
Chapter 10
The Coupled Cluster Method

Abstract Another powerful method of quantum many theory that obeys the linked-
cluster theorem, and so provides results for the infinite lattice from the outset, is the
Coupled Cluster Method (CCM). It has previously been applied to a wide range of
quantum systems. We show here how it can be applied to quantum spin systems.
The CCM formalism is described in detail. Crucial to understanding the CCM is
the role of the model state upon which clusters of spin-raising operators act in order
to form the basis states. Various approximation schemes may be used in order to
calculate expectation values in practical calculations, examples being the LSUBm
and SUBm approximation schemes. The LSUB2 and SUB2 approximations are pre-
sented in detail. Results for the LSUB2 approximation for the spin-half Heisenberg
model on the linear chain are shown to be improved when compared to those of
classical theory. We demonstrate how the CCM may be applied in order to study the
ground- and excited-state properties of the anisotropic (XXZ) Heisenberg model on
the square lattice. The CCM is shown is to provide an accurate and coherent picture
for this model.

10.1 Introduction

In this chapter we consider another method that gives accurate results in the infinite
lattice limit, especially for spin systems of two spatial dimensions, known as the
coupled cluster method (CCM) [1]. The CCM is a well-known and widely applied
method of quantum many-body theory. It allows us to calculate expectation values
for the infinite lattice, which is a clear advantage to the method.

However, an aspect of the method is that one must often make an approxima-
tion within the bra- and ket-state wave functions, even though we obtain results in
the infinite-lattice limit from the outset. The manner in which we construct these
approximations is discussed below. Only lower orders of approximation than series
expansions are possible, although the CCM contains many more diagrams than
series expansions at “corresponding” levels of approximation. Furthermore, one
does not necessarily obtain an upper bound on the ground-state energy using the
CCM and no rules exist for extrapolation. Despite this, however, it is remarkable
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110 10 The Coupled Cluster Method

that the CCM still has been shown to provide consistently accurate results for a
variety of quantum problems and for a wide range of expectation values (see final
chapter). The CCM has been also applied with much success to quantum spin sys-
tems [2–10]. and it may be applied in the presence of even very strong frustration.
Recent advances in the method have concentrated in applying it to high orders of
approximation via computational methods [6–9].

10.2 The CCM Formalism

The first step in the coupled cluster method is to select an appropriate model state
|Φ〉. This state should be ideally be (i) simple and (ii) a reasonable starting approx-
imation to the true ground state. The model state is assumed to act as a vacuum
state so that a complete basis for any state can be constructed by operating on it by
creation operators c+

i . These creation operators act at a single lattice site i and a
general state is obtained by operating on the model state with a linear combination
of products of creation operators. We shall denote a product of creation operators,
acting in general at several different sites, as C+

I .
The central idea underpinning the CCM is to obtain better and better approxima-

tions to the true ground state |Ψ 〉 by modifying the wave function in a systematic
way, namely, by building in more and more of the true correlations with respect to
the model state. Clearly there must be an operator P such that

|Ψ 〉 = P|Φ〉. (10.1)

However, rather than try to calculate P directly, we choose to introduce a new oper-
ator S where P = eS and attempt to calculate S instead. At first sight this seems an
additional complication but the reason for it is as follows. By using this form it can
be shown that any approximation we make by truncating S has the property that the
equivalent diagrammatic perturbation theory approximation involves a summation
only over linked diagrams. This is important since the Goldstone theorem states that
only linked diagrams should be included if the calculated extensive property is to
scale linearly with N , the size of the system.

It can be shown that the operator P and also the operator S consist of a sum of
terms, where each term is itself a product of creation operators only, with respect to
the model state. In the context of the Heisenberg model on a bipartite lattice such
as the linear chain or square lattice, a creation operator is a spin-raising operator for
sites where the spin is down or a spin lowering operator for sites where the spin is
up. These creation operators are all mutually commuting. Hence, we write S as

S =
∑
I 	=0

SI C+
I , (10.2)

where C+
I is a product of creation operators with associated (ket-state) correlation

coefficient SI .
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For the exact ground state |Ψ 〉
H|Ψ 〉 = Eg|Ψ 〉 and 〈Ψ̃ |H = Eg〈Ψ̃ |, (10.3)

where Eg is the exact ground state energy and 〈Ψ̃ | is the Hermitian conjugate of
|Ψ 〉. However, since we are writing

|Ψ 〉 = P|Φ〉 = eS|Φ〉, (10.4)

and in most cases, S is an approximation to the true S, |Ψ 〉 is an approximate ground
state. It is obtained typically by truncating the otherwise infinite series of terms in S.
Furthermore, we do not assume that the approximate 〈Ψ̃ | is the Hermitian conjugate
of the approximate |Ψ 〉. In fact, we shall construct 〈Ψ̃ | using a new auxiliary oper-
ator S̃ which is constructed from destruction operators only. S̃ is not the Hermitian
conjugate of S and has to be obtained separately. The basic formulas are

|Ψ 〉 = eS|Φ〉 S =
∑
I 	=0

SI C+
I , (10.5)

〈Ψ̃ | = 〈Φ|S̃e−S S̃ = 1 +
∑
I 	=0

S̃I C−
I . (10.6)

This method of treating the bra state, using a linear operator S̃, is known as the
normal coupled cluster method (NCCM). An alternative treatment is known as the
Extended coupled cluster method (ECCM) in which the bra state is calculated using
an exponentiated operator. The reader is referred to [11] for further details.

As mentioned earlier, the model or reference state |Φ〉 plays the role of a vac-
uum state with respect to the {C+

I }, i.e. their Hermitian conjugates {C−
I }, have the

property that C−
I |Φ〉 = 0, ∀ I 	= 0. We define that C+

0 ≡ C−
0 ≡ 1 to be the identity

operator. Furthermore, the set {C+
I } is complete and consists of all possible products

of creation operators on multiple sites.
Also as mentioned earlier, the correlation operator S is composed entirely of

the creation operators {C+
I }, and these operators, acting on the model state, create

other states in the relevant basis which are then mixed in to the model state to form
an approximation to the ‘true’ ground state. Note that although the Hermiticity of
the true ground state is lost, i.e. 〈Ψ̃ |† 	= |Ψ 〉/〈Ψ |Ψ 〉, we can still impose the
normalisation conditions 〈Ψ̃ |Ψ 〉 = 〈Φ|Ψ 〉 = 〈Φ|Φ〉 ≡ 1. The coefficients {SI }
and {S̃I } are known as the ket- and bra-state correlation coefficients, respectively.

In general we need both |Ψ 〉 and 〈Ψ̃ | (and hence need both {SI } and {S̃I })
in order to find the ground-state expectation value of any operator, although the
ground-state energy Eg is a special case which only requires knowledge of the {SI }.

For an arbitrary operator A the expectation value is given by,

Ā ≡ 〈Ψ̃ |A|Ψ 〉 = 〈Φ|S̃e−S AeS|Φ〉 = Ā
(
{SI , S̃I }

)
. (10.7)
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The similarity transform of the operator A, occurring here and denoted by Â, may
be written as a series of nested commutators:

Â ≡ e−S AeS = A + [A, S] + 1

2! [[A, S], S] + · · · (10.8)

In this expression each commutation reduces the number of destruction operators by
one. As these commutations are nested within each other, the series will terminate at
finite order provided that the operator A contains only a finite number of destruction
operators. (There is no limit on the number of creation operators in A). N.B. we use
the notation ˆ for a similarity transformed operator; we use the notation ¯ for an
expectation value and the symbol ˜ for the bra-state, its correlation operator S̃ and
the corresponding coefficients {S̃I }.

Using (10.3) and (10.4)

HeS|Φ〉 = EgeS|Φ〉 (10.9)

∴ e−SHeS|Φ〉 = Eg|Φ〉 (10.10)

i.e. Ĥ|Φ〉 = Eg|Φ〉 (10.11)

from which it immediately follows, using the normalisation 〈Φ|Φ〉 = 1, that

Eg = 〈Φ|Ĥ|Φ〉 (10.12)

From (10.10) C−
I e−SHeS|Φ〉 = EgC−

I |Φ〉 = 0 since any destruction operator
C−

I acting on the vacuum state |Φ〉 gives zero. Thus finally

〈Φ|C−
I e−SHeS|Φ〉 = 〈Φ|C−

I Ĥ|Φ〉 = 0. (10.13)

By choosing different CI in Eq. (10.13) one obtains a coupled set of non-linear
multinomial equations for the correlation coefficients {SI }.

Also, using (10.3) and (10.6),

〈Φ|S̃e−SH = Eg〈Φ|S̃e−S

〈Φ|S̃e−SHC+
I = Eg〈Φ|S̃e−SC+

I

〈Φ|S̃e−SHC+
I eS|Φ〉 = Eg〈Φ|S̃e−SC+

I eS|Φ〉
= 〈Φ|S̃e−SC+

I HeS|Φ〉 using (10.9)

∴ 〈Φ|S̃e−S[H,C+
I ]eS|Φ〉 = 0 (10.14)

By choosing different C+
I in this equation one obtains a coupled set of linear multi-

nomial equations for the correlation coefficients {SI }.
For many purposes these three Eqs. (10.12), (10.13) and (10.14), together with

(10.4), (10.5) and (10.6) form the essential core of the CCM method.
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It is important to realise that, unlike conventional variational methods, this bi-
variational formulation does not lead to an upper bound for Eg when the series in
S and S̃ of Eqs. (10.5) and (10.6) are truncated. This is due to the lack of exact
Hermiticity when such approximations are made.

The nested commutator expansion of the similarity-transformed Hamiltonian is
given by

Ĥ ≡ e−SHeS = H + [H, S] + 1

2! [[H, S], S] + · · · . (10.15)

This equation and the fact that all of the individual components of S in the sum
in Eq. (10.5) commute with one another together imply that each element of S in
Eq. (10.5) is linked directly to the Hamiltonian in each of the terms in Eq. (10.15).
Equation (10.15) is therefore of linked-cluster type. As noted above, each of these
equations is of finite length when expanded because the otherwise infinite series in
Eq. (10.15) must always terminate at a finite order, provided only that each term in
H contains a finite number of single-body destruction operators. Hence, the CCM
parametrisation naturally leads to a workable scheme that can be carried out by hand
for low orders of approximation or implemented computationally for higher orders
of approximation. We stress that the similarity transformation lies at the heart of
the CCM. This is in contrast to the unitary transformation that is at the heart of the
standard variational formulation in which the bra state 〈Ψ̃ | is simply taken as the
explicit Hermitian conjugate of |Ψ 〉.

For the case of spin-lattice problems of the type considered here, the model state
is usually the Néel state. Furthermore, it is useful to carry out a local rotation of
the local spin axes at the ‘up’ sites so that these spins are all notionally pointing
‘down’. This is purely a mathematical device; there is no physical rotation of the
spins themselves but rather of the local axes we use to measure them. However,
this does ensure that all the ‘creation’ operators with respect to the model state are
now spin-raising operators of the form s+

k and the operators C+
I become products

of these spin-raising operators only. This is very useful from a formal point of view
because we treat all spins in exactly the same way regardless of whether they are on
one sublattice or another.

We note that the CCM formalism would be exact if all possible multi-spin cluster
correlations for S and S̃ were included. In any real application this is usually impos-
sible to achieve. We remark again that it is therefore necessary to approximate the
ground-state wave function. Indeed, we are able to construct approximation schemes
within S and S̃ in which the number and/or type of clusters retained is restricted. The
three most commonly employed schemes are:

(1) the SUBn scheme, in which all correlations involving only n or fewer spins are
retained, but no further restriction is made concerning their spatial separation
on the lattice;

(2) the SUBn-m sub-approximation, in which all SUBn correlations spanning a
range of no more than m adjacent lattice sites are retained; and
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(3) the localised LSUBm scheme, in which all multi-spin correlations over all dis-
tinct locales on the lattice defined by m or fewer contiguous sites are retained.
The problem of solving for these types of approximation schemes using analyt-
ical and computational approaches is discussed below.

All of these approximation schemes follow the ‘rule’ that defines a true quantum
many-body theory, namely, that we may increase the level of approximation in a
systemic and well-controlled manner. Furthermore, we can also attempt to extrap-
olation our ‘raw’ SUBn, SUBn-m, and LSUBm results in the limits n,m → ∞.
However, by contrast to exact diagonalisations and quantum Monte Carlo in which
finite-sized lattice results are extrapolated in the infinite lattice limit using well-
defined extrapolation procedures, no such equivalent extrapolation schemes exist as
yet for the CCM. We are therefore forced to use ‘heuristic’ or ‘ad hoc’ schemes
in order to extrapolate our results. An example of an ‘heuristic’ extrapolation
scheme of LSUBm data for the ground state energy is a polynomial fit given by
y = a + bm−2 + cm−4. A similar polynomial fit for the sublattice magnetisation
is y = a + bm−1 + cm−2, although a power-law fit, i.e., y = a + bm−ν , is also
often used in this case. The lack of an upper bound on the ground-state energy
(due to the fact that bra and ket states are not explicitly constrained to be Her-
mitian conjugates) is not the biggest problem in practice. Indeed, the CCM often
does provide an upper bound for those cases in which the model state is believed
to be a reasonable “starting point.” In fact, the biggest limitation of the CCM in
practice is the lack of concrete “rules” for extrapolation of LSUBm results and the
(sometimes) rather small number of LSUBm results to extrapolate with – even with
intensive computer methods. However, it is remarkable that, despite these potential
limitations, the CCM often does provide accurate results compared to results of
exact studies and the best of other approximate methods. This is demonstrated later
on in this chapter and also in the next.

The NCCM may also be used to investigate excited states. In order to do this
we introduce a third excited-state operator Xe (in addition to the CCM ground-state
ket- and bra-state operators, S and S̃). This operator is again a linear combination of
the C+

I with associated coefficients {X e
I }

Xe =
∑
I 	=0

X e
I C+

I . (10.16)

We see readily that Xe commutes with S as it contains only the set {C+
I } of multi-

spin creation operators. However, the specific clusters used in the set {C+
I } may

differ from those used in the ground-state parametrisation in Eqs. (10.5) and (10.6)
if the excited state has different quantum numbers than the ground state. An excited-
state wave function, |Ψe〉, is determined by applying Xe to the ket-state wave func-
tion of Eq. (10.5) such that

|Ψe〉 = Xe eS|Φ〉. (10.17)
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The energy Ee of the excited state is given by the Schrödinger equation, where

H|Ψe〉 = Ee|Ψe〉. (10.18)

We may apply Xe to the CCM ground-state Schrödinger equation such that
XeH|Ψ 〉 = Eg Xe|Ψ 〉. This expression, in turn, leads to

Ee|Ψe〉 − Eg Xe|Ψ 〉 ≡ H|Ψe〉 − XeH|Ψ 〉
⇒ Ee XeeS|Φ〉 − Eg XeeS|Φ〉 = HXeeS|Φ〉 − XeHeS|Φ〉

or εe Xe|Φ〉 = e−S[H, Xe]eS|Φ〉, (10.19)

where εe ≡ Ee−Eg is the excitation energy and we note that [Xe, eS] = 0. Equation
(10.17) implies that 〈Φ|Ψe〉 = 0. Thus, we find by applying 〈Φ|C−

I to Eq. (10.19)
that,

εeX e
I = 〈Φ|C−

I e−S[H, Xe]eS|Φ〉,∀ I 	= 0, (10.20)

which is a generalised set of eigenvalue equations with eigenvalues εe and corre-
sponding eigenvectors X e

I , for the excited states.
Again, we note that it is sometimes possible to solve these sets of equations

by hand for low orders of approximation. However, it rapidly becomes clear
that analytical determination of the CCM equations for higher orders of approx-
imation is impractical and it is therefore necessary to employ computer alge-
braic techniques both to determine and to solve the equations. Once the bra- and
ket-state equations have been determined they are readily solved using standard
techniques for the solution of coupled polynomial equations (e.g., the Newton-
Raphson method). The excited-state eigenvalue equations may be also determined
and solved computationally thereafter. A full description of the details in applying
the CCM to high orders of approximation is given for the ground state in Bishop
et al. [7]. We have seen above that we are able to increase the level of approxi-
mation for the the SUBn, SUBm-m and LSUBm approximation schemes in in the
ground state in a systematic way. This holds true also for the excited states. Thus,
excited-state energies may again be extrapolated to the ‘exact limit’ n,m → ∞
using a variety of ‘heuristic’ approaches.

10.3 The XXZ-Model

In this chapter we shall use lower case sz , etc., for spin operators to avoid confusion
with the capital S and S̃ which are the CCM correlation operators.

The spin-half XXZ antiferromagnetic model on the square lattice has a
Hamiltonian given by

H =
∑
〈i, j〉

[sx
i sx

j + sy
i s y

j +Δsz
i sz

j ] = 1

2

∑
〈i, j〉

[s+
i s−

j + s−
i s+

j + 2Δsz
i sz

j ], (10.21)
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where the sum on 〈i, j〉 counts all nearest-neighbour pairs once. The Néel state,
with all ‘down’ spins on one sublattice and all ‘up’ spins on the other, is the ground
state in the (trivial) Ising limit Δ → ∞. As Δ decreases the ground state remains
Néel-like until a phase transition occurs at (or near to) Δ = 1. By Néel-like we
mean that there is a substantial positive expectation value of 〈sz〉 for spins on one
sublattice and an equal and opposite expectation value for those spins on the other.
Even at Δ = 1 (i.e., the Heisenberg model), approximately 61% to 62% of the
classical ordering remains in the quantum system. For −1 < Δ < 1 the ground
state is co-planar, with zero expectation value for 〈sz〉; the atoms are aligned in the
xy-plane. For Δ < −1 the system is ferromagnetic and the exact ground state has
all atoms aligned in the z-direction.

This Néel state is the obvious choice for |Φ〉 in the regionΔ > 1 which is known
as the Néel-like region. It is convenient to carry out a transformation of the local spin
axes at each site on one of the sublattices by performing a rotation of the up-pointing
spins by 180◦ about the y-axis, such that

x → − x, y → y, z → − z (10.22)

and the spin components transform as

sx → − sx , sy → sy, sz → −sz (10.23)

and so

s+ = sx + is y → − s− and s− = sx − is y → − s+. (10.24)

The effect of this transformation is that every spin, whichever sublattice it is on,
is now (notionally) pointing ‘down’ in the Néel state, i.e. with sz = − 1

2 . This
makes the process of determining the CCM equations easier as each site may now
be treated equally. The Hamiltonian of Eq. (10.21) in these local coordinates now
becomes

H = −1

2

∑
〈i, j〉

[s+
i s+

j + s−
i s−

j + 2Δsz
i sz

j ]. (10.25)

The transformation is canonical and does not alter the commutation relations
between the spin operators on a given site. (All spin operators referring to different
sites commute). Furthermore, it does not alter the values of the ground-state expec-
tation values or the the excited state energies or spectra. Apart from this ‘down’
spin state with sz = − 1

2 , there is only one ‘other’ state at each site in this new
basis, namely, the ‘up’ state with sz = + 1

2 . The creation operators used in the CCM
ket-state correlation operator S are now clearly always the spin-raising operators s+.
A C+

I is a product of these spin-raising operators acting at different sites. (Note that
the creation operator cannot act more than once at a given site for a spin- 1

2 atom,
although this restriction would not apply for s > 1

2 .) An example for s = 1
2 might

be C+
I = s+

i s+
j s+

k s+
l in which i, j, k, l are different sites on the lattice.
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The transformation is purely a mathematical device, there is no physical rotation
of the spins. When considering which other states can be mixed in with the Néel
state to form an approximation to the true ground state we must take into account
any physical properties we know it must satisfy. In particular, for the Hamiltonian
Eq. (10.21) the total z-component of the spins sz

T = ∑
i sz

i is a conserved quantity.
Since the Néel state has sz

T = 0 we can only mix in states with the same Sz
T and this

means that C+
I must contain an equal number of spin reversals on each sublattice.

Clearly there must be an even number of spin-raising operators, half from each
sublattice.

The results presented below are based on the non-localised SUB2 approximation
scheme and the localised LSUBm scheme. In the latter we include all fundamen-
tal configurations, C+

I = s+
k1
, s+

k2
, · · · s+

kn
, where the number of contiguous sites

is ≤ m. Fundamental configurations are those which are distinct under the point
and space group symmetries of both the lattice and the Hamiltonian. The numbers,
NF and NFe , of such fundamental configurations for the ground and excited states,
respectively, are also further restricted by the use of conservation laws, in particular
conservation of sz

T , as mentioned above. As well as sz
T = 0 for the ground state we

have sz
T = ±1 for the elementary excited states.

10.3.1 The LSUB2 Approximation for the Spin-Half,
Square-Lattice XXZ-Model for the z-Aligned Model State

In the LSUB2 approximation we allow two creation operators and they must be on
nearest neighbour sites. The only possible C+

I , other than C+
0 , are terms of the form

s+
l s+

l+ρ1
where l is any lattice site and ρ1 is a vector connecting nearest neighbours.

The form of the S operator is thus

S = b1

2

N∑
l

∑
ρ1

s+
l s+

l+ρ1
, (10.26)

where l runs over all lattice sites and ρ1 runs over all nearest-neighbour sites to l.
Note that b1 is the sole ket-state correlation coefficient in the LSUB2 approximation
scheme.

We now calculate the similarity transforms of the operators in the Hamiltonian,
e−Ssαk eS for α = z,+,−. The commutation relations for the spin operators are
given by [s±

l , sz
k ] = ∓s±

k δl,k and [s+
l , s−

k ] = 2sz
kδl,k . Furthermore, the similarity

transform may be expanded as a series of nested commutators, given by Eq. (10.8).
Hence, we obtain the following explicit forms for these similarity transformed oper-
ators

ŝi
+ = s+

i

ŝi
z = sz

i + b1

∑
ρ1

s+
i s+

i+ρ1
(10.27)

ŝi
− = s−

i − 2b1

∑
ρ1

sz
i s+

i+ρ1
− b2

1

∑
ρ1,ρ2

s+
i s+

i+ρ1
s+

i+ρ2
.
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In each case the otherwise infinite series of operators in the expansion of the sim-
ilarity transform has terminated to finite order. All of Eq. (10.27) are valid for
arbitrary spin, but since we are considering only spin-half systems here for which
(s+

i )
2|Φ〉 = 0 for any lattice site, the term in the third equation in the summations

over ρ1 and ρ2 for which ρ1 = ρ2 will be zero. Clearly the similarity transformed
version of the Hamiltonian is

Ĥ = − 1

2

∑
〈i, j〉

[ŝ+
i ŝ+

j + ŝ−
i ŝ−

j + 2Δŝz
i ŝz

j ]. (10.28)

Note that the sum over 〈i, j〉 is equivalent to a sum over all sites i and over all
nearest neighbours ρ0, together with a factor of 1

2 to avoid overcounting, so

Ĥ = − 1

4

∑
i

∑
ρ0

[ŝ+
i ŝ+

i+ρ0
+ ŝ−

i ŝ−
i+ρ0

+ 2Δŝz
i ŝz

i+ρ0
]. (10.29)

Substituting the expressions for the spin operators in Eq. (10.27) into the above
expression, gives

Ĥ = −1

4

∑
i

∑
ρ0

[s+
i s+

i+ρ0
+ {s−

i − 2b1

∑
ρ1

sz
i s+

i+ρ1
− b2

1

∑
ρ1,ρ2

s+
i s+

i+ρ1
s+

i+ρ2
} ×

{s−
i+ρ0

− 2b1

∑
ρ3

sz
i+ρ0

s+
i+ρ0+ρ3

− b2
1

∑
ρ3,ρ4

s+
i+ρ0

s+
i+ρ0+ρ3

s+
i+ρ0+ρ4

} +

2Δ{sz
i + b1

∑
ρ1

s+
i s+

i+ρ1
} × {sz

i+ρ0
+ b1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

}]. (10.30)

When this Ĥ is now used in Eq. (10.13) with C−
I = s−

m s−
m+ρ to determine the coef-

ficient b1, only terms with net two spin-raising operators are needed. When used
in Eq. (10.12) for the ground state energy Eg only terms with net zero spin-raising
operators are needed. In addition, when calculating the bra state coefficient using
Eq. (10.14) terms with net two lowering operators will be needed. Keeping only the
terms in Eq. (10.29) with these forms leads to the following simplified expression

Ĥ ≈ Ĥ−2 + Ĥ0 + Ĥ2

where

Ĥ−2 = − 1

4

∑
i

∑
ρ0

s−
i s−

i+ρ0

is the part with net two spin lowering operators,
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Ĥ0 = − 1

4

∑
i

∑
ρ0

[
−2b1

∑
ρ3

s−
i sz

i+ρ0
s+

i+ρ0+ρ3
− 2b1

∑
ρ1

sz
i s+

i+ρ1
s−

i+ρ0
+ 2Δsz

i sz
i+ρ0

]

(10.31)
is the part with net zero spin-raising operators, and

Ĥ2 = − 1

4

∑
i

∑
ρ0

[
s+

i s+
i+ρ0

+ 4b2
1

∑
ρ1,ρ3

sz
i s+

i+ρ1
sz

i+ρ0
s+

i+ρ0+ρ3

− b2
1

∑
ρ3,ρ4

s−
i s+

i+ρ0
s+

i+ρ0+ρ3
s+

i+ρ0+ρ4
− b2

1

∑
ρ1,ρ2

s+
i s+

i+ρ1
s+

i+ρ2
s−

i+ρ0

+ 2Δb1

∑
ρ2

sz
i s+

i+ρ0
s+

i+ρ0+ρ2
+ 2Δb1

∑
ρ1

s+
i s+

i+ρ1
sz

i+ρ0

]
(10.32)

is the part with net two spin-raising operators.
First consider Eq. (10.12) for the ground-state energy

Eg = 〈Φ|Ĥ|Φ〉 = 〈Φ|Ĥ0|Φ〉.

Using the commutator [s−
i , s+

i+ρ0+ρ3
] = − 2sz

i δi, i+ρ0+ρ3 gives

Ĥ0 = − 1

4

∑
i

∑
ρ0

[
−2b1

∑
ρ3

sz
i+ρ0

s+
i+ρ0+ρ3

s−
i + 4b1sz

i+ρ0
sz

i

−2b1

∑
ρ1

sz
i s+

i+ρ1
s−

i+ρ0
+ 2Δsz

i sz
i+ρ0

]
, (10.33)

and when this acts on |Φ〉 the terms with a spin lowering operator on the right will
give zero. Hence

Ĥ0|Φ〉 = − 1

4

∑
i

∑
ρ0

[
4b1sz

i sz
i+ρ0

+ 2Δsz
i sz

i+ρ0

]
|Φ〉 (10.34)

= − 1

16

∑
i

∑
ρ0

(4b1 + 2Δ)|Φ〉 . (10.35)

since sz
i |Φ〉 = − 1

2 |Φ〉 for all i .
Using Eq. (10.12), the ground-state energy is

Eg

N
= − n

8
(Δ+ 2b1). (10.36)

where n is the number of nearest neighbours.



120 10 The Coupled Cluster Method

Equation (10.36) shows that the ground-state energy is size-extensive (i.e., it
scales linearly with N ), as required by the Goldstone theorem which is obeyed by
the NCCM. In fact it is easy to show that any other non-trivial choice for S, not just
the LSUB2 approximation, will always yield expression (10.36) for the ground-state
energy, although the calculation of b1 will be different. The task is therefore to find
b1. If we could include all possible spin correlations in S then we would obtain an
exact result for b1 and hence the ground-state energy. This is of course impossible
except for trivial cases so there will normally need to be an approximation like the
ones described here.

In this LSUB2 approximation b1 is the only non-zero coefficient in S and it is
determined using Ĥ2 in Eq. (10.13), with C−

I = s−
m s−

m+ρ

〈Φ|C−
I Ĥ|Φ〉 = 〈Φ|C−

I Ĥ2|Φ〉 = 0 . (10.37)

since C−
I has two lowering operators. The details of the calculation are given in the

appendix where it is shown that Eq. (10.37) yields

(n + 1)b2
1 + 2(n − 1)Δb1 − 1 = 0. (10.38)

Equations (10.36) and (10.38) are the basic equations in the LSUB2 approxima-
tion for the linear chain with n = 2, the square lattice with n = 4 and the cubic
lattices. Similar results can be obtained for any other bipartite lattice with nearest-
neighbour interactions.

For the linear chain these equations become

Eg

N
= − 1

4
(Δ+ 2b1) with 3b2

1 + 2Δb1 − 1 = 0, (10.39)

so that

b1 = 1

3
(
√
�2 + 3 −�) and

Eg

N
= −�

12
−

√
�2 + 3

6
. (10.40)

This gives a value for ground-state energy the isotropic Heisenberg model (Δ = 1)
of Eg

N = − 5
12 (≡ −0.416667) (to 6 decimal places), which compares to the exact

result of Eg
N = −0.443147J (again to 6 decimal places). This is an improvement on

energy of the (classical) model state, which is Eg
N = − 1

4 .
However, we shall consider only the square lattice with n = 4 from now on, for
which

Eg

N
= − 1

2
(Δ+ 2b1) with 5b2

1 + 6Δb1 − 1 = 0, (10.41)

so that
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b1 = 1

5
(
√

9Δ2 + 5 − 3Δ) and
Eg

N
= Δ

10
− 1

5

√
9Δ2 + 5 . (10.42)

This expression gives the correct result in the Ising limit Δ → ∞. These results
for the ground-state energy as a function of Δ in the LSUB2 approximation are
included in both Figs. 10.1 and 10.2.

Fig. 10.1 CCM SUB2-m and SUB2 results using the z-aligned Néel model state for the ground-
state energy of the spin-half square-lattice XXZ-Model. (Note that SUB2-2 and LSUB2 are equiv-
alent approximations)

Fig. 10.2 CCM LSUBm results for the ground-state energy of the spin-half square-lattice XXZ-
Model compared to quantum Monte Carlo results of Barnes et al. [12]

A similar calculation, based on Eq. (10.14) although not using it directly, gives
the following equation for b̃1. Again details are given in the appendix.

b̃1[(n + 1)2b1 + 2(n − 1)Δ] − 1 = 0. (10.43)
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For the square lattice with n = 4 this becomes

10b1b̃1 + 6Δb̃1 − 1 = 0, (10.44)

which gives b̃1 = 1
2 (9Δ

2 + 5)−1/2.
Finally, we note that once the values for the bra- and ket-state correlation coef-

ficients have been determined (at a given level of approximation) then we can also
evaluate various expectation values. An important example is the sublattice mag-
netisation given by

M ≡ 2

N
〈Ψ̃ |

N∑
i

(−1)i sz
i |Ψ 〉, (10.45)

in terms of the original unrotated spin coordinates. After rotation of the local spin
axes

M = − 2

N
〈Ψ̃ |

N∑
i

sz
i |Ψ 〉 = − 2

N
〈Φ|S̃e−S

( N∑
i

sz
i

)
eS|Φ〉, (10.46)

in terms of the ‘rotated’ spin coordinates. For the square lattice in the LSUB2
approximation this is given by

MLSUB2 = 1 − 8b1b̃1,

= 1

5

[
1 + 12Δ√

9Δ2 + 5

]
. (10.47)

This result is shown in Fig. 10.3.

10.3.2 The SUB2 Approximation for the Spin-Half, Square-Lattice
XXZ-Model of the z-Aligned Model State

The LSUB2 approximation is the simplest possible, including in S terms with just
two spin flips which have to be on adjacent sites. Of course the exponentiation of
the S operator, eS, results in multiple applications of this and so the approximate
ground state calculated in the previous section includes contributions from states
with arbitrarily large numbers of flips at widely separated sites.

The SUB2 approximation is a generalisation of this in which all possible two-
spin-flip terms are included in S. These can now be at any two sites although, of
course one must be on one sublattice and the other on the other sublattice. The
SUB2 ket-state operator S is given by
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Fig. 10.3 CCM LSUBm results using the z-aligned Néel model states for the sublattice magneti-
sation of the spin-half square-lattice XXZ-Model

S = 1/2
N∑
i

∑
r

br s+
i s+

i+r , (10.48)

where the index i runs over all sites on the lattice chain. The index r runs over all
lattice vectors which connect one sublattice to the other and br is the corresponding
SUB2 ket-state correlation coefficient for this vector. The similarity transformed
versions of the operators are

s̃+
l = s+

l

s̃z
l = sz

l +
∑

r

br s+
l s+

l+r (10.49)

s̃−
l = s−

l − 2
∑

r

br sz
l s+

l+r −
∑

r1, r2︸ ︷︷ ︸
r1 	=r2

br1 br2 s+
l s+

l+r1
s+
l+r2

.

Again we note that (s+
i )

2|Φ〉 = 0 for any lattice site (which is true only for spin-half
systems). Hence, we see that r1 	= r2 in the above equations. We now substitute
these expressions into Eq. (10.25) in order to obtain H̃, and we then use Eq. (10.13)
in order to obtain the following equation for the correlation coefficients {br }
∑
ρ

{
(1 + 2Δb1 + 2b2

1)δρ,r − 2(Δ+ 2b1)br +
∑

s

br−s−ρ1 bs+ρ+ρ1

}
= 0, (10.50)

where ρ runs over all nearest-neighbour vectors on the square lattice and ρ1 is
any one of them. Equation (10.50) may now be solved using a sublattice Fourier
transform, given by
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�(q) =
∑

r

eir.qbr , (10.51)

where the sum over r is a sum over the position vectors of one sublattice only. A
convenient way to achieve this for the two-dimensional square lattice is to require
that rx + ry is an odd integer number. This expression has an inverse given by

br =
∫ π

−π

∫ π

−π
dqydqx

(2π)2
cos(rx qx ) cos(ryqy)�(q). (10.52)

The SUB2 Eqs. (10.50) and (10.51) lead to the following expression [5] for �(q)

�(q) = K

γ (q)

[
1 ±

√
1 − k2γ 2(q)

]
, (10.53)

K = Δ+ 2b1, k2 = (1 + 2Δb1 + 2b2
1)/K 2 and

γ (q) = 1

n

∑
ρ

eiρ.q
(

≡ 1

2
{cos(qx )+ cos(qy)} for the square lattice

)
(10.54)

(Note that we choose the negative solution in Eq. (10.53) such that the result is
correct in the trivial limit Δ → ∞.) Equations (10.52), (10.53) and (10.54) lead to
a self-consistency requirement on the variable b1 and they may be solved iteratively
at a given value of Δ. Indeed, we know that all correlation coefficients must tend to
zero (namely, for SUB2: br → 0, ∀ r ) as Δ → ∞ and we track this solution for
large Δ by reducing Δ in small successive steps. We find that the discriminant in
Eq. (10.53) becomes negative at a critical point, Δc ≈ 0.7985. This is an indication
that the CCM critical point corresponds to a quantum phase transition in the system,
although in this simple approximation scheme it is some way from the known phase
transition at Δ = 1.

We may also solve the SUB2-m equations directly using computational tech-
niques. (Note that the SUB2-2 and LSUB2 approximations are equivalent.) Indeed,
we study the limit points of these coupled non-linear equations may be obtained with
respect to Δ. We again track our solution from the limit Δ → ∞ to (and beyond)
the limit point and Fig. 10.1 shows our results. In particular, we note that we have
two distinct branches, although only the upper branch is a ‘physical’ solution. We
have already remarked that the CCM does not necessarily always provide an upper
bound on the ground-state energy, although this is often the case for the ‘physical’
solution. An example of this is seen by the ‘unphysical’ lower branch in Fig. 10.1.
However, the solution of the CCM equations will often naturally converge to the
physical solution, provided we have a reasonable starting point for the CCM corre-
lation coefficients and our model state is also reasonable. However, by tracking from
a point at which we are sure of (in this case, from the limit Δ → ∞), we ensure
that our solution is indeed the correct one. This approach is also used for LSUBm
approximations.
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We see in Fig. 10.1 that the two branches collapse onto the same line (namely,
that of the full SUB2 solution) as we increase the level of SUB2-m approxima-
tion with respect to m. Indeed, we may plot the positions of the SUB2-m limit
points against 1/m2 and we note that these data points are found to be both highly
linear and they tend to the critical value, Δc, of the full SUB2 equations in the
limit m → ∞. Again, we note that the LSUBm and SUBm-m a approximations
also show similar branches (namely, one ‘physical’ and one ‘unphysical’ branch)
which appear to converge as one increases the magnitude of the truncation index,
m, although results for the ‘unphysical’ branches are not presented here for the
LSUBm approximation. This is a strong indication that our LSUBm and SUBm-m
critical points are also reflections of phase transitions in the real system. We expect
that our extrapolated LSUBm and SUBm-m critical points should tend to the exact
solution.

10.3.3 High-Order CCM Calculations Using a Computational
Approach

We now consider the localised LSUBm and SUBm-m approximation schemes for
larger values of m than m = 2. Recall that LSUBm allows all possible terms in S
in which spin flips all occur within a locale of size m. For spin-half the maximum
number of spin-raising operators in one term is m, but for general spin quantum
number, s, it is 2sm. SUBm-n is a scheme in which one allows a maximum of m
spin-raising operators in any one term and restricts them to all lie within a locale
of size n. This locale is defined by those configurations that contain m contiguous
sites. For spin-half systems, SUBm-m is the same as LSUBm and this is the only
type considered here. These schemes are more complicated and cannot usually be
treated analytically as we were able to do for LSUB2 and SUB2. Consequently,
computational techniques are used both to determine the CCM equations and then
to solve them numerically.

There are two methods of doing this. Firstly, one may use computer algebraic
methods to calculate the similarity transformed versions of the individual spin oper-
ators and hence the similarity transformed version of the Hamiltonian, which may
involve further commutations of the spin operators. This approach has the advantage
of flexibility and can be applied to any Hamiltonian in principle. Often, however, this
method is somewhat cumbersome and slow.

A second method is to first cast the CCM ket-state correlation operator into a
form given by

S =
N∑
i1

Si1 s+
i1

+
∑
i1,i2

Si1,i2 s+
i1

s+
i2

+ · · · (10.55)

with respect to a model state in which all spins point in the downwards
z-direction. Here the Si1,··· ,il represent the CCM ket-state correlation coefficients
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as in Eq. (10.5). We now define new operators given by

Fk =
∑

l

∑
i2,··· ,il

lSk,i2,··· ,il s
+
i2

· · · s+
il

Gk,m =
∑
l>1

∑
i3,··· ,il

l(l − 1)Sk,m,i3,··· ,il s
+
i3

· · · s+
il

(10.56)

for the spin-half quantum spin systems. (For s > 1/2 additional terms are needed).
For the spin-half system the similarity transformed operators can be written

s̃+
k = s+

k

s̃z
k = sz

k + Fks+
k

s̃−
k = s−

k − 2Fksz − (Fk)
2s+

k . (10.57)

These expressions can now be substituted analytically into the (similarity trans-
formed) Hamiltonian and the commutations evaluated by hand. The Hamiltonian
is then written in terms of these new operators of Eq. (10.56), which are themselves
made up purely of spin-raising operators.

This second method requires more direct effort in setting up the Hamiltonian
in terms of these new operators, compared to the first method in which computer
algebraic techniques are used to take care of this aspect. However, once this is
accomplished, the problem of finding the ket-state equations reduces to pattern
matching of our target fundamental configurations to those terms in the Hamilto-
nian. This form is well suited to a computational implementation because no further
commutations or re-ordering of terms in the Hamiltonian is necessary. The bra-state
equations may also be directly determined once the ground-state energy and CCM
ket-state equations have been determined.

Results for the ground-state energy of the spin-half square-lattice XXZ-Model
are shown in Fig. 10.2 and for the spin-half Heisenberg model (Δ = 1) in
Table 10.1. We note that good correspondence with the results of quantum Monte
Carlo (QMC) [12] are observed. The extrapolated value for the CCM ground-state
energy of Eg/N = −0.6696 compares well with results of QMC [13] that give
Eg/N = −0.669437(5). We see clearly from Fig. 10.2 that the results based on the
(z-aligned) model state rapidly converge with increasing level of LSUBm approx-
imation in the region Δ ≥ 1. CCM results compare well to results of QMC [12]
for Δ ≥ 1 based on this model state. Results for the sublattice magnetisation using
the LSUBm approximation are shown in Fig. 10.3 and for the spin-half Heisenberg
model (Δ = 1) in Table 10.1. We see again that LSUBm results converge rapidly
with increasing level of approximation in the region Δ ≥ 1. We see that the extrap-
olated CCM result of M = 0.614 again compares well to QMC results [13] of
M = 0.6140(6). Results for the CCM critical points are also shown in Table 10.1.
We see that the values for the critical points, Δc, extrapolate [7] to a value close to
Δ = 1, at (or near to) which point a quantum phase transition is believed to occur.
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Table 10.1 CCM results [7] for the isotropic (Δ = 1) spin-half square-lattice Heisenberg antifer-
romagnet compared to results of other methods. The numbers of fundamental configurations in the
ground-state and excited-state CCM wave functions for the z-aligned Néel model state are given
by N z

f and N z
fe

, respectively. Results for the critical points of the z-aligned Néel model state are
indicated by Δc. (We note LSUB2 never terminates and so there is no value for Δc, and this is
indicated by the symbol ‘–’.) Details of extrapolation procedures are presented in [7]. CCM results
for the spin-stiffness ρ are from [10]. Results for the magnetic susceptibility χ are determined via

χ = d M L

dλ . Those results that have not, as yet, been determined at a given level of approximation
have been left blank
Method Eg/N M εe ρ χ N z

f N z
fe

Δc

LSUB2 −0.64833 0.841 1.407 0.2310 0.0860 1 1 –
SUB2 −0.65083 0.827 1.178 ∞ ∞ 0.799
LSUB4 −0.66366 0.765 0.852 0.2310 0.0792 7 6 0.577
LSUB6 −0.66700 0.727 0.610 0.2176 0.0765 75 91 0.763
LSUB8 −0.66817 0.705 0.473 0.2097 0.0750 1,273 2,011 0.843
LSUB10 −0.668700 0.345 0.0739 29,605 51,012
LSUB12 −0.668978 0.339 766,220
Extrapolated CCM −0.66960 0.614 0.00 0.1812 0.070 ∞ ∞ 1.03

Finally, results for the spin stiffness of the spin-half square-lattice Heisenberg model
may be determined [10], and these results are also shown in Table 10.1. Again,
the extrapolated value ρ = 0.1812 from Krüger et al. [10] compares well to the
corresponding result of QMC [14] of ρ = 0.199.

10.3.4 Excitation Spectrum of the Spin-Half Square-Lattice
XXZ-Model for the z-Aligned Model State

We now consider the excitation spectrum. We shall use the SUB2 approximation for
the ground state, whereas for the excitation operator we assume

X =
∑

i

ai s
+
i . (10.58)

Substitution of the expressions in Eqs. (10.48) and (10.58) for the ground- and
excited-state operators, respectively, leads to the following expression [5] for the
excited-state correlation coefficients

1

2
nKak − 1

2

∑
ρ,r

br ak+r+ρ = εeak . (10.59)

This equation may also be solved by Fourier transform techniques in a similar man-
ner presented above for the SUB2 calculation for the ground state. The result of this
treatment is an expression for the excitation spectra is given by
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ε(q) = 1

2
nK

√
1 − k2γ 2(q), (10.60)

where b1 is obtained from the SUB2 ket-state equations and K and k are defined
by Eq. (10.54). We solve the SUB2 equations as normal at a particular value of
Δ and then b1 is substituted into Eq. (10.60) above and hence we obtain values
for the excitation spectra as a function of the wave vector Eq. (10.60). Note that
the excitation spectra becomes ‘soft’ (i.e. ε(q) → 0) at the CCM SUB2 critical
point at Δc ≈ 0.7985 as mentioned earlier. Results for the spectra are presented in
Fig. 10.4). We see that the CCM results are in good agreement with those results
of linear spin-wave theory at Δ = 1. The spectra are plotted for kx = ky and for
ky = 0, and we see that the CCM excitation spectrum is identical in shape to those
results of SWT with a multiplicative factor of 1.1672. This agrees well with results
of quantum Monte Carlo [15] that also predict a curve identical to SWT with mul-
tiplicative a factor of 1.21±0.03. Our results in thus in good agreement with SWT
and QMC and this is further evidence that the CCM critical point is an indication
of the quantum phase transition at Δ = 1 in the ‘real’ system. Furthermore, the
excitation spectra at this point is given by ε(q) = 1

2 nK
√

1 − γ 2(q). This leads to
a value for the spin-wave velocity vs of 1

2 nK , which in turn yields a value [5] of
vs ≈ 2.335 for the square-lattice case.

Finally, it is worth mentioning that the excitation energy may be determined
directly from Eq. (10.20) in ‘real space’ without recourse to Fourier transform
methods, although computational techniques are again necessary except for the
simplest of cases. For the sake of consistency, we normally retain the same level
of localised approximation for the ground and excited states. Results are presented
for the XXZ-Model in Fig. 10.5 and for the Heisenberg model in Table 10.1. For
the latter we see that the CCM results converge rapidly with LSUBm approximation
level. Indeed, extrapolated results predict that the excitation is gapless at Δ = 1,

Fig. 10.4 Excitation spectra for the Heisenberg model determined at the critical point at Δc = 0.8
for the CCM results and at Δ = 1 for the spin-wave theory results. The spectra plotted on the
left are for kx = ky and those on the right are for ky = 0. This agrees well with results of
quantum Monte Carlo [15] that also predict a curve identical to SWT with a multiplicative factor
of 1.21±0.03, respectively
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Fig. 10.5 CCM LSUBm results using the z-aligned Néel model state for the excited-state energy of
the spin-half square-lattice XXZ-Model compared to linear spin-wave theory of Barnes et al. [12]

as is believed to be the case for the Heisenberg model from the results of other
approximate calculations.

10.4 The Lattice Magnetisation

The lattice magnetisation is a quantity that yields an overall response of a partic-
ular quantum spin system as a whole to the externally applied magnetic field. The
lattice magnetisation gives the average ordering of the spins in the direction of the
externally applied magnetic field and it is defined by the equation

M L ≡ − 2

N
〈Ψ̃ |

N∑
i

sz
i |Ψ 〉, (10.61)

in terms of the original unrotated spin coordinates. In terms of the rotated spin coor-
dinates, an additional factor of (−1)i is also included in Eq. (10.61). The relevant
Hamiltonian for the Heisenberg model is defined by

H =
∑
〈i, j〉

si · s j − λ
∑

i

sz
i , (10.62)

where the indices i and j again run over all nearest-neighbouring lattice sites on
the square lattice, although counting each bond once only, and λ indicates the
strength of the external field. We must also take into account the fact that spins
in the model state are explicitly allowed to cant at an angle θ to the negative and
positive x-axes for the difference sublattices. This angle is treated a parameter that
we treat variationally in order to obtain the best results for the energy. The total
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Fig. 10.6 Results for the lattice magnetisation of the spin-half square-lattice Heisenberg model in
the presence of an external magnetic field of strength λ compared to results of quantum Monte
Carlo [16] for N = 64 × 64 and classical results

lattice magnetisation may be determined directly in a similar manner as presented
above for the sublattice magnetisation. The results for the spin-half square-lattice
Heisenberg model are shown in Fig. 10.6. As for the ground and excited-state ener-
gies and the sublattice magnetisations, we obtain results that converge rapidly with
increasing levels of LSUBm approximation and that compare well to the results
of QMC for N = 64 × 64. The magnetic susceptibility may also be determined

via χ = d M L

dλ and results are shown in Table 10.1. The extrapolated CCM val-
ues of χ = 0.070 for λ → 0 again compares reasonably well to the result of
QMC [17] of χ = 0.0669(7). The zero-field uniform susceptibility (λ → 0), the
ground state energy, the sublattice magnetisation, the spin stiffness, and the spin-
wave velocity constitute the fundamental parameter set that determines the low-
energy physics of magnetic systems. The CCM is thus able to provide a compre-
hensive and accurate picture of the properties of spin-half square-lattice Heisenberg
model.

Appendix – Details of the Calculation of the Coefficients b1 and
b̃1 in the LSUB2 Approximation

The first step in simplifying the expression for Ĥ2 is to move all s− and sz operators
to the right, using the commutation relations, noting that i and i +ρ0 are on different
sublattices and cannot be equal, whereas i and i +ρ0+ρ1 are on the same sublattice,
etc.
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Ĥ2 = − 1

4

∑
i

∑
ρ0

[
s+

i s+
i+ρ0

+ 4b2
1

∑
ρ1, ρ3

s+
i+ρ1

s+
i+ρ0+ρ3

sz
i sz

i+ρ0

+ 4b2
1

∑
ρ1

s+
i+ρ1

s+
i sz

i+ρ0
− b2

1

∑
ρ3, ρ4

s+
i+ρ0

s+
i+ρ0+ρ3

s+
i+ρ0+ρ4

s−
i

+ 2b2
1

∑
ρ3

s+
i+ρ0

s+
i+ρ0+ρ3

sz
i + 2b2

1

∑
ρ4

s+
i+ρ0

s+
i+ρ0+ρ4

sz
i + 2b2

1s+
i s+

i+ρ0

− b2
1

∑
ρ1, ρ2

s+
i s+

i+ρ1
s+

i+ρ2
s−

i+ρ0
+ 2Δb1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

sz
i

+2Δb1s+
i s+

i+ρ0
+ 2Δb1

∑
ρ1

s+
i s+

i+ρ1
sz

i+ρ0

]

The terms with s− on the right will give zero when acting on |Φ〉 so after simpli-
fying the subscripts

Ĥ2|Φ〉 = − 1

4

∑
i

∑
ρ0

[
s+

i s+
i+ρ0

+ 4b2
1

∑
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∑
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i+ρ0+ρ1

sz
i

+ 2b2
1s+

i s+
i+ρ0

+ 2Δb1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

sz
i

+ 2Δb1s+
i s+

i+ρ0
+ 2Δb1

∑
ρ1

s+
i s+

i+ρ1
sz

i+ρ0

]
|Φ〉 .

Also sz
i |Φ〉 = − 1

2 |Φ〉 for all i so

Ĥ2|Φ〉 = − 1

4

∑
i

∑
ρ0

[
s+

i s+
i+ρ0

+ b2
1

∑
ρ1, ρ3

s+
i+ρ1

s+
i+ρ0+ρ3

− 2b2
1

∑
ρ1

s+
i+ρ1

s+
i − 2b2

1

∑
ρ1

s+
i+ρ0

s+
i+ρ0+ρ1

+ 2b2
1s+

i s+
i+ρ0

−Δb1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

+ 2Δb1s+
i s+

i+ρ0
−Δb1

∑
ρ1

s+
i s+

i+ρ1

]
|Φ〉 .

(10.63)

This is now substituted into Eq. (10.37) which is evaluated making use of the
following
1.

〈Φ|s−
i s+

j |Φ〉 = 〈Φ|(−2sz
i )|Φ〉δi j = 〈Φ|Φ〉δi j = δi j ,
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2. In the following we assume that m 	= m′. Typically m and m′ are on different
sublattices although not necessarily nearest neighbours.

〈Φ|s−
l s−

l ′ s+
m s+

m′ |Φ〉 = 〈Φ|s−
l s+

m s−
l ′ s+

m′ |Φ〉 + 〈Φ|s−
l (−2sz

m)s
+
m′ |Φ〉δ(l ′ − m)

= 〈Φ|s−
l s+

m s+
m′s

−
l ′ |Φ〉 + 〈Φ|s−

l s+
m (−2sz

m′)|Φ〉δ(l ′ − m′)+ 〈Φ|s−
l s+

m′ |Φ〉δ(l ′ − m)

= 〈Φ|s−
l s+

m |Φ〉δ(l ′ − m′)+ 〈Φ|s−
l s+

m′ |Φ〉δ(l ′ − m)

= δ(l − m)δ(l ′ − m′)+ δ(l − m′)δ(l ′ − m)

where δ(i − j) ≡ δi− j, 0 = δi j .
In particular we the following two special cases of this result

〈Φ|s−
l s−

l+ρ′s+
m s+

m+ρ |Φ〉 = δ(l − m)δ(l + ρ′ − m − ρ)+δ(l − m − ρ)δ(l + ρ′ − m)

= δ(l − m)δ(ρ′ − ρ)+ δ(l − m − ρ)δ(ρ + ρ′)

and

〈Φ|s−
l s−

l+ρ′s
+
m+ρ0+ρ3

s+
m+ρ |Φ〉 = δ(l − m − ρ0 − ρ3)δ(l + ρ′ − m − ρ)+

δ(l − m − ρ)δ(l + ρ′ − m − ρ0 − ρ3)

= δ(l − m)δ(ρ0 + ρ3 + ρ′ − ρ)+
δ(l − m − ρ)δ(ρ + ρ′ − ρ0 − ρ3)

3.

∑
ρ1

δ(ρ + ρ1) = 1

since there is just one ρ1 equal to −ρ.

4. For the linear chain, the square lattice and the simple cubic
∑

ρ1,ρ2,ρ3

δ(ρ + ρ1 + ρ2 + ρ3) = 3n − 3

where n is the number of nearest neighbours, this being the number of ways that
ρ1 + ρ2 + ρ3 can be made equal to −ρ.

In (10.37) we need

〈Φ|C−
I Ĥ2|Φ〉 = 〈Φ|s−

m s−
m+ρĤ2|Φ〉

and using the above results and (10.63)

= − 1

4
[2 + 2b2

1(3n − 3)− 4b2
1n − 4b2

1n + 4b2
1

−Δb12n + 4Δb1 −Δb12n] = 0

= − 1

2
[1 − (n + 1)b2

1 + 2(1 − n)Δb1] = 0
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which yields Eq. (10.38):

(n + 1)b2
1 + 2(n − 1)Δb1 − 1 = 0.

We now turn to the bra state and recall that it is not, in general, the Hermitian
conjugate of the ket state. In the LSUB2 approximation, which keeps only nearest-
neighbour correlations, the operator S̃ has the form

S̃ = 1 + b̃1

2

N∑
l

∑
ρ′

s−
l s−

l+ρ′, (10.64)

where the index l runs over all sites on the lattice, ρ′ runs over all nearest-neighbour
sites, and b̃1 is the sole bra-state correlation coefficient. b̃1 can be determined using
Eq. (10.14) with C+

I = s+
m s+

m+ρ . However, it is much quicker to use a shortcut,
which we show here only for the LSUB2 version.

First note that ŝi
+ = s+

i so that Ĉ+
I = C+

I and Eq. (10.14) becomes

〈Φ| S̃[Ĥ,C+
I ] |Φ〉 = 0

〈Φ| S̃[Ĥ, s+
m s+

m+ρ] |Φ〉 = 0

∴ b1

∑
m

∑
ρ

〈Φ| S̃[Ĥ, s+
m s+

m+ρ] |Φ〉 = 0

∴ 〈Φ| S̃[Ĥ, S] |Φ〉 = 0 (10.65)

since S = b1
∑

m
∑
ρ s+

m s+
m+ρ .

Now consider

∂H̄
∂b1

= ∂

∂b1
〈Φ|S̃e−SHeS|Φ〉

= 〈Φ|
{

S̃

(
−e−S ∂S

∂b1

)
HeS + e−SH

(
eS ∂S

∂b1

)}
|Φ〉

since b1 occurs only in S and not in S̃ or H.

Also since S = b1
∑

m
∑
ρ s+

m s+
m+ρ , it follows that

∂S

∂b1
= 1

b1
S so

∂H̄
∂b1

= 1

b1
〈Φ| S̃[Ĥ, S] |Φ〉 = 0

because of Eq. (10.65). Thus it is sufficient to evaluate H̄ and differentiate with
respect to b1.
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We can now proceed to calculate

H̄ = 〈Φ|S̃Ĥ|Φ〉

= 〈Φ|Ĥ0|Φ〉 + b̃1

2

∑
l

∑
ρ′

〈Φ|s−
l s−

l+ρ′Ĥ2|Φ〉

The first term is Eg evaluated earlier:

〈Φ|Ĥ0|Φ〉 = − Nn

8
(Δ+ 2b1)

while the term inside the summation in the second term was evaluated in determin-
ing b1 and is given by (using m and ρ instead of l and ρ′)

〈Φ|s−
m s−

m+ρĤ2|Φ〉 = − 1

2
[1 − (n + 1)b2

1 − 2(n − 1)Δb1].

Thus, carrying out the summations,

H̄ = − Nn

8
(Δ+ 2b1)− b̃1 Nn

4
[1 − (n + 1)b2

1 − 2(n − 1)Δb1].

Differentiating with respect to b1 and setting this equal to 0 yields Eq. (10.43).

−1 + b̃1[(n + 1)2b1 + 2(n − 1)Δ] = 0.
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