the
algorithm, no particular knowledge of the calculus of relation algebras or Kleene
algebras was needed. All that could be hidden in the darkness of the interface.

6 Verification of Reachability Algorithms

The task of determining the set of states that are reachable from some given set
of states in a digraph can also be reduced to relational reasoning. As a second

34 R. Berghammer and G. Struth

case study, we show how two matrix-based algorithms can be automatically
verified. In this scenario, the programmer annotates code with assertions for the
precondition, postcondition and loop invariant. The code and the assertions are
then tranformed into proof obligations from which program correctness is proved
automatically in one full sweep behind the interface.

The RelView system provides a relational modelling language and an im-
perative programming language in which the programs and all assertions can
be implemented and executed. We assume that RelView, Prover9 and Mace4
have been integrated into an imaginary tool that does all the translations be-
tween programs and tools, and runs the tools in the background.

A Naive Algorithm. The following relational algorithm computes the set w of
states that are reachable in some digraph y from a set v of initial states; a
previous manual construction can be found in [3]:

{pre(y,v) <-> x=x}

w:=v

while -(y^;w<=w) do

{inv(y,v,w) <-> v<=w & w<=rtc(y^);v}

w:=w+y^;w od

{post(y,v,w) <-> w=rtc(y^);v}

In this program, y is an adjacency matrix; v and w are vectors or other im-
plementations of sets. But our imaginary verification tool ignores all types and
selects Kleene algebra as the domain-specific theory after a syntactic analysis.
It also ignores the operation of converse in y∧ because y itself does not occur in
the code. It therefore uniformly replaces y∧ by x. Note that this step has little
impact on ATP performance. The tool then passes the following postcondition,
guard of the loop and invariant to Prover9; it ignores the trivial precondition:

guard(x,v,w) <-> -(x;w<=w).

post(x,v,w) <-> w=rtc(x);v.

inv(x,v,w) <-> v<=w & w<=rtc(x);v.

The postcondition says that upon termination the vector w stores all those
vertices that are linked by an arrow in the reflexive transitive closure of x to a
vertex in v. The idea of the program, to compute intermediate states w iteratively
with respect to x such that after each iteration w is a superset of v and a subset
of the set of reachable states, is captured by the invariant.

Proving partial correctness means discharging the following proof obligations,
which our imaginary verification tool could automatically extract from the code
and the assertions.

inv(x,v,w) & -guard(x,v,w) -> post(x,v,w).

inv(x,v,v).

inv(x,v,w) & guard(x,v,w) -> inv(x,v,w+x;w).

Using the axioms of Kleene algebra, Prover9 could instantaneously verify the
first and the second proof obligation; the third one needed about ten seconds.
In fact, the third proof obligation did not require the assumption that the guard
of the loop is true. Termination has again been neglected. But obviously, the set
w is enlarged in each iteration of the loop and finitely bounded by the guard.

On Automated Program Construction and Verification 35

A Refined Algorithm. The main drawback of the naive algorithm is that the
guard of the loop is recomputed in each turn of the loop. Finite differencing
yields a refined algorithm which uses a new vector or set variable u to store the
intermediate values of x; w ·w′, where the complement w′ of w is again taken at
the set level (For a manual development, see again [3]). In this example, we do
not use the precondition, postcondition and invariant in declarative style, but
encode assertions directly in the relational modelling language.

{pre: true}

w,u:= v,v’*y^;v

while u!=0 do

{inv: v<=w & w<=rtc(y^);v & u=w’*y^;w}

w:=w+u

u:=w’*y^;u od

{post: w=rtc(y^);v}

We now assume that our imaginary tool translates these assertions into a Kleene
algebra with range (with dual domain axioms). The range operation is used
behind the scene for typing sets and for computing sets of successor states: The
set of states that are reachable (in one step) from a set v with respect to a relation
x is given by the range of v;x. Now a(x) denotes the antirange of x and r(x) the
range of x. If x is a set, then x = r(x), r(x) = a(a(x)), and a(r(x)) = a(x). Thus
the verification tool can use r(x) for “typing” that x is a set and generate the
following formulas:

r(u)!=0. % guard

r(w)=r(r(v);rtc(x)). % postcond.

r(v)<=r(w) & r(w)<=r(r(v);rtc(x)) & r(u)=a(w);r(r(w);x). % invariant

Again, y∧ is uniformly replaced by x, the trivial precondition is omitted. The
tool would then generate the following proof obligations:

(1) The invariant is established by the initialisation.

r(v)<=r(v) & r(v)<=r(r(v);rtc(x)) & a(v);r(r(v);x)=a(v);r(r(v);x).

(2) The invariant establishes the postcondition if the guard of the loop is false.

r(v)<=r(w) & r(w)<=r(r(v);rtc(x)) & a(w);r(r(w);x)=0

-> r(r(v);rtc(x))<=r(w) & r(w)<=r(r(v);rtc(x)).

(3) Executing the loop preserves the invariant if the guard of the loop is true.

r(v)<=r(w) & r(w)<=r(r(v);rtc(x)) & r(u)=a(w);r(r(w);x)

-> r(v)<=r(w)+r(u) & r(w)+r(u)<=r(r(v);rtc(x)).

A proof of (1) took about 35s from the axioms of Kleene algebras with range
and the definition of invariant. It yielded a proof with 42 steps. For the proof
of (2), the postconditions has been split into two inequalities, and the (negated)
guard of the loop has been ignored. A proof from the axioms alone failed within
reasonable time; the following additional assumptions were required:

r(x+y)=r(x)+r(y) & r(v)+r(r(w);x)<=r(w) -> r(r(v);rtc(x))<=r(w).

36 R. Berghammer and G. Struth

Both formulas have already been verified [8]. The first assumption is additivity
of range, which seems fundamental enough to be added to any domain-specific
theory that uses range. The second additional assumption is based on the ob-
servation that the proof of the formula r(w) ≤ r(r(v); rtc(x)) from the third
assumption, r(w) ≤ r(r(v); x), is essentially induction with respect to x. With
these additional assumptions, Prover9 took about 150s; the proof has 102 steps.
Proofs with fewer axioms failed within reasonable time. Whether a tool could au-
tomatically learn such additional assumptions is an interesting research question.
The proof of (3) used the axioms of Kleene algebras with range and additivity
of range. Prover9 took less than 130s and provided a proof with 149 steps.

The results of this section further demonstrate the flexibility of our approach.
Here, two reachability algorithms, to which preconditions, postconditions and
invariants have been added as assertions, have been automatically verified. Such
correctness proofs could run in the background and complement existing tech-
niques for extended static checking. Again, reasoning about reachability required
induction, which could be fully automated in Kleene algebra.

7 Synthesis of Szpilrajn’s Algorithm

Our final case study is again on program construction. To further demonstrate
the versatility of our approach, we now use relation algebra with sets modelled
as vectors as the domain-specific theory behind the interface. We synthesise
Szpilrajn’s algorithm [23] that computes the linear extension of a given partial
order. This synthesis is inspired by a previous manual correctness proof [6].

Initial Specification. Consider the following program construction task:

Given a finite partial order x, find a program with variable y that stores
the linear extension of x after execution.

Again, we conjecture that our program is a simple while loop:

... y:=x ...

while ... do

... y:=? ... od

Obviously, the precondition is that the input relation x is a partial order, a reflex-
ive, antisymmetric and transitive relation. In our relational modelling language
we can write:

1<=x & x*x^<=1 & x;x<=x.

But we could also provide more declarative concepts such as ref(x), antisym(x)
and trans(x). The postcondition is that the relational variable y stores a total
order relation that extends x:

1<=y & y*y^<=1 & y;y<=y & x<=y & y+y^=U.

The fourth inequality states that the partial order relation y extends x; the last
one expresses totality of y.

On Automated Program Construction and Verification 37

Developing the Invariant. The basic idea of Szpilrajn’s algorithm is to build
a chain of partial extensions of the partial order x by iteratively adding atoms
(single ordered pairs) z that are incomparable by x, and incrementally computing
the partial order for these extensions. Algorithmic details will again be part of
the development, but we can now state the invariant:

The relation y is a partial order that contains x.

In our relational modelling language, this can be formalised as

1<=y & y*y^<=1 & y;y<=y & x<=y

Initialisation and Guard. We assume that our algorithm has only one global
relational variable, namely y, which is initialised as x. Moreover, the while loop
should terminate when no further extension of x can be computed, that is, when
y + y∧ = U . The guard of the loop should therefore be y+y^!=U. We can justify
these choices by verifying the following proof obligations:

Theorem 7. The invariant is established by the initialisation (if the precondi-
tion holds); it establishes the postcondition when the guard of the loop is false.

Proof. Using the axioms for relation algebras, these trivial ATP exercises needed
no time. The invariant after initialisation is the precondition; the conjunction of
the invariant and the negated guard of the loop is the postcondition. ��
Termination and Development of the Loop. Termination of the algorithm is
obvious, since only finitely many atoms can be added. As before, this is not
further formalised.

To synthesise the loop body, we must determine the assignments to atoms z
and the relational variable y. Obviously, z can be an arbitrary atom from the
complement of y + y∧. The variable y should be incremented by a function in y
and z, that is, y:=y+f(y,z). So we postulate that our program be of the following
form, where atom is a choice function that picks some atom from (y + y∧)′:

y:=x

while y+y^!=U do

z:=atom((y+y^)’)

y:=y+f(y,z) od

The choice function can be axiomatised by watom(atom(x)) & atom(x)!=0,
analogously to point. It remains to synthesise f and to show that the resulting
assignment preserves the invariant whenever the guard of the loop is true. This
can again be based on experiments with RelView, Prover9 and Mace4. But,
since atoms are rectangles, Proposition 3 can again be used:

rtc(y + z) = rtc(y) + rtc(y); z; rtc(y).

Now rtc(y) = y since y is reflexive and transitive, which can be checked by ATP.
Hence one of Szpilrajn’s key insights can again be derived from our refinement
law: y:=y+y;z;y.

38 R. Berghammer and G. Struth

Theorem 8. Executing the loop preserves the invariant (if the guard of the loop
is true).

Proof. We assume that before executing the loop y is a partial order that extends
x. We must prove that after execution the same properties hold of the new value
of y. We use Prover9 with the axioms of relation algebras and the definition of
weak atoms, but do not need the guard condition.

• The new value of y is a reflexive extension of x (this proof required no time):

1<=y & y*y^<=1 & y;y<=y & x<=y -> x+1<=y+y;(z;y).

• The new value of y is transitive.

y;y<=y & watom(z) & z<=(y+y’)^

-> (y+y;(z;y));(y+y;(z;y))<=(y+y;(z;y)).

We used the axioms for relation algebra without the relation-algebraic defi-
nition of U = x + x′, but needed four additional (verified) assumptions,

x;(y+z)=x;y+x;z & x<=y -> z;x<=z;y & x<=y -> x;z<=y;z & x<=U.

and the definition of a weak atom from Section 3. These assumptions are very
natural and should perhaps be included in any assumption set for relation
algebras. The proof then took about 200s and has 158 steps.

• The new value of y is antisymmetric.

y;y<=y & y*y^<=1 & watom(z) & z<=(y+y^)’

-> (y+y;(z;y))*(y+y;(z;y))^<=1.

We could prove this goal from the axioms of relation algebras, and the defi-
nition of weak atom alone. The proof needed about 410s and has 274 steps,
which is very long compared to similar experiments. ��

The fact that additional assumptions were needed for proving transitivity may
seem disappointing, but we can do better: Using idempotent semirings with
converse (cf. Section 3) yielded a fully automated proof with 111 steps in less
than 10s. Injections, vectors, weak points and weak atoms were used as before.

Of course we cannot use this simpler domain-specific theory for proving anti-
symmetry since this property cannot be expressed in Kleene algebra. To appre-
ciate the complexity of proof search involved it should be mentioned that the
manual relation-algebraic proof of antisymmetry [6] is quite involved: It requires
several lemmas and covers almost an entire page. Proving the lemmas them-
selves is rather tedious and heavily involves the Schröder and Dedekind rules.
Since these rules are difficult to prove by ATP, it is rather surprising that our
automated correctness proof succeeds, possibly via a different route.

Partial Correctness. The result of this construction can be summed up in the
main theorem of this section.

Theorem 9. The following variant of Szpilrajn’s algorithm for computing linear
extensions of partial orders is (partially) correct:

On Automated Program Construction and Verification 39

y:=x;

while y+y^!=U do

z:=atom((y+y^)’)

y:=y+y;z;y od

Choosing the right domain-specific theories, the entire program construction
could be automated from the theory axioms alone, that is, without any additional
assumptions. The granularity of proof would again allow a fully automatic post-
hoc verification with ATP systems in the background.

8 Discussion

Our main technical contribution is the demonstration that an integration of ATP
systems and domain-specific algebras supports automatic correctness proofs for
imperative programs through verification or program construction. We believe
that these results motivate a new approach, to program construction in partic-
ular, which could combine simple high level program development techniques
with computer enhanced mathematics based on domain-specific algebras and
powerful proof automation. This section sketches some research questions and
speculates about tools in which this approach could be implemented.

Theory Engineering. Relational calculi are not only useful for verifying and con-
structing algorithms for graphs, ordered sets, or other structures like games,
Petri nets and lattices, they also form the basis for popular software develop-
ment methods such as Alloy, B or Z. In preliminary experiments we have shown
that the basic calculus of binary relations, as presented in the textbooks by
Maddux [18] and Schmidt and Ströhlein [21] or Abrial’s B-Book [1], can be
automated [13]. Similar experiment in computer enhanced mathematics with
reducts of relation algebras, in particular variants of idempotent semirings and
Kleene algebras, are equally positive. While fully automated proofs of simpler
theorems are possible from the theory axioms alone, more difficult goals require
selecting appropriate lemmas (or even deleting “prolific” but unnecessary ax-
ioms). This suggests the following research questions: How can we organise and
manage theory-specific and problem-specific knowledge to obtain useful assump-
tion sets for ATP systems? How can we learn or abduce specific assumptions that
are needed for particular proofs?

Relation algebras and variants of Kleene algebras capture the control flow in
imperative programs and provide semantics for various computing applications,
but they are less appropriate for modelling data structure or data types, or
quantitative aspects of computations. Correctness proofs involving numbers, lists
or arrays require different background theories or decision procedures. While
their integration into our approach seems straightforward, their combination
with relation algebras or Kleene algebras need further investigation.

Program Construction Technology. The most significant future task is to build
program construction and verification tools that support the development of
programs from specifications.

40 R. Berghammer and G. Struth

First, this requires the design of suitable modelling languages similar to those
of Alloy or RelView. Second, existing libraries must be linked into a coherent
data base. Third, to reason about data structures and data types, our present
tool set should be complemented by SMT solvers and other decision procedures.
Fourth, to manage the program construction process, automated tools need to
be combined with interactive theorem provers which can handle the proof obliga-
tions of the Dijkstra-Gries approach or Hoare logic through tactics. These tools
can also be used for residual inductive proofs that cannot be automated or for
splitting complex proof goals into subgoals. Fifth, mechanisms for selecting ap-
propriate theories behind the interface must be developed. We believe that our
approach can largely be based on existing technology that only needs to be bal-
anced in suitable ways. While for relation-based algorithms, development tools
could be built around the RelView system, more general tools could support
any other relation-based software development method.

The ultimate goal of our approach is to turn program construction into an
activity in which the intellectually demanding and creative engineering tasks are
separated — at an appropriate level of granularity — from routine calculations,
such that developers can focus on the conceptual side of the construction while
delegating technicalities to automated tools. The resulting approach would not
only support teaching formal program development in more lightweight ways; it
might also substantially increase the automation of existing formal methods for
software development.

9 Conclusion

We have introduced a new approach to program construction and verification
that is based on computer enhanced mathematics through a combination of
domain-specific algebras with ATP systems, model generators and computer al-
gebra tools. Using this combination we could prove the correctness of some stan-
dard algorithms fully automatically within the Dijkstra-Gries approach. While
these results seem an interesting contribution per se, we see them predomi-
nantly as first steps within a larger programme aiming at lightweight formal
methods with heavyweight automation. Traditional program construction tech-
niques could thereby be lifted to a new level of simplicity and applicability. It
seems feasible to realise this programme through a collective activity within the
Mathematics of Program Construction community in the near future.

Acknowledgement. We want to thank Walter Guttmann and the anonymous
referees for valuable remarks. We are grateful to Demetris Kennes for his help
with preparing the proofs at our web site.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Springer, Heidelberg (1998)

On Automated Program Construction and Verification 41

3. Berghammer, R.: Combining Relational Calculus and the Dijkstra-Gries Method
for Deriving Relational Programs. Information Sciences 119, 155–171 (1999)

4. Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of Relation Algebra
using Binary Decision Diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS,
vol. 2561, pp. 241–257. Springer, Heidelberg (2002)

5. Berghammer, R., Neumann, F.: RelView – an OBDD-based computer algebra
system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

6. Berghammer, R.: Applying Relation Algebra and RelView to Solve Problems on
Orders and Lattices. Acta Informatica 45, 211–236 (2008)

7. Cormen, T.H., Leiserson, C.E., Rivest, D.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

8. Desharnais, J., Struth, G.: Modal Semirings Revisited. In: Audebaud, P., Paulin-
Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 360–387. Springer, Heidelberg
(2008)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

10. Floyd, R.W.: Assigning Meanings to Programs. In: Proc. AMS Symposia on Ap-
plied Mathematics, vol. 19, pp. 19–31 (1967)

11. Gries, D.: The Science of Computer Programming. Springer, Heidelberg (1981)
12. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications

of the ACM 12(10), 576–580 (1969)
13. Höfner, P., Struth, G.: Algebraic Reasoning with Prover9 (2009),

www.dcs.shef.ac.uk/~georg/ka/

14. Höfner, P., Struth, G.: Automated Reasoning in Kleene Algebra. In: Pfenning, P.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg
(2007)

15. Höfner, P., Struth, G.: On Automating the Calculus of Relations. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 50–66. Springer, Heidelberg (2008)

16. Jackson, D.: Software Abstractions. The MIT Press, Cambridge (2006)
17. Kozen, D.: Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19(3),

427–443 (1997)
18. Maddux, R.D.: Relation Algebras. Elsevier, Amsterdam (2006)
19. McCune, W.: Prover9 and Mace4 (2007), www.prover9.org
20. Ng, J.: Relation Algebras with Transitive Closure. Ph.D. thesis, University of

California, Berkeley (1984)
21. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, Heidelberg (1993)
22. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs

(2006)
23. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundamenta Math. 16, 386–389

(1930)
24. Tarski, A.: On the Calculus of Relations. J. Symbolic Logic 6, 73–89 (1941)
25. Warshall, S.: A Theorem on Boolean Matrices. Journal of the ACM 9, 11–12 (1962)

www.dcs.shef.ac.uk/~georg/ka/
www.prover9.org

	On Automated Program Construction and Verification
	Introduction
	A Simple Relational Modelling Language
	The Dark Side of the Interface
	Automation Technology Review
	Synthesis of Warshall's Algorithm
	Verification of Reachability Algorithms
	Synthesis of Szpilrajn's Algorithm
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

