

Lecture Notes in Computer Science 6120
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Claude Bolduc Jules Desharnais
Béchir Ktari (Eds.)

Mathematics
of Program Construction
10th International Conference, MPC 2010
Québec City, Canada, June 21-23, 2010
Proceedings

13

Volume Editors

Claude Bolduc
Jules Desharnais
Béchir Ktari

Université Laval, Département d’informatique et de génie logiciel
Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine
Québec, QC, G1V 0A6, Canada
E-mail: {Claude.Bolduc, Jules.Desharnais, Bechir.Ktari}@ift.ulaval.ca

Library of Congress Control Number: 2010927075

CR Subject Classification (1998): F.3, D.2, F.4.1, D.3, D.2.4, D.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13320-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13320-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the proceedings of MPC 2010, the 10th International Con-
ference on the Mathematics of Program Construction. The biennial MPC confer-
ences aim to promote the development of mathematical principles and techniques
that are demonstrably practical and effective in the process of constructing com-
puter programs, whether implemented in hardware or software. The focus is on
techniques that combine precision with conciseness, enabling programs to be
constructed by formal calculation. Within this theme, the scope of the series
is very diverse, including programming methodology, program specification and
transformation, program analysis, programming paradigms, programming cal-
culi, programming language semantics, security, and program logics.

The conference took place during June 21–23 in Lac-Beauport, a suburb of
Québec City, Canada, prior to AMAST 2010 (June 23–26). The previous nine
conferences were held in 1989 in Twente, The Netherlands (LNCS 375); in 1992
in Oxford, UK (LNCS 669); in 1995 in Kloster Irsee, Germany (LNCS 947); in
1998 in Marstrand near Göteborg, Sweden (LNCS 1422); in 2000 in Ponte de
Lima, Portugal (LNCS 1837); in 2002 in Dagstuhl, Germany (LNCS 2386); in
2004, in Stirling, UK (LNCS 3125); in 2006 in Kuressaare, Estonia (LNCS 4014);
and in 2008 in Marseille-Luminy, France (LNCS 5133).

The volume contains one invited paper, the abstracts of two invited talks,
and 19 papers selected for presentation by the Program Committee from 37 sub-
missions. Each paper was refereed by at least three reviewers, and on average by
four. We are grateful to the members of the Program Committee and the exter-
nal referees for their care and diligence in reviewing the submitted papers. The
review process and compilation of the proceedings were greatly helped by An-
drei Voronkov’s EasyChair system that we highly recommend to every Program
Chair.

June 2010 Claude Bolduc
Jules Desharnais

Béchir Ktari

Conference Organization

Program Chair

Jules Desharnais Université Laval, Canada

Program Committee

Philippe Audebaud École Normale Supérieure de Lyon, France
Ralph-Johan Back Åbo Akademi University, Finland
Eerke Boiten University of Kent, UK
Sharon Curtis Oxford Brookes University, UK
Jeremy Gibbons University of Oxford, UK
Lindsay Groves Victoria University of Wellington,

New Zealand
Ian J. Hayes University of Queensland, Australia
Eric Hehner University of Toronto, Canada
Zhenjiang Hu National Institute of Informatics, Japan
Johan Jeuring Utrecht University, The Netherlands
Christian Lengauer Universität Passau, Germany
Bernhard Möller Universität Augsburg, Germany
Shin-Cheng Mu Academia Sinica, Taiwan
David Naumann Stevens Institute of Technology, USA
José Nuno Oliveira Universidade do Minho, Portugal
Alberto Pardo Universidad de la República, Uruguay
Christine

Paulin-Mohring INRIA-Université Paris-Sud, France
Steve Reeves University of Waikato, New Zealand
Tim Sheard Portland State University, USA
Georg Struth Sheffield University, UK
Tarmo Uustalu Institute of Cybernetics, Estonia

External Reviewers

José Bacelar Almeida
Lúıs Barbosa
Bruno Barras
Daniel Calegari
Liang-Ting Chen
Olaf Chitil
Robert Colvin
Alcino Cunha

Han-Hing Dang
Simon Doherty
Facundo Domı́nguez
Brijesh Dongol
Steve Dunne
Jean-Christophe Filliâtre
Roland Glück
Sergei Gorlatch

Makoto Hamana
Christoph Herrmann
Richard Jones
Hiroyuki Kato
Heiko Mantel
Clare Martin
Kazutaka Matsuda
Conor McBride

VIII Organization

Larissa Meinicke
Akimasa Morihata
Chris Okasaki
Olga Pacheco

Viorel Preoteasa
Wolfgang Scholz
Luis Sierra
Kim Solin

Martin Vechev
Janis Voigtländer
Yingfei Xiong

Local Organizers

Claude Bolduc, Jules Desharnais, and Béchir Ktari (Université Laval, Canada)

Sponsoring Institutions

– Université Laval, Québec, Canada, http://www.ulaval.ca
– Centre de recherches mathématiques, Université de Montréal, Montréal,

Canada, http://www.crm.umontreal.ca

Table of Contents

Invited Talks

The Algorithmics of Solitaire-Like Games . 1
Roland Backhouse, Wei Chen, and João F. Ferreira

Compositionality of Secure Information Flow . 19
Catuscia Palamidessi

Process Algebras for Collective Dynamics (Extended Abstract) 20
Jane Hillston

Contributed Talks

On Automated Program Construction and Verification 22
Rudolf Berghammer and Georg Struth

The Logic of Large Enough . 42
Eerke Boiten and Dan Grundy

Dependently Typed Grammars . 58
Kasper Brink, Stefan Holdermans, and Andres Löh

Abstraction of Object Graphs in Program Verification 80
Yifeng Chen and J.W. Sanders

Subtyping, Declaratively: An Exercise in Mixed Induction and
Coinduction . 100

Nils Anders Danielsson and Thorsten Altenkirch

Compositional Action System Derivation Using Enforced Properties 119
Brijesh Dongol and Ian J. Hayes

Designing an Algorithmic Proof of the Two-Squares Theorem 140
João F. Ferreira

Partial, Total and General Correctness . 157
Walter Guttmann

Unifying Theories of Programming That Distinguish Nontermination
and Abort . 178

Ian J. Hayes, Steve E. Dunne, and Larissa Meinicke

Adjoint Folds and Unfolds: Or: Scything through the Thicket of
Morphisms . 195

Ralf Hinze

X Table of Contents

An Abstract Machine for the Old Value Retrieval . 229
Piotr Kosiuczenko

A Tracking Semantics for CSP . 248
Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit

Matrices as Arrows! A Biproduct Approach to Typed Linear
Algebra . 271

Hugo Daniel Macedo and José Nuno Oliveira

Lucy-n: a n-Synchronous Extension of Lustre . 288
Louis Mandel, Florence Plateau, and Marc Pouzet

Sampling, Splitting and Merging in Coinductive Stream Calculus 310
Milad Niqui and Jan Rutten

Generic Point-free Lenses . 331
Hugo Pacheco and Alcino Cunha

Formal Derivation of Concurrent Garbage Collectors 353
Dusko Pavlovic, Peter Pepper, and Douglas R. Smith

Temporal Logic Verification of Lock-Freedom . 377
Bogdan Tofan, Simon Bäumler, Gerhard Schellhorn, and
Wolfgang Reif

Gradual Refinement: Blending Pattern Matching with Data
Abstraction . 397

Meng Wang, Jeremy Gibbons, Kazutaka Matsuda, and Zhenjiang Hu

Author Index . 427

The Algorithmics of Solitaire-Like Games

Roland Backhouse, Wei Chen, and João F. Ferreira�

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, England
rcb@cs.nott.ac.uk, wzc@cs.nott.ac.uk, joao@joaoff.com

Abstract. Puzzles and games have been used for centuries to nur-
ture problem-solving skills. Although often presented as isolated brain-
teasers, the desire to know how to win makes games ideal examples for
teaching algorithmic problem solving. With this in mind, this paper ex-
plores one-person solitaire-like games.

The key to understanding solutions to solitaire-like games is the identi-
fication of invariant properties of polynomial arithmetic. We demonstrate
this via three case studies: solitaire itself, tiling problems and a collec-
tion of novel one-person games. The known classification of states of the
game of (peg) solitaire into 16 equivalence classes is used to introduce
the relevance of polynomial arithmetic. Then we give a novel algebraic
formulation of the solution to a class of tiling problems. Finally, we intro-
duce an infinite class of challenging one-person games inspired by earlier
work by Chen and Backhouse on the relation between cyclotomic poly-
nomials and generalisations of the seven-trees-in-one type isomorphism.
We show how to derive algorithms to solve these games.

Keywords: Solitaire, invariants, tiling problems, polynomials, games on
cyclotomic polynomials, seven-trees-in-one, nuclear pennies, algorithm
derivation.

1 Introduction

There are two concepts that are basic to all algorithms that process input values
using some sort of iterative scheme: invariants and making progress. Although in
principle making progress can involve quite complicated theories on well-founded
relations, in practice the concept is easy for students to grasp. On the other hand,
students are often given misleading information about invariants; they are often
taught that invariants are (only) needed for post-hoc verification of program
correctness and very difficult to formulate. In reality, a good understanding of
invariants is crucial to successful algorithm design.

For the last seven years, the module Algorithmic Problem Solving has been
taught to first-year Computer Science students at the University of Nottingham.

� Funded by Fundação para a Ciência e a Tecnologia (Portugal) under grant
SFRH/BD/24269/2005.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 R. Backhouse, W. Chen, and J.F. Ferreira

The module aims to introduce students to effective problem-solving techniques,
particularly in the context of solving problems that demand an algorithmic solu-
tion; the first technique that is presented is the use of invariants. At a later stage,
two-person games are studied in some depth; games are inherently algorithmic
in nature (after all, the goal is to win, which means formulating some sort of
algorithm) and require little motivation.

There are many puzzles and games in the mathematical literature which have
been used for centuries to nurture problem-solving ability. Many are presented as
isolated brain-teasers but, for our pedagogical purposes, it is important that they
have two qualities. First, any problem that is studied must have a substantial
number of variations which can be used to test students’ understanding and,
second, the solution method should demonstrate effective algorithmic problem-
solving rather than being ad hoc or magic.

Recently, we have been studying one-person solitaire-like games in order to
try to extract useful examples for study in the module. In this paper, we present
our findings so far, including an infinite class of challenging games that we have
invented based on insights from type theory.

We begin the paper in section 2 with a brief summary of well-known proper-
ties of the game of solitaire. These properties are derived using the algebra of
polynomials in a suitably chosen semiring; it is this algebra that is the basis for
the novel applications that we discuss in later sections.

Section 3 is about a class of tiling problems. In section 3.1, we show how
Golomb’s [1] use of colours to solve one such problem is formulated algebraically.
(Our solution is simpler than the algebraic formulation proposed by Mackinnon
[2].) The solution to the class of tiling problems is discussed in section 3.2.

The so-called “nuclear pennies” game [3] is an example of a game which,
until now, has been of isolated interest. The game is based on the theorem
attributed to Lawvere that “seven trees are one”. That is, if T is the type of
binary trees, the type T 7 (the Cartesian product of T with itself 7 times) is
isomorphic to T . The game involves moving a checker 6 places to the right
on a one-dimensional tape (from position 1 to position 7) following rules that
reflect the recursive definition of binary trees. In section 4, we formulate an
infinite collection of games, each with different rules, where the goal is to move
a checker a certain number of positions from its starting position on a one-
dimensional tape. So far as we are aware, these games and their solution are
original to this paper. The games were derived from our study of the problem:
given a number n , invent an interesting type T such that T n is isomorphic to
T [4].

2 Solitaire and Variations

Solitaire is a well-known game. The game begins with a number of pegs stuck
in holes in a board. The holes are arranged in a grid, the shape of which is not
relevant to the current discussion. A move, shown diagrammatically in fig. 1,

The Algorithmics of Solitaire-Like Games 3

replaces two pegs by one and the game is to remove all pegs bar one, leaving
the peg in a designated position. In this section, we show how invariants of
polynomial arithmetic are used in the analysis of moves in the game of solitaire
and in a variation on solitaire called the solitaire army game.

Fig. 1. Move from left to right. Similar moves are allowed from right to left, from top
to bottom, and from bottom to top.

2.1 Solitaire

De Bruijn [5] shows that states in the game of solitaire can be divided into 16
equivalence classes in such a way that all moves are between equivalent states.
(So the equivalence class of the state is an invariant of each move.) Here is a
brief reformulation of De Bruijn’s argument1.

Suppose we assign non-negative integer coordinates (i, j) to each hole in the
board. Suppose R=(A,0,1,+,·) is a semiring2 and suppose p is an element
of A . Assign to a peg at position (i, j) the weight pi+j . The total weight of
a state in the game is the sum of the weights of all the pegs on the board in
that state. There are four types of move in the game — vertically up and down,
and horizontally left and right. A vertical-up move replaces pegs with weights
pi+j+0 and pi+j+1 by a peg with weight pi+j+2 . So, if p has the property
that p0+p1 =p2 , the total weight is invariant. Similarly, a horizontal-left move
replaces pegs with weights pi+2+j and pi+1+j by a peg with weight pi+0+j .
So, if p2+p1 =p0 , the total weight remains invariant. A similar analysis applies
to the two other types of moves: if p2+p1 =p0 , the total weight is invariant
under vertical-down moves and, if p0+p1 =p2 , the total weight is invariant under
horizontal-right moves.

The carrier set of the field3 GF (4) has exactly 4 elements which can be
named 0 , 1 , p and p2 . Moreover, these elements have the property that
1+1=0 , 1+p=p2 and (hence) p2+p=1 . Thus, if GF (4) is used to compute
the weights of states, the weight is invariant under all moves. This divides the
states into four equivalence classes, and the initial and final states in the game
must be in the same equivalence class.
1 Berlekamp et al [6, pp. 708–710] attribute the theorem to M. Reiss [7] but the

argument is different. De Bruijn’s argument is more relevant to later sections of this
paper. We have not read Reiss’s paper but assume that Berlekamp et al copy his
presentation.

2 That is, addition in R is associative and commutative and has unit 0 , product is
associative and has unit 1 and zero 0 , and product distributes over addition.

3 The fact that GF (4) is a field and not just a semiring is not relevant to the argument.

4 R. Backhouse, W. Chen, and J.F. Ferreira

To complete the argument, a symmetrical weighting is used: assign to a peg
at position (i, j) the weight pi−j . The total weight is again the sum of the
weights of all the pegs on the board in that state. (We call it a “symmetrical”
weighting because it is equivalent to turning the board through 900 .) The same
analysis applies, classifying each state into one of 4 equivalence classes.

Combining the two4, the states are divided into 4×4 equivalence classes in
such a way that the equivalence class is invariant under moves. The game can
be solved only if the initial and final states are in the same equivalence class.

2.2 The Solitaire Army

De Bruijn’s weighting of a state in a game does not provide a sufficient condition
for when it is possible to move from a given initial state to a given final state.
Berlekamp et al [6, chap. 23] discuss in detail a number of problems, when they
can be solved and when they cannot be solved. A tool in their analysis is the
notion of a pagoda function, which computing scientists would recognise as being
similar to a measure of progress. Specifically, a pagoda function is any real-valued
function pag on peg-positions that has the property that if a move replaces pegs
at positions r and s by a peg at position t then

pag.t ≤ pag.s+pag.r

A much-celebrated problem —discussed in several other books and Internet
pages— which they solve using a pagoda function is the “solitaire army” prob-
lem. This is how they describe the problem.

A number of Solitaire men stand initially on one side of a straight
line beyond which is an infinite empty desert. How many men do we need
to send a scout just 0 , 1 , 2 , 3 , 4 or 5 paces out into the desert?

The surprising fact is that for 5 paces (or more) there is no solution! The
proof (attributed in Wikipedia to John Horton Conway, 1961) resembles De
Bruijn’s analysis. Suppose peg positions are assigned Cartesian coordinates so
that the goal position is given the coordinates (0, 0) and the initial positions
of the Solitaire men have negative coordinates. Suppose we assign to a peg at
position (i, j) the weight σ|i+j| , where σ is yet to be chosen. Note that |i+j|
is the distance of (i, j) from (0, 0) along a shortest path taken by a peg in
moves of the game. The weight of any state in the game is the sum of the
weights of all the pegs on the board in that state. Now σ is chosen so that the
weighting of pegs is a pagoda function. Specifically, choose σ = 1

2 (
√

5−1) so
that σ2+σ = 1 . (This guarantees that the weighting of pegs remains constant
when a peg is moved along a shortest path to (0, 0) and decreases for other
moves.) Then the maximum weight of an initial state in which a finite number

4 As pointed out to us by Diethard Michaelis, the combination of weights is an element
of the semiring GF (4)×GF (4) where addition and product are defined componen-
twise. Note that GF (4)×GF (4) is not a field because it has divisors of zero.

The Algorithmics of Solitaire-Like Games 5

of Solitaire men is at a distance at least n from (0, 0) is less than σn−5 . For
the 5 -pace problem, the goal is to reach a state with weight at least σ5−5 (i.e.
1) but this is impossible because the weighting is a pagoda function — its value
is never increased by a move.

EdsgerW. Dijsktra [8] discusses a similar problem (and gives a similar solution).

3 Tiling Problems

Tiling problems involve covering a board without overlapping with a given col-
lection of tiles. Traditionally their solution involves (seemingly ad hoc) colouring
arguments. This section is essentially about how to formulate the colouring ar-
guments algebraically.

3.1 The Chessboard Problem

Consider the problem of tiling a chessboard with twenty-one 3×1 rectangles
and one 1×1 square. Index each square of the chessboard by a pair of natural
numbers (i, j) in the obvious way. For concreteness, we assume that the bottom-
left corner is given the label (0, 0) .

Suppose a chessboard is partially tiled by 3×1 rectangles. As in De Bruijn’s
analysis of solitaire, give to the square (i, j) two “weights”: the forward weight
is pi−j and the backward weight is pi+j , where p is a generator of the field
GF (4) . Two weights are assigned to the chessboard as follows: the forward
weight of the chessboard is the sum (in GF (4)) of the forward weights of all
the individual squares that are tiled, and the backward weight of the chessboard
is the sum of the backward weights of all the individual squares that are tiled.

Recall that the elements of GF (4) are 0 , 1 , p and p2 and that 1+1=0
and 1+p=p2 . It follows that

0=1+p+p2 .(1)

In particular, p3 =1 , the forward weight of square (i, j) is p(i−j) mod 3 and its
backward weight is p(i+j) mod 3 . Thus the weights are identical on forward and
backward diagonals of the board, respectively. (This is the explanation for our
choice of nomenclature).

It is easily checked that when a 3×1 tile is placed on a chessboard, both
the forward and backward weights of the chessboard do not change; they are
invariants of the tiling process. (For example, if a 3×1 tile is placed horizontally
on the board with leftmost square at position (i, j) , the weight pi+j×(1+p+p2)
is added to the weight of the board. Because 1+p+p2 equals 0 , adding or
subtracting this weight has no effect on the total weight.) This is the basis for
the choice of GF (4) in weighing squares: it is the simplest possible semiring
that satisfies (1) in a non-trivial way.

The forward and backward weights of a completely tiled chessboard are 1
and p , respectively. In order to tile the chessboard completely with twenty-
one 3×1 rectangles and one 1×1 square, the 1×1 square must therefore be

6 R. Backhouse, W. Chen, and J.F. Ferreira

placed on a square with forward weight 1 and backward weight p . The former
are the squares (i, j) with (i−j≡0)mod3 and the latter are the squares (i, j)
with (i+j≡1)mod 3 . Combined with the requirement that i and j are natural
numbers each of which is at most 7 , there are just 4 solutions to this pair of
equations, namely (i, j)= (2, 2) , (i, j)= (5, 5) , (i, j)= (2, 5) , and (i, j)= (5, 2) .

The above argument is a simpler presentation of an “algebraic” proof given
by Mackinnon [2]. (Our formulation is simpler because Mackinnon takes for p
a complex solution of equation (1) — the field of complex numbers is, of course,
much more complicated than GF (4) .) If colours —say red, white and blue—
are assigned to the non-zero elements of GF (4) , the argument is essentially
the same as Golomb’s [1] “colouring” proof. Specifically, Golomb’s proof has
two components, the colouring of the squares and rotational symmetry of the
board. The colouring of the squares is just the assignment of three different
values to the squares; this is chosen so that the net “count” of colours on the
board —whereby three differently coloured squares “count” as zero— is one.
The rotational symmetry is expressed algebraically by the two weights given to
squares of the board. The colouring and algebraic proofs are thus in essence
identical.

3.2 The Generalisation

In order to demonstrate the effectiveness of the algebraic formulation, let us
consider a generalisation. Suppose we have an m×m board, an unlimited supply
of n -ominoes and one 1 -omino. (An n -omino is an n×1 board, i.e. a strip of
n squares each of which is the same size as a square of the given m×m board.)
In order to eliminate the trivial case, we assume that 1<m . We prove that
it is possible to cover the m×m board with the supplied n -ominoes and one
1 -omino, without overlapping, precisely when

1≤n<m ∧ (n\(m−1)∨n\(m+1)) .(2)

An obvious necessary condition is

1≤n<m ∧ n\(m2−1) .

This, however, is not equivalent. For example, it is satisfied by m=11 and n=8
but it is not the case that 8\(11−1)∨ 8\(11+1) .

Invariant. Arbitrary Semiring. First, we show that (2) is necessary. Consider
any semiring R=(A,0,1,+,·) with an element x∈A that has the property that〈

Σi : 0≤ i<n : xi
〉

=R 0 .(3)

(We give examples of such semirings later. The subscript on the equality symbol
is necessary later to avoid the confusion that can be caused by overloading.)
Now let us assign to each square (i, j) the weight xi+j if it is covered and the
weight 0 if it is not covered. The weight of a (partially) tiled board is defined
to be the sum of the weights of the tiled squares.

The Algorithmics of Solitaire-Like Games 7

On account of (3) above, the placement of an n -omino on the board does
not change the weight of the board. Since there is exactly one 1 -omino on a
completely covered board, a necessary condition is that〈

∃k ::
〈
Σ i,j : 0≤ i<m∧ 0≤ j <m : xi+j

〉
=R xk

〉
.

Equivalently (calculation left to the reader),〈
∃k ::

〈
Σi : 0≤ i<m :xi

〉2
=R xk

〉
.(4)

We show that (4) implies n\(m−1)∨n\(m+1) . Our calculations exploit the
following immediate consequences of (3): for all j ,

xj =R xj mod n ,(5)

and, hence, for all j ,〈
Σi : 0≤ i< j :xi

〉
=R

〈
Σi : 0≤ i< j modn : xi

〉
.(6)

Invariant. Polynomials over GF (2) . To complete our argument, we fix the
semiring R to be

GF (2)[x] /
〈
Σi : 0≤ i<n :xi

〉
That is, R is the set of polynomials in the indeterminate x with coefficients in
GF (2) (which is conventionally denoted by GF (2)[x]) modulo the polynomial〈
Σi : 0≤ i<n :xi

〉
. Thus, in R we have the property (3).

This choice of R is motivated by our goal. Note first the squaring in (4);
GF (2) is the simplest example of a semiring in which squaring distributes
through addition. This property is easily seen to be inherited by GF (2)[x] .
That is, for all j ,〈

Σi : 0≤ i< j :xi
〉2

=GF (2)[x]
〈
Σi : 0≤ i< j :x2i

〉
.(7)

Hence, the equality also holds in R . Also, the semiring R has 2n−1 distinct
elements since each element in R has two representations as a polynomial in
GF (2)[x] with degree less than n , and there are 2n such polynomials. (For
example, 0 is represented by the two polynomials

〈
Σi : 0≤ i<n : 0×xi

〉
and〈

Σi : 0≤ i<n : 1×xi
〉

.) In particular (cf (4))

xk =R

〈
Σi : 0≤ i<n∧ i 	=k : xi

〉
.

Consequently, if the function # of type GF (2)[x]→ IN counts the number of
non-zero coefficients in a given polynomial, then for all k and all P in GF (2)[x]
with degree less than n ,

(P =R xk) ⇒ (#P =1) ∨ (#P =n−1) .(8)

(It is at this point that the subscript R on the equality sign becomes essential;
the left and right side of the equation denote P and xk , respectively, after in-
jection into the semiring GF (2)[x] modulo the polynomial

〈
Σi : 0≤ i<n :xi

〉
).

8 R. Backhouse, W. Chen, and J.F. Ferreira

We now have:

(4)

= { (6) and (7) }〈
∃k ::

〈
Σi : 0≤ i<mmodn : x2i

〉
=R xk

〉
.

In order to apply (8), we conduct a case analysis on mmodn and on n . There
are three cases to consider:

(a) 2(mmodn)<n .
This is the easiest case. The degree of

〈
Σi : 0≤ i<mmodn : x2i

〉
is less

than n so, applying (8), we have:

(4) ⇒ (mmodn = 1) ∨ (mmodn = n−1) .

(b) 2×(mmodn)≥n ∧ even.n .
Suppose n= 2q . The goal is to reduce

〈
Σi : 0≤ i<mmodn : x2i

〉
to a poly-

nomial with degree less than n . This is done in the following calculation.
(Equalities are in R , i.e. in GF (2)[x] /

〈
Σi : 0≤ i<n :xi

〉
.)〈

Σi : 0≤ i<mmodn : x2i
〉

=R { assumption, 2(mmodn)≥n }〈
Σi : 0≤ i<q :x2i

〉
+

〈
Σi : q≤ i<mmodn : x2i

〉
=R { (5), n=2q }〈

Σi : 0≤ i<q :x2i
〉

+
〈
Σi : q≤ i<mmodn : x2(i−q)

〉
=R { quantifier calculus, in GF (2) , [a+a=0] ,

mmodn < n = 2q }〈
Σi : mmodn− q ≤ i < q : x2i

〉
.

The last line above is a polynomial in GF (2) with degree less than n .
Hence, applying (8) to it, we have:

(4) ⇒ (2q−mmodn = 1) ∨ (2q−mmodn = n−1) .

Simplifying, using n=2q (and symmetry of disjunction),

(4) ⇒ (mmodn=1) ∨ (mmodn=n−1) .

(c) 2×(mmodn)≥n ∧ odd.n .
Suppose n = 2q−1 . Then, by a similar calculation, we have:〈

Σi : 0≤ i<mmodn : x2i
〉

=R { assumption, 2(mmodn)≥n ,

(5), n = 2q−1 }〈
Σi : 0≤ i<q :x2i

〉
+

〈
Σi : q≤ i<mmodn : x2(i−q) + 1

〉
=R { quantifier calculus }〈

Σi : 0≤ i<mmodn : xi
〉

.

The Algorithmics of Solitaire-Like Games 9

The last line above is a polynomial in GF (2) with degree less than n .
Hence, applying (8) to it, we again get:

(4) ⇒ (mmodn = 1) ∨ (mmodn = n−1) .

We conclude that, in all cases, (4) implies that

(mmodn = 1) ∨ (mmodn = n−1) .

Equivalently,

n\(m−1) ∨ n\(m+1) .

Figs. 2(a) and 2(b) show that this condition is also sufficient.

m−1

m−1

(a) n\(m−1)

n

m+1−n

n

m+1−n

(b) n\(m+1)

Fig. 2. n\(m−1) ∨ n\(m+1) is sufficient

4 Games on Cyclotomic Polynomials

In this section, we solve a novel class of games played on a one-dimensional tape.
The general class is considered in section 4.2; the so-called “nuclear pennies
game” [9] based on the “seven trees in one” property [10,11] is used in section
4.1 to introduce the solution method.

4.1 Seven-Trees-in-One and the Nuclear Pennies Game

Consider the definition of binary trees — a binary tree is an empty tree or an
element together with a pair of binary trees. Let us use symbols + and × to
denote disjoint union and Cartesian product respectively and let 11 denote the
unit type. The type T of binary trees can be characterised by the type isomor-
phism T ∼=11+T×T . Surprisingly, it can be shown that there is an isomorphism
between seven-tuples of binary trees and binary trees. That is, T 7∼=T . This has
been dubbed “seven trees in one” by Blass [10] who attributes the isomorphism
to a remark made by Lawvere [12].

10 R. Backhouse, W. Chen, and J.F. Ferreira

The isomorphism has been turned into a game with checkers called the “nu-
clear pennies game” [3]. The game is played on a one-dimensional board of
infinite extent. A checker is placed on one of the squares and the goal is to move
the checker six places to the right. An atomic move is to replace a checker in a
square numbered n+1 by two checkers, one in each of the two adjacent squares
n and n+2 , or vice-versa, two checkers, one in square n and one in square
n+2 for some n , are replaced by a checker in square n+1 . The connection
with seven-trees-in-one is easy to see if one views a move as replacing T n×T by
T n×(11+T×T) or vice-versa.

The nuclear-pennies game has an easy solution if one exploits the left-right
symmetry of the problem (moving a coin 6 places to the right is the same
as moving a coin 6 places to the left). The problem is decomposed into first
ensuring that there is a checker in the square 6 places to the right of the starting
position and, symmetrically, there is a checker in the square 6 places to the left
of the finishing position.

Achieving this first stage is easy. Below we show how it is done. First, six
moves are needed to ensure that a checker is added six places to the right of
the starting position. (This is shown below using dots to indicate checkers on a
square. A blank indicates no checker on the square).

0 1 2 3 4 5 6 7 8
...

...

...

...

...

...

0 1 2 3 4 5 6 7 8

...

Symmetrically, working from bottom to top, six moves are needed to ensure
that a checker is added six places to the left of the finishing position.

0 1 2 3 4 5 6 7 8
...

...

...

...

...

...

0 1 2 3 4 5 6 7 8

...

The Algorithmics of Solitaire-Like Games 11

Now the goal is to connect these two intermediate states (the bottom state
in the top diagram and the top state in the bottom diagram). An appropriate
(symmetrical) sequence of states is as follows. (For the reader’s convenience, the
last and first states in the above figures are repeated as the top and bottom
states in the figure below).

0 1 2 3 4 5 6 7 8
...

...

...

...

...

...

0 1 2 3 4 5 6 7 8

...

The first and last moves make the number of checkers in the leftmost and
rightmost positions equal. Then a small amount of creativity is needed to identify
the two (symmetrical) moves to the (symmetrical) middle state.

4.2 Cyclotomic Polynomials

Although the nuclear-pennies game is an interesting exercise in the exploitation
of symmetry in problem decomposition, it has until recently been an isolated
example and appears to have attracted relatively little attention. (The website
[9] gives one other example, dubbed the “thermonuclear pennies game”.) In a
recently submitted paper, Chen and Backhouse [4] posed the problem of, given an
arbitrary n , is it possible to invent an “interesting” type T such that T ∼=T n+1 .
Likewise, given an arbitrary n , is it possible to invent an “interesting” nuclear-
pennies-like game in which the task is to move a checker n places to the right
using a sequence of pre-defined atomic moves. They gave an affirmative solution
to the first question and a partial solution to the second, both answers being
based on the use of so-called cyclotomic polynomials. (The solution to the second
problem is partial in the sense that games were invented for an unbounded
number of values of n but not all numbers n .) In this section, we present this
class of “cyclotomic” games and their solution. (The paper [4] predicts that all
cyclotomic games are solvable but does not give an explicit solution).

The games we consider in this section are all based on an equation of the form

T 1 =T 1+Γ(9)

where Γ is a polynomial in T with positive integer coefficients. The atomic
moves in such a game are to supplement a checker at position i+1 by Γk

additional checkers at positions i+k where Γk is the coefficient of T k in the
polynomial Γ —this corresponds to the use of the equation (9) as a left-to-right

12 R. Backhouse, W. Chen, and J.F. Ferreira

replacement rule— or, vice-versa, if there is at least one checker at position i+1
and additionally Γk checkers at each position i+k , remove the Γk checkers at
the positions i+k . The task is to move from an initial state in which there is
just one checker at position 1 to a final state where there is just one checker at
position n , for some pre-defined n .

A concrete example is the game based on the equation:

T 1 = T 1 +(T 0+T 4) .(10)

In this game, we are given the following board with one checker on position 1 :

0 1 2 3 4 5 6 7 8 9 10 11 12
...

Now, whenever there is a checker in position i+1 , we are allowed to add two
checkers to the board —one in position i and the other in position i+4 — and,
vice-versa, whenever there is at least one checker in positions i , i+1 , and i+4 ,
we are allowed to remove one checker from positions i and i+4 . The question
is to determine if, from the initial state shown above, it is possible to move the
checker 8 places to the right, i.e., to obtain the following state:

0 1 2 3 4 5 6 7 8 9 10 11 12
...

A necessary condition for a game based on (9) to be solvable is easily determined.
Suppose we represent any state of the board by a polynomial in ZZ[T] . Then,
the moves are so designed that the polynomial modulo Γ is an invariant. The
initial state is represented by T and the desired final state is represented by
T n+1 . A necessary condition is thus that

T modΓ = T n+1 modΓ .(11)

Equivalently, the polynomial T n+1−T must be divisible by Γ .
A well-known result is that, in ZZ[T] , a polynomial is a divisor of T n−1

equivales it is a product of so-called cyclotomic polynomials. (See Wikipedia
or [4] for further information on cyclotomic polynomials.) For our purpose of
inventing games with checkers, we restrict attention to products of cyclotomic
polynomials in IN[T] . Specifically, we consider the polynomials ψa,n where

ψa,n = 〈Σi : 0≤ i<a :T i×an−1〉 .

We assume that a and n are so chosen that the degree of ψa,n is at least 2 .
Equivalently, we assume that

(2≤a∧ 2≤n) ∨ (3≤a∧ 1=n) .(12)

(When a is a prime number, ψa,n is a cyclotomic polynomial and is commonly
denoted by Φan . When a is not prime, ψa,n is a product of cyclotomic polyno-
mials.) For a game based on ψa,n the goal is to move a checker an places to the

The Algorithmics of Solitaire-Like Games 13

right. For example, ψ2,3 =1+T 4 ; it is this polynomial that is used in the game
defined by (10) with goal to move the checker 23 (i.e. 8) places to the right.

Before considering the general case, let us see how we could move the checker
in the above example. The first trivial observation is that we have to add new
checkers to the board (whenever we add checkers, we say that we perform an
expansion). Another trivial observation is that, in order to leave a single checker
in position 9 , we have to apply the rule in reverse, i.e., we have to remove check-
ers (whenever we remove checkers, we say that we perform a contraction). From
these two observations, we propose constructing an algorithm that is divided
into two phases: first, we perform a sequence of expansions that place at least
one checker in the desired position; second, we perform a sequence of contrac-
tions until we have exactly one checker in the desired position. Figure 3 shows
a solution. Note the division into two distinct phases: fig. 3(a) shows a sequence
of expansions and fig. 3(b) shows a sequence of contractions. (For the reader’s
convenience, the middle state is repeated at the bottom of fig. 3(a) and the top
of fig. 3(b)).

0 1 2 3 4 5 6 7 8 9 10 11 12
...

...

...

...

...

...

...

...

...

0 1 2 3 4 5 6 7 8 9 10 11 12

...

(a) First phase: sequence of expansions
(positions 1 , 4 , 3 , 6 , 5 , 7 , 9 , 8 ,
and 6)

0 1 2 3 4 5 6 7 8 9 10 11 12
...

...

...

...

...

...

...

...

...

0 1 2 3 4 5 6 7 8 9 10 11 12

...

(b) Second phase: sequence of contrac-
tions (all positions from 1 upto 9)

Fig. 3. Moving a checker 8 places to the right when the move is given by T =T+ψ2,3

We now consider the general problem. As it turns out, our solution involves
a case analysis on the values of a and n . There are two cases that exhibit the
same sort of symmetry as the “nuclear pennies game” and can be solved using
the same strategy as was used for that game. These are (a) 2=a∧ 2=n and (b)
3=a∧ 1=n . In case (a), ψa,n =ψ2,2 =1+T 2 . In case (b), ψa,n =ψ3,1 =1+T+T 2 .
We leave these cases as elementary exercises for the reader. (Exploit the symme-
try in the polynomials about T 1 and the left-right symmetry of the task. See
section 4.1 for the strategy.) We split the remaining cases into (c) 4≤a∧ 1=n
and (d) 2≤a∧ 2≤n∧ (2 	=a∨ 2 	=n) .

14 R. Backhouse, W. Chen, and J.F. Ferreira

Algorithm Decomposition. Considering the discussion in the previous sec-
tion and motivated by the example shown in figure 3, we specify the algorithm
we want to develop as follows:

{ s=T }
perform a sequence of expansions

{ s= “some intermediate state” } ;

perform a sequence of contractions

{ s=T an+1 } .

Because moves are given by the equation T =T+ψa,n , we can model the expan-
sion of position k+1 as

s := s+T k×ψa,n ,

and we can model the contraction of position k+1 as

s := s−T k×ψa,n .

This allows us to refine the specification:

{ s=T }
do choose appropriate k;

s := s+T k×ψa,n

od

{ s= “some intermediate state” } ;

do choose appropriate k;

s := s−T k×ψa,n

od

{ s=T an+1 } .

The Intermediate State. Let us explore the “intermediate state”. An invari-
ant of the first phase is that s−T is divisible by ψa,n ; an invariant of the second
phase is that s−T an+1 is divisible by ψa,n . So the “intermediate state” must
be a polynomial s such that both s−T and s−T an+1 are divisible by ψa,n .
Now,

T an+1−T

= { geometric series }
(T an−1+1−T)×〈Σi : 0≤ i<a :T i×an−1〉

= { definition of ψa,n }
(T an−1+1−T)×ψa,n .

The Algorithmics of Solitaire-Like Games 15

It follows that, for all γ in IN[T] ,

T + (γ +T an−1+1)×ψa,n = T an+1 + (γ+T)×ψa,n .(13)

The left and right sides of this equation express our “intermediate state”: the
left side is the postcondition of the expansion phase and the right side is the
precondition of the contraction phase. Our task is to choose γ in such a way
that the intermediate state can be reached both by a sequence of expansions and
the reverse of a sequence of contractions.

Contraction Phase. We start with the contraction phase which is much sim-
pler. Note that 1 is a term in the polynomial ψa,n . This means that if an ex-
pansion is applied to position k+1 a checker is introduced at position k . Then
an expansion can be applied to position k , introducing a checker at position
k−1 . And, of course, so on ad infinitum. In this way, a sequence of expansions
starting from the state T an+1 (a checker in position an+1) and applied to
positions an+1 , an , . . . , 1 will yield the state

T an+1 + 〈Σi : 0≤ i<an+1 : T i〉×ψa,n

which has the form of the right side of (13). Reversing this process gives us the
contraction phase:

{ s = T an+1 + 〈Σi : 0≤ i<an+1 : T i〉×ψa,n }
k := 0;

{ Loop invariant: s = T an+1 + 〈Σi : k≤ i<an+1 : T i〉×ψa,n }
do k <an+1 → s , k := s−T k×ψa,n , k+1

od

{ s = T an+1 }

Expansion Phase. We now have to construct the loop corresponding to the
expansion phase. The postcondition of the expansion phase is the precondition
of the contraction phase. Because of (13), this is

s = T + (〈Σi : 0≤ i<an+1 ∧ i 	=1 : T i〉 + T an−1+1)×ψa,n .

The precondition is s=T . Recalling the definition of an expansion of position
k+1 , we are required to expand each position in {1}∪ {i :2≤ i<an+1 : i+1}
once together with the position an−1+2 a second time. Of course, since the
initial state is that there is one checker at position 1 , the first move is to expand
position 1 . Let E denote the bag of positions remaining to be expanded. That
is,

E = {i : 2≤ i<an+1 : i+1} � {an−1+2} .

(The symbol “� ” denotes bag union.) Then, the expansion phase after the first
move has been completed is implemented as follows.

16 R. Backhouse, W. Chen, and J.F. Ferreira

{ s = T+ψa,n }
A,B := E ,∅ ;

{ Loop invariant: s = T + 〈Σi : i∈{1} �B : T i−1〉×ψa,n

∧ A �B =E }
do A 	= ∅→ choose j such that j∈A and there is a checker

in position j ;

s ,A ,B := s+T j−1×ψa,n , A−{j} , B � {j}
od

{ s = T +(T an−1+1 + 〈Σi : 0≤ i<an+1 ∧ i 	=1 : T i〉)×ψa,n }

In order to expand a position it is required that there be a checker on that
position. The correctness of the algorithm depends therefore on showing that,
at each iteration, it is possible to choose a suitable value of j . (Formally, the
“choose” statement is a conditional statement which will abort if j cannot be
chosen.) Since the expansion phase never removes checkers (unlike the nuclear
pennies game), it suffices to show that there is at least one way of ordering the
elements of the bag E that guarantees that the position is occupied when the
element is chosen. Such an ordering we called a valid ordering.

In the case that 1=n , the correctness of the algorithm is obvious. The bag
E is then

{i : 3≤ i<a+2 : i} � {3} .

Position 3 has to be expanded twice (since 2≤a) and each of the positions 4 ,
. . . , a+1 have to be expanded once. Assuming that 4≤a , there is indeed a
checker at position 3 and the position can be expanded. This ensures that there
are checkers at all positions 0 , 1 , . . . , a+1 . Subsequently, the positions 3 ,
. . . , a+1 can be expanded in an arbitrary order. (In other words, any ordering
that places position 3 first is a valid ordering).

The second case, when 2≤a∧ 2≤n∧ (2 	= a∨ 2 	=n) , is the most difficult. The
construction of a valid ordering reuses the central idea of the contraction phase,
namely that once a checker has been introduced at position k+1 we can always
expand positions k , k−1 , k−2 , etc.

In the following calculation, we determine a valid ordering for the expansions.
Note the assumption 3≤an−1 in the first step . This is why we perform a case
analysis. (The assumption is indeed satisfied when 2≤a∧ 2≤n∧ (2 	= a∨ 2 	=n) .)

T +T 0×ψa,n

= { assuming 3≤an−1 , the coefficient of T an−1
in T 0×ψa,n is 1

so we can expand positions an−1 , an−1−1 , . . . , 4 , 3 }
T + T 0×ψa,n + 〈Σi :2≤ i<an−1 :T i〉×ψa,n

The Algorithmics of Solitaire-Like Games 17

= { now the coefficient of T an−1+2 in T 2×ψa,n is 1

so we can expand positions an−1+2 and an−1+1 }
T + T 0×ψa,n + 〈Σi : 2≤ i<an−1+2 : T i〉×ψa,n

= { 〈Σi : 2≤ i<an−1+2 : T i〉×ψa,n = 〈Σi : 0≤ i<an :T i+2〉 }
T + T 0×ψa,n + 〈Σi : 2≤ i<an+2 : T i〉

= { now expand positions an−1+2 , an−1+3 , . . . , an+1 }
T + T 0×ψa,n + 〈Σi : 2≤ i<an+2 : T i〉

+ 〈Σi : an−1+1≤ i<an+1 : T i〉×ψa,n

= { 〈Σi : 0≤ i<an :T i+2〉 = 〈Σi : 2≤ i<an−1+2 : T i〉×ψa,n }
T + T 0×ψa,n + 〈Σi : 2≤ i<an−1+2 : T i〉×ψa,n

+ 〈Σi : an−1+1≤ i<an+1 : T i〉×ψa,n

= { range splitting }
T +(〈Σi : 0≤ i<an+1 ∧ i 	=1 : T i〉 + T an−1+1)×ψa,n .

In summary, a valid ordering of expansions is, first, position 1 , then positions
an−1 , an−1−1 , . . . , 4 , 3 , then positions an−1+2 and an−1+1 and finally
positions an−1+2 , an−1+3 , . . . , an+1 .

This completes the expansion phase and the algorithm.

5 Conclusion

The games presented here were developed in order to support teaching of invari-
ant properties in introductory, university-level courses. The current presentation
of their solution is possibly too difficult for that level but they could be used to
support more advanced algorithmically oriented courses that depend on polyno-
mial arithmetic. (Coding theory is an obvious example).

The common theme of all our examples is the exploitation of simple invariant
properties of polynomials. It is this insight that enabled us to invent the cyclo-
tomic games in section 4.2 (which we believe to be original to this paper). We
are currently trying to find a complete characterisation of games based on the
equation

T k =T k+Γ

where k is a positive number and Γ is a polynomial in T with positive inte-
ger coefficients. (The generalisation from 1 to k makes the contraction phase
harder).

Some improvement on our derivations would be welcome. We have been
obliged to use case analyses in both the solution of the tiling problem (section
3.2) and the solution of the cyclotomic games (section 4.2). This is unfortunate
but apparently unavoidable.

18 R. Backhouse, W. Chen, and J.F. Ferreira

The class of tiling problems we have discussed assumes that all “ominoes” are
straight. Golomb [1] extends his colouring argument to other problems where
the ominoes are not straight. We haven’t explored these problems. It would be
interesting to see whether the algebraic formulation can be extended to such
problems in a uniform way.

The interested reader may want to prove that our solutions to the cyclotomic
games minimise the number of moves. The generalisation of the games to higher
dimensions may also be of interest.

Acknowledgement. Our thanks to Diethard Michaelis for his comments on earlier
drafts of this paper.

References

1. Golomb, S.W.: Polyominoes. George Allen & Unwin Ltd. (1965)
2. Mackinnon, N.: An algebraic tiling proof. The Mathematical Gazette 73(465),

210–211 (1989)
3. Piponi, D.: Arboreal isomorphisms from nuclear pennies (September 2007), Blog

post available at,
http://blog.sigfpe.com/2007/09/arboreal-isomorphisms-from-nuclear.

html

4. Chen, W., Backhouse, R.: From seven-trees-in-one to cyclotomics (2010) (submit-
ted for publication), http://cs.nott.ac.uk/~wzc

5. de Bruijn, N.G.: A Solitaire game and its relation to a finite field. J. of Recreational
Math. 5, 133–137 (1972)

6. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways, vol. I, II. Academic
Press, London (1982)

7. Reiss, M.: Beitrage zur Theorie der Solitär-Spiels. Crelle’s J. 54, 344–379 (1857)
8. Dijkstra, E.W.: The checkers problem told to me by M.O. Rabin (September 1992),

http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1134.PDF

9. Piponi, D.: Using thermonuclear pennies to embed complex numbers as types
(October 2007), Blog post available at,
http://blog.sigfpe.com/2007/10/using-thermonuclear-pennies-to-embed.

html

10. Blass, A.: Seven trees in one. Journal of Pure and Applied Algebra 103(1), 1–21
(1995)

11. Fiore, M.: Isomorphisms of generic recursive polynomial types. In: Proceedings
of the 31st Annual ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages, pp. 77–88. ACM Press, New York (2004)

12. Lawvere, F.W.: Some thoughts on the future of category theory. Lecture Notes in
Mathematics, vol. 1488, pp. 1–13 (1991)

http://blog.sigfpe.com/2007/09/arboreal-isomorphisms-from-nuclear.html
http://blog.sigfpe.com/2007/09/arboreal-isomorphisms-from-nuclear.html
http://cs.nott.ac.uk/~wzc
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1134.PDF
http://blog.sigfpe.com/2007/10/using-thermonuclear-pennies-to-embed.html
http://blog.sigfpe.com/2007/10/using-thermonuclear-pennies-to-embed.html

Compositionality of Secure Information Flow

Catuscia Palamidessi

INRIA and LIX, École Polytechnique, Palaiseau, France

One of the concerns in the use of computer systems is to avoid the leakage of
confidential information through public outputs. Ideally we would like systems
to be completely secure, but in practice this goal is often impossible to achieve.
Therefore it is important to have a way to quantify the amount of leakage, so
to be able to assess that a system is better than another, although they may
both be insecure. Recently there have been various proposals for quantitative
approaches. Among these, there is a rather natural one which is based on the
Bayes risk, namely (the converse of) the probability of guessing the right value
of the secret, once we have observed the output [1]. The main other quantitative
approaches are those based on Information Theory: intuitively indeed the infor-
mation leakage can be thought of as the certainty we gain about the secret by
observing the output, and the (un)certainty of a random variable is represented
by its entropy. The information-theoretic approaches, in the early proposals (see
for instance [2,3,4]), were based on the most common notion of entropy, namely
Shannon entropy. However Smith has argued in [5] that Shannon entropy, due
to its averaging nature, is not very suitable to represent the vulnerability of a
system, and he has proposed to use Rényi’s min entropy [6] instead. In the same
paper, Smith has also shown that the approach based on Rényi’s min entropy is
equivalent to the one based on the Bayes risk.

In this work, which continues a line of research initiated in [7], we consider a
formalism for the specification of systems composed by concurrent and proba-
bilistic processes, and we investigate “safe constructs”, namely constructs which
do not increase the vulnerability.

References

1. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in
information-hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

2. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. of Logic and Computation 18(2), 181–199 (2005)

3. Zhu, Y., Bettati, R.: Anonymity vs. information leakage in anonymity systems. In:
Proc. of ICDCS, pp. 514–524. IEEE, Los Alamitos (2005)

4. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy
channels. Inf. and Comp. 206(2-4), 378–401 (2008)

5. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

6. Rényi, A.: On Measures of Entropy and Information. In: Proc. of the 4th Berkeley
Symposium on Mathematics, Statistics, and Probability, pp. 547–561 (1960)

7. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Compositional methods for
information-hiding. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 443–457. Springer, Heidelberg (2008)

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, p. 19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Process Algebras for Collective Dynamics
(Extended Abstract)

Jane Hillston

Laboratory for Foundations of Computer Science,
The University of Edinburgh, Scotland

Quantitative Analysis

Stochastic process algebras extend classical process algebras such as CCS [1] and
CSP [2] with quantified notions of time and probability. Examples include PEPA [3],
EMPA [4], MoDeST [5] and IMC [6]. These formalisms retain the compositional struc-
ture of classical process algebras and the additional information captured within the
model allows analysis to investigate additional properties such as dynamic behaviour
and resource usage.

Stochastic process algebras have been successfully applied to quantitative evaluation
of systems for over a decade. For example, in the context of performance analysis,
PEPA has been used to describe both software and hardware systems and has helped
to incorporate early performance prediction into the design process. Moreover, recently
there has been considerable interest in using stochastic process algebras for modelling
intracellular processes in systems biology.

In all these models the entities in the system under study are represented as com-
ponents in the process algebra. The structured operational semantics of the language is
used to identify all possible behaviours of the system as a labelled transition system.
With suitable restrictions on the form of random variables used to govern delays within
the model to be negative exponentially distributed this labelled transition system can
be interpreted as a continuous time Markov chain (CTMC). This provides access to a
wide array of analysis techniques, usually in terms of the evolution of the probability
distribution over states of the model over time.

This has the advantage that it is a fine-grained view of the system, allowing the
quantitative characteristics of individual entities to be derived. Unfortunately it has the
disadvantage that generation and manipulation of the necessary CTMC can be very
computationally expensive, or even intractable, due to the well-known state space ex-
plosion problem. This problem becomes particularly acute in situations where there
are large numbers of entities exhibiting similar behaviour interacting within a system.
Often in these situations whilst it is important to capture the behaviour of individual
entities accurately the dynamics of the system are most fruitfully considered at a popu-
lation level. Examples include the spread of disease through a population, the behaviour
of crowds during emergency evacuation of a building or scalability studies involving a
large number of users trying to access a service. In these cases we are interested in the
collective rather than the individual dynamics.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 20–21, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Process Algebras for Collective Dynamics 21

Collective Dynamics

Process algebras have several attractions for modelling for collective dynamics. The
behaviour of individuals, and particularly their interactions are important for such sys-
tems, and the compositional approach of the process algebra allows the modeller to
capture the exact form of interactions and constraints between entities. However, stan-
dard approaches to analysis of process algebra models remain focused on the behaviour
of individuals and are inherently discrete event-based. As explained above, this leads
to the state space explosion problem and makes it diÆcult to construct models large
enough to exhibit the population level e�ects which we are interested in.

Thus at Edinburgh we have been investigating the use of process algebras for col-
lective dynamics based on alternative semantics for the constructed models, which con-
sider the population rather than the individuals. As observed above, the semantics of
individual-oriented stochastic process algebra models generally gives rise to a discrete
state space with dynamics captured by a continuous time Markov chain. In the context
of collective dyanamics, an alternative mathematical framework based on sets of ordi-
nary di�erential equations is used. This may be regarded as a fluid approximation of the
discrete state model [7] and recent work has shown how this may be accessed directly
via a novel symbolic structured operational semantics [8]. This provides a framework in
which to establish the relationship between the two alternative forms of representation.

References

1. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

2. Hoare, C.: Communicating Sequential Processes. Prentice Hall, Englewood Cli�s (1985)
3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University

Press, Cambridge (1996)
4. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nonde-

terminism, priorities, probabilities and time. TCS 202, 1–54 (1998)
5. D’Argenio, P., Hermanns, H., Katoen, J.P., Klaren, R.: Modest — a modelling and descrip-

tion language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV
2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, p. 87. Springer,
Heidelberg (2001)

6. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428, p. 57. Springer, Heidelberg
(2002)

7. Hillston, J.: Fluid flow approximation of PEPA models. In: Proc. of the 2nd International
Conference on Quantitative Evaluation of Systems (2005)

8. Tribastone, M., Gilmore, S., Hillston, J.: Scalable di�erential analysis of process algebra mod-
els. IEEE Transactions on Software Engineering (to appear, 2010)

On Automated Program Construction
and Verification

Rudolf Berghammer1 and Georg Struth2

1 Institute of Computer Science, Christian-Albrechts-University of Kiel, Germany
rub@informatik.uni-kiel.de

2 Department of Computer Science, University of Sheffield, UK
g.struth@dcs.shef.ac.uk

Abstract. A new approach for automating the construction and ver-
ification of imperative programs is presented. Based on the standard
methods of Floyd, Dijkstra, Gries and Hoare, it supports proof and refu-
tation games with automated theorem provers, model search tools and
computer algebra systems combined with “hidden” domain-specific al-
gebraic theories that have been designed and optimised for automation.
The feasibility of this approach is demonstrated through fully automated
correctness proofs of some classical algorithms: Warshall’s transitive clo-
sure algorithm, reachability algorithms for digraphs, and Szpilrajn’s algo-
rithm for linear extensions of partial orders. Sophisticated mathematical
methods that have been developed over decades could thus be integrated
into push-button engineering technology.

1 Introduction

Programs without bugs is one of the great ideals of computing. It motivated
decades of research on program construction and verification. A commonality
of most approaches to program correctness is the combination of mathematical
models of programs with mechanised program analysis tools. It requires inte-
grating the science of programming into the engineering of programs.

Provably correct programs can be obtained in different ways: Program con-
struction or synthesis means deriving executable programs from mathematical
models or specifications, so that a program is correct if its derivation is sound.
Program verification means proving that a given program satisfies a set of as-
sertions provided by the programmer, usually by demonstating that whenever it
initially meets certain constraints (a precondition) it will satisfy a certain prop-
erty (a postcondition) upon termination. In the presence of loops, invariants
must be maintained during their execution.

Models for programs and their properties have been based on different mathe-
matical formalisms. Relational calculi are among the most ubiquitous ones. They
form the basis of established methods like Alloy [16], B [1] or Z [22]. Tool sup-
port has usually been integrated through interactive theorem provers or finitist
methods such as model checkers or SAT-solvers. To be useful in practice, mod-
elling languages must be simple but expressive, and tool support should be as

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 22–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Automated Program Construction and Verification 23

invisible and automatic as possible. These requirements are incompatible and
need to be balanced to yield methods that are lightweight yet powerful.

Our main contribution is an approach to the construction and verification of
imperative programs which aims at this balance in a novel way through computer
enhanced mathematics. Its backbone is a combination of off-the-shelf automated
theorem proving systems (ATP systems), model generators and computer alge-
bra systems with domain-specific algebras that are designed and optimised for
automation. This combination allows automatic program correctness proofs, but
it also supports program development at a more fundamental level through the
inference of specification statements and algorithmic properties in a game of
proof and refutation. While algebraic theories and automation technology can
largely be hidden behind an interface, developers can focus on the conceptual
level and use simple intuitive relational languages for modelling and reasoning.

A second contribution is the demonstration of the potential and feasibility of
this approach through partial correctness proofs of some classical algorithms:

• Warshall’s algorithm for the transitive closure of a relation,
• two reachability algorithms for directed graphs,
• Szpilrajn’s algorithm for linear extensions of partial orders.

While Warshall’s and Szpilrajn’s algorithm are constructed from specifications,
the reachability algorithms are verified. In our current scenario, assertions must
be provided by the developer for verification. Similarly, for program construction,
we do not automatically synthesise invariants or abduce preconditions, but we
provide automated tool support for developing and formally justifying these
tasks. In particular, in both cases, all proof obligations are discharged fully
automatically. We use different domain-specific algebras at the dark side of the
interface, and also discover a new refinement law for reflexive transitive closures
in our case studies. All ATP proofs in this paper can be found at a web site [13].

We build on decades of work on formal methods, logics and algebras for pro-
grams, ATP technology, and program construction. At the engineering side, our
use of relational calculi is inspired by formal methods like Alloy, B or Z; our ap-
proach to program correctness is essentially that of Dijkstra and Gries [11] and
closely related to Hoare logic [12]. We use the ATP system Prover9 and the model
generator Mace4 [19] in our proof experiments, but most other state-of-the-art
ATP systems and model generators would yield a similar performance. For test-
ing and visualising relational programs we use the RelView computer algebra
system [5]. At the mathematical side, we use Tarski’s relation algebras [24] and
various reducts, such as idempotent semirings, Kleene algebras or domain semir-
ings [8,17]. Our case studies build on previous manual calculational correctness
proofs in relation algebra [3,6], but most of our new proofs are different, some-
times simpler, and valid in a larger class of models.

The power and main novelty of our approach lies in the balance of all these
theories, methods and tools. However, presently, we have not much to show
beyond the proof of concept. Further work will be needed to transform our ideas
into program construction and verification tools that will be useful for teaching
and software development practice.

24 R. Berghammer and G. Struth

2 A Simple Relational Modelling Language

For constructing and verifying programs we do not assume much more than an
intuitive conceptual and operational understanding of binary relations and sets
with their fundamental operations and properties, as needed for basic modelling
with Alloy or RelView. To obtain a uniform readable syntax, and to make
it easy to replay our automation experiments, we use a notation that can be
processed by Prover9 and Mace4 although it deviates from most textbooks.

As usual, a binary relation x on a set A is a subset of the Cartesian prod-
uct A×A, a set of ordered pairs on A. Our approach extends to heterogeneous
relations of type A×B, but this would only overload the presentation. As sets,
relations form Boolean algebras and inherit the Boolean operations + of union
or join, ∗ of intersection or meet and ′ of complementation; there is an empty
relation 0 and a universal relation U = A×A. The relative product x; y of two
binary relations x and y is formed by the ordered pairs (a, b) with (a, c) ∈ x
and (c, b) ∈ y for some c ∈ A. The converse x∧ of a binary relation x is formed
by the ordered pairs (b, a) with (a, b) ∈ x. The identity relation 1 consists of all
ordered pairs (a, a) with a ∈ A.

Apart from these basics we assume that readers are familiar with the algo-
rithmics of finite binary relations as presented in undergraduate textbooks [7].
Briefly, finite binary relations can be represented as directed graphs (digraphs)
— ordered pairs corresponding to vertices linked by arrows — and implemented
via the algebra of Boolean adjacency matrices. The relational operations are
reflected in the matrix algebra: join by matrix sum, relative product by matrix
product, conversion by matrix transposition; the identity relation by the diago-
nal matrix, the empty relation by the zero matrix, and the universal relation by
the matrix in which each element is 1. Sets can either be implemented as vectors,
as row-constant matrices or as subidentity matrices with ones at most along the
diagonal. The multiplication of a matrix with a vector corresponds to computing
the preimage (a set) of a set with respect to a relation. The matrix representa-
tion provides an important intuition for our case studies; all our programs can
be implemented directly as matrix algorithms in the RelView tool.

Only a few additional concepts are needed for our case studies. The reflexive
transitive closure and the transitive closure of a relation x are

rtc(x) =
∑
i≥0

xi and tc(x) =
∑
i≥1

xi,

with powers xi defined inductively. The domain d(x) and range r(x) of x are
defined as the sets

d(x) = {a ∈ A : ∃b ∈ A.(a, b) ∈ x},
r(x) = {b ∈ A : ∃a ∈ A.(a, b) ∈ x}.

Throughout this paper, we will call singleton sets points and single ordered
pairs atoms. The technicalities of reasoning with relations are delegated as far
as possible to tools. They are hidden from developers behind an interface.

On Automated Program Construction and Verification 25

3 The Dark Side of the Interface

For automated program construction and verification, the relational concepts
discussed in the previous section must be implemented in domain-specific theo-
ries that are suitable and optimised for automated proof search. Developers are
not supposed to see these theories in detail, they are hidden behind an interface.
We use variants and reducts of relation algebras (in the sense of Tarski [18,21,24])
as domain-specific theories in our case studies.

A relation algebra is a structure (R, +, ∗,′ , 0, U, ; , 1, ∧) that satisfies the fol-
lowing axioms taken from Maddux’s textbook [18].

x+y=y+x & x+(y+z)=(x+y)+z & x=(x’+y’)’+(x’+y)’.

x;(y;z)=(x;y);z & x;1=x & (x+y);z=(x;z)+(y;z).

(x^)^=x & (x+y)^=x^+y^ & (x;y)^=y^;x^ & x^;(x;y)’+y’=y’.

These axioms are effectively executable by Prover9 and Mace4 [15]; complete
input files can be found in a proof data base [13]. The first line contains Hunt-
ington’s axioms for Boolean algebras, the second line those for relative products,
and the third line those for conversion. The following standard definitions are
always included in our input files.

x*y=(x’+y’)’ & x<=y <-> x+y=y & 0=x*x’ & U=x+x’.

% x!=0 -> U;(x;U)=U.

The first equation defines meet via De Morgan’s law. The second formula defines
the standard order of the algebra. The next two equations define the least and
the greatest element of the algebra. Tarski’s axiom in the second line is needed
for proving one single auxiliary lemma in this paper. Apart from this, it has not
been used and is therefore commented out.

Following Ng [20], we axiomatise the reflexive transitive closure rtc(x) of a
binary relation x as a least fixed point:

1+x;rtc(x)=rtc(x) & z+x;y<=y -> rtc(x);z<=y.

1+rtc(x);x=rtc(x) & z+y;x<=y -> z;rtc(x)<=y.

The transitive closure tc(x) of x is defined as tc(x)=x;rtc(x). The expressions
rtc(x) and tc(x) can now be used at the developer’s side of the interface for
modelling and reasoning about programs, whereas the implementation of these
concepts in relation algebra at the dark side of the interface is used for automated
reasoning with Prover9 and Mace4, but need not concern the developer.

It is standard to model sets in relation algebras either as vectors or as subiden-
tities (elements below 1). We present the first alternative for relation algebras
and the second one for Kleene algebras below. Both allow us to implement points
and atoms. In fact, we only need weak points, which are points or zero, and weak
atoms, which are atoms or zero.

inj(x) <-> x;x^<=1. % def injection

vec(x) <-> x=x;U. % def vector

wpoint(x) <-> vec(x) & inj(x). % def weak point

watom(x) <-> wpoint(x;U) & wpoint(x^;U). % def weak atom

26 R. Berghammer and G. Struth

At the developer’s side of the interface, set(x) <-> vec(x) can be used for
typing sets, and the predicates wpoint and watom type (weak) points and (weak)
atoms. The right-hand sides of these definitions implement these concepts. They
can again be hidden. Implementation details are not needed to understand our
case studies; a discussion can be found in the literature [21].

Finally, the domain of a relation x is implemented as d(x)=1*x;U, and the
range r(x)=d(x^) as the domain of the converse of x.

The calculus of relations can effectively be automated [15]. But experiments
show that ATP systems still have difficulties with proving correctness of com-
plex programs from the axioms of relation algebras and auxiliary concepts alone.
Domain-specific and problem-specific theories and assumption sets must be en-
gineered for applications. Adding assumptions requires libraries of verified re-
lational properties [13]. Enhancing proof search requires reducts of relation al-
gebras. Variants of idempotent semirings and Kleene algebras are known to be
very suitable in this respect [8,14]. All verified facts about binary relations can,
of course, safely be used as independent assumptions with these reducts.

An idempotent semiring is a structure (S, +, ; , 0, 1) that satisfies the axioms

x+y=y+x & x+(y+z)=(x+y)+z & x+0=x & x+x=x.

x;(y;z)=(x;y);z & x;1=x & 1;x=x & x;0=0 & 0;x=0.

x;(y+z)=x;y+x;z & (x+y);z=x;z+y;z.

x<=y <-> x+y=y.

An idempotent semiring expanded by the reflexive transitive closure operation
axiomatised above is a Kleene algebra. Conversion can now be axiomatised as

(x^)^=x & (x+y)^=x^+y^ & (x;y)^=y^;x^ & x<=x;(x^;x).

The universal relation can be axiomatised as x<=U.
Sets can again be modelled as vectors or as subidentities, but, in contrast to

relation algebras, the subalgebras of all subidentities in idempotent semirings or
Kleene algebras are not necessarily Boolean algebras.

The simplest approach — and best suited for ATP — uses domain semirings
and Kleene algebras with domain [8]. Domain is axiomatised via an antidomain
operation:

a(x);x=0 & a(x;a(a(y)))=a(x;y) & a(a(x))+a(x)=1.

Intuitively, the antidomain a(x) of a relation x is the set of all elements which are
not in the domain d(x) of x, hence d(x)=a(a(x)). Axiomatic details are again
not important, but the following two properties are essential for understanding
our implementation of sets across the interface: First, the set d(S) of all domain
elements of S is precisely the set of all x ∈ S that satisfy x = d(x). Second d(S)
forms a Boolean algebra among the subidentities of S and the meet operation is
multiplication. In this setting, we can therefore type set(x) <-> d(x)=x.

The notion of range is dual to that of domain. Its axiomatisation only requires
swapping the order of multiplication.

In the context of domain semirings, points can be implemented via rectangular
relations. The corresponding axioms are

On Automated Program Construction and Verification 27

rctangle(x) <-> x;(U;x)=x.

wpoint(x) <-> set(x) & rctangle(x).

Intuitively, a relation is rectangular if it is equal to the cartesian product of its
domain and range, and this explains why points are rectangular sets1. In some
sense, rectangles can be understood as generalised points.

4 Automation Technology Review

In this section we briefly sketch the Dijkstra-Gries approach to program devel-
opment and discuss the three tools used for its automation behind the interface.

The Dijkstra-Gries Approach. As mentioned in the introduction, program con-
struction means that a program is derived from a specification, and program
verification means that a given program is proved to be correct with respect to
a given specification. For imperative programs, specifications usually consist of
preconditions, postconditions and invariants which model the inductive proper-
ties implemented in the body of a loop. The correctness of a simple while loop
is implied by the following proof obligations:

1. The invariant is established by the initialisation (before the loop starts)
2. Each execution of the loop’s body preserves the invariant, as long as the

guard of the loop is true.
3. The invariant establishes the postcondition if the guard of the loop is false.
4. The loop terminates.

We will automatically analyse the first three proof obligations in our case studies,
hence prove partial program correctness. We do not formally consider termination
(total correctness) since this requires a different kind of analysis.

For program verification, the precondition, the postcondition and the invariant
are added as assertions to the given program code, and the proof obligations can
then be generated and analysed automatically. This approach is based on the
seminal work of Floyd and Hoare [10,12].

For program construction, the invariant is hypothesised as a modification
of the postcondition and the proof obligations are then established step by step
together with the synthesis of the program: the guard of its loop, the initialisation
of the variables to establish the invariant and the assignments in the loop’s
body to maintain it. Based on the fundamental principle that “a program and
its correctness proof should be developed hand-in-hand with the proof usually
leading the way” ([11], p. 164), the approach has been pioneered by Dijkstra [9],
and elaborated by Gries [11] and others into a variety of techniques.

1 The usual definition of rectangles in relation algebras uses only x;U ; x ≤ x, and we
could automatically verify that this is equivalent to x;U ; x = x. In Kleene algebra,
in contrast, the equational definition is strictly stronger than the original one; they
are separated by a three element counterexample found by Mace4.

28 R. Berghammer and G. Struth

Tools for Proofs and Refutations. To automate all synthesis and verification
proofs, we use the ATP system Prover9 [19]. The main reason is that its input
syntax is very readable and that the model generator Mace4 [19] is based on the
same syntax. This makes it particularly easy to replay our proof experiments.
The interplay of ATP systems and model generators is essential for our games
of proof and refutation in program construction.

Prover9 is complete for first-order logic with equality; it allows reasoning
with relation algebra and all reducts we consider. It takes a set of assumptions
and a proof goal and uses sophisticated proof search and redundancy elimination
strategies combined with complex heuristics to deduce the goal from the assump-
tions. We use the tool entirely as a black box and as push-button technology.
Prover9 is only a semi-decision procedure. In theory it can prove all first-oder
theorems, but may run forever on non-valid proof goals. In practice, however, it
often runs out of steam without proving a theorem. On success, Prover9 outputs
a proof (which is usually not revealing for humans). Mace4 searches for finite
models. It accepts essentially the same input as Prover9, and tries to construct
a model of the assumptions that fails the proof goal, that is, a counterexample.

Prover9 and Mace4 support infix and postfix notation for algebraic operators
and precedence declarations. For relation algebra, we use the following code:

op(500, infix, "+"). % join

op(480, infix, "*"). % meet

op(300, postfix, "’"). % complementation

op(450, infix, ";"). % composition

op(300, postfix, "^"). % conversion

Operations with a lower number bind more strongly than those with a higher
number. For Kleene algebra, we use the following declaration:

op(500, infix, "+").

op(490, infix, ";").

Assumptions and goals must be put into the following environment:

formulas(assumptions). ... end_of_list.

formulas(goal). ... end_of_list.

Examples for input and output files, and the complete set of proofs for our case
studies, can be found in a proof database [13]. We have so far verified more than
500 theorems of relation algebras and Kleene algebras, including more or less all
“textbook theorems”.

In our experiments, to demonstrate the robustness of the approach, we always
use the weakest possible assumption set, ideally the theory axioms and basic
definitions alone, at the expense of long running times. Adding the right lemmas
would usually bring proof search down to a few seconds.

Besides Prover9 and Mace4 we also use the RelView system [5]. This is an in-
teractive and graphics-oriented special purpose computer algebra system for the
visualisation and manipulation of binary relations, and for relational prototyping
and programming. RelView is optimised for very large objects, for instance,

On Automated Program Construction and Verification 29

membership relations, which is especially important for prototyping. It uses an
efficient internal implementation of relations via reduced ordered binary decision
diagrams [4]. RelView provides predefined operations and tests for modelling
and analysing relations in the lightweight style sketched in Section 2. (We do
not use the RelView modelling language since it clashes with Prover9 syntax.)
Relational functions and programs can be built from these operations. Relational
functions are introduced as usual in mathematics, and relational programs are
essentially while-programs based on relational datatypes.

Within our approach, the main applications of RelView are specification
testing and support for reasoning with concrete finite binary relations. Specifi-
cation testing includes mainly the evaluation of relational specifications and the
comparison of the results obtained with original specifications in another for-
malism, or even the intuitive notion of the problem, in order to find weaknesses
or inconsistencies. Support for relational reasoning is very important in program
construction for finding and analysing loop invariants, that is, whether a candi-
date for an invariant satisfies or violates a proof obligation in some special cases.
RelView allows developers to experiment with programs and assertions and to
visualise this information via graphical representations of relations. Particularly
useful for program construction and verification is the fact that the tool allows
testing validity of arbitrary Boolean combinations of relational inclusions via an
ASSERT command and that the relations needed can be randomly generated.

5 Synthesis of Warshall’s Algorithm

As a first case study, we construct Warshall’s classical algorithm [25] for com-
puting the transitive closure of a finite binary relation — a digraph — from
its specification. We carefully separate the developer’s view from the domain-
specific theory — in this case Kleene algebra with domain — and the automation
technology at the dark side of the interface. We also aim at illustrating how a
proof and refutation game with Prover9, Mace4 and RelView is essential in
this construction.

We use the Dijkstra-Gries framework to derive a simple while-program from
a given precondition and postcondition, inferring the loop invariant, the guard
of the loop and the variable assignments along the way. This development is
inspired by a previous manual correctness proof in relation algebra [3].

Initial Specification. Consider the following program construction task:

Given a finite binary relation x, find a program with a relational variable
y that stores the transitive closure of x after its execution.

We aim at a while-program of the following schematic form:

... y:=x ...

while ... do

... y:=? ... od

30 R. Berghammer and G. Struth

The precondition and postcondition are evident from the above specification:

pre(x) <-> x=x.

post(x,y) <-> y=tc(x).

The formula x = x expresses for Prover9 that the precondition is always true.
This is the case because the input relation x can be arbitrary. The proof obli-
gations from Section 4 guide us through the synthesis of the initialisation, the
guard and the body of the loop.

Developing the Invariant. The most important ingredient of our construction is
still missing: Warshall’s insight that makes the algorithm work.

Initially, compute only those paths contributing to the transitive closure
of x that traverse no inner vertices. Then iteratively add inner vertices
and compute the local transitive closure restricted to each new inner-
vertex set incrementally from that of its predecessor set. Terminate when
all possible new inner vertices have been added.

How the incremental computation can be achieved will concern us later, but the
invariant of the algorithm should by now be evident:

The variable y must maintain the transitive closure of x restricted to
each set v of inner vertices that is constructed along the way.

Formally, for Prover9, we obtain:

inv(x,y,v) <-> (set(v) -> y=rtc(x;v);x).

Note that (x; v)k; x yields the first and last points of x-paths with k inner vertices
from the set v, and that sets are implemented as subidentities via domain.

Initialisation, and Guard. According to the specification, the set variable v
should be initialised as v:=0 and the loop should terminate when v = 1, or, even
better, when v = d(x), that is, when all vertices from which x is enabled have
been visited. The guard of the loop should therefore be v!= d(x) (or v!= 1).
We can justify these assumptions by verifying the following proof obligations.

Theorem 1. The invariant is established by the initialisation (if the precondi-
tion holds); it establishes the postcondition when the guard of the loop is false.

Proof. Using Kleene algebra with domain (behind the interface) we proved

pre(x) -> inv(x,x,0).

inv(x,y,v) & v=1 -> post(x,y).

inv(x,y,v) & v=d(x) -> post(x,y).

Since Prover9 can only handle one non-equational proof goal at a time, two goals
always need to be commented out. The assumption file contains the axioms
for Kleene algebras with domain, and the definition of set, transitive closure,
precondition, postcondition and invariant, as listed above. The proofs of the
first and the third goal were instantaneous and very short. The proof of the
second goal was slightly harder. It required about 18s and has 129 steps. ��

On Automated Program Construction and Verification 31

Termination and Development of the Loop. We now consider termination of
the algorithm, and synthesise the body of the loop by considering the proof
obligation that the invariant be preserved when executing the loop. This means
synthesising assignments to the set variable v and the relational variable y:

• The assignment to v is obvious from the above discussion. We add a single
new point p to the set v; v:=v+p.
• The assignment of y should, if possible, increment y, which stores the tran-

sitive closure of x restricted to v, by the transitive closure computed incre-
mentally with respect to y and p. So we postulate y:=y+f(y,p).

Our program should then have the following form:

y,v:=x,0

while v!=d(x) do

p:=point(v’)

y,v:=y+f(y,p),v+p od

Here, point is a choice function that returns some point from the complement
set of v, which is taken at the set level. It satisfies the axiom

wpoint(point(x)) & point(x)!=0.

but this is not needed in our development apart from termination. At the dark
side of the interface, v′ is translated to a(v). Now, the assignment v:=v+p with
v and p disjoint enforces termination of the loop. This is the only part of the
proof which we do not automate. It remains to determine y+f(y,p).

We compare the value y before and after the assignment to v. Before the
assignment, y = rtc(x; v); x. After the assignment v:=v+p we have the value

y = rtc(x; (v + p)); x = rtc(x; v + x; p).

So we could try to refine the reflexive transitive closure of this sum into a sum
of reflexive transitive closures.

Consider rtc(a+ b) for arbitrary relations a and b. First, the most straightfor-
ward refinement into rtc(a) + rtc(b) can be refuted by a six-element counterex-
ample. Hence we need to consider this expression in more detail.

Obviously, rtc(a + b) represents arbitrary alternating sequences of a and b,
hence should be equal to rtc(rtc(a); rtc(b)). This has already been verified by
ATP [13]. Such sequences could form either one single a-block (possibly empty),
or alternating blocks of a and b. But b = x; p is not an arbitrary relation. In
the matrix model, the point p projects x onto a matrix in which only one single
non-zero row. This can be visualised in experiments with RelView. In other
words, b is a rectangle and we conjecture the following more general fact.

Lemma 2. Let x, y be elements of a relation algebra in which Tarski’s axiom
holds. If y is rectangular, then x; y is rectangular.

Proof. Using the axioms of relation algebras, Tarski’s axiom and the above def-
inition of rectangles, we proved rctangle(y) -> rctangle(x;y) by ATP. ��

32 R. Berghammer and G. Struth

Interestingly, Lemma 2 does not hold in all Kleene algebras (Mace4 found a
three-element counterexample) or for relation algebras without Tarski’s axiom.
But we can safely add it as an independent assumption.

The fact that b = x; p is a rectangle has some impact on the alternating
blocks of a and b. Intuitively, rectangles can be seen as generalised points. Many
of their properties can be conjectured by thinking about points in the first place
and then proved or refuted by Prover9 and Mace4. First, b; b = b ∗ b = b, hence
all b-blocks must have length one. Second, b; rtc(a); b ≤ b, since in the left-hand
side of this inequality, all inputs and outputs are projected onto the rectangle b.
Hence, if b is rectangular, the developer might conjecture that rtc(a + b) can be
refined to rtc(a) + rtc(a); b; rtc(a). And indeed we can prove the following new
refinement law for reflexive transitive closures that is of general interest.

Proposition 3. Let x, y be elements of a Kleene algebra with greatest element,
and let y be rectangular. Then

rtc(x + y) = rtc(x) + rtc(x); y; rtc(x).

Proof. By ATP, using the Kleene algebra axioms and the definitions of universal
relation and rectangle. The ≥-proof took less than 10s. The ≤-proof took about
30s; it has 56 steps. ��

Proposition 3 allows us to refine the term (x; v + x; p) in the assignment of y
since x; p is rectangular by Lemma 2. We can therefore incrementally compute
the transitive closure of x restricted to inner vertices in v+p from that restricted
to inner vertices in v by updating the relational variable y to y + y; p; y.

Lemma 4. Let x, v, p be elements of a relation algebra in which Tarski’s axiom
holds, let p be rectangular, and let y = rtc(x; v); x. Then

rtc(x; (v + p)); x = y + y; p; y.

Proof. Using the idempotent semiring axioms, the refinement law from Propo-
sition 3, and the equation from Lemma 2, we could automatically prove

rctangle(z) -> rtc(x;(v+z));x=rtc(x;v);x+(rtc(x;v);((x;z);rtc(x;v)));x.

in less than 15s. Note that Prover9 would not accept p as an implicitly universally
quantified variable. Setting y = rtc(x; v); x then yields the result. ��

We have thus formally justified the assignment y:=y+y;p;y, which is another
key insight in Warshall’s algorithm. We derived it from a general refinement law
for reflexive transitive closures. Based on this formal development we can now
prove explicitly and in declarative style the remaining proof obligation.

Theorem 5. Executing the loop preserves the invariant if the guard of the loop
is true.

Proof. We attempted to prove the formula

wpoint(w) & inv(x,y,v) & y!=d(x) -> inv(x,y+y;(w;y),v+w).

On Automated Program Construction and Verification 33

from the axioms of Kleene algebras with domain, the definition of weak point,
and the decomposition law from the proof of Lemma 4. However, Mace4 imme-
diately found a three-element counterexample, so we needed to strengthen the
assumptions. Adding the independent assumption x;U=d(x);U, which we auto-
matically verified in relation algebras, yielded a short proof in less than 15s. ��

A proof of Theorem 5 from the axioms of Kleene algebra and x; U = d(x); U
within reasonable time bounds did not succeed. Alternatively, we have found a
less elegant and generic proof of Theorem 5 based on a decomposition of points
instead of rectangles.

Partial Correctness. The result of the construction is summed up in the main
theorem of this section.

Theorem 6. The following variant of Warshall’s transitive closure algorithm is
(partially) correct:

y,v:=x,0

while v!=d(x) do

p:=point(v’)

y,v:=y+y;p;y,v+p od

The proof of this theorem has been fully automated in every detail, and the
algorithm has been shown to be correct by construction. Kleene algebra alone
did not suffice for this analysis. We used two additional independent assump-
tions that hold in relation algebras. One even required Tarski’s axiom. Mace4 is
instrumental for indicating when such assumptions are needed. Finding the right
assumptions of course requires some background knowledge, but could be au-
tomated. A tool could blindly try combinations of previously verified relational
lemmas from a given library.

To appreciate the complexity of proof search involved, it should be noted that
most of the proofs involving transitive closures in this section are essentially
inductive. With our algebraic axiomatisation of (reflexive) transitive closures of
binary relations, these inductions could be captured calculationally in a first-
order setting and therefore be automated.

In conclusion, the construction of Warshall’s algorithm required some gen-
eral familiarity with relations and some operational understanding of reflexive
transitive closures. For the operational understanding, testing the loop invariant
and developing the refinement law for reflexive transitive closures, experiment-
ing with Mace4 and RelView was very helpful. But for the synthesis of the
algorithm, no particular knowledge of the calculus of relation algebras or Kleene
algebras was needed. All that could be hidden in the darkness of the interface.

6 Verification of Reachability Algorithms

The task of determining the set of states that are reachable from some given set
of states in a digraph can also be reduced to relational reasoning. As a second

34 R. Berghammer and G. Struth

case study, we show how two matrix-based algorithms can be automatically
verified. In this scenario, the programmer annotates code with assertions for the
precondition, postcondition and loop invariant. The code and the assertions are
then tranformed into proof obligations from which program correctness is proved
automatically in one full sweep behind the interface.

The RelView system provides a relational modelling language and an im-
perative programming language in which the programs and all assertions can
be implemented and executed. We assume that RelView, Prover9 and Mace4
have been integrated into an imaginary tool that does all the translations be-
tween programs and tools, and runs the tools in the background.

A Naive Algorithm. The following relational algorithm computes the set w of
states that are reachable in some digraph y from a set v of initial states; a
previous manual construction can be found in [3]:

{pre(y,v) <-> x=x}

w:=v

while -(y^;w<=w) do

{inv(y,v,w) <-> v<=w & w<=rtc(y^);v}

w:=w+y^;w od

{post(y,v,w) <-> w=rtc(y^);v}

In this program, y is an adjacency matrix; v and w are vectors or other im-
plementations of sets. But our imaginary verification tool ignores all types and
selects Kleene algebra as the domain-specific theory after a syntactic analysis.
It also ignores the operation of converse in y∧ because y itself does not occur in
the code. It therefore uniformly replaces y∧ by x. Note that this step has little
impact on ATP performance. The tool then passes the following postcondition,
guard of the loop and invariant to Prover9; it ignores the trivial precondition:

guard(x,v,w) <-> -(x;w<=w).

post(x,v,w) <-> w=rtc(x);v.

inv(x,v,w) <-> v<=w & w<=rtc(x);v.

The postcondition says that upon termination the vector w stores all those
vertices that are linked by an arrow in the reflexive transitive closure of x to a
vertex in v. The idea of the program, to compute intermediate states w iteratively
with respect to x such that after each iteration w is a superset of v and a subset
of the set of reachable states, is captured by the invariant.

Proving partial correctness means discharging the following proof obligations,
which our imaginary verification tool could automatically extract from the code
and the assertions.

inv(x,v,w) & -guard(x,v,w) -> post(x,v,w).

inv(x,v,v).

inv(x,v,w) & guard(x,v,w) -> inv(x,v,w+x;w).

Using the axioms of Kleene algebra, Prover9 could instantaneously verify the
first and the second proof obligation; the third one needed about ten seconds.
In fact, the third proof obligation did not require the assumption that the guard
of the loop is true. Termination has again been neglected. But obviously, the set
w is enlarged in each iteration of the loop and finitely bounded by the guard.

On Automated Program Construction and Verification 35

A Refined Algorithm. The main drawback of the naive algorithm is that the
guard of the loop is recomputed in each turn of the loop. Finite differencing
yields a refined algorithm which uses a new vector or set variable u to store the
intermediate values of x; w ·w′, where the complement w′ of w is again taken at
the set level (For a manual development, see again [3]). In this example, we do
not use the precondition, postcondition and invariant in declarative style, but
encode assertions directly in the relational modelling language.

{pre: true}

w,u:= v,v’*y^;v

while u!=0 do

{inv: v<=w & w<=rtc(y^);v & u=w’*y^;w}

w:=w+u

u:=w’*y^;u od

{post: w=rtc(y^);v}

We now assume that our imaginary tool translates these assertions into a Kleene
algebra with range (with dual domain axioms). The range operation is used
behind the scene for typing sets and for computing sets of successor states: The
set of states that are reachable (in one step) from a set v with respect to a relation
x is given by the range of v;x. Now a(x) denotes the antirange of x and r(x) the
range of x. If x is a set, then x = r(x), r(x) = a(a(x)), and a(r(x)) = a(x). Thus
the verification tool can use r(x) for “typing” that x is a set and generate the
following formulas:

r(u)!=0. % guard

r(w)=r(r(v);rtc(x)). % postcond.

r(v)<=r(w) & r(w)<=r(r(v);rtc(x)) & r(u)=a(w);r(r(w);x). % invariant

Again, y∧ is uniformly replaced by x, the trivial precondition is omitted. The
tool would then generate the following proof obligations:

(1) The invariant is established by the initialisation.

r(v)<=r(v) & r(v)<=r(r(v);rtc(x)) & a(v);r(r(v);x)=a(v);r(r(v);x).

(2) The invariant establishes the postcondition if the guard of the loop is false.

r(v)<=r(w) & r(w)<=r(r(v);rtc(x)) & a(w);r(r(w);x)=0

-> r(r(v);rtc(x))<=r(w) & r(w)<=r(r(v);rtc(x)).

(3) Executing the loop preserves the invariant if the guard of the loop is true.

r(v)<=r(w) & r(w)<=r(r(v);rtc(x)) & r(u)=a(w);r(r(w);x)

-> r(v)<=r(w)+r(u) & r(w)+r(u)<=r(r(v);rtc(x)).

A proof of (1) took about 35s from the axioms of Kleene algebras with range
and the definition of invariant. It yielded a proof with 42 steps. For the proof
of (2), the postconditions has been split into two inequalities, and the (negated)
guard of the loop has been ignored. A proof from the axioms alone failed within
reasonable time; the following additional assumptions were required:

r(x+y)=r(x)+r(y) & r(v)+r(r(w);x)<=r(w) -> r(r(v);rtc(x))<=r(w).

36 R. Berghammer and G. Struth

Both formulas have already been verified [8]. The first assumption is additivity
of range, which seems fundamental enough to be added to any domain-specific
theory that uses range. The second additional assumption is based on the ob-
servation that the proof of the formula r(w) ≤ r(r(v); rtc(x)) from the third
assumption, r(w) ≤ r(r(v); x), is essentially induction with respect to x. With
these additional assumptions, Prover9 took about 150s; the proof has 102 steps.
Proofs with fewer axioms failed within reasonable time. Whether a tool could au-
tomatically learn such additional assumptions is an interesting research question.
The proof of (3) used the axioms of Kleene algebras with range and additivity
of range. Prover9 took less than 130s and provided a proof with 149 steps.

The results of this section further demonstrate the flexibility of our approach.
Here, two reachability algorithms, to which preconditions, postconditions and
invariants have been added as assertions, have been automatically verified. Such
correctness proofs could run in the background and complement existing tech-
niques for extended static checking. Again, reasoning about reachability required
induction, which could be fully automated in Kleene algebra.

7 Synthesis of Szpilrajn’s Algorithm

Our final case study is again on program construction. To further demonstrate
the versatility of our approach, we now use relation algebra with sets modelled
as vectors as the domain-specific theory behind the interface. We synthesise
Szpilrajn’s algorithm [23] that computes the linear extension of a given partial
order. This synthesis is inspired by a previous manual correctness proof [6].

Initial Specification. Consider the following program construction task:

Given a finite partial order x, find a program with variable y that stores
the linear extension of x after execution.

Again, we conjecture that our program is a simple while loop:

... y:=x ...

while ... do

... y:=? ... od

Obviously, the precondition is that the input relation x is a partial order, a reflex-
ive, antisymmetric and transitive relation. In our relational modelling language
we can write:

1<=x & x*x^<=1 & x;x<=x.

But we could also provide more declarative concepts such as ref(x), antisym(x)
and trans(x). The postcondition is that the relational variable y stores a total
order relation that extends x:

1<=y & y*y^<=1 & y;y<=y & x<=y & y+y^=U.

The fourth inequality states that the partial order relation y extends x; the last
one expresses totality of y.

On Automated Program Construction and Verification 37

Developing the Invariant. The basic idea of Szpilrajn’s algorithm is to build
a chain of partial extensions of the partial order x by iteratively adding atoms
(single ordered pairs) z that are incomparable by x, and incrementally computing
the partial order for these extensions. Algorithmic details will again be part of
the development, but we can now state the invariant:

The relation y is a partial order that contains x.

In our relational modelling language, this can be formalised as

1<=y & y*y^<=1 & y;y<=y & x<=y

Initialisation and Guard. We assume that our algorithm has only one global
relational variable, namely y, which is initialised as x. Moreover, the while loop
should terminate when no further extension of x can be computed, that is, when
y + y∧ = U . The guard of the loop should therefore be y+y^!=U. We can justify
these choices by verifying the following proof obligations:

Theorem 7. The invariant is established by the initialisation (if the precondi-
tion holds); it establishes the postcondition when the guard of the loop is false.

Proof. Using the axioms for relation algebras, these trivial ATP exercises needed
no time. The invariant after initialisation is the precondition; the conjunction of
the invariant and the negated guard of the loop is the postcondition. ��

Termination and Development of the Loop. Termination of the algorithm is
obvious, since only finitely many atoms can be added. As before, this is not
further formalised.

To synthesise the loop body, we must determine the assignments to atoms z
and the relational variable y. Obviously, z can be an arbitrary atom from the
complement of y + y∧. The variable y should be incremented by a function in y
and z, that is, y:=y+f(y,z). So we postulate that our program be of the following
form, where atom is a choice function that picks some atom from (y + y∧)′:

y:=x

while y+y^!=U do

z:=atom((y+y^)’)

y:=y+f(y,z) od

The choice function can be axiomatised by watom(atom(x)) & atom(x)!=0,
analogously to point. It remains to synthesise f and to show that the resulting
assignment preserves the invariant whenever the guard of the loop is true. This
can again be based on experiments with RelView, Prover9 and Mace4. But,
since atoms are rectangles, Proposition 3 can again be used:

rtc(y + z) = rtc(y) + rtc(y); z; rtc(y).

Now rtc(y) = y since y is reflexive and transitive, which can be checked by ATP.
Hence one of Szpilrajn’s key insights can again be derived from our refinement
law: y:=y+y;z;y.

38 R. Berghammer and G. Struth

Theorem 8. Executing the loop preserves the invariant (if the guard of the loop
is true).

Proof. We assume that before executing the loop y is a partial order that extends
x. We must prove that after execution the same properties hold of the new value
of y. We use Prover9 with the axioms of relation algebras and the definition of
weak atoms, but do not need the guard condition.

• The new value of y is a reflexive extension of x (this proof required no time):

1<=y & y*y^<=1 & y;y<=y & x<=y -> x+1<=y+y;(z;y).

• The new value of y is transitive.

y;y<=y & watom(z) & z<=(y+y’)^

-> (y+y;(z;y));(y+y;(z;y))<=(y+y;(z;y)).

We used the axioms for relation algebra without the relation-algebraic defi-
nition of U = x + x′, but needed four additional (verified) assumptions,

x;(y+z)=x;y+x;z & x<=y -> z;x<=z;y & x<=y -> x;z<=y;z & x<=U.

and the definition of a weak atom from Section 3. These assumptions are very
natural and should perhaps be included in any assumption set for relation
algebras. The proof then took about 200s and has 158 steps.

• The new value of y is antisymmetric.

y;y<=y & y*y^<=1 & watom(z) & z<=(y+y^)’

-> (y+y;(z;y))*(y+y;(z;y))^<=1.

We could prove this goal from the axioms of relation algebras, and the defi-
nition of weak atom alone. The proof needed about 410s and has 274 steps,
which is very long compared to similar experiments. ��

The fact that additional assumptions were needed for proving transitivity may
seem disappointing, but we can do better: Using idempotent semirings with
converse (cf. Section 3) yielded a fully automated proof with 111 steps in less
than 10s. Injections, vectors, weak points and weak atoms were used as before.

Of course we cannot use this simpler domain-specific theory for proving anti-
symmetry since this property cannot be expressed in Kleene algebra. To appre-
ciate the complexity of proof search involved it should be mentioned that the
manual relation-algebraic proof of antisymmetry [6] is quite involved: It requires
several lemmas and covers almost an entire page. Proving the lemmas them-
selves is rather tedious and heavily involves the Schröder and Dedekind rules.
Since these rules are difficult to prove by ATP, it is rather surprising that our
automated correctness proof succeeds, possibly via a different route.

Partial Correctness. The result of this construction can be summed up in the
main theorem of this section.

Theorem 9. The following variant of Szpilrajn’s algorithm for computing linear
extensions of partial orders is (partially) correct:

On Automated Program Construction and Verification 39

y:=x;

while y+y^!=U do

z:=atom((y+y^)’)

y:=y+y;z;y od

Choosing the right domain-specific theories, the entire program construction
could be automated from the theory axioms alone, that is, without any additional
assumptions. The granularity of proof would again allow a fully automatic post-
hoc verification with ATP systems in the background.

8 Discussion

Our main technical contribution is the demonstration that an integration of ATP
systems and domain-specific algebras supports automatic correctness proofs for
imperative programs through verification or program construction. We believe
that these results motivate a new approach, to program construction in partic-
ular, which could combine simple high level program development techniques
with computer enhanced mathematics based on domain-specific algebras and
powerful proof automation. This section sketches some research questions and
speculates about tools in which this approach could be implemented.

Theory Engineering. Relational calculi are not only useful for verifying and con-
structing algorithms for graphs, ordered sets, or other structures like games,
Petri nets and lattices, they also form the basis for popular software develop-
ment methods such as Alloy, B or Z. In preliminary experiments we have shown
that the basic calculus of binary relations, as presented in the textbooks by
Maddux [18] and Schmidt and Ströhlein [21] or Abrial’s B-Book [1], can be
automated [13]. Similar experiment in computer enhanced mathematics with
reducts of relation algebras, in particular variants of idempotent semirings and
Kleene algebras, are equally positive. While fully automated proofs of simpler
theorems are possible from the theory axioms alone, more difficult goals require
selecting appropriate lemmas (or even deleting “prolific” but unnecessary ax-
ioms). This suggests the following research questions: How can we organise and
manage theory-specific and problem-specific knowledge to obtain useful assump-
tion sets for ATP systems? How can we learn or abduce specific assumptions that
are needed for particular proofs?

Relation algebras and variants of Kleene algebras capture the control flow in
imperative programs and provide semantics for various computing applications,
but they are less appropriate for modelling data structure or data types, or
quantitative aspects of computations. Correctness proofs involving numbers, lists
or arrays require different background theories or decision procedures. While
their integration into our approach seems straightforward, their combination
with relation algebras or Kleene algebras need further investigation.

Program Construction Technology. The most significant future task is to build
program construction and verification tools that support the development of
programs from specifications.

40 R. Berghammer and G. Struth

First, this requires the design of suitable modelling languages similar to those
of Alloy or RelView. Second, existing libraries must be linked into a coherent
data base. Third, to reason about data structures and data types, our present
tool set should be complemented by SMT solvers and other decision procedures.
Fourth, to manage the program construction process, automated tools need to
be combined with interactive theorem provers which can handle the proof obliga-
tions of the Dijkstra-Gries approach or Hoare logic through tactics. These tools
can also be used for residual inductive proofs that cannot be automated or for
splitting complex proof goals into subgoals. Fifth, mechanisms for selecting ap-
propriate theories behind the interface must be developed. We believe that our
approach can largely be based on existing technology that only needs to be bal-
anced in suitable ways. While for relation-based algorithms, development tools
could be built around the RelView system, more general tools could support
any other relation-based software development method.

The ultimate goal of our approach is to turn program construction into an
activity in which the intellectually demanding and creative engineering tasks are
separated — at an appropriate level of granularity — from routine calculations,
such that developers can focus on the conceptual side of the construction while
delegating technicalities to automated tools. The resulting approach would not
only support teaching formal program development in more lightweight ways; it
might also substantially increase the automation of existing formal methods for
software development.

9 Conclusion

We have introduced a new approach to program construction and verification
that is based on computer enhanced mathematics through a combination of
domain-specific algebras with ATP systems, model generators and computer al-
gebra tools. Using this combination we could prove the correctness of some stan-
dard algorithms fully automatically within the Dijkstra-Gries approach. While
these results seem an interesting contribution per se, we see them predomi-
nantly as first steps within a larger programme aiming at lightweight formal
methods with heavyweight automation. Traditional program construction tech-
niques could thereby be lifted to a new level of simplicity and applicability. It
seems feasible to realise this programme through a collective activity within the
Mathematics of Program Construction community in the near future.

Acknowledgement. We want to thank Walter Guttmann and the anonymous
referees for valuable remarks. We are grateful to Demetris Kennes for his help
with preparing the proofs at our web site.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Springer, Heidelberg (1998)

On Automated Program Construction and Verification 41

3. Berghammer, R.: Combining Relational Calculus and the Dijkstra-Gries Method
for Deriving Relational Programs. Information Sciences 119, 155–171 (1999)

4. Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of Relation Algebra
using Binary Decision Diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS,
vol. 2561, pp. 241–257. Springer, Heidelberg (2002)

5. Berghammer, R., Neumann, F.: RelView – an OBDD-based computer algebra
system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

6. Berghammer, R.: Applying Relation Algebra and RelView to Solve Problems on
Orders and Lattices. Acta Informatica 45, 211–236 (2008)

7. Cormen, T.H., Leiserson, C.E., Rivest, D.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

8. Desharnais, J., Struth, G.: Modal Semirings Revisited. In: Audebaud, P., Paulin-
Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 360–387. Springer, Heidelberg
(2008)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

10. Floyd, R.W.: Assigning Meanings to Programs. In: Proc. AMS Symposia on Ap-
plied Mathematics, vol. 19, pp. 19–31 (1967)

11. Gries, D.: The Science of Computer Programming. Springer, Heidelberg (1981)
12. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications

of the ACM 12(10), 576–580 (1969)
13. Höfner, P., Struth, G.: Algebraic Reasoning with Prover9 (2009),

www.dcs.shef.ac.uk/~georg/ka/

14. Höfner, P., Struth, G.: Automated Reasoning in Kleene Algebra. In: Pfenning, P.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg
(2007)

15. Höfner, P., Struth, G.: On Automating the Calculus of Relations. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 50–66. Springer, Heidelberg (2008)

16. Jackson, D.: Software Abstractions. The MIT Press, Cambridge (2006)
17. Kozen, D.: Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19(3),

427–443 (1997)
18. Maddux, R.D.: Relation Algebras. Elsevier, Amsterdam (2006)
19. McCune, W.: Prover9 and Mace4 (2007), www.prover9.org
20. Ng, J.: Relation Algebras with Transitive Closure. Ph.D. thesis, University of

California, Berkeley (1984)
21. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, Heidelberg (1993)
22. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs

(2006)
23. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundamenta Math. 16, 386–389

(1930)
24. Tarski, A.: On the Calculus of Relations. J. Symbolic Logic 6, 73–89 (1941)
25. Warshall, S.: A Theorem on Boolean Matrices. Journal of the ACM 9, 11–12 (1962)

www.dcs.shef.ac.uk/~georg/ka/
www.prover9.org

The Logic of Large Enough

Eerke Boiten and Dan Grundy

Computing Laboratory, University of Kent
e.a.boiten@kent.ac.uk, daniel.c.grundy@gmail.com

Abstract. In this paper we explore the “for large enough” quanti-
fier, also known as “all but finitely many”, which plays a central role
in asymptotic reasoning, as used for example in complexity theory and
cryptography. We investigate calculational properties of this quantifier,
and show their application in reasoning about limits of functions.

Keywords: Calculational methods; asymptotics; generalised quantifiers.

1 Introduction

In what follows we explore a variant of universal quantification, namely that a
particular predicate holds for “large enough” natural numbers. This quantifier
occurs naturally in many areas of mathematics that employ asymptotic reason-
ing, in particular in complexity theory and its applications. Unfortunately, it
often occurs in an encoded form (requiring two quantifiers, and worse: two
dummy variables), or is left implicit in the context, thereby obscuring which
manipulations are permissible. Most striking perhaps, is its negated occurrence,
“for infinitely many . . . ”, which is often seen in proofs by contradiction.

In the next section we define the “new” quantifier (in terms of existential
and universal quantification) and explore its calculational properties. We then
show how the quantifier can be applied in the theory of limits of sequences,
where, in particular, it allows us to avoid reference to sequence indices in the
resulting theorems and proofs. Finally, we indicate how this work leads to a
calculational theory of asymptotics, with applications to complexity theory and
beyond.

2 Large Enough Quantifiers

The property that P holds for large enough values of x can be described using
an existential-universal quantifier combination:

〈∃X :: 〈∀ x : x > X : P〉〉

Throughout this paper we assume that x and X are natural numbers. In that
case, the above is sometimes known as the “almost-all” quantifier, as it requires
P to hold for all but finitely many numbers. This quantifier has been studied

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 42–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Logic of Large Enough 43

in logic since at least the 1970s [1,2], and belongs to the class of “generalised”,
or “modal quantifiers”, defined by Mostowski [3] in 1957, and studied in the
1990s by Alechina, Van Lambalgen, and Van Benthem [4,5]. However, their work
concentrated on properties of the class in general, in particular expressiveness
and decidability, rather than on practical calculation.

Taking the natural numbers as a timeline, a property holding for large enough
numbers means it will hold continuously from a certain point onwards; in other
words, eventually it will always hold. The notation used in the following defini-
tion has been designed to emphasise the modal view of this quantifier, and that
it binds a particular variable:

〈 x :: P〉 ≡ 〈∃X :: 〈∀ x : x > X : P〉〉 (1)

where X does not occur free in P . Properties of this quantifier follow.
The first collection of properties concerns situations where the quantifier can be
eliminated.

First, we show that:

〈 x :: true〉 ≡ true (2)

Proof:

〈 x :: true〉

≡ { definition of ; i.e., (1) }
〈∃X :: 〈∀ x : x > X : true〉〉
≡ { property of ∀ }
〈∃X :: true〉
≡ { the range of quantification (natural numbers) is non-empty }
true

Similarly, we have:

〈 x :: false〉 ≡ false (3)

Proof:

〈 x :: false〉

≡ { definition of }
〈∃X :: 〈∀ x : x > X : false〉〉
≡ { the range of ∀ quantification is non-empty:

there is no largest natural number }
〈∃X :: false〉
≡ { property of ∃ }
false

44 E. Boiten and D. Grundy

We can generalise (2) and (3) as follows: if x does not occur free in P we
have

〈 x :: P〉 ≡ P (4)

The proof uses the two properties of natural numbers used for proofs of (2) and
(3) :

〈 x :: P〉

≡ { definition of }
〈∃X :: 〈∀ x : x > X : P〉〉
≡ { eliminate redundant quantifiers; non-empty ranges }
P

Provided x does not occur free in a real-valued expression E we have:

〈 x :: x > E 〉 ≡ true (5)

Proof:

〈 x :: x > E 〉

≡ { definition of }
〈∃X :: 〈∀ x : x > X : x > E 〉〉
⇐ { one-point rule, �E� is the least integer ≥ E }
〈∀ x : x > �E� : x > E 〉
≡ { predicate calculus }
true

Next, we investigate properties of the quantifier in combination with standard
operators and quantifiers. The following useful monotonicity property follows
immediately from monotonicity of the standard quantifiers (with respect to the
⇒ ordering):

〈∀ x :: P ⇒ Q〉 ⇒ (〈 x :: P〉 ⇒ 〈 x :: Q〉) (6)

We can use (6) to prove various weakening and strengthening rules; for example:

〈 x :: P〉 ⇒ 〈 x :: P ∨ Q〉 (7)

Similarly, we have:

〈 x :: P ∧ Q〉 ⇒ 〈 x :: P〉 (8)

Clearly other variations are possible.
We can use (7) to prove the following “almost” distributivity property:

〈 x :: P〉 ∨ 〈 x :: Q〉 ⇒ 〈 x :: P ∨ Q〉 (9)

The Logic of Large Enough 45

Proof:

〈 x :: P〉 ∨ 〈 x :: Q〉
⇒ { (7) , twice }
〈 x :: P ∨ Q〉 ∨ 〈 x :: P ∨ Q〉
≡ { idempotence of ∨ }
〈 x :: P ∨ Q〉

The opposite direction does not hold: replace P with even.x and Q with
odd .x , for example.

Intuitively we have

〈∀ x :: P〉 ⇒ 〈 x :: P〉 , (10)

but we can prove it without unfolding by virtue of (6) :

〈∀ x :: P〉
≡ { left identify of ⇒ , heading for an appeal to (6) }
〈∀ x :: true ⇒ P〉
⇒ { (6) with P ,Q := true,P }
〈 x :: true〉 ⇒ 〈 x :: P〉
≡ { (2) }
true ⇒ 〈 x :: P〉
≡ { left identity of ⇒ }
〈 x :: P〉

Next, we have the useful property that conjunction distributes over :

〈 x :: P〉 ∧ 〈 x :: Q〉 ≡ 〈 x :: P ∧ Q〉 (11)

The following proof is by mutual implication; first we prove that

〈 x :: P〉 ∧ 〈 x :: Q〉 ⇒ 〈 x :: P ∧ Q〉 .

If we assume the antecedent, then there exist witnesses X0 and X1 such that:

〈∀ x : x > X0 : P〉 ∧ 〈∀ x : x > X1 : Q〉
⇒ { arithmetic }
〈∀ x : x > X0 ↑ X1 :: P〉 ∧ 〈∀ x : x > X0 ↑ X1 : Q〉
≡ { distributivity }

46 E. Boiten and D. Grundy

〈∀ x : x > X0 ↑ X1 :: P ∧ Q〉
⇒ { ∃ introduction, with X := X0 ↑ X1 }
〈∃X :: 〈∀ x : x > X : P ∧ Q〉〉
≡ { definition of }

〈 x :: P ∧ Q〉

The opposite direction, viz

〈 x :: P〉 ∧ 〈 x :: Q〉 ⇐ 〈 x :: P ∧ Q〉 ,

is easily proved by appealing to the idempotence of conjunction, and then weak-
ening via (8) .

Remark. Properties (2) , (6) , and (11) , along with “dummy renaming”,
correspond to the “minimal logic” of generalised quantifiers described in [4].
End of Remark.

It should be clear that we can generalise (11) to an arbitrary, but finite
number of conjuncts; that is, for any fixed, finite set F , we have:

〈∀ i : i ∈ F : 〈 x :: Pi〉〉 ≡ 〈 x :: 〈∀ i : i ∈ F : Pi〉〉 (12)

and as a consequence, for fixed, finite set F , we have:

〈∀ y : y ∈ F : 〈 x :: P〉〉 ≡ 〈 x :: 〈∀ y : y ∈ F : P〉〉 (13)

It is clear from the first part of the proof of (11) , that in the general case,
finiteness is required to take the maximum over the X bounds of each conjunct.
Since finiteness is only necessary in one direction, if we drop this requirement
we retain the following, weaker form of (13) :

〈∀ y :: 〈 x :: P〉〉 ⇐ 〈 x :: 〈∀ y :: P〉〉 (14)

Proof:

〈 x :: 〈∀ y :: P〉〉

≡ { definition of }
〈∃X :: 〈∀ x : x > X : 〈∀ y :: P〉〉〉
≡ { nesting }
〈∃X :: 〈∀ y :: 〈∀ x : x > X : P〉〉〉
⇒ { ∃∀⇒∀∃ }
〈∀ y :: 〈∃X :: 〈∀ x : x > X : P〉〉〉
≡ { definition of }

〈∀ y :: 〈 x :: P〉〉

The Logic of Large Enough 47

As a counterexample for the reverse implication, consider x ≥ y for P .
There are several ways of generalising the definition of to vectors; we

choose the following as it is insensitive to the ordering of dummy variables:

〈 x , y :: P〉 ≡ 〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉 (15)

Equivalently, we have what we refer to as the “diagonal” property:

〈 x , y :: P〉 ≡ 〈∃Z :: 〈∀ x , y : x > Z ∧ y > Z : P〉〉 (16)

We prove (16) by mutual implication. Assume X , Y , and Z are not free
in P , then:

〈 x , y :: P〉
≡ { (15) }
〈∃X ,Y :: 〈∀ x , y :: x > X ∧ y > Y : P〉〉
⇒ { ∃ introduction, with Z := X ↑ Y }
〈∃X ,Y :: 〈∃Z :: 〈∀ x , y : x > Z ∧ y > Z : P〉〉〉
≡ { eliminate redundant outer quantifiers }
〈∃Z :: 〈∀ x , y : x > Z ∧ y > Z : P〉〉
⇒ { ∃ introduction, with X ,Y := Z ,Z }
〈∃Z :: 〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉〉
≡ { eliminate redundant outer quantifier }
〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉
≡ { (15) }
〈 x , y :: P〉

We refer to the following distributivity property as “unvectoring”. If x does
not occur free in Q , and y does not occur free in P , then:

〈 x , y :: P ∧ Q〉 ≡ 〈 x :: P〉 ∧ 〈 y :: Q〉 (17)

Proof:

〈 x , y :: P ∧ Q〉

≡ { ∧ over ; i.e., (11) }

〈 x , y :: P〉 ∧ 〈 x , y :: Q〉
≡ { eliminate redundant quantifiers }
〈 x :: P〉 ∧ 〈 y :: Q〉

48 E. Boiten and D. Grundy

The generalised definition of in (15) allows us to nest quantifications
as follows:

〈 x , y :: P〉 ⇒ 〈 x :: 〈 y :: P〉〉 (18)

Proof:

〈 x , y :: P〉
≡ { (15) }
〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉
≡ { nesting, twice }
〈∃X :: 〈∃Y :: 〈∀ x : x > X : 〈∀ y : y > Y : P〉〉〉〉
⇒ { ∃∀⇒∀∃ }
〈∃X :: 〈∀ x : x > X : 〈∃Y : 〈∀ y : y > Y : P〉〉〉〉
≡ { (1) , twice }
〈 x :: 〈 y :: P〉〉

The reverse implication does not hold as ∃ and ∀ do not generally commute;
for example, consider y > x for P .

Next, we investigate circumstances where we can replace x by f.x inside
-expressions, for an “eventually increasing” function f . Specifically, let f

be a function from natural numbers to reals that satisfies the following property:

〈∀ y :: 〈 x :: f.x > y〉〉 (19)

Informally, this states that f.x will eventually remain above any bound. Most of
the functions considered in computational complexity theory have this property,
including, for example, positive polynomials, and their quotients where the nu-
merator has a higher degree than the denominator (but excluding the constant
0); the identity function also satisfies it. For functions that satisfy (19) , by
skolemising the existential quantification inside we can introduce a function
bound that satisfies the property:

〈∀ x : x > bound .y : f.x > y〉

For functions that satisfy (19) , for Boolean function P we have:

〈 x :: P .x 〉 ⇒ 〈 x :: P .(f.x)〉 (20)

If we assume the antecedent, then according to the definition of we have
〈∀ x : x > X : P .x 〉 for some X . Since f satisfies (19) we have:

〈∀ x : x > bound .X : f.x > X 〉
⇒ { ∃ introduction, with Y := bound .X }

The Logic of Large Enough 49

〈∃Y :: 〈∀ x : x > Y : f.x > X 〉〉
⇒ { antecedent: x > X ⇒ P .x }
〈∃Y :: 〈∀ x : x > Y : P .(f.x)〉〉
≡ { definition of }

〈 x :: P .(f.x)〉

For functions that satisfy (19) , “for large enough x” is equivalent to “for
large enough f.x”:

〈 x :: P〉 ≡ 〈∃Y :: 〈∀ x :: f.x > Y : P〉〉 (21)

We prove this by mutual implication. From left to right, (19) is not necessary.
We observe that f has a maximal value on every prefix of N ; we denote this
maximum ∇.X , where

∇.X = 〈↑x : x ≤ X : f.x 〉
It follows that if f.x > ∇.X then x > X . Now we calculate as follows:

〈 x :: P〉

≡ { definition of }
〈∃X :: 〈∀ x : x > X : P〉〉
⇒ { range strengthening: f.x > ∇.X ⇒ x > X }
〈∃X :: 〈∀ x : f.x > ∇.X : P〉〉
⇒ { ∃ introduction, with Y := ∇.X ; eliminate redundant quantifier }
〈∃Y :: 〈∀ x : f.x > Y : P〉〉

To prove the opposite direction we observe that as a consequence of (19) , for
every bound Y , the set 〈x : f.x ≤ Y : x 〉 is finite, and has a maximum, which
we denote ∇.Y ; that is:

∇.Y = 〈↑x : f.x ≤ Y : x 〉
If follows that if x > ∇.Y then f.x > Y . Now we calculate as follows:

〈∃Y :: 〈∀ x : f.x > Y : P〉〉
⇒ { range strengthening: x > ∇.Y ⇒ f.x > Y }
〈∃Y :: 〈∀ x : x > ∇.Y : P〉〉
⇒ { ∃ introduction, with X := ∇.Y ; eliminate redundant quantifier }
〈∃X :: 〈∀ x : x > X : P〉〉
≡ { definition of }

〈 x :: P〉

50 E. Boiten and D. Grundy

The corresponding “existential” operator, denoted by , is defined as the
dual of :

〈 x :: P〉 ≡ ¬〈 x :: ¬P〉 (22)

Consequently,

〈 x :: P〉 ≡ 〈∀X :: 〈∃ x : x > X : P〉〉 , (23)

which can be paraphrased as “(by increasing x) always P eventually holds”;
equivalently: “there are infinitely many values of x for which P holds”, i.e.:

〈 x :: P〉 ≡ 〈x : P : x 〉 is infinite (24)

The above definition of rather naturally implies that the set 〈x : P : x 〉 is
infinite; in the other direction we have:

〈x : P : x 〉 is infinite

⇒ { prefixes of N are finite }
〈∀X :: 〈x : P : x 〉 � 〈x : x ≤ X : x 〉〉
≡ { definition of � }
〈∀X :: 〈∃ x :: P ∧ ¬(x ≤ X)〉〉
≡ { trading }
〈∀X :: 〈∃ x : x > X : P〉〉
≡ { (23) }
〈 x :: P〉

As a corollary, we have the property mentioned above, namely that denotes
“all but finitely many”:

〈 x :: P〉 ≡ 〈x : ¬P : x 〉 is finite (25)

3 Limits of Sequences

As a simple application of the quantifier, we reason about limits of se-
quences, which we define as follows:

lim
x→∞ f.x = a ≡ 〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉 (26)

where f is a function from naturals to reals, and ε and a are reals.
As a first example, we show that multiplication by a positive constant com-

mutes with taking a limit. For c > 0 , we have:

The Logic of Large Enough 51

lim
x→∞ f.x = a

≡ { (26) }
〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉
≡ { arithmetic }
〈∀ ε : ε > 0 : 〈 x :: |c · f.x − c · a| < c · ε〉〉
≡ { dummy translation: ε′ := c · ε }
〈∀ ε′ : ε′ > 0 : 〈 x :: |c · f.x − c · a| < ε′〉〉
≡ { (26) }

lim
x→∞ c · f.x = c · a

In the following proof that limits distribute over addition, we avoid reference to
particular values of the function’s arguments by appealing to the distributivity
of over conjunction:

lim
x→∞ f.x = a ∧ lim

x→∞ g.x = b

≡ { (26) , twice }
〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉 ∧ 〈∀ ε : ε > 0 : 〈 x :: |g.x − b| < ε〉〉
≡ { distributivity }
〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉 ∧ 〈 x :: |g.x − b| < ε〉〉

≡ { over ∧ }

〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε ∧ |g.x − b| < ε〉〉
⇒ { arithmetic }
〈∀ ε : ε > 0 : 〈 x :: |(f.x + g.x)− (a + b)| < 2 · ε〉〉
≡ { dummy translation: ε′ := ε/2 }
〈∀ ε′ : ε′ > 0 : 〈 x :: |f.x − a| < ε′ ∧ |g.x − b| < ε′〉〉
≡ { (26) }

lim
x→∞(f.x + g.x) = a + b

Next, we prove that every converging sequence is bounded. First, we establish:

lim
x→∞ f.x = a

≡ { (26) }
〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉
⇒ { instantiation, with ε := 1 }

52 E. Boiten and D. Grundy

〈 x :: |f.x − a| < 1〉
⇒ { arithmetic }
〈 x :: f.x < a + 1〉

Now we can prove boundedness of f :

〈∃ b :: 〈∀ x :: f.x < b〉〉
≡ { range splitting on f.x < a + 1 }
〈∃ b :: 〈∀ x : f.x < a + 1 ∨ f.x ≥ a + 1 : f.x < b〉〉
⇐ { predicate calculus }
〈∃ b :: b ≥ a + 1 ∧ 〈∀ x : f.x ≥ a + 1 : f.x < b〉〉
≡ { above: 〈 x :: f.x < a + 1〉 so by (25) the

maximum of the complement exists }
〈∃ b :: b ≥ a + 1 ∧ b > 〈↑ x : f.x ≥ a + 1 : f.x 〉〉
≡ { one point rule: b = 1 + (a ↑ �〈↑ x : f.x ≥ a + 1 : f.x 〉�) }
true

Convergence of functions can also be characterised through the Cauchy criterion:

〈∀ ε : ε > 0 : 〈 x , y :: |f.x − f.y| < ε〉〉 (27)

This follows from the existence of a limit, as proved below. (Note that the
reverse implication relies on the function’s codomain being a complete metric
space.)

〈∀ ε : ε > 0 : 〈 x , y :: |f.x − f.y| < ε〉〉
⇐ { arithmetic: |x − c| < ε ∧ |y − c| < ε ⇒ |x − y| < 2 · ε }
〈∃ a :: 〈∀ ε : ε > 0 : 〈 x , y :: |f.x − a| < ε/2 ∧ |f.y − a| < ε/2〉〉〉
≡ { dummy translation: ε′ := 2 · ε }
〈∃ a :: 〈∀ ε′ : ε′ > 0 : 〈 x , y :: |f.x − a| < ε′ ∧ |f.y − a| < ε′〉〉〉
≡ { unvector, i.e., (17) }
〈∃ a :: 〈∀ ε′ : ε′ > 0 : 〈 x :: |f.x − a| < ε′〉 ∧ 〈 y :: |f.y − a| < ε′〉〉〉
≡ { dummy renaming, with y := x ; idempotence of ∧ }
〈∃ a :: 〈∀ ε′ : ε′ > 0 : 〈 x :: |f.x − a| < ε′〉〉〉
≡ { (26) }
〈∃ a :: lim

x→∞ f.x = a〉

The Logic of Large Enough 53

Remark. The above proofs still require extensive reasoning about the dummy
variable ε in the definition of limits. A reviewer pointed out that one way of
avoiding this may be by defining limits in terms of “limit superior” and “limit
inferior”, viz.

liminf f = 〈↑ n :: 〈↓ m : m ≥ n : f .n〉〉
limsup f = 〈↓ n :: 〈↑ m : m ≥ n : f .n〉〉
limx→∞ f.x = a ≡ (liminf f = a ∧ limsup f = a)

and that it may be useful to explore the connection between the quantifier
and infima and suprema over tails of sequences as used above.
End of Remark.

4 Towards Calculational Asymptotics

Our exploration of the “for large enough” quantifier was originally motivated
by its application in proofs in asymptotics, which occur commonly in complexity
theory and cryptography. Typically, as in the definition of limits, two quantities
occur as dummies in asymptotic characterisations: the point where the function
value is “close enough”, and how close it is. The quantifier eliminates the
former, but not yet the latter (the ε in the limit definition). In this section
we define relations between functions that address this issue.

In the rest of this section we overload constants to denote constant functions,
where, in particular, variable x denotes the identity function, and we lift opera-
tors on numbers pointwise to operators on functions. Thus, x +1 in a position
where a function is required denotes 〈λ x :: x 〉+ 〈λ y :: 1〉 = 〈λ x :: x + 1〉 as
expected.

Two types of asymptotic comparisons between functions exist: comparing
asymptotic behaviour (based on absolute differences), and comparing asymp-
totic growth (based on relative differences). In the former, we define a number
of operators between functions as follows:

f ↔ g ≡ 〈∀ ε : ε > 0 : 〈 x :: |f.x − g.x | < ε〉〉 (28)

f
 g ≡ 〈∀ ε : ε > 0 : 〈 x :: 0 ≤ g.x − f.x < ε〉〉 (29)

f � g ≡ g
 f (30)

Oberserve that the above remove the dummy ε , with the first generalising the
constant in the definition of a limit to a function.

The relation ↔ is reflexive, symmetric and transitive; the proof of transitiv-
ity has the same shape as that for the addition of limits in the previous section.
Indeed, we have that

lim
x→∞ f.x = a ≡ f ↔ a (31)

54 E. Boiten and D. Grundy

Using this notation we can encode a number of “asymptotic” relations from
the well-known textbook “Concrete Mathematics” [7]. The strict ordering of
functions by asymptotic growth is captured by the following definition:

f ≺ g ≡ f /g ↔ 0 (32)

It is easy to prove from this that ≺ is transitive and irreflexive. We also write
g � f for f ≺ g .

Useful relations in the world of asymptotic growth can be defined as follows:

f g ≡ 〈∃C :: 〈 x :: |f .x | ≤ C · |g.x |〉〉 (33)

f ! g ≡ f g ∧ g f (34)
f ∼ g ≡ f /g ↔ 1 (35)

It is easy to prove that the first is a preorder and that the other two are equiva-
lence relations. Our definition of ! differs from the one in [7] in that the latter
uses a single quantification over C for both instances of . However, the
two definitions are equivalent, as the inner predicate in the definition of is
upward closed in C , so in both cases we can choose the maximum of the two
instances of C .

Some further properties of these relations are stated below:

f ↔ g ∧ ¬(f ↔ 0) ⇒ f ∼ g (36)
∼ ⊆ ! (37)
! ⊆ (38)

! o
9 ≺ ⊆ ≺ (39)

≺ o
9 ! ⊆ ≺ (40)

where o
9 denotes forward function composition. The reverse of (36) does not

hold, e.g. x ∼ x + 1 but not x ↔ x + 1 .
As an example, in [8], for the full verification of a proof in [6], a proof obligation

was to show that, for a polynomial a of degree at least 2,

〈 x :: (1− x
a.x)a.x < 2−x 〉

Starting from a standard result, we derive for constant C :

(1 + C
x)x ↔ eC

⇒ { (21) , f .x := a.x/x satisfies (19) }
(1 + C

a.x/x)a.x/x ↔ eC

⇒ { (36) }
(1 + C

a.x/x)a.x/x ∼ eC

Also, we need a result based on continuity, which we state without further
proof: if f is a curried two-argument function such that f.x is continuous for
large enough x , then

g ↔ h ⇒ f.x .(g.x)↔ f.x .(h.x) (41)

The Logic of Large Enough 55

Then we calculate:

(1 − x
a.x)−a.x

= { fractions }

(1 + (−1)
a.x/x)−a.x

= { exponents }

((1 + (−1)
a.x/x)a.x/x)−x

∼ { above with C := −1 , and (41) }
(e−1)−x

= { exponents }
ex

� { cx ≺ dx for 1 < c < d }
2x

Using properties (37) to (40) we conclude from this calculation that

(1− x
a.x)−a.x � 2x

and using the definition of ≺ thus also

〈 x :: (1− x
a.x)a.x < 2−x 〉

as required.

We can also express so-called “Big Oh” notation using these relations. As
stated in [7], this notation is usually defined in a particular context, e.g., for all
arguments to the function, or near a fixed argument value, or for “large enough”
arguments. In keeping with our application area, we assume the last case here.
Thus, for functions on natural numbers, we have1

f ∈ O(g) ≡ f g (42)

Because is used but not given a separate notation in [7], this observation is
missing there. The consequence that Θ (the intersection of “Big Oh” with
its converse) corresponds to ! is included, and so is the link between ≺ and
Landau’s “little oh”. An alternative characterisation we may use and explore
further is finiteness of limsup |f /g| .

1 Despite all the good reasons cited in [7] for writing “f (x) = O(g(x))” etc (“tra-
dition [. . .] tradition [. . .] tradition [. . .] for our purposes it’s natural.”), we can’t
bring ourselves to do so. We do stick with a more traditional way of denoting the
application of the O function though.

56 E. Boiten and D. Grundy

We now consider a number of the well-known properties of O , and how they
may be proved in this set-up. Since is a preorder we have:

f ∈ O(f) (43)
f ∈ O(g) ∧ g ∈ O(h) ⇒ f ∈ O(h) (44)

Properties relating O to arithmetic operators would generally require unfolding
the definition of , for example:

f ∈ O(g) ⇒ C · f ∈ O(g) for constant C (45)
f1 ∈ O(g1) ∧ f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(|g1|+ |g2|) (46)
f1 ∈ O(g1) ∧ f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 ↑ g2) for positive g1, g2 (47)
f1 ∈ O(g1) ∧ f2 ∈ O(g2) ⇒ f1 · f2 ∈ O(g1 · g2) (48)

Finally, properties (36) to (38) allow all three kinds of asymptotic equivalence
between f and g to be transformed into f ∈ O(g) .

5 Further Applications

The original motivation for this work was found in cryptography. The second
author’s PhD thesis [8] explores calculational approaches to proofs in cryptog-
raphy, which, in addition to traditional correctness notions and logic, contain
elements of probabilism, number theory, complexity theory, and —through the
latter— asymptotics.

Algebraic and symbolic reasoning has always been common in number theory,
and typical proofs in this area are calculational and elegant. However, typi-
cal proofs in modern cryptography contain quantifications over algorithms and
polynomials, with some of the quantifiers left implicit, and all of them changing
between existential and universal in every (possibly nested) proof by contra-
diction. For the particular proof explored in detail in [8] (a demonstration
proof from [6]), the “large enough” quantifier helped in the housekeeping of
quantifications “in the context” and their acceptable manipulations. Notations
explored in the previous section helped to structure and clarify a lemma based
on asymptotics.

In general, this paper makes a small contribution to making modern cryp-
tographic proofs more structured and manageable, with the ultimate goal of
correctness by construction in modern cryptography. Our work in this area
continues in the context of the UK EPSRC-funded CryptoForma network of
excellence [9].

Acknowledgements

We would like to thank our colleagues in the TCS group, especially Stefan Kahrs
and Simon Thompson, for fruitful discussions, and the MPC reviewers for many
interesting and relevant suggestions.

The Logic of Large Enough 57

References

1. Adams, E.: The logic of ‘almost all’. Journal of Philosophical Logic 3, 3–17 (1974)
2. Marker, D., Slaman, T.: Decidability of the natural numbers with the almost-all

quantifier (2006), http://arxiv.org/abs/math/0602415v1
3. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44,

12–36 (1957)
4. Alechina, N., van Lambalgen, M.: Correspondence and completeness for generalized

quantifiers. Bulletin of the Interest Group in Pure and Applied Logic 3, 167–190
(1995)

5. Alechina, N., van Benthem, J.: Modal quantification over structured domains. In:
de Rijke, M. (ed.) Advances in Intensional Logic, pp. 1–27. Kluwer, Dordrecht
(1997)

6. Goldreich, O.: Foundations of Cryptography, Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

7. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-
Wesley, Reading (1994)

8. Grundy, D.: Concepts and Calculation in Cryptography. PhD thesis, Comput-
ing Laboratory, University of Kent (2008), http://www.cs.kent.ac.uk/~eab2/

crypto/thesis.web.pdf

9. EPSRC CryptoForma network, http://www.cryptoforma.org.uk

http://arxiv.org/abs/math/0602415v1
http://www.cs.kent.ac.uk/~eab2/crypto/thesis.web.pdf
http://www.cs.kent.ac.uk/~eab2/crypto/thesis.web.pdf
http://www.cryptoforma.org.uk

Dependently Typed Grammars

Kasper Brink1, Stefan Holdermans2, and Andres Löh1

1 Department of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands

{kjbrink,andres}@cs.uu.nl
2 Vector Fabrics

Paradijslaan 28, 5611 KN Eindhoven, The Netherlands
stefan@vectorfabrics.com

Abstract. Parser combinators are a popular tool for designing parsers
in functional programming languages. If such combinators generate an
abstract representation of the grammar as an intermediate step, it be-
comes easier to perform analyses and transformations that can improve
the behaviour of the resulting parser. Grammar transformations must
satisfy a number of invariants. In particular, they have to preserve the
semantics associated with the grammar. Using conventional type sys-
tems, these constraints cannot be expressed satisfactorily, but as we
show in this article, dependent types are a natural fit. We present a
framework for grammars and grammar transformations using Agda. We
implement the left-corner transformation for left-recursion removal and
prove a language-inclusion property as use cases.

Keywords: context-free grammars, grammar transformation, depen-
dently typed programming.

1 Introduction

Parser combinators are a popular tool for designing parsers in functional
programming languages. Classic combinator libraries [1–4] directly encode the
semantics of the parsing process. The user of such a library builds a function
that – when run – attempts to parse some input and produces a result on a
successful parse.

Many of today’s parser combinator libraries, however, try to compute much
more than merely the result. The reasons are manifold, but most prominently
efficiency and error reporting. The technique is to choose an abstract representa-
tion for the parser that enables computing additional information, such as lists
of errors and their positions or lookahead tables, or to perform optimizations
such as left-factoring automatically.

If one takes this approach to the extreme, one ends up with a combinator
library that builds an abstract representation of the entire grammar first, cou-
pled with the desired semantics. This representation still contains the complete
information the user has specified, and is therefore most suitable for performing

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 58–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dependently Typed Grammars 59

analyses and transformations. After the grammar has been transformed to sat-
isfaction, the library can then interpret the grammar as a parser, again with a
choice on which parsing algorithm to employ.

However, operating on the abstract representation is somewhat tricky. There
are several invariants that such operations must satisfy. In particular, they have
to preserve the semantics associated with the grammar. Using conventional type
systems, writing transformations in even a type-correct way can therefore be
difficult, and even if it succeeds, the underlying constraints can often not be
expressed satisfactorily.

In this article, we present a framework for grammars and grammar trans-
formations using the dependently typed language Agda [5, 6]. We show that
dependent types are a natural fit for the kinds of constraints and invariants
one wants to express when dealing with grammars. In our framework, gram-
mars are explicitly parameterized over the sets of terminals and nonterminals.
We can talk about the left- and right-hand sides of productions in the types of
values, and express properties such as that a certain production does not have
an empty right-hand side. Each production carries its semantics, and the shape
of the production determines the type of the associated semantic function.

As a case study, we present the left-corner transform for removal of left re-
cursion from a grammar. Contrary to most other presentations of this grammar
transformation, we also show how the semantic functions are transformed. Fur-
thermore, we explain how properties about the transformation can be proved if
desired, and give a language-inclusion property as an example.

The paper concludes with a discussion of what we have achieved and what we
envision for the future, and a treatment of related work.

The complete Agda code on which this paper is based is available for
download [7].

2 Grammar Framework

An important aspect of our approach is that we do not encode a grammar merely
as a set of production rules that can be applied to sequences of symbols. Instead,
each grammar has an associated semantics, and the grammar and semantics are
encoded together. For every production of the grammar there is a corresponding
semantic function, which is applied during parsing when that production is rec-
ognized in order to compute a parse result. Naturally, the types of the semantic
functions must be consistent with the way in which they are applied. Below, we
describe how this is enforced in our framework.

2.1 Representing Grammars

We begin by describing how grammars and the associated semantic functions
are represented. A number of parameters (such as the type of nonterminals and
terminals) are fixed for the whole development. We therefore assume that all
subsequent definitions in this section are part of an Agda parameterized module:

60 K. Brink, S. Holdermans, and A. Löh

module Grammar (Terminal : Set) (Nonterminal : Set)
(?=t : Decidable {Terminal } ≡)
(?=n : Decidable {Nonterminal } ≡)
(� � : Nonterminal → Set) where

We require that both terminals and nonterminals come with decision procedures
for equality.

We define a Symbol type, which is the union of the Terminal and Nonterminal
types:

data Symbol : Set where
st : Terminal → Symbol
sn : Nonterminal → Symbol

In the following, we will often need lists of symbols, terminals and nonterminals,
so we define

Symbols = List Symbol
Terminals = List Terminal
Nonterminals = List Nonterminal

as abbreviations.
To ensure that the semantic functions of the grammar are consistently typed

with respect to the productions, the module signature introduces the map-
ping � �, which assigns a semantic type to each nonterminal. This is the type of
values that are produced when parsing that nonterminal (i. e., parsing A results
in values of type � A �).

The types of the semantic functions are determined by the nonterminals in the
corresponding productions, and the semantic mapping � �. A semantic function
for a production computes a value for the left-hand side (lhs) from the parse
results of the right-hand side (rhs) nonterminals. Thus, its argument types are
the rhs nonterminal types and its result type is the lhs nonterminal type.
For example, the production A → a B b C c has a semantic function of type
� B � → � C � → � A �. The semantic type of a production is the type of its
semantic function; we shall write the semantic type of a production A → β as
� β ||A �. This can be defined in Agda as follows:

� || � : Symbols → Nonterminal → Set
� [] ||A � = � A �
� st :: β ||A � = � β ||A �
� sn B :: β ||A � = � B �→ � β ||A �

Each nonterminal B in the rhs adds an argument of type � B � to the semantic
type, whereas terminal symbols in the rhs are ignored.1

1 It would be possible to associate semantics also with terminals (for example, if all
identifiers of a language are represented by a common terminal), but in order to keep
the presentation simple, we do not consider this variation in this paper.

Dependently Typed Grammars 61

E → E B N | N
B → + | −
N → 0 | 1

Fig. 1. Example grammar

We can now define a datatype to represent a production:

data Production : Set where

prod : (A : Nonterminal)→ (β : Symbols)→ � β || A �→ Production

A production consists of an lhs nonterminal A, the rhs symbols β, and an
associated semantic function of type � β || A �. Agda’s dependent type systems
enables us to concisely specify how the type of the semantic function depends
on the shape of the production.

As an example of the representation of grammars in our framework we consider
the grammar shown in Figure 1. It is a small grammar fragment that derives
(from the start symbol E) a language of arithmetic expressions involving the
numbers 0 and 1, and left-associative binary operators + and −. We shall refer
to this example grammar throughout the article.

For this grammar, we define a semantics that evaluates an arithmetic expres-
sion to the number it represents. The nonterminals E and N each evaluate to a
natural number, and B evaluates to a binary operator on naturals. Given a suit-
able definition for the type Nonterminal , we can define the semantic mapping
as:

� � : Nonterminal → Set
� E � = N

� N � = N

� B � = N→ N→ N

By assigning these types to the nonterminals, we also fix the semantic types of
the productions. Below, we show the semantic types for four productions from
the example grammar:

E → E B N � E B N || E � = N→ (N→ N→ N)→ N→ N

E → N � N || E � = N→ N

B → + � + || B � = N→ N→ N

N → 1 � 1 ||N � = N

We can encode these productions in Agda using the Production datatype (with
terminal symbols represented by the built-in character type). This encoding
includes the desired semantic functions, which match the types shown above.

62 K. Brink, S. Holdermans, and A. Löh

p1 = prod E (sn E :: sn B :: sn N :: []) (λ x f y → f x y)
p2 = prod E [sn N] id
p3 = prod B [st ’+’] +
p4 = prod N [st ’1’] 1

2.2 Constraints on Productions

Except for the consistency of the semantic function with respect to the lhs
and rhs nonterminals, the Production datatype imposes no constraints on the
form of a production. In some cases we wish to specify at the type level that
a production has a specific left-hand side. We shall need this information when
constructing a parser from a list of productions in Section 2.5, in order to show
that the parse results of the constructed parser are consistently typed. To con-
strain the lhs of a production, we define an indexed datatype ProductionLHS :

projlhs : Production → Nonterminal
projlhs (prod A) = A
data ProductionLHS : Nonterminal → Set where

prodlhs : (p : Production)→ ProductionLHS (projlhs p)

In Agda, a constructor of a datatype can restrict the index of the datatype: in this
case, the wrapper constructor prodlhs wraps around an “ordinary” production p
and uses the lhs of p as the index. In this way we expose information about
the value of the production at the type level. We define a synonym for a list of
productions with a specific lhs nonterminal:

ProductionsLHS : Nonterminal → Set
ProductionsLHS A = List (ProductionLHS A)

Such a list can be obtained by filtering an arbitrary list of productions with the
function filterLHS :

filterLHS : (A : Nonterminal)→ Productions → ProductionsLHS A
filterLHS [] = []
filterLHS A (prod B β sem :: ps) with A ?=n B
filterLHS A (prod .A β sem :: ps) | yes refl = prodlhs (prod A β sem) ::

filterLHS A ps
filterLHS A (prod B β sem :: ps) | no = filterLHS A ps

For a non-empty input list, the lhs of the first production, B , is compared to
the specified nonterminal, A, in the with-clause. If the equality test ?=n is
successful, it returns a proof refl which is the single constructor of the equality
type ≡ . Pattern matching on refl exposes this equality to the type system.
In the yes-branch, we can therefore assume that B is equal to A (as expressed
in Agda using the dot-pattern .A) and add the production to a list of type
ProductionLHS A. In the no-branch, the production is discarded, and we con-
tinue with the rest of the list. The result type of filterLHS holds evidence of the
filtering step that has been performed.

Dependently Typed Grammars 63

E

E

N

1

B

+

N

1

(a) Symbols in nodes

E → E B N

E → N

N → 1

B → + N → 1

(b) Productions in nodes

Fig. 2. Representations of parse trees

2.3 Parse Trees

To enable us to state and prove properties about grammars and their transforma-
tions we must define a representation for parse trees. In the conventional depic-
tion of parse trees, internal nodes are labelled with nonterminals, and leaves with
terminals. For a parse tree to be consistent with a grammar, an internal node A
and its direct descendants X1, . . . , Xn must form a production A → X1 · · · Xn

of the grammar. In Figure 2a, we show the conventional representation of the
parse tree for the sentence “1 + 1” in the example grammar.

In our case, it is more convenient to label the nodes of the parse tree with
productions. This makes it easier to express constraints on the productions (e. g.,
that they belong to a certain grammar), and enables us to store the semantic
functions in the parse tree, so that a parse result can be computed from it. The
root of a parse tree shall refer to the lhs nonterminal of the production in the root
node. Figure 2b shows how we represent the parse tree for the sentence “1 + 1”
in our framework.

Our representation of parse trees introduces redundant information between
a node and its children. To ensure that a parse tree is well-formed, we require
that the nonterminals in the rhs of the production in each node correspond to
the roots of its subtrees. This correspondence is encoded with the help of the
relation ∼ :

∼ : Symbols → Nonterminals → Set
β ∼ ns = filterN β ≡ ns

where filterN : Symbols → Nonterminals filters the nonterminals out of a list of
symbols.

We wish to enforce that the productions in a parse tree belong to a certain
grammar. In some cases, the productions are subject to additional constraints,
such as the requirement that the rhs is nonempty. The parse-tree datatype
defined below is therefore parametrized over a predicate Q : Production → Set ,
which represents the combined constraints that are satisfied by each production.
The datatype is implemented with two mutually recursive definitions:

64 K. Brink, S. Holdermans, and A. Löh

mutual
data ParseTree (Q : Production → Set) : Set where

node : (p : Production)→ Q p → (cs : List (ParseTree Q))→
(projrhs p ∼ map projroot cs)→ ParseTree Q

projroot : ∀ {Q } → ParseTree Q → Nonterminal
projroot (node (prod A)) = A

A node of a parse tree contains a Production (which includes a semantic func-
tion), a proof that it satisfies the predicate Q , a list of children, and a proof that
the nonterminals on the rhs of the production match the roots of the child parse
trees. The leaves of the tree contain productions with a rhs that consists en-
tirely of terminals (or is empty).2 In the function projroot , the type argument Q
remains implicit, as indicated by the curly brackets. Agda will try to infer the
argument whenever the function is called.

Given a parse tree, it is straight-forward to compute the sentence it represents:

merge : Symbols → List Terminals → Terminals
merge [] [] = []
merge (st b :: β) us = b :: merge β us
merge (sn B :: β) (u :: us) = u ++ merge β us
merge = []
sentence : ∀ {Q } → ParseTree Q → Terminals
sentence (node (prod β) cs) = merge β (map sentence cs)

The function sentence traverses the children of a node recursively. The helper
function merge then concatenates the recursively computed subsequences with
the terminals stored in the production of the node.

Another interesting computation over a parse tree is the semantic value that
is represented by such a tree:

semantics : ∀ {Q } → (pt : ParseTree Q)→ � projroot pt �
The implementation performs a fold on the parse tree, building up the result
starting from the leaves by applying all the semantic functions stored in the
nodes. We omit the code for brevity.

2.4 Parser Combinators

To construct a parser for a grammar encoded in our representation, we make use
of a parser combinator library. Parser combinators form a domain-specific em-
bedded language for the implementation of parsers in functional languages such
as Agda. The interface consists of several elementary parsers, and combinators
that allow us to construct complex parsers out of simpler ones. This formalism
2 The definition of ParseTree does not pass Agda’s positivity checker. This is mainly

a problem of the current checker, not a fundamental problem. We can circumvent
the problem by rewriting our code slightly, but here, we opt for readability.

Dependently Typed Grammars 65

offers a convenient way to implement parsers using a notation that stays close
to the underlying grammar. Here, we review one possible interface for parser
combinators; their implementation is described elsewhere [2, 8].

The basic type Parser A denotes a parser that returns values of type A. We
define the following elementary parsers:

symbol : Terminal → Parser Terminal
succeed : ∀ {A} → A→ Parser A
fail : ∀ {A} → Parser A

The parser symbol recognizes a single terminal symbol and returns that symbol
as a witness of a successful parse. The parser succeed recognizes the empty string
(which always succeeds) and returns the supplied value of type A as the parse
result. The parser fail always fails, so it never has to produce a value of the
result type A.

The library contains the following elementary combinators:

< |> : ∀ {A} → Parser A→ Parser A→ Parser A
<∗> : ∀ {A B } → Parser (A→ B)→ Parser A→ Parser B

The combinator < |> implements a choice between two parsers: the resulting
parser recognizes either a sentence of the left parser or of the right parser. The
result types of the parsers must be the same. The combinator <∗> implements
sequential composition: the resulting parser recognises a sentence of the left
parser followed by a sentence of the right parser. The parse results of the two
parsers are combined by function application: the left parser produces a function,
the argument type of which must match the result type of the right parser. We
also define the derived combinator <∗ , which recognizes its arguments in
sequence just like <∗> , but which only returns the parse result of the left
parser, discarding the result of the right.

2.5 Generating Parsers

The function generateParser constructs a parser for a grammar by mapping its
productions onto the parser combinator interface, and it has type:

generateParser : Productions → (S : Nonterminal)→ Parser � S �
It takes a list of productions of the grammar and a start nonterminal S , and
constructs a parser for S that returns values of type � S �. The implementation
of the function makes use of three mutually recursive subfunctions:

generateParser gram = gen where
mutual

gen : (A : Nonterminal)→ Parser � A �
gen A = (foldr < |> fail ◦ map genAlt ◦ filterLHS A) gram
genAlt : ∀ {A} → ProductionLHS A→ Parser � A �

66 K. Brink, S. Holdermans, and A. Löh

genAlt (prodlhs (prod A β sem)) = buildParser β (succeed sem)
buildParser : ∀ {A} β → Parser � β ||A �→ Parser � A �
buildParser [] p = p
buildParser (st b :: β) p = buildParser β (p <∗ symbol b)
buildParser (sn B :: β) p = buildParser β (p <∗> gen B)

The function gen takes a nonterminal A and generates a parser for A that
returns values of type � A �. It first selects all productions with lhs A from
the grammar using filterLHS . To each of these productions it applies genAlt ,
which generates a parser that corresponds to that particular alternative for A.
The alternatives are combined into a single parser by folding with the parallel
composition combinator < |> (which has fail as a unit).

The function genAlt generates a parser for a single alternative; that is, the
derivation always starts with the specified production. Note that the connection
between the left-hand side nonterminal of the production and the result type of
the parser is made in the type signature of genAlt . The semantic function sem
is lifted to the trivial parser succeed sem with type Parser � β ||A �. The actual
parser construction is performed by buildParser .

The function buildParser builds the parser by recursing over the right-hand
side symbols β. The argument p is an accumulating parameter that is expanded
into a parser that recognizes β. When β is empty, we return the constructed
parser p, which has type Parser � A �. If β starts with a terminal b, we recog-
nize it with symbol b, leaving the semantic types unchanged. If β starts with a
nonterminal B , we generate a parser for B by calling gen recursively, and ap-
pend this to p. Note that in this branch, p has type Parser (� B �→ � β ||A �),
and gen B has type Parser � B �, and the sequential composition removes the
leftmost argument from the parser’s result type.

3 Left-Corner Transform

The function generateParser from the preceding section does not pass Agda’s
termination checker. This is not surprising, since we do not impose any restric-
tions on the grammar at this point. In particular, a left-recursive grammar will
lead to a non-terminating parser.

In this section, we discuss the left-corner transform (lct), a grammar trans-
formation that removes left recursion from a grammar [9, 10].

3.1 Transformation Rules

The transformation is presented below as a set of transformation rules that are
applied to the productions of a grammar. If the grammar satisfies certain pre-
conditions, applying the rules yields a transformed grammar that derives the
same language and that does not contain left-recursive nonterminals. A non-
terminal A is left-recursive if it derives a sequence of symbols beginning with
A itself (i. e., A

∗=⇒ Aβ). Such nonterminals can lead to non-termination with
top-down parsers.

Dependently Typed Grammars 67

The lct is based on manipulation of the left corners of the grammar. A
symbol X is a direct left corner of the nonterminal A if there is a production
A→ Xβ in the grammar. The left-corner relation is the transitive closure of the
direct left-corner relation.

The transformation extends the set of nonterminals with new nonterminals of
the form A−X , where A and X are a nonterminal and a symbol of the original
grammar, respectively. A new nonterminal A−X represents the part of an A that
follows an X . For example, if A

∗=⇒ Bcd
∗=⇒ abcd, then A−B

∗=⇒ cd and A−a
∗=⇒ bcd.

The three transformation rules for the left-corner transform, as formulated by
Johnson [10], are as follows:

∀A ∈ N, a ∈ T : A→ a A−a ∈ P ′ (1)
∀C ∈ N, A→ Xβ ∈ P : C−X → β C−A ∈ P ′ (2)
∀A ∈ N : A−A→ ε ∈ P ′ (3)

The rules are universally quantified over the terminals T , nonterminals N and
productions P of the original grammar. The set P ′ contains the productions of
the transformed grammar; the start symbol remains the same.

Some of the nonterminals and productions generated by these rules are useless:
they can never occur in a complete derivation of a terminal string from the start
symbol. There are other formulations of the lct which avoid generating such
useless productions; we have chosen this variant because its simplicity makes it
easier to prove properties about the transformation (cf. Section 4).

3.2 Transforming Productions

Because rule (2) refers to the left corner of the input production, it is not de-
fined for ε-productions. Therefore, we must encode the precondition that the
transformation can only be applied to non-ε-productions. We begin by defining
a predicate that identifies productions with a nonempty rhs:

isNonEpsilon : Production → Set
isNonEpsilon p = T ((not ◦ null ◦ projrhs) p)

The standard library function T maps boolean values to the corresponding
propositions: the result is either the type $ for truth with one inhabitant, or the
type ⊥ for falsity without inhabitants.

The type of non-ε-productions is a dependent pair of a production and a proof
that its rhs is nonempty:

data NonEpsilonProduction : Set where
nε : (p : Production) → { : isNonEpsilon p} →

NonEpsilonProduction

We make the proof implicit,3 since we typically only want to refer to it when
dismissing the “impossible case” (empty rhs) in function definitions with a
NonEpsilonProduction argument.
3 In Agda, implicit arguments must always be named, hence the underscore in the

type signature.

68 K. Brink, S. Holdermans, and A. Löh

In the lct, the transformed grammar uses a different set of nonterminals than
the original grammar. To encode this in our implementation we require two sep-
arate instantiations of the Grammar module. We define modules O and T , and
inside these modules we instantiate the Grammar module with the appropriate
parameters. This enables us to refer to entities from either grammar with the
prefixes “O” and “T”.4

The set of nonterminals of the transformed grammar is derived from that of
the original grammar by adding nonterminals of the form A−X . This is repre-
sented by the datatype TNonterminal :

data TNonterminal : Set where
n : ONonterminal → TNonterminal
n − : ONonterminal → OSymbol → TNonterminal

With this datatype, the original nonterminal A can be encoded in the trans-
formed grammar as n A, and the new nonterminal A−B as n A − O .sn B .

The semantic types of the transformed nonterminals are a function of the
original semantic types:

T � � : TNonterminal → Set
T � n A � = � A �
T � n A − O .st b � = � A �
T � n A − O .sn B � = � B �→ � A �

The semantic types of the original nonterminals are preserved in the transformed
grammar. To explain the semantic type for a nonterminal A−X , consider the
situation where we have recognized the left corner X , and continue by recognizing
the remainder of A. If X was a terminal b, we must simply produce a value of
type �A�, but if X was a nonterminal B, we have already got a value of type �B�,
so to produce a result of type �A� we need a function �B�→ �A�.

With the representation of the two grammars in place, we now turn to the
transformation itself. At the top level, we implement the universal quantification
over symbols and productions in the transformation rules with a combination
of concat and map.

lct : ONonEpsilonProductions → TProductions
lct ps = concatMap (λ A → map (rule1 A) ts) ns ++

concatMap (λ C → map (rule2 C) ps) ns ++
map rule3 ns

where ts = terminals ps
ns = nonterminals ps

The type of lct specifies the precondition that the productions of the original
grammar must have a nonempty rhs. In the interface of the Grammar module,
we do not require an operation to enumerate all symbols in the sets Terminal

4 For readability, we also define synonyms such as O� || � = O .� || �.

Dependently Typed Grammars 69

and Nonterminal . Instead we use the functions terminals and nonterminals here,
which traverse the list of productions, collect all terminal or nonterminal symbols
encountered, and remove duplicates. This means that we only quantify over
symbols that are actually used in the grammar.

The functions rule1 and rule3 directly encode the corresponding transforma-
tion rules (1) and (3) from page 67:

rule1 : ONonterminal → Terminal → TProduction
rule1 A a = T .prod (n A) (T .st a :: [T .sn (n A − O .st a)]) id
rule3 : ONonterminal → TProduction
rule3 A = T .prod (n A − O .sn A) [] id

In both cases, the semantics of the constructed production has type �A�→ �A�,
so the corresponding semantic function is the identity.

The function rule2 is more interesting, since it is the only rule that actually
transforms productions of the original grammar.

rule2 : ONonterminal → ONonEpsilonProduction → TProduction
rule2 C (O .nε (O .prod A (X :: β) sem)) =

T .prod (n C − X) (liftSymbols β ++ [T .sn (n C − O .sn A)])
(semtrans C A X β sem)

rule2 (O .nε (O .prod []) { })

Although the notation is slightly cluttered by the various symbol constructors,
it is clear that this function performs a straightforward rearrangement of the
input symbols. The function liftSymbols : OSymbols → TSymbols maps symbols
of the original grammar to the same symbols in the transformed grammar (e. g.,
O .sn A to T .sn (n A)). We will explain semtrans below. The second case is
required to get the function through Agda’s totality checker. We consider the
case that the rhs of the production is empty, but can refute it due to the implicit
proof of non-emptiness contained in the constructor O .nε, using Agda’s notation
for an absurd pattern { }.

3.3 Transforming Semantics

One problem still remains to be solved: when transforming a production with
rule2 , how should the associated semantic function be transformed? This task is
performed by the function semtrans. We compute the semantic transformation
incrementally, by folding over the symbols in the rhs of the production, and the
type of the transformation depends on the symbols we fold over. For this, we
use a dependently typed fold for a list of symbols, which is defined as part of
the grammar framework:

foldSymbols : {P : Symbols → Set } →
(∀ b {β} → P β → P (st b :: β))→
(∀ B {β} → P β → P (sn B :: β))→
P [] →

70 K. Brink, S. Holdermans, and A. Löh

(β : Symbols)→ P β
foldSymbols ft fn fe (st b :: β) = ft b (foldSymbols ft fn fe β)
foldSymbols ft fn fe (sn B :: β) = fn B (foldSymbols ft fn fe β)
foldSymbols fe [] = fe

This is a dependently typed generalization of the ordinary foldr for lists; in
addition, we also make a distinction between terminal and nonterminal symbols
at the head of the list. The type P is the result type of the fold, which depends
on the symbols folded over.

To define the transformation of the semantic functions, we use the semantic
types as a guide. A production A→ Bβ is transformed as follows by rule (2):

A→ Bβ −→ C−B → β C−A

The types of the semantic functions must be transformed accordingly:

�Bβ||A� −→ �βC−A||C−B�
This can be viewed as a function type mapping the original semantic function to
the transformed semantic function; in other words, it is the type of the semantic
transformation. We encode this type in Agda as:

semtransN : ∀ C A B β →
O� O .sn B :: β ||A �→
T � liftSymbols β ++ [T .sn (n C − O .sn A)] || n C − O .sn B �

The implementation of semtransN is obtained by constructing a function that
satisfies the given type:

semtransN = O .foldSymbols (λ c f → f)
(λ C f → λ g → f ◦ flip g)
(λ f g → g ◦ f)

The suffix N to semtransN signifies that this transformation applies to a pro-
duction with a nonterminal left corner; the function semtransT for a terminal
left corner is analogous, with slightly different arguments to the fold. The func-
tion semtrans that is used in the definition of rule2 makes the choice between
the two based on the left corner of the input production.

4 Proof of a Language-Inclusion Property

Dependent types can be used to develop correctness proofs for our programs,
without resorting to external proof tools. We illustrate this by proving a lan-
guage-inclusion property for the lct. This property forms part of a correctness
proof for our implementation of the transformation; a full proof of correctness
would also establish the converse property (thereby proving language preserva-
tion for the lct), and the absence of left-recursion in the transformed grammar.

Dependently Typed Grammars 71

(3) E → E B N

(2) E → N

(1) N → 1

(4) B → + (5) N → 1

(a) Original grammar

(11) E → 1E−1

(1) E−1 → E−N

(2) E−N → E−E

(3) E−E → B N E−E

(41) B → +B−+

(4) B−+ → B−B

(43) B−B → ε

(51) N → 1N−1

(5) N−1 → N−N

(53) N−N → ε

(13) E−E → ε

(b) Transformed grammar

Fig. 3. Original and transformed parse trees

4.1 Language Inclusion

When applying grammar transformations, we usually require that they preserve
the language that is generated by the grammar. In this section, we show how to
prove that our implementation of the left-corner transform satisfies a language-
inclusion property,

L(G) ⊆ L(G′) , (4)

which states that the language generated by the transformed grammar G′ in-
cludes at least the language of the original grammar G.

The left-corner transform operates on the productions of a grammar by appli-
cation of the transformation rules (1)–(3). The transformation of the productions
leads to a corresponding transformation of the parse trees of the grammar. A
parse tree is essentially a proof that the derived sentence is in the language of
the grammar. To prove property (4), we must show that for every sentence w
in the language of G (as evidenced by a parse tree using the productions of G),
we can construct a parse tree using the productions of G′. By implementing the
parse-tree transformation function we give a constructive proof of the language-
inclusion property.

4.2 Relating Parse-Tree Transformation to Grammar
Transformation

To illustrate the parse-tree transformation, Figure 3a shows the parse tree for
the sentence “1 + 1” in the example grammar, and Figure 3b shows the parse
tree for the same sentence in the transformed grammar. Johnson [10] notes that

72 K. Brink, S. Holdermans, and A. Löh

G G′

w w

′

lc-parsing in G

Left-corner transform

∗=⇒G
∗=⇒G′

Proof of
L(G) ⊆ L(G′)

Left-corner
traversal

Top-down
traversal

Fig. 4. Relationship between grammar transformation and parse-tree transformation

the lct emulates a particular parsing strategy called left-corner (lc) parsing,
in the sense that a top-down parser using the transformed grammar behaves
identically to an lc-parser with the original grammar. Left-corner parsing con-
tains aspects of both top-down and bottom-up parsing. We can characterize the
parsing strategies as follows: in top-down parsing, productions are recognized
before their children and their right siblings; in bottom-up parsing, productions
are recognized after their children and their left siblings; and in left-corner pars-
ing, productions are recognized after their left corner, but before their other
children, and before their right siblings. Thus, the parse-tree transformation in-
duced by the lct satisfies the following property: for two parse trees related by
the parse-tree transformation, an lc-traversal of the original tree corresponds to
a top-down traversal of the transformed tree.

In Figure 3, the nodes of the original tree have been labelled in lc-order, and
those of the transformed tree in top-down order. Each node of the transformed
tree that is labelled with a plain number (without a subscript) is derived from
the node in the original tree with the same label, by application of the lct
transformation rule (2). Note that the left-hand side nonterminal of an original
node is reflected in the right corner of a transformed node. The transformed tree
also contains nodes that are generated by lct transformation rules (1) and (3),
indicated by the subscripts on the labels. These nodes occur at the root and the
lower right corner of all subtrees that do not correspond to a left corner in the
original tree.

The relationships between grammars, parse trees and traversals are depicted
schematically in Figure 4. On the top row, we see the original and transformed
grammars, related by the left-corner transform. The middle row shows parse trees
for the sentence w in the original and transformed grammar. These trees are re-
lated by the parse-tree transformation function, which is also the proof of the
language-inclusion property (4). On the bottom row, we see that an lc-traversal

Dependently Typed Grammars 73

of the original parse tree, which corresponds to lc-parsing in G, recognizes pro-
ductions in the same order as a top-down traversal of the transformed parse tree.

4.3 Parse-Tree Transformation: Specification

The parse-tree transformation function performs an lc-traversal of the original
parse tree, transforming each original production with rule (2), and adding pro-
ductions to the transformed tree in top-down order. Each subtree of the original
tree that does not correspond to a left-corner is a new goal for the transforma-
tion. At the root and the lower right corner of these subtrees, productions are
added that are generated by rules (1) and (3), respectively. Finally, we must
show that the transformation of a subtree preserves the derived sentence.

We now give a precise definition of the parse-tree transformation. This consists
of two mutually recursive functions G and T . In the description of these functions,
we use the following notation to concisely represent parse trees with root A,
deriving the sentence w:

A
w

(original parse tree) A
w

′
(transformed parse tree)

Note that we use this notation both to represent the set of parse trees with
root A and sentence w (in the types of T and G), and an inhabitant of that set
(in the definitions of T and G). A parse tree with a specific production A → β
in the root node is written as:

A→ β

B1

v1

Bn

vn

···

(where B1, . . . , Bn are the nonterminals of β)

The transformation functions are defined in Figure 5. Free variables in the type
signatures, such as A and w, are universally quantified. The function G is the
top-level transformation function, which is applied to each new goal. The type
of this function specifies that the sentence of the original tree is preserved by
the transformation.

The recursive transformation of the subtrees is performed by T , which takes
as arguments the current goal nonterminal C, the subtree to be transformed,
and an accumulating parameter, which holds the lower right corner of the tree
that is being constructed. This function satisfies the invariant that the tail v
of the original sentence, concatenated with the sentence w of the tree being
constructed, is the sentence of the result.

As can be seen from Figure 5, the transformation functions satisfy certain
invariants related to roots of parse trees and the sentence derived by them. This
is expressed in the types of T and G by referring not to arbitrary sets of parse
trees, but to sets of parse trees that depend on a particular nonterminal for the
root of the tree and a particular string of terminals for the sentence of the tree.
Thus, the transformation functions are naturally dependently typed.

74 K. Brink, S. Holdermans, and A. Löh

G : A
w

→ A
w

′

G A
au

=

A → a A−a

(
T A A

au

A−A
ε

′)

T : (C : N) → A
bv

→ C−A
w

′
→ C−b

vw

′

T C

A → b β

B1
v1

Bn

vn

···

C−A
w

′
=

C−b → β C−A

(
G B1

v1

) (
G Bn

vn

)
C−A

w

′
···

T C

A → B β

B

bv

B1
v1

Bn

vn

···

C−A
w

′
=

T C B
bv

C−B → β C−A

(
G B1

v1

) (
G Bn

vn

)
C−A

w

′
···

Fig. 5. Parse-tree transformation functions

4.4 Parse-Tree Transformation: Agda Implementation

We now turn to the Agda implementation of the transformation functions that
we defined in pseudocode in Figure 5. Our first task is to create a representa-
tion of the parse-tree types used in the specification. We begin by defining the
synonym OGrammar :

OGrammar = ONonEpsilonProductions

The original grammar is given as a list of productions, which are guaranteed to
be non-ε. We now define the general types of parse trees of the original and the
transformed grammar, that is, types that do not specify the root and sentence

Dependently Typed Grammars 75

of their inhabitants. To use the parse-tree type of Section 2.3, we must supply
it with a predicate that describes the constraints that apply to each production
in the parse tree. For original parse trees, we require that the production is a
non-ε production, and that it is contained in the original grammar:

OParseTree : OGrammar → Set
OParseTree G = O .ParseTree (λ p → Σ (O .isNonEpsilon p)

(λ pnε→ O .nε p {pnε} ∈ G))

Note that the parse tree itself contains “plain” productions; to express the re-
quirement that they are contained in the grammar, we must combine them with
their non-ε proofs to construct values of type NonEpsilonProduction .

For transformed parse trees, we only require that the productions are con-
tained in the left-corner transform of the original grammar.

TParseTree : OGrammar → Set
TParseTree G = T .ParseTree (λ p → p ∈ lct G)

From the general parse-tree types OParseTree and TParseTree we can create
the specific parse-tree types that are used in the types of the transformation
functions. This is done by taking the dependent pair of a parse tree with a pair
of proofs about its root and sentence. For original parse trees we define:

OPT : OGrammar → ONonterminal → Terminals → Set
OPT G A w = Σ (OParseTree G) (λ opt → O .projroot opt ≡ A

× O .sentence opt ≡ w)

The type OPT G A w is the Agda representation of the type
w
A . The type

TPT is defined in the same way.
Using the types OPT and TPT , it is straightforward to translate the types

of the transformation functions into Agda. For G we get:

transG : ∀ {G A w } → OPT G A w → TPT G (n A) w

And the type of T becomes:

transT : ∀ {G A b v w } →
(C : ONonterminal)→
C ∈ nonterminals G →
OPT G A (b :: v)→
TPT G (n C − O .sn A) w →
TPT G (n C − O .st b) (v ++ w)

In the translation to Agda, we have added an additional agument: the condi-
tion C ∈ nonterminals G, which states that the current goal nonterminal C is
actually used in one of the productions of the grammar. In Figure 5, this was
left implicit; in Agda, we need this condition to prove that the productions of
the transformed tree really exist in the transformed grammar.

76 K. Brink, S. Holdermans, and A. Löh

The implementations of transG and transT are also straightforward transla-
tions of the pseudocode of Figure 5. The resulting code does, however, require
many small helper proofs in order to prove its type correctness. This clutters the
structure of the transformation somewhat, compared to the pseudocode.

By implementing transG, we have created a machine-checkable proof that our
implementation of the lct satisfies the language-inclusion property (4).

5 Related Work

Baars et al. [11] implement a left-corner transformation of typed grammars in
Haskell. To guarantee that the types of associated semantic functions are pre-
served across the transformation, they make use of various extensions to Haskell’s
type system, such as generalized algebraic datatypes for maintaining several in-
variants and nonstrict evaluation at the type level for wrapping the transforma-
tion in an arrow [12]. Inspired by Pasǎlić and Linger [13], their implementation,
which is built on top of a general-purpose library for typed transformations of
typed syntax [14], uses what are essentially De Bruijn indices for representing
nonterminal symbols. At the expense of some additional complexity, this repre-
sentation allows for a uniform representation of nonterminals across the trans-
formation. Our approach, at the other hand, requires a dedicated representation
(TNonterminal) for the nonterminals used in the transformed grammar and a
corresponding representation for its productions (TProduction). In principle, our
implementation could be adapted to use a uniform representation of nonterminal
symbols across the transformation as well, but doing so would make it consid-
erably more involved to state and prove properties of our transformation. Baars
et al., limited by the restrictions of Haskell’s type system, do not state or prove
any properties of their implementation other than the preservation of semantic
types.

Danielsson and Norell present a library [15] of total parser combinators in
Agda. Type-correct parsers in this library are guaranteed not to be left-recursive.
It would be interesting to investigate if we could generate a parser for our lct-
transformed grammars using these combinators. A more recent version of the
library by Danielsson [16] can actually deal with many left-recursive grammars,
by controlling the grammar traversal using a mix of induction and co-induction.

6 Conclusions

We have presented a framework for the representation of grammars, together
with their semantics, in Agda. Dependent types make it possible to specify pre-
cisely how the type of the semantic functions is determined by the shape of
the productions. We can generate parsers for the grammars expressed in our
framework with the help of a parser-combinator library.

As an example of the use of our framework, we have shown how to implement
the left-corner transform, a transformation that removes left recursion from a

Dependently Typed Grammars 77

grammar. This transformation consists not only of relatively simple manipula-
tions of grammar symbols, but also requires a corresponding adaptation of the se-
mantic functions. Fortunately, we can use the types to guide the implementation:
by treating the semantic types as a specification of the desired transformation, the
problem is reduced to a search for a function of the appropriate type.

Dependent types play an important role in the development of correctness
proofs for our programs. We illustrate this by proving a language-inclusion
property for our implementation of the lct, which states that the transformed
grammar derives at least the language of the original grammar. From the trans-
formation rules of the lct, it is not immediately obvious how the parse trees of
the original and transformed grammars are related. A key insight in the proof,
due to Johnson [10], is the realization that the grammar transformation effec-
tively simulates a left-corner traversal of the original parse tree. This leads us
to a specification of the parse-tree transformation in pseudocode, which involves
several invariants on the roots and derived sentences of the parse trees. Those
invariants are expressed most naturally using dependent types.

The Agda implementation of the proof is a straightforward translation of the
pseudocode specification. As we have shown, the language-inclusion property can
be represented elegantly in Agda as a type. The proof of this property, which
is a parse-tree transformation function satisfying the aforementioned type, also
follows directly from the pseudocode. However, to show that this function sat-
isfies the specified type, we have to prove many small helper properties, which
clutters the main proof considerably. Although Agda’s interactive mode proved
helpful in getting these details of the proof right, we speculate that the availabil-
ity of an extensible tactic language, much as has been available in Coq for many
years [17], would even further streamline the construction of proof objects.

During the development of the proof of the language-inclusion property we
were confronted with inefficiencies in the current implementation of Agda (ver-
sion 2.2.4). In order for the memory footprint of the typechecker to fit within the
physical memory of the machine, we were forced to factor the proof – sometimes
unnaturally – into several submodules. Even with this subdivision, the stand-
alone typechecker takes about 8 minutes to check the proof on our hardware,5

limiting the pace of development.
The framework we have presented in this paper can represent any context-

free grammar, but when encoding the grammar we are limited to using plain
bnf notation. In contrast, parser combinators are far more expressive than plain
bnf, offering constructs such as repetition, optional phrases, and more. One of
the key advantages of parser combinators is that they allow us to capture re-
curring patterns in a grammar by defining custom combinators. Our main focus
in extending the present work is to develop a library of “grammar combina-
tors”. We envisage a combinator library with an interface similar to that of the
parser combinators, which constructs an abstract representation of a grammar
in our framework. This representation can then be analyzed, transformed, and
ultimately turned into a parsing function.

5 Using a 2 GHz Intel Core 2 Duo CPU (32-bit) and 2 GB RAM.

78 K. Brink, S. Holdermans, and A. Löh

Another area we are investigating is the development of a library of gram-
mar transformations, such as removal of ε-productions, removal of unreachable
productions, or left-factoring.

Currently, the generation of a parser for a grammar makes use of top-down,
backtracking parser combinators, which leads to very inefficient parsers. How-
ever, from our grammar representation, we can generate many kinds of parsers
with various parsing strategies. In particular, our grammar representation is well
suited to the kind of global grammar analysis normally performed by standalone
parser generators, so we intend to explore the possibility of generating efficient,
deterministic bottom-up parsers for our grammars.

Finally, we wish to prove more properties about grammar transformations.
For instance, we want to expand the proof of the language-inclusion property
into a full correctness proof of our implementation of the lct. We hope that
by doing more proofs, recurring proof patterns for proofs over grammars will
emerge that we can then include in our general framework.

Acknowledgements. This work was partly supported by the Netherlands Or-
ganisation for Scientific Research through its project on “Scriptable Compilers”
(612.063.406) and carried out while the second author was employed at Utrecht
University. The authors thank the anonymous reviewers for their helpful remarks
and constructive suggestions.

References

1. Hutton, G.: Higher-order functions for parsing. Journal of Functional Program-
ming 2, 323–343 (1992)

2. Swierstra, S.D., Duponcheel, L.: Deterministic, error-correcting combinator
parsers. In: Launchbury, J., Sheard, T., Meijer, E. (eds.) AFP 1996. LNCS,
vol. 1129, pp. 184–207. Springer, Heidelberg (1996)

3. Swierstra, S.D.: Combinator parsing: A short tutorial. In: Bove, A., Barbosa,
L.S., Pardo, A., Pinto, J.S. (eds.) ALFA. LNCS, vol. 5520, pp. 252–300. Springer,
Heidelberg (2009)

4. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinator for the real
world. Technical Report UU-CS-2001-035, Utrecht University (2001)

5. Norell, U.: Dependently typed programming in Agda. In: Koopman, P.,
Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266.
Springer, Heidelberg (2009)

6. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (2007)

7. Brink, K., Holdermans, S., Löh, A.: Dependently typed grammars, Agda code
(2010), http://www.cs.uu.nl/~andres/DTG/

8. Fokker, J.: Functional parsers. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS,
vol. 925, pp. 1–23. Springer, Heidelberg (1995)

9. Rosenkrantz, D.J., Lewis, P.M.: Deterministic left corner parsing. In: Conference
Record of 1970 Eleventh Annual Symposium on Switching and Automata Theory,
pp. 139–152. IEEE, Los Alamitos (1970)

10. Johnson, M.: Finite-state approximation of constraint-based grammars using left-
corner grammar transforms. In: COLING-ACL, pp. 619–623 (1998)

http://www.cs.uu.nl/~andres/DTG/

Dependently Typed Grammars 79

11. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed grammars:
The left corner transform. To appear in the proceedings of the 9th Workshop
on Language Descriptions, Tools and Applications (LDTA 2009), York, England
(March 29, 2009)

12. Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (2000)

13. Pasǎlić, E., Linger, N.: Meta-programming with typed object-language representa-
tions. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 136–167.
Springer, Heidelberg (2004)

14. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed abstract
syntax. In: Kennedy, A., Ahmed, A. (eds.) Proceedings of TLDI’09: 2009 ACM
SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation, Savannah, GA, USA, January 24, pp. 15–26. ACM Press, New York (2009)

15. Danielsson, N.A., Norell, U.: Structurally recursive descent parsing (2008),
http://www.cs.nott.ac.uk/~nad/publications/danielsson-norell-parser-

parser-combinators.html

16. Danielsson, N.A.: Total parser combinators (2009), http://www.cs.nott.ac.uk/
~nad/publications/danielsson-parser-combinators.html

17. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A.
(eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)

http://www.cs.nott.ac.uk/~nad/publications/danielsson-norell-parser-combinators.html
http://www.cs.nott.ac.uk/~nad/publications/danielsson-norell-parser-combinators.html
http://www.cs.nott.ac.uk/~nad/publications/danielsson-parser-combinators.html
http://www.cs.nott.ac.uk/~nad/publications/danielsson-parser-combinators.html

Abstraction of Object Graphs
in Program Verification

Yifeng Chen1,� and J.W. Sanders2,��

1 HCST Key Lab at School of EECS, Peking University, China
2 UNU-IIST, Macao

Abstract. A set-theoretic formalism, AOG, is introduced to support
automated verification of pointer programs. AOG targets pointer rea-
soning for source programs before compilation (before removal of field
names). Pointer structures are represented as object graphs instead of
heaps. Each property in AOG is a relation between object graphs and
name assignments of program variables, and specifications result from
composing properties. AOG extends Separation Logic’s compositions of
address-disjoint separating conjunction to more restrictive compositions
with different disjointness conditions; the extension is shown to be strict
when fixpoints are present. A composition that is a ‘unique decomposi-
tion’ decomposes any given graph uniquely into two parts. An example
is the separation between the non-garbage and garbage parts of memory.
Although AOG is in general undecidable, it is used to define the seman-
tics of specialised decidable logics that support automated program ver-
ification of specific topologies of pointer structure. One logic studied in
this paper describes pointer variables located on multiple parallel linked
lists. That logic contains quantifiers and fixpoints but is nonetheless de-
cidable. It is applied to the example of in-place list reversal for automated
verification, and in outline to the Schorr-Waite marking algorithm. The
technique of unique decomposition is found to be particularly useful in
establishing laws for such logics.

1 Introduction

In the standard approach of Formal Methods, in order to achieve accountable
programs the programmer is expected to specify and verify code. Even aided by
automation, for example in the context of the verifying compiler [14], that is a
challenging task requiring expertise not normally attributed to programmers. In
this paper an approach is considered in which the programmer is expected to
know enough about the properties of the program to be able to issue (meta-level)
guidance to a smart type checker that consequently uses library routines to check
properties of the program. Here we concentrate on the case of programs that act
on mutable data structures, and we support the programmer by considering the
� Partially supported by China HGJ Significant Project 2009ZX01036-001-002-4.

�� Acknowledges support from the Macao Science and Technology Development Fund,
under the PEARL project, grant number 041/2007/A3.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 80–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Abstraction of Object Graphs in Program Verification 81

design of useful shape-related properties for which there is a decision procedure
that can be incorporated in a smart type checker to perform static analysis.

Suppose the programmer is occupied with a program involving pointers —
say that it is to perform in-place list reversal. Some of the most common errors
in pointer programs are related to incorrectly ordered pointer assignments; yet
common type systems do not detect such errors. However, if the programmer can
identify the overall topology of the pointer structures (of which the programmer
is normally aware), the compiler will be able to perform in-depth verification
to identify or confirm the absence of such errors (an approach known as ‘shape
analysis’). Let us suppose that the programmer is fully aware that all pointers
are located at some arbitrary positions on parallel lists, which should be free
of loops and aliasing. That knowledge is not exploited by the standard C or
Java type systems; but it could be. The programmer seeks confirmation (that
pointer variables are indeed constrained in parallel lists and free of loops and
aliasing) and also that no objects are lost as a result of pointer assignments. If
those properties are formalised as annotated invariants, the standard two-line
program for in-place list reversal becomes

inv ParallelLists in
y := null ; z := null ;
inv NoMemoryLeak in
while (x 	= null) do (z := x.a ; x.a := y ; y := x ; x := z).

In real applications, pointer structures have diverse topologies such as linked
lists, rings, trees and even general graphs. With some assistance from the pro-
gram to identify the overall topology, a compiler can perform quite precise analy-
sis. Naturally the applications programmer is not expected to write the routines
invoked by the compiler. That is the task of the systems programmer who in
turn is not expected to establish decision procedures for properties of interest.
That is our task.

A shape in ‘shape analysis’ is usually a syntactic construct that abstractly
represents certain pointer-structural feature. The pointer logics mentioned in
this paper are logical shape systems that contain propositional logic (with con-
junction, disjunction and negation). Each logical formula represents a shape and
can be the declared type of a pointer variable, a programmer-annotated assertion
or a state invariant. A well-designed pointer logic should be general enough to
suit a range of pointer algorithms; and in order to support efficient automated
verification, such a logic must be decidable and have a fast decision algorithm.
Finally the syntax and semantics of the logic must be succinct and intuitive so
that the programmer can understand, in principle, what errors the verifier can
detect and what it may miss.

Those criteria obviously conflict. For example, a commonly adopted approach
is to start from a general undecidable pointer logic (e.g. Separation Logic (SL)
[19,24]) and then search for fragments that are expressive but still decidable.
That approach addresses the first two criteria but often yields decidable sub-
logics with convoluted semantics and sophisticated syntactical restrictions on

82 Y. Chen and J.W. Sanders

propositional connectives. It is hard for users of the verifier to comprehend what
shapes, assertions and invairants can be written and verified in the logic and
what kind of false alarms might occur.

As an alternative approach, we start from a set-theoretic framework that al-
lows various spatial compositions and fixpoints. Most of these operators are not
expressible in SL (which is already undecidable). Thus no attempt is made to
study the large logic including these operators. Instead we develop an algebraic
theory that lifts the semantic level of abstraction. Our suggestion is not the
design of one single pointer logic, but the definition of a collection of more spe-
cialised logics, each (with succinct semantics and syntax) handling a class of
pointer applications. The algebraic theory then becomes the common founda-
tion. The programmer chooses the right logic and the corresponding verification
algorithm using logical shapes, assertions and invariants in the program. The
figure below illustrates the proposed research agenda for verification based on
AOG. In this paper we concentrate on the design of specialised pointer logics.

Theory of Sets of Object Graphs

Algebra of Spatial Compositions

Specific Logics of Lists, Rings,
Trees, Graphs and so on

Shapes, Assertions And Invariants

Library of Verification Methods

In AOG (for Abstract Object Graphs), pointer structures are represented, like
several formalisms studied by the denotational and algebraic-semantic com-
munity [11,13,15,17,20,25,26,28], as object graphs (with the presence of pre-
compilation field names). Unlike those formalisms that directly manipulate in-
dividual graphs, AOG handles sets of object graphs. That facilitates abstract
description of lists, rings, trees and general graphs.

A graph is seen as a finite set of edges, with each edge a tuple of a source
name, a label name and a target name. An object graph is a graph whose nodes
represent objects and whose labelled directed edges represent fields. The label
of an edge in every object is unique, reflecting the fact that the object stored at
each field is unique.

true falsex y

(a) (b)x y

true false

0 01

1

Abstraction of Object Graphs in Program Verification 83

Graph-based representation reflects the states taken by higher-level OO lan-
guages such as Java before compilation. Heap representation in SL, on the other
hand, reflects the pointer structures after compilation. An object is stored in a
heap using pointer arithmetic: the first field is stored at an address x and other
fields are stored following at x+1 , x+ 2 , · · · . The figures above compare the
heap, (a), and object graph, (b), of two mutually referenced objects x and y.
Heap representation naturally includes pointer arithmetic, although many decid-
able SL fragments are free of pointer arithmetic [2,3] (i.e. by assuming that each
object has exactly two values and only the starting address is accessible). Arith-
metic relations between numeric labels can always be added to object graphs.
Thus the distinction between the two styles of representation is not essential.

AOG contains ‘properties’ and ‘constructs’. Each property describes a set of
object graphs (under certain node-name assignment to variables). Constructs
combine properties to form more sophisticated properties (including the fix-
point operator to express transitively-closed compositions) using various spatial
compositions whose definitions were motivated by spatial conjunction of SL and
the unifying theories approach to parallel composition [5]. A composition cor-
responds to a relation between graphs. A composition of two graph properties
collects all graphs merged from sub-graphs (from the properties) that are related
by the designated relation. The set union of two object graphs is not necessarily
an object graph, so certain consistency checks are required before a merge. In
a graph-based representation, address disjointness corresponds to the condition
that requires the object graphs not to contain edges sharing the same source and
label. However many useful compositions satisfy that condition other than sep-
arating conjunction. In the presence of fixpoints (supplied for SL by Sims [27]),
the presence of multiple different compositions becomes strictly more expressive
than the presence of just separating conjunction (see Section 2). ‘User-defined
compositions’ [6] (other than separating conjunction) extend separation logic in
a way like a ‘dynamic separation logic’. This is similar to generalising normal
modal logic to dynamic modal logic.

We provide two examples to illustrate application of AOG: in-place list reversal
(as above) is considered in detail; and the Schorr-Waite marking algorithm is
sketched in sufficient detail to indicate our approach. Both are standards and so
facilitate comparison of our approach with that of others.

Currently the most popular logical tool for reasoning about pointers is sepa-
ration logic and its more recent extensions. At the level of explicit memory loca-
tions, spatial conjunction provides an expressive power equivalent to a second-
order logic, as shown by Kuncak and Rinard [16]; indeed there it is shown that
the addition of (unrestricted) spatial conjunction to a decidable logic can lead
to an undecidable logic. So automating support for the programmer to reason
about pointers using SL must be done carefully. One success, due to Calcagno,
Yang and O’Hearn [3], is the decidability of a quantifier-free language, con-
taining separating conjunction and its adjoint, for expressing shape of pointer
structures (without properties of data). Another is a custom-crafted logic, due
to Rakamarić, Bingham and Hu [23], with a decision procedure for verification of

84 Y. Chen and J.W. Sanders

heap-manipulation programs (for further work, see the literature review in [23]);
the kinds of property decided include reachability (a node reachable from the
root initially is also reachable from the root on termination — referred to above
as NoMemoryLeak), cyclicity, acyclicity and double-linkedness of a list. We con-
clude that there is scope for the design of logics that at once express properties
of interest concerning shape, yet are decidable.

Graph compositions have been discussed extensively in various graph logics;
see for example the work of Courcelle [7]. By comparison, the present paper fo-
cuses on user-created compositions. Results related to ours include the decidable
fragments of SL studied by Calcagno, Gardner and Hague [2], Calcagno, Yang
and O’Hearn [3], and Distefano, O’Hearn and Yang [9] in which quantifiers are
not allowed. Berdine, Calcagno and O’Hearn [1] have studied a restrictive decid-
able fragment with linked lists but without disjunction or quantifiers. Monadic
Second-Order Logics (see Dawar, Gardiner and Ghelli’s work [8]) use the simple
merge operator without consistency checking and allow quantifiers over graphs
but do not permit creation of new compositions. Work that is similarly second-
order, and also for graph types, is PALE (the pointer assertion logic engine), due
to Møller and Schwartzbach [18]. Chang and Rival [4] introduced inductive types
for shape analysis. Unfolding (e.g. a list) of a structure may occur at different
positions (near head or tail) and need different rules to handle different points
of breakage in the structure. By comparison, AOG does not rely on a specialised
inductive formation for lists.

2 Abstraction of Object Graphs

Let N = {a, b, c, a1, · · ·} be a countably infinite set of names. An edge is a
triple (a, b, c) of names where a is called the source, b the label, and c the
target. An object graph, each denoted as G, H, G1, · · · , is a set of edges such that
for all (a, b, c) and (a, b, d) in the set, we have c = d . A graph property (denoted
P, Q, P1, · · ·) is a set of object graphs. Let $ denote the property containing all
object graphs, and ⊥ =̂ { } denote the empty set. The set of all graph proper-
ties is denoted Ω . The operator P =̂ $\P corresponds to set complement. Set
union and intersection are ∪ and ∩ respectively. Let a

b'→ c =̂ {{(a, b, c)}} de-
note the edge property, and the empty-graph property be deonted ∅ =̂ {{ }} .

A graph relation (denoted r, r1, · · ·) is a relation between object graphs. Let
P ×Q denote the Cartesian-product relation. The full relation is $×$. We
also use () , ∪ and ∩ to denote relational complement, union and intersec-
tion. An important graph relation ∗ describes the source-label disjointness and
corresponds to the spatial conjunction of SL:

∗(G, H) =̂ ¬∃xyz1z2 · (x, y, z1)∈G ∧ (x, y, z2)∈H.

A composition P r Q is a graph property constructed from the merged graphs
of P and Q via the relation r :

P r Q =̂ {G ∪H | G∈P, H ∈Q, r(G, H)}.

Abstraction of Object Graphs in Program Verification 85

Composition distributes set union in either argument. In this paper, as we focus
on object graphs instead of more general graphs; only graph relations smaller
than ∗ are considered. Such compositions of graph properties are also graph
properties. For example, the property (a1

b1'→ c1) ∗ (a2
b2'→ c2) allows only a graph

containing exactly those two edges. However, the property (a b'→ c) ∗ (a b'→ d) is
equal to ⊥ , since the two sides have edges sharing the same source and label.

For arbitrary edge extension, we use straight arrows: a
b→ c =̂ (a b'→ c) ∗ $.

The property (a1
b1→ c1)∩ (a2

b2→ c2) includes only the graphs containing the edges.
The property for edges from source a to target b via an arbitrary label is
defined as a universal union: (a •'→ b) =̂

⋃
c (a c'→ b). Similarly, the property for

cyclic edges is defined: cyc =̂
⋃

c(c
•'→ c) , and acyc =̂ (• •'→ •)∩ cyc denotes an

acyclic edge (i.e. an arbitrary edge that is not a cyclic edge). Bullet • represents
union of properties with arbitrary distinct node names. For example, (• •'→ •)
denotes

⋃
a,b,c(a

b'→ c) .
In practice, we often reason about deadends (i.e. targets without outgoing

edges) and deadheads (i.e. sources without incoming edges). For example, to
extend a list, we may add an edge to the end (or symmetrically to the head) of
the list so that the deadend of the list meets the source of the edge. The property
h(a) =̂ ∅∪ (a •→•) states that either the node a is a headnode (i.e. the source
of some edge), or the graph is empty; while e(a) =̂ ∅ ∪ (• •→ a) describes an
endnode. A node node(a) =̂ h(a) ∪ e(a) within the graph is either a headnode
or an endnode. A node a is a deadhead if it is a headnode but not an endnode:
dh(a) =̂ h(a)∩ e(a) ; while de(a) =̂ e(a)∩h(a) describes a as a deadend. The
absence of labels other than a can be defined:

label (a) =̂
⋃

c 	=a (• c→•).

For example, the property for acyclic edges with label a is acyc(a) =̂ acyc ∩
label(a) .

The sequential relation � relates two graphs if a deadend of the graph that
is the left-hand argument is also a deadhead of the graph that is the right-hand
argument, and none of the headnodes of the left is an endnode of the right:

� =̂ ∗ ∩
⋃

x (de(x)× dh(x)) ∩
⋃

x (h(x)× e(x)).

Note that we will use this composition only for properties describing unique
deadheads and deadends. The last part of the definition is necessary for general
graph properties that describe loops. Sequential composition is associative. For
example, a list with three labelled edges is defined:

acyc3(a) =̂ acyc(a) � acyc(a) � acyc(a).

Because separating conjunction ∗ does not insist on the RHS not reaching into
the LHS, in SL that property would require ‘enough inequalities’ [1] between
variables in conjunction to prevent edges from forming a loop:

acyc3(a) =
⋃

x1x2x3x4:
∧3

i=1 xi 	= x4
(x1

a'→x2) ∗ (x2
a'→x3) ∗ (x3

a'→x4).

86 Y. Chen and J.W. Sanders

Without the inequalities, the list could form a loop via x4. The definition us-
ing ‘ � ’ is arguably more abstract and simpler than the corresponding expression
using spatial conjunction. The universal union at the outmost layer reflects that
spatial conjunction is not abstract enough for list concatenation.

This issue becomes more significant when fixpoints are present. Let us first
define a general property on linked lists comprising recursively � -concatenated
acyclic edges: ll =̂ (∅ (�)∗ acyc), which can be comprehended as a (countably)
universal union:

ll =
⋃

k acyck = ∅ ∪ acyc ∪ (acyc � acyc) ∪ · · · .

The definition is so general that it contains no specific names or variables. An
obvious law is idempotence: ll = (ll � ll) . On the other hand, their spatial
conjunction (ll ∗ ll) describes two potentially intertwined linked lists and does
not satisfy a similar idempotence law. A list segment from some (deadhead)
node a to some (deadend) node c through b-labels can be defined as:

ls(a, b, c) =̂ ∅ ∩ ll ∩ dh(a) ∩ label(b) ∩ de(c) (where a 	= c),

where ls(a, b, a) =̂ ∅ . For example, any list in Java through attributes next is
a list segment: ls(•, next, null) . Two sequentially composed list segments with
identical labels still form a longer list segment:

ls(a, b, c) � ls(c, b, d) ⊂ ls(a, b, d),

where the proper subset indicates that the left-hand segments must go via an
intermediate node c , but the right-hand segments may not. On the other hand,
their spatial conjunction ls(a, b, c) ∗ ls(c, b, d) allows loops, as d may be identical
to some intermediate node of the left-hand segment from a to c . The mechanism
to use a graph relation to determine a composition is strictly more expressive
than SL’s spatial conjunction when fixpoints are present. This parameterised
generalisation is analogous to the generalisation from normal modal logic to
dynamic modal logic.

This shows that different applications require different compositions: an ap-
propriate composition must be chosen in each specific context (also consider that
any doubly-linked list can be decomposed to two singly-linked lists with targets
and sources meeting in a reverse order). Although spatial conjunction is not the
appropriate concatenation for list segments, it is just right for forming multiple
parallel lists in Java. For example, the following property describes two paral-
lel lists following the attributes ‘next’ and only meeting at the deadend ‘null’:
ls(a, next, null) ∗ ls(b, next, null) . The general property for multiple parallel list
segments through attributes next are defined: plists =̂ ∅ (∗)∗ ls(•, next, •) .

3 Manual Reasoning about General Pointer Programs

In this section, we consider object-graph assertions on program variables V. A
value assignment ε :V →N is a mapping from variables to names. An assertion

Abstraction of Object Graphs in Program Verification 87

p : (V →N)→℘(Ω) is a mapping from value assignments to graph properties. A
graph property (e.g. plists) can be lifted to (and simply regarded as) a constant
assertion that maps every value assignment to the property. Names of a graph
property can be substituted with variables to form an assertion. For example,

(x a'→ y).ε = (xε
a'→ yε)

where we use xε to denote the name of the variable x under the value assign-
ment ε . The propositional operators on assertions are defined from set theory:
conjunction is intersection:

(p ∧ q).ε =̂ p.ε ∩ q.ε

and negation is complement: (¬p).ε =̂ p.ε. Existential quantification is defined
as arbitrary variable substitution:

(∃x ·p).ε =̂
⋃

a p.(ε † {x '→ a}),

where f † g performs over-riding of relation f by g. Spatial conjunction is point-
wise lifting:

(p ∗ q).ε =̂ (p.ε ∗ q.ε).

Pointer swing is defined as spatial conjunction after removal of object x’s a-
attribute:

(p[x.a := y]).ε =̂ {G \ {(xε, a, c) | c∈N } | G∈ p.ε} ∗ (x a'→ y).

Boolean expressions in pointer programs also correspond to assertions. Note that
only pointer variables are considered. Boolean expressions on arithmetic vari-
ables do not correspond to any specific pointer assertion; nevertheless we can still
capture the upper-limit assertion �e� and lower-limit assertion)e* of an expres-
sion containing both pointer and arithmetic subexpressions. For pointer equal-
ity, we have �x= y�=)x= y*=$ if xε = yε ; otherwise �x= y�=)x= y*=⊥ .
Other equalities related to pointer dereference also have identical upper and
lower limits:

�x.a = y� =)x.a = y* = (x a→ y)

and
�x.a = y.b� =)x.a = y.b* =

⋃
c (x a→ c ∩ y

b→ c).

Non-pointer Boolean expressions are not evaluated and hence become either $
as the upper limit or ⊥ as the lower limit. Boolean or and not are defined by ho-
momorphism: �e1 or e2� =̂ �e1�∨�e2� ,)e1 or e2* =̂)e1*∨)e2* , �not e� =̂ ¬)e* ,
and)not e* =̂ ¬�e�. For example, the Boolean expression �x.a = y and w > 5�
with both pointer variables x and y and an arithmetic variable w is equal to
(x a→ y) , but �not (x.a = y and w > 5)� = $.

Each pointer program P can be represented as an assertion transformer sp.P
(or operator on assertions) that maps a precondition p to the strongest postcon-
dition sp.P.p that the program can successfully guarantee; as usual functional
composition brackets by default to the left. Let us consider six basic commands:

skip, x.a := y, endvar x, assume e, S � T and S � T .

88 Y. Chen and J.W. Sanders

Command skip does not change the variables. The command x.a := y assigns
y to the attribute a of an object x and is defined as a spatial conjunction with
the new attribute after removing the existing attribute. Note that if the object
x does not have attribute a , then x.a := null creates a new attribute; and if x
is not an existing object, a new object is created. The command endvar x ren-
ders a variable x arbitrary and existentially quantified. The command assume e
miraculously forces the Boolean expression to be true and conjoins it with the
precondition. This command is useful for defining several advanced commands.
Sequential composition corresponds to the composition of transformers. Nonde-
terministic choice corresponds to disjunction of postconditions.

Definition 1. sp.skip.p =̂ p
sp.(x.a := y).p =̂ p[x.a := y]
sp.(endvar x).p =̂ ∃x ·p
sp.(assume e).p =̂ p ∧ �e�
sp.(S ; T).p =̂ sp.T .(sp.S.p)
sp.(S � T).p =̂ sp.S.p ∨ sp.T .p

More advanced commands are derivable from the basic commands. Direct as-
signment x := y between distinct variables forces x to become y after first
rendering x arbitrary. Assignment x := y.b requires an unused variable z to
record the value of y.b , so does assignment x.a := y.b . Conditional statement
becomes a nondeterministic choice between coerced conditional branches. Loops
can be verified using various techniques of symbolic execution and abstract in-
terpretation, though they are not listed as commands here.

Definition 2. x := y =̂ endvar x ; assume x= y
x := y.b =̂ assume z = y.b ; x := z ; endvar z
x.a := y.b =̂ assume z = y.b ; x.a := y ; endvar z
if e then S else T =̂ (assume e ; S) � (assume not e ; T)

Unfortunately the general assertion logic, including the strongest-postcondition
operators, is undecidable [1]. This suggests that we use it for only manual rea-
soning and study its specialised sublogics for automated verification. If every
assertion in the logic is automatically reducible to a finite normal form then the
compiler, when verifying the preservation of the structure, can automatically
generate assertions of the normal form.

4 Automated Verification

Many pointer algorithms, such as in-place list reversal, maintain an overall topo-
logical structure consisting of several linked lists meeting only at the deadend
null. To check this safety property, a compiler must eliminate all pointer aliases
and pointer loops. A logic for assertions of such programs must represent the
mutable pointer structures as well as properties such as reachability (requiring
fixpoints).

Abstraction of Object Graphs in Program Verification 89

4.1 Assertions for Parallel Lists

The specialised logic of assertions on parallel lists consists of the following prim-
itive assertions and operators:

true(X), x
I→ y, x

I→ null, ∼p, p∨ q, p ∗ q, ∃x ·p and p[x.next := y].

The primitive assertion true denotes logical truth and requires variables in X
to be located on some parallel lists:

true(X) =̂
∧

x∈X node(x) ∧ plists .

The primitive (x I→ y) describes the distance from variable x to variable y on
the parallel lists, and (x I→ null) describes the distance to the end of the list
where the integer interval I is [n, m] , [n,∞) or [n,∞] . List segments are the
basic building blocks of their definitions:

x
n'→ y =̂ lsn(x, next, y)

x
[0,∞)'→ y =̂ ls(x, next, y) (or simply x

∗'→ y)

x
n+

'→ y =̂ (x n'→ •) � (• ∗'→ y).

Then the above primitives describe the inclusion of such list segments in the
parallel lists:

(x I→ y) =̂ (x I'→ y ∗ $) ∧ plists

(x I→ null) =̂ (x I'→ null ∗ $) ∧ plists .

Equality is represented as x
0→ y (or x

0→ null). We write x
n→ y for x

[n,n]→ y and

x
∞→ y for x

[∞,∞]→ y . For example, the property x
[1,2]→ y states that the variables

x and y are on the same list and either x.next = y or x.next.next= y .
Negation must enforce the restriction on parallel lists: ∼p =̂ ¬p ∧ plists .

Non-reachability x
∞→ y is defined as ∼(x ∗→ y) . Conjunction, disjunction, spatial

conjunction and quantification are the same as those of the general assertion
logic.

4.2 Normal Form

Although the assertions are recursively formed, they are reducible to a seman-
tically equal finite normal form with signature X . The idea is to describe each
possible overall structure as some parallel lists in which equal pointer variables
are grouped, and the distances between adjacent variable groups on the same
list are intervals contained by [1,∞) . Writing iterated ∗ as prefix product:

∨
i

∏
j

(
Xij1

Iij1→ Xij2
Iij2→ · · · Iijk−1→ Xijk

Iijk→ Xi
0→ null

)
(1)

90 Y. Chen and J.W. Sanders

where each Xijt is a non-empty group of equal variables and Iijt ⊆ [1,∞) .
Multiple lists are conjoined spatially with ∗, sharing the group Xi of variables
that are equal to null. In each disjunct, pairs of different groups are disjoint, and
X =

⋃
j

⋃
t Xijt ∪ Xi . The convention X

I→Y denotes a list segment between
variable groups X and Y :

{x1, · · · , xn } I→{y1, · · · , ym} =̂ x1
0→ · · · 0→xn

I→ y1
0→ · · · 0→ ym.

Concatenation X
I→Y

J→Z denotes conjunction X
I→Y ∧ Y

J→Z , and we also
use X

I→{ } 0→ null as convention for X
I→ null . The underlying structural re-

striction plists prevents the formation of any loop, and hence the normal form (1)
is equal to an alternative normal form without spatial conjunction:∨

i

∧
j

(
Xij1

Iij1→ · · ·Xijk
Iijk→ Xi

0→ null
)
∧

∧
j1 	=j2

(
Xij11

∞↔Xij21

)
(2)

where the first (non-deadend) groups of variables are mutually unreachable.
During later discussions, we will use whichever normal form is convenient.

Assertion true({x}) has a normal form ({x} 1+

→ null ∨ {x} 0→null) with two
disjuncts. Thenormal form of assertion true({x, y}) ,however,has sevendisjuncts:

true({x, y}) = {x} 1+

→{y} 1+

→ null

∨ {y} 1+

→{x} 1+

→ null

∨ {x} 1+

→ null ∗ {y} 1+

→ null

∨ {x} 1+

→{y} 0→ null

∨ {y} 1+

→{x} 0→ null

∨ {x, y} 1+

→null
∨ {x, y} 0→null .

Note that the normal form is not unique: for example, each range [1,∞) can
be further decomposed into {1}∪ [2,∞) . However, the above normal form is
minimum as the relation between every pair of variables must be clarified in
every disjunct.

The normal form of true(X ∪{x}) can be constructed inductively from that
of true(X) (namely x 	∈X). Each disjunct consists of some spatially conjoined
lists. The new variable x is added to each disjunct. There are three possibilities:
it may be added to one of the variable groups (being equal to some existing
variables), it may form a new singleton group between two adjacent groups or
before the first group, or it may lead a separate new list. There are 2n +1
different cases in total where n is the number of existing groups. The same
technique can be used to add a new variable to any assertion in normal form
where the law

(X n→Y ∧ X
∗→Z

∗→Y) =
∨

l+m=n X
l→Z

m→Y

is useful in determining the intervals.

Abstraction of Object Graphs in Program Verification 91

The following laws reduce primitive assertions to normal form.

Law 1
(1) x

0→ y = {x, y} 1+

→ null ∨ {x, y} 0→ null

(2) x
I→ y = {x} I→{y} 1+

→ null ∨ {x} I→{y} 0→null (I ⊆ [1,∞))

(3) x
∞→ y = {x} 1+

→ null ∗{y} 1+

→ null ∨ {y} 1+

→{x} 1+

→ null ∨ {y} 1+

→{x} 0→ null.

Conjunction between two normal-form assertions with the same signature are
merged using the law:

X
I1→Y ∧ X

I1→Y = X
I1∩I2→ Y.

To conjoin assertions with different signatures, we add variables to either as-
sertion until they have the same merged signature. Negation, conjunction and
disjunction satisfy standard propositional laws. Negations over primitive asser-
tions are eliminated:

Law 2. (1) ∼(X
[m,n]→ Y) = (X

[0,m−1]→ Y) ∨ (X
[n+1,∞]→ Y)

(2) ∼(X
[m,n]→ null) = (X

[0,m−1]→ null) ∨ (X
(n +1)+→ null).

The above laws are already complete for transforming any assertion without spa-
tial conjunction and quantification to the normal form. Spatial conjunction be-
tween two lists can be reduced to a conjunction with additional non-reachability
restrictions:

Law 3. (X1
I1→ · · · In→Xn+1) ∗ (Y1

I1→ · · · Im→Ym+1) =
(X1

I1→ · · · In→Xn+1) ∧ (Y1
I1→ · · · Im→Ym+1) ∧

∧
i

∧
j Xi

∞↔Yj .

Existential quantifiers are eliminated with the following laws, where I1 + I2
denotes {n1 + n2 | n1 ∈ I1, n2 ∈ I2 } :
Law 4. (1) ∃x · (p ∧ ∃x · q) = ∃x ·p ∧ ∃x · q

(2) ∃x · (X I→Y) = X
I→Y (x 	∈ X ∪Y)

(3) ∃x · ({x} I→X) = true(X)

(4) ∃x · (X I→{x} J→Z) = X
I+J→ Z

(5) ∃x · (X I→Y
J→Z) = X

I→Y \ {x} J→Z (x∈Y 	= {x})
(6) ∃x · (X I→Y

0→ null) = X
I→Y \ {x} 0→ null (x∈ Y) .

Note that detaching the only variable leading a list will leave a segment not
referenced by any variables. Attribute assignment may break a list into spatially
conjoined two segments, which are further reducible to normal form. Attribute
assignment to a null pointer will lead to compilation error ⊥ .

Law 5
(1) sp.(x.next := y).((X1

I1→ · · ·Xi
Ii→Xi+1

Ii+1→ · · ·Xk
Ik→X

0→ null) ∗ p)

= (X1
I1→ · · ·Xi

1→{y}) ∗ (Xi+1
Ii+1→ · · ·Xk

Ik→X
0→ null) ∗ p (x∈Xi)

(2) sp.(x.next := y).(X 0→ null ∧ p) = ⊥ (x∈X).

92 Y. Chen and J.W. Sanders

Theorem 1 (Normal-Form Completeness). Every assertion is semantically
equal to an assertion in normal form, and there is a finite decision procedure to
determine the validity of the normal form.

Proof. Let X =̂ {x, . . . , xn } be the set of variables. For the property true ,
we need to enumerate all possible layouts of these variables on parallel lists. This
can be achieved by enumerating all partitions of X and, for each part in each
partition, identifying all possible (total) orderings among variables, assigning 0
or n+ to the distances between adjacent variables, creating multiple chains, and
finally using disjunction and separating conjunction appropriately to construct
a normal form. The number of disjuncts is estimated in the order of O(2n)
(by Rademacher series). Law 2 guarantees that any sublogical property without
quantifiers has a negation-free non-constructive normal form:∨

i

∧
j uij

Iij→ vij . (3)

This transformation takes O(2m) steps where m is the maximum of the numbers
of negations and disjunctions. Each disjunct∧

j uij
Iij→ vij (4)

is logically conjoined with true ’s normal form. Only those disjuncts of true that

are consistent with all conjuncts uij
Iij'→ vij are collected to form the normal form

of (4). The normal form of (3) is the disjunction of the normal forms obtained
above. This phase is estimated to have O(2n+m) steps.

If there is one outermost existential quantifier ∃x ·P , then Law 4 can be
used to eliminate the quantifier over the normal form of P . Thus the overall
reduction takes about O(2n+m) steps where m is the maximum of the numbers
of negations, disjunctions and existential quantifiers. Pointer swing p[x.a := y]
requires Law 5.

An assertion p is valid iff its negation contains no disjuncts and is ⊥ . This
can be achieved by reducing ∼p to the normal form in O(2n+m) steps. �

4.3 Automated Program Verification of Assertions

We now apply static symbolic execution over assertions as abstract states. If
the current abstract state is p , then after the execution of a program S , the
generated assertion is sp.S.p .

Along with symbolic execution, various safety conditions should be checked.
For example, accessing x.next requires that the attribute of the object exists.
Other undesirable cases include null pointer dereference, nontermination, aliases
and loops. So there are different strategies about what should be checked. A con-
servative strategy —to prevent all possible dynamic errors— is likely to generate
false alarms; while a liberal strategy —to report error only if the code always
fails— is likely to miss program bugs.

Abstraction of Object Graphs in Program Verification 93

Generalising the underlying assertion logic may improve the precision of ver-
ification but it also increases the complexity. Non-pointer assignments for arith-
metics are regarded as skip. More-precise analysis that takes arithmetic variables
into account is possible but requires extension of the logic (e.g. [4]). Here we pro-
pose a moderately conservative strategy that detects pointer-related errors. Let
pre.S denote the condition under which an assignment S can proceed safely
without generating errors or destroying the overall structure of parallel lists:

pre.(x := y) =̂ $
pre.(x := y.next) =̂ y

1+

→ null

pre.(x.next := y.next) =̂ (x 0→ y ∨ y
1→ null) ∧ x

1+

→ null

pre.(x.next := y) =̂ x
1+

→ null ∧ y
∞→x ∧

∧
z (z 0→ y ∨ z

∞→ y ∨ y
0→ null ∨ z

∗→x) .

Before computing the strongest postcondition of any assignment from a precon-
dition, the verifier must check that the precondition implies the safety condition.
As the assertion logic is decidable, such checking can be automated.

The assignment x.a := y requires that x 	= null , y is not path-reachable to x
(forming a loop), and a non-null pointer y should be either at the start of another
list or reachable from x . The evaluation of expressions may also generate errors.
Let pre.e denote the condition for an expression e to be safely evaluated:

pre.e =̂
∧

x∈V (e) x
1+

→ null where V (e) is the set of free variables x such that
x.a appears in e.

Program loop (while b do S) is handled by static iteration in abstract states
and checks the safety conditions in every step. Here we are using a widening oper-
ator p↑ over assertions. The space of abstract states is infinite. Widening forces
the static iteration to reach a fixpoint in finitely-many steps. In the normal form,
the widening operator lifts every singleton range [n, n] to [n,∞) (or written as

n and n+ respectively). For example, (y 2→x
0→ null) ↑= (y 2+

→x
0→ null) .

The verification of a program corresponds to symbolic execution over abstract
states, each as a logical formula. When there is loop, the symbolic execution may
go through the loop body several times. Since the sizes of the minimum normal
forms are unbounded, the widening operator is employed to force termination.
We will use // to separate the abstract states of different iterations:

{p0 (check p0⇒ pre.b)}
// { p1 (=̂ p′0 ↑ ∧∼p0, check p1⇒ pre.b and p1 	⇒ ∼�b�) }
· · · · · ·
// { pm+1 (=̂ p′m ↑ ∧∼pm ∧ · · · ∧ ∼p0,

check pm+1⇒ pre.b and pm+1⇒ ∼�b�) }

while b do {p0 ∧ �b�} // {p1 ∧ �b�} // · · · // {pm ∧ �b�}
S {p′0} // {p′1} // · · · // {p′m}

{(p0 ∨ · · · ∨ pm) ∧ �not b�)}

94 Y. Chen and J.W. Sanders

where p′i =̂ sp.S.(pi ∧ �b�) . The initial abstract state p0 must allow b to be
evaluated successfully. The abstract state p1 at the beginning of the second iter-
ation is the widened result of the first iteration negating p0 . Previous checking
does not need to be repeated. If p1 is inconsistent with �b� (i.e. p′1⇒ ∼�b�))
then all possible initial states have been covered by p0 , and no further static
iteration is needed. If p1 ∧�b� is not invalid, the iteration continues until the
abstract state pm+1 is inconsistent with �b�, and the final abstract state is the
collection of all pi conjoined with �not b� . The following theorem guarantees
termination of the verification.

Theorem 2. The parallel-list verification terminates in finitely-many steps.

Proof. The number k of variables appearing in a program is finite. That means
the monotonic widening reaches a fixpoint in no more than k steps. �

4.4 List Reversal

The method is used to verify that the list reversal program has no errors like
dereferencing a null pointer, forming pointer loops or aliases.

{ true }
y := null ; z := null ;{
{y, z} 0→ null

}//{
{y} 1+

→{x, z} 0→ null ∨ {y} 1+

→ null ∗ {x, z} 1+

→ null
}

while (x 	= null) do
{
{x} 1+

→{y, z} 0→ null
}//{

{y} 1+

→ null ∗ {x, z} ∗→ null
}

z := x.next ;
{
{x} 1→{z} ∗→{y} 0→ null

}//{
{y} 1+

→null ∗ {x} 1→{z} 0→ null ∨ {y} 1+

→ null ∗ {x} 1→{z} 1+

→ null
}

x.next := y ;
{
{x} 1→{y, z} 0→ null ∨ {x} 1→{y} 0→ null ∗ {z} 1+

→null
}//{

{x} 1→{y} 1+

→{z} 0→ null ∨ {x} 1→{y} 1+

→ null ∗ {z} 1+

→ null
}

y := x ;
{
{x, y} 1→{z} 0→ null ∨ {x, y} 1→ null ∗ {z} 1+

→ null
}//{

{x, y} 2+

→{z} 0→ null ∨ {x, y} 2+

→ null ∗ {z} 1+

→ null
}

x := z ;
{
{y} 1→{x, z} 0→null ∨ {y} 1→null ∗ {x, z} 1+

→ null
}//{

{y} 2+

→{x, z} 0→ null ∨ {y} 2+

→null ∗ {x, z} 1+

→ null
}

{
{x, z} 0→ null

}
As observed in the introduction, simple shape analysis can avoid common pointer
errors involving incorrect ordering of pointer assignments. For example, if the
last two assignments in the loop body are wrongly swapped, the compiler will
pick up this error in the second static iteration when the program may form a
pointer loop from y to itself.

Abstraction of Object Graphs in Program Verification 95

y := null ; z := null ;
{
{y, z} 0→ null

}//{
{x, y, z} 1+

→ null
}

while (x 	= null) do
{
{x} 1+

→{y, z} 0→ null
}//{

{x, y, z} 1+

→ null
}

z := x.next ;
{
{x} 1→{z} ∗→{y} 0→ null

}//{
{x, y} 1→{z} ∗→null

}
x.next := y ;

{
{x} 1→{y, z} 0→ null ∨ {x} 1→{y} 0→ null ∗ {z} 1+

→null
}

// error: forming loop

x := z ;
{
{x, z} ∗→{y} 0→null

}
y := x ;

{
{x, y, z} ∗→null

}
Another feature that we can verify using assertions concerns memory leakage.
The assignment to a variable x must maintain the pointer structure and check
that the object initially referenced by x is still reachable from other variables.
Even if a pointer swing x.next := y maintains the structure of parallel lists, it
may still lose objects unless the object x.next is null or previously referenced
by another pointer variable (a condition represented as

∨
y ∈ V x

1→ y) where V
is the set of all variables:

pre′.(x := y) =̂ y
0→x ∨

∨
z∈V \{x} z

∗→x

pre′.(x := y.next) =̂ pre.(x := y.next) ∧
∨

z∈V \{x} z
∗→x

pre′.(x.next := y.next) =̂ pre.(x.next := y.next) ∧
∨

z x
1→ z

pre′.(x.next := v) =̂ pre.(x.next := v) ∧
∨

z x
1→ z .

For in-place list reversal, if the first two assignments in the loop body are wrongly
swapped, then the assignment x.next := y will shortcut the linked list from x
and set the object x.next to be null immediately. If x.next is initially a non-
null object, then the shortcut assignment will lose the reference to that object.
This error is detectable in the first static iteration:

y := null ; z := null ;
{
{y, z} 0→ null

}
while (x 	= null) do

{
{x} 1+

→{y, z} 0→ null
}

x.next := y ; error: memory leakage
z := x.next ;
y := x ;
x := z .

4.5 Schorr-Waite Graph Marking

We now indicate how AOG may be used to discuss safety verification for a
different algorithm, the Schorr-Waite algorithm, chosen to exemplify different
topological constraints. Abstraction of general object graphs can be achieved
with different levels of precision. Here, we consider the abstraction that describes
the rough distances between objects (e.g. x, y, · · ·) and their immediate fields
(e.g. x.l, y.r, · · ·).

96 Y. Chen and J.W. Sanders

There are three possibilities: x
0→ y for pointer equality, x

+→ y for unequal
reachability and x

∞→ y for non-reachability in assertions. For example, in this
particular analysis, equality between x.l.r and y is represented as x.l

+→ y ,
which means that the latter is not equal to but reachable from the former. It
turns out that such abstraction is already precise enough to verify the basic safety
properties of Gries’s Schorr-Waite code [10], such as the absence of memory
leakage.

Assume that at the beginning of the algorithm, the l-field of z is x, and y = z.
In the first iteration, the predicate-abstract state reaches X1 after the pointer
assignment and the conditional test for the counter x.m to be 3 or 0. Note
that the logic does not handle arithmetic variables. The conditional essentially
becomes a nondeterministic choice under such analysis. The other conditional
branch reaches the abstract state X ′

1 instead. The disjunctively accumulated
predicate-abstract states reach a fixpoint in four rounds (separated by double
backslashes). Interestingly, although the two branches of the conditional are very
different, the result assertions are entirely symmetric (with positions of x and y
swapped):

{z.l =x ∧ y = z (X0)}
{X1 ∨ X ′

1} // {X2 ∨ X ′
2} // {X3 ∨ X ′

3 ∨ X4 ∨ X ′
4} // {X5 ∨ X ′

5}
while (x 	= z) and (x 	= null) do
{y = z 	= z.l =x 	= null}

//{
z.l = y 	= y.r = z 	=x 	= null ∨ z.l =x 	=x.r = z

}
x.m := x.m + 1 ;
if (x.m = 3 or x.m =0)
then x, x.l, x.r, y := x.l, x.r, y, x {z.l = y 	= y.r = z (X1)}//{

z 	= y.r = z.l
+→ z 	= y ∨ z.l = y 	= y.l = z (X2)

}
//{

y.r
+→ z.l

+→ z 	= z.l ∧ y 	= z ∨ z 	= y.l = z.l
+→ z 	= y (X3)

∨ x= z 	= z.l = y 	= null (X4)

}
//{

X3 ∨ X1 ∨ y.l
+→ z.l

+→ z 	= z.l ∧ y 	= z (X5)
}

else x.l, x.r, y := x.r, y, x.l {z.l = x 	= x.r = z (X ′
1)}//{

z 	= x.r = z.l
+→ z 	= x ∨ z.l =x 	= x.l = z (X ′

2)
}

//{
x.r

+→ z.l
+→ z 	= z.l ∧ x 	= z ∨ z 	= x.l = z.l

+→ z 	= x (X ′
3)

∨ x= z 	= z.l =x 	= null (X ′
4)

}
//{

X ′
3 ∨ X ′

1 ∨ x.l
+→ z.l

+→ z 	= z.l ∧ x 	= z (X ′
5)

}{
(x= z ∨ x=null) ∧ (X0 ∨

∨5
i=1 Xi ∨X ′

i)
}

.

The compiler does not verify the functional correctness of the code. It checks
the safety property that at least the algorithm does not lose useful content. This
still can significantly enhance the program’s trustability.

Abstraction of Object Graphs in Program Verification 97

5 Conclusions

Logic-based program verification often faces a dilemma. If we rely on a general
and expressive logic (e.g. to combine pointer and arithmetic reasoning in one
logic) we may be able to improve the overall precision of the analysis. But un-
fortunately such a logic is likely to be undecidable and suitable for only manual
reasoning. To automate such reasoning, we may study the general logic’s logical
fragments in the hope of discovering an expressive but still-decidable sublogic.
However, such effort often results in ill-shaped logics whose restrictions and lim-
itations are hard for users to comprehend. The software engineers using such a
verification tool are unlikely to be able to understand what the tool really does
and when there will be false alarms and missed errors.

This paper has proposed a different style of solution to program verification.
Instead of making the effort to discover decidable fragments of undecidable gen-
eral logics, we propose to introduce a library of well-shaped specialised logics,
each handling the verification of a certain aspect of programs and having a fast
decision procedure with comprehensible power and limitations. Users are then
able to choose the required verification tool(s) according to their understanding
of the functionality of the underlying logic(s).

Shape analysis [9,4] has undergone a similar development, in which certain
formal structures are introduced and manipulated using inference rules. Such
systems often encounter restrictions related to the construction of the structures.
For example, if the underlying structure of linked lists is recursively defined by
breaking the first element [4], then the shape abstraction can be unfolded from
only that point; unfolding from some other point requires a ‘specific’, manually-
proved, lemma.

Since a ‘best’ verification does not exist, we have chosen to support multi-
ple methods with different tradeoffs. The minimum requirement is that software
engineers understand not only their programs but also the verification methods
they choose to apply. One advantage of designing smaller logics is that they can
incorporate negation and proposition calculus. Negation together with disjunc-
tion/conjunction provides a more complete conceptual framework for its under-
standing. Negation is also often used in the more abstract, specification-related,
stages of development.

A decidable logical system is applicable to not only program verification but
also consistency checking of specifications and refinement between specification
and program. All such logics share the same semantic foundation in set theory
and there is no limit to the operators that can be introduced. Compositions
like spatial conjunction and sequential composition are useful for raising the
abstraction level of manual reasoning. The laws of specialised logics may also rely
on the properties of these high-level operators. The design of the logics should
ensure that there exists a finite normal form and a fast decision procedure that
reduces any assertion to the normal form.

Automated verification of legacy pointer codes is restricted by the lack of in-
formation about the pointer variables’ roles in a program. In a standard C/Java
program, the type of a pointer variable determines only its object type and does

98 Y. Chen and J.W. Sanders

not indicate whether it points to a tree or some position in a loop; but that
information can be extremely useful for a compiler in conducting the most ap-
propriate static analysis. On the other hand, manual reasoning can establish the
entire correctness of a program with respect to some formal assertion, but the
general formalism used is often undecidable. We have adopted an alternative
tradeoff by requiring the source programmer to provide a small amount of in-
formation about how the variables are used in the program, by identifying the
overall topology of the pointer structures. With such information, the compiler
can then perform in-depth analysis.

Assertions in our examples are generated, but they can be inserted by pro-
grammers too. An interesting future direction is the study of interactions between
various verification methods based on AOG as well as their interaction with other
logical methods of arithmetics. One obvious advantage of running two analysis
methods at the same time is to improve the precision of static evaluation of
Boolean expressions in conditional statements.

Acknowledgements

It is a pleasure to acknowledge the comprehensive and careful comments of the
four referees. Also, the authors are grateful to encouragement and advice from
Professor C. Calcagno.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

2. Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 395–409. Springer,
Heidelberg (2005)

3. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: APLAS, pp. 289–300 (2001)

4. Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In: POPL ’08,
pp. 247–260. ACM, New York (2008)

5. Chen, Y., Sanders, J.W.: Logic of global synchrony. ACM TOPLAS 26(2), 221–262
(2004)

6. Chen, Y., Sanders, J.W.: Compositional reasoning for pointer structures. In:
Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 115–139. Springer, Heidelberg
(2006)

7. Courcelle, B.: Graph decompositions definable in monadic second-order logic. In:
7th International Colloquium on Graph Theory. Electronic Notes in Discrete Math-
ematics, vol. 22(15), pp. 13–19 (2005)

8. Dawar, A., Gardiner, P., Ghelli, G.: Expressiveness and complexity of graph logic.
Information and Computation 205, 263–310 (2006)

9. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

Abstraction of Object Graphs in Program Verification 99

10. Gries, D.: The Schorr-Waite graph marking algorithm. Acta Inf. 11, 223–232 (1979)
11. Harwood, W., Cavalcanti, A., Woodcock, J.: A theory of pointers for the UTP.

In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008)

12. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall,
Englewood Cliffs (1998)

13. Hoare, C.A.R., He, J.: A trace model for pointers and objects. In: Guerraoui, R.
(ed.) ECOOP 1999. LNCS, vol. 1628, pp. 1–17. Springer, Heidelberg (1999)

14. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
Journal of the ACM 50(1), 63–69 (2003)

15. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based operational semantics of OO
programs (May 2009)

16. Kuncak, V., Rinard, M.C.: On spatial conjunction as second-order logic. MIT
CSAIL Technical Report 970 (October 2004)

17. Liu, X., Liu, Z., Zhao, L.: Object-oriented structure renement A graph transfor-
mational approach. UNU-IIST Technical Report 340 (July 2006)

18. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: PLDI’01,
pp. 221–231 (2001)

19. O’Hearn, P.W., Reynolds, J., Yang, H.: Separation and information hiding. In:
POPL’04, vol. 2142, pp. 268–280. ACM, New York (2004)

20. Paige, R.F., Ostroff, J.S.: Erc: an object-oriented renement calculus for Eiffel. For-
mal Aspects of Computing 16(1), 51–79 (2004)

21. Parkinson, M.J.: Local Reasoning for Java. PhD thesis, University of Cambridge,
Computer Laboratory (November 2005)

22. Preoteasa, V.: Frame rule for mutually recursive procedures manipulating pointers.
Theoretical Computer Science 410(42) (2009)

23. Rakamarić, Z., Bingham, J., Hu, A.J.: An inference-rule-based decision proce-
dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 106–121. Springer, Heidelberg (2007)

24. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS’02, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

25. Schieder, B.: Pointer theory and weakest preconditions without addresses and heap.
In: Kozen, D., Shankland, C. (eds.) MPC 2004. LNCS, vol. 3125, pp. 357–380.
Springer, Heidelberg (2004)

26. Silva, L., Sampaio, A., Liu, Z.: Laws of object-orientation with reference semantics.
In: SEFM, pp. 217–226 (2008)

27. Sims, E.J.: Extending Separation Logic with fixpoints and postponed substitution.
Theoretical Computer Science 351(2), 258–275 (2006)

28. Smith, M.A., Gibbons, J.: Unifying theories of locations. In: Butterfield, A. (ed.)
Unifying Theories of Programming, Dublin (September 2008)

Subtyping, Declaratively
An Exercise in Mixed Induction and Coinduction

Nils Anders Danielsson and Thorsten Altenkirch

University of Nottingham

Abstract. It is natural to present subtyping for recursive types coin-
ductively. However, Gapeyev, Levin and Pierce have noted that there is
a problem with coinductive definitions of non-trivial transitive inference
systems: they cannot be “declarative”—as opposed to “algorithmic” or
syntax-directed—because coinductive inference systems with an explicit
rule of transitivity are trivial.

We propose a solution to this problem. By using mixed induction and
coinduction we define an inference system for subtyping which combines
the advantages of coinduction with the convenience of an explicit rule of
transitivity. The definition uses coinduction for the structural rules, and
induction for the rule of transitivity. We also discuss under what condi-
tions this technique can be used when defining other inference systems.

The developments presented in the paper have been mechanised using
Agda, a dependently typed programming language and proof assistant.

1 Introduction

Coinduction and corecursion are useful techniques for defining and reasoning
about things which are potentially infinite, including streams and other (po-
tentially) infinite data types (Coquand 1994; Giménez 1996; Turner 2004), pro-
cess congruences (Milner 1990), congruences for functional programs (Gordon
1999), closures (Milner and Tofte 1991), semantics for divergence of pro-
grams (Cousot and Cousot 1992; Hughes and Moran 1995; Leroy and Grall
2009; Nakata and Uustalu 2009), and subtyping relations for recursive types
(Brandt and Henglein 1998; Gapeyev et al. 2002).

However, the use of coinduction can lead to values which are “too infinite”. For
instance, a non-trivial binary relation defined as a coinductive inference system
cannot include the rule of transitivity, because a coinductive reading of transi-
tivity would imply that every element is related to every other (to see this, build
an infinite derivation consisting solely of uses of transitivity). As pointed out
by Gapeyev et al. (2002) this is unfortunate, because without transitivity, con-
ceptually unrelated rules may have to be merged or otherwise modified in order
to ensure that transitivity can be proved as a derived property. Gapeyev et al.
give the example of subtyping for records, where a dedicated rule of transitivity
ensures that one can give separate rules for depth subtyping (which states that
a record field type can be replaced by a subtype), width subtyping (which states
that new fields can be added to a record), and permutation of record fields.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 100–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Subtyping, Declaratively 101

We propose a solution to this problem. The problem stems from a coinductive
reading of transitivity, and it can be solved by reading the rule of transitiv-
ity inductively, and only using coinduction where it is necessary. We illustrate
this idea by using mixed induction and coinduction to define a subtyping rela-
tion for recursive types; such relations have been studied repeatedly in the past
(Amadio and Cardelli 1993; Kozen et al. 1995; Brandt and Henglein 1998, and
others). The rule which defines when a function type is a subtype of another is
defined coinductively, following Brandt and Henglein (1998) and Gapeyev et al.
(2002), while the rule of transitivity is defined inductively.

The technique of mixing induction and coinduction has been known for a long
time (Park 1980; Barwise 1989; Raffalli 1994; Giménez 1996; Hensel and Jacobs
1997; Müller et al. 1999; Barthe et al. 2004; Levy 2006; Bradfield and Stirling
2007; Abel 2007; Hancock et al. 2009), but we feel that it deserves to be more
well-known in the programming language community. We also believe that the
approach to coinduction used in the paper, due to Coquand (1994), deserves more
attention: following the Curry-Howard correspondence the coinductive definition
and proof principles both take the form of guarded corecursion for (potentially
indexed) lazy data types.

The main developments in the paper have been formalised using the de-
pendently typed, total1 functional programming language Agda (Norell 2007;
Agda Team 2010), which provides good support for mixed induction and coin-
duction in the style mentioned above. The source code is at the time of writing
available to download (Danielsson 2010a).

The rest of the paper is structured as follows: Section 2 gives an introduction
to induction and coinduction in the context of Agda. Section 3 defines a small
language of recursive types, and Section 4 defines a subtyping relation for this
language by viewing the types as potentially infinite trees. Section 5 defines an
equivalent, declarative subtyping relation using mixed induction and coinduc-
tion, and Section 6 compares this definition to another equivalent definition,
given by Brandt and Henglein (1998). Finally Section 7 discusses a potential
pitfall associated with the technique we propose, and Section 8 concludes.

2 Induction and Coinduction

This section gives a brief introduction to induction and coinduction, with an
emphasis on how these concepts are realised in Agda. For more formal accounts
of induction and coinduction see, for instance, the theses of Hagino (1987) and
Mendler (1988).

2.1 Induction

Let us start with a simple inductive definition. In Agda the type of finite lists
can be defined as follows:
1 Agda is an experimental system. The meta-theory has not been formalised, and the

type checker has not been proved bug-free, so take phrases such as “total” with a
grain of salt.

102 N.A. Danielsson and T. Altenkirch

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

This states that List A is a type (or Set) with two constructors, [] of type List A
and :: of type A→ List A→ List A. The constructor :: is an infix operator;
the underscores mark the argument positions. The type List A is isomorphic to
the least fixpoint μX . 1 + A × X in the category of types and total functions.2

Agda has a termination checker which ensures that all code is terminating (or
productive, see below). It is assisted by other checkers which ensure that data
types are strictly positive, and not too large. The termination checker allows
lists to be destructed using structural recursion:

map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x :: xs) = f x :: map f xs

The use of braces in {A B : Set} → . . . means that the two type arguments
A and B are implicit ; they do not need to be given explicitly if Agda can infer
them. Note that in this context A B is not an application, it is a sequence of
variables.

2.2 Coinduction

If we want to have infinite lists, or streams, we can use the following coinductive
definition instead (note that constructors, such as :: , can be overloaded in
Agda):

data Stream (A : Set) : Set where
:: : A → ∞ (Stream A) → Stream A

The type Stream A is isomorphic to the greatest fixpoint νX . A × X . The
type function ∞ : Set → Set marks its argument as being coinductive. It
is analogous to the suspension type constructors which are sometimes used to
implement non-strictness in strict languages (Wadler et al. 1998), and comes
with a force function and a delay constructor:

� : {A : Set} → ∞ A → A
� : {A : Set} → A → ∞ A

The constructor � is a tightly binding prefix operator. Ordinary function appli-
cation binds tighter, though.

Values of coinductive types can be constructed using guarded corecursion
(Coquand 1994):
2 At the time of writing this is not exactly true in Agda (Danielsson and Altenkirch

2009), but the difference between List A and the fixpoint is irrelevant for the pur-
poses of this paper. Similar considerations apply to greatest fixpoints.

Subtyping, Declaratively 103

mapS : {A B : Set} → (A → B) → Stream A → Stream B
mapS f (x :: xs) = f x :: � mapS f (� xs)

The definition of mapS is accepted by Agda’s termination checker because the
corecursive call is guarded by � , without any non-constructor function between
the left-hand side and the corecursive call. This syntactic notion of guarded-
ness ensures that corecursive definitions are productive: even if the value being
constructed is infinite, the next constructor can always be computed in a finite
number of steps.

It may also be instructive to see (attempted) definitions which are not ac-
cepted:

bad : Stream N

bad = zero :: � tail bad
nats : Stream N

nats = zero :: � mapS suc nats

Both definitions are rejected because they are not guarded, but only the first
one is non-productive; nats uniquely specifies the stream of natural numbers, but
is rejected by the termination checker because it does not satisfy the syntactic
criterion imposed by Agda.

2.3 Coinductive Relations

Let us now consider a coinductively defined relation: stream equality, also known
as bisimilarity. Two streams are equal if they have identical heads and their tails
are equal (coinductively):

� xs ≈ � ys
x :: xs ≈ x :: ys

(coinductive)

This inference system can be represented using an indexed data type:

data ≈ {A : Set} : Stream A → Stream A → Set where
:: : (x : A) {xs ys : ∞ (Stream A)} → ∞ (� xs ≈ � ys) →

x :: xs ≈ x :: ys

Some remarks on this definition may be useful:

– The elements of the type xs ≈ ys are proofs witnessing the equality of xs
and ys . Agda does not make a distinction between proofs and programs, and
the termination checker ensures productivity of both kinds of definition.

– Dependent function spaces ((x : A)→ B where x can occur in B) are used
to set up dependencies of types on values.

– The first occurrence of the type constructor ∞ just reflects the fact that
the second argument to the stream constructor :: is delayed. The second
occurrence is necessary to be able to construct infinite equality proofs; if we
had omitted it the relation would have been empty.

104 N.A. Danielsson and T. Altenkirch

– We overload the constructor :: so that it stands both for the “cons” func-
tion for streams, and for the proof that cons preserves equality. The con-
structors can be disambiguated based on type information.

Elements of coinductively defined relations can be constructed using corecur-
sion. As an example, let us prove the map-iterate property (Gibbons and Hutton
2005):

mapS f (iterate f x) ≈ iterate f (f x).

The function iterate repeatedly applies a function to a seed element and collects
the results in a stream:

iterate f x = x :: � (f x :: � (f (f x) :: . . .)).

The function is defined corecursively:

iterate : {A : Set} → (A → A) → A → Stream A
iterate f x = x :: � iterate f (f x)

The map-iterate property can be proved using guarded corecursion (the term
guarded coinduction could also be used):

map-iterate : {A : Set} (f : A → A) (x : A) →
mapS f (iterate f x) ≈ iterate f (f x)

map-iterate f x = f x :: � map-iterate f (f x)

To see how this proof works, consider how it can be built up step by step (as in
an interactive Agda session):

map-iterate f x = ?

The type of the goal ? is mapS f (iterate f x) ≈ iterate f (f x). Agda types
should always be read up to normalisation, so this is equivalent to3

f x :: � mapS f (� (� iterate f (f x))) ≈ f x :: � iterate f (f (f x)).

(Note that normalisation does not involve reduction under � , and that � (� x)
reduces to x .) This type matches the result type of the equality constructor :: ,
so we can refine the goal:

map-iterate f x = f x :: ?

The new goal type is

∞
(
mapS f (iterate f (f x)) ≈ iterate f (f (f x))

)
,

so the proof can be finished by an application of the coinductive hypothesis
under the guarding constructor � :

map-iterate f x = f x :: � map-iterate f (f x)

3 This is a simplification of the current behaviour of Agda.

Subtyping, Declaratively 105

2.4 Mixed Induction and Coinduction

The types above are either inductive or coinductive. Let us now discuss a type
which uses both induction and coinduction. Hancock et al. (2009) define a lan-
guage of stream processors, representing functions of type Stream A→Stream B ,
using a nested fixpoint: νY.μX. B × Y + (A→ X). We can represent this fix-
point in Agda as follows:

data SP (A B : Set) : Set where
put : B → ∞ (SP A B) → SP A B
get : (A → SP A B) → SP A B

The stream processor put b sp outputs b, and continues processing according
to sp. The processor get f reads one element a from the input stream, and
continues processing according to f a. In the case of put the recursive argument
is coinductive, so it is fine to output an infinite number of elements, whereas in
the case of get the recursive argument is inductive, which means that one can
only read a finite number of elements before writing the next one. This ensures
that the output stream can be generated productively.

We can implement a simple stream processor which copies the input to the
output as follows:

copy : {A : Set} → SP A A
copy = get (λ a → put a (� copy))

This definition is guarded. Note that copy contains an infinite number of get
constructors. This is fine, even though get’s argument is inductive, because there
is never a stretch of infinitely many get constructors without an intervening
delay constructor (�). On the other hand, the following definition of a sink is
not guarded, and is not accepted by Agda:

sink : {A B : Set} → SP A B
sink = get (λ → sink)

As another example we can compute the semantics of a stream processor:

� � : {A B : Set} → SP A B → Stream A → Stream B
� put b sp � as = b :: � (� � sp � as)
� get f � (a :: as) = � f a � (� as)

(� � is a mixfix operator.) This definition uses a lexicographic combination of
guarded corecursion and higher-order structural recursion (see Section 2.5). In
the first clause the corecursive call is guarded. In the second clause it “preserves
guardedness” (it takes place under zero coinductive constructors rather than
one), and the first argument is structurally smaller.

Note that � � could not have been implemented if SP A B had been defined
purely coinductively (because then sink could be implemented with B equal to
the empty type). By using both induction and coinduction in the definition we
rule out certain stream processors which would otherwise have been accepted,
and in return we can implement functions like � �.

106 N.A. Danielsson and T. Altenkirch

2.5 A Criterion for Totality

Let us now make things more precise by giving a more detailed explanation
of Agda’s criterion for accepting a function as being total. The results in the
paper do not depend on the exact criterion used by Agda, so we only give a
conservative approximation of what is currently implemented. The description
below is based on the termination checker foetus (Abel and Altenkirch 2002),
extended with support for guarded coinduction based on an idea due to Andreas
Abel (personal communication).

First we collect some information about the program. For every left-hand side
f p1 . . . pm and function call g e1 . . . en in the corresponding right-hand side
the following information is recorded:

Argument structure. For every pair (pi, ej) it is noted if the argument ej

is structurally strictly smaller (denoted by <) or equal to (=) the pattern
pi. If neither case applies, then we use the notation ?. Note that x is not
structurally smaller than � x , and that f x is strictly smaller than c f , for
an inductive constructor c.

Guardedness. It is also noted whether the call is guarded by constructors, at
least one of which is coinductive (<); or whether guardedness is preserved,
i.e. if the call is guarded by inductive constructors (=).

The next step is to combine the information about individual calls into infor-
mation about all the call paths from one function to itself. We use the notation
(g | a1 . . . an) to describe the information computed for a call path; here g is
the guardedness information, and ai describes how the i-th argument is changed.
In the case of the function � � from Section 2.4 we get that there are three kinds
of call paths:

1. (< | = = ? =), which corresponds to the first recursive call;
2. (= | = = < ?), which corresponds to the second recursive call; and
3. (< | = = ? ?) for call paths which involve both recursive calls.

Finally we can give the criterion for totality: a function is accepted as total if
there is some lexicographic combination of the components for which every call
path is strictly decreasing. In the case of � � it suffices to combine the guarded-
ness with the information about the third argument (the stream processor).

As noted by Danielsson and Altenkirch (2009, Section 7.1) the criterion above
works best if all fixpoints have the form νY.μX. F X Y (for suitable values of
F); we have not yet found a good way to incorporate fixpoints of the form
μX.νY. F X Y . However, this issue does not affect the examples in this paper.

2.6 Relations Using Mixed Induction and Coinduction

As a final example we define a relation using mixed induction and coinduction.
Capretta (2005) defines the partiality monad, which can be used to represent
potentially non-terminating computations, as follows:

Subtyping, Declaratively 107

data ν (A : Set) : Set where
return : A → A ν

step : ∞ (A ν) → A ν

The constructor return returns a result, and step postpones a computation. Non-
termination is represented as an infinitely postponed computation:

⊥ : {A : Set} → A ν

⊥ = step (� ⊥)

A natural definition of equality for partial computations is weak bisimilarity
(viewing step as a silent transition):4

data ∼= : A ν → A ν → Set where
return : return v ∼= return v
step : ∞ (� x ∼= � y) → step x ∼= step y
stepr : x ∼= � y → x ∼= step y
stepl : � x ∼= y → step x ∼= y

This is basically the congruence generated by return and step, but allowing for
finite differences in delay. Note that the requirement of finite differences in delay
is captured by the use of induction for stepr and stepl, while the use of coinduction
for step is necessary to be able to prove that the relation is reflexive.

3 Recursive Types

Brandt and Henglein (1998) define the following language of recursive types:

σ, τ ::= ⊥ | $ | X | σ � τ | μX. σ � τ

Here ⊥ and $ are the least and greatest types, respectively, X is a variable,
σ � τ is a function type, and μX. σ � τ is a fixpoint, with bound variable X .
(The body of the fixpoint is required to be a function type, so types like μX.X
are ruled out.) The intention is that a fixpoint μX.σ � τ should be equivalent
to its unfolding (σ � τ)[X := μX. σ � τ]. It would be unproblematic to extend
the language with other type constructors, such as products and sums.

The language above can be represented in Agda as follows:

data Ty (n : N) : Set where
⊥ : Ty n
$: Ty n
var : Fin n → Ty n
� : Ty n → Ty n → Ty n

μ � : Ty (1 + n) → Ty (1 + n) → Ty n

4 In order to reduce clutter the declarations of implicit arguments have been omitted
in the remainder of the paper.

108 N.A. Danielsson and T. Altenkirch

Here variables are represented using de Bruijn indices: Ty n represents types
with at most n free variables, and Fin n is a type representing the first n
natural numbers. Substitution can also be defined; σ [τ] is the capture-avoiding
substitution of τ for variable 0 in σ:

[] : Ty (1 + n) → Ty n → Ty n

The following function unfolds a fixpoint one step:

unfold〈μ � 〉 : Ty (1 + n) → Ty (1 + n) → Ty n
unfold〈μ σ � τ 〉 = (σ � τ) [μ σ � τ]

(Note that μ � , [] and unfold〈μ � 〉 are all mixfix operators which take
two arguments.)

4 Subtyping via Trees

A natural definition of subtyping goes via subtyping for potentially infinite trees
(Gapeyev et al. 2002):

data Tree (n : N) : Set where
⊥ : Tree n
$: Tree n
var : Fin n → Tree n
� : ∞ (Tree n) → ∞ (Tree n) → Tree n

The subtyping relation for trees can be given coinductively as follows:

data �Tree : Tree n → Tree n → Set where
⊥ : ⊥ �Tree τ
$: σ �Tree $
var : var x �Tree var x
� : ∞ (� τ1 �Tree

� σ1) → ∞ (� σ2 �Tree
� τ2) →

σ1 � σ2 �Tree τ1 � τ2

Note the contravariant treatment of the codomain of the function space. Note
also that the constructors of Tree are overloaded—repeatedly—in order to reduce
clutter.

The semantics of a recursive type can be given in terms of its unfolding as a
potentially infinite tree:

� � : Ty n → Tree n
� ⊥ � = ⊥
� $ � = $
� var x � = var x
� σ � τ � = � � σ � � � � τ �
� μ σ � τ � = � � σ [χ] � � � � τ [χ] �

where χ = μ σ � τ

Subtyping, Declaratively 109

�

�

�

� �

�

� �

�

�

� �

�

� �

�

�

�

� �

⊥

�

Fig. 1. The first levels of the infinite trees corresponding to the types μX. X � X and
μX. (X � ⊥) � �

The subtyping relation for types can then be defined by combining �Tree and
� �:

�Type : Ty n → Ty n → Set
σ �Type τ = � σ � �Tree � τ �

As a simple example, consider the following two types, σ = μX. X � X
and τ = μX. (X � ⊥) � $:

σ : Ty 0
σ = μ var zero � var zero

τ : Ty 0
τ = μ (var zero � ⊥) � $

The first few levels of the infinite trees corresponding to these types can be seen
in Fig. 1. It is straightforward to show that σ is a subtype of τ using a corecursive
proof:

σ�τ : σ �Type τ

σ�τ = � (� σ�τ � � ⊥) � � $

(Note that σ�τ is an identifier and not a compound expression; almost any
character string which does not contain whitespace can be used as an identifier.)

Amadio and Cardelli (1993) also define subtyping for recursive types by going
via potentially infinite trees, but they define a subtyping relation inductively on
finite trees, and state that an infinite tree σ is a subtype of another tree τ
when every finite approximation (of a certain kind) of σ is a subtype of the
corresponding approximation of τ . It is easy to show that this definition, as
adapted by Brandt and Henglein (1998), is equivalent to the one given above.
One direction of the proof uses induction on the depth of approximation, and
the other constructs elements of σ �Type τ corecursively; see the code which
accompanies the paper (Danielsson 2010a).

5 Subtyping Using Mixed Induction and Coinduction

Subtyping can also be defined directly, without going via trees. The following
definition is inspired by one given by Brandt and Henglein (1998), see Section 6:

110 N.A. Danielsson and T. Altenkirch

data � : Ty n → Ty n → Set where
⊥ : ⊥ � τ
$: σ � $
� : ∞ (τ1 � σ1) → ∞ (σ2 � τ2) → σ1 � σ2 � τ1 � τ2

unfold : μ τ1 � τ2 � unfold〈μ τ1 � τ2 〉
fold : unfold〈μ τ1 � τ2 〉 � μ τ1 � τ2

refl : τ � τ
trans : τ1 � τ2 → τ2 � τ3 → τ1 � τ3

Note that the structural rules (⊥, $, �) are defined coinductively, while the
other rules, most importantly trans, are defined inductively. Note also that the
inclusion of refl and trans is essential; if either constructor is removed we get a
different relation.

Now, if we can prove that the relation � is equivalent to �Type (and thus
also equivalent to Amadio and Cardelli’s relation), then we have showed what we
set out to show: that coinduction and the rule of transitivity can be combined. We
can prove completeness by a simple application of guarded corecursion (omitted
here):

complete : σ �Type τ → σ � τ

The soundness proof is a little more tricky. The following lemmas are easy to
prove:

unfoldType : μ τ1 � τ2 �Type unfold〈μ τ1 � τ2 〉
foldType : unfold〈μ τ1 � τ2 〉 �Type μ τ1 � τ2

reflType : τ �Type τ

transType : τ1 �Type τ2 → τ2 �Type τ3 → τ1 �Type τ3

Using these lemmas one might think that the following should be accepted as a
soundness proof:

sound : σ � τ → σ �Type τ
sound ⊥ = ⊥
sound $ = $
sound (τ1�σ1 � σ2�τ2) = � sound (� τ1�σ1) � � sound (� σ2�τ2)
sound unfold = unfoldType

sound fold = foldType

sound refl = reflType

sound (trans τ1�τ2 τ2�τ3) = transType (sound τ1�τ2) (sound τ2�τ3)

However, consider the case for trans. The arguments to the recursive calls are
structurally smaller than the inputs, but transType is not a constructor, so guard-
edness is not preserved. The proof is productive (given a suitable definition of
transType), but Agda’s termination checker cannot see this.

In the absence of improved termination checking for Agda we provide a
workaround, using a technique described by Danielsson (2010b). If transType

Subtyping, Declaratively 111

had been a constructor then the definition of sound would have been accepted,
and this observation can be used to rescue the proof. First we define a variant
of �Tree which includes an extra inductive constructor, trans:

data �TreeP : Tree n → Tree n → Set where
⊥ : ⊥ �TreeP τ
$: σ �TreeP $
var : var x �TreeP var x
� : ∞ (� τ1 �TreeP

� σ1) → ∞ (� σ2 �TreeP
� τ2) →

σ1 � σ2 �TreeP τ1 � τ2
trans : τ1 �TreeP τ2 → τ2 �TreeP τ3 → τ1 �TreeP τ3

The letter P stands for “program”; this type defines a small language of equality
proof programs. It is easy to turn proofs into proof programs corecursively:

� � : σ �Tree τ → σ �TreeP τ

We can now write a guarded proof program which “proves” soundness:

soundP : σ � τ → � σ � �TreeP � τ �
soundP ⊥ = ⊥
soundP $ = $
soundP (τ1�σ1 � σ2�τ2) = � soundP (� τ1�σ1) � � soundP (� σ2�τ2)
soundP unfold = � unfoldType �
soundP fold = � foldType �
soundP refl = � reflType �
soundP (trans τ1�τ2 τ2�τ3) = trans (soundP τ1�τ2) (soundP τ2�τ3)

If we can also find a way to turn proof programs into proofs, productively, then
we are done. We start by defining a type of weak head normal forms (WHNFs)
for the proof programs:

data �TreeW : Tree n → Tree n → Set where
⊥ : ⊥ �TreeW τ
$: σ �TreeW $
var : var x �TreeW var x
� : � τ1 �TreeP

� σ1 → � σ2 �TreeP
� τ2 →

σ1 � σ2 �TreeW τ1 � τ2

Note that the arguments to � are programs, not WHNFs. One can prove by
simple case analysis that �TreeW is transitive:

transTreeW : τ1 �TreeW τ2 → τ2 �TreeW τ3 → τ1 �TreeW τ3

From this result it follows by structural recursion that programs can be turned
into WHNFs:

112 N.A. Danielsson and T. Altenkirch

whnf : σ �TreeP τ → σ �TreeW τ
whnf ⊥ = ⊥
whnf $ = $
whnf var = var

whnf (τ1�σ1 � σ2�τ2) = � τ1�σ1 � � σ2�τ2
whnf (trans τ1�τ2 τ2�τ3) = transTreeW (whnf τ1�τ2) (whnf τ2�τ3)

The following mutually recursive functions then turn proof programs into “ac-
tual” proofs by using the whnf function repeatedly:

� �W : σ �TreeW τ → σ �Tree τ
� ⊥ �W = ⊥
� $ �W = $
� var �W = var

� τ1�σ1 � σ2�τ2 �W = � � τ1�σ1 �P � � � σ2�τ2 �P
� �P : σ �TreeP τ → σ �Tree τ
� σ�τ �P = � whnf σ�τ �W

Note that these functions are guarded and hence productive. Finally we get the
soundness proof:

sound : σ � τ → σ �Type τ
sound σ�τ = � soundP σ�τ �P

6 Inductive Axiomatisation of Subtyping

Brandt and Henglein (1998) do not define subtyping using mixed induction and
coinduction, as in Section 5, but using an inductive encoding of coinduction.
Their subtyping relation is ternary: A - σ � τ means that σ is a subtype of
τ given the assumptions in A. An assumption (a hypothesis) is simply a pair of
types:

data Hyp (n : N) : Set where
� : Ty n → Ty n → Hyp n

The subtyping relation is defined as follows:

data - � (A : List (Hyp n)) : Ty n → Ty n → Set where
⊥ : A - ⊥ � τ
$: A - σ � $
� : let H = σ1 � σ2 � τ1 � τ2 in

H :: A - τ1 � σ1 → H :: A - σ2 � τ2 →
A - σ1 � σ2 � τ1 � τ2

unfold : A - μ τ1 � τ2 � unfold〈μ τ1 � τ2 〉
fold : A - unfold〈μ τ1 � τ2 〉 � μ τ1 � τ2

Subtyping, Declaratively 113

refl : A - τ � τ
trans : A - τ1 � τ2 → A - τ2 � τ3 → A - τ1 � τ3

hyp : σ � τ ∈ A → A - σ � τ

Here ∈ encodes list membership. Note that coinduction is encoded in the �
rule by inclusion of the consequent in the lists of assumptions of the antecedents.

Brandt and Henglein prove that their relation (with an empty list of assump-
tions) is equivalent to Amadio and Cardelli’s. Their proof is considerably more
complicated than the proof outlined above which shows that � is equivalent
to Amadio and Cardelli’s definition, but as part of the proof they show that
subtyping is decidable. By composing the two equivalence proofs we get that
subtyping as defined in Section 5 is also decidable.

Brandt and Henglein use a classical argument to show that their algorithm
terminates, so it is not entirely obvious that it can be implemented in a total,
constructive type theory like Agda. However, we have adapted the algorithm to
this setting:

�? : (σ τ : Ty n) → Dec ([] - σ � τ)

A value in Dec A is either a value in A, or a proof showing that no such value
exists, so this decision procedure does not merely say “yes” or “no”, it backs
up its verdict with solid evidence. Details of the implementation of �? are
available in the code accompanying the paper (Danielsson 2010a).

We know that - � is equivalent to � , because both relations are equiva-
lent to Amadio and Cardelli’s. However, it can still be instructive to see a direct
proof of soundness of - � with respect to � . The proof below uses a cyclic
(but productive) proof to turn the inductive encoding of coinduction used in
- � into the “actual” coinduction used in � .
To state soundness the type All is used; All P xs means that all elements in

xs satisfy P :

data All (P : A → Set) : List A → Set where
[] : All P []
:: : P x → All P xs → All P (x :: xs)

The soundness proof shows that if A - σ � τ , where all pairs σ′ � τ ′ in A
satisfy σ′ � τ ′, then σ � τ :

Valid : (Ty n → Ty n → Set) → Hyp n → Set
Valid R (σ1 � σ2) = σ1 R σ2

sound : All (Valid �) A → A - σ � τ → σ � τ

The interesting cases of sound are the ones for trans, hyp and � . Transitivity
can be handled recursively, hypotheses can be looked up in the list of valid
assumptions (using lookup : All P xs → x ∈ xs → P x), and function spaces
can be handled by defining a cyclic proof:

114 N.A. Danielsson and T. Altenkirch

sound valid (trans τ1�τ2 τ2�τ3) = trans (sound valid τ1�τ2)
(sound valid τ2�τ3)

sound valid (hyp h) = lookup valid h
sound valid (τ1�σ1 � σ2�τ2) = proof

where proof = � sound (proof :: valid) τ1�σ1 �
� sound (proof :: valid) σ2�τ2

Note that the last two calls to sound extend the list of valid assumptions with
the proof currently being defined.

The definition of proof above is not guarded, but it would be if sound were
a constructor. We use the technique from Section 5 to make the proof guarded.
The program and WHNF types can be defined mutually as follows:

data �P : Ty n → Ty n → Set where
sound : All (Valid �W) A → A - σ � τ → σ �P τ

data �W : Ty n → Ty n → Set where
done : σ � τ → σ �W τ
� : ∞ (τ1 �P σ1) → ∞ (σ2 �P τ2) → σ1 � σ2 �W τ1 � τ2

trans : τ1 �W τ2 → τ2 �W τ3 → τ1 �W τ3

The cases of sound listed above are now part of a function soundW which is used
by whnf to interpret sound:

soundW : All (Valid �W) A → A - σ � τ → σ �W τ
. . .
soundW valid (trans τ1�τ2 τ2�τ3) = trans (soundW valid τ1�τ2)

(soundW valid τ2�τ3)
soundW valid (hyp h) = lookup valid h
soundW valid (τ1�σ1 � σ2�τ2) = proof

where proof = � sound (proof :: valid) τ1�σ1 �
� sound (proof :: valid) σ2�τ2

whnf : σ �P τ → σ �W τ
whnf (sound valid σ�τ) = soundW valid σ�τ

Note that proof is now guarded. For the definitions of � �W, � �P and sound ,
see the accompanying code (Danielsson 2010a).

We have not found a proof of completeness of - � with respect to �
which does not use a decision procedure for subtyping. This is not entirely sur-
prising: such a completeness proof must turn a potentially infinite proof of σ � τ
into a finite proof of [] - σ � τ , so some “trick” is necessary. With a suitably
formulated decision procedure at hand the trick is simple. We have implemented
a decision procedure dec which gives either a proof of [] - σ � τ , or a proof
which shows that σ � τ is impossible. In the first case we are done, and in
the second case a contradiction can be derived. (The decision procedure dec, to-
gether with the proof of soundness of - � , is used to implement the decision
procedure �? mentioned above.)

Subtyping, Declaratively 115

7 Postulating an Admissible Rule May Not Be Sound

Given an inductively defined inference system one can add a new rule correspond-
ing to an admissible property without changing the set of derivable properties. It
is easy to prove this statement by defining functions which translate between the
two inference systems. Translating derivations from the old to the new inference
system is trivial. When translating in the other direction one can replace all oc-
currences of the new rule with instances of the proof of admissibility; this process
can be implemented using recursion over the structure of the input derivation.

However, when coinduction comes into the picture this property no longer
holds (de Vries 2009). The proof given above breaks down because there is no
guarantee that the second translation can be implemented in a productive way.
The problem is that, although the admissible rule has a proof, this proof may
not be sufficiently “contractive” (for instance, the proof may replace coinductive
rules in the input derivation with inductive rules in the output derivation).

The following example illustrates the problem. Recall the definition of the
partiality monad in Section 2.6. One can prove that the equality ∼= is an
equivalence relation, and that it is not trivial (assuming that the result type A
is inhabited). Let us now add transitivity as an inductive rule:

data ∼= : A ν → A ν → Set where
. . .
trans : x ∼= y → y ∼= z → x ∼= z

Given this new constructor we can prove, using guarded coinduction, that the
relation is trivial:

trivial : (x y : A ν) → x ∼= y
trivial x y = trans (stepr (refl x))

(trans (step (� trivial x y))
(stepl (refl y)))

The proof uses the following steps: x ∼= step (� x) ∼= step (� y) ∼= y. (The
function refl is a proof of reflexivity.)

This problem does not affect the definition of subtyping given above, which has
been proved to be equivalent to other definitions from the literature. However, it
means that one should exercise caution when defining relations using mixed in-
duction and coinduction, and avoid relying on results or intuitions which are only
valid in the inductive case. Note that the problem with ∼= is closely related to
the problem of weak bisimulation up to weak bisimilarity (Sangiorgi and Milner
1992); presumably some of the techniques which have been developed to address
the latter problem are also applicable to the former.

There are actually several different ways in which one can close a coinductively
defined binary relation

data ∼ : A → A → Set where
. . .

116 N.A. Danielsson and T. Altenkirch

under transitivity. We list three:

1. One can include transitivity as a coinductive constructor:

data ∼ : A → A → Set where
. . .
trans : ∞ (x ∼ y) → ∞ (y ∼ z) → x ∼ z

This amounts to defining the largest relation which is closed under transi-
tivity, and is not very useful, as pointed out in the introduction.

2. One can define the least relation which includes ∼ and is closed under
transitivity:

data ∼′ : A → A → Set where
include : x ∼ y → x ∼′ y
trans : x ∼′ y → y ∼′ z → x ∼′ z

This “solves” the problem outlined above, because if ∼ is transitive, then
∼ and ∼′ are equivalent. However, in any given proof trans can only be

used a finite number of times, and this can be a rather severe restriction.
For instance, the definition of � in Section 5 would not have been correct
if trans had been defined using this method.

3. Finally one can include transitivity as an inductive constructor, like in the
definition of � :

data ∼ : A → A → Set where
. . .
trans : x ∼ y → y ∼ z → x ∼ z

This definition often gives a more useful notion of transitivity than the one
above, because transitivity can be used anywhere in a proof, infinitely often,
as long as there is never a stretch of infinitely many transitivity constructors
without any intervening coinductive constructor. However, this notion of
transitivity can sometimes be too strong, as illustrated for the partiality
monad equality ∼= above: the “infinitely transitive closure” is sometimes
the trivial relation.

8 Conclusions

We have showed that coinduction can be usefully combined with the rule of
transitivity, and discussed under what conditions the technique is applicable.
We have also defined subtyping for recursive types in a new way, and compared
this definition to a similar axiomatisation given by Brandt and Henglein (1998).
Brandt and Henglein note that their inductive encoding of coinduction seems to
be closely related to guarded coinduction, but leave a precise comparison to future
work. This paper provides a precise comparison, albeit not for the general case, but
only for a particular example (the subtyping relations given in Sections 5 and 6).

It is our hope that this paper provides a compelling example of the use
of mixed induction and coinduction. We have found this technique useful in

Subtyping, Declaratively 117

a number of situations (Danielsson and Altenkirch 2009), and encourage more
programming language researchers—as well as programmers interested in guar-
anteed totality—to become familiar with it.

Acknowledgements. Nils Anders Danielsson would like to thank Peter Han-
cock for introducing him to the technique of mixed induction and coinduction.
Thorsten Altenkirch would like to thank Nicolas Oury for joint work on ΠΣ
which has had an impact on the work in this paper, and Graham Hutton for
earlier joint but unpublished work on coinductive reasoning. Both authors would
like to thank Conor McBride, Nicolas Oury and Anton Setzer for many discus-
sions about coinduction which have influenced this work, and Graham Hutton,
Henrik Nilsson and some anonymous reviewers for feedback which improved the
presentation. Both authors gratefully acknowledge funding from EPSRC (grant
codes: EP/E04350X/1 and EP/G034109/1).

References

Abel, A.: Mixed inductive/coinductive types and strong normalization. In: Shao, Z.
(ed.) APLAS 2007. LNCS, vol. 4807, pp. 286–301. Springer, Heidelberg (2007)

Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. Journal of
Functional Programming 12(1), 1–41 (2002)

The Agda Team. The Agda Wiki (2010), http://wiki.portal.chalmers.se/agda/
Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Transactions on Program-

ming Languages and Systems 15(4), 575–631 (1993)
Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termination

of recursive definitions. Mathematical Structures in Computer Science 14(1), 97–141
(2004)

Barwise, J.: Mixed Fixed Points. In: The Situation in Logic. CSLI Lecture Notes,
vol. 17, Center for the Study of Language and Information, Leland Stanford Junior
University (1989)

Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic. Studies in
Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2007)

Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality and
subtyping. Fundamenta Informaticae 33(4), 309–338 (1998)

Capretta, V.: General recursion via coinductive types. Logical Methods in Computer
Science 1(2), 1–28 (2005)

Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpretations.
In: POPL ’92, Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 83–94 (1992)

Danielsson, N.A.: Code accompanying the paper (2010a),
http://www.cs.nott.ac.uk/~nad/

Danielsson, N.A.: Beating the productivity checker using embedded languages. Draft
(2010b)

Danielsson, N.A., Altenkirch, T.: Mixing induction and coinduction. Draft (2009)
de Vries, E.: Re: [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not

sound? (was: Need help with coinductive proof). Message to the Coq-Club mailing
list (August 2009)

http://wiki.portal.chalmers.se/agda/
http://www.cs.nott.ac.uk/~nad/

118 N.A. Danielsson and T. Altenkirch

Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. Journal of Func-
tional Programming 12(6), 511–548 (2002)

Gibbons, J., Hutton, G.: Proof methods for corecursive programs. Fundamenta Infor-
maticae 66(4), 353–366 (2005)

Giménez, E.: Un Calcul de Constructions Infinies et son Application à la Vérification
de Systèmes Communicants. PhD thesis, Ecole Normale Supérieure de Lyon (1996)

Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoretical Com-
puter Science 228(1-2), 5–47 (1999)

Hagino, T.: A Categorical Programming Language. PhD thesis, University of
Edinburgh (1987)

Hancock, P., Pattinson, D., Ghani, N.: Representations of stream processors using
nested fixed points. Logical Methods in Computer Science 5(3:9) (2009)

Hensel, U., Jacobs, B.: Proof principles for datatypes with iterated recursion. In:
Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 220–241. Springer,
Heidelberg (1997)

Hughes, J., Moran, A.: Making choices lazily. In: FPCA ’95, Proceedings of the sev-
enth international conference on Functional programming languages and computer
architecture, pp. 108–119 (1995)

Kozen, D., Palsberg, J., Schwartzbach, M.I.: Efficient recursive subtyping. Mathemat-
ical Structures in Computer Science 5(1), 113–125 (1995)

Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and Com-
putation 207(2), 284–304 (2009)

Levy, P.B.: Infinitary Howe’s method. In: Proceedings of the Eighth Workshop
on Coalgebraic Methods in Computer Science (CMCS 2006). ENTCS, vol. 164,
pp. 85–104 (2006)

Mendler, P.F.: Inductive Definition in Type Theory. PhD thesis, Cornell University
(1988)

Milner, R.: Operational and algebraic semantics of concurrent processes. In: Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics. The
MIT Press and Elsevier (1990)

Milner, R., Tofte, M.: Co-induction in relational semantics. Theoretical Computer Sci-
ence 87(1), 209–220 (1991)

Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. Journal
of Functional Programming 9(2), 191–223 (1999)

Nakata, K., Uustalu, T.: Trace-based coinductive operational semantics for While; Big-
step and small-step, relational and functional styles. In: Urban, C. (ed.) TPHOLs
2009. LNCS, vol. 5674, pp. 375–390. Springer, Heidelberg (2009)

Norell, U.: Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology and Göteborg University (2007)

Park, D.: On the semantics of fair parallelism. In: Bjorner, D. (ed.) Abstract Software
Specifications. LNCS, vol. 86, pp. 504–526. Springer, Heidelberg (1980)

Raffalli, C.: L’Arithmétique Fonctionnelle du Second Ordre avec Points Fixes. PhD
thesis, Université Paris VII (1994)

Sangiorgi, D., Milner, R.: The problem of “weak bisimulation up to”. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992)

Turner, D.A.: Total functional programming. Journal of Universal Computer Science
10(7), 751–768 (2004)

Wadler, P., Taha, W., MacQueen, D.: How to add laziness to a strict language, without
even being odd. In: Proceedings of the 1998 ACM SIGPLAN Workshop on ML (1998)

Compositional Action System Derivation Using
Enforced Properties

Brijesh Dongol and Ian J. Hayes

School of Information Technology and Electrical Engineering,
The University of Queensland

Brisbane, Australia
{brijesh,ianh}@itee.uq.edu.au

Abstract. Action systems have been shown to be applicable for modelling and
constructing both sequential and concurrent systems. This paper presents an ap-
proach to program construction where the concrete implementation is derived
from its specification — via a series of small refinements — using incomplete
proofs to motivate changes to the program. Formalisation of our approach is pro-
vided by enforced properties, which restrict the traces of a program to those that
satisfy the enforced properties. The goal of the derivation is to refine a program
with enforced properties to a program (with no enforced properties) whose code
satisfies the enforced properties. An advantage of this approach is that the code
in the earlier versions of the program need not be complete; incorrect execution
of the program is avoided by including enforced properties in the specification.
Enforced properties may be any temporal formula or relation, and hence we may
reason about both safety and progress in a compositional setting.

1 Introduction

The theory of action systems is well established and has been applied to a number of
problem domains. Back and von Wright have presented rules for compositional refine-
ment of two action systems in a parallel context [4]. That is, given that A , A ′ and B
are action systems, Back and von Wright’s rules allow the refinement A ‖B / A ′‖B
to be verified without examining the code of B. However, program development using
their method follows the usual refinement process where concrete code is constructed,
followed by a proof that the concrete action system refines the abstract (original) spec-
ification.

In this paper, we describe an alternative approach to developing concrete imple-
mentations using the calculational verify-while-develop paradigm first advocated by
Dijkstra [8] for sequential programs, which has been extended to concurrent programs
[11,12,13]. In [11,12,13], a program consists of some incomplete code together with
queried properties that express the desired properties of the program. Modifications
to both the program statements and queried properties are motivated using weakest
precondition calculations. Although this technique has been successfully applied to de-
rive a number of concurrent programs that satisfy safety [13] and progress properties
[11,12], the derivations themselves remain informal because program code and queried
properties may be arbitrarily modified.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 119–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

120 B. Dongol and I.J. Hayes

The verify-while-develop paradigm is related to refinement by redefining queried
properties as enforced properties [9,10]. Enforced properties are specified using Linear
Temporal Logic [19], and hence, both safety and progress properties may be specified.

As a concrete example, let us consider the action system in Fig. 1, which initialises
x and y to 0, and contains actions that increment x and y . The program also includes
enforced invariant �(x ≤ y), which is identified using ‘?’. This enforced invariant
ensures that x ≤ y always holds in every state of the program. That is, although the
code of the action system may arbitrarily increment x and y , traces that do not satisfy
�(x ≤ y) are not permitted.

x , y := 0, 0 ;
do true → x := x + 1
	 true → y := y + 1
od ? �(x ≤ y)

Fig. 1. Example program

The derivation process consists of modifications to the program code where we aim
to obtain a program whose code does not generate traces other than those that satisfy
the enforced properties. For instance, a possible modification to the program in Fig. 1
is to strengthen the first guard to x < y , which would guarantee the enforced prop-
erty �(x ≤ y) holds. In the course of the derivation, we may also introduce or modify
the enforced properties themselves. Furthermore, we note that the final program may
contain enforced properties that formalise system assumptions such as fairness or envi-
ronmental assumptions.

It is often necessary to introduce fresh variables to a program. To this end, we ex-
tend actions systems with frames [21]. Execution of an action with a non-empty frame
involves execution of the action followed by modification of the frame variables to any
value within their type. However, in the presence of enforced properties, the frame vari-
ables may only be modified in a manner that satisfies the enforced properties.

Using a combination of frames and enforced properties, we model the environment
of a component within the component itself by introducing a separate action that per-
forms environment transitions. This treatment allows us to specify the environment vari-
ables and restrictions on how they may be modified in a straightforward, yet precise
manner. Embedding the environment within the component also allows us to re-use
much of the existing theory on standard action systems refinement [3] and enforced
properties [9,10].

Enforced properties have been incorporated into a framework of concurrently execut-
ing sequential programs [9,10]. However, this framework uses a rigid program counter
model to simplify progress proofs at the cost of a more complicated theory. Extending
action systems with enforced properties allows the theory to be simplified and we show
how an action system that satisfies safety and progress may be derived. We introduce
and use a more general temporal logic over relations to allow compositional proofs
and show how enforced properties using this temporal logic may be used to formalise
system assumptions such as fairness and environmental assumptions.

Compositional Action System Derivation Using Enforced Properties 121

In Section 2 we describe the syntax and semantics of action systems; in Section 3
we formalise action systems with enforced properties; and in Section 4 we present an
example derivation.

2 Action Systems

We present the syntax, predicate transformer and trace semantics of action systems in
Section 2.1; refinement in Section 2.2; the temporal logic we use in Section 2.3; and
action systems with frames in Section 2.4.

2.1 Syntax and Semantics

We define a state space as ΣVAR =̂ VAR → VAL where VAR is a set of variables
and VAL a set of values. We leave out the subscript if VAR is clear from the context.
A state is a member of Σ. An expression maps states to values Σ → VAL. A predicate
is a member of the set PΣ =̂ Σ → B that maps each state to true or false. For state
spaces Σ and Γ , a predicate transformer of type PΓ → PΣ is a function that maps
predicates over Γ to predicates over Σ. We use ‘.’ for function application.

Suppose S , S1, and S2 are statements; b is a predicate; x is a variable; E is an expression; V is
a set-valued expression; A, A1 and A2 are actions; l is a label; and A is an action system. We
define:

S ::= diverge | skip | x := E | x :∈ V | S1 ; S2

A ::= l : b → S | A1 	 A2

Fig. 2. Syntax of action systems

Thus a statement, S , may either be “diverge”, which does not terminate, “skip”,
which does nothing, “x := E” which assigns E to x , “x :∈ V ”, which non-deterministi-
cally assigns a value from V to x , or “S1 ; S2”, which is the sequential composition of
S1 and S2. An action, A, is either a guarded statement, b → S , or the demonic choice
between two actions, A1�A2. We use notation [b] for b → skip. Furthermore, guarded
statements may be labelled to allow them to be referred to more succinctly. Thus, the
label of a guarded statement may be used interchangeably with the guarded statement
the label represents. Given that A0 and A are actions, an action system A takes the
following form:

A =̂ A0 ; do A od

where initialisation action A0 is followed by a (possibly infinite) loop that executes
action A.

122 B. Dongol and I.J. Hayes

We identify an action with the predicate transformer that given a postcondition, p,
returns the weakest precondition for the action to establish p (see Fig. 3). Given that ‘⊕’
is the functional override operator we define p[E/x] =̂ λ σ: Σ • p.(σ ⊕ {x '→ E .σ}).

diverge.p ≡ false
skip.p ≡ p

(x := E).p ≡ p[E/x]
(x :∈ V).p ≡ ∀v :V • p[v/x]

(S1 ; S2).p ≡ S1.(S2.p)
(b → S).p ≡ (b ⇒ S .p)

(A1 	 A2).p ≡ A1.p ∧ A2.p

Fig. 3. Statements and actions as predicate transformers

The termination and guard of an action A are given by predicates t .A =̂ A.true and
grd .A =̂ ¬A.false , respectively.

Relations. For an action A, we let rel .A: P(Σ↑ × Γ ↑) denote the relation that cor-
responds to A (see Fig. 4), where ↑ is a special state that denotes divergence and
Γ ↑ =̂ Γ ∪ {↑}. The values of all variables in ↑ are undefined, and we assume that
↑ 	∈ Σ ∪ Γ . Furthermore, for any relation r ∈ P(Σ↑ × Γ ↑), we assume r [{↑}] = {↑},
where r [S] denotes the relational image of r on a set S . Hence, there cannot be a transi-
tion from a divergent state to a non-divergent state. We say r is divergent iff there exists
a σ ∈ Σ such that (σ, ↑) ∈ r , and non-divergent otherwise.

Relations may be written as formulas consisting of primed and unprimed variables.
The values of primed variables are interpreted in the next state, and unprimed variables
are interpreted in the current state (cf [18]). For a set of variables X and relation r , we
define:

X | r =̂ {(σ, σ′): Σ × Γ | (σ, σ′) ∈ r ∧ (∀y: dom.σ −X • σ.y = σ′.y)} ∪ {(↑, ↑)}

Thus, variables not in X remain unchanged in X | r .
For relations r ∈ P(Σ↑ × Γ ↑), r1 ∈ P(Σ↑ × Δ↑) and r2 ∈ P(Δ↑ × Γ ↑), and

predicate p, we define relational composition and domain restriction, respectively as
follows [27]:

r1 o
9 r2 =̂ {(σ, σ′): Σ↑ × Γ ↑ | ∃σ′′: Δ↑ • (σ, σ′′) ∈ r1 ∧ (σ′′, σ′) ∈ r2}

p � r =̂ {(σ, σ′): Σ↑ × Γ ↑ | (σ, σ′) ∈ r ∧ (σ 	= ↑ ⇒ p.σ)}

While rel allows actions to be interpreted as relations, any relation r may in turn be
interpreted as an action using the demonic update statement, denoted 〈r〉 [4]. For any
predicate p, its predicate transformer semantics is defined by

〈r〉.p =̂ (λ σ: Σ • (σ, ↑) 	∈ r ∧ (∀σ′: Γ • (σ, σ′) ∈ r ⇒ p.σ′))

For any action A and non-divergent relation r , we have 〈rel .A〉 = A and rel .〈r〉 = r .

Compositional Action System Derivation Using Enforced Properties 123

Given that E is an expression, V is a set-valued expression, and x ′ does not occur free in E and
V we have:

rel .diverge =̂ λσ • ↑
rel .skip =̂ λσ • σ

rel .(x := E) =̂ x | x ′ = E
rel .(x :∈ V) =̂ x | x ′ ∈ V

rel .(S1 ; S2) =̂ rel .S1
o
9 rel .S2

rel .(b → S) =̂ b � rel .S
rel .(A1 	 A2) =̂ rel .A1 ∪ rel .A2

Fig. 4. Statements and actions as relations

Traces. We define K+ =̂ K − {0} for a set K ⊆ N.

Definition 1. We let initial .A =̂ {σ′: Σ↑ | ∃σ: Σ • (σ, σ′) ∈ rel .A0} be the set of
initial states of A . A possibly infinite sequence of states s ∈ seq .Σ↑ is a trace of A iff
s0 ∈ initial .A ∧ ∀u: (dom.s)+ • su−1 	= ↑ ∧ (su−1, su) ∈ rel .A.

Note that if a trace includes ↑, then ↑ must be the last element of the trace.
Suppose s is a trace of A . If dom.s 	= N, we say A terminates in s iff last .s 	= ↑ ∧

(¬grd .A).(last .s) and diverges in s iff last .s = ↑. Trace s is complete iff dom.s = N ∨
¬(∃σ: Σ↑ • (last .s , σ) ∈ rel .A). Thus, a complete trace represents either an infinite,
terminating, or diverging execution of the corresponding action system. We use Tr.A
to denote the set of all complete traces of A .

We assume that an action system executes within an environment that may modify
environment variables as described by a rely relation [16,7]. Although the environ-
ment is external to the action system, modelling it as such causes problems with our
trace-based framework because environment transitions may occur in between program
transitions. In particular, environment transitions may have an effect on progress prop-
erties. If an action system, say A , executes within an environment described by a rely
condition, say r , we replace A by A � 〈r〉. Statement 〈r〉 may be executed at any point
during the execution of A , which represents an environment transition. Thus environ-
ment transitions of A are recorded within the traces of A .

2.2 Refinement

In this section we present a theory for refining actions and action systems. A concrete
action system C refines an abstract action system A iff every observable behaviour
of C is a possible observable behaviour of A . Given that OV ⊆ VAR is the set of
observable variables, we let rL: seq .ΣVAR → seq .ΣOV be the function that removes
unobservable variables from the given sequence of states. After removal of unobserv-
able variables, e.g., if s = rL.t where t ∈ seq .ΣVAR, it is common for stuttering to
exist within s , i.e., consecutive states su and su+1 such that su = su+1. States su and
su+1 are stuttering exactly when transition (tu , tu+1) ∈ rel .A does not modify any
observable variables. A finite number of consecutive stutterings of su may be repre-
sented by a single su , however, if su consecutively stutters an infinite number of times,
we will never observe a change in state, and hence, we treat infinite stuttering as being

124 B. Dongol and I.J. Hayes

equivalent to execution of diverge. We define function rS : seq .Σ → seq .Σ↑ that re-
moves finite stuttering from a sequence of states and replaces infinite stuttering with an
execution of diverge. (See [9] for formal definitions of rL and rS .)

Definition 2. Action system C trace refines action system A iff A /Tr C holds, where
A /Tr C =̂ ∀t : Tr.C • ∃s : Tr.A • rS .(rL.s) = rS .(rL.t).

Definition 2 is the same as the definition of trace refinement provided by Back and von
Wright [2].

Lemma 3. If Tr.C ⊆ Tr.A then A /Tr C .

An action A is refined by action C iff any behaviour of C is a possible behaviour of A.
A refinement may, for example, reduce the non-determinism or strengthen the guard of
an action.

Definition 4. An action A is refined by an action C iff A / C holds, where A / C =̂
∀p:PΣ • A.p ⇒ C .p.

If A / C and C / A, we write A /1 C . The following lemmas are trivial to prove.

Lemma 5. Suppose A =̂ A0; do A od and C =̂ C0; do C od. If A0 / C0, A / C
and grd .A ≡ grd .C then A /Tr C .

Lemma 6. If A, A1 and A2 are actions such that A1 / A2 and grd .(A � A1) ⇒
grd .(A � A2), then do A � A1 od / do A �A2 od.

Corollary 7. If A, A1, A2 are actions such that A1 / A2, then do A � A1 od /
do A �A1 � A2 od.

2.3 Temporal Logic

To specify properties of traces, we use an extension of Linear Temporal Logic (LTL)
[19], which we call Relational Linear Temporal Logic (RLTL). An LTL formula [19]
takes the following form, where 2 ∈ {∧,∨,⇒,⇔}, and p is a predicate.

F ::= p | �F | �F | F1 U F2 | F1W F2 | F1 2 F2 | ∀x • F | ∃x • F

We extend these and define RLTL formulae, which may also contain relations.

Q ::= r | �Q | �Q | Q1 U Q2 | Q1W Q2 | Q1 2Q2 | ∀x • Q | ∃x • Q
R ::= F | Q | R1 2 R2 | ∀x • R | ∃x • R

The semantics for RLTL formulae is provided in Fig. 5 where we assume s is a trace and
Tr is a set of traces. The notation (s , u) - R states that RLTL formula R holds for trace
s starting from index u ∈ dom.s . By definition (s , u) - p holds iff p holds in state su .
Similarly, (s , u) - r holds iff u + 1 ∈ dom.s and (su , su+1) ∈ r holds. Operators ‘�’,
‘�’, ‘U’ and ‘W’ express ‘always’, ‘eventually’, ‘until’ and ‘unless’, respectively. The
semantics for �F , F1U F2 and F1WF2 are identical to their corresponding definitions
on relations.

Compositional Action System Derivation Using Enforced Properties 125

Notation Meaning
(s, u) � p p.su
(s, u) � r u + 1 ∈ dom.s ∧ (su , su+1) ∈ r
(s, u) � �F ∀v : dom.s • v ≥ u ⇒ (s, v) � F
(s, u) � �Q ∀v : dom.s • v ≥ u ∧ v + 1 ∈ dom.s ⇒ (s, v) � Q
(s, u) � �Q ∃v : dom.s • v ≥ u ∧ (s, v) � Q
(s, u) � Q1 U Q2 ∃v : dom.s • v ≥ u ∧ (s, v) � Q2 ∧ (∀w :u..v − 1 • (s,w) � Q1)
(s, u) � Q1 W Q2 (s, u) � (�Q1 ∨ (Q1 U Q2))
(s, u) � R1 � R2 ((s, u) � R1) � ((s, u) � R2)
s � R (s, 0) � R
Tr |= R (∀s:Tr • s � R)

Fig. 5. RLTL semantics

RLTL allows reasoning with two-state relations, which facilitates properties such as
“if p holds now, q must hold in the next state” to be expressed. Note that LTL already in-
cludes a ‘next’ operator (©©©) which may be used to express two-state relations, however,
incorporating ©©© within a compositional framework makes the underlying logic signifi-
cantly more complex, which deters us from making this choice [17]. Furthermore, trace
refinement only preserves temporal properties given that the property does not mention
the ©©© operator [14].

Lemma 8
a. Tr.A |= �p holds provided A0.p ∧ (p ⇒ A.p)
b. Tr.A |= �r holds provided rel .A ⊆ r

RLTL formulae allow various progress properties to be specified. There are a number
of theorems for manipulating LTL formulae [9,19] which also hold for RLTL formulae.
In this paper, we focus on the leads-to operator, denoted �, where (p � q) = �(p ⇒
�q). Thus if p � q , then q will eventually hold if p ever holds. Leads-to properties are
proved in a calculational manner using unless, hence we present the following lemma.

Lemma 9 (Unless)

a. Tr.A |= pW q holds provided Tr.A |= (p ∨ q) ∧ �(p ∧ ¬q ⇒ p′ ∨ q ′)
b. Tr.A |= �(p ⇒ (pW q)) holds provided Tr.A |= �(p ∧ ¬q ⇒ p′ ∨ q ′)

By Lemma 9 (a), p W q holds in A if the initialisation establishes p ∨ q , and every
action in A establishes p ∨ q from a state that satisfies p ∧ ¬q . Similarly, Lemma 9 (b).

When proving leads-to properties, we must take the underlying fairness assumption
into account. For this paper, we consider weak fairness, which is formalised for an
action A by the following RLTL formula [9,18]:

WFair .A =̂ ��¬grd .A ∨ ��rel .A

Note that WFair .A is equivalent to ��grd .A ⇒ ��rel .A. Thus, if the guard of
action A is continuously enabled, then A is eventually executed. For an action system
A , we let acts.A be the set of top-level actions of A, i.e., A = �α:acts.A α and each

126 B. Dongol and I.J. Hayes

α: acts.A is of the form b → S . For example, if A = b1 → S1 � b2 → S2, then
acts.A = {b1 → S1, b2 → S2}. We define

WFair .A =̂ ∀α: acts .A •WFair .α

which states an action system A is weakly fair. The following lemma allows us to prove
leads-to properties in a calculational manner. It is inspired by the calculational proof of
leads-to in UNITY [6].

Lemma 10 (Dongol [9])

a. Tr.A |= p � q holds provided Tr.A |= WFair .A ∧ �(p ⇒ (p W q)) and
∃α: acts .A • p ∧ ¬q ⇒ grd .α ∧ α.q .

b. Tr.A |= p1 � p2 if there exists a q such that Tr.A |= (p1 � q) ∧ (q � p2).
c. (p � q) iff (p ∧ ¬q � q)

By Lemma 10 (a), p � q holds in A if A is weakly fair, pWq holds, and there exists an
action α in A such that if p ∧ ¬q holds, α is enabled and execution of α establishes q .
By Lemma 10 (b), we may establish p1 � p2 transitively via an intermediate predicate
q . Lemma 10 (c) states that q is established from a state that satisfies p if and only if q
is established from a state that satisfies p ∧ ¬q .

2.4 Frames

When developing an implementation, it is often necessary to allow additional internal
behaviour without introducing new observable traces. A formal and elegant way of
achieving this within the refinement calculus is by using frames [22]. An action A with
its frame extended by x , denoted x ·[[A]], behaves as A but in addition may also modify
x to any value within the type of x .

Definition 11. If p is a predicate, A is an action, and x is a variable of non-empty type
T , then (x ·[[A]]).p =̂ A.(∀x :T • p).

Each of the following is a consequence of this definition:

x ·[[S]] /1 S ; x :∈ T
x ·[[b → S]] /1 b → x ·[[S]]

x ·[[A1 � A2]] /1 x ·[[A1]] � x ·[[A2]]

To facilitate introduction of fresh unobservable variables to an action system, we in-
troduce actions add x and rem x , that add and remove x from the current state space.
Assuming x 	∈ VAR, we use the following predicate transformers which returns a pred-
icate on the pre-state for a given predicate on the post-state:

add x : PΣVAR∪{x} → PΣVAR

rem x : PΣVAR → PΣVAR∪{x}

These are defined as follows

(add x).p = (∀x :T • p) provided x is of non-empty type T
(rem x).p = p provided x does not occur free in p.

Compositional Action System Derivation Using Enforced Properties 127

Note that although the definitions of add x and x ·[[skip]] are similar, their predicate
transformers are of different types.

Lemma 12. Suppose p is a predicate; A is an action; x is a variable that does not
occur free in p and A; and V is a non-empty set of expressions. Then each of the
following holds.
a. add x ; rem x /1 skip
b. x ·[[A]] ; rem x /1 rem x ; A
c. [p] ; rem x /1 rem x ; [p]
d. x :∈ V ; rem x /1 rem x

Definition 13. If A =̂ A0; do A od is an action system, and x is a variable, then

[[var x • A]] =̂ add x ; x ·[[A0]] ; do x ·[[A]] od ; rem x

The following lemma facilitates introduction of a new variable to the frame of an action
system.

Lemma 14. If x 	∈ VAR is an unobservable variable then A / [[var x • A]].

Introducing a fresh variable to the frame of an action system constitutes a single re-
finement step. In our approach, further refinements may be performed by restricting the
possible values of the variables in the frame by introducing new enforced properties
to the action system, which effectively reduces non-determinism. A variable may be
removed from the frame altogether using the following lemma.

Lemma 15. Suppose x is unobservable, x ·[[α]] ∈ acts.A , and C is obtained from A
by replacing x ·[[α]] by α. Then A / C .

3 Enforced Properties

An enforced property is an RLTL formula that restricts the set of traces of an action
system to those that satisfy the enforced property [10]. Traces of the action system that
do not satisfy the enforced property are not permitted.

Definition 16. Action system A with enforced property R, denoted A ?R, is an action
system such that Tr.(A ?R) =̂ {s : Tr.A | s - R}.

Thus, although Tr.A may contain traces that do not satisfy R, by definition, R is guar-
anteed to hold for any trace of A ?R. The goal then is to obtain an action system B
with no enforced properties such that A ?R / B, i.e., B is a refinement of A whose
traces satisfy R.

The following lemma describes trace refinement of action systems with enforced
properties.

Lemma 17. For action systems A and C , and RLTL formulae R and R′ each of the
following holds:

128 B. Dongol and I.J. Hayes

a. A /Tr A ?R
b. A ?R /Tr A ?R′ provided R′ ⇒ R
c. A ?R /Tr C ?R provided A /Tr C
d. A ?R /1Tr A provided Tr.A |= R
e. A ?(R ∧ R′) /1Tr (A ?R) ?R′

The proof of this lemma is straightforward due to Lemma 3.
By Lemma 17, introducing a new enforced property or strengthening existing en-

forced properties results in a refinement. If an action system without an enforced prop-
erty refines another, then the refinement holds with the enforced property included. An
enforced property, say R, may be removed from an action system if the action sys-
tem without enforced property R satisfies R. Furthermore, enforcing a conjunction of
enforced properties is equivalent to enforcing the properties one at a time.

Two important forms of enforced properties are enforced invariants (formulae of the
form �p) and enforced guarantees (formulae of the form �r) [7,16]. We first consider
actions with enforced properties and define:

A ! p =̂ [p] ; A ; [p]
A ! r =̂ 〈rel .A ∩ r〉

Thus, A ! p blocks if p does not hold prior to executing A, or if the execution of A
does not establish p. Statement A ! r blocks if A can only execute in a manner that does
not maintain r . The following lemma allows us to modify enforced properties within a
single action.

Lemma 18. For actions A, A1, and A2; predicates p, p1, and p2; and relations r , r1,
and r2, each of the following holds:

a. A ! (p1 ∧ p2) /1 (A ! p1) ! p2
b. A ! (r1 ∩ r2) /1 (A ! r1) ! r2
c. A ! p /1 [p]; A provided p ⇒ A.p
d. A ! r /1 A provided rel .A ⊆ r
e. (A1 � A2) ! p /1 (A1 ! p) � (A2 ! p)
f. (A1 � A2) ! r /1 (A1 ! r) � (A2 ! r)

The following lemma states that an enforced invariant and guarantee may be removed
from A ?(�p ∧ �r) if the initialisation is replaced by A0; [p] and the main action is
replaced by A ! p ! r .

Lemma 19. Suppose R and R′ are RLTL formulae and rel .A0 is non-divergent. Then

A ?(�p ∧ �r) /1Tr A0; [p]; doA ! p ! r od (1)

Proof (1). Let C be the action system in the right hand side of (1). Then C0 = A0; [p]
and C = A ! p ! r . We prove A ?(�p ∧ �r) /1Tr C using Lemma 3, i.e, show that
Tr.C = Tr.(A ?(�p ∧ �r)). Using the definitions of 〈〉 and rel , it is straightforward
to show that

rel .(A ! p ! r) = rel .(A ! p) ∩ r (2)

Compositional Action System Derivation Using Enforced Properties 129

s ∈ Tr.C
= {Definition 1}

(∃σ: Σ • (σ, s0) ∈ rel .C0) ∧ (∀u: (dom.s)+ • (su−1, su) ∈ rel .C)
= {definitions of C0 and C}

(∃σ: Σ •(σ, s0) ∈ rel .(A0 ; [p])) ∧ (∀u: (dom.s)+ •(su−1, su) ∈ rel .(A ! p ! r))
= {property (2) above}

(∃σ: Σ • (σ, s0) ∈ rel .(A0 ; [p])) ∧
(∀u: (dom.s)+ • (su−1, su) ∈ rel .(A ! p) ∧ (su−1, su) ∈ r)

= {definition of rel}
(∃σ: Σ • (σ, s0) ∈ rel .A0) ∧ p.s0 ∧ (∀u: (dom.s)+ • p.su−1 ∧

(su−1, su) ∈ rel .A ∧ p.su ∧ (su−1, su) ∈ r)
= {logic}

(∃σ: Σ • (σ, s0) ∈ rel .A0) ∧ (∀u: (dom.s)+ • (su−1, su) ∈ rel .A) ∧
(∀u: dom.s • p.su) ∧ (∀u: (dom.s)+ • (su−1, su) ∈ r)

= {Definition 1}{definitions of �p and �r}
s ∈ Tr.A ∧ (s - �p ∧ �r)

= {Definition 16}
s ∈ Tr.(A ?(�p ∧ �r)) �

Note that the enforced invariants must appear as a guard after each action, i.e., moving
the blocking to the start of the action using predicate transformer rules is not always
valid. To see this, consider the case where b is a variable of type B (boolean) and
α =̂ true → (b :∈ B). We have α ; [b] /1 b := true. Thus, α ; [b] has a trace that
extends past α because b can be assigned true. If we attempt to move the blocking to
the start, we obtain action γ =̂ ((b :∈ B).b) → b :∈ B, which is equivalent to [false],
whose trace is blocked at γ.

4 Industrial Press

We develop a controller for an industrial press [20,15]. We present the specification of
the press in Section 4.1, present an overview of our methodology in Section 4.2, derive
for safety in Section 4.3 and derive for progress in Section 4.4.

4.1 Specification

The press (see Fig. 6) consists of a weight that may be lifted or dropped; a lock (whose
state is determined by locked ∈ B); a button (whose state is determined by pressed ∈
B); a motor ∈ {On,Off }; and three sensors that detect the position of the weight:
top, pnr , bot ∈ B which are located at the top, point of no return and bottom of the
press, respectively.

The expected operation of the press is as follows [15]. These requirements are for-
malised in Fig. 7. If the weight is locked at the top, then the motor must be off and the
top sensor must be on (3). When the weight is locked at the top, if the operator presses
the button, ¬locked is established (8). The weight may not be released from the top un-
less the button is pressed (4). The motor remains off (i.e., the weight continues to drop)

130 B. Dongol and I.J. Hayes

Weight

top

bot

pnr

motor

Fig. 6. Industrial press

unless the weight has reached bot or has not passed pnr , and the button is released
(5). If the button is released while the weight is dropping but it has not passed pnr ,
the motor should be turned on (9), which lifts the weight. However, once the dropping
weight passes pnr , the motor may not be turned on until the weight reaches bot and the
button is no longer pressed (6). If the weight is at bot and the button is released, then
the motor is turned on, which lifts the weight (10). Once the weight is lifting, the motor
must remain on until the weight is locked at the top (7).

Safety requirements:

�(locked ⇒ top ∧ motor = Off) (3)

�(locked ⇒ (locked W pressed)) (4)

�(¬locked ∧ motor = Off ⇒
(¬locked ∧ motor = Off) W ((bot ∨ ¬pnr) ∧ ¬pressed)) (5)

�(pnr ∧ motor = Off ⇒ ((pnr ∧ motor = Off) W (bot ∧ ¬pressed))) (6)

�(motor = On ⇒ (motor = On W locked)) (7)

Progress requirements:

(locked ∧ pressed) � ¬locked (8)

(¬locked ∧ ¬pnr ∧ ¬pressed) � motor = On (9)

(bot ∧ ¬pressed) � motor = On (10)

Fig. 7. Requirements of the controller

Assumptions on the environment of the controller are formalised by the conditions
in Fig. 8. The sensors satisfy the invariant in (11), i.e., if top is on, then both pnr and
bot must be off, and if bot is on, then pnr must also be on. Relation (12) describes
the allowable transitions of the sensors. For example, if the top sensor is on, then in the
next state both pnr and bot must be off, i.e., the environment may not transition directly
from a state in which the top sensor is on, to a state where either pnr or bot is on.

RLTL formulae (13) and (14) describe the conditions under which the different sen-
sors are guaranteed to turn on (or off). For example, by (13), if eventually always the
weight is not locked at the top and the motor is off (i.e., the weight is falling), then
top is guaranteed to turn off, and both pnr and bot are guaranteed to turn on. Note

Compositional Action System Derivation Using Enforced Properties 131

Safety assumptions:

(top ⇒ ¬pnr ∧ ¬bot) ∧ (bot ⇒ pnr) (11)

top, pnr , bot | (top⇒¬pnr ′ ∧ ¬bot ′) ∧ (¬top ∧ ¬pnr ⇒¬bot ′)
(pnr ⇒ ¬top′) ∧ (bot ⇒pnr ′)

(12)

Progress assumptions:

��(¬locked ∧ motor = Off) ⇒ ��¬top ∧ ��pnr ∧ ��bot (13)

��(motor = On) ⇒ ��top ∧ ��¬bot ∧ ��¬pnr (14)

Fig. 8. Assumptions on the environment

that although (13) is a formula of the form ��p ⇒ ��q , it does not require p to
eventually be true forever, because the formula can hold if the consequent (��q) be-
comes true. Ignoring the terms ��pnr and ��bot , (13) may be equivalently stated as
��(locked ∨ motor = On ∨ ¬top).
We define

Safe =̂ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7)
Prog =̂ (8) ∧ (9) ∧ (10)

RelyProg =̂ (13) ∧ (14)

which describe the safety and progress requirements, and progress assumptions of the
program. The initial action system representing the controller is thus provided in Fig. 9,
where e and c label the environment and controller actions, respectively. The action
corresponding to the environment is defined to be

env =̂ pressed ·[[〈(12)〉]] ! (11)

Action env may modify sensor variables (top, bot , and pnr) as described by relation
(12), and the state of the button (pressed) arbitrarily. However, the manner in which the
variables may be modified is restricted by the enforced safety invariant, (11).

The program in Fig. 9 meets our requirements, but it is not yet executable code.

4.2 Methodology

We now present an overview of the methodology used in our derivation. We start with
the temporal formulae in Figs. 7 and 8, which describe requirements on the program as

do e: true → env
	 c: true → motor , locked ·[[skip]]
od ?(Safe ∧ Prog ∧ RelyProg)

Fig. 9. Initial action system

132 B. Dongol and I.J. Hayes

a whole and on the environment, respectively. Using these, we arrive at a simple action
system (Fig. 9) consisting of actions e and c that represent environment and component
transitions, respectively. The frames of e and c describe the variables that e and c may
modify, while the enforced properties in Fig. 9 ensure that the frame variables are only
modified in a manner consistent with the enforced properties.

We consider safety properties in Section 4.3 where we replace the temporal logic
requirements in Fig. 7 by relations. Then, we introduce a new (unobservable) state
variable to keep track of the different states of the controller, and calculate modifications
for controlling the motor and the lock. We perform the actual modification using our
lemmas and theorems in Sections 2 and 3, which ensure that each modification results
in a refinement of the original program in Fig. 9.

In Section 4.4, we consider progress properties. We replace temporal properties with
relations, introduce fairness constraints, and introduce new actions to satisfy the prog-
ress requirements. We perform a number of simplifications to the enforced properties
before obtaining the final program in Fig. 10.

4.3 Safety

Replace unless properties. To make better sense of the unless properties within Safe
and to simplify the rest of the derivation, we use Lemma 9 to replace the unless prop-
erties in Safe with relations on pre and post states. We present the calculation for the
more complicated condition (5). We have

(5)
⇐ {Lemma 9}{logic}

�(¬locked ∧ motor = Off ⇒
(¬locked ′ ∧ motor ′ = Off) ∨ ((bot ′ ∨ ¬pnr ′) ∧ ¬pressed ′)

⇐ {logic}
�(¬locked ∧ motor = Off ⇒

¬locked ′ ∧ (motor ′ = Off ∨ ((bot ′ ∨ ¬pnr ′) ∧ ¬pressed ′)))
⇐ {logic}

�(¬locked ∧ motor = Off ⇒ ¬locked ′) ∧
�(motor = Off ⇒ motor ′ = Off ∨ ((bot ′ ∨ ¬pnr ′) ∧ ¬pressed ′))

which is logically equivalent to (16). Similarly, we obtain conditions (15), (17) and (18)
from (4), (6) and (7), respectively. These properties describe additional constraints on
the transitions of the controller and its environment.

�(locked ∧ ¬locked ′ ⇒ pressed ′) (15)

�(¬locked ∧ locked ′ ⇒ motor = On) ∧
�(motor = Off ∧ motor ′ = On ⇒ (bot ′ ∨ ¬pnr ′) ∧ ¬pressed ′) (16)

�(pnr ∧ ¬pnr ′ ⇒ motor = On) ∧
�(pnr ∧ motor = Off ∧ motor ′ = On ⇒ bot ′ ∧ ¬pressed ′) (17)

�(motor = On ∧ motor ′ = Off ⇒ locked ′) (18)

We use Lemma 17 (b) to replace Safe in the program in Fig. 9 with (3) ∧ Safe2 where

Safe2 =̂ (15) ∧ (16) ∧ (17) ∧ (18)

Compositional Action System Derivation Using Enforced Properties 133

Introduce new state variable. To simplify the final program, we introduce a fresh
variable mode that allows us to distinguish between the different states of the controller.
From the informal description, the controller has a number of modes corresponding to
the position of the weight. It can be locked at the top (mode Idle T), falling (mode
Falling), resting at the bottom (mode Idle B), or lifting (mode Lifting).

Introduction of variable mode is justified using Lemma 14. Because mode should
not be changed by the environment, we use Lemma 15 to remove it from the frame of
env . Thus, we obtain an action system where c in Fig. 9 is replaced with

true → motor , locked ,mode ·[[skip]] .

Controlling the motor. To control the motor, there will be actions that turn the motor
on and off. We derive the conditions under which these actions should occur. We calcu-
late the following condition which ensures the action that sets motor = On maintains
(3) ∧ Safe2.

(motor = Off ⇒ (bot ′ ∨ ¬pnr ′) ∧ ¬pressed ′) ∧ ¬locked

The second conjunct is satisfied by strengthening the guard to ¬locked . Because bot ,
pnr and pressed are not modified by the controller, the first conjunct may be satisfied
by strengthening the guard with conjunct motor = Off ∧ (bot ∨ ¬pnr) ∧ ¬pressed .
Thus, we obtain the following action:

motor = Off ∧ (bot ∨ ¬pnr) ∧ ¬pressed ∧ ¬locked → motor := On

which may be split into two cases, respectively as follows:

motor = Off ∧ bot ∧ ¬pressed ∧ ¬locked → motor := On
� motor = Off ∧ ¬pnr ∧ ¬pressed ∧ ¬locked → motor := On

Using (11), bot ⇒ ¬top holds, and by (3), ¬top ⇒ ¬locked holds. Hence, the first
guard simplifies to motor = Off ∧ bot ∧ ¬pressed . Then, using Lemma 17 (a), we
introduce enforced invariants:

�(Idle B⇒ motor = Off ∧ bot) (19)

�(Falling⇒ motor = Off ∧ ¬locked) (20)

where

Idle B =̂ mode = Idle B
Falling =̂ mode = Falling

denote the “idle at bottom” and “falling” modes, respectively. Invariants (19) and (20)
allow us to simplify the guards of the action above and we obtain:

(C1) Idle B ∧ ¬pressed → motor ,mode := On,Lifting
(C2) Falling ∧ ¬pnr ∧ ¬pressed → motor ,mode := On,Lifting

134 B. Dongol and I.J. Hayes

Furthermore C1 and C2 set mode to Lifting . Applying similar reasoning to the action
that turns the motor off, using Lemma 17, we introduce enforced invariant

�(Lifting⇒ motor = On) (21)

and obtain action C3 below.

(C3) Lifting ∧ top → locked ,motor ,mode := true,Off , Idle T

Controlling the lock. We now calculate the actions that modify variable locked . Recall
that the action that sets locked to true has already been introduced as C3 above. From
our calculation against (3) ∧ Safe2, we obtain requirement

pressed ′ ∧ (motor = Off ∨ motor ′ = On)

We then introduce the following enforced property using Lemma 17

�(Idle T⇒ locked ∧ motor = Off) (22)

which denotes a mode where the weight is idle at the top. Thus, we obtain the following
action, which also sets mode to Falling .

(C4) Idle T ∧ pressed → locked ,mode := false,Falling

Introduce actions. We have calculated the actions C1, C2, C3 and C4 that modify
motor and locked . Each action C1-C4 refines c, and hence may be introduced to the
action system thus far using Corollary 7 and Lemma 17 (c). Then, using Lemma 15,
we remove motor and locked from the frame of each statement. Thus, we obtain the
following refined action system where

ES =̂ (19) ∧ (20) ∧ (21) ∧ (22)

is the conjunction of the newly introduced enforced properties.

do e: true → env
	 c: true → mode ·[[skip]]
	 c1: Idle B ∧ ¬pressed → motor ,mode := On,Lifting
	 c2: Falling ∧ ¬pressed ∧ ¬pnr → motor ,mode := On,Lifting
	 c3: Lifting ∧ top → motor , locked ,mode := Off , true, Idle T
	 c4: Idle T ∧ pressed → locked ,mode := false,Falling
od ?((3) ∧ Safe2 ∧ Prog ∧ RelyProg ∧ ES)

Note that this program can only establish mode = Idle B via action c, which sets
mode to an arbitrary value that maintains the enforced properties. We derive the action
that establishes mode = Idle B in Section 4.4.

4.4 Progress

We verify Prog using Lemma 10, and hence we need to introduce the following fairness
assumption as an enforced property to the action system:

Compositional Action System Derivation Using Enforced Properties 135

WFair =̂ WFair .e ∧WFair .c ∧
∧

i WFair .ci

Recall that the label of a guarded action represents the guarded action. Thus, WFair
states that each top-level action of the action system is weakly fair. We verify the more
difficult progress property, (10), which requires introduction of an additional action. To
prove (10), using Lemma 17 (a), we introduce the following enforced property to the
program:

�(bot ∧ motor = Off ⇒ Falling ∨ Idle B) (23)

and obtain the following calculation:

(10)
⇐ {(23)}{Lemma 10 (c)}

bot ∧ ¬pressed ∧ motor = Off ∧ (Falling ∨ Idle B) � motor = On
⇐ {temporal logic}{(19) and (23)}

(bot ∧ ¬pressed ∧ Falling � ¬pressed ∧ Idle B) ∧
(¬pressed ∧ Idle B � motor = On)

The first conjunct holds by Lemma 10 if we introduce enforced property

�(bot ∧ ¬pressed ∧ Falling⇒
¬pressed ′ ∧ ((bot ′ ∧ mode ′ = Falling) ∨ mode ′ = Idle B)

(24)

which by Lemma 9 implies the unless condition of Lemma 10 (a). The lemma also
requires an action that establishes ¬pressed ∧ Idle B when bot ∧ ¬pressed ∧ Falling
holds. Thus, using Corollary 7 and Lemma 17 (c), we introduce action

(C5) Falling ∧ bot → mode := Idle B

to the action system.
The second conjunct holds by Lemma 10 (a) together with Lemma 9 if we introduce

enforced property

�(¬pressed ∧ Idle B⇒
(¬pressed ′ ∧ mode ′ = Idle B) ∨ motor ′ = On)

(25)

and let action c1 be the action that establishes motor = On . Note that (25) is not
necessarily satisfied by an environment that repeatedly presses and releases the button
before the controller is able to react. By enforcing (25), we are stating that progress
condition (10) only holds if the environment leaves the button unpressed whenever the
weight is at the bottom, unless the motor is turned on (i.e., the controller has had an
opportunity to react). Similarly, for (8), we introduce enforced properties:

�(locked ⇒ Idle T) (26)

�(Idle T ∧ pressed ⇒ (mode ′ = Idle T ∧ pressed ′) ∨ ¬locked ′) (27)

and let c4 be the action that falsifies locked . The issues with pressed in (27) are similar
to those in (25).

136 B. Dongol and I.J. Hayes

For (9), we introduce enforced properties

�(¬locked ∧ ¬pnr ∧ motor = Off ⇒ Falling) (28)

�(Falling ∧ ¬pnr ∧ ¬pressed ⇒
(mode ′ = Falling ∧ ¬pnr ′ ∧ ¬pressed ′) ∨ motor ′ = On) (29)

and let c2 be the action that establishes motor = On . Unlike (25) and (27), which
describe restrictions on the user input, property (29) consists of an additional constraint
on the sensor values that cannot be satisfied by any implementation. For example, the
button may be released when the weight is just above the pnr sensor causing Falling ∧
¬pnr ∧ ¬pressed to become true. However, by the time the controller reacts, the
weight may have already passed pnr , which means (29) does not hold. If the button is
released just above the pnr sensor, there is a race condition between the weight reaching
the pnr sensor (pnr becoming true) and the controller detecting that the button has
been released before the weight reaches the pnr sensor. Thus, we have discovered that
(9) is an unimplementable requirement. Nevertheless, in those instances in which the
environment does behave as described by (29), the final program in Fig. 10 satisfies (9).
To provide a requirement similar to (9) that is implementable, we would have to use a
timed model and allow timing tolerance. This is beyond the scope of this paper.

We define

EP =̂ (23) ∧ (28) ∧ (26)
EPR =̂ (24) ∧ (25) ∧ (29) ∧ (27)

to be the temporal formulae on predicates and relations, respectively. We have shown
that Prog holds if we introduce EP and EPR to the program. Thus, we use Lem-
ma 17 (d) to remove Prog from the program. Note that the program satisfies Prog , but
it no longer needs to be enforced.

Final modifications. We now simplify the action system by removing as many of the
unnecessary actions and enforced properties as possible. We use Lemma 15 to remove
mode from the frame of c. Then, using Lemma 5 we remove action true → skip from
the action system altogether.

We introduce function ρ which is defined for RLTL formulae of the form
∧

i �Ri .
We define ρ.(�R) =̂ R for any RLTL formula R and ρ.(R1 ∧ R2) =̂ ρ.R1 ∧ ρ.R2 for
RLTL formulae R1 and R2.

Using Lemma 19 then Lemma 18, we distribute enforced properties !ρ.((3) ∧ ES ∧
EP) and !ρ.(Safe2 ∧ EPR) within the body of the do loop. By the derivation above,
each action c1-c5 satisfies ρ.(Safe2 ∧ ES ∧ EP) and ρ.EPR, and hence, using parts 3
and 4 of Lemma 18, we may remove all ‘!’ properties on c1-c5 (see in Fig. 10).

Due to the restrictions on the variables that e may modify, we are presented with
an opportunity to simplify the ‘!’ properties on e. Because e does not modify locked ,
motor , or mode, ρ.(3), ρ.Safe2, and ρ.ES reduce to:

(top∧¬top′ ⇒ ¬locked) ∧ ((pnr ∧¬pnr ′) ∨ (bot ∧¬bot ′)⇒ motor = On) (30)

Compositional Action System Derivation Using Enforced Properties 137

Essentially, (30) describes some additional constraints on the sensors. Similarly for
ρ.EP , condition ρ.(26) is trivially satisfied because e does not modify locked or mode,
while ρ.((23) ∧ (28)) is satisfied by the second conjunct of (30).

Condition ρ.EPR is necessary for progress and describes requirements on the state
of the button. It disallows the state of the button from changing until the controller
has reacted to a press or release of the button. Unlike ρ.((3) ∧ ES ∧ EP ∧ Safe2),
condition ρ.EPR cannot be simplified any further. By the calculations above, we have:

env ! ρ.((3) ∧ ES ∧ EP) ! ρ.(Safe2 ∧ EPR) /1 env ! (30) ! ρ.EPR

Thus, using (6), we may replace env ! ρ.((3) ∧ ES ∧ EP) ! ρ.(Safe2 ∧ EPR) in e by
the simpler env ! (30) ! ρ.EPR and obtain the program in Fig. 10.

do e: true → env ! (30) ! ρ.EPR
	 c1: Idle B ∧ ¬pressed → motor ,mode := On,Lifting
	 c2: Falling ∧ ¬pressed ∧ ¬pnr → motor ,mode := On,Lifting
	 c3: Lifting ∧ top → motor , locked ,mode := Off , true, Idle T
	 c4: Idle T ∧ pressed → locked ,mode := false,Falling
	 c5: Falling ∧ bot → mode := Idle B
od ?(WFair ∧ RelyProg)

Fig. 10. Final action system

A similar process can be used to derive the initialisation code for the action system,
which must guarantee to establish ρ.((3) ∧ ES ∧ EP).

The action system we have derived makes the assumption that all sampling is per-
fect which does not accurately reflect the real world. For example, for condition (9),
the program may not result in lifting behaviour because the controller may miss the
state ¬locked ∧ ¬pnr ∧ ¬pressed because the state only occurred transiently just be-
fore the weight reached the point of no return, and the sampling of the sensors did not
detect the transient state. For example, suppose the weight is falling and the environ-
ment transitions such that the button is released, the weight passes pnr , and the button
is pressed. The intermediate state between these transitions will not be detected by the
controller unless it makes a transition in that intermediate state. Troubitsyna ensures that
the controller does not miss transient states by strictly alternating between the controller
and its environment, i.e., disallowing the environment from making multiple transitions
[24,25]. We feel that this requirement is too strict and prefer our approach where prob-
lems in the specification are elucidated by the derivation, as opposed to being hidden
by restrictions on the order of execution of the program.

Other issues arise from the fact that we assume all sampling takes place simulta-
neously because all the guards of the action system are evaluated in a single atomic
step. In a real implementation, when sampling multiple sensors, the environment may
modify the sensor values between sampling events, causing non-existing states to be
detected. Addressing such issues requires more sophisticated timing properties, which
are beyond the scope of this paper. As part of future work, we will explore whether
sampling issues can be better addressed using specialised sampling logics.

138 B. Dongol and I.J. Hayes

5 Conclusion

We have extended action systems with enforced properties and frames which facilitates
formal derivation of their code from a specification. We have used our developed the-
ory to derive a controller for an industrial press. Extending action systems with enforced
properties has allowed the theory from [9,10] to be simplified and we have shown how
an action system that satisfies safety and progress may be derived. Using a more general
temporal logic over relations has allowed us to derive the action systems in a composi-
tional manner. We have also shown how enforced properties may be used to formalise
environmental assumptions.

In normal refinement, the introduction of a new variable is tightly coupled with the
operations and invariants that refer to the variable, and hence all operations and invari-
ants that use a new variable must be introduced at the same time. As a result, each
refinement step can become complex and thus difficult to prove [1]. Our refinement
technique involves actions with frames and enforced properties, which may be manip-
ulated independently of each other. Hence we achieve a decoupling between variables
and operations that modify the variables, allowing refinement via a series of small steps.

Enforced properties allow fairness to be formally specified in a straightforward man-
ner. Our treatment of fairness is simpler than refinement methods described by Back and
Xu [5] and Wabenhorst [26]. Algebraic methods for refinement under fair choice are
described by Sekerinski [23] who introduces different forms of fair non-deterministic
choice operators. Our method achieves the same result without the need for specialised
operators, which makes our techniques more general.

Acknowledgements. This research was supported by Australian Research Council
Discovery Grant, Combining Time Bands and Teleo-Reactive programs for Advanced
Dependable Real-Time Systems (DP0987452) and The University of Queensland New
Staff Research Fund.

References

1. Abrial, J.R., Cansell, D., Méry, D.: Refinement and reachability in Event B. In: Treharne,
H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 222–241.
Springer, Heidelberg (2005)

2. Back, R.J., von Wright, J.: Trace refinement of action systems. In: Jonsson, B., Parrow, J.
(eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidelberg (1994)

3. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
New York (1998)

4. Back, R.J., von Wright, J.: Compositional action system refinement. Formal Asp. Com-
put. 15(2-3), 103–117 (2003)

5. Back, R.J., Xu, Q.: Refinement of fair action systems. Acta Inf. 35(2), 131–165 (1998)
6. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley Longman

Publishing Co., Inc., Amsterdam (1988)
7. Coleman, J.W., Jones, C.B.: A structural proof of the soundness of rely/guarantee rules. J.

Log. Comput. 17(4), 807–841 (2007)
8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM 18(8), 453–457 (1975)

Compositional Action System Derivation Using Enforced Properties 139

9. Dongol, B.: Progress-based verification and derivation of concurrent programs. Ph.D. thesis,
The University of Queensland (2009)

10. Dongol, B., Hayes, I.J.: Enforcing safety and progress properties: An approach to concurrent
program derivation. In: 20th Australian Software Engineering Conference, pp. 3–12. IEEE
Computer Society, Los Alamitos (2009)

11. Dongol, B., Mooij, A.J.: Progress in deriving concurrent programs: Emphasizing the role
of stable guards. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 140–161. Springer,
Heidelberg (2006)

12. Dongol, B., Mooij, A.J.: Streamlining progress-based derivations of concurrent programs.
Formal Aspects of Computing 20(2), 141–160 (2008)

13. Feijen, W.H.J., van Gasteren, A.J.M.: On a Method of Multiprogramming. Springer,
Heidelberg (1999)

14. Groslambert, J.: Verification of LTL on B event systems. In: Julliand, J., Kouchnarenko, O.
(eds.) B 2007. LNCS, vol. 4355, pp. 109–124. Springer, Heidelberg (2006)

15. Hayes, I.J.: Dynamically detecting faults via integrity constraints. In: Butler, M., Jones, C.B.,
Romanovsky, A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Tolerance.
LNCS, vol. 5454, pp. 85–103. Springer, Heidelberg (2009)

16. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems 5(4), 596–619 (1983)

17. Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in linear-time temporal logic.
Theoretical Computer Science 167(1-2), 47–72 (1996)

18. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

19. Manna, Z., Pnueli, A.: Temporal Verification of Reactive and Concurrent Systems: Specifi-
cation. Springer, New York (1992)

20. McDermid, J., Kelly, T.: Industrial press: Safety case. Tech. rep., High Integrity Systems
Engineering Group, University of York (1996)

21. Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall International (UK)
Ltd., Hertfordshire (1994)

22. Morgan, C., Vickers, T.: On the Refinement Calculus. Springer, New York (1992)
23. Sekerinski, E.: An algebraic approach to refinement with fair choice. Electr. Notes Theor.

Comput. Sci. 214, 51–79 (2008)
24. Troubitsyna, E.: Enhancing dependability via parameterized refinement. In: PRDC, p. 120.

IEEE Computer Society, Los Alamitos (1999)
25. Troubitsyna, E.: Reliability assessment through probabilistic refinement. Nord. J. Com-

put. 6(3), 320–342 (1999)
26. Wabenhorst, A.: Stepwise development of fair distributed systems. Acta Inf. 39(4), 233–271

(2003)
27. Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-Hall, Inc.,

Upper Saddle River (1996)

Designing an Algorithmic Proof of the
Two-Squares Theorem

João F. Ferreira�

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, England
joao@joaoff.com

Abstract. We show a new and constructive proof of the two-squares
theorem, based on a somewhat unusual, but very effective, way of
rewriting the so-called extended Euclid’s algorithm. Rather than sim-
ply verifying the result — as it is usually done in the mathematical com-
munity—we use Euclid’s algorithm as an interface to investigate which
numbers can be written as sums of two positive squares. The precise
formulation of the problem as an algorithmic problem is the key, since it
allows us to use algorithmic techniques and to avoid guessing. The notion
of invariance, in particular, plays a central role in our development: it
is used initially to observe that Euclid’s algorithm can actually be used
to represent a given number as a sum of two positive squares, and then
it is used throughout the argument to prove other relevant properties.
We also show how the use of program inversion techniques can make
mathematical arguments more precise.

Keywords: algorithm derivation, sum of two squares, Euclid’s algo-
rithm, invariant, program inversion.

1 Introduction

Which numbers can be written as sums of two squares? According to Dickson [1,
p. 225], this classic question in number theory was first discussed by Diophantus,
but it is usually associated with Fermat, who stated in 1659 that he possessed
an irrefutable proof that every prime of the form 4k + 1 can be written as the
sum of two squares. (He first communicated the result to Mersenne, in a letter
dated December 25, 1640; for this reason, this result is sometimes called Fermat’s
Christmas Theorem. Incidentally, Dickson names this result after Albert Girard,
who, in 1632, was the first to state it. We follow Dickson’s convention and we
also refer to the two-squares theorem as Girard’s result.) However, as with many
other of his results, Fermat did not record his proof. The first recorded proof of
Girard’s result is due to Euler who proved it in 1749, “after he had struggled,
off and on, for seven years to find a proof” [2, p. 69]. Euler communicated his
� Funded by Fundação para a Ciência e a Tecnologia (Portugal) under grant

SFRH/BD/24269/2005.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 140–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Designing an Algorithmic Proof of the Two-Squares Theorem 141

five-step argument in a letter to Goldbach dated 6 May 1747, but the fifth step
was only made precise in a second letter written in 1749. In 1801, Gauss proved
for the first time that such prime numbers are uniquely represented as the sum
of two positive integers [3, Art. 182].

This classic theorem attracted the attention of many mathematicians. Since
Euler’s proof by the method of infinite descent, Lagrange proved it using quadratic
forms (subsequently, Gauss simplified Lagrange’s proof in [3, Art. 182]); Dedekind
used Gaussian integers; Serret and Hermite used continued fractions [4,5]; Brill-
hart improved Hermite’s argument using Euclid’s algorithm [6]; Smith used con-
tinuants [7]; more recently, Zagier [8] published a one-sentence proof based on an
involution of a particular finite set (see also [9, chapter 4] and [10] for a detailed
explanation of the proof); and Wagon [11] gave a self-contained proof based on
Euclid’s algorithm and on [6].

Like Brillhart and Wagon, we present a proof that is also based on Euclid’s
algorithm, but, rather than simply verifying Girard’s result, we use the algo-
rithm as an interface to investigate which numbers can be written as sums of
two positive squares1. The precise formulation of the problem as an algorithmic
problem is the key, since it allows us to use algorithmic techniques and to avoid
guessing. The notion of invariance, in particular, plays a central role in our de-
velopment: it is used initially to observe that Euclid’s algorithm can actually be
used to represent a given number as a sum of two positive squares, and then it is
used throughout the argument to prove other relevant properties. We also show
how the use of program inversion techniques can make mathematical arguments
more precise. As we will see, the end result is also more general than the one
conjectured by Girard.

In the next section we show how we can use our formulation of Euclid’s
algorithm to prove the theorem. At the end of the section, we describe how
the argument and the paper are organised.

2 Euclid’s Algorithm

We start with a somewhat unusual, but very effective, way of rewriting Euclid’s
algorithm when the goal is to establish the theorem that the greatest common
divisor of two numbers is a linear combination of the numbers. (This is sometimes
called the extended Euclid’s algorithm. See [12] for a derivation of the algorithm
and [13] for another problem whose solution is based on the algorithm. Also, we
use “4” to denote “greatest common divisor”. We prefer to use an infix notation
whenever— as in this case— the operator is symmetric and associative).

The algorithm is expressed in matrix terms. The input to the algorithm is
a vector (m n) of strictly positive integers. The vector (x y) is initialised to
(m n) and, on termination, its value is the vector (m4n m4n). (This is a

1 Every square number m2 can be written as m2+02. However, this type of solution is
not considered in this paper, since our formulation of Euclid’s algorithm deals only
with positive numbers. Therefore, our construction aims to express a number as the
sum of two positive squares.

142 J.F. Ferreira

consequence of the invariant (x y) = (m4n m4n). We omit this invariant in
the comments below to simplify the presentation.) In addition to computing
the greatest common divisor, it also computes a matrix C. An invariant of the
algorithm is that the vector (x y) equals (m n)×C. In words, (x y) is a “linear
combination” of (m n). Specifically, I, A, and B are 2×2 matrices; I is the
identity matrix

(1
0

0
1

)
, A is the matrix

(
1

−1
0
1

)
, and B is the matrix

(1
0

−1
1

)
.

The assignment (x y) := (x y)×A is equivalent to x , y := x−y , y, as can be
easily checked.

{ 0 < m ∧ 0 < n }
(x y) , C := (m n) , I ;

{ Invariant: (x y) = (m n)×C }
do y < x → (x y) , C := (x y)×A , C×A

� x < y → (x y) , C := (x y)×B , C×B

od

{ (x y) = (m4n m4n) = (m n)×C }

The verification of the supplied invariant is a simple consequence of the asso-
ciativity of matrix multiplication. Also, note that the algorithm constructs two
linear combinations of m and n equal to their greatest common divisor.

A key insight in our development is that matrices A and B are invertible,
which allows us to rewrite the invariant as (x y)×C−1 = (m n), where the ma-
trix C−1 is a finite product of the matrices A−1 and B−1, which are, respectively,(1

1
0
1

)
and

(1
0

1
1

)
. In fact, we can change the above algorithm to compute the

matrix C−1 instead; renaming C−1 to D, A−1 to L, and B−1 to R, we rewrite
it as follows:

{ 0 < m ∧ 0 < n }
(x y) , D := (m n) , I ;

{ Invariant: (x y)×D = (m n) }
do y < x → (x y) , D := (x y)×L−1 , L×D

� x < y → (x y) , D := (x y)×R−1 , R×D

od

{ (x y) = (m4n m4n) ∧ (m4n m4n)×D = (m n) }

It is this form of the algorithm that is the starting point for our investigation.
Note that if D=

(
a
c

b
d

)
, the invariant is equivalent to

(m n) = (x y)×D = (x×a + y×c x×b + y×d) ,

Designing an Algorithmic Proof of the Two-Squares Theorem 143

which means that if, at any point in the execution of the algorithm, (x y) equals
(a c), we can conclude that m is a sum of two positive squares, that is:

(m n) = (a c)×D = (a×a + c×c a×b + c×d) .

Symmetrically, if, at any point in the execution of the algorithm, (x y) equals
(b d), we can conclude that n is a sum of two positive squares.

It may help to visualise an execution trace of the algorithm. Table 1 depicts
the execution trace when the arguments are m = 17 and n = 4. Each row of the
table shows the state-space and the value of the invariant after each iteration of
the algorithm. The first two columns show the values of the variables (x y) and
D, respectively. The third column shows how the invariant is satisfied, according
to the values of the first two columns. The first row corresponds to the initial
state and the last row corresponds to the final state.

Table 1. Execution trace of Euclid’s algorithm for arguments m= 17 and n= 4

(x y) D, the same as
(

a
c

b
d

)
Invariant: (m n) = (x×a+ y×c x×b+ y×d)

(17 4)
(

1
0

0
1

)
= I (17 4) = (17×1 + 4×0 17×0 + 4×1)

(13 4)
(

1
1

0
1

)
= L (17 4) = (13×1 + 4×1 13×0 + 4×1)

(9 4)
(

1
2

0
1

)
= LL (17 4) = (9×1 + 4×2 9×0 + 4×1)

(5 4)
(

1
3

0
1

)
= LLL (17 4) = (5×1 + 4×3 5×0 + 4×1)

(1 4)
(
1
4

0
1

)
= LLLL (17 4) = (1×1 + 4×4 1×0 + 4×1)

(1 3)
(

5
4

1
1

)
= RLLLL (17 4) = (1×5 + 3×4 1×1 + 3×1)

(1 2)
(

9
4

2
1

)
= RRLLLL (17 4) = (1×9 + 2×4 1×2 + 2×1)

(1 1)
(

13
4

3
1

)
= RRRLLLL (17 4) = (1×13 + 1×4 1×3 + 1×1)

As we can see in table 1, there is a point at which x = a = 1 and y = c = 4; it
follows directly from the invariant that 17 can be expressed as the sum of two
positive squares (17 = 12+42).

One question that now arises is what is so special about the numbers 17 and
4 that made the vectors (x y) and (a c) to be equal. (Had we used as arguments
the numbers 17 and 5, for example, x would never equal a.) Put more generally,
how can we characterise the arguments that make the vectors (x y) and (a c)
to be equal at some point in the execution of the algorithm?

A closer inspection of the values shown in table 1 can help us answering the
general question. If we ignore the first row, we see that the sequence of successive
values of the vector (x y) is the reverse of the sequence of successive values of
(a c). Also, because the length of these sequences is the same and odd, there
is a middle point at which (x y)=(a c). So, one way of proving that at some
point in the execution of the algorithm the vectors (x y) and (a c) are equal is
to prove that the sequences of successive values of the vectors (x y) and (a c),

144 J.F. Ferreira

with the exception of the initial values, are reverses of each other and that both
sequences have odd length. (In the example above, the length is 7).

Taking this analysis into account, the question can be reformulated as: for
which arguments m and n does Euclid’s algorithm produce odd-length sequences
of successive values of the vectors (x y) and (a c) that are reverse of each other?

Our answer to this question is divided in three parts. First, in section 3, we
invert Euclid’s algorithm to prove that the operations performed on the vector
(x y) are the same as those performed on the vector (a c) when running the
algorithm backwards. Second, in section 4, we determine necessary and sufficient
conditions on the arguments m and n to make the initial value of the vector (x y)
equal the final value of the vector (a c). These two parts together characterise the
arguments for which the sequences of vectors are each other’s reverses. Finally,
in section 5, we show that if the sequences are the reverses of each other, they
must have odd length.

Note that our investigation aims at expressing the argument m as a sum of
two positive squares— that is why we focus on vectors (x y) and (a c). This
means that, given a value m, we want to characterise which values n can be
chosen to be passed along with m as arguments of the algorithm (we perform
this characterisation in section 4).

For brevity, and whenever the context is unambiguous, we shall refer to “the
sequences” to mean “the sequences of successive values of the vectors (x y)
and (a c)” and to “the sequences are reversed” to mean “the sequences are the
reverses of each other”. Also, we assume throughout that D=

(
a
c

b
d

)
.

3 Inverting Euclid’s Algorithm

Inverting an algorithm S consists in finding another algorithm, usually denoted
by S−1, that when composed with S leaves the program state unchanged. In
other words, executing S−1 after S amounts to doing nothing, that is, if we
provide to S−1 some output of S, it will compute a corresponding input to S.

Some statements are easy to invert. The inverse of skip, for example, is skip
itself. Also, the inverse of x := x−y is x := x+y. However, other statements are
difficult or impossible to invert. For example, we cannot invert x := 1 without
knowing the value of x before the assignment; we can only invert it if we know
the precondition. The inverse of

{ x = 0 } x := 1

is

{ x = 1 } x := 0 .

Note that the assertion becomes an assignment and the assignment becomes an
assertion. This simple example shows that we may be able to compute inverses
only when the precondition is given. Therefore, we define the inverse of a state-
ment with respect to a precondition. That is, S−1 is the (right) inverse of S with
respect to R, if for every Q

Designing an Algorithmic Proof of the Two-Squares Theorem 145

{ R ∧Q } S ; S−1 { Q } .

An important aspect of the above characterisation is that it distributes through
program constructs. This allows us to reduce the inversion of a program into the
inversion of its components. For example, the inverse of a sequence of commands
is the reverse of the sequence of inverses of the individual commands:

(S0;S1; · · · ;Sn)−1 = S−1
n ; · · · ;S−1

1 ;S−1
0 .

Also, if c0 and c1 are constants, the inverse of

v := c0 ; S { v = c1 }(1)

is

v := c1 ; S−1 { v = c0 } .

In (1), variable v is initialised to a value c0, S is executed, and upon termination
v has the final value c1. The inverse assigns c1 to v, undoes what S did, and
terminates with v = c0. Note, again, how the assignment and the assertion switch
places. Since Euclid’s algorithm is an instance of (1)— instantiate v with the
variables (x y) and D, and consider S to be the loop— its inverse is:

(x y) := (m4n m4n) ;

initialise D such that (m4n m4n)×D = (m n) ;

S−1

{ (x y) = (m n) ∧ D = I } .

That is, provided that we initialise (x y) to (m4n m4n) and the matrix D
in a way that satisfies (m4n m4n)×D = (m n), undoing S terminates in a
state where (x y) and D equal their initial values in Euclid’s algorithm. But we
still have to guarantee that there is only one way of initialising D. This is indeed
the case, since

(m4n m4n)×D = (m n)

=

(1 1)×D = (m/(m4n) n/(m4n)),

where (m/(m4n) n/(m4n)) can be seen as a positive rational number in so-
called lowest-form representation. We know from [12] (see also [13]) that there
is a bijection between finite products of the matrices L and R and the positive
rationals. Therefore, D (which is a finite product of Ls and Rs) is uniquely
defined (more specifically, it represents the path from the origin to the rational
n/(m4n)

m/(m4n)
in the Stern-Eisenstein tree of rationals).

Now, since the alternative statement in the loop of Euclid’s algorithm is de-
terministic (y < x and x < y are mutually exclusive), we can use the inversion
rule for deterministic alternative statements together with the inversion rule for
iterative statements. Suppose we have the following loop

146 J.F. Ferreira

{ G0 ∨G1 }
do G0 → S0 { C0 }
� G1 → S1 { C1 }
od

{ C0 ∨C1 } .

Execution of the loop must begin with one of the guards true, so the disjunction
of the guards has been placed before the statement. Execution terminates with
either C0 or C1 true, depending on which command is executed, so C0 ∨C1 is the
postcondition. Also, to invert this loop we must know whether to perform the
inverse of S0 or to perform the inverse of S1. Therefore, C0 and C1 cannot be true
at the same time (i.e., ¬(C0 ∧C1)). For symmetry, we also require ¬(G0 ∧G1).

Because the loop ends in a state satisfying C0 ∨C1, its inverse must begin in a
state satisfying C0 ∨C1. Also, execution of G1→S1 { C1 } means that beginning
with G1 true, S1 is executed, and C1 is established. The inverse must express
that beginning with C1 true, S1 is undone, and G1 is established:

C1→S−1
1 { G1 } .

Note how, when inverting a guarded command with a postcondition, the guard
and postcondition switch places. Continuing to read backwards yields the inverse
of the loop:

{ C0 ∨C1 }
do C1 → S−1

1 { G1 }
� C0 → S−1

0 { G0 }
od

{ G0 ∨G1 } .

We now have to insert appropriate assertions in Euclid’s algorithm so that the
rules presented above can be used. Recall that, as explained in section 2, we want
to ignore the initial values (in effect, this corresponds to ignoring the first row
of table 1). This motivates moving the first step out of the loop body. Assuming
that n < m, we can rewrite the algorithm as follows (note the new annotations
and recall that D=

(
a
c

b
d

)
):

{ 0 < n < m }
(x y) , D := (m−n n) , L ;

{ Invariant: (x y)×D = (m n) }
{ y < x ∨ x < y }
do y < x → (x y) , D := (x y)×L−1 , L×D { a < c }
� x < y → (x y) , D := (x y)×R−1 , R×D { c < a }

Designing an Algorithmic Proof of the Two-Squares Theorem 147

od

{ a < c ∨ c < a }
{ (x y) = (m4n m4n) ∧ (m4n m4n)×D = (m n) }

From this point on, whenever we refer to Euclid’s algorithm, the intended refer-
ence is to this algorithm. The removal of the first step out of the loop body forces
n < m and 1 < m, but it allows us to include assertions after each assignment,
making the inversion of the loop body a straightforward application of the rules
mentioned above. (The new assertions after the assignments follow from the facts
that premultiplying a matrix by L corresponds to adding the first row to the
second, and premultiplying a matrix by R corresponds to adding the second row
to the first). Because the assignments in the loop body are easily inverted, the
inverse of Euclid’s algorithm becomes:

{ 0 < n < m }
(x y) := (m4n m4n) ;

initialise D such that (m4n m4n)×D = (m n) ;

{ Invariant: (x y)×D = (m n) }
{ a < c ∨ c < a }
do a < c → (x y) , D := (x y)×L , L−1×D { y < x }
� c < a → (x y) , D := (x y)×R , R−1×D { x < y }
od

{ y < x ∨ x < y }
{ (x y) = (m−n n) ∧D = L }

Comparing the two algorithms, we see that the assignments to (x y) and to (a c)
are interchanged: in the original algorithm we have

y < x → (x y) := (x−y y)

� x < y → (x y) := (x y−x) ,

and in the inverted algorithm we have

a < c → (a c) := (a c−a)

� c < a → (a c) := (a−c c) .

(We leave the reader to check the matrix arithmetic.) In other words, the inverse
of Euclid’s algorithm is Euclid’s algorithm itself, but on different variables: the
inverted version computes the greatest common divisor using the variables a and
c. This means that to make the sequences of successive values of the vectors (x y)
and (a c) the reverse of each other, we only need to guarantee that the initial
value of (x y) in the non-inverted algorithm is the same as the initial value of

148 J.F. Ferreira

(a c) in the inverted one. In other words, we need to guarantee that in Euclid’s
algorithm, the initial value of (x y) is the same as the final value of (a c).

The initial assignments of the inverted algorithm may seem strange at first
sight, but the important fact to retain is that if we compose both algorithms,
the program state remains unchanged. The inversion of the algorithm serves
only as a formal proof that the process applied to (x y) in one direction is the
same as the one applied to (a c) in the opposite direction. In the remainder
of our investigation, we base our discussion on Euclid’s algorithm, i.e., on the
non-inverted version.

For more details on the inversion rules shown in this section, we recommend
the expositions in [14, chapter 21] and [15, chapter 11]. As far as we know, the
technique of program inversion first appeared in [16, pp. 351–354] and, since then,
it has been mentioned and used in many places (see, for example, [17,18,19,20]).

4 Reversed Sequences of Vectors

Given the result of the previous section, saying that the sequences of vectors
(x y) and (a c) are reversed is equivalent to saying that the initial value of (a c)
is equal to the final value of (x y) and the initial value of (x y) is equal to the
final value of (a c).

Looking at the algorithm, we see that the initial value of (a c) is (1 1) and
the final value of (x y) is (m4n m4n). So, for the sequences to be reversed,
m4n has to be 1, i.e., m and n have to be co-prime. We thus assume henceforth
that m4n = 1.

Also, the initial value of (x y) is (m−n n). So, because m4n = 1, we have
the following equality:

“The sequences are reversed”

=

“The final value of (a c) is (m−n n)” .

We can rewrite this equality in terms of matrix D:

“The sequences are reversed”

=

“The final value of D is
(

m−n
n

b
d

)
for some b and d” .

Now, because D is the product of matrices whose determinant equals 1, its
determinant also equals 1; this allows us to calculate b and d:

det.D = 1

= { D has the shape
(

m−n
n

b
d

)
}

(m−n)×d− n×b = 1

= { arithmetic }

Designing an Algorithmic Proof of the Two-Squares Theorem 149

m×d− n×(d+b) = 1

= { we have assumed that m4n = 1, so, on termination,

the invariant states that (1 1)×D = (m n);

this means that n = b+d }
m×d = n2+1

= { 0 < m }

d =
n2+1

m
.

The value of b is simply n−d, since on termination we have n = b+d (it follows
from the invariant). Because D is a matrix of integer values, d has to be an
integer, and so, a necessary condition is that m\(n2+1), that is, n2 ∼=−1 (mod
m). (We write m\n to denote that m is a divisor of n. Although the notation m|n
is more common, we prefer to use an asymmetric symbol such as the backward
slash to denote an asymmetric relation. Moreover, as the authors of [21, p. 102]
point out, vertical bars are overused and m\n gives an impression that m is the
denominator of an implied ratio. Also, a∼=b (mod m) means that m\(a−b) and
we read it as “a and b are congruent modulo m”.) We can thus conclude that

n2 ∼= −1 (mod m) ⇐ “The sequences are reversed” .

A question that now arises is whether n2 ∼=−1 (mod m) is a sufficient condition
for the sequences to be reversed. That is, can we prove

“The final value of D is
(

m−n

n

n−(n2+1)/m
(n2+1)/m

)
” ⇐ n2 ∼= −1 (mod m) ?(2)

Using the assumption that D =
(

a
c

b
d

)
, we can simplify (2) to:

“The final value of c is n” ⇐ n2 ∼= −1 (mod m) ,(3)

since c uniquely determines all the other entries (recall that m = a+c, n = b+d
and det.D = 1). To prove (3), we first show that n∼=c (mod m) follows from
n2 ∼=−1 (mod m) and then we use the range of n and c to conclude that n = c.
The following lemma is used to prove that n∼=c (mod m).

Lemma 1. For all integers m, n, and c, the following holds:

n ∼= c (mod m) ⇐ n2 ∼= −1 (mod m) ∧ n×c ∼= −1 (mod m) .

Proof. Using the fact that, for all integers a, b, and c, the following law on
congruences holds

a−c ∼= b−d (mod m) ⇐ a ∼= b (mod m)∧ c ∼= d (mod m) ,(4)

we can prove the lemma as follows:

n∼=c (mod m)

150 J.F. Ferreira

= { arithmetic }
n−c∼= 0 (mod m)

⇐ { m4n = 1 and Euclid’s lemma; see below for details }
n×(n−c)∼= 0 (mod m)

= { arithmetic }
n2 − n×c ∼= 0 (mod m)

= { n2 ∼=−1 (mod m) and n×c∼=−1 (mod m) and (4) }
true .

In the second step we can safely assume that m4n = 1, since it follows from the
congruence n2 ∼=−1 (mod m) . A short proof of this fact is:

n2 ∼=−1 (mod m)

= { definition }
〈∃q:: n2+1 = q×m〉

= { arithmetic }
〈∃q:: 1 = q×m− n×n〉

⇒ { (m4n)\(q×m− n×n), so (m4n)\1;
division is anti-symmetric }

m4n = 1 .

Also, Euclid’s lemma states that for all integers a, b, and c:

a\c ⇐ a \ b×c ∧ a4b = 1 . ��

Now, if, on termination, we have that n×c∼=−1 (mod m), we can use lemma 1
to conclude that, on termination, we also have that n∼=c (mod m) follows from
n2 ∼=−1 (mod m). Recall that an invariant of the algorithm is

(x y)×D = (m n) = (x×a + y×c x×b + y×d) .

Because the determinant of D equals 1, the inverse of D is
(

d
−c

−b
a

)
, making

the following property also invariant:

(x y) = (m n)×D−1 = (m×d− n×c a×n− b×m) .(5)

It follows that on termination, when (x y) = (1 1), we have that n×c∼=−1 (mod
m), as the following calculation shows:

n×c∼=−1 (mod m)

= { definition }
m\(n×c + 1)

Designing an Algorithmic Proof of the Two-Squares Theorem 151

⇐ { division properties }
m×d = n×c + 1

= { arithmetic }
m×d− n×c = 1

= { invariant (5), (x y) = (1 1) on termination }
true .

By lemma 1, we deduce that on termination n∼=c (mod m) follows from n2 ∼=−1
(mod m). Finally, because 0 < a and m = a+c we have that 0 < c < m; this allows
us to conclude that n = c:

n∼=c (mod m)

= { definition }
m\(n−c)

= { 0 < n < m and 0 < c < m imply that −m < n−c < m;

the only multiple of m in that range is 0 }
n−c = 0

= { arithmetic }
n = c .

The conclusion is that n2 ∼=−1 (mod m) is also a sufficient condition for the
sequences to be reversed, leading to the equality:

“The sequences are reversed”

=

n2 ∼=−1 (mod m) .

To summarise, in the following algorithm

{ 0 < n < m }
(x y) , D := (m−n n) , L ;

{ Invariant: (m n) = (x y)×D = (x×a + y×c x×b + y×d)

∧ (m n)×D−1 = (x y) = (m×d− n×c a×n− b×m) }
do y < x → (x y) , D := (x y)×L−1 , L×D { a < c }
� x < y → (x y) , D := (x y)×R−1 , R×D { c < a }
od

{ (x y) = (1 1) ∧ (m n) = (1 1)×D },
the sequences of vectors (x y) and (a c) are reverses of each other exactly when
n2 ∼=−1 (mod m).

152 J.F. Ferreira

5 Length of the Sequence of Vectors

We now have to prove that the final value of matrix D is decomposed into an
odd-length product of the matrices L and R. However, because D is initially L
and because it is iteratively premultiplied, D = M×L for some M. So we can
alternatively prove that M is decomposed into an even-length product of the
matrices L and R. Observing that

M = D×L−1 =
(

m−(2×n− (n2+1)/m)
n−(n2+1)/m

n−(n2+1)/m
(n2+1)/m

)
,

we see that M has the top-right and bottom-left corners equal, which means
that M = MT (M equals the transpose of M). We also know that R = LT and
L = RT .

There are also two functions from finite products of L and R to naturals,
#L and #R, that give, respectively, the number of Ls and the number of Rs
in the decomposition of their argument2. Now, a fundamental property is that
#L.M = #R.MT , whenever M is a product of Ls and Rs. This fundamental
property means that the number of Ls in the decomposition of M equals the
numbers of Rs in the decomposition of MT , which is easy to see because R = LT

and L = RT . Using these observations, a simple calculation showing that the
length of M is an even number is:

length.M

= { M is a product of Ls and Rs }
#L.M + #R.M

= { #L.M = #R.MT }
#R.MT + #R.M

= { MT = M }
2×#R.M .

Hence, the length of M is an even number. Subsequently, the length of the final
value of D is odd.

6 Sum of Two Positive Squares

In the above sections we have proved the following theorem:

Theorem 1. A number m at least 2 can be written as the sum of two positive
squares if there is a number n such that 0 < n < m and n2∼=−1 (mod m). ��
2 Note that, given that we can easily provide algorithms that compute them, functions

length, #L, and #R are well-defined. As proved in [13] and [12], there is a bijection
between finite products of matrices L and R, and binary strings made of the symbols
L and R; defining these functions in the realm of strings is easy.

Designing an Algorithmic Proof of the Two-Squares Theorem 153

The argument we provide is constructive because we show how to use Euclid’s
algorithm to represent a number as the sum of two positive squares. Indeed we
can extend Euclid’s algorithm so that it expresses a given number m as the sum
of two positive squares:

{ 1 < m ∧ 〈∃n : 0 < n < m : n2 ∼=−1 (mod m)〉 }
• Find a number n such that 0 < n < m and n2 ∼=−1 (mod m);

{ 0 < n < m ∧ n2 ∼=−1 (mod m) }
(x y) , D := (m−n n) , L ;

{ Invariant: (x y)×D = (m n) = (x×a + y×c x×b + y×d) }
do (x y) 	= (a c) →

y < x → (x y) , D := (x y)×L−1 , L×D

� x < y → (x y) , D := (x y)×R−1 , R×D

od

{ (x y) = (a c) ∧ m = x2+y2 = a2+c2 }

Theorem 1 is more general than Girard’s result: while Girard’s theorem is only
on odd prime numbers, theorem 1 concerns all positive integers at least 2. As
an example, we can say that the number 10 is expressible as the sum of two
positive squares, since 32∼=−1 (mod 10) (and, in fact, we have that 10 = 32+12).
Moreover, given the following lemma (see [9, p. 17, Lemma 1]), Girard’s result
is an immediate corollary of theorem 1.

Lemma 2. For primes p = 4k + 1 the equation s2∼=−1 (mod p) has two solu-
tions s∈{1 .. p−1}, for p = 2 there is only one such solution, while for primes of
the form p = 4k + 3 there is no solution. ��
Although we believe that theorem 1 may be known by some number-theorists,
we have not found it in the literature.

Please note that developing an algorithm to find a number n such that
0 < n < m and n2 ∼=−1 (mod m) is beyond the scope of this paper. For more
details on this topic, we recommend [11] and [22], where the authors discuss
different algorithms that can be used to find such a number n.

Finally, the algorithm shown above can be generalised. In a recent private
communication, Wagon told us that the method of using Euclid’s algorithm to
write a number as a sum of two squares (or, more generally, as a2 + g×c2) is
known as the Smith-Cornacchia algorithm (he referred us to [22] and [23]). Also,
in [24], Hardy, Muskat, and Williams show a more general algorithm for solving
m = f×a2 + g×c2 in coprime integers a and c. The algorithm presented in this
paper treats the case f = g = 1. At the moment, we do not know how to adapt
it to solve the more general problem. Recall that we have started our argument

154 J.F. Ferreira

by observing that if, at any point in the execution of the algorithm, (x y) equals
(a c), it follows from the invariant

(m n) = (x y)×D = (x×a + y×c x×b + y×d)

that m can be written as a sum of two positive squares. To solve the general
problem, we have to investigate when it is possible to have, at any point in the
execution of the algorithm, a\x and c\y. If this happens, that is, if there are two
integers f and g such that x = f×a and y = g×c, it follows from the invariant
that m = f×a2 + g×c2:

(m n) = (f×a g×c)×D = (f×a2 + g×c2 f×a×b + g×c×d) .

7 Discussion

This paper shows a new and constructive proof of the two-squares theorem
based on a somewhat unusual, but very effective, way of rewriting the so-called
extended Euclid’s algorithm. As mentioned in the introduction, the use of Eu-
clid’s algorithm to prove the theorem is not new: Brillhart [6] and Wagon [11]
have used it to verify the theorem. Effectively, given the close relationship be-
tween Euclid’s algorithm and continued fractions, we can say that Serret [5] and
Hermite [4] were the first to provide the germ of the essential idea presented here
(in fact, Brillhart’s note is described as an improvement on Hermite’s method:
in using Euclid’s algorithm, Brillhart avoids the calculation of the convergents
arising in the continued fractions).

The novel contribution of this paper is the use of the algorithm to investigate
which numbers can be written as the sum of two positive squares. The precise
formulation of the problem as an algorithmic problem is the key, since it allows us
to use algorithmic techniques and to avoid guessing. The notion of invariance, in
particular, plays a central role in our development: it is used initially to observe
that Euclid’s algorithm can actually be used to represent a given number as
a sum of two positive squares, and then it is used throughout the argument to
prove relevant properties. Also, section 3 is an example of how the use of program
inversion can make our arguments more precise.

We conclude by mentioning that this paper is part of a larger endeavour
which aims at reinvigorating mathematics education by exploiting mathematics’
algorithmic nature [13,12,25]. In our view, the combination of practicality with
mathematical elegance that arises from an adequate focus on the algorithmic
content of mathematics can enrich and improve, not only mathematics education,
but also the process of constructing computer programs. Moreover, the emphasis
on investigation and construction rather than verification brings tremendous
benefits. As Leibniz once put it:

Nothing is more important than to see the sources of invention which
are, in my opinion, more interesting than the inventions themselves.

Designing an Algorithmic Proof of the Two-Squares Theorem 155

Acknowledgements. I would like to thank Roland Backhouse for helping me with
the initial analysis of the problem, for suggesting the use of program inversion
techniques, and for his comments on earlier drafts of this paper. Also, thanks
to Alexandra Mendes for helping me simplifying section 5 and to Wei Chen and
Shin-Cheng Mu for reading and checking earlier drafts of the paper. I would also
like to thank Stan Wagon for sending me references on the Smith-Cornacchia
algorithm and the anonymous referees, whose comments and corrections have
led to significant improvements.

This work was developed in the context of the MathIS project, which is
supported by Fundação para a Ciência e a Tecnologia (Portugal) under contract
PTDC/EIA/73252/2006.

References

1. Dickson, L.E.: History of the Theory of Numbers: Diophantine Analysis: Diophan-
tine Analysis, vol. 2. AMS/Chelsea Publication, American Mathematical Society
(August 1999)

2. Bell, E.T.: Men of Mathematics - The Lives and Achievements of the Great Math-
ematicians from Zeno to Poincaré. Touchstone (July 2008)

3. Gauss, C.F.: Disquisitiones Arithmeticae. G. Fleischer, Leipzig (1801) English
translation by Clarke, A. A. Springer, Heidelberg (1986)

4. Hermite: Note au sujet de l’article précédent. Journal de Mathématiques Pures et
Appliquées 13, 15 (1848)

5. Serret, J.A.: Sur un théorème relatif aux nombres entiers. Journal de
Mathématiques Pures et Appliquées 13, 12–14 (1848)

6. Brillhart, J.: Note on representing a prime as a sum of two squares. Mathematics
of Computation 26(120), 1011–1013 (1972)

7. Clarke, F.W., Everitt, W.N., Littlejohn, L.L., Vorster, S.J.R.: H. J. S. Smith and
the Fermat two squares theorem. The American Mathematical Monthly 106(7),
652–665 (1999)

8. Zagier, D.: A one-sentence proof that every prime p ≡ 1(mod 4) is a sum of two
squares. The American Mathematical Monthly 97(2), 144 (1990)

9. Aigner, M., Ziegler, G.: Proofs From The Book, 3rd edn. Springer, Heidelberg
(2004)

10. Dijkstra, E.W.: A derivation of a proof by D. Zagier. Circulated privately (August
1993), http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1154.PDF

11. Wagon, S.: Editor’s corner: The Euclidean algorithm strikes again. The American
Mathematical Monthly 97(2), 125–129 (1990)

12. Backhouse, R., Ferreira, J.F.: On Euclid’s algorithm and elementary number
theory. To appear in the journal Science of Computer Programming (2010),
http://joaoff.com/publications/2009/euclid-alg/

13. Backhouse, R., Ferreira, J.F.: Recounting the rationals: Twice! In: Audebaud,
P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 79–91. Springer,
Heidelberg (2008)

14. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
15. van de Snepscheut, J.L.: What Computing Is All About. Springer, New York (1993)
16. Dijkstra, E.W.: Program inversion. In: Selected Writings on Computing: A Personal

Perspective, pp. 351–354. Springer, Heidelberg (1982)

http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1154.PDF
http://joaoff.com/publications/2009/euclid-alg/

156 J.F. Ferreira

17. van de Snepscheut, J.L.A.: Inversion of a recursive tree traversal. Inf. Process.
Lett. 39(5), 265–267 (1991)

18. Chen, W.: A formal approach to program inversion. In: CSC ’90: Proceedings
of the 1990 ACM annual conference on Cooperation, pp. 398–403. ACM Press,
New York (1990)

19. von Wright, J.: Program inversion in the refinement calculus. Inf. Process.
Lett. 37(2), 95–100 (1991)

20. Mu, S.C., Bird, R.: Rebuilding a tree from its traversals: A case study of program
inversion. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 265–282. Springer,
Heidelberg (2003)

21. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a Foundation
for Computer Science, 2nd edn. Addison-Wesley Publishing Company, Reading
(1994)

22. Buhler, J., Wagon, S.: Basic algorithms in number theory. In: Buhler, J.P.,
Stevenhagen, P. (eds.) Algorithmic Number Theory. Lattices, Number Fields,
Curves and Cryptography, pp. 25–68. Cambridge University Press, Cambridge
(2008)

23. Cornacchia, G.: Su di un metodo per la risoluzione in numeri interi dell’equazione∑n
h=0 Chx

n−hyh = P . Giornale di Matematiche di Battaglini 46, 33–90 (1908)
24. Hardy, K., Muskat, J.B., Williams, K.S.: A deterministic algorithm for solving

n = fu2 + gv2 in coprime integers u and v. Mathematics of Computation 55(191),
327–343 (1990)

25. Ferreira, J.F., Mendes, A., Backhouse, R., Barbosa, L.S.: Which mathematics
for the information society? In: Oliveira, J. (ed.) TFM 2009. LNCS, vol. 5846,
pp. 39–56. Springer, Heidelberg (2009)

Partial, Total and General Correctness

Walter Guttmann

Institut für Programmiermethodik und Compilerbau
Universität Ulm, 89069 Ulm, Germany

walter.guttmann@uni-ulm.de

Abstract. We identify weak semirings, which drop the right annihila-
tion axiom a0 = 0, as a common foundation for partial, total and general
correctness. It is known how to extend weak semirings by operations for
finite and infinite iteration and domain. We use the resulting weak omega
algebras with domain to define a semantics of while-programs which is
valid in all three correctness approaches. The unified, algebraic seman-
tics yields program transformations at once for partial, total and general
correctness. We thus give a proof of the normal form theorem for while-
programs, which is a new result for general correctness and extends to
programs with non-deterministic choice.

By adding specific axioms to the common ones, we obtain partial,
total or general correctness as a specialisation. We continue our previous
investigation of axioms for general correctness. In particular, we show
that a subset of these axioms is sufficient to derive a useful theory, which
includes the Egli-Milner order, full recursion, correctness statements and
a correctness calculus. We also show that this subset is necessary.

1 Introduction

Partial, total and general correctness are three approaches to the semantics of
programs distinguished by [25]. Leaving the characterisation to Section 3, at
this point we just give a sample of the available literature: For example, partial
correctness is supported by Hoare logic [21], weakest liberal preconditions [12]
and Kleene algebra with tests [28]; total correctness is supported by weakest
preconditions [12], the Unifying Theories of Programming [22], demonic refine-
ment algebra [37] and demonic algebra [5]; general correctness is supported by
the works [2,4,25,3,34,14,32,17].

Despite various links between partial, total and general correctness, the ap-
proaches differ essentially by giving distinct semantics to programs and distinct
laws about programs. As a consequence, a particular program transformation
may be applicable in one approach, but not in the others. Even if a transfor-
mation rule is valid in all three approaches, this has to be proved separately for
each of them.

Here comes into play the algebraic approach of identifying basic laws that
programs satisfy, collecting them as axioms of algebraic structures, and taking
programs as elements of these algebras. The first benefit is that reasoning carried

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 157–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

158 W. Guttmann

out at the algebraic level is valid in any concrete model that satisfies the axioms;
typically there are several in the literature. The second benefit is that reasoning
can be supported by automated theorem provers and counterexample genera-
tors such as Prover9/Mace4, since the axioms are usually first order conditional
equations.

It turns out that partial, total and general correctness have a fairly large
set of common axioms, certainly large enough to prove complex program trans-
formations. Such a transformation will then be valid in all three approaches,
since each of them satisfies the common axioms, and possibly further ones. So
the third benefit is that reasoning has to be performed only once, provided the
transformation is stated so that it meaningfully talks about programs in each
particular approach. At least for while-programs this can be achieved, as this
paper shows.

In Section 2, we present the common set of axioms, namely weak omega
algebra with domain.

In Section 3, we discuss which further axioms have to be added to obtain
partial, total or general correctness. We particularly focus on general correctness,
since it is developed less well than the others. The main contribution here is a
reduction of our previous axioms [17] to the minimum necessary to represent the
Egli-Milner order, which is used for the semantics of loops and recursion.

In Section 4, we show that this minimal axiomatisation is still sufficient to
develop a useful theory of general correctness, which includes full recursion, cor-
rectness statements and a correctness calculus. Some results require new proofs
due to the reduced set of axioms. Although carried out in a general correct-
ness setting, the development provides a semantics of while-loops that also suits
partial and total correctness.

This is established in Section 5, where we return to the common axioms. We
use the unified semantics to state and prove transformations that bring while-
programs to a normal form. This result is known for partial correctness [27] and
has recently been extended to total correctness [35], but both proofs use a pro-
gram semantics and axioms specific to the respective correctness approach. Our
proof avoids this and thus gives a transformation valid in all three approaches;
in particular, this is new for general correctness. Additionally, we extend the
result to programs with non-deterministic choice.

2 Common Axioms

In this section, we present the axioms which are common to partial, total and
general correctness. They are grouped in algebraic structures which are funda-
mental to many branches of computer science, not only program semantics.

Former investigations have shown that these structures underly various cor-
rectness approaches. For a detailed discussion and concrete models we refer to
[28,31,9] for partial correctness, to [37,19,30,5,20] for total correctness, and to
[32,17] for general correctness.

Partial, Total and General Correctness 159

2.1 Choice and Composition

A weak semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, the operation · distributes over + in both arguments
and 0 is a left annihilator, that is, 0 ·a = 0. We assume 0 	= 1, otherwise S would
be trivial. A semiring is a weak semiring in which 0 is also a right annihilator,
that is, a · 0 = 0. We frequently abbreviate a · b with ab.

A weak semiring is idempotent if + is, that is, if a + a = a. In an idempotent
weak semiring the relation a ≤ b ⇔def a + b = b is a partial order, called the
natural order on S [9]. The operations + and · are isotone and a + b is the join
of a and b with respect to the natural order. An idempotent weak semiring is
bounded if it has a greatest element $, such that a ≤ $.

Our notation reflects the intended relational model, where elements of S rep-
resent the state transition relation or input/output behaviour of programs. In
this model, the operations + and · are non-deterministic choice and sequential
composition, respectively. Moreover, 0, 1 and $ are the empty, identity and uni-
versal relations, respectively, and ≤ is the subset order, so that 0 ≤ 1 ≤ $ holds,
for example. Hence a ≤ b states that a is a refinement of b. To avoid confusion,
it should be kept in mind that other approaches in the literature use different
conventions, such as the reverse order in [37].

2.2 Finite and Infinite Iteration

A (weak) Kleene algebra [26,29] is a structure (S, ∗) such that S is an idempotent
(weak) semiring and the operation star ∗ satisfies the unfold and induction laws

1 + a · a∗ ≤ a∗ b + a · c ≤ c⇒ a∗ · b ≤ c
1 + a∗ · a ≤ a∗ b + c · a ≤ c⇒ b · a∗ ≤ c

for a, b, c ∈ S. As a consequence, a∗b is the least fixpoint of λx.ax + b and ∗ is
isotone with respect to ≤. We also have the sliding law a(ba)∗ = (ab)∗a and the
decomposition laws (a + b)∗ = a∗(ba∗)∗ = (a∗b)∗a∗.

A (weak) omega algebra [6,29] is a structure (S, ω) such that S is a (weak)
Kleene algebra and the operation omega ω satisfies the unfold and co-induction
laws

aω = a · aω c ≤ a · c + b⇒ c ≤ aω + a∗ · b
for a, b, c ∈ S. As a consequence, aω +a∗b is the greatest fixpoint of λx.ax+b and
ω is isotone with respect to ≤. Any weak omega algebra is bounded since 1ω = $.
Moreover, aω$ = aω = a∗aω and a∗0 ≤ a∗aω0 = aω0 and c ≤ a · c ⇒ c ≤ aω,
whence aω is the greatest fixpoint of λx.ax.

The Kleene star and omega operations represent finite and infinite iteration,
respectively. They are used to conveniently express the semantics of loops.

2.3 Tests and Domain

A test semiring [29] is an idempotent weak semiring (S, +, 0, ·, 1) with a distin-
guished set of elements test(S) ⊆ S called tests and a negation operation ¬ on
tests such that (test(S), +, 0, ·, 1,¬) is a Boolean algebra. We also write p for ¬p.

160 W. Guttmann

Tests allow us to represent the conditional statement by if p then a else b =def
pa+pb. Note that negation applies only to elements of test(S), not to all elements
of S. We use the letters p, q, r to denote tests in this paper.

A domain semiring [9] is a structure (S, �) such that S is a test semiring and
the domain operation � : S → test(S) satisfies the axioms

a ≤ �a · a �(p · a) ≤ p �(a · �b) ≤ �(a · b)

for a, b ∈ S and p ∈ test(S). The alternative axiomatisation of [11,10] can also
be used. Useful properties for a, b ∈ S and p ∈ test(S) are

�a ≤ p⇔ a ≤ pa a ≤ b⇒ �a ≤ �b a = �aa �p = p

a ≤ 0⇔ �a ≤ 0 �(a + b) = �a + �b �(pa) = p�a �(a · �b) = �(a · b)

If S is bounded, a characterisation of domain is �a ≤ p ⇔ a ≤ p$ [1]. We also
use its instance a ≤ �a$.

An element a ∈ S is total if �a = 1. In a bounded setting without domain, we
can use a$ = $ instead. In a bounded domain semiring, a$ = $ implies �a = 1,
but the converse does not hold in general.

The domain of the program a represents the initial states from which a tran-
sition under a is possible. In this paper, we use it for the axiomatic treatment
of general correctness in Sections 3.3 and 4; see [31,5,20] for applications of the
domain operation in partial and total correctness.

3 Axioms for Partial, Total and General Correctness

In this section, we characterise partial, total and general correctness, and show
how to obtain each by extending the axioms introduced in Section 2. We par-
ticularly focus on general correctness and the axioms necessary to represent the
Egli-Milner order. The general setting is a bounded domain semiring; recursion
is treated in Section 4.

To motivate the axioms, let loop denote the endless loop or the program which
never terminates [34]. In a conventional setting, we expect that the endless loop
satisfies loop · a = loop for all programs a, and a · loop = loop if a is total. Based
on these requirements, loop is formally characterised below. For a theory without
the law loop · a = loop, describing lazy execution of programs, we refer to [18].

3.1 Partial Correctness

Because partial correctness ignores termination issues, there is no need to rep-
resent that the execution of a program might not terminate. Nevertheless a
semantics must be assigned to loop, and this is done by interpreting the absence
of terminating executions as non-termination. As a consequence, if a program
has both a terminating and a non-terminating execution, the terminating one is
chosen, simply because it is present. Thus partial correctness can be informally
characterised by ‘termination absorbs non-termination’.

Partial, Total and General Correctness 161

In the algebraic setting this translates to the law loop+a = a for each program
a, hence + models angelic non-determinism according to [36]. By definition of
the natural order, we thus obtain loop ≤ a for each a, and therefore loop = 0. It
follows that loop is the least solution of the equation a = a, or the least fixpoint
of the corresponding identity function. This motivates why recursion is modelled
by least fixpoints with respect to the natural order.

Another consequence of loop = 0 is the law a · 0 = 0 for total a, and hence
even for all a. This law cannot be proved from the axioms introduced in Section
2, but has to be added as the characteristic axiom of partial correctness. Hence
the underlying structures are semirings, Kleene algebras and omega algebras,
without the qualifier ‘weak’. Observe that the new axiom can equivalently be
expressed as $ · 0 = 0.

Theories of partial correctness include Hoare logic [21], weakest liberal pre-
conditions [12], Kleene algebra with tests [28] and with domain [9].

3.2 Total Correctness

On the other hand, total correctness takes the issue of termination very seriously;
in concrete models it is typically represented by adding a special value, predicate
or variable. To guarantee that the execution of a program terminates irrespective
of non-deterministic choices, only the complete absence of non-terminating exe-
cutions is interpreted as termination. As a consequence, if a program has both
a terminating and a non-terminating execution, the non-terminating one is cho-
sen. Thus total correctness can be informally characterised by ‘non-termination
absorbs termination’.

In the algebraic setting this translates to the law loop + a = loop for each
program a, hence + models demonic non-determinism according to [36]. By
definition of the natural order, we thus obtain a ≤ loop for each a, and therefore
loop = $. Thus recursion in total correctness is modelled by greatest fixpoints
with respect to the natural order.

Another consequence of loop = $ is the law $ · a = $ for all a, which also
cannot be proved from the axioms in Section 2. It can equivalently be expressed
as $·0 = $, and has to be added as the characteristic axiom of total correctness.

Theories of total correctness include weakest preconditions [12], the Unifying
Theories of Programming [22], demonic refinement algebra [37] and demonic
algebra [5].

3.3 General Correctness

In general correctness, terminating and non-terminating executions are treated
independently. It therefore offers a finer distinction than either partial or total
correctness [25,15]. For example, the program 1+ loop, which equals 1 in partial
correctness and loop in total correctness, is neither 1 nor loop in general cor-
rectness; it has both a terminating and a non-terminating execution. The choice
operation + models erratic non-determinism according to [36].

162 W. Guttmann

However, a price must be paid for this additional precision: the natural order
has to be replaced by the more complex Egli-Milner order to model recursion.
In fact, the semantics of recursion is given by least fixpoints with respect to this
order. The natural order is still used for refinement, as it is in partial and total
correctness.

Theories of general correctness include those of [2,4,25,3], the commands of
[34,32] and the prescriptions of [14].

As observed above, loop+a /∈ {a, loop} in general, and therefore loop /∈ {0,$}.
To obtain a representation for loop, we first recall that $·0 = 0 = loop in partial
correctness and $ · 0 = $ = loop in total correctness. It is therefore manifest to
try loop = $·0, and this attempt is confirmed by verifying it in concrete models
of general correctness such as those of [34,14,32].

The element $·0 occurs in several contexts, such as infinite computations and
temporal logic [13,33,29]. For general correctness, it is important as the intended
least element of the Egli-Milner order, hence we call this element L =def $ · 0.
By itself, this definition does not impose any restrictions; this has to be done by
adding further axioms to obtain general correctness.

Such axioms, about L and another element H corresponding to the command
havoc of [34], are studied in our previous work [17]. There we propose the fol-
lowing four axioms:

(L1) �aL ≤ aL (H1) a ≤ b + L ∧ a ≤ b + H⇒ a ≤ b
(L2) 1 ≤ �L (H2) a ≤ a0 + H

Based on these axioms, a theory of general correctness is derived including cor-
rectness statements, a correctness calculus, specification constructs, a loop refine-
ment rule, and a representation of least fixpoints with respect to the Egli-Milner
order in terms of the natural order. By domain axioms, (L1) is equivalent to
�aL = aL and (L2) is equivalent to 1 = �L.

Although the above axioms are independent, our previous work does not an-
swer which of them, or yet others, are essential to build a meaningful theory of
general correctness. In the remainder of this section, we show that under reason-
able assumptions we cannot do away with (L1) and (L2). The topic of Section 4
is to show that these two axioms indeed suffice to derive a useful theory.

We start by defining the relation / that is planned to become the Egli-Milner
order, whence we call it the Egli-Milner relation:

a / b⇔def a ≤ b + a0 ∧ b ≤ a + �(a0)$.

This definition is justified by verifying that it instantiates to the Egli-Milner
order given in [34,32,16]; the calculation is similar to the one in [17]. The second
condition b ≤ a + �(a0)$ is equivalent to ¬�(a0)b ≤ a.

Remark. Intuitively, forming the product a0 cuts away all terminating exe-
cutions of a, hence the term �(a0) represents those states from which non-
terminating executions of a exist. Its complement ¬�(a0) represents the initial
states from which termination is guaranteed. By restricting both inequalities

Partial, Total and General Correctness 163

of the Egli-Milner relation to these states, we obtain ¬�(a0)a = ¬�(a0)b, which
means that a and b must have the same executions in states from which a cer-
tainly terminates. The intuition for the remaining states is that b may or may
not terminate, but it must have at least the terminating executions of a.

The main result of this section precisely characterises the Egli-Milner order. To
state it, we consider the following consequence of (L1):

(L3) �(a0)L ≤ a

It is equivalent to �(a0)L = a0 and [17, Lemma 2] shows (L1)∧(L2)⇔ (L3)∧(L2).

Theorem 1. The relation / is a partial order if and only if (L3) holds. It has
the least element L if and only if (L2) holds. It has no greatest element. The
operations + and · are isotone with respect to /.

Proof. Reflexivity follows immediately from the definition of /.
We show that / is antisymmetric if and only if (L3) holds. Assume (L3) and

a / b and b / a. Then b0 ≤ (a + �(a0)$)0 = a0 + �(a0)L = a0 + a0 = a0, and
symmetrically a0 ≤ b0. Thus a ≤ b + a0 ≤ b + b0 = b and symmetrically b ≤ a,
hence a = b.

For the converse implication assume that / is antisymmetric. Then (L3) holds
if we can show �(a0)L / a0 and a0 / �(a0)L. The latter follows immediately from
the definition of / and the former follows by �(a0)L = �(a0)L0 ≤ a0 + �(a0)L0
and

a0 ≤ �(a0)a0 ≤ �(a0)$0 = �(a0)L ≤ �(a0)L + �(�(a0)L0)$

using a domain axiom in the first step.
We next show that (L3) implies that / is transitive, which completes the proof

of the first claim. Assume a / b and b / c. Then b0 ≤ a0 as shown above, hence
a ≤ b + a0 ≤ c + b0 + a0 = c + a0 and c ≤ b + �(b0)$ ≤ a + �(a0)$. But this
implies a / c.

For the second claim, consider L / b. Since L ≤ b + L0 = b + L always holds,
L / b is equivalent to b ≤ L + �(L0)$ = �LL + �L$ = �L$. This holds for all b if
and only if $ ≤ �L$. By characterisation of domain, this is equivalent to 1 ≤ �L.

For the third claim, assume 0 / b and 1 / b. The former implies that b ≤
0 + �(0 · 0)$ = �0$ = 0$ = 0. Thus the latter implies 1 ≤ b + 1 · 0 = 0 + 0 = 0,
a contradiction.

To see that + and · are isotone, assume a / b. Then a + c / b + c, since
a+c ≤ b+a0+c = b+c+(a+c)0 and b+c ≤ a+�(a0)$+c ≤ a+c+�((a + c)0)$.
Moreover ca / cb, since ca ≤ c(b + a0) = cb + ca0 and

cb ≤ c(a + �(a0)$) = ca + �(c�(a0))c�(a0)$ ≤ ca + �(ca0)$.

Finally ac / bc, since ac ≤ (b + a0)c = bc + a0 ≤ bc + ac0 holds as well as
bc ≤ (a + �(a0)$)c ≤ ac + �(ac0)$. ��

164 W. Guttmann

This means that axioms (L1) and (L2) are equivalent to the requirement that the
Egli-Milner relation is a partial order with least element L. Let us discuss why
this is a reasonable assumption. First, it holds in concrete models such as that
of [34]. Second, if we do not assume a partial order, it is difficult to define least
fixpoints, which are necessary for loops and recursion. Third, a characteristic of
general correctness is that the endless loop L is the least fixpoint of the identity
function with respect to the Egli-Milner order, hence its least element.

Remark. This leaves open the question, whether the Egli-Milner relation can be
defined in another way, which requires less or different axioms. Besides the alter-
native definition of [17], which is based on (H1) and (H2), we have investigated
the following candidates:

– a /1 b⇔def b ≤ a + �(a0)$ ∧ a ≤ b + L
– a /2 b⇔def b ≤ a + �(a0)$ ∧ a ≤ b + �(a0)L
– a /3 b⇔def b ≤ a + �(a0)$ ∧ a ≤ b + ¬�(b0)L
– a /4 b⇔def b ≤ a + �(a0)$ ∧ a ≤ b + ¬�(b0)�(a0)L

The relations /1,2 are preorders; they are orders if and only if (L3) holds; they
have least element L if and only if (L2) holds. The relations /3,4 are orders; they
have least element L if and only if both (L2) and (L3) hold. Assuming (L3), the
orders / and /2 and /4 coincide, as do /1 and /3.

In all of the above cases, (L2) and (L3) are necessary to obtain a partial
order with least element L. We have not found a way to replace the condition
b ≤ a + �(a0)$ to obtain a suitable, yet different relation.

An improvement over previous treatments such as [34,32] is that we abstract
from the concrete definition of commands as pairs of termination and transition
information.

An improvement over our previous work [17] is that we no longer require the
axioms (H1) and (H2), and hence it is not necessary to introduce the new element
H. This is beneficial, since with (H1) we omit an axiom which is a conditional
equation, that is, an implication. In the basic case of a bounded domain semiring
we thus have an equational axiomatisation, which can be handled significantly
better by automated theorem provers [11,7]. In the presence of loops or recursion,
however, the necessary fixpoints are introduced by conditional equations such as
those of Kleene algebra.

4 General Correctness and Loops

In this section, we develop the theory of general correctness based on the axioms
(L1) and (L2), and hence the Egli-Milner order / with least element L. The
combined treatment with partial and total correctness is resumed in Section 5.

We treat full recursion, loops, correctness statements and correctness calculus,
in this sequence. Our previous work [17] proves some of the following results
based on the axioms (L1), (L2), (H1) and (H2); the contribution here is to show
that (L1) and (L2) suffice. The combined iteration operator is new.

Partial, Total and General Correctness 165

Throughout this section the underlying structure is a bounded domain semi-
ring S satisfying (L1) and (L2). Additional axioms for fixpoints and loops are
introduced as required. In Section 4.4 we give an outlook on pre-post specifica-
tions which require further axioms.

This section serves a twofold purpose. First, it shows that a useful theory of
general correctness can be derived from very basic assumptions. Second, it is a
precursor for Section 5 by deriving a semantics of while-loops.

4.1 Recursion

We first derive least fixpoints with respect to the Egli-Milner order / from
fixpoints with respect to the natural order ≤. This is interesting, because ≤ is
much simpler than / and hence it becomes much easier to compute the semantics
of recursive programs. The results in this section require (L3) only.

Let f : S → S be the characteristic function of the recursion. We assume that
f is isotone with respect to ≤ and /. Moreover we assume that the least fixpoint
μf and the greatest fixpoint νf of f with respect to ≤ exist. These assumptions
are reasonable, since they are satisfied for typical programming constructs; they
certainly apply for the derivation of the while-loop in Section 4.2. The least
fixpoint of f with respect to the Egli-Milner order / is denoted by ξf .

The proof of our first result is very similar to that in [17], except that it
accounts for the modified Egli-Milner order. We reproduce it to be self-contained.

Theorem 2. Let a ∈ S, then a = ξf ⇔ μf ≤ a ≤ νf ∧ a / μf ∧ a / νf .

Proof. The forward implication is clear since ξf is the least fixpoint with respect
to /. For the backward implication, let μf ≤ a ≤ νf and a / μf and a / νf . By
isotony of f we obtain μf = f(μf) ≤ f(a) ≤ f(νf) = νf and f(a) / f(μf) = μf
and f(a) / f(νf) = νf . From these facts and the assumptions we obtain:

– a / f(a) since a ≤ μf + a0 ≤ f(a) + a0 and f(a) ≤ νf ≤ a + �(a0)$.
– f(a) / a since f(a) ≤ μf +f(a)0 ≤ a+f(a)0 and a ≤ νf ≤ f(a)+�(f(a)0)$.

Hence a = f(a) by (L3) and Theorem 1. Let b ∈ S such that b = f(b), hence
μf ≤ b ≤ νf . Then a / b since a ≤ μf +a0 ≤ b+a0 and b ≤ νf ≤ a+�(a0)$. ��
Its important consequence is an explicit formula for ξf . This requires a new
proof due to the modified Egli-Milner order and the limited set of axioms.

Corollary 3. ξf exists⇔ νf ≤ μf + �(νf0)$ ⇔ ξf = νf0 + μf .

Proof. Assuming νf ≤ μf + �(νf0)$, we show ξf = νf0 + μf by Theorem 2.
Since μf ≤ νf0 + μf ≤ νf it suffices to show νf0 + μf / μf and νf0 + μf / νf .
But these follow since νf0 + μf = μf + (νf0 + μf)0 ≤ νf + (νf0 + μf)0 and
μf ≤ νf ≤ μf +�(νf0)$ = μf + νf0+�(νf0)$ = νf0+μf +�((νf0 + μf)0)$ using
characterisation of domain in the third step.

If ξf = νf0 + μf , then clearly ξf exists.
Finally assume that ξf exists. By Theorem 2 we obtain ξf ≤ μf + ξf0 and

νf ≤ ξf +�(ξf0)$, hence νf ≤ μf + ξf0+�(ξf0)$ = μf +�(ξf0)$ ≤ μf +�(νf0)$
using characterisation of domain in the second step and ξf ≤ νf in the third. ��

166 W. Guttmann

4.2 While-Loops

We instantiate the results of Section 4.1 to obtain the semantics of the while-
loop. To this end, let f(x) = ax + b. Then f is isotone with respect to ≤ and,
by Theorem 1, also with respect to /. To describe the extremal fixpoints with
respect to ≤, we now assume that S is also a weak omega algebra. Then μf = a∗b
and νf = aω + a∗b.

For the following results, we also need (L2). An equivalent characterisation of
(L2) in a weak omega algebra is aω ≤ �(aω0)$ for all a. Indeed, instantiating
a = 1 yields $ ≤ �L$ and hence (L2), and the converse implication follows by
characterisation of domain from �aω = �(aω�L) = �(aω$L) = �(aω$0) = �(aω0).

By (L2) we thus obtain νf = μf + aω ≤ μf + �(aω0)$ ≤ μf + �(νf0)$, hence
ξf exists by Corollary 3, and ξf = νf0 + μf = aω0 + a∗b. This prompts us to
introduce the notation x◦ =def xω0 + x∗ combining infinite and finite iteration
appropriately. In different axiomatic settings, we find the combinations xω + x∗

called ‘strong iteration’ [37] and xω + x∗y [6].
As usual in general correctness [2,34,32,16], the semantics of the while-loop is

given by while p do a = ξ(λx.pax + p), hence we have established the following
result.

Corollary 4. Let p ∈ test(S) and a ∈ S, then while p do a = (pa)◦p.

Remark. The test ∇x =def �xω represents the initial states of x from which x
can be iterated infinitely. In [17] we show that in presence of (L1) and (L2),
this complies with the axiomatisation of ∇ given in [8]. In particular, we obtain
xω0 = ∇xL, and hence while p do a = ∇(pa)L + (pa)∗p.

Theorem 1 shows that choice and composition are isotone with respect to /.
Hence also the conditional statement if p then a else b = pa + pb is isotone in
a and b. We complete this by showing that while p do a is isotone in a, which
follows from Theorem 6 below. It needs a few general results about our combined
iteration operator. They supplement the sliding, unfold and decomposition laws
for the star operation and will be useful in Section 5, too.

Lemma 5. Let a and b be elements of a weak omega algebra. Then

1. a(ba)ω = (ab)ω.
2. a(ba)◦ = (ab)◦a.
3. a◦ = 1 + aa◦ = 1 + a◦a.
4. (a + b)ω = (a∗b)ω + (a∗b)∗aω.
5. (a + b)◦ = (a∗b)◦a◦ = (a◦b)◦a◦ = a◦(ba◦)◦.

Proof.

1. a(ba)ω = aba(ba)ω by omega unfold, hence a(ba)ω ≤ (ab)ω by omega co-
induction. By swapping a and b, this implies (ab)ω = ab(ab)ω ≤ a(ba)ω.

2. a(ba)◦ = a((ba)ω0 + (ba)∗) = a(ba)ω0 + a(ba)∗ = (ab)ω0 + (ab)∗a = (ab)◦a.
3. 1 + aa◦ = 1 + a(aω0 + a∗) = 1 + aaω0 + aa∗ = aω0 + a∗ = a◦. The second

equality follows since aa◦ = a◦a by sliding with b = 1.

Partial, Total and General Correctness 167

4. The part (≤) follows by omega co-induction from (a+b)ω ≤ aω +a∗b(a+b)ω.
But this follows from (a+ b)ω = (a+ b)(a+ b)ω = a(a+ b)ω + b(a+ b)ω again
by omega co-induction. For the part (≥) we observe

(a∗b)∗aω ≤ (a∗b)∗a∗(a + b)ω = (a + b)∗(a + b)ω = (a + b)ω .

The remaining (a∗b)ω ≤ (a + b)ω follows by omega co-induction from

(a∗b)ω = a∗b(a∗b)ω = (1 + aa∗)b(a∗b)ω = b(a∗b)ω + aa∗b(a∗b)ω

= b(a∗b)ω + a(a∗b)ω = (a + b)(a∗b)ω .

5. The first equality follows since

(a + b)◦ = (a + b)ω0 + (a + b)∗ = ((a∗b)ω + (a∗b)∗aω)0 + (a∗b)∗a∗

= (a∗b)ω0 + (a∗b)∗(aω0 + a∗) = (a∗b)◦a◦ .

By isotony the second equality reduces to (a◦b)◦a◦ ≤ (a∗b)◦a◦. But

(a◦b)ω0 = (a∗b + aω0)ω0 = (((a∗b)∗aω0)ω + ((a∗b)∗aω0)∗(a∗b)ω)0
= (a∗b)∗aω0 + (1 + (a∗b)∗aω0)(a∗b)ω0 = (a∗b)∗aω0 + (a∗b)ω0
= (a∗b)◦aω0 ≤ (a∗b)◦a◦

and (a◦b)∗a◦ ≤ (a∗b)◦a◦ follows by star induction from

a◦ + a◦b(a∗b)◦a◦ = a◦ + aω0 + a∗b(a∗b)◦a◦ = (1 + a∗b(a∗b)◦)a◦ = (a∗b)◦a◦ .

The third equality now follows by sliding. ��

Theorem 6. Let a, b ∈ S such that a / b. Then a∗ / b∗ and a◦ / b◦.

Proof. Assume a / b, hence a ≤ b+a0 and b ≤ a+�(a0)$. Then a∗ / b∗ amounts
to a∗ ≤ b∗ + a∗0 and b∗ ≤ a∗ + �(a∗0)$. The former follows by star induction
from 1 + a(b∗ + a∗0) ≤ 1 + (b + a0)b∗ + aa∗0 = 1 + bb∗ + a0 + aa∗0 ≤ b∗ + a∗0.
The latter follows using star decomposition in

b∗ ≤ (a + �(a0)$)∗ = a∗(�(a0)$a∗)∗ = a∗(�(a0)$)∗ = a∗(1 + �(a0)$(�(a0)$)∗)
= a∗ + a∗�(a0)$ ≤ a∗ + �(a∗0)$.

The last step holds by characterisation of domain since �(a∗�(a0)$) = �(a∗a0) ≤
�(a∗0).

The second claim a◦ / b◦ amounts to a◦ ≤ b◦ + a◦0 and b◦ ≤ a◦ + �(a◦0)$.
The former follows since aω0 ≤ a◦0 and a∗ ≤ b∗ + a∗0 ≤ b◦ + a◦0 as above. The
latter follows by replacing ∗ with ◦ in the calculation above, using Lemma 5. ��

4.3 Correctness Statements and Calculus

Let a ∈ S represent a program and three tests p, q, r ∈ test(S) represent con-
ditions on the state of a. As shown in [17], the following correctness claim is
appropriate in a general correctness setting:

ra0 ≤ 0 ∧ paq ≤ L .

168 W. Guttmann

In its first part, r describes the initial states from where termination of a has
to be guaranteed. In the second part, the precondition p describes the initial
states from where the postcondition q is established provided a terminates; a
hypothetical transition from p to q would have to result in non-termination. Thus
claims about terminating and non-terminating executions are distinguished.

The first part ra0 ≤ 0 is the algebraic equivalent of the Hoare triple r {a} 1
defined by [28,32]. It can be derived using existing Hoare calculi, with the ad-
ditional triple ¬�(pa)ω {while p do a} 1. This triple is valid by Corollary 4, since
¬�(pa)ω(pa)◦p0 = ¬�(pa)ω(pa)◦0 = ¬�(pa)ω(pa)ω0 = 0, using (pa)∗0 ≤ (pa)ω0.

The second part paq ≤ L has to be treated differently. It is implied by the
‘weak correctness’ claim pa = paq of [37], but in contrast to our previous treat-
ment, the two are no longer equivalent due to the restricted axioms. Hence we
define the ‘weaker correctness’ claim p �a� q ⇔def paq ≤ L. A calculus is given as
follows; its correctness is proved in [17].

Theorem 7. Let a, b ∈ S and p, q, r ∈ test(S). Then

p �0� q p �L� q q �1� q pr �1� q ⇒ p �r� q
p �a� q ∧ p �b� q ⇒ p �a + b� q p �a� q ∧ q �b� r ⇒ p �ab� r
rp �a� q ∧ rp �b� q ⇒ p �if r then a else b� q pq �a� q ⇒ q �while p do a� pq

4.4 Pre-post Specifications

We finally discuss the extensions necessary to obtain specifications given by pre-
and postconditions. An algebraic treatment in total correctness is given by [37].
In general correctness, we have to account for the termination precondition r, and
hence obtain the specification (r | p � q) with three components. As in Section
4.3, the test r describes the initial states from which execution must terminate.
Moreover, if the precondition p holds in the initial state, the postcondition q
must be established in the final states of terminating executions.

With tests p, q and r, the specification (r | p � q) is axiomatised as the
greatest element of S satisfying the general correctness claim:

x ≤ (r | p � q)⇔ rx0 = 0 ∧ pxq ≤ L .

We can then recover the element H =def sup{ x | x0 = 0 } as the particular
specification H = (1 | 1 � 1). While this allows us to prove several properties
about H, such as 1 ≤ H = H2 = H∗ and HL = L 	= H, we cannot derive (H1)
and (H2). Hence the present axioms are still less restrictive than those of our
previous work [17]. Further axioms about (r | p � q), which also give an explicit
characterisation of such specifications, are the subject of future work.

To show the usefulness of pre-post specifications, let us refine the specification
(r | q � qp) by the loop while p do a as proposed in [16]. Algebraically, this
means while p do a ≤ (r | q � qp), which is equivalent to r {while p do a} 1 and
q �while p do a� qp by the axiom above. The former follows from r ≤ ¬�(pa)ω

as shown in Section 4.3; this means that pa cannot be iterated infinitely from
states satisfying r. The latter follows from pq �a� q by Theorem 7; this is implied
by qpa = qpaq, meaning that pa preserves the invariant q.

Partial, Total and General Correctness 169

5 While-Programs

We now return to the combined treatment of partial, total and general correct-
ness. The setting in this section is a weak omega algebra with tests S.

We first give a unified semantics of while-programs. Using this semantics, we
state and prove the normal form theorem of [27,35] in our more general setting.
This newly establishes that the result holds in general correctness. We finally
extend it to while-programs with non-deterministic choice.

5.1 Unified Semantics

We first observe that the semantics of the while-loop derived for general correct-
ness in Corollary 4 is adequate also for partial and total correctness:

– Recall from Section 3.1 that a · 0 = 0 for all a in partial correctness. Hence
we obtain (pa)◦p = (pa)ω0 + (pa)∗p = (pa)∗p = μ(λx.pax + p). But this is
precisely the semantics of the while-loop in this setting, since recursion is
modelled by least fixpoints with respect to ≤.

– Recall from Section 3.2 that $ · 0 = $ in total correctness. It follows that
aω0 = aω$0 = aω$ = aω. Hence we obtain the proper semantics also in this
setting by (pa)◦p = (pa)ω0+ (pa)∗p = (pa)ω +(pa)∗p = ν(λx.pax+ p), since
recursion is modelled by greatest fixpoints with respect to ≤.

We can thus define a unified semantics of program constructs, including the
while-loop, which is appropriate for partial, total and general correctness:

a ; b =def ab
if p then a else b =def pa + pb

if p then a =def pa + p
while p do a =def (pa)◦p

This gives the correct semantics in each particular correctness approach. Results
proved using this semantics, applying only the axioms of Section 2, hold in
partial, total and general correctness. We call programs composed from atomic
programs by the above constructs while-programs.

Remark. Since the semantics of the while-loop has been derived as a special case
of recursion, the question is raised whether the general correctness semantics of
full recursion ξf = νf0 + μf obtained in Corollary 3 also suits partial and total
correctness.

For partial correctness, this is true, since νf0 + μf = 0 + μf = μf and μf is
the appropriate fixpoint operator.

For total correctness the appropriate fixpoint operator is νf , but νf0+μf 	= νf
in general, as the following counterexample shows. It uses the meet operation
inf, which is available in relational models such as [22]. Let f(x) = inf{1, x},
hence νf = f(νf) ≤ 1. Since f(0) = 0 and f(1) = 1, we have μf = 0 and νf = 1,
but νf0 + μf = 1 · 0 + 0 = 0 	= 1 = νf .

170 W. Guttmann

5.2 Normal Form Theorem

A while-program is in normal form if it has the form a ; while p do b where
a and b are while-free. Using this definition, [27] goes on to prove that every
while-program can be transformed into normal form; the statement is made
more precise below. The given proof is valid in partial correctness only, since it
uses both the axiom $ · 0 = 0 and the least fixpoint (pa)∗p as the semantics of
the loop while p do a.

Making this observation, [35] reproduces the result in total correctness, using
the axiom $ · 0 = $ and the greatest fixpoint (pa)ω +(pa)∗p for the above loop.
Actually, the setting is demonic refinement algebra [37], which is interdefinable
with weak omega algebra extended by $ · 0 = $ as shown in [24].

Our goal in the following is to prove the normal form result using the uni-
fied semantics of Section 5.1 and only axioms of weak omega algebra with tests.
This subsumes the theorems of [27,35] and newly establishes the result for gen-
eral correctness. The structure of the proof is the same as for partial and total
correctness: while-programs are successively transformed by moving inner while-
loops to the outside.

We discuss the three kinds of program transformations necessary to perform
these steps, and prove their correctness. Before that, let us introduce the neces-
sary tools and formally state the theorem.

For a ∈ S and p ∈ test(S) we say that a preserves p if pa ≤ ap and pa ≤ ap.
Observe that pa ≤ ap is equivalent to pa = pap. Moreover, tests preserve any
test. The following two lemmas record general facts related to preservation and
the import of tests into iterations. Some of these are known from [26,29]; we are
particularly interested in the properties of our combined iteration ◦.

Lemma 8. Let a and b be elements of a weak omega algebra such that ba ≤ ab.
Then

1. ba∗ ≤ a∗b and b∗a ≤ ab∗.
2. baω ≤ aω and (ab)ω ≤ aω.
3. ba◦ ≤ a◦b.

Proof. Assume ba ≤ ab.

1. b + a∗ba ≤ b + a∗ab = (1 + a∗a)b ≤ a∗b, hence ba∗ ≤ a∗b by star induction.
a + bab∗ ≤ a + abb∗ = a(1 + bb∗) ≤ ab∗, hence b∗a ≤ ab∗ by star induction.

2. baω = baaω ≤ abaω, hence baω ≤ aω by omega co-induction. For the second
claim we have (ab)ω = a(ba)ω ≤ a(ab)ω by Lemma 5, thus (ab)ω ≤ aω by
omega co-induction.

3. ba◦ = b(aω0 + a∗) = baω0 + ba∗ ≤ aω0 + a∗b = (aω0 + a∗)b = a◦b. ��

Lemma 9. Let a ∈ S and p ∈ test(S) such that pa ≤ ap. Then

1. pa∗ = p(pa)∗.
2. paω = p(pa)ω = (pa)ω.
3. pa◦ = p(pa)◦.

Partial, Total and General Correctness 171

Proof. Assume pa ≤ ap.

1. Since ppa ≤ pap by the assumption, we have p(pa)∗ ≤ (pa)∗p by Lemma 8,
hence p + p(pa)∗a ≤ p + p(pa)∗pa = p(1 + (pa)∗pa) ≤ p(pa)∗, and therefore
pa∗ ≤ p(pa)∗ by star induction. The converse inequality follows immediately.

2. paω = paaω = papaω, hence paω ≤ (pa)ω by omega co-induction, and more-
over (pa)ω = pa(pa)ω ≤ paaω = paω. Thus paω = ppaω = p(pa)ω.

3. pa◦ = p(aω0 + a∗) = paω0 + pa∗ = p(pa)ω0 + p(pa)∗ = p((pa)ω0 + (pa)∗) =
p(pa)◦. ��

For s ∈ S and p, q ∈ test(S) we say that s assigns p to q if s = s(pq + p q).
Intuitively, s models a program that assigns the value of p to a new Boolean
variable whose value is tested by q. The consequence of using a new variable is
that programs can be augmented by the assigning subprogram s without essential
changes and that q is preserved by components of the original program.

Theorem 10. Every while-program, suitably augmented with assigning subpro-
grams, is equivalent to a while-program in normal form under certain preserva-
tion assumptions.

The following construction makes explicit where to add assigning subprograms
and which preservation assumptions are required.

Remark. Both previous versions of the normal form theorem [27,35] talk about
augmenting with ‘subprograms of the form’ s ; (pq + p q), and [27] adds that s
is an ‘uninterpreted atomic program symbol’. Let us therefore clarify our under-
standing of this. Syntactically, with each augmentation a new atomic subprogram
is inserted, which we denote by s. It is semantically interpreted as an element
s ∈ S such that s = s(pq + p q). The program transformation is an equation in
which s is universally quantified, over all elements satisfying this equation. For
some values of s, such as s = 0 or s = $ · 0, the claim is trivial; but there are
also sensible choices as described above.

The individual program transformations, that move while-loops out of the three
kinds of programming constructs, are stated and proved similarly to [27,35].
However, the different semantics of the while-loop must be taken into account;
this is done by Lemmas 5, 8 and 9 about the ◦ operator. Moreover, we take care
to use only axioms of weak omega algebra with tests.

The first transformation moves two while-programs in normal form out of a
conditional, and hence into normal form. Note that any while-free program a
can be brought into normal form a ; while 0 do 1. This can be applied first if
one of the branches is while-free as, for example, in the one-armed conditional.
A similar remark applies to programs in sequential composition below.

Lemma 11. Let s assign p to q and let a1, a2, b1, b2 preserve q. Then

s ; if p then (a1 ; while r1 do b1) else (a2 ; while r2 do b2)
= s ; (if q then a1 else a2) ; while qr1 + qr2 do (if q then b1 else b2) .

172 W. Guttmann

Proof. Since s = s(pq + p q), it suffices to show

(pq + p q)(pa1(r1b1)◦r1 + pa2(r2b2)◦r2)
= (pq + p q)(qa1 + qa2)((qr1 + qr2)(qb1 + qb2))◦qr1 + qr2 .

The right hand side of this equation is simplified by

– (pq + p q)(qa1 + qa2) = pqqa1 + pqqa2 + p qqa1 + p q qa2 = pqa1 + p qa2,
– (qr1 + qr2)(qb1 + qb2) = qr1qb1 + qr1qb2 + qr2qb1 + qr2qb2 = qr1b1 + qr2b2,
– qr1 + qr2 = (q + r1)(q + r2) = q r2 + qr1 + r1 r2 = qr1 + q r2.

Similarly simplifying the left hand side, it suffices to show

pqa1(r1b1)◦r1 + p qa2(r2b2)◦r2 = (pqa1 + p qa2)(qr1b1 + qr2b2)◦(qr1 + q r2) .

But this follows since

pqa1(qr1b1 + qr2b2)◦(qr1 + q r2) = pqa1q(qr1b1 + qr2b2)◦(qr1 + q r2)
= pqa1q(qqr1b1 + qqr2b2)◦(qr1 + q r2) = pqa1q(qr1b1)◦(qr1 + q r2)
= pqa1q(r1b1)◦(qr1 + q r2) = pqa1q(r1b1)◦q(qr1 + q r2)
= pqa1q(r1b1)◦qr1 = pqa1q(r1b1)◦r1 = pqa1(r1b1)◦r1

and similarly p qa2(qr1b1 + qr2b2)◦(qr1 + q r2) = p qa2(r2b2)◦r2 using Lemmas 8
and 9 because a1, a2, b1, b2 preserve q. ��

The second transformation moves a while-program in normal form out of a while-
loop, and hence into normal form by subsequent application of Lemma 11.

Lemma 12

while p do (a ; while q do b) = if p then (a ; while p + q do (if q then b else a)) .

Proof. The claim follows since

pa((p + q)(qb + qa))◦p + q + p = pa(qb + qpa)◦p q + p
= pa(qb)◦(qpa(qb)◦)◦p q + p = (pa(qb)◦(qpa(qb)◦)◦q + 1)p
= (pa(qb)◦q(pa(qb)◦q)◦ + 1)p = (pa(qb)◦q)◦p ,

using Lemma 5 several times. ��

The third transformation moves two while-programs in normal form out of a
sequential composition, and hence into normal form. Consider the composition
a1 ; (while p1 do b1) ; a2 ; (while p2 do b2) of two programs in normal form.
We first replace p1 with a new test q that is preserved by the second program
a2 ; while p2 do b2. By Lemma 8 it suffices to assume that a2 and b2 preserve q.

Lemma 13. Let s assign p to q. Then

s ; (while p do (a ; s)) ; b = s ; (while q do (a ; s)) ; b .

Partial, Total and General Correctness 173

Proof. Since s = s(pq + p q), it suffices to show, using c = as,

(pq + p q)(pc(pq + p q))◦p = (pq + p q)(qc(pq + p q))◦q .

But this follows from

((pq + p q)pc)◦(pq + p q)p = (pqc)◦p q = ((pq + p q)qc)◦(pq + p q)q

by sliding according to Lemma 5. ��

The two occurrences of the assigning subprogram s can be absorbed into a1 and
b1. We thus return to the composition a1 ; (while p1 do b1) ; a2 ; (while p2 do b2)
and assume that p1 is preserved by a2 ; while p2 do b2 without losing generality.
By the following lemma, we absorb this program into the first loop, introducing
a copy for the case where the first loop is not executed.

Lemma 14. Let b preserve p. Then

(while p do a) ; b = if p then b else (while p do (a ; if p then b)) .

Proof. If we can show p(pa(pb + p))◦p = pa(pa)◦pb, the claim holds since

pb + p(pa(pb + p))◦p = pb + pa(pa)◦pb = (1 + pa(pa)◦)pb = (pa)◦pb

by Lemma 5. But the missing step follows because

p(pa(pb + p))◦p = p(1 + pa(pb + p)(pa(pb + p))◦)p
= pa(pb + p)(pa(pb + p))◦p = pa((pb + p)pa)◦(pb + p)p = pa(pbpa + pa)◦pbp
= pa(pb0 + pa)◦pb = pa(pa)◦(pb0)◦pb = pa(pa)◦pb(0pb)◦ = pa(pa)◦pb ,

using Lemma 5 several times. ��

By applying this transformation, we obtain the program

a1 ; if p1 then (a2 ; while p2 do b2)
else (while p1 do (b1 ; if p1 then (a2 ; while p2 do b2))) .

Afterwards, we proceed as in [27,35]. First, the else branch is normalised by
moving the inner while-loop outside of the inner conditional and the outer while-
loop using Lemmas 11 and 12. Second, the outer conditional is normalised again
by Lemma 11. We thus obtain a program in normal form.

By successively applying the transformations of Lemmas 11–14 we can move
while-loops from the inside to the outside of the program, until the whole pro-
gram is in normal form. This proves Theorem 10.

5.3 Non-deterministic Programs

The choice operator + occurs in while-programs only in a restricted form, namely
within the conditional if p then a else b = pa + pb. However, the normal form

174 W. Guttmann

theorem does not assume that while-programs are deterministic; in fact the
atomic subprograms might as well be non-deterministic. This observation helps
us to turn an explicit non-deterministic choice into the restricted form of the
conditional.

For t ∈ S and r ∈ test(S) we say that t tosses r if t = trt = trt. Intuitively,
t models a program that non-deterministically assigns true or false to a new
Boolean variable whose value is tested by r. It is impossible to distinguish which
value was assigned between two immediately following tosses.

Programs composed from the constructs allowed for while-programs and the
non-deterministic choice

a or b =def a + b

are called non-deterministic while-programs. We can extend Theorem 10 to such
programs as follows.

Theorem 15. Every non-deterministic while-program, suitably augmented with
assigning and tossing subprograms, is equivalent to a while-program in normal
form under certain preservation assumptions.

In view of the transformations of Section 5.2, it remains to give one that deals
with the non-deterministic choice between two while-programs in normal form.
The following lemma eliminates the choice operation.

Lemma 16. Let t toss r. Then

t ; (a or b) = t ; if r then (t ; a) else (t ; b) .

Proof. Since t = trt = trt, the claim follows by t(a+ b) = ta+ tb = trta+ trtb =
t(rta + rtb). ��

Applying it to the program t ; ((a1 ; while p1 do b1) or (a2 ; while p2 do b2)),
where the choice is between programs in normal form, we obtain

t ; if r then (t ; a1 ; while p1 do b1) else (t ; a2 ; while p2 do b2) .

But this is brought into normal form using Lemma 11. Together with Lemmas
11–14 this proves Theorem 15.

Remark. We briefly discuss tossing elements. To this end, let t toss r. Then
tt = t(r + r)t = trt + trt = t + t = t. To simplify the transformation above, the
value of r is erased by another toss immediately after the conditional choice is
made. Hence there is no way to determine the outcome of the first toss within
the programs a and b of Lemma 16.

6 Conclusion

This work makes a point for using less axioms. It shows that many results of
general correctness can be derived in a very basic setting, despite the complexity

Partial, Total and General Correctness 175

caused by the Egli-Milner order and the finer termination information. It also
shows that by omitting characteristic axioms, a unified treatment of partial,
total and general correctness is possible, with a common semantics of programs
and common proofs of program transformations.

Future investigations concern axioms for pre-post specifications, refinement,
and further operators for general correctness [16], as well as applications in the
area of hybrid systems [23]. We also consider program transformations between
symmetric linear and tail recursion, known from a total correctness setting [20].

Acknowledgement. I thank all anonymous referees for their valuable remarks and
helpful suggestions.

References

1. Aarts, C.J.: Galois connections presented calculationally. Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology
(1992)

2. de Bakker, J.W.: Semantics and termination of nondeterministic recursive pro-
grams. In: Michaelson, S., Milner, R. (eds.) Automata, Languages and Program-
ming: Third International Colloquium, pp. 435–477. Edinburgh University Press,
Edinburgh (1976)

3. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science 43, 123–147 (1986)

4. Broy, M., Gnatz, R., Wirsing, M.: Semantics of nondeterministic and noncontin-
uous constructs. In: Bauer, F.L., Broy, M. (eds.) Program Construction. LNCS,
vol. 69, pp. 553–592. Springer, Heidelberg (1979)

5. De Carufel, J.-L., Desharnais, J.: Demonic algebra with domain. In: Schmidt, R.A.
(ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 120–134. Springer, Heidelberg
(2006)

6. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

7. Dang, H.-H., Höfner, P.: First-order theorem prover evaluation w.r.t. relation- and
Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and
Kleene Algebra in Computer Science: PhD Programme at RelMiCS10/AKA5, Re-
port 2008-04, pp. 48–52. Institut für Informatik, Universität Augsburg (April 2008)

8. Desharnais, J., Möller, B., Struth, G.: Algebraic notions of termination. Report
2006-23, Institut für Informatik, Universität Augsburg (October 2006)

9. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans-
actions on Computational Logic 7(4), 798–833 (2006)

10. Desharnais, J., Struth, G.: Domain axioms for a family of near-semirings. In:
Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 330–345.
Springer, Heidelberg (2008)

11. Desharnais, J., Struth, G.: Modal semirings revisited. In: Audebaud, P.,
Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 360–387. Springer,
Heidelberg (2008)

12. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs
(1976)

13. Dijkstra, R.M.: Computation calculus bridging a formalization gap. Science of
Computer Programming 37(1–3), 3–36 (2000)

176 W. Guttmann

14. Dunne, S.: Recasting Hoare and He’s Unifying Theory of Programs in the context
of general correctness. In: Butterfield, A., Strong, G., Pahl, C. (eds.) 5th Irish
Workshop on Formal Methods, Electronic Workshops in Computing. The British
Computer Society (July 2001)

15. Dunne, S., Galloway, A.: Lifting general correctness into partial correctness is ok.
In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 215–232. Springer,
Heidelberg (2007)

16. Dunne, S., Hayes, I., Galloway, A.: Reasoning about loops in total and general
correctness. In: Butterfield, A. (ed.) Second International Symposium on Unifying
Theories of Programming. LNCS, vol. 5713, Springer, Heidelberg (to appear)

17. Guttmann, W.: General correctness algebra. In: Berghammer, R., Jaoua, A.M.,
Möller, B. (eds.) RelMiCS/AKA 2009. LNCS, vol. 5827, pp. 150–165. Springer,
Heidelberg (2009)

18. Guttmann, W.: Lazy UTP. In: Butterfield, A. (ed.) Second International Sympo-
sium on Unifying Theories of Programming. LNCS, vol. 5713. Springer, Heidelberg
(to appear)

19. Guttmann, W., Möller, B.: Modal design algebra. In: Dunne, S., Stoddart, W.
(eds.) UTP 2006. LNCS, vol. 4010, pp. 236–256. Springer, Heidelberg (2006)

20. Guttmann, W., Möller, B.: Normal design algebra. Journal of Logic and Algebraic
Programming 79(2), 144–173 (2010)

21. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580, 583 (1969)

22. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice-Hall Europe
(1998)

23. Höfner, P., Möller, B.: An algebra of hybrid systems. Journal of Logic and Algebraic
Programming 78(2), 74–97 (2009)

24. Höfner, P., Möller, B., Solin, K.: Omega algebra, demonic refinement algebra
and commands. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136,
pp. 222–234. Springer, Heidelberg (2006)

25. Jacobs, D., Gries, D.: General correctness: A unification of partial and total cor-
rectness. Acta Informatica 22(1), 67–83 (1985)

26. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

27. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems 19(3), 427–443 (1997)

28. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic 1(1), 60–76 (2000)

29. Möller, B.: Lazy Kleene algebra. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125,
pp. 252–273. Springer, Heidelberg (2004)

30. Möller, B.: The linear algebra of UTP. In: Uustalu, T. (ed.) MPC 2006. LNCS,
vol. 4014, pp. 338–358. Springer, Heidelberg (2006)

31. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. The-
oretical Computer Science 351(2), 221–239 (2006)

32. Möller, B., Struth, G.: WP is WLP. In: MacCaull, W., Winter, M., Düntsch, I.
(eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 200–211. Springer, Heidelberg (2006)

33. Moszkowski, B.C.: A complete axiomatization of Interval Temporal Logic with
infinite time. In: Proceedings of the 15th Annual IEEE Symposium on Logic in
Computer Science, pp. 241–252. IEEE, Los Alamitos (2000)

34. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Transactions on Program-
ming Languages and Systems 11(4), 517–561 (1989)

Partial, Total and General Correctness 177

35. Solin, K.: A while program normal form theorem in total correctness. In:
Berghammer, R., Jaoua, A.M., Möller, B. (eds.) RelMiCS/AKA 2009. LNCS,
vol. 5827, pp. 322–336. Springer, Heidelberg (2009)

36. Søndergaard, H., Sestoft, P.: Non-determinism in functional languages. The Com-
puter Journal 35(5), 514–523 (1992)

37. von Wright, J.: Towards a refinement algebra. Science of Computer Program-
ming 51(1–2), 23–45 (2004)

Unifying Theories of Programming That
Distinguish Nontermination and Abort

Ian J. Hayes1, Steve E. Dunne2, and Larissa Meinicke3

1 The University of Queensland, Brisbane, 4072, Australia
2 School of Computing, University of Teesside, Middlesbrough, TS1 3BA, UK

3 Macquarie University, Sydney, Australia

Abstract. In this paper we focus on the relationship between a number of speci-
fication models. The models are formulated in the Unifying Theories of Program-
ming of Hoare and He, but correspond to widely used specification models. We
cover issues such as partial correctness, total correctness, and general correctness.

The properties we use to distinguish the models are these:
– whether they allow the specification of assumptions about the initial state

outside of which no guarantees are given about the behaviour of the program,
i.e., the program may “abort”;

– whether a specification may allow or even require nontermination as a valid
(non-aborting) outcome; and

– whether they allow the expression of tests or enabling conditions, outside of
which the program has no possible behaviour.

When considering termination, we consider both an abstract model, which only
distinguishes whether a program terminates or not, as well as models that in-
clude a notion of time: either abstract time representing a notion of progress or
real-time.

1 Introduction

The aim of this paper is to better understand the relationships between a number of mod-
els of program specifications. We are interested in whether they can express properties
such as total correctness, partial correctness, general correctness, timing properties, and
reactive behaviour. As a framework to relate these models we use Hoare and He’s Uni-
fying Theories of Programming (UTP) [1], because this theory is general enough to
do this succinctly.1 Section 2 addresses UTP designs (or specifications), which support
total-correctness specifications in the form of a precondition and a pre-post relation.
These correspond to specifications in VDM [2], the refinement calculus [3,4,5,6], and
B [7]. Section 3 examines Z specifications [8,9], which form the least expressive model
considered here.

Section 4 introduces a new model that extends designs to distinguish abort and non-
termination; this allows specification of both total- and partial-correctness properties.

1 The UTP models that we consider are based on homogeneous relations between states. These
are not rich enough to express both demonic and angelic choice simultaneously, which is possi-
ble in predicate transformer models, but such relational models are sufficient for the properties
explored in this paper.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 178–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Unifying Theories of Programming That Distinguish Nontermination and Abort 179

Extended Designs

Timed Designs

Timed Reactive Designs

General Correctness

PrescriptionsUTP Designs

Z Schemas Object−Z Schemas

Fig. 1. Relationships between models: most general at the bottom

Extended designs can also express general-correctness properties. General correctness
allows a termination set to be defined, but does not model a program aborting. General
correctness is explored in Section 5, and Section 6 highlights the distinction between
an assumption on the initial state and a termination set.

Section 7 generalises extended designs to allow timing properties to be expressed
by using an observation of the time, τ , with τ ′ = ∞ signifying nontermination; this
approach is similar to that used by Hehner [10]. Section 8 generalises this further to
allow the expression of reactive properties of traces of the program variables over time;
this model corresponds to the real-time refinement calculus [11,12,13,14,15]. Figure 1
summarises the relationships between the models graphically.

Before getting into the details of the models, we warn the reader that the literature
on the different models uses the term “precondition” in various different ways. It may
be any of

– an assumption: a condition characterising those initial states from which the pro-
gram is required to work properly or not be enabled, but outside of which it may
“abort” (for example, by crashing), or terminate capriciously with an incorrect re-
sult, or fail to terminate at all by executing forever;

– a termination set: the initial states from which termination is required;
– an enabling condition (or guard or test): execution can only begin from initial states

satisfying the condition (i.e., it is infeasible outside the enabling condition); or
– combinations of the above.

180 I.J. Hayes, S.E. Dunne, and L. Meinicke

In all cases it is a predicate on the initial state. These different interpretations of the
term “precondition” can lead to misunderstandings when moving from one model to
another. One aim of this paper is to clarify these distinctions by making it clear how
“precondition” is interpreted in each model.

Syntactic substitution. We use the notation r
[

e
v

]
to stand for the relation r with every

free occurrence of the variable name v replaced by the expression e. This can also be
generalised so that v is a list of variable names and e a corresponding list of expressions.

2 UTP Designs

In Hoare and He’s Unifying Theories of Programming (UTP), designs (or specifica-
tions) and programs are modelled via relations between the before and after program
states [1]. A special boolean observation okay is used to model program termination,
which in the model is indistinguishable from the program not aborting. Hoare and He
[1] also use the term stable. A design has the syntax (p - w), where p is a single-state
predicate on the before-values of the program variables and w characterises a relation
between before- and after-values of the program variables.2 For UTP designs the pre-
condition, p, represents both an assumption on the initial state and the set of initial
states from which termination is required. The semantics of a design is given by a rela-
tion characterised by the predicate

okay ∧ p⇒ okay′ ∧ w , (1)

where unprimed variable names correspond to the initial values of the variables and
primed names to their final values. If the program starts (i.e., okay holds) in an initial
state in which p holds, the program will terminate (i.e., okay′ will hold) and relation w
will hold between the initial and final states. Neither p nor w may refer to the obser-
vations okay and okay′.3 Designs only model total correctness. To simplify the presen-
tation below, we do not distinguish between a relation and the predicate characterising
that relation.

A design (p0 - w0) is refined by another design (p1 - w1), written

(p0 - w0) / (p1 - w1) ,

provided the semantic relation defined by the latter implies (is included in) the semantic
relation defined by the former, that is,

[(okay ∧ p1 ⇒ okay′ ∧ w1)⇒ (okay ∧ p0 ⇒ okay′ ∧ w0)] , (2)

where, as in Hoare and He [1], the notation [P] stands for the universal quantification
of P over all variables in the alphabet (including okay and okay′). Refinement condition
(2) holds if and only if

[p0 ⇒ (p1 ∧ (w1 ⇒ w0))] . (3)

2 Hoare and He [1] allow p to be a relation in general, but then introduce a constraint (H3) that
requires p to be single-state. The designs we describe here are thus their H3-designs.

3 Allowing p and w to refer to okay and okay′ doesn’t add anything because (p � w) is semanti-

cally equivalent to (p
[

true
okay

]
� w

[
true,true
okay,okay′

]
).

Unifying Theories of Programming That Distinguish Nontermination and Abort 181

There are three interesting extreme cases of designs:

abortUTP =̂ (false - true)
terminatesUTP =̂ (true - true)

magicUTP =̂ (true - false)

UTP designs form a complete lattice under the refinement ordering, with least element
abortUTP and greatest element magicUTP. The design terminatesUTP is the specifica-
tion that guarantees termination but nothing else. Note that the design (false - w) is
semantically equivalent to abortUTP for any relation w. A design is infeasible in any
state, v, for which the precondition p holds but the relation w doesn’t relate v to any
final state, i.e., the set of infeasible states are those satisfying p ∧ ¬ (∃ v′ • w). The
design magicUTP is everywhere infeasible.

3 Z Specifications

Let S be a Z schema [8,9] representing the program state, then the Z schema

Z
S
S′

R

can be used as a specification. Here S′ stands for S with all components decorated with
a prime, and R is a predicate relating the components of S and S′. To save space we
write the above schema in its equivalent horizontal form: [S; S′ | R].

In Z, the precondition of an operation is the predicate (∃ S′ • R), i.e., any initial state
for which there exists a corresponding final state. The precondition is the domain of the
relation R. Under the conventional so-called contract, or non-blocking, interpretation of
a Z operation schema [16], a precondition in Z represents, as for a UTP design, both
an assumption on the initial state and the set of initial states on which termination is
required. Thus the schema Z above is refined by a schema [S; S′ | Q], i.e., [S; S′ | R] /
[S; S′ | Q], provided

[(∃ S′ • R)⇒ ((∃ S′ • Q) ∧ (Q⇒ R))] .

Relating Z schemas and designs. Any Z schema of this form can be uniquely mapped
to a UTP design by the function ZD defined as follows.

ZD([S; S′ | R])=̂((∃ S′ • R) - R)

This mapping preserves the refinement ordering, and the image of the mapping forms a
subtheory of designs [1, Chap. 4].

182 I.J. Hayes, S.E. Dunne, and L. Meinicke

There are two interesting extreme cases:

abortZ =̂ [S; S′ | false]
terminatesZ =̂ [S; S′ | true]

where abortZ is the least program in the refinement ordering. These schemas corre-
spond to their equivalents using designs, i.e.,

ZD(abortZ) = abortUTP

ZD(terminatesZ) = terminatesUTP

but note that one cannot represent magic by a Z specification. More generally, Z cannot
represent infeasible specifications and hence the Z model is not as expressive as UTP
designs (or VDM pre/post specifications, or B specifications).

In Object-Z [17,18] operations are always terminating and the domain of the relation
R is treated as the operation’s enabling condition4. Hence for Object-Z the schema Z
above is mapped to a design as follows:

OZD([S; S′ | R])=̂(true - R) .

In the Object-Z model one can express infeasible specifications, although all specifica-
tions are terminating and non-aborting.

4 Distinguishing Nontermination and Abort

For reactive and real-time programs, it is often desirable to distinguish between abort
and nontermination, because nontermination can be a desirable property that one would
like to allow or even require in some circumstances. Even in the non-reactive case,
one would like to be able to specify heuristic search problems, where if the program
terminates, it returns a valid answer to a query, but the program is not guaranteed to
terminate for all queries. It is not possible to specify such programs using designs.

An important distinction between nontermination and abortion is that, while the for-
mer may sometimes be a desirable property, the latter never is, so while a specifica-
tion may sometimes tolerate abortion, it should never demand it. Even the specification
abortUTP, while everywhere admitting abortion, does not actually demand it. So while
some of our new constructs in this paper allow a specification sometimes to demand
nontermination, none of them provides a means of demanding abortion.

To allow such specifications to be expressed, we extend the model to allow nonter-
mination and a program aborting to be distinguished. To do this, we use the boolean
observation term′ to model termination, and the boolean observation ok′ to model the
program not aborting. Informally ok′ ∧ term′ in this model is equivalent to okay′ for
the UTP design model. As with the UTP design model, we also have the observations
ok, indicating that the program starts in a stable state (i.e., the preceding program has
not aborted), and term, indicating that the program starts at some finite time, (i.e., the

4 This is known in the Z and Object-Z literature as the blocking interpretation [16].

Unifying Theories of Programming That Distinguish Nontermination and Abort 183

preceding program terminated). We introduce a new form of design, an extended design
(p -X r), that if p holds initially, guarantees to deliver a post-state satisfying r with re-
spect to the pre-state. The syntax of an extended design uses “-X” to distinguish it from
a design, which uses just “-”. The assumption p holding initially does not guarantee
termination, but r may explicitly refer to term′ to require termination. For example, for
a relation w that does not refer to term′,

– (p -X term′ ∧ w) requires that if p holds initially, the program should terminate
and satisfy w between its pre-state and post-state;

– (p -X term′ ⇒ w) requires that if both p holds initially and the program terminates,
then it also satisfies w;

– (p -X (q ⇒ term′ ∧ w) ∧ (¬ q ⇒ ¬ term′)), where q is a single-state predicate
on the pre-state, requires that if p holds initially, then both the following conditions
hold: if q holds initially, the program should terminate and satisfy w; and if q does
not hold initially, the program never terminates.

For (non)termination there are three possibilities for each initial state: termination is
required, nontermination is required, or either termination or nontermination is possible.

The semantics of the extended design (p -X r) as a relation is characterised by the
following predicate:

(ok ∧ term ∧ p⇒ ok′ ∧ r) ∧ (¬ term′ ⇒ ok′) ∧ (term′ ⇒ term) . (4)

It says that if the program starts in a stable state at some finite time (i.e., ok ∧ term) in
an initial state in which p holds, then the program will remain in a stable state (i.e., ok′)
and relation r will hold between the initial and final states. A nonterminating program
is ipso facto non-aborting and therefore stable (¬ term′ ⇒ ok′), and a program can
only terminate if its predecessor terminated (term′ ⇒ term). For an extended design,
the single-state predicate p should not refer to ok or term, and the relation r may refer to
term′ but not ok, ok′ or term.5 The relation r(v, v′, term′) is in terms of the initial values
of the program variables v, their final values v′, and the final termination observation
term′.

An extended design of the form

(true -X ¬ term′ ∧ x′ = 1) (5)

is not sensible because it constrains the final value of x to be one, even though it is
guaranteed to never terminate. Because one can never observe the final values of the
program variables in the case of nontermination, for an extended design to be well
formed, we require that r is such that it does not constrain the final values of the program
variables in the case of nontermination, i.e.,

[p ∧ ¬ term′ ⇒ (r⇔ (∀ v′ • r))] , (6)

5 Again, allowing p and r to refer to ok, ok′ , and term doesn’t add anything because (p �X r) is

semantically equivalent to (p
[

true,true
ok,term

]
�X r

[
true,true,true

ok,term,ok′

]
).

184 I.J. Hayes, S.E. Dunne, and L. Meinicke

where v′ is the set of final-state program variables. Note that the program variables
(v) do not include the observations ok and term. The example (5) does not satisfy this
requirement because the following does not hold for all values of term′ and x′ :

[¬ term′ ⇒ (¬ term′ ∧ x′ = 1⇔ (∀ x′ • ¬ term′ ∧ x′ = 1))]
≡ [¬ term′ ⇒ (x′ = 1⇔ false)]
≡ [¬ term′ ⇒ (x′ 	= 1)] .

An extended design (p0 -X r0) is refined by another extended design (p1 -X r1) pro-
vided the semantic relation defined by the latter implies the semantic relation defined
by the former, that is,

[(ok ∧ term ∧ p1 ⇒ ok′ ∧ r1) ∧ (¬ term′ ⇒ ok′) ∧ (term′ ⇒ term)⇒
(ok ∧ term ∧ p0 ⇒ ok′ ∧ r0) ∧ (¬ term′ ⇒ ok′) ∧ (term′ ⇒ term)] ,

which holds if and only if

[p0 ⇒ (p1 ∧ (r1 ⇒ r0))] . (7)

This is similar to the condition for refining UTP designs (3), except that r0 and r1 may
refer to term′ to specify termination behaviour.

Relating designs and extended designs. To see that an extended design generalises
a design, we show that we can map any design into a unique extended design. For any
design, (p - w), we have

DX(p - w)=̂(p -X term′ ∧ w) .

It is straightforward to show that this mapping preserves the refinement ordering, and
that the image of this mapping is a subtheory of extended designs [1, Chap. 4].

For extended designs, we have the following interesting extreme cases:

abortX =̂ (false -X true)
chaosX =̂ (true -X true)

terminatesX =̂ (true -X term′)
foreverX =̂ (true -X ¬ term′)
magicX =̂ (true -X false)

where abortX , terminatesX , and magicX correspond to their UTP design equivalents
(via the mapping DX). The other two commands do not have equivalent UTP designs:
chaosX does not abort but it may or may not terminate, and if it terminates then any final
state is possible; and foreverX does not abort but also never terminates. The extended
design chaosX is refined by both terminatesX and foreverX . Extended designs form a
complete lattice under the refinement ordering, with least element abortX and greatest
element magicX .

Unifying Theories of Programming That Distinguish Nontermination and Abort 185

Total and partial correctness. To show that a program s is totally correct with re-
spect to the precondition p (interpreted as both an assumption on the initial states and a
termination set) and relation w, we must show

(p -X term′ ∧ w) / s

and to show partial correctness with respect to the same precondition (this time inter-
preted as just an assumption on the initial state) and relation, we must show

(p -X term′ ⇒ w) / s .

5 General Correctness

Parnas [19,20] introduced the notion of a limited domain (LD) relation to describe ter-
mination sets and pre-post relations (of a control structure that generalised Dijkstra’s
guarded command control structures [21]). Jacobs and Gries [22] introduced a similar
idea called general correctness, which has been further explored by Nelson [23] and
Dijkstra and Scholten [24]. Dunne has studied general correctness [25,26] and incorpo-
rated general correctness into a UTP setting [27]. He makes use of a prescription of the
form (p � w), which is guaranteed to terminate from initial states in which p holds, and
if it does terminate (whether or not it was guaranteed to do so) then relation w holds
on termination. Note that the syntax of a prescription uses a “�” in place of a “-” to
distinguish it. We can model the semantics of the prescription (p � w) as a relation by
making use of the observation term, which represents termination6:

(term ∧ p⇒ term′) ∧ (term′ ⇒ w ∧ term) . (8)

The following examples illustrate the expressive versatility of prescriptions:

– (true � w) guarantees termination from any state and that w holds;
– (p � p ⇒ w) requires that in any initial state in which p holds, the program

terminates and satisfies w, and if p does not hold initially, there is no guarantee of
termination and no guarantee about the final state (although it never aborts — see
Section 6 for further explanation);

– (false � w) corresponds to a partial correctness specification — although no guar-
antee of termination is given, if it does terminate, w holds; and

– (false � false) guarantees to never terminate.

A prescription (p0 � w0) is refined by another prescription (p1 � w1) provided the
semantic relation defined by the latter implies (is included in) the semantic relation
defined by the former, that is,

[(term ∧ p1 ⇒ term′) ∧ (term′ ⇒ w1 ∧ term)⇒
(term ∧ p0 ⇒ term′) ∧ (term′ ⇒ w0 ∧ term)] ,

which holds if and only if [p0 ⇒ p1] ∧ [w1 ⇒ w0] .

6 We use the observation name “term” to be consistent with the terminology in the rest of this
paper, although the name “ok” is used by Dunne [27].

186 I.J. Hayes, S.E. Dunne, and L. Meinicke

Relating prescriptions and extended designs. To see that an extended design gener-
alises a prescription, we show that we can map any prescription into a unique extended
design. For any prescription (p � w) we have

PX(p � w)=̂(true -X (p⇒ term′) ∧ (term′ ⇒ w)) .

It is straightforward to show that this mapping preserves the refinement ordering, and
that the image of this mapping is a subtheory of extended designs.

For prescriptions we have the following interesting extreme cases:

chaosP =̂ (false � true)
terminatesP =̂ (true � true)

foreverP =̂ (false � false)
magicP =̂ (true � false)

where these all correspond to their extended design equivalents, but note that there is
no equivalent of abortX . Prescriptions form a complete lattice under the refinement
ordering, with least element chaosP and greatest element magicP. We expand on the
distinction between general correctness and extended designs in the next section.

6 Assumptions on the Initial State versus Termination Sets

In both the UTP design, (p - w), and the extended design, (p -X r), the predicate p
acts as an assumption the implementor can make about the initial state. If p doesn’t hold
initially then the implementation is free to do anything, even abort. The UTP design has
the requirement that the program must also terminate whenever p holds initially. Hence
for a UTP design, p is both an assumption on the initial state and a termination set. For
extended designs, p is only an assumption on the initial state. Modulo p, the termination
set is specified within r. This is because any behaviour is allowable if p does not hold
initially, so termination is only guaranteed from those initial states where both p holds
and r requires termination.

In the general correctness prescription (p � w), the predicate p specifies the termi-
nation set. There is no way to specify an assumption on the initial state (in the above
sense) in general correctness, because general correctness has no notion of abortion.
One can get close with a prescription of the form (p � q ⇒ w), where q is a single-
state predicate on the initial state. If q does not hold initially, then any non-aborting
behaviour is allowed. However, this has a subtle difference in behaviour when prescrip-
tions are sequentially composed. In all our models, sequential composition is defined as
the relational composition of the semantic relations of the two commands. For general
correctness we have that

(p � true); (true � x′ = 1) (9)

guarantees that, even if p does not hold initially, if the first prescription terminates, then
the whole terminates and the final value of x will be one. Hence, if the whole terminates,
then x is guaranteed to be one. If we replace the prescriptions in (9) with UTP designs

Unifying Theories of Programming That Distinguish Nontermination and Abort 187

or extended designs of the same form, no such guarantee about the final value of x is
given if p does not hold initially. With the UTP design (p - true), if p doesn’t hold
initially, then its semantic relation allows okay′ to be false, in which case okay may
be false for the second command (true - x′ = 1) and hence it can do anything, and
no guarantee can be given about the final value of x. However, for the prescription
(p � true), if p doesn’t hold initially, this prescription isn’t required to terminate, but if
it does terminate, (true � x′ = 1) is then required to terminate and set x to one.

Note that for extended designs, we have the law

abortX; s = abortX ,

but the following law does not hold in general

chaosX ; s = chaosX .

In summary, the implementor can rely on the assumption, p, on the initial state holding.
Nothing can be assumed about an implementation, I, when it is executed from an initial
state not satisfying p, and furthermore nothing can be assumed about the behaviour of
any component executing after I if the execution of I happens to terminate. In contrast
(non)termination represents an allowed or required behaviour of any implementation.
The reason these are often confused is that both assumptions on the initial state and
termination sets are defined in terms of a condition on the initial state.

7 Timed Designs

To discuss timing issues one can introduce an observation representing the current time,
as done by Hehner [10,28,29] and Abadi and Lamport [30]. An extended design can
be generalised to a timed design by replacing the observations term and term′ by the
observations τ and τ ′, representing the initial and final times, respectively. The two most
interesting choices for representing time are the natural numbers and the non-negative
reals, in both cases augmented with the value∞ to represent nontermination. For our
discussion here either representation is valid. Hehner [10,28] uses natural numbers to
represent abstract time, that is, they represent a notion of progress rather than real time.
The real-time refinement calculus [13] uses real numbers to represent real time.

A timed design, (q -T r), has a semantics given by the following relation:

(ok ∧ τ 	=∞ ∧ q⇒ ok′ ∧ r) ∧ (τ ′ =∞⇒ ok′) ∧ τ ≤ τ ′ . (10)

The form is similar to that for an extended design (4), except that we require that time
does not go backwards, i.e., τ ≤ τ ′. We allow q to refer to the before-values of the
program variables as well as τ and τ ′, and r can to refer to both the before- and after-
values of the program variables as well as τ and τ ′, but neither q nor r can refer to ok
or ok′. Because we allow it to refer to τ ′ the precondition q – which specifies the states
in which the program is guaranteed not to abort – is no longer a condition on the initial
state only, unlike the preconditions of each of our previous designs. To emphasise this
we have used the name q rather than p, which we reserve for predicates on a single state.

188 I.J. Hayes, S.E. Dunne, and L. Meinicke

We allow q to refer to τ ′ so that we may express constraints regarding when the program
may abort. But note that q may not refer to v′ because, unlike τ ′, the final values v′ of
the program variables cannot be constrained in the event of the program aborting.

The inclusion of a time variable makes it possible to express, not just if the program
terminates, but when it terminates. Such execution time constraints may be included
in r, e.g., τ ′ − τ ≤ 1 requires execution to take at most one time unit. Execution
time constraints may be used to define a deadline command [31], that requires that
the time is at most D when the deadline command is reached, as the timed design
(true -T τ = τ ′ ≤ D ∧ id), where id is the identity relation on program variables. The
deadline command is a specification construct; it cannot be directly implemented.

As already mentioned, as well as being used to specify termination time constraints,
time may also be used to specify when the program may abort. Program abortion time
constraints can be included in q. If q is taken to be false, as in the extreme program

abortT =̂ (false -T true) ,

we have that the program may become unstable immediately at the initial time τ . Since
q is able to reference the final time, τ ′, it is also possible to specify that a program may
abort at least t time units after the start time τ . For example, design

(τ ′ − τ < 10 -T r)

may either terminate within 10 time units satisfying r, or it may do anything as long as
the τ ′ is greater than or equal to τ + 10. A special case of this is the timed design

(τ ′ − τ < 10 -T false)

which guarantees to run for 10 time units, after which it may become unstable. It can-
not terminate within 10 time units because in doing so it would incur the impossible
obligation of satisfying false. This program may also be expressed as the sequential
composition

(true -T τ ′ − τ ≥ 10); abortT

but note that this sequential composition could not be expressed as a single timed design
if we did not allow the precondition to refer to τ ′.

We consider a timed design such as (τ ′ − τ > t -T r) for some non-negative time t
not to be reasonable since it would put an upper bound on the time at which the program
may abort. Since we would like to specify that a program that may abort at time t may
be implemented by one which aborts at some later time (that is, a program that delays
the occurrence of a catastrophic event), we impose a condition on the assumption q of
a timed design (q -T r) that ¬ q must not impose an upper bound on τ ′, i.e.,[

¬ q⇒
(
∀ τ ′′ • τ ′ < τ ′′ ⇒ ¬ q

[
τ ′′

τ ′

])]
. (11)

We also need a timed-design version of condition (6) ensuring that the final values of
the program variables are not constrained under nontermination:

[τ 	=∞ ∧ q ∧ τ ′ =∞⇒ (r⇔ (∀ v′ • r))] . (12)

Unifying Theories of Programming That Distinguish Nontermination and Abort 189

Refinement of timed designs,

(q0 -T r0) / (q1 -T r1) ,

is defined in terms of reverse implication of the equivalent semantic relations, and hence
holds provided

[τ 	=∞ ∧ τ ≤ τ ′ ∧ q0 ⇒ ((τ ′ 	=∞⇒ q1) ∧ ((q1 ⇒ r1)⇒ r0))] . (13)

This condition is similar to that for UTP designs (3) and extended designs (7), except
that it adds the implicit precondition that the start time is finite, and the healthiness
condition that no command can allow time to go backwards. The consequent is also
expressed differently because q1 may refer to the finish time τ ′. In the common special
case that q1 is independent of τ ′, the consequent simplifies to (q1 ∧ (r1 ⇒ r0)). In the
more general case, satisfaction of the antecedent τ 	= ∞ ∧ τ ≤ τ ′ ∧ q0 need only
imply that q1 holds when τ ′ is finite, since programs may not abort at time infinity,
however it must always guarantee that ((q1 ⇒ r1)⇒ r0) .

7.1 Relating Extended Designs and Timed Designs

Timed designs are richer than extended designs and hence we can simulate an extended
design (p -X r) by the timed design in which within r the observation term′, represent-
ing termination, is replaced by the observation that the final time is finite, i.e., τ ′ 	=∞.
Hence we can map any extended design into a unique timed design. For any extended
design (p -X r) we have

XT(p -X r)=̂(p -T r
[

τ ′ 	=∞
term′

]
) .

It is straightforward to show that XT preserves the refinement ordering, and that the
image of this mapping is a subtheory of timed designs.

One can define extreme cases in a similar fashion to those for extended designs,
except that terminatesT and foreverT make use of τ ′ rather than term′. We only give
the definition of these two:

terminatesT =̂ (true -T τ ′ 	=∞)
foreverT =̂ (true -T τ ′ =∞) .

Timed designs form a complete lattice under the refinement ordering, with least element
abortT and greatest element magicT .

8 Timed Reactive Designs

To model the interactions of a real-time program with its environment, one can use a
trace of the values of the program variables over time, i.e., a mapping, σ, from times
to the values of the program variables at those times. As with timed designs, time can
either be natural numbers or real numbers, in both cases extended with infinity. The

190 I.J. Hayes, S.E. Dunne, and L. Meinicke

domain of a trace, dom(σ), never includes the time∞. A program relation then relates
an initial trace, σ, to an extension of that trace σ′. For a timed reactive design, (q -R r),
both q and r are relations between the initial trace, σ, of the values of the program
variables up to the start time of the command, and the final trace σ′. The start time τ
is then an abbreviation for sup(dom(σ)) and the final time τ ′ is an abbreviation for
sup(dom(σ′)), where sup stands for supremum, i.e., least upper bound. For a nonter-
minating computation, the domain of the final trace σ′ has no finite bound, and hence
sup(dom(σ′)) = ∞. A timed reactive design (q -R r) has a semantics given by the
following relation:

(ok ∧ τ 	=∞ ∧ q⇒ ok′ ∧ r) ∧ (τ ′ =∞⇒ ok′) ∧ σ ⊆ σ′ . (14)

The significant change from the timed design semantics (10) is that τ ≤ τ ′ is re-
placed by the stronger requirement that σ is a prefix of σ′, i.e., σ ⊆ σ′, which implies
sup(dom(σ)) ≤ sup(dom(σ′)), i.e., τ ≤ τ ′. The initial state of a timed reactive design
corresponds to σ(τ) and the final state (if there is one) to σ′(τ ′). Note that if τ ′ = ∞,
dom(σ′) is the complete range of all finite times, but does not include infinity. Hence
we don’t need a version of condition (12) in this case.

Another change from the timed design semantics is that precondition q – which
specifies the conditions under which the program is guaranteed to not abort – may
refer to the final trace σ′. To illustrate, consider the following timed reactive design
interpreted using abstract time (i.e., the domain of σ is natural numbers):

(σ′ 	= σ 	 〈x〉 -R false) .

This may become unstable immediately after it has set the program state to the value x
at time τ + 1 .

For the reactive timed design (q -R r) we impose a condition on q that is analogous
to (11) for timed designs:[

¬ q⇒
(
∀σ′′ • σ′ ⊂ σ′′ ⇒ ¬ q

[
σ′′

σ′

])]
. (15)

It requires that a reactive design that may abort after behaving like trace σ′, i.e., if q
is false for σ′, may be implemented by one that aborts at some later time, i.e., q with
σ′ replaced by σ′′ is false for all traces σ′′ that are extensions of σ′. Note that with
τ ′ = sup(dom(σ′)) and τ ′′ = sup(dom(σ′′)), (15) implies (11). The reactive design

(¬ (∃σ′′ • x 	∈ ran(σ′′) ∧ σ′ = σ 	 σ′′) -R false) ,

for instance, does not satisfy (15), since it may abort at time τ , but it may not delay the
abortion time to time τ + 1 and extend the final trace with a state that takes the value x.

Refinement of timed reactive designs,

(q0 -R r0) / (q1 -R r1) ,

is defined in terms of reverse implication of the equivalent semantic relations, and hence
holds provided

[τ 	=∞ ∧ σ ⊆ σ′ ∧ q0 ⇒ ((τ 	=∞⇒ q1) ∧ ((q1 ⇒ r1)⇒ r0))] .

Unifying Theories of Programming That Distinguish Nontermination and Abort 191

This condition is similar to that for timed designs (13), except that the predicates now
refer to the initial and final traces, σ and σ′, and the healthiness constraint τ ≤ τ ′ is
strengthened to ensure that the initial trace is a prefix of the final trace, i.e., σ ⊆ σ′.

For abstract time (natural numbers) the timed reactive model corresponds closely
to models based on sequences of states as used in, for example, action systems [32]
and TLA [33], while for real-time (real numbers) a timed reactive design corresponds
closely to a real-time specification as used in the real-time refinement calculus
[34,35,15,13]. Hoare and He [1, Chap. 8] introduce reactive processes, which consider
traces of events, tr. Their processes satisfy the property that a process only ever extends
a trace, i.e., tr ≤ tr′, similar to our constraint on traces of states.

Relating timed designs and timed reactive designs. Timed reactive designs gener-
alise timed designs. Each timed design (q -T t) can be mapped to a unique timed
reactive design.

TR(q -T t)̂=

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎝
∃ τ, τ ′, v • q ∧

τ = sup(dom(σ)) ∧
τ ′ = sup(dom(σ′)) ∧
v = σ(τ)

⎞⎟⎟⎠-R

⎛⎜⎜⎜⎜⎜⎜⎝
∃ τ, τ ′, v, v′ • t ∧

τ = sup(dom(σ)) ∧
τ ′ = sup(dom(σ′)) ∧
v = σ(τ) ∧
(τ ′ 	=∞⇒

v′ = σ′(τ ′))

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
This mapping preserves the refinement ordering, and the image of this mapping is a
subtheory of timed reactive designs.

One can define extreme cases in a similar fashion to those for extended designs and
timed designs, except that terminatesR and foreverR make use of σ′ rather than term′

or τ ′. We only give the definition of these two:

terminatesR =̂ (true -R sup(dom(σ′) 	=∞)
foreverR =̂ (true -R sup(dom(σ′) =∞) .

Timed reactive designs form a complete lattice under the refinement ordering, with least
element abortR and greatest element magicR .

9 Conclusions

The purpose of this paper has been to help formalise the relationships between a number
of different relational models of programs. These relationships are summarised graphi-
cally in Figure 1. We introduced extended designs to allow nontermination and abort to
be distinguished. This allows both partial and total correctness concerns to be modelled,
as well as allowing requirements like “a program must not terminate from certain initial
states” to be specified. Z specifications [8,9], UTP designs [1], VDM pre-post specifi-
cations [2], refinement calculus specifications [3,4], B specifications [7], and general-
correctness prescriptions [27] can be seen as special cases of extended designs. Extended
designs allow the distinction between an assumption on the initial state and a termination
set to be made.

One interesting consequence of formalising the relationships between these models
is that it has highlighted the fact that these different approaches to specification use the

192 I.J. Hayes, S.E. Dunne, and L. Meinicke

word “precondition” to mean different things: it can mean an assumption, a termination
set, an enabling condition (or guard or test), or combinations of these (as described in
Section 1). By embedding all these approaches in the more general extended design
model, we can separate out these concepts and hence determine which of them applies
in each case. We hope that this better understanding of the relationships between the
models and the different interpretations of the meaning of “precondition” will lead to
less confusion when comparing or switching between these different models.

Extended designs can be seen as an abstraction of timed designs. In a timed design
one can place specific requirements on the final time τ ′, whereas in an extended design
one can only refer to termination (term′), which effectively abstracts all finite restric-
tions of τ ′ in a timed design simply to τ ′ 	= ∞. Timed designs making use of abstract
time are closely related to Hehner’s timed models [10,28,29].

Timed reactive designs provide a richer model than timed designs, in which initial
and final states are replaced by initial and final traces, σ and σ′, where σ is a prefix of
σ′. With abstract time this model corresponds to those used for action systems [32] and
TLA [33], and with real time to the real-time refinement calculus [13,15].

In developing the real-time refinement calculus, it was observed that one needed
to distinguish abort and nontermination, unlike in existing pre-post specifications in
UTP designs, VDM, the refinement calculus, and B. It was in order to reconcile these
models that the extended-design model was invented. It generalises the existing pre-post
specification models, while simultaneously being a specialisation of both the timed and
timed reactive models.

The relationship between the various models is given by the mappings between mod-
els. Each downward link in Figure 1 corresponds to a mapping from a sparser model to
a richer one. In addition, one can compose these mappings to create a mapping from a
model to any richer one that can be reached by following downward links. For exam-
ple, one can compose the mapping DX from UTP designs to extended designs with the
mapping XT from extended designs to timed designs to get a mapping XT ◦ DX from
designs to timed designs.

Because the mappings between models embed one model as a subtheory of another,
this allows properties proved in the richer model, that apply to the elements of the
subtheory, to be used in the simpler model. Investigation of these uses of the mappings
and extending the mappings to program constructs other than designs are avenues for
future research.

Acknowledgements. This research was supported, in part, by the EPSRC-funded Trust-
worthy Ambient Systems (TrAmS) Platform Project and Australian Research Council
(ARC) Discovery Grants DP0987452 and DP0879529. We would like to thank Brijesh
Dongol for feedback on earlier drafts of this paper.

References

1. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Englewood Cliffs
(1998)

2. Jones, C.B.: Systematic Software Development using VDM. Prentice-Hall, Englewood Cliffs
(1986)

Unifying Theories of Programming That Distinguish Nontermination and Abort 193

3. Back, R.J.R.: On correct refinement of programs. Journal of Computer and System Sciences
23(1), 49–68 (1981)

4. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (1998)

5. Morgan, C.C.: The specification statement. ACM Trans. on Prog. Lang. and Sys. 10(3) (July
1988)

6. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall, Englewood Cliffs
(1994)

7. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

8. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, London (1989)
9. Hayes, I.J. (ed.): Specification Case Studies, 2nd edn. Prentice Hall, Englewood Cliffs (1993)

10. Hehner, E.C.R.: Termination is timing. In: van de Snepscheut, J.L.A. (ed.) MPC 1989. LNCS,
vol. 375, pp. 36–47. Springer, Heidelberg (1989)

11. Utting, M., Fidge, C.J.: A real-time refinement calculus that changes only time. In:
He, J. (ed.) Proc. 7th BCS/FACS Refinement Workshop. Electronic Workshops in Comput-
ing. Springer, Heidelberg (1996)

12. Hayes, I.J., Utting, M.: Coercing real-time refinement: A transmitter. In: Duke, D.J.,
Evans, A.S. (eds.) BCS-FACS Northern Formal Methods Workshop (NFMW’96). Electronic
Workshops in Computing. Springer, Heidelberg (1997)

13. Hayes, I.J., Utting, M.: A sequential real-time refinement calculus. Acta Informatica 37(6),
385–448 (2001)

14. Hayes, I.J.: A predicative semantics for real-time refinement. In: McIver, A., Morgan, C.C.
(eds.) Programming Methodology, pp. 109–133. Springer, Heidelberg (2003)

15. Hayes, I.J.: Reasoning about real-time repetitions: Terminating and nonterminating. Science
of Computer Programming 43(2-3), 161–192 (2002)

16. Derrick, J., Boiten, E.: Refinement in Z and Object-Z. Springer, Heidelberg (2001)
17. Duke, R., Rose, G., Smith, G.: Object-Z: A specification language advocated for the descrip-

tion of standards. Computer Standards and Interfaces 17 (1995)
18. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers, Dordrecht

(2000)
19. Parnas, D.L.: A generalized control structure and its formal definition. Commun. ACM 26(8),

572–581 (1983)
20. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput. Pro-

gram. 25(1), 41–61 (1995)
21. Dijkstra, E.W.: Guarded commands, nondeterminacy, and a formal derivation of programs.

CACM 18, 453–458 (1975)
22. Jacobs, D., Gries, D.: General correctness: a unification of partial and total correctness. Acta

Informatica 22, 67–83 (1985)
23. Nelson, G.: A generalisation of Dijkstra’s calculus. ACM Trans. on Prog. Lang. and

Sys. 11(4) (1989)
24. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer,

Heidelberg (1990)
25. Dunne, S.E., Stoddart, W.J., Galloway, A.J.: Specification and refinement in general cor-

rectness. In: Evans, A., Duke, D., Clark, A. (eds.) Proceedings of the 3rd Northern Formal
Methods Workshop, BCS Electronic Workshops in Computing (1998)

26. Dunne, S.E.: Abstract commands: a uniform notation for specifications and implementa-
tions. In: Fidge, C. (ed.) Computing: The Australasian Theory Symposium (CATS 2001).
Electronic Notes in Theoretical Computer Science, vol. 42, pp. 104–123. Elsevier Science
BV, Amsterdam (2001)

194 I.J. Hayes, S.E. Dunne, and L. Meinicke

27. Dunne, S.E.: Recasting Hoare and He’s unifying theory of programs in the context of general
correctness. In: Butterfield, A., Strong, G., Pahl, C. (eds.) Proceedings of the 5th Irish Work-
shop in Formal Methods, IWFM 2001. Workshops in Computing, British Computer Society
(2001)

28. Hehner, E.C.R.: Abstractions of time. In: Roscoe, A. (ed.) A Classical Mind, pp. 191–210.
Prentice Hall, Englewood Cliffs (1994)

29. Hehner, E.C.R.: Retrospective and prospective for unifying theories of programming. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 1–17. Springer, Heidelberg
(2006)

30. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Trans. on Prog. Lang.
and Sys. 16(5), 1543–1571 (1994)

31. Fidge, C.J., Hayes, I.J., Watson, G.: The deadline command. IEE Proceedings—
Software 146(2), 104–111 (1999)

32. Back, R.J., von Wright, J.: Trace refinement of action systems. In: Jonsson, B., Parrow, J.
(eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidelberg (1994)

33. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison Wesley, Reading (2003)

34. Hayes, I.J.: Procedures and parameters in the real-time program refinement calculus. Science
of Computer Programming 64(3), 286–311 (2007)

35. Hayes, I.J.: Termination of real-time programs: Definitely, definitely not, or maybe. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 141–154. Springer,
Heidelberg (2006)

Adjoint Folds and Unfolds
Or: Scything through the Thicket of Morphisms

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. Folds and unfolds are at the heart of the algebra of program-
ming. They allow the cognoscenti to derive and manipulate programs
rigorously and effectively. Fundamental laws such as fusion codify ba-
sic optimisation principles. However, most, if not all, programs require
some tweaking to be given the form of an (un-) fold, and thus make them
amenable to formal manipulation. In this paper, we remedy the situation
by introducing adjoint folds and unfolds. We demonstrate that most pro-
grams are already of the required form and thus are directly amenable to
manipulation. Central to the development is the categorical notion of an
adjunction, which links adjoint (un-) folds to standard (un-) folds. We
discuss a number of adjunctions and show that they are directly relevant
to programming.

Keywords: initial algebra, fold, final coalgebra, unfold, adjunction.

1 Introduction

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them

The Lord of the Rings—J. R. R. Tolkien.

Effective calculations are likely to be based on a few fundamental principles. The
theory of initial datatypes aspires to play that rôle when it comes to calculating
programs. And indeed, a single combining form and a single proof principle rule
them all: programs are expressed as folds, program calculations are based on
the universal property of folds. In a nutshell, the universal property formalises
that a fold is the unique solution of its defining equation. It implies computation
rules and optimisation rules such as fusion. The economy of reasoning is further
enhanced by the principle of duality: initial algebras dualise to final coalgebras,
and alongside folds dualise to unfolds. Two theories for the price of one.

However, all that glitters is not gold. Most if not all programs require some
tweaking to be given the form of a fold or an unfold, and thus make them
amenable to formal manipulation. Somewhat ironically, this is in particular true

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 195–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

196 R. Hinze

of the “Hello, world!” programs of functional programming: factorial, the Fi-
bonacci function and append. For instance, append does not have the form of a
fold as it takes a second argument that is later used in the base case.

We offer a solution to the problem in the form of adjoint folds and unfolds.
The central idea is to gain flexibility by allowing the argument of a fold or
the result of an unfold to be wrapped up in a functor application. In the case
of append, the functor is essentially pairing. Not every functor is admissible
though: to preserve the salient properties of folds and unfolds, we require the
functor to have a right adjoint and, dually, a left adjoint for unfolds. Like folds,
adjoint folds are then the unique solutions of their defining equations and, as to
be expected, this dualises to unfolds. I cannot claim originality for the idea: Bird
and Paterson [5] used the approach to demonstrate that their generalised folds
are uniquely defined. The purpose of the present paper is to show that the idea
is more profound and more far-reaching. In a sense, we turn a proof technique
into a definitional principle and explore the consequences and opportunities of
doing this. Specifically, the main contributions of this paper are the following:

– we introduce folds and unfolds as solutions of so-called Mendler-style equa-
tions (Mendler-style folds have been studied before [38], but we believe that
they deserve to be better known);

– we argue that termination and productivity can be captured semantically
using naturality;

– we show that by choosing suitable base categories mutually recursive types
and parametric types are subsumed by the framework;

– we generalise Mendler-style equations to adjoint equations and demonstrate
that many programs are of the required form;

– we conduct a systematic study of adjunctions and show their relevance to
programming.

We largely follow a deductive approach: simple (co-) recursive programs are
naturally captured as solutions of Mendler-style equations; adjoint equations
generalise them in a straightforward way. Furthermore, we emphasise duality
throughout by developing adjoint folds and unfolds in tandem.

Prerequisites. A basic knowledge of category theory is assumed, along the lines of
the categorical trinity: categories, functors and natural transformations. I have
made some effort to keep the paper sufficiently self-contained, explaining the
more advanced concepts as we go along. Some knowledge of the functional pro-
gramming language Haskell [32] is useful, as the formal development is paralleled
by a series of programming examples.

Outline. The rest of the paper is structured as follows. Section 2 introduces some
notation, serving mainly as a handy reference. Section 3 reviews conventional
folds and unfolds. We take a somewhat non-standard approach and introduce
them as solutions of Mendler-style equations. Section 4 generalises these equa-
tions to adjoint equations and demonstrates that many, if not most, Haskell
functions fall under this umbrella. Finally, Section 5 reviews related work and
Section 6 concludes.

Adjoint Folds and Unfolds 197

2 Notation

We let C, D etc. range over categories. By abuse of notation C also denotes the
class of objects: we write A ∈ C to express that A is an object of C. The class
of arrows from A ∈ C to B ∈ C is denoted C(A,B). If C is obvious from the
context, we abbreviate f ∈ C(A,B) by f : A → B . The latter notation is used
in particular for total functions (arrows in Set) and functors (arrows in Cat).
Furthermore, we let A, B etc. range over objects, F, G, F, G etc. over functors,
and �, �, φ, Ψ etc. over natural transformations. Let F, G : C→ D be two parallel
functors. The class of natural transformations from F to G is denoted DC(F, G). If
C and D are obvious from the context, we abbreviate � ∈ DC(F, G) by � : F →̇G.
We also write � : ∀A . FA → GA and furthermore � : ∀A . FA ∼= GA, if � is a
natural isomorphism. The inverse of an isomorphism is denoted �◦.

Partial applications of functions and operators are often written using ‘cate-
gorical dummies’, where − marks the first and = the optional second argument.
As an example, − ∗ 2 denotes the doubling function and − ∗ = multiplication.
Another example is the so-called hom-functor C(−, =) : Cop × C→ Set, whose
action on arrows is given by C(f , g) h = g · h · f .

The formal development is complemented by a series of Haskell programs. Un-
fortunately, Haskell’s lexical and syntactic conventions deviate somewhat from
standard mathematical practise. In Haskell, type variables start with a lower-
case letter (identifiers with an initial upper-case letter are reserved for type and
data constructors). Lambda expressions such as λ x . e are written λx → e.
In the Haskell code, the conventions of the language are adhered to, with one
notable exception: I have taken the liberty to typeset ‘::’ as ‘:’ — in Haskell, ‘::’
is used to provide a type signature, while ‘:’ is syntax for consing an element to
a list, an operator I do not use in this paper.

3 Fixed-Point Equations

To iterate is human, to recurse divine.

L. Peter Deutsch

In this section we review the semantics of datatypes and introduce folds and
unfolds, albeit with a slight twist. The following two Haskell programs serve as
running examples.

Haskell example 1. The datatype Stack models stacks of natural numbers.

data Stack = Empty | Push (Nat ,Stack)

The type (A,B) is Haskell syntax for the cartesian product A× B .
The function total computes the sum of a stack of natural numbers.

total : Stack → Nat
total Empty = 0
total (Push (n, s)) = n + total s

The function is a typical example of a fold, a function that consumes data. �

198 R. Hinze

Haskell example 2. The datatype Sequ captures infinite sequences of natural
numbers.

data Sequ = Next (Nat ,Sequ)

The function from constructs the infinite sequence of naturals, from the given
argument onwards.

from : Nat → Sequ
from n = Next (n, from (n + 1))

The function is a typical example of an unfold, a function that produces data. �

Both the types, Stack and Sequ, and the functions, total and from , are given by
recursion equations. At the outset, it is not at all clear that these equations have
solutions and if so whether the solutions are unique. It is customary to rephrase
this problem as a fixed-point problem: A recursion equation of the form x = Ψ x
implicitly defines a function Ψ in the unknown x , the so-called base function of x .
A fixed-point of the base function is then a solution of the recursion equation
and vice versa.

Consider the type equation defining Stack . The base function, or rather, base
functor of Stack is given by

dataStack stack = Empty | Push (Nat , stack)
instanceFunctor Stackwhere

fmap f Empty = Empty

fmap f (Push (n, s)) = Push (n, f s) .

The type argument of Stack marks the recursive component.
All the functors underlying datatype declarations (sums of products) have

two extremal fixed points: the initial F-algebra 〈μF, in〉 and the final F-coalgebra
〈νF, out〉, where F : C → C is the functor in question. (The proof that these
fixed points exist is beyond the scope of this paper.) Very briefly, an F-algebra
is a pair 〈A, f 〉 consisting of an object A ∈ C and an arrow f ∈ C(FA,A).
Likewise, an F-coalgebra is a pair 〈A, f 〉 consisting of an object A ∈ C and an
arrow f ∈ C(A, FA). (By abuse of language, we shall use the term (co-) algebra
also for the components of the pair.) The objects μF and νF are the actual fixed
points of the functor F: we have F (μF) ∼= μF and F (νF) ∼= νF. The isomorphisms
are witnessed by the arrows in : F (μF) ∼= μF and out : νF ∼= F (νF).

Some languages such as Charity [7] or Coq [35] allow the user to choose
between initial and final solutions — the datatype declarations are flagged as
inductive or coinductive. Haskell is not one of them. Since Haskell’s underlying
category is Cpo⊥, the category of complete partial orders and strict continu-
ous functions, initial algebras and final coalgebras actually coincide [16,11]. By
contrast, in Set elements of an inductive type are finite, whereas elements of
a co-inductive type are potentially infinite. Operationally, an element of an in-
ductive type is constructed in a finite number of steps, whereas an element of a
coinductive type is deconstructed in a finite number of steps.

Adjoint Folds and Unfolds 199

Turning to our running examples, we view Stack as an initial algebra —
though inductive and coinductive stacks are both equally useful. For sequences
only the coinductive reading makes sense, since the initial algebra of Sequ’s base
functor is the empty set in Set.

Haskell definition 3. In Haskell, initial algebras and final coalgebras can be de-
fined as follows.

newtypeμf = In {in◦ : f (μf)}
newtype ν f = Out◦ {out : f (ν f)}

The definitions use Haskell’s record syntax to introduce the deconstructors in◦

and out in addition to the constructors In and Out◦. The newtype declara-
tion guarantees that μf and f (μf) share the same representation at run-time,
and likewise for νf and f (νf). In other words, the constructors and deconstruc-
tors are no-ops. Of course, since initial algebras and final coalgebras coincide
in Haskell, they could be defined by a single newtype definition. However, for
emphasis we keep them separate. �
Working towards a semantics for total , let us first adapt its definition to the new
‘two-level type’ μStack. (The term is due to Sheard [34]; one level describes the
structure of the data, the other level ties the recursive knot.)

total : μStack → Nat
total (In Empty) = 0
total (In (Push (n, s))) = n + total s

Now, if we abstract away from the recursive call, we obtain a non-recursive base
function of type (μStack → Nat) → (μStack → Nat). Functions of this type
possibly have many fixed points — consider as an extreme example the identity
function, which has an infinite number of fixed points. Interestingly, the problem
disappears into thin air, if we additionally remove the constructor In.

total : ∀x . (x → Nat)→ (Stack x → Nat)
total total (Empty) = 0
total total (Push (n, s)) = n + total s

The type of the base function has become polymorphic in the argument of the
recursive call. We shall show in the next section that this type guarantees that
the recursive definition of total

total : μStack→ Nat
total (In l) = total total l

is well-defined and furthermore that the equation has exactly one solution.
Applying the same transformation to the type Sequ and the function from we

obtain
dataSequ sequ = Next (Nat , sequ)
from : ∀x . (Nat → x)→ (Nat → Sequ x)
from from n = Next (n, from (n + 1))
from : Nat → νSequ

from n = Out◦ (from from n) .

200 R. Hinze

Again, the base function enjoys a polymorphic type that guarantees that the
recursive function is well-defined.

Abstracting away from the particulars of the syntax, the examples suggest to
consider fixed-point equations of the form

x · in = Ψ x , and dually out · x = Ψ x , (1)

where the unknown x has type C(μF,A) on the left and C(A, νF) on the right.
Arrows defined by equations of this form are known as Mendler-style folds and
unfolds [28]. We shall henceforth drop the qualifier and call the solutions simply
folds and unfolds. In fact, the abuse of language is justified as each Mendler-style
equation is equivalent to the defining equation of an (un-) fold. This is what we
show next, considering folds first.

3.1 Initial Fixed-Point Equations

Let C be some base category and let F : C→ C be some endofunctor. An initial
fixed-point equation in the unknown x ∈ C(μF,A) has the syntactic form

x · in = Ψ x , (2)

where the base function Ψ has type

Ψ : ∀X . C(X ,A)→ C(FX ,A) .

Informally speaking, the naturality of Ψ ensures termination: the first argument
of Ψ , the recursive call of x , can only be applied to proper sub-terms of x ’s
argument — recall that the type argument of F marks the recursive compo-
nents. The naturality condition can be seen as the semantic counterpart of the
guarded-by-deconstructors condition [15]. This becomes more visible, if we move
the isomorphism in : F (μF) ∼= μF to the right-hand side: x = Ψ x · in◦. Here in◦

is the deconstructor that guards the recursive calls.
Termination is an operational notion; how the notion translates to a denota-

tional setting depends on the underlying category. Our primary goal is to show
that Equation 2 has a unique solution. When working in Set this result implies
that the equation admits a solution that is indeed a total function. On the other
hand, if the underlying category is Cpo⊥, then the solution is a continuous func-
tion that does not necessarily terminate for all its inputs, since initial algebras
in Cpo⊥ possibly contain infinite elements.

While the definition of total fits nicely into the framework above, the following
program does not.

Haskell example 4. The naturality condition is sufficient but not necessary as
the example of factorial demonstrates.

dataNat = Z | S Nat
fac : Nat → Nat
fac Z = 1
fac (S n) = S n ∗ fac n

Adjoint Folds and Unfolds 201

Like for total , we split the underlying datatype into two levels.

typeNat = μNat

dataNatnat = Z | S nat
instanceFunctor Natwhere

fmap f Z = Z

fmap f (S n) = S (f n)

The implementation of factorial is clearly terminating. However, the associated
base function

fac : (Nat → Nat)→ (NatNat → Nat)
fac fac (Z) = 1
fac fac (S n) = In (S n) ∗ fac n

lacks naturality. In a sense, fac’s type is too concrete, as it reveals that the recur-
sive call takes a natural number. An adversary can make use of this information
turning the terminating program into a non-terminating one:

bogus : (Nat → Nat)→ (Nat Nat → Nat)
bogus fac (Z) = 1
bogus fac (S n) = n ∗ fac (In (S n)) .

We will get back to this example in Section 4.5. �

Turning to the proof of uniqueness, let us first spell out the naturality property
underlying Ψ ’s type: if h ∈ C(X1,X2), then C(F h, id) ·Ψ = Ψ ·C(h, id). Recalling
that C(f , g) h = g · h · f , this unfolds to

Ψ (f · h) = Ψ f · F h , (3)

for all arrows f ∈ C(X2,A). This property implies, in particular, that Ψ is
completely determined by its image of id as Ψ h = Ψ id ·F h. Moreover, the type
of Ψ is isomorphic to C(FA,A), the type of F-algebras.

With hindsight, we generalise the isomorphism slightly. Let F : D→ C be an
arbitrary functor, then

φ : ∀AB . C(FA,B) ∼= (∀X : D . D(X ,A)→ C(FX ,B)) . (4)

Readers versed in category theory will notice that this bijection is an instance
of the Yoneda lemma. Let H = C(F−,B) be the contravariant functor H :
Dop → Set that maps an object A ∈ Dop to the set of arrows C(FA,B) ∈
Set. The Yoneda lemma states that this set is isomorphic to a set of natural
transformations:

∀HA . HA ∼= (Dop(A,−) →̇ H) ,

which is (4) in abstract clothing. Let us explicate the proof of (4). The functions
witnessing the isomorphism are

φ f = λκ . f · Fκ and φ◦ Ψ = Ψ id .

202 R. Hinze

It is easy to see that φ◦ is the left-inverse of φ.

φ◦ (φ f)
= { definition of φ and definition of φ◦ }

f · F id
= { F functor and identity }

f

For the opposite direction, we have to make use of the naturality property (3).
(The naturality property is the same for the more general setting.)

φ (φ◦ Ψ)
= { definition of φ◦ and definition of φ }

λκ . Ψ id · Fκ

= { naturality of Ψ }
λκ . Ψ (id · κ)

= { identity and extensionality }
Ψ

We are finally in a position to prove that Equation (2) has a unique solution: we
show that x is a solution if and only if x is a standard fold, denoted �−�.

x · in = Ψ x
⇐⇒ { isomorphism }

x · in = φ (φ◦ Ψ) x
⇐⇒ { definition of φ and definition of φ◦ }

x · in = Ψ id · F x
⇐⇒ { initial algebras }

x = �Ψ id�
The proof only requires that the initial F-algebra exists in C.

3.2 Final Fixed-Point Equations

The development of the previous section dualises to final coalgebras. For refer-
ence, let us spell out the details.

A final fixed-point equation in the unknown x ∈ C(A, νF) has the syntactic
form

out · x = Ψ x , (5)

where the base function Ψ has type

Ψ : ∀X . C(A,X)→ C(A, FX) .

Adjoint Folds and Unfolds 203

Informally speaking, the naturality of Ψ ensures productivity: every recursive
call is guarded by a constructor. The naturality condition captures the guarded-
by-constructors condition [15]. This can be seen more clearly, if we move the
isomorphism out : νF ∼= F (νF) to the right-hand side: x = out◦ · Ψ x . Here out◦

is the constructor that guards the recursive calls.
The type of Ψ is isomorphic to C(A, FA), the type of F-coalgebras. More

generally, let F : D→ C, then

φ : ∀AB . C(A, FB) ∼= (∀X : D . D(B ,X)→ C(A, FX)) . (6)

Again, this is an instance of the Yoneda lemma: now H = C(A, F−) is a covariant
functor H : C→ Set and

∀HB . HB ∼= (D(B ,−) →̇ H) .

Finally, the functions witnessing the isomorphism are

φ f = λκ . Fκ · f and φ◦ Ψ = Ψ id .

In the following two sections we show that fixed-point equations are quite general.
More functions fit under this umbrella than one might initially think.

3.3 Mutual Type Recursion: C × D

In Haskell, datatypes can be defined by mutual recursion.

Haskell example 5. The type of multiway trees, also known as rose trees, is de-
fined by mutual type recursion.

dataTree = Node Nat Trees
dataTrees = Nil | Cons (Tree,Trees)

Functions that consume a tree or a list of trees are typically defined by mutual
value recursion.

flattena : Tree → Stack
flattena (Node n ts) = Push (n,flattens ts)
flattens : Trees → Stack
flattens (Nil) = Empty
flattens (Cons (t , ts)) = stack (flattena t ,flattens ts)

The helper function stack defined

stack : (Stack , Stack)→ Stack
stack (Empty , bs) = bs
stack (Push (a, as), bs) = Push (a, stack (as , bs))

concatenates two stacks, see also Example 14. �

Can we fit the above definitions into the framework of the previous section? Yes,
we only have to choose a suitable base category, in this case, a product category.

204 R. Hinze

Given two categories C1 and C2, the product category C1×C2 is constructed as
follows: an object of C1×C2 is a pair 〈A1, A2〉 of objects A1 ∈ C1 and A2 ∈ C2; an
arrow of (C1×C2)(〈A1, A2〉, 〈B1, B2〉) is a pair 〈f1, f2〉 of arrows f1 ∈ C1(A1,B1)
and f2 ∈ C2(A2,B2). Identity and composition are defined component-wise:

id = 〈id , id〉 and 〈f1, f2〉 · 〈g1, g2〉 = 〈f1 · g1, f2 · g2〉 . (7)

The functor Outl : C1 × C2 → C1, which projects onto the first category, is
defined by Outl 〈A1, A2〉 = A1 and Outl 〈f1, f2〉 = f1, and, likewise, Outr :
C1 × C2 → C2. (As an aside, C1 × C2 is the product in Cat.)

Returning to Example 5, the base functor underlying Tree and Trees can be
seen as an endofunctor over a product category:

F 〈A, B〉 = 〈Nat × B , 1 + A× B〉 .

The Haskell types are given by projections: Tree = Outl (μF) and Trees =
Outr (μF). The functions flattena and flattens are handled accordingly, we bun-
dle them to an arrow

flatten ∈ (C× C)(μF, 〈Stack , Stack〉) ,

The Haskell functions are then given by projections: flattena = Outl flatten and
flattens = Outr flatten.

The following calculation makes explicit that an initial fixed-point equation
in C× D corresponds to two equations, one in C and one in D.

x · in = Ψ x
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈Outl x , Outr x 〉 · 〈Outl in, Outr in〉 = Ψ 〈Outl x , Outr x 〉
⇐⇒ { set x1 = Outl x , x2 = Outr x and in1 = Outl in, in2 = Outr in }

〈x1, x2〉 · 〈in1, in2〉 = Ψ 〈x1, x2〉
⇐⇒ { definition of composition }

〈x1 · in1, x2 · in2〉 = Ψ 〈x1, x2〉
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈x1 · in1, x2 · in2〉 = 〈Outl (Ψ 〈x1, x2〉), Outr (Ψ 〈x1, x2〉)〉
⇐⇒ { equality of functions }

x1 · in1 = (Outl · Ψ) 〈x1, x2〉 and x2 · in2 = (Outr · Ψ) 〈x1, x2〉
⇐⇒ { set Ψ1 = Outl · Ψ and Ψ2 = Outr · Ψ }

x1 · in1 = Ψ1 〈x1, x2〉 and x2 · in2 = Ψ2 〈x1, x2〉

The base functions Ψ1 and Ψ2 are parametrised both with x1 and x2. Other than
that, the syntactic form is identical to a standard fixed-point equation.

It is a simple exercise to bring the equations of Example 5 into this form.

Haskell definition 6. Mutually recursive datatypes can be modelled as follows.

newtypeμ1 f1 f2 = In1 {in◦
1 : f1 (μ1 f1 f2) (μ2 f1 f2)}

newtypeμ2 f1 f2 = In2 {in◦
2 : f2 (μ1 f1 f2) (μ2 f1 f2)}

Adjoint Folds and Unfolds 205

Since Haskell has no concept of pairs on the type level, that is, no product
kinds, we have to curry the type constructors: μ1 f1 f2 = Outl (μ〈f1, f2〉) and
μ2 f1 f2 = Outr (μ〈f1, f2〉). �

Haskell example 7. The base functors of Tree and Trees are

dataTree tree trees = NodeNat trees
dataTrees tree trees = Nil | Cons tree trees .

Since all functions in Haskell live in the same category, we have to represent
arrows in C× C by pairs of arrows in C.

flattena : ∀x1 x2 .
(x1 → Stack , x2 → Stack)→ (Tree x1 x2 → Stack)

flattena (flattena, flattens) (Noden ts) = Push (n,flattens ts)
flattens : ∀x1 x2 .

(x1 → Stack , x2 → Stack)→ (Trees x1 x2 → Stack)
flattens (flattena, flattens) (Nil) = Empty
flattens (flattena, flattens) (Cons t ts) = stack (flattena t ,

flattens ts)

The definitions of flattena and flattens match exactly the scheme above.

flattena : μ1 Tree Trees→ Stack
flattena (In1 t) = flattena (flattena,flattens) t
flattens : μ2 Tree Trees→ Stack
flattens (In2 ts) = flattens (flattena,flattens) ts

Since the two equations are equivalent to an initial fixed-point equation in C×C,
they indeed have unique solutions. �

No new theory is needed to deal with mutually recursive datatypes and mutually
recursive functions over them.

By duality, the same is true for final coalgebras. For final fixed-point equations
we have the following correspondence.

out · x = Ψ x ⇐⇒ out1 · x1 = Ψ1 〈x1, x2〉 and out2 · x2 = Ψ2 〈x1, x2〉

3.4 Type Functors: DC

In Haskell, datatypes can be parametrised by types.

Haskell example 8. The type of perfectly balanced, binary leaf trees, perfect
trees for short, is given by

dataPerfect a = Zero a | Succ (Perfect (a, a))
instanceFunctor Perfectwhere

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (f × f) p)

(f × g) (a, b) = (f a, g b) .

206 R. Hinze

The type Perfect is a so-called nested datatype [4] as the type argument is changed
in the recursive call. The constructors represent the height of the tree: a perfect
tree of height 0 is a leaf; a perfect tree of height n +1 is a perfect tree of height n
that contains pairs of elements.

size : ∀a . Perfect a → Nat
size (Zero a) = 1
size (Succ p) = 2 ∗ size p

The function size calculates the size of a perfect tree, making good use of the
balance condition. The definition requires polymorphic recursion [29], as the
recursive call has type Perfect (a, a) → Nat , which is a substitution instance of
the declared type. �

Can we fit the definitions above into the framework of Section 3.1? Again, the
answer is yes. We only have to choose a suitable base category, this time, a
functor category.

Given two categories C and D, the functor category DC is constructed as
follows: an object of DC is a functor F : C→ D; an arrow of DC(F, G) is a natural
transformation � : F →̇ G. (As an aside, DC is the exponential in Cat.)

Now, the base functor underlying Perfect is an endofunctor over a functor
category:

FP = Λ A . A + P (A×A) .

Here we use Λ-notation to define a functor [14]. The second-order functor F
sends a functor to a functor. Since its fixed point Perfect = μF lives in a functor
category, folds over perfect trees are necessarily natural transformations. The
function size is a natural transformation, as we can assign it the type

size : μF →̇ K Nat ,

where K : D→ DC is the constant functor K A = Λ B . A. Again, we can replay
the development in Haskell.

Haskell definition 9. The definition of second-order initial algebras and final
coalgebras is identical to that of Definition 3, except for an additional type
argument.

newtypeμf a = In {in◦ : f (μf) a }
newtype ν f a = Out◦ {out : f (ν f) a }

To capture the fact that μf and νf are functors whenever f is a second-order
functor, we need an extension of the Haskell 98 class system.

instance (∀x . (Functor x)⇒ Functor (f x))⇒ Functor (μf)where
fmap f (In s) = In (fmap f s)

instance (∀x . (Functor x)⇒ Functor (f x))⇒ Functor (νf)where
fmap f (Out◦ s) = Out◦ (fmap f s)

Adjoint Folds and Unfolds 207

The declarations use a so-called polymorphic predicate [20], which precisely cap-
tures the requirement that f sends functors to functors. Unfortunately, the ex-
tension has not been implemented yet. It can be simulated within Haskell 98 [36],
but the resulting code is somewhat clumsy. �

Haskell example 10. Continuing Example 8, the base functor of Perfect maps
functors to functors: it has kind (�→ �)→ (�→ �).

dataPerfect perfect a = Zero a | Succ (perfect (a, a))
instance (Functor x)⇒ Functor (Perfect x)where

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (f × f) p)

Accordingly, the base function of size is a second-order natural transformation
that takes natural transformations to natural transformations.

size : ∀x . (∀a . x a → Nat)→ (∀a . Perfect x a → Nat)
size size (Zero a) = 1
size size (Succ p) = 2 ∗ size p
size : ∀a . μPerfect a → Nat
size (In p) = size size p

The resulting equation fits the pattern of an initial fixed-point equation. Conse-
quently, it has a unique solution. �

The bottom line is that no new theory is needed to deal with parametric data-
types and polymorphic functions over them.

Table 1 summarises our findings so far.

4 Adjoint Fixed-Point Equations

〈. . .〉, good general theory does not search for the
maximum generality, but for the right generality.

Categories for the Working Mathematician—Saunders Mac Lane

We have seen in the previous section that initial and final fixed-point equations
are quite general. However, there are obviously a lot of definitions that do not
fit the pattern. We have mentioned list concatenation in the introduction. Here
is another example along those lines.

Haskell example 11. The function shunt pushes the elements of the first onto
the second stack.

shunt : (μStack, Stack)→ Stack
shunt (In Empty, bs) = bs
shunt (In (Push (a, as)), bs) = shunt (as , In (Push (a, bs)))

The definition does not fit the pattern of an initial fixed-point equation as it
takes two arguments and recurses only over the first one. �

208 R. Hinze

Table 1. Initial algebras and final coalgebras in different categories

category
initial fixed-point equation final fixed-point equation

x · in = Ψ x out · x = Ψ x

Set
inductive type coinductive type
standard fold standard unfold

Cpo —
continuous coalgebra (domain)

continuous unfold
(F locally continuous in Cpo⊥)

Cpo⊥

continuous algebra (domain) continuous coalgebra (domain)
strict continuous fold strict continuous unfold

(F locally continuous in Cpo⊥, μF ∼= νF)

C × D
mutually recursive inductive types mutually recursive coinductive types

mutually recursive folds mutually recursive unfolds

DC inductive type functor coinductive type functor
higher-order fold higher-order unfold

Haskell example 12. The functions nats and squares generate the sequence of
natural numbers interleaved with the sequence of squares.

nats : Nat → νSequ

nats n = Out◦ (Next (n, squares n))
squares : Nat → νSequ

squares n = Out◦ (Next (n ∗ n,nats (n + 1)))

The two definitions are not instances of final fixed-point equations, because while
the functions are mutually recursive, the datatype is not. �
In Example 11 the element of the initial algebra is embedded in a context. The
central idea of this paper is to model this context by a functor, generalising
fixed-point equations to

x · L in = Ψ x , and dually R out · x = Ψ x , (8)

where the unknown x has type C(L (μF),A) on the left and C(A, R (νF)) on the
right. The functor L models the context of μF, in the case of shunt , L = −×Stack .
Dually, R allows x to return an element of νF embedded in a context. Section 4.5
discusses a suitable choice for R in Example 12. Of course, we cannot use any
plain, old functors for L and R; for reasons to become clear later on, we require
them to be adjoint: L 5 R. (For a calculational introduction to adjunctions, we
refer the interested reader to the paper “Adjunctions” [9].)

Let C and D be categories. The functors L and R are adjoint

C
≺ L

⊥
R
�

D

if and only if there is a bijection

φ : ∀AB . C(LA,B) ∼= D(A, R B) ,

Adjoint Folds and Unfolds 209

that is natural both in A and B . The isomorphism φ is called the adjoint trans-
position or left adjunct.

The adjoint transposition allows us to trade L in the source for R in the
target of an arrow, which is the key for showing that generalised fixed-point
equations (8) have unique solutions. This is what we do next.

4.1 Adjoint Initial Fixed-Point Equations

One Size Fits All

Frank Zappa and The Mothers of Invention

Let C and D be categories, let L 5 R be an adjoint pair of functors L : D→ C and
R : C→ D and let F : D→ D be some endofunctor. An adjoint initial fixed-point
equation in the unknown x ∈ C(L (μF),A) has the syntactic form

x · L in = Ψ x , (9)

where the base function Ψ has type

Ψ : ∀X : D . C(LX ,A)→ C(L (FX),A) .

The unique solution of (9) is called an adjoint fold.
The proof of uniqueness makes essential use of the fact that the adjoint trans-

position φ is natural in A: D(h, id) · φ = φ ·C(L h, id), which translates to

φ (f · L h) = φ f · h . (10)

We reason as follows.

x · L in = Ψ x
⇐⇒ { adjunction }

φ (x · L in) = φ (Ψ x)
⇐⇒ { naturality of φ }

φ x · in = φ (Ψ x)
⇐⇒ { adjunction }

φ x · in = (φ · Ψ · φ◦) (φ x)
⇐⇒ { Section 3.1 }

φ x = �(φ · Ψ · φ◦) id�
⇐⇒ { adjunction }

x = φ◦ �(φ · Ψ · φ◦) id�
In three simple steps we have transformed the adjoint fold x ∈ C(L (μF),A) into
the standard fold φ x ∈ D(μF, R A) and, furthermore, the adjoint base function
Ψ : ∀X . C(LX ,A)→ C(L (FX),A) into the standard base function (φ ·Ψ · φ◦) :
∀X . D(X , R A)→ D(FX , R A). We have shown in Section 3.1 that the resulting
equation has a unique solution. The arrow φ x is called the transpose of x .

210 R. Hinze

4.2 Adjoint Final Fixed-Point Equations

Buy one get one free!

A common form of sales promotion (BOGOF).

Dually, an adjoint final fixed-point equation in the unknown x ∈ D(A, R (νF))
has the syntactic form

R out · x = Ψ x , (11)

where the base function Ψ has type

Ψ : ∀X : C . D(A, R X)→ D(A, R (FX)) .

The unique solution of (11) is called an adjoint unfold.
The proof of uniqueness relies on the fact that the inverse φ◦ of the adjoint

transposition is natural in B : C(id , h) · φ◦ = φ◦ · D(id , R h), that is,

φ◦ (R h · f) = h · φ◦ f . (12)

We leave it to the reader to fill in the details.

4.3 Identity: Id � Id

The simplest example of an adjunction is Id 5 Id, which shows that adjoint
fixed-point equations (8) subsume fixed-point equations (1).

In the following sections we explore more interesting examples of adjunctions.
Each section is structured as follows: we introduce an adjunction, specialise
Equations (8) to the adjoint functors, and then provide some Haskell examples
that fit the pattern.

4.4 Currying: − × X � −X

The best-known example of an adjunction is perhaps currying. In Set, a function
of two arguments can be treated as a function of the first argument whose values
are functions of the second argument.

φ : ∀AB . (A×X → B) ∼= (A→ BX)

The object BX is the exponential of X and B . In Set, BX is the set of total
functions from X to B . That this adjunction exists is one of the requirements
for cartesian closure. In the case of Set, the isomorphisms are given by

φ f = λ a . λ x . f (a, x) and φ◦ g = λ (a, x) . g a x .

Let us specialise the adjoint equations to L = −×X and R = −X in Set.

x · L in = Ψ x
⇐⇒ { definition of L }

x · (in × id) = Ψ x
⇐⇒ { pointwise }

x (in a, c) = Ψ x (a, c)

R out · x = Ψ x
⇐⇒ { definition of R }

(out ·) · x = Ψ x
⇐⇒ { pointwise }

out (x a c) = Ψ x a c

Adjoint Folds and Unfolds 211

The adjoint fold takes two arguments, an element of an initial algebra and a
second argument (often an accumulator), both of which are available on the
right-hand side. The transposed fold is then a higher-order function that yields
a function. Dually, a curried unfold is transformed into an uncurried unfold.

Haskell example 13. To turn the definition of shunt into the form of an adjoint
equation, we follow the same steps as in Section 3. First, we determine the base
function abstracting away from the recursive call, additionally removing in, and
then we tie the recursive knot. The adjoint functors are L = − × Stack and
R = −Stack .

shunt : ∀x .
(L x → Stack)→ (L (Stack x) → Stack)

shunt shunt (Empty, bs) = bs
shunt shunt (Push (a, as), bs) = shunt (as , In (Push (a, bs)))
shunt : L (μStack)→ Stack
shunt (In as , bs) = shunt shunt (as , bs)

The definition of shunt matches exactly the scheme for adjoint initial fixed-point
equations. The transposed fold, φ shunt ,

shunt ′ : μStack → R Stack
shunt ′ (In Empty) = λbs → bs
shunt ′ (In (Push (a, as))) = λbs → shunt ′ as (In (Push (a, bs)))

is the curried variant of shunt . �

Lists are parametric in Haskell. Can we adopt the above reasoning to parametric
types and polymorphic functions?

Haskell example 14. The type of lists is given as the initial algebra of a higher-
order base functor of kind (�→ �)→ (�→ �).

dataList list a = Nil | Cons (a, list a)
instance (Functor list)⇒ Functor (List list)where

fmap f Nil = Nil

fmap f (Cons (a, as)) = Cons (f a, fmap f as)

Lists generalise stacks, sequences of natural numbers, to an arbitrary element
type. The function append concatenates two lists.

append : ∀a . (μList a, List a)→ List a
append (In Nil, bs) = bs
append (In (Cons (a, as)), bs) = In (Cons (a, append (as , bs)))

Concatenation generalises the function stack (see Example 5) to sequences of an
arbitrary element type. �
If we lift products pointwise to functors, (F ×̇ G)A = FA × GA, we can view
append as a natural transformation:

append : List ×̇ List →̇ List .

212 R. Hinze

All that is left to do is to find the right adjoint of the lifted product − ×̇ H.
(One could be led to think that F ×̇ H →̇ G ∼= F →̇ (H →̇ G), but this does not
make any sense as H →̇ G is not a functor. Also, lifting exponentials pointwise
GH A = (GA)H A does not work, because the data does not define a functor as the
exponential is contravariant in its first argument.) For simplicity, let us assume
that the functor category is SetC so that GH : C→ Set. We reason as follows:

GH A
∼= { Yoneda lemma }

C(A,−) →̇ GH

∼= { requirement: − ×̇ H 5 −H }
C(A,−) ×̇ H →̇ G

∼= { natural transformation }
∀X : C . C(A,X)× HX → GX

∼= { − ×X 5 −X }
∀X : C . C(A,X)→ (GX)H X .

If we set GH A = ∀X : C . C(A,X)→ (GX)H X and GH f = Λ X . C(f , id)→ id ,
then − ×̇ H 5 −H.

Haskell definition 15. The definition of exponentials goes beyond Haskell 98, as
it requires rank-2 types (the data constructor Exp has a rank-2 type).

newtypeExp h g a = Exp {exp◦ : ∀x . (a → x)→ (h x → g x)}
instanceFunctor (Exp h g)where

fmap f (Exp h) = Exp (λκ→ h (κ · f))

Morally, h and g are functors, as well. However, their mapping functions are not
needed to define the Exp h g instance of Functor . The transpositions are defined

φExp : (Functor f)⇒ (∀x . (f x , h x)→ g x)→ (∀x . f x → Exp h g x)
φExp σ = λs → Exp (λκ→ λt → σ (fmap κ s , t))
φ◦

Exp : (∀x . f x → Exp h g x)→ (∀x . (f x , h x)→ g x)
φ◦

Exp τ = λ(s , t)→ exp◦ (τ s) id t .

Again, most of the functor instances are not needed. �

Haskell example 16. Returning to Example 14, we may conclude that the defin-
ing equation of append has a unique solution. Its transpose of type List→̇ListList

is interesting as it combines append with fmap:

append ′ : ∀a . List a → ∀x . (a → x)→ (List x → List x)
append ′ as = λf → λbs → append (fmap f as , bs) .

For clarity, we have inlined the definition of ExpList List. �

Adjoint Folds and Unfolds 213

4.5 Mutual Value Recursion: (+) � Δ � (×)

The functions nats and squares introduced in Example 12 are defined by mu-
tual recursion. The program is similar to Example 5, which defines flattena and
flattens, with the notable difference that only one datatype is involved, rather
than a pair of mutually recursive ones. Nonetheless, the correspondence suggests
to view nats and squares as a single arrow in a product category.

numbers : 〈Nat , Nat〉 → Δ(νSequ)

Here Δ : C → C × C is the diagonal functor defined by ΔA = 〈A, A〉 and
Δf = 〈f , f 〉. According to the type, numbers is an adjoint unfold, provided the
diagonal functor has a left adjoint. It turns out that Δ has both a left and a
right adjoint. We discuss the left one first.

The left adjoint of the diagonal functor is the coproduct.

φ : ∀AB . C((+)A,B) ∼= (C× C)(A, ΔB)

Note that B is an object of C and A is an object of C × C, that is, a pair of
objects. Unrolling the definition of arrows in C× C we have

φ : ∀AB . (A1 + A2 → B) ∼= (A1 → B)× (A2 → B) .

The adjunction captures the observation that we can represent a pair of functions
to the same codomain by a single function from the coproduct of the domains.
The adjoint transpositions are given by

φ f = 〈f · inl , f · inr 〉 and φ◦ 〈f1, f2〉 = f1
 f2 .

The reader is invited to verify that the two functions are inverses.
Using a similar reasoning as in Section 3.3, we unfold the adjoint final fixed-

point equation specialised to the diagonal functor.

Δout · x = Ψ x
⇐⇒ { definition of Δ }

〈out , out〉 · x = Ψ x
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈out , out〉 · 〈Outl x , Outr x 〉 = Ψ 〈Outl x , Outr x 〉
⇐⇒ { set x1 = Outl x and x2 = Outr x }

〈out , out〉 · 〈x1, x2〉 = Ψ 〈x1, x2〉
⇐⇒ { definition of composition }

〈out · x1, out · x2〉 = Ψ 〈x1, x2〉
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈out · x1, out · x2〉 = 〈Outl (Ψ 〈x1, x2〉), Outr (Ψ 〈x1, x2〉)〉
⇐⇒ { equality of functions }

out · x1 = (Outl · Ψ) 〈x1, x2〉 and out · x2 = (Outr · Ψ) 〈x1, x2〉
⇐⇒ { set Ψ1 = Outl · Ψ and Ψ2 = Outr · Ψ }

out · x1 = Ψ1 〈x1, x2〉 and out · x2 = Ψ2 〈x1, x2〉

214 R. Hinze

The resulting equations are similar to those of Section 3.3, except that now the
deconstructor out is the same in both equations.

Haskell example 17. Continuing Haskell Example 12, the base functions of nats
and squares are given by

nats : (Nat → x ,Nat → x)→ (Nat → Sequ x)
nats (nats , squares) n = Next (n, squares n)
squares : (Nat → x ,Nat → x)→ (Nat → Sequ x)
squares (nats , squares) n = Next (n ∗ n,nats (n + 1)) .

The recursion equations

nats : Nat → νSequ

nats n = Out◦ (nats (nats , squares)n)
squares : Nat → νSequ

squares n = Out◦ (squares (nats , squares)n)

exactly fit the pattern above (if we move Out◦ to the left-hand side). Hence,
both functions are indeed uniquely defined. Their transpose, φ◦ 〈nats , squares〉,
combines the two functions into a single one using a coproduct.

numbers : EitherNat Nat → νSequ

numbers (Left n) = Out◦ (Next (n,numbers (Right n)))
numbers (Right n) = Out◦ (Next (n ∗ n,numbers (Left (n + 1))))

The datatype Either defined dataEither a b = Left a | Right b is Haskell’s
coproduct. �

Turning to the dual case, to handle folds defined by mutual recursion we need
the right adjoint of the diagonal functor, which is the product.

φ : ∀AB . (C× C)(ΔA,B) ∼= C(A, (×)B)

Unrolling the definition of C× C, we have

φ : ∀AB . (A→ B1)× (A→ B2) ∼= (A→ B1 × B2) .

We can represent a pair of functions with the same domain by a single function
to the product of the codomains. The bijection is witnessed by

φ 〈f1, f2〉 = f1 � f2 and φ◦ f = 〈outl · f , outr · f 〉 .

Specialising the adjoint initial fixed-point equation yields

x ·Δin = Ψ x ⇐⇒ x1 · in = Ψ1 〈x1, x2〉 and x2 · in = Ψ2 〈x1, x2〉 .

If we instantiate the base function to Ψ x = f ·Δ(F (φ x)) for some suitable pair
of arrows f , we obtain Fokkinga’s mutomorphisms [10]. Fokkinga observes that
paramorphisms can be seen as a special case of mutomorphisms.

Adjoint Folds and Unfolds 215

Haskell example 18. We can use mutual value recursion to fit the definition of
factorial, see Example 4, into the framework. The definition of fac has the form of
a paramorphism [26], as the argument that drives the recursion is not only used
in the recursive call. The idea is to ‘guard’ the other occurrence by the identity
function and to pretend that both functions are defined by mutual recursion.

fac : μNat → Nat
fac (In Z) = 1
fac (In (S n)) = In (S (id n)) ∗ fac n
id : μNat → Nat
id (In Z) = In Z

id (In (S n)) = In (S (id n))

If we abstract away from the recursive calls, we find that the two base functions
have indeed the required polymorphic types.

fac : ∀x . (x → Nat , x → Nat)→ (Nat x → Nat)
fac (fac, id) (Z) = 1
fac (fac, id) (S n) = In (S (id n)) ∗ fac n
id : ∀x . (x → Nat , x → Nat)→ (Nat x → Nat)
id (fac, id) (Z) = In Z

id (fac, id) (S n) = In (S (id n))

The transposed fold has type μNat→ Nat ×Nat and corresponds to the usual
encoding of paramorphisms as folds (using tupling).

As an aside, the trick does not work for the ‘base function’ bogus, as the
resulting function still lacks naturality. �

Haskell example 19. Incidentally, we can employ a similar approach to also fit
the Fibonacci function into the framework.

fib : Nat → Nat
fib Z = Z
fib (S Z) = S Z
fib (S (S n)) = fib n + fib (S n)

The definition is sometimes characterised as a histomorphism [37] because in the
third equation fib depends on two previous values, rather than only one. Now,
setting fib′ n = fib (S n), we can transform the nested recursion into a mutual
recursion. (Indeed, this is the usual approach taken when defining the stream of
Fibonacci numbers, see, for example, [19].)

fib : Nat → Nat
fib Z = Z
fib (S n) = fib′ n

fib′ : Nat → Nat
fib′ Z = S Z
fib′ (S n) = fib n + fib′ n

We leave the details to the reader and only remark that the transposed fold
corresponds to the usual linear-time implementation of Fibonacci, called twofib
in [2]. �

216 R. Hinze

The diagram below illustrates the double adjunction (+) 5 Δ 5 (×).

C
≺ +

⊥
Δ
�

C× C
≺ Δ

⊥
×

�
C

Each double adjunction actually gives rise to four different schemes and transfor-
mations: two for initial and two for final fixed-point equations. We have discussed
(+) 5 Δ for unfolds and Δ 5 (×) for folds. Their ‘inverses’ are less useful: us-
ing (+) 5 Δ we can transform an adjoint fold that works on a coproduct of
mutually recursive datatypes into a standard fold over a product category (see
Section 3.3). Dually, Δ 5 (×) enables us to transform an adjoint unfold that
yields a product of mutually recursive datatypes into a standard unfold over a
product category.

4.6 Mutual Value Recursion:
∑

i ∈ I � Δ � ∏
i ∈ I

In the previous section we have considered two functions defined by mutual
recursion. It is straightforward to generalise the development to n mutually
recursive functions (or, indeed, to an infinite number of functions). Central to
the previous undertaking was the notion of a product category. Now, the product
category C×C can be regarded as a simple functor category: C2, where 2 is some
two-element set. To be able to deal with an arbitrary number of functions we
simply generalise from 2 to an arbitrary index set.

A set forms a so-called discrete category: the objects are the elements of the
set and the only arrows are the identities. A functor from a discrete category is
uniquely defined by its action on objects. The category of indexed objects and
arrows CI, where I is some arbitrary index set, is a functor category from a
discrete category: A ∈ CI if and only if ∀i ∈ I . Ai ∈ C and f ∈ CI(A,B) if and
only if ∀i ∈ I . fi ∈ C(Ai ,Bi).

The diagonal functor Δ : C → CI now sends each index to the same object:
(ΔA)i = A. Left and right adjoints of the diagonal functor generalise the con-
structions of the previous section. The left adjoint of the diagonal functor is (a
simple form of) a dependent sum (also called a dependent product).

∀AB . C(
∑

i ∈ I . Ai ,B) ∼= CI(A, ΔB)

Its right adjoint is a dependent product (also called a dependent function space).

∀AB . CI(ΔA,B) ∼= C(A,
∏

i ∈ I . Bi)

The following diagram summarises the type information.

C
≺

∑
i ∈ I

⊥
Δ

�
CI
≺ Δ

⊥∏
i ∈ I

�
C

Adjoint Folds and Unfolds 217

It is worth singling out a special case of the construction that we shall need later
on. First of all, note that

CI(ΔX , ΔY) ∼= I→ C(X ,Y)

Consequently, if the summands of the sum and the factors of the product are
the same, A = ΔX and B = ΔY , we obtain another adjoint situation:

∀X Y . C(
∑

I . X ,Y) ∼= I→ C(X ,Y) ∼= C(X ,
∏

I . Y) . (13)

The degenerated sum
∑

I . A is also called a copower (sometimes written I•A);
the degenerated product

∏
I . A is also called a power (sometimes written AI).

In Set, we have
∑

I . A = I × A and
∏

I . A = I → A. (Hence,
∑

I 5
∏

I is
essentially a variant of currying).

4.7 Type Application: LshX � (− X) � RshX

Folds of higher-order initial algebras are necessarily natural transformations, as
they live in a functor category. However, many Haskell functions that recurse
over a parametric datatype are actually monomorphic.

Haskell example 20. The function sum defined

sum : μList Nat → Nat
sum (In Nil) = 0
sum (In (Cons (a, as))) = a + sum as

sums a list of natural numbers. �

The definition of sum looks suspiciously like a fold, but it is not, as it does not
have the right type. The corresponding function on perfect trees does not even
resemble a fold.

Haskell example 21. The function sump sums a perfect tree of natural numbers.

sump : μPerfectNat → Nat
sump (In (Zero n)) = n
sump (In (Succ p)) = sump (fmap plus p)

Here, plus is the uncurried variant of addition: plus (a, b) = a + b. Note that the
recursive call is not applied to a subterm of Succ p. In fact, it cannot, as p has
type Perfect (Nat ,Nat). (As an aside, this definition requires the functor instance
for μ, see Definition 9.) �

Perhaps surprisingly, the definitions above fit into the framework of adjoint fixed-
point equations. We simply have to view type application as a functor: given
X ∈ D define AppX : CD → C by AppX F = FX and AppX � = �X . (The natural
transformation � is applied to the object X . In Haskell this type application is
invisible, which is why we cannot see that sum is not a standard fold.) It is
easy to show that this data defines a functor: AppX id = id X = idX and
AppX (� · �) = (� · �)X = �X · �X = AppX � · AppX �. Using AppX we can

218 R. Hinze

assign sum the type AppNat (μList) → Nat . All that is left to do is to check
whether AppX is part of an adjunction. It turns out that AppX has, in fact, both
a left and a right adjoint. We choose to derive the left adjoint.

C(A, AppX B)
∼= { definition of AppX }

C(A,B X)
∼= { Yoneda (6) }
∀Y : D . D(X ,Y)→ C(A,B Y)

∼= { definition of a copower: I→ C(X ,Y) ∼= C(
∑

I . X ,Y) }
∀Y : D . C(

∑
D(X ,Y) . A,B Y)

∼= { define LshX A = Λ Y : D .
∑

D(X ,Y) . A }
∀Y : D . C(LshX AY ,B Y)

∼= { natural transformation }
LshX A →̇ B

We call LshX the left shift of X , for want of a better name. Dually, the right
adjoint is RshX B = Λ Y : D .

∏
D(Y ,X) . B , the right shift of X . The following

diagram summarises the type information.

CD
≺ LshX

⊥
AppX

�
C
≺ AppX

⊥
RshX

�
CD

Recall that in Set, the copower
∑

I . A is the cartesian product I × A and the
power

∏
I . A is the set of functions I → A. This correspondence suggests the

Haskell implementation below. However, it is important to note that I is a set,
not an object.

Haskell definition 22. The functors Lsh and Rsh can be defined as follows.

newtype Lshx a y = Lsh (x → y, a)
instanceFunctor (Lshx a)where

fmap f (Lsh (κ, a)) = Lsh (f · κ, a)
newtypeRshx b y = Rsh {rsh◦ : (y → x)→ b}
instanceFunctor (Rshx b)where

fmap f (Rsh g) = Rsh (λκ→ g (κ · f))

The functor Rshx b implements a continuation type — often, but not necessarily
the types x and b are identical. The transpositions are defined

φLsh : (∀y . Lshx a y → b y)→ (a → b x)
φLsh � = λs → � (Lsh (id , s))
φ◦

Lsh : (Functor b)⇒ (a → b x)→ (∀y . Lshx a y → b y)
φ◦

Lsh g = λ(Lsh (κ, s))→ fmap κ (g s)

Adjoint Folds and Unfolds 219

φRsh : (Functor a)⇒ (a x → b)→ (∀y . a y → Rshx b y)
φRsh f = λs → Rsh (λκ→ f (fmap κ s))
φ◦

Rsh : (∀y . a y → Rshx b y)→ (a x → b)
φ◦

Rsh � = λs → rsh◦ (� s) id .

The type variables x , a and b are implicitly universally quantified. �
As usual, let us specialise the adjoint equations.

x · AppX in = Ψ x
⇐⇒ { definition of AppX }

x · in X = Ψ x

AppX out · x = Ψ x
⇐⇒ { definition of AppX }

out X · x = Ψ x
Since both type abstraction and type application are invisible in Haskell, adjoint
equations are, in fact, indistinguishable from standard fixed-point equations.

Haskell example 23. The base function of sump is given by

sump : ∀x . (Functor x)⇒
(x Nat → Nat)→ (Perfect x Nat → Nat)

sump sump (Zero n) = n
sump sump (Succ p) = sump (fmap plus p) .

The definition requires the Perfect functor instance, which in turn induces the
Functor x context. The transpose of sump is a fold that returns a higher-order
function.

sump′ : ∀x . Perfect x → (x → Nat)→ Nat
sump′ (Zero n) = λκ → κ n
sump′ (Succ p) = λκ → sump′ p (plus · (κ× κ))

For clarity, we have inlined the definition of RshNat Nat and slightly optimised
the result. Quite interestingly, the transformation turns a generalised fold in
the sense of Bird and Paterson [5] into an efficient generalised fold in the sense
of Hinze [18]. Both versions have a linear running time, but sump′ avoids the
repeated invocations of the mapping function (fmap plus). �

4.8 Type Composition: LanJ � (− ◦ J) � RanJ

Yes, we can.

Concession speech in the New Hampshire presidential primary—Barack Obama

Continuing the theme of the last section, functions over parametric types, con-
sider the following example.

Haskell example 24. The function concat defined

concat : ∀a . μList (List a) → List a
concat (In Nil) = In Nil

concat (In (Cons (l , ls))) = append (l , concat ls)

generalises the binary function append to a list of lists. �

220 R. Hinze

The definition has the structure of an ordinary fold, but again the type is not
quite right: we need a natural transformation of type μList →̇ G, but concat
has type μList ◦ List →̇ List. Can we fit the definition into the framework of
adjoint equations? The answer is an emphatic “Yes, we Kan!” Similar to the
development of the previous section, the first step is to identify a left adjoint.
To this end, we view pre-composition as a functor: (−◦ List) (μList) →̇ List. (We
interpret List ◦ List as (− ◦ List) List rather than (List ◦ −) List because the outer
list, written μList for emphasis, drives the recursion.)

Given a functor J : C → D, define the higher-order functor PreJ : ED → EC

by PreJ F = F ◦ J and PreJ � = � ◦ J. (The natural transformation � is composed
with the functor J. In Haskell, type composition is invisible. Again, this is why
the definition of concat looks like a fold, but it is not.) As usual, we should make
sure that the data actually defines a functor: PreJ idF = idF ◦ J = idF◦J and
PreJ (� · �) = (� · �) ◦ J = (� ◦ J) · (� ◦ J) = PreJ � · PreJ �. Using the higher-order
functor we can assign concat the type PreList (μList) →̇ List. As a second step,
we have to construct the right adjoint of the higher-order functor. Similar to the
situation of the previous section, PreJ has both a left and a right adjoint. For
variety, we derive the latter.

F ◦ J →̇ G
∼= { natural transformation as an end }
∀A: C . E(F (JA), GA)

∼= { Yoneda (4) }
∀A: C . ∀X : D . D(X , JA)→ E(FX , GA)

∼= { definition of power: I→ C(A,B) ∼= C(A,
∏

I . B) }
∀A: C . ∀X : D . E(FX ,

∏
D(X , JA) . GA)

∼= { interchange of quantifiers }
∀X : D . ∀A: C . E(FX ,

∏
D(X , JA) . GA)

∼= { the functor E(FX ,−) preserves ends }
∀X : D . E(FX , ∀A: C .

∏
D(X , JA) . GA)

∼= { define RanJ G = Λ X : D . ∀A: C .
∏

D(X , JA) . GA }
∀X : D . E(FX , RanJ GX)

∼= { natural transformation as an end }
F →̇ RanJ G

The functor RanJ G is called the right Kan extension of G along J. (If we view
J : C→ D as an inclusion functor, then RanJ G : D→ E extends G : C→ E to the
whole of D.) Dually, the left adjoint is called the left Kan extension and is defined
LanJ F = Λ X : D . ∃A: C .

∑
D(JA,X) . FA. The universally quantified object

in the definition of RanJ is a so-called end, which corresponds to a polymorphic
type in Haskell. We refer the interested reader to Mac Lane’s textbook [22] for
further information. Dually, the existentially quantified object is a coend, which

Adjoint Folds and Unfolds 221

corresponds to an existential type in Haskell (hence the notation). The following
diagrams summarise the type information.

C

E ≺
G

≺
LanJ F

≺

F

D

J

�

ED
≺ LanJ

⊥
(− ◦ J)

�
EC
≺ (− ◦ J)

⊥
RanJ

�
ED

C

D

J

� F �
RanJ G

� E

G

�

Haskell definition 25. Like Exp, the definition of the right Kan extension requires
rank-2 types (the data constructor Ran has a rank-2 type).

newtypeRani g x = Ran {ran◦ : ∀a . (x → i a)→ g a }
instanceFunctor (Rani g)where

fmap f (Ran h) = Ran (λκ→ h (κ · f))

The type Rani g can be seen as a generalised continuation type — often, but
not necessarily the type constructors i and g are identical. Morally, i and g
are functors. However, their mapping functions are not needed to define the
Rani g instance of Functor . Hence, we omit the (Functor i ,Functor g) context.
The adjoint transpositions are defined

φRan : ∀i f g . (Functor f)⇒ (∀x . f (i x)→ g x)→ (∀x . f x → Rani g x)
φRan � = λs → Ran (λκ→ � (fmap κ s))
φ◦

Ran : ∀i f g . (∀x . f x → Rani g x)→ (∀x . f (i x)→ g x)
φ◦

Ran � = λs → ran◦ (� s) id .

Again, we omit Functor contexts that are not needed.
Turning to the definition of the left Kan extension we require another exten-

sion of the Haskell 98 type system: existential types.

data Lani f x = ∀a . Lan (i a → x , f a)
instanceFunctor (Lani f)where

fmap f (Lan (κ, s)) = Lan (f · κ, s)

The existential quantifier is written as a universal quantifier in front of the data
constructor Lan. Ideally, LanJ should be given by a newtype declaration, but
newtype constructors must not have an existential context. For similar reasons,
we cannot use a deconstructor, that is, a selector function lan◦. The type Lani f
can be seen as a generalised abstract data type: f a is the internal state and
i a → x the observer function — again, the type constructors i and f are likely
to be identical. The adjoint transpositions are given by

φLan : ∀i f g . (∀x . Lani f x → g x)→ (∀x . f x → g (i x))
φLan � = λs → � (Lan (id , s))
φ◦

Lan : ∀i f g . (Functor g)⇒ (∀x . f x → g (i x))→ (∀x . Lani f x → g x)
φ◦

Lan � = λ(Lan (κ, s))→ fmap κ (� s)

The duality of the construction is somewhat obfuscated in the Haskell code. �

222 R. Hinze

Again, let us specialise the adjoint equations.

x · PreJ in = Ψ x
⇐⇒ { definition of PreJ }

x · (in ◦ J) = Ψ x
⇐⇒ { pointwise }

x A (in (JA) s) = Ψ x A s

PreJ out · x = Ψ x
⇐⇒ { definition of PreJ }

(out ◦ J) · x = Ψ x
⇐⇒ { pointwise }

out (JA) (x A s) = Ψ x A s

Note that ‘·’ in the original equations denotes the (vertical) composition of nat-
ural transformations: (� · �)X = �X · �X . Also note that the natural trans-
formations x and in are applied to different type arguments. The usual caveat
applies when reading the equations as Haskell definitions: as type application is
invisible, the derived equation is indistinguishable from the original one.

Haskell example 26. Continuing Haskell Example 24, the base function of concat
is straightforward, except perhaps for the types.

concat : ∀x . (∀a . x (List a)→ List a)→
(∀a . List x (List a)→ List a)

concat concat (Nil) = In Nil

concat concat (Cons (l , ls)) = append (l , concat ls)

The base function is a second-order natural transformation. The transpose of
concat is quite revealing. First of all, its type is

φ concat : List →̇ RanList List ∼= ∀a . List a → ∀b . (a → List b)→ List b .

The type suggests that φ concat is the bind of the list monad (written >>= in
Haskell), and this is indeed the case!

concat ′ : ∀a b . μList a → (a → List b)→ List b
concat ′ as = λκ → concat (fmap κ as)

For clarity, we have inlined RanList List. �

Kan extensions generalise the constructions of the previous section: we have
LshA B ∼= Lan(KA) (K B) and RshA B ∼= Ran(KA) (K B), where K is the constant
functor. The double adjunction LshX 5 (−X) 5 RshX is implied by LanJ 5
(− ◦ J) 5 RanJ. Here is the proof for the right adjoint:

FA→ B
∼= { arrows as natural transformations }

F ◦ K A →̇ K B
∼= { (− ◦ J) 5 RanJ }

F →̇ RanKA (K B)
∼= { RanKA (K B) ∼= RshA B }

F →̇ RshA B .

Table 2 summarises our findings.

Adjoint Folds and Unfolds 223

Table 2. Adjunctions and types of recursion

adjunction initial fixed-point equation final fixed-point equation

L � R
x · L in = Ψ x R out · x = Ψ x

φ x · in = (φ · Ψ · φ◦) (φ x) out · φ◦ x = (φ◦ · Ψ · φ) (φ◦ x)

Id � Id
standard fold standard unfold
standard fold standard unfold

(−× X) � (−X)
parametrised fold curried unfold

fold to an exponential unfold from a pair

(+) � Δ
recursion from a coproduct of

mutual value recursionmutually recursive types
mutual value recursion on single recursion from a
mutually recursive types coproduct domain

Δ � (×)
mutual value recursion recursion to a product of

mutually recursive types
single recursion to a mutual value recursion on

product domain mutually recursive types

LshX � (−X) —
monomorphic unfold

unfold from a left shift

(−X) � RshX
monomorphic fold

—
fold to a right shift

LanJ � (− ◦ J) —
polymorphic unfold

unfold from a left Kan extension

(− ◦ J) � RanJ
polymorphic fold

—
fold to a right Kan extension

5 Related Work

Building on the work of Hagino [17], Malcolm [23] and many others, Bird and
de Moor gave a comprehensive account of the “Algebra of Programming” in their
seminal textbook [3]. While the work was well received and highly appraised in
general, it also received some criticism. Poll and Thompson write in an otherwise
positive review [33]:

The disadvantage is that even simple programs like factorial require some
manipulation to be given a catamorphic form, and a two-argument func-
tion like concat requires substantial machinery to put it in catamorphic
form, and thus make it amenable to manipulation.

The term ‘substantial machinery’ refers to Section 3.5 of the textbook where
Bird and de Moor address the problem of assigning a unique meaning to the
defining equation of append (called cat in the textbook). In fact, they generalise
the problem slightly, considering equations of the form

x · (in × id) = h · G x · φ , (14)

where φ is some suitable natural transformation and h a suitable arrow. Clearly,
their approach is subsumed by the framework of adjoint folds.

224 R. Hinze

The seed for this framework was laid in Section 6 of the paper “Generalised
folds for nested datatypes” by Bird and Paterson [5]. In order to show that gener-
alised folds are uniquely defined, they discuss conditions to ensure that the more
general equation x ·L in = Ψ x , our adjoint initial fixed-point equation, uniquely
defines x . Two solutions are provided to this problem, the second of which re-
quires L to have a right adjoint. They also show that the right Kan extension is
the right adjoint of pre-composition. Somewhat ironically, the rest of the paper,
which is concerned with folds for nested datatypes, does not build upon this el-
egant approach. Also, they do not consider (adjoint) unfolds. Nonetheless, Bird
and Paterson deserve most of the credit for their fundamental insight, so three
cheers to them! (As an aside, the first proof method uses colimits and is strictly
more powerful. It can be used to give a semantics to functions such as zip that
are defined by simultaneous recursion over a pair of datatypes: ×(μF) → A.
Since the product is not a left adjoint, the framework developed in this paper
is not applicable.) A slight variation of adjoint folds was introduced by Matthes
and Uustalu [25] under the name generalised iteration. They essentially gener-
alise (14) to an arbitrary left adjoint L:

x · L in = h · G x · φ ,

where x : L (μF)→ A, φ : L ◦ F →̇ G ◦ L and h : GA→ A.
An alternative, type-theoretic approach to (co-) inductive types was proposed

by Mendler [28]. His induction combinators Rμ and Sν map a base function to its
unique fixed point. Strong normalisation is guaranteed by the polymorphic type
of the base function. The first categorical justification of Mendler-style recursion
was given by de Bruin [6]. Interestingly, in contrast to traditional category-
theoretic treatments of (co-) inductive types there is no requirement that the
underlying type constructor is a covariant functor. Indeed, Uustalu and Vene
have shown that Mendler-style folds can be based on difunctors [38]. It remains
to be seen whether adjoint folds can also be generalised in this direction. Abel,
Matthes and Uustalu extended Mendler-style folds to higher kinds [1]. Among
other things, they demonstrate that suitable extensions of Girard’s system Fω

retain the strong normalisation property and they show how to transform gen-
eralised Mendler-style folds into standard ones.

There is a large body of work on ‘morphisms’. Building on the notions of
functors and natural transformations Malcolm generalised the Bird-Meertens for-
malism to arbitrary datatypes [23]. Incidentally, he also discussed how to model
mutually recursive types, albeit in an ad-hoc manner. His work assumed Set as
the underlying category and was adapted by Meijer, Fokkinga and Paterson to
the category Cpo [27]. The latter paper also popularised the now famous terms
catamorphism and anamorphism (for folds and unfolds), along with the banana
and lens brackets (�−� and [(−)]). (The term catamorphism was actually coined
by Meertens, the notation �−� is due to Malcolm, and the name banana bracket
is attributed to van der Woude.) The notion of a paramorphism was introduced
by Meertens [26]. Roughly speaking, paramorphisms generalise primitive re-
cursion to arbitrary datatypes. Their duals, apomorphisms, were only studied
later by Vene and Uustalu [39]. (While initial algebras have been the subject of

Adjoint Folds and Unfolds 225

intensive research, final coalgebras have received less attention — they are cer-
tainly under-appreciated [13].) Fokkinga captured mutually recursive functions
by mutomorphisms [10]. He also observed that Malcolm’s zygomorphisms arise
as a special case, where one function depends on the other, but not the other way
round. (Paramorphisms further specialise zygomorphisms in that the indepen-
dent function is the identity.) An alternative solution to the ‘append -problem’
was proposed by Pardo [31]: he introduces folds with parameters and uses them to
implement generic accumulations. His accumulations subsume Gibbons’ down-
wards accumulations [12].

The discovery of nested datatypes and their expressive power [4,8,30] led
to a flurry of research. Standard folds on nested datatypes, which are natural
transformations by construction, were perceived as not being expressive enough.
The aforementioned paper by Bird and Paterson [5] addressed the problem by
adding extra parameters to folds leading to the notion of a generalised fold.
The author identified a potential source of inefficiency — generalised folds make
heavy use of mapping functions — and proposed efficient generalised folds as a
cure [18]. The approach being governed by pragmatic concerns was put on a firm
theoretical footing by Martin, Gibbons and Bayley [24] — rather imaginatively
the resulting folds were called disciplined, efficient, generalised folds. The fact
that standard folds are actually sufficient for practical purposes — every adjoint
fold can be transformed into a standard fold — was later re-discovered by Johann
and Ghani [21].

We have shown that all of these different morphisms and (un-) folds fall under
the umbrella of adjoint (un-) folds. (Paramorphisms and apomorphisms require
a slight tweak though: the argument or result must be guarded by an invoca-
tion of the identity.) It remains to be seen whether more exotic species such as
histomorphisms or futomorphisms [37] are also subsumed by the framework. (It
does work for the simple example of Fibonacci.)

6 Conclusion

I had the idea for this paper when I re-read “Generalised folds for nested
datatypes” by Bird and Paterson [5]. I needed to prove the uniqueness of a
certain function and I recalled that the paper offered a general approach for do-
ing this. After a while I began to realise that the approach was far more general
than I and possibly also the authors initially realised.

Adjoint folds and unfolds strike a fine balance between expressiveness and ease
of use. We have shown that many if not most Haskell functions fit under this
umbrella. The mechanics are straightforward: given a (co-) recursive function, we
abstract away from the recursive calls, additionally removing occurrences of in
and out that guard those calls. Termination and productivity are then ensured
by a naturality condition on the resulting base function.

The categorical concept of an adjunction plays a central role in this devel-
opment. In a sense, each adjunction captures a different recursion scheme —
accumulating parameters, mutual recursion, polymorphic recursion on nested

226 R. Hinze

datatypes etc. — and allows the scheme to be viewed as an instance of an ad-
joint (un-) fold.

Of course, the investigation of adjoint (un-) folds is not complete; it has barely
begun. For one thing, it remains to develop the calculational properties of adjoint
(un-) folds. Their definitions

x = �Ψ�L ⇐⇒ x · L in = Ψ x
x = [(Ψ)]R ⇐⇒ R out · x = Ψ x

gives rise to the usual reflection, computation and fusion laws. In addition, one
might hope for elegant laws manipulating the underlying adjoint functors. For
another thing, it will be interesting to see whether other members of the mor-
phism zoo can be fitted into the framework.

A final thought: most if not all constructions in category theory are parametric
in the underlying category, resulting in a remarkable economy of expression.
Perhaps, we should spend more time and effort into utilising this economy for
programming. This possibly leads to a new style of programming, which could
be loosely dubbed as category-parametric programming.

Acknowledgements

Thanks are due to Tom Harper, Daniel James and Nicolas Wu for carefully
proof-reading (an even longer) draft of the manuscript and for suggesting nu-
merous improvements regarding both contents and style. Many thanks also go
the members of the Algebra of Programming group at Oxford for several fruitful
discussions on adjoint functors and for suggesting the subtitle. I owe a particular
debt of gratitude to Thorsten Altenkirch for showing me how to derive the right
adjoint of − ×̇ H (at that time, I could not imagine that I would ever find an
application for the construction). Thanks are also due to the anonymous referees
of MPC 2010 who provided several pointers and some historical perspective. Fi-
nally, I would like to thank Richard Bird for general advice and for encouraging
(even pushing me) to write things up.

References

1. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1-2), 3–66 (2005)

2. Bird, R.: Introduction to Functional Programming using Haskell, 2nd edn. Prentice
Hall, Europe (1998)

3. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall, Europe (1997)
4. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,

vol. 1422, pp. 52–67. Springer, Heidelberg (1998)
5. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of

Computing 11(2), 200–222 (1999)
6. de Bruin, P.J.: Inductive types in constructive languages. Ph.D. thesis, University

of Groningen (1995)

Adjoint Folds and Unfolds 227

7. Cockett, R., Fukushima, T.: About Charity. Yellow Series Report 92/480/18, Dept.
of Computer Science, Univ. of Calgary (June 1992)

8. Connelly, R.H., Morris, F.L.: A generalization of the trie data structure. Mathe-
matical Structures in Computer Science 5(3), 381–418 (1995)

9. Fokkinga, M.M., Meertens, L.: Adjunctions. Tech. Rep. Memoranda Inf. 94-31,
University of Twente, Enschede, Netherlands (June 1994)

10. Fokkinga, M.M.: Law and Order in Algorithmics. Ph.D. thesis, University of
Twente (February 1992)

11. Fokkinga, M.M., Meijer, E.: Program calculation properties of continuous alge-
bras. Tech. Rep. CS-R9104, Centre of Mathematics and Computer Science, CWI,
Amsterdam (January 1991)

12. Gibbons, J.: Generic downwards accumulations. Sci. Comput. Program. 37(1-3),
37–65 (2000)

13. Gibbons, J., Jones, G.: The under-appreciated unfold. In: Felleisen, M., Hudak, P.,
Queinnec, C. (eds.) Proceedings of the third ACM SIGPLAN international confer-
ence on Functional programming, pp. 273–279. ACM Press, New York (1998)

14. Gibbons, J., Paterson, R.: Parametric datatype-genericity. In: Jansson, P. (ed.)
Proceedings of the 2009 ACM SIGPLAN workshop on Generic programming,
pp. 85–93. ACM Press, New York (August 2009)

15. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Smith, J.,
Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995)

16. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-
tics and continuous algebras. Journal of the ACM 24(1), 68–95 (1977)

17. Hagino, T.: A typed lambda calculus with categorical type constructors. In:
Pitt, D.H., Rydeheard, D.E., Poigné, A. (eds.) Category Theory and Computer
Science. LNCS, vol. 283. Springer, Heidelberg (1987)

18. Hinze, R.: Efficient generalized folds. In: Jeuring, J. (ed.) Proceedings of the 2nd
Workshop on Generic Programming, Ponte de Lima, Portugal, pp. 1–16 (July
2000); The proceedings appeared as a technical report of Universiteit Utrecht,
UU-CS-2000-19

19. Hinze, R.: Functional Pearl: Streams and unique fixed points. In: Thiemann, P.
(ed.) Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’08), pp. 189–200. ACM Press, New York (September
2008)

20. Hinze, R., Peyton Jones, S.: Derivable type classes. In: Hutton, G. (ed.) Proceed-
ings of the 2000 ACM SIGPLAN Haskell Workshop. Electronic Notes in Theoreti-
cal Computer Science, vol. 41(1), pp. 5–35. Elsevier Science, Amsterdam (August
2001); The preliminary proceedings appeared as a University of Nottingham tech-
nical report

21. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Della Rocca, S.R.
(ed.) TLCA 2007. LNCS, vol. 4583, pp. 207–222. Springer, Heidelberg (2007)

22. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts
in Mathematics. Springer, Berlin (1998)

23. Malcolm, G.: Data structures and program transformation. Science of Computer
Programming 14(2-3), 255–280 (1990)

24. Martin, C., Gibbons, J., Bayley, I.: Disciplined, efficient, generalised folds for nested
datatypes. Formal Aspects of Computing 16(1), 19–35 (2004)

25. Matthes, R., Uustalu, T.: Substitution in non-wellfounded syntax with variable
binding. Theoretical Computer Science 327(1-2), 155–174 (2004)

228 R. Hinze

26. Meertens, L.: Paramorphisms. Formal Aspects of Computing 4, 413–424 (1992)
27. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 124–144. Springer, Heidelberg (1991)

28. Mendler, N.P.: Inductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic 51(1-2), 159–172 (1991)

29. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: Paul, M.,
Robinet, B. (eds.) Programming 1984. LNCS, vol. 167, pp. 217–228. Springer,
Heidelberg (1984)

30. Okasaki, C.: Catenable double-ended queues. In: Proceedings of the 1997 ACM
SIGPLAN International Conference on Functional Programming, Amsterdam, The
Netherlands, June 1997, pp. 66–74 (1997); ACM SIGPLAN Notices 32(8), (August
1997)

31. Pardo, A.: Generic accumulations. In: Gibbons, J., Jeuring, J. (eds.) Proceedings
of the IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl,
vol. 243, pp. 49–78. Kluwer Academic Publishers, Dordrecht (July 2002)

32. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press,
Cambridge (2003)

33. Poll, E., Thompson, S.: Book review: “The Algebra of Programming”. J. Functional
Programming 9(3), 347–354 (1999)

34. Sheard, T., Pasalic, T.: Two-level types and parameterized modules. J. Functional
Programming 14(5), 547–587 (2004)

35. The Coq Development Team: The Coq proof assistant reference manual,
http://coq.inria.fr

36. Trifonov, V.: Simulating quantified class constraints. In: Haskell ’03: Proceedings
of the 2003 ACM SIGPLAN workshop on Haskell, pp. 98–102. ACM, New York
(2003)

37. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica, Lith. Acad. Sci. 10(1), 5–26 (1999)

38. Uustalu, T., Vene, V.: Coding recursion a la Mendler (extended abstract). In:
Jeuring, J. (ed.) Proceedings of the 2nd Workshop on Generic Programming, Ponte
de Lima, Portugal, pp. 69–85 (July 2000); The proceedings appeared as a technical
report of Universiteit Utrecht, UU-CS-2000-19

39. Vene, V., Uustalu, T.: Functional programming with apomorphisms (corecursion).
Proceedings of the Estonian Academy of Sciences: Physics, Mathematics 47(3),
147–161 (1998)

http://coq.inria.fr

An Abstract Machine for the Old Value
Retrieval�

Piotr Kosiuczenko

Institute of Information Systems, WAT, Warsaw, Poland

Abstract. The evaluation of post-conditions requires the computation
of old attribute values. Until recently, existing computation methods were
not efficient in terms of time- and space-complexity. Moreover they were
applicable only to a restricted form of post-conditions. Recently a new
algorithm was proposed to overcome those deficiencies. In this paper, an
abstract machine corresponding to this algorithm is defined. Its transi-
tions simulate steps of object-oriented systems and preserve an invariant
implying properties needed to compute old attribute values. The ma-
chine is based on a kind of structure called here sufficiently persistent, as
opposed to persistent and partially persistent structures. A space-bound
on the structure size is given. It is also demonstrated that methods which
do not have post-conditions can be abstracted away.

Keywords: persistent data structures, old value retrieval, @pre, old.

1 Introduction

Contracts are used to specify object-oriented systems from the user point of
view [10]. They consist of three basic constraint types: invariants, pre- and post-
conditions. The system consistency is ensured by invariants. A pre-condition
specifies in which states a method can be called. Post-conditions specify system
states after a method execution. Their validation is not straightforward since
it is necessary to compare attribute values in method pre- and post-states and
method calls can be nested. Old attribute values are accessed with the help of
operator @pre in case of Object Constraint Language (OCL, see [12]) and old
in case of Eiffel [11], Java Modeling Language (JML, see [4]) and Spec# [1]. The
copying of a whole pre-state before a method execution is out of question due
to its time- and memory-cost. This problem can be avoided by saving before
the execution values of those attributes whose @pre/old values are referred to
in the corresponding post-condition. It is similar to the way old variable values
are treated in the Hoare logic [6], which uses fresh variables to store values from
before a method execution. This approach is followed in tools supporting other
contractual languages such as OCL, JML and Spec# (see [9,13] for an OCL
tools overview). The current implementations of @pre operator are discussed
in [8,9,3].
� This research has been partially supported by grant No PBZ-MNiSW-DBO-

02/I/2007/.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 229–247, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

230 P. Kosiuczenko

This approach requires the restriction of post-conditions syntax to formulas
of the form: t0[t1@pre/x1,..., tn@pre/xn] (we use here the OCL nota-
tion), where term t0 does not include @pre and term ti@pre is obtained from
term ti by replacing every attribute a by a@pre, for i = 1,..., n (for example,
term (self.a.b)@pre is an abbreviation of OCL term self.a@pre.b@pre).
[t1@pre/x1,..., tn@pre/xn] denotes here the simultaneous substitution
of terms ti for variables xi, for i = 1,..., n. Values of terms ti are computed
before the underlying method is executed, saved and then after the method exe-
cution used to compute the value of the post-condition. For example constraint
self.a.b@pre = self.a@pre.b@pre+1 is not of the above form. In this
case, it is not possible to compute in the pre-state values of attribute b for the
objects related by a with self in the post-state. To do this one would have to
know in advance which objects will be related by a in the post-state.

There are other problems with this approach. If terms ti are of collection types,
then the actual collection values must be cloned. Such clones are computationally
expensive and pose logical problems, since reference identity cannot be used for
object comparison. Computation of all potentially needed values in the pre-state
can be even nonterminating. For example, let us consider expression if 1 + 1 =
2 then 1 else q@pre endif where q is a computationally complex, or nonter-
minating, integer-valued query. Obviously, in general there is no need to evaluate
q in the pre-state to compute the value of the whole expression.

In the paper [9] an algorithm was proposed which overcomes above mentioned
problems. It allows to access @pre-values during post-condition evaluation as
needed. Consequently, it is applicable to all forms of post-conditions. Its exe-
cution does not increase the complexity class of post-condition evaluation as if
the computation of old values had a constant time. Since values of @pre-terms
are not recorded in advance, there is neither need to clone system states nor to
restrict the post-condition syntax. The algorithm is implemented in AspectJ. It
superimposes the so called fat structures [5] on object-oriented systems. Those
structures make arbitrary linked structures partially persistent, i.e. when a se-
quence of updates is performed, then all versions of a linked structure can be
accessed and the newest version can be modified.

The method proposed in [5] applies to a sequence of operations. Basically,
every modification of an attribute is accompanied by storing the modified value
and the corresponding modification number in a data structure. The notion of
persistence requires that all previous versions of a structure can be accessed and
modified [5]. However method calls can be recursive and form a tree instead of a
sequence. There is no obvious relation between consecutive versions of modified
attributes and the call-stack. Thus we need a different way of handling attribute
modifications. On the other hand, fat structures hinder the garbage collection.
Therefore stored information should be minimized. In the paper [2], the notion
of semi persistence has been coined for backtracking algorithms. The authors
have observed that when backtracking from a branch it suffices to use the old
version of a structure without undoing changes. The ancestors of the current
version are reused, but never another version obtained from a common ancestor.

An Abstract Machine for the Old Value Retrieval 231

They call a data structure semi-persistent if only ancestors of the newest version
can be updated. This notion differs from partial persistence, since it allows the
update of ancestor structures. However, the authors have not considered ways
of ensuring semi persistence, nor the way we can handle old attribute values and
minimize the memory use.

In this paper we define a labelled transition system, or as we sometimes say
an abstract machine, which simulates steps of object-oriented programs and
manages attribute histories. Method execution is simulated by transitions like
method call, setting object attributes and method return. For every attribute we
define a history-stack whose elements are pairs consisting of an old attribute’s
values and its time-stamps being a calls number. Basically, if an attribute is set
for the first time during a method execution and the stack does not include timely
snapshots, its previous value is pushed on the stack with a time-stamp being the
number of the currently executing method. We define also clean operations which
remove outdated snapshots from history-stacks. We formulate an invariant which
guarantees that @pre-attribute values are recoverable from the current ones and
the corresponding histories. We show that it is preserved by the transitions.

An efficient space management is crucial here, since objects reclaim during
garbage collection is restrained due to saving old attribute values in history
queues. Partial persistence is more than we need and as such causes unnecessary
space overhead. In that case, the history of an attribute has size equal to the
number of its modifications. The access time to attribute values from before the
current method execution is logarithmic if binary search trees are use to store
attribute histories [5]. We call a structure sufficiently persistent, if all its versions
directly proceeding non-terminated method calls can be accessed, but only the
most recent version can be updated. Sufficiently persistent structures are related
to semi persistent structures as partially persistent structures to persistent ones.
Defined abstract machine corresponds to a general form of sufficiently persistent
structures. It should be stressed, that our methods applies to all forms of linked
structures, not only object-oriented ones.

We show that in case of the Towers of Hanoi algorithm, our method requires
space of size O(n2), where n is the number of rings; whereas partially persistent
structures require space of exponential size. In our case, at any point of execution
the lengths of attribute histories are linearly bound by the maximal size of the
call-stack reached up to that point. We show that the cumulative access time to
an attribute value from before a method execution is constant. This is due to
cleaning of outdated values and to the fact that in our approach we register only
the attribute values prior to a method execution, not every version. If recursion
is replaced by iteration, then our method results in leaner structures.

Some methods do not have post-conditions containing attributes of the form
a@pre; we call them irrelevant. We prove that it is possible to abstract from
calls of such methods. We do it by defining a proper bisimulation relation. This
corresponds in a sense to the refactoring pattern called inline method [7], which
results in a less structured code. Thus the length of attribute history can be
linearly bound by the number of relevant methods on the call-stack.

232 P. Kosiuczenko

This paper is organized as follows. In Section 2, we define a labelled tran-
sition system which manages old attribute values. In Section 3, we discuss its
properties and define an invariant preserved by its transitions. In Section 4, we
prove that when computing old attribute values it is possible to abstract from
methods without post-conditions. In Section 5, we relate the abstract machine
to the AspectJ implementation proposed in [9] and consider the time- and space-
complexity of proposed method. Section 6 concludes this paper.

2 The Abstract Machine

In this section we define a labelled transition system, or as we sometimes say an
abstract machine. Transitions of this system define steps of an object-oriented
system and the way attribute values are archived. Executions of object-oriented
programs, for example written in Java, correspond to a restricted subset of all
runs of this machine. This machine does not take into consideration restrictions
due to the use of method parameters. In any execution state it is possible to
modify any object. For simplicity we do not deal with object creation explicitly.
We assume that the initialization of an object consists of setting its attributes
which are all initially equal to ⊥. Similarly we do not model here the garbage
collection. We discuss the issue of efficient space use in subsection 5.2.

2.1 States

In this subsection we define states of the abstract machine. We assume that there
exists an infinite set of object locations/addresses OL and that the undefined
symbol ⊥ does not belong to OL. A = {a1 , ..., an} is a finite set of attributes.
Op is the set of methods/operations. We assume that main belongs to Op. N
is the set of natural numbers. Below for an arbitrary set B , B⊥ denotes the set
B ∪ {⊥}. We model a heap state (called here object store or simply store) by
a function mapping pairs consisting of an attribute and an object location to
object location, i.e. St =def {st : A×OL→ OL⊥}.

In our model, all objects can have potentially all attributes. Classes can be
modelled by infinite subsets of OL with the restriction on attributes. Thus if
say objects of class B do not possess attribute a, then for every object o of
class B and every store st , st(a, o) = ⊥ must hold. Likewise we do not deal
directly with inheritance. However, we can restrict in a similar way method calls.
Below we abstract from method parameters making the machine runs even more
general; considered methods can potentially modify any object. Clearly we get
a number of machine runs which do not correspond to an execution of a method
implemented in a language such as Java.

We call a pair consisting of an attribute value and the corresponding time-
stamp ‘attribute snapshot’. An attribute history for an object is a sequence
of snapshots: H =def (OL×N)∗. Attribute histories are modelled by history
functions. A history function for an attribute and a location is either undefined
or equal to a sequence of snapshots. AH =def {h : A×OL→ H⊥} is the set of

An Abstract Machine for the Old Value Retrieval 233

such functions. SH =def (St ×Op ×N)+ is the set consisting of store histories,
or as we sometimes say heap histories. Such a history is a sequence of triples
consisting of a store, the name of a currently executing method and a time-stamp
corresponding to a method call. Method calls are numbered starting with one.
For every subsequent call, the counter is increased by one.

Computation states are the states of the abstract machine. They consist
of a nonempty store history, an attributes history function and a value cor-
responding to the number of executed method calls: CS =def SH ×AH ×N .
The initial state models the situation when method main starts to execute.
The store is constantly equal to ⊥ since no attributes are set. All values are
undefined, since there is nothing to be archived when main is called. st⊥ and h⊥
are respectively the store and the history functions constantly equal to ⊥. The
call number is 0, since no method different from main started to execute, i.e.
inSt =def ((st⊥,main, 0), h⊥, 0).

2.2 Transitions

In this subsection we define a transition relation R corresponding to computation
following the post-condition specification style (cf. e.g. [12]). They are five kinds
of transition steps. The first one corresponds to a method call. The second one
concerns setting an attribute. This transition records changed attribute values
in the attribute history-stacks. The third one concerns a method return. The
last two concern cleaning an attribute history. In the first case, only the top of a
history-stack is cleaned. In the second one, all outdated snapshots are removed.

We denote by f [x '→ v] a function that maps x to v and differs from f only for
argument x; i.e. f [x '→ v](x) = v and f [x '→ v](y) = f(y), for y 	= x. Let compu-
tation states cs, cs ′ be of the form (sh, h,n) and (sh′, h′,n ′), respectively. Below
we assume that store history sh has the form (st0 ,main, 0)...(stk , opk ,nk). We
assume that sh0 is its initial subsequence up to i− 1, i.e. sh = sh0 (stk , opk ,nk).
If h(a, o) 	= ⊥, then we assume that h(a, o) is a sequence of the form ah0 (ol , rl),
where ah0 = (o0 , r0)...(ol−1 , rl−1). Note that opk is the method executing when
the transitions below are started and nk is its call number. Let a ∈ A, o, o′ ∈ OL.

1. cs Rcall(op) cs ′ ⇔ n ′ = n + 1 ∧ sh′ = sh(stk , op,n + 1) ∧ h′ = h
2. cs Rset(a,o,o′) cs ′ ⇔ ∃st′∈Stn ′ = n ∧ sh′ = sh0 (st ′, opk ,nk) where

st ′ = stk [(a, o) '→ o′]. Moreover,
(i) h(a, o) = ⊥ ⇒ h′ = h[(a, o) '→ (o′,nk)]
(ii) rl < nk ∧ stk (a, o) 	= ol ⇒ h′ = h[(a, o) '→ h(a, o)(stk (a, o),nk)]
(iii) rl < nk ∧ stk (a, o) = ol ⇒ h′ = h[(a, o) '→ ah0 (ol ,nk)]
(iv) In other cases h′ = h

3. cs Rreturn(opk) cs ′ ⇔ sh′ = (st0 ,main, 0) ...(stk−2 , opk−2 ,nk−2)
(stk , opk−1 ,nk−1)

(i) |sh0 | > 0 ⇒ h′ = h ∧ n ′ = n
(ii) |sh0 | = 0 ⇒ ∀a∈A, o∈OLh′(a, o) = if h(a, o) 	= ⊥ then ε else ⊥ endif
∧n ′ = 0

234 P. Kosiuczenko

4. cs RcleanTop(a,o) cs ′ ⇔ 1 < |h(a, o)| ∧ nk � rl−1 ∧ sh′ = sh ∧ n ′ = n ∧
h′ = h[(a, o) '→ ah0]

5. cs RcleanWhole(a,o) cs ′ ⇔ 1 < |h(a, o)| ∧ sh′ = sh ∧ n ′ = n ∧
h′=h[(a, o) '→ ah] where ah =(os0 , rs0)(os1 , rs1)...(osp , rsp) is a subsequence
of h(a, o) such that (∀ 0�i�k, 0�j�l ni � rj ⇒ ∃ 0�d�p ni � rsd � rj) ∧
(∀ 0�d<p ∃ 0�i�k rsd < ni � rs(d+1)

Transition (1) corresponds to a method call. Since in this case the attributes
histories are not modified, the last store is simply duplicated. Every method call
has a number being the successor of the number of the last method call. Similarly,
the new store has the time-stamp corresponding to the last call number.

Transition (2) corresponds to attribute modification. It should be noted that
in terms of aspect-oriented programming, o is the target of the set operation.
Setting attribute a modifies only the heap, i.e. the topmost store st and possibly
history of a for o. It does not change number n of the most recent method call,
nor histories of other attributes.

(2i), (2ii) and (2iii) concern attribute history and do not constrain the store
change. (2i) corresponds to the case when for location o attribute a was not
set before. In this case the history of a for o is initialized by storing the first
attribute value. (2ii) corresponds to the case when the attribute has a history,
but either the history is empty or the topmost attribute value is different from
the attribute value in the pre-state and the topmost time-stamp concerns an
older method call than the currently executing one (i.e. rl < nk). In this case,
the history is extended by the value of a in the pre-state. The corresponding
time-stamp is the number of the currently executing method. If the history is
empty or rl < nk, i.e. the last change of a for o happened before the current
method execution, then the history is extended by the snapshot made prior to
the execution of set. stk(a, o) is the value of a in the pre-state. In case of (2iii)
as in case of (2ii), the topmost time-stamp concerns an older method call (i.e.
rl < nk), but the topmost attribute value is equal to the attribute value in the
pre-state. The attribute value is not modified after call number rl up to nk . In
this case the history is not extended, but the time-stamp is updated and set
equal to the number of the currently executing method. It should be noted that
an attribute may be modified during the same method execution several times.
If the time-stamp rl of the last snapshot was not increased to nk, then during
the next modification of a the already modified value could be stored in a new
snapshot. Thus the new snapshot can potentially contain a value unequal to the
value from before the execution.

Transition (3) concerns method return. When a method returns, the control
returns to the previously executing method, i.e. method which made the call.
This results with replacement of the store stk−1 corresponding to the previously
executing method with actual store stk , since all changes made by methods called
later contribute to the current state of the store; the method which called the
terminated method resumes its execution on stk.

(3i) handles the case when after the method return control returns to a method
different from main. In this case attribute histories remain unchanged. (3ii)

An Abstract Machine for the Old Value Retrieval 235

handles the case when the control returns to the main method. In this case,
there are no other methods on the call-stack and all attribute histories can be
emptied, i.e. set to ε, and the method counter can be set to 0. Undefined histories
remain undefined. In this way we optimize the memory use before main calls
another method.

Transition (4) does not change the store, but concerns cleaning an attribute
history. Due to method returns, it may happen that an object history contains
at its top snapshots made during the execution of terminated methods. The
topmost snapshot does not refer to the pre-state of currently executing methods
if the previous snapshot contains a time-stamp larger or equal to the time-stamp
of currently executing method. In this case the topmost snapshot is removed from
the attribute history. It minimizes the memory use. It should be stressed that
in general popping an attribute history-stack after a method which modified it
returns would be incorrect, since the new value of the attribute may differ from
the previous one. After the return there would be neither a way to figure out
that the attribute was modified nor to retrieve the @pre-value from the history.

Outdated snapshots can be located not only at the top of a history-stack,
but also inside. Transition (5) cleans the whole attribute history. It leaves in the
history sequence all snapshots with time-stamps being the smallest upper bound
of a unterminated call number and removes all others. Thus, if ni � rj < rj+1 �
ni+1 or m � rj < rj+1, then the snapshot number j+1 is removed.

Clean operations can be invoked either when an attribute is modified or when
the method which modified the attribute terminates. The second case requires
registration of objects modified during a method execution. We followed this
approach in the paper [9].

3 Invariant

In this section we discuss properties of proposed structure and the way attribute
archiving is done. We formulate an invariant concerning states of the abstract
machine and use it to prove the correctness of the proposed retrieval method.

A method which is called by another method terminates before the calling
method. In general, method numbering is performed in proposed algorithm ac-
cording to the pre-order traversal of the recursive call tree, and method returns
are performed according to the post-order traversal of the tree. Thus the call
numbers stamping attribute values are not necessarily used monotonically; i.e. a
value snapshot made later may have a smaller time-stamp. Moreover, for every
modified attribute, we store only the version prior to the method call, not every
subsequent value.

A partially persistent data structure always preserves the previous version
of itself when it is modified. It supports nonrecursive sequences of updates ap-
plying to its most recent version, but any previously existing version can be
accessed [5]. In the case of method calls information about all previous forms
of a modified structure is not needed, since we do not need information how
terminated methods modified it. We need to know only how the methods on

236 P. Kosiuczenko

the call-stack modified it. In particular, if all method calls terminate, then there
is no need for information about the past forms of the structure. In this case,
the ephemeral form, i.e. the plain structure without any information about its
previous forms [5], suffices. Thus, we need a notion which is more appropriate
than the notion of partial persistence. We call a structure sufficiently persistent
if for every non-terminated method call the version from before the call can be
accessed, but only the most recent version can be updated. The abstract ma-
chine defined in the previous section corresponds to a general form of sufficiently
persistent structures.

Below we assume that the conjunction binds stronger than the disjunction,
that the disjunction binds stronger than the implication and that quantifiers
bind weakest.

Invariant
Let cs = (sh, h,n) be a computation state where store history sh has the form
(st0 ,main, 0)(st1 , op1 ,n1)...(stk , opk ,nk). If h(a, o) 	= ⊥, then we assume that
h(a, o) has the form (o0 , r0)...(ol , rl).

(a) (∀0�i<k sti(a, o) 	= ⊥ ⇒ sti+1 (a, o) 	= ⊥) ∧ (stk (a, o) = ⊥ ⇔ h(a, o) = ⊥)
(b) 0 < n1 < ... < nk � n
(c) h(a, o) 	= ⊥ ⇒ 0 � r0 < ... < rl � n
(d) ∀0�i<k⊥ 	= sti(a, o) 	= sti+1 (a, o)⇒ ∃0<j�lni+1 � rj
(e) ∀0�i<k , 0�j�lsti(a, o) 	= ⊥ ∧ ni+1 � rj ∧ (1 � j − 1 ⇒ rj−1 < ni+1)⇒

sti(a, o) = oj

By Inv we denote the above defined invariant and by cs |= Inv we denote the fact
that it is satisfied in computation state cs . Point (a) says that if an attribute is
defined for a location, then it remains to be so. Moreover, an attribute is defined
if, and only if, the corresponding history is defined as well. Point (b) says that
the store numbers, corresponding to call numbers, grow strictly monotonically
and are bound by the number of the last call. Similarly (c) says that time-stamp
numbers in an attribute history grow strictly monotonically. (d) says that after
any attribute value change, a snapshot of this attribute is made. (e) says that the
earliest snapshot of an attribute following or made at the same time as a method
call stores the value of the attribute in the preceding store or the attribute is not
defined in that store. We call it the value witness for a in sti . (d) and (e) imply
that if the value of attribute a is different for two consecutive stores sti and sti+1 ,
then there is a snapshot (oj , rj) of a which was made at the same time or later
than the call of opi+1 , but before the next call on the call-stack if there is any. If
the antecedent of (e) is satisfied, then we say that rj is the direct follower of ni+1 .
It is the smallest snapshot’s time-stamp directly following ni+1; it can be seen as
the smallest upper bound of ni+1 (cf. transition 5). oj = sti(a, o) if sti(a, o) 	= ⊥.
Thus (d) and (e) imply that if sti(a, o) 	= ⊥ ∧ sti(a, o) 	= sti+1 (a, o), then there
is a direct follower rj of ni+1 and the corresponding location oj stores the @pre-
value.

An Abstract Machine for the Old Value Retrieval 237

Definition 1. For 0 � i < k and state sti+1 , we define a@pre in the following
way: sti+1 (a@pre, o) = sti(a, o)

The next lemma says that a@pre can be retrieved from the attribute history.
It is either unchanged or saved in the history as the earliest snapshot made
during or after the current method call. This lemma shows that histories of
object attributes contain enough information to compute a@pre-values. Thus,
for every method on the call-stack and every attribute the value of the attribute
prior to the method call can be retrieved.

Lemma 2. Let cs be a computation state described in the invariant, let 0 � i <k
and let 0 � j � l . If cs |= Inv and sti(a, o) 	= ⊥, then sti+1 (a@pre, o) =
if there exists an index j such that ni+1 � rj ∧ (0 < j−1⇒ rj−1 < ni+1) then oj

else sti+1 (a, o) endif .

Proof. Let sti(a, o) 	= ⊥. If the condition of the if-then-else-statement is satisfied,
then part (e) of the invariant implies that sti(a, o) = oj . If it is not satisfied,
then the consequent of (d) is negated. Consequently its antecedent is negated.
Therefore the fact that sti(a, o) 	= ⊥ implies that sti(a, o) = sti+1 (a, o).
The next theorem says that the invariant is satisfied in the initial states of the
abstract machine and preserved by state transitions.

Theorem 3. [Invariant Preservation]
Inv is satisfied in the initial state inSt. If cs |= Inv and cs Rstep cs ′, where step
is one of the transition steps defined in Subsection 2.2, then cs ′ |= Inv.

Proof. For a function f , Rg(f) denotes the range of f . For inSt , n = 0 and
Rg(st⊥) = Rg(h⊥) = {⊥}. Consequently, (a) and (e) are satisfied trivially. (b), (c)
and (d) follow from the fact that there are no consecutive stores and that histories
are empty.

Let us observe that every transition preserves the first part of (a), since there
is no transition setting attributes or histories back to ⊥. The second part follows
from the fact that initially all attributes and histories are undefined. An attribute
is set at the same time as its history is initialized. Afterwards it remains to be
so, since there is no transition setting attributes or histories back to ⊥. Similarly,
it is easy to observe that every transition preserves (b).

We prove now preservation of (c), (d) and (e) by all kinds of transition
steps. Let cs = (sh, h,n), cs ′ = (sh′, h′,n ′), sh0 = (st0 ,main, 0)...(stk , opk ,nk)
and h(a, o) = (o0 , r0)...(ol , rl). Moreover, let cs |= Inv .

A call does not modify the heap, but only adds a copy of the last store to
the store history. Let cs Rcall(op) cs ′ and let sh = sh0 , then accordingly to the
definition of call transition cs ′ = (sh(stk , op,n + 1), h,n + 1), i.e. the last store
is duplicated, the previous history is kept unchanged and the last call number is
increased by 1. Preservation of (c) follows from the assumption that cs |= Inv .
If the value of attribute a for location o is different in two consecutive stores
sti , sti+1 , then i+1 � k. Preservation of (d) and (e) follows from that assumption

238 P. Kosiuczenko

and the fact that h′ = h, nk � n and rj � rl � n < n + 1 , for rj being the
time-stamp of the witness for a in sti .

Set-operation does not extend the heap history, but only modifies the current
store, i.e. the last store in the store history. We assume that cs Rset(a,o,o′) cs ′,
sh = sh0 (st , op,m) and sh′ = sh0 (st ′, op,m), for st ′ = st [(a, o) '→ o′]. Note that
nk < m according to the fact that (b) is satisfied in the pre-state.

If case (2i) applies, then (c) is preserved in a trivial way. If (2ii) applies,
then a new snapshot is added to the attribute history; the corresponding time-
stamp is larger than the previous one but smaller than or equal to the number
of last call, and the saved value is different from the previous one if there is a
previous snapshot. Similarly, if (2iii) is applicable, then the time-stamp of the
last snapshot is increased, but its value is smaller than or equal to the number
of last method call. No new snapshot is added to the attribute history. If (2iv)
is applicable, then a is set again for o, the value of a was archived already and
histories are not modified. Thus in all cases (c) is preserved.

If case (2i) is applies, then the antecedent of (d) is not satisfied in cs ′, since
a is set for o for the first time. Likewise the antecedent of (e) is not satisfied
for any particular i and j, since history h(a, o) is empty. Thus (d) and (e)
are preserved in a trivial way. If case (2ii) is applicable, i.e. a is set for o in
store sti+1 , then the history is extended by a new snapshot. Let h(a, o) be of
the form (o0 , r0)...(ol , rl). Then rl < m and h′ = h[(a, o) '→ h(a, o)(st(a, o),m)].
Let i < k. Since the invariant is satisfied before the transition, sti(a, o) 	= ⊥ and
sti(a, o) 	= sti+1 (a, o) imply that ni+1 has a direct follower and it remains to be
so after the execution of set. Similarly, if condition of (e) is satisfied before set,
then it is satisfied after set and the corresponding object saves the @pre-value
before and after considered set operation. Thus (d) and (e) are preserved in this
case. Let i = k. Since the invariant is satisfied before the execution of set and
since rl < m, the value of a for o in the pre-state coincide with its value in st ,
i.e. stk (a, o) = st(a, o). (2ii) implies that the consequent of (d) is satisfied for
rj = m as well as the consequent of (e).

Suppose that case (2iii) applies. Let h(a, o) = (o0 , r0)...(ol−1 , rl−1)(ol , rl)
and h′(a, o) = (o0 , r0)...(ol−1 , rl−1)(ol ,m) be the histories before and after the
transition respectively. (d) is preserved since rl < m and since (d) holds in
the pre-state; i.e. if ⊥ 	= sti(a, o) 	= sti+1 (a, o), then ni+1 � rl < m, and if
⊥ 	= stk (a, o) 	= st ′(a, o), then the last witness time-stamp equals m which is
the number of currently executing method. Thus (d) is preserved. Suppose that
for i < k formula sti(a, o) 	= ⊥ ∧ ni+1 � rj ∧ (1 � j − 1 ⇒ rj−1 < ni+1) holds.
Then from the assumption that the invariant is satisfied in cs follows that
sti(a, o) = oj and consequently (e) is preserved. Suppose stk (a, o) 	= ⊥. From
(2iii) follows that st(a, o) = ol . We want to prove that stk(a, o) = st(a, o). If it
was not the case, then rl would be equal to m due to the assumption that (d) is
satisfied in cs . However this would contradict the applicability of (2iii), i.e. the
assumption that rl < m.

Suppose that case (2iv) applies. In this case the value of attribute a@pre
was stored for the last method call before and the histories are not modified at

An Abstract Machine for the Old Value Retrieval 239

all. Thus if ⊥ 	= sti(a, o) 	= sti+1 (a, o), then consequent of (d) is preserved and
similarly for (e). For the last two stores, if ⊥ 	= stk (a, o) 	= st ′(a, o), then since
the @pre-value was saved before, the time-stamp of the corresponding snapshot
is equal to m and the corresponding value equals stk(a, o).

Let cs Rreturn(op) cs ′. A method return does not change the current store.
In our model it replaces only the previous store corresponding to the proceed-
ing method by the most recent one. Let sh = sh0 (st , op,m), for some m, and
let sh′ = (st0 ,main,n0)...(stk−1 , opk−1 ,nk−1)(st , opk ,nk). Condition (c) is pre-
served in an obvious way.

First we consider case (3i), i.e. |sh0 | > 0 . Note that in this case, no attribute
history is modified by the return. For i < k − 1 conditions (d) and (e) follow
from the fact that cs |= Inv . If ⊥ 	= stk−1 (a, o) 	= stk (a, o), then let j be the
smallest index such that nk � rj . Then oj = stk−1 (a, o), and j is the smallest
index witnessing that, i.e. rj directly follows nk . Thus (d) and (e) are preserved. If
⊥ 	= stk−1 (a, o) = stk (a, o) 	= st(a, o), then let j be the smallest index such that
nk � rj . There exists such a j due to the fact that the value of a changes and (d)
and (e) are satisfied in cs . Therefore the consequent of (d) is satisfied in cs ′. Since
no change to a was performed in store stk , ⊥ 	= stk−1 (a, o) = stk (a, o) = oj .
Thus the consequent of (e) is satisfied. If stk−1 (a, o) = stk (a, o) = st(a, o), then
the antecedent of (d) is not satisfied and (d) holds trivially. Moreover, if there
is a direct follower rj of nk in cs ′, then it is a direct follower of nk in cs ; the
invariant and the fact that a does not change imply that oj = stk−1 (a, o). Thus
the consequent of (e) holds.

If (3ii) holds, then = 0; (c), (d) and (e) hold since the histories are emptied
and there is no preceding store.

Let cs RcleanTop(a,o) cs ′ and let sh = sh0 (stk+1 , opk+1 ,nk+1). Clean modifies
neither attributes nor the store history. It only modifies/cleans histories of an
attribute. Conditions (b) and (c) are preserved in an obvious way. Conditions
(d) is preserved, since it concerns existence of followers and clean removes only
an outdated follower leaving an earlier one. Similarly (e) is preserved, since clean
does not remove direct followers.

Let cs RcleanWhole(a,o) cs ′; the preservation of condition (c) follows trivially
from the definition of this transition. The preservation of (d) and (e) follows
from the fact that we leave in the filtrated history sequence snapshots with time-
stamps being the least upper bounds of unterminated calls numbers.

4 Weak Bisimulation

In this section we prove that we can restrict our consideration to relevant method
calls, i.e. calls of methods which have a post-condition including an attribute of
the form a@pre. Consequently, we do not need to archive attribute histories for
each and every method call. In this way we can in a sense flatten the structure
of method calls. This corresponds to inlining methods as in the case of refac-
toring [7]. This is an important optimization possibility, since during a method
execution several irrelevant methods, such as get and set, can be called. Intu-
itively it is clear that if a method does not have a post-condition referring to

240 P. Kosiuczenko

a pre-state, then there is no need to archive separately changes it performs; it
is enough to treat them as changes done by the method which called it. We
prove that every execution is weakly bisimilar with a flattened one, in which we
abstract from calls of irrelevant methods.

We divide the set of methods/operations Op into two parts: ROp contain-
ing relevant operations and IOp containing irrelevant operations. We say that
a flattened computation state is equivalent to a non-flattened one if there is a
one to one correspondence of relevant method calls between the flattened and
non-flattened ones and moreover for every call of a relevant operation, the cor-
responding object store in the flattened state is equal to the last object store
following the relevant method call, but proceeding all later relevant calls if there
are any. This notion of equivalence abstracts away from the irrelevant calls, mak-
ing them part of the relevant call by considering only the most recent object store
resulting from calls to irrelevant methods. The definition, though conceptually
simple, is a bit involved.

Below ihj denote irrelevant histories, i.e. heap histories consisting of irrele-
vant method calls and the corresponding object stores. More precisely, ihj ∈
(St × IOp × N)∗. Relevant methods are denoted by ropj , i.e. ropj ∈ ROp. In
those histories only the last object store counts. Formally, we say that com-
putation state csa is not flattened and that csb is flattened, if condition (I)
below is satisfied. We say that a non-flattened state csa and a flattened state
csb are equivalent and write csa ≈ csb if, and only if, conditions (II) and (III)
are satisfied.

(I) csa=((sta0 ,main, 0)ih0 (sta1 , rop1 ,na1)ih1 ...(stam , ropm ,nam)ihm , ha,na),
csb = ((stb0 ,main, 0)(stb1 , rop1 ,nb1)...(stbm , ropm ,nbm), hb,nb)

(II) If |ihj | > 0 , then the last object store in ihj equals stbj , for j = 0, ..., m
(III) If |ihj | = 0, then staj = stbj , for j = 0, ..., m

Condition (I) says that the computation states must contain calls of the same
relevant operations, but in the first case they may be followed by calls of irrele-
vant methods. (II) requires that the last object store in a sequence of irrelevant
method calls following a call of a relevant method coincides with the object store
corresponding to the corresponding relevant method call in flattened state csb.
(III) handles case when the sequence of irrelevant method calls is empty; in this
case the object stores corresponding to the relevant method call must coincide.
Note that nbi � nai.

From the definition of ≈ follows the next lemma, since the definition implies
that object stores preceding relevant method calls coincide.

Lemma 4. Let csa, csb be computation states of the form described by condition
(I) of the above definition and let csa ≈ csb. For j = 1, ..., m, if opj is a relevant
method, then staj (a@pre, o) = stbj (a@pre, o).

We prove that ≈ is a kind of weak bisimulation. Thus the above lemma and the
theorem below imply that for all reachable states we can flatten method calls
without information loss about pre-states of relevant methods. We treat calls

An Abstract Machine for the Old Value Retrieval 241

of clean operations and irrelevant methods as τ actions which are simulated by
identity steps. Moreover, we treat here both clean transitions (4) and (5) as one
transition, since the proof is the same in both cases.

Theorem 5. [Weak Bisimulation]
≈ is a weak bisimulation relation; i.e. inSt ≈ inSt, and if csa ≈ csb, then the
following conditions hold:

1. iop ∈ IOp ∧ csa
call(iop)
−−−−→ csa′ ⇒ csa′ ≈ csb

2. rop ∈ ROp ∧ csa
call(rop)
−−−−→ csa′ ⇒ ∃csb′csb

call(rop)
−−−−→ csb′ ∧ csa′ ≈ csb′

3. rop ∈ ROp ∧ csb
call(rop)
−−−−→ csb′ ⇒ ∃csa′csa

call(rop)
−−−−→ csa′ ∧ csa′ ≈ csb′

4. csa
set(a,o,o′)
−−−−→ csa′ ⇒ ∃csb′csb

set(a,o,o′)
−−−−→ csb′ ∧ csa′ ≈ csb′

5. csb
set(a,o,o′)
−−−−→ csb′ ⇒ ∃csa′csa

set(a,o,o′)
−−−−→ csa′ ∧ csa′ ≈ csb′

6. csa
clean(a,o)
−−−−→ csa′ ⇒ csa′ ≈ csb

7. csb
clean(a,o)
−−−−→ csb′ ⇒ csa ≈ csb′

8. iop ∈ IOp ∧ csa
return(iop)
−−−−→ csa′ ⇒ csa′ ≈ csb

9. rop ∈ ROp ∧ csa
return(rop)
−−−−→ csa′ ⇒ ∃csb′csb

return(rop)
−−−−→ csb′ ∧ csa′ ≈ csb′

10. rop ∈ ROp ∧ csb
return(rop)
−−−−→ csb′ ⇒ ∃csa0 ,...,csan,csa′csa = csa0 ∧

csai

return(iopi)
−−−−→ csai+1 ∧ csai+1 ≈ csb, for i = 0 , ..., n − 1 , ∧

csan

return(rop)
−−−−→ csa′ ∧ csa′ ≈ csb′

Proof (Sketch). (1) holds trivially, since the last object stores in csa and csb
coincide and calling an operation duplicates the last object store. Similarly, (2)
and (3) follow from the fact that the last object stores coincide in csa and csb
and that both computation histories are comparable in respect to ≈. (4) and
(5) follow from the fact that setting an attribute modifies the last object store
only. In case of cleaning, we note that the definition of bisimulation relation
does not depend on attributes histories. Consequently (6) and (7) follow in a
trivial way, since the definition of ≈ does not depend on histories. Return of an
operation replaces the object store preceding the last state with the last state.
If the operation is irrelevant, then csb does not need to be modified in order
to be equivalent with csa. Thus (8) follows. In case of (9), we note that the
return step concerning csa must be accompanied by the corresponding return
step concerning csb, since according to the definition of ≈, csb must be ready to
perform the corresponding return. As in the previous case, the resulting histories
coincide.

(10) requires some attention. It may happen that computation history csa con-
tains at its end a number of started, but not terminated, irrelevant method calls.
If the flattened version, i.e. csb performs a return, csa needs first to terminate
unterminated irrelevant calls following the last call of a relevant method. Those
steps can be treated as τ transitions, as described in (1). The resulting states are

242 P. Kosiuczenko

bisimilar to csb, as proved in case of (1). Finally the relevant method returns. As
in case of (9), the resulting states are related by ≈.

In a similar way we can prove that archiving attributes values and cleaning
attribute histories do not have influence on object attributes. This can be done
by defining weak bisimulation relation abstracting away from object histories.
We can abstract from histories, since the part of transitions concerning method
call and termination as well as attribute modification is defined independently
of attribute histories (see Subsection 2.2).

5 Computing @pre

In this section we relate the abstract machine defined in Section 2 to the
implementation presented in the paper [9]. We also consider the time- and space-
complexity of our method. We demonstrate that the access to @pre-values re-
quires cumulative constant time and that the size of attribute histories is linearly
bound by the maximal size of the call-stack.

5.1 Relation to the AspectJ Implementation

In this section we relate the abstract algorithm defined above to the AspectJ
implementation proposed in [9]. This implementation was developed prior to
the abstract algorithm. Therefore it varies slightly from its formal counterpart.
However it could be refactored to achieve much closer correspondence. Due to
the space demands, we present only a part of the implementation.

For attribute a of type T, SnapshotVal<T> is the class of T snapshots. It
contains attributes val and meterReading storing an attribute value and the
corresponding time-stamp. Stack<SnapshotVal<T>> is the class of stacks
containing snapshots; it corresponds to the set AH (see Subsection 2.1). In our
implementation this class extends the functionality of Vector. It stores objects
modified during a relevant method call in attribute stack. As usual for stacks it
provides methods for popping the stack, for getting the top value and for pushing
a value onto its top. In particular, top() is a method of class Stack returning
the top element. Method subTop() returns the time-stamp of the snapshot
before the last one. Method clean() cleans the tops of history-stacks. In con-
trast to transition cleanTop it cleans histories as long as they contain outdated
pairs. The implementation does not include cleanWhole . This transition requires
the use of linked lists, instead of vectors, in the Stack implementation. It can
be implemented using three variables referencing elements of the history-stack
and one variable referencing elements of the call-stack. These references can be
moved down both lists; for every position a bound number of comparisons and
removals can be made. This procedure can be implemented in a way guarantying
that the time complexity is linear with respect to the length of both stacks. We
do not present the implementation of the whole class Stack, but only method
clean().

An Abstract Machine for the Old Value Retrieval 243

public void clean() {
while(size() >= 2 &&

subTop().meterReading >= Meter.getReading())
stack.remove(stack.size()-1);

}

Class Meter, not presented here, manages the numbers of executed method
calls (see transitions (1) and (3)). It is based on class Stack and provides static
method getReading() returning the number of currently executing method.

Below we present class Archive implementing the core logic for attribute
archiving and old value retrieval. getValueATpre(Stack<SnapshotVal
<T>> st, T val) is a generic method containing logic for computing of @pre-
values. doArchiving(Stack<SnapshotVal<S>> st, S cur) contains the
logic for attribute archiving. Parameter st corresponds to an actual attribute
history and cur to its current value. It should be noted that history-stacks are
initialized when the corresponding object is created. It is easy to see, that its
condition corresponds to transition (2) of the machine defined in Subsection 2.2.

public class Archive {
static <T> T getValueATpre(Stack<SnapshotVal<T>> st,

T val) {
if(st.size() == 0) return val;
st.clean();
if(st.topReading() < Meter.getReading()) return val;
else return st.top().value;

}
static <T, S> void doArchiving(Stack<SnapshotVal<S>> st,

S cur){
if(st.size() == 0) //corresponds to transition (2ii)

st.push(new SnapshotVal<S>(cur, Meter.getReading()));
else if(Meter.getReading() > st.top().meterReading) {

if(st.top().value != cur) //corresponds to (2ii)
st.push(new SnapshotVal<S>(cur, Meter.getReading()));

else st.top().meterReading = Meter.getReading();
//corresponds to transition (2iii)

}
}

}

If a class C contains an attribute b of type T requiring archiving, then we in-
troduce aspect ArchiveC which superimposes on C attribute bHIST of type
Stack<SnapshotVal<T>> and method getBATpre(). The method is im-
plemented using getValueATpre() and getLastUpdateTime() returning
the last update time. Every manipulation of b is detected by pointcut modB.
If the current meter-reading is larger than 0, meaning that there is a relevant
method on the stack, then the archiving is performed by doArchiving. If no
method with a post-condition is executed, then there is no need for archiving
the pre-state.

244 P. Kosiuczenko

public aspect ArchiveC {
public Stack<SnapshotVal<T>> Anchor.bHIST =

new Stack<SnapshotVal<T>>();
Element C.getBATpre() { return C.getValueATpre(bHIST, b);
}
Integer C.getBLastUpdateTime() {
return C.getLastUpdateTime(bHIST);

}
pointcut modB(C target) : target(target) &&

set(T C.b);
before(C target) : modB(target) {
if(Meter.getReading() > 0) {

Archive.doArchiving(target.bHIST, target.b);
}

}
}

Lemma 2 implies that method getValueATpre(Stack<SnapshotVal<T>>
st, T val) is correctly implemented. More precisely, if the if-part of the
lemma is satisfied for ni+1 being the number of the currently executing method
call, then the value stored in the topmost snapshot is returned. This implies
that if on the top of history-stack st a snapshot is located with a time-stamp
larger than or equal to the current one and the previous snapshot, if there is
any, has a time-stamp smaller than the current one, then the value stored in the
snapshot is the @pre-value. In the other case, val is returned. The optimization
step allows us to archive attributes for relevant method calls.

5.2 Complexity

In this subsection we discuss the question of time and memory use. We show
that the proposed algorithm does not increase the time complexity class of con-
strained methods and that the access to @pre-values during a post-condition
evaluation can be treated as if it needed a constant time. We compare also the
space requirements of our approach with the requirements of partially persistent
structures.

Our method does not increase time complexity class of instrumented methods
since setting an attribute is accompanied by at most one snapshot archiving
which requires a bound number of steps. A call of a constrained method results
in increasing the call-stack and the call counter. Access to a @pre-value may
require removal of some outdated snapshots using method cleanTop. Removals
require a bound number of steps and there are at most as many snapshots to
remove as executions of set in the past. Thus the time for removal of an outdated
snapshot can be accounted for when treating the execution of set . Similarly, we
can account for the history removal when the control returns to method main.

In case of partially persistent structures, the size of an attribute history is
equal to the number of its modifications. The access to old attribute values is
logarithmic in respect to the number of attribute updates if binary search trees

An Abstract Machine for the Old Value Retrieval 245

are used to store old values [5]. In our case, we store only the attribute value
prior to a method execution when the attribute is modified for the first time.
When a post-condition is evaluated, the access to an @pre-value may require the
removal of outdated snapshot from the top of a history-stack (see subsection 5.1).
However, this can be accounted for when considering operation set . Thus the
evaluation can be treated as if the extraction of @pre-values had a constant time.

It should be noted that operation cleanWhole can be performed in linear time
in respect to the actual stack size k and the history length l (see the previous
subsection). Thus, there exists a constant c1 such that the operation requires not
more than c1 · (k + l) steps. If we start cleanWhole only when the length of the
history-stack doubles the size of the call-stack, i.e. l = 2 · k, then the operation
requires at most c1 · l · 3/2 steps. Since afterwards the length of the history is
smaller than or equal to k, every outdated snapshot removal requires on average
at most 3 · c1 steps. Similarly, there is a constant c2 such that the removal of an
outdated snapshot from the top requires at most c2 steps. We define constant
c to be the maximum of c1 and c2. c binds the number od steps needed for an
outdated snapshot removal.

The use of space is really crucial, since the object reclaim during garbage
collection is restrained by history attributes. If an object is stored in a history
attribute of another object, then it cannot be deleted before it is removed from
the history, or the other object is deleted. Thus, the information about the
past should be kept as minimal as possible. During a method execution the
corresponding call-stack evolves. For an arbitrary sequence of computation states
inSt , cs1,..., csm related by transition relation R, let k0, k1,..., km be the sizes of
the corresponding call-stacks (see subsection 2.2) and let kmax be the maximal
stack size. We show now that for an arbitrary sequence of this form, the cleaning
can be performed in a way guarantying that the length of an arbitrary history
does not exceed 2 ·kmax without increasing the complexity class of the executed
method. This can be ensured by starting operation cleanWhole before every
execution of set(a, o, o′) if the length of the corresponding history doubles the
actual stack size, i.e. |h(a, o)| = 2·k. set is the only operation which increases the
length of a history. Thus, it is guaranteed that at all times for every attribute a
and object o, |h(a, o)| � 2 · kmax, where kmax is the maximal stack size reached
before. Unfortunately, we cannot prove in this way that the history length is
bound by the actual stack size k times 2, i.e. |h(a, o)| � 2 · k. However, this
bound can be ensured using algorithms increasing the time-complexity class of
instrumented methods.

We consider now the problem of Hanoi Towers with n rings. The underly-
ing structure can be implemented using three linked lists storing natural num-
bers sorted increasingly. The standard solution uses a recursive algorithm which
moves n− 1 rings from the source location to the intermediate one, then moves
the last ring to the target location and finally moves rings from the intermediate
location to the target one. This requires an exponential number of moves. There-
fore, finally the corresponding partially persistent structure has an exponential
size order with respect to n. The size of the call-stack is maximally n. Conse-

246 P. Kosiuczenko

quently, we can ensure that the sufficiently persistent structure has at most the
size order n2, since there are n rings to move, every rung is linked to at most
one other ring and n is the maximal size of the call-stack. At the end of the al-
gorithm execution, the histories can be emptied (see transition (3)), since there
is no need to store information about the past forms of the structure.

Note that recursion should be used sparingly due to its high time and memory
overhead. Instead one should use iteration. In case of iterative algorithms, our
method performs much better than partially persistent structures.

6 Conclusion

In this paper we defined an abstract machine simulating steps of an object-
oriented system and managing old attribute values. We defined an invariant and
proved that it is preserved by transitions of this machine. Using this invariant
we proved that it is possible to compute attribute values from before a method
execution using attribute histories. We demonstrated that it is possible to ab-
stract from calls of methods which do not have post-conditions. We related the
abstract machine to AspectJ implementation proposed in an earlier paper. Fi-
nally, we showed that this machine requires less space to store old values than
partially persistent structures. In the future, we are going to investigate how to
apply our technique to partially persistent structures and if the space bounds
presented in this paper can be improved.

References

1. Barnett, M., M. Leino, K.R., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Conchon, S., Fillitre, J.-C.: Semi-persistent Data Structures. In: Drossopoulou, S.
(ed.) ESOP 2008. LNCS, vol. 4960, pp. 322–336. Springer, Heidelberg (2008)

3. Dzidek, W., Briand, L., Labiche, Y.: Lessons learned from developing a dynamic
OCL constraint enforcement tool for java. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 9–19. Springer, Heidelberg (2006)

4. Darvas, A., Müller, P.: Reasoning About Method Calls in JML Specifications. In:
Proceedings of the 7th Workshop on Formal Techniques for Java-like Programs
(FTfJP’05), Glasgow, Scotland (July 2005)

5. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making Data Structures
Persistent. Journal of Computer and System Sciences 38(1) (1989)

6. Floyd, R.W.: Assigning meanings to programs, in Mathematical Aspects of Com-
puter Science. In: Proceedings of Symposium in Applied Mathematics, vol. 19,
pp. 19–32. American Mathematical Society, Providence (1967)

7. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley,
Reading (2000)

8. Hussmann, H., Finger, F., Wiebicke, R.: Using Previous Property Values in OCL
Postconditions: An Implementation Perspective. In: Int. Workshop UML 2.0 - The
Future of the UML Constraint Language OCL, York, UK (October 2, 2000)

An Abstract Machine for the Old Value Retrieval 247

9. Kosiuczenko, P.: On the implementation of @pre. In: Chechik, M., Wirsing, M.
(eds.) FASE 2009. LNCS, vol. 5503, pp. 246–261. Springer, Heidelberg (2009)

10. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
11. Meyer, B.: Eiffel: The Language. Object-Oriented Series. Prentice Hall, New York

(1992)
12. OMG, OCL 2.0 Specification, Version 2005-06-06 (June 2005)
13. Toval, A., Requena, V., Fernandez, J.: Emerging OCL Tools. Journal of Software

and System Modelling 2(4), 248–261 (2003)

A Tracking Semantics for CSP�

Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit

Universidad Politécnica de Valencia,
Camino de Vera S/N, E-46022 Valencia, Spain

{mllorens,fjoliver,jsilva,stamarit}@dsic.upv.es

Abstract. CSP is a powerful language for specifying complex concur-
rent systems. Due to the non-deterministic execution order of processes
and to synchronizations, many analyses such as deadlock analysis, re-
liability analysis, and program slicing try to predict properties of the
specification which can guarantee the quality of the final system. These
analyses often rely on the use of CSP’s traces. In this work, we introduce
the theoretical basis for tracking concurrent and explicitly synchronized
computations in process algebras such as CSP. Tracking computations is
a difficult task due to the subtleties of the underlying operational seman-
tics which combines concurrency, non-determinism and non-termination.
We define an instrumented operational semantics that generates as a
side-effect an appropriate data structure (a track) which can be used to
track computations. Formal definition of a tracking semantics improves
the understanding of the tracking process, but also, it allows to formally
prove the correctness of the computed tracks.

Keywords: Concurrent Programming, CSP, Semantics, Tracking.

1 Introduction

One of the most important techniques for program understanding and debugging
is tracing [3]. A trace gives the user access to otherwise invisible information about
a computation. In the context of concurrent languages, computations are partic-
ularly complex due to the non-deterministic execution order of processes and to
the restrictions imposed on this order by synchronizations; and thus, a tracer is a
powerful tool to explore, understand and debug concurrent computations.

One of the most widespread concurrent specification languages is the Commu-
nicating Sequential Processes (CSP) [7,17] whose operational semantics allows
the combination of parallel, non-deterministic and non-terminating processes.
The study and transformation of CSP specifications often uses different analy-
ses such as deadlock analysis [10], reliability analysis [8] and program slicing [19]
which are based on a data structure able to represent computations.
� This work has been partially supported by the Spanish Ministerio de Ciencia e In-

novación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant ACOMP/2009/017, and by the Universidad Politécnica de Valencia (Pro-
grams PAID-05-08 and PAID-06-08). Salvador Tamarit was partially supported by
the Spanish MICINN under FPI grant BES-2009-015019.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 248–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Tracking Semantics for CSP 249

In CSP a trace is a sequence of events. Concretely, the operational semantics
of CSP is an event-based semantics in which the occurrence of events fires the
rules of the semantics. Hence, the final trace of the computation is the sequence
of events occurred (see Chapter 8 of [17] for a detailed study of this kind of
traces). In this work we introduce an essentially different notion of trace [3]
called track. In our setting, a track is a data structure which represents the
sequence of expressions that have been evaluated during the computation, and
moreover, this data structure is labelled with the location of these expressions
in the specification. Therefore, a CSP track is much more informative than a
CSP trace since the former not only contains a lot of information about original
program structures but also explicitly relates the sequence of events with the
parts of the specification that caused these events.

Example 1. Consider the following CSP specification:1

MAIN = CASINO || GAMBLING

CASINO = (PLAYER ||| ROULETTE) ‖
{betred,red,black,prize}

CROUPIER

PLAYER = betred→ (prize→ STOP � noprize→ STOP)

ROULETTE = red→ STOP � black→ STOP

CROUPIER = (betred→ red→ prize→ STOP)
� (betred→ black→ prize→ STOP)
� (betblack→ black→ prize→ STOP)
� (betblack→ red→ getmoney→ STOP)

GAMBLING = Complex Composite Processes

This specification models several gambling activities running in parallel and
modelled by process GAMBLING. One of the games is the casino. A CASINO is mod-
elled as the interaction of three parallel processes, namely a PLAYER, a ROULETTE,
and a CROUPIER. The player bets for red, and she can win a prize or not. The
roulette simply takes a color (either red or black); and the croupier checks the
bet and the color of the roulette in order to give a prize to the player or just get
the bet money.

This specification contains an error, because it allows the trace of events
t = 〈betred, black, prize〉 where the player bets for red and she wins a prize
even though the roulette takes black.

Now assume that we execute the specification and discover the error after
executing trace t. A track can be very useful to understand why the error was
caused, and what part of the specification was involved in the wrong execution.

1 We refer those readers non familiar with CSP syntax to Section 2 where we provide
a brief introduction to CSP.

250 M. Llorens et al.

CASINO

||

||

|||

PLAYER

betred

ROULETTE

black

�

MAIN

prize

�

CROUPIER

betred

black

prize

�

→

→

→

→
→

→

STOP

STOP

STOP

Fig. 1. Track of the program in Example 1

For instance, if we look at the track of Fig. 1, we can easily see that the three
processes run in parallel, and that the prize is given because there is a syn-
chronization (dashed edges represent synchronizations) between CROUPIER and
PLAYER that should never happen. Observe that the track is intuitive enough as
to be a powerful program comprehension tool that provides much more infor-
mation than the trace.

Moreover, observe that the track contains explicit information about the spec-
ification expressions that were involved in the execution. Therefore, it can be
used for program slicing (see [18] for an explanation of the technique and [14]
for an adaptation of program slicing to CSP). In particular, in this example, we
can use the track to extract the part of the program that was involved in the
execution—note that this is the only part that could cause the error—. This
part has been underscored in the example. With a quick look, one can see that
the underscored part of process CROUPIER produced the wrong behavior. Event
prize should be replaced by getmoney.

Another interesting application of tracks is related to component extraction
and reuse. If we are interested in a particular trace, and we want to extract the
part of the specification that models this trace to be used in another model, we
can simply produce a slice, and slightly augment the code to make it syntactically

A Tracking Semantics for CSP 251

correct (see [14] for an example and an explanation of this transformation). In
our example, even though the system is very big due to the process GAMBLING,
the track is able to extract the only information related to the trace.

We have implemented a tool [13] able to produce tracks and to automatically
color parts of the code related to some point in the specification. This tool is
integrated in the last version of ProB [11,12] which is the most extended IDE
for CSP.

In languages such as Haskell, the tracks (see, e.g., [3,4,5,1]) are the basis of
many analysis methods and tools. However, computing CSP tracks is a complex
task due to the non-deterministic execution of processes, due to deadlocks, due to
non-terminating processes and mainly due to synchronizations. This is probably
the reason why no correctness result exists which formally relates the track of
a specification to its execution. This semantics is needed because it would allow
us to prove important properties (such as correctness and completeness) of the
techniques and tools based on tracking.

To the best of our knowledge, there is only one attempt to define and build
tracks for CSP [2]. Their notion of track is based on the standard program
dependence graph [6]; therefore it is useful for program slicing but it is insufficient
for other analyses that need a context-sensitive graph [9] (i.e., each different
process call has a different representation). Moreover, their notion of track does
not include synchronizations. Our tracks are able to represent synchronizations,
and they are context-sensitive.

The main contributions of this work are the formal definition of tracks, the
definition of the first tracking semantics for CSP and the proof that the trace of
a computation can be extracted from the track of this computation. Concretely,
we instrument the standard operational semantics of CSP in such a way that
the execution of the semantics produces as a side-effect the track of the com-
putation. It should be clear that the track of an infinite computation is also
infinite. However, we design the semantics in such a way that the track is pro-
duced incrementally step by step. Therefore, if the execution is stopped (e.g., by
the user because it is non-terminating or because a limit in the size of the track
was specified), then the semantics produces the track of the computation per-
formed so far. This semantics can serve as a theoretical foundation for tracking
CSP computations because it formally relates the computations of the standard
semantics with the tracks of these computations.

The rest of the paper has been organized as follows. Firstly, in Section 2
we recall the syntax and semantics of CSP. In Section 3 we define the con-
cept of track for CSP. Then, in Section 4, we instrument the CSP semantics in
such a way that its execution produces as a side-effect the track associated
with the performed computation. In Section 5, we present the main results
of the paper proving that the instrumented semantics presented is a conser-
vative extension of the standard semantics, its computed tracks are correct
and the corresponding trace can be extracted from the track. Finally, Section 6
concludes.

252 M. Llorens et al.

2 The Syntax and Semantics of CSP

In order to make the paper self-contained, we recall in this section the syntax
and semantics of CSP. Figure 2 summarizes the syntax constructions used in
CSP specifications. A specification is viewed as a finite set of process definitions.
The left-hand side of each definition is the name of a process, which is defined in
the right-hand side (abbrev. rhs) by means of an expression that can be a call
to another process or a combination of the following operators:

Prefixing. It specifies that event a must happen before process P .
Internal choice. The system chooses non-deterministically to execute one of the

two processes P or Q.
External choice. It is identical to internal choice but the choice comes from out-

side the system (e.g., the user).
Sequential composition. It specifies a sequence of two processes. When the first

(successfully) finishes, the second starts.
Synchronized parallelism. Both processes are executed in parallel with a set X

of synchronized events. In absence of synchronizations both processes can
execute in any order. Whenever a synchronized event a ∈ X happens in
one of the processes it must also happen in the other at the same time.
Whenever the set of synchronized events is not specified, it is assumed that
processes are synchronized in all common events. A particular case of parallel
execution is interleaving where no synchronizations exist (i.e., X = ∅).

Skip. It successfully finishes the current process. It allows us to continue the
next sequential process.

Stop. Synonymous with deadlock: It finishes the current process and it does not
allow the next sequential process to continue.

S ::= {D1, . . . ,Dm} (Entire specification) Domains
M,N . . . ∈ N (Process names)
P,Q . . . ∈ P (Processes)
a, b . . . ∈ Σ (Events)

D ::= N = P (Process definition)
P ::= M (Process call)

| a → P (Prefixing)
| P 	 Q (Internal choice)
| P � Q (External choice)
| P ; Q (Sequential composition)
| P ||

X

Q (Synchronized parallelism) where X ⊆ Σ

| SKIP (Skip)
| STOP (Stop)

Fig. 2. Syntax of CSP specifications

A Tracking Semantics for CSP 253

We now recall the standard operational semantics of CSP as defined by Roscoe
[17]. It is presented in Fig. 3 as a logical inference system. A state of the
semantics is a process to be evaluated called the control. The system starts with
an initial state, and the rules of the semantics are used to infer how this state
evolves. When no rules can be applied to the current state, the computation
finishes. The rules of the semantics change the states of the computation due
to the occurrence of events. The set of possible events is Σ ∪ {τ, �}. Events in
Σ = {a, b, c . . .} are visible from the external environment, and can only happen
with its co-operation (e.g., actions of the user). The special event τ cannot
be observed from outside the system and it is an internal event that happens
automatically as defined by the semantics. � is a special event representing the
successful termination of a process. We use the special symbol Ω to denote any
process that successfully terminated.

In order to perform computations, we construct an initial state (e.g., MAIN)
and (non-deterministically) apply the rules of Fig. 3. The intuitive meaning of
each rule is the following:

(Process Call). The call is unfolded and the right-hand side of process named N
is added to the control.

(Prefixing). When event a occurs, process P is added to the control.
(SKIP). After SKIP, the only possible event is �, which denotes the successful

termination of the (sub)computation with the special symbol Ω. There is no
rule for Ω (neither for STOP), hence, this (sub)computation has finished.

(Internal Choice 1 and 2). The system, with the occurrence of the internal event
τ , (non-deterministically) selects one of the two processes P or Q which is
added to the control.

(External Choice 1, 2, 3 and 4). The occurrence of τ develops one of the branches.
The occurrence of an event a 	= τ is used to select one of the two processes
P or Q and the control changes according to the event.

(Sequential Composition 1). In P ; Q, P can evolve to P ′ with any event except
�. Hence, the control becomes P ′; Q.

(Sequential Composition 2). When P successfullyfinishes (with event�), Q starts.
Note that � is hidden from outside the whole process becoming τ .

(Synchronized Parallelism 1 and 2). When event a 	∈ X or events τ or � happen,
one of the two processes P or Q evolves accordingly, but only a is visible
from outside the parallelism operator.

(Synchronized Parallelism 3). When event a ∈ X happens, it is required that
both processes synchronize, P and Q are executed at the same time and the
control becomes P ′ ||

X

Q′.

(Synchronized Parallelism 4). When both processes have successfully terminated
the control becomes Ω, performing the event �.

We illustrate the semantics with the following example.

254 M. Llorens et al.

(Process Call) (Prefixing) (SKIP)

N
τ−→ rhs(N) (a → P) a−→ P SKIP

�−→ Ω

(Internal Choice 1) (Internal Choice 2)

(P � Q) τ−→ P (P � Q) τ−→ Q

(External Choice 1) (External Choice 2)

P
τ−→ P ′

(P � Q) τ−→ (P ′ � Q)

Q
τ−→ Q′

(P � Q) τ−→ (P � Q′)

(External Choice 3) (External Choice 4)

P
e−→ P ′

(P � Q) e−→ P ′
Q

e−→ Q′

(P � Q) e−→ Q′
e ∈ Σ ∪ {�}

(Sequential Composition 1) (Sequential Composition 2)

P
e−→ P ′

(P ; Q) e−→ (P ′; Q)
e ∈ Σ ∪ {τ} P

�−→ Ω

(P ; Q) τ−→ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
e′−→ P ′

(P ||
X

Q) e−→ (P ′ ||
X

Q)

Q
e′−→ Q′

(P ||
X

Q) e−→ (P ||
X

Q′)
(e = e′ = a ∧ a 	∈ X)

∨ (e = τ ∧ e′ ∈ {τ, �})

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a−→ P ′ Q

a−→ Q′

(P ||
X

Q) a−→ (P ′ ||
X

Q′)
a ∈ X

(Ω ||
X

Ω) �−→ Ω

Fig. 3. CSP’s operational semantics

Example 2. Consider the next CSP specification:

MAIN = (a→ STOP) ‖
{a}

(P � (a→ STOP))

P = b→ SKIP

If we use MAIN as the initial state to execute the semantics, we get the computa-
tion shown in Fig. 4 where the final state is ((a→ STOP) ‖

{a}
Ω). This computation

corresponds to the execution of the left branch of the choice (i.e., P) and thus
only event b occurs. Each rewriting step is labelled with the applied rule, and
the example should be read from top to bottom.

3 Tracking Computations

In this section we define the notion of track. Firstly, we introduce some notation
that will be used throughout the paper.

A Tracking Semantics for CSP 255

(Process Call)
MAIN

τ−→ ((a → STOP) ‖
{a}

(P�(a → STOP)))

(Synchronized
Parallelism 2)

(External Choice 1)

(Process Call)
P

τ−→ (b → SKIP)

(P�(a → STOP)) τ−→ ((b → SKIP)�(a → STOP))

((a → STOP) ‖
{a}

(P�(a → STOP))) τ−→ State1

where State1 =((a → STOP) ‖
{a}

((b → SKIP)�(a → STOP)))

(Synchronized

Parallelism 2)

(External Choice 3)

(Prefixing)
(b → SKIP) b−→ SKIP

((b → SKIP)�(a → STOP)) b−→ SKIP

State1
b−→ ((a → STOP) ‖

{a}
SKIP)

(Synchronized
Parallelism 2)

(SKIP)
SKIP

�−→ Ω

((a → STOP) ‖
{a}

SKIP) τ−→ ((a → STOP) ‖
{a}

Ω)

Fig. 4. A computation with the operational semantics in Fig. 3

A track is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph.
However, several program analysis techniques such as program slicing make use
of the locations of program expressions, and thus, this notion of track is insuffi-
cient for them. Therefore, we want our tracks to also store the location of each
literal (i.e., events, operators and process names) in the specification so that
the track can be used to know what portions of the source code have been exe-
cuted and in what order. The inclusion of source positions in the track implies
an additional level of complexity in the semantics, but the benefits of provid-
ing our tracks with this additional information are clear and, for some appli-
cations, essential. Therefore, we use labels (that we call specification positions)
to uniquely identify each literal in a specification which roughly corresponds
to nodes in the CSP specification’s abstract syntax tree. We define a function
Pos to obtain the specification position of an element of a CSP specification
and it is defined over nodes of an abstract syntax tree for a CSP specification.
Formally,

Definition 1. (Specification position) A specification position is a pair (N, w)
where N ∈ N and w is a sequence of natural numbers (we use Λ to denote the
empty sequence). We let Pos(o) denote the specification position of an expression
o. Each process definition N = P of a CSP specification is labelled with specifica-
tion positions. The specification position of its left-hand side is Pos(N) = (N, 0).
The right-hand side is labelled with the call AddSpPos(P, (N, Λ)); where function
AddSpPos is defined as follows:

256 M. Llorens et al.

AddSpPos(P, (N, w)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(N,w) if P ∈ N
STOP(N,w) if P = STOP

SKIP(N,w) if P = SKIP

a(N,w.1) →(N,w) AddSpPos(Q, (N, w.2)) if P = a→ Q

AddSpPos(Q, (N, w.1)) op(N,w) AddSpPos(R, (N, w.2))
if P =Q op R ∀ op ∈ {�, �, ||, ; }

Example 3. Consider again the CSP specification in Example 2 where literals
are labelled with their associated specification positions (they are underlined) so
that labels are unique:

MAIN(MAIN,0) = (a(MAIN,1.1)→(MAIN,1)STOP(MAIN,1.2)) ‖
{a}

(MAIN,Λ)

(P(MAIN,2.1)�(MAIN,2)(a(MAIN,2.2.1)→(MAIN,2.2)STOP(MAIN,2.2.2)))

P(P,0) = b(P,1)→(P,Λ)SKIP(P,2)

In the following, specification positions will be represented with greek letters
(α, β, . . .) and we will often use indistinguishably an expression and its associated
specification position when it is clear from the context (e.g., in Example 3 we
will refer to (P, 1) as b).

In order to introduce the formal definition of track, we need first to define the
concept of control-flow, which refers to the order in which the individual literals
of a CSP specification are executed. Intuitively, the control can pass from a
specification position α to a specification position β iff an execution exists where
α is executed before β. This notion of control-flow is similar to the control-flow
used in the control-flow graphs (CFG) [18] of imperative programming. We have
adapted the same idea to CSP where choices and parallel composition appear;
and in a similar way to the CFG, we use this definition to draw control arcs in
our tracks. Formally,

Definition 2. (Static control-flow) Given a CSP specification S and two specifi-
cation positions α, β in S, we say that the control can pass from α to β, denoted
by α⇒ β, iff one of the following conditions holds:

i) α = N ∧ β = first((N, Λ)) with N = rhs(N) ∈ S
ii) α ∈ {�, �, ||} ∧ β ∈ {first(α.1),first(α.2)}
iii) α ∈ {→, ; } ∧ β = first(α.2)
iv) α = β.1 ∧ β =→
v) α ∈ last(β.1) ∧ β = ;

where first(α) is the specification position of the subprocess denoted by α which
must be executed first:

first(α) =

⎧⎨⎩
α.1 if α = →
first(α.1) if α = ;
α otherwise

A Tracking Semantics for CSP 257

and last(α) is the set of all possible termination points of the subprocess denoted
by α:

last(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{α} if α = SKIP
∅ if α = STOP ∨

(α ∈ {||} ∧ (last(α.1) = ∅ ∨ last(α.2) = ∅))
last(α.1) ∪ last(α.2) if α ∈ {�, �} ∨

(α ∈ {||} ∧ last(α.1) 	= ∅ ∧ last(α.2) 	= ∅)
last(α.2) if α ∈ {→, ; }
last((N, Λ)) if α = N

For instance, in Example 3, we can see how the control can pass from a spec-
ification position to another one, e.g., we have (MAIN, 2) ⇒ (MAIN, 2.1) and
(MAIN, 2)⇒ (MAIN, 2.2.1) due to rule ii). And (MAIN, 2.2.1)⇒ (MAIN, 2.2) due to
rule iv); (MAIN, 2.2)⇒ (MAIN, 2.2.2) due to rule iii) and (MAIN, 2.1)⇒ (P, 1) due
to rule i).

We also need to define the notions of rewriting step and derivation.

Definition 3. (Rewriting Step, Derivation) Given a CSP process P , a rewriting
step for P , denoted by P

Θ� P ′, is the transformation of P into P ′ by using a

rule of the CSP semantics. Therefore, P
Θ� P ′ iff a rule of the form

Θ

P
e−→ P ′

is applicable, where e ∈ Σ ∪ {τ, �} and Θ is a (possibly empty) set of rewriting
steps. Given a CSP process P0, we say that the sequence P0

Θ0� . . .
Θn� Pn+1,

n ≥ 0, is a derivation of P0 iff ∀ i, 0 ≤ i ≤ n, Pi
Θi� Pi+1 is a rewriting step.

We say that the derivation is complete iff there is no possible rewriting step for
Pn+1. We say that the derivation has successfully finished iff Pn+1 is Ω.

For instance, in Fig. 5(a), one (possible) complete derivation of Example 3 is
shown (for the time being, the reader can ignore the underlined part). The rules
applied in each rewriting step (ignoring subderivations) are (Process Call) and
(Synchronized Parallelism 3) (abbrev. (PC) and (SP3), respectively).

Function last of Definition 2 can be used to determine the last specification
position in a derivation. However, this function computes all possible final spec-
ification positions, and a derivation only reaches (non-deterministically) a set of
them. Therefore, we will use in the following a modified version of last called
last ′ whose behaviour is exactly the same as last except in the case of choices
where only one of the branches is selected:

For each derivation (P � P ′ Θ� P) or (P � P ′Θ0� . . .
Θn� P ′′, n ≥ 0 such that

P
Θ′

0� . . .
Θ′

m� P ′′, m ≥ 0), last ′(P � P ′) = last ′(P � P ′) = last′(P).

Note that, while last is static, last ′ is dynamic; it is defined in the context of
a particular derivation which implies one particular way of resolving any non-
determinism. The same happens with the definition of control-flow. Control-flow
is defined statically and says whether the control can pass from α to β in some
derivation. However, the track is a dynamic structure produced for a particular

258 M. Llorens et al.

derivation. Therefore, we produce a dynamic version of the definition of control-
flow which is defined for a particular derivation.

Definition 4. (Dynamic control-flow) Let S be a CSP specification and D a
derivation in S. Given two specification positions α, β in S, we say that the
control can dynamically pass from α to β, denoted by α � β, iff the control can
pass from α to β (α ⇒ β) in derivation D. For each P

Θ� P ′ ∈ D and for all
rewriting steps in Θ, we have that:

1. if P is a prefixing (a→ Q) or a sequential composition (Q; R), then Pos(a) �
Pos(→) or ∀p ∈ last ′(Q), Pos(p) � Pos(;) respectively,

2. if P ⇒ first(P ′′) where P ′′ Θ′
� P ′′′ ∈ Θ, then Pos(P) � Pos(first(P ′′)),

3. if P ⇒ first(P ′), then Pos(P) � Pos(first(P ′)).

Clauses 1, 2 and 3 define the cases in which the control passes between two
specification positions in a given derivation. In clause 1, if we have a prefixing
in the control then Θ is empty and the rewriting step applied is of the form

(a→ P) a−→ P
. In this case, clause 1 guarantees that the control can dynami-

cally pass from a to→; and clause 3 guarantees that the control can dynamically
pass from→ to P . However, in general, Θ is not empty, and the rewriting step is

of the form
P ′′ −→ P ′′′

P −→ P ′ . Here, clause 2 ensures that the control can dynamically

pass from P to P ′′; and clause 3 ensures that the control can dynamically pass
from P to P ′ and from P ′′ to P ′′′. For instance, it is possible that we have a
rewriting step to evaluate the process P � P ′. Clearly, the control can pass from
� to both P and P ′ (�⇒ P and �⇒ P ′), but in the rewriting step the control
will only pass to one of them (� � P or � � P ′). In this case, clauses 2 and 3
are used.

We are now in a position to formally define the concept of track of a derivation.

Definition 5. (Track) Given a CSP specification S, and a derivation D in S,
the track of D is a graph G = (N, Ec, Es) where N is a set of nodes uniquely
identified with a natural number and that are labelled with specification positions
(l(n) refers to the label of node n), and edges are divided into two groups:

– control-flow edges (Ec) are a set of one-way edges (denoted with '→) repre-
senting the control-flow between two nodes, and

– synchronization edges (Es) are a set of two-way edges (denoted with �)
representing the synchronization of two (event) nodes;

and

1. Ec contains a control-flow edge a '→ a′ iff a � a′ with respect to D, and
2. Es contains a synchronization edge a � a′ for each synchronization occur-

ring in D where a and a′ are the nodes of the synchronized events.

The only nodes in N are the nodes induced by Ec and Es.

A Tracking Semantics for CSP 259

MAIN �
(PC)

(a → STOP) ‖
{a}

(P�(a → STOP))

�
(SP3)

STOP ‖
{a}

STOP

�
(SP1)

⊥ ‖
{a}

STOP

�
(SP2)

⊥ ‖
{a}

⊥

(a) Derivation

||
MAIN,Λ

�

MAIN,2
a

MAIN,1.1

→
MAIN,1

STOP
MAIN,1.2

a
MAIN,2.2.1

→
MAIN,2.2

STOP
MAIN,2.2.2

1

5

6

7

8

2

3

4

MAIN
MAIN,0

0

(b) Track

Fig. 5. Derivation and track associated with the specification of Example 3

Example 4. Consider again the specification of Example 3. We show in Fig. 5(a)
one possible derivation (ignoring subderivations) of this specification (for the
time being, the underlined part should be ignored). Its associated track is shown
in Fig. 5(b). In the example, we see that the track is a connected and di-
rected graph. Apart from the control-flow edges, there is one synchronization
edge between nodes (MAIN, 1.1) and (MAIN, 2.2.1) representing the synchroniza-
tion of event a. To illustrate the inclusion of edges in Definition 5, we see that
the edge between nodes 2 and 3 is introduced according to clause 1 of Def-
inition 4; the edge between nodes 5 and 6 is introduced according to clause
2 of Definition 4 because, in the subderivations of (SP3), there is a rewrit-

ing step (External
Choice 4)

(Prefixing)
(a→ STOP) a−→ (STOP)

(P�(a→ STOP)) a−→ (STOP)
and first(a → STOP) = a;

the edge between nodes 7 and 8 is introduced according to clause 3 of Defini-
tion 4 because there is also a rewriting step (Prefixing)

(a→ STOP) a−→ (STOP)
and

first(STOP) = STOP; and the synchronization edge between nodes 2 and 6 is in-
troduced according to clause 2 of Definition 5.

The trace associated with the derivation in Fig. 5(a) is 〈a〉. Therefore, note
that the track is much more informative: it shows the exact processes that have
been evaluated with an explicit causality relation; and, in addition, it shows the
specification positions that have been evaluated and in what order.

4 Instrumenting the Semantics for Tracking

The generation of tracks in CSP introduces new challenges such as non-determi-
nistic execution of processes, deadlocks, non-terminating processes and synchro-
nizations. In this work, we design a solution that overcomes these difficulties.

260 M. Llorens et al.

Firstly, we generate tracks with an augmented semantics which is conservative
with respect to the standard operational semantics. Therefore, the execution or-
der is the standard order, thus non-determinism and synchronizations are solved
by the semantics. Moreover, the semantics generates the track incrementally, step
by step. Therefore, infinite computations can be tracked until they are stopped.
Hence, it is not needed to actually finish a computation to get the track of the
subcomputations performed.

Example 5. In the following CSP specification two non-terminating processes
run in parallel and synchronize infinitely.

MAIN(MAIN,0) = P(MAIN,1) ‖
{a}

(MAIN,Λ)P(MAIN,2)

P(P,0) = a(P,1)→(P,Λ)P(P,2)

Because the computation is infinite, the track (shown in Fig. 6) is also infinite.

In order to solve the problem of deadlocks (that stop the computation), and have
a representation for them in the tracks; when a deadlock happens, the semantics
performs some additional steps to be able to generate a part of the track that
represents the deadlock. These additional steps do not influence the other rules
of the semantics, thus it remains conservative.

This section introduces an instrumented operational semantics of CSP which
generates as a side-effect the tracks associated with the computations performed
with the semantics. The tracking semantics is shown in Fig. 7, where we as-
sume that every literal in the program has been labelled with its specification

||
MAIN,Λ

P
MAIN,2

1

a
P,1

→
P,Λ

P
P,2

3

5

8

9

0 MAIN
MAIN,0

a
P,1

→
P,Λ

11

14

P
P,2

15

a
P,1

→
P,Λ

P
P,2

2

4

6

7

a
P,1

→
P,Λ

10

12

P
P,2

13

P
MAIN,1

... ...

Fig. 6. Track of the program in Example 5

A Tracking Semantics for CSP 261

position (denoted by a subscript, e.g., Pα). In this semantics, a state is a tuple
(P, G, m, Δ), where P is the process to be evaluated (the control), G is a directed
graph (i.e., the track built so far), m is a numeric reference to the current node in
G, and Δ is a set of references to nodes that may be synchronized. Concretely,
m references the node in G where the specification position of the control P
must be stored. Reference m is a fresh2 reference generated to add new nodes
to G. The basic idea of the graph construction is to record the current control
with the current reference in every step by connecting it to its parent. We use
the notation G[m '→

n
α] to introduce a node in G. For instance, if we are adding

a node to G this new node has reference m, it is labelled with specification po-
sition α, and its successor is n (a fresh reference). Successor arrows are denoted
by m '→

n
which means that node n is the successor of node m. Every time an

event in Σ happens during the computation, this event is stored in the set Δ of
the current state. Therefore, when a synchronized parallelism is evaluated, all
the events that must be synchronized are in Δ. We use the special symbol ⊥
to denote any process that is deadlocked. In order to perform computations, we
construct an initial state (e.g., (MAIN, ∅, 0, ∅)) and (non-deterministically) apply
the rules of Fig. 7. When the execution has finished or has been interrupted, the
semantics has produced the track of the computation performed so far.

An explanation for each rule of the semantics follows:

(Process Call). The called process N is unfolded, node m is added to the graph
with specification position α and successor n (a fresh reference). The new
process in the control is rhs(N). The set Δ of events to be synchronized is
put to ∅.

(Prefixing). This rule adds nodes m (the prefix) and n (the prefixing operator)
to the graph. In the new state, n becomes the parent reference and the fresh
reference p represents the current reference. The new control is P . The set
Δ is {m} to indicate that event a has occurred and it must be synchronized
when required by (Synchronized Parallelism 3).

(SKIP and STOP). Whenever one of these rules is applied, the subcomputation
finishes because Ω (for rule SKIP) and ⊥ (for rule STOP) are put in the
control, and these special symbols have no associated rule. A node with the
SKIP (respectively STOP) specification position is added to the graph.

(Internal Choice 1 and 2). The choice operator is added to the graph, and the
(non-deterministically) selected branch is put into the control with the fresh
reference n as the successor of the choice operator.

(External Choice 1, 2, 3 and 4). External choices can develop both branches while
τ events happen (rules 1 and 2), until an event in Σ ∪ {�} occurs (rules 3
and 4). This means that the semantics can add nodes to both branches of
the track alternatively, and thus, it needs to store the next reference to use
in every branch of the choice. This is done by labelling choice operators
with a tuple of the form (α, n1, n2) where α is the specification position of
the choice operator; and n1 and n2 are respectively the references to be used

2 We assume that fresh references are numeric and generated incrementally.

262 M. Llorens et al.

(Process Call)
(Nα, G, m, Δ) τ−→ (rhs(N), G[m �→

n
α], n, ∅)

(Prefixing)
(aα →β P, G, m, Δ) a−→ (P, G[m �→

n
α, n �→

p
β], p, {m})

(SKIP)
(SKIPα, G, m, Δ) �−→ (Ω, G[m �→

n
α], n, ∅)

(STOP)
(STOPα, G, m, Δ) τ−→ (⊥, G[m �→

n
α], n, ∅)

(Internal
Choice 1)

(P �α Q, G, m, Δ) τ−→ (P, G[m �→
n

α], n, ∅)
(Internal
Choice 2)

(P �α Q, G, m, Δ) τ−→ (Q, G[m �→
n

α], n, ∅)

(External
Choice 1)

(P1, G′, n′, Δ) τ−→ (P ′, G′′, n′′, ∅)
(P1 �(α,n1,n2)P2, G, m, Δ) τ−→ (P ′ �(α,n′′,n2)P2, G′′, m, ∅)
where (G′, n′) = FirstEval(G, n1, m, α)

(External
Choice 2)

(P2, G′, n′, Δ) τ−→ (P ′, G′′, n′′, ∅)
(P1 �(α,n1,n2)P2, G, m, Δ) τ−→ (P1 �(α,n1,n′′)P ′, G′′, m, ∅)
where (G′, n′) = FirstEval(G, n2, m, α)

(External
Choice 3)

(P1, G′, n′, Δ) e−→ (P ′, G′′, n′′, Δ′)

(P1 �(α,n1,n2)P2, G, m, Δ) e−→ (P ′, G′′, n′′, Δ′)
e ∈ Σ ∪ {�}

where (G′, n′) = FirstEval(G, n1, m, α)

(External
Choice 4)

(P2, G′, n′, Δ) e−→ (P ′, G′′, n′′, Δ′)

(P1 �(α,n1,n2)P2, G, m, Δ) e−→ (P ′, G′′, n′′, Δ′)
e ∈ Σ ∪ {�}

where (G′, n′) = FirstEval(G, n2, m, α)

(Sequential
Composition 1)

(P, G, m, Δ) e−→ (P ′, G′, m′, Δ′)

(P ; Q, G, m, Δ) e−→ (P ′; Q, G′, m′, Δ′)
e ∈ Σ ∪ {τ}

(Sequential
Composition 2)

(P, G, m, Δ) �−→ (Ω, G′, n, ∅)
(P ;α Q, G, m, Δ) τ−→ (Q, G′[n �→

p
α], p, ∅)

(Synchronized
Parallelism 1)

(P1, G′, n′, Δ) e′−→ (P ′, G′′, n′′, Δ′)

(P1 ‖
X

(α,n1,n2)P2, G, m, Δ) e−→ (P ′ ‖
X

(α,n′′,n2)P2, G′′, m, Δ′)
(e = e′ = a ∧ a 	∈ X)
∨ (e = τ ∧ e′ ∈ {τ, �})

where (G′, n′) = FirstEval(G, n1, m, α)

(Synchronized

Parallelism 2)
(P2, G′, n′, Δ) e′−→ (P ′, G′′, n′′, Δ′)

(P1 ‖
X

(α,n1,n2)P2, G, m, Δ) e−→ (P1 ‖
X

(α,n1,n′′)P ′, G′′, m, Δ′)
(e = e′ = a ∧ a 	∈ X)
∨ (e = τ ∧ e′ ∈ {τ, �})

where (G′, n′) = FirstEval(G, n2, m, α)

Fig. 7. An instrumented operational semantics to generate CSP tracks

A Tracking Semantics for CSP 263

(Synchronized
Parallelism 3)

RewritingStep1 RewritingStep2

(P1 ‖
X

(α,n1,n2)P2, G, m, Δ) a−→ (P ′
1 ‖

X
(α,n′′

1 ,n′′
2)P

′
2, G′′, m, Δ1 ∪ Δ2)

a ∈ X

where G′′ = G′′
1 ∪ G′′

2 ∪ {s1
a� s2 | s1 ∈ Δ1 ∧ s2 ∈ Δ2}

∧ RewritingStep1 = (P1, G′
1, n′

1, Δ) a−→ (P ′
1, G′′

1 , n′′
1 , Δ1)

∧ (G′
1, n′

1) = FirstEval(G, n1, m, α)

∧ RewritingStep2 = (P2, G′
2, n′

2, Δ) a−→ (P ′
2, G′′

2 , n′′
2 , Δ2)

∧ (G′
2, n′

2) = FirstEval(G, n2, m, α)

(Synchronized
Parallelism 4)

(Ω ‖
X

(α,n1,n2)Ω, G, m, Δ) �−→ (Ω, G′, r, ∅)

where G′ = G[{p �→
r

| p �→
q

∈ G where q ∈ {n1, n2}}]

Fig. 7. (continued)

in the left and right branches of the choice, and they are initialized to •, a
symbol used to express that the branch has not been evaluated yet. There-
fore, the first time a branch is evaluated, we generate a new reference for
this branch. For this purpose, function FirstEval is used:

FirstEval(G, n, m, α) =

{
(G[m '→

p
α], p) if n = •

(G, n) otherwise

This function checks whether this is the first time that the branch is eval-
uated (this only happens when the reference of this branch is empty, i.e.,
n = •). In this case, the choice operator is added to G. For instance, con-
sider the rewriting step (EC4) of Fig. 8. The choice operator in the rewriting
step R is labelled with ((MAIN,Λ), •, •). Therefore, it is evaluated for the first
time, and thus, in the left-hand side state of the upper rewriting step, node
5 '→

6
(MAIN, 2), which refers to the choice operator, is added to G.

(Sequential Composition 1 and 2). Sequential Composition 1 is used to evolve
process P until it is finished. P is evolved to P ′ which is put into the control.
When P successfully finishes (it becomes Ω), � happens. Then, Sequential
Composition 2 is used and Q is put into the control. The sequential compo-
sition operator ; is added to the graph with successor p that is the reference
to be used in the first node added in the subderivation associated with Q.

(Synchronized Parallelism 1 and 2). In a synchronized parallel composition, both
parallel processes can be intertwiningly executed until a synchronized event
is found. Therefore, nodes from both processes can be added interwoven to
the graph. Hence, each parallelism operator is labelled with a tuple of the
form (α, n1, n2) as it happens with external choices.

These rules develop the branches of the parallelism until they are finished
or until they must synchronize. In order to introduce the parallelism oper-
ator into the graph, function FirstEval is used, as it happens in the external

264 M. Llorens et al.

choice rules. For instance, consider the rewriting step (Synchronized Parallelism

3) of Fig. 8. The parallelism operator in the rewriting step State 1 is labelled
with ((MAIN,Λ), •, •). Therefore, it is evaluated for the first time, and thus,
in the left-hand side state of the rewriting step L, node 1 '→

2
(MAIN,Λ), which

refers to the parallelism operator, is added to G.
(Synchronized Parallelism 3). This rule is used to synchronize the parallel pro-

cesses. In this case, both branches must perform a rewriting step with the
same visible (and synchronized) event. Each branch derivation has a non-
empty set of events (Δ1, Δ2) to be synchronized (note that this is a set
because many parallelisms could be nested). Then, all references in the sets
Δ1 and Δ2 are mutually linked with synchronization edges. Both sets are
joined to form the new set of synchronized events.

(Synchronized Parallelism 4). It is used when none of the parallel processes can
proceed because they already successfully finished. In this case, the control
becomes Ω indicating the successful termination of the synchronized paral-
lelism. In the new state, the new (fresh) reference is r. This rule also adds to
the graph the arcs from all the parents of the last references of each branch
(n1 and n2) to r. Here, we use the notation p '→

r
to add an edge from p

to r. Note that the fact of generating the next reference in each rule allows
(Synchronized Parallelism 4) to connect the final node of both branches to the
next node. This simplifies other rules such as (Sequential Composition) that
already has the reference of the node ready.

We illustrate this semantics with a simple example.3

Example 6. Consider again the specification in Example 3. Figure 5(a) shows
one possible derivation (excluding subderivations) for this example. Note that
the underlined part corresponds to the additional rewriting steps performed
by the tracking semantics. This derivation corresponds to the execution of the
instrumented semantics with the initial state (MAIN, ∅, 0, ∅) shown in Fig. 8.
Here, for clarity, each computation step is labelled with the applied rule; in
each state, G denotes the current graph. This computation corresponds to the
execution of the right branch of the choice (i.e., a → STOP). The final state
is (⊥ ‖

{a}
((MAIN,Λ),9,10)⊥, G′, 1, ∅). The final track G′ computed for this execution

is depicted in Fig. 5(b) where we can see that nodes are numbered with the
references generated by the instrumented semantics. Note that nodes 9 and 10
were prepared by the semantics (edges to them were produced) but never used
because the subcomputations were stopped in STOP. Note also that the track
contains all the parts of the specification executed by the semantics. This means
that if the left branch of the choice had been developed (i.e., unfolding the call
to P, thus using rule (External Choice 3)), this branch would also belong to the
track.

3 We refer the reader to [16] where another example is discussed.

A Tracking Semantics for CSP 265

(P
ro

ce
ss

C
a
ll
)
(M
A
I
N
,
∅,

0,
∅)

τ −→
S

ta
te

1
w

h
er

e

S
ta

te
1

=
((
a
→

S
T
O
P
)
‖ {a
}((

M
A
I
N
,Λ

),
•,

•)
(P

�
(a

→
S
T
O
P
))

,
G

[0
�→ 1

(M
A
I
N
,
0)

],
1,

∅)

(S
yn

ch
ro

n
iz

ed
P
ar

a
ll
el

is
m

3
)

L
R

S
ta

te
1

a −→
S

ta
te

2
w

h
er

e

L
=

(P
re

fi
xi

n
g
)
(a

→
S
T
O
P
,
G

[1
�→ 2

(M
A
I
N
,
Λ

)]
,
2,

∅)
a −→

(S
T
O
P
,
G

[2
�→ 3

(M
A
I
N
,
1.

1)
,
3
�→ 4

(M
A
I
N
,
1)

],
4,

{2
})

R
=

(E
C

4
)

(P
re

fi
xi

n
g
)
(a

→
S
T
O
P
,
G

[5
�→ 6

(M
A
I
N
,
2)

],
6,

∅)
a −→

(S
T
O
P
,
G

[6
�→ 7

(M
A
I
N
,
2.

2.
1)

,
7
�→ 8

(M
A
I
N
,
2.

2)
],

8,
{6

})
((
P
�

((
M
A
I
N
,Λ

),
•,

•)
(a

→
S
T
O
P
))

,
G

[1
�→ 5

(M
A
I
N
,
Λ

)]
,
5,

∅)
a −→

(S
T
O
P
,
G

′ ,
5,

{6
})

an
d

S
ta

te
2

=
((
S
T
O
P
‖ {a
}((

M
A
I
N
,Λ

),
4

,8
)
S
T
O
P
),

G
′
∪

{2
a �

6}
,
1,

{2
,
6}

)

(S
yn

ch
ro

n
iz

ed
P
ar

a
ll
el

is
m

1
)

(S
T

O
P
)
(S
T
O
P
,
G

,
4,

{2
,
6}

)
τ −→

(⊥
,
G

[4
�→ 9

(M
A
I
N
,
1.

2)
],

9,
∅)

S
ta

te
2

τ −→
S

ta
te

3

w
h
er

e
S

ta
te

3
=

(⊥
‖ {a
}((

M
A
I
N
,Λ

),
9

,8
)
S
T
O
P
,
G

′ ,
1,

∅)

(S
yn

ch
ro

n
iz

ed
P
ar

a
ll
el

is
m

2
)

(S
T

O
P
)
(S
T
O
P
,
G

,
8,

∅)
τ −→

(⊥
,
G

[8
�→ 1
0

(M
A
I
N
,
2.

2.
2)

],
10

,
∅)

S
ta

te
3

τ −→
S

ta
te

4

w
h
er

e
S

ta
te

4
=

(⊥
‖ {a
}((

M
A
I
N
,Λ

),
9

,1
0
)
⊥

,
G

′ ,
1,

∅)

Fig. 8. An example of computation with the tracking semantics in Fig. 7

5 Correctness

In this section we prove the correctness of the tracking semantics (in Fig. 7)
by showing that (i) the computations performed by the tracking semantics are
equivalent to the computations performed by the standard semantics; and (ii)
the graph produced by the tracking semantics is the track of the derivation. We
also prove that the trace of a derivation can be automatically extracted from the
track of this derivation.

266 M. Llorens et al.

The first theorem shows that the computations performed with the tracking
semantics are all and only the computations performed with the standard se-
mantics. The only difference between them from an operational point of view
is that the tracking semantics needs to perform one step when a STOP is evalu-
ated (to add its specification position to the track) and then finishes, while the
standard semantics finishes without performing any additional step.

Theorem 1 (Conservativeness). Let S be a CSP specification, P a process
in S, and D and D′ the derivations of P performed with the standard semantics
of CSP and with the tracking semantics, respectively. Then, the sequence of rules
applied in D and D′ is exactly the same except that D′ performs one rewriting
step more than D for each (sub)computation that finishes with STOP.

Proof. Firstly, rule (STOP) of the tracking semantics is the only rule that is not
present in the standard semantics. When a (STOP) is reached in a derivation, the
standard semantics stops the (sub)computation because no rule is applicable. In
the tracking semantics, when a STOP is reached in a derivation, the only rule
applicable is (STOP) which performs τ and puts ⊥ in the control:

(STOPα, G, m, Δ) τ−→ (⊥, G[m '→
n

α], n, ∅)
Then, the (sub)computation is stopped because no rule is applicable for ⊥.
Therefore, when the control in the derivation is STOP, the tracking semantics
performs one additional rewriting step with rule (STOP).

The claim follows from the fact that both semantics have exactly the same
number of rules except for rule (STOP), and these rules have the same control in
all the states of the rules (thus the tracking semantics is a conservative extension
of the standard semantics). Therefore, all derivations in both semantics have
exactly the same number of steps and they are composed of the same sequences
of rewriting steps except for (sub)derivations finishing with STOP that perform
one rewriting step more (applying rule (STOP)).

The second theorem states the correctness of the tracking semantics by ensuring
that the graph produced is the track of the computation. To prove this theorem,
the following lemmas (proven in [16]) are used.

Lemma 1. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each prefixing (a → P) in the control of the left state of a rewriting step in D,
we have that Pos(a) and Pos(→) are nodes of G and Pos(→) is the successor
of Pos(a).

Lemma 2. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each sequential composition (P ; Q) in the control of the left state of a rewrit-
ing step in D, we have that last′(P) and Pos(;) are nodes of G and Pos(;) is
the successor of all the elements of the set last′(P) whenever P has successfully
finished.

A Tracking Semantics for CSP 267

Lemma 3. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each rewriting step in D of the form Ri

Θi� Ri+1 we have that:

1. Ec contains an edge Pos(Ri) '→ Pos(first(R′)) where R′ Θ′
� R′′ ∈ Θi and

Ri ⇒ first(R′), and
2. if Ri ⇒ first(Ri+1) then Ec contains an edge Pos(Ri) '→ Pos(first(Ri+1)).

Lemma 4. Let S be a CSP specification, D a derivation of S performed with
the tracking semantics, and G the graph produced by D. Then, there exists a
synchronization edge (a � a′) in G for each synchronization in D where a and
a′ are the nodes of the synchronized events.

Theorem 2 (Semantics correctness). Let S be a CSP specification, D a
derivation of S performed with the tracking semantics, and G the graph produced
by D. Then, G is the track associated with D.

Proof. In order to prove that G = (N, Ec, Es) is a track, we need to prove that it
satisfies the properties of Definition 5. For each R

Θ� R′ ∈ D and for all rewriting
steps in Θ we have

1. Ec contains a control-flow edge a '→ a′ iff a � a′ with respect to D. This is
ensured by the three clauses of Definition 4:
– by Lemma 1, if R is a prefixing (a → P), then Ec contains an edge
Pos(a) '→ Pos(→);

– by Lemma 2, if R is a sequential composition (Q; P), then Ec contains
an edge ∀p ∈ last ′(Q),Pos(p) '→ Pos(;);

– by Lemma 3, if R⇒ first(R′′) where R′′ Θ′
� R′′′ ∈ Θ, then Ec contains an

edge Pos(R) '→ Pos(first(R′′)); and if R ⇒ first(R′) then Ec contains
an edge Pos(R) '→ Pos(first(R′)); and

2. by Lemma 4, Es contains a synchronization edge a � a′ for each synchro-
nization occurring in the rewriting step where a and a′ are the synchronized
events.

Moreover, we know that the only nodes in N are the nodes induced by Ec and
Es because all the nodes inserted in G are inserted by connecting the new node
to the last inserted node (i.e., if the current reference is m and the new fresh
reference is n, then the new node is always inserted as G[m '→

n
α]). Hence, all

nodes are related by control or synchronization edges and thus the claim holds.

Our last result states that the trace of a derivation can be extracted from its
associated track. To prove it, we define first an order on the event nodes of a
track that corresponds to the order in which they were generated by the tracking
semantics.

Definition 6. (Event node order) Given a track G = (N, Ec, Es) and nodes
m, n ∈ N such that l(m), l(n) ∈ Σ, m is smaller than n, represented by m n
iff m′ < n′ where (m, m′), (n, n′) ∈ Ec.

268 M. Llorens et al.

Intuitively, an event node m is smaller than an event node n if and only if the
successor of m has a reference smaller than the reference of the successor of n.
The following lemma is also necessary to prove that the order in which events
occur in a derivation is directly related with the order of Definition 6. In the
following we consider an augmented version of derivation D which includes the
event fired by the application of the rule. So, we can represent derivation D as

P1
Θ1�
e1

. . .
Θj�
ej

Pj+1.

Lemma 5. Given a derivation D = P1
Θ1�
e1

. . .
Θj�
ej

Pj+1 of the tracking semantics,

and the track G = (N, Ec, Es) produced by D, then ∀ei ∈ Σ, 1 ≤ i ≤ j,

– ∃n ∈ N such that l(n) = ei, and
– ∃(n, n′) ∈ Ec such that n′ = n + 1.

Therefore, Lemma 5 (proven in [16]) ensures that the order of Definition 6 cor-
responds to the order in which the semantics generates the nodes, because each
event is added to the graph together with a new fresh reference for the prefix-
ing operator. Since references are generated incrementally, the occurrence of an
event e will generate a reference which is less than the reference generated with
a posterior event e′. With this order, we can easily define a transformation to
extract a trace from a track based on the following proposition:

Proposition 1. Given a track G = (N, Ec, Es), the trace induced by G is the
sequence of events T = e1, . . . , em that labels the associated sequence of nodes
T ′ = n1, . . . , nm (i.e., ∀ei ∈ T, ni ∈ T ′, 1 ≤ i ≤ m, l(ni) = ei and ei ∈ Σ) where:

1. ∀ni ∈ T ′, 0 < i < m, ni ni+1

2. ∀n ∈ N such that l(n) ∈ Σ, if (∃n′ ∈ N | (n, n′) ∈ Es), then n ∈ T ′

3. ∀n ∈ N such that l(n) ∈ Σ, if (∀n′ ∈ N |(n, n′) ∈ Es∧ n′ n), then n ∈ T ′

The proof of this proposition can be found in [16].

Theorem 3 (Track correctness). Let S be a CSP specification, D a deriva-
tion of S produced by the sequence of events (i.e., the trace) T = e1, . . . , em, and
G the track associated with D. Then, there exists a function f that extracts the
trace T from the track G, i.e., f(G) = T .

Proof. Proposition 1 allows to trivially define a function f such that f(G) = T
being G the track of a derivation D, and being T the trace of the same derivation.
For a track G = (N, Ec, Es) we have that

f((n : ns), Ec, Es)=
{
{f((ns), Ec, Es)} if (∃n′ ∈ N |(n, n′) ∈ Es ∧ n n′)
(l(n) : f((ns), Ec, Es)) otherwise

where list (n : ns) corresponds to the set {n ∈ N | l(n) ∈ Σ} ordered with
respect to order of Definition 6.

A Tracking Semantics for CSP 269

6 Conclusions

This work introduces the first semantics of CSP instrumented for tracking.
Therefore, it is an interesting result because it can serve as a reference mark
to define and prove properties such as completeness of static analyses which are
based on tracks [13,14,15]. The execution of the tracking semantics produces a
graph as a side effect which is the track of the computation. This track is pro-
duced step by step by the semantics, and thus, it can be also used to produce a
track of an infinite computation until it is stopped. The generated track can be
useful not only for tracking computations but for debugging and program com-
prehension. This is due to the fact that our generated track also includes the
specification positions associated with the expressions appearing in the track.
Therefore, tracks could be used to analyse what parts of the program are exe-
cuted (and in what order) in a particular computation. Also, this information
allows a track viewer tool to highlight the parts of the code that are executed
in each step. Notable analyses that use tracks are [3,4,5,1,13,14,15]. The intro-
duction of this semantics allows us to adapt these analyses to CSP. On the
practical side, we have implemented a tool called SOC [13] which is able to au-
tomatically generate tracks of a CSP specification. These tracks are later used
for debugging. SOC has been integrated into the most extended CSP animator
and model-checker ProB [11,12], that shows the maturity and usefulness of this
tool and of tracks. The implementation, source code and several examples are
publicly available at: http://users.dsic.upv.es/~jsilva/soc/

Acknowledgements

We want to thank the anonymous referees for many valuable comments and
useful suggestions.

References

1. Brassel, B., Hanus, M., Huch, F., Vidal, G.: A Semantics for Tracing Declarative
Multi-paradigm Programs. In: Moggi, E., Warren, D.S. (eds.) 6th ACM SIGPLAN
Int’l Conf. on Principles and Practice of Declarative Programming (PPDP’04), pp.
179–190. ACM, New York, NY, USA (2004)

2. Brückner, I., Wehrheim, H.: Slicing an Integrated Formal Method for Verification.
In: Lau, K.K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 360–374.
Springer, Heidelberg (2005)

3. Chitil, O.: A Semantics for Tracing. In: Arts, T., Mohnen, M. (eds.) 13th Int’l
Workshop on Implementation of Functional Languages (IFL’01), pp. 249–254.
Ericsson CSL (2001)

4. Chitil, O., Runciman, C., Wallace, M.: Transforming Haskell for Tracing. In:
Peña, R., Arts, T. (eds.) IFL 2002, Revised Selected Papers. LNCS, vol. 2670,
pp. 165–181. Springer, Heidelberg (2003)

5. Chitil, O., Lou, Y.: Structure and Properties of Traces for Functional Programs.
Electronic Notes in Theoretical Computer Science (ENTCS). 176(1), 39–63 (2007)

http://users.dsic.upv.es/~jsilva/soc/

270 M. Llorens et al.

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and
its Use in Optimization. ACM Transactions on Programming Languages and Sys-
tems. 9(3), 319–349 (1987)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River, NJ, USA (1985)

8. Kavi, K.M., Sheldon, F.T., Shirazi, B., Hurson, A.R.: Reliability analysis of CSP
specifications using Petri nets and Markov processes. In: 28th Annual Hawaii Int’l
Conf. on System Sciences (HICSS’95), vol. 2 (Software Technology), pp. 516–524.
IEEE Computer Society, Washington, DC, USA (1995)

9. Krinke, J.: Context-Sensitive Slicing of Concurrent Programs. ACM SIGSOFT
Software Engineering Notes. 28(5) (2003)

10. Ladkin, P., Simons, B.: Static Deadlock Analysis for CSP-Type Communications.
Responsive Computer Systems (Chapter 5), Kluwer Academic Publishers (1995)

11. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Journal of Software Tools for Technology Transfer. 10(2), 185–203 (2008)

12. Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: A new FDR-compliant
validation tool. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS,
vol. 5256, pp. 278–297. Springer, Heildeberg (2008)

13. Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: SOC: a Slicer for CSP
Specifications. In: Puebla, G., Vidal, G. (eds.) 2009 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation (PEPM’09),
pp. 165–168. ACM, New York, NY, USA (2009)

14. Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: The MEB and CEB
Static Analysis for CSP Specifications. In: Hanus, M. (ed.) LOPSTR 2008, Revised
Selected Papers. LNCS, vol. 5438, pp. 103–118. Springer, Heildeberg (2009)

15. Llorens, M., Oliver, J., Silva, J., Tamarit, S.: An Algorithm to Generate the
Context-sensitive Synchronized Control Flow Graph. In: 25th ACM Symposium
on Applied Computing (SAC 2010), vol. 3, pp. 2144–2148. ACM, New York (2010)

16. Llorens, M., Oliver, J., Silva, J., Tamarit, S.: A Tracking Semantics for CSP
(Extended Version). Technical report, DSIC-II/03/10, Universidad Politécnica de
Valencia (March 2010)

17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River, NJ, USA (2005)

18. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages. 3, 121–189 (1995)

19. Weiser, M.D.: Program Slicing. IEEE Transactions on Software Engineering. 10(4),
352–357 (1984)

Matrices as Arrows!
A Biproduct Approach to Typed Linear Algebra

Hugo Daniel Macedo and José Nuno Oliveira

Minho University, Portugal
{hmacedo,jno}@di.uminho.pt

Abstract. Motivated by the need to formalize generation of fast run-
ning code for linear algebra applications, we show how an index-free,
calculational approach to matrix algebra can be developed by regard-
ing matrices as morphisms of a category with biproducts. This shifts
the traditional view of matrices as indexed structures to a type-level
perspective analogous to that of the pointfree algebra of programming.
The derivation of fusion, cancellation and abide laws from the biprod-
uct equations makes it easy to calculate algorithms implementing matrix
multiplication, the kernel operation of matrix algebra, ranging from its
divide-and-conquer version to the conventional, iterative one.

From errant attempts to learn how particular products and coprod-
ucts emerge from biproducts, we not only rediscovered block-wise matrix
combinators but also found a way of addressing other operations calcu-
lationally such as e.g. Gaussian elimination. A strategy for addressing
vectorization along the same lines is also given.

1 Introduction

Automatic generation of fast running code for linear algebra applications calls
for matrix multiplication as kernel operator, whereby matrices are viewed and
transformed in an index-free way [1]. Interestingly, the successful language SPL
[2] used in generating automatic parallel code has been created envisaging the
same principles as advocated by the purist computer scientist: index-free ab-
straction and composition (multiplication) as a kernel way of connecting objects
of interest (matrices, programs, etc).

There are several domain specific languages (DSLs) bearing such purpose
in mind [2,3,1]. However, they arise as programming dialects with poor type
checking. This may lead to programming errors, hindering effective use of such
languages and calling for a “type structure” in linear algebra systems similar to
that underlying modern functional programming languages such as Haskell, for
instance [4].

It so happens that, in the same way function composition is the kernel op-
eration of functional programming, leading to the algebra of programming [5],
so does matrix multiplication once matrices are viewed and transformed in an
index-free way. So, rather than interpreting the product AB of matrices A and
B as an algorithm for computing a new matrix C out of A and B, and trying to

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 271–287, 2010.
© Springer-Verlag Berlin Heidelberg 2010

272 H.D. Macedo and J.N. Oliveira

build and explain matrix algebra systems out of such an algorithm, one wishes
to abstract from how the operation is carried out. Instead, the emphasis is put
on its type structure, regarded as the pipeline A ⋅ B (to be read as “A after B”),
as if A and B were functions

C = A ⋅ B (1)

or binary relations — the actual building block of the algebra of programming [5].
In this discipline, relations are viewed as (typed) composable arrows (morphisms)
which can be combined in a number of ways, namely by joining or intersecting
relations of the same type, reversing them (thus swapping their source and target
types), and so on.

If relations, which are Boolean matrices, can be regarded as morphisms of a
suitable mathematical framework, why not regard arbitrary matrices in the same
way? This matches with the categorical characterization of matrices, which can
be traced back to Mac Lane [6], whereby matrices are regarded as arrows in a
category whose objects are natural numbers (matrix dimensions):

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 . . . a1n

⋮ ⋱ ⋮

am1 . . . amn

⎤

⎥

⎥

⎥

⎥

⎥

⎦m×n

m n
A�� (2)

Such a category MatK of matrices over a field K merges categorical products
and coproducts into a single construction termed biproduct [6]. Careful analysis
of the biproduct axioms as a system of equations provides one with a rich palette
of constructs for building matrices from smaller ones. In [7], for instance, we
outlined an approach to matrix blocked operation stemming from one particular
solution to such equations, which in fact offers explicit operators for building
block-wise matrices (row and column-wise) as defined by [8].

In the current paper we elaborate on [7] and show in detail how block-
driven divide-and-conquer algorithms for linear algebra arise from biproduct
laws emerging from the underlying categorial basis. In summary, this paper
gives the details of a constructive approach to matrix algebra operations leading
to elegant, index-free proofs of the corresponding algorithms. As happens with
state-of-the-art algebra of programming, the whole framework is fully typed,
enabling parametric type checking of matrix combinators.

2 The Category of Matrices MatK

Matrices are mathematical objects that can be traced back to ancient times,
documented as early as 200 BC [9]. The word “matrix” was introduced in the
western culture much later, in the 1840’s, by the mathematician James Sylvester
(1814-1897) when both matrix theory and linear algebra emerged.

The traditional way of viewing matrices as rectangular tables (2) of elements
or entries (the “container view”) which in turn are other mathematical objects

Matrices as Arrows! 273

such as e.g. complex numbers (in general: inhabitants of the field K which un-
derlies MatK), encompasses as special cases one column and one line matrices,
referred to as column (resp. row) vectors, that is, matrices of shapes

v =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

v1
⋮

vm

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and w = [w1 . . . wn]

What is a matrix? The standard answer to this question is to regard matrix A
(2) as a computation unit, or transformation, which commits itself to producing
a (column) vector of size m provided it is supplied with a (column) vector of
size n. How is such output produced? Let us abstract from this at this stage and
look at diagram

m n
A�� 1

v��

w

��

arising from depicting the situation in arrow notation. This suggests a pictorial
representation of the product of matrix Am×n and matrix Bn×q, yielding a new
matrix C = (AB)m×q with dimensions m × q, as follows,

m n
A�� qB��

C=A⋅B

�� (3)

which automatically “type-checks” the construction: the “target” of n qB��

simplymatches the“source” of m n
A�� yielding amatrixwhose type m q��

is the composition of the given types.
Having defined matrices as composable arrows in a category, we need to define

its identities [6]: for every object n, there must be an arrow of type n n��

which is the unit of composition. This is nothing but the identity matrix of size

n, which we will denote by n n
idn�� . For every matrix m n

A�� , one has

idm ⋅ A = A = A ⋅ idn n

A

��

n
idn��

A

��A����
��

��
��

m m
idm

��

(4)

(Subscripts m and n can be omitted wherever the underlying diagrams are
assumed.)

Transposed matrices. One of the kernel operations of linear algebra is transpo-
sition, whereby a given matrix changes shape by turning its rows into columns

and vice-versa. Type-wise, this means converting an arrow n m
A�� into an

274 H.D. Macedo and J.N. Oliveira

arrow m n
AT

�� , that is, source and target types (dimensions) switch over.
By analogy with relation algebra, where a similar operation is termed converse
and denoted A○, we will use this notation instead of AT (which misleadingly
suggests a kind of exponential) and will say “A converse” wherever reading A○.
Index-wise, we have, for A as in (2):

A○ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 . . . am1
⋮ ⋱ ⋮

a1n . . . amn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

n m
A○��

Instead of telling how transposition is carried out index-wise, again we prefer
to stress on (index-free) properties of this operation such as, among others,
idempotence and contravariance:

(A○)○ = A (5)
(A ⋅ B)

○

= B○ ⋅ A○ (6)

Bilinearity. Given two matrices of the same type m n
M,N�� (i.e., in the same

homset of MatK) it makes sense to add them up index-wise, leading to matrix
M + N where symbol + promotes the underlying element-level additive operator
to matrix-level. In fact, matrices form an Abelian category: each homset in the
category forms an additive Abelian (ie. commutative) group with respect to
which composition is bilinear:

M ⋅ (N + L) = M ⋅ N + M ⋅ L (7)
(N + L) ⋅ K = N ⋅ K + L ⋅ K (8)

Polynomial expressions (such as in the properties above) denoting matrices built
up in an index-free way from addition and composition play a major role in
matrix algebra. This can be appreciated in the explanation of the very important
concept of a biproduct which follows.

Biproducts. In an Abelian category, a biproduct diagram for the objects m,n is
a diagram of shape

m
i1

�� r
π1�� π2 ��

n
i2

��

whose arrows π1, π2, i1, i2 satisfy the identities which follow:

π1 ⋅ i1 = idm (9)
π2 ⋅ i2 = idn (10)

i1 ⋅ π1 + i2 ⋅ π2 = idr (11)

Morphisms πi and ii are termed projections and injections, respectively. From the
underlying arithmetics one easily derives the following orthogonality properties
(see e.g. [6]):

Matrices as Arrows! 275

π1 ⋅ i2 = 0 , π2 ⋅ i1 = 0 (12)

One wonders: how do biproducts relate to products and co-products in the cat-
egory? The answer in Mac Lane’s [6] words is as follows:

Theorem 2: Two objects a and b in Abelian category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct diagram, the object
r with the projections π1 and π2 is a product of m and n, while, dually, r with
i1 and i2 is a coproduct. In particular, two objects m and n have a product in
A if and only if they have a coproduct in A.

The diagram and definitions below depict how products and coproducts arise
from biproducts (the product diagram is in the lower half; the upper half is the
coproduct one):

m

n

R

�����������

i1
�� n + p

[
R S

]

��

π1�� π2 �� p
i2

��

S

		���������

t

U

		����������
[

U

V
]

��

V

������������

[R S] = R ⋅ π1 + S ⋅ π2 (13)

[

U
V

] = i1 ⋅ U + i2 ⋅ V (14)

By analogy with the algebra of programming [5], expressions [R S] and [

U
V

]

will be read “R junc S” and “U split V ”, respectively. What is the intuition
behind these combinators, which come out of the blue in texts such as e.g. [8]?
Expressed in terms of definitions (13) and (14), axiom (11) rewrites to both

[i1 i2] = id (15)

[

π1

π2
] = id (16)

somehow suggesting that the two injections and the two projections “decom-
pose” the identity matrix. On the other hand, each of (15,16) has the shape
of a reflection corollary [5] of some universal property. Below we derive such a
property for [R S],

X = [R S] ⇔ {

X ⋅ i1 = R
X ⋅ i2 = S

(17)

from the underlying biproduct equations, by circular implication:

X = [R S]

⇔ { identity (4) ; (13) }

276 H.D. Macedo and J.N. Oliveira

X ⋅ id = R ⋅ π1 + S ⋅ π2

⇔ { (11) }

X ⋅ (i1 ⋅ π1 + i2 ⋅ π2) = R ⋅ π1 + S ⋅ π2

⇔ { bilinearity (7) }

X ⋅ i1 ⋅ π1 + X ⋅ i2 ⋅ π2 = R ⋅ π1 + S ⋅ π2

⇒ { Leibniz (twice) }

{

(X ⋅ i1 ⋅ π1 + X ⋅ i2 ⋅ π2) ⋅ i1 = (R ⋅ π1 + S ⋅ π2) ⋅ i1
(X ⋅ i1 ⋅ π1 + X ⋅ i2 ⋅ π2) ⋅ i2 = (R ⋅ π1 + S ⋅ π2) ⋅ i2

⇔ { bilinearity (8) ; biproduct (9,10) ; orthogonality (12) }

{

X ⋅ i1 + X ⋅ i2 ⋅ 0 = R + S ⋅ 0
X ⋅ i1 ⋅ 0 + X ⋅ i2 = R ⋅ 0 + S

⇔ { trivia }

{

X ⋅ i1 = R
X ⋅ i2 = S

⇒ { Leibniz (twice) }

{

X ⋅ i1 ⋅ π1 = R ⋅ π1
X ⋅ i2 ⋅ π2 = S ⋅ π2

⇒ { Leibniz }

X ⋅ i1 ⋅ π1 + X ⋅ i2 ⋅ π2 = R ⋅ π1 + S ⋅ π2

⇔ { as shown above }

X = [R S]

The derivation of the universal property of [

U
V

],

X = [

U
V

] ⇔ {

π1 ⋅ X = U
π2 ⋅ X = V

(18)

is (dually) analogous.

Parallel with relation algebra. Similar to matrix algebra, relation algebra [10,5]
can also be explained in terms of biproducts once morphism addition (11) is in-
terpreted as relational union, object union is disjoint union, i1 and i2 as the cor-
responding injections and π1,π2 their converses, respectively. Relational product
should not, however, be confused with the fork construct [11] in fork (relation)
algebra, which involves pairing. (For this to become a product one has to restrict
to functions.)

Matrices as Arrows! 277

In the next section we show that the converse relationship (duality) between
projections and injections is not a privilege of relation algebra: the most intuitive
biproduct solution in the category of matrices also offers such a duality.

3 Chasing Biproducts

Let us now address the intuition behind products and coproducts of matrices.
This has mainly to do with the interpretation of projections π1, π2 and injec-
tions i1,i2 arising as solutions of biproduct equations (9,10,11). Concerning this,
Mac Lane [6] laconically writes:

“In other words, the [biproduct] equations contain the familiar calculus of ma-
trices.”

In what way? The answer to this question proved more interesting than it seems
at first, because of the multiple solutions arising from a non-linear system of
three equations (9,10,11) with four variables. In trying to exploit this freedom
we became aware that each solution offers a particular way of putting matrices
together via the corresponding “junc” and “split” combinators.

Our inspection of solutions started by reducing the “size” of the objects in-
volved and experimenting with the smaller biproduct depicted below:

1
i1

�� 1 + 1
π1�� π2 ��

1
i2

��

The “puzzle” in this case is more manageable,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

π1 ⋅ i1 = [1]

π2 ⋅ i2 = [1]

i1 ⋅ π1 + i2 ⋅ π2 = [

1 0
0 1]

yet the set of solutions is not small. We used the Mathematica software [12] to
solve this system by inputting the projections and injections as suitably typed
matrices leading to a larger, non-linear system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[π11 π12] ⋅ [

i11
i12

] = [1]

[π21 π22] ⋅ [

i21
i22

] = [1]

[

i11
i12

] ⋅ [π11 π12] + [

i21
i22

] ⋅ [π21 π22] = [

1 0
0 1]

This was solved using the standard Solve command obtaining the output pre-
sented in Figure 1, which offers several solutions. Among these we first picked the
one which purports the most intuitive reading of the junc and split combinators

278 H.D. Macedo and J.N. Oliveira

sol = Solve[{pi1.i1 == I1,pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]sol = Solve[{pi1.i1 == I1,pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]sol = Solve[{pi1.i1 == I1,pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]
Solve::svars ∶ Equations may not give solutions for all "solve" variables. ⟩⟩
{{i21 →

1
π21

, i22 → −
π11i12

π21
, π12 →

1
i12
, i11 → 0, π22 → 0} ,

{i21 → −
π12i11

π22
, i22 →

π22+π12π21i11
(π22)2

, π11 →
π22+π12π21i11

π22i11
, i12 → −

π21i11
π22
}}

Fig. 1. Fragment of Mathematica script

— that of simply gluing matrices vertically and horizontally (respectively) with
no further computation of matrix entries:

π1 = [1 0] π2 = [0 1]

i1 = [

1
0] i2 = [

0
1]

Interpreted in this way, [

R
S

] (14) and [R S] (13) are the block gluing matrix

operators which we can find in [8]. Our choice of notation — R above S in the
case of (14) and R besides S in the case of (13) reflects this semantics.

The obvious generalization of this solution to higher dimensions of the problem
leads to the following matrices with identities of size m and n in the appropriate
place, so as to properly typecheck:

π1 = m m + n
[idm 0]

�� , π2 = n m + n
[0 idn]��

i1 = m + n m

⎡
⎢
⎢
⎢
⎢
⎢
⎣

idm

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦�� , i2 = m + n n

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
idm

⎤
⎥
⎥
⎥
⎥
⎥
⎦��

By inspection, one immediately infers the same duality found in relation algebra,

π○1 = i1 , π○2 = i2 (19)

whereby junc (13) and split (14) become self dual:

[R S]

○

= { (13) ; (6) }

π○1 ⋅ R○ + π○2 ⋅ S○

= { (19) ; (14) }

[

R○

S○
]

This particular solution to the biproduct equations captures what in the lit-
erature is meant by blocked matrix algebra, a generalization of the standard
element-wise operations to sub-matrices, or blocks, leading to divide-and-conquer

Matrices as Arrows! 279

versions of the corresponding algorithms. The next section shows the exercise
of deriving such laws, thanks to the algebra which emerges from the universal
properties of the block-gluing matrix combinators junc (17) and split (18). We
combine the standard terminology with that borrowed from the algebra of pro-
gramming [5] to stress the synergy between blocked matrix algebra and relational
algebra.

4 Blocked Linear Algebra — Calculationally!

Further to reflection laws (15,16), the derivation of the following equalities from
universal properties (17,18) is a standard exercise in (high) school algebra, where
capital letters A, B, etc. denote suitably typed matrices (the types, ie. dimen-
sions, involved in each equality can be inferred by drawing the corresponding
diagram):

– Two “fusion”-laws:

C ⋅ [A B] = [C ⋅ A C ⋅ B] (20)

[

A
B

] ⋅ C = [

A ⋅ C
B ⋅ C

] (21)

– Four “cancellation”-laws:

[A B] ⋅ i1 = A , [A B] ⋅ i2 = B (22)

π1 ⋅ [

A
B

] = A , π2 ⋅ [

A
B

] = B (23)

– Three “abide”-laws 1: the junc/split exchange law

[

[A B]

[C D]

] = [[

A
C

] [

B
D

]] = [

A B
C D

] (24)

which tells the equivalence between row-major and column-major construc-
tion of matrices (thus the four entry block notation on the right), and two
blocked addition laws:

[A B] + [C D] = [A + C B + D] (25)

[

A
B

] + [

C
D

] = [

A + C
B + D

] (26)

1 Neologism “abide” (= “above and beside”) was introduced by Richard Bird [13] as a
generic name for algebraic laws in which two binary operators written in infix form
change place between “above” and “beside”, e.g.

a

b
×

c

d
=

a × c

b × d

280 H.D. Macedo and J.N. Oliveira

The laws above are more than enough for us to derive standard linear algebra
rules and algorithms in a calculational way. As an example of their application
we provide a simple proof of the rule which underlies divide-and-conquer matrix
multiplication:

[R S] ⋅ [

U
V

] = R ⋅ U + S ⋅ V (27)

We calculate:

[R S] ⋅ [

U
V

]

= { (14) }

[R S] ⋅ (i1 ⋅ U + i2 ⋅ V)

= { bilinearity (7) }

[R S] ⋅ i1 ⋅ U + [R S] ⋅ i2 ⋅ V

= { +-cancellation (22) }

R ⋅ U + S ⋅ V

As another example, let us show how standard block-wise matrix-matrix multi-
plication (MMM),

[

R S
U V

] ⋅ [

A B
C D

] = [

RA + SC RB + SD
UA + V C UB + V D

] (28)

relies on divide-and-conquer (27):

[[

R
U

] [

S
V

]] ⋅ [[

A
C

] [

B
D

]]

= { junc-fusion (20) }

[[[

R
U

] [

S
V

]] ⋅ [

A
C

] [[

R
U

] [

S
V

]] ⋅ [

B
D

]]

= { divide and conquer (27) twice }

[[

R
U

] ⋅ A + [

S
V

] ⋅ C [

R
U

] ⋅ B + [

S
V

] ⋅ D]

= { split-fusion (20) four times }

[[

R ⋅ A
U ⋅ A

] + [

S ⋅ C
V ⋅ C

] [

R ⋅ B
U ⋅ B

] + [

S ⋅ D
V ⋅ D

]]

Matrices as Arrows! 281

= { blocked addition (26) twice }

[[

R ⋅ A + S ⋅ C
U ⋅ A + V ⋅ C

] [

R ⋅ B + S ⋅ D
U ⋅ B + V ⋅ D

]]

= { the same in block notation (24) }

[

RA + SC RB + SD
UA + V C UB + V D

]

5 Calculating Triple Nested Loops

By putting together the universal factorization of matrices in terms of the junc
and split combinators, one easily infers yet another such property handling four
blocks at a time:

X = [

A11 A12

A21 A22
] ⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

π1 ⋅ X ⋅ i1 = A11
π1 ⋅ X ⋅ i2 = A12
π2 ⋅ X ⋅ i1 = A21
π2 ⋅ X ⋅ i2 = A22

Alternatively, one may generalize (13,14) to blocked notation

[

A11 A12

A21 A22
] = i1 ⋅ A11 ⋅ π1 + i1 ⋅ A12 ⋅ π1 + i1 ⋅ A21 ⋅ π1 + i2 ⋅ A22 ⋅ π2

which rewrites to

[

A11 A12

A21 A22
] = [

A11 0
0 0] + [

0 A12
0 0] + [

0 0
A21 0] + [

0 0
0 A22

]

once injections and projections are replaced by the biproduct solution found in
Section 3.

Iterated Biproducts. It should be noted that biproducts generalize to finitely
many arguments, leading to an n-ary generalization of the (binary) junc / split
combinators. The following notation is adopted in generalizing (13,14):

A = [A1 . . . Ap] =
⦶

1≤j≤p
A ⋅ ij =

p

∑

j=1
A ⋅ ij ⋅ πj (29)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1

⋮

Am

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
⊖

1≤j≤m
πj ⋅ A =

m

∑

j=1
ij ⋅ πj ⋅ A (30)

Note that all laws given so far generalize accordingly to n-ary splits and juncs.
In particular, we have the following universal properties:

X =
⦶

1≤j≤p
Aj ⇔

⋀

1≤j≤p
X ⋅ ij = Aj (31)

X =
⊖

1≤j≤m
Aj ⇔

⋀

1≤j≤m
πj ⋅ X = Aj (32)

282 H.D. Macedo and J.N. Oliveira

Further note that m,p can be chosen as large as possible, the limit taking place

when blocks Ai become atomic. In this limit situation, a given matrix m n
A��

is defined in terms of its elements Ajk as:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 . . . a1n

⋮ ⋱ ⋮

am1 . . . amn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
∑

1≤j≤m
1≤k≤n

ij ⋅ πj ⋅ A ⋅ ik ⋅ πk =
⊕

1≤j≤m
1≤k≤n

πj ⋅ A ⋅ ik (33)

where
⊕1≤j≤m

1≤k≤n
abbreviates

⊖1≤j≤m ⦶1≤k≤n — equivalent to
⦶1≤k≤n ⊖1≤j≤m by

the generalized exchange law (24).
Our final calculation shows how iterated biproducts “explain” the traditional

for-loop implementation of MMM. Interestingly enough, such iterative imple-
mentation is shown to stem from generalized divide-and-conquer (27):

C = A ⋅ B

= { (33), (29) and (30) }

(
⊖

1≤j≤m
πj ⋅ A) ⋅ (

⦶

1≤k≤n
B ⋅ ik)

= { generalized split-fusion (21) }

⊖

1≤j≤m
(πj ⋅ A ⋅ (

⦶

1≤k≤n
B ⋅ ik))

= { generalized either-fusion (20) }

⊖

1≤j≤m
(

⦶

1≤k≤n
πj ⋅ A ⋅ B ⋅ ik)

= { (29), (30) and generalized (21) and (20) }

⊖

1≤j≤m
(

⦶

1≤k≤n
((

⦶

1≤l≤p
πj ⋅ A ⋅ il) ⋅ (

⊖

1≤l≤p
πl ⋅ B ⋅ ik)))

= { generalized divide-and-conquer (27) }

⊖

1≤j≤m
(

⦶

1≤k≤n
(

∑

1≤l≤p
πj ⋅ A ⋅ il × πl ⋅ B ⋅ ik))

As we can see in the derivation path, the choices for the representation of A
and B impact on the derivation of the intended algorithm. Different choices will
alter the order of the triple loop obtained. Proceeding to the loop inference will
involve the expansion of C and the normalization of the formula into sum-wise
notation:

⊕

1≤k≤m
1≤j≤n

πj ⋅ C ⋅ ik =
⊖

1≤j≤m
(

⦶

1≤k≤n
(

∑

1≤l≤p
πj ⋅ A ⋅ il × πl ⋅ B ⋅ ik))

⇔ { (33), (29) and (30) }

⊖

1≤j≤m
(

⦶

1≤k≤n
πj ⋅ C ⋅ ik) =

⊖

1≤j≤m
(

⦶

1≤k≤n
(

∑

1≤l≤p
πj ⋅ A ⋅ il × πl ⋅ B ⋅ ik))

Matrices as Arrows! 283

At this point we rely on the universality of the junc and split constructs (31,32)
to obtain from above the post-condition of the algorithm:

⋀

1≤j≤m
(

⋀

1≤k≤n
(πj ⋅ C ⋅ ik =

∑

1≤l≤p
πj ⋅ A ⋅ il × πl ⋅ B ⋅ ik))

This predicate expresses an outer traversal indexed by j, an inner traversal
indexed by k and what the expected result in each element of output matrix C
is. Thus we reach three nested for-loops of two different kinds: the two outer-
loops (corresponding to indices j, k) provide for navigation, while the inner loop
performs an accumulation (thus the need for initialization):

for j = 1 to m do
for k = 1 to n do

C[j][k] ← 0
for l = 1 to p do

C[j][k] ← C[j][k] + A[j][l] ∗ B[l][k]

end for
end for

end for

Different matrix memory mapping schemes give rise to the interchange of the
j, k and l in the loop above [14]. This is due to corresponding choices in the
derivation granted by the generalized exchange law (24), among others.

Other variants of blocked MMM (28) such as e.g. Strassen’s or Winograd’s
[15] rely mainly on the additive structure of MatK and thus don’t pose new
challenges. However, whether such algorithms can be better explained in more
structured, biproduct-based derivations is a matter of future research.

6 Related Work

The formulation of categories of matrices can be traced back to [6] and [16], where
the focus is either on exemplifying additive categories and on the relationship
between linear transformations and matrices. No effort on exploiting biproducts
calculationally is present, let alone algorithm derivation.

Bloom et al [8] make use of what we have identified as the standard biproduct
(enabling blocked matrix algebra) to formalize column and row-wise matrix join
and fusion. Instead of a calculational approach to linear algebra algorithmics,
the emphasis is on iteration theories which matricial theories are a particular
case of. Furthermore this work makes use of other algebraic properties of MatK

which we aim to encompass later.
Other categorial approaches to linear algebra include relative monads [17],

whereby the category of finite-dimensional vector spaces arises as a kind of Kleisli
category. Efforts by the mathematics of program construction community in the
derivation of matrix algorithms include the study of two-dimensional pattern
matching [18]. An account of work on calculational, index-free reasoning about
regular and Kleene algebras of matrices can be found in [19].

284 H.D. Macedo and J.N. Oliveira

7 Conclusions and Current Work

A comprehensive calculational approach to linear algebra algorithm specifica-
tion, transformation and generation is still missing. However, the successes re-
ported by the engineering field in the automatic library generation are a good
cue to the feasibility of such an approach.

In this paper we have presented a formalization of matrices as categorial
morphisms (arrows) in a way which relates categories of matrices to relation
algebra and program calculation. Our case study — matrix multiplication — is
dealt with in an elegant, calculational style whereby its divide-and-conquer and
triple nested loop algorithmic implementations were derived.

The notion of a categorial biproduct is at the heart of the whole approach.
Using the category of matrices and its biproducts the conversion from the declar-
ative definition of a matrix to its indexed version is made possible thanks to the
properties of projections and injections, as shown in the derivation of the triple
for-loop.

We plan to carry on this work in several directions. The background of our
project is the formalization of the SPL language [2] and, in this respect, work
has only started. However in its beginning, our biproduct-centered approach is
already telling us what to do next, as happens for instance with the biproduct
nature of the gather/scatter matrices of the SPIRAL system [20].

Next in the plan we want to exploit other solutions to the biproduct equa-
tions, while checking which “chapters” of linear algebra [16] they are able to
constructively explain. Think of Gaussian elimination, for instance, whose main
steps involve row-switching, row-multiplication and row-addition, and suppose
one defines the following transformation t catering for the last two, for a given
α:

t ∶ (n n��
) × (n + n m��

) → (n + n m��
)

t(α, [

A
B

]) = [

A
αA + B

]

(Thinking in terms of blocks A and B rather than rows is more general; in this

setting, arrow n n
α�� means n n

id�� with all 1s replaced by αs.) Let us
analyze the essence of t by using the blocked-matrix calculus in reverse order :

t(α, [

A
B

]) = [

A
αA + B

]

= { (28) in reverse order }

[

1 0
α 1] ⋅ [

A
B

]

= { divide-and-conquer (27) }

[

1
α

] ⋅ A + [

0
1

] ⋅ B

Matrices as Arrows! 285

It can be shown that the last expression, which has the same shape as (14), is
in fact the split combinator generated by another biproduct, parametric on α:

π′1 = [1 0] , π′2 = [−α 1]

i′1 = [

1
α

] , i′2 = [

0
1]

In summary, this biproduct, which extends the one studied earlier on (they
coincide for α ∶= 0) provides a categorial interpretation of one of the steps of
Gaussian elimination. We are currently investigating its role in a constructive
proof of the corresponding, well-known algorithm, which we lay down recursively
as follows, using block-notation (24):

ge ∶ (1 + n 1 + m��
) → (1 + n 1 + m��

)

ge [

x M
N Q

] = [

x M

0 ge(Q −

N
x

⋅ M)

]

ge x = x

In particular, we want to provide a calculational alternative to the FLAME-
styled derivation of the algorithm given in e.g. [3].

Last but not least, we want to address vectorization calculationally. The lin-
earization of an arbitrary matrix into a vector is a data refinement step. This
means finding suitable abstraction/representation relations [21] between the two
formats and reasoning about them, including the refinement of all matrix oper-
ations into vector form.

The first part of the exercise proves easier than first expected: vectorization
is akin to exponentiation, that is, currying [4] in functional languages. While
currying “thins” the input of a given binary function by converting it into its
unary (higher-order) counterpart, so does vectorization by thinning a given ma-

trix n km
M�� into kn m

vecM�� , where k is the “thinning factor” [7]. (For
m = 1, vecM is a column vector — the standard situation [22].) Once again,
our approach relies on capturing such a relationship by a universal property

X = vecM ⇔ M = ε ⋅ (id ⊗ X) k × n k × (k × n)

ε �� n

m

vecM

��

k × m

idk⊗(vecM)

��

M

����������

where ⊗ denotes Kronecker product 2, granting vec as a bijective transforma-
tion. So its converse unvec is also a bijection, whereby ε = unvec id. Put in
other words, we are in presence of an adjunction between functor FX = idk ⊗ X
and itself. Taking advantage of this mathematical framework [23] in calculating
the whole algebra of vectorization will keep the authors busy for a while [24].

2 Given p m
A�� and q n

B�� , the Kronecker product pq mn
A⊗B�� is the

matrix A⊗B = (aijB) [22].

286 H.D. Macedo and J.N. Oliveira

Broadening scope, an aspect that needs investigation is how this “non-stand-
ard” treatment of matrices (data structures represented as arrows, as opposed
to datatypes as objects) combines with theories of the rest of programming. For
instance, its application to the emerging field of linear algebra of programming
[25] and its combination with the monadic framework of [17] are topics for future
research.

Acknowledgements. The authors would like to thank Markus Püschel (CMU)
for driving their attention to the relationship between linear algebra and program
transformation. Hugo Macedo further thanks the SPIRAL group for granting
him an internship at CMU.

Thanks are also due to Michael Johnson and Robert Rosebrugh (Macquarie
Univ.) for pointing the authors to the categories of matrices approach. Yoshiki
Kinoshita (AIST, Japan) and Manuela Sobral (Coimbra Univ.) helped with fur-
ther indications in the field.

This research was carried out in the context of the Mondrian Project funded
by FCT contract PTDC/EIA-CCO/108302/2008. Hugo Macedo was partially
supported by the Fundação para a Ciência e a Tecnologia, Portugal, under grant
number SFRH/BD/33235/2007.

References

1. Franchetti, F., de Mesmay, F., McFarlin, D., Püschel, M.: Operator language: A
program generation framework for fast kernels. In: Taha, W.M. (ed.) Domain-
Specific Languages. LNCS, vol. 5658, pp. 385–409. Springer, Heidelberg (2009)

2. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W.,
Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W.,
Rizzolo, N.: SPIRAL: Code generation for DSP transforms. Proceedings of the
IEEE, special issue on Program Generation, Optimization, and Adaptation 93(2),
232–275 (2005)

3. de Geijn, R.A.V., Quintana-Ort́ı, E.S.: The Science of Programming Matrix Com-
putations (2008), http://www.lulu.com

4. Jones, S.P., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel,
J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J.,
Meijer, E., Peterson, J., Reid, A., Runciman, C., Wadler, P.: Report on the pro-
gramming language Haskell 98 — a non-strict, purely functional language. Tech-
nical report (February 1999)

5. Bird, R., de Moor, O.: Algebra of Programming. In: Hoare, C.A.R. (series ed.).
Series in Computer Science. Prentice-Hall International, Englewood Cliffs (1997)

6. MacLane, S.: Categories for the Working Mathematician (Graduate Texts in Math-
ematics). Springer, Heidelberg (September 1998)

7. Macedo, H., Oliveira, J.: Matrices as arrows: a typed approach to linear alge-
bra, Extended abstract. In: CALCO-JNR Workshop, September 6-10, Udine, Italy
(2009)

8. Bloom, S., Sabadini, N., Walters, R.: Matrices, machines and behaviors. Applied
Categorical Structures 4(4), 343–360 (1996)

9. Allenby, R.B.J.T.: Linear Algebra. Elsevier, Amsterdam (1995)

http://www.lulu.com

Matrices as Arrows! 287

10. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. In: AMS,
Providence, Rhode Island, vol. 41. AMS Col. Pub, Washington (1987)

11. Frias, M.: Fork algebras in algebra, logic and computer science, Logic and Computer
Science. World Scientific Publishing Co., Singapore (2002)

12. Wolfram, S., et al.: Mathematica: a system for doing mathematics by computer.
Addison-Wesley, New York (1988)

13. Bird, R.: Lecture notes on constructive functional programming. In: Broy, M. (ed.)
CMCS Int. Summer School directed by Bauer, F.L., et al. NATO Adv. Science
Institute, Series F: Comp. and System Sciences, vol. 55, Springer, Heidelberg (1989)

14. Goto, K., Geijn, R.A.v.d.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 1–25 (2008)

15. D’Alberto, P., Nicolau, A.: Adaptive Strassen’s matrix multiplication. In: ICS ’07:
Proc. of the 21st annual int. conf. on Supercomputing. ACM, NY (2007)

16. MacLane, S., Birkhoff, G.: Algebra. AMS Chelsea (1999)
17. Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. In:

Foundations of Software Science and Computational Structures, pp. 297–311 (2010)
18. Jeuring, J.: The derivation of hierarchies of algorithms on matrices. In: Moller, B.

(ed.) Constructing Programs from Specifications, pp. 9–32. North-Holland,
Amsterdam (1991)

19. Backhouse, R.: Mathematics of Program Construction, Univ. of Nottingham, Draft
of book in preparation, 608 pages (2004)

20. Voronenko, Y.: Library Generation for Linear Transforms. PhD thesis, Electrical
and Computer Engineering, Carnegie Mellon University (2008)

21. Oliveira, J.N.: Transforming data by calculation. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) Generative and Transformational Techniques in Software En-
gineering II. LNCS, vol. 5235, pp. 134–195. Springer, Heidelberg (2008)

22. Magnus, J., Neudecker, H.: The commutation matrix: Some properties and appli-
cations. The Annals of Statistics 7(2), 381–394 (1979)

23. Dos̆en, K., Petrić, Z.: Self-adjunctions and matrices. Journal of Pure and Applied
Algebra 184, 7–39 (2003)

24. Macedo, H.D., Oliveira, J.N.: Exploring self-adjunctions in vectorization (2010) (in
preparation)

25. Sernadas, A., Ramos, J., Mateus, P.: Linear algebra techniques for deciding the
correctness of probabilistic programs with bounded resources. Technical report,
SQIG-IT and TU Lisbon, 1049-001 Lisboa, Portugal, — Short paper presented at
LPAR 2008, Doha, Qatar. November 22-27 (2008)

Lucy-n: a n-Synchronous Extension of Lustre�

Louis Mandel1, Florence Plateau1, and Marc Pouzet1,2

1 LRI, Univ. Paris-Sud 11, Orsay, France and INRIA Saclay
2 Institut Universitaire de France

Abstract. Synchronous functional languages such as Lustre or Lucid
Synchrone define a restricted class of Kahn Process Networks which can
be executed with no buffer. Every expression is associated to a clock in-
dicating the instants when a value is present. A dedicated type system,
the clock calculus, checks that the actual clock of a stream equals its ex-
pected clock and thus does not need to be buffered. The n-synchrony re-
laxes synchrony by allowing the communication through bounded buffers
whose size is computed at compile-time. It is obtained by extending the
clock calculus with a subtyping rule which defines buffering points.

This paper presents the first implementation of the n-synchronous
model inside a Lustre-like language called Lucy-n. The language extends
Lustre with an explicit buffer construct whose size is automatically
computed during the clock calculus. This clock calculus is defined as an
inference type system and is parametrized by the clock language and the
algorithm used to solve subtyping constraints. We detail here one algo-
rithm based on the abstraction of clocks, an idea originally introduced
in [5]. The paper presents a simpler, yet more precise, clock abstraction
for which the main algebraic properties have been proved in Coq. Fi-
nally, we illustrate the language on various examples including a video
application.

Keywords: Process networks, Synchronous model, Type systems.

1 Introduction

This paper focuses on programming models and languages for implementing
real time streaming applications as found in video systems. These applications
transform infinite streams of pixels through successive filters and are thus natu-
rally expressed as Kahn Process Networks [8]. In this model, processes execute
concurrently and communicate through unbounded FIFO buffers with blocking
reads when the buffer is empty and non blocking writes. The model is determin-
istic (a network defines a stream function) and is delay insensitive (computation
and communication time do not change the network semantics). Kahn networks
with bounded buffers can be implemented by adding a back pressure mechanism
in order to avoid writes into a full buffer. Nonetheless, this may introduce ar-
tificial blocking when the size of buffers have been underestimated. The size of

� This work is funded by the French “Action d’envergure” INRIA Synchronics.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 288–309, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Lucy-n: a n-Synchronous Extension of Lustre 289

buffers can be increased dynamically [11] but this solution cannot be used for
real time applications where execution in bounded memory must be guaranteed
at compile time.

To know whether a Kahn network is deadlock free or can be executed in
bounded memory is undecidable in the general case [1]. Synchronous Data Flow
(or SDF) [9] and its variants (Cyclo Static Data Flow [10] among others) are
restricted classes of networks where every node consumes and produces a fixed
number of tokens at every step. The size of buffers can be computed at compile
time and a periodic static schedule can be generated. This makes SDF a good
candidate for modeling and programming video intensive applications with pe-
riodic behavior [14].

Synchronous languages such as Lustre [2] or Lucid Synchrone [13] also de-
fine a restricted class of Kahn Networks [3] as they can be executed without
any implicit buffering (i.e., synchronously). They are not limited to periodic
behavior and ensure strong safety properties at compile-time such as determin-
ism and absence of deadlock. Moreover, they can be compiled into statically
scheduled executable code. Nonetheless, they do not offer the same flexibility as
SDF-like tools do. Buffers have to be inserted manually and their size computed
adequately which is both difficult and error-prone. We thus want to extend syn-
chronous languages with conveniences to communicate through bounded buffers,
like in SDF.

In synchronous languages, time is defined as the succession of discrete instants.
In a data-flow framework, every stream s is associated to a boolean sequence or
clock with value 1 at instants at which s is present and 0 otherwise. Two streams
can be composed (e.g., added) without any buffer when their clocks are equal.
The purpose of the clock calculus is to give sufficient condition for a system
to be executed synchronously. This is essentially a typing problem [3,6]. Every
expression is given a clock type (or simply type) and must satisfy a typing rule
such as:

H - e1 : ck1 | C1 H - e2 : ck2 | C2

H - e1 + e2 : ck3 | {ck1 === ck2 === ck3} ∪ C1 ∪ C2

This rule states that under the typing environment H , if e1 has type ck1 under
the constraints C1 and if e2 has type ck2 under the constraints C2, then e1 + e2
has type ck3 under the constraint that ck1 === ck2 === ck3 and the constraints C1
and C2. Equality of types ensures equality of clocks. Hence, the composition of
two flows of same type can be done without buffer. Synchronous languages only
consider equality constraints. The n-synchrony [4] relaxes these constraints by
allowing to compose streams whose type are not equal but can be synchronized
through the introduction of a bounded buffer. If a stream x with type ck can be
consumed later with type ck′ using a bounded buffer, we shall say that ck is a
subtype of ck′ and we write ck <:<:<: ck′. We extend the language with a buffer
construct which indicates the points where the subtyping rule should be applied.

H - e : ck | C

H - buffer e : ck′ | {ck <:<:<: ck′} ∪ C

290 L. Mandel, F. Plateau, and M. Pouzet

In terms of sequences of values, buffer e is equivalent to e but it may delay its
input using a bounded buffer. The buffer construct gives more freedom to the
designer while preserving an execution in bounded memory.

The purpose of the extended clock calculus is to check that bounds exist for
buffer sizes and to compute them. To this aim, subtyping constraints have to be
solved. In order to reduce the algorithmic complexity of constraints resolution,
an abstraction of clocks has been introduced in [5]. It consists in reasoning on sets
of clocks (or envelopes) defined by an asymptotic rate and two shifts bounding
the potential delay with respect to this rate. Then, subtyping constraints can
be replaced by linear constraints on those rates and shifts and solved with a
tool such as Glpk. On several examples such as the Picture in Picture given at
the end of the paper, the over-estimation due to the abstraction is small with
respect to the exact solution.

Contribution and Organization of the Paper. This paper presents the de-
sign and implementation of an n-synchronous extension of Lustre called Lucy-n.
The clock calculus is generic in the sense that it is parametrized by the clock
language and the algorithm used to solve subtyping constraints. In this paper,
we present an algorithm using clock abstraction. The abstraction presented in [5]
has been improved in various ways: the formulae are simpler; the abstraction is
more precise and no restrictions are imposed anymore on clocks when computing
their abstraction. Moreover, the precision of abstract operators has been stud-
ied. Finally, the main algebraic properties and the correctness of the abstraction
have been proved in Coq (1800 lines of specification and 7000 lines of proof).

The paper is organized in the following way. The language is presented in
Section 2. Some algebraic properties on boolean sequences are stated in Section 3.
We present the basics of the clock calculus in Section 4. We then introduce the
improved version of clock abstraction in Section 5 followed by the constraint
solving algorithm in Section 6. The implementation is discussed in Section 7.
Finally, we illustrate the use of the language on a video application in Section 8.

All examples presented in the paper have been programmed in Lucy-n and
buffer sizes have been computed automatically. The prototype is available at
http://www.lri.fr/~plateau/mpc10. Definitions and properties that have
been proved in Coq are marked with ✿ which is a link to the corresponding
code. We give a proof sketch for each property. Full proofs on paper are only
available in a French document [12].

2 The Language

We consider a first-order synchronous dataflow language reminiscent of Lustre
but extended with an explicit buffering operator. The syntax is given in Figure 1.
A program (d) is a sequence of definitions of stream functions called nodes and
definitions of clock names (c). The inputs of a node are described by a pattern
(pat) and its body is an expression (e). The operators are the basic ones of
Lucid Synchrone and their intuitive semantics is detailed later. e1 op e2 denotes

http://www.lri.fr/~plateau/mpc10
http://www.lri.fr/~plateau/mpc10/coq/

Lucy-n: a n-Synchronous Extension of Lustre 291

d ::= | let node f pat = e node definition
| let clock c = ce clock definition
| d d sequence of definitions

pat ::= x | (pat,...,pat) pattern

e ::= | i constant flow
| x flow variable
| (e,...,e) tuple
| e op e imported operator
| if e then e else e mux operator
| f e node application
| e where rec eqs local definitions
| e fby e initialized delay
| e when ce | e whenot ce sampling
| merge ce e e merging
| buffer e buffering

eqs ::= pat= e | eqs and eqs mutually recursive equations

Fig. 1. Language kernel

the point-wise application of a binary operator; if e1 then e2 else e3 is the
point-wise application of a conditional; f e is the application of a node f to an
expression e; e1 fby e2 conses the head of e1 to e2 (and thus corresponds to an
initialized delay); e when ce samples a stream e according to a clock expression ce
whereas merge ce e1 e2 merges two streams with complementary clocks. Finally
buffer e buffers e. We write e where rec eqs for an expression defined by a
collection of mutually recursive equations (eqs). In this paper, we restrict the
clock language ce to define ultimately periodic boolean sequences only:

ce ::= c | u(v)
u ::= ε | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

It can be a variable name (c) or a periodic word (u(v)) made of a finite prefix (u)
followed by the infinite repetition of a binary word (v). For example, (10) defines
the half sequence 101010 . . .

A First Program. Let us write a node that sums the values taken by its input.
We depict the corresponding block diagram on the right and give the clock type
signature produced by the compiler.

let node sum x = o where
rec o = x + (0 fby o)

val sum :: forall ’a. ’a -> ’a

+
fby0

sum

x
o

292 L. Mandel, F. Plateau, and M. Pouzet

At the first instant, 0 fby o is equal to 0 then it is equal to the previous value
of o. The type of sum means that for any clock c given to the input x, then the
output of sum x has the same clock c. Here is an example of the execution of
sum x on the input sequence x = 5, 7, 3, . . . set on clock (1):

flow values clock
x 5 7 3 6 2 8 . . . (1)

0 fby o 0 5 12 15 21 23 . . . (1)

o 5 12 15 21 23 31 . . . (1)

Sampling and Merging Streams. We now introduce two special operators
to remove and add values on a stream. The expression e when ce returns a
subsequence of e keeping the values of e at the instants where ce equals 1. For
example, the sum of elements of odd index is:

let node sum_odd x = o where
rec x_odd = x when (10)
and o = sum(x_odd)

val sum_odd :: forall ’a. ’a -> ’a on (10)

(10)

when
x odd sum

sum odd

x o

On the input sequence of the previous example, we get:

flow values clock
x 5 7 3 6 2 8 . . . (1)

(10) 1 0 1 0 1 0 . . . (1)

x_odd 5 3 2 . . . (10)

o 5 8 10 . . . (10)

We can observe that x is present at each instant and that x_odd and o are defined
one instant over two. Thus, the clock of x is (1) and the one of x_odd and o is
(10). The clock of x_odd is the clock of x when (10), it can be computed from
the clock of the flow x and the sampling condition (10). This is the result of the
operation (1) on (10) defined below.

Definition 1 (on Operator). ✿

0.w1 on w2
def
= 0.(w1 on w2)

1.w1 on 1.w2
def
= 1.(w1 on w2)

1.w1 on 0.w2
def
= 0.(w1 on w2)

In the previous example, we have considered an input flow on the base clock (1)
(true all the time) but this is not necessarily the case. Indeed, x could in partic-
ular be the result of a sampling and be on clock (110) for example. In that case,
the clock of x_odd would be (110) on (10) which is equal to (100) according
to the definition of on . The diagram below illustrates what happen when several
sampling are composed.

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#on

Lucy-n: a n-Synchronous Extension of Lustre 293

flow values clock
x 5 7 3 6 . . . (110)

x when (10) 5 3 . . . (110) on (10)

The type signature for sum_odd, that is, ∀α.α→ α on (10) reflects the fact that
the clock of the output stream is a sub-clock of the input stream. It states that
for any clock c, if x has clock c then the result has clock c on (10). To avoid
any possible confusion, we write on purpose on for the type constructor whereas
on stands for its interpretation on boolean streams.

As opposed to sampling, the expression merge ce e1 e2 allows to combine two
streams e1 and e2 on complementary clocks. When ce is true, the output of the
merge is the current value of e1 while e2 is not consumed; otherwise, the current
value of e2 is produced and e1 does not progress. For example, the following
node splits x in two subsequences, instantiates sum on each and finally merges
them.

let node sum_odd_even x = o where
rec x_odd = x when (10)
and x_even = x whenot (10)
and o =
merge (10) (sum x_odd) (sum x_even)

val sum_odd_even :: forall ’a. ’a -> ’a

(10)

when

(10)

whenot

(10)

m
e
r
g
e

sum

sum

sum odd even

x o

We get the following chronogram:1

flow values clock
x 5 7 3 6 2 8 . . . (1)

(10) 1 0 1 0 1 0 . . . (1)

x_odd 5 3 2 . . . (1) on (10) = (10)

x_even 7 6 8 . . . (1) on not (10) = (01)

sum x_odd 5 8 10 . . . (10)

sum x_even 7 13 21 . . . (01)

o 5 7 8 13 10 21 . . . (1)

n-Synchronous Communication. As in Lustre, communication is
synchronous. As a consequence, the following program is rejected:

let node bad x = x + (x when (10))

File "bad.ls", line 1, characters 17-33:
Cannot unify clock ’a2 on (10) with clock ’a2

Indeed, x and x when (10) have respectively type α and α on (10) whereas +
expects its two arguments to have the same type.

When the buffer primitive is used, communication is n-synchronous. That
means that it can be made synchronous through the insertion of a bounded
1 not ce is the point-wise application of the negation operator to ce.

294 L. Mandel, F. Plateau, and M. Pouzet

buffer which size is computed automatically. Even using this buffer construct,
the previous example cannot be accepted since it would need an infinite buffer
to synchronize x and x when (10). Here is an example of a perfectly valid n-
synchronous program.

let node good x = o where
rec x1 = x when (10)
and x2 = x when (01)
and o = (buffer x1) + x2

(10)

when
(01)

when

+

x1

x2

good

x o

The compiler outputs the type and the buffer size needed:

val good :: forall ’a. ’a -> ’a on (01)
Buffer line 4, characters 10-20: size = 1

As an example, we get:

flow values clock
x 5 7 3 6 2 8 . . . (1)

x1 5 3 2 . . . (10)

buffer(x1) 5 3 2 . . . (01)

x2 7 6 8 . . . (01)

buffer(x1) + x2 12 9 10 . . . (01)

Semantically, buffer is the identity function, it only delays its input. The use
of a buffer is accepted provided the input clock of the buffer is adaptable to the
output clock. The next section defines the adaptability relation between clocks.

3 Clock Adaptability

Here is the intuition of adaptability: a clock w1 is adaptable to clock w2 if any
stream with clock w1 can be consumed with clock w2 up to the insertion of a
bounded buffer.

To properly define this relation, we introduce the cumulative function of a bi-
nary word: for any binary word w, Ow(i) counts the number of 1s up to the index
i. Figure 2 shows the cumulative functions of w1 = (11010) and w2 = 0(00111).

Definition 2 (Elements and Cumulative Function of w). ✿
Let w = b.w′ with b ∈ {0, 1}. We write w[i] for the i-th element of w:

w[1]
def
= b

∀i > 1, w[i]
def
= w′[i− 1]

We write Ow for the cumulative function of w:

Ow(0)
def
= 0

∀i ≥ 1, Ow(i)
def
=

{
Ow(i− 1) if w[i] = 0
Ow(i− 1) + 1 if w[i] = 1

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#ones

Lucy-n: a n-Synchronous Extension of Lustre 295

Instants

N
um

be
r

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Fig. 2. Cumulative functions for w1 = (11010) and w2 = 0(00111)

Adaptability is the conjunction of two relations: precedence and synchronizabil-
ity. Precedence ensures that there is no read in an empty buffer, that is at each
instant, more values have been written than read in the buffer. Synchronizability
ensures that the number of values present in the buffer during the execution is
bounded.

Definition 3 (Synchronizability �
, Precedence 6, Adaptability <:)

w1 �
 w2
def⇔ ∃b1, b2 ∈ Z, ∀i ≥ 0, b1 ≤ Ow1(i)−Ow2(i) ≤ b2 ✿

w1 6 w2
def⇔ ∀i > 0, Ow1(i) ≥ Ow2(i) ✿

w1 <: w2
def⇔ w1 6 w2 ∧ w1 �
 w2 ✿

In Figure 2, w1 �
 w2 since the vertical distance between the two curves is
bounded and w1 6 w2 since the curve Ow1 is always above the one of Ow2 .

Buffer Size. Consider a buffer with an input clock w1 and output clock w2.
For every instant i, the number of elements present in the buffer is:

sizei(w1, w2) = Ow1(i)−Ow2(i) ✿

A negative value means that there were more reads than writes and this case
should not appear. A sufficient size for the buffer is the maximal number of
values present in the buffer during the execution:

size(w1, w2) = max
i≥1

(Ow1(i)−Ow2(i)) ✿

Thus, if w1 is adaptable to w2, a stream with clock w1 can be safely consumed on
the clock w2 by insertion of a bounded buffer. Otherwise, the size of the buffer
may be infinite.

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#sync
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#prec
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#subtyping
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#sizei
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#size

296 L. Mandel, F. Plateau, and M. Pouzet

Theorem 1 (Communication Through a Buffer). ✿

w1 <: w2 ⇒ ∃b, ∀i, 0 ≤ sizei(w1, w2) ≤ b

Proof: By definition of the synchronizability relation and the formula giving
the number of elements present in the buffer at each instant, we know that there
exists a value b such that ∀i, sizei(w1, w2) ≤ b. By definition of the precedence
relation, we have ∀i, sizei(w1, w2) ≥ 0. ��
As ultimately periodic words have a repetitive behavior after a certain index,
checking adaptability relation and computing buffer sizes can be done
statically [4].

4 Relaxed Clock Calculus

The purpose here is to check that programs can be evaluated using bounded
buffers and to find those bounds. As seen in Section 1, it is done using typing
techniques where types represents clocks. In this paper, we consider the following
type language:

σ ::= ∀α1, . . . , αn. (ck × ...× ck)→ (ck × ...× ck)
ck ::= α | ck on ce | ck on not ce

A type scheme (σ) represents the type of a node. It describes types of output
streams with respect to types of input streams. Types of streams (ck) can be ei-
ther a type variable (α) or the type of a sampled stream (ck on ce, ck on not ce).

Typing judgments are of the form: H - e : ck |C meaning that under type
environment H , the expression e has the type ck provided type constraint C are
satisfied. An environment H associates type schemes, types, and clock expres-
sions respectively to node names, stream variables and clock variables:

H ::= ([f1 : σ1, . . . , fm : σm], [x1 : ck1, . . . , xp : ckp], [c1 : ce1, . . . , cn : cen])

A set C of typing constraints contains equality constraints and subtyping con-
straints. It is of the form:

C ::= [ck1 === ck′
1, ..., ckn === ck′

n, ckn+1 <:<:<: ck′
n+1, ..., ckm <:<:<: ck′

m]

Typing constraints are gathered progressively during typing and this raises no
particular difficulty. We simply illustrate what is done on the example good given
in the previous section.

An example. The node good is rewritten as follows to make the typing deriva-
tion smaller.

let node good x = buffer (x when (10)) + x when (01)

http://www.lri.fr/~plateau/mpc10/coq//ibw_prop.html#communication_through_buffer

Lucy-n: a n-Synchronous Extension of Lustre 297

We need to use the following typing rules in addition to the ones given in
Section 1:

H(x) = ck

H - x : ck | ∅

H - e : ck | C

H - e when ce : ck on ce | C

Thereby, if we associate the type variable αx to the input of node good, the
typing of the left and the right branches of the + operator gives the following
two derivations:

A :

x : αx - x : αx | ∅

x : αx - x when (10) : αx on (10) | ∅

x : αx - buffer (x when (10)) : αb | {αx on (10) <:<:<: αb}

B :
x : αx - x : αx | ∅

x : αx - x when (01) : αx on (01) | ∅

Now, using the typing rule of +, the body of good gives the following derivation:

A B

x : αx � buffer (x when (10)) + x when (01) : αo | {αb === αx on (01) === αo,
αx on (10) <:<:<: αb}

The type of good is αx → αo provided the following system of constraints is
satisfied:

{αb === αx on (01) === αo, αx on (10) <:<:<: αb}

Constraint solving. There are two kinds of constraints in the system: equality
and subtyping constraints. In order to solve equality constraints, synchronous
languages such as Lustre or Lucid Synchrone use structural unification over clock
types. It means that two types of the form ck1 on ce1 and ck2 on ce2 can be
unified if and only if ce1 is equal to ce2 and if ck1 can be unified with ck2. Here,
since we use only ultimately periodic clocks, the on operator can be interpreted
and we can use a unification algorithm such as the one presented in [4]. None
of these two unification techniques is complete, and they may fail on different
cases. So, to be conservative over Lustre but more expressive, it is possible to
use interpreted unification only after structural simplification of the constraints.
We call this technique semi-interpreted unification.

In the example, if we choose the instantiation αx = α, αb = α on (10) and
αo = α on (10), then the constraint αb === αx on (01) === αo is always satisfied
and the set of constraints reduces to {α on (10) <:<:<: α on (10)}.

In order to solve subtyping constraints, we must find instantiations of type
variables such that constraints take the form α on w1 <:<:<: α on w2 with w1 <: w2.

298 L. Mandel, F. Plateau, and M. Pouzet

This is simple to achieve with the example good since the constraint is
α on (10) <:<:<: α on (10) and then, already in this form. If this is not the case,
finding such a solution is computationally expensive. A first solution was ex-
perimented so as to convert adaptability constraints into a system of linear
inequations. Nonetheless, the number of linear inequations is proportional to
the number of 1s for each adaptability constraint. In order to overcome this
complexity, we propose in this paper not to consider exact periodic clocks but
their abstraction. The basic principles and algebraic properties of clock abstrac-
tions have been introduced in [5]. In this paper, we present an improved version.
Moreover, its algebraic properties have been proved in Coq.

5 Abstraction of Binary Words

The idea behind abstraction is to reason on sets of binary words. An abstraction
bounds the cumulative function of a set of words by two linear curves with
the same slope. Thus, the abstraction of an infinite binary word w keeps only
the asymptotic proportion r of 1s in w and two values b0 and b1 which give the
minimum and maximum shift of 1s in w compared to r. This abstract information
is called an envelope and noted 〈b0, b1〉 (r).
Definition 4 (Concretization). ✿

concr
(〈

b0, b1
〉
(r)

) def
=

{
w | ∀i ≥ 1, ∧

w[i] = 1 ⇒ Ow(i) ≤ r × i + b1

w[i] = 0 ⇒ Ow(i) ≥ r × i + b0

}
with b0, b1, r ∈ Q and 0 ≤ r ≤ 1.

The words w1 = (11010) and w2 = 0(00111) seen previously are respectively in
envelopes a1 =

〈
0, 4

5

〉 (3
5

)
and a2 =

〈
− 9

5 ,− 3
5

〉 (3
5

)
shown in Figure 3. In chrono-

grams, an abstract value 〈b0, b1〉 (r) is represented by two lines Δ1 : r × i + b1

and Δ0 : r × i + b0 that bound the cumulative functions of a set of binary words.
The definition states that any rising edge must be below the line Δ1 (solid line)
and any absence of a rising edge must be above the line Δ0 (dashed line).

For the set of words defined by an envelope to be non-empty, the line Δ1 must
be above the line Δ0. At each instant, there must be a discrete value between
the two lines. It is the case if the distance between them respects the following
constraint.

Proposition 1 (Non-empty envelope). ✿ ✿

∀a =
〈

k0

�
,
k1

�

〉(n

�

)
,

k1

�
− k0

�
≥ 1− 1

�
⇒ concr (a) 	= ∅

Proof: The proof is based on the use of the words earlya and latea related to
the envelope a = 〈b0, b1〉 (r) and defined by:

earlya[i]
def
=

{
1 if Oearlya(i− 1) + 1 ≤ r × i + b1

0 otherwise ✿

latea[i]
def
=

{
0 if Olatea(i− 1) + 0 ≥ r × i + b0

1 otherwise ✿

http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#in_abstractionh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#non_empty_test
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#non_empty_test_correctness
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#ones_early
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#ones_late

Lucy-n: a n-Synchronous Extension of Lustre 299

Instants

N
um

be
r

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

a1 =
〈
0, 4

5

〉 (3
5

)

a2 =
〈
−9

5 ,−
3
5

〉 (3
5

)

Fig. 3. Envelopes of w1 and w2

These words are such that concr (a) = {w | earlya 6 w 6 latea}. They are used
to prove most of the properties.

To prove that an envelope is non-empty, we have to prove that earlya 6
latea. ✿ This can be done by arithmetic manipulation once we have noticed
that:

∀i, Oearlya(i) = max(0, min(i,)r × i + b1*)) ✿ ✿
Olatea (i) = max(0, min(i, �r × i + b0�)) ✿ ✿

��
The abstraction of a periodic binary word can be computed automatically.

Definition 5 (Abstraction of a Periodic Word)

Let p = u(v) a periodic binary word. We define abs (p)
def
= 〈b0, b1〉 (r) with:

r = rate(p) = |v|1
|v|

b0 = mini=1..|u|+|v| with p[i]=0 (Op(i)− r × i)
b1 = maxi=1..|u|+|v| with p[i]=1 (Op(i)− r × i)

where |u| is the length of u and |u|1 its number of 1s.

The asymptotic rate r corresponds to the ratio between the number of 1s in
the periodic pattern and its length. To compute b0 and b1, the word must be
traversed. The shift b0 is the minimum difference when a 0 occurs between the
number of 1s seen at instant i and the ideal value r × i. The shift b1 is the
maximal difference between these values when a 1 occurs.

5.1 Abstract Operations and Relations

The interest of the abstraction is to reduce the complexity of exact computations
anddecisions onbinarywords by transforming them into arithmeticmanipulations

http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#non_empty_equiv_early_prec_late
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#ones_early_alt
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_aux.html#ones_early_alt_correctness
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#ones_late_alt
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_aux.html#ones_late_correctness

300 L. Mandel, F. Plateau, and M. Pouzet

on rational numbers. For example, the computation of on on envelopes only
needs three multiplications and two additions:

Definition 6 (on∼ Operator). ✿ Let b01 ≤ 0 and b02 ≤ 0.2 We define:

〈 b01 , b11 〉 (r1)
on∼ 〈 b02 , b12 〉 (r2)
def
= 〈 b01 × r2 + b02 , b11 × r2 + b12 〉 (r1 × r2)

The elements of w1 on w2 are the elements of w1 filtered by the elements of w2.
The rate of 1 in w1 on w2 is thus the product of the rate of w1 and the one of
w2. When w1 is sampled by w2, its shifts are multiplied by r2. The shifts of w2
are added to those of w1. Consequently, this on∼ operator is correct:

Proposition 2 (Correctness of on∼). ✿ The following property holds:

∀w1 ∈ concr (a1) , ∀w2 ∈ concr (a2) , w1 on w2 ∈ concr (a1 on
∼ a2)

Proof: Based on the computations of earlya1 on earlya2 , latea1 on latea2 and
early(a1 on∼ a2), late(a1 on∼ a2). ��

The negation of binary words can also be computed on envelopes.

Definition 7 (The Operator not∼). ✿ The following property holds:

not∼
〈
b0, b1

〉
(r) def=

〈
−b1,−b0

〉
(1− r)

Proposition 3 (Correctness of not∼). ✿ The following property holds:

∀w ∈ concr (a) , not w ∈ concr (not∼ a)

Proof: By definition 4 and by noticing that Onot w(i) = i−Ow(i). ��

Now, we formulate definitions of Section 3 in the abstract domain. A relation is
satisfied on envelopes if it is satisfied on all couple of words of their respective
concretization sets.

Definition 8 (Abstract Synchronizability �
∼, Precedence 6∼,
Adaptability <:∼)

a1 �
∼ a2
def⇔ ∀w1 ∈ concr (a1) , w2 ∈ concr (a2) , w1 �
 w2 ✿

a1 6∼ a2
def⇔ ∀w1 ∈ concr (a1) , w2 ∈ concr (a2) , w1 6 w2 ✿

a1 <:∼ a2
def⇔ ∀w1 ∈ concr (a1) , w2 ∈ concr (a2) , w1 <: w2 ✿

These relations can be tested by arithmetic comparisons on rates and shifting.

2 We can always lose precision on the envelopes to satisfy this condition. More details
are given in [12]. The chapter about clock abstraction will be translated in English.

http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#on_absh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#on_absh_correctness
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#not_absh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#not_absh_correctness
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#sync_absh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#prec_absh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#subtyping_absh

Lucy-n: a n-Synchronous Extension of Lustre 301

Proposition 4 (Synchronizability, Precedence, Adaptability Tests)
Let the two envelopes a1 = 〈b01, b11〉 (r1) and a2 = 〈b02, b12〉 (r2). We have:

r1 = r2 ⇔ a1 �
∼ a2 ✿ ✿

b12 − b01 < 1 ⇒ a1 6∼ a2 if r1 = r2 ✿ ✿
a1 �
∼ a2 ∧ a1 6∼ a2 ⇔ a1 <:∼ a2 ✿ ✿

Proof: By the use of earlyai and lateai. ��

As shown in Figure 3, words in envelopes a1 and a2 navigate between their two
respective lines. If the lines have the same slope, all words stay at a bounded
distance from each other. They are thus synchronizable. If moreover the over-
lapping between the envelopes is small enough, the words of the first envelope
are always above the ones of the second one. Hence, the precedence relation is
satisfied. In Figure 3, the envelope a1 is adaptable to a2.

Definition 9 (Buffer Size). ✿
Let a1 = 〈b01, b11〉 (r1) and a2 = 〈b02, b12〉 (r2) two envelopes such that a1 <:∼ a2.

size∼(a1, a2) =
⌊
b11 − b02

⌋
The size of the buffer to communicate between an element of a1 and an element
of a2 is the size necessary to communicate between the earlier element of a1 and
the latest element of a2. That size can be over approximated by the distance
between the upper line of a1 and the lower line of a2. The floor function is used
since a buffer has an integral number of elements.

Proposition 5 (Correctness of size∼). ✿ The following property holds:

∀w1 ∈ concr (a1) , ∀w1 ∈ concr (a2) , size(w1, w2) ≤ size∼(a1, a2)

Proof: By the computation of size(earlya1 , latea2). ��

5.2 Precision of Abstract Operators and Tests

We characterize here the precision of abstract operators and tests on envelopes
that are in the normal form defined below.

Definition 10 (Normal Form)
Let a = 〈b0, b1〉 (r). Its normal form is

〈
k0

�
, k1

�

〉 (
n
�

)
with

n

�
= r gcd(n, �) = 1 k0 = �b0 × �� k1 =)b1 × �*

Intuitively, putting an envelope in normal form consists in moving the lines as
close as possible without changing the concretization set. To achieve this, if �
is the denominator of the reduced form of the rational slope, b1 is decreased
to the biggest rational number with denominator � and b0 is increased to the

http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#sync_absh_test
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#sync_absh_equiv_sync_absh_test
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#prec_absh_test
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#prec_absh_test_correctness
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#subtyping_absh_alt
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#subtyping_absh_equiv_subtyping_absh_alt
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#size_absh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#size_absh_correctness

302 L. Mandel, F. Plateau, and M. Pouzet

smallest rational number with denominator �. Note that the movements are
always strictly less than 1

� .
If a is in normal form, the test given in proposition 1 to check whether a is

empty or not is not only correct, but also complete. It means that it succeeds
for all non-empty envelopes in normal form. The precedence test given in propo-
sition 4 is also correct and complete on envelopes in normal form. Finally, as
the synchronizability test is always correct and complete, the adaptability test
is correct and complete on envelopes in normal form.

The most precise result for a1 on∼ a2 is the smallest envelope that contains
the following set of words:

W = {w | w = w1 on w2 ∧ w1 ∈ concr (a1) ∧ w2 ∈ concr (a2)}
The formula that we proposed in definition 6 is not the most precise. Nonetheless,
if a1 and a2 are not empty, and such that b01 ≤ 0, b02 ≤ 0, r1 	= 0 and a1 is in
normal form, we are able to quantify its imprecision: the line Δ1 (resp. Δ0) that
we compute can be slightly above (resp. below) the most precise line, but at a
distance of less than one.

Finally, the most precise correct buffer size computed on envelopes a1 and a2
is the minimal buffer size sufficient to communicate from every word of a1 to
every word of a2. The formula given in definition 9 doesn’t give the most precise
result, but overestimates it by at most one.

5.3 Comparison with Previous Abstractions

There are several important differences between the abstraction presented here
and the one introduced in [5]. Contrary to the previous abstraction, the new
one is able to consider binary words with null rates (i.e., composed by a prefix
followed by the infinite repetition of 0). The new abstraction is more precise on
binary words with a prefix starting by a bunch of 1s. The formula for abstraction
of the operator not is far simpler and also treats the case of words with rate
0 or 1. The precision of the abstraction has been established. Finally, the main
properties have been formally proved in Coq.

6 Solving Subtyping Constraints

A subtyping constraint is introduced for every expression of the form buffer e.
subtyping constraints are all gathered and solved for every node definition. For
example, we have seen in Section 4 that the type of good is α → α on (10)
with the constraints system {α on (10) <:<:<: α on (01)} and that the constraint
is verified if and only if (10) <: (01). To solve it, we can go into the abstract
domain:

(10) <: (01) ⇐ abs ((10)) <:∼ abs ((01))

The abstractions of (10) and (01) are respectively
〈
0, 1

2

〉 (1
2

)
and

〈
− 1

2 , 0
〉 (1

2

)
.

Thus, by application of proposition 4, we get:

(10) <: (01) ⇐
(

1
2

=
1
2
∧ 0− 0 < 1

)

Lucy-n: a n-Synchronous Extension of Lustre 303

The subtyping constraint for the node good is always verified. Its type scheme
is thus: ∀α.α→ α on (10). On this example, the abstract method find the same
solution as the method on ultimately periodic words.

This example was particularly simple because the constraint was on the very
same variable α. This is not always the case as in:

let node f (x, y, z) =
buffer (x when (11010))
+ y when 0(00111)
+ buffer (z when (01))
+ buffer (z when 0(1100))

The type of the node is α1 × α2 × α3 → α2 on 0(00111) with the following
constraints system C:

C =

⎧⎨⎩
α1 on (11010) <:<:<: α2 on 0(00111)
α3 on (01) <:<:<: α2 on 0(00111)
α3 on 0(1100) <:<:<: α2 on 0(00111)

⎫⎬⎭
Depending on the instantiation of type variables α1, α2 and α3, these constraints
can be verified or not. Solving C consists in finding a substitution for those
variables such that the constraints are always satisfied. For that, we have to
express all related constraints according to the same type variable. Let α1 =
α on c1, α2 = α on c2, α3 = α on c3 where c1, c2 and c3 fresh unknown variables
such that the following system is satisfied:

C ⇔

⎧⎨⎩
c1 on (11010) <: c2 on 0(00111)
c3 on (01) <: c2 on 0(00111)
c3 on 0(1100) <: c2 on 0(00111)

⎫⎬⎭
We have translated the subtyping constraints into adaptability constraints. In
order to solve them, we look for a solution in the abstract domain:

C ⇐

⎧⎨⎩
abs (c1) on∼ abs ((11010)) <:∼ abs (c2) on∼ abs (0(00111))
abs (c3) on∼ abs ((01)) <:∼ abs (c2) on∼ abs (0(00111))
abs (c3) on∼ abs (0(1100)) <:∼ abs (c2) on∼ abs (0(00111))

⎫⎬⎭
Consider the second constraint. Let abs (c2) = 〈b02, b12〉 (r2) and abs (c3) =
〈b03, b13〉 (r3). We compute values of the abstractions abs ((01)) =

〈
− 1

2 , 0
〉 (1

2

)
and abs (0(00111)) =

〈
− 9

5 ,− 3
5

〉 (3
5

)
. Then, by definition of on∼, the constraint

can be rewritten into:3〈
b03 × 1

2 −
1
2 , b13 × 1

2 + 0
〉 (

r3 × 1
2

)
<:∼

〈
b02 × 3

5 −
9
5 , b12 × 3

5 −
3
5

〉 (
r2 × 3

5

)
Then, by proposition 4, it can be decomposed into a synchronizability constraint
(r3× 1

2 = r2× 3
5) and a precedence constraint ((b12× 3

5 −
3
5)− (b03× 1

2 −
1
2) < 1).

3 To apply the definition, we have to suppose that b02 ≤ 0 and b03 ≤ 0.

304 L. Mandel, F. Plateau, and M. Pouzet

If we apply these transformations to the other constraints, we can transform
abstract adaptability constraints into a set of synchronizability constraints:⎧⎪⎨⎪⎩

r1 × 3
5 = r2 × 3

5
r3 × 1

2 = r2 × 3
5

r3 × 1
2 = r2 × 3

5

⎫⎪⎬⎪⎭
and a set of precedence constraints:⎧⎪⎨⎪⎩

(b12 × 3
5 −

3
5)− (b01 × 3

5 + 0) < 1
(b12 × 3

5 −
3
5)− (b03 × 1

2 −
1
2) < 1

(b12 × 3
5 −

3
5)− (b03 × 1

2 −
1
2) < 1

⎫⎪⎬⎪⎭
In the synchronizability constraints, we look for correct rates. The ri must be
between 0 and 1 according to definition 4. To solve the system, we rewrite every
constraint ri × qi = rj × qj into ri = qj

qi
× rj with qj

qi
≤ 1. Then, we saturate

the system by expressing all constraints in terms of a common variable. Finally,
we choose the rate 1 for this variable so as to maximize the throughput of the
system. In the example above, we obtain r1 = 5

6 , r2 = 5
6 and r3 = 1.

The precedence constraints allow to determine values of b0i and b1i. In or-
der to find non-empty envelopes, we add non-vacuity constraints as defined in
proposition 1. Since we have computed the on∼ operator, we also have to add the
constraints that b0i ≤ 0. Thus, the system reduces to a set of linear inequations
which can be solved using a standard tool such as Glpk [7]. We find the following
solution to the abstract adaptability constraints:

abs (c1) =
〈
− 5

6 , 0
〉 (5

6

)
abs (c2) =

〈
0, 10

6

〉 (5
6

)
abs (c3) = 〈0, 0〉 (1)

By definition of the relation <:∼ , every word in the computed envelope is a
solution of the original adaptability constraints system. Thus, we can take, for
example c1 = (011111), c2 = (111110) and c3 = (1) as a solution. Applying
the substitution: {α1 ← α on c1, α2 ← α on c2, α3 ← α on c3} in the type of f,
we get a correct type for any instantiation of α. The final type signature for f
is:

f : ∀α. α on (011111) × α on (111110)× α→ α on (111110) on 0(00111)

Once the system of constraints is solved, we know input and output clocks of the
buffers. Hence, we can compute their size. Concerning node f, buffers on line 2,
4 and 5 are respectively of size 2, 1 and 2.

7 Implementation

All the presented material has been implemented in OCaml. A distinctive fea-
ture of the implementation is to be generic: the clock calculus is a functor

Lucy-n: a n-Synchronous Extension of Lustre 305

parametrized by the basic clock language (the one defining ce). It can accept
any clock language provided the following functions are given:
Equality: A function equal to test the equality of two clocks and a function

unify that takes as input two clock expressions ce1 and ce2 and returns two
expressions ce′1 and ce′2 such that ce′1 on ce1 = ce′2 on ce2.

Adaptability: A function adaptable to test the adaptability of two clocks and
a function solve that returns an instantiation of variables that satisfies an
adaptability constraints system.

Buffer size: A function buffer_size to compute the size of a buffer provided
its input and output clocks.

In the Lucy-n compiler, the clock expressions, unification algorithm and con-
straints solving algorithm can be chosen using respectively the options -ce,
-unif and -solver. The examples given in the present paper have been typed
using the following command line:
lucync -ce pbw -unif semii -solver abs file.ls

It means that clock expressions are made of periodic binary words (pbw), that
unification is semi-interpreted (semii) and that the solver of subtyping con-
straints uses abstraction (abs).

8 Application: The Picture in Picture

We illustrate the language on the example of a Picture in Picture. It is depicted
in Figure 4 and is programmed in the following way:
let clock encrust_end =
(0^(1920 * (1080 - 480)) {0^1200 1^720}^480)

let node pip_end (p1, p2) = o where
rec small = buffer(downscaler p1)
and big = (p2 whenot encrust_end)
and o = merge encrust_end small big

ds

sp

mg

720

480
SD

1920

1080

HD

1920

1080

HD

1920

1080

HD

1920

1080

HD

720

480
SD

Fig. 4. Picture in Picture. The inputs are two flows of pixels representing High Def-
inition videos. The size of the first video is reduced using a Downscaler. Some pixels
from the second image are eliminated by sampling. Then the two images are merged.

306 L. Mandel, F. Plateau, and M. Pouzet

The boolean sequence encrust_end controls the merge operation: when it is
true, the small image is emitted, otherwise, the big one is emitted. The notation
{0^1200 1^720}^480 is a shortcut for repeating 480 times the pattern 012001720.
The small image is obtained by application of the node downscaler. It consists
of an horizontal and a vertical filter. The horizontal filter applies a convolution
and a sampling to reduce the size of lines from 1920 to 720. Similarly, the vertical
filter applies a convolution and a sampling to reduce the size of columns from
1080 to 480. For the convolution, the vertical filter needs the pixels above and
below every pixel. This means that the first output can be produced only after
the consumption of one line of input (720 pixels). The signature inferred for node
downscaler is:

val downscaler :: forall ’a. ’a -> ’a on hf on 0^720 (1) on vf

Since downscaler output is connected to the merge through a buffer, the type
of node pip end is (α6 × α10) → α10 with the following constraint (as emitted
by the compiler):

’a6 on hf on 0^720 (1) on vf <: ’a10 on encrust_end

It remains to find envelopes abs (c6) and abs (c10) which satisfy the following
constraint:

abs (c6) on∼
〈
−720, 481

3

〉 (1
6

)
<:∼ abs (c10) on∼ 〈−192200, 0〉

(1
6

)
The values computed for abs (c6) and abs (c10) are the envelopes 〈0, 0〉 (1) and
〈−4315,−4315〉(1). As their concretization sets contain respectively the words
(1) and 04315(1), the inferred type is:

val pip_end ::
forall ’a. (’a * ’a on 0^4315 (1)) -> ’a on 0^4315 (1)

Buffer line 56, characters 13-34: size = 192240

This means that if the input image to be reduced arrives at the very first instant,
the big image should arrive after a delay of 4315 cycles and the resulting image
is produced after this delay which is approximately two lines of high definition
images.

We saw that the node downscaler introduces a delay while the merge doesn’t.
The inferred type is correct but overestimates by one line the necessary delay
before the production starts. This is due to the abstraction. Nonetheless, we
believe it to be reasonable considering that the existing resolution method with
no abstraction needs one day of computation. Finally, the size of the buffer is
also satisfactory: 192 240 instead of 191 970 for the value with no abstraction,
that is, less than one extra line of the small image.

9 Conclusion

This paper has presented the implementation of the n-synchronous model inside
a Lustre-like language. It is achieved by defining an extended clock calculus and

Lucy-n: a n-Synchronous Extension of Lustre 307

introducing a subtyping rule. The implementation is modular in the sense that
it can be instantiated for any clock language ce for which ce1 = ce2, ce1 <: ce2
and size(ce1, ce2) are defined.

The language is conservative with respect to Lustre in the sense that if the
program is synchronous and no buffer e construct is used, then the program is
accepted by the clock calculus. Though the size of buffers is computed automat-
ically, the places at which to insert them is still explicit.

Acknowledgments

We specially thank the reviewers for their careful reading and numerous com-
ments which helped us improving the paper and Stéphane Lescuyer for his es-
sential help in the Coq formalisation and proofs.

References

1. Buck, J.T.: Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model. Ph.D. thesis, EECS Department, University of California,
Berkeley (1993)

2. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative language
for real-time programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pp. 178–188. ACM,
New York (1987)

3. Caspi, P., Pouzet, M.: Synchronous kahn networks. In: ACM SIGPLAN Interna-
tional Conference on Functional Programming, pp. 226–238. ACM Press, New York
(1996)

4. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-
Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-Time Sys-
tems. In: ACM International Conference on Principles of Programming Languages
(POPL’06), pp. 180–193. ACM Press, New York (2006)

5. Cohen, A., Mandel, L., Plateau, F., Pouzet, M.: Abstraction of clocks in syn-
chronous data-flow systems. In: Ramalingam, G. (ed.) APLAS 2008. LNCS,
vol. 5356, pp. 237–254. Springer, Heidelberg (2008)

6. Colaço, J.L., Pouzet, M.: Clocks as First Class Abstract Types. In: Alur, R., Lee, I.
(eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 134–155. Springer, Heidelberg (2003)

7. Glpk: Gnu linear programming kit
8. Kahn, G.: The semantics of a simple language for parallel programming. In:

Rosenfeld, J.L. (ed.) Information processing, pp. 471–475. North Holland,
Amsterdam (August 1974)

9. Lee, E., Messerschmitt, D.: Synchronous dataflow. IEEE Trans. Comput. 75(9),
1235–1245 (1987)

10. Parks, T.M., Pino, J.L., Lee, E.A.: A comparison of synchronous and cycle-static
dataflow. In: ASILOMAR ’95: Proceedings of the 29th Asilomar Conference on Sig-
nals, Systems and Computers, vol. 2, p. 204. IEEE Computer Society, Washington
(1995)

11. Parks, T.M.: Bounded scheduling of process networks. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley, Berkeley, CA, USA (1995)

308 L. Mandel, F. Plateau, and M. Pouzet

12. Plateau, F.: Modèle n-synchrone pour la programmation de réseaux de Kahn à
mémoire bornée. Ph.D. thesis, Université Paris-Sud 11 (January 2010)

13. Pouzet, M.: Lucid Synchrone, version 3. Tutorial and reference manual. Université
Paris-Sud, LRI (April 2006)

14. Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamit: A language for streaming
applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

A Downscaler Code

1 (* convolutions *)

2 let node convo (c0, c1, c2) = (c0 + c1 + c2) / 3

3

4 let node convolution (p0, p1, p2) = p where

5 rec p = (r,g,b)

6 and r = convo (p0r, p1r, p2r)

7 and g = convo (p0g, p1g, p2g)

8 and b = convo (p0b, p1b, p2b)

9 and p0r, p0g, p0b = p0

10 and p1r, p1g, p1b = p1

11 and p2r, p2g, p2b = p2

12

13 (* horizontal filter *)

14 let clock hf = (10100100)

15

16 let node horizontal_filter p = o where

17 rec p0 = p fby p1

18 and p1 = p fby p2

19 and p2 = p

20 and o = (convolution (p0, p1, p2)) when hf

21

22 (* vertical sliding_window *)

23 let clock first_sd_line = 1^720 (0)

24 let clock first_line_of_img = (1^720 0^(720*1079))

25 let clock last_line_of_img = (0^(720*1079) 1^720)

26

27 let node my_fby_sd_line (p1,p2) =

28 merge first_sd_line (p1 when first_sd_line) (buffer(p2))

29

30 let node reorder p = ((p0,p1,p2)::’a) where

31 rec p0 =

32 merge first_line_of_img

33 (p1 when first_line_of_img)

34 ((my_fby_sd_line (p1, p1)) whenot first_line_of_img)

35 and p1 = buffer(p)

36 and p2 =

37 merge last_line_of_img

38 (p1 when last_line_of_img)

39 ((p whenot first_sd_line) whenot last_line_of_img)

Lucy-n: a n-Synchronous Extension of Lustre 309

40

41 (* vertical filter *)

42 let clock vf = (1^720 0^720 1^720 0^720 0^720 1^720 0^720 0^720 1^720)

43

44 let node vertical_filter p = o where

45 rec (p0,p1,p2) = reorder p

46 and o = (convolution (p0, p1, p2)) when vf

47

48 (* downscaler *)

49 let node downscaler p = vertical_filter (horizontal_filter p)

Sampling, Splitting and Merging
in Coinductive Stream Calculus

Milad Niqui1,� and Jan Rutten1,2

1 Centrum Wiskunde & Informatica (CWI), The Netherlands
{M.Niqui,janr}@cwi.nl

2 Radboud University Nijmegen, The Netherlands

Abstract. We study various operations for partitioning, projecting and
merging streams of data. These operations are motivated by their use
in dataflow programming and the stream processing languages. We use
the framework of stream calculus and stream circuits for defining and
proving properties of such operations using behavioural differential equa-
tions and coinduction proof principles. We study the invariance of certain
well patterned classes of streams, namely rational and algebraic streams,
under splitting and merging. Finally we show that stream circuits ex-
tended with gates for dyadic split and merge are expressive enough to
realise some non-rational algebraic streams, thereby going beyond ordi-
nary stream circuits.

Keywords: stream calculus, dataflow programming, coinduction, ratio-
nal stream, algebraic stream, stream circuit.

1 Introduction

In this paper, we study various operations for splitting, partitioning, projecting
and merging streams (infinite sequences of data). These operations are moti-
vated by their use in dataflow programming and stream processing languages
(e.g., [BŞ01]).

Our perspective on streams and stream operations will be essentially coalge-
braic. More specifically, we use the framework of stream calculus [Rut05a] and
stream circuits [Rut05b] for defining and proving properties of such operations.
Definitions are typically given using behavioural stream differential equations.
Proofs will mostly be given by coinduction, with which two streams can be
shown to be equal by the construction of a suitable stream bisimulation relation
between them.

The use of stream calculus and coinduction leads to new and simpler defini-
tions and proofs of several existing notions and properties, some of which are
taken from [Mak08]. To mention already one example here (see Sections 3 and
4 for more): a periodic stream sampler S is a stream operation that produces a

� Supported by a VENI grant from the Netherlands Organisation for Scientific
Research (NWO).

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 310–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Sampling, Splitting and Merging in Coinductive Stream Calculus 311

substream of a given stream σ by taking out of each block of l ≥ 0 elements a
subset of k ≤ l elements (at fixed positions). Periodic stream samplers can be
defined by the following stream differential equation:

S(σ)(k) = S(σ(l))

(plus the specification of k initial values). Here (−)(i) denotes the i-th stream
derivative, which is defined as the operation tail applied i times. This differential
equation is elementary, almost trivial. Yet it allows for proofs of basic facts
(such as: composing two periodic steam samplers yields again a periodic stream
sampler) that are much simpler than those in the literature.

Using stream calculus and stream circuits, we obtain also a number of new
results. More specifically, we prove (in Sections 5 and 6) the invariance of certain
well patterned classes of streams, namely rational and algebraic streams, under
the operations of splitting and merging. Furthermore, we show (in Section 7) that
stream circuits extended with gates for dyadic split and merge are expressive
enough to realise some non-rational algebraic streams (such as the Prouhet–
Thue–Morse stream), thereby going beyond ordinary stream circuits.

As mentioned above, this paper attempts to give a new perspective on existing
notions and results, and also obtains some modest new results. The presented
new outlook gives rise to a host of further questions and research directions.
Section 8 discusses related work and future research.

2 Preliminaries

We define the set of streams over a set A by Aω = {σ | σ : N → A}. We denote
elements σ ∈ Aω by σ = (σ(0), σ(1), σ(2), . . .). The stream derivative of a stream
σ is σ′ = (σ(1), σ(2), σ(3), . . .) and the initial value of σ is σ(0). For n ≥ 0 and
σ ∈ Aω, we define higher-order derivatives by σ(0) = σ and σ(n+1) = (σ(n))′. We
have σ(n) = σ(n)(0).

A stream bisimulation relation is a set R ⊆ Aω ×Aω such that, for all (σ, τ) ∈
R,

σ(0) = τ(0) and (σ′, τ ′) ∈ R .

We write σ ∼ τ if there exists a bisimulation R with (σ, τ) ∈ R. The coinduction
proof principle allows us to prove the equality of two streams by establishing the
existence of an appropriate bisimulation relation:

σ ∼ τ ⇒ σ = τ .

If A has some algebraic structure, Aω inherits (parts of) this structure. As-
sume 〈A, +, ·,−, 0, 1〉 is a ring1. For r ∈ A, we define the constant stream
[r] = (r, 0, 0, 0, . . .), which we often denote again by r. Another constant stream

1 In fact many of the operations on Aω only need a semiring structure on A [BR88,
Rut08].

312 M. Niqui and J.J.M.M. Rutten

is X = (0, 1, 0, 0, 0, . . .). For σ, τ ∈ Aω and n ≥ 0, the operations of sum and
(convolution) product are given by

(σ + τ)(n) = σ(n) + τ(n) , (σ × τ)(n) =
n∑

i=0

σ(i) · τ(n − i)

(where · denotes ring multiplication).
We call a stream π ∈ Aω polynomial if there are k ≥ 0 and ai ∈ A0 such that

π = a0 + a1X + a2X
2 + · · · + akXk = (a0, a1, a2, . . . , ak, 0, 0, 0, . . .)

where we write aiX
i for [ai] × X i with X i the i-fold product of X with itself.

One can compute a stream from its initial value and derivative by the so-called
fundamental theorem of stream calculus [Rut05a]: for all σ ∈ Aω,

σ = σ(0) + (X × σ′)

(writing σ(0) for [σ(0)]).
Next assume A is a field, i.e., every nonzero element has a unique multiplica-

tive inverse. Then this multiplicative inverse operation may be carried over to
Aω: if σ(0) �= 0 then the stream σ has a (unique) multiplicative inverse σ−1 in
Aω, satisfying σ−1 × σ = [1]. As usual, we shall often write 1/σ for σ−1 and
σ/τ for σ × τ−1. Note that the initial value of the sum, product and inverse of
streams is given by the sum, product and inverse of their initial values.

If A is a field, a stream ρ ∈ Aω is rational if it is the quotient ρ = σ/τ of two
polynomial streams σ and τ with τ(0) �= 0.

The fundamental theorem of stream calculus allows us to solve stream dif-
ferential equations such as σ′ = 2 × σ with initial value σ(0) = 1 by com-
puting σ = σ(0) + (X × σ′) = 1 + (X × 2 × σ), which leads to the solution
σ = 1/(1 − 2X). Together with the basic fact that (X × σ)′ = σ, the funda-
mental theorem also leads to an easy calculation rule for the computation of
derivatives: σ′ = (σ − σ(0))′. This identity makes the computation of stream
derivatives often surprisingly simple. For instance, for σ = 1/(1 − X)2, we have

σ′ = (
1

(1 − X)2
− 1)′ = (

2X − X2

(1 − X)2
)′ = (X × 2 − X

(1 − X)2
)′ =

2 − X

(1 − X)2
.

For more stream calculations we refer the reader to [Rut05a].
In the remainder of the article we assume A is a field. Strictly speaking, this

is not always necessary as some of the constructs, e.g. the stream samplers, do
not presume any algebraic structure on A. Nevertheless, in order to be able to
freely use the stream calculus we make this assumption. In Section 6 we work in
the special case where A := Fq is a finite field.

3 Periodic Stream Samplers

Traditionally, a substream of an infinite stream σ : N → A is defined by means
of a (strictly) monotone function f : N → N: if n < m then f(n) < f(m). Such
an index function determines an (infinite) substream Sf (σ) by

Sampling, Splitting and Merging in Coinductive Stream Calculus 313

Sf (σ)(n) = σ(f(n))

and conversely, any substream of σ determines a unique such monotone function.
Assigning to any stream the substream determined by a given monotone function
f defines a stream sampler

Sf : Aω → Aω , σ → Sf (σ) .

Periodic stream samplers are such that they produce a substream of a given
input stream by repeatedly choosing certain elements and ignoring all others.
For instance, the function even : Aω → Aω given by

even(σ) = (σ(0), σ(2), σ(4), . . .)

takes of each incoming two elements the first and ignores the second. We say
that even has (input) period 2 and (output) block size 1. Another example is the
drop operator D2

4 : Aω → Aω given by

D2
4(σ) = (σ(0), σ(1), σ(3), σ(4), σ(5), σ(7), . . .)

which drops from each four incoming elements the third and keeps all the others.
Note we always start counting at zero hence σ(2), σ(6) etc. are dropped. The
operator D2

4 has period 4 and block size 3.
As it turns out, it is somewhat cumbersome to define these and similar such

periodic stream samplers by means of monotone index functions. Moreover, it
is surprisingly difficult to prove simple general facts such as: The composition
of two periodic stream samplers is again a period stream sampler. Therefore,
we prefer the following coinductive definition which uses a stream differential
equation.

Definition 1. Let k, l ∈ N with l >1 and 1 ≤ k ≤ l. Any sequence of k numbers
0 ≤ n0 <n1 < · · ·<nk−1 < l determines a periodic stream sampler S : Aω → Aω

of (input) period l and (output) block size k defined by the following stream
differential equation:

S(σ)(k) = S(σ(l))

with initial values
S(σ)(j) = σ(nj) (0 ≤ j < k) .

We do not require period and block size to be minimal. If a stream sampler has
period l and block size k then it also has period 2l with block size 2k, etc.

The functions even and D2
4 above are given by

even(σ)′ = even(σ′′) , even(σ)(0) = σ(0) ,

D2
4(σ)(3) =D2

4(σ
(4)) , D2

4(σ)(0)=σ(0) , D2
4(σ)(1)=σ(1) , D2

4(σ)(2)=σ(3) .

Proposition 2. If S, T : Aω → Aω are two periodic stream samplers then so is
T ◦ S.

314 M. Niqui and J.J.M.M. Rutten

Proof. Let S and T satisfy

S(σ)(k) = S(σ(l)) , S(σ)(j) = σ(nj) (0 ≤ j < k) ,

T (σ)(p) = T (σ(q)) , T (σ)(j) = σ(mj) (0 ≤ j < p) .

We claim that T ◦ S is a periodic stream sampler with period l × q and block
size k × p. We define a sequence i0, i1, . . . , iq×k−1 by

i(x×k)+y = (x × l) + ny (all x, y with 0 ≤ x < q, 0 ≤ y < k) .

Next we define a sequence 0 ≤ h0 < h1 < · · · < h(k×p)−1 < q × k by

h(x×p)+y = (x × q) + my (all x, y with 0 ≤ x < k, 0 ≤ y < p) .

One readily shows that T ◦ S satisfies

T ◦S(σ)(k×p) = T ◦S(σ(l×q)) , T ◦S(σ)(j) = σ(ihj) (0 ≤ j < (k× p)− 1) .

�

Next we provide some examples by introducing the family of all drop operators.

Definition 3. For l ≥ 2 and 0 ≤ i < l we define the drop operator

Di
l : Aω → Aω

which drops from each input block of size l the i-th element, by the following
system of stream differential equations:

Di+1
l (σ)′ = Di

l(σ
′) , Di+1

l (σ)(0) = σ(0) (all l ≥ 2, 0 ≤ i < l − 1) ,

D0
l (σ)′ = Dl−2

l (σ′′) , D0
l (σ)(0) = σ(1) (all l ≥ 2) .

Note that for D2
4 , this definition is equivalent with our earlier definition above;

also note that even = D1
2.

One of the benefits of coinductive definitions is that they support coinductive
proofs. As an example, we prove the so-called Drop exchange rule from [Mak08]:
for all l ≥ 1, 0 ≤ k ≤ h ≤ l,

Dh
l+1 ◦ Dk

l+2 = Dk
l+1 ◦ Dh+1

l+2 .

In order to prove this equality, we define a relation R ⊆ Aω × Aω by

R = {〈Dh
l+1 ◦ Dk

l+2(σ), Dk
l+1 ◦ Dh+1

l+2 (σ) 〉 | σ ∈ Aω } .

The equality now follows by coinduction from the fact that R∪R−1 is a stream
bisimulation.

Here is another example. It is a basic instance of a Drop expansion rule
in [Mak08]:

D0
2 = D0

4 ◦ D2
5 ◦ D4

6 .

Sampling, Splitting and Merging in Coinductive Stream Calculus 315

For a proof, we define a relation R ⊆ Aω × Aω by

R = {〈D0
2(σ), D0

4 ◦ D2
5 ◦ D4

6(σ) 〉 | σ ∈ Aω }
∪ {〈D0

2(σ), D2
4 ◦ D0

5 ◦ D2
6(σ) 〉 | σ ∈ Aω }

∪ {〈D0
2(σ), D1

4 ◦ D3
5 ◦ D0

6(σ) 〉 | σ ∈ Aω } .

The equality follows by coinduction from the fact that R is a stream bisimulation.
Returning to the general question of how to define substreams out of a given

stream, we present yet another alternative to the use of monotone index func-
tions, which is also well suited for a coinductive approach. Let 2 = {0, 1} and let
2ω be the set of bitstreams. Note that there is a trivial field structure on 2 and
hence we can apply stream calculus to 2ω. Consider a bitstream α ∈ 2ω that is
not eventually constant 0, i.e., there is no n such that α(n) = [0]. Then for any
stream σ ∈ Aω, α defines a substream Sα(σ) consisting of those elements σ(n)
for which α(n) = 1. (Note that the condition on α ensures that Sα(σ) is again an
infinite stream.) Such a stream α acts as an oracle that tells us of any element
of σ whether or not it should be included in the substream we are defining.

More formally, we first note that a stream α ∈ 2ω is eventually constant 0 if
it is a polynomial. If α is non-polynomial, it is of the form

α = Xn × (1 + X × β)

for some n ≥ 0 and some β ∈ 2ω that is again non-polynomial. Now we define
Sα(σ) by the following system of differential equations, for arbitrary σ ∈ Aω and
non-polynomials α ∈ 2ω:

Sα(σ)′ = Sβ(σ(n+1)) , Sα(σ)(0) = σ(n) (α = Xn × (1 + X × β)) .

In this manner, any non-polynomial bitstream determines a substream and, con-
versely, any substream determines a non-polynomial bitstream.

It is now extremely simple to characterise periodic stream samplers:

Sα is periodic with period l iff α(l) = α .

The (output) block size is determined by the number of 1’s in the set {α(0),
. . . , α(l − 1)}.

Composition of stream samplers can be described in terms of composition of
the corresponding oracle bitstreams, which we define as follows.

Definition 4. For all α, β ∈ 2ω, we define β ∗ α ∈ 2ω by the following system
of differential equations:

(β ∗ α)′ =
{

β′ ∗ α′ if α(0) = 1
β ∗ α′ if α(0) = 0 (β ∗ α)(0) = β(0) · α(0)

This composition operator is associative but not commutative and has 1/(1−X)
as a neutral element: σ ∗ 1/(1 − X) = 1/(1 − X) ∗ σ = σ. It is not difficult to
show that

Sβ ◦ Sα = Sβ∗α .

316 M. Niqui and J.J.M.M. Rutten

An alternative proof of Proposition 2 is now extremely easy: it follows from the
fact that α(n) = α and β(m) = β imply (β ∗ α)(n×m) = β ∗ α.

Let us conclude this section with an example illustrating how one can reason
about stream sampler composition in terms of stream calculus applied to the
corresponding oracle streams. Periodic oracle bitstreams are always of the form

a0 + a1X + a2X
2 + · · · + al−1X

l−1

1 − X l

for a0, a1, a2, . . . , al−1 ∈ 2, not all 0. For our drop operators, for instance, one
has

Di
l = Sαi

l
with αi

l = (1 + X + · · · + X i−1 + X i+1 + · · · + X l−1)/(1 − X l)

The equality D0
2 = D0

4 ◦ D2
5 ◦ D4

6 , which we proved above by coinduction, can
also be deduced from the following computation in stream calculus on the cor-
responding oracle bitstreams:

α0
4 ∗ α2

5 ∗ α4
6 =

X + X2 + X3

1 − X4 ∗ 1 + X + X3 + X4

1 − X5 ∗ 1 + X + X2 + X3 + X5

1 − X6

=
X + X3 + X4

1 − X5 ∗ 1 + X + X2 + X3 + X5

1 − X6

=
X

1 − X2 = α0
2 .

The work goes in the computation of the stream compositions, using the differ-
ential equation of Definition 4. This may be bothersome by hand but can easily
be automated.

4 Splitting and Merging

All periodic stream samplers and, more generally, many periodic stream trans-
formers that not necessarily preserve the order of the elements in a stream, can
be obtained by splitting and merging streams. In this section, we introduce the
operators of take and zip, with which streams can be split and merged, and we
present a few basic laws about them.

Definition 5. i) For l ≥ 2 and 0 ≤ i < l, the take operator T i
l : Aω → Aω is

defined by the following stream differential equation:

T i
l (σ)′ = T i

l (σ
(l)) , T i

l (σ)(0) = σ(i) .

ii) For k ≥ 1 and streams σ0, . . . σk−1 ∈ Aω, the zip operator Zk : (Aω)k → Aω

is defined by the stream differential equation

Zk(σ0, . . . , σk−1)′ = Zk(σ1, . . . , σk−1, σ
′
0) , Zk(σ0, . . . , σk−1)(0) = σ0(0) .

Sampling, Splitting and Merging in Coinductive Stream Calculus 317

(Note that σ0, . . . , σk−1 above are streams, not elements of streams, which for a
stream σ we denote by σ(0), σ(1), etc.) Examples are

T 2
3 (σ) = (σ(2), σ(5), σ(8), . . .) ,

Z2(σ, τ) = (σ(0), τ(0), σ(1), τ(1), σ(2), τ(2), . . .) .

As suggested by the latter, it is easy to see (by induction) that in general if
0 ≤ r ≤ k−1 then

Zk(σ0, . . . , σk−1)(kn + r) = σr(n) . (4.1)

Any periodic stream sampler can be expressed in terms of take and zip. With S
as in Definition 1, we have

S(σ) = Zk(T n0
l (σ), T n1

l (σ), . . . , T
nk−1
l (σ)) .

More generally, we can define with take and zip periodic stream transformers
that not merely produce substreams but that can change also the order of the
elements. For instance, we can define the operation Revk : Aω → Aω of stream
reverse, for any k ≥ 1, by

Revk(σ) = Zk(T k−1
k (σ), T k−2

k (σ), . . . , T 0
k (σ)) .

For instance,

Rev3(σ) = (σ(2), σ(1), σ(0), σ(5), σ(4), σ(3), . . .) .

Next we present a few basic laws for take and zip that will allow us to prove
elementary properties on stream transformers by equational reasoning. All of
the identities below can easily be proved by coinduction.

Proposition 6. For all k ≥ 1, l ≥ 2, 0 ≤ i < l,

Zk(T 0
k (σ), . . . , T k−1

k (σ)) = σ ,

T i
l (Zl(σ0, . . . , σl−1)) = σi ,

T i
l (σ) = Zk(T i

k×l(σ), T l+i
k×l(σ), . . . , T

(k−1)×l+i
k×l (σ)) .

Let us illustrate these identities with an equational proof of our earlier example,
the Drop expansion rule: for all σ ∈ Aω ,

D0
2(σ) = D0

4 ◦ D2
5 ◦ D4

6(σ) .

Let τ = D4
6(σ). We have

τ = D4
6(σ) = Z5(T 0

6 (σ), T 1
6 (σ), T 2

6 (σ), T 3
6 (σ), T 5

6 (σ)) .

Next let ρ = D2
5 ◦ D4

6(σ); it satisfies

ρ = D2
5(τ) = Z4(T 0

5 (τ), T 1
5 (τ), T 3

5 (τ), T 4
5 (τ))

= Z4(T 0
6 (σ), T 1

6 (σ), T 3
6 (σ), T 5

6 (σ)) .

318 M. Niqui and J.J.M.M. Rutten

Finally, we compute

D0
4 ◦ D2

5 ◦ D4
6(σ) = D0

4(ρ) = Z3(T 1
4 (ρ), T 2

4 (ρ), T 3
4 (ρ))

= Z3(T 1
6 (σ), T 3

6 (σ), T 5
6 (σ))

= T 1
2 (σ) = D0

2(σ) .

As a second example, we prove Rev3 ◦ Rev3(σ) = σ. Putting τ = Rev3(σ),

τ = Rev3(σ) = Z3(T 2
3 (σ), T 1

3 (σ), T 0
3 (σ)) .

It follows that

Rev3 ◦ Rev3(σ) = Rev3(τ) = Z3(T 2
3 (τ), T 1

3 (τ), T 0
3 (τ))

= Z3(T 0
3 (σ), T 1

3 (σ), T 2
3 (σ)) = σ .

In the above, we have illustrated that the operators of take and zip are interesting
because they can express all periodic stream samplers and because they can
moreover be used to define stream transformers that have a periodic behaviour
but that are not stream samplers. We have not given a general definition of
periodic stream transformer. We shall come back to this point later.

5 Preserving Rationality

In this section, we show that the result of applying the operators of take and zip
to rational streams in Aω is again rational. We shall use the following definition
from [Rut05a, p.109].

Definition 7. For σ ∈ Aω and ρ ∈ Aω with ρ(0) = 0, we define the stream σ
applied to ρ, written as σ(ρ), by the following system of differential equations:

σ(ρ)′ = σ′(ρ) × ρ′ , σ(ρ)(0) = σ(0) .

Recall from [Rut05a] that every stream σ ∈ Aω can be written as an infinite
sum

σ = σ(0) + (σ(1) × X) + (σ(2) × X2) + · · · .

We may now think of σ(ρ) as the stream that results from the above infinite sum
by replacing every X by ρ (the condition ρ(0) = 0 will ensure that the resulting
infinite sum is well-defined). In fact, there is the following identity:

σ(ρ) = σ(0) + (σ(1) × ρ) + (σ(2) × ρ2) + · · · .

This reminds one of formal power series and (generating) function application
(cf. [GKP94]); note that the definition and identities above all live in stream
calculus, where X is a constant stream and not a function variable.

If σ is polynomial and ρ is rational (with ρ(0) = 0) then σ(ρ) is rational. Since
for polynomials π and τ with τ(0) �= 0, one can easily show that

π

τ
(ρ) =

π(ρ)
τ(ρ)

,

Sampling, Splitting and Merging in Coinductive Stream Calculus 319

it follows that if σ and ρ are rational then so is σ(ρ). We shall be using the above
mostly for the case that ρ = Xn, for some n ≥ 1. For instance, we have

X

(1 − X)2
(X3) =

X3

(1 − X3)2
.

Since X/(1 − X)2 = (0, 1, 2, . . .) it follows that

X3

(1 − X3)2
= (0, 0, 0, 1, 0, 0, 2, 0, 0, . . .) .

We are now ready to formulate our first preservation result. We remark that
Propositions 8 and 10 below can be found in [BR88]. Our proofs are different: in
Proposition 8 the novelty lies in our use of coinduction proof principle; regarding
Proposition 10 we give a rather elementary proof while the proof in [BR88] is
based on Kleene–Schützenberger theorem.

Proposition 8. The function zip preserves rationality: if σ0, . . . , σk−1 ∈ Aω are
rational, for k ≥ 1, then so is Zk(σ0, . . . , σk−1).

Proof. The proposition follows from the identity

Zk(σ0, . . . , σk−1) = σ0(Xk) + (X × σ1(Xk)) + · · · + (Xk−1 × σk−1(Xk))

which can easily be proved by coinduction. �

Next we show that the take operators preserve rationality as well. We shall use
the following lemma; it has an easy proof by coinduction which we omit here.

Lemma 9. Let l ≥ 2 and 0 ≤ i < l.

(a) T i
l is linear: for all r, s ∈ A, σ, τ ∈ Aω,

T i
l ((s × σ) + (t × τ)) = (s × T i

l (σ)) + (t × T i
l (τ)) .

(b) For 1 ≤ i ≤ l and σ ∈ Aω,

T i
l (X × σ) = T i−1

l (σ) , T 0
l (X × σ) = X × T l−1

l (σ) .

Proposition 10. The function take preserves rationality: if σ ∈ Aω is rational
then so is T i

l (σ), for all l ≥ 2 and 0 ≤ i < l.

Proof. By Lemma 9, it is sufficient to prove the proposition for streams of the
form 1/σ, with σ polynomial and σ(0) �= 0. So let σ = s0 + s1X + · · · + sdX

d

be a polynomial stream, for d ≥ 0 and s0, s1, . . . , sd ∈ A with s0 �= 0. One can
prove by induction that for any l ≥ 0, the l-th stream derivative of 1/σ is of the
form

(1/σ)(l) = (r0 + r1X + · · · + rd−1X
d−1) × 1/σ

320 M. Niqui and J.J.M.M. Rutten

for certain r0, . . . , rd−1 ∈ A. Now for l ≥ 2 and 0 ≤ i < l, we have

T i
l (1/σ)′ = T i

l ((1/σ)(l)) [by definition]
= T i

l ((r0 + · · · + rd−1X
d−1) × 1/σ) [by the equality above]

= (ρ0 × T 0
l (1/σ)) + · · · + (ρl−1 × T l−1

l (1/σ))

for certain rational streams ρ0, . . . , ρl−1 ∈ Aω, where the last equality follows
from Lemma 9. Multiplying the equation by X and adding (1/σ)(i) to both sides
gives

T i
l (1/σ)
= T i

l (1/σ)(0) + (X × T i
l (1/σ)′) [by the fundamental theorem, Section 2]

= (1/σ)(i) +
(
X ×

(
(ρ0 × T 0

l (1/σ)) + · · · + (ρl−1 × T l−1
l (1/σ))

))
= (1/σ)(i) + (X × ρ0 × T 0

l (1/σ)) + · · · + (X × ρl−1 × T l−1
l (1/σ)) .

We have an equation of this form for all i with 0 ≤ i < l. Thus we have obtained
a system of l equations in l unknowns: T 0

l (1/σ), . . . , T l−1
l (1/σ), where all the

occurrences of the unknowns on the right are multiplied by a rational stream
of the form X × ρ. Such a system of what could be called guarded equations
can easily be seen to have rational streams as solutions, essentially by standard
linear algebraic reasoning. �

Corollary 11. If an operator is built by function composition from: constant
streams [r] (for r ∈ A), X, sum +, convolution product ×, convolution inverse
(−)−1, and the zip and take operators Zk and T i

l , then it preserves rationality.

Proof. For the constants, sum, product and inverse, this is trivial and for zip
and take, we have Propositions 8 and 10. �

Here are some examples. Let σ = 1/(1 − X)2 = (1, 2, 3, . . .). We will compute

α = T 0
3 (σ) , β = T 1

3 (σ) , γ = T 2
3 (σ) .

In the computation below, we shall be using the following equalities:

σ(3) =
4 − 3X

(1 − X)2
, T 0

3 (X×σ)=X×γ , T 1
3 (X×σ)=α , T 2

3 (X×σ)=β .

For α, we compute as follows:

α′ = T 0
3 (σ(3)) = T 0

3 (
4 − 3X

(1 − X)2
) = 4α − (3X × γ) .

Using the fundamental theorem and α(0) = 1 gives

α = 1 + (4X × α) − (3X2 × γ) .

Similar computations lead to equations for β and γ:

β = 2 + (4X × β) − (3X × α) ,

Sampling, Splitting and Merging in Coinductive Stream Calculus 321

γ = 3 + (4X × γ) − (3X × β) .

Solving this system of three equations gives

α =
1 + 2X

(1 − X)2
, β =

2 + X

(1 − X)2
, γ =

3
(1 − X)2

.

As a next example, we will compute Rev3(σ), as follows:

Rev3(σ) = Z3(T 2
3 (σ), T 1

3 (σ), T 0
3 (σ)) [definition Rev3]

= Z3

(
3

(1 − X)2
,

2 + X

(1 − X)2
,

1 + 2X

(1 − X)2

)
=

3
(1 − X3)2

+ X × 2 + X3

(1 − X3)2
+ X2 × 1 + 2X3

(1 − X3)2
[Proposition 8]

=
3 − X − X2 + 2X3

(1 − X)2(1 + X + X2)
.

6 Preserving Algebraicity

Corollary 11 shows that starting with a rational stream and applying some ‘basic’
operations we stay in the realm of rational streams. But there is a somewhat
larger class of streams that is preserved under some of these operations, namely
the class of algebraic streams defined below.

Algebraicity is a notion that should be defined over other algebraic structures.
In this section we study algebraicity over finite fields. For q ≥ 1 let Fq be the finite
field with q elements (note that Fq has cardinality pn for some prime p [Hun80]).
A univariate polynomial in X is a polynomial of the form a0 +a1X + · · ·+akXk

where ai ∈ Fq, ak �= 0. Subsequently by Fq(X) we denote the field of fractions
of polynomials in X , i.e., π(X) ∈ Fq(X) means there are univariate polynomials
π1(X), π2(X) with coefficients in Fq such that π(X) = π1(X)/π2(X).

Definition 12. A stream σ ∈ Fω
q is algebraic over Fq(X) if there are Ai ∈

Fq(X), Ak �= 0 such that A0 + A1σ + . . . + Akσk = 0 .2

As an example, the stream σ ∈ Fω
2 for which

X3 +
1

1 − X
σ +

X + 1
1 − X2 σ2 = 0 ,

is algebraic over F2(X).
This definition is borrowed from the theory of formal power series [Fog02] and

is motivated by the fact that σ can be considered as the sequence of coefficients
of a formal power series. Following Section 2, by taking A := Fq we can obtain
the stream calculus on Fω

q . As a consequence the left hand side of expression

2 In fact we can restrict the coefficients Ai to univariate polynomials instead of
fractions.

322 M. Niqui and J.J.M.M. Rutten

above can be interpreted in two ways: as a stream in the stream calculus where
X = (0, 1, 0, . . .) as in Section 2 or as a formal power series in the ring of formal
power series with one variable X . It can easily be observed that each rational
stream in Fω

q is algebraic. The converse does not always hold. In next section
we give an example of an algebraic stream that is not rational, namely the
Prouhet–Thue–Morse sequence. There are also streams that are not algebraic,
a simple example being the Fibonacci sequence [Fog02, § 1.2.2]. But in general,
the so called automatic streams, i.e., streams that are ‘computable’ by a class of
transducers similar to Mealy machines3, can be shown to be algebraic [Fog02].

We state a useful criterion, originally from [Chr79], that is usually used as an
intermediate step in relating algebraic and automatic sequences but here we will
use it on its own. Our formulation follows [Fog02, Theorem 3.2.1].

Definition 13. Let σ ∈ Fω
q . Then the q-kernel of σ is the set of subsequences

of σ defined as

Nq(σ) = {λn.σ(qsn + r) | s ≥ 0 , 0 ≤ r ≤ qs − 1} . (6.1)

Here λn.f(n) is the notation for the sequence whose nth element is f(n).

Theorem 14 (Christol). A stream σ ∈ Fω
q is algebraic over Fq(X) if and only

if the q-kernel Nq(σ) of σ is finite.

By applying this theorem we can obtain what can be considered as counterparts
of Propositions 8 and 10 above. First, we have the following which resembles
Proposition 10. This one is an easy consequence and is also mentioned in [Fog02],
so we skip the proof.

Proposition 15. The function take preserves algebraicity for streams over a
finite alphabet: if σ ∈ Fω

q is algebraic over Fq(X) then so is T i
l (σ), for all l ≥ 2

and 0 ≤ i < l.

For zip we first need to define a notion based on q-kernels.

Definition 16. Let σ0, . . . , σh−1 ∈ Fω
q (where h > 0). Then h-fold q-kernel of

σ0, . . . , σh−1 is the set of sequences defined as

N (h)
q (σ0, . . . , σh−1) = {Zh(τ0, . . . , τh−1) | ∀i∃j, τi ∈ Nq(σi)} . (6.2)

Note that we have the following trivial properties.

Proposition 17

i) If ς0, . . . , ςh−1 is a possibly repetitive sequence such that ςi ∈ {σ0, . . . , σh−1},
then N

(h)
q (ς0, . . . , ςh−1) ⊆ N

(h)
q (σ0, . . . , σh−1).

ii) If q-kernel of each of σ0, . . . , σh−1 is finite then the h-fold q-kernel of them
is finite.

3 This is a very informal description. The precise definition of automatic sequences
can be found in [AS03].

Sampling, Splitting and Merging in Coinductive Stream Calculus 323

We use these facts for proving that zip preserves algebraicity. To the best of our
knowledge this result is new.

Proposition 18. The function zip preserves algebraicity for streams over a fi-
nite alphabet: if σ0, . . . , σh−1 ∈ Fω

q (where h > 0) are algebraic over Fq(X), then
so is Zh(σ0, . . . , σh−1).

Proof. Let τ := Zh(σ0, . . . , σh−1). We show that

Nq(τ) ⊂ N (h)
q (σ0, . . . , σh−1) . (6.3)

The result then will follow from Theorem 14, since the right hand side is finite.
To prove (6.3) assume α ∈ Nq(τ). Then α ≡ λn.τ(qsn + r) for some s, r as

in (6.1). Assume, using division algorithm, that q = d0h + r0 and r = d1h + r1.
Furthermore by applying (4.1) it can easily be seen that

α ≡ Zh(λn.τ(hnqs + r), λn.τ((hn + 1)qs + r), · · · , λn.τ((hn + (h− 1))qs + r)) .

So α is the zip of h streams each of which of the form τ((hn+k)qs + r) where
k ≤ h−1. Again using the division algorithm assume krs

0 + r1 = dkh + rk. Then

(hn + k)qs + r = hnqs + k(d0h + r0)s + d1h + r1

=hnqs+ k(ds
0h

s+ sds−1
0 hs−1r0+ · · · + sd0hrs−1

0 + rs
0) + d1h + r1

=h(nqs+kds
0h

s−1+ skds−1
0 hs−2r0+ · · · + skd0r

s−1+ d1)+ dkh+rk

= h(nqs + Uk) + rk ,

where

Uk = kds
0h

s−1 + skds−1
0 hs−2r0 + · · · + skd0r

s−1 + d1 + dk .

From this and using the property of zip in (4.1) we get

λn.τ((hn + k)qs + r) ≡ λn.τ(h(nqs + Uk) + rk) ≡ λn.σrk
(nqs + Uk) .

It remains to be checked whether Uk < qs. But this is evident because

hUk = k(qs − rs
0) + d1h + dkh

= kqs + r − rk

≤ (h − 1)qs + r

< hqs .

Therefore defining υk := λn.σrk
(nqs + U) we obtain υ0 ∈ Nq(σr0), . . . , υh−1 ∈

Nq(σrh−1) such that
α ≡ Zh(υ0, . . . , υh−1) .

Hence, by (6.2) and Proposition 17 we have α ∈ N
(h)
q (σ0, . . . , σh−1). �

324 M. Niqui and J.J.M.M. Rutten

In general, the zip of algebraic sequence need not be algebraic over a field whose
cardinality is the number of arguments of zip. This is a consequence of the
following result in [Cob69] where it is stated in terms of automatic sequences.
Here we rephrase it in terms of algebraicity over finite fields.

Theorem 19 (Cobham). Let σ ∈ Fω
q0
∩Fω

q1
be algebraic over two fields Fq0(X)

and Fq1(X). Then either σ is rational or q0 and q1 are powers of the same prime
number.

According to this theorem if σ0, σ1, σ2 ∈ Fω
2 are non-rational binary streams

that are algebraic over F2(X) (e.g. the sequence Ψ defined in next section) then
Z3(σ0, σ1, σ2) cannot be algebraic over F3(X).

Finally, we remark that the sum of two algebraic streams is algebraic. The
proof is a straightforward application of Theorem 14, together with a similar
construct to the one in (6.2).

7 Stream Circuits

We briefly recall the correspondence between rational streams (of real numbers)
and so-called stream circuits built from adder, copier, register and multiplier
gates. Then we propose to look at stream circuits built from this set of gates
extended with basic gates for splitting and merging. We study their behaviour
by describing how they act on input streams of real numbers. For circuits with-
out feedback, it will be immediate that they preserve rationality. For feedback
circuits, the situation turns out to be more complicated.

Stream circuits [Rut05b] are data flow networks that act on streams of inputs
(here real numbers) and produce streams of outputs. They are built out of four
types of basic gates by means of composition, which amounts simply to con-
necting (single) output ends to (single) input ends. Below we describe the basic
gates and their input-output behaviour. An r-multiplier, for r ∈ A, transforms
an input stream σ ∈ Aω into [r]×σ:

σ � r �� [r]×σ

which amounts to the element-wise multiplication of the input values with r. A
register (with initial value 0) takes an input stream σ

σ �
R �� (X × σ)

and outputs it with one step delay, after having output the initial value 0 first.
An adder takes two input streams σ and τ and outputs the stream consisting
of their element-wise addition; and a copier simply copies input streams into
output streams:

σ �

+ �� σ+τ

τ 	

σ

σ �
C

��

�� σ

Sampling, Splitting and Merging in Coinductive Stream Calculus 325

Stream circuits are then built by composing various basic gates. Here is a simple
example of a circuit with feedback:

◦
 ◦�R��

� + �� ◦ �
C

��

��

For an input stream σ ∈ Aω , we can compute the output stream as a function
f(σ) of σ as follows. With the three internal composition nodes of the circuit,
we associate streams ρ1, ρ2, ρ3 ∈ Aω:

ρ1
 ρ2
�

R��

σ � + �� ρ3
�

C

��

�� f(σ)

For each of the three basic gates used in this circuit, we have an equation:

ρ1 = X × ρ2 , ρ3 = σ + ρ1 , ρ2 = ρ3 = f(σ) .

Eliminating the streams ρ1, ρ2 and ρ3 from this system of equations, we find

f(σ) =
1

1 − X
× σ .

In [Rut05b, Theorem 4.25], it is shown that every (finite) circuit possibly with
feedback loops (which always have to pass through at least one register), compute
stream functions f : Aω → Aω of the form: f(σ) = ρ × σ, for all σ and some
fixed rational stream ρ; conversely, every such function is implemented by some
finite circuit.

Next we introduce new basic gates for the splitting and merging of streams.
A splitter gate in our setting is a gate with one input and two output ends:

Sσ

τ

υ

It transforms an input stream σ ∈ Rω to streams τ, υ such that

τ = D1
2(σ) = T 0

2 (σ) , υ = D0
2(σ) = T 1

2 (σ) .

Note that τ = even(σ) and υ = even(σ′) (where even is defined in Section 3).
We define

odd(σ) := even(σ′) .

Hence the splitters transforms σ to even(σ) and odd(σ).
The splitter is different from the previous ports (in particular copier) in that

only one of its outgoing ports is active at any time. This means when a data
element belonging to τ is being output, the port outputting υ is pending. More-
over, the active output port alternates with each data consumed from σ. The
bullet on one of the output ports denotes the port that activates in the very
beginning. This confirms the fact that τ = even(σ).

A merger gate is a gate with two inputs and one output end.

326 M. Niqui and J.J.M.M. Rutten

Mσ

τ

υ

It transforms two input streams σ, τ ∈ Rω to a stream υ such that

υ = Z2(σ, τ) .

In contrast with the splitter gate, in a merger only one of the inputs is activated
at a time. The active input port alternates with each data output. Again the
bullet denotes the port that is activated in the very beginning, i.e., the one that
contributes to υ0.

It is clear that merger and splitter can be composed with each other and with
the previously defined gates to form compound circuits. We call such a circuit an
extended stream circuit. The functions f(σ) = ρ× σ, for constant stream ρ, that
are realisable by well-formed stream circuits are instances of causal functions
on streams [Rut05b]. These are functions that output a data item after each
input. Since each gate of stream circuit is causal their composition is causal too.
However, introducing splitter and merger into the extended stream circuits leads
to overconsumption (splitter) or overproduction (merger). So there will be data
queues behind causal gates. Hence we need to assume the following important
rule:

The connecting lines in extended stream circuits behave like unbounded
FIFO buffers.

This is similar to the framework of Kahn Networks [Kah74].
Simple feed-forward extended stream circuits can easily be analysed using

the same method used for stream circuit. As an example consider the following
circuit [Mak08, § 4].

S +

C M

σ

τ

ρ1

ρ2

ρ3

ρ4

ρ5

First note that,

ρ1 = odd(σ) ,

ρ2 = ρ3 = ρ5 = even(σ) ,

ρ4 = odd(σ) + even(σ) ,

τ = Z2(even(σ), odd(σ) + even(σ)) .

Assume we input the stream σ = X/(1 − X)2 = (0, 1, 2, · · ·) to the above circuit.
It can easily be shown that (cf. the example at the end of Section 5),

even(σ) =
2X

(1 − X)2
, odd(σ) =

1 + X

(1 − X)2
.

Sampling, Splitting and Merging in Coinductive Stream Calculus 327

Subsequently we derive

τ = Z2(
2X

(1 − X)2
,

1 + 3X

(1 − X)2
)

=
2X2

(1 − X2)2
+

X + 3X3

(1 − X2)2
=

X(1 + 2X + 3X2)
(1 − X)2(1 + X)2

.

Evidently, by sequencing splitters and mergers one can synthesise feed-forward
circuits for calculating dyadic (2n-ary) take and zip and functions. I.e., we can
build circuits for calculating T l

2n Z2n . This suggests that by adding new splitter
and merger gates with p input and output ports, where p is a prime number, we
can synthesise circuits for calculating general take and zip functions T l

n and Zn.
We do not consider this issue in the present paper.

While feed-forward extended stream circuits are relatively easy to analyse,
allowing feed-back will complicate the matter. First of all we need to formulate
well-formedness rules with respect to the topology of the circuit, whose purpose
would be to prevent overconsumption from happening (overproduction is not
a problem, since we assume that connecting lines are buffers). Intuitively this
means that for any possible path in the circuit, splitters should be directly con-
nected to the global input or be preceded by appropriate number of mergers. In
future work we plan to make such rules more formal. For now we give an example
a non well-formed circuit demonstrating the problem of overconsumption.

+σ Sρ1

R ρ2ρ3

τ

In the circuit above, assuming there is a flow, one can take the second deriva-
tive of the behavioural equations for ρ1 and obtain the contradiction in the form
of following identity.

ρ1(2) = σ(2) + ρ1(2) .

We conclude this section by giving an example of a non-rational stream that
can be calculated using the extended stream circuits. This will demonstrate that
adding splitter and merger will indeed extend the class of definable streams with
respect to those of the ordinary stream calculus. Our example is the Prouhet–
Thue–Morse sequence which is an algebraic non-rational4 stream over F2(X).
The stream, which we denote by Ψ is given by the following behavioural differ-
ential equations.

Ψ(0) = 0 , Ψ ′(0) = 1 ,

Ψ ′′ = Z2(Ψ ′, Ψ ′) ;

where σ is the bit-wise negation of σ itself defined as

σ(0) = ¬σ(0) , σ′ = σ′ .

4 Proof of this fact can be found in [Fog02].

328 M. Niqui and J.J.M.M. Rutten

Consider following extended circuit which contains only one merger.

Cσ

ρ1

+

ρ2

Cρ3

R

ρ4

ρ5

ρ6 + ρ7 C

ρ8

C

ρ9

ρ10

+ρ11

ρ12

M

ρ13

R

ρ14

ρ15 R τ

−1

Note that the −1-multiplier is meaningful since we are working in a field.
Then by calculating the intermediate values ρi one observes that:

ρ1 = ρ6 = σ ,

ρ2 = ρ3 = ρ5 = σ + X × ρ2 =
1

1 − X
× σ ,

ρ4 =
X

1 − X
× σ ,

ρ7 = ρ8 = ρ9 = ρ12 = ρ15 = σ + ρ14 ,

ρ10 = −ρ7 ,

ρ11 =
1

1 − X
× σ − ρ7 ,

ρ13 = Z2(ρ7,
1

1 − X
× σ − ρ7) ,

ρ14 = X × Z2(ρ7,
1

1 − X
× σ − ρ7) ,

τ = X × ρ7 .

Form here we can obtain

ρ7 = σ + X × Z2(ρ7,
1

1 − X
× σ − ρ7) .

Hence if σ = [1] = (1, 0, 0, · · ·) is input to this circuit then τ = Ψ .

Sampling, Splitting and Merging in Coinductive Stream Calculus 329

8 Discussion and Future Work

We have studied various data independent operations for partitioning, project-
ing or merging streams. These operations are usually studied in the context of
dataflow programming, while we showed that the operations and many of their
properties can be defined using elements of stream calculus, namely behavioural
differential equations for definitions and coinduction proof principle for proofs.
Furthermore we focused on take and zip operations, for merging and splitting of
data that are widely used elements in dataflow programming [BŞ01, Mak08] and
models of concurrency [Arb04]. We dealt with the fact that splitting and merg-
ing preserves well behaved and well patterned class of streams namely rational
and algebraic streams. While some of those results were known in the literature,
we present them in the framework of stream calculus. Finally we showed how
adding two new gates, namely dyadic merger and splitter will enlarge the class
of streams that are realisable using stream circuits to beyond rational streams
and into the realm of algebraic streams.

There are several issues and directions for future work.

Automated coinduction proofs. In Section 3 we showed how to use coinduction to
prove the Drop exchange rule by finding a bisimulation. There are in fact tools for
automatically finding bisimulation, e.g. the CIRC tool [LR07]. We applied CIRC
and it could drive the rule D0

2 = D0
4 ◦ D2

5 ◦ D4
6 . The CIRC tool uses a special

technique called circular coinduction, a partial decision procedure, whose success
depends on the type of bisimulation to be found. Our goal is to further investigate
the different types of bisimulation that will arise in Periodic Drop Take Calculus
(PDTCS) of Mak [Mak08] and examine the applicability of circular coinduction
to them.

Extended stream circuits. We plan to investigate precisely which class of streams
are realisable using extended stream circuits of Section 7. For this we will also
study extended circuits with p-adic merger and splitter where p is a prime num-
ber. Moreover the question of well-formedness with respect to the topological
properties of the circuits needs to be investigated. As a related problem we are
interested in finding a closed formula for even and odd (and their n-ary counter-
parts). Intuitively these functions correspond to the roots of unity (cf. [Wil94,
§ 2.4], and Lemma 9 on periodicity of take). This implies that one could use
hyperbolic functions (e.g. cosh) to represent the effect of even in the stream
calculus. We plan to make this connection more formal.

Coalgebraic semantics. Earlier work on stream calculus has led to a coalge-
braic treatment of rational power series [Rut08]. Advantage of the coalgebraic
modelling is that it present a unified way for dealing with stream circuits,
stream functions and transducers. Above all it helps in dealing with various
types of bisimulations. We intend to study the material of Section 7 in a coal-
gebraic setting, by looking into the systems based on causal functions and be-
yond [Rut06, UV08, Kim08].

330 M. Niqui and J.J.M.M. Rutten

Acknowledgements. We thank the anonymous referees for their comments.

References

[Arb04] Arbab, F.: Reo: a channel-based coordination model for component compo-
sition. Mathematical Structures in Computer Science 14, 329–366 (2004)

[AS03] Allouche, J.-P., Shallit, J.: Automatic sequences: theory, applications, gener-
alizations. Cambridge University Press, Cambridge (2003)

[BR88] Berstel, J., Reutenauer, C.: Rational series and their languages. EATCS
Monographs on Theoretical Computer Science, vol. 12. Springer, Heidelberg
(1988)

[BŞ01] Broy, M., Ştefănescu, G.: The algebra of stream processing functions. Theoret.
Comput. Sci. 258(1-2), 99–129 (2001)

[Chr79] Christol, G.: Ensembles presque periodiques k-reconnaissables. Theoret.
Comput. Sci. 9(1), 141–145 (1979)

[Cob69] Cobham, A.: On the base-dependence of sets of numbers recognizable by
finite automata. Math. Systems Theory 3, 186–192 (1969)

[Fog02] Pytheas Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics.
In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.). Lecture Notes in
Math., vol. 1794. Springer, Berlin (2002)

[GKP94] Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics, 2nd edn.
Addison-Wesley, Reading (1994)

[Hun80] Hungerford, T.W.: Algebra. Graduate Texts in Mathematics, vol. 73,
Springer, New York (1980); Reprint of the 1974 original

[Kah74] Kahn, G.: The semantics of a simple language for parallel programming.
In: Information Processing 74: Proceedings of IFIP Congress 74, Stockholm,
August 1974, vol. 74, pp. 471–475. North Holland Publishing Co., Amsterdam
(1974)

[Kim08] Kim, J.: Coinductive properties of causal maps. In: Meseguer, J., Roşu, G.
(eds.) AMAST 2008. LNCS, vol. 5140, pp. 253–267. Springer, Heidelberg
(2008)

[LR07] Lucanu, D., Roşu, G.: CIRC: A circular coinductive prover. In: Mossakowski,
T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624,
pp. 372–378. Springer, Heidelberg (2007)

[Mak08] Mak, R.H.: Design and Performance Analysis of Data-independent Stream
Processing Systems. PhD thesis, Technische Universiteit Eindhoven (2008)

[Rut05a] Rutten, J.J.M.M.: A coinductive calculus of streams. Mathematical Struc-
tures in Computer Science 15, 93–147 (2005)

[Rut05b] Rutten, J.J.M.M.: A tutorial on coinductive stream calculus and signal flow
graphs. Theoretical Computer Science 343(3), 443–481 (2005)

[Rut06] Rutten, J.J.M.M.: Algebraic specification and coalgebraic synthesis of Mealy
automata. In: Proceedings of FACS 2005. ENTCS, vol. 160, pp. 305–319.
Elsevier Science Publishers, Amsterdam (2006)

[Rut08] Rutten, J.J.M.M.: Rational streams coalgebraically. Logic. Methods in Com-
put. Sci. 4(3:9), 1–22 (2008)

[UV08] Uustalu, T., Vene, V.: Comonadic notions of computation. In: Adámek, J.,
Kupke, C. (eds.) Proc. of CMCS 2008. ENTCS, vol. 203(5), pp. 263–284.
Elsevier, Amsterdam (June 2008)

[Wil94] Wilf, H.S.: Generatingfunctionology. Academic Press, London (1994)

Generic Point-free Lenses

Hugo Pacheco and Alcino Cunha

DI-CCTC, Universidade do Minho, Braga, Portugal
{hpacheco,alcino}@di.uminho.pt

Abstract. Lenses are one the most popular approaches to define bidi-
rectional transformations between data models. A bidirectional transfor-
mation with view-update, denoted a lens, encompasses the definition of
a forward transformation projecting concrete models into abstract views,
together with a backward transformation instructing how to translate an
abstract view to an update over concrete models. In this paper we show
that most of the standard point-free combinators can be lifted to lenses
with suitable backward semantics, allowing us to use the point-free style
to define powerful bidirectional transformations by composition. We also
demonstrate how to define generic lenses over arbitrary inductive data
types by lifting standard recursion patterns, like folds or unfolds. To ex-
emplify the power of this approach, we “lensify” some standard functions
over naturals and lists, which are tricky to define directly “by-hand” us-
ing explicit recursion.

Keywords: point-free, bidirectional transformations, lenses, recursion
patterns, inductive types.

1 Introduction

With the ever growing list of programming languages and application develop-
ment frameworks, transforming a data format into a different format is essential
to “bridge the gap” between technology layers and ensure sharing of information
among software applications. Moreover, users generally expect transformations
to be bidirectional, in the sense that changes made to one of the models can
be safely propagated to its connected pair (imagine the synchronization of a
laptop’s and a cellphone’s contact list).

The naive way to create a bidirectional transformation is to engineer two uni-
directional transformations together and manually prove that they are somehow
consistent. This is likely to cause a maintenance problem, besides being a noto-
riously expensive and error-prone task. Any change in a data format implies a
redefinition of both transformations, and a new consistency proof.

A better approach is to design a domain-specific language in which one expres-
sion denotes both transformations, which are then guaranteed to be consistent by
construction in the respective semantic space. Following this notion, approaches
to bidirectional transformations have emerged in the most diverse computing
domains, including heterogeneous data synchronization [15,6], software model

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 331–352, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

332 H. Pacheco and A. Cunha

transformation [26], schema evolution [9,4], constraint maintenance for graphi-
cal user interfaces [21], interactive structure editing [19] and relational databases
[7]. By restricting the domain-specific language to particular domains, these ap-
proaches overcome the difficulty of designing bidirectional transformations, and
achieve a neat balance between expressiveness and the robustness imposed by
the consistency constraints.

One of the most successful approaches to bidirectional transformations are the
so-called lenses, proposed by Foster et al. [15] to solve the classical view-update
problem originating from database theory [3]: when a concrete data model is
abstracted into a view, how can changes made to the view be propagated back
as updates to the original model? According to the following diagram, a lens
comprises the definition of three functions involving a concrete data model C
and its abstract counterpart A:

C

get

� A

create

��

A× Cput

��

π1

��

The first ingredient of a lens consists of the definition of a view: function get :
C → A abstracts away details from the concrete model that are irrelevant for a
specific purpose. Since this abstraction implies loss of information, the backwards
transformation put : A × C → C is augmented with knowledge of the original
concrete instance, rendering it capable to restore some information no longer
present in the view. As this is not always possible, a default concrete model is
sometimes reconstructed by applying create : A → C to the view.

Of course, these three functions should be somehow consistent in order to
define a well-behaved lens. First, get must be an abstraction function, i.e, A
shall contain at most as much information as C . In a sense, a lens is a dual
concept of refinement [23,25]. Second, the lens should be acceptable, i.e, updates
to a view cannot be ignored and must be translated exactly. Finally, the lens
should be stable, i.e, if the view does not change, then neither should the source.
These properties will be formally defined in the next section.

As an example, let’s consider as a concrete data model lists of natural num-
bers. A possible lens over this data type is determined by the length of the list.
In Haskell we could define the get function trivially as follows:

data Nat = Zero | Succ Nat
get :: [Nat] → Nat
get [] = Zero
get (x : xs) = Succ (get xs)

Given a natural number, create must generate a default list of that length:

create :: Nat → [Nat]
create Zero = []
create (Succ n) = Zero : create n

Generic Point-free Lenses 333

For the lens to be well-behaved, create could use other defaults but cannot create
a list with a different length. The put function is a bit more tricky. A possible
definition that guarantees well-behavedness is:

put :: (Nat , [Nat]) → [Nat]
put (Zero,) = []
put (Succ n, []) = Zero : put (n, create n)
put (Succ n, x : xs) = x : put (n, xs)

If the view (i.e, the length of the list) remains the same or decreases, elements of
the original list must be used in the new concrete value. If the length increases,
defaults are invented for the new elements.

For more complex data formats and abstractions, the definition of a put func-
tion that guarantees well-behavedness becomes highly complex. As such, Foster
et al. [15] propose a combinatorial approach to the definition of lenses over
generalized trees: complex lenses are defined by composition of more simpler
lenses using a standard set of combinators and recursion. This combinatorial
approach is also central to the so-called point-free style of programming, popu-
larized by John Backus in his 1977 Turing award lecture [2]. In this variable-free
style, functions are defined by composition using a standard set of higher-order
combinators, characterized by a rich set of algebraic laws that make this style
particularly amenable for program calculation.

In this paper we explore precisely this connection and develop a library of
point-free lens combinators. In the next section, we establish that most of the
standard point-free combinators define well-behaved lenses. This opens inter-
esting perspectives towards a lens calculus, with practical applications for the
optimization of complex lenses defined by composition. In the point-free style of
programming, general recursion is usually deterred in favor of more calculation-
friendly recursion patterns. In Section 3 we show how to define generic lenses
over arbitrary inductive data types by lifting standard recursion patterns, namely
folds and unfolds. In principle, this makes it simpler to establish that a lens is
well-behaved, when compared to the general recursion approach followed by Fos-
ter et al. [15], where non-trivial conditions must be proved every time a lens is
defined by recursion. In Section 4 we discuss some relevant related work, and we
conclude in Section 5 with a synthesis of the main contributions and pointers
for future work.

2 Point-free Combinators as Lenses

The rather standard set of point-free combinators that we will use in this paper
is shown in Figure 1. Although we give our examples in Haskell, the semantic
domain will be the Set category, where objects are sets (types) and arrows
are total functions. The most fundamental combinators are the composition of
f : B → C after g : A → B , denoted by f ◦ g : A → C , and the identity function,
denoted by id : A → A. The projections π1 : A × B → A and π2 : A × B → B
project out the left and right components of a pair, respectively, and the split

334 H. Pacheco and A. Cunha

id : A → A
◦ : (B → C) → (A → B) → (A → C)
π1 : A × B → A
π2 : A × B → B
� :: (A → B) → (A → C) → (A → B × C)
× : (A → B) → (C → D) → (A × C → B × D)
i1 : A → A + B
i2 : B → A + B
∇ : (A → C) → (B → C) → (A + B → C)
+ : (A → B) → (C → D) → (A + C → B + D)
! : A → 1
· : B → (A → B)

Fig. 1. Point-free combinators

combinator f � g :A → B × C builds a pair by applying f :A → B and g :A → C
to the same input value. The derived product combinator f × g :A × C → B × D
applies f : A → B and g : C → D to the left and right elements, respectively, of
the input pair in order to build a new pair. The injections i1 : A → A + B and
i2 :B → A+B build left and right alternatives of a disjoint sum, respectively, and
the either combinator f ∇ g : A + B → C applies f : A → C if the input is a left
alternative or g :B → C otherwise. The derived sum combinator f +g :A+C →
B + D uses f : A → B to build a left alternative from a left alternative or
g : C → D otherwise. The bang combinator ! : A → 1 returns the single element
of the terminal object, and, given a constant b : B , b always returns b. Some
of the laws governing these combinators are presented in Appendix A, and can
easily be derived from their uniqueness laws. For more information on point-free
program calculation in general see [5,17,22,11].

Using these combinators, we can give a precise point-free characterization of
well-behaved lenses.

Definition 1 (Lens). A well-behaved lens l , denoted by l : C � A, is a bidi-
rectional transformation that comprises three total functions get : C → A, put :
A × C → C and create : A → C, satisfying the following properties:

get ◦ create = id CreateGet

get ◦ put = π1 PutGet

put ◦ (get � id) = id GetPut

Property CreateGet [6] guarantees that the lens is an abstraction, ensuring
that get is a surjection and create an injection. PutGet and GetPut [15]
guarantee that the lens is acceptable and stable, respectively.

We will now show how to lift most of the point-free combinators of Figure 1 to
lenses. To avoid introducing new notation, we will denote the lens corresponding
to a particular combinator using the same syntax. From the context it should
be clear if we are referring to the lens or the point-free combinator. For some
lenses there is some freedom in the design of backwards transformations (namely,

Generic Point-free Lenses 335

create and put). As such, they can receive extra parameters to plugin in contexts
were such freedom exists.

The simplest cases of bidirectional transformations are isomorphisms. Given
a bijective function f : A → B with inverse f −1 : B → A, there exists a lens
f : A � B with:

get = f
put = f −1 ◦ π1
create = f −1

A primitive combinator that falls under this category is the identity function
id : A � A. Similarly, all usual isomorphisms involving sums and products are
lenses. Here are some that we will use throughout the paper:

swap : A × B � B × A
assocr : (A × B) × C � A × (B × C)
assocl : (A × (B × C)) � ((A × B) × C)
coassocl : A + (B + C) � (A + B) + C
distr : A × (B + C) � (A × B) + (A × C)
distl : (A + B) × C � (A × C) + (B × C)

One of the most important properties of lenses is composability. In point-free,
the composition of two lenses, first defined in [15], can be restated as follows:

∀f : B � A, g : C � B . (f ◦ g) : C � A
get = getf ◦ getg
put = putg ◦ (putf ◦ (id × getg)�π2)
create = createg ◦ createf

If the concrete domain of f and the abstract domain of g have the same type,
then f and g are composable and f ◦ g is a lens with the concrete domain of g
and the abstract domain of f . In the get and create directions, the composed
transformation is just the composition of the respective transformations from f
and g. In the put direction, in order to apply the put functions in sequence, the
original concrete value is duplicated. Note that, while putg consumes the original
concrete value with type C , the concrete value passed to putf , with type B , is
calculated by applying the function getg to the original concrete value.

The projections π1 and π2 will be the main ingredients in defining more com-
plex lenses that project away components of a concrete data type:

∀b ∈ B . π1
b : A × B � A

get = π1
put = id ×π2
create = id � b

∀a ∈ A. π2
a : A × B � B

get = π2
put = swap ◦ (id ×π1)
create = a� id

Since π1 and π2 project the corresponding elements of the product, the backward
transformations have to reconstruct the projected out elements. In create, a

336 H. Pacheco and A. Cunha

default value is inserted for the “lost” value of the pair, while put copies it from
the original pair. Therefore, the derived lenses accept additional parameters (the
constants a and b), represented using superscript.

In general, the split of two lenses f : C � A and g : C � B sharing the same
domain is not a well-behaved lens f � g : C � A × B . For example, the dupli-
cation combinator id � id : A � A × A would be a valid lens iff the invariant
π1 = π2 was imposed on the codomain A × A, stating that both components
of the pair are always equal. However, if f and g project distinct concrete in-
formation from C then it is possible to define a well-behaved lens. An example
of such a lens is the swap isomorphism π2 �π1 : A × B � B × A. When this
non-interference between f and g exists, updates to the view can be propagated
back to the concrete model by independent inspection of both components of
the pair. In practice this means that, when defining put : (A × B) × C → C
the order of application of putf : A × C → C and putg : B × C → C should
be irrelevant. Formally, this non-interference condition can be expressed by the
following equality:

putf ◦ (id × putg) ◦ assocr = putg ◦ (id × putf) ◦ assocr ◦ (swap × id)

Given a split f � g where this non-interference condition is valid, it should be
possible to lift it into a well-behaved lens by defining put as any of the above
expressions (for example, putf ◦ (id × putg) ◦ assocr). Unfortunately, we are un-
aware of a general definition for create that obeys the CreateGet law, which
prevents us from giving a generic definition of split as a well-behaved lens. For
swap it is rather easy to show that the non-interference condition is valid, that
the suggested definition for put is equal to the expected swap ◦ π1 (according to
the previous generic definition of a bijection as a well-behaved lens), and that
create can be done using swap itself.

Another instance of split that satisfies the non-interference condition is the
product combinator f × g = f ◦ π1 � g ◦ π2. Again, it is easy to show that any
of the above alternative definitions for put is equivalent to (putf × putg) ◦ distp,
where distp is the isomorphism given by:

distp : (C × D) × (A × B) → (C × A) × (D × B)
distp = (π1 ×π1)� (π2 × π2) Distp-Def

For this particular split, creating a concrete value from an abstract one can be
done by independently creating both components of the pair, leading to the
following definition:

∀f : C � A, g : D � B . f × g : C × D � A × B
get = getf × getg
put = (putf × putg) ◦ distp
create = createf × createg

In practice, most expressions involving split that satisfy non-interference can be
transformed into point-free expressions using other valid lens product combina-
tors and isomorphisms (like × or swap).

Generic Point-free Lenses 337

Moving to sums, we have two alternative ways to generically lift the either
combinator into a well-behaved lens:

∀f : A → C , g : B → C . f •∇ g : A + B � C
get = getf ∇ getg
put = (putf + putg) ◦ distr
create = i1 ◦ createf

∀f : A → C , g : B → C . f ∇• g : A + B � C
get = getf ∇ getg
put = (putf + putg) ◦ distr
create = i2 ◦ createg

When putting back, putf is used if the concrete value is a left alternative and
putg otherwise. For create we have two alternatives – either output a left or
a right alternative – originating left-biased (•∇) and right-biased (∇•) versions
of this lens. Assuming that predicates are represented using sums (for example,
using p :A → A+A instead of p :A → Bool), this lens corresponds to a point-free
formulation of the concrete conditional combinator ccond from [15].

The sum injections i1 : A → A + B and i2 : B → A + B are non-surjective
functions and classic examples of refinements [9]. The only way to lift them into
lenses would be by imposing an invariant on the codomain A + B , constraining
its values to be all left or all right alternatives, respectively. Since this seman-
tic constraint is not supported by standard type systems, unrestricted usage
of the injections will be disallowed for well-behaved lenses. Notwithstanding, if
injections are used inside an expression that is jointly surjective, they can some-
times build up well-behaved lenses. Two particular useful cases are the lenses
i1∇ f : A + C � A + B and f ∇ i2 : C + B � A + B , where f : C → A + B is
any lens. Notice that these eithers are necessarily surjective because f , being a
well-behaved lens, is already surjective. For example, the first lens can be defined
as follows:

∀f : C � A + B . i1∇ f : A + C � A + B
get = i1∇ getf
put = ((id + createf ◦ i2) ◦ π1∇ i2 ◦ putf) ◦ distr
create = id + createf ◦ i2

For the sum combinator we can have the following lifting into a lens:

∀f : C � A, g : D � B . f + g : C + D � A + B
get = getf + getg
put = (putf ∇ createf ◦ π1 + createg ◦ π1∇ putg) ◦ dists
create = createf + createg

where dists is the following distribution combinator over sums:

dists : (A + B) × (C + D) → (A × C + A × D) + (B × C + B × D)
dists = (distr + distr) ◦ distl Dists-Def

338 H. Pacheco and A. Cunha

In the definition of put , dists is first used to span the four possible cases. If the
abstract and concrete values match (cases A × C and B × D), then putf and
putg are applied as expected. Otherwise (cases A × D and B × C), we ignore the
“out of sync” concrete values and use createf and createg to generate concrete
values of the correct type. The definition of create is trivial and is merely the
sum of the create functions of f and g. This sum combinator is essentially the
point-free homologous of the abstract conditional combinator acond from [15].

Actually, + can be lifted into a well-behaved lens in many different ways.
Another alternative is the following, for arbitrary functions h : A × D → C and
i : B × C → D , although the first definition gives more natural results in most
cases and will be used by default:

∀f : C � A, g : D � B . (f + g)h,i : C + D � A + B
get = getf + getg
put = (putf + putg) ◦ (id ∇ (π1 � h)+ (π1 � i)∇ id) ◦ dists
create = createf + createg

As with projections, in order to lift ! : C → 1 into a lens, a default value must
be provided to be returned by the create function. The definition is trivial:

∀c ∈ C . !c : C � 1
get = !
put = π2
create = c

Likewise to sum injections, the constant combinator · :B → (A → B), that given
a value b ∈ B returns b for all input values, cannot be lifted into a well-behaved
lens unless an invariant is imposed on the abstract type stating that all its values
are equal to b. Again, there exist particular expressions in which this combinator
forms a well-behaved lens, such as b∇ f :A+C � B or f ∇ b :C +A � B , where
f : C � B is any other well-behaved lens.

3 Recursion Patterns as Lenses

In this section, we investigate recursive lenses over inductive data types. Most
user defined data types can be defined as the fixpoint of a polynomial functor.
Given a base functor F , the inductive type generated by its least fixpoint will be
denoted by μF . A polynomial functor is either the identity functor Id (denoting
recursive invocation), the constant functor A or the lifting of the sum ⊕ and
product bifunctors ⊗. For example, for lists we have [A] = μLA, where LA =
1⊕A⊗ Id , and for naturals Nat = μN , where N = 1⊕ Id . Associated with
each data type μF we also have two unique functions inF : F μF → μF and
outF : μF → F μF , that are each other’s inverse. They allow us to encode and
inspect values of the given type, respectively. The application of out to a type
results on a one-level unfolding to a sum-of-products representation capable of
being processed with point-free combinators.

Generic Point-free Lenses 339

Given a functor F and a function f : A → B , the functor mapping F f :
F A → F B is a function that preserves the functorial structure and modifies
all the instances of the type argument A into instances of type B . It can be
defined inductively on the functor F , such that the argument f is applied to the
recursive occurrences inside the sums-of-products structure and constants are
left unchanged:

F f : F A → F B
Id f = f
T f = id
(F ⊗G) f = F f ×G f
(F ⊕G) f = F f + G f

On the other side, a natural transformation η between functors F and G, denoted
by η : F →̇ G, is a function that transforms instances of F into instances of G
while preserving the inner instances of the polymorphic type argument. It assigns
to each type A an arrow ηA : F A → G A such that, for any function f : A → B ,
the following naturality condition holds:

G f ◦ ηA = ηB ◦ F f Nat-Swap

Instead of defining lenses by general recursion, we resort to well-known recursion
patterns, and use their powerful algebraic laws (see Appendix A) to prove that
the resulting lenses are well-behaved. The most fundamental combinator is the
fold or catamorphism that encodes the recursion pattern of iteration. Given an
algebra g : F A → A, the catamorphism ([g])F : μF → A is the unique function
that makes the hereunder diagram commute:

μF

([g])F
��

outF �� F μF

F ([g])F
��

A F Ag
��

A catamorphism recursively consumes a data type μF by replacing its construc-
tors with the given algebra g. A well-known example is the length : [A] → Nat
function presented in the introduction, that can be defined as the following
catamorphism:

length = ([inN ◦ (id + π2)])LA

Another example of a catamorphism is the function filter left : [A + B] → [A]
that filters all the left alternatives from a list of optional elements:

filter left :: [Either a b] → [a]
filter left [] = []
filter left (Left x : xs) = x : filter left xs
filter left (Right x : xs) = filter left xs

340 H. Pacheco and A. Cunha

Using the basic isomorphisms presented before, it is not difficult to put together
a point-free algebra with the intended behaviour:

filter left = ([(inLA ∇π2) ◦ coassocl ◦ (id + distl)])LA+B

The dual recursion pattern of catamorphism is the unfold or anamorphism. Given
a coalgebra h : A → F A, the anamorphism
�(h)�F : A → νF is a function that,
given an element of A, builds a (possibly infinite) element of the coinductive
datatype νF (the greatest fixpoint of F). The coalgebra h is used to decide
when generation stops and, in case it proceeds, which “seeds” should be used
to generate the recursive occurrences of νF . Here we will only be interested
in a specific kind of unfolds, namely those that always terminate. Not only we
want all our lenses to terminate, but we also want to be able to freely compose
them with catamorphisms - this composition is not always well-defined because
anamorphisms can generate infinite values that are not part of the least fixed
point consumed by catamorphisms. If we restrict ourselves to recursive [8] (or
reductive [1]) coalgebras, the resulting morphism (to be denoted by recursive
anamorphism) is guaranteed to halt in finitely many steps. A recursive coalgebra
h : A → F A is essentially one that guarantees that all As contained in the
resulting F A are somehow smaller than its input. Capretta et al. [8] give a
nice formal definition and provide a set of constructions for building recursive
coalgebras out of simpler ones. Since outF : μF → F μF is a final recursive
coalgebra, we can safely compose catamorphisms with recursive anamorphisms.
Given a recursive coalgebra h :A → F A, the recursive anamorphism [
�(h)�]F :A →
μF is the unique function that makes the hereunder diagram commute:

μF F μF
inF��

A

[��(h)��]F

��

h
�� F A

F [��(h)��]F

��

Given this uniqueness property, the recursive anamorphism obeys the same laws
as the normal anamorphism, namely fusion. A trivial example of a recursive
anamorphism to naturals is again the length function:

length = [
�((id + π2) ◦ outLA)�]N

Notice that id +π2 :LA →̇ N and that a composition of a natural transformation
with a recursive coalgebra is again a recursive coalgebra [8, Proposition 3.9], so
this is clearly a recursive anamorphism. In fact, every catamorphism ([inG ◦ η])F ,
where η : F →̇ G is a natural transformation can also be defined by a recursive
anamorphism [
�(η ◦ outF)�]G , and vice-versa. A classical example of a recursive
anamorphism that cannot be defined using a catamorphism is the function zip :
[A] × [B] → [A × B], that zips two lists together into a list of pairs:

Generic Point-free Lenses 341

zip :: ([a], [b]) → [(a, b)]
zip (x : xs, y : ys) = (x , y) : zip (xs , ys)
zip = []

In the point-free style it can be redefined as follows:

zip = [
�((! + distp) ◦ coassocl ◦ dists ◦ (outLA × outLB))�]LA × B

The coalgebra guarantees that the output list stops being generated when at
least one of the inputs is empty. Otherwise, both tails are used as “seed” to
recursively generate the tail of the output list.

The composition of a catamorphism after an anamorphism is known as hylo-
morphism, but as mentioned above, this composition is not always well-defined in
Set. Here, we will be interested in hylomorphisms that are guaranteed to termi-
nate, namely those where the cata is composed with a recursive anamorphism:

[[[g, h]]]F = ([g])F ◦ [
�(h)�]F Hylo-Split

These recursive hylomorphisms (the unique coalgebra-to-algebra morphisms of
[8]) are quite amenable to program calculation because they enjoy a uniqueness
law similar to the other recursion patterns:

[[[g, h]]]F = f ⇔ g ◦ F f ◦ h = f Hylo-Uniq

3.1 Functor Mapping

We can lift functor mapping into a lens combinator by applying regular functor
mapping to each component of a lens, as follows:

∀f : C � A. F f : F C � F A
get = F getf
put = F putf ◦ fzipF createf

create = F createf

The interesting snippet is the fzipF combinator, responsible for zipping abstract
and concrete instances of the same F -structure, and that is defined below:

fzipF : (A → C) → F A × F C → F (A × C)
fzipId f = id
fzipT f = π1

fzip(F ⊗G) f = (fzipF f × fzipG f) ◦ distp
fzip(F ⊕G) f = (fzipF f ∇F (id � f) ◦ π1 +G (id � f) ◦ π1∇ fzipG f) ◦ dists

As usual, fzip gives preference to the values from the abstract data type. In the
case of sums (similarly to the definition of the + lens), fzip is applied recursively
to the sub-functors F and G, and whenever the abstract and concrete values
are “out of sync”, the abstract value is preserved and a new concrete value is
created from the abstract value, by invoking the argument function.

342 H. Pacheco and A. Cunha

We can polytypically prove (in the style of [18]) the following laws about fzip:

F π1 ◦ fzipF f = π1 Fzip-Cancel

fzipF f ◦ (F g �F h) = F (g � h) Fzip-Split

The first states that fzipF cannot modify the shape of the abstract type, nor the
data contained in it. The second states that zipping two “in sync” values can be
trivially done just by mapping. The proof of the first property can be found in
Appendix B. The other proof is similar and is omitted.

3.2 Anamorphism

At this point, we have enough ingredients to “lensify” anamorphisms. For the
resulting lens to be well-behaved, the coalgebra must be recursive and itself a
well-behaved lens. The generic definition is as follows:

∀f : A � G A. [
�(f)�]G : A � μG
get = [
�(getf)�]G
put = [[[putf , fzipG create ◦ (outG × getf)�π2]]]G ⊗A

create = ([createf])G

Knowing that createf is an algebra with type G A → A, create is trivially
defined using a catamorphism. The generic definition of put uses an accumulation
technique implemented as a recursive hylomorphism: it proceeds inductively over
the abstract value, using the concrete value as an accumulator. The function that
propagates the accumulator to recursive calls is fzipG create◦(outG × getf). The
diagram for this hylomorphism is the following:

μG × A

put

��

outG × getf ��
�
π2

��
G μG × G A

fzipG create �� G (μG × A) × A

G put × id

��
A G A × A

putf

��

The proof that this lens is well-behaved is given in Appendix B. The proof of laws
CreateGet and PutGet can be done using the fusion law for anamorphisms.
The proof of law GetPut uses hylomorphism fusion and Hylo-Uniq.

By applying this definition to the zip function, we get the expected defi-
nitions for create and put . For better understanding, we present them using
Haskell syntax and explicit recursion (easily derivable from the original point-free
definition):

create :: [(a, b)] → ([a], [b])
create [] = ([], [])
create ((x , y) : t) = let (xs , ys) = create t in (x : xs, y : ys)

Generic Point-free Lenses 343

put :: ([(a, b)], ([a], [b])) → ([a], [b])
put ([], ([], r)) = ([], r)
put ([], (l , [])) = (l , [])
put ((x , y) : t , (: l , : r)) = let (xs , ys) = put (t , (l , r)) in (x : xs, y : ys)
put (l ,) = create l

The create induced by this lens is just the unzip function, a fold that recursively
splits a list of pairs into two lists. The put has a more intricate behaviour: it only
recovers elements of one of the original concrete lists when the updated abstract
list is smaller than it but with the exact same length of the other concrete list.
This guarantees that zipping the result again yields the same view. For example,
put ([(1, 2), (3, 4)], ([4, 5], [6, 7, 8, 9])) returns ([1, 3], [2, 4, 8, 9]). Notice how the
elements 8 and 9 of the bigger list are recovered.

3.3 Catamorphism

Catamorphisms can be lifted to well-behaved lenses as follows:

∀f : F A � A. ([f])F : μF � A
get = ([getf])F
put = [
�(fzipF create ◦ (putf ◦ (id ×G get)�π2) ◦ (id × outF))�]F
create = [
�(createf)�]F

Notice how put , encoded as an anamorphism, still gives preference to abstract
values by using fzip, as depicted in the following diagram:

μF F μF
inF��

A × μF

put

��

id × outF

�� A × F μF
id ×F get

��
�
π2

��
A × F A

putf

�� F A × F μF
fzipF create

�� F (A×μF)

F put

��

To prove that ([f]) is a well-behaved lens, we must prove that both put and create
are recursive anamorphisms. Given these conditions, the proof is very similar to
the proof for anamorphisms and is omitted.

The filter left function, using the left-biased version of the either combinator,
is an example of a fold lens where it is not difficult to prove that both the create
and put are indeed recursive. Its corresponding create is a simple unfold that
maps a list into a list of left alternatives:

create :: [a] → [Either a b]
create [] = []
create (x : xs) = Left x : create xs

The put function restores right alternatives from the original concrete list:

344 H. Pacheco and A. Cunha

put :: ([a], [Either a b]) → [Either a b]
put (xs,Right y : ys) = Right y : put (xs , ys)
put ([],) = []
put (x : xs , []) = Left x : put (xs , create xs)
put (x : xs ,Left y : ys) = Left x : put (xs , ys)

For an example of a catamorphism lens whose create function is not recursive,
just replace the left-biased either combinator by the right-biased version in the
point-free definition presented above. This change yields the following reshaping
of create, assuming b to be the default constant that parameterizes π2:

create :: [a] → [Either a b]
create xs = Right b : create xs

3.4 Natural Transformations

A special case of the previous lenses occurs when the forward transformation is
both expressible as a catamorphism and an anamorphism with the same natural
transformation in the recursive gene. We name a lens f describing a bidirectional
natural transformation between functors F and G a natural lens and type it with
the signature f :F �̇ G, where get :F →̇ G, put :G ⊗F →̇ F and create :G →̇ F .
Unlike the previous cases, where we still have to check that the coalgebras are
recursive, given a natural lens η : F �̇ G, both ([inG ◦ η])F and [
�(η ◦ outF)�]G
immediately determine well-behaved lenses between μF and μG because, as
mentioned before, termination is guaranteed.

There are several examples of these lenses. As seen before, the length function
is a well-known example that can be expressed either as a catamorphism on lists
or an anamorphism to naturals. Instantiating the input type to lists of naturals
and the default constant that parameterizes π2 to Zero, the forward and back-
ward functions induced by this lens are exactly the same as the ones presented in
the introduction. Another lens that establishes a natural transformation between
base functors is mapping over lists:

∀f : C � A. map f = ([inLA ◦ (id + f × id)])LC
: [C] � [A]

This definition can be generalized for any parametric type D defined inductively
over a bifunctor B :

∀f : C � A. gmap f = ([inB A ◦ B f id])B C : D C � D A

3.5 Hylomorphisms

It is well known that most recursive functions can be encoded using hylomor-
phisms over polynomial functors. Given that Hylo-Split allows us to factorize
a hylomorphism into the composition of a catamorphism after an anamorphism,

Generic Point-free Lenses 345

the range of recursive functions that we can lift to well-behaved lenses is con-
siderably enlarged. Of course the algebras and coalgebras of the hylomorphism
must themselves be lenses (for example, built using the combinators presented
in Section 2), and the coalgebras must be recursive.

Take as an example the natural number addition function plus :Nat × Nat →
Nat :

plus :: (Nat ,Nat) → Nat
plus (Zero,m) = m
plus (Succ n,m) = Succ (plus (n,m))

Although it is not a fold neither an unfold, it can be defined as the following
hylomorphism, where both the algebra and the recursive coalgebra are lenses:

plus = [[[inN ◦ (outN ∇ i2), (π2 + id) ◦ distl ◦ (outN × id)]]]Nat ⊕ Id

In order to lift this function into a well-behaved lens, the create and put functions
should guarantee that the sum of the generated pair of numbers equals the
abstract value. The create automatically induced by the techniques presented
above simply creates a pair with the abstract value and a Zero as the second
element:

create :: Nat → (Nat ,Nat)
create n = (n,Zero)

As usual, the induced put function is a bit more tricky: if the abstract value is
greater than the first element of the concrete pair, that element is preserved and
the second element becomes the difference between both; if the abstract value is
smaller it just pairs, it with zero likewise to create:

put :: (Nat , (Nat ,Nat)) → (Nat ,Nat)
put (Zero,) = (Zero,Zero)
put (n, (Zero, o)) = let (a, b) = create n in (b, a)
put (Succ n, (Succ m, o)) = let (a, b) = put (n, (m, o)) in (Succ a, b)

4 Related Work

Our point-free framework can be seen as a domain-specific language similar to
the language for lenses over trees first developed by Foster et al. [15]. While
our generic combinators rely on the sum-of-products representation of inductive
types, they represent all recursive types as generalized trees. They also devise a
complex set-based type system with invariants to precisely define the domains
for which their combinators are well-behaved. Using such semantic types [16],
they are able to define well-behaved lenses like c, for an arbitrary constant c.
We rely in a syntactic and more standard (and decidable) type system that is
implemented in functional programming languages like Haskell or ML, with the

346 H. Pacheco and A. Cunha

counterpart that we have a more limited set of well-behaved lenses. Additionally,
we identify precise termination conditions to verify in order to guarantee that
recursive lenses like folds and unfolds constitute well-behaved lenses. We believe
that using the techniques presented in [1,8] these conditions are easier to verify
than the conditions stated in [15] concerning general recursion.

On a more algebraic tone, researchers from the University of Tokyo have
studied the automatic inversion of forward transformations defined in a point-free
language of injective functions, to be used in a structure XML editor supporting
views [24]. The idea is to move the burden of information preservation from put
to get as to make put :A → C stateless and get :C → A injective. In practice this
setting resembles that of data refinement, as attested by the required put ◦get =
id property. In order to deal with duplication and structural changes, editing
tags are introduced in the domain of put . In the case of data duplication, if only
one element of the resulting pair is updated (and thus marked with an edit tag),
a view-to-view roundtrip is then able to propagate the modification to the other
element and restore the invariant in the view. In addition, a weaker version of
PutGet, baptized PutGetPut (put ◦ get ◦ put � put), is required, to ensure
that, when editing a view, applying put to update the source and computing the
new view with get is sufficient to synchronize all the changes. The preorder �
reflects the partiality of put , given that the domain of get may be larger than
the range of put .

A follow-up work approached the automatic derivation of backward trans-
formations based on a notion of view-update under constant complement [20].
Instead of assuming forward injective functions, they now take any get : C → A
and derive an explicit complement function getc : C → H , such that the tupled
function get � getc :C → A × H is injective. The put function is then calculated
from the specification (get � getc)−1 ◦ (id × getc). The bidirectional properties
follow those of closed view-updating [3], where the source is hidden from the
users when the view is updated. Besides the fundamental stability condition,
there are undoability and composability conditions that, as shown by Diskin
[14], yield precisely the very well-behaved lenses first presented in [15]. However,
these additional properties are defined modulo partiality of put since, according
to the constant complement approach, put should forbid any changes to the in-
formation that the complement has kept. For instance, inserting and removing
elements are forbidden updates in their running example of a filtering lens.

To avoid restricting the syntax of the forward transformations, Voigtländer al-
lows normal Haskell functions to be used in lens definitions [27]. In this scenario,
reasonable backward transformations can be derived by observing the runtime
behaviour of the forward transformations. A higher-order bidirectionalizer bff
is defined that receives a polymorphic get function and returns the correspond-
ing put function, ensuring bidirectional properties similar to [20]. Although, for
example, the mapping lens is not definable in this framework, there are some
lenses supported by bff that are not expressible with our combinators, namely
polymorphic functions that duplicate information. However, likewise to [20], it is
debatable how much bidirectionalization is truly achieved, concerning the degree

Generic Point-free Lenses 347

of partiality of the backward transformation. For example, in this framework the
put function of the length lens would not try to synchronize updates that change
the shape of the abstract view, and thus would only be defined for the cases
when the length of the original list remains constant.

Wang et al. [28] propose a language of right-invertible point-free combinators
denoting total transformations, in order to define a view mechanism on datatypes
that enables sound equational reasoning at the view level. However, they only
consider pure abstractions (i.e, without a put function that takes into account
old concrete values), and the chosen right-inverses of most of their combinators
essentially coincide with the create functions of our lens combinators. Since their
language also includes non-surjective datatype constructors as primitives, an ad-
ditional compile-time check is required to test the joint surjectivity of programs
involving constructors. The inclusion of a fold combinator also raises concerns
regarding the termination of anamorphisms as right-inverses, and, likewise to
our approach, additional constraints on the coalgebras must be checked.

In previous work, we have proposed a two-level bidirectional transformation
framework (2LT) for data refinement [9,4], where forwards and backwards trans-
formations were also specified in the point-free style, and type-safeness of the
value migration functions was ensured with a deep embedding in Haskell. Later,
we have shown how point-free program calculation could be used for the opti-
mization of large compositions of bidirectional transformations and structure-shy
query migration from the source to the target types [12,13]. In this paper, we
tackle the dual problem of abstraction, using similar techniques to define generic
point-free lenses: we intend to incorporate them into the 2LT framework, in or-
der to enlarge the scope of model transformation scenarios to which it can be
applied, and benefit from the optimization strategies previously implemented.

5 Conclusion

In this paper we have shown how to lift most of the standard point-free com-
binators and recursion patterns to well-behaved lenses. This enables the def-
inition of elegant, generic, and, hopefully, intuitive lenses over inductive data
types. Concerning recursion, we have identified precise termination conditions
that allow folds and unfolds to be lifted to well-behaved lenses. Notice that
we can also tackle arbitrary recursive lenses by expressing them as hylomor-
phisms, i.e the composition of a fold after an unfold. Using the techniques de-
scribed in [10], we have also implemented a Haskell library, with the combinators
presented in this paper and some more, to aid the construction of functional
bidirectional programs by composition. The library is extensible, by supporting
user-defined lens combinators, and is available through the Hackage package
repository (http://hackage.haskell.org) under the name pointless-lenses,
honoring a common joke about point-free programming.

Complex lens transformations suffer from degraded performance due to the
cluttering of intermediate structures originated from the combination of smaller
transformations. In the short run, we intend to apply the techniques developed

http://hackage.haskell.org

348 H. Pacheco and A. Cunha

for point-free refinement optimization [12,13] to the optimization of complex
lenses defined by composition. Oliveira [25] already showed that a relational
point-free calculus can be a more natural setting to formalize bidirectional trans-
formations. This relational calculus can provide several advantages, such as rea-
soning about termination, computing inverses of arbitrary transformations, and
expressing structural invariants over data-types. The latter is of utmost impor-
tance to statically calculate the domain on which a put function is well-defined,
thus widening the set of potential well-behaved lenses to combinators like split
or the injections.

Acknowledgments

We would like to thank the anonymous referees for the many insightful com-
ments, and José Bacelar Almeida for the helpful discussions concerning
termination.

References

1. Backhouse, R., Doornbos, H.: Mathematics of recursive program construction.
Manuscript (2001), http://www.cs.nott.ac.uk/rcb/MPC/papers

2. Backus, J.: Can programming be liberated from the von Neumann style? a func-
tional style and its algebra of programs. Communications of the ACM 21(8),
613–641 (1978)

3. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (1981)

4. Berdaguer, P., Cunha, A., Pacheco, H., Visser, J.: Coupled schema transformation
and data: Conversion for XML and SQL. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 290–304. Springer, Heidelberg (2006)

5. Bird, R., de Moor, O.: The Algebra of Programming. Prentice-Hall, Englewood
Cliffs (1997)

6. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’08),
pp. 407–419. ACM, New York (2008)

7. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for up-
datable views. In: Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS’06), pp. 338–347. ACM,
New York (2006)

8. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Infor-
mation and Computation 204(4), 437–468 (2006)

9. Cunha, A., Oliveira, J.N., Visser, J.: Type-safe two-level data transformation. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 284–299.
Springer, Heidelberg (2006)

10. Cunha, A., Pacheco, H.: Algebraic specialization of generic functions for recur-
sive types. In: Proceedings of the 2nd Workshop on Mathematically Structured
Functional Programming (MSFP’08). ENTCS, Elsevier Science Publishers B. V.,
Amsterdam (2008)

http://www.cs.nott.ac.uk/rcb/MPC/papers

Generic Point-free Lenses 349

11. Cunha, A., Pinto, J.S., Proença, J.: A framework for point-free program transfor-
mation. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015,
pp. 1–18. Springer, Heidelberg (2006)

12. Cunha, A., Visser, J.: Strongly typed rewriting for coupled software transformation.
Electronic Notes in Theoretical Computer Science 174(1), 17–34 (2007)

13. Cunha, A., Visser, J.: Transformation of structure-shy programs with applica-
tion to XPath queries and strategic functions. Science of Computer Programming
(to appear, 2010)

14. Diskin, Z.: Algebraic Models for Bidirectional Model Synchronization. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 21–36. Springer, Heidelberg (2008)

15. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007)

16. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. Journal of the
ACM 55(4), 1–64 (2008)

17. Gibbons, J.: Calculating functional programs. In: Blackhouse, R., Crole, R.L.,
Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Pro-
gram Construction. LNCS, vol. 2297, pp. 149–203. Springer, Heidelberg (2002)

18. Hinze, R.: Generic programs and proofs. Bonn University, Habilitation (2000)
19. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured

documents based on bidirectional transformations. Higher Order and Symbolic
Computation 21(1-2), 89–118 (2008)

20. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming (ICFP’07), pp. 47–58. ACM, New York (2007)

21. Meertens, L.: Designing constraint maintainers for user interaction (1998),
Manuscript available at, http://www.kestrel.edu/home/people/meertens

22. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 124–144. Springer, Heidelberg (1991)

23. Morgan, C., Gardiner, P.H.B.: Data refinement by calculation. Acta Informat-
ica 27(6), 481–503 (1990)

24. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

25. Oliveira, J.N.: Data transformation by calculation. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) Generative and Transformational Techniques in Software Engi-
neering II. LNCS, vol. 5235, pp. 134–195. Springer, Heidelberg (2008)

26. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

27. Voigtländer, J.: Bidirectionalization for free! (Pearl). In: Proceedings of the 36th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’09), pp. 165–176. ACM, New York (2009)

28. Wang, M., Gibbons, J., Matsuda, K., Hu, Z.: Translucent Abstraction: Safe Views
through Invertible Programming. Draft (2010),
http://web.comlab.ox.ac.uk/files/2280/total.pdf

http://www.kestrel.edu/home/people/meertens
http://web.comlab.ox.ac.uk/files/2280/total.pdf

350 H. Pacheco and A. Cunha

A Point-free Laws
f ◦ id = f ∧ id ◦ f = f Id-Nat

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-Assoc

f ◦ h = g ◦ h ⇐ f = g Leibniz

π1�π2 = id ×-Reflex

π1 ◦ (f � g) = f ∧ π2 ◦ (f � g) = g ×-Cancel

(f � g) ◦ h = f ◦ h � g ◦ h ×-Fusion

(f × g) ◦ (h� i) = f ◦ h � g ◦ i ×-Absor

(π1 ∇π1) ◦ distr = π1 Distr-Fst

(π1 + π1) ◦ distl = π1 Distl-Fst

(f × g) ◦ (h × i) = f ◦ h × g ◦ i ×-Functor-Comp

f ◦ (g ∇ h) = f ◦ g ∇ f ◦ h +-Absor

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-Functor-Comp

inF ◦ outF = idμF ∧ outF ◦ inF = idF μF In-Out-Iso

F f ◦ F g = F (f ◦ g) Functor-Comp

F id = id Functor-Id

([g])F ◦ inF = g ◦ F ([g])F Cata-Cancel

f ◦ ([g])F = ([h])F ⇐ f ◦ g = h ◦ F f Cata-Fusion

[
�(outF)�]F = id Ana-Reflex

outF ◦ [
�(h)�]F = F [
�(h)�]F ◦ h Ana-Cancel

[
�(g)�]F ◦ f = [
�(h)�]μF ⇐ g ◦ f = F f ◦ h Ana-Fusion

[[[g, h]]]F = g ◦ F [[[g, h]]]F ◦ h Hylo-Cancel

g ◦ [[[h, i]]]F ◦ j = [[[k , l]]]F ⇐ g ◦ h = k ◦ F g ∧ i ◦ j = F j ◦ l Hylo-Fusion

B Proofs

Proof ([��(f)�]G is a well-behaved lens).

get ◦ create = id
⇔ {definition of get ; Ana-Reflex}
[��(getf)�]G ◦ create = [��(outG)�]G
⇐ {Ana-Fusion}
getf ◦ create = G create ◦ outG
⇔ {definition of create ; Cata-Cancel}
getf ◦ createf ◦ G create ◦ outG = G create ◦ outG
⇐ {Leibniz}
getf ◦ createf = id
⇔ {CreateGet}
true

get ◦ put
= {definition of get }

Generic Point-free Lenses 351

[��(getf)�]G ◦ put
= {Ana-Fusion; definition of put }

getf ◦ [[[putf , fzipG create ◦ (outG × getf)�π2]]]G ⊗A = G put ◦ h

⇔ {Hylo-Cancel}
getf ◦ putf ◦ (G ⊗A) put ◦ (fzipG create ◦ (outG × getf)�π2) = G put ◦ h
⇔ {PutGet; ×-Functor-Comp}
π1 ◦ (G put ◦ fzipG create ◦ (outG × getf)�π2)
⇔ {×-Cancel}
G put ◦ fzipG create ◦ (outG × getf) = G put ◦ fzipG create ◦ (outG × getf)

[��(fzipG create ◦ (outG × getf))�]G
= {Ana-Fusion}

G π1 ◦ fzipG create ◦ (outG × getf) = outG ◦ π1

⇔ {Fzip-Cancel; × -Cancel}
outG ◦ π1 = outG ◦ π1

[��(outG)�]G ◦ π1

= {Ana-Reflex}
π1

put ◦ (get � id)
= {definition of put }
[[[putf , (fzipG create ◦ (id × getf)�π2) ◦ (outG × id)]]]G ⊗A ◦ (get � id)
= {Hylo-Fusion}

(fzipG create ◦ (id × getf)�π2) ◦ (outG × id) ◦ (get � id)
= (G ⊗A) (get � id) ◦ (getf � id)
⇔ {×-Absor; × -Absor; × -Cancel}
(fzipG create ◦ (outG ◦ get � getf)� id)
= (G (get � id)× id) ◦ (getf � id)
⇔ {Ana-Cancel; × -Fusion}
(fzipG create ◦ (G get � id) ◦ getf � id)
= (G (get � id)× id) ◦ (getf � id)
⇔ {Fzip-Split; × -Absor}
(G (get � id) ◦ get � id) = (G (get � id) ◦ getf � id)

[[[putf , getf � id]]]G ⊗A = id

= {Hylo-Uniq; GetPut}
id

Proof (Fzip-Cancel).

Id π1 ◦ fzipId f
= {Fzip-Def; Id-Nat}
π1

T π1 ◦ fzipT f
= {Fzip-Def; Id-Nat}
π1

(F ⊗G) π1 ◦ fzipF ⊗G f
= {Fzip-Def}

352 H. Pacheco and A. Cunha

(F π1×G π1) ◦ (fzipF f × fzipG f) ◦ distp
= {×-Functor-Comp; Fzip-Cancel; Fzip-Cancel}
(π1 ×π1) ◦ distp
= {Distp-Def; × -Absor; × -Cancel; × -Cancel}
π1 ◦ π1�π2 ◦ π1
= {×-Fusion; × -Reflex; Id-Nat}
π1

(F ⊕G) π1 ◦ fzipF ⊕G f
= {Fzip-Def}
(F π1 +G π1) ◦ (fzipF f ∇F (id � f) ◦ π1 +G (id � f) ◦ π1 ∇ fzipG f)
◦ dists
= {+-Functor-Comp; +-Absor; +-Absor}
(F π1 ◦ fzipF f ∇F π1 ◦ F (id � f) ◦ π1 +G π1 ◦G (id � f) ◦ π1 ∇G π1
◦ fzipG) ◦ dists
= {Fzip-Cancel; Fzip-Cancel; Functor-Comp; Functor-Comp}
(π1 ∇F (π1 ◦ (id � f)) ◦ π1 +G (π1 ◦ (id � f)) ◦ π1 ∇π1) ◦ dists
= {Functor-Id; Functor-Id}
((π1 ∇π1)+ (π1 ∇π1)) ◦ dists
= {Dists-Def; Distr-Fst; Distr-Fst}
(π1 +π1) ◦ distl
= {Distl-Fst}
π1

Formal Derivation of Concurrent Garbage
Collectors

Dusko Pavlovic1, Peter Pepper2, and Douglas R. Smith1

1 Kestrel Institute, Palo Alto, California
{dusko,smith}@kestrel.edu

2 Technische Universität Berlin and Fraunhofer FIRST, Berlin
pepper@cs.tu-berlin.de

Abstract. Concurrent garbage collectors are notoriously difficult to im-
plement correctly. Previous approaches to the issue of producing correct
collectors have mainly been based on posit-and-prove verification or on
the application of domain-specific templates and transformations. We
show how to derive the upper reaches of a family of concurrent garbage
collectors by refinement from a formal specification, emphasizing the
application of domain-independent design theories and transformations.
A key contribution is an extension to the classical lattice-theoretic fix-
point theorems to account for the dynamics of concurrent mutation and
collection.

1 Introduction

Concurrent collectors are extremely complex and error-prone. Since such collec-
tors now form part of the trusted computing base of a large portion of the world’s
mission-critical software infrastructure, such unreliability is unacceptable [21].
The challenge has been to find a way to provide mathematical assurance of
the correctness of concurrent collectors without doing harm to the productivity
of the programmers. The latter aspect still is a major obstacle in verification-
oriented systems. Interactive theorem provers may need thousands of lines of
proof scripts or hundreds of lemmas in order to cope with serious collectors (see
e.g. [10,15,4]). But also fully automated verifiers exhibit problems. As can be
seen in [6], even the verification of a simplified collector necessitates such a large
amount of complex properties that the specification may easily become faulty
itself. The problem of assurance also has to deal with the fact that garbage col-
lectors come in many variations, each addressing specific quality or efficiency
goals. Separate verification of each variation leads to a tremendous duplication
of work. On the other hand it is extremely difficult to determine for a slightly
modified algorithm, which properties and proofs can remain unchanged, which
are superfluous, and which need to be added or redone.

We propose to apply the approach of specification refinement as illustrated in
Figures 1 and 2. This approach has already been successfully applied to complex
problems, such as planning and scheduling tasks [19]. Figure 1 describes the way
in which we come from abstract problems to concrete solutions.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 353–376, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

354 D. Pavlovic, P. Pepper, and D.R. Smith

(1) Suppose we have an abstract problem description, that is, a collection of
types, operations and properties that together describe a certain problem.
(2) For this abstract problem we then develop an abstract solution, that is, an
abstract implementation that fulfills all the requested properties.
(3) When we now have a concrete problem that is an instance of our abstract
problem (since it meets all its properties), then we can
(4) automatically derive a concrete solution by instantiating the abstract solution
correspondingly.
The abstract problem/solution pairs can be organized into a taxonomic library
[17] in formal development environments such as KIDS [16] and Specware [7].
We will consider the abstract problem of finding fixed points in lattices or cpos
and several solutions for this problem. Then we will show that garbage collection
is an instance of this abstract problem by considering the concrete graphs and
sets as instances of the more abstract lattices. This way our abstract solutions
carry over to concrete solutions for the garbage collection problem.

Abstract
problem

Abstract
solution lattices / cpos

Concrete
problem

Concrete
solution graphs & sets

a
bs

tr
a
ct

Φrefine

Φrefine Φrefine

Φrefine

Fig. 1. Abstract and concrete problems and their solutions

Technically, all of our problem and solution descriptions are algebraic and coal-
gebraic specifications, which are usually underspecified and thus possess many
models. “Solutions” are treated as borderline cases of such specifications, which
are directly translatable into code of some given programming language. The
formal connections between the various specifications are given by certain kinds
of refinement morphisms, and the derivation of the concrete solution from the
other parts is formally a pushout construction from category theory1.

Figure 2 illustrates the second essential aspect of our method. We work with a
family tree (or dag) of more and more refined problems, each giving rise to more
and more refined solutions. On the problem side “refined” essentially means that
we have additional properties, on the solution side “refined” essentially means that
we have better algorithms, e.g. more efficient, more robust, more concurrent etc.
1 A morphism Φ from specification S to specification T is given by a type-consistent

mapping of the type, function, and predicate symbols of S to derived types, functions,
and predicates in T . The mapping is a specification morphism if the axioms of S
translate to theorems of T . A pushout construction is used to compose specifications.
More detail on the category of specifications may be found in [18,7,12].

Formal Derivation of Concurrent Garbage Collectors 355

m
o
re

co
n
st

ra
in

ts

Fixpoint
Problem

Micro-step
Problem

Macro-step
Problem

Workset
Problem

Fixpoint
Algorithm

Micro-step
Algorithm

Macro-step
Algorithm

Workset
Algorithm

be
tt
er

a
lg

o
ri

th
m

s

Φr

Φr

ΦrΦr

Φr

Φr

ΦrΦr

Fig. 2. Refinement of problems (and solutions)

This way of proceeding has the primary advantage that it allows us to reuse
verification and development efforts. Suppose that at some point in the tree we
want to design a new variation. This is reflected in a new refinement child of the
current specification, to which certain properties are added. In the modified new
solution we need only prove those properties that have been added; everything
else is inherited.

Vechev et al. [21] have a similar goal of presenting a derivational treatment
of a family of concurrent garbage collectors. They start from a generic algo-
rithm, which is parameterized by an underspecified function, such that different
instantiations of this function lead to different collection algorithms. A primary
concern of [21] is the possibility to combine various “design dimensions” in a very
flexible way. By contrast, we study the family tree of specifications and imple-
mentations that can be systematically derived using formal refinements that are
largely problem-independent. We base the whole treatment of garbage collection
on fundamental mathematical principles, namely lattices and fixed points. This
means that the same design theories can be applied to a wide range of other
problems. A key result of our studies was a generalization of classical fixed-point
results of lattice theory to handle the dynamics of concurrency; i.e. iterating to
a fixpoint with a monotone function that is changing over time.

The final efficiency of most practical garbage collection algorithms depends
on the use of clever data representations. Standard techniques range from the
classical stacks or queues to bit maps, overlayed pointers, so-called dirty bits,
color toggling, concurrent local structures, and so forth. In our approach all
these designs fall under the paradigm of data reification morphisms. This means
that we can work throughout our developments with high-level abstract data
structures such as graphs and sets in order to specify and verify the algorithmic
aspects in the clearest possible way. It will be only at the end of the derivation
that the high-level data structures are implemented by concrete data structures,
which are chosen based on their efficiency in the given context. This step is

356 D. Pavlovic, P. Pepper, and D.R. Smith

automated in systems like Specware [7], together with many low-level optimiza-
tions. Since this is very technical and can be done almost automatically by
advanced systems, we will only touch this part very briefly and sketchy here.

Full derivation of practical algorithms requires many more transformations
than we can show here. We focus on the crucial initial refinement steps from a
formal specification of concurrent garbage collection toward a variety of impor-
tant and practical algorithms. An expanded version of this paper treats more
aspects of contemporary concurrent garbage collectors [13].

2 Notes on Garbage Collection

The very first garbage collectors, which essentially go back to McCarthy’s orig-
inal design [9], were stop-the-world collectors. That is, the Mutator was com-
pletely laid to sleep, while the Collector did its recycling. This approach leads to
potentially very long pauses, which are nowadays considered to be unacceptable.

The idea of having the Collector run concurrently with the Mutator goes
back to the seminal papers of Dijkstra et al. [3] and Steele [20], which were
followed by many other papers trying to improve the algorithm or its verification.
The Doligez-Leroy-Gonthier algorithm (short: DLG) that was developed for the
Concurrent CAML Light system [4,5], is considered an important milestone,
since it not only takes many practical complications of real-world collectors into
account, but also generalizes from a single Mutator to many Mutators. The
transition to concurrent garbage collection necessitates a trade-off between the
precision of the Collector and the degree of concurrency it provides [21]: the
higher the degree of concurrency, the more garbage nodes will be overlooked.
However, this is no major concern in practice, since the escaped garbage nodes
will be found in the next collection cycle.

A B

C D

E

Fig. 3. At the start of the Collector

We now illustrate the key problem that can arise in concurrent garbage collec-
tion. Figure 3 illustrates the situation at the beginning of the collection process
by showing a little fragment of the store; solid nodes are reachable from the
root A, dashed circles represent dead garbage nodes (the arcs of which are not
drawn here for the sake of readability). We use the metaphor of “planes” to

Formal Derivation of Concurrent Garbage Collectors 357

illustrate both mark-and-sweep and copying collectors. In the former, “lifting”
a node to the upper plane means marking, in the latter it means copying. The
picture already hints at a later generalization, where the store is partitioned into
“regions”.

Figure 4 shows an intermediate snapshot of the algorithm. Some nodes and
arcs are already lifted (i.e. marked or copied), others are still not considered. The
gray nodes are in the the “workset” which means that they are marked/copied,
but not all outgoing arcs have been handled yet.

A B

C

D

E

Fig. 4. A snapshot

Figure 5 shows the next snapshot. Now all direct successors of A have been
treated. Therefore A is taken out of the workset, which we represent by the color
black. Note that we have the invariant property that all downward arrows start
in the workset. This corresponds to one of the two main invariants in the original
paper of Dijkstra et al. [3].

A B

C

D

E

Fig. 5. The next snapshot

Now let us assume that in this moment the Mutator intervenes by adding
an arc A → E and then deleting the arc D → E . This leads to the situation in
Figure 6. Since A is no longer in the workset, its connection to E will not be
detected. Hence, E is hidden from the Collector and therefore will be treated,
erroneously, as a dead garbage node.

There are three reasonable ways to cope with this problem (using suitable
write barriers):

358 D. Pavlovic, P. Pepper, and D.R. Smith

A B

C

D

E

Fig. 6. A subtle error

– When performing addArc(A,E), record E . (This is the approach of Dijkstra
et al. [3].)

– When performing addArc(A,E), record A. (This is the approach taken by
Steele [20].)

– When performing delArc(D ,E), record E . (This is the approach taken by
Yuasa [22].)

Note also that this bug may appear in an even subtler way during the handling
of a node in the workset. Consider the node C in Figure 5 and suppose that it
has lifted the first two of its three arcs. At this moment the Mutator redirects
the first pointer field to, say, E . But a naive Collector will nevertheless take node
C out of the workset (color it black) when its final arc has been treated.

2.1 Architecture and Basic Terminology

We modularize the problem by way of three kinds of components; see Figure 7.
The Mutators represent the activities of all programs that use the heap. These
activities base on primitive operations that are provided by the component Store,
which represents the memory management system (as part of the runtime system
or operating system). Finally the task of the garbage collection is performed by
a component Collector .

The Mutator operates on a graph, which is a data structure of type
Graph(Node,Arc). It can essentially perform three primitive operations:2

– addArc(a, b): add a new arc node a to node b.
– delArc(a, b): delete the arc between a and b. This may have the effect that

b and other nodes reachable from b become unreachable (“garbage”).
– addNew (a): allocate a new node b (from the freelist) and attach it by an arc

from a. This reflects the fact that in reality alloc operations return a pointer,
which is stored in some field (variable, register, heap cell) of the Mutator.
Hence, the new node is immediately linked to the Mutator’s graph.

2 This considerably simplifies the memory model used in the DLG algorithm [4,5],
where the Mutator has eight operations. However, the essence of these operations is
captured by our three operations.

Formal Derivation of Concurrent Garbage Collectors 359

component Mutator

graph :Graph(Node ,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node, Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Collector

graph : Graph(Node,Arc)
active :Set(Node)
supply :Set(Node)

. . .

component Store

graph : Graph(Node,Arc)
active :Graph(Node ,Arc)
nodes : Set(Node)
active :Set(Node)
supply :Set(Node)
live: Set(Node)
dead :Set(Node)

addArc: . . .
delArc: . . .
addNew : . . .

live = active � supply
nodes = live � dead

. . .

// the Mutator’s view
// universe of all nodes
// reachable by Mutator
// freelist
// active + supply
// garbage

Morphism: graph �→ active

Fig. 7. The system architecture

The Store provides the low-level interface to the actual memory-access opera-
tions. We distinguish the following sets:

– active are those nodes that constitute the Mutator’s graph.
– supply are the nodes in the freelist. (They become active through the oper-

ation addNew .)
– live is a shorthand for the union of the active and supply nodes.
– dead are the garbage nodes that are neither reachable from the Mutator nor

in the freelist. (Nodes may become dead through the operation delArc.)

Note that the specifications in Figure 7 use A = B � C as a shorthand nota-
tion for the two properties A = B ∪ C and B ∩ C = ∅. They also use overload-
ing of operation names. For example active is used both for the subgraph that
constitutes the Mutator’s view and for the set of nodes in this subgraph. Such
overloaded symbols must always be distinguishable from their context. Note also
that we frequently refer to the “set” Arcs of the arcs of a graph and also to the
“set” sucs(a) of all successors of a node a; but these are actually multisets, since

360 D. Pavlovic, P. Pepper, and D.R. Smith

two nodes may be connected by several arcs. Technically, the cell has several
slots that all point to the same cell.

The Mutator’s operations addArc, delArc, addNew have an invariant property
that is decisive for the working of any kind of garbage collector: being garbage is
a stable property [1].

Proposition 1 (Antitonicity of Mutator). A Mutator can only access the
nodes in its graph and the freelist; that is, it can never access garbage nodes. In
other words, the set of live nodes (graph + freelist) monotonically decreases.

2.2 The Fundamental Specification of Garbage Collection

Surprisingly often papers on garbage collection refer to an intuitive understand-
ing of what the Collector shall achieve. But in a formal treatment we cannot
rely on intuition; rather we have to be absolutely precise about the goal that we
want to achieve. Consider the architecture sketched in Figure 7. The Mutator
continuously performs its basic operations addArc, delArc and addNew , which –
from the Mutators viewpoint – are all considered to be total functions; i.e. they
return a defined value on all inputs. This is trivially so for addArc and delArc,
since their arguments exist in the mutators graph. The problematic operation is
addNew , since this operation needs an element from the freelist. However, the
freelist may be empty (i.e. supply = ∅). In this situation there are two possibili-
ties:

1. | active| = MemorySize . That is, the Mutator has used all available memory
in its graph. Then nothing can be done!

2. | active| < MemorySize . When supply = ∅, this means that dead �= ∅. This
is the situation in which we want to recycle garbage cells into the freelist.
And this is the Collector’s reason for existence!

Based on this reasoning, we obtain two basic principles for the Mutator/Collector
paradigm.

Assumption 1 (Boundedness of Mutator’s Graph). We presume the fol-
lowing global property: |Mutator .graph | < MemorySize

Under this global assumption the Collector has to ensure that the operation
addNew is a total function (which may at most be delayed). This can be cast
into a temporal-logic formula:

Goal 2 (Specification of Collector). �♦ supply �= ∅ (provided assump-
tion 1 holds)

This is a liveness property stating that “at any point in time the freelist (may
be empty but) will eventually be nonempty.” When this condition is violated,
that is, supply = ∅, then it follows by the global Assumption 1 that dead �= ∅.
Hence the Collector has to find at least some dead nodes, which it can then
transfer to the freelist. This can be cast into an operation recycle with the initial
specification given in Figure 8.

Formal Derivation of Concurrent Garbage Collectors 361

spec Collector

recycle :Graph(Node ,Arc) → Set(Node)
∅ ⊂ recycle(G) ⊆ dead if dead �= ∅
∅ = recycle(G) if dead = ∅

Fig. 8. The Collector’s task

Hence we should design the system’s working such that the following property
holds (using an ad-hoc notation for transitions).

Goal 3 (Required Actions of Collector).�♦
(
supply−→supply� recycle(G)

)
When Goal 3 is met, then the original Goal 2 is also guaranteed to hold. In other
words, the collector has to periodically call recycle and add the found subset of
the garbage nodes to the freelist.

Note that the above operation can happen at any point in time; we need
not wait until the freelist is indeed empty. This observation leaves considerable
freedom for optimized implementations which are all correct.

2.3 How to Find Dead Nodes

Unfortunately, the specification of recycle in Figure 8 is not easily implementable
since the dead nodes are not directly recognizable. Since the dead nodes are the
complement of the live nodes; i.e. live = �dead = nodes\live, the idea comes to
mind to work with the complement of recycle. This leads to the simple calculation

∅ ⊂ recycle(G) ⊆ dead
⇔ � ∅ ⊃ � recycle(G) ⊇ �dead
⇔ nodes ⊃ � recycle(G) ⊇ live
⇔ nodes ⊃ trace(G) ⊇ live

where we introduce a new function trace(G) = � recycle(G). This leads to the
refined version of the Collector’s specification in Figure 9. Note that this speci-
fication, which will form the starting point for our more detailed derivation, is
formally derived from the fundamental requirements for garbage collection as
expressed in Assumption 1 and Goal 2 above!

3 Mathematical Foundation: Fixed Points

In garbage collection one can roughly distinguish two classes of collectors:

– Stop-the-world collectors : these are the classical non-concurrent collectors,
where the mutators need to be stopped while the collector works.

– Concurrent collectors: these are the collectors that allow the mutators to
keep working concurrently with the collector (except for very short pauses).

362 D. Pavlovic, P. Pepper, and D.R. Smith

spec Collector

recycle :Graph(Node ,Arc) → Set(Node)
trace :Graph(Node,Arc) → Set(Node)

recycle(G) = � trace(G)
live ⊆ trace(G) ⊂ nodes if dead �= ∅
trace(G) = nodes if dead = ∅

Fig. 9. The Collector’s task (first refinement)

3.1 Classical Fixed Points (Stop-the-World Collectors)

Computing the set of garbage nodes in a stop-the-world collector can be treated
as a classical fixpoint computation in a finite powerset lattice. We briefly review
the basic concepts and then show how to calculate the overall structure of a
marking algorithm.

– For a set s = { x0, x1, x2, . . .} of type Set(A) and a function f :A → A we use
the overloaded function f :Set(A) → Set(A) by writing f (s) as a shorthand
for {f (x0), f (x1), f (x2), . . .}.

– A function f :A → A is monotone, if x ≤ y ⇒ f (x) ≤ f (y) holds.
– The function f is continuous, if f (�{x0, x1, x2, . . .})=�{f (x0),f (x1),f (x2),. . .}

holds.
– The function f is inflationary in x , if x ≤ f (x) holds.
– The element x is called a fixed point of f , if x = f (x) holds; x is the least

fixed point, if x ≤ y for any other fixed point y of f .
– The element x is called a fixed point of f relative to r , if x = f (x) ∧ r ≤ x

holds.
– By f̂(x) = least u . u = f (u) ∧ x ≤ u we denote the reflexive-transitive clo-

sure of f (when it exists); i.e. the function that yields the least fixed point
of f relative to x .

Lemma 4 (Properties of the Closure f̂). The closure f̂(x) has a number
of properties that we will utilize frequently:

– x ≤ f̂(x) (inflationary);
– f̂(f̂(x)) = f̂(x) (idempotent);
– f (f̂(x)) = f̂(x) (fixpoint);
– f̂(f (x)) = f̂(x) if x ≤ f (x)

Theorem 1 (Kleene[8]). For a continuous function f the least fixed point x
is obtained as the least upper bound of the Kleene chain:

x = �{⊥, f (⊥), f 2(⊥), f 3(⊥), . . . }

where ⊥ is the bottom element of the lattice.

Formal Derivation of Concurrent Garbage Collectors 363

It has been shown that the essence of these theorems also holds in the simpler
structure of complete partial orders (cpos)3. Cai and Paige [2] present a number of
generalizations of Theorem 1 that are streamlined towards practical algorithmic
implementations of fixpoint computations.

Theorem 2 (Cai-Paige). Let A be a cpo and f :A → A be a monotone function
that is inflationary in r. Let {s0, s1, s2, . . . , sn} be an arbitrary sequence obeying
the conditions

r = s0
si < si+1 ≤ f (si) for i < n

sn = f (sn)

then sn is the least fixed point of f relative to r. Conversely, when the least fixed
point is finitely computable, then the sequence will lead to such an sn .

Theorem 2 provides a natural abstraction from workset-based iterative algo-
rithms, which maintain a workset of change items. At each iteration, a change
item is selected and used to generate the next element of the iteration sequence.
The incremental changes tend to be small and localized, hence this is called the
micro-step approach, and the Kleene chain the macro-step approach [14]. All
practical collectors use a workset that records nodes that await marking.

Corollary 1 (Invariance of Closure). The elements of the set of approxima-
tions { s0 < s1 < s2 < . . . < sn } all have the same closure: f̂(si) = f̂(r).

Using these basic results, we derive the overall structure of a marking algorithm
for a stop-the-world collector. The essence of it is the iterative algorithm for
finding garbage nodes to recycle.

Letting roots denote the roots of the active graph together with the head of
the supply list, we have live = f̂(roots) where f(R) = {b | b ∈ G.sucs(a) & a ∈
R}; in words, the active nodes are the closure of the roots under the successor
function in the current graph G.

To derive an algorithm for computing the dead nodes, we calculate as follows:

dead
= � live definition
= � f̂(roots) definition
= ǧ(roots) using the law � ĥ(R) = ǐ(R) where i(x) = �h(� x)

where ǧ(R) is the greatest fixpoint of the monotone function

g(x) = nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \ x}).

This allows us to produce a correct, but naive iterative algorithm to compute
dead nodes via a Kleene chain.
3 A cpo is a partial order in which every directed subset has a supremum.

364 D. Pavlovic, P. Pepper, and D.R. Smith

Program 1. Raw Fixpoint Iteration Algorithm
W ← h.nodes; 1
while W %= g(W) do W ← g(W) 2
return W 3

Following Cai and Paige [2], we can construct a more efficient fixpoint iteration
algorithm using a workset defined by

WS = X \ g(X).

Although thisworkset definition is createdby instantiating a problem-independent
scheme, it has an intuitive meaning: the workset is the set of nodes whose parents
have been “marked” as live, but who themselves have not yet been marked. The
workset expression can be simplified as follows

X \ g(X)

= { Definition }

X \ (nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \X}))

= { Using the law A \ (B ∪ C) = (A \B) \ C }

X \ ((nodes \ roots) \ {b | b ∈ sucs(a) & a ∈ nodes \X})

= { Using the law A \ (B \ C) = (A \ B)
⋃

(A ∩ C) }

(X \ (nodes \ roots))
⋃

({b | b ∈ sucs(a) & a ∈ nodes \X} ∩X)

= { Using the law {x|P (x)} ∩Q = {x|P (x) ∧ x ∈ Q} }

(X \ (nodes \ roots))
⋃
{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Again using the law A \ (B \ C) = (A \B)
⋃

(A ∩ C) (on first term) }

(X \ nodes)∪(X ∩ roots)
⋃
{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Simplifying }

{} ∪ (X ∩ roots)
⋃
{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Simplifying}

(X ∩ roots)
⋃
{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}.

Formal Derivation of Concurrent Garbage Collectors 365

The greatest fixpoint expression can be computed by the workset-based Program
2 justified by Theorem 2.

Program 2. Workset-based Fixpoint Iteration Program
W ← nodes; 1
while ∃z ∈ ((W ∩ roots) ⋃ {b | b ∈ sucs(a) & b ∈W & a ∈ nodes \W}}) 2

W ← W − z 3
return W 4

To improve the performance of this algorithm, we apply the Finite Differencing
transformation [11] and incrementally maintain the invariant

WS = (W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \W}.

The calculations to enforce the invariant (detailed in [13]) result in the code is
shown in Program 3, where concurrent assignment is used to update both W
and the workset WS.

Program 3. Optimized Fixpoint Iteration Algorithm
invariant WS = (W ∩ roots) ⋃ {b | b ∈ sucs(a) & b ∈W & a ∈ nodes \W} 1
W,WS := nodes, roots; 2
while ∃z ∈ WS do 3

W,WS := W − z, WS
⋃ {b | b ∈ sucs(z) & b ∈W}) − z 4

output W. 5

Program 3 represents the abstract structure of most marking algorithms.
Our point is that its derivation, and further steps toward implementation, are
carried out by generic, problem-independent transformations, supported by
domain-specific simplifications, as above. Further progress toward a detailed im-
plementation requires a variety of other transformations, including finite differ-
encing, simplification, and datatype refinements. For example, the finite set W
may be implemented by a characteristic function, which in turn is refined to a
bit array, or concurrent data structures for local buffers or work-stealing queues.

3.2 Fixed Points in Dynamic Settings (Concurrent Collectors)

The classical fixed-point considerations work with a fixed monotone function f .
In the garbage collection application this is justified as long as the graph, on
which the collector works, remains fixed during the collector’s activities. But as
soon as the mutator is working in parallel with the collector, the graph keeps
changing, while the collector is active. This can be modeled by considering a
sequence of graphs G0, G1, G2, . . . and by making the function f dependent

366 D. Pavlovic, P. Pepper, and D.R. Smith

on these graphs: f (G0)(. . .), f (G1)(. . .), f (G2)(. . .), . . . , where the function f is
f :Graph → Set(Node) → Set(Node) and

f(G)(S) = S
⋃

{b | a ∈ S & b ∈ G.sucs(a)}.

Intuitively, f extends a given set of nodes with the set of their successors in the
graph. To ease readability we omit the explicit reference to the graphs and simply
write f0, f1, f2, Using this notational liberty the specification of the under-
lying foundation is stated in Figure 10: the fi are monotone 1 and inflationary
in r 2 . Moreover the closure-forming operator f̂ is defined by 3 .

spec Foundation

extend Cpo(A)
f0, f1, f2, . . . :A → Â :A → A → A → A
r :A
x ≤ y ⇒ fi(x) ≤ fi(y) 1

r ≤ fi(r) 2

f̂(x) = least s : x ≤ s ∧ s = f (s) 3

// A is a cpo (alternatively: lattice)
// sequence of functions

// f̂ is reflexive-transitive closure of f
// “root”

// all fi are monotone
// all fi are inflationary in r

// closure (computes least fixed point)

Fig. 10. Initial Specification

Based on this foundation we can now formulate our goal. Recall the specifi-
cation of the garbage collection task given by Collector in Figure 9 by the two
inclusions live ⊆ trace(G) ⊂ nodes . This translates into our dynamic setting as
liven ⊆ s ⊂ nodes . We add as a working hypothesis that the set live0 serves
as an upper bound that we will need to guarantee in our dynamic algorithm:
liven ⊆ s ⊆ live0 ⊂ nodes . The set live0 is sometimes called the “snapshot-at-
the-beginning” [1]. Since in our abstract setting liven corresponds to the closure
f̂n(r) and live0 corresponds to the closure f̂0(r), we immediately obtain the
abstract formulation 5 of our problem statement (Figure 11).

Axiom 4 is the abstract counterpart of the fundamental Proposition 1: the
set of live nodes is monotonically decreasing over time, or, dually, garbage in-
creases monotonically. For proof-technical reasons we have to conditionalize this
property to any set x containing the roots r .)

Note that the existential formula 5 is trivially provable by setting n = 0 and
s = f̂0(r). Actually the property 6 (see Lemma 5 below) shows that such an s
exists for any n. However, our actual task will be to come up with a constructive
algorithm that yields such an n and s.

For the specification FixpointProblem we can prove the property 6 (i.e.
Lemma 5) that will be needed later on. This monotonic decreasing of the closure
is in accordance with our intuitive perception of the Mutator’s activities. The

Formal Derivation of Concurrent Garbage Collectors 367

spec Fixpoint-Problem

extend Foundation

r ≤ x ⇒ fi+1(f̂i(x)) ≤ f̂i(x) 4

thm ∃n, s : f̂n(r) ≤ s ≤ f̂0(r) 5

thm r ≤ x ⇒ f̂0(x) ≥ f̂1(x) ≥ f̂2(x) ≥ . . . 6

// garbage can only grow

// liven ≤ s ≤ live0

// Lemma 5

Fig. 11. Fixpoint Specification

operation delArc may lead to fewer live nodes. And the operations addArc and
addNew do not change the set of live nodes (since the freelist is part of the live
nodes).

Lemma 5 (Antitonicity of Closure). The closures are monotonically
decreasing:

For r ≤ x we have f̂0(x) ≥ f̂1(x) ≥ f̂2(x) ≥ . . . 6

Proof : We use a more general formulation of this lemma: For monotone g and
h we have the property

∀x : g(ĥ(x)) ≤ ĥ(x) ⇒ ĝ(x) ≤ ĥ(x)

We show by induction that ∀i : g i (x) ≤ ĥ(x). Initially we have g0(x) = x ≤ ĥ(x)
due to the general reflexivityproperty 3 of the closure. The induction stepuses the
induction hypothesis and then the premise: g i+1(x) = g(g i (x)) ≤ g(ĥ(x)) ≤ ĥ(x).
By instantiating fi+1 for g and fi for h we immediately obtain f̂i+1(x) ≤ f̂i(x) by
using the axiom 4 , when r ≤ x . (End of proof)

3.3 The Microstep Refinement

In order to get closer to constructive solutions we perform our first essential
refinement. Generalizing the idea of Cai and Paige in Theorem 2, we add further
properties to our specification, resulting in the new specification of Figure 12.
Note that we now use some member sn of the sequence s0, s1, s2, . . . as a witness
for the existentially quantified s .

Proof of property 9 : In a finite lattice the si cannot grow forever. Therefore
there must be a fixpoint sn = fn(sn) due to axiom 8 . Then the left half of the
proof of 9 follows trivially from monotonicity:

∀i : r ≤ si
 r ≤ sn = fn(sn)
 f̂n(r) ≤ f̂n(fn(sn)) = f̂n(sn) = sn

// axiom 7 and 8

// sn is fixpoint
// properties of f̂n Lemma 4

The right half sn ≤ f̂0(r) is a direct consequence of the following Lemma 6. (End
of proof)

368 D. Pavlovic, P. Pepper, and D.R. Smith

spec Micro-Step

extend FixpointProblem
s0, s1, s2, . . . :A
s0 = r 7

si < si+1 ≤ fi(si) ∨ si = fi(si) 8

thm ∃n: f̂n(r) ≤ sn ≤ f̂0(r) 9

thm f̂0(s0) ≥ f̂1(s1) ≥ . . . ≥ f̂n(sn) 10

// sequence of approximations

// start with “root”
// computation step

// to be shown below

// Lemma 6 below

Fig. 12. The “micro-step approach”

Lemma 6 (Decreasing Closures). As a variation of Lemma 5 we can show
property 10 : the closures are decreasing, even when applied to the increasing si :

∀i : f̂i+1(si+1) ≤ f̂i(si)

Proof : On the basis of Lemma 5 (property 6 in Figure 11) the proof follows
directly from axiom 8 by monotonicity:

si+1 ≤ fi (si)
 f̂i+1(si+1) ≤ f̂i+1(fi (si)) ≤ f̂i(fi (si)) = f̂i(si)

// axiom 8

// monot. of f̂i+1; 6

Note that 6 is applicable here, since – due to 8 – r ≤ fi(si) holds. (End of
proof)

Lemma 6 may be depicted as follows:

s0
s1

s2
f̂2(s2) f̂1(s1) f̂0(s0)

where the approximations s0, s1, s2, . . . keep growing, while their closures
f̂0(s0), f̂1(s1), f̂2(s2), . . . keep shrinking.

This essentially concludes the derivation that can reasonably be done on the
abstract mathematical level of fixed points and lattices.

4 Garbage Collection in Dynamic Graphs

We now take specific properties of garbage collection into account, but still on
the semi-abstract level of sets and graphs. First we note that our specification of

Formal Derivation of Concurrent Garbage Collectors 369

garbage collection using sets and set inclusion is a trivial instance of the lattice-
oriented specification in the previous section. Therefore all results carry over to
the concrete problem. The morphism is essentially defined by the following map:

Φ =
[A !→ Set(Node)
≤ !→ ⊆
fi(s) !→ f (Gi)(s) = s ∪Gi .sucs(s) = s ∪

⋃
a∈s Gi .sucs(a)

r !→ G0 .roots

]

– The basis now is a sequence of graphs G0, G1, G2, . . . which are due to the
activities of the Mutator.

– The function f (Gi)(s) = s ∪
⋃

a∈s Gi .sucs(a) adds to the set s all its direct
successors. (We will retain the shorthand notation fi = f (Gi) in the following).

spec Foundation spec Reachability

spec FixpointProblem spec Workset

spec MicroStep spec Dirtyset

Φ4

Φ5

Φ1

Φ2

Φ3

Fig. 13. Roadmap of refinements

Figure 13 illustrates the road map through our essential refinements. The left
half shows the refinements that have been performed in the previous Section 3
on the abstract mathematical level of lattices and fixed points. The right half
shows the refinements on the semi-abstract level of graphs and sets that will be
presented in this section.

Lemma 7 (Morphism Abstract → Concrete). Under the morphism Φ, all
axioms of the abstract specifications Foundation, FixpointProblem and MicroStep
hold for the more concrete specifications of graphs and sets (see Figure 13).

Proof : We show the three morphism properties Φ1, Φ2, Φ3 in turn.
Φ1: The proof is trivial, since the monotonicity axiom 1 is a direct conse-

quence of the definition of Φ(fi). Axiom 3 is just a definition.
Φ2: To foster intuition, we first consider the special case x = r : the morphism

translates:

4
Φ!→ fi+1

(
f̂i(r)

)
⊆ f̂i(r)

⇔(
live i ∪

⋃
a∈livei

Gi+1 .sucs(a)
)
⊆ live i

⇔
∀a ∈ live i :Gi+1 .sucs(a) ⊆ live i

// f̂i(r) = livei, def. of Φ(fi)

// (A1 ∪ ... ∪An) ⊆ B ⇔ ∀i : Ai ⊆ B

370 D. Pavlovic, P. Pepper, and D.R. Smith

In order to prove this last property, i.e. ∀a ∈ live i :Gi+1 .sucs(a) ⊆ live i , we must
consider all nodes a ∈ live i and all (sequences of) actions that the Mutator can
use to effect the transition Gi � Gi+1. We distinguish the two possibilities for
a ∈ live i :

(1) a ∈ Gi .freelist : Then there are two subcases (which base on the reasonable
constraint that nodes in the freelist and newly created nodes do not have “wild”
outgoing pointers):

(1a) a ∈ Gi+1 .freelist ,
then Gi+1 .sucs(a) ⊆ Gi+1 .freelist ⊆ Gi .freelist ⊆ live i

(1b) a ∈ Gi+1 .active (caused by addNew),
then Gi+1 .sucs(a) = ∅ ; now (2) applies

(2) a ∈ Gi .active : Then there are three subcases for b ∈ Gi+1 .sucs(a):

(2a) (a → b) ∈ Gi .arcs b ∈ Gi .active ⊆ live i

(2b) (a → b) created by addArc(a, b) b ∈ Gi .active ⊆ live i

(2c) (a → b) created by addNew (a) b ∈ Gi .freelist ⊆ live i

If we start this line of reasoning not from the roots r but from a superset x ⊇ r ,
then we need to consider supersets l̂i ⊇ live i (where the hat shall indicate that
these sets are closed under reachability) and prove ∀a ∈ l̂i :Gi+1 .sucs(a) ⊆ l̂i .
Evidently the reasoning in (1) and (2) applies here as well. But now there is a
third case:

(3) a ∈ Gi .dead . In this case there is no operation of the Mutator that could
change the successors of a (since all operations require a ∈ active). Hence
Gi+1 .sucs(a) = Gi .sucs(a). Due to the closure property we have the implication
a ∈ l̂i ⇒ Gi .sucs(a) ⊆ l̂i . The above equality then entails also Gi+1 .sucs(a)⊆ l̂i .

Φ3: The morphism Φ translates the axioms 7 and 8 into
si ⊆ si ∪

⋃
a∈si

Gi .sucs(a)
This is trivially fulfilled such that the constraint on the choice of si+1 is well-

defined. (End of proof)
When considering the last specification Micro-Step in Figure 12 then we have

basically shown that any sequence s0, s1, s2, . . . that fulfills the constraints 7

and 8 solves our task. But we have not yet given a constructive algorithm
for building such a sequence. In the next refinement steps Φ4 and Φ5 we will
proceed further towards such a constructive implementation (actually to a whole
collection of implementation variants) by adding more and more constraints to
our specification. Each of these refinements constitutes a design decision that
narrows down the set of remaining implementations.

4.1 Worksets (“Wavefront”)

As a first step towards more constructive descriptions we return to the standard
idea of worksets (sometimes referred to as “wavefront”), which has already been
illustrated Program 2, and in the examples in Section 2. This refinement is given
in Figure 14.

Formal Derivation of Concurrent Garbage Collectors 371

spec Workset
extend MicroStep
b0, b1, b2, . . . :A
w0, w1, w2, . . . :A
si = (bi 	 wi)
f̂i(si) = bi ∪ f̂i(wi) 12

thm wn = ∅ ⇒ f̂n(sn) = bn 13

// completely treated (“black”)
// partially treated (“workset” or “gray”)

// partitioning into black and gray

// additional constraint

// termination condition

Fig. 14. The workset approach

The partitioning si = (bi � wi) arises naturally from the definition of the work-
set, as in Program 2. But the additional axiom 12 is a major constraint! It
essentially states that the closure f̂i(si) of the current approximation si shall
be primarily dependent on the closure of the workset wi . This reduces the de-
sign space of the remaining implementations considerably – but from a practical
viewpoint this is no problem, since we only exclude inefficient solutions. The
theorem 13 stated in the specification provides a termination condition for the
later implementations that is far more efficient than our original termination
criterion fn (sn) = sn .

An important observation: It is easily seen that the subtle error situation
illustrated in Figure 6 in Section 2 violates the axiom 12 . Therefore any further
refinement of the specification Workset cannot exhibit this error. In other words:
if we derive an implementation by refinement from the specification Workset in
Figure 14, then we are certain that the bug cannot occur!

A major problem: Unfortunately, just introducing sufficient constraints for
excluding error situations is not enough. Consider the situation of Figure 6 in
Section 2. We have to ensure that the Mutator cannot perform the two opera-
tions addArc(A,E) and delArc(D ,E) without somehow keeping the axiom 12

intact. This necessitates for the first time that the Mutator cooperates with
the Collector, thus introducing constraints for the Mutator. Even though these
constraints may be hidden in the component Store, they do have an implicit
influence on the Mutator’s working.

As has already been pointed out in Section 2, there are three principal possi-
bilities to resolve this problem:

– One can stop the Mutator until the Collector has finished (Section 3.1).
– One can put A or E into the workset, when addArc(A,E) is executed.
– One can put E into the workset, when delArc(D ,E) is executed.

Each of these solutions keeps the axiom 12 intact, but they have problems. Stop-
ping the Mutator is unacceptable, since this destroys the very idea of having Muta-
tor and Collector work concurrently. In both of the other cases the Mutator adds
elements to the workset, while the Collector is taking them out of the workset.
Naive implementations of this specification would not guarantee termination.

372 D. Pavlovic, P. Pepper, and D.R. Smith

In the following we will present several refinements for solving this problem.
These refinements are the high-level formal counterparts of solutions that can
be found in the literature and in realistic production systems for the JVM and
.Net.

4.2 Dirty Nodes

One can alleviate the stop times for the Mutator by splitting the workset into
two sets, one being the original workset of the Collector, the other assembling
the critical nodes from the Mutator. This is shown in Figure 15. The new axiom
14 is similar to 12 using the partitioning wi = (gi � di).

spec Dirtyset

extend Workset
g0, g1, g2, . . . :A
d0, d1, d2, . . . :A
si = (bi 	 gi 	 di)
f̂i(si) = bi ∪ f̂i(gi) ∪ f̂i(di) 14

thm gn = ∅ ⇒ f̂n(sn) = bn ∪ f̂n(dn) 15

// treated by Collector (“gray”)
// introd. by Mutator (“dirty”)

// partition black, gray and dirty

// closure condition

// intermed. termination cond.

Fig. 15. Introducing “dirty” nodes

This specification can be implemented by a Collector that successively treats
the gray nodes in gi until this set becomes empty (which can be guaranteed).
But – by contrast to the earlier algorithms – this does not yet mean that all live
nodes have been found. As the theorem 15 shows we still have to compute f̂i(di).
But this additional calculation tends to be short in practice, and the Mutator
can be stopped during its execution. Consequently, correctness has been retained
and termination has been ensured.

The Mutator now adds “critical” nodes to the “dirty” set di . In order to keep
the set di as small as possible one does not add all potentially critical nodes to
it: as follows from axiom 14 , black or gray nodes need not be put into di . And
since di is a set, nodes need not be put into it repeatedly. Actually, when the
Mutator executes addArc(a, b) with a /∈ si (“a is still before the wavefront”),
then axiom 14 would allows us the choice of putting a into di or not (similarly
for b. Commonly, a is simply added to di .

4.3 Implementing the Step si �→ si+1

So far all our specifications only impose the constraint 8 (see MicroStep in
Figure 12) on their implementations, that is:

si < si+1 ≤ fi(si) ∨ si = fi(si)
The actual computation of the step si !→ si+1 has to be implemented by some
function step. For this function we can have different degrees of granularity:

Formal Derivation of Concurrent Garbage Collectors 373

– In a coarse-grained implementation we pick some node x from the gray
workset and add all its non-black successors to the workset. Then we color
x black.
This variant is simpler to implement and verify, but it entails a long atomic
operation. The corresponding write barrier slows down the standard working
of the Mutators.

– In a fine-grained implementation we treat the individual pointer fields within
the current (gray) node x one-by-one. In our abstract setting this means that
we work with the individual arcs.
This makes the write barrier shorter and thus increases concurrency, but the
implementation and its correctness proof become more intricate.

Onour abstract level we treat this design choice byway of twodifferent refinements.
This is depicted in Figure 16 (where the shorthand notation . . .using x with p(x)
entails that the property only has to hold when such an x exists).

A note of caution. If we apply the morphism Φ introduced at the beginning
of Section 4 directly, the strict inclusion si < si+1 of axiom 8 would not be
provable. Therefore we must interpret

(b, g) < (b′, g ′) Φ!→ b ⊂ b′ ∨ (b = b′ ∧ g ⊂ g ′).
But there are still further implementation decisions to be made. Both CoarseStep
and FineStep specify (at least partly) how the step operation deals with the
selected gray node. But this still leaves one important design decision open:
How are the gray nodes selected? In the literature we find several approaches to
this task:

1. Iterated scanning. One may proceed as in the original paper by Dijkstra et
al. [3] and repeatedly scan the heap, while applying step to all gray nodes

spec DirtySet

spec CoarseStep

step: Set(Node) × Set(Node)
→ Set(Node) × Set(Node)

step(b, g) =
(b ⊕ x ,

(g ∪ sucs(x)) \ (b ⊕ x))
using x with
x ∈ g \ b

spec FineStep

step: Set(Node) × Set(Node)
→ Set(Node) × Set(Node)

step(b, g) =
(b, g ⊕ y)
using x , y with
x ∈ g ∧ (x → y) ∈ Arcs ∧ y /∈ (b ∪ g)

step(b, g) =
(b ⊕ x , g � x)
using x with
x ∈ g ∧ sucs(x) ∩ (b ∪ g) = ∅

Φ1 Φ2

Fig. 16. Step functions of different granularities

374 D. Pavlovic, P. Pepper, and D.R. Smith

that are encountered. This has the advantage of not needing any additional
space, but it may lead to many scans over the whole heap, in the worst case
O(N 2) times, and is not considered practical.

2. Alternatively one performs the classical recursive graph traversal, which may
equivalently be realized by an iteration with a workset managed as a stack.
This allows all the well-known variations, ranging from a stack for depth-first
traversal to a queue for breadth-first traversal. In any case the time cost is
in the order O(|live |), since only the live nodes need to be scanned. However,
there also is a worst-case need for O(|live |) space – and space is a scarce
resource in the context of garbage collection.

3. One may compromise between the two extremes and approximate the work-
set by a data structure of bounded size (called a cache in [4,5]). When this
cache overflows one has to sacrifice further scan rounds.

4. When there are multiple mutators, for efficiency it is necessary to have local
worksets working concurrently.

These design choices are illustrated in Figure 17, but we refrain from coding all
the technical details.

spec DirtySet

spec IteratedScan spec Recursion spec BoundedCache spec LocalWorkSets

Ψ1 Ψ2 Ψ3 Ψ4

Fig. 17. Design choices for finding the gray nodes

It should be emphasized that the refinements Ψ1, Ψ2, Ψ3, Ψ4 of Figure 17 are
independent of the refinements Φ1, Φ2 of Figure 16. This means that we can
combine them in any way we like. The combination of some Φi with some Ψj is
formally achieved by a pushout construction as already mentioned in Section 1.
In a system like Specware [7] such pushouts are performed automatically.

Further refinements to handle generational garbage collectors,dirty cards, dirty
pages and related techniques for scanning the dirty nodes are sketched in [13].

5 Conclusion

It is well known that realistic garbage collectors exhibit a huge amount of tech-
nical details that are ultimately responsible for the size and complexity of the
verification efforts. The pertinent issues cover a wide range of questions such as:

– What are the exact read and write barriers?
– How do we treat the references in the global variables, the stacks and the

registers?

Formal Derivation of Concurrent Garbage Collectors 375

– Where do we put the marker bits (in mark-and-sweep collectors) or the
forward pointers (in copying collectors)?

Due to space limitations we have omitted discussion of these and other topics,
which may however be found in the extended version of this paper [13], partic-
ularly the issue of computing the dynamically changing set of roots.

We have shown how the main design concepts in contemporary concurrent
collectors can be derived from a common formal specification. The algorithmic
basis of the concurrent collectors required the development of some novel gener-
alizations of classical fixpoint iteration theory. We hope to find a wide variety of
applications for the generalized theory, as there has been for the classical theory.
This is of interest since the reuse of abstract design knowledge across applica-
tion domains is a key factor in the economics of formal derivation technology.
Alternative refinements from the basic algorithm lead to a family tree of concur-
rent collectors, with shared ancestors corresponding to shared design knowledge.
While our presentation style has been pedagogical, the next step is to develop
the derivation tree in a formal derivation system, such as Specware.

Acknowledgment. We are grateful to Erez Petrank and Chris Hawblitzel, with
whom one of us (pp) enjoyed intensive discussions at Microsoft Research. Their
profound knowledge on the challenges of practical real-world garbage collectors
motivated us to push our original high-level and abstract treatment further to-
wards concrete and detailed technical aspects – although we realize that we
may still be on a very abstract level in the eyes of true practitioners. We would
also like to thank Bernd Finkbeiner and the MPC reviewers for their helpful
comments.

References

1. Azatchi, H., Levanoni, Y., Paz, H., Petrank, E.: An on-the-fly mark and sweep
garabage collector based on sliding views. In: OOPSLA’03, Anaheim CA (2003)

2. Cai, J., Paige, R.: Program Derivation by Fixed Point Computation. Science of
Computer Programming 11(3), 197–261 (1989)

3. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.:
On-the-fly garbage collection: An exercise in cooperation. Comm. ACM 21(11),
965–975 (1978)

4. Dolingez, D., Gonthier, G.: Portable, unobtrusive garbage collection for mul-
tiprocessor systems. In: POPL’94, Portland Oregon. ACM SIGPLAN Notices,
pp. 70–83. ACM Press, New York (January 1994)

5. Dolingez, D., Leroy, X.: A concurrent generational garbage collector for a
mulit-threaded implementation of ml. In: POPL’93. ACM SIGPLAN Notices,
pp. 113–123. ACM Press, New York (1993)

6. Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors.
In: POPL’09, Savannah, Georgia, pp. 113–123 (October 2009)

7. Kestrel Institute, 3260 Hillview Ave., Palo Alto, CA 94304 USA. Specware System
and documentation (2003), http://www.specware.org/

8. Kleene, S.: Introduction to Metamathematics. American Mathematical Society
Press, Providence (1956)

http://www.specware.org/

376 D. Pavlovic, P. Pepper, and D.R. Smith

9. MacCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine. Comm. ACM 3(4), 184–195 (1960)

10. McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying garbage
collectors and their mutators. In: PLDI’07, San Diego (2007)

11. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans-
actions on Programming Languages 4(3), 402–454 (1982)

12. Pavlovic, D., Pepper, P.A., Smith, D.: Colimits for concurrent collectors. In:
Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772,
pp. 568–597. Springer, Heidelberg (2004)

13. Pavlovic, D., Pepper, P., Smith, D.: Formal derivation of concurrent garbage col-
lectors. Technical Report TR-2010-1, Kestrel Institute (February 2010),
ftp://ftp.kestrel.edu/pub/papers/smith/PPS-2010.pdf

14. Pepper, P., Hofstedt, P.: Funktionale Programmierung. Springer, Heidelberg (2006)
15. Russinoff, D.M.: A mechanically verified incremental garbage collectors. Formal

Aspects of Computing 6, 359–390 (1994)
16. Smith, D.R.: KIDS – a semi-automatic program development system. IEEE Trans-

actions on Software Engineering Special Issue on Formal Methods in Software En-
gineering 16(9), 1024–1043 (1990)

17. Smith, D.R.: Toward a classification approach to design. In: Nivat, M., Wirsing,
M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 62–84. Springer, Heidelberg (1996)

18. Smith, D.R.: Designware: Software development by refinement. In: Hoffman, M.,
Pavlovic, D., Rosolini, P. (eds.) Proceedings of the Eighth International Conference
on Category Theory and Computer Science, pp. 355–370 (1999)

19. Smith, D.R., Parra, E.A., Westfold, S.J.: Synthesis of planning and scheduling
software. In: Tate, A. (ed.) Advanced Planning Technology, pp. 226–234. AAAI
Press, Menlo Park (1996)

20. Steele, G.L.: Multiprocessing compactifying garbage collection. Comm. ACM 18(9),
495–508 (1975)

21. Vechev, M.T., Yahav, E., Bacon, D.F.: Correctness-preserving derivation of con-
current garbage collection algorithms. In: PLDI 06, Ottawa, Canada. ACM Press,
New York (2006)

22. Yuasa, T.: Real-time garbage collection on general-purpose machines. Journal of
Systems and Software 11(3), 181–198 (1990)

ftp://ftp.kestrel.edu/pub/papers/smith/PPS-2010.pdf

Temporal Logic Verification of Lock-Freedom

Bogdan Tofan, Simon Bäumler, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg

D-86135 Augsburg, Germany
{tofan,baeumler,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. Lock-free implementations of data structures try to better
utilize the capacity of modern multi-core computers, by increasing the
potential to run in parallel. The resulting high degree of possible interfer-
ence makes verification of these algorithms challenging. In this paper we
describe a technique to verify lock-freedom, their main liveness property.
The result complements our earlier work on proving linearizability, the
standard safety property of lock-free algorithms. Our approach mecha-
nizes both, the derivation of proof obligations as well as their verification
for individual algorithms. It is based on an encoding of rely-guarantee
reasoning using the temporal logic framework of the interactive theorem
prover KIV. By means of a slightly improved version of Michael and
Scott’s lock-free queue algorithm we demonstrate how the most complex
parts of the proofs can be reduced to relatively simple steps of symbolic
execution.

Keywords: Verification, Temporal Logic, Compositional Reasoning,
Rely-Guarantee, Lock-Freedom, Linearizability.

1 Introduction

The classic approach for protecting parts of a shared data structure from con-
current access is mutual exclusion locks. One severe disadvantage of this method
is that the crash or suspension of a single process can cause a deadlock or de-
lay of the entire system. Lock-free algorithms were developed to overcome this
shortcoming. One of their main features is that the crash or delay of a single
process has no negative effect on the progress of other processes. This is usually
achieved by applying atomic synchronization primitives such as CAS (compare
and swap) or LL/SC (load linked/store conditional) and an optimistic try and
retry scheme:

1. The relevant part of the shared data structure to be modified is stored in a
local variable (sometimes called “snapshot”).

2. Modification of the shared data structure is prepared, e.g. local fields are
assigned.

3. The shared data structure is updated in one step if no interference has oc-
curred since taking the local snapshot.

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 377–396, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

378 B. Tofan et al.

If another process has changed the snapshot during phase 2 (which is kept as
small as possible), the current process must retry until no interference hinders
its update.

This basic idea is extended in lots of different ways, such as by introducing re-
ciprocal helping schemes or executing additional algorithms between the fail and
the retry of an update. These techniques have resulted in lock-free implementa-
tions of various data structures, amongst others stacks [1,2], queues [3], deques
[4] and hash tables [5]. Some of the proposed algorithms had subtle errors which
were found when trying to formally prove their correctness [6]. The complexity
of these implementations justifies the effort of formal verification and various
approaches have been proposed to prove correctness [7,8,9,10,11] and liveness
[12,13,14].

The main correctness criterion for lock-free algorithms is linearizability. It re-
quires each operation to appear to take effect instantaneously at some point (the
linearization point) between invocation and response, behaving according to its
sequential specification [15]. This property rules out certain interleavings but
does not guarantee any kind of progress. Lock-freedom is a global liveness condi-
tion which requires that at all times in a concurrent execution, one of the running
operations eventually completes [16]. Consequently, as soon as no further opera-
tions are invoked, all currently active operations eventually complete. However,
if the system repeatedly invokes new operations, single processes might never
complete, i.e. lock-freedom does not prevent single processes from starvation.

In this paper we present a verification approach based on rely-guarantee rea-
soning [17,18] and interval temporal logic [19,20] and demonstrate it using a
practical lock-free queue algorithm published by Doherty et al. [7], based on the
original implementation of Michael and Scott [3]. The approach allows to prove
two decomposition theorems: a generic refinement theorem which can be in-
stantiated to prove linearizability and a theorem for proving lock-freedom. Both
theorems have been mechanically verified using the semi-automated prover KIV
[21]. The theorem for proving linearizability has been described in [11], where the
resulting proof obligations have been shown to be provable for a simple stack
algorithm as well as for the dequeue operation of the queue. In this work we
therefore focus on describing the lock-freedom theorem and its application to
the enqueue algorithm.

The main contributions are:

- A fully mechanized approach for the intuitive specification and verification
of lock-free algorithms. We provide an easy to read specification language
and require no program counter values for reasoning.

- An expressive temporal logic framework which allows for a simple definition
of the

+� operator from rely-guarantee reasoning, and to prove composition-
ality results for parallel programs as well as refinement (= trace inclusion)
theorems.

- A decomposition theorem to prove lock-freedom which does not rely on the
explicit construction of well-founded orders, but on intuitive arguments of
program progress.

Temporal Logic Verification of Lock-Freedom 379

The paper is subdivided as follows: in Section 2 we describe the queue algorithm
and argue informally about its liveness. Section 3 gives a short introduction to the
temporal logic framework implemented in KIV. Section 4 describes the concur-
rent system model and rely-guarantee reasoning. Moreover, the decomposition
theorem for proving lock-freedom is introduced. Section 5 shows its application
to the queue. We conclude with a section about related work (Section 6) and a
summary (Section 7).

2 Michael and Scott’s Lock-Free Queue

Lock-free algorithms typically use synchronization primitives such as CAS to
atomically alter a shared data structure in the computer’s memory. CAS can be
formally specified in KIV as

CAS(Old ,New ;G,Succ){
if* G = Old then {G := New , Succ := true} else {Succ := false}}

where value-parameters Old and New are read only whereas G and Succ denote
reference-parameters that can be read and modified. CAS compares a global
pointer G with the (snapshot) reference stored in pointer Old. If these memory
locations are equal then G is updated to a new reference New and boolean flag
Succ is set to true to indicate a successful CAS. Otherwise the flag is set to
false indicating that no update has occurred. Since CAS executes atomically (a
comma separates parallel assignments), evaluating the if-condition should not
require an extra step (denoted as if*). CAS does not guarantee that the value
A of global pointer G has not been changed since it was read by a process. In
the meantime, some other process might have changed G to B and then back to
A. In a system that reuses freed references, these intermediate modifications can
lead to subtle errors, since the content of a reallocated memory location might
have been changed (ABA-problem). We assume (lock-free) garbage collection
[22] and do not explicitly model memory reuse here. Any value assigned to G is
going to be a newly allocated location, and this avoids an ABA-problem.

The queue is represented in memory as a singly linked list of nodes (pairs of
values and references along with .val and .nxt selector functions), a global pointer
Head which marks the front of the queue and a global pointer Tail indicating
the end of the queue as shown in Figure 1 (a) and (b). At all times Head points
to a dummy node (its value is irrelevant and denoted by a question mark). This
avoids special cases for the empty queue in the implementation. There are two
queue operations: the enqueue operation (CEnq) adds a node at the end of the
queue; the dequeue operation (CDeq) removes the first node from the queue and
returns its value. If the queue is empty, i.e. the dummy node’s next reference is
null, a special value empty is returned.

Attaching a new node at the end of the queue requires two global updates:
the last node’s next field must be set to the new node and the global tail pointer
must be shifted. Since CAS allows only one atomic write access, it must be
called twice. When a process encounters a lagging tail in-between these two

380 B. Tofan et al.

?

Head

vn

Tail

v1

(a) Non-lagging tail

Head Tail

?

(b) Non-lagging tail empty

?

Head

vnvnvn−1

Tail

(c) Lagging tail

?? ?v

TailHead

(d) Lagging tail empty

Fig. 1. Queue representation variants

CAS executions (see Figure 1 (c)), it helps by shifting the tail pointer before
trying to add its new node in the next iteration.

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13

CEnq(v;Hp,Tail ,Newe,Tle,Nxte ,SuccE) {
choose Ref with Ref �= null ∧ ¬ Ref ∈ Hp in {

Hp := Hp ∪ {Ref },Newe := Ref ,SuccE := false;
Hp[Newe] := v × null;
while ¬ SuccE do {

Tle := Tail ;
Nxte := Hp[Tle].nxt;
if Tle = Tail then {

if Nxte = null then {
CAS(Nxte ,Newe;Hp[Tle].nxt,SuccE)

} else {
CAS(Tle,Nxte ;Tail)}}}

CAS(Tle,Newe; Tail)}}

Fig. 2. Enqueue operation

Figure 2 shows the KIV specification of the enqueue operation (line numbers
are given for explanatory purposes; they are not used in KIV). In lines E2 -
E4 a new node is allocated (a fresh reference is chosen and added to the global
application heap Hp in one atomic step) and initialized with input value v and
a null next reference (a semicolon denotes sequential composition which may
be interleaved). In E6 a local snapshot is taken. Its next reference is stored
locally in the following line. The test in line E8 checks whether the global tail
has not been changed since the snapshot was taken. If this test fails CEnq must
retry its update due to interference. The next test in E9 discerns the role of the
current loop execution: if Nxte is null, line E7 was executed when the global
queue was in a non-lagging tail state and the current run might successfully
attach a new node at the end of the queue in line E10 and subsequently exit
the loop, given that no interference has occurred in the meantime. If the test in
E9 is false, the loop will be reiterated and the current process can only try to

Temporal Logic Verification of Lock-Freedom 381

help some other process by shifting the lagging tail pointer (line E12). The last
instruction (line E13) tries to shift the tail pointer after attaching a new node
to the queue. This “clean up” guarantees a non-lagging tail representation in
quiescent states. CEnq uses a variant of CAS in which it is irrelevant to know
whether it succeeds (lines E12 and E13). Since it is necessary to observe the
values of local variables Newe,Tle,Nxte,SuccE in assertions, they have been
lifted to transient parameters (see Section 5).

The formalization of the dequeue operation is shown in Figure 3. A process
executing CDeq takes a snapshot of the global head pointer in line D5 and
then locally stores its next reference. If the snapshot has not become obsolete
and the local next reference is null, dequeue returns empty. If the queue is not
empty CAS is applied in line D12 to shift the global head pointer, making Nxtd
the new dummy node. The remaining lines of code (D13-D16) then deal with a
special configuration which emerges from shifting Head when the queue contains
exactly one value v and the tail pointer is lagging (see Figure 1 (d)). Since the
head pointer gets shifted ahead of the tail pointer, dequeue can help the process
which has enqueued v (line D16).1

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17

CDeq(;Hp,Head ,Tail ,Hdd ,Nxtd ,SuccD ,O) {
let Lo = empty, Tld = null in {

SuccD := false;
while ¬ SuccD do {

Hdd := Head ;
Nxtd := Hp[Hdd].nxt;
if Hdd = Head then {

if Nxtd = null then {
Lo := empty;SuccD := true

} else {
Lo := Hp[Nxtd].val;
CAS(Hdd ,Nxtd ;Head , SuccD);
if SuccD then {

Tld := Tail ;
if Tld = Hdd then {

CAS(Tld ,Nxtd ;Tail)}}}}}
O := Lo}}

Fig. 3. Dequeue operation

The intuitive reason why the implementation is lock-free is that its loops are
retried if some other process changes the queue in the critical time slot between
taking a snapshot and trying to update the data structure. This change however
implies that the interfering process eventually completes. In the formal proof
we will reflect the simplicity of this intuitive argument by using an additional
predicate U (“unchanged”) which describes the absence of interference that can
1 The original dequeue implementation of Michael and Scott reads the shared tail

pointer whenever the loop-body is executed. The implementation given here reduces
shared memory access if the loop has to be executed several times.

382 B. Tofan et al.

cause a process to retry its loop infinitely often. Proving lock-freedom then
requires to show that each data structure operation eventually terminates when
it either encounters no such interference or when it changes the shared state
itself. For the dequeue operation this argument is simple. If it encounters no
interference, then the CAS at D13 will be successful and dequeue terminates. A
successful CAS at D13 is also the only place, where the process itself changes
the shared data structure.

For the enqueue operation the argument is slightly more subtle. If the queue
is not modified after taking the snapshot in E6, its loop might be executed
once again before enqueue terminates, due to a lagging tail. But this does not
hinder termination, so we do not count shifting a lagging tail as an interference
(predicate U is true for that case). Finally, if enqueue changes the queue by
adding a new node in E10 it terminates without further iterations.

As we will see, this intuitive reasoning is formally performed in KIV, by apply-
ing symbolic execution to step forward through each line of code of an operation.

3 Temporal Logic in KIV

This section briefly describes the temporal logic calculus integrated into the
interactive theorem prover KIV. A more detailed description can be found in
[23,24].

3.1 Interval Temporal Logic

The basis of interval temporal logic (ITL) [19,20] are algebras (to interpret the
signature) and intervals, i.e. finite or infinite sequences of states (each mapping
variable symbols to values in the algebra). Intervals typically evolve from pro-
gram execution. In contrast to standard ITL, the formalism used here explicitly
includes the behavior of the program’s environment into each step: in an interval
I = [I(0), I ′(0), I(1), I ′(1), . . .] the first program transition leads from the initial
state I(0) to the primed state I ′(0) whereas the next transition (from state I ′(0)
to I(1)) is a transition of the program’s environment. In this manner program
and environment transitions alternate (similar to [25,26]).

Variables are partitioned into static variables v (written lower case), which
never change their value (I(0)(v) = I ′(0)(v) = I(1)(v) = . . .) and flexible vari-
ables V (starting with an uppercase letter) which can have different values in
different states of an interval. We write V , V ′, V ′′ to denote variable V in states
I(0), I ′(0) and I(1) respectively. In the last state (characterized by the atomic
formula last) of an interval, the value of a primed or double primed variable is
equal to the value of the unprimed variable, i.e. after a program has terminated
its variables do not change by convention.

The logic uses standard temporal operators (�, �, • , until , unless , . . .)
as well as sequential programming constructs (:=, ; ,if, . . .). We usually write
α, β to indicate a program and ϕ, ψ to indicate a formula. α‖β is weak fair
interleaving, await ϕ blocks execution until the test ϕ is satisfied (not used in

Temporal Logic Verification of Lock-Freedom 383

the algorithms here). Programs and formulas can be mixed arbitrarily since they
both evaluate to true or false over an algebra A and an interval I (hence system
descriptions can be abstracted by temporal properties). A program evaluates
to true (A, I |= α) if I is a possible run of the program. Note that a run of a
program is always interleaved by arbitrary transitions of its environment. More
details on the syntax and semantics of these operators can be found in [23].

3.2 Symbolic Execution and Induction

KIV is based on the sequent calculus. Sequents are assertions of the form Γ � Δ
where Γ and Δ are sets of formulas. A sequent states that the conjunction of all
formulas in antecedent Γ implies the disjunction of all formulas in succedent Δ.
Sequents are implicitly universally closed. A typical sequent (proof obligation)
about interleaved programs has the form

α,E, I � ϕ

where an interleaved program α executes the system steps; the system’s envi-
ronment behavior is constrained by temporal formula E; I is a predicate logic
formula that describes the current state and ϕ is the property which has to
be shown. To verify that ϕ holds, symbolic execution is used. For example, a
sequent of the form mentioned above might be

(M := M + 1; β), � M ′′ = M ′, M = 1 � � M > 0

The program executed is M := M+1; β where β is an arbitrary program and the
environment is assumed never to change counter M (formula � M ′′ = M ′). The
current state maps M to 1. The intuitive idea of a symbolic execution step is to
execute the first program statement, i.e. to apply the changes on the current state
and to discard the first statement. In the example above, a symbolic execution
step leads to a trivial predicate logic goal for the initial state (M = 1 � M > 0)
and a sequent that describes the remaining interval from the second state on:

β, � M ′′ = M ′, M = 2 � � M > 0

M has value 2 in the new state which follows from the fact that after M has
been set to two by the program transition, the environment leaves M unchanged.
Otherwise M would have an arbitrary value in the new state. Symbolic execution
concerns both programs and formulas and has two phases. In the first phase in-
formation about the first transition (both system and environment) is separated
from information about the rest of the run. We get M ′ = M + 1 ∧ M ′′ = M ′

from the assignment and the environment assumption for the first step and • β
for the rest of the run. For � M > 0 we get M > 0 and • � M > 0 using the
unwinding rule � ϕ ↔ ϕ ∧ • � ϕ. In the second phase of a symbolic execution
step, the unprimed and primed variables M and M ′ are substituted with fresh
static variables that describe the former state, whereas the double primed vari-
able M ′′ is replaced with the unprimed variable M in the new state, and leading
next operators (•) are dropped.

384 B. Tofan et al.

In addition to symbolic execution, well-founded induction is used to deal with
loops. For finite intervals it is possible to induce over the length of an interval. For
infinite traces a well-founded order can often be derived from liveness properties
� ϕ by inducing over the number of steps N until ϕ holds:

� ϕ ↔ ∃ N. (N = N ′′ + 1) until ϕ

The equivalence states that ϕ is eventually true, if and only if N can be decre-
mented (note that N = N ′′ + 1 is equivalent to N > 0 ∧ N ′′ = N − 1) until ϕ
becomes true. Proving a formula of the form � ϕ on infinite traces is then simply
done by rewriting � ϕ to ¬ � ¬ ϕ and a proof by contradiction. Similarly, an
unless formula (as needed later in rely-guarantee proofs, cf. Section 5.1) can

be reduced to the case of an eventually formula using the equivalence

ϕ unless ψ ↔ ∀ B. (� B) → (ϕ unless (ϕ ∧ B ∨ ψ))

ϕ unless ψ is true if it is true on every prefix of the trace that is terminated
by the first time when boolean variable B becomes true. This rewriting allows
for extracting the liveness property � B to prove that the initial unless formula
holds, by applying well-founded induction over the number of steps until B is
true. The (semantic) proofs of both equivalences above are straightforward.

4 Rely-Guarantee Reasoning and the Decomposition
Theorem for Lock-Freedom

This section gives a short introduction to the concurrent system model in our ap-
proach and to the well-known decomposition technique of rely-guarantee reason-
ing. Furthermore, we describe a decomposition theorem for proving lock-freedom.
Its formal proof is available online [27].

4.1 System Model and Rely-Guarantee Reasoning

A concurrent system is a program which spawns an arbitrary positive number
of processes to execute in parallel

CSpawn(n;Act , In,CS ,Out) {
if* n = 0 then

CSeq(n;Act , In,CS ,Out)
else

CSeq(n;Act , In,CS ,Out)�
CSpawn(n− 1; Act , In,CS ,Out)}

CSeq(m;Act , In,CS ,Out) {
{ skip
∨ {Act(m) := true;

COP(m, In;CS ,Out);
Act(m) := false}

}*}

CSpawn consists of n + 1 processes that execute CSeq in parallel. Operation
CSeq finitely or infinitely often (denoted by *) does some computations that
have no direct influence on the underlying data structure (modeled as no op-
eration skip) or it executes an arbitrary data structure operation COP (in the

Temporal Logic Verification of Lock-Freedom 385

queue example, COP is simply the nondeterministic choice (∨) between one of
the two operations CEnq and CDeq).

Operation CSeq is called with a value parameter m of type nat which repre-
sents the identifier of the invoking process. Reference-parameter Act : nat → bool
is a boolean function which is used to distinguish whether a process is currently
active in the sense of currently executing COP (this activity flag is only relevant
for proving lock-freedom). Function In : nat → input is used to pass an arbitrary
input value In(m) to COP. In is a reference parameter in CSeq whereas it is
a value parameter in COP, i.e. whenever COP is invoked, its input value can
differ from previous invocations due to changes on In by CSeq’s environment
(this ensures that different values can be enqueued). The remaining parameters
include a generic state variable CS : cstate for the (shared and local) state on
which COP works and an output function Out : nat → output to return values.

Rely-guarantee reasoning is a widely used decomposition technique to prove
properties of an overall concurrent system by looking at the system’s components
only [17,18]. To this end each process (component) m is extended with two pred-
icates: a two-state rely predicate Rm : cstate× cstate describing the behavior of
m’s environment (including other processes within the system plus the environ-
ment of the entire system) and a binary guarantee predicate Gm : cstate×cstate
which describes the impact of m on its environment (the first parameter of a
guarantee/rely condition denotes the state before the system/environment step
and the second argument denotes the next state). To ensure correctness each
guarantee condition must preserve the rely conditions of all other processes

m �= n ∧ Gm(CS0,CS1) → Rn(CS0,CS1) (1)

The intuitive idea of the rely-guarantee approach is to claim that every process m
fulfills its guarantee Gm if every other process does not violate its rely condition
Rm. To break circularity of this argument, a special implication operator

+�
(as defined in [28]) is used which states that m fulfills its guarantee if its rely
condition has not been violated in some preceding step (Rm

+� Gm). The explicit
separation between program and environment transitions in our logic enables us
to specify guarantees as predicates Gm(CS ,CS ′) with unprimed and primed
variables describing steps of process m. Rely conditions Rm(CS ′,CS ′′) instead
use primed and double primed variables to restrict steps of m’s environment. The
formal definition of

+� is then simply based on the temporal operator unless

Rm
+� Gm :≡ Gm(CS ,CS ′)unless (Gm(CS ,CS ′) ∧ ¬ Rm(CS ′,CS ′′))

Since ϕunlessψ ↔ (� ϕ) ∨ (ϕuntilψ), either the guarantee Gm always holds
or it holds until a system step occurs in which the guarantee still holds, but
where the subsequent environment transition violates m’s rely condition.

In order to show that a process m which executes CSeq satisfies Rm
+� Gm,

two properties must be fulfilled. First, each guarantee must be reflexive (in case
of skip or a step that sets the activity flag, the current state stays the same)

Gm(CS ,CS) (2)

386 B. Tofan et al.

Second, Rm
+� Gm must be preserved by the data structure operation

COP(m, In;CS ,Out), Inv(CS) � Rm
+� Gm (3)

where predicate Inv : cstate introduces an invariant. Properties (2) and (3) also
imply that every process m preserves its guarantee condition at all times, in an
environment that always respects m’s rely condition. To show that in this case
m always preserves the invariant too, we stipulate stability of the invariant over
rely steps:

Inv(CS ′) ∧ Rm(CS ′,CS ′′) → Inv(CS ′′) (4)

With (1) it follows that Inv is also stable over each local guarantee (note that (1)
holds for arbitrary distinct natural numbers) and specifies indeed an invariant
property

CSeq(m; . . .),� Rm(CS ′,CS ′′), Inv(CS) � � (Inv(CS) ∧ Inv(CS ′))

To lift this property (resp. (3)) to the level of an interleaved execution of the
overall system CSpawn, it is necessary to be able to summarize several con-
secutive local rely steps in one rely step, i.e. we require Rm to be transitive

Rm(CS0,CS1) ∧ Rm(CS1,CS2) → Rm(CS0,CS2) (5)

Since the generic setting also takes into account the environment of the overall
system, a global rely condition R : cstate × cstate is required too. It preserves
each local rely condition

R(CS ′,CS ′′) → Rm(CS ′,CS ′′) (6)

Conditions (1) to (6) are the same as described in [11] for linearizability. The
few extensions required to prove lock-freedom are introduced in the next section.
As several of the following proof obligations will assume an invariant and a rely
condition to always hold, we define the following abbreviation:

I(R) :≡ Inv(CS) ∧ Inv(CS ′) ∧ R(CS ′,CS ′′)

4.2 Decomposition Theorem for Lock-Freedom

Lock-freedom is a global progress property of a concurrent system which states
that at all times throughout an (infinite) execution of the system, eventually one
process completes its currently running operation [16]. There are two further im-
portant liveness properties [29]: wait-freedom requires each invoked operation to
eventually complete (thus it is stronger than lock-freedom); obstruction-freedom
requires completion of every operation that eventually executes in isolation
(hence it is a weaker property than lock-freedom). In contrast to lock-freedom,
proofs of these properties require no decomposition technique, since they are al-
ready process-local. All three properties preclude the standstill (deadlock) of the

Temporal Logic Verification of Lock-Freedom 387

system but in a lock-free implementation, repeated change of the data structure
can force a single process to retry again and again.

In our formal setting (see Section 4.1) - apart from executing infinitely often
COP - processes may also execute skip or terminate. Therefore an additional
activity flag is required to detect termination of the data structure operation. A
process m finishes its current execution of an operation when it resets its activity
flag Act(m). In a concurrent system which consists of n processes, global progress
P is defined in terms of the activity flags as

P (n,Act ,Act ′)
↔ ((∃ m ≤ n. Act(m)) → � (∃ k ≤ n. Act(k) ∧ ¬ Act ′(k)))

That is, if there is at least one active process (m), one of them (k) will eventually
reset its activity flag, i.e. complete its operation on the data structure.

To model the absence of interference that forces a process to reiterate, an
additional predicate U : cstate × cstate (“unchanged”) is added to the rely-
guarantee theory. This predicate must be reflexive, because steps that leave the
state unchanged do not interfere with other processes. It is also necessary (for
the lifting) to be able to summarize several consecutive steps which satisfy U
into one step by transitivity

U (CS ,CS)
U (CS0,CS1) ∧ U (CS1,CS2) → U (CS0,CS2)

(7)

Furthermore, we exclude steps from the system’s environment which unpre-
dictably change the activity flags or the critical parts of the data structure by
extending the global rely condition:

Rext(CS ′,Act ′,CS ′′,Act ′′)
↔ R(CS ′,CS ′′) ∧ Act ′′ = Act ′ ∧ U (CS ′,CS ′′)

This extension is acceptable, since we assume that only processes within the
overall interleaved system are allowed to manipulate these specific resources.
Lock-freedom of CSpawn then follows from the following intuitive local proof
obligation

COP(m, In;CS ,Out),� I(Rm)
� � (¬ U (CS ,CS ′) ∨ (� U (CS ′,CS ′′)) → � last) (8)

At any time (leading �), a lock-free operation that updates the relevant part of
the shared state itself in a step (¬ U (CS ,CS ′)) or encounters no interference
(� U (CS ′,CS ′′)), eventually terminates (� last).

Properties (7) and (8) together with the rely-guarantee conditions of the pre-
vious subsection are sufficient to prove lock-freedom of the overall system, when
initially the invariant holds and all activity flags are false.

Theorem 1 (Decomposition Theorem for Lock-Freedom)
If formulas (1) to (8) can be proved (for some Inv , U, R, Rm, Gm), then:

CSpawn(n; . . .),� Rext, Inv(CS),∀ m ≤ n. ¬ Act(m) � � P (n,Act ,Act ′) (9)

388 B. Tofan et al.

Given that the global environment satisfies Rext at all times, the presence of an
active operation will always lead to the completion of some (active) operation.
Although there are no blocking steps in the queue example, the theorem holds
for algorithms COP which include such steps too.

The theorem is proved in two stages. The first stage proves

CSeq(m; . . .),� I(Rm),¬ Act(m)
� � (Act(m) ∧ (¬ U (CS ,CS ′) ∨ (� U (CS ′,CS ′′)))

→ � (Act(m) ∧ ¬ Act ′(m)))
(10)

while the second proves the main theorem. Both proofs rely on the fact, that our
logic allows to reduce a goal α

	
β (resp. α; β) to ϕ

	
β (resp. ϕ; β), when a lemma

α � ϕ is available (see [23] for more details). Note that for interleaving this fact
crucially depends on our semantics with alternating system and environment
steps. It does not hold in standard temporal logic.

A detailed description of the proofs is beyond the scope of this paper, we
just give the main idea of the second proof. The proof of (9), which can be
written in the form CSpawn(n; . . .) � ϕ(n), starts by induction over the number
of processes. Lemma (10), which can be written as CSeq � ψ, directly closes
the base case. In the induction step, unfolding of CSpawn(n + 1; . . .) gives an
interleaving of CSeq and CSpawn(n; . . .). The first formula in the interleaving
can be replaced with ψ, while the second can be replaced with ϕ(n) by the
induction hypothesis. Therefore it remains to prove ψ

	
ϕ(n) � ϕ(n + 1). The

main part of the proof is now by induction over � P (n+1,Act,Act ′) in ϕ(n+1)
and symbolic execution. The proof has a large number of cases, since a symbolic
execution step of each of the two formulas ψ and ϕ(n) can terminate (causing
the other formula to remain), or do an unblocked or blocked step (the latter
forcing a step of the other formula, or a blocked step if both block). Also in
each symbolic execution step we have to prove the implication of the progress
property for the current state. The proof is more complex than all the proofs of
the case study. Since it has to be done once only, it moves much of the complexity
of analyzing the lock-freedom property into the generic theory. The proof has
been mechanized using KIV and is online [27].

5 Proving Lock-Freedom for the Queue

In this section we present the instantiation of the decomposition theorem for
the queue. The presentation is in two parts: first we give the necessary rely and
invariant conditions which are a subset of those used for proving linearizability in
[11]; second we describe the instantiation of the unchanged predicate and outline
the proof of termination for the enqueue operation. Full details are available
online [27].

5.1 Rely-Guarantee Conditions and Invariant

The generic operation COP is instantiated with the nondeterministic choice
between the two queue operations. The generic state variable CS becomes a tuple

Temporal Logic Verification of Lock-Freedom 389

consisting of a shared state Hp, Head, Tail and local states Newef (m), Tlef (m),
Nxtef (m), Succef (m), Hddf (m), Nxtdf (m), Succdf (m) for every process m.

Since all processes execute the same set of operations, all processes will have
the same rely condition Rm by symmetry. It claims that the environment step
preserves the invariant Inv and that predicates Enqlocalm and Deqlocalm hold.

Rm(CS′, CS′′)
↔ (Inv(CS′) → Inv(CS′′)) ∧ Enqlocalm(CS′, CS′′) ∧ Deqlocalm(CS′, CS′′)

The invariant ensures that there are no dangling pointers and that newly allo-
cated nodes are disjoint from one another and from the queue. It also guarantees
that the current state is a valid queue representation, i.e. it conforms to one of
the variants shown in Figure 1.

Predicate Enqlocalm specifies that pointer variables Succef (m), Tlef (m) and
Nxtef (m) (which were lifted from originally local variables to global ones) are
unchanged by other processes

Succef ′′(m) = Succef ′(m) ∧ Tlef ′′(m) = Tlef ′(m)
∧ Nxtef ′′(m) = Nxtef ′(m) (11)

The main interesting information necessary to prove lock-freedom is that when-
ever the snapshot’s next pointer is not null, this reference remains untouched by
m’s environment:

Tlef ′(m) �= null ∧ Hp′[Tlef ′(m)].nxt �= null
→ Hp′′[Tlef ′′(m)].nxt = Hp′[Tlef ′(m)].nxt (12)

This rely condition is interesting when a process shifts a lagging tail pointer for
two reasons: first, to argue that this step maintains a valid queue representation
and second, to ensure that it does not violate the unchanged predicate (cf. pred-
icate IdS in the next subsection). Proof obligation (3) from the rely-guarantee
theory implies that this assumption is acceptable. Its proof rewrites the unless
formula in the succedent as described in Section 3.2 to extract an inductive ar-
gument in case that a loop is reiterated. When symbolically executing the code
of a queue operation of an arbitrary process m, it has to be shown that each
step preserves m’s guarantee condition Gm, given that m’s local rely condition
was true for the last environment transition. The local guarantee condition Gm

(and the global rely condition R) is defined as weak as possible by constraint (1)
(resp. (6)) of the rely-guarantee theory. Since proving (3) has also been neces-
sary in our previous work to show that the queue algorithm is linearizable and
since the required rely-guarantee conditions from the linearizability-proof were
sufficient to prove lock-freedom too, the former proof of (3) has been reused.

Altogether the required rely conditions for lock-freedom of enqueue are a
valid queue representation, (11), and (12). Similar assumptions as defined in
Enqlocalm are defined in in Deqlocalm for the linearizability poof of the de-
queuing process. However, for proving lock-freedom of dequeue, only the locality
of Succdf (m) and Hddf (m) are required.

390 B. Tofan et al.

5.2 Unchanged Predicate

According to proof obligation (8) a suitable instantiation of predicate U must en-
sure termination of a process in an environment that respects U at all times and
it must be preserved by each program transition, unless a transition eventually
leads to completion (e.g. a successful CAS).

That is, when a process dequeues it is sufficient for its termination to assume
that the global head pointer remains unchanged by the environment

IdH :≡ Head ′′ = Head ′

When m enqueues, assuming that other processes n will not change the global
tail pointer is not sufficient to ensure termination. Suppose a system execution in
which m repeatedly shifts the lagging tail for every n which attaches a new node
to the queue. In this situation, no other process ever changes the tail pointer, as
this is done by m who never completes. Instead, U must ensure that m finally
can attach its newly allocated node to the queue, i.e. no other process may add
a new node. Two cases are discerned regarding the current representation. If the
tail pointer does not lag (its next reference is null) neither the global tail pointer
nor its next reference may be changed

IdT :≡ Tail ′′ = Tail ′ ∧ Hp′′[Tail ′′].nxt = Hp′[Tail ′].nxt

When the tail pointer is lagging, m assumes the following environment behavior:
other processes leave the tail pointer and its next reference unchanged or they
shift the tail to its direct successor node (which has a null next reference)

IdS :≡ IdT ∨ Tail ′′ = Hp′[Tail ′].nxt ∧ Hp′′[Tail ′′].nxt = null

Predicate U is the conjunction of these identities:

IdH ∧ (Hp′[Tail ′].nxt = null → IdT) ∧ (Hp′[Tail ′].nxt �= null → IdS)

It specifies that changes relevant for progress are enqueuing or removing an
element, while moving a lagging tail does not guarantee progress and can only
be done according to Figure 1.

5.3 Proof Outline

The unchanged predicate is reflexive and transitive. The temporal logic proof
obligation (8) from Section 4.2 is divided into four subgoals by discerning which
operation is currently executed (enqueue or dequeue) and splitting the disjunc-
tion in the succedent to distinguish whether a local transition of the current
process changes the data structure or the environment satisfies the unchanged
property at all times.2 For enqueue we get two proof obligations

E1,� I(Rm) � � (¬ U (CS ,CS ′) → � last)
E1,� I(Rm) � � (� U (CS ′,CS ′′) → � last)

(13)

2 As the interleaving operator is not used in proof obligation (8), its proof is indepen-
dent from the underlying scheduler. Scheduling issues are covered in the lifting proof
of the decomposition theorem only.

Temporal Logic Verification of Lock-Freedom 391

E8 . . . , S1 � . . .

· · · �= null ,Tail = Tlef (m) � . . .
(4) · · · = null � . . .

E7, . . . , S0 � . . .
(3)

. . .Hp[Tail].nxt �= null � . . .
(2) · · · = null � . . .

E6, VRU � � last
(1)

VRU :≡ � (valid(Head ,Tail ,Hp) ∧ (11) ∧ (12) ∧ U (CS ′,CS ′′))

S0 :≡ Tlef (m) �= null

S1 :≡ Tlef (m) �= null ∧ Nxtef (m) �= null ∧ Hp[Tlef (m)].nxt = Nxtef (m)

Fig. 4. Proof outline enqueue lock-free

where Ek denotes the remaining program starting from line Ek , e.g. and E1 ≡
CEnq and E12 ≡ CAS(Tle ,Nxte;Tail);while ¬ SuccE do . . . (these abbrevi-
ations are not used in KIV). The first is rather simple, since the only step with
¬ U (CS ,CS ′) is a succeeding CAS at line E10 which sets the loop-flag to true,
so the algorithm terminates after the final step E13.

The second proof is more challenging. It consists of an induction for the lead-
ing always operator and symbolically executing the enqueue operation until it
either terminates or the induction hypothesis can be applied. During execution
we get a side goal for every step: starting from the considered step, formula
� U (CS ′,CS ′′) must lead to termination. This can be proved by stepping to
the start of the loop (instruction E5) and applying the following lemma

E5,� I(Rm) � � U (CS ′,CS ′′) → � last

which states that the additional environment assumption � U (CS ′,CS ′′) is suf-
ficient to guarantee termination of the loop of the enqueue operation.

Its proof needs no induction, but requires stepping through the loop once or
twice, depending on whether the tail is lagging when the snapshot is taken; the
basic idea is illustrated in Figure 4. In the conclusion of the proof tree, the first
symbolic execution step to enter the while loop has already been executed. The
remaining program is E6 (instruction E6 takes the local snapshot Tlef (m)).
In a valid state, the required rely conditions and the unchanged predicate are
assumed to hold at all times (VRU); no further restrictions on the current state
are necessary to prove termination of the loop. Proof step (1) is a case distinction
on whether the current queue has a lagging tail pointer (Hp[Tail].nxt 	= null).
If the tail pointer is not lagging (second premise, right hand side) no further
interference will hinder m to complete according to VRU, i.e. the proof consists
of executing E6 until completion. If the tail pointer is lagging behind (first
premise, left hand side), proof step (2) symbolically executes the instruction at
E6 (followed by an environment transition) which yields the new state S0 and the
remaining program is E7. Case distinction (3) tests whether the environment has
helped m according to predicate U by shifting the lagging tail pointer (second
premise). If this is true, the current proof obligation can be discarded by symbolic
execution until the remaining program is again E6 and using the second premise

392 B. Tofan et al.

of proof step (1) as a lemma (during these symbolic execution steps - the test
at E8 is false - the tail pointer and its next reference null remain unchanged). If
however the tail is still lagging (first premise of proof step (3)) the snapshot is
accurate, i.e. Tail = Tlef (m), and the proof continues with symbolic execution
of E7 (proof step (4)). In the new state S1, the snapshot’s next reference is
Nxtef (m) which is not null. We proceed analogously discerning whether the tail
pointer is lagging and symbolic execution: at the latest when the CAS transition
at E12 is (successfully) executed, a non-lagging tail representation is established
and the second premise of step (1) can eventually be used again as a lemma to
finish the proof.

Proving the analog properties to (13) for dequeue is straightforward. The
locality assumptions (for the loop-flag and the snapshot) from the rely condition
and knowing that the head pointer always remains unchanged according to U,
imply termination. This is because after the snapshot is taken, the CAS at D12
will be successfully executed: it is the only dequeue step that does not satisfy
the unchanged predicate, but it guarantees progress.

6 Related Work

The analysis of non-blocking algorithms is a current and highly active field of
research. Several techniques have been proposed to prove correctness and liveness
of these algorithms.

With respect to linearizability, Doherty et al. [7] were the first to publish a
formal verification of the queue algorithm (including memory reuse and version
numbers to avoid an ABA-problem) based on refinement of IO automata. In
contrast to our approach, program counters and a global simulation relation
are used to mechanize the proofs using PVS. Since single steps of a concrete
algorithm are refined individually, an intermediate automaton and backward
simulation had to be used to complete the formal proof for the dequeue operation,
while our approach verifies trace inclusion directly avoiding backward simulation
(see [11] for details).

Vafeiadis [30] also proves linearizability of the queue. His proof technique is
closer to ours in also using rely-guarantee reasoning. A major difference is that
his approach is based on adding abstract ghost code to the implementation,
and not on refinement. To solve the problem of the dequeue operation, the use
of a prophecy variable is suggested (which is basically equivalent to the use of
backward simulation).

Many other groups have contributed to the verification of non-blocking algo-
rithms. Groves et al. [8] for instance present the verification of linearizability of a
more complex lock-free implementation based on trace reduction. Our approach
is currently not able to formally handle these kind of (elimination) algorithms,
where the linearization of an operation can be part of the execution of another
process. Gao et al. [31] have described the verification of a lock-free hash table
which took more than two man years of work.

Temporal Logic Verification of Lock-Freedom 393

A rather different approach is taken by Yahav et al. [32] using shape analysis
[33]. The approach assumes that the abstract operations - although atomic -
already work on the low level heap and that only their interleaving has to be
shown correct. Therefore it compares the intermediate heaps that occur during
interleaved execution of the algorithms to the structures at the beginning and
the end and keeps track of the differences by a finite abstraction (“delta heap
abstraction”) to verify linearizability.

The third author has also contributed to Derrick et al. [34]. The approach
given there is rather different: it is based on the Z specification language and
requires program counters to encode steps of the algorithm as Z operations.
Instead of rely-guarantee reasoning, Owicki-Gries [35] like proof obligations are
generated. The approach is the only one we are aware of, that proves linearizabil-
ity formally using the original definition of [15]. All other approaches (including
ours in [11]) argue informally that linearizability holds.

Related to lock-freedom, we are aware only of two approaches: Colvin and
Dongol [12,13] describe the verification of several lock-free implementations (in-
cluding an array-based nonblocking queue [36]) by explicitly constructing a well-
founded order on program counters and proving that each action either guar-
antees progress or reduces the value of the state according to the well-founded
order. They identify progress actions, which correspond to those steps where
our predicate U is false. Constructing a well-founded order is unnecessary in our
approach, since it is implicit in stepping through the program.

A higher degree of automation is achieved by Gotsman et al. [14] based on rely-
guarantee reasoning and techniques like shape analysis and separation logic [37].
Their approach can verify proof obligations that imply lock-freedom for several
non-trivial algorithms automatically, using a combination of several tools. Deriva-
tion of these proof obligations however is done on paper. There are several dif-
ferences in the proof obligations too: our approach does not use a reduction of
CSpawn to a spawning procedure where the call to CSeq is replaced by COP
(which needs some assumptions about symmetry to be correct). Our proof obli-
gation ensures that the algorithm terminates after a step which falsifies U, while
their proof obligation requires that no process can execute steps which change the
data structure infinitely often. A close comparison for the queue example is hard,
since the queue is only mentioned as one of the examples automatically provable.

Both related approaches assume potentially unfair scheduling, which is more
adequate than our assumption of weak fairness. A closer analysis shows that we
need fairness only to prove that a process is not suspended in favor of another
process which executes skip steps only. Both related approaches consider pro-
cesses which execute an infinite loop of calls to COP and no other instructions.
If we replace the implementation of CSeq with such a loop, the fair interleaving
operator can be replaced with an unfair one. We prefer the more general for-
malization of CSeq, since it is realistic that a process executes other statements
or terminates rather than just calling COP repeatedly. Nevertheless we have
mechanized a version for this loop with unfair interleaving too. For simplicity,
the current proof is limited to algorithms without blocking steps.

394 B. Tofan et al.

The proof proceeds much like the original one, since the symbolic execution
rules for non-fair interleaving are the same as for fair interleaving. The main
difference is that without weak fairness, it can no longer be guaranteed that the
first of two interleaved processes will do a step eventually. Instead, an additional
case split is necessary which gives the same goal as for weak fairness, plus an
extra goal for the case where the first process is never scheduled again, so only
the second remains. This proof is available online [27] too.

7 Summary

We have described a decomposition theorem that reduces the proof of the global
property lock-freedom to process-local proof obligations and we have shown how
this theorem can be applied to prove lock-freedom of a non-trivial lock-free queue
implementation. All specifications and proofs are fully mechanized in the inter-
active theorem prover KIV and the main proofs of lock-freedom in the queue case
study are highly automated. The theory shares rely-guarantee conditions with
those necessary to prove linearizability. We believe that our technique closely
follows the intuitive arguments necessary to prove lock-freedom.

In future work we will consider the ABA-problem in an additional refinement
step (similar to [8]), by extending the current implementation with reference-
recycling and version numbers. Moreover, we will try to improve our method by
better exploiting the symmetry of typical lock-free implementations in the rely-
guarantee theory and by including a formal definition of linearizability within
the reduction approach (similar to [34]).

Acknowledgements

We want to thank the reviewers for their constructive remarks, in particular on
the weak fairness assumption, which have helped to improve this paper.

References

1. Treiber, R.K.: System programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

2. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm.
In: SPAA ’04: ACM symposium on Parallelism in algorithms and architectures,
pp. 206–215. ACM Press, New York (2004)

3. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proc. 15th ACM Symp. on Principles of Dis-
tributed Computing, pp. 267–275 (1996)

4. Michael, M.M.: Cas-based lock-free algorithm for shared deques. In: Kosch, H.,
Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790,
pp. 651–660. Springer, Heidelberg (2003)

5. Michael, M.M.: High performance dynamic lock-free hash tables and list-based
sets. In: SPAA 2002, pp. 73–82. ACM, New York (2002)

Temporal Logic Verification of Lock-Freedom 395

6. Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A.,
Moir, M., Shavit, N., Steele Jr., G.L.: Dcas is not a silver bullet for nonblock-
ing algorithm design. In: SPAA ’04: Proceedings of the sixteenth annual ACM
symposium on Parallelism in algorithms and architectures, pp. 216–224. ACM,
New York (2004)

7. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

8. Groves, L., Colvin, R.: Trace-based derivation of a scalable lock-free stack algo-
rithm. Formal Aspects of Computing (FAC) 21(1-2), 187–223 (2009)

9. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pp. 129–136. ACM, New York (2006)

10. Gao, H., Hesselink, W.H.: A formal reduction for lock-free parallel algorithms. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 305–309. Springer,
Heidelberg (2004)

11. Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with tem-
poral logic. In: Formal Aspects of Computing (FAC), (2009),
http://www.springerlink.com/content/7507m59834066h04/

12. Colvin, R., Dongol, B.: Verifying lock-freedom using well-founded orders. In:
Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711,
pp. 124–138. Springer, Heidelberg (2007)

13. Colvin, R., Dongol, B.: A general technique for proving lock-freedom. Sci. Comput.
Program. 74(3), 143–165 (2009)

14. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V.: Proving that nonblocking
algorithms don’t block. In: Principles of Programming Languages, pp. 16–28. ACM,
New York (2009)

15. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12(3), 463–492
(1990)

16. Massalin, H., Pu, C.: A lock-free multiprocessor os kernel. SIGOPS Oper. Syst.
Rev. 26(2), 108 (1992)

17. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP’83, pp. 321–332. North-Holland, Amsterdam (1983)

18. Misra, J.: A reduction theorem for concurrent object-oriented programs. In: McIver,
A., Morgan, C. (eds.) Programming methodology, pp. 69–92. Springer, New York
(2003)

19. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press,
Cambridge (1986)

20. Cau, A., Moszkowski, B., Zedan, H.: ITL – Interval Temporal Logic. Software Tech-
nology Research Laboratory, SERCentre, De Montfort University, The Gateway,
Leicester LE1 9BH, UK (2002),
http://www.cms.dmu.ac.uk/~cau/itlhomepage

21. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated
Deduction—A Basis for Applications. Systems and Implementation Techniques,
vol. II, pp. 13–39. Kluwer Academic Publishers, Dordrecht (1998)

22. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free parallel and concurrent garbage
collection by mark&sweep. Sci. Comput. Program. 64(3), 341–374 (2007)

http://www.springerlink.com/content/7507m59834066h04/
http://www.cms.dmu.ac.uk/~cau/itlhomepage

396 B. Tofan et al.

23. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verifica-
tion of concurrent systems using symbolic execution. AI Communications 23(2-3),
285–307 (2010)

24. Balser, M.: Verifying Concurrent System with Symbolic Execution. Shaker Verlag,
Germany (2006)

25. Collette, P., Knapp, E.: Logical foundations for compositional verification and
development of concurrent programs in unity. In: Alagar, V.S., Nivat, M. (eds.)
AMAST 1995. LNCS, vol. 936, pp. 353–367. Springer, Heidelberg (1995)

26. Roever, W.P.D., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54.
Cambridge University Press, Cambridge (2001)

27. Online Presentation of the KIV-specifications and the Verification of the Queue
(and Stack),
http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

28. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems (1995)

29. Dongol, B.: Formalising progress properties of non-blocking programs. In: Liu, Z.,
He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 284–303. Springer, Heidelberg
(2006)

30. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis,
University of Cambridge (2007)

31. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with open
addressing. Distrib. Comput. 18(1), 21–42 (2005)

32. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

33. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

34. Derrick, J., Schellhorn, G., Wehrheim, H.: Proving linearizability via non-atomic
refinement. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591,
pp. 195–214. Springer, Heidelberg (2007)

35. Owicki, S.S., Gries, D.: An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf. 6, 319–340 (1976)

36. Colvin, R., Groves, L.: Formal verification of an array-based nonblocking queue.
In: ICECCS ’05: Proceedings of the 10th IEEE International Conference on Engi-
neering of Complex Computer Systems, Washington, DC, USA, pp. 507–516. IEEE
Computer Society Press, Los Alamitos (2005)

37. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
p. 1. Springer, Heidelberg (2001)

http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

Gradual Refinement
Blending Pattern Matching with Data Abstraction

Meng Wang1, Jeremy Gibbons1, Kazutaka Matsuda2, and Zhenjiang Hu3

1 Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

{menw,jg}@comlab.ox.ac.uk
2 Graduate School of Information Sciences, Tohoku University

Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai-city, Miyagi-pref. 980-8579, Japan
kztk@kb.ecei.tohoku.ac.jp

3 GRACE Center, National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

hu@nii.ac.jp

Abstract. Pattern matching is advantageous for understanding and
reasoning about function definitions, but it tends to tightly couple the
interface and implementation of a datatype. Significant effort has been
invested in tackling this loss of modularity; however, decoupling patterns
from concrete representations while maintaining soundness of reasoning
has been a challenge. Inspired by the development of invertible program-
ming, we propose an approach to abstract datatypes based on a right-
invertible language rinv—every function has a right (or pre-) inverse. We
show how this new design is able to permit a smooth incremental tran-
sition from programs with algebraic datatypes and pattern matching,
to ones with proper encapsulation (implemented as abstract datatypes),
while maintaining simple and sound reasoning.

1 Introduction

1.1 Program Development

Suppose that you are developing a program involving some data structure. You
don’t yet know which operations you will need on the data structure, or what
efficiency constraints you will impose on those operations. Instead, you want to
prototype the program, and conduct some initial experiments on the prototype;
on the basis of the results from those experiments, you will decide whether
a naive representation of the data structure suffices, or whether you need to
choose a more sophisticated implementation. In the latter case, you do not want
to have to conduct major surgery on your prototype in order to refactor it to
use a different representation.

The traditional solution to this problem is to use data abstraction: identify
(or evolve) an interface for the abstract datatype, program to that interface, and
allow the implementation to vary without perturbing the program. However, that
requires you to prepare in advance for the possible change of representation:

C. Bolduc, J. Desharnais, and B. Ktari (Eds.): MPC 2010, LNCS 6120, pp. 397–425, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

398 M. Wang et al.

it doesn’t provide a smooth revision path if you didn’t have the foresight to
introduce the interface in the first place, but used a bare algebraic datatype as
the representation.

Moreover, choosing a naive representation in terms of an algebraic datatype
has considerable attractions. Programs that manipulate the data can be defined
using pattern matching over the constructors of the datatype, rather than hav-
ing to use ‘observer’ operations on a data abstraction. This leads to a concise
and elegant programming style, which being based on equations is especially
convenient for reasoning about program behaviour [42].

1.2 Pattern Matching

As a simple example, consider encoding binary numbers as lists of bits, most
significant first:

data Bin = Zero | One
type Num = [Bin]

Functions are typically defined by pattern matching. Consider normalizing bi-
nary numbers by eliding leading zeroes.

normal :: Num → Num
normal [] = [] -- clause (1)
normal (One : num) = One : num -- clause (2)
normal (Zero : num) = normal num -- clause (3)

The definition forms a collection of equations, which give a straightforward ex-
planation of the operational behaviour of the function:

normal [Zero,One,Zero]
≡ { clause (3) }

normal [One,Zero]
≡ { clause (2) }

[One,Zero]

They are also convenient for calculation; for example, here is one case of an
inductive proof that normal is idempotent:

normal (normal (Zero : num))
≡ { clause (3) }

normal (normal num)
≡ { inductive hypothesis }

normal num
≡ { clause (3) }

normal (Zero : num)

An equivalent definition without using pattern matching is harder to read:

Gradual Refinement 399

normal :: Num → Num
normal num = if null num ∨ one (head num) then num

else normal (tail num)

It is also much less convenient for calculating with.
Pattern matching has accordingly been supported as a standard feature in

most modern functional languages, since its introduction in Hope [7]. More
recently, it has started gaining recognition from the object-oriented commu-
nity [9, 28, 24] too. Unfortunately, the appeal of pattern matching wanes when
we need to change the implementation of a data structure: function definitions
are tightly coupled to a particular representation, and a change of representa-
tion has a far-reaching effect. As a result, it has been observed that the wide
spread of pattern matching “leads to a discontinuity in programming: program-
mers initially use pattern matching heavily, and are then forced to abandon the
technique in order to regain abstraction over representations” [39].

1.3 Our Contribution

In this work, then, we strive to address the tension between the convenience of
pattern matching and the flexibility of data abstraction by proposing a mecha-
nism to allow programs written with pattern matching to be refactored smoothly
and incrementally into ones with abstract datatypes (ADTs) [23], without losing
the benefits of simple equational reasoning. In particular, we:

– propose the use of definitions with pattern matching as constructive specifi-
cations of ADTs;

– devise an equational reasoning framework for both the primitives of and the
user-defined operations on ADTs;

– identify necessary and sufficient conditions for correctness of such equational
reasoning;

– design a right-invertible language rinv that guarantees these conditions by
construction.

For the sake of demonstration, we explain our proposal using Haskell; but any
language providing algebraic datatypes would work just as well.

The rest of the paper is structured as follows. Section 2 gives a brief intro-
duction to ADT specification methods. Section 3 presents our proposed design
for pattern matching with ADTs, and Section 4 provides a formal definition of
the right-invertible language rinv on which our design is based. We then eval-
uate the performance and explore alternative points in the design space of our
system (Section 5), before discussing related work (Section 6) and concluding
(Section 7).

2 ADTs and Their Specification

By definition, an ADT is characterized not by its representation or implemen-
tation, but by its interface: a fixed set of primitive operations, together with a

400 M. Wang et al.

specification of their semantics. Different styles of specification possess different
strengths and weaknesses, which makes them more or less suitable as refactoring
targets from programs defined with algebraic datatypes and pattern matching.
In this section, we briefly discuss two popular ways of defining the semantics,
namely axiomatic and constructive.

An axiomatic specification is implicit: the behaviour of the operations is de-
fined by relating them to each other by a collection of equations. For example,
consider operations suitable for queue structures:

adt Queue a
emptyQ :: Queue a
enQ :: a → Queue a → Queue a
deQ :: Queue a → Queue a
first :: Queue a → a
isEmpty :: Queue a → Bool

The following axioms are sufficient to specify the semantics:

deQ (enQ a emptyQ) ≡ emptyQ
deQ (enQ a q) ≡ enQ a (deQ q) ⇐ isEmpty q ≡ False
first (enQ a emptyQ) ≡ a
first (enQ a q) ≡ first q ⇐ isEmpty q ≡ False
isEmpty emptyQ ≡ True
isEmpty (enQ a q) ≡ False

(All the free variables above are assumed to be universally quantified over well-
defined terms, and equality takes precedence over implication.) If the ADT is
implemented in a ‘faithful’ manner [40], the above specification is all that is
known to users, and any properties of programs using the datatype should be
derived only from these axioms. The axiomatic approach avoids suggesting any
particular representation, and so provides a high degree of abstraction. On the
other hand, axiomatic specifications are not easy to construct.

As an alternative, a constructive specification explicitly defines the semantics
of operations by expressing them in terms of an underlying model. For example,
the queue ADT can be related to the familiar list model:

emptyQ = emptylist
isEmpty = isNull
deQ = tail
enQ a q = append q (wrap a)
first = head

(where wrap turns an element into a singleton list). The list model can be
seen as another ADT that is sufficiently powerful to simulate the queue ADT.
Apparently, the constructive approach makes the specifications easier to write
and to understand. The underlying model can be further instantiated into a
representation as an algebraic datatype (also known as a typical object in the
literature [22]):

Gradual Refinement 401

data Queue a = None | More a (Queue a)

which results in the following specifications:

emptyQ = None
first (More a q) = a
isEmpty None = True
isEmpty x = False
enQ a None = More a None
enQ a (More x q) = More x (enQ a q)
deQ (More a q) = q

It it worth emphasising that the datatype acts only as a model of the ADT: it
may suggest but it does not imply a particular implementation. We also note
that this constructive approach does not cover all ADTs: for example, unordered
sets cannot be fully modelled by an algebraic datatype.

Whether the behaviour of an ADT is specified axiomatically or constructively,
the specification can be used in reasoning about programs that make use of the
ADT. In particular, one can use the model underlying a constructive specification
to infer properties of an implementation; for example, we can easily recover the
axiom deQ (enQ a q) ≡ enQ a (deQ q) ⇐ isEmpty q ≡ False with the following
derivation.

deQ (enQ a (More b q))
≡ { enQ }

deQ (More b (enQ a q))
≡ { deQ }

enQ a q
≡ { deQ }

enQ a (deQ (More b q))

3 Reasoning with Constructive Specifications

Our purpose is to allow incremental refactoring of a program, replacing an al-
gebraic datatype used with pattern matching by a more sophisticated ADT
implementation.

As described in Section 2, a typical approach to specifying an ADT is to use
an algebraic datatype as its model and the definitions by pattern matching for
constructive specifications of the operations. In moving from an initial program
explicitly depending on an algebraic datatype to a refactored one using an ADT,
one will generally have to reimplement some of the existing functions as primitive
operations of the new ADT, and rewrite the remaining functions in terms of these
primitives.

There are two problems with this process. Firstly, it is a ‘big bang’ refactoring:
all uses of the original algebraic datatype have to be changed at once, even though
some of the old definitions may not gain from the refactoring. Secondly, it loses

402 M. Wang et al.

the benefits of pattern matching for the functions that have to be redefined in
terms of the ADT primitives: it is no longer so convenient for reasoning.

In this section, we propose a framework free from the above pitfalls: refactor-
ing can be done selectively; and at any point in the process, executability and
reasoning are fully supported. We look into the details of the design by means
of examples.

3.1 A First Example: FIFO Queue

The queue ADT we have seen is defined via the following specification.

adt Queue a = None | More a (Queue a)
emptyQ = None
first (More a q) = a
isEmpty None = True
isEmpty x = False
enQ a None = More a None
enQ a (More x q) = More x (enQ a q)
deQ (More a q) = q

This looks similar to an algebraic datatype declaration, but the right-hand side
of the definition introduces a model, instead of an implementation, of the ADT.
The primitive operations of the ADT are specified in term of this model; de-
spite having a previous life as an executable function, each specification now
serves only to express semantics, and is to be replaced by a corresponding ADT
implementation at run-time.

As an example, the enQ declaration should now be interpreted as a specifica-
tion:

enQ a q ≡ More a None ⇐ q ≡ None
first (enQ a q) ≡ first q ∧ deQ (enQ a q) ≡ enQ a (deQ q) ⇐ q 	≡ None

rather than as a concrete implementation.
Now let’s consider a possible concrete representation of queue structures:

type Queue a = ([a], [a])

The second list of the pair, representing the latter part of a queue, is reversed,
so that enqueuing simply prefixes an element onto it. The primitive operations
can be implemented as follows:

emptyQ = ([], [])
first ([], bq) = last bq
first ((a : fq), bq) = a
isEmpty ([], []) = True
isEmpty q = False
enQ a (fq , bq) = (fq , a : bq)
deQ ([], bq)) = deQ (reverse bq , [])
deQ (a : fq , bq) = (fq , bq)

Gradual Refinement 403

(We use the naming convention of adding an underscore “ ” to an operation’s
name to distinguish its implementation from its specification.) The implementa-
tions are what really execute when ADTs are used. Since at the moment, we only
reimplemented the primitive operations, queues can still be constructed using the
model. During execution, any value constructed in the model is firstly converted
to a value in the implementation before being passed to the implemented oper-
ations; and the resulting output is converted back to the model. For example,
given the program enQ 1 None, what really executes is (to◦enQ 1◦ from) None,
where the two functions to and from convert the abstract representation of a
queue into the model and back again. For the case of queue ADT, the to func-
tion can be defined as follows:

to ([], []) = None
to ([], q) = to (reverse q, [])
to (x : xs , q) = More x (to (xs, q))

The from function should be the right inverse of to—that is, to ◦ from ≡ id .
The operations will not always have types as simple as Queue a → Queue a,

like enQ 1 does. Suppose we have polymorphic model datatype M a and abstract
implementation N a, and polymorphic conversion functions to :: N a → M a
and from ::M a → N a. In the general case, a model function will take not just a
single value in the model (of type M a), but some combination of model values
and other arguments. We capture this in terms of an operation F on polymorphic
datatypes M . Similarly, the operation will return a different combination G of
model values and other results.

Technically, if polymorphic datatypes are represented as functors, then F ,G
are functors on the functor category (what Martin et al. [26] call ‘higher-order
functors’, or ‘hofunctors’ for short), so that F M and G M are themselves
functors. Then the model function f will have type F M a → G M a, and the
corresponding implementation function f :: F N a → G N a should satisfy the
correctness condition G to◦ f ◦F from ≡ f , as shown in the following commuting
diagram.

F N a � F from F M a

G N a

f

� G to � G M a

f

�

Given the right-inverse property, we can simplify the proof obligation

G to ◦ f ◦ F from ≡ f

to the promotion condition [3]

G to ◦ f ≡ f ◦ F to

which does not involve the function from, as the following lemma demonstrates.

404 M. Wang et al.

Lemma 1 (Round trip). Given G to ◦ f ≡ f ◦ F to, we have f ≡ G to ◦ f ◦
F from.

Proof

G to ◦ f ◦ F from
≡ {G to ◦ f ≡ f ◦ F to }

f ◦ F to ◦ F from
≡ {F is a hofunctor }

f ◦ F (to ◦ from)
≡ { to ◦ from ≡ id }

f ◦ F id
≡ {F is a hofunctor }

f �

For example, for the operation first :: Queue a → a of the queue ADT, F is the
identity hofunctor, matching the source type Queue a, and G is the constantly-
identity hofunctor (G F = Id), matching the target type a. The operation must
satisfy the following promotion condition:

first ≡ first ◦ to

The promotion equations for the rest of the operations are listed below.

to ◦ deQ ≡ deQ ◦ to
to ◦ enQ a ≡ enQ a ◦ to
isEmpty ≡ isEmpty ◦ to
to emptyQ ≡ emptyQ

The proofs of such equations follow by standard equational reasoning.
The astute reader may have noticed that we have avoided explicitly defining

the from function. This is because validating user-defined to and from with tra-
ditional methods requires additional machinery not available within most main-
stream languages, such as Haskell or ML. Instead, we explore a correctness-by-
construction technique: in the next section, we will present a combinator-based
language rinv implemented as a library in Haskell, in which every definable func-
tion gets a right inverse for free. That is to say, the ADT implementer writes
only to, in rinv, and the corresponding from function is automatically generated.
For the sake of completeness, in the case of the queue ADT presented above, a
possible definition in rinv reads:

to = fold (none
 more) ◦ app ◦ (id × reverse)

However, the details of the language are completely orthogonal to the discussion
in this section, and can be safely ignored for the time being.

In summary, other than the conventional expectation that implementations
of ADTs are certified against the specifications, the only additional requirement
on the implementer is the definition of the to function. Once this is done, an

Gradual Refinement 405

ADT is sealed off; users of the ADT only interact with the model. They can
expect to reason about their programs faithfully using properties of the model;
for example, exactly the same reasoning on the model as shown at the end of
Section 2 allows us to conclude that

deQ (enQ a q) ≡ enQ a (deQ q) ⇐ isEmpty q ≡ False

As mentioned before, a programmer using the ADT now has the choice of keeping
the original definitions using pattern matching against the model, or of refac-
toring them into the traditional style using only the primitive operations of the
ADT, or of having a mixture of the two. For example, it is very convenient to
define a map function in terms of the list-like model:

mapQ1 :: (a → b) → Queue a → Queue b
mapQ1 f None = None
mapQ1 f (More a q) = More (f a) (mapQ1 f q)

or a prioritisation function, which is essentially a stable sort based on element
weight:

prioritise :: Ord a ⇒ Queue a → Queue a
prioritise None = None
prioritise (More x xs) = insert x (prioritise xs)

where insert y None = More y None
insert y (More x xs) = if y � x then More y (More x xs)

else More x (insert y xs)

A definition using only the primitive operations is likely to be more clumsy:

mapQ2 :: (a → b) → Queue a → Queue b
mapQ2 f q = mapQ2acc f q emptyQ

where mapQ2acc f q accq =
if isEmpty q then accq
else mapQ2acc f (deQ q) (enQ (f (first q)) accq)

Nevertheless, since the non-primitive functions and the primitive operation spec-
ifications are based on the same model, we can prove the equivalence of the two
versions through equational reasoning.

Definitions with pattern matching are almost always more elegant [42]. How-
ever, from time to time, we may want to use the primitive operations for the
sake of efficiency, or for reuse of legacy libraries. For example, consider a circular
queue that is read for a certain amount of time, say repeatedly playing a piece
of music. Using the primitive enQ operation allows us to take advantage of its
constant time performance.

play1 :: Time → Queue (IO ()) → IO ()
play1 0 q = first q
play1 (n + 1) q = do hd

406 M. Wang et al.

play1 n (enQ hd tl)
where hd = first q

tl = deQ q

The two styles of programming can be mixed:

play2 0 (More a q) = a
play2 (n + 1) (More a q) = do a

play2 n (enQ a q)

Equational reasoning interacts with both styles in the obvious way.

3.2 Translation into Haskell

The semantics of non-primitive functions on ADTs can be elaborated by a me-
chanical translation into ordinary Haskell, following a rather straightforward
scheme: each use of a primitive function is replaced with its implementations,
precomposed with to and postcomposed with from (subject to the appropriate
hofunctors).

First of all, adt declarations are translated into data declarations.

data Queue′ a = None | More a (Queue′ a)

Functions that are written using pattern matching against the model now work
with the new datatype. The primitive operations that are defined on the ac-
tual implementation require their inputs to be converted from the model before
consumption, and the outputs converted back to the model. Effectively, all the
translated functions and constructors have the model datatypes as source and
target types; the implementations remain only as intermediate structures. As an
example, play2 is translated into the following.

play2 ′ 0 (More a q) = a
play2 ′ (n + 1) (More a q) = do a

play2 ′ n ((to ◦ enQ a ◦ from) q)

Given the round trip law (Lemma 1), it is easy to conclude that play2 ′ is equiv-
alent to play2 , in the sense that exactly the same output is produced for each
input.

Theorem 2. The translation into Haskell is semantics-preserving.

Proof. Follows directly from Lemma 1. �

3.3 Optimization

Up to now, we have achieved sound equational reasoning for ADTs with little
additional burden for the ADT implementer. As a result, program construction
can benefit from pattern matching and straightforward proofs of correctness.

Gradual Refinement 407

The run-time performance of non-primitive functions making use only of pattern
matching can be understood by considering the models as datatypes; however,
when primitive operations are called, additional conversion overhead will occur.
This performance loss is to be expected for definitions such as play2 , where an
obvious switch from pattern matching to primitive operations is inevitable. How-
ever, it may be surprising that play1 , which only involves primitive operations,
is not faster. The translated code is the following.

play1 ′ 0 q = (to ◦ first ◦ from) q
play1 ′ (n + 1) q = do hd

play1 ′ n ((to ◦ enQ hd ◦ from) tl)
where hd = (to ◦ first ◦ from) q

tl = (to ◦ deQ ◦ from) q

There are conversions everywhere in the program. It will be disastrous if all of
them have to be executed. Since there is no pattern matching involved, we can
try to remove the conversions through fusion. Indeed, the correctness of such
fusion follows from the promotion condition. Let’s take an expression fragment
from the above definition for demonstration. Consider

(to ◦ enQ hd ◦ from) ((to ◦ deQ ◦ from) q)

Our target is to fuse the intermediate conversions to produce

(to ◦ enQ hd ◦ deQ ◦ from) q

This would clearly follow from ◦ to ≡ id , but this is not a property that we
guarantee—for good reason, since requiring it in addition to the existing right
inverse property to◦from ≡ id demands isomorphic implementations and models,
which is too restrictive to be practically useful. Instead, using the promotion
condition, we can prove a weaker property that is sufficient for fusion.

Theorem 3 (Fusion Soundness). Given operation specifications f ::F M a →
G M a and g ::G M a → H M a, and their implementations f ::F N a → G N a
and g :: G N a → H N a, we have H to ◦ g ◦ G from ◦ G to ◦ f ◦ F from ≡
H to ◦ g ◦ f ◦ F from.

Proof

H to ◦ g ◦ G from ◦ G to ◦ f ◦ F from
≡ {promotion: H to ◦ g ≡ g ◦ G to }

g ◦ G to ◦ G from ◦ G to ◦ f ◦ F from
≡ {G is a hofunctor; to ◦ from ≡ id }

g ◦ G to ◦ f ◦ F from
≡ {promotion: H to ◦ g ≡ g ◦ G to }

H to ◦ g ◦ f ◦ F from �

Basically, this theorem states that although the input to g may differ from the
output of f , due to the from ◦ to conversions, nevertheless the post-conversion
of g ’s output brings possibly different results into the same value in the model.

408 M. Wang et al.

It is now clear that when pattern matching is not used, strength reduction [29]
is able to lift the conversion out of the recursion, so that it is done only once.
The translation of play1 can be optimized into the following, which is free from
any overhead.

play1 ′ n = to ◦ play1 ′′ n ◦ from

play1 ′′ 0 q = first q
play1 ′′ (n + 1) q = do hd

play1 ′′ n (enQ hd tl)
where hd = first q

tl = deQ q

3.4 More Examples

Join Lists. As an alternative to the biased linear list structure, the join repre-
sentation of lists has been proposed for program elegance [27,4], efficiency [37],
and more recently, parallelism [38]. It can be defined as:

data List a = Empty | Unit a | Join (List a) (List a)

As a simple example, a constant-time append function (in constrast to the linear-
time left-biased-list counterpart) can be defined with this representation.

append l1 l2 = Join l1 l2

At the same time, we don’t want to give up on the familiar notion of Nil and
Cons . Instead, they can serve as a model of the join representation.

adt List a = Nil | Cons a (List a)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

We can now inherit the rich body of function definitions on lists. For example,

head (Cons x xs) = x

Binary Numbers. In the introduction, we showed a representation of binary
numbers as lists of digits with the most significant bit first (MSB). This repre-
sentation is intuitive, and offers good support for most operations; however, for
incrementing a number, having the least significant bit (LSB) first is better.

type Num = [Bin]

incr ′ :: Num → Num
incr ′ [] = [One]
incr ′ (Zero : num) = One : num
incr ′ (One : num) = Zero : (incr ′ num)

Gradual Refinement 409

Effectively, in order to use the above definition with any other operations, we only
need to reverse the MSB representation, and a type synonym for Num can be
used as documentation of this intention. However, the synonyms are of no help to
the compiler in guaranteeing correct usage, because they are simply two different
names for the same type. At the same time, defining the two representations as
completely different types is very cumbersome. With our proposal, we can hide
one representation in an ADT, which effectively eliminates any possibility of
misuse.

adt Num = [Bin]
incr = reverse ◦ incr ′ ◦ reverse

In contrast to other examples, there is no new pattern interface other than the
list constructors. However, a programmer using the ADT now only deals with a
single representation of binary numbers.

4 The Right-Invertible Language ‘RINV’

Our design of ADTs discussed previously relies on the existence of a right inverse,
from, of the user-defined conversion function to. This can be guaranteed by writ-
ing to in a right-invertible language that automatically generates a right inverse
for each function constructed. In this section, we introduce such a language.

The language rinv is defined as a combinator library in Haskell, the syntax
of which is as below. (Non-terminals are indicated in small capitals.)

Language rinv ::= cstr | prim | comb
Constructors cstr ::= nil | cons | snoc | wrap | ...
Primitives prim ::= app | id | assocr | assocl | swap | ...
Combinators comb ::= rinv ◦ rinv | fold rinv | rinv
 rinv | rinv×rinv

The language is similar in flavour to the pointfree style of programming [5],
but with the additional feature that a right inverse is automatically generated
for each function that is constructed. As a result, a definition f :: s � t in
rinv actually represents a pair of functions (hence the notation �): the forward
function [[f]] :: s → t , and its right inverse [[f]]◦ :: t → s , which together satisfy
[[f]] ◦ [[f]]◦ ≡ id . For convenience when clear from context, we don’t distinguish
between f and its forward function [[f]].

The generated right inverses are intended to be total, so the forward functions
have to be surjective; this property holds of the primitive functions (except for
individual constructors of a multi-variant algebraic datatype) and is preserved
by the combinators.

There is an extensible set of primitive functions defining the basic non-terminal
building blocks of the language. Any surjective function could be made a prim-
itive in rinv. All primitive functions are uncurried; this fits better with the
invertible framework, where a clear distinction between input and output is re-
quired. For the sake of demonstration, we present a small but representative

410 M. Wang et al.

collection of primitive functions above: swap, assocl , and assocr rearrange the
components of an input pair; id is the identity operation; app is the uncurried
append function on lists. As we will show, with just these few we can define
many interesting functions.

The set of constructor functions is also extensible, via new datatypes. We use
lowercase names for the uncurried versions of constructors. In addition to the
left-biased list constructor cons that comes with the usual datatype declaration,
we also include its right-biased counterpart snoc, which adds an element at the
end; it can be defined in Haskell as

snoc = λ(x , xs) → xs ++ [x]

Another additional constructor for lists is wrap, which creates a singleton list.

wrap x = [x]

This ability to admit functions that do not directly arise from a datatype decla-
ration as constructors is crucial for the expressiveness of rinv, which otherwise
would be rigidly surjective. Although this might seem ad hoc, it is by no means
arbitrary. One should only use functions that truly model a different repre-
sentation of the datatype. For example, snoc and nil form the familar backward
representation of lists, while wrap, nil and the primitive function app correspond
to the join list representation found in Section 3.4.

Since constructor functions are exceptions to the surjectivity rule, lone con-
structors must be combined with other functions by the ‘junc’ combinator
,
which dispatches to one of two functions according to the result of matching
on a sum. When one of the operands of
 is surjective, or the two operands
cover both constructors of a two-variant datatype, the result is surjective. For
example, nil
 cons and nil
 id are both surjective, but cons
 snoc is
not. Since
 can be nested, this result extends to datatypes with more than two
constructors. Constructor functions can be composed with other functions as
well, using the standard function composition combinator ◦, but only to the left:
once a non-surjective function appears in a chain of compositions other than in
the leftmost position, it is difficult to analyse the exact range of the composition,
and the check for surjectivity ceases to be syntactic.

Other than the two already mentioned combinators, × is the cartesian product
of two functions, and fold f is the unique homomorphism from the (implicit)
initial algebra of a datatype to algebra f . We do not explicitly mention the
datatype itself, as it is understood from context. Fold is the only combinator in
rinv that is recursive. In combination with swap, assocl and assocr , × is able to
define all functions that rearrange the components of a pair, while
 is useful in
constructing the algebra for a fold . We don’t include �, the dual of
, in rinv,
because of surjectivity, as will be explained shortly.

With the language rinv, we can state the following property.

Theorem 4 (Right invertibility). Given a function f in rinv, for finitely
defined input x , ([[f]] ◦ [[f]]◦) x ≡ x .

Gradual Refinement 411

The correctness of this theorem should become evident by the end of this sec-
tion, as we discuss in detail the various constructs of rinv and their properties.
(Throughout this paper, unless otherwise mentioned, we always assume finitely
defined values).

4.1 The Primitive Functions

The function id is the identity; functions assocr , assocl and swap manipulate
pairs.

assocr :: ((a, b), c) � (a, (b, c))
assocl :: (a, (b, c)) � ((a, b), c)
swap :: (a, b) � (b, a)

Together with the combinators × and ◦, these are sufficient to define many
interesting functions on pairs. For example,

subr :: (b, (a, c)) � (a, (b, c))
subr = assocr ◦ (swap × id) ◦ assocl

trans :: ((a, b1), (b2, c)) � ((a, b2), (b1, c))
trans = assocl ◦ (id × subr) ◦ assocr

Function app is the uncurried append function, which is not injective. The admis-
sion of non-injective functions is one of the most important distinctions between
rinv and other invertible languages [31], allowing us to break away from the iso-
morphism restriction. There are many possible right inverses for app, of which
we pick one:

[[app]]◦ = λxs → splitAt ((length xs + 1) ‘div ‘ 2) xs

4.2 The Constructors

The semantics of the constructor functions are simple: they follow directly from
the corresponding constructors introduced by datatype declarations, except for
being uncurried. For example,

[[nil]] = λ() → []
[[cons]] = λ(x , xs) → x : xs

Constructors snoc and wrap are not primitive on left-biased lists, but can be
encoded:

[[snoc]] = λ(xs , x) → xs ++ [x]
[[wrap]] = λx → [x]

Inverses of the primitive constructor functions are obtained simply by swapping
the right- and left-hand sides of the definitions. For example, we have

[[nil]]◦ = λ[] → ()
[[cons]]◦ = λ(x : xs) → (x , xs)

412 M. Wang et al.

They are effectively partial ‘guard’ functions, succeeding when the input value
matches the pattern. The right inverses of snoc and wrap are

[[snoc]]◦ [x] = ([], x)
[[snoc]]◦ (x : xs) = let (ys , y) = [[snoc]]◦ xs in (x : ys , y)

[[wrap]]◦ [x] = x

The inverses of constructor functions are generally not case-exhaustive. For ex-
ample, [[cons]]◦ only accepts non-empty lists, while [[nil]]◦ only accepts the empty
list. As a result, in contrast to primitive functions, constructor functions cannot
be composed arbitrarily, as we will see shortly.

4.3 The Combinators

The combinators in rinv are familiar to functional programmers.

Composition, Sum and Product. Combinator ◦ sequentially composes two
functions:

[[f ◦ g]] = [[f]] ◦ [[g]]
[[f ◦ g]]◦ = [[g]]◦◦ [[f]]◦

Its inverse is the reverse composition of the inverses of the two arguments.
Combinators × and
 compose functions in parallel. The former applies a

pair of functions component-wise to its input:

(×) :: (a � b) → (c � d) → ((a, c) � (b, d))
[[f × g]] = λ(w , x) → ([[f]] w , [[g]] x)
[[f × g]]◦ = λ(y, z) → ([[f]]◦ y, [[g]]◦ z)

It is well known that × can be defined in term of a more primitive combinator
�, which executes both of its input functions on a single datum:

(�) :: (a � b) → (a � c) → (a � (b, c))
[[f � g]] = λx → ([[f]] x , [[g]] x)

However, in the backward direction, [[f]]◦ x and [[g]]◦ y would have to converge,
which is difficult to enforce statically. Indeed, functions constructed with � are
generally not surjective, and so do not have total right inverses; for this reason,
we exclude � from rinv.

The combinator
 consumes an element of a sum type.

data Sum a b = Inl a | Inr b
(
) :: (a � c) → (b � c) → (Sum a b � c)
[[f
 g]] = λx → case x of {Inl a → [[f]] a ; Inr b → [[g]] b}

In the backward direction, if both f and g are surjective, it doesn’t matter
which branch is chosen. However, the use of constructor functions deserves some

Gradual Refinement 413

attention, since they are not surjective in isolation. As a result, in the event that
[[f]]◦ fails on certain inputs, [[g]]◦ should be applied. To model this failure handling,
we lift functions in rinv into the Maybe monad (allowing an extra possibility
for the return value), and handle a failure in the first function by invoking the
second.

[[f
 g]]◦ = λx → ([[f]]◦ x) ‘mplus‘ ([[g]]◦ x)

This shallow backtracking is sufficient because the guards of conditionals are
only pattern matching outcomes, which are completely decided at each level.
For brevity, we still use the non-monadic types for f
g, with the understanding
that all functions in rinv are lifted to the Maybe monad in the implementation.

In general, it is not an easy task to check (joint) surjectivity of functions.
However, in rinv, this test is made relatively straightforward, since the only
possible cause for f
 g not to be jointly surjective is that both f and g use
constructor functions; in this case, it is clear that we need the complete set of
constructors to satisfy the condition of joint surjectivity. We demonstrate this
check with examples towards the end of this section.

The more intricate part is to analyse the surjectivity of the composition (and
hence the totality of its inverse). It is clear that if one of the functions in a
chain of compositions is not surjective, the composed function may also be non-
surjective. However, there is no easy way of determining the range of such a
composition if the non-surjective function is not the leftmost one in the chain,
which makes it unsuitable for constructing jointly surjective functions through
the
 combinator as discussed above. Therefore, in rinv, we disallow composi-
tions involving constructor functions on the right of a composition.

Fold. With the ground prepared, we are now ready to discuss recursive combi-
nators. We define

[[fold f]] = foldX [[f]]
[[fold f]]◦ = unfoldX [[f]]◦

The forward semantics of fold f is defined in terms of the standard foldX for a
datatype X , and the backward semantics is defined by a corresponding unfoldX .
In what follows, we call the f in fold f the ‘body’ of the fold. Note that unfold
is not in rinv, but is used to define right inverses. In this paper, we overload
fold and unfold when the datatype is understood. Intuitively, fold disassembles a
structure and replaces the constructors with applications of the body, effectively
collapsing the structure. Function unfold , on the other hand, takes a seed, split-
ting it with the body into building blocks of a structure and new seeds, which
are themselves recursively unfolded. In short, fold collapses a structure, whereas
unfold grows one.

When an algebraic datatype X is given, Haskell definitions of foldX and
unfoldX can be generated. For example, consider the datatype of lists:

foldL :: (Sum () (a, b) → b) → (List a → b)
foldL f = λxs → case xs of

414 M. Wang et al.

[] → f (Inl ())
(x : xs) → f (Inr (x , (foldL f xs)))

unfoldL :: (b → Sum () (a, b)) → (b → List a)
unfoldL f = λb → case f b of Inl () → []

Inr (a, b) → a : (unfoldL f b)

Another example is leaf-labelled binary trees. Note that the constructor Fork is
uncurried to fit better into the rinv framework.

data LTree a = Leaf a | Fork (LTree a,LTree a)

foldT :: (Sum a (b, b) → b) → LTree a → b
foldT f = λt → case t of

Leaf a → f (Inl a)
Fork (t1, t2) → f (Inr (foldT f t1, foldT f t2))

unfoldT :: (a → Sum a (b, b)) → b → LTree a
unfoldT f = λb → case f b of

Inl a → Leaf a
Inr (b1, b2) → Fork (unfoldT f b1, unfoldT f b2)

We use unfold to construct the right inverse of fold . From [12], we have the
following lemma.

Lemma 5. fold [[f]] ◦ unfold [[f]]◦ id.

Since both fold and unfold are case-exhaustive when their bodies are case-
exhaustive, the only reason for not having an equality in the lemma above is
that unfold is potentially non-terminating: when a body does not split a seed
into ‘smaller’ seeds, unfolding a seed creates an infinite structure. It is well known
that a function constructed by unfold terminates if the seed transformation is
well-founded (that is, there should be no infinite descending chain of seeds).
Static termination checkers exist in the literature [20,36] and are orthogonal to
the discussion here.

4.4 Programming in RINV

With the knowledge of rinv, we are now ready to look into the kinds of function
we can define with it.

To start with, let’s look first at a very useful derived combinator map that
can be defined in term of fold . For example, map on lists, mapL, is defined as
follows.

mapL :: (a � b) → (List a � List b)
mapL f = fold ◦ (nil
 (cons ◦ (f × id)))

Function mapL f applies argument f uniformly to all the elements of a list,
without modifying the list structure. Since nil and cons form a complete set of
constructors for lists, we know they are jointly surjective.

Gradual Refinement 415

Similarly, map on leaf-labeled trees, mapT , is defined as follows.

mapT :: (a � b) → (Tree a � Tree b)
mapT f = foldT ◦ ((leaf ◦ f)
 fork)

The function reverse on lists can be defined as a fold:

reverse = fold (nil
 snoc)
[[reverse]]◦ = unfold [[nil
 snoc]]◦

In the forward direction, a list is taken apart and the first element is appended
to the rear of the output list by snoc. This process terminates on reaching an
empty list, when an empty list is returned as the result. Function [[snoc]]◦ extracts
the last element in a list and adds it to the front of the result list by unfold ,
which terminates when [[nil]]◦ can be successfully applied (i.e when the input is
the empty list). Since nil and snoc form a complete set of constructors for lists,
they are jointly surjective.

Function reverse is also used to construct the apprev function that reverses a
list and appends it.

apprev :: ([a], [a]) → [a]
apprev = app ◦ (id × reverse)

Function apprev reverses the second list before concatenating the two. For ex-
ample, we have:

apprev ([1, 2], [3, 4, 5, 6, 7]) = [1, 2, 7, 6, 5, 4, 3]

The companion apprev ◦ function is

apprev◦ :: [a] → ([a], [a])
apprev◦ = [[app ◦ (id × reverse)]]◦

In the backward direction, a list is split into two, and functions [[id]]◦ and [[reverse]]◦

are applied to the two parts. For example, we have

apprev (apprev ◦ ([1, 2, 7, 6, 5, 4, 3])) ≡ apprev ([1, 2, 7, 6], [3, 4, 5])
≡ [1, 2, 7, 6, 5, 4, 3]

On the other hand,

apprev◦ (apprev ([1, 2], [3, 4, 5, 6, 7])) ≡ apprev◦ ([1, 2, 7, 6, 5, 4, 3])
≡ ([1, 2, 7, 6], [3, 4, 5])

It is clear from above that apprev◦ is not a left inverse of apprev , and it is not
intended to be a term in the language rinv.

Our last example is the traversal of node-labelled binary trees.

data BinTree a = BLeaf | BNode a (BinTree a,BinTree a)

416 M. Wang et al.

The fold/unfold functions for binary trees are as follows.

foldB :: (Sum () (a, (b, b)) → b) → (BinTree b → b)
foldB f = λx → case x of

BLeaf → f (Inl ())
BNode a (l , r) → f (Inr (a, (foldB f l , foldB f r)))

unfoldB :: (b → Sum () (a, (b, b))) → (b → BinTree b)
unfoldB f =

λx → case f x of
Inl () → BLeaf
Inr (a, (l , r)) → BNode a (unfoldB f l , unfoldB f r)

Using the foldB combinator, pre- and post-order traversal of a binary tree can
be defined as follows.

preOrd = foldB (nil
 (cons ◦ (id × app)))
postOrd = foldB (nil
 (snoc ◦ swap ◦ (id × app)))

In the forward direction, foldB adds the node value at one end of the concate-
nation of the two subtrees’ traversals. In the backward direction, a node value is
extracted from the input list, and the rest of the list is divided and grown into
individual trees.

As a final remark to readers familiar with pointfree programming in Haskell,
the primitive function app can be defined as a fold:

app = uncurry (flip (foldr (:)))

which effectively partially applies foldr and awaits an input as the base case. This
idiom of taking an extra argument to form the base case is difficult to realize
when the fold body is constructed independently, as it is in rinv. For some
cases, it even threatens the existence of right inverses as unfolds. For example,
the following function in Haskell

f :: a → [LTree a] → LTree a
f a = foldr Fork (Leaf a)

does not have a right inverse as an unfold. In rinv, we rule out definitions of
this kind, and treat app as a primitive.

5 Discussion

5.1 The Dual Story

In this paper, we have picked the to function to be provided by ADT imple-
menters; the design of rinv and the subsequent discussion of ADTs is based on
this decision. However, this choice is by no means absolute. One can well imag-
ine ADT implementers coming up with from functions first, and a left-invertible

Gradual Refinement 417

language generating the corresponding to functions; this would give the same
invertibility property to ◦ from ≡ id . But the implementer is now expected to
prove a different promotion condition, f ◦ F from ≡ G from ◦ f , adapted to
involve only from. Nevertheless, the crucial round-trip law and fusion law that
form the foundation of the translation and optimization are still derivable; for
round-trip, we have

G to ◦ f ◦ F from
≡ { f ◦ F from ≡ G from ◦ f }

G to ◦ G from ◦ f
≡ {G is a hofunctor; to ◦ from ≡ id }

f

and for fusion:

H to ◦ g ◦ G from ◦ G to ◦ f ◦ F from
≡ { f ◦ F from ≡ G from ◦ f }

H to ◦ g ◦ G from ◦ G to ◦ G from ◦ f
≡ {G is a hofunctor; to ◦ from ≡ id }

H to ◦ g ◦ G from ◦ f
≡ { f ◦ F from ≡ G from ◦ f }

H to ◦ g ◦ f ◦ F from

5.2 Reasoning about Efficiency

A controversy in any design that embeds implicit computations into pattern
matching is the datatype-like notation. We think this feature is positive, since it
preserves the elegant syntax of pattern matching and offers backward compat-
ibility, an important property for incremental refactoring. On the other hand,
there is the concern that this similar look and feel may cause programmers to
overlook the possibility of non-constant run-time cost of pattern matching on
models. This is certainly a valid concern. As we have seen in Section 3.3, such
conversions only occur when primitive operations and pattern matching interact.
If this occurs in a recursion, run-time complexity could be affected. However, it is
clear that this inefficiency can be eliminated by not mixing primitive operations
and pattern matching in recursions.

5.3 Nested and Overlapping Patterns

Two well-regarded features of pattern matching are the scalability with respect
to nesting and the sharing between overlapping patterns. For example, consider
a function that sums elements of a list pair-wise:

pairSum Nil = Nil
pairSum (Cons x Nil) = Cons x Nil
pairSum (Cons x (Cons y ys)) = Cons (x + y) (pairSum ys)

418 M. Wang et al.

Nested patterns allow simultaneous matching and variable binding to patterns
below top level (such as y above), in contrast to the sequential checking of ex-
pressions as guards. There is often a degree of sharing between patterns; for
example, input to pairSum that, when evaluated, fails to match the first pat-
tern does not need to be evaluated again for subsequent clauses. This is even
more important for pattern matching on models where non-constant computa-
tion (i.e., the to function) may be needed. Our proposal supports both features
nicely: nested patterns are written exactly the same way as with datatypes; and
execution of to functions is done prior to pattern matching and is shared among
all the patterns.

5.4 RINV Expressiveness

In our system, the set of definable models is determined by the existence of to
functions in rinv that map to them. rinv is designed to be extensible: new
primitives (and even new combinators) can be added to the language if needed.
The real limitation of rinv we face here is that all functions must be surjective,
in order to ensure existence of the right inverses: valid model values are bounded
by the actual range of the user-defined to function; invertibility is not guaranteed
for model values outside this range.

Totality of from is certainly desirable if it is used for model conversion, since
failures will not be observable through reasoning. In the current proposal, the to
functions in rinv are always surjective, which rules out some useful programs.
An example already mentioned is the combinator � which executes both of its
input functions, and is defined as

(�) :: (a → b) → (a → c) → a → (b, c)
(f � g) = λx → (f x , g x)

Since f � g is generally not surjective, it doesn’t have a right inverse, despite the
fact that we can easily guard against inconsistent input in the reverse direction
as follows.

[[f � g]]◦ = λ(a, b) → if x == y then x else error "violation"
where x = [[f]]◦ a ; y = [[g]]◦ b

Definitions like the one above are known as weak right inverses [30].
Another useful function is unzip, which can be defined as a fold.

unzip = foldL ((nil � nil)
 ((cons × cons) ◦ trans))

This definition will be rejected in rinv, since cons × cons and nil � nil are not
jointly surjective. Indeed, unzip only produces pairs of lists of equal length. This
is also the very reason that we exclude unfold as a combinator in rinv, as it in
general only constructs structures of a particular shape, as determined by the
splitting strategy of its body.

If a model value outside the range is constructed, the integrity of model level
equational reasoning may be corrupted. On the other hand, it is valid to argue

Gradual Refinement 419

that the same invariant assumed for the original datatype prior to the refactoring
applies to the model too. For example, consider a program that requires balanced
binary trees. A to function that only produces balanced binary trees is safe
if the invariant is correctly preserved in the original program. It remains an
open question whether we should allow programmers to take some reasonable
responsibilities, or should insist on enforcing control through the language.

6 Related Work

Efforts to combine data abstraction and pattern matching started two decades
ago with Wadler’s views proposal [43]; and it is still a hot research topic [8, 34,
10, 35, 11,41,19,21,39, 33].

Wadler’s views provide different ways of viewing data than their actual imple-
mentations. With a pair of conversion functions, data can be converted to and
from a view. Consider the forward and backward representations of lists:

data List a = Nil | Cons a (List a)
view List a = Lin | Snoc (List a) a

to Nil = Lin
to (Cons x Nil) = Snoc Nil x
to (Cons x (Snoc xs y)) = Snoc (Cons x xs) y
from Lin = Nil
from (Snoc Nil x) = Cons x Nil
from (Snoc (Cons x xs) y) = Cons x (Snoc xs y)

The view clause introduces two new constructors, namely Lin and Snoc, which
may appear in both terms and patterns. The first argument to the view construc-
tion Snoc refers to the datatype List a, so a snoclist actually has a conslist as its
child. The to and from clauses are similar to function definitions. The to clause
converts a conslist value to a snoclist value, and is used when Lin or Snoc appear
as the outermost constructor in a pattern on the left-hand side of an equation.
Conversely, the from clause converts a snoclist into a conslist, when Lin or Snoc
appear in an expression. Note that we are already making use of views in the
definition above; for example, Snoc appears on the left-hand side of the third to
clause, matching against which will trigger a recursive invocation of to.

Functions can now pattern match on and construct values in either the datatype
or one of its views.

last (Snoc xs x) = x

rotLeft (Cons x xs) = Snoc xs x
rotRight (Snoc xs x) = Cons x xs

rev Nil = Lin
rev (Cons x xs) = Snoc (rev xs) x

Upon invocation, an argument is converted into the view by the to function; after
completion of the computation, the result is converted back to the underlying
datatype representation.

420 M. Wang et al.

Just as with our proposal, this semantics can be elaborated by a straightfor-
ward translation into ordinary Haskell. First of all, view declarations are trans-
lated into data declarations.

data Snoc a = Lin | Snoc (List a) a

Note that the child of Snoc refers to the underlying datatype: view data is
typically hybrid (in contrast to our approach). Now the only task is to insert the
conversion functions at appropriate places in the program.

last xs = case to xs of Snoc xs x → x

rotLeft xs = case xs of Cons x xs → from (Snoc xs x)
rotRight xs = case to xs of Snoc xs x → Cons x xs

rev xs = case xs of
Nil → from Lin
(Cons x xs) → from (Snoc (rev xs) x)

In contrast to our approach, Wadler exposes both a datatype and its views
to programmers. To support reasoning across the different representations, the
conversion clauses are used as axioms.

For example, we can evaluate an expression:

last (Cons 1 (Cons 2 Nil))
≡ {Cons x Nil = Snoc Nil x }

last (Cons 1 (Snoc Nil 2))
≡ {Cons x (Snoc xs y) = Snoc (Cons x xs) y }

last (Snoc (Cons 1 Nil) 2)
≡ { last }

2

or calculate with functions:

rotRight (rotLeft (Cons x xs))
≡ { rotLeft }

rotRight (Snoc xs x)
≡ { rotRight }

Cons x xs

However, this style of reasoning is limited in expressiveness. For example, there is
no way to calculate with rotLeft◦rotRight , because in Wadler’s setting, inputs are
always constructed in the underlying datatype: in (rotLeft◦rotRight) (Cons x xs),
there is no way of converting Cons x xs to a Snoc view, which would allow the
calculation of rotRight to proceed. (The claim in the original paper [43] that
rotLeft ◦ rotRight ≡ id is provable is incorrect; what is actually provided is a
proof that rotRight ◦ rotLeft ≡ id .)

A perhaps more noticeable weakness of views is the use of user-defined con-
versions as axioms. It is expected for a view type to be isomorphic to a subset

Gradual Refinement 421

of its underlying datatype, and for the pair of conversions between the values
of the two types to be each other’s full inverses. This is certainly restrictive;
and Wadler didn’t suggest any way to enforce such an invertibility condition. As
pointed out by Wadler himself [43], and followed up by several others [8,34], this
assumption is risky, and may lead to nasty surprises that threaten soundness of
reasoning.

Inspired by Wadler’s proposal, our work ties up the loose ends of views by hid-
ing the underlying datatype as an ADT, and using only the view (our model) for
pattern matching. The implementations of primitive operations of the ADT can
be proven correct through comparison against the constructive specification, at
no additional cost to ADT implementers. The language rinv for defining conver-
sions guarantees right invertibility, a weaker condition that lifts the isomorphism
restriction on abstract representations and models. In contrast to views, our sys-
tem does not cater for multiple views of the same ADT, because given no explicit
axioms connecting them, it is difficult to reason across views.

‘Safe’ variants of views have been proposed before [8, 34]. To circumvent the
problem of equational reasoning, one typically restricts the use of view construc-
tors to patterns, and does not allow them to appear on the right-hand side of a
definition. As a result, expressions like Snoc Lin 1 become syntactically invalid.
Instead, values are only constructed by ‘smart constructors’, as in snoc lin 1.
In this setting, equational reasoning has to be conducted on the source level
with explict applications of to. A major motivation for such a design is to admit
views and sources with conversion functions that do not satisfy the invertibil-
ity property. In another words, let Constr and constr be a constructor and its
corresponding smart constructor; in general, we have Constr x 	≡ constr x . This
appears to hinder program comprehension, since the very purpose of the conven-
tion that the name of a smart constructor differs only by case from its ‘dumb’
analogue is to suggest the equivalence of the two.

More recently, language designers have started looking into more expressive
pattern mechanisms. Active patterns [10, 35] and many of their variants [11,41,
19,21,39,35] go a step further, by embedding computational content into pattern
constructions. All the above proposals either explicitly recognise the benefit of
using constructors in expressions, or use examples that involve construction of
view values on the right-hand sides of function definitions. Nevertheless, none
of them are able to support pattern constructors in expressions, due to the
inability to reason safely. Knowing that there is an absence of good solutions for
supporting constructors in expressions, some work focusses mainly on examples
that are primarily data consumers, an escape that is expected to be limited
and short-lived. Another common pitfall of active patterns is the difficulty in
supporting nested and overlapping patterns, as discussed in Section 5.3, because
each active pattern is computed and matched independently.

In particular, equational reasoning with ADTs is one of the central themes
in two notable proposals [8, 35]. These proposals demonstrate the possibility
of reasoning about programs containing safe views or active patterns, through
the axiomatic specifications of ADTs. In particular, it is observed in [8] that

422 M. Wang et al.

an algebraic datatype called the ‘associated free type’ (model in our case) may
serve as the interface of an ADT. Through the view mechanism, an associated
free type can differ in structure from the abstract representation of the ADT. In
contrast to ours, their proposal is not able to separate functions over an ADT
into primitive and non-primitive, an essential feature for incremental refactoring;
nor to recognize the value of right-invertibility of to as the key to sound reasoning
with models.

The language rinv owes its origins to the rich literature on invertible pro-
gramming [32, 2], a programming paradigm where programs can be executed
both forwards and backwards. Mu et al. concentrate their effort on designing
a language that provides only injective functions. The resulting language Inv
is a combinator library that syntactically rules out any non-injective functions.
The most novel operator of Inv is dup f , which duplicates the input and ap-
plies f to one copy. In the backward direction, the two copies of the duplicated
input are checked for consistency before being restored. It is shown that Inv is
practically useful for maintaining consistency of structured data related by some
transformations [31, 17]. Invertible arrows [2] extend the arrow framework [18]
(a generalization of monads) with a combinator that encodes pairs of functions
being each other’s inverses. In an aside in [2], it is recognized that when full in-
vertibility is not achievable (due to the non-isomorphic nature of the two sides),
biased (either left- or right-) invertibility is nevertheless approximation.

Right inverses have been studied as a component of the much more elabo-
rate bidirectional programming framework of lenses [13,6,15,14] targeting view-
updates of XML databases; in this context, right inverses are known as ‘create’
functions. Based on record types, the combinators of lenses have little similarity
to those of rinv. A distinctive feature of the lenses framework is the use of se-
mantic types [16] to give precise bounds to the ranges of forward functions (thus
the domains of backward functions). As a result, surjectivity now concerns the
relationships of domains/ranges of lenses connected by a combinator, instead of
being a property between a function and its target datatype.

7 Conclusion

Algebraic datatypes and pattern matching offer great promise to programmers
seeking simple and elegant programming, but the promise turns sour when mod-
ular changes are demanded. Our work tackles this long-standing problem by
proposing a framework for refactoring programs written with pattern matching
into ones with ADTs: programmers are able to selectively reimplement original
function definitions into primitive operations of the ADT, and either rewrite the
rest in terms of the primitive ones, or simply leave them unchanged. This mi-
gration is completely incremental: executability and proofs through equational
reasoning are preserved at all times during the process.

At the heart of our proposal is a novel design of ADTs enriched with algebraic
models for backwards-compatible pattern matching. The model has the same
interface as the datatype that is being replaced; and the original definitions

Gradual Refinement 423

of the selected primitive operations are turned into constructive specifications,
through which equational reasoning connects the primitive operations and the
rest of the functions. The soundness of such reasoning is established by the right-
inverse property of the conversion pairs that bridge the model and the abstract
representation.

We have implemented the language rinv as a combinator library in Haskell,
and a näıve translation of ADTs into Haskell immediately follows. However,
it remains to investigate how the fusion theory developed in the paper can be
applied in practice. There is literature on fusing embedding-projection pairs
(conceptually similar to our to and from functions) [1,25]. However the treatment
of recursive functions using a fixpoint combinator in [1] is not applicable directly,
because the ‘deep’ embedding in our approach (not producing hybrid data) does
not allow conversions to be isolated into a non-recursive part. Instead, we plan
to employ an analysis of mixed uses of patterns and primitive operations; and
use strength reduction to remove the conversions, as outlined in Section 3.3.

At this stage, our focus is on supporting refactoring of programs written with
datatypes and pattern matching, which automatically excludes some ADTs, such
as unordered sets, that cannot be fully modelled by algebraic datatypes. We leave
it as future work to investigate the applicability of our proposal in a more general
setting.

Acknowledgements

We are grateful to Ralf Hinze for his valuable comments on an early draft of
the paper; the binary number example is due to him. This work is supported
by the EPSRC grant Generic and Indexed Programming (EP/E02128X), and
was partly conducted during the first author’s internship at National Institute
of Informatics, Japan. Part of the work of the third author was done while
the author was at University of Tokyo as JSPS Research Fellow supported by
Grant-in-Aid for JSPS Fellows 20 · 9584.

References

1. Alimarine, A., Smetsers, S.: Optimizing generic functions. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 16–31. Springer, Heidelberg (2004)

2. Alimarine, A., Smetsers, S., van Weelden, A., van Eekelen, M., Plasmeijer, R.:
There and back again: Arrows for invertible programming. In: Haskell Workshop,
pp. 86–97. ACM, New York (2005)

3. Bird, R.S.: The promotion and accumulation strategies in transformational pro-
gramming. ACM Transactions on Programming Languages and Systems 6(4),
487–504 (1984)

4. Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic
of Programming and Calculi of Discrete Design. NATO ASI Series F, vol. 36,
pp. 3–42. Springer, Heidelberg (1987); Also available as Technical Monograph
PRG-56, from the Programming Research Group, Oxford University

424 M. Wang et al.

5. Bird, R.S.: A calculus of functions for program derivation. In: Research Topics in
Functional Programming, pp. 287–307. Addison-Wesley, Reading (1990)

6. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. In: Principles of Programming Languages, Jan-
uary 2008. ACM, New York (2008)

7. Burstall, R., MacQueen, D., Sannella, D.: Hope: An experimental applicative lan-
guage. In: Lisp and Functional Programming, pp. 136–143. ACM, New York (1980)

8. Burton, F.W., Cameron, R.D.: Pattern matching with abstract data types. Journal
of Functional Programming 3(2), 171–190 (1993)

9. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

10. Erwig, M.: Active patterns. In: Kluge, W.E. (ed.) IFL 1996. LNCS, vol. 1268,
pp. 21–40. Springer, Heidelberg (1997)

11. Erwig, M., Peyton Jones, S.: Pattern guards and transformational patterns. In:
Haskell Workshop. ACM, New York (2000)

12. Fokkinga, M., Meijer, E.: Program calculation properties of continuous algebras.
Technical Report CS-R9104, CWI, Amsterdam, Netherlands (January 1991)

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view update
problem. ACM Transactions on Programming Languages and Systems 29(3) (May
2007); Preliminary version in POPL ’05 (2005)

14. Foster, J.N., Pierce, B.C., Zdancewic, S.: Updatable security views. In: CSF ’09:
Proceedings of the 2009 22nd IEEE Computer Security Foundations Symposium,
Washington, DC, USA, pp. 60–74. IEEE Computer Society Press, Los Alamitos
(2009)

15. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: International Con-
ference on Functional Programming, pp. 383–396. ACM, New York (2008)

16. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. Journal of the
ACM 55(4) (2008)

17. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. In: Partial Evaluation and Pro-
gram Manipulation, pp. 178–189. ACM, New York (2004)

18. Hughes, J.: Generalising monads to arrows. Science of Computer Program-
ming 37(1-3), 67–111 (2000)

19. Jay, C.B.: The pattern calculus. ACM Transactions on Programming Languages
and Systems 26(6) (2004)

20. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Principles of Programming Languages, pp. 81–92. ACM, New York
(2001)

21. Licata, D., Peyton Jones, S.: View patterns: lightweight views for Haskell (2007),
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

22. Liskov, B., Guttag, J.: Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley, Boston (2000)

23. Liskov, B., Zilles, S.: Programming with abstract data types. In: ACM Symposium
on Very High Level Languages (1974)

24. Liu, J., Myers, A.C.: JMatch: Iterable abstract pattern matching for Java. In:
Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 110–127. Springer,
Heidelberg (2002)

http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

Gradual Refinement 425

25. Magalhães, J.P., Holdermans, S., Jeuring, J., Löh, A.: Optimizing generics is easy!
In: PEPM ’10: Proceedings of the 2010 ACM SIGPLAN workshop on Partial eval-
uation and program manipulation, pp. 33–42. ACM, New York (2010)

26. Martin, C., Gibbons, J., Bayley, I.: Disciplined, efficient, generalised folds for nested
datatypes. Formal Aspects of Computing 16(1), 19–35 (2004)

27. Meertens, L.G.L.T.: Algorithmics: Towards programming as a mathematical
activity. In: CWI Symposium on Mathematics and Computer Science. CWI-
Monographs, vol. 1, pp. 289–344. North-Holland, Amsterdam (1986)

28. Moreau, P.-E., Ringeissen, C., Vittek, M.: A pattern matching compiler for mul-
tiple target languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 61–76.
Springer, Heidelberg (2003)

29. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Communications of the ACM 22(2), 96–103 (1979)

30. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inver-
sion generates divide-and-conquer parallel programs. In: PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 146–155. ACM, New York (2007)

31. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–18. Springer, Heidelberg
(2004)

32. Mu, S.-C., Hu, Z., Takeichi, M.: An injective language for reversible computation.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 289–313. Springer, Heidelberg
(2004)

33. Nogueira, P., Moreno-Navarro, J.J.: Bialgebra views: A way for polytypic program-
ming to cohabit with data abstraction. In: Workshop on Generic Programming,
pp. 61–73. ACM, New York (2008)

34. Okasaki, C.: Views for Standard ML. In: ACM Workshop on ML (1998)
35. Palao Gostanza, P., Peña, R., Núñez, M.: A new look at pattern matching in

abstract data types. In: International Conference on Functional Programming,
pp. 110–121. ACM, New York (1996)

36. Sereni, D.: Termination analysis and call graph construction for higher-order func-
tional programs. In: Ramsey, N. (ed.) International Conference on Functional Pro-
gramming, pp. 71–84. ACM Press, New York (2007)

37. Sleep, M.R., Holmström, S.: A short note concerning lazy reduction rules for ap-
pend. Software: Practice and Experience 12(11) (1982)

38. Steele Jr, G.L.: Organizing functional code for parallel execution or, foldl and foldr
considered slightly harmful. In: International Conference on Functional Program-
ming, pp. 1–2. ACM, New York (2009)

39. Syme, D., Neverov, G., Margetson, J.: Extensible pattern matching via a
lightweight language extension. In: International Conference on Functional Pro-
gramming, pp. 29–40. ACM, New York (2007)

40. Thompson, S.: Lawful functions and program verification in Miranda. Science of
Computer Programming 13(2-3), 181–218 (1990)

41. Tullsen, M.: First class patterns. In: Pontelli, E., Santos Costa, V. (eds.) PADL
2000. LNCS, vol. 1753, p. 1. Springer, Heidelberg (2000)

42. Wadler, P.: A critique of Abelson and Sussman: Why calculating is better than
scheming. ACM SIGPLAN Notices 22(3), 83–94 (1987)

43. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: Principles of Programming Languages, pp. 307–313. ACM, New York (1987)

Author Index

Altenkirch, Thorsten 100

Backhouse, Roland 1
Bäumler, Simon 377
Berghammer, Rudolf 22
Boiten, Eerke 42
Brink, Kasper 58

Chen, Wei 1
Chen, Yifeng 80
Cunha, Alcino 331

Danielsson, Nils Anders 100
Dongol, Brijesh 119
Dunne, Steve E. 178

Ferreira, João F. 1, 140

Gibbons, Jeremy 397
Grundy, Dan 42
Guttmann, Walter 157

Hayes, Ian J. 119, 178
Hillston, Jane 20
Hinze, Ralf 195
Holdermans, Stefan 58
Hu, Zhenjiang 397

Kosiuczenko, Piotr 229

Llorens, Marisa 248
Löh, Andres 58

Macedo, Hugo Daniel 271
Mandel, Louis 288
Matsuda, Kazutaka 397
Meinicke, Larissa 178

Niqui, Milad 310

Oliveira, José Nuno 271
Oliver, Javier 248

Pacheco, Hugo 331
Palamidessi, Catuscia 19
Pavlovic, Dusko 353
Pepper, Peter 353
Plateau, Florence 288
Pouzet, Marc 288

Reif, Wolfgang 377
Rutten, Jan 310

Sanders, J.W. 80
Schellhorn, Gerhard 377
Silva, Josep 248
Smith, Douglas R. 353
Struth, Georg 22

Tamarit, Salvador 248
Tofan, Bogdan 377

Wang, Meng 397

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	The Algorithmics of Solitaire-Like Games
	Introduction
	Solitaire and Variations
	Solitaire
	The Solitaire Army

	Tiling Problems
	The Chessboard Problem
	The Generalisation

	Games on Cyclotomic Polynomials
	Seven-Trees-in-One and the Nuclear Pennies Game
	Cyclotomic Polynomials

	Conclusion
	References

	Compositionality of Secure Information Flow
	References

	Process Algebras for Collective Dynamics
	References

	Contributed Talks
	On Automated Program Construction and Verification
	Introduction
	A Simple Relational Modelling Language
	The Dark Side of the Interface
	Automation Technology Review
	Synthesis of Warshall’s Algorithm
	Verification of Reachability Algorithms
	Synthesis of Szpilrajn’s Algorithm
	Discussion
	Conclusion
	References

	The Logic of Large Enough
	Introduction
	Large Enough Quantifiers
	Limits of Sequences
	Towards Calculational Asymptotics
	Further Applications
	References

	Dependently Typed Grammars
	Introduction
	Grammar Framework
	Representing Grammars
	Constraints on Productions
	Parse Trees
	Parser Combinators
	Generating Parsers

	Left-Corner Transform
	Transformation Rules
	Transforming Productions
	Transforming Semantics

	Proof of a Language-Inclusion Property
	Language Inclusion
	Relating Parse-Tree Transformation to Grammar Transformation
	Parse-Tree Transformation: Specification
	Parse-Tree Transformation: Agda Implementation

	Related Work
	Conclusions
	References

	Abstraction of Object Graphs in Program Verification
	Introduction
	Abstraction of Object Graphs
	Manual Reasoning about General Pointer Programs
	Automated Verification
	Assertions for Parallel Lists
	Normal Form
	Automated Program Verification of Assertions
	List Reversal
	Schorr-Waite Graph Marking

	Conclusions
	References

	Subtyping, Declaratively
	Introduction
	Induction and Coinduction
	Induction
	Coinduction
	Coinductive Relations
	Mixed Induction and Coinduction
	A Criterion for Totality
	Relations Using Mixed Induction and Coinduction

	RecursiveTypes
	Subtyping via Trees
	Subtyping Using Mixed Induction and Coinduction
	Inductive Axiomatisation of Subtyping
	Postulating an Admissible Rule May Not Be Sound
	Conclusions
	References

	Compositional Action System Derivation Using Enforced Properties
	Introduction
	ActionSystems
	Syntax and Semantics
	Refinement
	Temporal Logic
	Frames

	Enforced Properties
	Industrial Press
	Specification
	Methodology
	Safety
	Progress

	Conclusion
	References

	Designing an Algorithmic Proof of the Two-Squares Theorem
	Introduction
	Euclid’s Algorithm
	Inverting Euclid’s Algorithm
	Reversed Sequences of Vectors
	Length of the Sequence of Vectors
	Sum of Two Positive Squares
	Discussion
	References

	Partial, Total and General Correctness
	Introduction
	Common Axioms
	Choice and Composition
	Finite and Infinite Iteration
	Tests and Domain

	Axioms for Partial, Total and General Correctness
	Partial Correctness
	Total Correctness
	General Correctness

	General Correctness and Loops
	Recursion
	While-Loops
	Correctness Statements and Calculus
	Pre-post Specifications

	While-Programs
	Unified Semantics
	Normal Form Theorem
	Non-deterministic Programs

	Conclusion
	References

	Unifying Theories of Programming That Distinguish Nontermination and Abort
	Introduction
	UTPDesigns
	Z Specifications
	Distinguishing Nontermination and Abort
	General Correctness
	Assumptions on the Initial State versus Termination Sets
	TimedDesigns
	Relating Extended Designs and Timed Designs

	Timed Reactive Designs
	Conclusions
	References

	Adjoint Folds and Unfolds
	Introduction
	Notation
	Fixed-Point Equations
	Initial Fixed-Point Equations
	Final Fixed-Point Equations
	Mutual Type Recursion: \ensuremath{\Catid{C}\times \Catid{D}}
	Type Functors: \ensuremath{\Catid{D}^{\Catid{C}}}

	Adjoint Fixed-Point Equations
	Adjoint Initial Fixed-Point Equations
	Adjoint Final Fixed-Point Equations
	Identity: \ensuremath{\mathsf{Id}\dashv \mathsf{Id}}
	Currying: \ensuremath{{-}\times \Conid{X}\dashv {-}^{\Conid{X}}}
	Mutual Value Recursion: \ensuremath{(\mathbin{+})\dashv \Delta \dashv (\times)}
	Mutual Value Recursion: ˛\ensuremath{{\textstyle\sum}\,\Varid{i}\in \Catid{I}\dashv \Delta \dashv {\textstyle\prod}\,\Varid{i}\in \Catid{I}}
	Type Application: \ensuremath{\mathsf{Lsh}_{\Conid{X}}\dashv ({-}\,\Conid{X})\dashv \mathsf{Rsh}_{\Conid{X}}}
	Type Composition: \ensuremath{\mathsf{Lan}_{\mathsf{J}}\dashv ({-}\circ \mathsf{J})\dashv \mathsf{Ran}_{\mathsf{J}}}

	Related Work
	Conclusion
	References

	An Abstract Machine for the Old Value Retrieval
	Introduction
	TheAbstractMachine
	States
	Transitions

	Invariant
	Weak Bisimulation
	Computing @pre
	Relation to the AspectJ Implementation
	Complexity

	Conclusion
	References

	A Tracking Semantics for CSP
	Introduction
	The Syntax and Semantics of CSP
	Tracking Computations
	Instrumenting the Semantics for Tracking
	Correctness
	Conclusions
	References

	Matrices as Arrows!
	Introduction
	The Category of Matrices Mat_{K}
	Chasing Biproducts
	Blocked Linear Algebra — Calculationally!
	Calculating Triple Nested Loops
	Related Work
	Conclusions and Current Work
	References

	Lucy-n: a n-Synchronous Extension of Lustre
	Introduction
	The Language
	Clock Adaptability
	Relaxed Clock Calculus
	Abstraction of Binary Words
	Abstract Operations and Relations
	Precision of Abstract Operators and Tests
	Comparison with Previous Abstractions

	Solving Subtyping Constraints
	Implementation
	Application: The $Picture in Picture$
	Conclusion
	References
	$Downscaler$ Code

	Sampling, Splitting and Merging in Coinductive Stream Calculus
	Introduction
	Preliminaries
	Periodic Stream Samplers
	Splitting and Merging
	Preserving Rationality
	Preserving Algebraicity
	Stream Circuits
	Discussion and Future Work
	References

	Generic Point-free Lenses
	Introduction
	Point-free Combinators as Lenses
	Recursion Patterns as Lenses
	Functor Mapping
	Anamorphism
	Catamorphism
	Natural Transformations
	Hylomorphisms

	Related Work
	Conclusion
	References
	Point-freeLaws
	Proofs

	Formal Derivation of Concurrent Garbage Collectors
	Introduction
	Notes on Garbage Collection
	Architecture and Basic Terminology
	The Fundamental Specification of Garbage Collection
	How to Find Dead Nodes

	Mathematical Foundation: Fixed Points
	Classical Fixed Points (Stop-the-World Collectors)
	Fixed Points in Dynamic Settings (Concurrent Collectors)
	The $Microstep$ Refinement

	Garbage Collection in Dynamic Graphs
	Worksets (“Wavefront”)
	Dirty Nodes
	Implementing the Step $s_{i} \mapsto s_{i+1}$

	Conclusion
	References

	Temporal Logic Verification of Lock-Freedom
	Introduction
	Michael and Scott’s Lock-Free Queue
	Temporal Logic in KIV
	Interval Temporal Logic
	Symbolic Execution and Induction

	Rely-Guarantee Reasoning and the Decomposition Theorem for Lock-Freedom
	System Model and Rely-Guarantee Reasoning
	Decomposition Theorem for Lock-Freedom

	Proving Lock-Freedom for the Queue
	Rely-Guarantee Conditions and Invariant
	Unchanged Predicate
	Proof Outline

	Related Work
	Summary
	References

	Gradual Refinement Blending Pattern Matching with Data Abstraction
	Introduction
	Program Development
	Pattern Matching
	Our Contribution

	ADTs and Their Specification
	Reasoning with Constructive Specifications
	A First Example: FIFO Queue
	Translation into Haskell
	Optimization
	More Examples

	The Right-Invertible Language ‘RINV’
	The Primitive Functions
	The Constructors
	The Combinators
	Programming in RINV

	Discussion
	The Dual Story
	Reasoning about Efficiency
	Nested and Overlapping Patterns
	RINV Expressiveness

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

