
Chapter 8
Applications

This chapter presents two implemented prototypes that are related with the main top-
ics presented in the book; music discovery and recommendation. The first system,
named, Searchsounds, is a music search engine based on text keyword searches, as
well as a more like this button, that allows users to discover music by means of audio
similarity. Thus, Searchsounds allows users to dig into the Long Tail, by providing
music discovery using audio content-based similarity. The second system, named
FOAFing the Music, is a music recommender system that focuses on the Long Tail
of popularity, promoting unknown artists. The system also provides related informa-
tion about the recommended artists, using information available on the web gathered
from music related RSS feeds.

The main difference between the two prototypes is that Searchsounds is a non-
personalised music search engine, whilst FOAFing the Music takes into account the
user profile and the listening habits to provide personalised recommendations.

8.1 Searchsounds: Music Discovery in the Long Tail

Searchsounds, is a web-based music search engine that allows users to discover
music using content-based similarity. Section 8.1.1 introduces the motivations and
background of the system implemented. In Sec. 8.1.3 we present the architecture
of the system. Finally, the last section summaries the work done and outlines the
remaining work regarding the functionality of the system.

8.1.1 Motivation

Nowadays, the increasing amount of available music in the World Wide Web makes
very difficult, to the user, to find music she would like to listen to. To overcome
this problem, there are some audio search engines that can fit the user’s needs.

Ò. Celma, Music Recommendation and Discovery, 169
DOI 10.1007/978-3-642-13287-2 8, c© Springer-Verlag Berlin Heidelberg 2010

170 8 Applications

Some of the current existing search engines are, nevertheless, not fully exploited
because their companies would have to deal with copyright infringing material. As
general search engines, music search engines have a crucial component: an audio
crawler, that scans the web for audio files, and also gathers related information about
files [1].

8.1.1.1 Syndication of Web Content

During the last years, syndication of web content—a section of a website made
available for other sites to use—has become a common practice for websites. This
originated with news and weblog sites, but nowadays is increasingly used to syndi-
cate any kind of information. Since the beginning of 2003, a special type of weblog,
named audio weblogs (or MP3 blogs), has become very popular. These blogs make
music titles available for download. The posted music is explained by the blog au-
thor, and usually it has links that allow users to buy the complete album or work.
Sometimes, the music is hard to find or has not been issued in many years, and
many MP3 blogs link strictly to music that is authorised for free distribution. In
other cases, MP3 blogs include a disclaimer stating that they are willing to remove
music if the copyright owner objects. Anyway, this source of semi-structured infor-
mation is a jewel for web crawlers, as it contains the user’s object of desire—the
music—and some textual information that is referring to the audio file.

The file format used to syndicate web content is XML. Web syndication is based
on the RSS family and Atom formats. The RSS abbreviation is used to refer to
the following standards: Really Simple Syndication (RSS 2.0), Rich Site Summary
(RSS 0.91 and 1.0) or RDF Site Summary (1.0).

Of special interest are the feeds that syndicate multimedia content. These feeds
publish audiovisual information that is available on the net. An interesting example
is the Media RSS (mRSS) specification,1 lead by Yahoo! and the multimedia RSS
community. mRSS allows bloggers to syndicating multimedia files (audio, video,
image) in RSS feeds, and adds several enhancements to RSS enclosures. Although
mRSS is not yet widely used on the net, some websites syndicate their multimedia
content following the specification. These feeds contain textual information, plus a
link to the actual audiovisual file. As an example, Listing 8.1 shows a partial RSS
feed.2

<rss version="2.0"
xml:base="http://www.ourmedia.org"
xmlns:media="http://search.yahoo.com/mrss"
xmlns:dc="http://purl.org/dc/elements/1.1/"
>
<channel>
<title>Example of a mRSS feed</title>
<link>http://www.ourmedia.org/user/45801</link>

1 http://search.yahoo.com/mrss/
2 Adapted from a real example published in OurMedia website. http://www.ourmedia.org

http://search.yahoo.com/mrss/

8.1 Searchsounds: Music Discovery in the Long Tail 171

<description>
Recently published media items from Ourmedia.org
</description>
<language>en</language>
<item>
<title>Fanky beats</title>
<link>http://www.ourmedia.org/node/...</link>
<description>Rock music with a funky beat and electric lead

guitar riffs (...)</description>
<pubDate>Mon, 17 Apr 2007 01:35:49 -0500</pubDate>
<dc:creator>John Brettbutter</dc:creator>
<category domain="urn:ourmedia:term:35">
Alternative Rock

</category>
<category domain="urn:ourmedia:term:582">funk</category>
<category domain="urn:ourmedia:term:727">guitar</category>
<enclosure url="http://archive.org/.../file.mp3"
length="3234212" type="application/octet-stream" />

</item>
<item>
<title>Another item</title>
...
</item>

</channel>
</rss>

Listing 8.1 Example of a media RSS feed.

The example shows an item with all its information: the title of the item, the de-
scription, the publication date, the editor of the entry, and a set of categories (similar
to tags, but controlled from a given taxonomy). Searchsounds mines this informa-
tion in order to retrieve relevant audio files based on keywords.

8.1.2 Goals

The main goal of the system is to allow users to discover unknown music. For this
reason, Searchsounds mines music related information available in MP3-weblogs,
and attaches textual information to the audio files. This way, users can search and
retrieve music related to the query, as well as music that sounds similar to the re-
trieved audio files. This exploration mode allows users to discover music—related to
his original (keyword based) query—that would be more difficult to discover using
only textual queries.

Figure 8.1 shows the relationship between the music information plane (see Sec.
3.3), and the information that Searchsounds uses.

172 8 Applications

Fig. 8.1 Searchsounds makes use of editorial, cultural and acoustic metadata. The system retrieves
(1) audio files from a keyword query, as well as (2) a list of (content-based) similar titles.

8.1.3 System Overview

Searchsounds exploits and mines all the music related information available from
MP3-weblogs. The system gathers editorial, cultural, and acoustic information from
the crawled audio files. The input of the system is a query composed by text key-
words. From these keywords, the system is able to retrieve a list of audio files related
with the query. Each audio file provides a link to the original weblog, and a list of
similar titles. This similarity is computed using content-based audio description.
Thus, from the results of a keyword query, a user can discover related music by nav-
igating onto the audio similarity plane. It is worth to mention that there is no user
profiling or any kind of user representation stored in the system. This is a limitation,
as the system does not make any personalised recommendations. However, this lim-
itation is solved in the next prototype (explained in Sec. 8.2). The main components
of the system are the audio crawler and the audio retrieval system. Figure 8.2 depicts
the architecture of the system.

8.1 Searchsounds: Music Discovery in the Long Tail 173

Fig. 8.2 Searchsounds architecture. The main components are the audio crawler, and the audio
retrieval system.

8.1.3.1 Audio Crawler

The system has an audio spider module that crawls the web. All the gathered in-
formation is stored into a relational database. The audio crawler starts the process
from a manually selected list of RSS links (that point to MP3-blogs). Each RSS file
contains a list of entries (or items) that link to audio files. The crawler seeks for new
incoming items—using the pubDate item value and comparing with the latest entry
in the database—and stores the new information into the database. Thus, the audio
crawler system has an historic information of all the items that appeared in a feed.

From the previous RSS example (see Example 8.1, presented in Section 8.1.1.1),
the audio crawler stores the title, the content of the description, the assigned terms
from the taxonomy (category tags), and the link to the audio file (extracted from the
enclosure url attribute).

8.1.3.2 Audio Retrieval System

The logical view of a crawled feed item can be described by the bag-of-words ap-
proach: a document is represented as a number of unique words, with a weight (in

174 8 Applications

our case, the t f /id f function) assigned to each word [2]. Special weights are as-
signed to the music related terms, as well as the metadata (e.g. ID3 tags) extracted
from the audio file. Similar to our approach, [3] presents a proposal of modifying
the weights of the terms pertaining to the musical domain.

Moreover, basic natural language processing methods are applied to reduce the
size of the item description (elimination of stopwords, and apply Porter’s stemming
algorithm [4]). The information retrieval (IR) model used is the classic vector model
approach, where a given document is represented as a vector in a multidimensional
space of words (each word of the vocabulary is a coordinate in the space).

The similarity function, sim(d j,q), between a query (q) and a document (d j) is
based on the cosine similarity, using T F-IDF weighting function (already presented
in Sec. 2.5.4). Our approach is well suited not only for querying via artists’ or songs’
names, but for more complex keyword queries such as: funky guitar riffs or tradi-
tional Irish tunes. The retrieval system outputs the documents (i.e. feed entries) that
are relevant to the user’s query, ranked by the similarity function. Figure 8.3 depicts
the retrieved audio files for traditional Irish music query.

Fig. 8.3 Screenshot of the Searchsounds application, showing the first 10 results from traditional
Irish music query.

Based on the results obtained from the user’s textual query, the system allows
users to find similar titles using content-based audio similarity. Each link to an au-
dio file has a Find similar button that retrieves the most similar audio files, based on
a set of low and mid-level audio descriptors. These descriptors are extracted from
the audio and represent properties such as: rhythm, harmony, timbre and instrumen-
tation, intensity, structure and complexity [5].

8.2 FOAFing the Music: Music Recommendation in the Long Tail 175

This exploration via browsing allows users to discover music—related to his
original (keyword based) query—that would be more difficult to discover by us-
ing textual queries only. There is an analogy between this type of navigation and,
for example, Google’s “find web pages that are similar to a given HTML page”.
In our case, similarity among items are based on audio similarity, whereas Google
approach is based on the textual content of the HTML page. Still, both browsing
approaches are based on the content analysis of the retrieved object.

8.1.4 Summary

We developed a web-based audio crawler that focuses on MP3-weblogs. Out of
the crawling process, each feed item is represented as a text document, containing
the content of the item, as well as the links to the audio files. Then, classic text
retrieval system outputs relevant feed items related to the user’s query. Furthermore,
a content-based navigation allows users to browse through the retrieved items and
discover new music and artists using audio similarity.

Ongoing work includes the automatic extraction of music related tags (i.e. guitar,
rock, 1970s) from the text, as well as applying autotagging to incoming audio files;
using audio content-based similarity [6]. We also plan to add relevance feedback
to tune the system and get more accurate results, specially for the content-based
similarity.

The system is available at http://www.searchsounds.net.

8.2 FOAFing the Music: Music Recommendation in the Long
Tail

Now we present the second of the two prototypes developed. It is a music recom-
mender system, named FOAFing the Music, that allows users to discover a wide
range of music located along the Long Tail. The system exploits music related in-
formation that is being syndicated (as RSS feeds) on thousands of websites. Using
the crawled information, the system is able to filter it and recommend it to the user,
according to her profile and listening habits.

8.2.1 Motivation

The World Wide Web has become the host and distribution channel for a broad va-
riety of digital multimedia assets. Although the Internet infrastructure allows sim-
ple straightforward acquisition, the value of these resources lacks powerful content
management, retrieval and visualisation tools. Music content is no exception: al-
though there is a sizeable amount of text-based information related to music (album

http://www.searchsounds.net

176 8 Applications

reviews, artist biographies, etc.) this information is hardly ever associated with the
objects it refers to, that being the music files themselves (MIDI or audio). Moreover,
music is an important vehicle for communicating to other people something relevant
about our personality, history, etc.

There is a clear interest in the Semantic Web field in creating a Web of machine-
readable homepages describing people, the links among them, and the things they
create and do. The Friend of a Friend (Friend Of A Friend) project3 provides con-
ventions and a language to describe homepage-like content and social networks.
The Friend of a Friend vocabulary provides properties and classes for describing
common features of people and their social networks. Friend of a Friend is based on
the Resource Description Framework (RDF4) vocabulary.

We foresee that with a complete user’s Friend of a Friend profile, our system
would get a better representation of the user’s musical needs. On the other hand,
the RSS vocabulary5 allows systems one to syndicate Web content on the Internet.
Syndicated content includes data such as news, event listings, headlines, project
updates, as well as music related information, such as new music releases, album
reviews, podcast sessions, and upcoming gigs.

To our knowledge, nowadays it does not exist any system that recommends items
to a user, based on her Friend of a Friend profile. Yet, it is worth to mention the
FilmTrust system.6 It is a part of a research study aimed to understanding how social
preferences might help web sites to present information in a more useful way [7].
The system collects user reviews and ratings about movies, and holds them into the
user’s Friend of a Friend profile [8].

8.2.2 Goals

The main goal of the FOAFing the Music system is to recommend, to discover and to
explore music content; based on user profiling (via Friend of a Friend descriptions),
context based information (extracted from music related RSS feeds), and content
based descriptions (automatically extracted from the audio itself). All of that being
based on a common ontology that describes the musical domain.

Figure 8.4 shows the relationship between the music information plane, and the
different sources of metadata that the system exploits. Compared to the first proto-
type (Searchsounds), Foafing the Music holds a user profile representation, based
on the Friend of a Friend initiative (already presented in Sec. 3.2). A Friend of a
Friend user profile allows to filter music related information according to user’s
preferences.

3 http://www.foaf-project.org
4 http://www.w3.org/RDF
5 http://web.resource.org/rss/1.0/
6 http://trust.mindswap.org/FilmTrust

http://www.foaf-project.org
http://www.w3.org/RDF
http://web.resource.org/rss/1.0/
http://trust.mindswap.org/FilmTrust

8.2 FOAFing the Music: Music Recommendation in the Long Tail 177

Fig. 8.4 FOAFing the Music and the music information plane.

8.2.3 System Overview

The overview of the Foafing the Music system is depicted in Fig. 8.5. The system is
divided in two main components, that is (i) how to gather data from external third
party sources (presented in Sec. 8.2.3.1), and (ii) how to recommend music to the
user based on the crawled data, and the semantic description of the music titles (Sec.
8.2.3.3).

8.2.3.1 Gathering Music Related Information

Personalised services can raise privacy concerns due to the acquisition, storage and
application of sensitive personal information [9]. In our system, information about
the user is not stored in the system in any way. Instead, the system has only a link
pointing to the user’s Friend of a Friend profile (often a link to a Livejournal ac-

178 8 Applications

count). Thus, the sensitivity of this data is up to the user, not to the system. Users’
profiles in Foafing the Music are distributed over the net.

Regarding music related information, our system exploits the mashup approach.
The system uses a set of public available APIs and web services sourced from third
party websites. This information can come in any of the different RSS formats (v2.0,
v1.0, v0.92 and Yahoo! Media RSS), as well as in the Atom format. Thus, the system
has to deal with syntactically and structurally heterogeneous data. Moreover, the
system keeps track of all the new items that are published in the feeds, and stores
the new incoming data in a historic relational database. Input data of the system is
based on the following information sources:

Fig. 8.5 Architecture of the Foafing the Music system.

• User listening habits. To keep track of the user’s listening habits, the system
uses the services provided by last.fm. This system offers a list of RSS feeds
that provide the most recent tracks a user has played. Each item feed includes
the artist name, the song title, and a timestamp—indicating when the user has
listened to the track.

• New music releases. The system uses a set of RSS feeds that gathers new music
releases from iTunes, Amazon, Yahoo! Shopping and Rhapsody.

• Upcoming concerts. The system uses a set of RSS feeds that syndicates mu-
sic related events. The websites are: Eventful.com, and Upcoming.org. Once the
system has gathered the new items, it queries the Google Maps API to get the

8.2 FOAFing the Music: Music Recommendation in the Long Tail 179

geographic location of the venues, so it can be filtered according to the user’s
location.

• Podcast sessions. The system gathers information from a list of RSS feeds that
publish podcast sessions.

• MP3 Blogs. The system gathers information from a list of MP3 blogs that talk
about artists and new music releases.

• Album reviews. Information about album reviews are crawled from the RSS
feeds published by Rateyourmusic.com, Pitchforkmedia.com, online magazines
Rolling Stone,7 BBC,8 New York Times,9 and 75 or less records.10

Table 8.1 shows some basic statistics of the data that has been gathered since
mid April, 2005 until the first week of March, 2010. These numbers show that the
system has to deal with daily incoming data.

Source # RSS seed feeds # Items stored

New releases 44 1,283,640
MP3 blogs 127 991,997
Podcasts 833 288,992

Album reviews 18 206,265
Upcoming concerts 16 369,651

Table 8.1 Information gathered from music related RSS feeds is stored into a relational database.
Based on the user’s Friend of a Friend profile, the system filters this information, and presents the
most relevant items according to her musical taste.

8.2.3.2 Music Ontologies

An ontology is an explicit and formal specification of a conceptualisation [10]. In
general, an ontology describes formally a domain of discourse. The requeriments
for Ontology languages are: a well-defined syntax, a formal semantics, and a rea-
soning support that checks the consistency of the ontology, checks for unintended
relationships between classes, and automatically classifies instances in classes.

The Web Ontology Language (OWL11) has a richer vocabulary description lan-
guage for describing properties and classes than RDF Schema (RDFS12). OWL has
relations between classes, cardinality, equality, characteristics of properties and enu-
merated classes. The OWL language is build on top of RDF and RDFS, and uses
RDF/XML syntax. OWL documents are, then, RDF documents.

7 http://www.rollingstone.com/
8 http://www.bbc.co.uk/
9 http://www.nytimes.com/
10 http://www.75orless.com/
11 http://www.w3.org/TR/owl-guide/
12 http://www.w3.org/TR/rdf-schema/

http://www.rollingstone.com/
http://www.bbc.co.uk/
http://www.nytimes.com/
http://www.75orless.com/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-schema/

180 8 Applications

On the other hand, we have defined a simple music recommendation OWL DL
ontology13 that describes some basic properties of the artists and music titles, as
well as some descriptors automatically extracted from the audio files (e.g. tonality,
rhythm, moods, music intensity, etc.). In [11] we propose a way to map our ontology
and the Musicbrainz ontology, onto the MPEG-7 standard, which acts as an upper-
ontology for multimedia description. This way we can link our dataset with the
Musicbrainz information in a straightforward manner.

A focused web crawler has been implemented to add instances to our music
ontology. The crawler extracts metadata of artists and songs, and the relationships
between artists (such as: “related with”, “influenced by”, “followers of”, etc.), and
converts it to RDF/XML notation. The seed sites to start the crawling process are
music metadata providers, such as MP3.com, Yahoo! Music, and RockDetector, as
well as independent music labels (Magnatune, CDBaby, Garageband, etc.).

Based on our lightweight music recommendation ontology, listing 8.2 shows the
RDF/XML description of an artist from GarageBand.

<rdf:Description rdf:about="http://www.garageband.com/artist/
randycoleman">

<rdf:type rdf:resource="{\&}music;Artist"/>
<foaf:name>Randy Coleman</foaf:name>
<music:decade>1990</music:decade>
<music:decade>2000</music:decade>
<music:genre>Pop</music:genre>
<foaf:based_near
rdf:resource="http://sws.geonames.org/5368361/"/>

<music:influencedBy
rdf:resource="http://www.coldplay.com"/>

<music:influencedBy
rdf:resource="http://www.jeffbuckley.com"/>

<music:influencedBy
rdf:resource="http://www.radiohead.com"/>

</rdf:Description>

Listing 8.2 RDF example of an artist individual

Listing 8.3 shows the description of an individual track of the previous artist,
including basic editorial metadata, and some features extracted automatically from
the audio file.

<rdf:Description rdf:about="http://www.garageband.com/song?|pe1|
S8LTM0LdsaSkaFeyYG0">

<rdf:type rdf:resource="{\&}music;Track"/>
<music:title>Last Salutation</music:title>
<music:playedBy rd:resource="http://www.garageband.com/artist/

randycoleman"/>
<music:duration>247</music:duration>
<music:intensity>Energetic</music:intensity>
<music:key>D</music:key>
<music:keyMode>Major</music:keyMode>
<music:tonalness>0.84</music:tonalness>
<music:tempo>72</music:tempo>

</rdf:Description>

13 http://foafing-the-music.iua.upf.edu/music-ontology#

http://foafing-the-music.iua.upf.edu/music-ontology#

8.2 FOAFing the Music: Music Recommendation in the Long Tail 181

Listing 8.3 Example of a track individual

These individuals are used in the recommendation process, to retrieve artists and
songs related with the user’s musical taste.

8.2.3.3 Providing Music Recommendations

This section explains the music recommendation process, based on all the informa-
tion that has continuously been gathered from the RSS feeds and the crawler. Music
recommendations, in the Foafing the Music system, are generated according to the
following steps:

1. Get music related information from user’s Friend of a Friend interests, and lis-
tening habits from last.fm,

2. Detect artists and bands,
3. Compute similar artists, and
4. Rate the results by relevance, according to the user’s profile.

To gather music related information from a Friend of a Friend profile, the system
extracts the information from the FOAF interest property (if dc:title is given
then it gets its value, otherwise it gathers the text from the <title> tag of the
HTML resource).

<foaf:interest
rdf:resource="http://www.tylaandthedogsdamour.com/"
dc:title="The Dogs d’Amour" />

Listing 8.4 Example of a Friend of a Friend interest with a given dc:title.

The system can also extract information from a user’s Friend of a Friend interest
that includes the artist description based on the general Music Ontology [12].

The following example presents a way to express interest in an artist, by means
of the general Music Ontology.

<foaf:interest>
<mo:MusicArtist rdf:about=’http://musicbrainz.org/artist/12

d432a3-...-d20751880764’>
<mo:discogs rdf:resource=’http://www.discogs.com/artist/Yann+

Tiersen’/>
<foaf:img rdf:resource=’http://ec2.images-amazon.com/images/P

/B000852GIQ...Z_.jpg’/>
<foaf:homepage rdf:resource=’http://www.yanntiersen.com/’/>
<foaf:name>Yann Tiersen</foaf:name>
<mo:wikipedia rdf:resource=’http://en.wikipedia.org/wiki/

Yann_Tiersen’/>
</mo:MusicArtist>

</foaf:interest>

Listing 8.5 FOAF example of an artist description that a user is interested in.

Based on the music related information gathered from the user’s profile and lis-
tening habits, the system detects the artists and bands that the user is interested in,

182 8 Applications

by doing a SPARQL query to the artist RDF repository. Once the user’s artists have
been detected, artist similarity is computed. This process is achieved by exploiting
the RDF graph of artists’ relationships (e.g. influenced by, followers of, worked with,
etc.), as shown in Listing 8.2.

The system offers two ways of recommending music information. On the one
hand, static recommendations are based on the favourite artists encountered in the
Friend of a Friend profile. We assume that a Friend of a Friend profile would be
rarely manually updated or modified. On the other hand, dynamic recommendations
are based on user’s listening habits, which are updated much more often than the
user’s profile. Following this approach a user can discover a wide range of new
music and artists on a daily basis.

Once the recommended artists have been computed, Foafing the Music filters
music related information coming from the gathered music information (see Sec.
8.2.3.1) to:

• Get new music releases from iTunes, Amazon, Yahoo Shopping, etc.
• Download (or stream) audio from MP3-blogs and Podcast sessions,
• Create, automatically, XSPF14 playlists based on audio similarity,
• View upcoming gigs happening near to the user’s location, and
• Read album reviews.

Syndication of the website content is done via an RSS 1.0 feed. For most of
previous functionalities, there is a feed subscription option to get the results.

8.2.3.4 Usage Data

Since its inception in August 2005, the system has an average of 60 daily unique
accesses, from more than 5,000 registered users, including casual users that try the
demo option. More than half of the users automatically created an account using
an external Friend of a Friend profile (most of the times, around 70%, the profile
came from their Livejournal Friend of a Friend account). Also, more than 65% of
the users add her last.fm account, so we can use their listening habits from last.fm.
Figure 8.6 shows the number of logins over time, since August 2005 till July 2008.
The peaks are clearly correlated with related news about the project (e.g. local TV
and radio interviews, and reviews on the web).

8.2.4 Summary

We have proposed a system that filters music related information, based on a given
user’s Friend of a Friend profile and her listening habits. A system based on Friend
of a Friend profiles and user’s listening habits allows the system to “understand” a

14 http://www.xspf.org/. XSPF is a playlist format based on XML syntax

8.2 FOAFing the Music: Music Recommendation in the Long Tail 183

Fig. 8.6 Daily accesses to Foafing the Music. The system has an average of 60 daily unique ac-
cesses, from more than 4,000 registered users and also casual users that try the demo option.

user in two complementary ways; psychological factors—personality, demographic
preferences, social relationships—and explicit musical preferences. In the music
field, we expect that filtering information about new music releases, artists’ inter-
views, album reviews, and so on, can improve user satisfaction as it provides the
context and needed information to backup the system’s recommendations.

Describing music assets is a crucial task for a music recommender system. The
success of a music recommender can depend on the accuracy and level of detail of
the musical objects, and its links within a user profile. Furthermore, we formalise
into an ontology the basic musical concepts involved in the recommendation pro-
cess. Linking these musical objects with the user profile eases the recommendation
process.

Furthermore, high–level musical descriptors can increase the accuracy of con-
tent retrieval, as well as provide better personalised recommendations. Thus, going
one step beyond, it would be desirable to combine mid–level acoustic features with
as much editorial and cultural metadata as possible. From this combination, more
sophisticated inferences and semantic rules would be possible. These rules could
derive hidden high–level metadata that could be easily understood by the end-user,
also enhancing their profiles. Since the existence of the general Music Ontology
(MO) [12], we foresee that linking our recommendation ontology with it, as well as
using all the linked information available in the Web of Data,15 we can improve our
recommender, becoming a truly semantically-enhanced music recommender.

Foafing the Music is available at http://foafing-the-music.iua.upf.
edu.

15 See http://linkeddata.org/.

http://foafing-the-music.iua.upf.
edu
http://linkeddata.org/

184 8 Applications

References

1. I. Knopke, “Aroooga: An audio search engine for the world wide web,” in Proceedings of 5th
International Conference on Music Information Retrieval, (Barcelona, Spain), 2004.

2. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Boston, MA: Addison-
Wesley, 1st edn., 1999.

3. S. Vembu and S. Baumann, “A self-organizing map based knowledge discovery for music
recommendation systems,” in Proceedings of the 2nd International Symposium on Computer
Music Modeling and Retrieval, (Esbjerg, Denmark), 2004.

4. M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, pp. 130–137, 1980.
5. P. Cano, M. Koppenberger, and N. Wack, “An industrial-strength content-based music recom-

mendation system,” in Proceedings of 28th International ACM SIGIR Conference, (Salvador,
Brazil), 2005.

6. M. Sordo, C. Laurier, and O. Celma, “Annotating music collections how content-based simi-
larity helps to propagate labels,” in Proceedings of the 8th International Conference on Music
Information Retrieval, (Vienna, Austria), 2007.

7. J. Golbeck and B. Parsia, “Trust network-based filtering of aggregated claims,” International
Journal of Metadata, Semantics and Ontologies, vol. 1, no. 1, 2005.

8. J. Golbeck, Computing and Applying Trust in Web-based Social Networks. PhD thesis, College
Park, MD, 2005.

9. E. Perik, B. de Ruyter, P. Markopoulos, and B. Eggen, “The sensitivities of user profile infor-
mation in music recommender systems,” in Proceedings of Private, Security, Trust, 2004.

10. T. R. Gruber, “Towards principles for the design of ontologies used for knowledge sharing,”
in Formal Ontology in Conceptual Analysis and Knowledge Representation (N. Guarino and
R. Poli, eds.). Deventer, The Netherlands: Kluwer Academic Publishers, 1993.

11. R. Garcia and O. Celma, “Semantic integration and retrieval of multimedia metadata,” in Pro-
ceedings of 4th International Semantic Web Conference. Knowledge Markup and Semantic
Annotation Workshop, (Galway, Ireland), 2005.

12. Y. Raimond, S. A. Abdallah, M. Sandler, and F. Giasson, “The music ontology,” in Proceed-
ings of the 8th International Conference on Music Information Retrieval, (Vienna, Austria),
2007.

	8 Applications
	8.1 Searchsounds: Music Discovery in the Long Tail
	8.1.1 Motivation
	8.1.2 Goals
	8.1.3 System Overview
	8.1.4 Summary

	8.2 FOAFing the Music: Music Recommendation in the Long Tail
	8.2.1 Motivation
	8.2.2 Goals
	8.2.3 System Overview
	8.2.4 Summary

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

