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Foreword

In the last 15 years we have seen a major transformation in the world of music. Mu-
sicians use inexpensive personal computers instead of expensive recording studios
to record, mix and engineer music. Musicians use the Internet to distribute their mu-
sic for free instead of spending large amounts of money creating CDs, hiring trucks
and shipping them to hundreds of record stores. As the cost to create and distribute
recorded music has dropped, the amount of available music has grown dramatically.
Twenty years ago a typical record store would have music by less than ten thousand
artists, while today online music stores have music catalogs by nearly a million
artists.

While the amount of new music has grown, some of the traditional ways of
finding music have diminished. Thirty years ago, the local radio DJ was a music
tastemaker, finding new and interesting music for the local radio audience. Now ra-
dio shows are programmed by large corporations that create playlists drawn from a
limited pool of tracks. Similarly, record stores have been replaced by big box retail-
ers that have ever-shrinking music departments. In the past, you could always ask
the owner of the record store for music recommendations. You would learn what
was new, what was good and what was selling. Now, however, you can no longer
expect that the teenager behind the cash register will be an expert in new music, or
even be someone who listens to music at all.

With so much more music available, listeners are increasingly relying on tools
such as automatic music recommenders to help them find music. Instead of relying
on DJs, record store clerks or their friends to get music recommendations, listeners
are also turning to machines to guide them to new music. This raises a number of
questions: How well do these recommenders work? Do they generate novel, inter-
esting and relevant music recommendations? How far into the Long Tail do they
reach? Do they create feedback loops that drive listeners to a diminishing pool of
popular artists? What affect will automatic music recommenders have on the collec-
tive music taste?

In this book, Dr. Celma guides us through the world of automatic music rec-
ommendation. He describes how music recommenders work, explores some of the
limitations seen in current recommenders, offers techniques for evaluating the effec-
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tiveness of music recommendations and demonstrates how to build effective recom-
menders by offering two real-world recommender examples. As we rely more and
more on automatic music recommendation it is important for us to understand what
makes a good music recommender and how a recommender can affect the world
of music. With this knowledge we can build systems that offer novel, relevant and
interesting music recommendations drawn from the entire world of available music.

Austin, TX, March 2010 Paul Lamere
Director of Developer Community

The Echo Nest



Preface

I met Timothy John Taylor (aka Tyla1) in 2000, when he established in Barcelona.
He was playing some acoustic gigs, and back then I used to record a lot of concerts
with a portable DAT. After a remarkable night, I sent him an email telling that I
recorded the concert, so I could give him a copy. After all, we were living in the
same city. He said “yeah sure, come to my house, and give me the CD’s”. So there
I am, another nervous fan, trying to look cool while walking to his home. . .

My big brother, the first “music recommender” that I reckon, bought a vynil of
The Dogs d’Amour in 1989. He liked the art cover—painted by the singer, Tyla—so
he purchased it. The English rock band was just starting to be somewhat worldwide
famous. They were in the UK charts, and also had played in the Top of the Pops.
Then, they moved to L.A. to record an album. Rock magazines used to talk about
their chaotic and unpredictable concerts, as well as the excesses of the members.
Both my brother and myself felt in love with the band after listening to the album.

Tyla welcomes me at his home. We have a long chat surrounded by vintage gui-
tars and amps, and unfinished paintings. I give him a few CDs including his last
concert in Barcelona, as well as two other gigs that I recorded one year before. All
of a sudden, he mentions the last project he is involved in: he has just re-joined
the classic Dogs d’Amour line-up, after more than six years of inactivity. They were
recording a new album. He was very excited and happy (ever after) about the project.
I asked why they decided to re-join after all these years. He said: We’ve just noticed
how much interest there is on the Internet about the band. Indeed, not being able to
find the old releases made lot of profit for eBayers and the like.

When I joined The Dogs d’Amour Yahoo! mailing list in 1998 we were just a few
dozens of fans that were discussing about the disbanded band, their solo projects,
and related artists to fall upon. One day, the members of the band joined the list, too.
It was like a big—virtual—family. Being part of the mailing list allowed us to have
updated information about what the band was up to, and chat with them. One day
they officially announced that the band was active again, and they had a new album

1 http://www.myspace.com/tylaandthedogsdamour
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ready (. . . I already knew that!). Sadly, the reunion only lasted for a couple of years,
ending with a remarkable UK Monsters of Rock tour supporting Alice Cooper.

During the last few years, Tyla has released a set of solo albums. He has made his
life based on viral marketing—including the help from fans—setting gigs, selling
albums and paintings online, as well as in the concerts. Nowadays, he has much
more control of the whole creative process than ever. The income allows him not
needing any record label—he had some bad experiences with record labels back in
the 80’s epoch, when they controlled everything. Moreover, from the fan’s point of
view, living in the same city allowed me to help him in the creation process of a few
albums. I even played some guitar bits in a couple of songs (and since then, I own
one of his vintage Strat).

Up to now, he is still very active; he plays, paints, manages his tours, and a long
etcetera. Yet, he is in the “long tail” of popularity. It is difficult to discover these type
of artists when using music recommenders that do not support “less-known” artists.
Indeed, for a music lover is very rewarding to discover unknown artists that fit into
her music taste. In my case, music serendipity dates from 1989; with a cool album
cover, and the good music taste of my brother. Now, I am willing to experience these
feelings again. . .

Mexico City, March 2010 Òscar Celma
Chief Innovation Officer

Barcelona Music and Audio Technologies (BMAT)
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Chapter 1
Introduction

1.1 Motivation

In recent years typical music consumption behaviour has changed dramatically. Per-
sonal music collections have grown, aided by technological improvements in net-
works, storage, portability of devices and Internet services. The number and the
availability of songs have de-emphasised their value; it is usually the case that users
own many digital music files that they have only listened to once, or not at all. It
seems reasonable to suppose that with efficient ways to create a personalised order
of users’ collections, as well as ways to explore hidden “treasures” inside them, the
value of their music collections would drastically increase.

Users own huge music collections that need proper storage and labelling. Search
within digital collections gives rise to new methods for accessing and retrieving
data. But, sometimes, there is no metadata—or only file names—to inform us of the
audio content, and that is not enough for an effective navigation and discovery of the
music collection. Users can, then, get lost searching in their own digital collections.
Furthermore, the web is increasingly becoming the primary source of music titles in
digital form. With millions of tracks available from thousands of websites, finding
the right songs, and being informed of new music releases has become problematic.

On the digital music distribution front, there is a need to find ways of improving
music retrieval and personalisation. Artist, title, and genre information might not
be the only criteria to help music consumers find music they like. This is achieved
using cultural or editorial metadata (“this artist is somehow related to that one”),
or exploiting existing purchasing behaviour data (“since you bought this artist, you
might also enjoy this one”). A largely unexplored—and potentially interesting—
complement is using semantic descriptors automatically extracted from music files,
or gathered from the community of users, via social tagging. All this information
can be combined and used for music recommendation.

Ò. Celma, Music Recommendation and Discovery, 1
DOI 10.1007/978-3-642-13287-2 1, c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

1.1.1 Academia

With one early exception, Shardanand’s masters thesis [1] published in 1994, re-
search in music recommendation did not really begin until 2001. To show the in-
creasing interest in this field, Table 1.1 presents the number of papers related to
music recommendation since 2001. The table shows the list of related papers in-
dexed by Google Scholar.1 From 2004 onwards we have seen a sharp increase in
the number of papers published in this field.

Year Num. papers

1994 1
– –

2001 3
2002 4
2003 3
2004 8
2005 14
2006 19
2007 21
2008 19
2009 19

Table 1.1 Number of scientific articles related to music recommendation, indexed by Google
Scholar.

A closer look, focusing on the Music Information Retrieval (MIR) community,
also shows an increasing interest in music recommendation and discovery. Table
1.2 shows the list of related papers, presented in ISMIR (International Society for
Music Information Retrieval)2 conferences since 2000. The early papers focused on
content–based methods [2, 3], and user profiling aspects [4, 5]. Since 2005, research
community attention has broadened to other areas, including: prototype systems
[6–8], playlist generation [9–17], social tagging [18, 19], visual interfaces [20],
music similarity networks [21–24], hybrid recommendation approaches [25–29],
and sociological aspects [30–34]. The “Music Recommendation Tutorial” [35], pre-
sented in the ISMIR 2007 conference, summarises part of the work done in this field
till then.

1 We count, for each year, the number of results from http://scholar.google.com that
contain “music recommendation” or “music recommender” in the title of the article. Accessed on
Feburary 3rd, 2010
2 http://www.ismir.net/

http://scholar.google.com
http://www.ismir.net/
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Year Papers References

2000 1 [4]
2001 0 –
2002 3 [2, 5, 9]
2003 0 –
2004 1 [3]
2005 4 [6, 7, 10, 12]
2006 6 [11, 13, 26, 30, 36, 37]
2007 7 [8, 20, 21, 25, 27, 31, 35]
2008 7 [14, 15, 18, 19, 22, 28, 32]
2009 7 [16, 17, 23, 24, 29, 33, 34]

Table 1.2 Papers related to music recommendation presented in the ISMIR conference since 2000.

1.1.2 Industry

Recommender systems play an important role in e-Commerce. Examples such as
Last.fm, Amazon, or Netflix, where the provided recommendations are critical to
retain users, show that most of the product sales result from the recommenda-
tions. Greg Linden, who implemented the first recommendation engine for Amazon,
states3:

(Amazon.com) recommendations generated a couple orders of magnitude more sales than
just showing top sellers.

Since October 2006, this field enjoyed an increase of interest thanks to the Netflix
competition. The competition offered a prize of $1,000,000 to those that improve
their movie recommendation system.4 Also, the Netflix competition provided the
largest open dataset, containing more than 100 million movie ratings from anony-
mous users. The research community was challenged in developing algorithms to
improve the accuracy of the current Netflix recommendation system. After 3 years
of research, in July 2009, both BellKor’s Pragmatic Chaos5 and The Ensemble6

teams did beat the 10% threshold, in both cases by blending several approaches to
improve the overall result of the predictions.

3 http://glinden.blogspot.com/2007/05/google-news-personalization-
paper.html
4 The goal was to reduce by 10% the Root mean squared error (RMSE) of the predicted movie
ratings
5 http://www2.research.att.com/˜volinsky/netflix/bpc.html
6 http://www.the-ensemble.com

http://glinden.blogspot.com/2007/05/google-news-personalization-
paper.html
http://www2.research.att.com/~volinsky/netflix/bpc.html
http://www.the-ensemble.com
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1.1.2.1 State of the Music Industry

The Long Tail7 is composed by a small number of popular items (the hits), and
the rest are located in the tail of the curve [38]. The main goal of the Long Tail
economics—originated by the huge shift from physical media to digital media, and
the fall in production costs—is to make everything available, in contrast to the
limitations of the brick–and–mortar stores. Thus, personalised recommendations
and filters are needed to help users find the right content in the digital space.

On the music side, the 2007 “State of the Industry” report by Nielsen SoundScan
presents some interesting information about music consumption in the United States
[39]. Around 80,000 albums were released in 2007 (not counting music available
in Myspace.com, and similar sites). However, traditional CD sales are down 31%
since 2004—but digital music sales are up 490%. Indeed, 844 million digital tracks
were sold in 2007, but only 1% of all digital tracks accounted for 80% of all track
sales. Also, 1,000 albums accounted for 50% of all album sales, and 450,344 of the
570,000 albums sold were purchased less than 100 times.

Music consumption based on sales is biased towards a few popular artists. Ide-
ally, by providing personalised filters and discovery tools to users, music consump-
tion would diversify. There is a need to assist people to discover, recommend, per-
sonalise and filter the huge amount of music content. In this sense, Echo Nest,8 and
BMAT9 companies, created out of prominent MIR research groups, provide specific
solutions to solve these limitations.

1.2 What’s the Problem with Music Recommendation?

Nowadays, we have an overwhelming number of choices of which music to listen
to. We see this each time we browse a non-personalised music catalog, such as
Myspace or iTunes. In The Paradox of Choice [40], Schwartz states that we, as
consumers, often become paralyzed and doubtful when facing the overwhelming
number of choices. There is a need to eliminate some of the choices, and this can
be achieved by providing personalised filters and recommendations to ease users’
decision.

7 From now on, considered as a proper noun with capitalised letters
8 http://echonest.com/
9 http://bmat.com/

http://echonest.com/
http://bmat.com/
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1.2.1 Music �= Movies and Books

Several music recommendation paradigms have been proposed in recent years, and
many commercial systems have appeared with more or less success. Most of these
approaches apply or adapt existing recommendation algorithms, such as collabora-
tive filtering, into the music domain.

However, music is somewhat different from other entertainment domains, such
as movies or books. Tracking users’ preferences is mostly done implicitly, via their
listening habits (instead of asking users to explicitly rate the items). Any user can
consume an item (e.g., a track or a playlist) several times, even repeatedly and con-
tinuously. Regarding the evaluation process, music recommendation allows users
instant feedback via brief audio excerpts.

The context is another big difference between music and the other two do-
mains. People consume different music in different contexts; e.g. hard-rock early
in the morning, classical piano sonatas while working, and Lester Young’s cool jazz
while having dinner. A music recommender has to deal with complex contextual
information.

1.2.2 Predictive Accuracy vs. Perceived Quality

Current music recommendation algorithms try to accurately predict what people
will want to listen to. However, these algorithms tend to recommend popular (or
well-known to the user) artists, which decreases the user’s perceived quality of the
recommendations. The algorithms focus, then, on predicting the accuracy of the
recommendations. That is, try to make accurate predictions about what a user could
listen to, or buy next, independently of how useful the provided recommendations
are to the user.

Figure 1.1 depicts this phenomenon. It shows Amazon similar albums for the
Beatles’ White Album,10 based on the consumption habits of users. Top-30 recom-
mendations for the Beatles’ White Album are strictly made of other Beatles’ albums
(then suddenly, on the fourth page of results, there is the first non-Beatles album;
Exile on Main St. by The Rolling Stones). For the system these are the most accurate
recommendations and, ideally, the ones that maximise their goal—to make a user
to buy more goods. Still, one might argue about the usefulness of the provided rec-
ommendations. In fact, the goals of a recommender are not always aligned with the
goals of a listener. The goal of the Amazon recommender is to sell goods, whereas
the goal for a user visiting Amazon may be to find some new and interesting music.

10 http://www.amazon.com/Beatles-White-Album/dp/B000002UAX, accessed
on October, 9th, 2008

http://www.amazon.com/Beatles-White-Album/dp/B000002UAX
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Fig. 1.1 Amazon recommendations for The Beatles’ “White Album”.

1.3 Our Proposal

In this book we emphasise the user’s perceived quality, rather than the system’s
predictive accuracy when providing recommendations. To allow users to discover
new music, recommender systems should exploit the long tail of popularity (e.g.,
number of total plays, or album sales) that exists in any large music collection.

Figure 1.2 depicts the long tail of popularity, and how recommender systems
should help us in finding interesting information [38]. Personalised filters assist us
in filtering the available content, and in selecting those—potentially—novel and in-
teresting items according to the user’s profile. In this sense, the algorithm strength-
ens the user’s perceived quality and usefulness of the recommendations. Two key
elements to drive the users from the head to the tail of the curve are novelty, and
personalised relevance. Effective recommendation systems should promote novel
and relevant material (non-obvious recommendations), taken primarily from the tail
of a distribution, rather than focus on accuracy.

1.3.1 Novelty and Relevance

Novelty is a property of a recommender system that promotes unknown items to a
user. Novelty is the opposite of the user’s familiarity with the recommended items.
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Fig. 1.2 The Long Tail of items in a recommender system. An important role of a recommender is
to drive the user from the head region (popular items) to the long tail of the curve [38].

Yet, serendipity, that is novel and relevant recommendations for a given user, can-
not be achieved without taking into account the user profile. Personalised relevance
filters the available content, and selects those (potentially novel) items according to
user preferences.

Ideally, a user should also be familiar with some of the recommended items, to
improve the confidence and trust in the system. The system should also give an
explanation of why the items were recommended, providing higher confidence and
transparency of novel recommendations. The difficult job for a recommender is,
then, to find the proper level of familiarity, novelty and relevance for each user. This
way, recommendations can use the long tail of popularity. Furthermore, the proper
levels of familiarity, novelty and relevance for a user will change over time. As a
user becomes comfortable with the recommendations, the amount of familiar items
could be reduced.

1.3.2 Key Elements

Figure 1.3 depicts the main elements involved in our music recommendation ap-
proach. The item (or user) similarity graph defines the relationship among the items
(or users). This information is used for recommending items (or like-minded people)
to a given user, based on her preferences. The long tail curve models the popularity
of the items in the dataset, according to the shared knowledge of the whole com-
munity. The user profile is represented along the popularity curve, using her list of
preferred items.

Using the information from the similarity graph, the long tail of item popularity,
and the user profile, we should be able to provide the proper level of familiarity,
novelty and relevant recommendations to the users. Finally, an assessment of the
provided recommendations is needed. This is done in two complementary ways.
First, using a novel user-agnostic evaluation method based on the analysis of the
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Fig. 1.3 Diagram that depicts the key elements of the book. It consists of the similarity graph, the
long tail of item popularity, the user profile, the provided recommendations, and the evaluation
part.

item (or user) similarity network, and the item popularity. Secondly, with a user-
based evaluation, that provides feedback on the list of recommended items.

1.4 Summary of Contributions

The main contributions of this book are:

1. A formal definition of the recommendation problem, including the key elements
that affect the recommendations provided by a system. Also, we present the exist-
ing recommendation methods to recommend items (and also like-minded people)
to users, and we mention the pros and cons of each approach.

2. An instantiation of the general recommenddation problem for the music domain,
highlighting its common use cases, as well as presenting different approaches to
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user profiling and modelling, and how to link it with the the musical items (i.e.
artists and songs). We also present the main elements that describe the musical
items, using editorial, cultural, and audio-based descriptors.

3. A novel network-based evaluation method (or user-agnostic) for recommender
systems, based on the analysis of the item (or user) similarity network, and the
item popularity. This method has the following properties:

a. it measures the novelty component of a recommendation algorithm,
b. it makes use of complex network analysis to analyse the similarity graph,
c. it models the item popularity curve,
d. it combines both the complex network and the item popularity analysis to

determine the underlying characteristics of the recommendation algorithm,
and

e. it does not require any user intervention in the evaluation process.

We apply this evaluation method in the music domain, using large-scale artist
and user similarity networks.

4. A user-centric evaluation based on the immediate feedback of the provided rec-
ommendations. This evaluation method has the following advantages (compared
to other system-oriented evaluations):

a. it measures the novelty factor of a recommendation algorithm in terms of user
knowledge,

b. it measures the relevance (e.g., like it or not) of the recommendations, and
c. the users provide immediate feedback to the evaluation system, so the system

can react accordingly.

This method complements the previous, user-agnostic, evaluation approach. We
use this method to evaluate three different music recommendation approaches
(social-based, content-based, and a hybrid approach using expert human knowl-
edge). In this experiment, 288 subjects rated their personalised recommendations
in terms of novelty (does the user know the recommended song/artist?), and rel-
evance (does the user like the recommended song?).

5. A music search engine, named Searchsounds, that allows users to discover un-
known music mentioned on music-related blogs. Searchsounds provides key-
word based search, as well as the exploration of similar songs using audio
similarity.

6. A system prototype, named FOAFing the music, to provide music recommenda-
tions based on the user preferences and her listening habits. The main goal of
the Foafing the Music system is to recommend, to discover and to explore music
content; based on user profiling, context-based information (extracted from mu-
sic related RSS feeds), and content-based descriptions (automatically extracted
from the audio itself). Foafing the Music allows users to:

a. get new music releases from iTunes, Amazon, Yahoo Shopping, etc.
b. download (or stream) audio from MP3-blogs and Podcast sessions,
c. discover music with radio–a–la–carte (i.e., personalised playlists),
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d. view upcoming concerts happening near the user’s location, and
e. read album reviews.

1.5 Book Outline

This book is structured as follows: Chap. 2 introduces the basics of the recom-
mendation problem, and presents the general framework that includes user prefer-
ences and representation. Then, Chap. 3 adapts the recommendation problem to the
music domain, and presents related work in this area. Once the users, items, and
recommendation methods are presented, Chap. 4 introduces the Long Tail model
and its usage in recommender systems. Chapters 5, 6 and 7 present the different
ways of evaluating and comparing different recommendation algorithms. Chapter
5 presents the existing metrics for system-, network-, and user-centric approaches.

Fig. 1.4 Extension of Fig. 1.3 adding the corresponding chapters.
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Then, Chap. 6 presents a complement to the classic system-centric evaluation, fo-
cusing on the analysis of the item (or user) similarity network, and its relationships
with the popularity of the items. Chapter 7 complements the previous approach by
entering the users in the evaluation loop, allowing them to evaluate the quality of the
recommendations via immediate feedback. Chapter 8 presents two real prototypes.
These systems, named Searchsounds and FOAFing the music show how to exploit
music related content that is available on the web, for music discovery and recom-
mendation. Chapter 9 draws some conclusions and discusses open issues and future
work. To summarise the outline of the book, Fig. 1.4 presents an extension of Fig.
1.3, including the main elements of the book and its related chapters.
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Chapter 2
The Recommendation Problem

Generally speaking, the reason people could be interested in using a recommender
system is that they have so many items to choose from—in a limited period of
time—that they cannot evaluate all the possible options. A recommender should be
able to select and filter all this information to the user. Nowadays, the most success-
ful recommender systems have been built for entertainment content domains, such
as: movies, music, or books.

This chapter is structured as follows: Sec. 2.1 introduces a formal definition of
the recommendation problem. After that, Sec. 2.2 presents some use cases to stress
the possible usages of a recommender. Section 2.3 presents the general model of the
recommendation problem. An important aspect of a recommender system is how to
model the user preferences and how to represent a user profile. This is discussed
in Sec. 2.4. After that, Sec. 2.5 presents the existing recommendation methods to
recommend items (and also like-minded people) to users. Finally, Sec. 2.6 presents
some key elements that affect the recommendation problem.

2.1 Formalisation of the Recommendation Problem

Intuitively, the recommendation problem can be split into two subproblems. The first
one is a prediction problem, and is about the estimation of the items’ likeliness for
a given user. The second problem is to recommend a list of N items—assuming that
the system can predict likeliness for yet unrated items. Actually, the most relevant
problem is the estimation. Once the system can estimate items into a totally ordered
set, the recommendation problem reduces to list the top-N items with the highest
estimated value.

• The prediction problem can be formalised as follows [1]: Let U = {u1,u2, . . .um}
be the set of all users, and let I = {i1, i2, . . . in} be the set of all possible items that
can be recommended.

Ò. Celma, Music Recommendation and Discovery, 15
DOI 10.1007/978-3-642-13287-2 2, c© Springer-Verlag Berlin Heidelberg 2010
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Each user ui has a list of items Iui . This list represents the items that the user has
expressed her interests. Note that Iui ⊆ I, and it is possible that Iui be empty,1

Iui = /0 . Then, the function, Pua,i j is the predicted likeliness of item i j for the
active user ua, such as i j /∈ Iua .

• The recommendation problem is reduced to bringing a list of N items, Ir ⊂ I, that
the user will like the most (i.e. the ones with higher Pua,i j value). The recom-
mended list should not contain items from the user’s interests, i.e. Ir ∩ Iui = /0.

The space I of possible items can be very large. Similarly, the user space U ,
can also be enormous. In most recommender systems, the prediction function is
usually represented by a rating. User ratings are triples 〈u, i,r〉 where r is the value
assigned—explicit or implicitly—by the user u to a particular item i. Usually, this
value is a real number (e.g. from 0 to 1), a value in a discrete range (e.g. from 1 to
5), or a binary variable (e.g. like/dislike).

There are many approaches to solve the recommendation problem. One widely
used approach is when the system stores the interaction (implicit or explicit) be-
tween a user and the item set. The system can provide informed guesses based on
the interaction that all the users have provided. This approximation is called col-
laborative filtering. Another approach is to collect information describing the items
and then, based on the user preferences, the system is able to predict which items
the user will like the most. This approach is generally known as content-based fil-
tering, as it does not rely on other users’ ratings but on the description of the items.
Context-based filtering approach uses contextual information about the items to de-
scribe them. Another approach is demographic filtering, that stereotypes the kind
of users that like a certain item. Finally, the hybrid approach combines some of the
previous approaches. Section 2.5 presents all these approaches.

2.2 Use Cases

Herlocker et al. identify some common usages of a recommender system [2]:

• Find good items. The aim of this use case is to provide a ranked list of items,
along with a prediction of how much the user would like each item. Ideally, a
user would expect some novel items that are unknown to the user, as well as
some familiar items, too.

• Find all good items. The difference of this use case from the previous one is with
regard the coverage. In this case, the false positive rate should be lower, thus
presenting items with a higher precision.

• Recommend sequence. This use case aims at bringing to the user an ordered
sequence of items that is pleasing as a whole. A paradigmatic example is a music
recommender’s automatic playlist generation.

1 Specially when the user creates an account to a recommender system.
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• Just browsing. In this case, users find pleasant to browse into the system, even if
they are not willing to purchase any item. Simply as an entertainment.

• Find credible recommender. Users do not automatically trust a recommender.
Then, they “play around” with the system to see if the recommender does the job
well. A user interacting with a music recommender will probably search for one
of her favourite artists, and check the output results (e.g. similar artists, playlist
generation, etc.)

• Express self. For some users is important to express their opinions. A recom-
mender that offers a way to communicate and interact with other users (via fo-
rums, weblogs, etc.) allows the self-expression of users. Thus, other users can
get more information—from tagging, reviewing or blogging processes—about
the items being recommended to them.

• Influence others. This use case is the most negative of the ones presented. There
are some situations where users might want to influence the community in view-
ing or purchasing a particular item. For example: Movie studios could rate high
their latest new release, to push others to go and see the movie. In a similar way,
record labels could try to promote their artists into the recommender.

All these use cases are important when evaluating a recommender. The first task
of the evaluators should be to identify the most important use cases for which the
recommender will be used, and base their decisions on that.

2.3 General Model

The main elements of a recommender are the users and the items. Users need to be
modelled in a way that the recommender can exploit their profiles and preferences.
Besides, an accurate description of the items is also crucial to achieve good results
when recommending items to users.

Figure 2.1 describes the major entities and processes involved in the recommen-
dation problem. The first step is to model both the users and the items, and it is
presented in Sec. 2.4. After that, two type of recommendations can be computed;
presenting the recommended items to the user (Top-N predicted items), and match-
ing like-minded people (Top-N predicted neighbours). Once the user gets a list of
recommended items, she can provide feedback, so the system can update her profile
accordingly (profile adaptation).

2.4 User Profile Representation

There are two key elements when describing user preferences: the generation and
maintenance of the profiles, and the exploitation of the profile using a recommenda-
tion algorithm [3]. On the one hand, profile generation involves the representation,
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Fig. 2.1 General model of the recommendation problem.

initial generation, and adaptation techniques. On the other hand, profile exploitation
involves the information filtering method used (i.e. the recommendation method),
the matching between a user profile and the items, and the matching between user
profiles (i.e. creation of neighbourhoods).

There are several approaches to represent user preferences. For instance, using
the history of purchases in an e-Commerce website, web usage mining (analysis of
the links, and time spent in a webpage), the listening habits (songs that a user listens
to), etc.

2.4.1 Initial Generation

2.4.1.1 Empty

An important aspect of a user profile is its initialisation. The simplest way is to
create an empty profile, that will be updated as soon as the user interacts with the
system. However, the system will not be able to provide any recommendation until
the user has been into the system for a while.
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2.4.1.2 Manual

Another approach is to manually create a profile. In this case, a system might ask to
the users to register their interests (via tags, keywords or topics) as well as some de-
mographic information (e.g. age, marital status, gender, etc.), geographic data (city,
country, etc.) and psychographic data (interests, lifestyle, etc.). The main drawback
is the user’s effort, and the fact that maybe some interests could still be unknown by
the user himself.

2.4.1.3 Data Import

To avoid the manually creation of a profile, the system can ask to the user for avail-
able, external, information that already describes her. In this case, the system only
has to import this information from the external sources that contain relevant infor-
mation of the user.2 Besides, there have been some attempts to allow users to share
their own interests in a machine-readable format (e.g. XML), so any system can use
it and extend it. An interesting proposal is the Attention Profile Markup Language
(APML).3

The following example4 shows a fragment of an APML file derived from the
listening habits of a last.fm user.5 The APML document contains a tag cloud
representation created from the tags defined in the user’s top artists.

<Profile name="music">
<ImplicitData>
<Concepts>
<Concept key="rock" value="1.0" />
<Concept key="hard rock" value="0.41770712" />
<Concept key="sleaze rock" value="0.39724553" />
<Concept key="rock n roll" value="0.3311153" />
<Concept key="glam rock" value="0.23445463" />
<Concept key="classic rock" value="0.2062444" />
<Concept key="singer songwriter" value="0.17533751" />
<Concept key="alternative" value="0.1623969" />
...

</Concepts>
</ImplicitData>

</Profile>

Listing 2.1 Example of a user profile in APML.

2 A de-facto standard, in the Semantic Web community, is the Friend of a Friend initiative (FOAF).
FOAF provides conventions and a language “to tell” a machine the sort of things that a user says
about herself. This approach is the one been used in our prototype, presented in Chap. 8
3 http://www.apml.org
4 Generated via http://TasteBroker.org, accessed on January, 10th 2008
5 http://research.sun.com:8080/AttentionProfile/apml/last.fm/ocelma,
accessed on January, 10th 2008

last.fm
http://www.apml.org
http://TasteBroker.org
http://research.sun.com:8080/AttentionProfile/apml/last.fm/ocelma
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Fig. 2.2 Example of a pre-defined training set to model user preferences when a user created an
account in iLike.

2.4.1.4 Training Set

Another method to gather information is using a pre-defined training set. The user
has to provide feedback to concrete items, marking them as relevant or irrelevant to
her interests. The main problem, though, is to select representative examples. For
instance, in the music domain, the system might ask for concrete genres or styles,
and filter a set of artists to be rated by the user. Figure 2.2 shows an example of the
iLike music recommender. Once a user created an account, the system presents a list
of artists that the user has to rate. This process is usually perceived by the users as a
tedious and unnecessary work. Yet, it gives some information to the system to avoid
the user cold-start problem (see Sec. 2.6 for more details).

2.4.1.5 Stereotyping

Finally, the system can gather initial information using stereotyping. This method
resembles to a clustering problem. The main idea is to assign a new user into a
cluster of similar users that are represented by their stereotype, according to some
demographic, geographic, or psychographic information.
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2.4.2 Maintenance

Once the profile has been created, it does not remain static. Therefore, user’s in-
terests might (and probably will) change. A recommender system needs up-to-date
information to automatically update a user profile. User feedback may be explicit or
implicit.

2.4.2.1 Explicit Feedback

One option is to ask to the users for relevance feedback about the provided rec-
ommendations. Explicit feedback usually comes in the form of ratings. This type of
feedback can be positive or negative. Usually, users provide more positive feedback,
although negative examples can be very useful for the system.

Ratings can be in a discrete scale (e.g. from 0 to N), or a binary value (like/dislike).
Yet, it is proved that sometimes users rate inconsistently [4], thus ratings are usually
biased towards some values, and this can also depend on the user perception of the
ratings’ scale. Inconsistency in the ratings arouse a natural variability when the sys-
tem is predicting the ratings. Herlocker et al. presents a study showing that even the
best algorithm could not get beyond a Root mean squared error (RMSE) of 0.73, on
a five-point scale [2]. In [5] the authors present an experiment where users have to
rate the items several times over a period of time. Then, they calculated the RMSE
between different trials. RMSE ranged between 0.557 and 0.8156, depending on the
ellapsed time (an improvement of 10% in the Netflix prize equals to an RMSE of
0.8563, so any algorithm has a very small margin of error). User consistency over
time has strong consequences for recommender systems based on maximising the
predictive accuracy, by trying to minimise the RMSE.

Another way to gather explicit feedback is to allow users to write comments and
opinions about the items. In this case, the system can present the opinions to the
target user, along with the recommendations. This extra piece of information eases
the decision–making process of the target user, although she has to read and interpret
other users’ opinions.

2.4.2.2 Implicit Feedback

A recommender can also gather implicit feedback from the user. A system can in-
fer the user preferences passively by monitoring user’s actions. For instance, by
analysing the history of purchases, the time spent on a webpage, the links followed
by the user, the mouse movements, or analysing a media player usage (tracking the
play, pause, skip and stop buttons).

However, negative feedback is not reliable when using implicit feedback, be-
cause the system can only observe positive (implicit) feedback, by analysing user’s
actions. On the other hand, implicit feedback is not as intrusive as explicit feedback.
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2.4.3 Adaptation

The system has to adapt to the changes of the users’ profiles. The techniques to
adapt to new interests and forget the old ones can be done in three different ways.
First, done manually by the user, although this requires some extra effort to the user.
Secondly, by adding new information into the user profiles, while keeping the old
interests. Finally, by gradually forgetting the old interests and promoting the new
ones [6].

2.5 Recommendation Methods

Once the user profile is created, the next step is to exploit user preferences, to pro-
vide interesting recommendations. User profile exploitation is tightly related with
the method for filtering information. The method adopted for information filtering
has led to the standard classification of recommender systems, that is: demographic
filtering, collaborative filtering, content-based and hybrid approaches. We add an-
other method, named context-based, which recently has grown popularity due to the
feasibility of gathering external information about the items (e.g. gathering infor-
mation from weblogs, analysing the reviews about the items, etc.).

The following sections present the recommendation methods for one user. It is
worth to mention that another type of (group-based) recommenders also exist. These
recommenders focus on providing recommendations to a group of users, thus trying
to maximise the overall satisfaction of the group [7, 8].

2.5.1 Demographic Filtering

Demographic filtering can be used to identify the kind of users that like a certain
item [9]. For example, one might expect to learn the type of person that likes a cer-
tain singer (e.g. finding the stereotypical user that listens to Jonas Brothers6 band).
This technique classifies the user profiles in clusters according to some personal data
(age, marital status, gender, etc.), geographic data (city, country) and psychographic
data (interests, lifestyle, etc.). An early example of a demographic filtering system is
the Grundy system [9]. Grundy recommended books based on personal information
gathered from an interactive dialogue.

6 http://www.jonasbrothers.com/

http://www.jonasbrothers.com/
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2.5.1.1 Limitations

The main problems of this method is that a system recommends the same items
to people with similar demographic profiles, so recommendations are too general
(or, at least, not very specific for a given user profile). Another drawback is the
generation of the profile, that needs some effort from the user. Some approaches
try to get (unstructured) information from the user’s homepage, weblog, etc. In this
case, text classification techniques are used to create the clusters and classify the
users [10]. All in all, this is the simplest recommendation method.

2.5.2 Collaborative Filtering

Collaborative filtering (CF) approach predicts user preferences for items by learning
past user-item relationships. That is, the user gives feedback to the system, so the
system can provide informed guesses based on the feedback (e.g. ratings) that other
users have provided.

The first system that implemented the collaborative filtering method was the
Tapestry project at Xerox PARC [11]. The project coined the collaborative filter-
ing term. Other early systems are: a music recommender named Ringo [12, 13],
and Group Lens, a system for rating USENET articles [14]. A compilation of other
relevant systems from that time period can be found in [15].

CF methods work by building a matrix M, with n items and m users, that contains
the interaction (e.g. ratings, page views, plays, etc.) of the users with the items. Each
row represents a user profile, whereas the columns are items. The value Mua,i j is the
rating of the user ua for the item i j. Figure 2.3 depicts the matrix of user-item ratings.

Fig. 2.3 User-item matrix for the collaborative filtering approach.
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2.5.2.1 Item-Based Neighbourhood

Item-based method exploits the similarity among the items. This method looks into
the set of items that a user has rated, and computes the similarity among the target
item (to decide whether is worth to recommend it to the user or not). Figure 2.4
depicts the co-rated items from different users. In this case it shows the similarity
between items i j and ik. Note that only users u2 and ui are taken into account, but
um−1 is not because it has not rated both items.

Fig. 2.4 User-item matrix with co-rated items for item-based similarity. To compute the similarity
between items i j and ik, only users u2 and ui are taken into account, but um−1 is not because it has
not rated both items (ik rating value is not set).

The first step is to obtain the similarity between two items, i and j. This similarity
can be calculated using cosine similarity, Pearson correlation, adjusted cosine, or
computing the conditional probability, P( j|i). Let the set of users who rated i and
j be denoted by U , and ru,i denotes the rating of user u on item i. Equation (2.1)
shows the definition of the cosine similarity:

sim(i, j) = cos(i, j) =
i · j

‖i‖∗‖ j‖ =
∑u∈U ru,iru, j√

∑u∈U r2
u,i

√
∑u∈U r2

u, j

(2.1)

However, for the item-based similarity, the cosine similarity does not take into ac-
count the differences in rating scale between different users. The adjusted cosine
similarity (Eq. 2.2) makes use of user average rating from each co-rated pair, and
copes with the limitation of cosine similarity. r̄u is the average rating of the u-th
user:

sim(i, j) =
∑u∈U (ru,i − r̄u)(ru, j − r̄u)√

∑u∈U (ru,i − r̄u)2
√

∑u∈U (ru, j − r̄u)2
(2.2)

Correlation-based similarity commonly uses the Pearson correlation. The correla-
tion between two variables reflects the degree to which the variables are related.
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Equation (2.3) defines the correlation similarity. r̄i is the average rating of the i-th
item:

sim(i, j) =
Cov(i, j)

σiσ j
=

∑u∈U (ru,i − r̄i)(ru, j − r̄ j)√
∑u∈U (ru,i − r̄i)2

√
∑u∈U (ru, j − r̄ j)2

(2.3)

Equation (2.4) defines similarity using conditional probability, P( j | i):

sim(i, j) = P( j | i) � f (i∩ j)
f (i)

(2.4)

where f (X) equals to the number of customers who have purchased the item set X .
This is the only metric that is asymmetric. That is, sim(i, j) �= sim( j, i).

Once the similarity among the items has been computed, the next step is to pre-
dict to the target user, u, a value for the active item, i. A common way is to capture
how the user rates the similar items of i. Let Sk(i;u) denote the set of k neighbours
of item i, that the user u has rated. The predicted value is based on the weighted sum
of the user’s ratings, ∀ j ∈ Sk(i;u). Equation (2.5) shows the predicted value for item
i to user u.

r̂u,i =
∑ j∈Sk(i;u) sim(i, j)ru, j

∑ j∈Sk(i;u) sim(i, j)
(2.5)

2.5.2.2 User-Based Neighbourhood

The predicted rating value of item i, for the active user u, r̂u,i, can also be computed
by taking into account those users that are similar (are like-minded) to u. Equation
(2.6) shows the predicted rating score of item i, for user u. r̄u is the average rating
of user u, and ru,i denotes the rating of the user u for the item i. Let Sk(u) denote the
set of k neighbours for user u, r̂u,i is defined as:

r̂u,i = r̄u +
∑v∈S(u)k sim(u,v)(rv,i − r̄v)

∑v∈S(u)k sim(u,v)
(2.6)

Yet, to predict r̂u,i, the algorithm needs to know beforehand the set of users sim-
ilar to u, Sk(u), as well as how similar they are, sim(u,v).

The most common approaches to find the neighbours in either item-based Sk(i;u),
or user-based neighbourhood S(u)k approaches are Pearson correlation (Eq. 2.3),
cosine similarity (Eq. 2.1), and matrix factorisation approaches.
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2.5.2.3 Matrix Factorisation

Matrix factorisation techniques—such as Singular Value Decomposition (SVD),
Non-negative Matrix Factorisation (NMF), or Principal Component Analysis
(PCA)—are useful when the M user-item matrix is sparse, which is very common in
any recommender system. Any factorisation technique aims at reducing the dimen-
sionality of the original matrix, generating two matrices U and V that approximate
the original matrix. For instance, Singular Value Decomposition (SVD) method
computes matrices (n× k)U and (m× k)V , for a given number of dimensions k,
such that:

M = UΣV T , (2.7)

where Σ is a diagonal matrix containing the singular values of M.
Matrix decomposition is not unique. There are different methods to approximate

Eq. (2.7). For instance, Least squares method requires that the estimated matrices
has to deviate as little as possible from M. Or stochastic gradient descent, that iter-
atively approximates matrices U and V , and updates them in order to minimise the
squared error between the predictions and the actual ratings [16].

Once the matrix has been reduced to k dimensions, the predicted rating value of
item i for a user u, r̂u,i, can be approximated as the dot product between the user’s
Uu ∈ R

k and the item’s feature vector, Vi ∈ R
k.

r̂u,i = Uu ·V T
i =

k

∑
f =0

Uu, fVf ,i (2.8)

Matrix factorisation is used in collaborative filtering to deal with the sparsity
problem, by reducing the matrix M to k dimensions (or latent factors). Furthermore,
matrix factorisation can also be applied to derive user or item similarity in the re-
duced k-space, using cosine similarity in the U (users’ latent factors) or V (items)
matrices.

2.5.2.4 Limitations

Collaborative filtering is one of the most used recommendation methods, yet it
presents some drawbacks:

• Data sparsity and high dimensionality are two inherent properties of the datasets.
With a relative large number of users and items, the main problem is the low
coverage of the users’ ratings among the items. It is common to have a sparse
user-item matrix of 1% (or less) coverage. Thus, sometimes it can be difficult to
find reliable neighbours (specially for user-based CF).

• Another problem, related with the previous one, is that users with atypical tastes
(that vary from the norm) will not have many users as neighbours. Thus, this will
lead to poor recommendations. This problem is also known as gray sheep [17].
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Fig. 2.5 Distance among items using content-based similarity.

• Cold-start problem This problem appears for both elements of a recommender:
users and items. Due to CF is based on users’ ratings, new users with only a few
ratings become more difficult to categorise. The same problem occurs with new
items, because they do not have any rating when added to the collection. These
cannot be recommended until users start rating it. This problem is known as the
early-rater problem [18]. Moreover, the first user that rates new items gets only
little benefit (this new item does not match with any other item yet).

• CF is based only on the feedback provided by the users (in terms of ratings,
purchases, downloads, etc.), and does not take into account the description of the
items. It is a subjective method that aggregates the social behaviour of the users,
thus commonly leading towards recommending the most popular items.

• Related with the previous issue, the popularity bias is another problem that com-
monly happens in CF. It is analogous to the rich gets richer paradigm. Popular
items of the dataset are similar to (or related with) lots of items. Thus, it is more
probable that the system recommends these popular items. This clearly happens
for item-based similarity using conditional probability (defined in Eq. 2.4). The
main drawback is that the recommendations are sometimes biased towards pop-
ular items, thus not exploring the Long Tail of unknown items. Sometimes, these
less-popular items could be more interesting and novel for the users.

• Given the interactive behaviour of CF systems, previous social interaction in-
fluences the current user behaviour, which, in turn, feedbacks into the system,
creating a loop. This issue is also known as feedback loop [19]. This effect has
strong consequences when the system starts gathering initial feedback from the
users. Indeed, the early raters have effects on the recommendations that the in-
coming users will receive when entering to the system.
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2.5.3 Content-Based Filtering

In the content-based (CB) filtering approach, the recommender collects information
describing the items and then, based on the user’s preferences, it predicts which
items the user could like. This approach does not rely on other user ratings but on
the description of the items. The process of characterising the item data set can be
automatic (e.g. extracting features by analysing the content), based on manual anno-
tations by the domain experts. The key component of this approach is the similarity
function among the items (see Fig. 2.5).

Initial CB approaches have its roots in the information retrieval (IR) field. The
early systems focused on the text domain, and applied techniques from IR to extract
meaningful information from the text. Yet, recently have appeared some solutions
that cope with more complex domains, such as music. This has been possible, partly,
because the multimedia community emphasised on and improved the feature extrac-
tion and machine learning algorithms.

The similarity function computes the distance between two items. Content-based
similarity focus on an objective distance among the items, without introducing any
subjective factor into the metric (as CF does). Most of the distance metrics deal
with numeric attributes, or single feature vectors. Some common distances, given
two feature vectors x and y, are: Euclidean (Eq. 2.9), Manhattan (Eq. 2.10), Cheby-
chev (Eq. 2.11), cosine distance for vectors (see previously defined Eq. 2.1), and
Mahalanobis distance (Eq. 2.12).

d(x,y) =

√
n

∑
i=1

(xi − yi)2 (2.9)

d(x,y) =
n

∑
i=1

|xi − yi| (2.10)

d(x,y) = maxi=1..n|xi − yi| (2.11)

d(x,y) =
√

(x− y)T S−1(x− y) (2.12)

Euclidean, Manhattan and Chebychev distance are assuming that the attributes are
orthogonal. The Mahalanobis distance is more robust to the dependencies among
attributes, as it uses the covariance matrix S.

If the attributes are nominal (not numeric), a delta function can be used. A sim-
ple definition of a delta function could be: δ (a,b) = 0 ⇔ a = b, and δ (a,b) = 1
otherwise. Then, a distance metric among nominal attributes can be defined as:

d(x,y) = ω
n

∑
i=1

δ (xi,yi), (2.13)
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where ω is a reduction factor, e.g. 1
n ).

Finally, if the distance to be computed has to cope with both numeric and nominal
attributes, then the final distance has to combine two equations (2.13 for nominal
attributes and one of 2.9. . . 2.12 for numeric attributes). In some cases, items are not
modelled with a single feature vector, but using a bag-of-vectors, a time series, or a
probability distribution over the feature space.

2.5.3.1 Limitations

CB approach presents some drawbacks:

• The cold-start problem occurs when a new user enters to the system. The system
has yet to adapt to the user preferences.

• The gray-sheep problem (users with atypical tastes) can occur, too, depending on
the size of the collection, or if the collection is biased towards a concrete genre.

• Another potential caveat could be the novelty problem. Assuming that the simi-
larity function works accurately, then one might assume that a user will always
receive items too similar to the ones in her profile. To cope with this shortcom-
ing, the recommender should use other factors to promote the eclecticness of the
recommended items.

• Depending on the domain complexity, another drawback is the limitation of the
features that can be (automatically) extracted from the objects. For instance in
the multimedia arena, nowadays, is still difficult to extract high-level descriptors
with a clear meaning for the user. Music analysis is not ready yet to accurately
predict the mood of a song but, on the other hand, it does the job well when
dealing with descriptors such as: harmony, rhythm, etc. Thus, even though an
item description might not be meaningful for a user, still its description is useful
to compute item similarity.

• Another shortcoming is that the recommender is focused on finding similarity
among items, using only features describing the items. This means that subjec-
tivity (or personal opinions) is not taken into account when the recommendations
are computed.

CB methods solve some of the shortcomings of the collaborative filtering. The
early-rater problem disappears. When adding a new item into the collection—and
computing the similarity among the rest of the items—it can be recommended with-
out being rated by any user. The popularity bias is solved too. Because there is no
human intervention in the process, all the items are considered (in principle) to be
of equal importance.
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2.5.4 Context-Based Filtering

2.5.4.1 Context vs. Content

Context is any information that can be used to characterise the situation of an entity
[20]. Context-based recommendation uses, then, contextual information to describe
and characterise the items. To compare content and context-based filtering, one ex-
ample is the different methods used for email spam detection. The common one is
based on the text analysis of the mail (i.e. content-based), whereas context filtering
does not deal with the content of the mail. It rather uses the context of the Simple
Mail Transfer Protocol (SMTP) connection to decide whether an email should be
marked as spam or not.

Now, we briefly outline two techniques, named Web mining and Social tagging,
that can be used to derive similarity among the items (or users). Web mining is based
on analysing the available content on the Web, as well as the usage and interaction
with the content. Social tagging mines the information gathered from a community
of users that tag items.

2.5.4.2 Web Mining

Web mining techniques aim at discovering interesting and useful information from
the analysis of the content and its usage. Kosala and Blockeel identify three different
web mining categories: content, structure and usage mining [21].

• Web content mining includes text, hypertext, markup, and multimedia mining.
Some examples are: opinion extraction (sentiment analysis), weblog analysis,
mining customer reviews, extract information from forums or chats, topic recog-
nition and demographic identification (gender, age, etc.), and trend identification.
Item similarity can be derived out of the analysis of this information.

• Web structure mining focuses on link analysis (in- and out- links). That is the net-
work topology analysis (e.g. hubs, authorities), and the algorithms that exploits
the topology (e.g. Hits and PageRank).

• Web usage mining uses the information available on session logs. This informa-
tion can be used to derive user habits and preferences, link prediction, or item
similarity based on co-occurrences in the session log. Thus, web usage mining
can determine sequential patterns of usage (e.g. “people who visit this page also
visited this one”). For instance, Mobasher et al. use association rules to deter-
mine the sequential patterns of web pages, and recommend web pages to users
[22].

Combining these three approaches, a recommender system derives the similarity
among the items (e.g. items that co-occur in the same pages, items that are visited in
the same session log, etc.) and also models the users, based on their interaction with
the content. If the information about the content is in textual form, classic measures
from Information Retrieval can be applied to characterise the items. For instance,
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vector space-based models can be used to model both the items and the user profile.
Then, similarity between an item description (using the bag-of-words model) and a
user profile can be computed using, for instance, cosine based similarity.

Cosine similarity between an item i j, and a user profile ui is defined as:

sim(ui, i j) =
∑t wt,uiwt,i j√

∑t w2
t,ui

√
∑t w2

t,i j

(2.14)

A common term weighting function, wi, j, is the T F-IDF . T F stands for Term Fre-
quency, whereas IDF is the Inverse Document Frequency [23]. The term frequency
in a given document measures the importance of the term i within that particular
document. Equation (2.15) defines T F :

T F =
ni

∑k nk
(2.15)

with ni being the number of occurrences of the considered term, and the denomina-
tor is the number of occurrences of all the terms in the document.

The Inverse Document Frequency, IDF , measures the general importance of the
term, in the whole collection of items:

IDF = log
|D|

|(di ⊃ ti)|
(2.16)

where |D| is the total number of items, and the denominator counts the number of
items where ti appears. Finally, the weighting function wt, j, of a term t in the item
description d j is computed as:

wt, j = T F · IDF (2.17)

Another useful measure to compute item similarity is the Pointwise mutual infor-
mation (PMI). PMI estimates the semantic similarity between a pair of terms by
how frequently they co-occur. The PMI of two terms i and j quantifies the discrep-
ancy between their joint distribution probability, versus their individual distribution
probability (assuming independence):

PMI(i, j) = log
p(i, j)

p(i)p( j)
(2.18)

PMI measure is symmetric, that is PMI(x,y) = PMI(y,x).

2.5.4.3 Social tagging

Social tagging (also known as Folksonomy, or Collaborative tagging) aims at an-
notating web content using tags. Tags are freely chosen keywords, not constrained
to a predefined vocabulary. A bottom-up classification emerge when grouping all
the annotations (tags) from the community of users; the wisdom of the crowds.
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Recommender systems can derive social tagging data to derive item (or user)
similarity.

Fig. 2.6 The user-item-tag cube. A 3-order tensor containing 〈user, item, tag〉 triples.

When users tag items, we get tuples of 〈user, item, tag〉. These triples conform a
3-order matrix (also called tensor; a multidimensional matrix). Figure 2.6 depicts a
3-order tensor, containing the tags that users apply to items.

There are two main approaches to use social tagging information to compute
item (and user) similarity. These are:

1. Unfold the 3-order tensor in three bidimensional matrices (user-tag, item-tag and
user-item matrices), and

2. Directly use the 3-order tensor.

Unfolding the 3-order tensor consists on decomposing the multidimensional data
into the following bidimensional matrices:

• User-Tag (U matrix). Ui, j contains the number of times user i applied the tag
j. Using matrix U , a recommender system can derive a user profile (e.g. a
tag cloud for each user, denoting her interests, or the items she tags). U can
also be used to compute user similarity, by comparing two user tag clouds of
interests (using, for instance, cosine similarity between the two user vectors).

• Item-Tag (I matrix). Ii, j contains the number of times an item i has been tagged
with tag j. The matrix I contains the contextual description of the items, based
on the tags that have been applied to. Matrix I can be used to compute item
or user similarity. As an example, Fig. 2.7 shows a way to derive user similar-
ity from I, using their top-N artists in last.fm. Figure 2.7 depicts two user tag
clouds (top and middle images) and their intersection (bottom image), using
matrix I. In this example, users’ tag clouds are derived from the last.fm listen-
ing habits, using their top-N most listened artists—in this case, the items in
I. The third image (bottom) shows the tags that co-occur the most in the two
profiles. Similarity between the two users is done by constructing a new tag
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Fig. 2.7 Two examples of users’ tag clouds derived from their last.fm listening habits. Top and
middle images show two last.fm user tag clouds. The third image (bottom) shows the tags that co-
occur the most in the two profiles. According to Anthony Liekens’ algorithm, the similarity value
between ocelma and lamere last.fm users is 70.89%. Image courtesy of Anthony Liekens, taken
from http://anthony.liekens.net/pub/scripts/last.fm/compare.php.

vector where each tag’s weight is given by the minimum of the tag’s weights in
the user’s vectors. Using this approach, the similarity value between ocelma
and lamere last.fm users is 70.89%. Another similarity metric could be the
cosine distance, using TFxIDF to weight each tag.

• User-Item (R binary matrix). Ri, j denotes whether the user i has tagged the
item j. In this case, classic collaborative filtering techniques can be applied
on top of R.

To recap, item similarity using matrix I, or user similarity derived from U or I,
can be computed using cosine-based distance (see Eq. 2.1), or also by applying
dimensionality reduction techniques—to deal with the sparsity problem—such
as Singular Value Decomposition (SVD), or Non-negative matrix factorisation
(NMF). Once the item (or user) similarity is computed, either the R user-item
matrix, or the user (tag cloud) profile obtained from U or I are used to pre-
dict the recommendations for a user. For instance, [24] presents a framework
based on the three matrices, U , I and R, to recommend web pages (based on
http://del.icio.us data). Also, [25] uses matrix I to improve the accu-
racy results of the recommendations, after combining I with the results obtained
by classic collaborative filtering. Levy applies Latent Semantic Analysis (that is;
SVD and cosine similarity in the reduced space) to compute and visualise artist
similarity derived from tags gathered from last.fm [26].

http://anthony.liekens.net/pub/scripts/last.fm/compare.php
http://del.icio.us
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Finally, it is worth mentioning that inverting either U or I matrices, one can
also compute tag similarity. Tag similarity have many usages in recommendation
and search engines. For instance, tag synonym detection can be used for query
expansion, or tag suggestion when annotating the content.
Using the 3-order tensor (instead of decomposing the tensor in bidimensional
matrices) is the second approach to mine the data, and provide recommendations.
The available techniques are (high-order) extensions of SVD and NMF. HOSVD
is a higher order generalisation of matrix SVD for tensors, and Non-negative
Tensor Factorisation (NTF) is a generalisation of NMF.
In [27], the authors apply HOSVD to a music dataset (user-artists-tags) taken
from last.fm. Their results show significant improvements in terms of the effec-
tiveness measured through precision and recall. Yanfei et al. present a similar
method using bookmarking data from del.icio.us [28]. They apply SVD on the
R matrix, compute cosine distance among the users (to find the neighbours), and
then apply classic CF user-based recommendation (see Sec. 2.5.2). The authors
could improve the results over a CF approach based on SVD and cosine similarity
(e.g. Latent Semantic Analysis).

2.5.4.4 Limitations of Social Tagging

One of the main limitations of social tagging is the coverage. On the one hand, it
is quite common that only the most popular items are described by several users,
creating a compact description of the item. On the other hand, long tail items usu-
ally do not have enough tags to characterise them. This makes the recommendation
process very difficult, specially to promote these unknown items.

Another issue is that without being constrained to a controlled vocabulary, tags
present the following problems: polysemy (I love this song, versus this song is about
love), synonymy (hip-hop, hiphop, and rap), and usefulness of the personal tags to
derive similarity among users or items (e.g. seen live, or to check). These issues
make more difficult to mine and extract useful relationships among the items and
the users.

Tag sparsity is another issue. In some domains, some tags are widely used (e.g.
rock or pop, in the music domain), whereas other tags are rarely applied (e.g. gretsch
guitar). A biased distribution of the terms has also consequences when exploiting
social tagging data.

Last but not least, any recommender system that relies on user explicit input
can be attacked, or vandalised. Users can deliberately mistag some items in order
to provoke an undesired effect in the recommendations (see Paris Hilton example
presented in Sec. 3.3.3).

2.5.5 Hybrid Methods

The main purpose of a hybrid method is to achieve a better recommendations by
combining some of the previous stand-alone approaches. Most commonly, collab-
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orative filtering is combined with other techniques. There are several methods to
integrate different approaches into a hybrid recommender. Some of the methods
that Burke defines are [29]:

• Weighted. A hybrid method that combines the output of separate approaches us-
ing, for instance, a linear combination of the scores of each recommendation
technique.

• Switching. The system uses some criterion to switch between recommendation
techniques. One possible solution is that the system uses a technique, and if the
results are not confident enough, it switches to another technique to improve the
recommendation process.

• Mixed. In this approach, the recommender does not combine but expand the de-
scription of the data sets by taking into account the users’ ratings and the de-
scription of the items. The new prediction function has to cope with both types
of descriptions.

• Cascade. The cascade involves a step by step process. In this case, a recommen-
dation technique is applied first, producing a coarse ranking of items. Then, a
second technique refines or re-rank the results obtained in the previous step.

A hybrid method can alleviate some of the drawbacks that suffer a single tech-
nique.

2.6 Factors Affecting the Recommendation Problem

2.6.1 Novelty and Serendipity

The novelty factor is a very important aspect of the recommendation problem. It has
been largely acknowledged that providing obvious recommendations can decrease
user satisfaction [2, 30]. Obvious recommendations have two practical disadvan-
tages: users who are interested in those items could probably already know them,
and secondly, managers in stores (i.e. experts of the items’ domain) do not need any
recommender to tell them which products are popular overall.

Although, obvious recommendations do have some value for new users. Users
like to receive some recommendations they already are familiar with [31]. This is
related with the Find credible recommender use case (see Sec. 2.2). Yet, there is
a trade-off between the desire for novel versus familiar recommendations. A high
novelty rate might mean, for a user, that the quality of the recommendation is poor,
because the user is not be able to identify most of the items in the list of recom-
mendations. However, by providing explanations (transparency) of the recommen-
dations, the user can feel that is a credible recommender. Thus, the user can be more
open to receive novel, justified, recommendations.

Another important feature, closely related with novelty is the serendipity effect.
That is the good luck in making unexpected and fortunate discoveries. A recom-
mender should help the user to find a surprisingly interesting item that she might
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not be able to discover otherwise. Recommendations that are serendipitous are also
novel and relevant for a user.

2.6.2 Explainability

Explainability (or transparency) of the recommendations is another important ele-
ment. Giving explanations about the recommended items could increase user trusti-
ness and loyalty of the system, and also her satisfaction.

A recommender should be able to explain to the user why the system recom-
mends the list of top-K items [32]. Herlocker et al. present an experimental evi-
dence that shows that providing explanations can improve the acceptance of those
recommender systems based on collaborative filtering [33]. Actually, giving expla-
nations about why the items were recommended is as important as the actual list of
recommended items. Tintarev and Masthoff summarise the possible aims for pro-
viding recommendations. These are: transparency, scrutability, trust, effectiveness,
persuasiveness, efficiency, and satisfaction. They also stress the importance of per-
sonalising the explanations to the user [34].

2.6.3 Cold Start Problem

As already mentioned, the cold start problem of a recommender (also known as the
learning rate curve, or the bottleneck problem) happens when a new user (or a new
item) enters into the system [35]. On the one hand, cold start is a problem for users
that just signed-up, because the system does not have enough information about
them. If the user profile initialisation is empty (see Sec. 2.4.1), she has to dedicate
some time using the system before getting some useful recommendations. On the
other hand, when a new item is added to the collection, the system should have
enough information to be able to recommend this item to users.

2.6.4 Data Sparsity and High Dimensionality

Data sparsity is an inherent property of the dataset. With a relative large number of
users and items, the main problem is the low coverage of the users’ interaction with
the items. A related factor is the high dimensionality of the dataset, that consists of
many users and items.

There are some methods, based on dimensionality reduction, that alleviate data
sparsity and high dimensionality of the dataset. Singular Value Decomposition
(SVD), and Non-negative Matrix Factorisation (NMF) [16, 36, 37] are the two
most used methods in recommendation. Takács et al. present in [38] several matrix
factorisation algorithms, and evaluate the results against the Netflix Prize dataset.
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2.6.5 Coverage

The coverage of a recommender measures the percentage of the items in the col-
lection over which the system, or make recommendations. A low coverage of the
domain might be less valuable to users, as it limits the space of possible items to
recommend. Moreover, this feature is important for the Find all good items use case
(see Sec. 2.2). Also, a low coverage of the collection can be very frustrating for the
users, and clearly affects the novelty and serendipity factors.

2.6.6 Trust

Trust-aware recommender systems determine which users are reliable, and which
are not. Trust computational models are needed, for instance, in user-based CF to
rely on the user’s neighbours.

In [39], the authors present two computational models of trust and show how
they can be readily incorporated into CF. Furthermore, combining trust and classic
CF can improve the predictive accuracy of the recommendations. Massa et al. em-
phasise the “web of trust” provided by every user. They use the “web of trust” to
propagate trust among users, and also use it to alleviate the data sparsity problem.
An empirical evaluation shows that using trust information improves the predictive
accuracy, as well as the coverage of the recommendations [40, 41].

2.6.7 Attacks

Recommender systems can be attacked in various ways, degrading the quality of the
recommendations. For instance, sybil attacks try to subvert the system by creating
a large number of sybil identities in order to gain a lot of influence in the system.
These attacks can promote or demote some particular items.

A related problem is the user profile injection, where a malicious user fakes some
of her data creating an incongruent profile. Then, using a particular rating pattern
that highly rates a set of target items, and then rating other items so they become
similar. This is known as shilling attacks [42].

Another problem is deliberate mistagging. That is when a group of users tag an
item using a (malicious) tag. This behavior can affect the performance of social-
based recommenders.

2.6.8 Temporal Effects

Temporal effects are found in both items and users. On the one hand, the timestamp
of an item (e.g. when the item was added to the collection) is an important factor for
the recommendation algorithm. The prediction function can take into account the
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age of an item. A common approach is to treat the older items as less relevant than
the new ones, promoting new items that are continously added in the collection.

On the other hand, the system has to decide which items from a user profile are
taken into account when computing the recommendations. Should the system use
all the information of a profile, or only the latest activity? Depending on the criteria,
it might change the output recommendations.

In this context, [43] presents the recommendation problem as a sequential opti-
misation problem. It is based on Markov decision processes (MDP). MDP uses the
long-term effects of the recommendations, but it is also configurable to use only the
last k-actions of a user. The main problem, though is the computationally complexity
of the algorithm, which makes it unusable for large datasets.

Temporal effects are also found in the manner how users rate items. Users’ rat-
ings can also vary over time. When a user has to rate a given set of items over a
period of time, the ratings provided by her are not always consistent [5].

2.6.9 Understanding the Users

Modelling user preferences, including psychographic information, is another chal-
lenging problem. Psychographic variables include attributes related with personal-
ity; such as attitudes, interests, or lifestyles. It is not straightforward to encode all
this information and use it in the recommender system. This problem is similar in
Information Retrieval (IR) systems, where users have to express their needs via a
keyword-based query. There is a loss of information when a user is formulating a
query using a language that the machine can understand and process. When dealing
with user profiles and sensitive personal information, privacy is an important aspect.

2.7 Summary

This chapter has presented and formalised the recommendation problem. The main
components of a recommender are users and items. Based on the user preferences
and the exploitation of a user profile, a recommender can solve the problem of rec-
ommending a list of items to a user, or a list of like-minded users. There are several
factors that affect the recommendation problem, and in this book we emphasise the
novelty one. We believe that this is an important topic that deserves to be analysed
in depth.

To recap, Table 2.1 presents the main elements involved in the recommendation
problem, that is user profiling (generation, maintenance, and adaptation), and the
recommendation methods (matching items—or users—to a user, and the filtering
methods to match them).
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User profile

Initial generation

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

empty
manual
data import
training set
stereotyping

Maintenance

{
implicit relevance f eedback
explicit relevance f eedback

Adaptation

⎧
⎨
⎩

manual
add new in f ormation
gradually f orget old interests

Recommendation methods

Matching

{
user−item pro f ile
user−user pro f ile(neighbours)

Filtering method

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

demographic f iltering
collaborative f iltering
content based f iltering
context based f iltering
hybrid methods

Table 2.1 Summary of the elements involved in the recommendation problem.
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Chapter 3
Music Recommendation

This chapter focuses on the recommendation problem in the music domain. Sec-
tion 3.1 presents some common use cases in music recommendation. After that,
Sec. 3.2, discusses user profiling and modelling, and how to link the elements of a
user profile with the music concepts. Then, Sec. 3.3 presents the main components
to describe the musical items, that are artists and songs. The existing music recom-
mendation methods (collaborative filtering, content, context-based, and hybrid) and
the pros and cons of each approach are presented in Sect. 3.4. Finally, Sec. 3.5 sum-
marises the work presented, and provides some links with the remaining chapters of
the book.

3.1 Use Cases

The main task of a music recommendation system is to propose interesting music,
consisting of a mix of known and unknown artists—as well as the available tracks—
given a user profile. Most of the work done in music recommendation focuses on
presenting to a user a list of artists, or creating an ordered sequence of songs (a
personalised playlist). Yet, there are other interesting scenarios. For instance, pro-
viding recommendations for a group of users, in a particular context [1, 2]. That is,
an automatic DJ that selects music to please as much people in the party as possible.
Or, proposing background music for a restaurant, given some constraints such as the
type of music (ambient, relaxed, or only instrumental, etc.), the lyrics’ language (e.g.
only Italian songs in a pizzeria), as well as other particularities that the restaurant
might impose. Another scenario could be a very specialised advanced search system
for a music producer. The producer might need to search for a specific bassline or
bass sound, that should fit into the whole song. A music recommender should be
able to assist both the boss of the restaurant and the producer.

Ò. Celma, Music Recommendation and Discovery, 43
DOI 10.1007/978-3-642-13287-2 3, c© Springer-Verlag Berlin Heidelberg 2010
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3.1.1 Artist Recommendation

According to the general model presented in Chap. 2 (see Fig. 2.1), artist recom-
mendation follows the user-item matching, were items are recommended to a user
according to her profile. However, artist recommendation should involve a broader
experience with the user, more than presenting a list of relevant artists, plus some
accompanying metadata. In this sense, there is a lot of music related information on
Internet: music performed by “unknown” —long tail—artists that can suit perfectly
for new recommendations, new music releases, related news, concerts listings, al-
bum reviews, mp3-blogs, podcasts, t-shirts, and a long etcetera.

Indeed, music websites syndicate (part of) their web content—noticing the user
about new releases, artists’ related news, upcoming gigs, etc.—in the form of RSS
(Really Simple Syndication) feeds. For instance, the iTunes Music Store1 provides
an RSS feed generator2 updated once a week, that publishes all the new releases
of the week. A music recommendation system could take advantage of all these
publishing services.

3.1.2 Playlist Generation

Cunningham et al. make the distinction between a playlist and a mix. In a mix, the
order of the songs is important, whilst a playlist focuses more on a desired emotional
state, or acts as a background to an activity (while working, while reading, while
jogging, etc.) [3].

Playlist generation is an important application in music recommendation, as it
allows users to listen to the music as well as provide immediate feedback, so the sys-
tem can react accordingly. There are several ways to automatically create a playlist;
shuffle (i.e random), based on a given seed song—or artist—or based on a user-
profile (including her like-minded neighbours). With regard to the available music,
there are two main modes of playlist generation: (i) using tracks drawn from the
users own collection (ii) using tracks drawn from the celestial jukebox.3

3.1.2.1 Shuffle, Random Playlists

Interestingly enough, some experiments have been carried out to investigate serendip-
ity in random playlists. Nowadays, shuffle is still the usual way to generate playlists
on personal computers and portable music players. A study of serendipity through

1 http://www.apple.com/itunes
2 http://ax.itunes.apple.com/rss, accessed April, 17th 2009
3 For example music that comes from the Playdar music content resolver service http://www.
playdar.org/

http://www.apple.com/itunes
http://ax.itunes.apple.com/rss
http://www.
playdar.org/
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shuffle playlists is presented in [4]. The authors argue that shuffle can invest
new meanings to a particular song. It provides opportunities for unexpected re-
discoveries, and also in some cases re-connects songs with old memories. Although,
serendipity can be achieved by creating more personalised and elaborated playlists,
rather than purely based on random choices.

3.1.2.2 Personalised Playlists

Radio-a-la-carte (personalised playlists) is another way to propose music to a user.
In this case, music is selected in terms of the user preferences, within a particular
context. The user can also provide feedback (e.g. Skip this song, More like this, etc.)
according to her taste and the actual listening context.

3.1.3 Neighbour Recommendation

The goal of neighbour recommendation is to find like-minded people. Neighbour
similarity is based on the user–user profile matching presented in Fig. 2.1. Once a
user is set in a neighbourhood, she can discover music through her neighbours, or
simply be part of that community (or cluster) and interact with them.

One of the main advantages of creating neighbourhoods is that a user can ex-
plore and discover music via her neighbours. Also, it promotes the creation of tight
communities, connecting people that share similar interests.

3.2 User Profile Representation

Music is an important vehicle for telling other people something relevant about our
personality, history, etc. Musical taste and music preferences are affected by several
factors, including demographic and personality traits. It seems reasonable to think
that music preferences and personal aspects—such as: age, gender, origin, occupa-
tion, musical education, etc.—can improve music recommendation [5].

User modelling has been studied for many years. Yet, extending a user profile
with music related information has not been largely investigated. Indeed, it is an
interesting way to communicate with other people, and to express their music pref-
erences.4

4 Nowadays, it is very common to embed to a webpage a small widget that displays the most recent
tracks a user has played.
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3.2.1 Type of Listeners

The Phoenix 2 UK Project from 2006 summarises the four degrees of interest in
music, or type of listeners [6]. This study is based on the analysis of different type
of listeners, with an age group ranging from 16 to 45. The classification, depicted in
Fig. 3.1, includes:

• Savants. Everything in life seems to be tied up with music. Their musical knowl-
edge is very extensive. As expected, they only represent 7% of the 16–45 age
group.

• Enthusiasts. Representing 21% of the 16–45 age group, for the enthusiasts music
is a key part of life but is also balanced by other interests.

• Casuals. Music plays a welcome role, but other things are far more important.
They represent 32% of the 16–45 age group.

• Indifferents would not lose much sleep if music ceased to exist. Representing
40% of the 16–45 age group, they are a predominant type of listeners of the
whole population.

Fig. 3.1 The four type of music listeners: savants, enthusiasts, casuals, and indifferents. Each type
of listener needs different type of recommendations.

Each type of listener needs different type of recommendations. Savants do not
really need popular recommendations, but risky and clever ones. They are the most
difficult listeners to provide recommendations, because they are very exigent. En-
thusiasts appreciate a balance between interesting, unknown, recommendations and
familiar ones. Casuals and indifferents (72% of the population) do not need any
complicated recommendations. Probably, popular, mainstream music that they can
easily identify would fit their musical needs. Thus, a recommender system should
be able to detect the type of user and act accordingly.
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3.2.2 Related Work

3.2.2.1 Context in Music Perception

Lesaffre et al. reveal in [7] that music perception is affected by contextual informa-
tion, and this context depends on each user. The study explores the dependencies
of demographic and musical background for different users in an annotation ex-
periment. Subject dependencies are found for age, music expertise, musicianship,
taste and familiarity with the music. The authors propose a semantic music retrieval
system based on fuzzy logic. The system incorporates the annotations of the ex-
periment, and music queries are done using semantic descriptors. The results are
returned to the user, based on her profile and preferences. Again, one of the main
conclusions of their research is that music search and retrieval systems should dis-
tinguish between the different categories of users.

3.2.2.2 Subjective Perception of Music Similarity

In [8], the authors present a music recommendation engine based on user’s perceived
similarity. User similarity is defined as a combination of timbre, genre, tempo, year
and mood. The system allows users to define the weights for personalised playlist
generation.

Sotiropoulos et al. state that different users assess music similarity via different
feature sets, which are in fact subsets of some set of objective features. They define a
subset of features, for a specific user, using relevance feedback and a neural network
for incremental learning [9].

Going one step beyond, the work presented in [10] allows users to defining their
own semantic concepts (e.g. happy, blue, morning-music, etc.), providing some
instances—sound excerpts—that characterise each concept. The system adapts,
then, can adapt to these user’s concepts and it predicts (using audio content-based
similarity) the labels for the newly added songs. This process is also known as au-
totagging. The system can also generate a playlist based on one or more user’s
concepts.

3.2.2.3 The User in the Community

A single user profile can be extended taking into account her interaction with the
community of peers. Tracking social network activity allows a system to infer user
preferences. Social networks have a big potential not only for the social interactions
among the users, but also to exploit recommendations based on the behaviour of the
community, or even to provide group-based recommendations.

In [11], the authors present a recommendation framework based on social filter-
ing. The user profile consists on static and dynamic social aspects. The dynamic
aspect includes the interaction with other users, and the relationships among them
(e.g. duration, mutual watchings of web pages, common communications, etc.).
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Analysing this information, the authors present novel ways of providing social fil-
tering recommendations.

Another example is the Bluetuna system. Bluetuna is a “socialiser engine” based
on sharing user preferences for music [12]. Bluetuna allows users to share musi-
cal tastes with other people who are (physically) near by. The application runs on
bluetooth enabled mobile phones. The idea is to select those users that have similar
musical tastes, facilitating the meeting process.

Firan et al. create tag-based user profiles using social tagging information derived
from the collective annotation [13]. Once a user profile is described using a tag
cloud, the authors present several approaches to compute music recommendations.
The results show an accuracy improvement using tag-based profiles over traditional
collaborative filtering at song level.

3.2.2.4 Privacy Issues

When dealing with user profiles and sensitive personal information, privacy is an
important aspect. In [14], the authors present some results about the acquisition,
storage and application of sensitive personal information. There is a trade-off be-
tween the benefits of receiving personalised music recommendations and the lost of
privacy. The factors that influence disclosing sensitive personal information are:

• the purpose of the information disclosure,
• the people that get access to the information,
• the degree of confidentiality of the sensitive information, and
• the benefits they expect to gain from disclosing it.

3.2.3 User Profile Representation Proposals

As noted in the previous section, music recommendation is highly dependent on the
type of user. Also, music is an important vehicle for conveying to others something
relevant about our personality. User modelling, then, is a crucial step in understand-
ing user preferences.

However, in the music recommendation field, there have been few attempts to
explicitly extend user profiles by adding music related information. The most rel-
evant (music-related) user profile representation proposals are: the User modelling
for Information Retrieval Language, the MPEG-7 standard that describes user pref-
erences, and the Friend of a Friend (FOAF) initiative (hosted by the Semantic Web
community). The complexity, in terms of semantics, increases with each proposal.
The following sections present these three approaches.
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3.2.3.1 User Modelling for Information Retrieval (UMIRL)

The UMIRL language, proposed by [15], allows one to describe perceptual and
qualitative features of the music. It is specially designed for music information re-
trieval systems. The profile can contain both demographic information and direct
information about the music objects: favourite bands, styles, songs, etc. Moreover,
a user can add her definition of a perceptual feature and his meaning, using music
descriptions. For instance: “a romantic piece has a slow tempo, lyrics are related
with love, has a soft intensity, and the context to use this feature is while having a
special dinner with user’s girlfriend”.

The representation they proposed uses the XML syntax, without any associated
schema nor document type definition to validate the profiles. Listing 3.1 shows a
possible user profile:

<user>
<generalbackground>
<name>Joan Blanc</name>
<education>MsC</education>
<citizen>Catalan</citizen>

</generalbackground>
<musicbackground>
<education>none</education>
<instrument>guitar</instrument>

</musicbackground>
<musicpreferences>
<genre>rock</genre>
<album>
<title>To bring you my love</title>
<artist>P.J. Harvey</artist>

</album>
</musicpreferences>

</user>

Listing 3.1 Example of a user profile in UMIRL.

This proposal is one of the first attempts in the Music Information Retrieval com-
munity. The main goal was to propose a representation format, as a way to inter-
change profiles among systems, though, it lacks formal semantics to describe the
meaning of their descriptors and attributes. To cope with this limitation, the follow-
ing section presents an approach using the MPEG-7 standard.

3.2.3.2 MPEG-7 User Preferences

MPEG-7, formally named Multimedia Content Description Interface, is an ISO/IEC
standard developed by the Moving Picture Experts Group (MPEG). The main goal
of the MPEG-7 standard is to provide structural and semantic description mecha-
nisms for multimedia content. The standard provides a set of description schemes
(DS) to describe multimedia assets. In this section, we only focus on the descriptors
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that describes user preferences of multimedia content. An in-depth description of
the whole standard appears in [16].

User preferences in MPEG-7 includes content filtering, searching and brows-
ing preferences and usage history, which represents the user history of interaction
with multimedia items, can be denoted too. Filtering and searching preferences in-
clude the user preferences regarding classification (i.e. country of origin, language,
available reviews and ratings, reviewers, etc.) and creation preferences. The creation
preferences describes the creators of the content (e.g. favourite singer, guitar player,
composer, and music bands). Also, it allows one to define a set of keywords, lo-
cation and a period of time. Using a preference value attribute, a user can express
positive (likes) and negative (dislikes) preferences for each descriptor. The follow-
ing example shows a partial user profile definition, stating that this user likes the
album To bring you my love from P.J. Harvey:

<UserPreferences>
<UserIdentifier protected="true">
<Name xml:lang="ca">Joan Blanc</Name>
</UserIdentifier>
<FilteringAndSearchPreferences>
<CreationPreferences>
<Title preferencValue="8">To bring you my love</Title>
<Creator>
<Role>
<Name>Singer</Name>

</Role>
<Agent xsi:type="PersonType">
<Name>
<GivenName>Polly Jean</GivenName>
<FamilyName>Harvey</FamilyName>
</Name>

</Agent>
</Creator>
<Keyword>dramatic</Keyword>
<Keyword>fiery</Keyword>
<DatePeriod>
<TimePoint>1995-01-01</TimePoint>
<Duration>P1825D</Duration>
</DatePeriod>

</CreationPreferences>
</FilteringAndSearchPreferences>

</UserPreferences>

Listing 3.2 Example of a user profile in MPEG-7.

MPEG-7 usage history is defined following the usage history description scheme.
UsageHistory DS contains a history of user actions. It contains a list of actions (play,
play-stream, record, etc.), with an associated observation period. The action has a
program identifier (an identifier of the multimedia content for which the action took
place) and, optionally, a list of related links or resources.

Tsinaraki et al. present a way to overcome some of the limitations of describing
user preferences in MPEG-7 [17]. They argue that there is still a lack of semantics
when defining user preferences, as the whole MPEG-7 standard is based on XML
Schemas. For example, filtering and search preferences allow one to specify a list
of textual keywords, without being related to a taxonomy or ontology. Their imple-
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mentation is integrated into a framework, based on an upper ontology that covers
the MPEG-7 multimedia description schemes. This upper ontology uses the Web
Ontology Language (OWL)5 notation. So it does the next proposal, based on the
Friend of a Friend initiative.

3.2.3.3 FOAF: User Profiling in the Semantic Web

The Friend of a Friend project provides conventions and a language “to tell” a ma-
chine the type of things a user says about herself in her homepage. Friend of a Friend
is based on the RDF/XML vocabulary. As we noted before, the knowledge held by
a community of “peers” about music is also a source of valuable metadata. Friend
of a Friend nicely allows one to easily relate and connect people.

Friend of a Friend profiles include demographic information (name, gender,
age, sex, nickname, homepage, depiction, web accounts, etc.) geographic (city and
country, geographic latitude and longitude), social information (relationship with
other persons), pyschographic (i.e. user’s interests) and behavioural (usage patterns).
There are some approaches to model music preferences music taste in a Friend of a
Friend profile.

The simplest way to show interest for an artist is shown in the following example:

<foaf:interest>
rdf:resource="http://www.pjharvey.net"
dc:title="P.J. Harvey" />

Listing 3.3 Example of a user interest using FOAF.

The Semantic Web approach facilitates the integration of different ontologies.
Listing 8.5 shows how to express that a user likes an artist, using the general Music
Ontology proposed in [18].

<foaf:interest>
<mo:MusicArtist rdf:about="http://musicbrainz.org/artist/ca37

-...fc">
<mo:discogs rdf:resource="http://www.discogs.com/artist/PJ+

Harvey"/>
<foaf:img rdf:resource="http://ec2.images-amazon.com/images/P/

B00852Q....jpg"/>
<foaf:homepage rdf:resource="http://pjharvey.net/"/>
<foaf:name>P.J. Harvey</foaf:name>
<mo:wikipedia rdf:resource="http://en.wikipedia.org/wiki/

PJ_Harvey"/>
</mo:MusicArtist>

</foaf:interest>

Listing 3.4 Example of a user interest using FOAF, and the music ontology to describe the artist.

To conclude this section, Example 3.5 shows a complete Friend of a Friend pro-
file. This profile contains demographic and geographic information, as well as user’s
interests —with a different level of granularity when describing the artists.

<rdf:RDF
(XML namespaces here)

5 http://www.w3.org/TR/owl-features/
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>
<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>
<admin:generatorAgent
rdf:resource="http://foafing-the-music.iua.upf.edu"

/>
<admin:errorReportsTo
rdf:resource="mailto:ocar.celma@upf.edu"/>

</foaf:PersonalProfileDocument>
<foaf:Person rdf:ID="me">
<foaf:nick>ocelma</foaf:nick>
<foaf:dateOfBirth>04-17</foaf:dateOfBirth>
<foaf:gender>male</foaf:gender>
<foaf:based_near geo:lat=’41.401’ geo:long=’2.159’ />
<foaf:holdsAccount>
<foaf:OnlineAccount>
<foaf:accountName>ocelma</foaf:accountName>
<foaf:accountServiceHomepage
rdf:resource="http://last.fm"/>

</foaf:OnlineAccount>
</foaf:holdsAccount>
<foaf:mbox_sha1sum>ce24ca...a1f0</foaf:mbox_sha1sum>
<foaf:interest>
<foaf:Document rdf:about="http://www.gretsch.com">
<dc:title>Gretsch guitars</dc:title>
</foaf:Document>

</foaf:interest>
<foaf:interest>
<mo:MusicArtist rdf:about="http://musicbrainz.org/artist/ca37

-...fc">
<mo:discogs rdf:resource="http://www.discogs.com/artist/PJ+

Harvey"/>
<foaf:img rdf:resource="http://ec2.images-amazon.com/images/P

/B00852Q....jpg"/>
<foaf:homepage rdf:resource="http://pjharvey.net/"/>
<foaf:name>P.J. Harvey</foaf:name>
<mo:wikipedia rdf:resource="http://en.wikipedia.org/wiki/

PJ_Harvey"/>
</mo:MusicArtist>

</foaf:interest>
</foaf:Person>

</rdf:RDF>

Listing 3.5 Example of a user’s FOAF profile

This approach, based on the Friend of a Friend notation, is the one used in one
of the two prototypes, named Foafing the music, presented in Chap. 8 (Sect. 8.2).

3.3 Item Profile Representation

Now we describe the representation and modelling of music items. That is, the main
elements that describe artists and songs. First we introduce, in Sec. 3.3.1, the Mu-
sic Information Plane (MIP). MIP defines the different levels of complexity and ab-
straction to describe music assets. After that, we classify these semantic descriptions
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using the music knowledge classification (editorial, cultural and acoustic metadata)
proposed by Pachet in [19].

3.3.1 The Music Information Plane

In the last twenty years, the signal processing and computer music communities
have developed a wealth of techniques and technologies to describe audio and music
content at the lowest (close to the signal) level of representation. However, the gap
between these low-level descriptors and the concepts that music listeners use to
relate it with a music collection (the so-called “semantic gap”) is still, to a large
extent, waiting to be bridged.

Due to the inherent complexity when describing multimedia objects, a layered
approach with different levels of granularity is needed. In the multimedia field and,
specially, in the music field we foresee three levels of abstraction: low-level basic
features, mid-level semantic features, and high-level human understanding. The first
level includes physical features of the objects, such as the sampling rate of an audio
file, as well as some basic features like the spectral centroid of an audio frame, or
even the predominant chord in a sequential list of frames. A mid-level of abstraction
aims at describing concepts such as a guitar solo, or tonality information (e.g. key
and mode) of a track. Finally, the higher level should use reasoning methods or
semantic rules to retrieve, for instance, several audio files with “similar” guitar solos
over the same key.

We describe the music information plane in two dimensions. One dimension con-
siders the different media types that serve as input data (audio, text and image). The
other dimension is the level of abstraction in the information extraction process of
this data. Figure 3.2 depicts the music information plane.

The input media types, in the horizontal axis, include data coming from: audio
(music recordings), text (lyrics, editorial text, press releases, etc.) and image (video
clips, CD covers, printed scores, etc.). On the other side, for each media type there
are different levels of information extraction (in the vertical axis). The lowest level is
located at the signal features. This level lays far away from what an end-user might
find meaningful. Anyway, it is the basis to describe the content and to produce more
elaborated descriptions of the media objects on top of that. This level includes basic
audio features (such as: energy, frequency, mel frequency cepstral coefficients, or
even the predominant chord in a sequential list of frames), or basic natural language
processing for the text media. At the mid-level (the content objects level), the infor-
mation extraction process and the elements described are a bit closer to the end-user.
This level includes description of musical concepts (such as a guitar solo, or tonality
information—e.g. key and mode—of a music title), or named entity recognition for
text information. Finally, the higher-level, includes information related with human
beings and their interaction with music knowledge. This level could use inference
methods and semantic rules to retrieve, for instance, several audio files with similar
guitar solos over the same key. Also, in this level, there is the user and her social
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Fig. 3.2 The music information plane. The horizontal axis includes the input media types. The
vertical axis represents the different levels of information extraction for each media type. At the
top, a user interacts with the music content and the social network of users.

relationships with a community of users. Figure 3.2 depicts the music information
plane.

Nonetheless, the existing semantic gap between concept objects and human
knowledge makes it more difficult for a music recommender system. This semantic
gap has many consequences to music understanding and music recommendation.
Yet, there are some open questions, such as: which are the music elements that
makes a person feel certain emotions, or to evoke some particular memories? How
is a personal identity linked with music? Only a multi-modal approach, that takes
into account as much elements from MIP as possible, would be able to (partly)
answer some of these questions. Neither pure bottom-up nor top-down approaches
can lead to bridge this gap. We foresee, then, an approximation in both ways: users
need to interact with the content to add proper (informal) semantics (e.g. via tag-
ging), and also content object descriptions must be somehow understandable by
the users.

Pachet classifies the music knowledge management in three categories [19]. The
three categories are: editorial, cultural and acoustic metadata. This classification
allows one to create meaningful descriptions of music, and to exploit these descrip-
tions to build music recommendation systems. In the following sections, we depict
each category in the music information plane.
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3.3.2 Editorial Metadata

Editorial metadata (EM) consists of information manually entered by an editor. Usu-
ally, the information is decided by an expert or a group of experts. Figure 3.3 depicts
the relationship between editorial metadata and the music information plane.

Fig. 3.3 Editorial metadata and the music information plane.

Editorial metadata includes simple creation and production information (e.g. the
song C’mon Billy, written by P.J. Harvey in 1995, was produced by John Parish and
Flood, and the song appears as track number 4, on the album “To bring you my
love”). Editorial metadata includes, in addition, artist biography, genre information,
relationships among artists, etc. Thus, editorial information is not necessarily objec-
tive. It is usual the case that different experts cannot agree in assigning a concrete
genre to a song or to an artist. Even more difficult is a common consensus of a
taxonomy of musical genres.

The scope of Editorial metadata is rather broad. Yet, it usually refers to these
items: the creator (or author) of the content, the content itself, and the structure
of the content. Regarding the latter, editorial metadata can be fairly complex. For
example, an opera performance description has to include the structure of the opera.
It is divided in several acts. Each act has some scenes. In a given scene, there is a
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soprano singing an Aria piece, and many musicians playing. It has lyrics to sing,
and these can be in different languages (sung in Italian, but displayed in English),
etc.

In terms of music recommendation, EM conforms the core for non content-based
methods for music recommenders.

3.3.3 Cultural Metadata

Cultural metadata (CM) is defined as the information that is implicitly present in
huge amounts of data. This data is usually gathered from Internet; via weblogs,
forums, music radio programs, etc. CM has a clear subjective component as it is
based on the aggregation of personal opinions. Figure 3.4 depicts the relationship
between cultural metadata and the music information plane.

Fig. 3.4 Cultural metadata and the music information plane.
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3.3.3.1 Web-MIR Techniques to Describe Artists

Web Music Information Retrieval (Web-MIR) is a recent field of research in the MIR
community. Web-MIR focuses on the analysis and exploitation of cultural informa-
tion. So far, Web-MIR performances close to classic content-based approaches are
reported on artist genre classification and artist similarity [20–22]. Yet, it is not clear
how Web-MIR methods can deal with long tail content.

The origins of Web-MIR can be found in the earlier work of Whitman et al.
[20, 23]. They describe artists using a list of weighted terms. To gather artist related
terms, they query a general search engine with the name of the artist. To limit the
size of the page results, they add some keywords to the query, such as “music” and
“review”. From the retrieved pages, the authors extract unigrams, bigrams and noun
phrases. In [23], Whitman uses an unsupervised method for music understanding,
using the power spectral density estimate over each 5 seconds of audio. Then, it
keeps the semantically dimensions that contain the most significant meanings. Sim-
ilarly, in [24] Baumann et al. improved this approach by filtering irrelevant content
of the web pages (e.g. adverts, menus, etc.). The description of an artist is con-
formed by the terms with the highest normalised T F-IDF value. That includes the
most relevant nouns, adjectives and simple phrases, as well as un-tagged unigrams
and bigrams.

In [25], the authors present different ways to describe artists using web data,
based on co-occurrence analysis between an artist and the labels. The set of labels
are previously defined, and conform a corpus of music related terms (e.g. genres,
instruments, moods, etc.). The three methods they use are: Pagecount-based map-
ping (PCM), Pattern-based mapping (PM), and Document-based mapping (DM).
PCM uses the total number of hits retrieved by Google search engine. However,
some terms appear more often than others (e.g. pop, or rock versus cumbia). So,
they provide a normalised version, inspired by Pointwise mutual information (see
Sect. 2.5.4). Pattern-based mapping uses a set of predefined English phrase pat-
terns. For example “(genre) artists such as (artist)”. An instance of the pattern could
be: “Country artists such as”. This way, the method can retrieve the most promi-
nent Country artists. Table 3.1 shows the results for the Country style pattern.6 Fi-
nally, document-based mapping analyses the content of the top-k pages returned by
Google. That is, the algorithm downloads the most representative pages, according
to the query, and then counts the music related terms found in the k pages. It is worth
noting that these three methods can also be used not only to characterise the artists,
but to compute artist similarity.

Similar work based on co-occurrences is presented in [21, 22]. In [21], the au-
thors define artist similarity as the conditional probability of an artist that occurs on
a web page that was returned as response to querying another artist. In [22], the au-
thors focus on artist genre classification, using three different genre taxonomies. An
artist assignment to a genre is considered as a special form of co-occurrence anal-
ysis. An evaluation performed on a small dataset shows an accuracy of over 85%.
Related to this, Zadel and Fujinaga investigate artist similarity using Amazon and

6 The query was performed on September, 9th 2008, using Google search engine. The results were
manually analysed, and only the first page (top-10 results) was used.
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Artist # occurrences

Garth Brooks 2
Hank Williams 2

Shania Twain 2
Johnny Cash 1

Crystal Gayle 1
Alan Jackson 1
Webb Pierce 1

Carl Smith 1
Jimmie Rodgers 1
Gary Chapman 1

Table 3.1 A list of prominent Country artists obtained using Pattern-based matching on Google
(on September, 9th 2008). The results were manually analysed, and only the first page (top-10
results) was used.

Listmania! APIs, and then Google to refine the results, using artist co-occurrences
in webpages [26].

One of the main drawbacks of Web-MIR is the polysemy of some artists’ names,
such as Kiss, Bush, Porn [27]. This problem is partially solved by the same authors,
in [28]. Based on T F-IDF , they penalise the terms with high DF , that is the terms
that appear in lots of documents.

A common drawback of all the previous approaches is the high dimensionality
of the datasets. To avoid this problem, Pohle et al. use Non-negative Matrix Factori-
sation to reduce the dimensionality of the artist-term matrix [29]. They also use a
predefined vocabulary of music terms, and analyse the content of the top-100 web
pages related to each artist. To get the most relevant pages, they use a similar ap-
proach as Whitman and Lawrence [20]. The original matrix contains all the terms
applied to the artists, using T F-IDF weights. This matrix is decomposed into 16
factors, or “archetypical” concepts using non-negative matrix factorisation. Then,
each artist is described by a 16-dimensional vector. After that, a music browser
application allows users to navigate the collection by adjusting the weights of the
derived concepts, and also can recommend similar artists using cosine distance over
the artists’ vectors.

Another source to derive artist or song similarity is based on the analysis of avail-
able (or manually created) playlists on the web. Automatic playlists based on song
co-occurrences typically use web data mining techniques to infer song similarity.
That is crawling public playlists, and computing song or artist co-occurrence from
this data. For instance, Baccigalupo et al. [30] analysed artists co-occurrences using
a set of more than 1 million playlists from the MyStrands web. Pachet also computes
artist and song co-occurrences from radio sources using a big database of CD com-
pilations, extracted from CDDB [31]. Cunningham et al. state that playlists contain
a lot of context, and only humans are able to interpret it (e.g. “music about my holi-
days back in 1984”) [3]. According to a user survey done by the same authors, only
25% of the mixes are organised using content related information, such as artist,
genre or style. The rest is based on contextual information.
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3.3.3.2 Collecting Ground Truth Data

An important aspect when trying to evaluate similarity metrics using cultural meta-
data is the creation of reliable ground truth data. Different proposals are presented
in [19, 24, 32, 33]. The problem of gathering ground-truth for music similarity eval-
uation is outlined in [34]. In [33], Geleijnse et al. create a dynamic ground truth for
artist tagging and artist similarity. The idea is to adapt to the dynamically changing
data being harvested by social tagging (e.g. from last.fm), instead of defining a static
and immutable ground truth.

To summarise, Turnbull et al. present five different ways to collect annotations at
artist (or song) level. These approaches are [35]:

• mining web documents,
• harvesting social tags,
• autotagging audio content,
• deploying annotation games, and
• conducting a survey

Cultural information, based on Web-MIR and social tagging techniques, is the
basis for context-based music recommenders. Section 3.4.2 presents the main ideas
to exploit cultural information, and use it to provide music recommendations.

3.3.3.3 Social Tagging Vandalism: The Paris Hilton — Brutal Death Metal
Case

When using data from the wisdom of the crowds one needs to pay attention to
users’ intentional misuse or mistag of the items. That is, social tagging spam, or
vandalism. In May 2007, while Paul Lamere and myself were preparing the Music
Recommendation Tutorial for the ISMIR conference, he found out a problem with
Paris Hilton artist tags in last.fm.7 A group of users were deliberately tagging her
with Brutal Death Metal tag.8 Of course, this affected the recommendations of the
system, where all of a sudden one could hear a death metal song in a Paris Hilton
playlist (and the other way around!). Figure 3.5 shows a last.fm screenshot9 with top
artists tagged with Brutal Death Metal. Top-1 artist is Paris Hilton. Indeed, looking
at her raw tag counts in Table 3.2, we see that top-1 tag is Brutal Death Metal. Also,
there are some other descriptive—so to say—tags such as atainwptiosb,10 Your ears
will bleed, or the worst thing ever to happen to music. It is clear that some users
were having fun with her.

Social tagging spam is a problem for any music recommender system that relies
on this type of data to derive artist (or track) similarity. We outline some possible
solutions to post-process the artist’s tag list, and “clean” it:

7 http://www.last.fm/music/Paris+Hilton
8 http://blogs.sun.com/plamere/entry/the_1_brutal_death_metal
9 Screenshot taken on May, 23rd 2007
10 Acronym of all things annoying in the world put together into one stupid b*tch

http://www.last.fm/music/Paris+Hilton
http://blogs.sun.com/plamere/entry/the_1_brutal_death_metal
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Fig. 3.5 Last.fm screenshot with top artists tagged with Brutal Death Metal. Screenshot taken on
May, 23rd 2007.

Tagger reliability. The system might try to reduce the influence of untrusted tag-
gers (tagger reliability). Some questions that might help identifying those users are:

• Does the tagger listen to the music they are tagging (e.g. Paris Hilton music)?
• Does the tagger often use the tags that they are applying? (e.g. atainwptiosb or

the worst thing ever to happen to music)
• Does anyone else use those (potential spam) tags to other artists?

Once the system identifies them, it can act accordingly. For instance, diminishing
the tagging effect of these users.

Tag Clustering. The idea here is to compare other Paris Hilton tags (such as pop,
female vocalist, sexy or guilty pleasure) against Brutal Death metal tag. This way,
we can see whether all these tags are correlated, and belong to the same seman-
tic cluster. Table 3.3 shows different examples of tag similarity, using a last.fm
dataset with 84,838 artists and 187,551 distinct tags. We apply Latent Semantic
Analysis (LSA). That is, to compute Singular Value Decomposition (SVD) over the
artist-tag-frequency matrix, reducing it to 100 factors or dimensions (see Sec. 2.5.2).
After that, we use cosine similarity to compute tag similarity. There is no seman-
tic similarity between Brutal Death Metal and pop, female vocalist, sexy or guilty



3.3 Item Profile Representation 61

Tag Raw count

Brutal Death Metal 1,145
atainwptiosb 508

Crap 290
Pop 287

Officially Sh*t 248
Sh*t 143

Your ears will bleed 140
emo 120

whore 103
in prison 98

female vocalist 80
whore untalented 79

Best Singer in the World 72
sexy 50

the worst thing ever to happen to music 47
b*tch 42
dance 41

Guilty Pleasures 40
Death Metal 30

Female 29
Slut 29

Table 3.2 Last.fm raw tag counts for Paris Hilton artist. Accessed on May, 23rd 2007, via its
API v1.0.

pleasure. On the other hand, pop and guilty pleasure, or sexy and female vocalist
are much more similar (see the last two examples in Table 3.3). Figure 3.6 shows a
denodogram, based on the LSA cosine similarity from Table 3.3. The resulting hi-
erarchical clustering shows how Brutal Death Metal belongs to a different, isolated,
cluster than the rest of the tags.

LSAcosine similarity(Tag1, Tag2)

sim(brutal death metal, pop) = 0.055
sim(brutal death metal, female vocalist) = 0.034

sim(brutal death metal, sexy) = 0.066
sim(brutal death metal, guilty pleasure) = 0.027

sim(pop, guilty pleasure) = 0.399
sim(sexy, female vocalist) = 0.759

Table 3.3 LSA cosine similarity between Brutal Death Metal and some other Paris Hilton tags.

Furthermore, one can get the tags from other artists correctly tagged with Bru-
tal Death metal (e.g. death metal, extreme metal, gore metal or grindcore), and see
whether these tags also appear in (or, in general, co-occur with) other Paris Hilton
tags. The underline idea here is to detect artist tags that could be outliers (i.e. poten-
tial spam tags).
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Fig. 3.6 Dendogram for some Paris Hilton tags, including Brutal Death Metal, using the cosine
similarity results from Table 3.3.

Listening habits. Taking into account how many users listen to both Paris Hilton
and any other Brutal Death Metal band can give us an insight on how related are
those artists. That is, to compute the (co-occurrence analysis or collaborative filter-
ing) similarity between her and some other prominent death metal artists.

Tag Last.fm relevance

Pop 100
Female Vocalists 28

Dance 18
American 14

Sexy 13
Brutal Death Metal 11

rnb 8
female vocalist 8

female 7
00s 6

Guilty Pleasure 6
California 5

emo 4
Crap 3

Reggae 3
awful 3
party 3

underrated 2
Best Singer in the world 2

atainwptiosb 2

Table 3.4 Last.fm normalised tags for Paris Hilton after doing a post-processing to clean tag spam.

To conclude this section, Table 3.4 presents the solution proposed by last.fm. It
shows a list of tags for Paris Hilton, after a post-processing and cleaning algorithm.
Their solution was partly inspired on Koutrika’s work [36]. We can see how now
Brutal Death Metal is not anymore at position top-1. It still appears in the list, but
with a lower (normalised) relevance of 11 out of 100.
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3.3.4 Acoustic Metadata

The last category of semantic music description is acoustic metadata. Acoustic
metadata extracts features from the audio, using content-based analysis. Semantic
acoustic descriptors are the basis for content-based music recommenders (see Sect.
3.4.3). Figure 3.7 depicts the relationship between acoustic metadata and the music
information plane.

Fig. 3.7 Acoustic metadata and the music information plane.

Most of the current music content processing systems operating on complex au-
dio signals are mainly based on computing low-level signal features. These features
are good at characterising the acoustic properties of the signal, returning a descrip-
tion that can be associated to a texture. A more general approach consists in de-
scribing music content according to several “musical facets” (i.e. rhythm, harmony,
melody, timbre, etc.) by incorporating higher-level semantic descriptors. Seman-
tic descriptors can be computed directly from the audio signal combining signal
processing, machine learning, and musical knowledge. The following sections are
devoted to outlining some relevant music description facets.
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3.3.4.1 Low-Level Timbre Descriptors

To describe the audio it is very usual to decompose the audio signal with spectral
and temporal features. Spectral features are considered more robust to polyphonic
and complex textures. The signal is segmented into (overlapping) frames, gener-
ally from 10 to 100 ms with, say, 50% overlap. For each frame, a feature vector
is computed. Now, we briefly present some of the most important low-level timbre
features to describe the audio signal. Most of them are based on the Short-Time
Fourier Transform (STFT):

• Spectral Centroid is a concept adapted from psychoacoustics and music cogni-
tion. Spectral Centroid is the mean value of the STFT amplitude spectrum. It
measures the average frequency, weighted by amplitude, of the spectrum.

• Spectral Flatness is the ratio between the geometrical mean and the arithmetical
mean of the spectrum magnitude.

• Spectral Skewness is the 3rd order central moment, and it gives indication about
the shape of the spectrum.

• Spectral Kurtosis is the 4th order central moment. It measures whether the data
are peaked or flat relative to a normal (Gaussian) distribution.

• Zero-Crossing Rate (ZCR) is a temporal descriptor defined as the number of time
domain zero-crossings within a defined region of signal, divided by the number
of samples of that region. It measures, then, the rate of sign-changes along the
audio signal.

• Mel Frequency Cepstrum Coefficients (MFCCs) [37] are widely used in speech
recognition applications. MFCC are calculated as follows:

1. Divide the audio signal into frames.
2. For each frame, obtain the amplitude spectrum.
3. Take the logarithm.
4. Convert to Mel spectrum.
5. Take the discrete cosine transform (DCT).

Step 4 calculates the log amplitude spectrum on the Mel scale. The Mel transfor-
mation is based on human perception experiments. Then, step 5 takes the DCT
of the Mel spectra.

The bag-of-frames timbre approach consists in modelling the audio signal using
a statistical distribution of the audio features, on short-time audio segments. Audio
features are then aggregated together using simple statistics (e.g. mean and vari-
ance), or modelled as a Gaussian Mixture Model (GMM). However, as pointed out
by Aucouturier and Pachet in [38], a timbre representation based on MFCCs and
GMMs tend to create hubs. These are songs that are irrelevantly close to every other
songs.

Furthermore, similarity methods solely based on describing timbre information
tend to find similar pieces that belong to different music genres. It is very unlikely
that a user will love both a Franz Schubert’s piano sonata, and a Meat Loaf ballad
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just because the two contain a prominent piano melody. In the following sections
we present other music facets that complement timbre audio features.

3.3.4.2 Instrumentation

Extracting truly instrumental information from music, as pertaining to separate in-
struments or types of instrumentation implies classifying, characterising and de-
scribing information which is buried behind many layers of highly correlated data.
Given that the current technologies do not allow a sufficiently reliable separation,
most research work has concentrated on the characterisation of the “overall” tim-
bre or “texture” of a piece of music as a function of low-level signal features. This
approach implied describing mostly the acoustical features of a given recording,
gaining little knowledge about its instrumental contents [39].

Even though it is not yet possible to fully separate the different contributions
and “lines” of the instruments, there are some simplifications that can provide use-
ful descriptors (e.g. lead instrument recognition, solo detection). The recognition of
idiosyncratic instruments, such as percussive ones, is another valuable simplifica-
tion. Given that the presence, amount and type of percussion instruments are very
distinctive features of some music genres percusive information can be exploited to
provide other natural partitions to large music collections. Herrera et al. define se-
mantic descriptors such as the percussion index, or the percussion profile [40]. Al-
though they can be computed after doing (simple) source separation, reasonable ap-
proximations can be achieved using simpler sound classification approaches that do
not attempt separation [41]. Additionally, [42] presents an instrument identification,
of mono-instrumental music, using line spectral frequencies (LSF) and k-means
classifier.

3.3.4.3 Rhythm

In its most generic sense, rhythm refers to all of the temporal aspects of a musical
work, whether represented in a score, measured from a performance, or existing
only in the perception of the listener [43]. In the literature the concept of “automatic
rhythm description” groups many applications as diverse as tempo induction, beat
tracking, rhythm quantisation, meter induction and characterisation of timing devi-
ations, to name a few. Many of these different aspects have been investigated, from
the low-level onset detection, to the characterisation of music according to rhythmic
patterns.

At the core of automatic rhythmic analysis lies the issue of identifying the start,
or onset time, of events in the musical data. As an alternative to standard energy-
based approaches, another methodologies have recently appeared: a method that
works solely with phase information [44], or that are based on predicting the phase
and energy of signal components in the complex domain [45], greatly improving
results for both percussive (and tonal) onsets. However, there is more to rhythm
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than the absolute timings of successive musical events. For instance, [46] proposes
a general model of beat tracking, based on the use of comb-filtering techniques
on a continuous representation of “onset emphasis”. This method was expanded to
combine this general model with a context-dependent model by including a state
space switching model. This improvement has been shown to significantly improve
upon previous results, in particular with respect to maintaining a consistent metrical
level and preventing phase switching between off-beats and on-beats.

Furthermore, the work done by Gouyon and Dixon ([47, 48]) demonstrates the
use of high-level rhythmic descriptors for genre classification of recorded audio. An
example is a tempo-based classification showing the high relevance of this feature
while trying to characterise dance music [47]. However, this approach is limited by
the assumption that, given a musical genre, the tempo of any instance is among a
very limited set of possible tempi. To address this, [48] use bar-length rhythmic pat-
terns for the classification of dance music. The method dynamically estimates the
characteristic rhythmic pattern on a given musical piece, by a combination of beat
tracking, meter annotation and a k-means classifier. Genre classification results are
greatly improved by using these high-level descriptors, showing the relevance of
musically-meaningful representations for Music Information Retrieval tasks. Dan-
nenberg presents in [49] a holistic approach toward automated beat tracking, taking
into account music structure. Last but not least, for a complete overview of the state
of the art on rhythmic description the reader is referred to [43].

3.3.4.4 Harmony

The harmony of a piece of music can be defined by the combination of simultaneous
notes, or chords; the arrangement of these chords along time, in progressions; and
their distribution, which is closely related to the key or tonality of the piece. Chords,
their progressions, and the key are relevant aspects of music perception that can be
used to accurately describe and classify music content.

Harmonic based retrieval has not been extensively explored before. A successful
approach at identifying harmonic similarities between audio and symbolic data was
presented in [50]. It relied on automatic transcription, a process that is partially ef-
fective within a highly constrained subset of musical recordings (e.g. mono-timbral,
no drums or vocals, small polyphonies). To avoid such constraints [51] adopts the
approach where describes the harmony of the piece, without attempting to estimate
the pitch of notes in the mixture. Avoiding the transcription step allows to operate on
a wide variety of music. This approach requires the use of a feature set that is able
to emphasise the harmonic content of the piece, such that this representation can be
exploited for further, higher-level, analysis. The feature set of choice is known as a
Chroma or Pitch Class Profile, and they represent the relative intensity of each of
the twelve semitones of the equal-tempered scale.

Gómez et al. present in [52] an approach of the tonality estimation by correlating
chroma distributions with key profiles, derived from music cognition studies. Re-
sults show high recognition rates for a database of classical music. The studies done
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in [53] have also concentrated on chord estimation based on chroma features, using
tuning, and a simple template-based model of chords. Recognition rates of over 66%
were found for a database of recorded classical music, though the algorithm is being
used also with other musical genres. A recent development includes the generation
of a harmonic representation using a Hidden Markov Model, initialised and trained
using musical theoretical and cognitive considerations [54]. This methodology has
already shown great promise for both chord recognition and structural segmentation.
For a deeper overview of harmonic and tonality description see [55].

3.3.4.5 Structure

Music structure refers to the ways music materials are presented, repeated, varied
or confronted along a piece of music. Strategies for doing that are artist, genre and
style-specific (i.e. the A–B themes exposition, development and recapitulation of a
sonata form, or the intro–verse–chorus–verse–chorus–outro of “pop music”). De-
tecting the different structural sections, the most repetitive segments, or even the
least repeated segments, provide powerful ways of interacting with audio content
based on summaries, fast-listening and musical gist-conveying devices, and on-the-
fly identification of songs.

The section segmenter developed by Ong and Herrera in [56] extracts segments
that roughly correspond to the usual sections of a pop song or, in general, to sec-
tions that are different (in terms of timbre and tonal structure) from the adjacent
ones. The algorithm first performs a rough segmentation with the help of change
detectors, morphological filters adapted from image analysis, and similarity mea-
surements using low-level descriptors. It then refines the segment boundaries using
a different set of low-level descriptors. Complementing this type of segmentation,
the most repetitive musical pattern in a music file can also be determined by looking
at self-similarity matrices in combination with a rich set of descriptors including
timbre and tonality (i.e. harmony) information.

3.3.4.6 Intensity

Subjective intensity, or the sensation of energeticness we get from music, is a con-
cept commonly and easily used to describe music content. Although intensity has a
clear subjective facet, Sandvold et al. hypothesised that it could be grounded on au-
tomatically extracted audio descriptors. Inspired by the findings of Zils and Pachet
in [57], Sandvold et al. created a model of subjective intensity built from energy and
timbre low-level descriptors extracted from the audio data [58]. They have proposed
a model that decides among 5 labels (ethereal, soft, moderate, energetic, and wild),
with an estimated effectiveness of nearly 80%. The model has been developed and
tested using several thousands of subjective judgements.
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3.3.4.7 Genre

Music genres are connected to emotional, cultural and social aspects, and all of
them influence our music understanding. The combination of these factors produce
a personal organization of music which is, somehow, the basis for (human) musical
genre classification. Indeed, musical genres have different meanings for different
people, communities, and countries [59, 60].

The use of musical genres has been deeply discussed by the MIR community.
A good starting point is the review by McKay [61]. The authors suggest that musi-
cal genres are an inconsistent way to organize music. Yet, musical genres remain a
very effective way to describe and tag artists. Broadly speaking, there are two com-
plementary approaches when defining a set of genre labels: (i) the definition of a
controlled vocabulary by a group of experts or musicologists, and (ii) the collabo-
rative effort of a community (social tagging). The goal of the former approach is
the creation of a list of terms, organised in a hierarchy. A hierarchy includes the
relationships among the terms; such as hyponymy. The latter method, social tag-
ging, is a less formal bottom-up approach, where the set of terms emerge during the
(manual) annotation process.

Music genre classification is a classic MIR problem. The setup consists of pre-
dicting one (or more) genre labels from the audio. Most of the approaches use ma-
chine learning methods to train a classifier per genre, using a combination of audio
features. Early work in automatic genre classsification is presented by Tzanetakis
and Cook [62]. The authors use timbre related features (Spectral Centroid, Spectral
Rolloff, Spectral Flux, and MFCC) as well as rhythm features based on the beat
histogram. A complete state of the art on music genre classification is presented in
[63].

3.3.4.8 Mood

According to Juslin and Laukka, people listen to music mostly to change their emo-
tional state [64]. When dealing with such subjective question, we are faced with
several issues. The first one is the emotion representation paradigm. There exist two
main mood representations from psychology: a dimensional, continuous model, and
a categorical, discrete list. As advised by Juslin et al., one should consider few cat-
egories when building a ground truth that maximises the agreement between people
[65].

Extracting moods from the audio is a very challenging task. In the Music Infor-
mation Retrieval field only recent work, using exclusively audio content, deals with
this problem. Most of these approaches use machine learning techniques, training a
classifier with some selected audio features [66–68]. Laurier et al. observe from the
audio analysis (using timbre, rhythm and tonal descriptors) the correlation between
psychological emotions and musical features [68]. For example a fast tempo (onset
rate feature) and major tonality song is classified as happy, while a slow tempo and
minor tonality might correspond to a sad emotion. Given the limitations to classify
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music emotions using only audio content-based features, recent approaches include
hybrid methods combining contextual (e.g mood tags) and audio content informa-
tion [69].

3.3.4.9 Tools and Resources

We briefly present in Table 3.5 some audio processing tools and libraries. This soft-
ware is widely used in the Music Information Retrieval community. It is not our goal
to detail the pros and cons of each tool. We list them here as starting point for those
readers interested in extracting audio features, and computing audio content-based
similarity on top of them.

Name Language Link

MA Toolbox Matlab http://www.ofai.at/˜elias.pampalk/ma/
MIR Toolbox Matlab http://users.jyu.fi/˜lartillo/

Marsyas C++ http://marsyas.info/
CLAM C++ http://clam-project.org/
SMIRK ChucK http://smirk.cs.princeton.edu/

Echo nest Web API http://developer.echonest.com/pages/overview

Table 3.5 A list of tools to extract audio features from the signal.

Other libraries that extract low-level descriptors such as MFCC/GMM are: Music
Browser (in Matlab),11 and Auditory Toolbox,12 also in Matlab. Furthermore, “The
Tools We Use” webpage13 compiles a list of resources that the MIR community
widely uses.

3.4 Recommendation Methods

In this section, we present the music recommendation methods to match user prefer-
ences (see Sec. 3.2) with the artist and music description (presented in the previous
Sec. 3.3).

11 http://www.jj-aucouturier.info/projects/mir/
12 http://cobweb.ecn.purdue.edu/˜malcolm/interval/1998-010/
13 http://www.music-ir.org/evaluation/tools.html

http://www.ofai.at/~elias.pampalk/ma/
http://users.jyu.fi/~lartillo/
http://marsyas.info/
http://clam-project.org/
http://smirk.cs.princeton.edu/
http://developer.echonest.com/pages/overview
http://www.jj-aucouturier.info/projects/mir/
http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/
http://www.music-ir.org/evaluation/tools.html
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3.4.1 Collaborative Filtering

Collaborative filtering (CF) techniques have been largely applied in the music do-
main. CF makes use of the editorial and cultural information. Early research was
based on explicit feedback, based on the ratings about songs or artists. Yet, tracking
user listening habits has become the most common way in music recommendation.
In this sense, CF has to deal with implicit feedback (instead of explicit ratings).

3.4.1.1 Explicit Feedback

Ringo, described in [70], is the first music recommender based on collaborative fil-
tering and explicit feedback (ratings). The author applies user-based CF approach
(see Sec. 2.5.2). Similarity among users is computed with Pearson normalised cor-
relation (see Eq. 2.3). Then, the recommendations are computed as the mean of the
ratings done by the similar users of the active user (see Eq. 2.6).

Racofi (Rule Applying COllaborative FIltering) approach combines collaborative
filtering based on ratings, and a set of logic rules based on Horn clauses [71]. The
rules are applied after the ratings have been gathered. The five rating dimensions
they define are: impression, lyrics, music, originality, and production. The objective
of the rules is to prune the output of the collaborative filtering, and promote the
items that the user will be most familiar with. Anderson et al. exemplifies a rule
[71]:

If a user rates 9 the originality of an album by artist X then the predicted originality rating,
for this user, of all other albums by artist X is increased by a value of 0.5.

These kind of rules implicitly modify the ratings that a user has done previously.
The Indiscover music recommender system14 implements this approach, as well as
the Slope One collaborative filtering method, presented in [72].

3.4.1.2 Implicit Feedback

Implicit feedback in the music domain is usually gathered from users’ listening
habits. The main drawback is that the value that a user assigns to an item is not
always in a predefined range (e.g. from 1..5 or like it/hate it). Instead, the interaction
between users and items is usually described by songs she listens to, or the total
playcounts. Thus, the system can only track (implicit) positive feedback. Negative
feedback cannot be gathered. Only when users explicitly rate the content, the range
of values include both positive and negative feedback (e.g. from 1..5 stars, where 1
means a user does not like the item, 3 indifference, and 5 she loves it).

Furthermore, recommendations are usually performed at artist level (unless the
system generates a playlist for that user), whilst listening habits are at song level.
In this case, an aggregation process—from song plays to artist total playcounts—is
needed. To use CF with implicit feedback at artist level, there are different options:

14 http://www.indiscover.net

http://www.indiscover.net
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• Convert the implicit data into a binary user-artist matrix M. Non-zero cells mean
that the user has listened to the artist at least once.

• Transform the implicit data into a normalised matrix. Instead of assigning 0/1 to
a cell, the value can denote how much a user listens to the artist. E.g. [0..5],
where 5 denotes that she listens to a lot the artist, 1 means only from time to time,
and 0 never. This matrix has a more fine-grained description of the user listening
habits than the previous, binary, normalisation.

• Normalise each row (users), so that the sum of the row entries equal 1. This
option, then, describes the artist probability distribution of a user.

• Do not normalise the matrix. The matrix contains for each user and artist (Mi, j)
the total playcounts.

In any case, after the dataset is represented in the user-artist matrix, one can apply
any CF methods with explicit feedback (presented in Sec. 2.5.2).

It is common that the user’s listening habits distribution is skewed to the right,
so it shows a heavy-tailed curve. That is, a few artists have lots of plays in the user
profile, and the rest of artists have much less playcounts. Figure 3.8 depicts the lis-
tening habits of a user in terms of total playcounts. The horizontal axis contains her
top-50 artists, ranked by the total plays (i.e. artist at position 1 has 238 playcounts).

Fig. 3.8 A user listening habits represented with frequency distribution of playcounts per artist in
the user’s profile.

Then, we compute the complementary cumulative distribution of artist plays in
the user profile. Artists located in the top 80–100% of the distribution get a score
of 5, artists in the 60–80% range get a 4, and so on (until the artists with less play-
counts, in the 0–20% range, which get assigned a 1). The rest of the Mi cells have
value 0. Figure 3.9 shows the complementary cumulative distribution of the artist
playcounts from Fig. 3.8.
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Fig. 3.9 User listening habits from Fig. 3.8 represented with the complementary cumulative dis-
tribution. Top-1 and 2 artists receive a score of 5. Artists at position 3..7 have a score of 4, artists
in 8..15 a 3, and so on.

Sometimes, the listening habits distribution of a user is not skewed, but very
homogeneous (a small standard deviation value, and a median close to the mean
value). To detect this type of distribution, we use the coefficient of variation, CV . CV
is a normalised measure of dispersion of a probability distribution, that divides the
standard deviation by the mean value, CV = σ

μ . In our case, the standard deviation
of plays by the mean value of plays, for a given user. Then, if CV ≤ 0.5 we do not
use the complementary cumulative distribution. Instead, we assign a value of 3 to
all the user artists, meaning that all the artists in the profile have a similar number
of plays.

The next step is to compute artist similarity using the user-artist M matrix. Once
the normalisation process is done, it is straightforward to compute the average value
of normalised plays for an artist, as well as for a user—in case that the item similarity
measure to use is either adjusted cosine (Eq. 2.2) or Pearson correlation (Eq. 2.3).

3.4.1.3 An Example

We have done some experiments with data obtained from last.fm. The dataset con-
tains the top-artists playcounts for more than 500,000 users, with a total of around
30 million 〈user,artist, playcount〉 triples. To clean the list of artists, we only use
those artists that have a Musicbrainz15 ID, and also that at least 10 users listened to
them once or more. After the cleaning process, we get a list of around 95,000 dis-
tinct artists. To apply CF, we transformed the listening habits dataset to a user-artist
matrix M. Mi, j represents the number of times user i has listened to artist j. To nor-

15 http://www.musicbrainz.org

http://www.musicbrainz.org
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malise the matrix we followed the second approach; computing the complementary
cumulative distribution. That is to assign a range value [0..5] in Mi, j from the〈
useri,artist j, playcount

〉
(as shown in Fig. 3.9).

We present two concrete examples of item-similarity using Pearson correlation,
(Eq. (2.3)) and conditional probability (Eq. 2.4) from user-artist matrix M. Table
3.6 (left) shows the top-10 similar artists of The Dogs d’Amour,16 whilst the right
column shows the results obtained using conditional probability similarity.

The Dogs d’Amour SimilarityPearson The Dogs d’Amour SimilarityCond.Prob.

Los Fabulosos Cadillacs 0.806 Guns n’ Roses 0.484
Electric Boys 0.788 Aerosmith 0.416

Lillian Axe 0.784 AC/DC 0.379
Michael Jackson 0.750 Led Zeppelin 0.360

Ginger 0.723 Metallica 0.354
The Decemberists 0.699 Alice Cooper 0.342

The Byrds 0.667 Mötley Crüe 0.341
Zero 7 0.661 David Bowie 0.335
Rancid 0.642 Red Hot Chili Peppers 0.334

The Sonics 0.629 The Beatles 0.334

Table 3.6 The Dogs d’Amour top-10 similar artists using CF with Pearson correlation distance
(left) and conditional probability (right).

We can see that the asymmetric conditional probability metric is completely bi-
ased towards popular artists, whilst Pearson similarity contains artists across the
long tail, also ranging different styles (including some unexpected results, such as
Michael Jackson or Zero 7). Top-10 similar artists list, obtained by conditional prob-
ability, contain some of the most representative and prototypical artists of the seed
artist’s main styles (that is, glam, rock, and hard-rock). The similarity value using
conditional probability is also quite informative; 48.4% of the users who listen to
The Dogs d’Amour also listen to Guns n’ Roses (but not the other way around!).

3.4.2 Context-Based Filtering

As introduced in Sec. 3.3.3, context-based filtering uses cultural information to com-
pute artist or song similarity. Context-based filtering is based on web mining tech-
niques, or mining data from collaborative tagging (see Sec. 2.5.4).

16 http://en.wikipedia.org/wiki/The_Dogs_D’Amour

http://en.wikipedia.org/wiki/The_Dogs_D'Amour
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3.4.2.1 An Example

Now, we present some examples from the 3-order tensor of 〈user,artist, tag,value〉
triples, using data from last.fm. The dataset contains 84,838 artists, and 187,551 dis-
tinct tags. We decompose the tensor, and use the artist-tag A matrix. Ai, j contains the
(last.fm normalised) relevance of tag j for artist i. Then, we apply Latent Seman-
tic Analysis (LSA). LSA uses Singular Value Decomposition (SVD) to infer the
hidden relationships in the data. LSA is used in Information Retrieval to compute
document similarity, and also to detect term similarity (e.g. synonyms). In our case,
we can consider that a document equals to an artist, and the terms that appear in the
document are the artist’s tags. Then, we apply SVD to reduce the matrix A to 100
factors (dimensions). After that, cosine similarity is used to derive artist similarity.
Table 3.7 shows the top-10 similar artists to The Dogs d’Amour.

The Dogs d’Amour SimilarityLSA

d-a-d 0.9605
Mike tramp 0.9552

Metal majesty 0.9541
Nightvision 0.9540

Bulent ortacgil — sebnem ferah 0.9540
Marty casey and lovehammers 0.9540

Hey hey jump 0.9539
Camp freddy 0.9538

Hard rocket 0.9537
Paine 0.9536

Table 3.7 The Dogs d’Amour top-10 similar artists using social tagging data from last.fm. Sim-
ilarity is computed using LSA (SVD with 100 factors, and cosine distance) from the artist-tag
matrix.

One problem using this approach is that the distance to the seed artist (in the
100-dimensional space) is very high, even for an artist at position top-100 in the
similarity list. For instance, The Dogs d’Amour top-20 similar artist, Gilby Clarke,
has a similarity value of 0.936, and the artist at top-100 (Babylon A.D.) has 0.868.
Both artists could easily appear in the list of The Dogs d’Amour similar artists,
but probably they will not (at least, they will not appear in the first page). Then,
when presenting a list of The Dogs d’Amour similar artists, the user can miss some
artists that are at position top-80, and that are still relevant. This happens because the
semantic distance based on tags (using the 100 factors after applying SVD) is very
coarse. To overcome this problem, we present in sec. 3.4.3 a hybrid approach that
combines collaborative filtering and social tagging, producing more reliable results.
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3.4.3 Content-Based Filtering

In the music domain, audio content-based methods rank tracks based on how sim-
ilar they are according to a seed song. A music recommender system using audio
content-based analysis has to compute the similarity among songs, in order to rec-
ommend music to the user. Artist similarity can also be computed, by agreggating
song similarity results. There are two orthogonal ways to describe the audio content;
manually or automatically.

3.4.3.1 Music Similarity Based on Manual Audio Content Description

Human-based annotation of music is very time consuming, but can be more accurate
than automatic feature extraction methods. Pandora’s approach is based on manual
descriptions of the audio content. Pandora’s web site explains their procedure17:

(. . .) our team of thirty musician-analysts have been listening to music, one song at a time,
studying and collecting literally hundreds of musical details on every song. It takes 20-30
minutes per song to capture all of the little details that give each recording its magical
sound —melody, harmony, instrumentation, rhythm, vocals, lyrics . . . and more— close to
400 attributes! (. . .)

The analysts have to annotate around 400 parameters per song, using a ten point
scale [0..10] per attribute. There is a clear scalability problem; time-constraints
allow people to add about 15,000 songs per month. Also, they have to deal with the
variability across the analysts. Cross validation is also needed in order to assure the
quality (and avoid analysts’ bias) of the annotations.

Simple weighted Euclidean distance is used to find similar songs.18 Song selec-
tion is, then, based on nearest neighbors. However, they assign specific weights to
important attributes, such as genre. For artist similarity they only use specific songs,
not an average of all the artist’s songs. Pandora’s ultimate goal is to offer a mix of
familiarity, diversity, and discovery.

3.4.3.2 Music Similarity Based on Automatic Audio Content Description

Early work on audio similarity is based on low-level descriptors, such as Mel Fre-
quency Cepstral Coefficients (MFCC). These approaches aimed at deriving timbre
similarity, but have also been used to take on other problems, such as genre clas-
sification. Foote proposed a music indexing system based on MFCC histograms in
[73]. Audio features are usually aggregated together using mean and variance, or
modelling it as a Gaussian Mixture Model (GMM). Using mean and variance for

17 http://www.pandora.com/corporate/index.shtml Last accessed date: Septem-
ber 10th, 2008
18 Personal communication with Pandora staff, on July 2007, while preparing the Music Recom-
mendation Tutorial for the 2007 ISMIR conference.

http://www.pandora.com/corporate/index.shtml
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the first N MFCCs, a simple (weighted) Euclidean distance, d(X ,Y ), can be used to
compute audio similarity between two songs X and Y .

Aucouturier et al. present a Gaussian mixture model (GMM) based on MFCCs
[74]. Similarity measures on top of the GMM timbre model includes Kullback–
Leibler (KL) divergence, and the Earth Mover’s distance (EMD). KL divergence
measures the relative similarity between two Gaussian distributions of data. A small
divergence in the distributions means that the two songs are similar. Equation (3.1)
shows a closed form symmetric approximation of the Kullback–Leibler divergence
between two songs X and Y . The timbre model used is a single Gaussian with full
covariance matrix.

d(X ,Y )= Tr(Σ−1
X ΣY )+Tr(Σ−1

Y ΣX )+Tr((Σ−1
X Σ−1

Y )(μX −μY )(μX −μY )T )−2NMFCC

(3.1)
where μX and μY are MFCC means, ΣX and ΣY are MFCC covariance matrices,

Tr(M) the trace of matrix M, and NMFCC the number of MFCCs used (for instance,
13).

Earth Mover’s distance (EMD) has been largely applied in the image community
to retrieve similar images [75]. The EMD is defined as the minimum amount of work
needed to change one (audio) signature to another. The adoption of this distance in
the music field was first introduced by Logan in [76], where audio signatures are
modelled with a GMM.

However, none of these two methods capture information about long-term struc-
ture elements, such as the melody, ryhthm, or harmony. To cope with this limitation,
Tzanetakis extracted a set of features representing the spectrum, rhythm and har-
mony (chord structure) [77]. Audio features are then merged into a single vector,
and are used to determine song similarity. For a complete overview on audio sim-
ilarity, the reader is referred to [78]. One step further, Slaney et al. present in [79]
machine learning techniques to derive a robust metric for music similarity.

Cataltepe et al. present a music recommendation system based on audio similar-
ity [80], where user’s listening history is taken into account. The hypothesis is that
users give more importance to different aspects of music. These aspects can be de-
scribed and classified using semantic audio features. Using this adaptative content-
based recommendation scheme, as opposed to a static set of features, resulted in up
to 60% of increment in the accuracy of the recommendations.

User’s relevance feedback for a content-based music similarity system is pre-
sented in [81]. To reduce the burden of users to input learning data into the system,
they propose a method to generate user profiles based on genre preferences, and a
posterior refinement based on relevance feedback from the recommendations [82].

Once the audio has been semantically annotated (see Sec. 3.3.4), and the audio
similarity among the songs has been computed, content-based filtering for a given
user is rather simple. It is based on presenting songs (or artists) that “sound” similar
to the user profile.
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3.4.3.3 An Example

Now we present an example of artist similarity derived from automatic audio feature
extraction. To compute artist similarity, we apply content-based audio analysis in an
in-house music collection (T ) of 1.3 Million tracks of 30 secs. samples.

Distance between tracks, d(x,y), is based on the Euclidean distance over a re-
duced space using Principal Component Analysis (PCA). Audio features include
not only timbral features (e.g. Mel frequency cepstral coefficients), but musical de-
scriptors related to rhythm (e.g. beats per minute, perceptual speed, binary/ternary
metric), and tonality (e.g. chroma features, key and mode), among others [83]. Pre-
liminary steps to compute the Euclidean distance are: (i) audio descriptor normal-
isation in the [0,1] interval, and (ii) applying PCA to reduce the audio descriptors
space to 25 dimensions.

To compute artist similarity we used the most representative tracks, Ta, of an
artist a, with a maximum of 100 tracks per artist. For each track, ti ∈ Ta, we obtain
the most similar tracks (excluding those from artist a).

sim(ti) = argmin
∀t∈T

(d(ti, t)), (3.2)

and get the artists’ names, Asim(ti), of the ti similar tracks. The list of (top-20) similar
artists of a comes from Asim(ti), ranked by a combination of the artist frequency (how
many songs from the artist are similar to seed track ti), and the similarity distance
(Eq. 3.3).

similar artists(a) =
⋃

Asim(ti),∀ti ∈ Ta (3.3)

Table 3.8 shows the top-20 similar artists for two seed artists, Aerosmith.19 and
Alejandro Sanz.20 Regarding Aerosmith’s top-20 similar artists, most of the bands
belong to the same genre, that is classic hard rock. Yet, some bands belong to
the punk/rock style (e.g. NOFX, MxPx, New Found Glory, Slick Shoes, and The
Damned). These bands could still be considered relevant to a user that has a musical
taste ranging from classic hard rock to punk/rock styles. However, there are two sur-
prising and unexpected results. These are Die schäfer and Die flippers. Both bands
fall into the German folk/pop style, and their music is very different from Aerosmith
(or any other band in the Aerosmith’s top-20 similar artists). Our guess is that they
appear due to Aerosmith’s quiet pop/rock ballads. Still, these two German artists can
be considered as “outliers”.

Alejandro Sanz is a Spanish singer/songwriter. His music fits into latin pop, bal-
lads, and soft rock, all merged with a flamenco touch. Even though content-based is
context agnostic, some similar artists also sing in Spanish (Gipsy Kings, Ricky Mar-
tin, Presuntos Implicados, Luis Miguel, Laura Pausini, Miguel Bosé and Maná).
Furthermore, most of the similar artists come from his pop songs, like Ricky Martin,

19 For more information about the band see http://en.wikipedia.org/wiki/Aerosmith
20 For more information about the artist see http://en.wikipedia.org/wiki/Alejandro
_Sanz

http://en.wikipedia.org/wiki/Aerosmith
http://en.wikipedia.org/wiki/Alejandro
_Sanz
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Aerosmith SimilarityCB Alejandro Sanz SimilarityCB

Bon Jovi 3.932 Ricky Martin 3.542
.38 Special 3.397 Jackson Browne 2.139

Guns N’ Roses 3.032 Gipsy Kings 1.866
Def Leppard 2.937 Presuntos Implicados 1.781

Ozzy Osbourne 2.795 Emmylou Harris 1.723
Helloween 2.454 Luis Miguel 1.668

Kiss 2.378 Laura Pausini 1.529
Bryan Adams 2.180 Ry Cooder 1.479

Poison 2.088 Harry Chapin 1.370
The Damned 2.044 Dwight Yoakam 1.332

Tesla 2.030 Nek 1.331
Die Schäfer 1.963 Miguel Bosé 1.298

Mötley Crüe 1.949 Maná 1.241
Nofx 1.807 The Doobie Brothers 1.235

MXPX 1.733 Uncle Kracker 1.217
New Found Glory 1.718 Seal 1.184

Slick Shoes 1.677 Anika Moa 1.174
Die Flippers 1.662 Graham Central Station 1.158
Uriah Heep 1.659 The Imperials 1.157

Alice Cooper 1.608 The Corrs 1.152

Table 3.8 Similar artists for Aerosmith (left column) and Alejandro Sanz (right column).

Presuntos Implicados, Nek, Seal, Maná, Miguel Bosé and The Corrs. His flamenco
and acoustic facets are also present in the Gipsy Kings band. Luis Miguel appears in
the list because of Alejandro Sanz’s quiet ballads. The rest of the artists fall into the
broad range of singer/songwriter, folk and Americana styles, and includes: Jackson
Browne, Emmy Lou Harris, Ry Cooder, Dwight, Uncle Kracker and Harry Chapin.
In this case, similarity with Alejandro Sanz is more arguably. Also, a few similar
artists are female singers (Anika Moa, The Corrs, Presuntos Implicados, Emmylou
Harris, and Laura Pausini). In these cases, music similiarty and production artifacts
probably predominate over melody and voice. Finally, there are some strange and
incomprehensible artists, such as Graham Central Station (a long tail band, playing
a mix of funk, soul, and rhythm and blues), and The Imperials (also a long tail band,
that plays doo-wop and gospel music). Without any explanation or transparency
about these recommendations, a user will probably perceive some of the similar
artists as non-relevant.

3.4.4 Hybrid Methods

The combination of different approaches allows a system to minimise the issues that
a solely method can have. One way to combine different recommendation methods
is the cascade approach (see Sec. 2.5.5). Cascade is a step by step process. One
technique is applied first, obtaining a ranked list of items. Then, a second technique
refines or re-rank the results obtained in the first step.



3.4 Recommendation Methods 79

For example, to compute artist similarity a system can first apply CF, and then
reorder or combine the results according to the semantic distance from social tag-
ging (LSA). Another option is first apply CF as well as the semantic distance from
social tagging (LSA), and combine these results. After that, apply content-based
audio similarity to rerank the similar artists.

3.4.4.1 An example

Table 3.9 shows The Dogs d’Amour similar artists using a cascade hybrid method.
First, The Dogs d’Amour top-100 similar artists are computed using CF, with Pear-
son correlation distance. In a second step, for each artist in this top-100 list we
compute LSA—using SVD with 100 factors—and cosine similarity from the social
tagging data, between the actual artist and the seed artist (The Dogs d’Amour). Af-
ter that, we combine the results from Pearson CF with the results obtained in this
second step. We use a linear combination function setting α = 0.5:

sim(ai,a j)Hybrid = (1−α) · sim(ai,a j)CF,Pearson +α · sim(ai,a j)Context,LSA (3.4)

This way we can improve the original CF results, and also the results obtained solely
from social tagging. Indeed, the Pearson CF approach returned some strange and
non-relevant results, such as Michael Jackson or Zero 7 (see Table 3.9, left). After
reordering the results using social tagging data, both artists disappear from the top-
10 (hybrid) list of similar artists. Also, some artists that were not in the CF top-10
appear in the final set of similar artists (Table 3.9, right), due to the linear combina-
tion of the two approaches (Pearson CF and LSA from tags).

In this case, the cascade chain method makes sense. The first results are ob-
tained taking into account the music users listen to; “people who listen to The Dogs
d’Amour also listen to X”. Then, the second step promotes those artists X that are
closer, in the semantic community annotation space, to the seed artist.21

3.4.4.2 Related Work

Related work in hybrid music recommendation is presented in Yoshii et al. [84, 85].
The origins of their work can be found in [86], where they present a hybrid music
recommender system based on a probabilistic generative model, named three-way
aspect model [87]. The model explains the generative process for the observed data
by introducing a set of latent variables. Their system integrates both explicit collab-
orative filtering and audio content-based features. Collaborative filtering contains
the users’ ratings for the songs, and it is based on a [0..2] scale. A zero means

21 After some inspection, and according to the author’s knowledge of The Dogs d’Amour band, the
hybrid approach produces much better results than both LSA from social tagging and Pearson CF
alone.
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The Dogs d’Amour SimilarityPearson The Dogs d’Amour SimilarityHybrid

Los Fabulosos Cadillacs 0.806 Electric Boys 0.868
Electric Boys 0.788 Lillian Axe 0.826

Lillian Axe 0.784 Ginger 0.752
Michael Jackson 0.750 Enuff z’nuff 0.732

Ginger 0.723 Michael Monroe 0.724
The Decemberists 0.699 Hardcore Superstar 0.692

The Byrds 0.667 Faster Pussycat 0.691
Zero 7 0.661 Firehouse 0.690
Rancid 0.642 Nashville Pussy 0.677

The Sonics 0.629 The Wildhearts 0.651

Table 3.9 The Dogs d’Amour top-10 similar artists using CF with Pearson correlation distance
(left), and (right) a hybrid version using only the top-100 similar artists from CF, and reordering
the artists using LSA and cosine distance from social tagging.

that the user does not like the song, 1 means indifference, and 2 that a user likes the
song. Content-based audio features include a Gaussian Mixture Model using the 13
coefficients from MFCC. The authors improve the efficiency and scalability of the
previous approach, using incremental learning in [85].

Tiemann et al. investigate ensemble learning methods for hybrid music recom-
mender algorithms in [88]. This approach combines social and content-based meth-
ods, where each one produces a weak learner. Then, using a combination rule, it
unifies the output of the weak learners. The results suggests that the hybrid ap-
proach reduces the mean absolute prediction error, compared to the weak learners
used solely.

3.5 Summary

This chapter has presented the main actors in music recommendation; user profiling
and the representation of musical items, as well as the existing methods to recom-
mend music assets given a user profile.

User preferences depends on the type of listener, and her level of engagement
with the music. Furthermore, music perception is very subjective, and it is influ-
enced by the context. In this sense, user profile representation is an important aspect.
We have presented three different notations: UMIRL, MPEG-7 based, and Friend of
a Friend. The former is one of the first attempts in this field. The UMIRL language
is not formal enough, but a proposal that contains some interesting ideas. User pref-
erences in MPEG-7 is the first big and serious attempt to formalise user modelling,
related with the multimedia content. The main problem of this approach is that the
MPEG-7 standard is too complex and verbose. It is not straight forward to gener-
ate user profiles following the notation proposed by the standard. The last proposal,
Friend of a Friend profiles, is based on the Semantic Web initiative. It is the most
flexible approach. As it is based on the Semantic Web premises, Friend of a Friend
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profiles can embed different ontologies, so it is extensible, and has richer semantics
than the other two approaches.

In music recommedation, item-based similarity is the most common way to com-
pute and predict the recommendations. Item profile representation, then, is the first
step to compute item similarity, in order to provide music recommendations to a
user. We describe the representation and modelling of music items via the Music
Information Plane. MIP defines the different levels of complexity and abstraction
of the music descriptions. Based on the MIP approach, we present three comple-
mentary ways to describe artists and songs; using editorial, cultural, and acous-
tic information. Similarity measures—based on the editorial, cultural, and acous-
tic information—are also introduced. Then, for each recommendation method, we
present the resulting list of top-20 similar artists using The Dogs d’Amour rock band
as seed artist. An informal evaluation shows that the hybrid approach, using a mix
of collaborative filtering and social tagging, produces the best results.

3.5.1 Links with the Following Chapters

An important remaining task is the formal evaluation of music (and user) similarity,
as this is the basis to provide music recommendations. This evaluation is presented
in Chap. 5, that presents the metrics, and Chap. 6, that contains the actual evaluation
of real, and big datasets. Also, user’s perceived quality of the recommendations
is very important. We present, in Chap. 7, an experiment done with 288 subjects,
that analyses the effects of providing novel and relevant music recommendations to
users. Still, before going further into the evaluation process, we present in Chap. 4
the Long Tail phenomenon, and its effects in the music domain.
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Chapter 4
The Long Tail in Recommender Systems

4.1 Introduction

The Long Tail is composed of a small number of popular items, the well-known
hits, and the rest are located in the heavy tail, those not sell that well. The Long
Tail offers the possibility to explore and discover—using automatic tools; such as
recommenders or personalised filters—vast amounts of data. Until now, the world
was ruled by the Hit or Miss categorisation, due in part to the shelf space limitation
of the brick-and-mortar stores. A world where a music band could only succeed
selling millions of albums, and touring worldwide.

Nowadays, we are moving towards the Hit vs. Niche paradigm, where there is a
large enough availability of choice to satisfy even the most Progressive–obscure–
Spanish–metal fan. The problem, though, is to filter and present the right artists to
the user, according to her musical taste.

Chris Anderson introduces in his book, “The Long Tail” [1], a couple of im-
portant conditions to exploit the content available in niche markets. These are: (i)
make everything available, and (ii) help me find it. It seems that the former condi-
tion is already fulfilled; the distribution and inventory costs are nearly negligible.
Yet, to satisfy the latter we need recommender systems that exploit the from hits to
niches paradigm. The main question, though, is whether current recommendation
techniques are ready to assist us in this discovery task, providing recommendations
of the hidden gems in the Long Tail.

In fact, recommenders that appropriately discount popularity may increase total
sales, as well as potentially increase the margins by suggesting more novel, or less
known, products [2]. Tucker et al. develop a theoretical model which shows how
the existence of popular items can, in fact, benefit the perceived quality of niche
products [3]. As these niche items are less likely to attract customers, the ones they
attract perceive the products as higher quality than the mainstream ones. The au-
thors’ findings contribute to the understanding that popularity affects the long tail
of e-Commerce. Even though web 2.0 tools based on the user’s history of purchases
promote the popular goods, their results suggest that mainstreamness benefits the
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perceived quality of niche products. Again, the big problem is to develop filters and
tools that allow users to find and discover these niche products.

4.1.1 Pre- and post-filters

In the brick-and-mortar era, the market pre-filtered those products with lower prob-
ability of being bought by people. The main problem was the limited physical space
to store the goods. Nowadays, with the unlimited shelf space, there is no need to pre-
filter any product [1]. Instead, what users need are post-filters to make the products
available and visible, and get personalised recommendations, according to their in-
terests. Still, when publishers or producers pre-filter the content they also contribute
to cultural production. E.g. many books or albums would be a lot worse without
their editors and producers.

One should assume that there are some extremely poor quality products along
the Long Tail. These products do not need to be removed by the gatekeepers any-
more, but can remain in the Long Tail forever. The advisors are the ones in charge of
not recommending low quality goods. In this sense, [4] proved that increasing the
strength of social influence increased both inequality and unpredictability of suc-
cess. As a consequence, popularity was only partly determined by quality. In fact,
the quality of a work cannot be assessed in isolation, because our experience is so
tied up with other people’s experience of that work. Therefore, one can find items
to match anyone’s taste along the Long Tail. It is the job of the post-filters to ease
the task of finding them.

4.2 The Music Long Tail

As already mentioned in Chap. 1, the “State of the Industry” report [5] presents
some insights about the long tail in music consumption. For instance, 844 million
digital tracks were sold in 2007, but only 1% of all digital tracks—the head part of
the curve—accounted for 80% of all track sales. Also, 1,000 albums accounted for
50% of all album sales, and 450,344 of the 570,000 albums sold were purchased
less than 100 times. Music consumption is biased towards a few mainstream artists.
Ideally, by providing personalised filters and discovery tools to the listeners, music
consumption would be diversified.

4.2.1 The Long Tail of Sales Versus the Long Tail of Plays

When computing a Long Tail distribution, one should define how to measure the
popularity of the items. In the music domain, this can be achieved using the total
number of sales or the total number of plays. On the one hand, the total number of
sales denote the current trends in music consumption. On the other hand, the total
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number of playcounts tell us what people listen to, independently of the release year
of the album (or song).

In terms of coverage, total playcounts is more useful, as it can represent a larger
number of artists. An artist does not need to have an album released, but a Myspace-
like page, which includes the playcounts for each song. Gathering information about
the number of plays is easier than collecting the albums an artist has sold. Usually,
the number of sales are shown in absolute values, aggregating all the information,
and these numbers are used to compare the evolution of music consumption over the
years. The total number of plays give us more accurate information, as it describes
what people listen to. Thus, we will define the Long Tail in music using the total
playcounts per artist.

As an example, Table 4.1 shows the overall most played artists at last.fm in July,
2007. These results come from more than 20 million registered users. Although
the list of top-10 artists are biased towards this set of users, it still represents the
listening habits of a large amount of people. In contrast, Table 4.2 shows the top-10

1. The Beatles (50,422,827)
2. Radiohead (40,762,895)
3. System of a Down (37,688,012)
4. Red Hot Chili Peppers (37,564,100)
5. Muse (30,548,064)
6. Death Cab for Cutie (29,335,085)
7. Pink Floyd (28,081,366)
8. Coldplay (27,120,352)
9. Nine Inch Nails (24,095,408)

10. Blink 182 (23,330,402)

Table 4.1 Top-10 popular artists in last.fm according to the total number of plays (last column).
Data gathered during July, 2007.

artists in 2006 based on total digital track sales (last column) according to Nielsen
Soundscan 2006 report [6]. The second column (values in parenthesis) shows the
corresponding last.fm artist rank. There is not a clear correlation between the two
lists, and only one artist (Red Hot Chili Peppers) appears in both top-10 lists.

Furthermore, Table 4.3 shows the top-10 selling artists in 2006 based on total
album sales (last column), again according to the Nielsen 2006 report. In this case,
classic artists such as Johnny Cash (top-2) or The Beatles (top-5) appear. This re-
flects the type of users that still buy CDs. Regarding Carrie Underwood, she is an
American country pop music singer who became famous after winning the fourth
season of American Idol (2005). Carrie Underwood album, released in late 2005,
became the fastest selling debut Country album. Keith Urban, Tim McGraw and
Rascal Flatts are American country/pop songwriters with a leading male singer. In
all these cases, they are not so popular in the last.fm community.

All in all, only The Beatles (in Table 4.3), and Red Hot Chili Peppers (in Table
4.2) appear in the top-10 last.fm chart (see Table 4.1). It is worth noting that in
2006 The Beatles music collection was not (legally) available for purchase in digital
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1. (912) Rascal Flatts (3,792,277)
2. (175) Nickelback (3,715,579)
3. (205) Fray (3,625,140)
4. (154) All-American Rejects (3,362,528)
5. (119) Justin Timberlake (3,290,523)
6. (742) Pussycat Dolls (3,277,709)
7. (4) Red Hot Chili Peppers (3,254,306)
8. (92) Nelly Furtado (3,052,457)
9. (69) Eminem (2,950,113)

10. (681) Sean Paul (2,764,505)

Table 4.2 Top-10 artists in 2006 based on total digital track sales (last column) according to
Nielsen report. The second column (values in parenthesis) shows the corresponding last.fm artist
rank.

1. (912) Rascal Flatts (4,970,640)
2. (70) Johnny Cash (4,826,320)
3. (175) Nickelback (3,160,025)
4. (1514) Carrie Underwood (3,016,123)
5. (1) The Beatles (2,812,720)
6. (1568) Tim McGraw (2,657,675)
7. (2390) Andrea Bocelli (2,524,681)
8. (1575) Mary J. Blige (2,485,897)
9. (1606) Keith Urban (2,442,577)

10. (119) Justin Timberlake (2,437,763)

Table 4.3 Top-10 selling artists in 2006 (based on total album sales, last column) according to
Nielsen report. The second column (values in parenthesis) shows the corresponding last.fm artist
rank.

form. On the other hand, last.fm listening habits denote what people listen to, and
that does not necessarily correlate with the best sellers. For instance, classic bands
such as Pink Floyd, Led Zeppelin (at top-15), Tool (top-16) or Nirvana (top-18) did
not release any new album during 2006, but still they are in the top-20 (at mid-2007).
From this informal analysis we conclude that popularity is a nebulous concept that
can be viewed in different ways.

From now on, we characterise music popularity using the total playcounts of an
artist, keeping in mind that the data is not correlated with the actual number of sales,
and also that the data will be biased towards the subset of users that are taken into
account (in our case, the entire last.fm community).

4.2.2 Collecting Playcounts for the Music Long Tail

In the music field, total artist playcounts allow us to determine artist popularity.
There are at least two different ways to collect artists’ plays from the web. The first
one is using last.fm data, and the second one is using the data from Myspace. In
principle, one should expect a clear correlation among both datasets. That is, if an
artist has a lot of plays in one system then the same should happen in the other one.
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Fig. 4.1 Correlation between last.fm and Myspace artist playcounts. Data gathered during January,
2008.

However, each system measures different listening habits. On the one hand, last.fm
monitors what users listen to in virtually any device, whereas Myspace only tracks
the number of times a song has been played in their embedded Flash player. On
the other hand, Myspace data can track the number of plays for those artists that
have not released any album, but a list of songs (or demos) that are available on the
Myspace artist profile. In this case, it is very unlikely to gather this data from last.fm
because the only available source to listen to the songs is via Myspace (specially if
the artist forbids users to download the songs from Myspace). For example, the artist
Thomas Aussenac has (on October 21st, 2008) 12,486 plays in Myspace1 but only
63 in last.fm.2 Therefore, sometimes (e.g. head and mid artists) both systems can
provide similar listening habits results, whilst in other cases they track and measure
different trends. Some plausible reasons about these differences could be due to the
demographics and locale of both users and artists in the two systems.

Figure 4.1 depicts the total playcounts for an artist in last.fm versus the total
playcounts in Myspace (data gathered during January, 2008). That is, given the play-
counts of an artist in last.fm, it plots its total plays in Myspace. We remark two inter-
esting areas; upper left and bottom right. These areas are the ones with those artists
whose playcounts are clearly uncorrelated between the two datasets. For instance,
the upper left area shows the artists that have lots of plays in Myspace, but just a
few in last.fm. The formula used to select the artists in this area is (it is analogous
for the last.fm versus Myspace—in the bottom right area):

PlaysMyspace > 105 ∧ log(PlaysMyspace)
log(PlaysLast. f m)

≥ 1.5 (4.1)

1 http://www.myspace.com/thomasaussenac
2 http://www.last.fm/music/thomas+aussenac

http://www.myspace.com/thomasaussenac
http://www.last.fm/music/thomas+aussenac


92 4 The Long Tail in Recommender Systems

Fig. 4.2 The music Long Tail effect. A log-linear plot depicting the total number of plays per artist.
Data gathered during July, 2007, for a list of 260,525 artists.

That is, artists that have more than 100,000 plays in Myspace, but much less in
last.fm. In this case, we could consider that some of these artists are well-known in
the Myspace area, having lots of fans that support them, but the artist still has no
effect outside Myspace. Maybe this type of artists can reach a broader popularity
after releasing an album. For instance, Michael Imhof,3 a German house and r&b
artist, has more than 200,000 playcounts in Myspace, but only 2 in last.fm. A more
extreme example is Curtis Young4 (aka Hood Surgeon), the son of legendary hip-
hop producer Dr. Dre, who has 13,814,586 plays in Myspace but less than 20,000
in last.fm. It is worth mentioning that there are some services5 that allow a Myspace
artist to automatically increase their total playcounts, without the need for real users.

All in all, there are different ways of measuring an artist’s popularity, and might
even exist different domains of popularity; what is popular in one domain can be
unknown in another. As previously stated, popularity is a nebulous concept that can
be viewed in different ways.

4.2.3 An Example

Figure 4.2 depicts the Long Tail popularity, using total playcounts, for 260,525 mu-
sic artists. The horizontal axis contains the list of artists ranked by its total play-
counts. For example The Beatles, at position 1, has more than 50 million playcounts.

This data was gathered from last.fm during July, 2007. Last.fm provides plu-
gins for almost any desktop music player (as well as iPhones and other mobile

3 http://www.myspace.com/michaelimhof
4 http://www.myspace.com/curtisyoungofficial
5 Such as http://www.somanymp3s.com/

http://www.myspace.com/michaelimhof
http://www.myspace.com/curtisyoungofficial
http://www.somanymp3s.com/
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Fig. 4.3 The music Long Tail effect. Same plot as Fig. 4.2 here in log–log scale. The best fit is a
log-normal distribution, with a mean of log μ = 6.8, and standard deviation of log, σ = 2.18. The
fast drop in the tail is in part due to misspelled artists (e.g. incorrect metadata in the ID3 tags).

devices) to track users’ listening behaviour. It also provides a Flash player embed-
ded in their website, and a client for PC, Mac and Linux that can create personalised
audio streams. Figure 4.2 corroborates the music consumption reports by Nielsen
Soundscan [5]; a few artists concentrate most of the total plays, whilst many musi-
cians hold the rest. Figure 4.3 presents the same data as Fig. 4.2, in log–log scale.
The best fit for the curve is a log-normal distribution, with parameters mean of log
μ = 6.8, and standard deviation of log σ = 2.18 (more information about fitting a
curve with a distribution model is presented in Sec. 4.3.2). It is worth noting that the
fast drop in the tail is in part due to misspelled artists (e.g. incorrect metadata in the
ID3 tags).

4.3 Definitions

The Long Tail of a catalog is measured using the frequency distribution (e.g. pur-
chases, downloads, etc.), ranked by item popularity. We present now two definitions
for the Long Tail. The first one is an informal, intuitive one. The second one is
a quantitative definition that uses a formal model to characterise the shape of the
curve, and a method to fit the data to some well-known distributions (e.g. power-
law, power-law with exponential decay, log-normal, etc.).
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4.3.1 Qualitative, Informal Definition

According to Chris Anderson [1], the Long Tail is divided in two separate parts: the
head and the tail. The head part contains the items one can find in the old brick-
and-mortar markets. The tail of the curve is characterised by the remainder of the
existing products. This includes the items that are available in on-line markets. Chris
Anderson’s definition, based on the economics of the markets, is:

The Long Tail is about the economics of abundance; what happens when the bottlenecks
that stand between supply and demand in our culture start to disappear and everything
becomes available to everyone.

The definition emphasises the existence of two distinguished markets; the famil-
iar one (the Head), and the long ignored but emerging since the explosion of the
web (the Tail), consisting of small niche markets.

Another definition is the one by Jason Foster:

The Long Tail is the realization that the sum of many small markets is worth as much, if not
more, than a few large markets.6

Both definitions are based on markets and economics, and do not propose any
computational model to compute and characterise any tail curve, nor fit the data to
any existing distribution. Indeed, [1] does not define how to split the head and the
tail parts, that are the two key elements in both definitions.

4.3.1.1 Physical Apples Versus Online Oranges

Since The Long Tail book became a top-seller, there is a lot of criticism against
Anderson’s theory. The most common criticism is the lack of scientific backup when
comparing different data sources. That is, when comparing the online world to the
physical world, Anderson simplifies too much. For instance, he considers only one
brick-and-mortar store (e.g. Walmart), and compares their music catalog with the
one found in the Rhapsody online store. However, in the real world there are much
more music stores than Walmart. Indeed, there are specialised music stores that
carry out ten times the volume of Walmart’s music catalog. Sadly enough, these
ones are completely ignored in Anderson’s studies [7].

In addition, there is no clear evidence that online stores can monetise the Long
Tail. According to Elberse et al. there is no evidence of a shift in online markets
towards promoting the tail [8]. The tail is long, but extremely flat. In their results,
hit-driven economies are found in both physical and online markets. Furthermore,
in an older study [9], Elberse found that the long tail of movies, those that sell
only a few copies every week nearly doubled during their study period. However,
the number of non-selling titles rose four times, thus increasing the size of the tail.
Regarding the head of the curve; a few mainstream movies still accounted for most
of the sales.

6 From http://longtail.typepad.com/the_long_tail/2005/01/definitions
_fin.html

http://longtail.typepad.com/the_long_tail/2005/01/definitions
_fin.html
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Another drawback of the theory is the creation of online oligarchies. “Make
everything available” is commonly achieved by One-Big-Virtual-Tent rather than
Many-Small-Tents.7 That is to say, there is only one Amazon that provides most of
the content.

Last but not least, Anderson’s theory states that the Long Tail follows a power-
law distribution. That is a straight line in a log–log plot. However, only plotting a
curve in a log–log scale is not enough to verify that the curve follows a power-law.
It can better fit to other distributions, such as log-normal or a power-law with an
exponential decay of the tail. We need, then, a model that allows us to quantitative
define the shape of the Long Tail curve, without the need of linking it with niche
markets, economics, and profitable (or not) e-Commerce websites.

4.3.2 Quantitative, Formal Definition

The Long Tail model, F(x), simulates any heavy-tailed distribution [10]. It models
the cumulative distribution of the Long Tail data. F(x) represents the share (%) of
total volume covered by objects up to rank x:

F(x) =
β

(N50
x )α +1

(4.2)

where α is the factor that defines the S-shape of the function, β is the total volume
share (and also describes the amount of latent demand), and N50, the median, is the
number of objects that cover half of the total volume, that is F(N50) = 50.

Once the Long Tail is modelled using F(x), we can divide the curve in three
parts: head, mid, and the tail. The boundary between the head and the mid part of
the curve is defined by:

Xhead→mid = N2/3
50 (4.3)

Likewise, the boundary between the mid part and the tail is:

Xmid→tail = N4/3
50 � X2

head→mid (4.4)

Figure 4.4 depicts the cumulative distribution of the Long Tail of the 260,525
music artists presented in Fig. 4.2. Interestingly enough, the top-737 artists, 0.28%
of all the artists, account for 50% of the total playcounts, F(737) = 50(N50 = 737),
and only the top-30 artists hold around 10% of the plays. Another measure is the
Gini coefficient. This coefficient measures the inequality of a given distribution, and
it determines the degree of imbalance [11]. In our Long Tail example, 14% of the
artists hold 86% of total playcounts, yielding a Gini coefficient of 0.72. This value
describes a skewed distribution, higher than the classic 80/20 Pareto rule, with a

7 See Tom Slee critical reader’s companion to “The Long Tail” book at
http://whimsley.typepad.com/whimsley/2007/03/the_long_tail_l.html

http://whimsley.typepad.com/whimsley/2007/03/the_long_tail_l.html
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Fig. 4.4 Example of the Long Tail model. It shows the cumulative percentage of playcounts of
the 260,525 music artists from Fig. 4.2. Only top-737 artists, 0.28% of all the artists, accumulates
the 50% of total playcounts (N50). Also, the curve is divided in three parts: head, mid and tail
(Xhead→mid = 82, and Xmid→tail = 6,655), so each artist is located in one section of the curve.

value of 0.6. Figure 4.4 also shows the three different sections of the Long Tail. The
head of the curve, Xhead→mid consists of only 82 artists, whilst the mid part has 6,573
(Xmid→tail = 6,655). The rest of the artists are located in the tail.

4.3.2.1 Fitting a Heavy-Tailed Distribution Using F(x)

To use the F(x) function we need to fit the curve with an estimation of α , β and N50

parameters. We do a non-linear regression, using Gauss–Newton method for non-
linear least squares, to fit the observations of the cumulative distribution to F(x).8

Figure 4.5 shows an example of the fitted distribution using the F(x) model. The
data is the one from artist popularity in last.fm (Fig. 4.4).

4.3.3 Qualitative Versus Quantitative Definition

On the one hand, the qualitative definition by Anderson emphasises the economics
of the markets, and the shift from physical to virtual, online, goods. On the other
hand, the quantitative definition is based on a computational model that allows us to
fit a set of observations (of the cumulative distribution) to a given function, F(x).

The main difference between the two definitions (qualitative and quantitative)
is the way each method split the curve into different sections (e.g. the head and

8 To solve the non-linear least squares we use the R statistical package. The code is available at
http://mtg.upf.edu/˜ocelma/PhD

http://mtg.upf.edu/~ocelma/PhD
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Fig. 4.5 Example of fitting a heavy-tailed distribution (the one in Fig. 4.4) with F(x). The black
dots represent the observations while the white dotted curve represents the fitted model, with pa-
rameters α = 0.73, and β = 1.02.

the tail). The qualitative approach is based on the % covered by x (e.g. “20% of
the products represent 80% of sales”) whereas the quantitative definition splits the
x (log) axis equally in three (head, mid, and tail) parts. The main problem is that
when adding many more products (say 10,000) in the curve, the changes in the head
and tail boundaries are very radical in the qualitative definition. The quantitative
approach does not suffer from this problem. The changes in the section boundaries
are not so extreme.

4.4 Characterising a Long Tail Distribution

An early mention of the “long tail”, in the context of the Internet, was Clay Shirky’s
essay in February, 2003.9 After that, [1] converted the term to a proper noun, and
defined a new trend in economics. Since then, the spotlight on the “Long Tail” noun
has created many different opinions about it.

In our context, we use a “Long Tail” curve to describe the popularity phe-
nomenon in any recommender system, to show how popularity can affect the recom-
mendations. So, given a long tail distribution of the items’ popularity, an important
step is to characterise the shape of the curve to understand the amount of skewness.

9 See http://shirky.com/writings/powerlaw_weblog.html

http://shirky.com/writings/powerlaw_weblog.html
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We characterise a Long Tail distribution using Kilkki’s F(x) function. Its parameters
α , β , and N50 defines the shape of the curve.

Yet, it is also important to determine the shape of the curve according to well-
known probability density distributions. There are different probability density dis-
tribution functions that can fit a heavy-tailed curve. We present some of them here:
power-law, power-law with exponential decay, and log-normal distribution.

4.4.1 Not All Long Tails Are Power-Law

A power-law distribution is described using the probability density distribution
(pdf ), f (x):

f (x) = ax−γ (4.5)

Power-law distribution has the property of (asymptotic) scale invariance. This
type of distribution cannot be entirely characterised by its mean and variance. Also,
if the γ power-law exponent has a value close to 1, γ � 1, then this means that the
long tail is fat.10 In other words, a power-law with γ � 1 consists of a thin tail (with
values close to 0), and a short head with a high probability value.

Power-law with an exponential decay distribution differs from a power-law by
the shape of the tail. Its pdf is defined by:

f (x) = x−γ e−λx, (4.6)

There exists an N that denotes the threshold between the power-law distribution
(x−γ ,x ≤ N), and the exponential decay (e−λx,x > N). This means that the tail of
the curve is better represented with an exponential cut-off.

In a log-normal distribution the logarithm of the variable is normally distributed.
That is to say, if a variable X is normally distributed, then Y = eX has a log-normal
distribution. Log-normal distribution promotes the head of the curve. It is a distri-
bution skewed to the right, where the popular items have a strong effect, whilst the
tail has a very small contribution in the pdf :

f (x) =
1
x

e
− (ln(x)−μ)2

2σ2 (4.7)

Thus, the main problem is, given a curve in a log–log scale representation, to de-
cide which is the best model that explains the curve. It is worth noting that, accord-
ing to Anderson’s theory (i.e. the Long Tail is profitable), the curve should be mod-
elled as a power-law, with γ � 1, meaning that the tail is fat. However, if the best fit
is using another distribution, such as a log-normal—which is very common— then
Anderson’s theory cannot be strictly applied in that particular domain, and context.

10 This is the only case where Anderson’s Long Tail theory can be applied.
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4.4.2 A Model Selection: Power-Law or Not Power-Law?

To characterise a heavy-tailed distribution, we follow the steps described in Clauset
et al. [12]. As previously mentioned, the main drawbacks when fitting a Long Tail
distribution are: (i) to plot the distribution on a log–log plot, and see whether it
follows a straight line or not, and (ii) use linear regression by least squares to fit a line
in the log–log plot, and then use R2 to measure the fraction of variance accounted
for the curve. This approach gives a poor estimate of the model parameters, as it is
meant to be applied to regression curves, not to compare distributions. Instead, to
decide whether a heavy-tailed curve follows a power-law distribution, [12] propose
the following steps:

1. Estimate γ . Use the maximum likelihood estimator (MLE) for the γ scaling ex-
ponent. MLE always converge to the correct value of the scaling exponent.

2. Detect xmin. Use the goodness of fit value to estimate where the scaling region
begins (xmin). The curve can follow a power-law on the right or upper tail, so
above a given threshold xmin. The authors propose a method that can empirically
find the best scaling region, based on the Kolmogorov–Smirnov D statistic.

3. Goodness of the model. Use, again, the Kolmogorov–Smirnov D statistic to com-
pute the discrepancy between the empirical distribution and the theoretical one.
The Kolmogorov–Smirnov (K–S) D statistic will converge to zero, if the empiri-
cal distribution follows the theoretical one (e.g. power-law). The K–S D statistic
for a given cumulative distribution function F(x), and its empirical distribution
function Fn(x) is:

Dn = sup
x
|Fn(x)−F(x)|, (4.8)

where sup |S| is the supremum of a set S. That is the lowest element of S that is
greater than or equal to each element of S. The supremum is also referred to as
the least upper bound.

4. Model selection. Once the data is fitted to a power-law distribution, the only
remaining task is to check among the different alternatives. That is, to detect
whether other non power-law distributions could have produced the data. This
is done using pairwise comparison (e.g. power-law versus power-law with expo-
nential decay, power-law versus a log-normal, etc.), and [12] use the Vuong’s test
[13]. Vuong’s test uses the log-likelihood ratio and the Kullback–Leibler infor-
mation criterion to make probabilistic statements about the two models. Vuong’s
statistical test is used for the model selection problem, where one can determine
which distribution is closer to the real data. A large, positive Vuong’s test statistic
provides evidence of the best fitting using a power-law distribution over the other
distribution, while a large, negative test statistic is an evidence of the contrary.
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4.5 The Dynamics of the Long Tail

Another important aspect of any Long Tail is its dynamics. E.g., does an artist stay
in the head region forever? Or the other way around; will niche artists always remain
in the long tail? Figure 4.6 depicts the increase of the Long Tail popularity after 6
months, using 50,000 out of the 260,525 last.fm artists (see Fig. 4.2). Figure 4.6
shows the dynamics of the curve comparing two snapshots; one from July 2007,
and the other from January 2008. The most important aspect is the increase of total
playcounts in each area of the curve.

Fig. 4.6 The dynamics of the Long Tail after 6 months (between July, 2007 and January, 2008).
Radiohead, at top-2, is now closer to The Beatles (top-1), due to the release of their In Rainbows
album.

4.5.1 Strike a Chord?

Table 4.4 shows the playcount increment, in %. In all the three regions—head, mid,
and tail—the percentage increment of plays is almost the same (around 62%), mean-
ing that not many artists move between the regions. For instance, in the head area,
Radiohead at top-2 is much closer to top-1, The Beatles, due to the release of the
In Rainbows album.11 Still, the band remains at top-2. An interesting example in
the tail area is the Nulla Costa band. This band was at rank 259,962 in July, 2007.
After 6 months they increase from 3 last.fm playcounts to 4,834, positioning at rank
55,000. Yet, the band is still in the tail region. We could not detect any single artist

11 In Rainbows album was released on October 10th, 2007
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that clearly moved from the tail to the mid region.12 There exist niche artists, and the
main problem is to find them. The only way to leverage the long tail is by providing
recommendations that promote unknown artists.

Once the Long Tail is formally described, the next step is to use this knowl-
edge when providing recommendations. The following section presents how one
can exploit the Long Tail to provide novel or familiar recommendations, taking into
account the user profile.

Long Tail region Increase (%)

Head 61.20
Mid 62.29
Tail 62.32

Table 4.4 Increase of the Long Tail regions (in %) after 6 months (comparing two snapshots in
July, 2007 and January, 2008).

4.6 Novelty, Familiarity and Relevance

If you like The Beatles you might like...X . Now, ask several different people and you
will get lots of different X ′s. Each person, according to her ties with the band’s mu-
sic, would be able to propose interesting, surprising or expected X ′s. Nonetheless,
asking the same question to different recommender systems we are likely to get sim-
ilar results. Indeed, two out of five tested music recommenders contain John Lennon,
Paul McCartney and George Harrison in their top-10 (last.fm and the.echotron.com
by The Echo Nest company). Yahoo! Music recommends John Lennon and Paul Mc-
Cartney (1st and 4th position), whereas Mystrands.com only contains John Lennon
(at top-10). Neither ilike nor Allmusic.com contain any of these musicians in their
list of Beatles’ similar artists. Furthermore, Amazon’s top-30 recommendations for
the Beatles’ White Album is strictly made of other Beatles’ albums (all of a sudden,
at the fourth page of the navigation there is the first non-Beatles album; Exile on
Main St. by The Rolling Stones). Finally, creating a playlist from OneLlama.com—
starting with a Beatles seed song—one gets four out of ten songs from the Beatles,
plus one song from John Lennon, so it makes half of the playlist. It is worth men-
tioning that these recommenders use different approaches, such as: collaborative
filtering, social tagging, web mining and co-occurrence analysis of playlists. To con-
clude this informal analysis, the most noticeable fact is that only last.fm remembers
Ringo Starr!13

12 Last.fm has the “hype artist” weekly chart, http://www.last.fm/charts/hypeartist,
a good source to track the movements in the Long Tail curve.
13 This informal analysis was done in July, 2007.

http://www.last.fm/charts/hypeartist
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One can agree or disagree with all these Beatles’ similar artist lists. However,
there are a very few, if none at all, serendipitous recommendations (the rest of the
similar artists were, in no particular order: The Who, The Rolling Stones, The Beach
Boys, The Animals, and so on). Indeed, some of the before mentioned systems pro-
vide filters, such as: “surprise me!” or the “popularity slider”, to dive into the Long
Tail of the catalog. Thus, novel recommendations are sometimes necessary to im-
prove the user’s experience and discovery in the recommendation workflow.

It is not our goal to decide whether one can monetise the Long Tail or to exploit
the niche markets, but to help people discover those items that are lost in the tail.
Hits exist and they always will. Our goal is to motivate and guide the discovery
process, presenting to users rare, non-hit, items they could find interesting.

4.6.1 Recommending the Unknown

It has been largely acknowledged that item popularity can decrease user satisfaction
by providing obvious recommendations [14, 15]. Yet, there is no clear recipe for
providing good and useful recommendations to users. We can foresee at least three
key aspects that should be taken into account. These are: novelty and serendip-
ity, familiarity, and relevance [16]. According to Wordnet dictionary,14 novel (adj.)
has two senses: “new—original and of a kind not seen before”; and “refreshing—
pleasantly new or different”. Serendipity (noun) is defined as “good luck in making
unexpected and fortunate discoveries”. Familiar (adj.) is defined as “well known or
easily recognised”. In our context, we measure the novelty for a given user u as the
ratio of unknown items in the list of top-N recommended items, LN :

Novelty(u) =
∑i∈LN

(1−Knows(u, i))
N

, (4.9)

being Knows(u, i) a binary function that returns 1 if user u already knows item
i, and 0 otherwise. Likewise, user’s familiarity with the list of recommended items
can be defined as Familiar(u) = 1−Novelty(u).

Nonetheless, a user should be familiar with some of the recommended items, to
improve confidence and trust in the system. Also, some items should be unknown
to the user (discovering hidden items in the catalog). A system should also give
an explanation of why those—unknown—items were recommended, providing a
higher confidence and transparency on these recommendations. The difficult job for
a recommender is, then, to find the proper level of familiarity, novelty and relevance
for each user.

Figure 4.7 shows the long tail of item popularity, and it includes a user pro-
file. The profile is exhibited as the number of times the user has interacted with
that item. Taking into account item popularity plus the user profile information, a

14 http://wordnet.princeton.edu

http://wordnet.princeton.edu
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Fig. 4.7 A user profile represented in the Long Tail. The profile is exhibited as the number of times
the user has interacted with that item.

recommender can provide personalised and relevant recommendations that are also
novel to the user.

4.6.1.1 Trade-Off Between Novelty and Relevance

However, there is a trade-off between novelty and user’s relevance. The more novel,
unknown items a recommender presents to a user, the less relevant they can be
perceived by her.

Figure 4.8 presents the trade-off between novelty and relevance. It shows the dif-
ferent recommendation states for a given a user u, given a large collection of items
(say, not only the user’s personal collection). The gray triangle represents the area
where a recommender should focus on to provide relevant items to u. On the one
hand, laid-back recommendations (bottom-right) appear when the system recom-
mends familiar and relevant items to u. On the other hand, the discovery process
(top-right) starts when the system provides to the user (potentially) unknown items
that could fit in her profile. The provided recommendations should conform to the
user’s intentions; sometimes a user is expecting familiar recommendations (laid-
back state), while in other cases she is seeking to actively discovery new items.

There are two more cases, that is when the recommender provides popular items,
and when it provides random ones. This can happen when there is not enough infor-
mation about the user (e.g. the user cold-start problem). In this case, the system can
recommend popular items (bottom-left). Popular items are expected to be somehow
familiar to the user, but not necessarily relevant to her. The other situation is when
the system provides random recommendations to u (top-left). This case is similar to
a shuffle playlist generator, with the difference that in our case the items’ catalog is
much bigger than the personal music collection of u. Thus, there is less chances that
user u might like any of the random recommendations, as they are not personalised
at all.
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Fig. 4.8 Trade-off between novelty and relevance for a user u.

4.6.2 Related Work

Serendipity and novelty are relevant aspects in the recommendation workflow [15].
Indeed, there is some related work that explicitly addresses these aspects. For in-
stance, five measures to capture redundancy are presented in [17]. These measures
allow one to infer whether an item—that is considered relevant—contains any novel
information to the user. Yang and Li [18] defines novelty in terms of the user knowl-
edge and her degree of interest in a given item. In [19], Weng et al. propose a
way to improve the quality and novelty of the recommendations by means of a
topic taxonomy-based recommender, and hot topic detection using association rules.
Other proposals include disregarding items if they are too similar to other items that
the user has already seen [20], or simple metrics to measure novelty and serendipity
based on the average popularity of the recommended items [21].

Even though all these approaches focus on providing novel and serendipitous
recommendations, there is no framework that consistently evaluates the provided
recommendations. Thus, there is a need to design evaluation metrics to deal with
the effectiveness of novel recommendations, not only measuring prediction accu-
racy, but taking into account other aspects such as usefulness and quality [14, 22].
Novelty metrics should look at how well a recommender system made a user aware
of previously unknown items, as well as to what extent users accept the new recom-
mendations [14].

Generally speaking, the most popular items in the collection are the ones with
higher probability that a given user will recognise, or be broadly familiar with.
Likewise, one can assume that items with less interaction—rating, purchasing,
previewing—within the community of users are more likely to be unknown [21].
In this sense, the Long Tail of the items’ catalog assists us in deciding how novel or
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familiar an item could be. Yet, a recommender system must predict whether an item
could be relevant, and then be recommended, to a user.

4.7 Summary

Effective recommendation systems should promote novel and relevant material
(non-obvious recommendations), taken primarily from the tail of a popularity dis-
tribution. In this sense, the Long Tail can be described in terms of niche markets’
economics, but also by describing the item popularity curve. We use the latter
definition—the Long Tail model, F(x)—to describe the cumulative distribution of
the curve. In the music field, the F(x) model allows us to define artist popularity,
and her location in the curve (head, mid or tail region). Hence, F(x) denotes the
shared knowledge about an artist, by a community of listeners. From this common
knowledge, we can derive whether an artist can be novel and relevant to a given user
profile.

Our results show that music listening habits follow the hit-driven (or mainstream)
paradigm; 0.28% (737 out of 260,525) of the artists account for the 50% of total
playcounts. The best fit (in the log–log plot) for the music Long Tail is a log-normal
distribution. A log-normal distribution concentrates most of the information in the
the head region. Even though we use playcounts and not total sales to populate the
curve, this finding unveils Anderson’s theory about the economics and monetisation
in the Long Tail. Despite Anderson’s failure or success theory, his core idea still
is an interesting way to explain the changes the web has provoked, in terms of the
availability of all kind of products—from hits to niches.

One of the goals of a recommender should be to promote the tail of the curve
by providing relevant, personalised novel recommendations to its users. That is, to
smoothly interconnect the head and mid regions with the tail, so the recommenda-
tions can drive interest from one to the other. Figure 4.9 presents this idea. It depicts
a 3D representation of the Long Tail; showing the item popularity curve, the similar-
ities among the items, and a user profile denoted by her preferred items (in dark gray
colour). The set of candidate items (dotted lines) to be recommended to the user are
shown also. Items’ height denotes the relevance for that user. Candidate items lo-
cated in the tail part are considered more novel—and, potentially relevant—than the
ones in the head region.

4.7.1 Links with the Following Chapters

In this chapter we have presented the basics for novelty detection in a recommender
system, using the popularity information and its Long Tail shape. The next step is
to evaluate these types of recommendations. We can foresee two different ways to
evaluate novel recommendations, and these are related with (i) exploring the avail-
able (and usually, very large) item catalog, and (ii) filtering new incoming items.
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Fig. 4.9 A 3D representation of the Long Tail. It adds another dimension; the similarities among
the items, including the representation of a user profile (in gray). The set of candidate items to be
recommended to the user are shown (in dotted lines) and its height denotes the relevance for the
user.

We mainly focus on the former case, and we present two complementary evalua-
tion methods. On the one hand, network-centric evaluation method (presented in
Chap. 6) focuses on analysing the items’ similarity graph, created using any item-
based recommendation algorithm. The aim is to detect whether the intrinsic topol-
ogy of the items’ network has any pathology that hinders novel recommendations,
promoting the most popular items. On the other hand, a user-centric evaluation aims
at measuring the perceived quality of novel recommendations. This user evaluation
is presented in Chap. 7. Yet, before presenting the evaluation results we introduce,
in Chap. 5, the metrics that we use.
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Chapter 5
Evaluation Metrics

This chapter presents the different evaluation methods for a recommender system.
We introduce the existing metrics, as well as the pros and cons of each method.
This chapter is the background for the following Chap. 6 and 7, where the proposed
metrics are used in real, large size, recommendation datasets.

5.1 Evaluation Strategies

We classify the evaluation of recommender algorithms in three groups; system-,
network-, and user-centric.

• System-centric evaluation measures how accurate the system can predict the ac-
tual values that user have previously assigned. This approach has been exten-
sively used in collaborative filtering with explicit feedback (e.g. ratings).

• Network-centric evaluation aims at measuring the topology of the item (or
user) similarity network. It uses metrics from complex network analysis (CNA).
Network-centric evaluation measures the inherent structure of the item (or user)
similarity network. The similarity network is the basis to provide the recommen-
dations. Thus, it is important to analyse and understand the underlying topology
of the similarity network.

• User-centric evaluation focuses on the user’s perceived quality and usefulness of
the recommendations. This evaluation requires the user intervention —via sur-
vey, or gaterhing information from the user activity in the system.

The following sections are devoted to explain each evaluation method.

Ò. Celma, Music Recommendation and Discovery, 109
DOI 10.1007/978-3-642-13287-2 5, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 5.1 System-centric evaluation is based on the analysis of the subcollection of items of a user,
using the leave-n-out method [1], and aggregating (e.g. averaging) the results for all users to pro-
vide a final compact metric.

5.2 System-Centric Evaluation

As of today, system-centric evaluation has been largely applied. The most common
approaches are based on the leave-n-out method [1], that resembles to the classic
n-fold cross validation. Given a dataset where a user has implicitly or explicitly
interacted with (via ratings, purchases, downloads, previews, etc.), split the dataset
in two—usually disjunct—sets: training and test. Accuracy evaluation is based only
on a user’s dataset, so the rest of the items of the catalog are ignored. Figure 5.1
presents the method.

The evaluation process includes, then, several metrics such as: predictive accu-
racy (Mean Absolute Error, Root Mean Square Error), decision based (Mean Aver-
age Precision, Recall, F-measure, and ROC), and rank based metrics (Spearman’s
ρ , Kendall-τ , and half-life utility) [2, 3].

5.2.1 Predictive-Based Metrics

Predictive metrics aim at comparing the predicted values against the actual values.
The result is the average over the deviations.

5.2.1.1 Mean Absolute Error (MAE)

Given a test set T of user-item pairs (u, i) with ratings ru,i, the system generates
predicted ratings r̂u,i. Mean Absolute Error (MAE) measures the deviation between
the predicted value and the real value:
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MAE =
1
|T | ∑

(u,i)∈T
|r̂u,i − ru,i| , (5.1)

where r̂u,i is the predicted value of user u for item i, and ru,i the true value.

5.2.1.2 Root Mean Squared Error (RMSE)

Mean Squared Error (MSE) is also used to compare the predicted value with the real
value a user has assigned to an item. The difference between MAE and MSE is that
MSE heavily penalise large errors.

MSE =
1
|T | ∑

(u,i)∈T
(r̂u,i − ru,i)2 (5.2)

Root Mean Squared Error (RMSE) equals to the square root of the MSE value.

RMSE =
√

MSE (5.3)

RMSE is one of the most used metrics in collaborative filtering based on explicit
ratings. RMSE is the metric that was used in the Netflix $1,000,000 prize.

Related metrics are Average RMSE and Average MAE. In this case, we compute
the RMSE (or MAE) for each item and then take the average over all items. Like-
wise, we can compute the RMSE (or MAE) separately for each user and then take
the average over all users.

5.2.2 Decision-Based Metrics

Decision-based metrics evaluates the top-N recommendations for a user. Recom-
mendations comes in a ranked list of items, ordered by decreasing relevance. There
are four different cases to take into account:

• True positive (TP). The system recommends an item the user is interested in.
• False positive (FP). The system recommends an item the user is not interested in.
• True negative (TN). The system does not recommend an item the user is not

interested in.
• False negative (FN). The system does not recommend an item the user is inter-

ested in.

Precision (P) and recall (R) are obtained from the 2× 2 contingency table (or
confusion matrix) shown in Table 5.1. The recommended items are separated into
two classes; relevant or not relevant according to the user profile. When the rating
scale is not binary, we need to transform it into a binary scale, to decide whether
the item is relevant or not. E.g. in a rating scale of [1..5], ratings of 4 or 5 are
considered relevant, and ratings from 1..3 as not-relevant.
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Relevant Not relevant

Recommended TP FP
Not recommended FN TN

Table 5.1 Contingency table showing the categorisation of the recommended items in terms of
relevant or not. Precision and recall metrics are derived from the table.

5.2.2.1 Precision

Precision measures the fraction of relevant items over the recommended ones.

Precision =
T P

T P+FP
(5.4)

Precision can also be evaluated at a given cut-off rank, considering only the top-n
recommendations. This measure is called precision-at-n or P@n.

5.2.2.2 Recall

The recall measures the coverage of the recommended items, and is defined as:

Recall =
T P

T P+FN
(5.5)

Recall is also known as sensitivity, true positive rate (TPR), or hit-rate.

5.2.2.3 F-Measure

F-measure combines P and R results, using the weighted harmonic mean. The gen-
eral formula (for a non-negative real β ) is:

Fβ =
(1+β 2) · (precision · recall)

(β 2 ·precision+ recall)
(5.6)

Two common F-measures are F1 and F2. In F1 recall and precision are evenly
weighted, and F2 weights recall twice as much as precision.

5.2.2.4 Accuracy

Accuracy is the simplest way to evaluate the predicted recommendations. Accuracy
measures the ratio of correct predictions versus the total number of items evaluated.
Accuracy is also obtained from the 2×2 contingency table.

Accuracy =
T P+T N

T P+FP+T N +FN
(5.7)
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5.2.2.5 Receiver Operating Characteristic (ROC) Curve

The previous decision-based metrics (P, R, F-measure) use a fixed recommendation
list length. Receiver Operating Characteristic (ROC) curve measures the selection of
high-quality items over a range of different recommendation list lengths, for a given
user. ROC measures the trade-off between hit-rates (TPR) and false-alarm rates (or
false positive rates, FPR). Hit-rate, or True Positive Rate, is defined as:

T PR = Recall =
T P

T P+FN
(5.8)

False positive rate (FPR) equals to:

FPR =
FP

FP+T N
(5.9)

ROC can visualise the trade-off between TPR and FPR. The random curve as-
signs a probability of 50% to each of the two classes (recommended, not recom-
mended). The area under the curve (AUC) is a measure that summarises a ROC
result. A random curve has an AUC of 0.5. The closer the AUC to 1, the better.

The main drawback of all the previous decision-based metrics is that do not take
into account the ranking of the recommended items. Thus, item at top-1 has the
same relevance as item at top-20. To avoid this limitation, one can use rank-based
metrics.

5.2.3 Rank-Based Metrics

There are two approaches to evaluate ranked lists of recommendations. The first one
it to determine the order of the predicted items for a given user, and compare this
with the correct order, or reference ranking. The second approach is to measure the
utility of the predicted list. In this case, items in the top positions are considered
more rellevant than the ones in the bottom of the list (e.g. the bottom of a webpage).
Whenever the list of recommendations is very large, a pagination is also provided,
so the user can browse the whole list of recommended items.

When using a reference ranking to compare against, the following measures can
be applied: Spearman’s rho (ρ), Kendall–tau (τ), and Normalised distance-based
performance (NDPM).

5.2.3.1 Spearman’s Rho (ρ)

Spearman’s ρ computes the rank-based Pearson correlation of two ranked lists. It
compares the predicted list with the user preferences (e.g. the ground truth data).
Spearman’s ρ is defined as:
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ρ =
1
nu

∑i(ru,i − r̄)(r̂u,i − ˆ̄r)
σ(r)σ(r̂)

(5.10)

where ·̄ and σ(·) denote the mean and standard deviation, and nu the number of
items for user u.

5.2.3.2 Kendall-Tau (τ)

Kendall-τ also compares the recommended list with the user’s preferred list of
items. Kendall-τ rank correlation coefficient is defined as:

τ =
C+ −C−

1
2 n(n−1)

(5.11)

where C+ is the number of concordant pairs, and C− is the number of discordant
pairs in the data set.

5.2.3.3 Normalised Distance-Based Performance

Normalised Distance-based Performance metric (NDPM) was introduced in [4] to
evaluate their collaborative filtering recommender system, named FAB.

NDPM is a normalised distance ([0..1]), between the user’s classification for
a set of documents and the system’s classification for the same documents [5]. In
recommender systems, NDPM measures the difference between a user’s and the
system’s choices. NDPM is defined as:

NDPM =
2C− +Cu

2Ci (5.12)

where C− is number of mismatched preference relations between the system and
user rankings, Cu is the number of compatible preference relations, and Ci is the
total number of preferred relationships in the user’s ranking.

The previous metrics compares two ranked lists, but do not take into account its
utility. Top items are considered more relevant than items in the bottom of the rec-
ommendation list. Utility-based ranking metrics take into account the item position
in the predicted list of recommendations.

5.2.3.4 Average Reciprocal Hit-Rate

Average Reciprocal Hit-Rate (ARHR) is defined as:

ARHR =
1
n

h

∑
i=1

1
pi

(5.13)
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where h is the number of hits that occurred at positions p1, p2, ..., ph within the
top-n list. Hits that occur earlier in the top-n list are weighted higher than hits that
occur later in the list. ARHR rewards each hit based on where is located in the top-N
list. It resembles to the Mean Reciprocal Rank metric from Information Retrieval.

5.2.3.5 Half-Life Utility

Half-life utility (or R-Score) metric attempts to evaluate the utility of the predicted
list of items [1]. The utility is defined as the deviation between a user’s rating and
the default rating for an item. So, half-life utility can be used in algorithms that are
based on user explicit feedback, such as ratings. Breese et al. describe the likelihood
that a user will view each successive item in the ranked list with an exponential
decay function. The strength of the decay is described by a half-life parameter α
[1]. Half-life utility is defined as:

Ru = ∑
i

∑
j

max(ri j −d,0)

2
j−1

α−1

(5.14)

where, ri j represents the rating of user u on item i j (in the j-position of the ranked
list), d is the default rating, and α is the half-life parameter.

5.2.3.6 Discounted Cumulative Gain

Discounted cumulative gain penalises relevant predicted items that are located in
the bottom of the recommendation list (e.g. these items should be on top).

DCGp = rel1 +
p

∑
i=2

reli
log2 i

(5.15)

where reli is the graded relevance of the recommended item at position i.

5.2.4 Limitations

The main limitation of system-centric evaluation is the set of items that can evaluate.
System-centric evaluation cannot avoid the selection bias of the dataset. Users do not
rate all the items they receive, but rather they select the ones to rate. The observations
a system-centric approach can evaluate is a skewed, narrowed and unrepresentative
population of the whole collection of items. That is, for a given user, the system-
centric approach only evaluates the items the user has interacted with, neglecting
the rest of the collection. The same procedure is applied for the rest of the users, and
the final metrics are averaged over all the users.

System-centric metrics present some drawbacks:
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• The coverage of the recommended items cannot be measured. The collection of
items used in the evaluation is limited to the set of items that a user has interacted
with.

• The novelty of the recommendations cannot be measured. System-centric evalu-
ates the set of items a user has interacted with. Thus, it cannot evaluate the items
that are outside this set. Some of these items could be unknown, yet relevant, to
the user.

• Neither transparency (explainability) nor trustworthiness (confidence) of the
recommendations can be measured using system-centric metrics.

• The perceived quality of the recommendations cannot be measured. Usefulness
and effectiveness of the recommendations are two very important aspects for the
users. However, system-based metrics cannot measure user satisfaction.

Other user-related elements aspects that a system-centric approach cannot eval-
uate are the eclecticness (preference for disparate and dissimilar items), and main-
streamness (preference for popular items) of a user.

To summarise, system-centric metrics evaluate how well a recommender sys-
tem can predict items that are already in a user profile (assuming that the profile is
splited during the train and test steps). The most difficult part is to develop eval-
uation metrics to deal with the effectiveness of the recommendations. That is, not
only measuring prediction accuracy, but taking into account other aspects such as
usefulness and quality [6]. Indeed, accuracy is not correlated with the usefulness
and subjective quality of the recommendations [7].

5.3 Network-Centric Evaluation

Network-centric evaluation measures the inherent structure of the item (or user)
similarity network. The similarity network is the basis to provide the recommenda-
tions. Thus, it is important to analyse and understand the underlying topology of the
similarity network.

Network-centric evaluation complements the metrics proposed in the system-
centric approach. It actually measures other components of the recommender sys-
tem, such as the coverage, or diversity of the recommendations. However, it only
focuses on the collection of items, so the user stays outside the evaluation process.
Figure 5.2 depicts this idea.

5.3.1 Complex Network Analysis

We propose several metrics to analyse a recommendation graph; G := (V,E), being
V a set of nodes, and E a set of unordered pairs of nodes, named edges. The items
(or users) are nodes, and the edges denote the (weighted) similarity among them,
using any recommendation algorithm. When using the item similarity graph, we fo-
cus on the algorithms that use item-based neighbour similarity. On the other hand,
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Fig. 5.2 Network-centric evaluation determines the underlying topology of the item (or user) sim-
ilarity network.

the user similarity graph is the basis for the algorithms that use user-based neigh-
bour similarity. It is worth mentioning that in either case, the similarity network can
be created using any recommendation method (e.g. collaborative filtering, content-
based, hybrid, etc.). All the proposed metrics are derived from Complex Network
and Social Network analysis.

5.3.2 Navigation

5.3.2.1 Average Shortest Path

The average shortest path (or mean geodesic length) measures the distance between
two vertices i and j. They are connected if one can go from i to j following the edges
in the graph. The path from i to j may not be unique. The minimum path distance
(or geodesic path) is the shortest path distance from i to j, di j. The average shortest
path in the network is:

〈d〉 =
1

1
2 n(n+1) ∑

i, j∈V,i �= j

di j (5.16)

In a random graph, the average path approximates to:

〈dr〉 ∼
logN

log〈k〉 , (5.17)

where N = |V |, and 〈k〉 denotes the mean degree of all the nodes.
The longest path in the network is called its diameter (D). In a recommender

system, average shortest path and diameter inform us about the global navigation
through the network of items.
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5.3.2.2 Giant Component

The strong giant component, SGC, of a network is the set of vertices that are con-
nected via one or more geodesics, and are disconnected from all other vertices.
Typically, networks have one large component that contains most of the vertices. It
is measured as the % of nodes that includes the giant component. In a recommender
system, SGC informs us about the catalog coverage, that is the total percentage of
available items the recommender recommends to users [2].

5.3.3 Connectivity

5.3.3.1 Degree Distribution

The degree distribution, pk, is the number of vertices with degree k:

pk = ∑
v∈V |deg(v)=k

1, (5.18)

where v is a vertex, and deg(v) its degree. More frequently, the cumulative degree
distribution (the fraction of vertices having degree k or larger), is plotted:

Pc(k) =
∞

∑
k′=k

pk′ (5.19)

A cumulative plot avoids fluctuations at the tail of the distribution and facilitates
the computation of the power coefficient γ , if the network follows a power law.
Pc(k) is, then, usually plotted as the complementary cumulative distribution function
(ccdf ). The complementary cumulative distribution function, Fc(x), is defined as:

Fc(x) = P[X > x] = 1−F(x) (5.20)

where F(x) is the cumulative distribution function (cdf ):

F(x) = P[X ≤ x] (5.21)

F(x) can be regarded as the proportion of the population whose value is less
than x. Thus, Pc(k), derived from Fc(x), denotes the fraction of nodes with a degree
greater than or equal to k.

In a directed graph, that is when a recommender algorithm only computes the
top-n most similar items, P(kin) and P(kout), the cumulative incoming (outcoming)
degree distribution, are more informative. Complementary cumulative indegree dis-
tribution, Pc(kin), detects whether a recommendation network has some nodes that
act as hubs. That is, that they have a large amount of attached links. This clearly
affects the recommendations and navigability of the network.
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Also, the shape of the curve helps us to identify the network’s topology. Regular
networks have a constant distribution, “random networks” have a Poisson degree
distribution [8] meaning that there are no hubs, and “scale-free networks” follow a
power-law distribution in the cumulative degree distribution [9], so there are a few
hubs that control the network. It is worth noting that many real-world networks,
including the world wide web linking structure, are known to show a right-skewed
distribution (often a power law P(k) ∝ k−γ with 2 < γ < 3).

5.3.3.2 Degree-Degree Correlation

Another metric used is the degree correlation. It is equal to the average nearest-
neighbour degree, knn, as a function of k:

knn(k) =
∞

∑
k′=0

k′p(k′|k), (5.22)

where p(k′|k) is the fraction of edges that are attached to a vertex of degree
k whose other ends are attached to vertex of degree k′. Thus, knn(k) is the mean
degree of the vertices we find by following a link emanating from a vertex of degree
k.

A closely related concept is the degree–degree correlation coefficient, also known
as assortative mixing, which is the Pearson r correlation coefficient for degrees of
vertices at either end of a link. A monotonically increasing (decreasing) knn means
that high-degree vertices are connected to other high-degree (low-degree) vertices,
resulting in a positive (negative) value of r [10]. In recommender systems, it mea-
sures to which extent nodes are connected preferentially to other nodes with similar
characteristics.

5.3.3.3 Mixing Patterns

We can generalise the vertex assortative mixing to any network pattern. Assortative
mixing has an impact on the structural properties of the network. Mixing by a dis-
crete characteristic of the network (e.g. race, language, or age in social networks)
tend to separate the network into different communities. In social networks, this is
also known as homophily.

We use the formula defined in [11] to compute mixing patterns for discrete at-
tributes. Let E be an N ×N matrix, where Ei j contains the number of edges in the
network that connect a vertex of type i to one of type j (Ei j = E ji in undirected
networks). The normalised mixing matrix is defined as:

e =
E

‖ E ‖ (5.23)
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where ‖ x ‖ means the sum of all elements in the matrix x. Mixing characteristics
is measured in the normalised matrix e. Matrix e satisfies the following sum rules:

∑
i j

ei j = 1, (5.24)

∑
j

ei j = ai, (5.25)

∑
i

ei j = b j, (5.26)

where ai and bi are the fraction of each type of an end of an edge that is attached
to nodes of type i. The assortative mixing coefficient r is defined as:

r = ∑i eii −∑i aibi

1−∑i aibi
=

Tr(e)− ‖ e2 ‖
1− ‖ e2 ‖ (5.27)

This quantity equals to 0 in a randomly mixed network, and 1 in a perfectly
mixed network. Dissassortative networks have a negative r value, whilst assortative
networks have a positive one.

5.3.4 Clustering

5.3.4.1 Local Clustering Coefficient

The local clustering coefficient, Ci, of a node i represents the probability of its neigh-
bours to be connected within each other.

Ci =
2|Ei|

ki(ki −1)
, (5.28)

where Ei is the set of existing edges that are direct neighbours of i, and ki the
degree of i. Ci denotes, then, the portion of actual edges of i from the potential
number of total edges. 〈C〉 is defined as the average over the local measure Ci [12]:

〈C〉 =
1
n

n

∑
i=1

Ci (5.29)

5.3.4.2 Global Clustering Coefficient

The global clustering coefficient is a sign of how cliquish (tightly knit) a network
is. It estimates the conditional probability that two neighbouring vertices of a given
vertex are neighbours themselves. The global clustering coefficient, C, It is quan-
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tified by the abundance of triangles in a network, where a triangle is formed when
three vertices are all linked to one another.

C =
3×number of triangles

number of connected triples
. (5.30)

Here, a connected triple means a pair of vertices connected via another vertex.
Since a triangle contains three triples, C is equal to the probability that two neigh-
bours of a vertex are connected as well. For random graphs, the clustering coeffi-
cient is defined as Cr ∼ 〈k〉/N. Typically, real networks have a higher clustering
coefficient than Cr.

Some real-world networks are known to show a behaviour of C(k) ∝ k−1, usually
attributed to the hierarchical nature of the network [13]. This behaviour has been
found in metabolic networks, as well as in the WWW, and movie actor networks
[14]. The reasons for modular organisation in these networks relate, respectively,
to the function in metabolic interaction networks, the topology of Internet, and the
social activities in social networks.

5.3.5 Centrality

Centrality, as its name suggests, is a concept that differentiates vertices according
to how influential they are in a network. Given the inhomogeneity of link patterns
around vertices in a complex network, we could certainly imagine that the position
and roles of vertices will vary significantly from one vertex to another.

5.3.5.1 Degree

Degree centrality is defined as the number of links incident upon a node. It is rea-
sonable to assume that items with particularly many acquaintances can be looked
as being important figures. However, degree is primarily local in scope (e.g. talking
loudly does not mean that you are affecting others more effectively than somebody
who speaks quietly but very eloquently).

5.3.5.2 Closeness

Closeness centrality is defined as the mean geodesic distance between a vertex v
and all other vertices reachable from it. Those nodes that tend to have short geodesic
distances to other vertices within the graph have higher closeness. Closeness can be
regarded as a measure of how long it will take information to spread from a given
vertex to other reachable vertices in the network [15].



122 5 Evaluation Metrics

CC(v) =

∑
t∈V\v

d(v, t)

N −1
(5.31)

where N ≥ 2 is the size of the graph component reachable from node v.
A complementary way to define closeness centrality is the reciprocal of the sum

of geodesic distances to all other vertices of v [16].

CC(v) =
1

∑t∈V\v d(v, t)
(5.32)

5.3.5.3 Betweenness

Betweenness Freeman centrality measures whether a central vertex will act as a
relay of information between vertices, a role endowed thanks to being on a geodesic
between vertices (hence the name betweenness) [17].

The definition of Freeman (betweenness) centrality CB of a vertex v is defined as:

CB(v) =
1
2 ∑

i, j

giv j

gi j
, (5.33)

where gi j is the total number of geodesics between vertices i and j, and giv j is
the number of the ones that pass through the vertex v.

5.3.6 Limitations

The main limitation of the network-centric approach is that users remain outside
the evaluation process. There is no user intervention, not even the information of a
user profile is taken into account in the evaluation. The main drawbacks of network-
centric approach are:

• Accuracy of the recommendations cannot be measured. In the network-centric
approach there is no way to evaluate how well the algorithm is predicting the
items already in a user’s profile.

• Neither transparency (explainability) nor trustworthiness (confidence) of the rec-
ommendations can be measured.

• The perceived quality (i.e. usefulness and effectiveness) of the recommendations
cannot be measured. The only way to solve this limitation is by letting users to
step in the evaluation process.
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5.3.7 Related Work in Music Information Retrieval

During the last few years, complex network analysis has been applied to music in-
formation retrieval, and music recommendation in particular. In [18], we compared
different music recommendation algorithms based on the network topology. The re-
sults show that social based recommenders present a scale-free network topology,
whereas human expert-based controlled networks does not.

An empirical study of the evolution of a social network constructed under the
influence of musical tastes, based on playlist co-occurrence, appears in Buldu et al.
[19]. The analysis of collaboration among contemporary musicians, in which two
musicians are connected if they have performed in or produced an album together,
appears in [20]. Anglade et al. present a user clustering algorithm that exploits the
topology of a user-based similarity network [21].

Aucouturier presents in [22] a network of similar songs based on timbre sim-
ilarity. Interestingly enough, the network is scale-free, thus a few songs appear in
almost any list of similar tracks. This has some problems when generating automatic
playlists. Jacobson and Sandler [23] present an analysis of the Myspace social net-
work, and conclude that artists tend to form on-line communities with artists of the
same musical genre.

In [24], Lambiotte and Ausloos present a method for clustering genres, by
analysing correlations between them. The analysis is based on the users’ listen-
ing habits, gathered from last.fm. From the 〈user,artist, plays〉 triples the authors
compute genre similarity based on the percolation idea in complex networks, and
also visualise a music genre cartography, using a tree representation.

5.4 User-Centric Evaluation

User-centric evaluation aims at measuring the user’s perceived quality and useful-
ness of the recommendations. In this case, the evaluation requires the user inter-
vention to provide feedback of the provided recommendations—via a survey, or
gaterhing information from the user activity in the system.

User-centric evaluation copes with the limitations of both system- and network-
centric approaches. Figure 5.3 depicts this method, we named user–centric eval-
uation with feedback. Two important limitations of system- and network-centric
approaches are the impossibility to evaluate the novelty and the perceived qual-
ity of the recommendations. User-centric allows us to evaluate these two elements.
The main difference with a system-centric approach is that user-centric expands the
evaluation dataset to those items that the user has not yet seen (i.e. rated, purchased,
previewed, etc.).
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Fig. 5.3 User-centric evaluation, including feedback about the received recommendations.

5.4.1 Gathering Feedback

In the user-centric approach, the recommender system presents relevant items (from
outside the user’s dataset), and asks user for feedback. Feedback gathering can be
done in two ways: implicitly or explicitly. Measuring implicit feedback includes,
for instance, the time spent in the item’s webpage, purchasing or not the item, pre-
viewing it, etc. Explicit feedback is based on two related questions; (i) whether the
user already knew the item (novelty), and (ii) whether she likes it or not (perceived
quality). Obviously, it requires an extra effort from the users, but at the same time it
provides unequivocal information about the intended dimensions (which in the case
of implicit measures could be ambiguous or inaccurate).

5.4.1.1 Perceived Quality

The easiest way to measure the perceived quality of the recommended items is by
explicitly asking to the users. Users must examine the recommended items and val-
idate, to some extent, whether they like the items or not [2]. In this sense, a user
needs the maximum information about the item (e.g. metadata information, a pre-
view, etc.), and the reasons why the item was recommended, if possible. Then, the
user has to rate the quality of each recommended item (e.g. in a rating scale of
[1..5]), or the quality of the list as a whole. Last but not least, the user should be
able to select those attributes of the item that makes her feel that the novel item is
relevant to her taste.
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5.4.1.2 Novelty

To evaluate novel items we need, again, to ask to the users whether they recognise
the predicted item or not. Users have to examine the list of recommended items and
express, for each item, whether she previously knew the item or not.

Combining both aspects, perceived quality and novelty, allows the system to in-
fer whether a user likes to receive and discover unknown items, or in contrast, she
prefers to get more conservative and familiar recommendations. Adding the trans-
parency (explainability) in the recommendations, the user can perceive the new
items as of higher quality, as the system can give an explanation of why this un-
known item was recommended to the user. All in all, the user’s intentions with
regard novelty detection depends on the context and the recommendation domain.
Furthermore, it is expected that the intentions change over time. For instance, a
user is sometimes open to discovering new artists and songs, while sometimes she
just wants to listen to her favourites. Detecting these modes and acting accordingly
would increase user’s satisfaction with the system.

5.4.1.3 A/B Testing

Another approach to gather feedback from the users is via an A/B test. In A/B test-
ing, the system unleash two different versions of an algorithm (or two completely
different algorithms), to evaluate which one performs the best. The performance is
measured by the impact the new algorithm (say A) has on the visitors’ behaviour,
compared with the baseline algorithm (B). A/B testing became very popular on the
Web, because it is easy to create different webpage versions, and show them to visi-
tors. One of the first successful examples that used A/B test was Amazon.com. When
they saw the results, they decided to show recommendations (similar products) in
the product page.1

In A/B testing, the evaluation is performed by only changing a few aspects be-
tween the two versions. Once a baseline is established, the system starts optimising
the algorithm by making one change at a time, and evaluating the results and impact
with real visitors of the page. A/B testing uses between subjects evaluation. That is,
the system splits the users in two groups. Each group only evaluates one approach
(or algorithm), but not the other. Contrastingly, in a within subjects evaluation each
user evaluates all the possible approaches (or algorithms) instead of only one.

5.4.2 Limitations

The main limitation of the user-centric approach is the need of user intervention in
the evaluation process. Gathering feedback from the user can be tedious for some

1 http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html

http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html
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users (filling surveys, rating items, providing feedback, etc.). In this sense, the sys-
tem should ease and minimise the user intervention, using (whenever is possible)
an unintrusive way. On the other hand, the main limitations from the two previous
approaches (perceived quality and novelty detection) are solved in this approach.

5.5 Summary

We classify the evaluation of recommender algorithms in: system-, network-, and
user-centric approaches. System-centric evaluation measures how accurately the
recommender system can predict the actual values that users have previously as-
signed. Network-centric evaluation aims at measuring the topology of the item (or
user) network similarity, and it uses metrics from complex network analysis. Fi-
nally, user-centric evaluation focuses on the user’s perceived quality and usefulness
of the recommendations. Combining the three methods we can cover all the facets of
a recommender algorithm; the system-centric approach evaluates the performance
accuracy of the algorithm, the network-centric approach analyses the structure of
the similarity network, and with the inclusion of the user intervention we can mea-
sure the satisfaction about the recommendations they receive. Figure 5.4 depicts this
idea. We can see that, when using the three evaluation approaches, all the compo-
nents are evaluated—algorithm accuracy, similarity network analysis, and feedback
from users.

Fig. 5.4 System-, network-, and user-centric evaluation methods. Combining the three methods we
can cover all the facets when evaluating a recommendation system.

Last but not least, Table 5.2 summarises the limitations of each approach. The
table presents some of the factors that affect the recommendations, and whether the
approach can evaluate it or not. Applying the three evaluation approaches, we can
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assess all the facets of a recommender system, and also cope with the limitations of
each evaluation approach.

Accuracy Coverage Novelty Diversity Transp. Quality

System-centric ✓ ✗ ✗ ✓ ✗ ✗

Network-centric ✗ ✓ ✓ ✓ ✗ ✗

User-centric ✗ ✗ ✓ ✓ ✓ ✓

Table 5.2 A summary of the evaluation methods. It shows the factors that affect the recommenda-
tions, and whether the approach can evaluate it or not.

5.5.1 Links with the Following Chapters

In this chapter we have presented the three methods to evaluate recommender algo-
rithms. In the following two chapters we apply the metrics in real recommendation
datasets. The evaluation based on network-centric is presented in Chap. 6. Then,
user-centric evaluation is presented in Chap. 7. In the remaining of the book, we do
not present any results using system-centric metrics.
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Chapter 6
Network-Centric Evaluation

In this chapter we present the network-centric evaluation approach. This method
analyses the similarity network, created using any recommendation algorithm.
Network-centric evaluation uses complex networks analysis to characterise the item
collection. Also, we can combine the results from the network analysis with the
popularity of the items, using the Long Tail model.

We perform several experiments in the music recommendation field. The first
experiment aims at evaluating the popularity effect using three music artists recom-
mendation approaches: collaborative filtering (CF), content-based audio similarity
(CB), and human expert-based resemblance. The second experiment compare two
user networks created by CF and CB derived from the users’ listening habits. In
all the three experiments, we measure the popularity effect by contrasting the prop-
erties from the network with the Long Tail information (e.g. are the hubs in the
recommendation network the most popular items? Or, are the most popular items
connected with other popular items?).

6.1 Network Analysis and the Long Tail Model

Figure 6.1 presents the framework for the network-centric evaluation. It includes the
similarity network and the Long Tail of item popularity. This approach combines the
analysis of the similarity network with the Long Tail of popularity.

Once each item in the recommendation network is located in the head, mid, or
tail part (see Sec. 4.3.2), the next step is to combine the similarity network with
the Long Tail information. Two main analysis are performed: first, we measure the
similarity among the items in each part of the curve. That is, for each item that
belongs to the head part, compute the percentage of similar items that are located
in the head, mid and tail part (similarly, for the items in the mid and tail part). This
measures whether the most popular items are connected with other popular items,
and vice versa. Second, we measure the correlation between an item’s rank in the

Ò. Celma, Music Recommendation and Discovery, 129
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Fig. 6.1 General framework for the network-centric evaluation. The network-centric approach de-
termines the underlying topology of the similarity network, and combines this information with
the Long Tail of popularity.

Long Tail and its indegree. This measure allows us to detect whether the hubs in the
network are also the most popular items.

Section 6.2 presents the experiments about the popularity effect in three different
music artists recommendation algorithms: collaborative filtering (CF) from last.fm,
content-based audio filtering (CB), and expert-based recommendations (EX) from
Allmusic.com (AMG) musicologists. Then, Sec. 6.3 compares two user similarity
networks created using collaborative filtering (CF) again from last.fm, and a user
similarity network derived from the users’ listening habits. In this case, we use
content-based audio similarity (CB) to create the links among users.
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6.2 Artist Network Analysis

We aim to evaluate three artist similarity networks: collaborative filtering (CF),
content-based audio similarity (CB), and human expert-based resemblance. Also,
we analyse the popularity effect for each recommendation network. We measure the
popularity effect by contrasting the properties from the network with the Long Tail
information of the catalog.

6.2.1 Datasets

6.2.1.1 Social-Based, Collaborative Filtering Network

Artist similarity is gathered from last.fm, using Audioscrobbler web services,1 and
selecting the top-20 similar artists. Last.fm has a strong social component, and their
recommendations are based on a combination of an item-based collaborative filter-
ing, plus the information derived from social tagging. We denote this network as
CF .

6.2.1.2 Human Expert-Based Network

We have gathered human-based expert recommendations from All Music Guide
(AMG).2 AMG makes use of professional editors to interconnect artists, according
to several aspects, such as: influenced by, followers of, similar artists, performed
songs by, etc. In order to create an homogeneous network, we only use the similar
artists links. We denote this network as EX .

Table 6.1 shows the number of nodes and edges, for each network.

Number of artists Number of relations

Last.fm social filtering (CF) 122,801 1,735,179
Allmusic.com expert-based (EX) 74,494 407,483

Content-based (CB) 59,583 1,179,743

Table 6.1 Datasets for the artist similarity networks.

1 http://www.audioscrobbler.net/data/webservices/
2 http://www.allmusic.com
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6.2.1.3 Content-Based Network

To compute artist similarity in the CB network, we apply content-based audio anal-
ysis in an in-house music collection (T ) of 1.3 Million tracks of 30 s samples. Dis-
tance between tracks, d(x,y), is based on the Euclidean distance over a reduced
space using Principal Component Analysis (PCA). The audio features used include
not only timbral features (e.g. Mel frequency cepstral coefficients), but musical de-
scriptors related to rhythm (e.g. beats per minute, perceptual speed, binary/ternary
metric), and tonality (e.g chroma features, key and mode), among others [1]. Prelim-
inary steps to compute the Euclidean distance are: (i) audio descriptor normalisation
in the [0,1] interval, and (ii) applying PCA to reduce the audio descriptors space to
25 dimensions.

Then, to compute artist similarity we used the most representative tracks, Ta, of
an artist a, with a maximum of 100 tracks per artist. For each track, ti ∈ Ta, we
obtain the most similar tracks (excluding those from artist a):

sim(ti) = argmin
∀t∈T

(d(ti, t)), (6.1)

and get the artists’ names, Asim(ti), of the similar tracks. The list of (top-20) simi-
lar artists of a is composed by all Asim(ti), ranked by frequency and weighted by the
audio similarity distance:

similar artists(a) =
⋃

Asim(ti),∀ti ∈ Ta (6.2)

6.2.2 Network Analysis

6.2.2.1 Small World Navigation

Table 6.2 shows the network properties of the three datasets. All the networks exhibit
the small-world phenomena [2]. Each network has a small directed shortest path
〈dd〉 comparable to that of their respective random network. Also all the clustering
coefficients, C, are significantly higher than the equivalent random networks Cr.
This is an important property, because recommender systems can be structurally
optimised to allow surfing to any part of a music collection with a few of mouse
clicks, and so that they are easy to navigate using only local information [3, 4].

The human-expert network has a giant component, SGC, smaller than CF and
CB networks. More than 4% of the artists in the human-expert network are isolated,
and cannot be reached from the rest. This has strong consequences concerning the
coverage of the recommendations and network navigation.
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Property CF (Last.fm) EX (AMG) CB

N 122,801 74,494 59,583
〈k〉 14.13 5.47 19.80

〈dd〉(〈dr〉) 5.64 (4.42) 5.92 (6.60) 4.48 (4.30)
D 10 9 7

SGC 99.53% 95.80% 99.97%
γin 2.31(±0.22) NA (log-normal) 1.61(±0.07)

r 0.92 0.14 0.17
C (Cr) 0.230 (0.0001) 0.027 (0.00007) 0.025 (0.0002)

Table 6.2 Artist recommendation network properties for last.fm collaborative filtering (CF),
content-based audio filtering (CB), and Allmusic.com (AMG) expert-based (EX) networks.N is
the number of nodes, and 〈k〉 the mean degree, 〈dd〉 is the avg. shortest directed path, and 〈dr〉 the
equivalent for a random network of size N, D is the diameter of the (undirected) network. SGC
is the size (percentage of nodes) of the strong giant component for the undirected network, γin is
the power-law exponent of the cumulative indegree distribution, r is the indegree–indegree Pear-
son correlation coefficient (assortative mixing), C is the clustering coefficient for the undirected
network, and Cr for the equivalent random network.

6.2.2.2 Clustering Coefficient

The clustering coefficient for the CF network is significantly higher than that of the
CB or EX networks (CCF = 0.230). This means, given an artist a, the neighbours of
a are also connected with each other with a probability of 0.230. For instance, U2’s
list of similar artists includes INXS and Crowded House, and these two bands are
also connected, forming a triangle with U2. This has an impact on the navigation of
the network, as one might get stuck in a small cluster.

6.2.2.3 Indegree Distribution

The shape of the (complementary) cumulative indegree distribution informs us
about the topology of the recommendation network (random, or scale-free). We fol-
low the steps defined in Sec. 4.4 to decide whether or not the indegree distribution
follows a power-law (and, thus, it is a scale-free network).

power-law power-law + cut-off log-normal support for
p LLR p xcuto f f LLR p power-law

CF 0.9 −165.48 0.00 ≈ 102 −25.15 0.00 with exp. decay cut-off
Expert 0.43 −41.05 0.00 ≈ 66 −5.86 0.00 moderate, with cut-off

CB 0.12 −905.96 0.00 ≈ 326 −99.68 0.00 moderate, with cut-off

Table 6.3 Model selection for the indegree distribution of the three artist networks. For each
network we give a p-value for the fit to the power-law model (first column). The first p-value
equals to the Kolmogorov–Smirnov D statistic (see Eq. 4.8). We also present the likelihood ratios
for the alternative distributions (power-law with an exponential cut-off, and log-normal), and the
p-values for the significance of each of the likelihood ratio tests (LLR).
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Fig. 6.2 Cumulative indegree distribution for the three artist networks.

Table 6.3 presents the model selection for the indegree distribution. For each
network we give a p-value for the fit to the power-law model (first column). A higher
p-value means that the distribution is likely to follow a power-law. In Table 6.3, we
also present the likelihood ratios for the alternative distributions (power-law with
an exponential cut-off, and log-normal), and the p-values for the significance of
each of the likelihood ratio tests. In this case, a p-value close to zero means that
the alternative distribution can also fit the distribution. In all the three networks, the
distribution can be fitted using either a power-law with an exponential decay, or a
log-normal. For the log-normal, non-nested alternative, we give the normalised log
likelihood ratio R/

√
nσ , as [5]. For the power law with an exponential cut-off, a

nested distribution, we give the actual log likelihood ratio. The final column of the
table lists our judgement of the statistical support for the power-law hypothesis for
each artist network.

The best fit for the CF network (according to the log-likelihood3) is obtained with
a power-law with an exponential decay (starting at xcuto f f ≈ 102), x−2.31e−7x. In the
expert-based network, the best fit (with a log-likelihood of 581.67) is obtained with

a log-normal distribution, 1
x e

− (ln(x)−μ)2

2σ2 , with parameters mean of log μ = 7.36, and
standard deviation of log, σ = 3.58. Finally, the CB network follows a moderate a
power-law with an exponential decay, x−1.61e−7.19x (xcuto f f ≈ 326). Yet, in this case
the log-normal can be considered as good as the power-law distribution with cut-off.

Figure 6.2 shows the cumulative indegree distribution for each network. EX fol-
lows a log-normal distribution, whereas CF and CB follow a power law with an
exponential decay (cut–off). CF has a power-law exponent, γ = 2.31, similar to
those detected in many scale free networks, including the world wide web linking
structure [6]. These networks are known to show a right-skewed power law distri-
bution, P(k) ∝ k−γ with 2 < γ < 3, relying on a small subset of hubs that control the
network [7].

3 Not to be confused with the Log-likelihood ratio (LLR), that we use to compare two distributions.



6.2 Artist Network Analysis 135

Fig. 6.3 Indegree–indegree correlation (assortative mixing) for the three artist recommendation
networks: collaborative filtering (CF) from last.fm, Content-based (CB), and Allmusic.com experts.
CF clearly presents the assortative mixing phenomenon (rCF = 0.92). Neither CB nor expert-based
present any correlation (rCB = 0.14, rExpert = 0.17).

6.2.2.4 Assortative Mixing

Another difference in the three networks is the assortative mixing, or indegree–
indegree correlation. Figure 6.3 shows the correlation for each network. The CF
network presents a high assortative mixing (r = 0.92). That means that the most
connected artists are prone to be similar to other top connected artists. Neither CB
nor EX present indegree–indegree correlation, thus artists are connected indepen-
dently of their inherent properties.

6.2.2.5 Mixing by Genre

We are also interested in the assortative mixing of the network, according to the
musical genre. E.g. do similar artists tend to belong to the same genre? To do this,
we gather the artists’ tags from last.fm, and filter those tags that do not refer to a
genre. To match the tags with a predefined list of 13 seed genres, we follow the
approach presented in [8]. Listing 6.1 shows an snippet of the last.fm normalised
tags for Bruce Springsteen (tag weight ranges [1..100]):

Bruce Springsteen classic rock 100
Bruce Springsteen rock 95
Bruce Springsteen pop 80
Bruce Springsteen 80s 72
Bruce Springsteen classic 50
Bruce Springsteen folk-rock 25
...
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Listing 6.1 Snippet of Last.fm tags for Bruce Springsteen.

Table 6.4 shows the result after applying our algorithm to match the genres from
the list of weighted tags [8]. We can see that the tag 80s is filtered, and classic
rock and rock tags are merged into the Rock genre (the weight is the sum of the
two tags’ weights).

Tag Matched genre Weight

classic rock, rock Rock 195
pop Pop 80

classic Classical 50
folk-rock Folk 25

Table 6.4 Assigned genres for Bruce Springsteen from the artist’s tag cloud presented in Listing
6.1.

Once we get the matched genres for all the artists, we can analyse whether similar
artists tend to belong to the same (or a semantically close) genre. Mixing correlation
by genre coefficient r is computed using Eq. (5.27), over the normalised correlation
matrix e (see Eq. 5.23). We create the correlation matrix e for the three networks
following three steps:

1. For each artist ai, get the list of weighted genres Gai , as well as the list of genres
from the similar artists of ai, Gsim(ai).

2. Create the correlation matrix E. For each genre gai ∈ Gai , and g j ∈ GSim(ai), in-
crement Egai ,g j combining the artist similarity value, similarity(ai,a j), for artists
a j ∈ Sim(ai), with the sum of the two genres’ weights.
Egai ,g j = Egai ,g j + similarity(ai,a j) · (gai +g j)

3. Create the normalised correlation matrix e from E, using Eq. (5.23), and normal-
ising it with ∑i j ei j = 100.

Tables 6.5, 6.6, and 6.7 present the matrices e for the CF, EX and CB networks,
(bold denotes the highest values) respectively. Then, Table 6.8 shows the assorta-
tive mixing coefficient r for each network, computed over e (using Eq. 5.23). The
higher r coefficient is found in the human expert network, rEX = 0.411. According
to human experts, then, artist genre is a relevant factor to determine artist simi-
larity. As expected, the content-based network does not present mixing by genre
(rCB = 0.089). Our results are aligned with the findings in [9]. They use the Mys-
pace.com network of artists’ friends, and set only one genre label per artist. The
mixing by genre coefficient value they obtain is r = 0.350. Therefore, Myspace
artists prefer to maintain friendship links with other artists in the same genre.

In our three artist networks, metal, pop, punk and rock genres accumulate more
than 50% of the fraction of links (see ai, last column of the tables). So, the three net-
works are biased towards these few genres, which have a big impact in the similarity
network. This bias concords with the type of users in the last.fm community, and the
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Blues Classic Ctry Elec Folk Jazz Metal Pop Punk Rock Rap Regg Soul ai

Blues 1.09 0.01 0.27 0.05 0.11 0.18 0.12 0.36 0.08 0.35 0.02 0.02 0.07 2.74
Classical 0.01 0.07 0.01 0.06 0.02 0.04 0.08 0.15 0.07 0.15 0.03 0.00 0.01 0.71
Country 0.47 0.02 2.31 0.08 0.22 0.12 0.06 0.36 0.10 0.37 0.04 0.02 0.04 4.22

Electronic 0.03 0.03 0.03 4.17 0.07 0.13 0.48 1.27 0.52 1.14 0.3 0.06 0.05 8.28
Folk 0.07 0.01 0.11 0.08 0.59 0.04 0.10 0.29 0.08 0.33 0.02 0.01 0.01 1.73
Jazz 0.19 0.03 0.11 0.29 0.07 1.30 0.20 0.46 0.20 0.44 0.11 0.04 0.10 3.53

Metal 0.09 0.05 0.02 0.54 0.10 0.12 8.74 1.81 1.20 2.95 0.20 0.04 0.01 15.88
Pop 0.23 0.07 0.13 1.15 0.26 0.18 1.54 7.28 1.46 3.46 0.31 0.06 0.06 16.2

Punk 0.06 0.05 0.04 0.57 0.09 0.12 1.37 1.85 5.29 1.80 0.24 0.06 0.03 11.58
Rock 0.34 0.09 0.26 1.83 0.45 0.34 3.33 4.71 2.23 12.06 0.52 0.16 0.20 26.52
Rap 0.02 0.01 0.01 0.40 0.02 0.08 0.22 0.45 0.26 0.42 2.50 0.04 0.04 4.46

Reggae 0.02 0.01 0.02 0.14 0.02 0.07 0.08 0.26 0.16 0.25 0.09 2.23 0.04 3.38
Soul 0.04 0.00 0.02 0.05 0.01 0.05 0.01 0.09 0.04 0.12 0.04 0.01 0.28 0.76

b j 2.66 0.44 3.34 9.42 2.03 2.77 16.34 19.33 11.69 23.86 4.42 2.76 0.93 100

Table 6.5 Normalised mixing matrix eCF for the last.fm network.

Blues Classic Ctry Elec Folk Jazz Metal Pop Punk Rock Rap Regg Soul ai

Blues 2.75 0.06 0.60 0.03 0.18 0.67 0.18 0.40 0.08 0.80 0.01 0.02 0.09 5.88
Classical 0.03 0.20 0.03 0.05 0.03 0.21 0.06 0.12 0.06 0.35 0.02 0.01 0.01 1.18
Country 0.84 0.05 6.07 0.05 0.45 0.41 0.04 0.32 0.05 0.74 0.02 0.02 0.04 9.09

Electronic 0.04 0.07 0.05 1.66 0.05 0.16 0.18 0.41 0.17 0.74 0.15 0.03 0.03 3.75
Folk 0.15 0.03 0.31 0.05 0.99 0.09 0.05 0.20 0.04 0.52 0.01 0.01 0.01 2.46
Jazz 0.70 0.33 0.28 0.18 0.10 11.71 0.10 0.27 0.10 1.14 0.08 0.05 0.12 15.17

Metal 0.18 0.09 0.04 0.19 0.08 0.09 4.17 1.28 0.63 2.84 0.12 0.04 0.02 9.78
Pop 0.33 0.13 0.19 0.38 0.22 0.19 1.06 3.48 0.56 3.39 0.17 0.05 0.05 10.21

Punk 0.07 0.07 0.05 0.22 0.05 0.10 0.68 0.87 1.74 1.61 0.12 0.05 0.03 5.66
Rock 0.79 0.44 0.72 0.60 0.48 1.34 2.10 2.71 0.88 20.35 0.24 0.18 0.19 31.01
Rap 0.01 0.02 0.02 0.16 0.01 0.06 0.09 0.18 0.09 0.30 1.32 0.02 0.04 2.33

Reggae 0.03 0.01 0.02 0.06 0.02 0.06 0.05 0.13 0.07 0.25 0.03 2.07 0.03 2.82
Soul 0.06 0.01 0.02 0.03 0.01 0.08 0.02 0.07 0.02 0.22 0.03 0.01 0.07 0.66

b j 5.98 1.53 8.41 3.65 2.66 15.18 8.78 10.46 4.49 33.24 2.32 2.59 0.72 100

Table 6.6 Normalised mixing matrix eEX for the AMG human-expert network.

tags they apply the most. The EX and CB networks have more country artists than
the CF network artists. Also, in the expert network there is a lot of jazz artists. Ad-
ditionally, in the three networks there is an underrepresentation of the classical, folk
and soul artists. The reality is that a recommender system has to deal with biased
collections, and make the best out of it.

In terms of genre cohesion, classical is always “misclassified” as pop/rock. In our
case, the problem with the classical genre is that some non-classical music artists are
tagged as classic. Our algorithm matches this tag with the seed genre Classical (see
the Bruce Springsteen example in Table 6.4). Actually, if we remove the classical
genre from the list of 13 genres, the r correlation coefficient increases by 0.1, in the
CF and EX networks.
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Blues Classic Ctry Elec Folk Jazz Metal Pop Punk Rock Rap Regg Soul ai

Blues 0.68 0.10 1.33 0.11 0.28 0.57 0.17 0.66 0.15 0.92 0.09 0.04 0.06 5.18
Classical 0.07 0.03 0.18 0.03 0.04 0.06 0.15 0.25 0.10 0.39 0.01 0.01 0.01 1.32
Country 1.70 0.26 6.03 0.27 0.89 1.05 0.49 2.35 0.47 2.38 0.30 0.12 0.25 16.56

Electronic 0.11 0.04 0.28 0.12 0.08 0.10 0.27 0.48 0.24 0.71 0.05 0.05 0.01 2.55
Folk 0.20 0.04 0.65 0.07 0.23 0.16 0.07 0.27 0.08 0.42 0.02 0.02 0.02 2.25
Jazz 0.54 0.09 0.90 0.12 0.23 0.84 0.13 0.51 0.12 0.65 0.11 0.04 0.05 4.32

Metal 0.17 0.16 0.5 0.27 0.09 0.11 2.44 2.26 1.85 4.06 0.07 0.15 0.02 12.16
Pop 0.56 0.24 1.90 0.47 0.38 0.41 2.04 3.40 1.58 5.41 0.14 0.19 0.06 16.77

Punk 0.19 0.16 0.58 0.30 0.12 0.15 2.06 2.63 2.49 4.02 0.10 0.16 0.02 12.98
Rock 0.6 0.31 1.52 0.63 0.45 0.38 3.45 4.43 2.25 7.06 0.09 0.23 0.05 21.46

Reggae 0.16 0.04 0.41 0.06 0.05 0.18 0.10 0.37 0.12 0.43 0.50 0.06 0.06 2.52
Rap 0.03 0.02 0.10 0.05 0.02 0.03 0.15 0.24 0.11 0.40 0.06 0.10 0.01 1.32
Soul 0.05 0.01 0.17 0.01 0.03 0.05 0.02 0.08 0.02 0.14 0.02 0.01 0.01 0.61

b j 5.05 1.49 14.54 2.52 2.90 4.10 11.55 17.93 9.57 27.00 1.55 1.18 0.63 100

Table 6.7 Normalised mixing matrix eCB for the audio content-based network.

Network Mixing coeff. r

CF 0.343
EX 0.411
CB 0.089

Table 6.8 Assortative mixing by genre coefficient r for the three networks, based on the matrices
e in Tables 6.5, 6.6 and 6.7.

In the audio CB network, country and rock genres dominate over the rest. Coun-
try subsumes blues, jazz and soul genres. For instance, folk artists share a high frac-
tion of links with country artists (eCB

f olk,country = 0.65, compared with eCB
f olk, f olk =

0.23), yet eCB
f olk,rock also presents a high correlation. This finding is aligned with our

previous research presented in [8], where we conclude that folk and country genres
are similar, using content-based audio similarity. Similarly, the same phenomenon
happens for eCB

blues,country, and eCB
jazz,country, although in the latter case it is more ar-

guably the similarity between the two genres.
Actually, in the CB network the bias towards rock and country genres is more

prominent than in the two other networks. Artist similarity is derived from audio
track similarity, thus preponderant genres have more chances to have links from
other artists’ genres. This is the reason why artists from infrequent genres correlate
and “collapse” with the most prevalent ones (see Table 6.7).

Contrastingly, in the experts’ network, country, jazz and soul artists present a
high intra-correlation value (a high fraction of vertices linking artists of the same
genre, eEX

i,i ). For instance, eEX
jazz, jazz = 11.71, and the sum of the row (last column),

aEX
jazz, is 15.17. So, given a jazz artist, 77% of his similar artists are also jazz musi-

cians (
eEX

jazz, jazz

aEX
jazz

= 0.77). Similar values are found for country and soul artists. Neither
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in CF nor in CB networks we can find these high intra-correlation values (only for

the reggae genre in the CF network, with a
eCF

reggae,reggae

aCF
reggae

= 0.66 value).

At this point, we conclude the analysis of the three similar artist networks. Now,
the following section presents the main findings about the correlation between artist
popularity and their prominence in the similarity network.

6.2.3 Popularity Analysis

We have outlined in the previous section the main topological differences among
the three networks. We add now the popularity factor (measured with the total
playcounts per artist), by combining artists’ rank in the Long Tail with the results
from the network analysis. Two experiments are performed. The former reports the
relationships among popular and unknown artists. The latter experiment aims at
analysing the correlation between artists’ indegree in the network and their popular-
ity.

6.2.3.1 Artist Similarity

Figure 6.4 depicts the correlation among an artist’s total playcounts and the total
playcounts of its similar artists. That is, given the total playcounts of an artist (x
axis) it shows, in the vertical axis, the average playcounts of its similar artists. CF
network has a clear correlation (rCF = 0.503); the higher the playcounts of a given
artist, the higher the avg. playcounts of its similar artists. The AMG human expert
network presents a moderate correlation (rEX = 0.259). Thus, in some cases artists
are linked according to their popularity. CB network does not present correlation
(rCB = 0.08). In this case, artists are linked independently of their popularity.

ai → a j Head(%) Mid(%) Tail(%)

CF
Head 45.32 54.68 0
Mid 5.43 71.75 22.82
Tail 0.24 17.16 82.60

Expert
Head 5.82 60.92 33.26
Mid 3.45 61.63 34.92
Tail 1.62 44.83 53.55

CB
Head 6.46 64.74 28.80
Mid 4.16 59.60 36.24
Tail 2.83 47.80 49.37

Table 6.9 Artist similarity and their location in the Long Tail. Given an artist, ai, it shows (in
%) the Long Tail location of its similar artists (results are averaged over all artists). Each row
represents, also, the Markov chain transition matrix for CF, CB, and expert-based methods.
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Fig. 6.4 A log–log plot depicting the correlation between an artist’s total playcounts and similar
artists’ playcounts (average values are shown in black, whilst grey dots display all the values).
Pearson correlation coefficient r values are: rCF = 0.503, rEX = 0.259 and rCB = 0.081.
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Fig. 6.5 Example of the Markov decision process to navigate along the Long Tail in the CF net-
work. This information is directly derived from Table 6.9.

Table 6.9 presents artist similarity divided into the three sections of the Long Tail
curve. Given an artist, ai, it shows (in %) the Long Tail location of its similar artists
(results are averaged over all artists). In the CF network, given a very popular artist,
the probability of reaching (in one click) a similar artist in the tail is zero. Actually,
half of the similar artists are located in the head part—that contains only 82 artists—
and the rest are in the mid area. Artists in the mid part are tightly related (71.75%),
and only 1/5 of the similar artists are in the tail part. Finally, given an artist in the tail,
its similar artists remain in the same area. Contrastingly, the CB and EX networks
promote the mid and tail parts much more in all the cases (specially in the head
part).

Similarly to the mixing by genre, where we compute the correlation among the
genres in linked artists, we can do the same for artist popularity. In fact, Table 6.9
directly provides us this information. For instance, given an artist in the Head part
Table 6.9 shows the fraction of edges that are attached to the artist whose other ends
are attached to artists of type Head, Mid or Tail. The mixing by popularity corre-
lation coefficients are: rCF = 0.397, rEX = −0.002, and rCB = −0.032. Again, the
correlation values show that the CF network presents assortative mixing by popu-
larity, whilst neither EX nor CB does.

6.2.3.2 From Head to Tail

To simulate a user surfing the recommendation network, we apply a Markovian
stochastic process [10]. Indeed, each row in Table 6.9 can be seen as a Markov
chain transition matrix, M, where the head, mid and tail parts are the different states.
For example, Fig. 6.5 shows the Markov chain for the CF network. The values of
matrix M denote the transition probabilities, pi, j, between two states i, and j (e.g.
pCF

head,mid = 0.5468). The Markovian transition matrix, Mk, denotes the probability
of going from any state to another state in k steps (clicks). The initial distribution
vector, P(0), sets the probabilities of being at a determined state at the beginning
of the process. Then, P(k) = P(0) ×Mk, denotes the probability distribution after k
clicks, starting in the state defined by P(0).

Using P(k) and defining P(0) = (1H ,0M,0T ), we can get the probability of reach-
ing any state, starting in the head part. Table 6.10 shows the number of clicks needed
to reach the tail from the head, with a probability phead,tail ≥ 0.4. In CF, one needs
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k P(k), with P(0) = (1H ,0M ,0T ) π n

CF 5 (0.075H ,0.512M ,0.413T ) (0.044H ,0.414M ,0.542T ) 26
Expert 2 (0.030H ,0.560M ,0.410T ) (0.027H ,0.544M ,0.429T ) 8

CB 2 (0.038H ,0.562M ,0.400T ) (0.037H ,0.550M ,0.413T ) 7

Table 6.10 Navigation along the Long Tail of artists in terms of a Markovian stochastic process.
Second and third columns depict the number of clicks (k) to reach the tail from the head part, with
a probability phead,tail ≥ 0.4. Fourth and fifth columns show the stationary distribution π , as well
as the number of steps, n, to reach π (with an error ≤ 10−6).

five clicks to reach the tail, whereas in CB and expert-based only two clicks are
needed.

Finally, the stationary distribution π is a fixed point (row) vector whose entries
sum to 1, and that satisfies π = πM. The last two columns in Table 6.10 present
the stationary distribution vector for each algorithm, and the number of steps to
converge to π , with an error ≤ 10−6. CF transition matrix needs more than three
times the number of steps of CB or EX to reach the steady state, due to the transition
pCF

head,tail = 0. Furthermore, even though the probability to stay in the tail in CF is
higher than in CB or EX, this is due to the high probability to remain in the tail once
it is reached (pCF

tail,tail = 0.8260).

6.2.3.3 Artist Indegree

Up to now, we have analysed the popularity in terms of the relationships among the
artists. Now, we analyse the correlation between the artists’ indegree in the network
and their popularity. As a starting point, we present in Table 6.11 the top-10 artists
with the highest indegrees for each network. CF and expert-based contains two and
eight mainstream artists, respectively. CF contains U2 and R.E.M., but the rest of
the list contains more or less well known jazz musicians, including some in the
top of the tail area. The whole list for the expert-based AMG network is made up
of very popular artists. Our guess is that the editors connect long tail artists with
the most popular ones, because these popular artists are considered influential and
many bands are considered followers of these mainstream artists. The CB network
has a more eclectic top-10 list, as one would expect. Oddly enough, there is no
new or actual artists, but some classic bands and artists ranging several musical
genres.Some bands are, in fact, quite representative of a genre (e.g. Lynyrd Skynyrd,
and The Charlie Daniels Band for Southern-rock, The Carpenters for Pop in the
1970s, George Strait for Country, and Cat Stevens for Folk/Rock). Probably, their
high indegree is due to being very influential in their respective musical styles. In
some sense, there are other bands that “cite” or imitate their sound.

Although, the results could be somewhat biased; our sampled CF and expert
networks are subsets of the whole last.fm and AMG similar artist networks, thus our
sampling could not be a good representation of the whole dataset. Furthermore, the
differences in the maximum indegree value (kin for top-1 artist) among the three
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CF
kin Artist Long Tail rank

976 Donald Byrd 6,362
791 Little Milton 19,190
772 Rufus Thomas 14,007
755 Mccoy Tyner 7,700
755 Joe Henderson 8,769
744 R.E.M. 88
738 Wayne Shorter 4,576
717 U2 35
712 Horace Silver 5,751
709 Freddie Hubbard 7,579

Expert
kin Artist Long Tail rank

180 R.E.M. 88
157 Radiohead 2
137 The Beatles 1
119 David Bowie 62
117 Nirvana 19
111 Tool 17
111 Pavement 245
109 Foo Fighters 45
104 Soundgarden 385
103 Weezer 51

CB
kin Artist Long Tail rank

1,955 George Strait 2,632
1,820 Neil Diamond 1,974
1,771 Chris Ledoux 13,803
1,646 The Carpenters 1,624
1,547 Cat Stevens 623
1,514 Peter Frampton 4,411
1,504 Steely Dan 1,073
1,495 Lynyrd Skynyrd 668
1,461 Toby Keith 2,153
1,451 Charlie Daniels Band 22,201

Table 6.11 Top-10 artists with higher indegree (kin) for each recommendation network. The table
shows too, the artist ranking in the Long Tail.

networks are due to the different sizes (N) and average degree 〈k〉 of the networks
(5.47EX versus 14.13CF , and 19.80CB), but also due to the topology of the networks.
CF and CB follow a power-law cumulative indegree distribution, whereas EX best
fits a log-normal distribution. Therefore the maximum indegree kin for EX is much
smaller than that of CF or CB.

To conclude this analysis, Fig. 6.6 shows the correlation between artists’ inde-
gree (kin), and artists’ popularity, using artist’s total playcounts. The figure shows
whether the artists with higher indegree in the network (hubs) are the most popular
artists. Again, we see that in CF and expert-based networks the artists with higher
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Fig. 6.6 A log–log plot showing the correlation between artist indegree (kin, in horizontal axis)
and its total playcounts (avg. values in black), in vertical axis. Pearson r values are: rCF = 0.621,
rEX = 0.475, and rCB = 0.032.
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indegree (hubs) are mostly located in the head and mid part, whereas in CB they are
more spread out through all the curve. Both CF and expert-based networks confirm
the expectations, as there is a clear correlation between the artist indegree and to-
tal playcounts (rCF = 0.621, and rEX = 0.475). Artists with high indegree are the
most popular ones. In CB, given a high indegree value it contains, on average, artists
ranging different levels of popularity (rCB = 0.032).

6.2.4 Discussion

The results show that the last.fm social-based recommender tends to reinforce popu-
lar artists, at the expense of discarding less-known music. Thus, the popularity effect
derived from the community of users has consequences in the recommendation net-
work. This reveals a somewhat poor discovery ratio when just browsing through the
network of similar music artists. It is not easy to reach relevant long tail artists, start-
ing from the head or mid parts (see Table 6.10). This could be related to the existence
of positive feedback loops in social-based recommenders. The first users that enters
to the system heavily affects the initial relationships among the items. After that,
the users that come later, find an environment shaped by earlier users. These new
users will be affected by the early raters that create the similarities among the items.
Thus, positive feedback also affects the navigation through the Long Tail. Given a
long tail artist, its similar artists are all located in the tail area as well. This does
not always guarantee novel music recommendations; a user that knows an artist in
the Long Tail quite well is likely to know most of the similar artists too (e.g. the
solo project of the band’s singer, collaborations with other musicians, and so on).
Thus, these might not be considered good novel recommendations to that user, but
familiar ones. CF contains, then, all the elements to conclude that popularity has
a strong effect in the recommendations, because: (i) it presents assortative mixing
(indegree–indegree correlation), see Fig. 6.3, (ii) there is a strong correlation be-
tween an artist’s total playcounts and the total playcounts of its similar artists (see
Fig. 6.4), (iii) most of the hubs in the network are popular artists (see Fig. 6.6), and
(iv) it is not easy to reach relevant Long Tail artists, starting from the head or mid
parts (see Table 6.10).

Human expert-based recommendations are more expensive to create and have a
smaller Long Tail coverage compared to automatically generated recommendations
like those in CF and CB. Regarding popularity, the hubs in the expert network are
comprised of mainstream music, thus potentially creating a network dominated by
popular artists (see Table 6.11 and Fig. 6.6). However, the topology—specially the
log-normal cumulative indegree distribution—indicates that these artists do not act
as hubs, as in the power law distributions with a γ exponent between 2 and 3 [7].
Furthermore, the expert network does not present assortative mixing (see Fig. 6.3),
so artists are linked in a heterogeneous way; popular artists are connected with other
less-known artists and the other way around (see Table 6.9 and Fig. 6.4).
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According to the stationary distribution π (see Table 6.10), the key Long Tail area
in the CB and EX networks are the artists in the mid part. These artists allow users
to navigate inside the Long Tail acting as entry points, as well as main destinations
when leaving the Long Tail. Also, users that listen to mainly very Long Tail music
are likely to discover unknown artists—for them—that are in the mid part, and that
are easily reachable from the artists in the tail. One should pay attention to the
quality data in the Long Tail as well. Assuming that there exists some extremely
poor quality music, CB is not able to clearly discriminate against it. In some sense,
the popularity effect drastically filters all these low quality items. Although, it has
been proved by [11] that increasing the strength of social influence increased both
inequality and unpredictability of success and, as a consequence, popularity was
only partly determined by quality.

6.3 User Network Analysis

One of the main goals of neighbourhood-based recommendation algorithms is to
find like-minded people, and through them, discover unknown music. In this sense, a
user similarity network resembles a social network, automatically connecting people
that share similar interests.

We present an evaluation of two user similarity networks. Both networks are de-
rived from the users’ listening habits. The first one is based on collaborative filtering
(CF). Again, we gather this information from last.fm. For the second network we use
content-based audio similarity (CB) to compute user similarity.

6.3.1 Datasets

6.3.1.1 Social-Based, Collaborative Filtering Network

User similarity is gathered from last.fm., using Audioscrobbler webservices. For
each user we collect the top-20 similar users. Last.fm derives user similarity from
the item-based approach, so it connects users that share common musical tastes.
Table 6.12 shows the number of users and links in the network.

6.3.1.2 Content-Based Network

User similarity for the CB network is computed using content-based audio analysis
from a music collection (T ) of 1.3 Million tracks of 30 s samples. To compute
similar users we used all the tracks, Tu, that a user u has listened to.

Distance between tracks, d(x,y), is based on the Euclidean distance over a re-
duced space using Principal Component Analysis (PCA). The audio features used
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include not only timbral features (e.g. Mel frequency cepstral coefficients), but mu-
sical descriptors related to rhythm (e.g. beats per minute, perceptual speed, bina-
ry/ternary metric), and tonality (e.g chroma features, key and mode), among others
[1]. Preliminary steps to compute the Euclidean distance are: (i) audio descriptor
normalisation in the [0,1] interval, and (ii) applying PCA to reduce the audio de-
scriptors space to 25 dimensions. For each track, ti ∈ Tu, we obtain the most similar
tracks:

sim(ti) = argmin
∀t∈T

(d(ti, t)), (6.3)

Then, we get all the users, Usim(ti), that listened to any track similar to ti. The
list of (top-20) similar users of u is composed by the users in Usim(ti) for all ti ∈ Tu,
weighted by the audio similarity distance:

similar users(u) =
⋃

Usim(ti),∀ti ∈ Tu (6.4)

To select the maximum number of similar users per user we compute, for all the
users, the average distance between the user and her top-20 similar users. We use
this average distance as a threshold to get the top-N most similar users, setting a
maximum of N = 20.

The main difference between the two approaches is that in CF two users have to
share at least one artist in order to become—potentially—similar. In the CB we can
have two similar users that do not have share any artist, yet the music they listen to
is similar. For instance, two users that listen to, respectively, ui = [Ramones, The
Clash, Buzzcocks, and Dead Kennedys], and u j = [Sex Pistols, The Damned, The
Addicts, and Social Distortion] could be very similar using CB similarity, but not
using CF (unless the system also makes use of higher-level information, such as
artist similarity derived from social tagging data).

However, due to the similar users(u) equation we choose for the CB network,
a user with a high number of songs in her profile has a higher chance of being
considered similar to other users.

Number of users Number of relations

Last.fm social filtering (CF) 158,209 3,164,180
Content-based (CB) 207,863 4,137,500

Table 6.12 Datasets for the user similarity networks.
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Property CF (last.fm) CB

N 158,209 207,863
〈k〉 20 19.90

SGC 100% 99.97%
γin NA (log-normal) NA (log-normal)

〈ddir〉(〈drand〉) 9.72 (3.97) 7.36 (4.09)
D 12 10
r 0.86 0.17

C (Crand) 0.071 (1.2−4) 0.164 (9.57−5)
C(k) ∼ k−α 0.57 0.87

Table 6.13 User network properties for the last.fm collaborative filtering network (CF), and
content-based audio filtering (CB). N is the number of nodes, and 〈k〉 the mean degree, 〈dd〉 is
the avg. shortest directed path, and 〈dr〉 the equivalent for a random network of size N, D is the
diameter of the (undirected) network. SGC is the size (percentage of nodes) of the strong giant
component for the undirected network, γin is the power-law exponent of the cumulative indegree
distribution (if applicable), r is the indegree–indegree Pearson correlation coefficient (assortative
mixing), C is the clustering coefficient for the undirected network, Cr for the equivalent random
network, and C(k) ∼ k−α is the α exponent for the clustering coefficient as a function of node
degree (scaling law).

6.3.2 Network Analysis

6.3.2.1 Small World Navigation

Table 6.13 presents the properties of the two networks. The two networks moder-
ately present the small-world phenomena [2]. They have a small average directed
shortest path, 〈dd〉, but higher than the 〈dr〉 in the equivalent random network (twice
as much). Also the two clustering coefficients, C, are significantly higher than the
equivalent random networks Cr.

6.3.2.2 Clustering Coefficient

Figure 6.7 shows the clustering coefficient as a function of node degree C(k), for
the undirected network. We can see that the higher the indegree of a user, the
lower her clustering coefficient. In this sense, the CB network resembles a hier-
archical network [12], although it is not a scale free network. In a hierarchical net-
work there are many small densely linked clusters that are combined to form larger
but less cohesive groups, that a few prominent nodes interconnect. In our CB net-
work, CCB(k) ∼ k−0.87, starting at k = 20 the α = 0.87 is close to the scaling law,
C(k) ∼ k−1. The scaling law is used to determine the presence of hierarchy in real
networks [12].

C(k) is computed for the undirected networks. That is the reason that the
CCB(k) ∼ k−0.87 power law starts at k = 20. In the undirected network most of the
nodes have k ≥ 20—the node outlinks, kout , plus the incoming links they receive
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Fig. 6.7 Clustering coefficient C(k) versus degree k. The CB network resembles a hierarchical
network (CCB(k) ∼ k−0.87), although it is not a scale free network.

kin. However, in some cases a node has kout < 20, because the threshold has been
applied (see the creation of datasets, in Sec. 6.3.1). These few nodes are located on
the left side of Fig. 6.7 (0 < k < 20), and are discarded to compute C(k).

6.3.2.3 Indegree Distribution

Table 6.14 presents the model selection for the indegree distribution. For each net-
work we give a p-value of the fit to the power-law model (first column). A higher
p-value means that the distribution is likely to follow a power-law. We also present
the likelihood ratios for the alternative distributions (power-law with an exponential
cut-off, and log-normal), and the p-values for the significance of the likelihood ra-
tio tests. In this case, a p-value close to zero means that the alternative distribution
can also fit the distribution (see Sec. 4.4 for an in-depth explanation about fitting a
probability density distribution, and the model selection procedure).

power-law power-law + cut-off log-normal support for
p LLR p LLR p power-law

CF 0.00 −192.20 0.00 −14.41 0.00 none
CB 0.00 −836.89 0.00 −37.05 0.00 none

Table 6.14 Model selection for the indegree distribution of the two user networks. For each net-
work we give a p-value for the fit to the power-law model (first column). We also present the
likelihood ratios for the alternative distributions (power-law with an exponential cut-off, and log-
normal), and the p-values for the significance of each of the likelihood ratio tests (LLR).
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Fig. 6.8 Cumulative indegree distribution for the CF and CB user networks.

Figure 6.8 shows the cumulative indegree distribution for each network. Neither
of the two networks are scale free, because the cumulative indegree distribution
does not follow a power law (see Table 6.14, first column). In both networks the
best fitting distribution, according to their log-likelihood, is a log-normal distribu-
tion. The best fit for the CF network is obtained with a log-normal distribution,

f (x) = 1
x e

− (ln(x)−μ)2

2σ2 . The parameters are mean of log μ = 6.49, and standard devia-
tion of log, σ = 2.80. The best fit for the CB network is obtained with a log-normal
distribution. The parameters are mean of log μ = 8.51, and standard deviation of
log, σ = 2.74.

6.3.2.4 Assortative Mixing

Figure 6.9 depicts the assortative mixing—indegree indegree correlation—in the
two user networks. CF presents assortative mixing, whilst CB does not (rCF = 0.86
and rCB = 0.17). The CF user similarity network resembles a social network, where
it is very common the find homophily. Users with a high indegree, kin, are connected
to other users also with a high kin, whereas users with a low indegree are connected
to peers that also have a low indegree.

At this point, we conclude the analysis of the two user networks. The following
section presents the analysis about the correlation between the user’s location in the
Long Tail of artist popularity and the user’s prominence in the similarity network.
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Fig. 6.9 Assortative mixing in the two user networks. CF presents assortative mixing, whilst CB
does not (rCF = 0.86 and rCB = 0.17).

6.3.3 Popularity Analysis

Similar to the analysis performed in the artist networks, we present two experiments
about the popularity effect in the user networks. The first reports the relationships
among the users and their location in the Long Tail. The user’s location in the Long
Tail is measured by averaging the Long Tail location of the artists in the user pro-
file. The second experiment analyses the correlation between users’ indegree in the
network and their location in the Long Tail.

6.3.3.1 User Similarity

To compute a user’s location in the music Long Tail, we get the artists that user
u listens to the most (Au). Summing all the artists’ playcounts in Au must hold at
least 66% of the user’s total playcounts, so it is a sound representation of the musical
tastes of u. Then, the user’s Long Tail location is computed as the weighted average
of Au. That is, for each a ∈Au we combine the user playcounts for artist a with the
Long Tail location of a. Figure 6.10 shows an example of a user’s location in the
Long Tail.

Interestingly, most of the users are located in the Mid part of the curve. Thus, on
average a user listens to mainstream music (from the head and mid areas), but also
some unknown bands. Because the Mid area is very dense, we split this part into
three subsections: Midtop, Midmiddle, Midend . Table 6.15 presents the user similarity
in terms of Long Tail locations. The main difference between the two similarity
networks is for the users in the Head part. In the CF network more than 55% of the
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Fig. 6.10 Example of a user’s location in the Long Tail of artists. The circle denotes the user’s
location, computed as the weighted average of the user profile artists’ playcounts and popularity.

similar users are also located in the head part or in the top of the Mid part (Midtop),
whilst in the CB network this value is less than 35%.

ui → u j Head Midtop Midmiddle Midend Tail

CF
Head 9.36% 46.22% 26.66% 14.97% 2.78%
Mid 1.11% 20.52% 41.96% 30.22% 6.18%
Tail 0.41% 7.23% 26.98% 42.43% 22.95%

CB
Head 10.64% 23.70% 34.42% 25.91% 5.32%
Mid 3.79% 15.43% 37.95% 34.92% 7.90%
Tail 1.92% 8.34% 26.94% 40.81% 21.98%

Table 6.15 Similarities among the users, and their location in the Long Tail. Given a user, ui, it
shows (in %) the Long-Tail location of its similar artists, u j . The results are averaged over all users
in each part of the curve.

We represent each row in Table 6.15 as a Markov transition matrix. Using a
Markovian stochastic process we can simulate a user surfing the similarity net-
work. In the artist network (see Sec. 6.2.2), we were interested in the naviga-
tion from head to tail artists. Now, in the user network, the users are already lo-
cated in the Long Tail according to the artists’ popularity in their profile. Thus,
we are more interested in the Long Tail location of the similar users, rather than
in the navigation from head to tail users. For instance, using P(3) and defining
P(0) = (0Head ,0M-top,1M-mid ,0M-end ,0Tail), we get the probability of a user located
in the mid part of the curve (Midmiddle) to move to the left side (Head, and Mtop),
to stay in the same Midmiddle area, or to move to the right (Midend , and Tail). Ta-
ble 6.16 shows the probability distributions. Second column shows the probability
distribution of a user located in the Midmiddle after 3 clicks, P(3). The CF network
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has a tendency to stay in the same Midmiddle area, whilst in the CB network the user
slightly moves towards the right, tail, area. In both cases, the probability to move to
the Head (left) is around 0.2.

P(3), with P(0) = (0,0,1,0,0) π n

CF
(
0.210Le f t ,0.407Stay,0.383Right

)
(0.012Head ,0.199M-top,0.407M-mid ,0.309M-end ,0.074Tail) 5

CB
(
0.190Le f t ,0.368Stay,0.442Right

)
(0.039Head ,0.151M-top,0.368M-mid ,0.351M-end ,0.091Tail) 5

Table 6.16 Long Tail navigation in terms of a Markovian stochastic process. Second column shows
the probability distribution of a user in the Midmiddle after 3 clicks. Third and fourth columns show
the stationary distribution π , as well as the number of steps, n, to reach π (with an error ≤ 10−5).

Table 6.16 also shows the stationary distribution π , that satisfies π = πM. The
last two columns present the stationary distribution vector for each algorithm, and
the number of steps to converge to π , with an error ≤ 10−5. Both networks need the
same number of steps to reach the steady state, confirming that overall the probabil-
ity distributions are not very dissimilar.

6.3.3.2 User Indegree

We analyse the correlation between the users’ indegree and their location in the
Long Tail. Table 6.17 shows, for each network, the top-5 users with the highest in-
degrees. Users in the network with a high indegree can be considered as influential
users or simply influentials. There is a big difference in the two networks; the in-
fluentials in CB are the users with the most playcounts, while the influentials in CF
are the users that are closer to the Head part of the curve, independently of their
total playcounts. In fact, only the top-4 users in the CF network have the same order
of magnitude of total plays as the top-5 users in the CB network. Yet, around 60%
of the CF top-4 user’s playcounts correspond to The Beatles, the top-1 artist in the
Long Tail of artist popularity. Therefore, the reason that CF top-4 user has a high
indegree is not due to the high number of playcounts, but because most of the music
she listens to is very mainstream.

Indeed, looking at the whole distribution of users—not only the top–5—in Fig.
6.11, the CF presents no correlation between the user’s Long Tail position and their
network indegree (rCF = −0.012). However, CB network presents a correlation of
rCB = 0.446. Thus, as previously stated, users with higher indegree are the ones with
the higher total playcounts in the CB network.
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kin LT Rank Plays Artists (number of plays)

CF

2,877 123 1,307 Arcade Fire (47), The Shins (43), Sufjan Stevens (42)
2,675 75 2,995 Interpol (116), Arcade Fire (108), Radiohead (107)
2,266 191 4,585 Broken Social Scene (172), Decemberists (128), Arch. Helsinki (128)
2,225 176 38,614 The Beatles (23,090), The Doors (1,822), Bob Dylan (1,588)
2,173 101 3,488 Decemberists (106), TV on the Radio (101), Arcade Fire (100)

CB

5,568 217 88,689 Red Hot Chili Peppers (27,618), Led Zeppelin (6,595), GN’R (3,457)
4,706 789 105,768 Interpol (31,281), AFI (5,358), The Faint (3,056)
4,207 1,222 21,762 Green Day (8,271), The Killers (4,040), The Strokes (2,184)
3,991 121 77,433 The Cure (13,945), NIN (12,938), Smashing Pumpkins (8,460)
3,884 550 44,006 Muse (19,178), The Killers (3,255), Green Day (3,168)

Table 6.17 Top-5 indegree (kin) users. Influential users in CF are those located in the head of the
Long Tail (column LT Rank), whilst influentials in CB are the ones with most playcounts (column
Plays).

Fig. 6.11 Correlation between users’ indegree and total playcounts. CB has a correlation of rCB =
0.446, whilst CF does not present any correlation (rCF = −0.012).

6.3.4 Discussion

The results of the analysis shows that the CB user similarity network resembles a
hierarchical network (with the exception that CB is not a scale-free network). Thus,
in the CB network there are a few nodes that are connecting smaller clusters. These
nodes are the ones with the highest indegree which, according to Fig. 6.11, are the
ones with higher total playcounts. Therefore, the users that listen to more music are
the authorities in the CB network, independently of the quality or popularity of the
music they listen to. This affects the navigation of the user similarity network. Con-
trastingly, in the CF network the users with a higher indegree are the ones that listen
to more mainstream music. These users could have an impact for a recommender
algorithm that uses user-based, instead of item-based, recommendations.

The key Long Tail area in the two user similarity networks is the Mid part. This
area concentrates most of the users. To improve music discovery through user sim-
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ilarity, the recommendation algorithm should also promote users in the tail area.
When computing user similarity, a recommender should take into account the users’
location in the Long Tail curve.

An important missing aspect in our analysis is the dynamics of the user networks.
It would be interesting to detect who are the tastemakers (or trendsetters). Users that
create trends and have an impact in the musical tastes of other users are very rele-
vant. This is related with the taxonomy of users presented in Sec. 3.2.1. Ideally, the
Savants should be correlated with the tastemakers and influentials in the network.
Detecting and tracking these users is a key point to improve music discovery through
the network of similar users. However, detecting tastemakers can only be achieved
by constantly gathering information about the users’ music consumption. This way,
we could analyse the dynamics and evolution of the user similarity network.

6.4 Summary

Recommender systems should assist us in the process of filtering and discovering
relevant information hidden in the Long Tail. Popularity is the element that defines
the characteristic shape of the Long Tail. We measure popularity in terms of total
playcounts, and the Long Tail model is used in order to rank all music artists. We
have analysed the topology and the popularity bias in two music recommendation
scenarios; artist and user similarity. As expected by its inherent social component,
the collaborative filtering approach is prone to popularity bias. This has some con-
sequences on the discovery ratio, as well as navigation through the Long Tail.

Music recommender systems have to deal with biased datasets; a bias towards
mainstream popular artists, towards a few prominent musical genres, or towards a
particular type of user. Assortative mixing measures the correlation of these ele-
ments in the similarity network. In this sense, it is important to understand which
contextual attributes have an impact when computing artist similarity (e.g. pop-
ularity, genre, decade, language, activity, etc.), or user similarity (e.g. age, race,
language, etc.). The Last.fm social-based recommender presents several assortative
mixing patterns. The artist network has assortative mixing on the nodes’ indegree,
but also presents mixing by genre, and mixing by popularity; i.e. the classical ho-
mophily issues that arise in social networks. Yet, as we will see in the next chapter,
this does not necessarily have an impact on the quality of the recommendations.

The temporal effects in the Long Tail are another aspect one should take into
account. Some new artists can be very popular, gathering a spike of attention when
they release an album, but then they can slowly move towards the mid or tail area of
the curve as time goes by. Thus, one-time hit items can be lost and forgotten in the
Long Tail. Indeed, the music back-catalogue located in the Long Tail is an example
of old and forgotten items that offer the possibility to be re-discovered by the users.
A recommender system should be able to present and recommend these items to the
user.
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6.4.1 Links with the Following Chapters

We have presented a network-centric analysis of the similarities between artists, and
between users. The network-based approach does not put the user into the evalua-
tion loop. Without any user intervention it is impossible to evaluate the quality and
user satisfaction of the recommendations, which does not necessarily correlate with
predicted accuracy [13]. So, we still need to evaluate the quality of the recommenda-
tions as well as the popularity effect when providing recommendations to the users.
For this reason, we present the user-based evaluation in the next chapter.
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Chapter 7
User-Centric Evaluation

Up to now, we have presented a user agnostic network-based analysis of the rec-
ommendations. In this chapter we present a user-centric evaluation of the rec-
ommender algorithms. This user-based approach focuses on evaluating the user’s
perceived quality and usefulness of the recommendations. The evaluation method
considers not only the subset of items that the user has interacted with, but also
the items outside the user’s profile. The recommender algorithm predicts rec-
ommendations to a particular user—taking into account her profile—and then
the user provides feedback about the recommended items. Figure 7.1 depicts the
approach.

7.1 Music Recommendation Survey

We aim at measuring the novelty and perceived quality of music recommendation,
as neither system- nor network-centric approaches can measure these two aspects.
However, we need to explicitly ask the users whether they already know the pro-
vided recommendations or not.

The proposed experiment is based on providing song recommendations to users,
using three different music recommendation algorithms. Feedback gathered from
the users consists of (i) whether a user already knows the song, and (ii) the rel-
evance of the recommendations—whether she likes the recommended song or
not.

7.1.1 Procedure

We designed a web-based survey experiment to evaluate the novelty and relevance
of music recommendations from the point of view of the users. The survey is di-
vided in two sections. The first one asks the participants for basic demographic
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Fig. 7.1 User-centric evaluation focuses on evaluating the user’s relevance and usefulness of the
recommendations. The evaluation method considers not only the subset of items that the user has
interacted with, but also the items outside the user’s profile.

information (age range and gender), previous musical knowledge, and the average
number of listening hours per day. The second part of the survey provides a set of
rounds, each round containing an unsorted list of ten recommended songs evenly
distributed from three different recommendation approaches. The participants do
not know which recommendation method is used to recommend each song. A par-
ticipant has to rate at least 10 songs, but she can rate as many songs as she likes.

The participant’s feedback includes whether she knows the song (no, recall only
the artist, recall artist name and song title), and the quality of the recommendations
—whether she likes the song or not—on a rating scale from 1 (I don’t like it) to 5
(I like it very much). The recommended songs do not contain any metadata, neither
artist name nor song title, but only an audio preview of 30 s. The participant can
listen to the preview of the recommended song as many times as she wishes. Figure
7.2 shows a screenshot of the experiment.

7.1.2 Datasets

The three music recommendation algorithms used are: collaborative filtering (CF),
content-based audio similarity (CB), and a hybrid approach (HY) combining Allmu-
sic.com human expert information, and content-based similarity. CF song similarity
comes, again, from last.fm,1 using the Audioscrobbler web services (API v1.0).
The CB method is the one explained in Sec. 6.2.1, Eq. (6.1). Hybrid method (HY) is
based on combining related artists from Allmusic.com musicologists, and CB audio
similarity at track level. That is, to get the similar tracks from a seed track, first it
gets the related artists (according to the AMG human experts) of the artist’s seed

1 See for example http://www.last.fm/music/U2/_/One/+similar

http://www.last.fm/music/U2/_/One/+similar
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Fig. 7.2 Screenshot of the Music recommendation survey.

track. Then, it ranks the retrieved tracks from the related artists using content-based
audio similarity with the seed track.

7.1.3 Participants

In order to characterise the participants, at the beginning of the survey they were
asked to provide some basic demographic information (age range, and gender), as
well as the participants musical background knowledge, the average number of lis-
tening hours per day (more than 4 h a day, between 2 and 4 h a day, less than 2 h
a day, almost never listen to music), and the context while listening to music. All
the fields were optional, so the participants could fill-in or not the information (only
9 participants did not fill-in all the data). Regarding the musical background, the
survey offered the following single choice options:

• None: no particular interest in music related topics.
• Basic: lessons at school, reading music magazines, blogs, etc.
• Advanced: regular choir singing, amateur instrument playing, remixing or editing

music with the computer, etc.
• Professional: professional musician—conductor, composer, high level instru-

ment player—music conservatory student, audio engineer, etc.

Regarding the context while listening to music, the participants were asked to
choose (multiple selection was allowed) the situations were they often listen to mu-
sic. The options are:
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• While working,
• Reading,
• Cleaning,
• Traveling,
• Doing sport,
• Cooking,
• Usually I just listen to music (and don’t do anything else), and
• Other (please specify)

Furthermore, musical tastes of the participants were modelled using some seed
tracks of their top-20 most played artists from their last.fm profile. These seed tracks
are the ones used to provide song similarity using CF, CB and HY approaches.

To assemble a significant number of participants, we sent an email to the MIR-
list2 that described the survey and the procedure. Also, the survey was kindly an-
nounced in Paul Lamere’s Duke Listens blog3 on March 3rd, 2008.

7.2 Results

After running the experiment during the first two weeks in March 2008, 5,573
tracks were rated by 288 participants (with an average of 19 tracks rated per par-
ticipant). Section 7.2.1 presents the analysis of the participants’ data. Then, Sect.
7.2.2 presents the results of the three music recommendation approaches, including
the analysis of the perceived quality, as well as the novelty and familiarity elements.

7.2.1 Demographic Data

We present the results of the demographic and musical background data gathered
from the participants. Figure 7.3 shows the information about the participants’ de-
mographics. Most of the participants were adult males between 19 and 35 years
old.

Figure 7.4 shows the distribution of the participants’ musical background. Par-
ticipants had a basic or advanced musical background, and most of them spent an
average of two or more hours per day listening to music. The four pie charts have a
3% of not-available (NA), missing data. This missing data comes from nine partici-
pants that answered none of the questions.

To recap, our predominant participants were male young adults, with a basic or
advanced musical background, who listen to quite a lot of music during the day. We
consider that this is a biased sample of the population of listeners open to receiving
music recommendations. Yet, it is the group we could engage to answer the survey.

2 Message sent to music-ir@listes.ircam.fr on February, 28th, 2008
3 http://blogs.sun.com/plamere/entry/evaluating_music_recommendations

http://blogs.sun.com/plamere/entry/evaluating_music_recommendations
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Fig. 7.3 Demographic information (age and gender distribution) of the participants.

Fig. 7.4 Musical background and daily listening hours information of the participants.

7.2.2 Quality of the Recommendations

Now, we present the results of the second part of the survey, which consists on
the evaluation of the three music recommendation methods. During the experiment,
a list of 5,573 tracks rated by 288 participants was compiled. Feedback for each
recommended song includes whether the user identifies the song (no, recall only the
artist, recall artist name and song title), and the relevance of the recommendation
(on a [1..5] scale) based on the 30 s audio excerpt.

7.2.2.1 Overall Results

Table 7.1 presents the overall results for the three algorithms. It shows, for each
algorithm, the percentage of recommended songs that the participants identified (i.e.
they are familiar with), as well as the unknown—novel—ones. The last column
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shows the relevance of the recommendations (average rating in a scale of [1..5],
and standard deviation).

Method Case % Avg. Rating (Stdev)

CF
Recall A&S 14.93 4.64(±0.67)

Recall only A 12.23 3.88(±0.99)
Unknown 71.69 3.03(±1.19)

HY
Recall A&S 10.07 4.55(±0.81)

Recall only A 10.31 3.67(±1.18)
Unknown 78.34 2.77(±1.20)

CB
Recall A&S 9.91 4.56(±1.21)

Recall only A 7.95 3.61(±1.10)
Unknown 80.97 2.57(±1.19)

Table 7.1 User-centric evaluation of the novelty component for collaborative filtering (CF), Hy-
brid (HY), and audio content-based (CB) algorithms. Recall A&S means that a participant recog-
nises both artist and song title. Recall only A means that a participant identifies only the artist but
not the song title.

7.2.2.2 Novelty and Familiarity Based on Perceived Quality

Figure 7.5, 7.6, and 7.7 show the histogram of the ratings when the participants
knows the artist name and song title (Fig. 7.5), only identifies the artist (Fig. 7.6),
and the song is completely unknown to the participant (Fig. 7.7). In the three ap-
proaches, familiar recommendations score very high; specially when the participant
identifies the song, but also when it only recognises the artist. Yet, providing famil-
iar recommendations is not the most challenging part of a recommender system. In
fact, one can always play songs from the artists in the user’s profile, but then the
discovery ratio will be null.

As expected, the quality of the ratings drastically decrease when the participan-
tis do not recognise the recommendations. The worst case is on the novel songs.
Only the CF approach has an average rating score above 3 (see Table 7.1, and the
box-and-whisker plots in Fig. 7.8). These bad results are comprehensible because in
the experiment we intentionally did not provide any context about the recommenda-
tions, not even basic metadata such as the artist name or song title. One of the goals
of the experiment is also to measure the novelty component, so the only input the
participants can receive is the audio content. Our belief is that adding basic metadata
and an explanation of why the song was recommended, the perceived relevance of
the novel songs could be drastically increased in the three algorithms.



7.2 Results 163

Fig. 7.5 Histogram of the ratings (on a [1..5] scale) when the participant identifies the artist
and song (left: CF, center: CB, and Right: HY).

Fig. 7.6 Histogram of the ratings (on a [1..5] scale) when the participant only recognises the
artist (left: CF, center: CB, and Right: HY).

Fig. 7.7 Histogram of the ratings (on a [1..5] scale) when the recommended song is unknown
to the participant (left: CF, center: CB, and Right: HY).

7.2.2.3 Analysis of Variance

We use the overall results from Table 7.1 to compare the three algorithms, perform-
ing a (non-parametric) Kruskal–Wallis one-way ANOVA within subjects, at 95%
confidence level. As for familiar recommendations (including both artist and song
known and recall only artist), there is no statistically significant difference in the
relevance of the recommendations for the three algorithms. The main differences
are found in the ratings of unknown songs, F = 29.13, with p � 0.05, and in the
percentage of known songs, F = 7.57, p � 0.05. In the former case, the Tukey’s
test for pairwise comparisons confirms that CF average rating scores higher than
HY and CB, at 95% family-wise confidence level (see Fig. 7.8 and 7.9). However,
according to the latter case (percentage of known songs), CF generates more famil-
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Fig. 7.8 Box-and-whisker plot for the ratings of unknown songs.

Fig. 7.9 Tukey’s test for the ratings of unknown songs. Tukey’s test does a pairwise comparison of
the average ratings of unknown songs, and it confirms that CF avg. rating scores higher than HY
and CB approaches, at 95% family-wise confidence level.

iar songs than CB and HY. Thus, CB and HY provide more novel recommendations,
although their quality is not as good as CF.
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7.3 Discussion

The results from the user-centric evaluation show that user perceived quality for
novel, unknown recommendations —in the three methods—is on the negative side
(avg. rating around 3/5 or less, in Table 7.1). This emphasises the need for adding
more context when recommending unknown music. Users might want to understand
why a song was recommended to them. Recommender systems should give as many
reasons as possible, even including links to external sources (reviews, blog entries,
etc.) to support their decision. Besides, the limitation in the experiment of using
only 30 sec. samples did not help to assess the quality of the song. Yet, there are
lots of industrial music recommender systems that can only preview songs due to
licensing constraints. This constraint, then, is not that far from the reality.

We were expecting some correlation between the users musical background and
the ratings or percentage of unknown songs. For instance, a user that listens to many
hours of music daily could have more chances to identify more recommended songs.
Yet, no big statistically significant differences were found, regarding the age, gender,
musical background, number of hours, or context when listening to music. Only
two minor statistically significant findings were found, with a p-value p � 0.05.
The first one is that participants aging 36–45 (7% of the total) give lower ratings
for the known songs than the rest of the participants. The second finding is that
participants with no musical background (9% of the total) are the ones that penalise
the unkonwn songs with lower ratings. Yet, these two results could have appeared
by chance, given the low percentage of these two groups of participants.

An interesting experiment would be to identify each participant as a savant, en-
thusiast, casual or indifferent (see Sect 3.2.1), and see whether there is any differ-
ence in the ratings when providing novel music. This would measure how open to
receiving novel recommenations each type of user is. Indeed, this would help music
recommender systems to decide whether being risky or confident with the person-
alised recommendations. However, with the participants data that we gatehered it
was not straightforward to decide which type of user each participant was.

Regarding recommendation approaches, the context-free and popularity agnostic
CB algorithm sometimes points in the wrong direction (it is not that easy to dis-
criminate between a, say, classical guitar and a harpsichord, based solely on the
audio content), and gives poor or non-sense recommendations. This leaves room
for improving the audio similarity algorithm. In this sense, the proposed hybrid
approach drastically reduces the space of possible similar tracks to those artists re-
lated to the original artist. This avoids, most of the time, the mistakes performed
by the pure CB, but on the other hand the HY results are less eclectic than CB.
CF tends to be more conservative, providing less novel recommendations, but of
higher quality, relevant to the user. Figure 7.10 summarises the comparison of the
three approaches, based on the trade-off between novelty and relevance (presented in
Chap. 4, Fig. 4.8).

We can envision different solutions to cope with novelty in recommender sys-
tems. The first one is to use CF, promoting unknown artists by means of exploiting
the Long Tail popularity of the catalog and the topology of the recommendation
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Fig. 7.10 Location of the three music recommendation approaches in the novelty vs. relevance
axis (presented in Chap. 4, Fig. 4.8).

network. Another option is switching among algorithms when needed. For instance,
to avoid the cold-start problem whilst promoting novelty, one option is to use CB
or the hybrid approach, although this one heavily relies on human resources. After
a while, the system can move to a stable CF or HY approaches. Or, we could also
take into account the artist’s (or user) location in the Long Tail, and use one or an-
other algorithm accordingly. Furthermore, the system should be able to change the
recommendation approach according to the user’s needs. Sometimes, a user is open
to discovering new artists and songs (novelty), while sometimes she just wants to
listen to her favourites (familiarity). Detecting these modes and acting accordingly
should increase the user’s satisfaction with the system.

7.4 Limitations

To conclude, we also want to point out some limitations of the experiment. Users
had to rate songs using only a 30 s audio preview. Even though the participants
could listen to the songs repeatedly, it is not easy to rate a song the first time one
listens to it. Sometimes, one can love a song after hearing it several times, in differ-
ent contexts and moods. We could not measure this effect in the experiment. One
solution could be to allow participants to download the full songs, and then after a
period of time (e.g. 1 week, 1 month) they notify us with the total playcounts for
each recommended song. Relevant songs could be inferred from the listening habits
about the recommended songs. However, in this case a limitation is that we would
collect less answers from the participants (i.e. only the songs that were listened to
at least once).
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The results are presented sequentially. Even though we clearly stated that the re-
sult is not playlist, thus there is no order. Still, the previously listened tracks can
influence the user opinion of the current song. Also, if the first songs seem inappro-
priate, the songs displayed afterwards may seem better than they actually are.

Another issue is that musical tastes from the participants were gathered from
last.fm, which is also one of the recommendation approaches used. This means that,
beforehand, the participants were used to this system and the recommendations it
provides. Yet, we decided that this music profile is more compact and reliable than
asking the participant, at the beginning of the experiment, to enter a list of her
favourite artists. Furthermore, another constraint is that only users with a last.fm
account could participate in the survey.

The blind recommendation method approach—without providing any context—
does not help in assessing the relevance of the novel recommendations. It might be
the case that some of the novel songs were rated badly, but when explaining the
relationships with the user’s favourite artists, the artist biography, images, etc. the
perceived quality could be increased. In real recommender systems, blind recom-
mendations with no explanations are useless. Why is as important as what is being
recommended.

Last but not least, we are not interested on judging which recommendation
method performs the best, but on detecting the main differences among the ap-
proaches, and how people respond to each approach. In this sense, it is not fair
to compare a real system like last.fm to the other two straight-forward plain ap-
proaches. In addition, we did not include a fourth method, say a random recom-
mender, that could serve us as a baseline for the recommendations. This way, we
could assess whether the three methods perform, at least, better than the baseline.
Instead, we chose to gather more ratings from the three real methods than adding
another—baseline—method in the survey.



Chapter 8
Applications

This chapter presents two implemented prototypes that are related with the main top-
ics presented in the book; music discovery and recommendation. The first system,
named, Searchsounds, is a music search engine based on text keyword searches, as
well as a more like this button, that allows users to discover music by means of audio
similarity. Thus, Searchsounds allows users to dig into the Long Tail, by providing
music discovery using audio content-based similarity. The second system, named
FOAFing the Music, is a music recommender system that focuses on the Long Tail
of popularity, promoting unknown artists. The system also provides related informa-
tion about the recommended artists, using information available on the web gathered
from music related RSS feeds.

The main difference between the two prototypes is that Searchsounds is a non-
personalised music search engine, whilst FOAFing the Music takes into account the
user profile and the listening habits to provide personalised recommendations.

8.1 Searchsounds: Music Discovery in the Long Tail

Searchsounds, is a web-based music search engine that allows users to discover
music using content-based similarity. Section 8.1.1 introduces the motivations and
background of the system implemented. In Sec. 8.1.3 we present the architecture
of the system. Finally, the last section summaries the work done and outlines the
remaining work regarding the functionality of the system.

8.1.1 Motivation

Nowadays, the increasing amount of available music in the World Wide Web makes
very difficult, to the user, to find music she would like to listen to. To overcome
this problem, there are some audio search engines that can fit the user’s needs.
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Some of the current existing search engines are, nevertheless, not fully exploited
because their companies would have to deal with copyright infringing material. As
general search engines, music search engines have a crucial component: an audio
crawler, that scans the web for audio files, and also gathers related information about
files [1].

8.1.1.1 Syndication of Web Content

During the last years, syndication of web content—a section of a website made
available for other sites to use—has become a common practice for websites. This
originated with news and weblog sites, but nowadays is increasingly used to syndi-
cate any kind of information. Since the beginning of 2003, a special type of weblog,
named audio weblogs (or MP3 blogs), has become very popular. These blogs make
music titles available for download. The posted music is explained by the blog au-
thor, and usually it has links that allow users to buy the complete album or work.
Sometimes, the music is hard to find or has not been issued in many years, and
many MP3 blogs link strictly to music that is authorised for free distribution. In
other cases, MP3 blogs include a disclaimer stating that they are willing to remove
music if the copyright owner objects. Anyway, this source of semi-structured infor-
mation is a jewel for web crawlers, as it contains the user’s object of desire—the
music—and some textual information that is referring to the audio file.

The file format used to syndicate web content is XML. Web syndication is based
on the RSS family and Atom formats. The RSS abbreviation is used to refer to
the following standards: Really Simple Syndication (RSS 2.0), Rich Site Summary
(RSS 0.91 and 1.0) or RDF Site Summary (1.0).

Of special interest are the feeds that syndicate multimedia content. These feeds
publish audiovisual information that is available on the net. An interesting example
is the Media RSS (mRSS) specification,1 lead by Yahoo! and the multimedia RSS
community. mRSS allows bloggers to syndicating multimedia files (audio, video,
image) in RSS feeds, and adds several enhancements to RSS enclosures. Although
mRSS is not yet widely used on the net, some websites syndicate their multimedia
content following the specification. These feeds contain textual information, plus a
link to the actual audiovisual file. As an example, Listing 8.1 shows a partial RSS
feed.2

<rss version="2.0"
xml:base="http://www.ourmedia.org"
xmlns:media="http://search.yahoo.com/mrss"
xmlns:dc="http://purl.org/dc/elements/1.1/"
>
<channel>
<title>Example of a mRSS feed</title>
<link>http://www.ourmedia.org/user/45801</link>

1 http://search.yahoo.com/mrss/
2 Adapted from a real example published in OurMedia website. http://www.ourmedia.org

http://search.yahoo.com/mrss/
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<description>
Recently published media items from Ourmedia.org
</description>
<language>en</language>
<item>
<title>Fanky beats</title>
<link>http://www.ourmedia.org/node/...</link>
<description>Rock music with a funky beat and electric lead

guitar riffs (...)</description>
<pubDate>Mon, 17 Apr 2007 01:35:49 -0500</pubDate>
<dc:creator>John Brettbutter</dc:creator>
<category domain="urn:ourmedia:term:35">
Alternative Rock

</category>
<category domain="urn:ourmedia:term:582">funk</category>
<category domain="urn:ourmedia:term:727">guitar</category>
<enclosure url="http://archive.org/.../file.mp3"
length="3234212" type="application/octet-stream" />

</item>
<item>
<title>Another item</title>
...
</item>

</channel>
</rss>

Listing 8.1 Example of a media RSS feed.

The example shows an item with all its information: the title of the item, the de-
scription, the publication date, the editor of the entry, and a set of categories (similar
to tags, but controlled from a given taxonomy). Searchsounds mines this informa-
tion in order to retrieve relevant audio files based on keywords.

8.1.2 Goals

The main goal of the system is to allow users to discover unknown music. For this
reason, Searchsounds mines music related information available in MP3-weblogs,
and attaches textual information to the audio files. This way, users can search and
retrieve music related to the query, as well as music that sounds similar to the re-
trieved audio files. This exploration mode allows users to discover music—related to
his original (keyword based) query—that would be more difficult to discover using
only textual queries.

Figure 8.1 shows the relationship between the music information plane (see Sec.
3.3), and the information that Searchsounds uses.
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Fig. 8.1 Searchsounds makes use of editorial, cultural and acoustic metadata. The system retrieves
(1) audio files from a keyword query, as well as (2) a list of (content-based) similar titles.

8.1.3 System Overview

Searchsounds exploits and mines all the music related information available from
MP3-weblogs. The system gathers editorial, cultural, and acoustic information from
the crawled audio files. The input of the system is a query composed by text key-
words. From these keywords, the system is able to retrieve a list of audio files related
with the query. Each audio file provides a link to the original weblog, and a list of
similar titles. This similarity is computed using content-based audio description.
Thus, from the results of a keyword query, a user can discover related music by nav-
igating onto the audio similarity plane. It is worth to mention that there is no user
profiling or any kind of user representation stored in the system. This is a limitation,
as the system does not make any personalised recommendations. However, this lim-
itation is solved in the next prototype (explained in Sec. 8.2). The main components
of the system are the audio crawler and the audio retrieval system. Figure 8.2 depicts
the architecture of the system.
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Fig. 8.2 Searchsounds architecture. The main components are the audio crawler, and the audio
retrieval system.

8.1.3.1 Audio Crawler

The system has an audio spider module that crawls the web. All the gathered in-
formation is stored into a relational database. The audio crawler starts the process
from a manually selected list of RSS links (that point to MP3-blogs). Each RSS file
contains a list of entries (or items) that link to audio files. The crawler seeks for new
incoming items—using the pubDate item value and comparing with the latest entry
in the database—and stores the new information into the database. Thus, the audio
crawler system has an historic information of all the items that appeared in a feed.

From the previous RSS example (see Example 8.1, presented in Section 8.1.1.1),
the audio crawler stores the title, the content of the description, the assigned terms
from the taxonomy (category tags), and the link to the audio file (extracted from the
enclosure url attribute).

8.1.3.2 Audio Retrieval System

The logical view of a crawled feed item can be described by the bag-of-words ap-
proach: a document is represented as a number of unique words, with a weight (in
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our case, the t f /id f function) assigned to each word [2]. Special weights are as-
signed to the music related terms, as well as the metadata (e.g. ID3 tags) extracted
from the audio file. Similar to our approach, [3] presents a proposal of modifying
the weights of the terms pertaining to the musical domain.

Moreover, basic natural language processing methods are applied to reduce the
size of the item description (elimination of stopwords, and apply Porter’s stemming
algorithm [4]). The information retrieval (IR) model used is the classic vector model
approach, where a given document is represented as a vector in a multidimensional
space of words (each word of the vocabulary is a coordinate in the space).

The similarity function, sim(d j,q), between a query (q) and a document (d j) is
based on the cosine similarity, using T F-IDF weighting function (already presented
in Sec. 2.5.4). Our approach is well suited not only for querying via artists’ or songs’
names, but for more complex keyword queries such as: funky guitar riffs or tradi-
tional Irish tunes. The retrieval system outputs the documents (i.e. feed entries) that
are relevant to the user’s query, ranked by the similarity function. Figure 8.3 depicts
the retrieved audio files for traditional Irish music query.

Fig. 8.3 Screenshot of the Searchsounds application, showing the first 10 results from traditional
Irish music query.

Based on the results obtained from the user’s textual query, the system allows
users to find similar titles using content-based audio similarity. Each link to an au-
dio file has a Find similar button that retrieves the most similar audio files, based on
a set of low and mid-level audio descriptors. These descriptors are extracted from
the audio and represent properties such as: rhythm, harmony, timbre and instrumen-
tation, intensity, structure and complexity [5].



8.2 FOAFing the Music: Music Recommendation in the Long Tail 175

This exploration via browsing allows users to discover music—related to his
original (keyword based) query—that would be more difficult to discover by us-
ing textual queries only. There is an analogy between this type of navigation and,
for example, Google’s “find web pages that are similar to a given HTML page”.
In our case, similarity among items are based on audio similarity, whereas Google
approach is based on the textual content of the HTML page. Still, both browsing
approaches are based on the content analysis of the retrieved object.

8.1.4 Summary

We developed a web-based audio crawler that focuses on MP3-weblogs. Out of
the crawling process, each feed item is represented as a text document, containing
the content of the item, as well as the links to the audio files. Then, classic text
retrieval system outputs relevant feed items related to the user’s query. Furthermore,
a content-based navigation allows users to browse through the retrieved items and
discover new music and artists using audio similarity.

Ongoing work includes the automatic extraction of music related tags (i.e. guitar,
rock, 1970s) from the text, as well as applying autotagging to incoming audio files;
using audio content-based similarity [6]. We also plan to add relevance feedback
to tune the system and get more accurate results, specially for the content-based
similarity.

The system is available at http://www.searchsounds.net.

8.2 FOAFing the Music: Music Recommendation in the Long
Tail

Now we present the second of the two prototypes developed. It is a music recom-
mender system, named FOAFing the Music, that allows users to discover a wide
range of music located along the Long Tail. The system exploits music related in-
formation that is being syndicated (as RSS feeds) on thousands of websites. Using
the crawled information, the system is able to filter it and recommend it to the user,
according to her profile and listening habits.

8.2.1 Motivation

The World Wide Web has become the host and distribution channel for a broad va-
riety of digital multimedia assets. Although the Internet infrastructure allows sim-
ple straightforward acquisition, the value of these resources lacks powerful content
management, retrieval and visualisation tools. Music content is no exception: al-
though there is a sizeable amount of text-based information related to music (album

http://www.searchsounds.net
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reviews, artist biographies, etc.) this information is hardly ever associated with the
objects it refers to, that being the music files themselves (MIDI or audio). Moreover,
music is an important vehicle for communicating to other people something relevant
about our personality, history, etc.

There is a clear interest in the Semantic Web field in creating a Web of machine-
readable homepages describing people, the links among them, and the things they
create and do. The Friend of a Friend (Friend Of A Friend) project3 provides con-
ventions and a language to describe homepage-like content and social networks.
The Friend of a Friend vocabulary provides properties and classes for describing
common features of people and their social networks. Friend of a Friend is based on
the Resource Description Framework (RDF4) vocabulary.

We foresee that with a complete user’s Friend of a Friend profile, our system
would get a better representation of the user’s musical needs. On the other hand,
the RSS vocabulary5 allows systems one to syndicate Web content on the Internet.
Syndicated content includes data such as news, event listings, headlines, project
updates, as well as music related information, such as new music releases, album
reviews, podcast sessions, and upcoming gigs.

To our knowledge, nowadays it does not exist any system that recommends items
to a user, based on her Friend of a Friend profile. Yet, it is worth to mention the
FilmTrust system.6 It is a part of a research study aimed to understanding how social
preferences might help web sites to present information in a more useful way [7].
The system collects user reviews and ratings about movies, and holds them into the
user’s Friend of a Friend profile [8].

8.2.2 Goals

The main goal of the FOAFing the Music system is to recommend, to discover and to
explore music content; based on user profiling (via Friend of a Friend descriptions),
context based information (extracted from music related RSS feeds), and content
based descriptions (automatically extracted from the audio itself). All of that being
based on a common ontology that describes the musical domain.

Figure 8.4 shows the relationship between the music information plane, and the
different sources of metadata that the system exploits. Compared to the first proto-
type (Searchsounds), Foafing the Music holds a user profile representation, based
on the Friend of a Friend initiative (already presented in Sec. 3.2). A Friend of a
Friend user profile allows to filter music related information according to user’s
preferences.

3 http://www.foaf-project.org
4 http://www.w3.org/RDF
5 http://web.resource.org/rss/1.0/
6 http://trust.mindswap.org/FilmTrust

http://www.foaf-project.org
http://www.w3.org/RDF
http://web.resource.org/rss/1.0/
http://trust.mindswap.org/FilmTrust
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Fig. 8.4 FOAFing the Music and the music information plane.

8.2.3 System Overview

The overview of the Foafing the Music system is depicted in Fig. 8.5. The system is
divided in two main components, that is (i) how to gather data from external third
party sources (presented in Sec. 8.2.3.1), and (ii) how to recommend music to the
user based on the crawled data, and the semantic description of the music titles (Sec.
8.2.3.3).

8.2.3.1 Gathering Music Related Information

Personalised services can raise privacy concerns due to the acquisition, storage and
application of sensitive personal information [9]. In our system, information about
the user is not stored in the system in any way. Instead, the system has only a link
pointing to the user’s Friend of a Friend profile (often a link to a Livejournal ac-
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count). Thus, the sensitivity of this data is up to the user, not to the system. Users’
profiles in Foafing the Music are distributed over the net.

Regarding music related information, our system exploits the mashup approach.
The system uses a set of public available APIs and web services sourced from third
party websites. This information can come in any of the different RSS formats (v2.0,
v1.0, v0.92 and Yahoo! Media RSS), as well as in the Atom format. Thus, the system
has to deal with syntactically and structurally heterogeneous data. Moreover, the
system keeps track of all the new items that are published in the feeds, and stores
the new incoming data in a historic relational database. Input data of the system is
based on the following information sources:

Fig. 8.5 Architecture of the Foafing the Music system.

• User listening habits. To keep track of the user’s listening habits, the system
uses the services provided by last.fm. This system offers a list of RSS feeds
that provide the most recent tracks a user has played. Each item feed includes
the artist name, the song title, and a timestamp—indicating when the user has
listened to the track.

• New music releases. The system uses a set of RSS feeds that gathers new music
releases from iTunes, Amazon, Yahoo! Shopping and Rhapsody.

• Upcoming concerts. The system uses a set of RSS feeds that syndicates mu-
sic related events. The websites are: Eventful.com, and Upcoming.org. Once the
system has gathered the new items, it queries the Google Maps API to get the



8.2 FOAFing the Music: Music Recommendation in the Long Tail 179

geographic location of the venues, so it can be filtered according to the user’s
location.

• Podcast sessions. The system gathers information from a list of RSS feeds that
publish podcast sessions.

• MP3 Blogs. The system gathers information from a list of MP3 blogs that talk
about artists and new music releases.

• Album reviews. Information about album reviews are crawled from the RSS
feeds published by Rateyourmusic.com, Pitchforkmedia.com, online magazines
Rolling Stone,7 BBC,8 New York Times,9 and 75 or less records.10

Table 8.1 shows some basic statistics of the data that has been gathered since
mid April, 2005 until the first week of March, 2010. These numbers show that the
system has to deal with daily incoming data.

Source # RSS seed feeds # Items stored

New releases 44 1,283,640
MP3 blogs 127 991,997
Podcasts 833 288,992

Album reviews 18 206,265
Upcoming concerts 16 369,651

Table 8.1 Information gathered from music related RSS feeds is stored into a relational database.
Based on the user’s Friend of a Friend profile, the system filters this information, and presents the
most relevant items according to her musical taste.

8.2.3.2 Music Ontologies

An ontology is an explicit and formal specification of a conceptualisation [10]. In
general, an ontology describes formally a domain of discourse. The requeriments
for Ontology languages are: a well-defined syntax, a formal semantics, and a rea-
soning support that checks the consistency of the ontology, checks for unintended
relationships between classes, and automatically classifies instances in classes.

The Web Ontology Language (OWL11) has a richer vocabulary description lan-
guage for describing properties and classes than RDF Schema (RDFS12). OWL has
relations between classes, cardinality, equality, characteristics of properties and enu-
merated classes. The OWL language is build on top of RDF and RDFS, and uses
RDF/XML syntax. OWL documents are, then, RDF documents.

7 http://www.rollingstone.com/
8 http://www.bbc.co.uk/
9 http://www.nytimes.com/
10 http://www.75orless.com/
11 http://www.w3.org/TR/owl-guide/
12 http://www.w3.org/TR/rdf-schema/

http://www.rollingstone.com/
http://www.bbc.co.uk/
http://www.nytimes.com/
http://www.75orless.com/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-schema/
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On the other hand, we have defined a simple music recommendation OWL DL
ontology13 that describes some basic properties of the artists and music titles, as
well as some descriptors automatically extracted from the audio files (e.g. tonality,
rhythm, moods, music intensity, etc.). In [11] we propose a way to map our ontology
and the Musicbrainz ontology, onto the MPEG-7 standard, which acts as an upper-
ontology for multimedia description. This way we can link our dataset with the
Musicbrainz information in a straightforward manner.

A focused web crawler has been implemented to add instances to our music
ontology. The crawler extracts metadata of artists and songs, and the relationships
between artists (such as: “related with”, “influenced by”, “followers of”, etc.), and
converts it to RDF/XML notation. The seed sites to start the crawling process are
music metadata providers, such as MP3.com, Yahoo! Music, and RockDetector, as
well as independent music labels (Magnatune, CDBaby, Garageband, etc.).

Based on our lightweight music recommendation ontology, listing 8.2 shows the
RDF/XML description of an artist from GarageBand.

<rdf:Description rdf:about="http://www.garageband.com/artist/
randycoleman">

<rdf:type rdf:resource="{\&}music;Artist"/>
<foaf:name>Randy Coleman</foaf:name>
<music:decade>1990</music:decade>
<music:decade>2000</music:decade>
<music:genre>Pop</music:genre>
<foaf:based_near
rdf:resource="http://sws.geonames.org/5368361/"/>

<music:influencedBy
rdf:resource="http://www.coldplay.com"/>

<music:influencedBy
rdf:resource="http://www.jeffbuckley.com"/>

<music:influencedBy
rdf:resource="http://www.radiohead.com"/>

</rdf:Description>

Listing 8.2 RDF example of an artist individual

Listing 8.3 shows the description of an individual track of the previous artist,
including basic editorial metadata, and some features extracted automatically from
the audio file.

<rdf:Description rdf:about="http://www.garageband.com/song?|pe1|
S8LTM0LdsaSkaFeyYG0">

<rdf:type rdf:resource="{\&}music;Track"/>
<music:title>Last Salutation</music:title>
<music:playedBy rd:resource="http://www.garageband.com/artist/

randycoleman"/>
<music:duration>247</music:duration>
<music:intensity>Energetic</music:intensity>
<music:key>D</music:key>
<music:keyMode>Major</music:keyMode>
<music:tonalness>0.84</music:tonalness>
<music:tempo>72</music:tempo>

</rdf:Description>

13 http://foafing-the-music.iua.upf.edu/music-ontology#

http://foafing-the-music.iua.upf.edu/music-ontology#
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Listing 8.3 Example of a track individual

These individuals are used in the recommendation process, to retrieve artists and
songs related with the user’s musical taste.

8.2.3.3 Providing Music Recommendations

This section explains the music recommendation process, based on all the informa-
tion that has continuously been gathered from the RSS feeds and the crawler. Music
recommendations, in the Foafing the Music system, are generated according to the
following steps:

1. Get music related information from user’s Friend of a Friend interests, and lis-
tening habits from last.fm,

2. Detect artists and bands,
3. Compute similar artists, and
4. Rate the results by relevance, according to the user’s profile.

To gather music related information from a Friend of a Friend profile, the system
extracts the information from the FOAF interest property (if dc:title is given
then it gets its value, otherwise it gathers the text from the <title> tag of the
HTML resource).

<foaf:interest
rdf:resource="http://www.tylaandthedogsdamour.com/"
dc:title="The Dogs d’Amour" />

Listing 8.4 Example of a Friend of a Friend interest with a given dc:title.

The system can also extract information from a user’s Friend of a Friend interest
that includes the artist description based on the general Music Ontology [12].

The following example presents a way to express interest in an artist, by means
of the general Music Ontology.

<foaf:interest>
<mo:MusicArtist rdf:about=’http://musicbrainz.org/artist/12

d432a3-...-d20751880764’>
<mo:discogs rdf:resource=’http://www.discogs.com/artist/Yann+

Tiersen’/>
<foaf:img rdf:resource=’http://ec2.images-amazon.com/images/P

/B000852GIQ...Z_.jpg’/>
<foaf:homepage rdf:resource=’http://www.yanntiersen.com/’/>
<foaf:name>Yann Tiersen</foaf:name>
<mo:wikipedia rdf:resource=’http://en.wikipedia.org/wiki/

Yann_Tiersen’/>
</mo:MusicArtist>

</foaf:interest>

Listing 8.5 FOAF example of an artist description that a user is interested in.

Based on the music related information gathered from the user’s profile and lis-
tening habits, the system detects the artists and bands that the user is interested in,
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by doing a SPARQL query to the artist RDF repository. Once the user’s artists have
been detected, artist similarity is computed. This process is achieved by exploiting
the RDF graph of artists’ relationships (e.g. influenced by, followers of, worked with,
etc.), as shown in Listing 8.2.

The system offers two ways of recommending music information. On the one
hand, static recommendations are based on the favourite artists encountered in the
Friend of a Friend profile. We assume that a Friend of a Friend profile would be
rarely manually updated or modified. On the other hand, dynamic recommendations
are based on user’s listening habits, which are updated much more often than the
user’s profile. Following this approach a user can discover a wide range of new
music and artists on a daily basis.

Once the recommended artists have been computed, Foafing the Music filters
music related information coming from the gathered music information (see Sec.
8.2.3.1) to:

• Get new music releases from iTunes, Amazon, Yahoo Shopping, etc.
• Download (or stream) audio from MP3-blogs and Podcast sessions,
• Create, automatically, XSPF14 playlists based on audio similarity,
• View upcoming gigs happening near to the user’s location, and
• Read album reviews.

Syndication of the website content is done via an RSS 1.0 feed. For most of
previous functionalities, there is a feed subscription option to get the results.

8.2.3.4 Usage Data

Since its inception in August 2005, the system has an average of 60 daily unique
accesses, from more than 5,000 registered users, including casual users that try the
demo option. More than half of the users automatically created an account using
an external Friend of a Friend profile (most of the times, around 70%, the profile
came from their Livejournal Friend of a Friend account). Also, more than 65% of
the users add her last.fm account, so we can use their listening habits from last.fm.
Figure 8.6 shows the number of logins over time, since August 2005 till July 2008.
The peaks are clearly correlated with related news about the project (e.g. local TV
and radio interviews, and reviews on the web).

8.2.4 Summary

We have proposed a system that filters music related information, based on a given
user’s Friend of a Friend profile and her listening habits. A system based on Friend
of a Friend profiles and user’s listening habits allows the system to “understand” a

14 http://www.xspf.org/. XSPF is a playlist format based on XML syntax
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Fig. 8.6 Daily accesses to Foafing the Music. The system has an average of 60 daily unique ac-
cesses, from more than 4,000 registered users and also casual users that try the demo option.

user in two complementary ways; psychological factors—personality, demographic
preferences, social relationships—and explicit musical preferences. In the music
field, we expect that filtering information about new music releases, artists’ inter-
views, album reviews, and so on, can improve user satisfaction as it provides the
context and needed information to backup the system’s recommendations.

Describing music assets is a crucial task for a music recommender system. The
success of a music recommender can depend on the accuracy and level of detail of
the musical objects, and its links within a user profile. Furthermore, we formalise
into an ontology the basic musical concepts involved in the recommendation pro-
cess. Linking these musical objects with the user profile eases the recommendation
process.

Furthermore, high–level musical descriptors can increase the accuracy of con-
tent retrieval, as well as provide better personalised recommendations. Thus, going
one step beyond, it would be desirable to combine mid–level acoustic features with
as much editorial and cultural metadata as possible. From this combination, more
sophisticated inferences and semantic rules would be possible. These rules could
derive hidden high–level metadata that could be easily understood by the end-user,
also enhancing their profiles. Since the existence of the general Music Ontology
(MO) [12], we foresee that linking our recommendation ontology with it, as well as
using all the linked information available in the Web of Data,15 we can improve our
recommender, becoming a truly semantically-enhanced music recommender.

Foafing the Music is available at http://foafing-the-music.iua.upf.
edu.

15 See http://linkeddata.org/.

http://foafing-the-music.iua.upf.
edu
http://linkeddata.org/
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Chapter 9
Conclusions and Further Research

Research in recommender systems is multidisciplinary. It includes several areas,
such as: search and filtering, data mining, personalisation, social networks, text pro-
cessing, complex networks, user interaction, information visualisation, signal pro-
cessing, and domain specific models, among others. Furthermore, current research
in recommender systems has strong industry impact, resulting in many practical
applications.

We have an overwhelming number of choices about which music to listen to. As
stated in The Paradox of Choice [1], we—as consumers—often become paralysed
and doubtful when facing the overwhelming number of choices. The main problem
is the awareness of content, not the actual access to the content (think on Spotify or
YouTube services, for example). Personalised filters and recommender systems are
key elements in this scenario. Effective recommendation systems should promote
novel and relevant material (non-obvious recommendations), taken primarily from
the tail of the music popularity distribution.

One of the main goals in this book is music discovery via the functionality that
recommender systems offer. In this sense, novelty and relevance of the recommen-
dations are the two most important aspects. We make use of the Long Tail shape to
model the popularity bias that exists in any recommender system, and use this data
to recommend unknown items, hidden in the tail of the popularity curve. Our expe-
rience is that using the F(x) function (see Chap. 4) to model the Long Tail curve,
we get more accurate results than fitting the curve to well-known distributions, such
as a power-law or log-normal [2].

Music is somewhat different from other entertainment domains, such as movies
or books. Tracking users’ preferences is mostly done implicitly, via their listening
habits (instead of asking users to explicitly rate the items). Any user can consume
an item (e.g., a track or a playlist) several times, even repeatedly and continuously.
Regarding the evaluation process, music recommendation allows users instant feed-
back via brief audio excerpts. Thus, we have proposed new approaches to evaluate
the effectiveness of the recommendations in the music domain. The evaluation fo-
cuses on the central pillar of any recommender system: the similarity among ob-
jects (e.g. items or users). In our case, we evaluate and analyse the artist and user

Ò. Celma, Music Recommendation and Discovery, 185
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similarity networks. We also present a survey with 288 subjects that provided feed-
back about the (personalised) recommendations. This survey evaluates the user’s
perceived quality and novelty factor of the music recommended.

9.1 Book Summary

This book presents a number of novel ideas that address existing limitations in rec-
ommender systems, and the lack of systematic methods to evaluate the novelty and
perceived quality of recommendations in the music domain. Furthermore, two real
web-based systems have been implemented to demonstrate the ideas derived from
the theoretical work. The main outcomes of the book are:

1. A novel network-centric evaluation method for recommender systems, based on
the analysis of the item (or user) similarity graph, and the combination with
items’ popularity, using the Long Tail curve. An exhaustive study comparing dif-
ferent approaches of music recommendation networks is presented in Chap. 6.

2. A user-centric evaluation, based on the immediate feedback of the provided rec-
ommendations, that measures the user’s perceived quality and novelty factor of
the recommendations. An in-depth user-based evaluation of three different music
recommendation approaches is presented in Chap. 7.

3. A music search engine, named Searchsounds, that allows users to discover un-
known music that is available on music related blogs.

4. A system prototype, named FOAFing the music, that provides music recommen-
dation based on the user preferences and listening habits.

The first two contributions are more scientific, whilst the third and fourth are
more engineering oriented.

9.1.1 Scientific Contributions

9.1.1.1 A Network-Based Evaluation Method for Recommender Systems

We have formulated a network-based evaluation method for recommender systems,
based on the analysis of the item (or user) similarity network, combined with item
popularity. This method has the following advantages:

1. It measures the novelty component of a recommendation algorithm.
2. It models the item popularity curve.
3. It combines both the complex network and the item popularity analysis to deter-

mine the underlying characteristics of the recommendation algorithm.
4. It does not require any user intervention in the evaluation process.
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We have applied the network-based analysis to two different similarity graphs;
for artists, and users. The results from the artist network analysis show that the
last.fm social-based recommender tends to reinforce popular artists, at the expense
of discarding less-known music. Thus, the popularity effect derived from the com-
munity of users has consequences in the recommendation network. This reveals a
somewhat poor discovery ratio when just browsing through the network of simi-
lar music artists. Allmusic.com expert-based recommendations are more expensive
to create, and also have a smaller Long Tail coverage, compared to automatically
generated recommendations like collaborative filtering or audio content-based sim-
ilarity. Regarding popularity, the hubs in the expert network are comprised of main-
stream music. Our guess is that the editors connect long tail artists with the most
popular ones, either for being influential or because many bands are considered fol-
lowers of these mainstream artists. An audio content-based similarity network is
not affected by the popularity bias of the artists, however it is prone to the musical
genre biases of the collection, where the predominant genres includes most of the
similar artists. The main problem of audio content-based systems is the assumption
that just because two songs sound similar, any user will like both. It is very unlikely
that a user will love both a Franz Schubert’s piano sonata, and a Meat Loaf piano
ballad (such as “Heaven Can Wait”) just because the two contain a prominent piano
melody.

The results from the user network analysis show that user similarity network de-
rived from collaborative filtering resembles a social network, whilst the network
derived from audio content-based similarity has the properties of a hierarchy, where
a few nodes connect small clusters. The authorities in the CB network are the users
that listen to more music, independently of the quality or popularity of the music
they listen to. Contrastingly, the authorities in the CF network are the users that
listen to more mainstream music. These considerations have a big impact on recom-
mendation algorithms that compute recommendations by means of user neighbour-
hood information.

9.1.1.2 A User-Based Evaluation Method for Recommender Systems

Our proposed evaluation measures the user’s perceived quality and novelty of the
recommendations. The user-centric evaluation approach has the following advan-
tages:

1. It measures the novelty factor of a recommendation algorithm considering the
user’s knowledge of the items.

2. It measures the perceived quality (e.g., like it or not) of the recommendations.
3. Users provide immediate feedback to the evaluation system, so the algorithm can

adapt accordingly.

This method complements the previous, user-agnostic, network-based evalua-
tion approach. We use the user-centric method to evaluate and compare three dif-
ferent music recommendation approaches. In this experiment, 288 subjects rated
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the recommendations in terms of novelty (does the user know the recommended
song/artist?), and relevance (does the user like the recommended song?).

The results from the music recommendation survey show that, in general, users’
perceived quality for novel recommendations is neutral or negative (mean rating
around 3/5 or less). This emphasises the need for adding context when recommend-
ing unknown music. Recommender systems should give as many reasons as possible
to support their decisions.

In terms of algorithms, the rating scores for the last.fm social-based approach are
higher than those for the hybrid and pure audio content-based similarity. However,
the social-based recommender generates more familiar (less novel) songs than CB
and HY. Thus, content-based and hybrid approaches provide more novel recommen-
dations, although their quality is not as good as the ones from last.fm.

9.1.2 Industrial Contributions

9.1.2.1 FOAFing the Music: A Music Recommendation System

The system prototype, named FOAFing the Music, provides music recommendation
based on the user preferences and listening habits. The main goal of FOAFing the
Music is to recommend, to discover and to explore music content via user profiling,
context-based information (extracted from music related RSS feeds), and content-
based descriptions (automatically extracted from the audio itself). The system has
an average of 60 daily unique accesses, from more than 5,000 registered users and
also casual users that try the demo option. FOAFing the music allows users to:

1. get new music releases from iTunes, Amazon, Yahoo Shopping, etc.
2. download (or stream) audio from MP3-blogs and Podcast sessions,
3. discover music with radio-a-la-carte (i.e. personalised playlists),
4. view upcoming nearby concerts, and
5. read album reviews.

Since the existence of the general Music Ontology [3], we foresee that linking
our recommendation ontology with it, as well as exploiting all the linked informa-
tion available in the Web of Data,1 we can improve our system, becoming a truly
semantically-enhanced music recommender.

9.1.2.2 Searchsounds: A Music Search Engine

We have implemented a music search engine, named Searchsounds, that allows
users to discover unknown music mentioned on music-related blogs. Searchsounds
provides keyword based search, as well as the exploration of similar songs using

1 See http://linkeddata.org/.

http://linkeddata.org/
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audio similarity. The system allows users to dig into the Long Tail, by providing
music discovery using audio content-based similarity, that could not be easily re-
trieved using classic text retrieval techniques. Over 400,000 audio files are currently
indexed, using both text and audio features.

Ongoing work includes the automatic extraction of music related tags (i.e. guitar,
rock, 1970s) from the text, as well as applying autotagging to incoming audio files;
using audio content-based similarity [4].

9.2 Limitations and Further Research

9.2.1 Dynamic Versus Static Data

It goes without saying that there are many ways in which the work presented in this
book could be extended or improved. One of the main limitations of our approach is
that it is not dynamic. We work with a snapshot of the item (or user) similarity net-
work, and the analysis is based on this data. However, the recommendation network
dynamics is an important aspect of any recommender system. Users’ taste change
over time, and so it does the similarity among items. Further work in this area would
include a detailed study of a dynamic model in the network—including trend and
hype-item detection—and a comparison with our stationary model.

9.2.2 Domain Specific

The work done has been applied only to music recommendation. Even though we
did not use any domain-specific metrics in the network-centric evaluation, our find-
ings cannot be directly extrapolated to other domains. Further work could be to
extend the network-centric experiments to other domains, such as movie recom-
mendation using the Netflix dataset.

Besides, the user-centric evaluation contains a lot of particularities from the mu-
sic recommendation domain. In other domains (e.g., movies, books, or travels), ex-
plicit user feedback about the recommended items cannot be provided in real-time.
Furthermore, our music recommendation survey design is based on providing blind
recommendations. Future work should be to compare our results with a new exper-
iment that provides contextual information and transparency about the music being
recommended. The related question would be whether the ratings of novel items
increase (i.e. are perceived with better quality) when providing more information
about the recommended songs.
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9.2.3 User Evaluation

In our user-centric evaluation we could not classify a participant into the four type
of listeners (savant, enthusiasts, casuals and indifferents). In fact, it would be inter-
esting to look at recommendation evaluations through the lense of the four types
of listeners. The type and utility of recommendations varies greatly depending on
the type of user. When testing against the general population—since most listeners
fall into the casual or indifferent bucket—recommenders that appeal to these types
of listeners would score well when compared to recommenders that are designed
for the enthusiast or savant. However, enthusiasts and savants are likely to be much
more active consumers, so from an economic point of view, there may be more value
targeting them. Recommenders for savants and enthusiasts would probably favour
novelty and long tail content, while recommendations for a casual listener would
probably favour low-risk exploration. Indeed, a new task for music recommenders
could be to help casual listeners appreciate diversity and exploration to unknown
content.

9.2.4 User Understanding

User understanding is another important aspect when providing personalised recom-
mendations. Our approach to model a user profile is a rather simple list of preferred
artists. Extending the user profile model, adding relevant and contextual informa-
tion, would allow recommender systems to have a better understanding of the user.

Ideally, a recommender system should provide different and personalised rec-
ommendations for a given item. That is, when visiting the Beatles’ White Album
in Amazon store, the system should present the list of recommendations according
to the user profile. Depending on the user’s taste, the system should stress the pop
side of the band, whilst in other situations it could promote the more psychedelic or
experimental music they did. Ongoing work by Lamere and Maillet [5] is aligned
with this idea. They have implemented a prototype system that creates transparent,
steerable recommendations. Users can modify the list of recommended artists, by
changing the tag cloud of the seed artist. This way, users focus on some particu-
lar styles or aspects of the musician (e.g. give me The Beatles similar artists, but
emphasizing their psychedelic rock side).

9.2.5 Recommendations with No Explanation

Blind recommendations do not provide any context nor explanation. Thus, it does
not help in assessing the relevance of novel recommendations. It might be the case
that some novel songs recommended are perceived as non-relevant, but when ex-
plaining the ties with the user profile the perceived quality could be increased. In
fact, why is as important as what is being recommended. Again, [5] is a novel exam-
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ple of a system that gives transparent explanations about the provided recommenda-
tions.

9.3 Outlook

We are witnessing an explosion of practical applications coming from Music Infor-
mation Retrieval research field: music identification systems, music recommenders
and playlist generators, music search engines, extraction of semantic audio features,
autotagging, and this is just the beginning.

A few years ago, music was a key factor in taking the Internet from its text-
centered origins to being a complete multimedia environment. Music might do the
same for the next web generation. The “Celestial Jukebox” is about to become a
reality.
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