
Chapter 9
Other Approximate Methods

Abstract Exact diagonalisations of the type presented in the previous chapter are
typically limited to relatively small numbers of lattice sites. In this chapter approx-
imate methods that may be applied to larger systems are discussed. The variational
method is discussed as one method of simulating the properties of quantum spin
systems, although an exact enumeration of the basis states in a given sector becomes
prohibitive in terms of computational cost for larger lattices. Monte Carlo simulation
allows us to treat larger lattices using the variational method. This discussion leads
on to a more general description of the quantum Monte Carlo simulation of quantum
spin systems. Finally, the topics of perturbation theory and of series expansions are
explored. Series expansions obey the linked cluster theorem and so yield results
valid in the infinite-lattice limit from the outset. The spin-half Heisenberg model
on the linear chain is used as a test-case for all of these methods. We show that
even simple applications of these methods give improved results for the ground-state
energy compared to the classical result.

9.1 Introduction

The finite-size calculations, described in the previous chapter, are only one way of
obtaining results numerically. The coupled-cluster method, described in detail in the
next chapter is also a numerical method which deals directly with the infinite lattice.
In this chapter we mention the variational method and its stochastic version, the
Variational Monte Carlo method, the Green Function Monte Carlo method and also
perturbation theory/series expansions. Some of these, e.g., series expansions, deal
directly with the infinite lattice, although others such as Monte Carlo are generally
applied to a finite lattice and the results then extrapolated in the infinite-lattice limit.

9.2 Variational Method

The variational method, widely used in theoretical physics, can also be applied
to 2D and 3D quantum spin systems in a simple and straightforward manner. An
important point to note about the variational method is that the approximate bra
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and ket states are Hermitian conjugates of each other (unlike in the coupled cluster
method described later) so that the calculated ground-state energy is a strict upper
bound on the true value. If the result depends upon some parameter in the wave
function then minimising with respect to this parameter, i.e. varying it to find the
minimum, can lead to a good approximation to the true value. The ground state
wave function is less reliably obtained as some important features may have been
neglected in the initial trial wave function.

For example, in an antiferromagnetic spin system we usually know that the
ground state is a state with total spin equal to 0. The true ground state must consist
of a linear combination of states in the set {I } which is the set of all Ising states for
which Sz

T ≡ ∑
i Sz

i = 0. Thus the ground state wave function is

|Ψ 〉 =
∑

I

cI |I 〉. (9.1)

The ground-state energy is given by the Schrödinger equation as normal

H |Ψ 〉 = Eg|Ψ 〉

and applying 〈Ψ | on the left gives

Eg = 〈Ψ |H |Ψ 〉
〈Ψ |Ψ 〉

or

Eg =
∑

I1,I2
c∗

I1
cI2〈I1|H |I2〉∑
I |cI |2 . (9.2)

Now we make an approximation to the coefficients in such a way that there is one
or more parameters in the coefficients which can be varied.

An example is the choice for a spin-half system given by

cI = ui j (p
↑
i p↓

j + p↓
i p↑

j ), (9.3)

where the indices i and j run over all lattice sites. p↑ and p↓ are projection operators
for the ‘up’ and ‘down’ states of the spins, where

p↑| ↑〉 = 1| ↑〉 p↑| ↓〉 = 0| ↓〉
p↓| ↑〉 = 0| ↑〉 p↓| ↓〉 = 1| ↓〉.

In terms of the normal spin operators
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p↑ ≡ 1

2
+ Sz : p↓ ≡ 1

2
− Sz,

and the {ui j } are parameters.
Note that it is slightly easier to deal with the equivalent spin system after a unitary

rotation of the local axes of the spin by 180◦ on one sublattice. This changes the
Hamiltonian slightly, but crucially means that the cI coefficients must be positive
from the Marshall-Peierls sign rule. An example is the choice for a spin-half system
(after rotation of the local spin axes) given by

cI = ui j (p
↑
i p↑

j + p↓
i p↓

j ), (9.4)

where the indices i and j run over all lattice sites.
A possible choice of these parameters is the ‘two-site’ approximation known as

the Jastrow Ansatz, in which the ui j are all zero if i and j are not nearest neighbours.
A simple version of this is to set ui j equal to some number α when i and j are
nearest-neighbours and to zero in all other cases. There is now a single parameter,
α, to be adjusted in the final result.

For small enough lattices, we enumerate all of the states in the Ising basis
either by hand (or for larger lattices computationally), and so we are able to cal-
culate all of the contributions to the ground-state energy of Eq. (9.2). We obtain
a value for the ground-state energy in terms of α and then minimise with respect
to it. Hence, we obtain a ‘variational’ value for the ground-state energy. Because
the ground-state energy thus found is an upper bound of the ‘true’ value, this
is very useful both as an estimate of the ground-state energy in itself and also
as a test for other approximate methods. If another approximate method pro-
duces a ground-state energy higher than the simple variational estimate then it is
unsatisfactory.

Finally, we may find estimates of other ground-state expectation values easily
as we have direct access to the (approximate) wave function written in terms of
expansion coefficients with respect to the Ising basis.

9.3 Variational Monte Carlo Method

However, we may not be able to enumerate all Ising states in the basis even using
very intensive computational approaches (and in the relevant ground-state subspace)
for very large lattices, i.e., those of very many spins. This is particularly true for
2D and 3D lattices and for higher spin quantum number. In this case we use a
method called Monte Carlo simulation in order to carry out the enumeration of
states approximately. Clearly, not all states are equal in their contribution to the
ground-state energy and this method allows us to choose those states that are ‘most
important.’ Furthermore, the error of the estimate of ground-state expectation values
decreases in a statistically well-understood manner with the length of the simulation.
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We begin the Monte Carlo treatment of the variational problem by rewriting the
ground-state energy of Eq. (9.2) in the following form:

Eg =
∑

I1,I2
c∗

I1
cI2〈I1|H |I2〉∑
I |cI |2

=
∑

I1
|cI1 |2

∑
I2

cI2
cI1

〈I1|H |I2〉∑
I |cI |2

⇒ Eg =
∑

I

P(I )EL(I ). (9.5)

P(I ) is interpreted as a probability for the state I and is given by

P(I ) = |cI |2/
∑

J

|cJ |2.

(The index J represents a sum over all Ising basis states, though it will disappear as
we shall see shortly). The local energy with respect to the state I is given by

EL(I ) =
∑

I2

cI2

cI
〈I |H |I2〉.

We start from a given state in the relevant ground-state Ising basis and we define an
acceptance probability A(I → I ′) from state I to state I ′ given by

A(I → I ′) = min

[
1,

P(I ′)K (I )
P(I )K (I ′)

]
, (9.6)

where K (I ) indicates the number of states accessible from state I via the ‘off-
diagonal’ terms in the Hamiltonian. (The denominator

∑
J |cJ |2 in both P(I ) and

and P(I ′) is identical and so cancels in Eq. (9.6).) We choose a state I ′ to be one
of these K (I ′) states and now use the Metropolis algorithm in order to decide if we
should accept this new state I ′ or if we should stay with the old one, I . We generate
a random number η from a uniform distribution in the range 0 to 1 and we test if our
acceptance probability A(I → I ′) is greater than η. If it is then we accept the new
state and otherwise we retain the original state. It is this element of randomness or
chance that leads to the name of the method (i.e., Monte Carlo) for obvious reasons.

We now repeat the process for the new state I ′ in order to form yet another state
I ′′, and so on. As is common in Monte Carlo simulations we repeat this process
many times and we form an average of the local energies (and ‘local’ estimates of
all other ground-state expectation values similarly) as we go along. Again, we note
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that the ground-state energy again forms an upper bound on the ‘true’ ground-state
energy, but within the limits of the error bars due to the Monte Carlo simulation
in this case. The estimate of the ground-state energy may be minimized compu-
tationally for the variational Monte Carlo estimate presented here. This is simple
to achieve in practice and a robust estimate of the ground-state energy may be
formed in a straightforward manner for the nearest-neighbour two-spin approxi-
mation. This process becomes more difficult as we include longer-range correla-
tions and higher-order terms in the approximation for the cI coefficients. How-
ever, we would expect the accuracy of the results to increase also as we add in
more such terms and, again, we would obtain an upper bound on the ground-state
energy.

It is interesting to apply the variational Monte Carlo (VMC) method to the
spin-half one-dimensional antiferromagnetic (J>0) Heisenberg model on a chain
of finite length, which can be solved by the exact diagonalisation method as
described above. For example, we obtain an estimate of the ground state energy
of EG/N = −0.423729(3)J (α = 1.773) for the Heisenberg model on a chain
of N = 20 sites with periodic boundary conditions. Note that α is the strength of
the nearest-neighbour correlations in ui j in Eq. (9.4) and that M = 1010 Monte
Carlo iterations were used in this simulation. This result lies above and is rea-
sonably close to the exact diagonalisation result of EG/N = − 0.445219J for
the N = 20 chain with periodic boundary conditions, which is itself not too far
from the exact Bethe ansatz result of EG/N = 1/4 − ln 2 (= −0.443147) in
the infinite-lattice limit. Indeed, we see that 89% of the correlation energy of the
N = 20 Heisenberg chain has been captured by using this simple two-body nearest-
neighbour Ansatz. Furthermore, this result also illustrates the fact mentioned earlier
that variational methods provide an upper bound on the ground-state energy of a
system because the ket and bra states are always Hermitian conjugates of each
other. We may also apply VMC to much larger lattices than exact diagonalisations
because the computational cost needed to carry out VMC is much lower. However,
caution should be used when interpreting the results of variational studies because
they might actually provide quite a poor approximation to the ‘true’ ground-state
wave function while still yielding deceptively good results for the ground-state
energy.

Despite this, however, it is true to say that variational methods have an impor-
tant role to play in understanding quantum spin systems, especially in providing
upper bounds on the ground-state energy which can then be compared with results
of other approximate methods. In the next chapter we shall describe a method
called the coupled cluster method (CCM) that allows us to systematically refine the
approximation level to include higher order terms in the wave function. The CCM
is strictly speaking a bi-variational method, and since the bra and ket states are not
explicitly constrained to be Hermitian conjugates of each other, it does not yield an
upper bound to the energy. However, this negative aspect is offset by many positive
aspects, not-the-least that one may obtain results for the infinite lattice (N → ∞)
from the outset.
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9.4 The Green Function Monte Carlo Method

There are many forms of Monte Carlo in science [1–6] and its use is ubiquitous.
Thus, even in the fairly restricted area of quantum spin systems, the variational
Monte Carlo method is only one of a number of approaches that use Monte Carlo
techniques. Another example, used for calculating zero temperature properties, is
the Green function Monte Carlo method. This provides an estimate of the true
ground-state energy and other properties directly and so there is no need to minimise
the ground-state energy with respect to any parameters of the wave function.

It uses ‘power iteration’ of the Hamiltonian in which one repeatedly operates
with the Hamiltonian on an initial starting state |I0〉 (in the relevant ground-state

subspace). For a large number M of operations H M |I0〉 M→∞−→ K |Ψ 〉, where K is
a constant and |Ψ 〉 is the eigenstate of H which has the eigenvalue with the largest
magnitude, normally the ground-state. This method is frequently used in exact diag-
onalizations of finite-sized systems in order to isolate the ground-state wave function
and its energy. Often the Lanczos technique can also be used to drastically reduce
the number of iterations compared to the direct ‘power” iteration method.

However, for the Green function Monte Carlo, this property of power or direct
iteration turns out to be quite useful. This is because each time we apply the Hamil-
tonian new Ising states in the approximate wave function are created. The Green
function method represents these states by a set of ‘walkers’ where each walker has
transition probabilities A(I → I ′) to go from state I to state I ′ and associated local
energies. The estimate of the ground-state energy is given by the average of the local
energies over all walkers for a given number of iterations M . Again, each move is
accepted or rejected randomly and so we obtain a ‘random walk’ for each of the
individual walkers through the set of basis states.

For Green function Monte Carlo, however, we also need to know the signs of
the expansion coefficients cI beforehand in order to ensure that the transition prob-
abilities are always positive; if we utilize signs that are wrong then we will sample
the underlying probability distributions incorrectly and so our estimates will also
be incorrect. Fortunately, there exist a number of such rules for the signs of the
expansion coefficients, the most famous of which is the Marshall-Peierls sign rule
[7] for the Heisenberg model for bipartite lattices. Bipartite lattices are those lat-
tices such as that linear chain, square and cubic latices that can be decomposed into
two neighbouring sublattices. The estimates of the ground-state properties of lat-
tice quantum spin systems thus obtained using Green function Monte Carlo present
the most important of the approximate methods for 2D (and to lesser extent 3D)
unfrustrated systems. However, the application of Monte Carlo is severely limited
by the presence of the ‘sign problem’ for frustrated spin systems. Frustration is an
effect in which different terms in the Hamiltonian compete. Classically, this means
that the ground-state energy per bond is lower than that of a comparative unfrus-
trated system. By contrast, perhaps the best evidence of frustration occurs in the
analogous quantum system is that no such sign rule can be created. Examples of
frustrated systems are the triangular lattice antiferromagnet and the J1–J2 model
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with antiferromagnetic nearest- and next-nearest-neighbour terms of bond strengths
J1 and J2, respectively. Some of these systems will be considered in more depth
later on. However, we note that variational Monte Carlo may still be applied for
those cases in which no sign rule exists. Furthermore, a more sophisticated Monte
Carlo approach called fixed-node Monte Carlo may be employed in these cases also.
However, a description of this method lies beyond the scope of this text.

9.5 Perturbation Theory

There are many other approximate methods which have been applied to quantum
spin systems. We finish by briefly mentioning one of these, the perturbation method.

The basic idea here is to divide H into two parts and treat one part as a perturba-
tion, even if it is not very small. For example, a system with anisotropic exchange,
called the ‘XXZ-Model’, in any number of dimensions has Hamiltonian

H = J

2

∑
i

∑
ρ

[
Sz

i Sz
i+ρ + γ

(
Sx

i Sx
i+ρ + Sy

i Sy
i+ρ

)]

where ρ runs over all nearest neighbours on the opposite sublattice and γ is the
anisotropy parameter. Writing this as

H = H0 + H1

where

H0 = J

2

∑
i

∑
ρ

Sz
i Sz

i+ρ

and

H1 = J

2
γ
∑

i

∑
ρ

(Sx
i Sx

i+ρ + Sy
i Sy

i+ρ)

H0 is a simple Ising model and its exact ground state is the antiferromagnetic
Néel state. Clearly for small values of γ , H1 is small and can be treated as a pertur-
bation. Hence, using perturbation theory, one can calculate corrections to the ground
state energy. One can also calculate correlations. The method has the advantage that
it works for all S and all dimensions including 3D.

As an illustration, we calculate the first few orders of the (Rayleigh-Schrödinger)
perturbation series for the energy EG = E0 +γ E1 +γ 2 E2 +· · · for the S = 1

2 case
explicitly. It is useful to rotate the the axes by 180◦ on one sublattice so that notion-
ally the classical Néel (unperturbed) state |0〉 has all spins pointing upwards, and this
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has the effect that H0 = − J
2

∑
i
∑
ρ Sz

i Sz
i+ρ and H1 = − J

4 γ
∑

i
∑
ρ(S

+
i S+

i+ρ +
S−

i S−
i+ρ). The zeroth-order term in the series for the energy is now simply:

E0 = 〈0|H0|0〉 = −NnJ

8
,

where n is the number of nearest neighbours (1D: n = 2; 2D: n = 4; and, 3D:
n = 6).

The first-order correction is given by E1 = 〈0|H1|0〉. H1 acting on |0〉 produces
pairs of nearest-neighbour down spins for each lattice site i . Denoting one such state
as |i, i + ρ〉 and noting that

〈0|i, i + ρ〉 = 0

we see immediately that

E1 = 0. (9.7)

The second-order term in the series for the energy is given by

E2 = 1

2

∑
i

∑
ρ

|〈i, i + ρ|H1|0〉|2
(E0 − E (i,i+ρ)0 )

, (9.8)

where the factor of 1
2 is to avoid over-counting, and where

E (i,i+ρ)0 = 〈i, i + ρ|H0|i, i + ρ〉 = (E0 + J ) in 1D

= (E0 + 3J ) in 2D

= (E0 + 5J ) in 3D.

Furthermore, 〈i, i + ρ|H1|0〉 = Jγ /2, so

E2 = Nn

2
× (J/2)2

(E0 − E0 − J )
= − N J

4
in 1D

= Nn

2
× (J/2)2

(E0 − E0 − 3J )
= − N J

6
in 2D

= Nn

2
× (J/2)2

(E0 − E0 − 5J )
= − 3N J

20
in 3D.

Thus, to second-order for the 1D chain we obtain EG/N = − J
4 (1+γ 2). Although

perturbation theory assumes small γ , the result for γ = 1, EG/N = − J
2 , is nearer

to the exact result of −0.443147J (to 6 decimal places) than the zeroth-order value
of E0/N = − J

4 , although it is still some distance away from the exact result.
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Clearly, better accuracy can be obtained by including additional terms in the
series, although this process becomes increasingly difficult to do analytically.
Numerical computational techniques can, however, determine the series to high
orders in γ .

Some of the earliest results were obtained by Bullock (1965) [8] and later ones by
Singh (1989) [9]. For the antiferromagnetic ground state energy in 2D with S = 1

2 ,
Singh obtained the result

4EG

J
= −2 − 2

3γ
2 + 0.00370370γ 4

− 0.00632628γ 6 − 0.00330085γ 8 − 0.00124740γ 10 + . . . .

As noted above, even though the basic premise of perturbation theory is that H1
(and thus γ ) is small, this series can give a reasonable estimate of the ground state
energy even for the Heisenberg model with isotropic exchange, i.e. γ = 1.

Even with the use of powerful computers only a finite number of terms in the
series can be calculated. A method of improving the results is to approximate the
missing higher order terms using Padé approximants. This works well for many
cases, although sometimes it is necessary to apply a transformation to avoid unphys-
ical singularities. Using this approach (often also referred to as “series expansions”
[10]), excellent results for the Heisenberg antiferromagnet have been achieved.
Results of series expansions are discussed in the final chapter of this book.

Every numerical method has its own particular strengths and weaknesses. For
example, for small systems, exact diagonalisations provide ‘exact’ results as the
name suggests, and so are in some sense incontrovertible, which is a strong advan-
tage of the method. However, the method is restricted to lattices with relatively small
numbers of sites, N ∼ 40 especially in 2D and 3D, even with the aid of high-
performance computing. The DMRG method [11–14] provides essentially exact
results for quasi-1D lattices, but has had only limited success in 2D.

As described above, another important method is the quantum Monte Carlo
method (see, e.g., Refs. [4, 5]). In principle, this method gives results in which the
accuracy is limited only by the amount of computational power available because
the accuracy of the results increases in a statistically well-understood manner with
the length of the Monte Carlo simulation. However, the method suffers from the
‘sign-problem’ and cannot be easily applied to ‘frustrated’ quantum spin systems.

Clearly there is a wide range of approximate techniques, each with advantages
and disadvantages. In the following chapter we shall give a detailed account of a
technique called the coupled cluster method (CCM) which has been applied to quan-
tum spin systems only fairly recently. This is a technique related to that of cumulant
series expansions and has important ‘linked-cluster’ properties. This method also
gives results in the infinite-lattice limit (N → ∞) from the outset, although it does
not automatically provide an upper bound on the energy of the ground state or any
other state.
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